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Preface

This is a book about a beautiful subject that begins with the topic of Mobius
transformations. Indeed, M&bius transformations

az+b
H
cz+d

are studied in complex analysis since their mapping properties demonstrate won-
derful connections with geometry. These transformations map extended circles to
extended circles, enjoy the symmetry principle, come in several types yielding
different behavior depending on their fixed point(s), and, through an identification
with 2 x 2 matrices, make connections to group theory and projective geometry.
Finite Blaschke products, the focus of this book, are products of certain types of
Mobius transformations, the automorphisms of the open unit disk D, namely

w—2z
1 —wz

2§ ,
where |w| < 1 and |£| = 1 are fixed. These products have an uncanny way of
appearing in many areas of mathematics such as complex analysis, linear algebra,
group theory, operator theory, and systems theory. This book covers finite Blaschke
products and is designed for advanced undergraduate students, graduate students,
and researchers who are familiar with complex analysis but who want to see more
of its connections to other fields of mathematics. Much of the material in this book
is scattered throughout mathematical history, often only appearing in its original
language, and some of it has never seen a modern exposition. We gather up these
gems and put them together as a cohesive whole, taking a leisurely pace through the
subject and leaving plenty of time for exposition and examples. There are plenty of
exercises for the reader who not only wants to appreciate the beauty of the subject
but to gain a working knowledge of it as well.

vii



viii Preface
In the early twentieth century, the study of infinite products of the form

B(z) = |2kl 2k —z
e 1 —7kz’

k>l

in which z1, z2, ... is a sequence in ID, was initiated in 1915 by Wilhelm Blaschke
(1885-1962). This product converges uniformly on compact subsets of D if and only
if the zero sequence zj satisfies Z,@] (1 —|zk]) < oo. These Blaschke products are

analytic on ID and have the additional property that the radial limit lim,_, ;- B(re'?)
exists and is of unit modulus for almost every 6 € [0, 27). In other words, B is
an inner function. Blaschke products have been studied intensely since they were
first introduced and they appear in many contexts throughout complex analysis and
operator theory.

This book is concerned with finite Blaschke products, in which the zero sequence
21,22, - - -, 2n 18 finite and the product terminates. Although the skeptical reader
might think this focus is too narrow, there are many fascinating connections with
geometry, complex analysis, and operator theory that demand attention.

There are already some excellent texts that cover infinite Blaschke products and,
more generally, inner functions [38, 61]. However, as the reader will see, there
are many beautiful theorems involving finite Blaschke products that have no clear
analogues in the infinite case. Finite Blaschke products are not often discussed in
the standard texts on function spaces or complex variables since the focus there is
often on inner functions as part of the broader theory of Hardy spaces. This book
focuses on finite Blaschke products and the many results that pertain only to the
finite case.

The book begins with an exposition of the Schur class .7, the set of analytic
functions from D to D™, the closure of DD, and an introduction to hyperbolic
geometry. We develop this material from scratch, assuming only that the reader
has had a basic course in complex variables. We characterize the finite Blaschke
products in several different ways. First, a rational function is a finite Blaschke
product if and only if it is of the form

ap+ a1z + -+ op”
Uy + W12 - @z

in which the numerator is a polynomial whose n roots lie in . Second, a finite
Blaschke product maps D onto D (and the unit circle T onto itself) precisely n times
and a theorem of Fatou confirms that these are the only functions that are continuous
on D™ and analytic on D with this property. Third, each finite Blaschke product B
satisfies

lim |B(z)| =1

lz]—>1~



Preface ix

and another result of Fatou shows that the finite Blaschke products are the only
analytic functions on D that do this. Whether as rational functions whose defining
polynomials enjoy certain symmetries, as n-to-1 analytic functions on D, or as
analytic functions with unimodular boundary values, the finite Blaschke products
distinguish themselves as special elements of the Schur class.

The approximation of a given analytic function by well-understood functions
from a fixed class is a standard technique in complex analysis. For example, there
are the well-known approximation theorems of Runge, Mergelyan, and Weierstrass.
We examine a few results of this type that involve finite Blaschke products. More
specifically, a celebrated theorem of Carathéodory ensures that any function in the
Schur class . can be approximated, uniformly on compact subsets of D, by a
sequence of finite Blaschke products. In fact, one can even take the approximating
Blaschke products to have simple zeros. After Carathéodory’s theorem, we discuss
Fisher’s theorem, which says that any function in .% that extends continuously to D™
can be approximated uniformly on D™ by convex combinations of finite Blaschke
products. As another example, a theorem of Helson and Sarason states that any
continuous function from T to T can be uniformly approximated by a sequence of
quotients of finite Blaschke products.

One might think there is not much to say about the zeros of a finite Blaschke
product. After all, the location of the zeros is part of the definition! However, there
are some beautiful gems here. The famed Gauss—Lucas theorem asserts that if P
is a polynomial, then the zeros of P’, the derivative of P, are contained in the
convex hull of the zeros of P. There are theorems that say that the zeros of a finite
Blaschke product B are contained in the convex hull of the solutions to the equation
B(z) = 1 (or indeed the solutions to B(z) = ¢'? for any 6 € [0, 2w)). Moreover,
the hyperbolic analogue of the Gauss—Lucas theorem says that the zeros of B’ (the
critical points of B) are contained in the hyperbolic convex hull of the zeros of B.
For Blaschke products of low degree, these results are even more explicit and can
be stated in terms of classical geometry involving ellipses. There is also a result of
Heins which says that one can create a finite Blaschke product with any desired set
of critical points in D. Finally, for analytic functions on D™, one can state, in terms
of finite Blaschke products, a curious converse (the Challener—Rubel theorem) to
Rouché’s theorem.

Interpolation is another important topic in complex analysis. The most basic
result in this direction is the Lagrange interpolation theorem, which guarantees
that for distinct z1, 22, ..., 2, and any wy, wa, ..., w, there is a polynomial P for
which P(z;) = wj for all j. The connection finite Blaschke products make with
interpolation comes from Pick’s theorem: given distinct z1, z2, ..., 2, € D and any
wi, w2, ..., w, €D, then thereis an f € % for which f(z;) = w; forall j if and
only if the Pick matrix

|:1 —w_jwij|
1 —Zjzi 1<i,j<n
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is positive semidefinite. Furthermore, when the interpolation is possible, it can be
done with a finite Blaschke product. A more involved boundary interpolation result
is the Cantor—Phelps theorem (for which we provide two distinct proofs, one abstract
and another constructive), which says that given distinct ¢1, {2, ..., ¢, € T and any
&1,82,...,&, € T there is a finite Blaschke product B with B(¢;) = &; for all j.

So far we have discussed finite Blaschke product themselves and their connec-
tions to well-studied topics in complex analysis (zeros, critical points, residues,
valence, approximation, and interpolation). However, as mentioned earlier, finite
Blaschke products appear in many other places.

For example, Bohr’s inequality asserts that if f =}, anz" € ., then

Y lalr" <1, relo, 3l
n=0

The number % is optimal and is called the Bohr radius for the Schur class. Using
finite Blaschke products, we explore a Bohr-type inequality for subclasses of Schur
functions that vanish at certain points of D and for the Schur class functions whose
first several derivatives vanish at zero. It turns out that the extremal functions for
these extended Bohr problems are finite Blaschke products.

Next we cover two connections finite Blaschke products make with group theory.
For a fixed finite Blaschke product B, consider the set G p of continuous functions
u : T — T for which Bou = B. One can see that G p is a semigroup under function
composition. A theorem of Chalendar and Cassier reveals that G p is a cyclic group
and that one can identify a generator by considering the previously mentioned n-to-1
mapping properties of B on T. We also cover, via Cowen’s unpublished exposition,
an old theorem of Ritt that examines when we can write B as a composition B =
C o D, in which C and D are finite Blaschke products. The answer is in terms of the
monodromy group of B~!. We also give an equivalent formulation of Ritt’s theorem
in terms of certain subgroups of G p.

Finite Blaschke products also make connections to operator theory. For example,
if T is a contraction on a Hilbert space and B is a finite Blaschke product with n
zeros, then B(T) is also a contraction. Moreover, a theorem of Gau and Wu says
that ||B(T)|| = 1 ifand only if | 7" || = 1. Another connection is with the numerical
range of an operator. The spectral mapping theorem says that o (p(T)) = p(o(T)),
in which o (T) is the spectrum of a bounded Hilbert space operator T and p is
a polynomial. One may wonder whether or not a similar identity W (p(T)) =
p(W(T)) holds for the numerical range

W(T) = {(Tx,x) : x| = 1}.

Although the desired identity is not true in general, there are some suitable substi-
tutes. In fact, Halmos asked whether or not W(7T) € D~ implies that W(T") C D~
for every n > 1. Progress was made when it was shown that if W(T) € D™ and
B is a finite Blaschke product with B(0) = 0, then W(B(T)) € D™. A theorem
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of Berger and Stampfli extends this result from finite Blaschke products that vanish
at the origin to the Schur functions that are continuous on D~ and vanish at the
origin. However, without the condition f(0) = 0, there are contractions 7" with
W(T) < D~ for which W(f(T)) intersects the complement of D~. A suitable
replacement here is a theorem of Drury which says that though W(f(T)) may
intersect the complement of D™, it is contained in a certain “teardrop” region, a
slight “bulge” of ID. Moreover, the use of finite Blaschke products indicates the
sharpness of Drury’s theorem.

Still another connection to finite Blaschke products comes with models of linear
transformations. In linear algebra, or more broadly in operator theory, one often
wants to create a model for certain types of linear transformations. For example,
there is the classical spectral theorem from linear algebra which says that any
normal matrix is unitarily equivalent to a diagonal matrix. One can show that any
contractive matrix 7 with rank(/ —T7*T) = 1 and whose eigenvalues A1, A2, ..., A,
are contained in DD is unitarily equivalent to the compression of the shift operator
f + zf on the Hardy space H? to the model space

1
span[l—_:lgjgn}.

Along with this result, one obtains a function-theoretic characterization of the
invariant subspaces of these operators as well. In fact, this model space is the vector
space of rational functions f with no poles in D™ for which

2w 4O
F (@) B(eif)e " — =0, n=0,

0 21
in which B is the finite Blaschke product whose zeros are the eigenvalues ;.
The finite-dimensional approach undertaken in this book is intuitive and prepares
interested readers for the more advanced text [59].

Finite Blaschke products can also be used to explore rational functions f that are
analytic on D and for which f (e %) is an extended real number for all 6 € [0, 27].
These functions are sometimes called the real rational functions. Examples include

1
f@ =i,

and, more generally,

_l.B1+Bz
o B — By’

in which By and Bj are finite Blaschke products such that B; — B> has no zeros on
D. In fact, a theorem of Helson says these are all of the real rational functions. We
will discuss various properties of real rational functions such as a characterization of
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those that are zero free on D, the valence of these functions, as well as a factorization
of a real rational function f as f = F G, where F and G are real rational functions,
F has the same zeros of f, and G is zero free.

Finally, there is the connection Blaschke products make with the Darlington
synthesis problem from electrical engineering. Here, in its simplest realization, one
is given a rational function a with no poles in D™ and one needs to find rational
functions b, c,d on D with no poles in D™ so that the matrix-valued analytic
function

M) = |:a(z) b(z):|
c(z) d(2)

is such that M (¢‘?) is a unitary matrix for every 6 € [0, 27). The determinant of
such a matrix M is a finite Blaschke product B and the model space associated
with B determines the structure of and relations between the unknown functions
b, ¢, d. Most curiously, we see that every rational matrix inner function M (z) enjoys
a peculiar quaternionic structure.

This book is mostly self-contained and should be accessible to a student with a
background in basic real and complex analysis along with linear algebra. The proofs
are detailed and dozens of illustrations are provided. We thank Zach Glassman for
his assistance with Tikz and for producing many of our illustrations. At the end
of each chapter, we include exercises so that the reader can gain greater technical
fluency with the material. An appendix contains some background information
about operator theory and function spaces that is relevant for a few results in the
later chapters.

Claremont, CA, USA Stephan Ramon Garcia
Laval, QC, Canada Javad Mashreghi
Richmond, VA, USA William T. Ross
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Chapter 1 ®
Geometry of the Schur Class oo

This chapter will cover some basic facts about the Schur class. In what follows,
D:={zeC:lz] <1}, D  ={zeC:zI<1}, T:={zeC:|zl=1}.
Definition 1.0.1 The Schur class .7 is
S :={f:D— D : fisanalytic}. (1.0.2)

The Maximum Modulus Principle ensures that f(z) € T for some z € D if and only
if f is a constant function of unit modulus. Thus, . consists of the nonconstant
analytic functions f : D — D along with the constant functions with values in D~

1.1 The Schwarz Lemma

The Schwarz Lemma is one of the cornerstones of complex analysis. Despite its
deceptive simplicity, it has many profound consequences [31]. Schwarz proved this
lemma for injective functions. Carathéodory proved the general version.

Lemma 1.1.1 (Schwarz [125]) If f € % and f(0) = 0, then
(a) |f (2] < |z| forall z € D, and
() 1O <1

Moreover, if | f(w)| = |w| for some w € D\{0} or if | f'(0)| = 1, then there is a
¢ € T so that f(z) = ¢z forall z € D.
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2 1 Geometry of the Schur Class

Proof (Carathéodory [15]) Define g : D — C by

f .

— if 0,
e=] = 17

f’(O) if z =0,

and observe that g is analytic on D\{0}. The singularity at O is removable since
lim g(z) = £/(0)
z—0

and hence g is analytic on all of D. For r € [0, 1), an application of the Maximum
Modulus Principle to the disk |z] < r yields a ¢ € T so that

1
Ol _ 1

<—-, zeD.
Ire| r
Now let r — 17 to obtain statements (a) and (b).

Suppose that | f(w)| = |w| for some w € D\{0} or that | f'(0)|] = 1. Then
|g(w)| = 1 for some w € D. Since |g| < 1 on DD, the Maximum Modulus Principle
provides a { € T such that g(z) = ¢ for all z € D. Thus, f(z) = ¢z for all
z € D. |

lg(ra)| < lg(ro)l =

1.2 Automorphisms of the Disk

Definition 1.2.1 A bijective analytic function f : D — D is an automorphism
of D.

Since most of our work concerns the unit disk D, we often say “f is an automor-
phism” without explicit reference to D. The set of all automorphisms of D, denoted
by Aut(D), is a subset of the Schur class ..

If f is an automorphism, then the inverse bijection f~! : D — D is analytic and
hence f~! is also an automorphism. The identity function id : D — D defined by

id(z) =z

is an automorphism satisfying f o f~! = f~l o f = id for every f € Aut(DD).
Since the composition of two automorphisms is also an automorphism, and since
function composition is an associative operation, Aut(D) is a group under function
composition.

We now focus on two special automorphisms. For w € D and y € T, define
py :D— Cand 7y, : D — Cby

py @) =yz and Tw(2) = (1.2.2)

1 —wz
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Since |y| = 1, we see that p, induces a rotation of ID about the origin through an
angle of arg y. Consequently, p,, € Aut(ID). Moreover,

Pyi © Pyy = Pyiys and Py o py =1id. (1.2.3)

The function t,, is also an automorphism of D, although to establish this requires a
little more work. First, a computation confirms that

Tw 0 Ty = id, (1.2.4)

SO Ty, is injective on D and the range of t,, contains D. To show that the range of 7,
is precisely D, observe that for each ¢ € T and w € D,

w—¢|

w—Z|

_|w=g_
|rw(;>|—‘l_m‘— 1

since £¢ = |¢|> = 1. Since the Maximum Modulus Principle implies that
ITw ()] < 1, z€D,
it follows that 7, € Aut(ID). Therefore, by the discussion above,
{opyotw:y € T,w € D} C Aut(DD).

The following theorem establishes that the preceding containment is an equality.

Theorem 1.2.5 If f € Aut(D), then there are unique w € D and y € T such that
f = py o Ty. In other words,

Aut(D) ={py oty : ¥y € T, w € D}.

Proof If f € Aut(D), then there is a unique w € D so that f(w) = 0. Then
g = forty, € Aut(D) and g(0) = 0. Hence the Schwarz Lemma (Lemma 1.1.1)
ensures that

lg(@)] < |zl, zeD.

I ¢ Aut(D) and g1 (0) = 0, the same argument yields

Since g~
g7 @I <lzl,  zeD.

Since g(z) € D, we may substitute g(z) in place of z in the previous inequality and
obtain |z| < |g(z)| for all z € D. Consequently,

1g(2)] = [zl z €D,
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and hence another application of the Schwarz Lemma yields a unique unimodular
constant y such that g(z) = yz. Thus, f(ty(z)) = yz for all z € D. Now substitute
z in place of 7,,(z) in the preceding identity and use (1.2.4) to obtain f = y1,, =

Py O Ty.
We now verify the uniqueness of the parameters y and w in the representation
Py o Ty, of a typical element of Aut(ID). Suppose that

Py © Tw = Py’ O Ty
for some y, y’ € T and w, w’ € . Then (1.2.3) and (1.2.4) yield

Py = Tw' © Tw.

Evaluate the preceding identity at z = 0 to obtain t,/(w) = 0 and so w = w'.

Hence p -7 = id and thus y = y'. O

Since 79 = —id and p; = id, the unique representations of 7, and p,, afforded
by Theorem 1.2.5 are

Tw = P10 Ty
and
Py = p—y O Tp. (1.2.6)

It is also worth noting that if f € Aut(D) and f(0) = O, then f = p, for some
y € T; that is, the only automorphisms of ID that fix the origin are the rotations.

1.3 Algebraic Structure of Aut(ID)

If f =py oty and g = py, © Ty, are automorphisms of D, then Theorem 1.2.5
implies that f o g = p,, o T, for some unique y € T and w € D. Since we often
require concrete formulas that are applicable to problems in function theory, our
primary goal in this section is to obtain expressions for y and w in terms of the
parameters y1, ¥2, wi, and wy. At the end of this section, however, we will briefly
describe a more group-theoretic approach to Aut(DD).

Lemma 1.3.1 If f = p, o Ty, then w = £~1(0) and

FO)/f710) if £(0) £0,
—f(0) if £(0) =0.

J/:

Proof Since

f(w) = py(ty(w)) = p,(0) =0
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and f is invertible, we conclude that w = f -1 (0). Moreover,

FO) = py(wu(0) = py(w) = yw =y~ (0),
which yields the desired formula when f(0) % 0. When f(0) = 0, we get

w=f10)=0
and hence
f(@) = py(t0(2)) = py(—2) = —yz.
Thus, y = — f/(0) as claimed. o
The discussion below requires the following derivative formula:
: 1= |w?
7,(2) = —m.

Let z = 0 and z = w, respectively, in the preceding and obtain
7,(0) = —(1 — |w|?) (1.3.2)

and
1

i mr— 133
e (1.3.3)

7, (w) =

The following theorem provides an explicit realization of the group operation on
Aut(D). It also yields several formulas that are needed later on.

Theorem 1.3.4 Ify1, > € T and wy, wy € D, then
(031 0 Tun) © (P32 © Twy) = Py © Tw,
where
w = Ty, (Y2w1)
and

VTwiwz (Y2)  if wa # Yawy,
)/ =
—Y1¥2 if wy = ywy.

In particular, if wy = yywy, then

('OVI ° Tw]) ° (10}/2 ° rwz) = Pyiya-

Proof Let f = (py, © Tw,) o (py, 0 Tw,). Lemma 1.3.1 says that w is the unique
solution to the equation

F@) = [(py, 0 Tw,) 0 (py, 0 Twy) | (w) = 0.
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Since py, (0) = 0, we see that

[, © (py, © Twy) | (w) =0
and hence
(Py2 © Tun) (W) = 7, (0) = wy
by (1.2.4). An application of (1.2.3) yields
Tw, (W) = prp(w1) =Y2wi, (1.3.5)

after which another appeal to (1.2.4) provides the desired formula for w. Now
observe that the preceding formula yields

w=0 <= wy = Yrwi.

Since w = f~1(0), the second formula in Lemma 1.3.1 asserts that y = £(0)/w
when w # 0. The computation

f(O) = [(pyl o Twl) o (10)/2 o Twz)](o)
= V1Tw, (VZTwz (0))
= V17w, (Y2w2)

and (1.3.5) reveal that

, = L0 _ it (row2)

= — = Y1 Tww3 (¥2)-
w Tw, (2W1) v

The final equality in the statement of the theorem is verified by direct computation.
If w = 0, then we need to evaluate f/(0). By the chain rule and (1.3.2),

F10) = i1y, [(py, © Tw)) (O] X 121,,,(0)
= =117, (rwa) x ya(l — [wa|?)

= —"y2. O

Corollary 1.3.6 Ifwi, wy € D and wy # w», then
Twy © Twy = Py © Ty,

where

wy — W) 1 —wiwy
w="Ty,(w)=——— and y=1ym;i(l)=————"—

1 — whw 1 —wiwy
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For the following result, let y; = 1 and w, = 0, then replace y» by —y and w;
by w in Theorem 1.3.4. However, we admit that direct verification might be easier;
see Exercise 1.1.

Corollary 1.3.7 Ifw € Dand y € T, then

Tw © Py = Py O Tyy-

Although Theorem 1.3.4 provides an explicit description, in terms of the
factorization afforded by Theorem 1.2.5, of the group operation on Aut(DD), an
algebraist might find our approach unsatisfactory. Let us briefly discuss a more
abstract approach to Aut(D).

A Mobius transformation (also called a linear fractional transformation) is a
rational function of the form

az+b

J@= cz+d’

(1.3.8)

in which ad — bc # 0. Each Mobius transformation is a bijective map from the
extended complex plane C = C U {00} (or Riemann sphere) to itself. The set of all
Mobius transformations is a group under composition; the identity is the function
id(z) = z and the inverse of f is

dz — b
—cz+a’

=

If we multiply the numerator and denominator of (1.3.8) by a suitable constant, we
may assume that ad — bc = 1.

The group of Mobius transformations is isomorphic to PSL,(C), the projective
special linear group of order 2 over C. To be more specific, PSL;(C) is the quotient
of SL,(C), the group of 2 x 2 complex matrices with determinant 1, by the subgroup
{I, —1I}. Here I denotes the 2 x 2 identity matrix. The isomorphism between the
group of Mdobius transformations and PSL,(C) is given by sending the function
in (1.3.8), in which ad — bc = 1, to the coset of

ab
cd
in SLy(C)/{I, —1I}.
Theorem 1.2.5 asserts that Aut(D) = {p), o 7y, : ¥ € T, w € D}, in which
yz+0 —lz4+w

d - —Erw
o1 S @ =

py(z) =

The cosets in SL»(C) /{1, —I} that correspond to p,, and 7, are the cosets of

ez 0 o p
0 ) )
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i0 i —iw
y =e¢", ¢o=—, and B= ——.
N VI[P

Consequently, Aut(D) can be identified with PSU| (C), the quotient of

SU;1(C) = {[g g} tlal? = |b)* = 1}

by the subgroup {/, —I}. It is worth remarking that SU; ;(C) is the set of 2 x 2
complex matrices U for which detU = 1 and U*I"U = I, in which U* denotes
the conjugate transpose of U and

r= 1o .
0-1
This suggests a connection between Aut(ID) and hyperbolic geometry that will be

explored further in Chap. 2.
From a topological perspective, Aut(ID) is homeomorphic to T x DD via the map

(¥, w) = py 0Ty, yeT, weD.

Thus, Aut(D) can be visualized as an open solid torus, endowed with the group
structure described in Theorem 1.3.4.

1.4 The Schwarz-Pick Theorem

The hypothesis of the Schwarz Lemma (Lemma 1.1.1) involves a function that
vanishes at the origin. A generalization can be obtained that removes this hypothesis.
The crucial idea is to employ suitable automorphisms to reduce the general case to
the classical Schwarz Lemma.

Theorem 1.4.1 (Schwarz-Pick) For each f € .7,

f@Q - Jw | jz-w w,zeD (14.2)
I-Ff@l T=w|t -

and
yol 1 zeD. (1.4.3)

L= 1f@P7 = 1=z
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Moreover, the following are equivalent.

(a) Equality holds in (1.4.2) at two distinct z, w € D.
(b) Equality holds in (1.4.2) at all z, w € D with z # w.
(c¢) Equality holds in (1.4.3) at some z € D.

(d) Equality holds in (1.4.3) at all z € D.

(e) f € Aut(D).

Proof Fix w € D. If | f(w)| = 1, the Maximum Modulus Principle implies that
f is constant which means that (1.4.2) and (1.4.3) hold automatically. On the other
hand, if f(w) € D, the Maximum Modulus Principle implies that f(ID) C ID. Let

g ="Trw o fotw (1.4.4)

and observe that g : D — D is analytic and g(0) = 0. Since

8(ty(2)) = % g0) = %J"(z),
we see that (1.4.2) is equivalent to
lg(Tw ()| < tw (2], w,z €D (1.4.5)
and (1.4.3) is equivalent to
&' ()] < 1. (1.4.6)

However, (1.4.5) and (1.4.6) hold by the Schwarz Lemma.

If any of (a)—(d) hold, then an application of the Schwarz Lemma to g confirms
that g = p,, for some y € T. Thus, (1.4.4) ensures that f € Aut(ID). Conversely, if
f € Aut(D), then (1.4.4) implies that g € Aut(D) with g(0) = 0 and thus g = p,,
for some y € T. For this automorphism g, equality holds in (1.4.5) and (1.4.6) and
consequently equality holds in (1.4.2) and (1.4.3). In other words, (e) implies any of
(a)—(d). O

As a special case of Theorem 1.4.1, let f = 7, to obtain

W@ W) | _jzmw) (1.4.7)
I — 77 (W) T4, (2) 1 —wz
and
1—|t 2
1z}, ()] = 1|+°Z(|Z2)| zeD. (1.4.8)

These two identities will be useful later.
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1.5 An Extremal Problem

Theorem 1.4.1 can be applied to solve certain extremal problems for .. We briefly
discuss one of them. Fix «, B € D and let

Do p={f€S: fla) =B}
Observe that f = 7g o 7, € % g and hence 7, g # . Our goal is to compute

M= sup [f'(@)],
fedyp

along with the functions f € <, g for which the supremum above is attained.
Theorem 1.4.1 implies that

L—[f@* 1—-|B

N

If'(e)] < f € Dap.

A computation using (1.3.2) and (1.3.3) confirms that equality is attained when
f = 18 0 7. Thus,
1— 2
L= 1Bl

Tl — e’

Moreover, Theorem 1.4.1 asserts that the f € .7, g for which

- 181
1= af?

|fl(@)] =

are precisely the f € Aut(DD) that satisfy f (o) = B. Let f be such an automorphism
and let g = 75 o f o 74; observe that g € Aut(ID). Then

g8(0) = 18(f(12(0))) = 18 (f()) = 15(B) =0

and hence g(z) = yz for some y € T; thatis, g = p, . Hence the solutions to the
extremal problem are given by

f=1t80py 0T,

in which y € T is a free parameter.

1.6 Julia’s Lemma

The Schwarz—Pick theorem (Theorem 1.4.1) involves two points z, w € . What
happens if one of the points approaches T? This situation was studied by Julia and it
may be interpreted as a boundary Schwarz—Pick theorem [83, p. 87]. Julia’s lemma
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plays an essential role in studying the behavior of the derivative of infinite Blaschke
products. The proof of Julia’s lemma requires the important identity

@a—p

P (—leP -8

1—

1 — Ba

which follows from (1.4.8).

11— Bal?

, a, B eD,

(1.6.1)

Lemma 1.6.2 (Julia [83]) Let f € .. If there is a sequence z,, in D such that

lim z, =1, lim f(z,) =1,
n— oo n— o0
and
1—
m @l (1.6.3)
n—oo 1 —|z,|
then
1- 2 1—z?
| f(zﬂz <al Z|2, zeD. (1.6.4)
1 =11l 1 -z
Proof The Schwarz—Pick theorem (Theorem 1.4.1) implies that
f @) — fzn) <|Zzm | LeD,
1 — f(za) f(2) 1 —Znz
and hence
N R (O E (CONE
1 —7Znz 1= f(z) f(2)
The identity (1.6.1), applied to both sides of the above, yields
(1 —1zP)d ) _ A= 1If @R = If @)
=2z 1= fG)f@I?
Rewrite the preceding inequality as
- fGf@F _ 1= 1f@)P 1 =%z
L=1f@F = =@l 1=z
Now let n — oo and apply (1.6.3) to complete the proof. O

In the lemma above, we assumed that z;, — 1 and f(z,) — 1. However, the
important issue is that the sequences z, and f(z,) converge toward points of the
unit circle T. For the sake of completeness, here is the general version of this result.
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Corollary 1.6.5 Let f € ¥ and «, B € T. If there is a sequence z,, in D such that

lim z, = a, lim f(zn) = B,
n—odo n—o0
and
1-—
lim —'f(zn)| = A < 00,
n—oo 1 —|z,|
then
_ 2 512
B f(Z)I2 gAlot Z|2’ LeD.
1 =11l 1 —z]
Proof Apply Lemma 1.6.2 to the function g(z) = B f (@z). O

We can also discuss the boundary limits of functions in .# that satisfy the
hypotheses of Julia’s Lemma. Let { € T and C > 1. The region

Sc@)={zeD:|z-¢| < CA~-|z])}

is the Stolz domain anchored at o with constant C; see Fig. 1.1.
We say that f € . has the nontangential limit L at ¢ € T if, for each fixed
C>1,
lim f(z)=1L. (1.6.6)
=<
z€8¢(¢)

If so, we define f(¢) = L and write
Zgl_rj; f@ = f©).

The quantity f(¢) is referred to as the boundary value of f at ¢. The restriction
that z belongs to a Stolz domain Sc(¢) in (1.6.6) ensures that z does not approach
¢ along a path that is tangent to T at ¢. Each Schur function has non-tangential
boundary values almost everywhere with respect to Lebesgue measure on T; see
Theorem A.3.1.

Corollary 1.6.7 Let f € ¥ and let a, f € T. If there is a sequence z,, in D such
that 7, — o, f(zn) = B, and

5 1 —1f (@)l
im ———> <0

n—oo 1 —|z,| ’

then

£ lim f(z) = B.
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(a) (b)

(c) (d)
Fig. 1.1 Four Stolz domains anchored at 1. (a) S;.1(1). (b) S1.5(1). (¢) S2.0(1). (d) S2.5(1)

Proof Corollary 1.6.5 provides an A > 0 such that

1f () — BI? lz —af
< S D.
P STt

If z € Sc (@), then

F - pp < L@ PP

1—|f@@)?
|z —al?
S —z)?
|z — o]
= 1+ |z

< AC|z — «af.
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Consequently,
lim  f(2) = B.
z&€Sc ()
This holds for every Stolz domain anchored at « and thus Zlim,_., f(z) = 8. O

We can say a bit more. Under the hypotheses of the preceding corollary, one can
conclude that f tends to 8 on certain domains that are tangential to T at «. However,
Corollary 1.6.7 suffices for our applications.

1.7 Fixed Points

We say that zo € D is a fixed point of f € % if f(z0) = zo. For example,
every point in D is a fixed point of the identity function id(z) = z. On the other
hand, a nonidentity rotation p, (z) = yz, in which y € T\{1}, has only one fixed
point in D, namely 0. In this section, we investigate and classify the fixed points of
automorphisms. We start by considering a more general problem.

Lemma 1.7.1 If f € . has two distinct fixed points in D, then f = id.
Proof Suppose that f € . has two distinct fixed points ¢, 8 € D. Then

f@) = f(B)
1—f(B) f()

so Theorem 1.4.1 says that f € Aut(ID). Theorem 1.2.5 provides w € Dand y € T
such that

a—p
1 — Ba

k]

w—z
f@Q=y——. (1.7.2)
1 —-wz
The fixed points of f in D are the solutions to
w—z
=y —
1 —-wz
that belong to D. Thus, z € D is a fixed point of f if and only if
W2 — (1 +y)z+yw=0 and zeD. (1.7.3)

There are three cases to consider.

e If w # 0, then the two solutions to (1.7.3) must be & and 8. Thus,

1+ w
(z—oz)(z—ﬂ)zzz— _yz+y—_ =0
w w
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and hence
w
ol =y =|=1.
w

However, this last identity is impossible since «, 8 € D.

e Ifw =0and y # —1, then (1.7.3) reduces to a linear equation and hence has
only one solution. This is a contradiction.

e If w=0and y = —1, then every point in DD is fixed; that is, f = id.

This completes the proof. O

A variation of the preceding argument shows that any nonidentity M&bius
transformation (1.3.8) has at most two fixed points in C.

A closer look at the proof of Lemma 1.7.1 enables us to classify automorphisms
based upon the number and location of their fixed points. Consider the automor-
phism (1.7.2), which is meromorphic on C. Its fixed points in C are the solutions to
(1.7.3). If f € Aut(D) and f # id, then either f has exactly one fixed point inside
D or two fixed points (possibly with repetition) on T.

In light of the preceding discussion, we introduce the following definitions.

(a) An automorphism is elliptic if it has exactly one fixed point in ID.

(b) An automorphism is hyperbolic if it has two distinct fixed point on T.

(c) An automorphism is parabolic if it has one repeated fixed point in T. This case
happens if and only if w # 0 and

(v + 1)* =4y |wl”.

The automorphism f(z) = iz is elliptic; its fixed point in D is 0. An example of
a hyperbolic automorphism is

1
z—1
fl@)=—%:
1-— 52
its fixed points are 1 and —1. Finally,
1, i
- (j + j)

f) =i

1 ;
1—(2—%)Z

is an example of a parabolic automorphism. Its only fixed point in the closed disk
D™ is 1, which has multiplicity two. That is, the multiplicity of the zero of the
rational function f(z) — z at 1 is two.
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1.8 Exercises

1.1 Prove Corollary 1.3.7 by direct computation.
1.2 Let 2 =R x (—n/2, w/2) and suppose that f : 2 — 2 is analytic.

(a) Show that | f/(x)| < 1forallx € R.
(b) If | f/(x0)| = 1 for some x¢ € R, show that f(xog) € R. Find the general form

of f.

Hint: Find appropriate conformal mappings ¢ : D — £ with ¢(0) = xo and
Y 2 — D with ¥ (f(x9)) = 0 and then apply Lemma 1.1.1 to ¢ o f o ¢.

1.3 Let 2 =R x (—m/2, 7/2) and suppose that f : £2 — £2 is analytic.
(a) Show that
[f(2) = fODI < 2 —xil, xi,x €R

(b) Show that equality holds for a pair x; # x; if and only if
f@=z+c or f()=-z+c

for some constant ¢ € R.

Hint: Note that
X2
f(x2) — f(x1) =/ f'x)dx
X1

and then apply Exercise 1.2.

1.4 Fix w € (—1, 1). Show that 7, maps D_ := DN{z : Imz < 0} bijectively onto
Dy :=DN{z:Imz > 0}, and vice versa.

1.5 Fix w € ID. The function
gz, w) : D — RU{+o0}
defined by

1 —wz

g(z, w) = log

w—z
is the Green’s function of D with singularity at w.
(a) Show that g > 0, g(w, w) = 400, and g is harmonic on D\ {w}.
(b) Show that

lim g(z,w) =0.

et
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Remark The function
7> g(z, w) +log|w — z|

is a bounded harmonic function on ID. This reveals the logarithmic nature of the
singularity of g at w.

1.6 Let C4 :={z € C:Imz > 0}. Show that f : C; — C, is an automorphism
of C; if and only if

az+b
f@ = cz+d’
in which a, b, c,d € R and ad — bc > 0.
Hint: Use the conformal mapping
z—1
7= )
z+1

which maps C onto D, and then apply Theorem 1.2.5. State and prove correspond-
ing results for C_ := {z € C : Imz < 0}.

1.7 Let f € Aut(ID) be represented as f = p,, o 1y,. Show that

I A N (0
—1IfOF oI

Hint: By (1.3.2), f'(0) = —y (1 — [w|?). Also note that |w| = | £(0)| and |y| = 1.

1.8 Show that if z; and z, are distinct points in D, then there is an f € Aut(D) so
that f(z;) =0and 0 < f(z2) < 1.
Hint: Consider y 1, for a suitable unimodular constant .

1.9 Suppose that ¢, {2, wy, wa € T are such that £ # ¢ and wy # w;. Show that
there is an f € Aut(DD) such that

f@)=wy and f(&) = ws.

Hint: First suppose that £; = 1 and ¢, = —1. Then appropriately compose two such
functions.

1.10 Show that

(py © rw)_l = Ty 0 Py = Py O Tyw-
Hint: Use (1.2.3), (1.2.4), and Corollary 1.3.7.
1.11 Let f € . and zg9 € D. Define

8@ = f(w(@), zeD,
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in which w(z) = 14,(z). Show that

lg' @I = 1z*) = | ()1 — [w]?).

Hint: Use (1.4.8).
1.12 Show that for all f € .7,

f(@) — f(w)

I—w

1= f@P 1= )P

1—z2  1—|w?

Hint: Use (1.6.1) and Theorem 1.4.1.

1.13 Let f be analytic on the disk RD = {z € C : |z| < R} and bounded there
by M. Show that

z, w € RD.

f@—-fw|_  2MR
z—w | R —wz|
Hint: Consider g(z) = f(Rz)/M for z € D, and apply Theorem 1.4.1.
1.14 Let f : C4 — C, be analytic. Show that

f@ = Jw) Z‘f’, LweC,.
f @) = f(w) -w
Hint: Use the conformal mapping
Z—w
Z H —_—
Z—w
which maps C4 onto D, and then apply Theorem 1.4.1.
1.15 Let f : C; — C4 be analytic. Show that
f@) = f(w) 220 s wec,,
f@—=fwl lz—w
if and only if
az+b
f@ = cz+d’

where a, b, c,d € R and ad — bc > 0.
Hint: See Exercises 1.6 and 1.14.
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1.16 Let f : D — D~ be analytic. Suppose that there is a sequence z, in D such
thatz, — 1, f(z,) — 1, and

1 — 11zl
m ———— =90
n—oo 1 —|z,|
Show that f = 1. Hint: Use Julia’s lemma.

1.17 Show that equality holds in Julia’s inequality (1.6.4) if and only if
f € Aut(D).



Chapter 2 ®
Elementary Hyperbolic Geometry Qe

As a subset of the complex plane, the unit disk I inherits the standard Euclidean
metric

d(z,w) == |z — w|.

However, there are other metrics on D that are more natural from the perspective
of complex function theory. In this chapter we introduce the pseudohyperbolic and
Poincaré metrics on D. We also discuss the relationship between the curvature of a
metric and the Schwarz Lemma (Lemma 1.1.1), along with hyperbolic geometry in
the upper half-plane C .

2.1 Pseudohyperbolic Metric

Definition 2.1.1 The pseudohyperbolic metric p on D is defined by

Z—w
Q(Z,w):‘ _', z,w e D.
1 —wz

Since |1 — wz| < 2 forall z, w € D, we have

%d(z, w) < oz w). (2.12)

For each compact subset K of D, the expression |1 — wz| is bounded away from
zero for z, w € K. Consequently, there is a constant Cx such that

o(z, w) < Cgd(z, w), z,w € D. (2.1.3)
© Springer International Publishing AG, part of Springer Nature 2018 21
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We will soon show that o is a metric on D and that (D, o) is a complete metric
space. In contrast, the metric space (D, d) is not complete since the sequence z,, =
1—- % is Cauchy with respect to d but does not converge to a limit in D. Consequently,
it is more natural to endow D with the metric o (or the closely related Poincaré
metric) rather than the standard Euclidean metric.

The definition of ¢ ensures that o(z, w) = o(w, z) and 0 < o(z, w) < 1 for
all z, w € D, and that o(z, w) = 0 if and only if z = w. To verify that o satisfies
the triangle inequality is more involved. We defer the proof until Sect. 2.2. For the
moment, we assume that o is a metric on ID.

The following restatement of the Schwarz—Pick Theorem (Theorem 1.4.1) says
that any function in . (the Schur class) is a contraction on ID with respect to the
pseudohyperbolic metric .

Theorem 2.1.4 (Schwarz-Pick) For f € .7,

o(f (@), f(w)) <oz, w), z, w € D.

Moreover, equality holds for two distinct z, w if and only if f € Aut(D).

For each zo € D and r € (0, 1), the pseudohyperbolic disk with radius r centered
at zg is

A(zo, 1) :={z€D:o(z,20) <r}.

Since 9(z, z0) = |74, ()| (recall (1.2.2)), it follows that A(zg, r) is the inverse image
of the Euclidean disk

DO, r) ={weC:|w|l <r}
under the automorphism t,,; that is,
A(z20, 1) = 15,(D(0, 1)), (2.1.5)
since rz_ol = 1,. To concretely describe A(zo, r) requires the following result about

Mobius transformations.

Lemma 2.1.6 The image of a line or a circle under a Mobius transformation is a
line or a circle.

Proof Let

az+>b

J@= cz+d’

2.1.7)

in which ad — bc # 0. If ¢ = 0, then f is a linear function and the desired result
holds. If ¢ # 0, then

oy GiTb dez+d) -4 +b (b—1—€1)+a
Z_cz—l—d_ cz+d T ocz+d c
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is a composition of linear functions and an inversion. Thus, it suffices to show that
> % has the desired property. A circle in R? is determined by an equation of the
form

Ax +By+Cx*+y?) =D, (2.1.8)

in which A, B, C, D € R. Straight lines correspond to C = 0. If z = x + iy, then

1 X Iy -y L
- = —_— 1 —_— = U V.
2 \x2+)y? x? +y?

Divide (2.1.8) by x4+ yz, write the result in terms of # and v, and obtain
Au — Bv — Du® +v*) = —C.
This is the equation of a circle if D # 0 or a line if D = 0. O

The preceding lemma asserts that the image of a Euclidean disk under a Mobius
transformation is either another Euclidean disk or a half plane. Since 7,, € Aut(ID),
the inverse image under 7., of any Euclidean disk contained in ID is a Euclidean
disk contained in D. Consequently, (2.1.5) implies that the pseudohyperbolic disk
A(zo, po) is a Euclidean disk contained in D. Can we be more specific?

By (2.1.5) we have

z0 — re'?
A(zo,r0) =y ——= :0<r<rp, 0<9 <2 ¢. (2.1.9)
1 —zgret?
Thus,
T
0G0, r0) = |~ _.0< 9 <2m
1 — Zgroe'?

is the circle that forms the boundary of A(zg, ro). The identity

i 2 2
z0 — roe 1 —|zo| 1—r
——— - ————w|=——>n,  ®el0,2],
1 —Zoroe 1 —r§lzol 1 —rglzol

which can verified by direct computation (see Exercise 2.1), confirms that A(zg, ro)
is precisely the Euclidean disk D(cq, Ryp), in which

L1 (2.1.10)
=————70 1.
1 — rglzol?

is the center of the corresponding Euclidean disk D(cg, Rg) and

1 —|z0/?

Ry=——F——=10
1 —r§lzol?

2.1.11)

is its radius. This is illustrated in Fig. 2.1.
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(a) (b)

Fig. 2.1 Pseudohyperbolic disks. (a) 0 < ro < |zo|. (b) |z0] < ro <1

As (2.1.10) shows, ¢ lies on the line segment [0, zo] that joins O and zp.
Consequently, the point of maximum modulus on the boundary of A(zo, ro) is

z zol+ro 20
M = co + Ro— = ol tro C— (2.1.12)
lzol  1+rolzol Izol
If 0 < rg < |20/, then
0l —r Z
o = co— Ry L — lzol =70 20 (2.1.13)

lzol 1 —rolzol Izol

is the point of minimum modulus on dA(zg, ro); otherwise A(zg, ro) contains O.
This is illustrated in Fig. 2.1b. The antipodal points z,, and z; satisfy

1—rp)(1—|z 14+rp —|z
1_|ZM|:( 0)( |0|)<1—|z|<( 0)( Io|)=1_|zm|
1+ rolzol 1 —rolzol
and hence
1-— 1— 1—
(I —ro)(1 — |zol) <1—lo <2 1zol 2.1.14)
2 1 — rolzol

for all z € A(zp, ro). We leave it to the reader to obtain an appropriate estimate
when |zg| < rg. In summary,

20— <X

lz—col <Ry <= <ro (2.1.15)

1 —Zoz
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and

20— <

Izl <rg —¢o| < Ro. (2.1.16)

1—7Z0z

The second equivalence follows from the first and (1.2.4). The parameters z, g, co,
and Ry are related by (2.1.10) and (2.1.11).

2.2 Generalized Triangle Inequality

In this section, we show that the pseudohyperbolic metric o satisfies the triangle
inequality. This is the final piece needed to verify that (D, o) is a metric space. A
little more work (see Theorem 2.2.4 below) shows that (D, p) is complete.

Lemma 2.2.1 Ifzo € Dandrg € (0, 1), then

lzol — 1o . lzol + 7o 2 € Azo. 7o)
L—rolzol = = 14rolzol’ T
Proof Use (2.1.12) and (2.1.13). O
Corollary 2.2.2 Ifz1,z2 € D, then
21— 22
—— € 0A(z1, |22])
1 —-Z122
and
|z1] — Iz2] 21— 22 lz1] + |z2]
1—lzizal  [1=Z1z2| 1+ lziz2l’

Proof By Theorem 2.1.4,

0(z1, 77, (22)) = o(7;,(21), 22) = 0(0, 22) = |z2],
S0 7, (z2) € 0A(z1, |z2]). The desired inequalities follow from Lemma 2.2.1 with
zo = z1 and ro = |22/ =

We can apply Theorem 2.1.4 to the inequalities in Corollary 2.2.2 and obtain the
following imposing inequalities that are not convenient to verify directly.

Theorem 2.2.3 Ifz1, 22,23 € D, then

0(z1,23) — 0(z2, 23) 0(z1,23) + 0(22, 23)
< o(z1,22) € .
1 —o(z1, z3)0(22, 23) 1 + 0(z1, 23)0(22, 23)
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Proof We only prove the upper inequality since the proof of the lower inequality is
similar. Indeed, the upper inequality holds for all z1, 22, z3 € D if and only if

0(tw(z1), Tw(z3)) + 0(Tw(z2), Tw(z3))
1+ o(tw(z1), Tw(z3))e(tw(z2), Tw(23))

0(tw(z1), Tw(z2)) <

for some w € D and all z1, z2, z3 € D. If w = z3, then the preceding is equivalent to

|TZ3(Zl)| + |TZ3(ZZ)|
1+ |7 (21) T (22)]

Q(TZ3 (z1), Tz (z2)) <

whose validity was previously established in Corollary 2.2.2. O

Theorem 2.2.3 shows that o satisfies the triangle inequality

0(z1,22) < o(z1, z3) + 0(z3, 22)

and hence (D, p) is metric space. Unlike (D, d), in which d denotes the Euclidean
metric, (D, o) is complete. This emphasizes the importance of the pseudohyperbolic
metric for function theory on the unit disk.

Theorem 2.2.4 (DD, o) is a complete metric space.

Proof If z,, is a p-Cauchy sequence in D, then it is p-bounded (contained in a
pseudo-hyperbolic disk). Lemma 2.2.1 shows that z,, is confined to a compact subset
K of D. Since (2.1.2) implies that z,, is Cauchy with respect to the Euclidean metric
on K, the completeness of (K, d) implies that z,, converges with respect to the
Euclidean metric to a limit z € K. Then (2.1.3) shows that z, — z with respect
to 0. Thus, (D, o) is complete. O

2.3 Poincaré Metric

For z1, 22, z3 € D, Theorem 2.2.3 says that

0(z1,23) + 0(z2, z3)
1+ 0(z1, 23)0(22, 23)

0(z1,22) <

Rewrite this as

1+ o0(z1, 22) < I1+o(z1,23) 1+0(22,23)
1—0(1,22)  1—o0(z1,23) 1-o0(z2,23)

and take logarithms to obtain

14 0(z1,22) 1+ o(z1, z3) 1+ 0(z2,23)
< log log .
1 —o0(z1,22) 1 —o(z1,23) 1 —0(z2, 23)

(2.3.1)

This motivates the following definition.
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Definition 2.3.2 The Poincaré metric on D is

14 o0(z, w)

, z, w e D.
1 —o(z, w)

#(z, w) =log

Observe that © (z, w) = g (w, z) and g (z, w) > 0 with equality if and only if
z = w. The triangle inequality for g is (2.3.1) and hence (DD, ) is a metric space.

Since
pm=mq%§)

is a strictly increasing function on [0, 1) and lim,_,¢+ p(¢) = O, it follows that
the metric spaces (D, o) and (DD, ) have the same Cauchy sequences and the
same convergent sequences. Consequently, Theorem 2.2.4 implies that (D, ) is
a complete metric space. Theorem 2.1.4 can be rewritten as follows.

Theorem 2.3.3 (Schwarz-Pick) If f € .7, then

P (f2), f(w) < pz,w), z,w e D.

Equality holds for two distinct z, w if and only if f € Aut(D).
Definition 2.3.4 The hyperbolic length of a simple piecewise C! curve I" in D is

_ 2|dz|
«r) = /F o (2.3.5)

In the remainder of this book, the unmodified term “curve” always refers to a
piecewise C! curve. What is the curve with the least hyperbolic length between
two distinct points z, w € D? The Poincaré metric helps us answer this question.

Lemma 2.3.6 Hyperbolic length is conformally invariant. That is, if I" is a simple
C! curve inD and f € Aut(D), then

L) =£r).

Proof Let f € Aut(D) and let I" be a curve in D. Since (2.3.5) is rotationally
invariant, it suffices to show that £(t;,(I")) = £(I") for all zo € D. Let w = 74,(2)
and use (1.4.8) to obtain

ldw| |, @lldzl |dz]
L—(wP  1—|r @12 11—z
Then
a%w»=/ mmﬁ=/;m“2=am. 0
() 1= [w] rl—1z|



28 2 Elementary Hyperbolic Geometry

The shortest distance between two points in Euclidean space is a straight line.
What is the correct analogue in the hyperbolic setting? The following lemma
concerns an instructive special case.

Lemma 2.3.7 If0 < r < 1, then the real interval [0, r] is the shortest hyperbolic
curve between 0 and r. Moreover,

([0, 1) = log i tr

’

that is, £([0, r]) = (0, r).

Proof First observe that

2d
00, r]) = /[ <

0,r] 1-— Z2

_/’ 2dt
- 0 1—12

1+r
zlog1

Let I" be a simple C! curve in I that starts at 0 and ends at 7. Then the Cauchy
integral formula, along with the fact that I" is a simple, piecewise C! curve and
hence homotopic to [0, ], says that

£([0, r]) ‘/ 2dz
. r =
0 1—2?

/ 2dz
r 1—22

g/ 2 |dz|
rl—|z?

= o(I).

For the proof of uniqueness, see Exercise 2.3 and [128, Thm. 12.2.6a]. O
The following important theorem generalizes the preceding lemma.

Theorem 2.3.8 The curve with the least hyperbolic length between two distinct
points 71, zo € D is parametrized by

— T t
aom@ o),
I —Z17y, (22)t
Moreover, its hyperbolic length is o (21, 22).
Proof 1If 71, zo € D are distinct, then
|7z, (z2)]
fl@)=—= 77, (2)

Tz, (z2)
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is an automorphism that satisfies f(z;) = 0and 0 < f(z2) < 1 (see Exercise 1.8).
Thus, Lemmas 2.3.6 and 2.3.7 show that the curve with the shortest hyperbolic
length between z; and z3 is f’l([O, |z, (z2)1]). Since f’l(z) = 1,,(yz), where
y = |17, (22)1/7, (22), a parametrization of the curve is

ra = e, @)

Tz (7t|7"21 (ZZ)D

Tz (th1 (Z2))

21 — Tz (Z2)t
1 —Z17, (22t

fort € [0, 1]. Theorem 2.3.3 and Lemma 2.3.7 imply that the length of this curve is

90,17, @)D =9 (fF10), fF It @) = p(z1,22). O

Definition 2.3.9 The curve provided by Theorem 2.3.8 is the hyperbolic line
segment between z; and z; (see Fig. 2.2). The (whole) hyperbolic line through two
distinct points z1, z2 € D is

21—22
a -Gt

T (21722 N\
1 Zl(l—zlzz)t

1-7122

w(t) =

] < ) (2.3.10)

i1 — 22

The restriction on ¢ above guarantees that w(¢) € D.

Fig. 2.2 The hyperbolic line
segment between z; and z»
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Fig. 2.3 Some hyperbolic

lines that pass through zg '

‘\...

i

The hyperbolic line segment between z; and z; is the image of the Euclidean line
segment [0, 7, (z2)] under ;. Since the Euclidean line that passes through 0 and
7;,(z2) is orthogonal to T, Lemma 2.1.6 and the conformality of bijective analytic
maps ensure that the hyperbolic line segment between z; and z» is either an arc of a
circle orthogonal to T, or a part of a diameter of D (see Fig. 2.3).

Corollary 2.3.11 If z1,22,23 € D are distinct, then 721, 22, z3 lie on the same
hyperbolic line if and only if

(Zl — 2 )/( S ) cR. (2.3.12)
1-z122 1 —-7123
Proof Let z1, 22, and z3 be distinct points in D. Solve (2.3.10) for ¢ and obtain
t_(m —22 )/(Zl_w(t))
1—7122 1—-ziw@®)/’

Since z3 lies on the hyperbolic line determined by z; and z; if and only if z3 = w()
for some ¢t € R, the desired result follows. m]

2.4 Ahlfors’s Version of the Schwarz’s Lemma

Let u be a positive, nonvanishing, twice continuously differentiable function on D
and let I” be a piecewise C! curve in ID. In differential geometry, u is called a metric
since it gives rise to a metric, in the metric-space sense, as follows. The length of I"
with respect to the metric p is defined by
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0.1 = /F w2 Idz).

For example, the Euclidean length of I" is obtained when & = 1. The Euclidean
distance between two distinct points z and w in D is the length of the shortest
piecewise C! curve between z and w. This curve is the straight line between z and
w and its length is |z — w/|. In a similar manner, the hyperbolic length (2.3.5) of a
piecewise C! curve corresponds to the Poincaré metric

2

If 1 is a metric, in the geometric sense, on I, then let d, (z, w) denote the length
of the shortest piecewise C' curve between z and w. As a slight generalization
of the concept above, we allow a metric © to have isolated singularities. These
points are usually the critical points of an analytic function or the pre-images of
the singularities of another metric. This is further crystalized by the following
construction.

If f: 82 — £2,1is analytic and p is a metric on £2;, then its pullback under f is
the metric f*u defined by

(f* 1w @ = pn(f @I @I, z € 82;.
If I" is a piecewise C! curve in £21, then a change of variables yields
Lpey () =Ly (f o). (24.2)

The situation becomes more interesting when 21 = £2, = £2. In this case,
we can compare pu with its pullback f*u at each point of £2. In light of (2.4.2),
any such local relation between p and f*u gives rise to a global relation between
£,(f ol)and £, (I") for all curves I" in £2. Thus, we are led to a relation between
du(f(z), f(w))and d, (z, w), in which z, w are arbitrary points in £2. We treat such
possible phenomenon below.

If f:£2 — £2 is analytic and the metric u is such that

(ffw@ <p@, €,
then
Cu(fol) < £u(I7)
for all piecewise C'! curves I'. Thus,

du(f(2), f(w)) < dp(z, w), Z,w € 2;

that is, f is a contraction from the metric space (£2, d,,) to itself.
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We wish to focus on the Poincaré metric (2.4.1). With our new terminology, the
second inequality in Theorem 1.4.1 becomes

(f*m) (@) < n(2), zeD, (2.4.3)

for any f € .. Theorem 2.3.3 is now a corollary of the approach above. In other
words, any f € . is a contraction in the hyperbolic setting. However, our goal is
not only to restate the Schwarz—Pick Theorem in terms of this local metric. We wish
to recast it in the language of differential geometry.

The Laplace operator is

9* 97
AT
Note the difference in notation from (2.1.9). For the sake of simplicity, we are

intentionally vague about the domain of definition of this differential operator, save
that it operates on functions f : D — C. In terms of the Wirtinger derivatives

0 1 /0 0 0 1/0 0
—==-|——-i— and —=—-(—+i—|, 2.4.4)
0z 2 \ox ay az 2 \ox ay
one has
0 9 d 0
=4 — =4— —, (2.4.5)
dz 07 dz 0z

The curvature of a metric p is

—Alog u(z)

W@ =50

For example, the curvature of the Euclidean metric = 1 is identically 0. However,
this is not the only metric on ID that has constant curvature.

Lemma 2.4.6 The curvature of the Poincaré metric (2.4.1) is identically equal
to —1.

Proof Since

Alog u(z) = Alog

1—|z]?
d 0 2
=4— — log —
0z 97 1—-12Z
z

0
=4— -
dz 1 —zz
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4
(1-72)?
4
(1 —z»)?
= —12(2),

the desired result follows. O

Ahlfors realized that the Schwarz Lemma is a statement about curvature. His
observation dramatically influenced the theory of functions.

Theorem 2.4.7 (Ahlfors [2]) Let 2 be a domain in C endowed with a metric o
such that

ke (2) < —1, z€8.
If D is endowed with the Poincaré metric p and f : D — §2 is analytic, then

(f*o)(z) < u(z), zeD.

Proof (Minda—Schober [103]) Fix 0 < r < 1. On the disk D(0, r) the metric

) = 2r
Mr(Z _}’2—|Z|2

is well defined. A similar calculation to the one used to prove Lemma 2.4.6 shows
that

Ky, (2) = —1, z€ D(,r).
Let
D(z) = m, z€ D(,r),
lLr(Z)

and observe that @ > 0. Since f*o is continuous on ID, the function @ is continuous
on D(0, r) and

lim &(z) =0.
lz|—>r~
Hence @ attains its maximum M at some point of D(0, r)™. Our goal is to show
that M < 1.

If the maximum occurs on the boundary d D(0, r) or at some point z € D(0, r)
with (f*0)(z) = 0, then M = @ = 0. Suppose that the maximum occurs at some
point zg € D(0, r) and (f*0)(z9) > 0. Since @ is twice continuously differentiable
at 2o,

Alog @(z0) < 0.
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According to our main hypothesis on the curvature of f*o,
Alog @ (z9) = Alog(f*o)(z0) — Alog iy (z0)
= ko (20)(f*0)*(20) + Ky, (200147 (20)
> (f*0)*(20) — 17 (20)-
Therefore,
(f*0)*(z0) < 147 (z0),

and so @ (z¢9) < 1. In either case we have
(f*o)(z) < pr(2), z€ D(0,r).

Letr — 17 to complete the proof. O

When 2 = D and 0 = p (the Poincaré metric), the preceding theorem is
precisely the formulation (2.4.3) of the Schwarz—Pick Lemma.

2.5 Hyperbolic Geometry in C,

The preceding sections were concerned with hyperbolic geometry on the open unit
disk . We can also discuss hyperbolic geometry in the upper half-plane C . Instead
of beginning anew with an independent approach, we use a conformal mapping
between D and C to help establish our results.

The Mobius transformation

1+z
0(z) =1 (2.5.1)
-z
is a bijection of D onto C, ; see Fig. 2.4. Since
¢(1) = oo, p(=1) =0, @) =—1, and @(=i) =1,
Lemma 2.1.6 ensures that ¢ provides a bijection between T\ {1} and R.
Since
Ime(z) = Ll and ") = ——
IR ET T
it follows that
/
2
@1 _ zeD. (25.2)

Ime(z)  1—|z|
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Fig. 2.4 The linear fractional transformation ¢ in (2.5.1)

Let I" be a piecewise C! curve in ID and let
Y =¢ol.

Then T is a piecewise C! curve in C; indeed, ¢ : D — C provides a bijection
between the family of piecewise C! curves in each domain. Consequently, (2.5.2)
implies that

2

ImY 1—|I7?

Since the hyperbolic length of the curve I" in D, as defined in (2.3.5), is

E(F):/ 2|dz|
r

1—|z%’

we define the hyperbolic length of the curve 7" in C by

or) = / \dz| (2.5.3)
T

Imz’

2.6 Exercises

2.1 Verify by direct computation that A(zg, p9) = D(co, ro), in which ¢g and rg
are given by (2.1.10) and (2.1.11), respectively.

2.2 Show that the Poincaré metric g satisfies

—w

oz, w) = 2 tanh™! , z,w e D.

1 —wz
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Fig. 2.5 Illustration of Euclid’s fifth postulate. Here @ + 8 < 7

Use the addition formula for the hyperbolic tangent function to derive the triangle
inequality for the pseudohyperbolic metric.

23 Lety :[0,1] > Cbea C! path from 0 to w € D\ {0} of minimal length.

(a) Why may we assume that y does not vanish on (0, 1]?

(b) Write y (1) = r(t)e'?®, in which r, 6 are C! functions on [0, 1]. Examine the
integral that defines ¢(I”) and explain why 6 is constant.

(c) Prove that a straight line is the shortest hyperbolic path from 0 to w.

See [128, Thm. 12.2.6a] for more on this.

2.4 Euclid’s fifth postulate (the famous Parallel Postulate) asserts that “if two
lines are drawn which intersect a third in such a way that the sum of the inner
angles on one side is less than two right angles, then the two lines inevitably must
intersect each other on that side if extended far enough.” See Fig. 2.5 and Euclid’s
Elements [42].

(a) Prove that the Parallel Postulate is equivalent to Playfair’s Axiom: “In a plane,
given a line and a point not on it, at most one line parallel to the given line can
be drawn through the point.”

(b) In the Poincaré disk model of the hyperbolic plane, prove that given a line and a
point not on it, there are infinitely many parallel lines to the given line that can
be drawn through the point; see Fig. 2.6.

2.5 Suppose that z1, 22, ..., 2, € D satisfy
1 ifi+#j,
o= TEF 2.6.1)
0 ifi=j.

(a) Show that such a configuration is impossible if n > 5.
Hint: Suppose that z1, z2, z3, 24, 25 satisfy (2.6.1). Obtain circles 17, I3, both of
the same hyperbolic radius, such that z, z3, z4, 25 € I'7 and z1, 23, 24, 25 € 5.
Now examine I N I5.
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Fig. 2.6 Failure of the
Parallel Postulate in the

Poincaré disk model of

hyperbolic geometry. Given a

line that does not contain zg, \
there are infinitely many

hyperbolic lines through zo
that are parallel to the given
line

(b) Show that such a configuration is impossible if n = 4.

Hint: The proof is simple in the Euclidean case. The Poincaré model of the
hyperbolic plane satisfies Hilbert’s axioms [68, Sect. 39]. One can show that
Propositions 1.2-1.22 and 1.24-1.28 of Euclid’s Elements [42] can be obtained in

the Poincaré model [68, Thm. 10.4]. Now proceed as in the Euclidean case.

2.6 In this exercise, we consider the Wirtinger differential operators -

)
and =

defined in (2.4.4). For the sake of simplicity, assume that the functions involved

are infinitely differentiable in the variables x and y.

a ad
(a) Verify that — and — commute.
0z 0z 3
(b) Show that f is analytic if and only if = f=0.
z
(c) Verify (2.4.5).

2.7 Let u be a metric on D such that
Lu(fU) =€, ()
for all piecewise C ! curves I" and for all f € Aut(DD). Show that

n(0)

m, ZE]D).

n(z) =

This is the converse of Lemma 2.3.6.
Hint: Study the local behavior of f = 1, at the origin.
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2.8 The spherical metric is defined by

o(z) = z € D.

1+ |z
Show that
ke (z) =1, zeD.

Hint: Use (2.4.5).



Chapter 3 )
Finite Blaschke Products: The Basics Chock or

3.1 Finite Blaschke Products

Definition 3.1.1 For a finite sequence z1, z2, ..., 2, inD and y € T, the function

B@ =y ][]+
k=1

— Lk (3.1.2)
—Zkz
is a finite Blaschke product.

In the preceding, we allow repetition of the z ;. For example, if
ZIZZQ,Z"'ZZnZO and y:l’

then B(z) = 7".

The function B is a unimodular constant (constant of modulus one) times
a product of the automorphisms t;,, 7,, ..., T;, defined in (1.2.2). The finite
Blaschke product B is a rational f/u\nction with zeros at the z;, and nowhere else.
It has a meromorphic extension to C = C U {oo} with poles at

zi, 1/za,..., 1/zg,
all of which lie in
D, :=C\D™,

the extended exterior disk. The use of the extended exterior disk is important here
since 1/z; = oo when z; = 0. There is also a notion of an infinite Blaschke product
which we will discuss in the endnotes of this chapter.
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Since a nonconstant finite Blaschke product B is a product of disk automor-
phisms, it belongs to the Schur class .# (Definition 1.0.2) and satisfies

IB(2)| <1, z €D, (3.1.3)
[B(§)| =1, ¢ eT, (3.1.4)
|B(z)| > 1, zeC\D. (3.1.5)

For & € T, observe that & = 1/£. By (3.1.4) we have
1

B@) = =— = ——,
B(&)  B(1/?)

¢t eT.

Since 1/B(1/7) is meromorphic on Cand agrees with B(z) on T, the two functions
are identical, that is,

-~

B(z) = ;, zeC. (3.1.6)

The preceding equality can also be obtained from (3.1.2) by a direct computation;
see Exercise 3.4.

3.2 Uniqueness and Nonuniqueness

The alert reader might question why the unimodular constant y is included in the
definition of a Blaschke product. In the next several sections, we will characterize
the finite Blaschke products among the functions in the Schur class and y will play a
role. On the rare occasions when we need to distinguish the finite Blaschke products
where y = 1, we will use the term monic finite Blaschke product for which we have
the following uniqueness theorem.

Theorem 3.2.1 (Horowitz—Rubel [80]) Suppose that
L - i
Bi(z) = 1_[ = and By (z) = 1_[ —

1 —
k=1 k=1

are two monic finite Blaschke products of degree n and Bi(wy) = Ba(wg) for n
distinct points wi, wy ..., wy in D. Then B1(z) = B> (z) for all z € D.

We follow the original proof from [80] which requires the following lemma.
Lemma 3.2.2 Suppose that
L I— =
B@=[]—2= ad B@=[]—=

1—
k=1 | K2 k=1
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are two monic finite Blaschke products of degree n and Bi(wy) = Ba(wg) for n
distinct points wi, wy ..., wy in D. Then B1(§) = B2(§) for some & € T.

Proof By cross multiplication of terms, note that

n 71—z n Z—)xk
H k. :,!:[ll—l_kz

1 —
k=1 Lk

precisely when

n J—
H(Z—Zk)/<1—ZkZ):1
il 2T M 1 — Az

Moreover, when |z| = 1 the identity above is equivalent to

M2/ -

Since
w/w — eZz arg w

for any w € C\{0}, we will be done if we can show that

argng_ii

for some & € T and some integer m.
To do this, define

Fo)=]]—* (323)

—A
k=1 & T MK

and observe that F' is analytic and zero free on |z| > 1 — § for some § > 0 and that
F(0c0) = 1. Hence there is an analytic branch of H(z) = log F(z) for |z| > 1 —§.
But since F'(c0) = 1, we may choose H (co) = 0.

Define

h(z) =Im(H(1/2)), |z] < 1_18

and note that 4 is harmonic on an open neighborhood of D~. By the Mean Value
Property for harmonic functions,

2
0 = H(oo) = h(0) =/ h(eie)d—g
0 2w

Since 4 is continuous and real valued on T, it follows that (&) = O for some & € T.
However, since Im H is a branch of arg F' and any two branches of arg F differ by a
constant integer multiple of 27, the lemma is proved. O



42 3 Finite Blaschke Products: The Basics

Proof (of Theorem 3.2.1) Let R be the rational function defined by

_ B1(z)
B>(2)

and note that since By and B; are finite Blaschke products, |[R(¢)| = 1 forall¢ € T
by (3.1.4). By the same argument use to prove (3.1.6), we see that

R(2)

R@R(AZ) =1, zeC.
By hypothesis,
R(wy) = R(w2) =--- = R(w,) = L.
The previous identity also says that
R(1/wy) = R(1/wp) = - = R(1/wy) = 1.

Since |w;| < 1, we see that [1/w| > 1. Furthermore, by the previous lemma there
isa & € T for which R(§) = 1. Putting this all together, we have 2n 4+ 1 points

Wi, W2, ..oy Wy,  L/wy, Ljwo, ..., 1/w,, &

that are mapped to 1 by R. Since the degree of the rational function R is 2n, we see
that R = 1 and thus B; = B». a

The fact that B; and B, are monic is important and was used in (3.2.3) to get
that F(c0) = 1. If we do not assume that B; and B, are monic, the conclusion of
Theorem 3.2.1 is not always true. Indeed, suppose that

21,22, ..+, 2n € D\{0}

and define

n . n
YT 2% 7—iz 7=k
Bi(z) =i — and By (z) = — —.
® gl—zkz @ 1+zz1z]£[21—z;<z

Then B; and B; are finite Blaschke products of degree n with B (zx) = Ba(zx) for
allk =2,3,...,nand B;(0) = B>(0). However, B;(w) # Ba(w) for some w € D.
Indeed, if this were not the case, then

_ B1(z) _ T (2)
B> (z) Tiz, (2)

z € D.

The preceding says that t;, = it;;,, and hence, using the fact that 7;;, o 7;;, = id
(see (1.2.4)), we get (t;, o Tiz,)(z) = i for all z € D. This contradicts the fact that
T, 0 Tiz; € Aut(DD).
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3.3 Finite Blaschke Products as Rational Functions

Two polynomials are relatively prime if they have no nonconstant common factor.
If P and Q are relatively prime polynomials and Q is not identically zero, then the
degree of the rational function f = P/Q is

deg f := max{deg P, deg O},

where deg P and deg Q are the degrees of P and Q, respectively.
For a finite Blaschke product B, rewrite (3.1.2) to obtain

[Teei @ — 20)

B =
O = -5

(3.3.1)

which confirms that B is a rational function of degree n. We regard a unimodular
constant function as a finite Blaschke product of degree 0. The following theorem
shows that the numerator and denominator in (3.3.1) are closely related.

Theorem 3.3.2 A rational function of degree n is a finite Blaschke product of
degree n if and only if it is of the form

ZnP(l/Z) _ oy +5n71Z+~~~+&oz”
P(2) oy +a1z+ -+ ap”

(3.3.3)
in which ag # 0 and the numerator has all of its zeros in .

Proof Suppose that B is a finite Blaschke product and write it in the form (3.3.1).
Let y = €' in (3.3.1) and define

n
P(2) =e [T -7, (33.4)
k=1
which is a polynomial of degree at most n. Since
n
DIVEESLU | (5]
k=1

n
— Znei[()/2 l_[(l _ Zk/Z)

k=1

=[] -z, (3.3.5)

k=1
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we obtain

PR ePT (z—w)
P(z) e 2T (1 —Z2)

—)/l_[ Z—Zk

1 — 7z

= B(2) (3.3.6)
by (3.3.1). The numerator
) n
PR = [ — )
k=1

has all of its zeros in D. It is a polynomial of degree n, so @ # 0in (3.3.3).

Conversely, suppose that f is a rational function of the form (3.3.3), in which
ap # 0 and the numerator has all of its zeros in . By scaling the numerator
and denominator in (3.3.3) by a real constant factor, we may assume that og € T.
Then the numerator z" P(1/7) is of the form (3.3.5), in which zy, z2, ..., 2z, € D.
Consequently, P enjoys a factorization of the form (3.3.4) and

Z"P(1/2)
P(2)
is of the form (3.3.1), so it is a finite Blaschke product. |

Fix n > 0. If P is a polynomial of degree at most n, then let P*n be the
polynomial

P*(z) = Z"P(1/2),
which has degree at most n. To be more specific,
(o + @1z 4+ )" =@y + W12+ - + @02

That is, P* is obtained from P by reversing the coefficients and conjugating them.
Observe that

(OH* =z" and ()" =1.

We usually write # without reference to n since the value of n is determined by
context. Observe that

(PH = p (3.3.7)
and the zeros of P* are

1/z1, 1/z2,...., 1/zg,
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in which zy, z2, . . ., z, denote the zeros of P. Moreover,
(QR)*itk = Q" R™ (3.3.8)

whenever O, R are nonconstant polynomials and j, k are positive integers.
The proof of Theorem 3.3.2 shows that a rational function is a finite Blaschke
product if and only if it is of the form

pP/pP* (3.3.9)
in which P is a unimodular scalar multiple of

(z—z)(z—z2) - (2 —zn)s
and z1, 22, - - ., 2n € D. This result has the following generalization.

Corollary 3.3.10 A rational function of degree n is a quotient of two finite Blaschke
products whose degrees sum to at most n if and only if it is of the form

P
ﬁ )
in which P is a polynomial with no zeros on T.

Proof Suppose that P is a nonconstant polynomial with no zeros on T. Write P =
QR*, in which Q is a polynomial with all of its zeros in ID and R is a polynomial
with all of its zeros in D,. That is, R = (R")* is a polynomial with all of its zeros
in D. Then (3.3.8) ensures that

P QR
f =% = o = Q#R /R#, (3.3.11)

which is a quotient of two finite Blaschke products by Theorem 3.3.2. If O and
R have any zeros in common, then cancellation occurs in (3.3.11). After this, the
degrees of the resulting finite Blaschke products sum to at most 7.

Conversely, if f is a quotient of two finite Blaschke products whose degrees sum
to at most n, then by Theorem 3.3.2 we may write

_9 /ﬁ
ot/ R*
in which Q and R are polynomials with all of their zeros in D and so that
degQ—i—degR# <n
Note that P = Q R* is a polynomial with no zeros on T and that f = P/P¥. O
Corollary 3.3.10 implies that
PO =1P*©)] (33.12)

for all polynomials P and ¢ € T. See Exercise 3.7 for alternate proofs of
Theorem 3.3.2 and Corollary 3.3.10.
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3.4 Finite Blaschke Products as n-to-1 Functions

Let B be a finite Blaschke product (3.1.2) of degree n and consider the equation
B(z) =w, (3.4.1)

in which w € C. Write B = P/P*asin (3.3.9), where P is a polynomial of degree
n. Then (3.4.1) becomes

P(z) —wP*(z) =0, (3.4.2)

in which P — wP*is a polynomial of degree at most n. Consequently, for each
w e C, (3.4.1) has n solutions in C, repeated according to their multiplicity. For
example, if w = 0, then the solutions are precisely the zeros z1, z2, . .., 2, of B; that
is, the zeros of P. As another example, if w = oo, then the solutions are precisely
1/z1,1/72, ..., 1/Z,, which are the poles of B.

We now show that B has constant valence on each of the disk I, the extended
exterior disk D,, and the unit circle T (see Fig.3.1). We get started on T with the
following lemma.

Lemma 3.4.3 If B is a finite Blaschke product, then B'(¢) # 0 forall ¢ € T.

Proof To prove this result, we require the logarithmic derivative of a product

f=nNrffa
of meromorphic functions fi, fa, ..., fu:
I / / 7
L:£+&+...+&' (3.4.4)
fn n Jn
The logarithmic derivative of a finite Blaschke product
72—z
B(x)=y ]_[ ko yerT, (3.4.5)
is
B'(2) _i(z—z;c )/. 1 —Zkz
B(z2) _k:I 1 —7Zxz Z—Zk
Zn: (I—z2) — @ —z)(=z) 1 -Zz
(1 —Zxz)? 7— Zk
n 2
11—z
= Z _—lzk| (3.4.6)

o =2z — )
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05 05 05
| 05 05 05
(a) (b) (c)

A0 A0 A0

(2 (h) ®

Fig. 3.1 Images of the circle |z| = r under the finite Blaschke product B from (3.1.2) with z; = 0,
=23 = §, 74 = 3 ,and z5 = 43’ All five zeros of B have modulus at most 0.8; hence the
image of |z| = r for r > 0.8 winds around the origin five times. Thus, B is a 5-to-1 map from D
onto itself. (a) r = 0.4. (b)r =0.5.(¢c)r =0.6.(d)r =0.7.(e) r = 0.8. (f) r = 0.9.(g) r = 0.95.
(h) » =0.9825. (i) r = 0.99

If¢ T, then

n

’ _ 2 _ 2
B'(¢) 1 — |zl Zl |zk| G.A47)

‘B~ =1 -TOE —w) 1 =zl
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Since B(¢) and ¢ are both unimodular, it follows that

n

o=y LBy g (3.48)
= ¢ —ul?

The identity in (3.4.8) ensures that a finite Blaschke product cannot assume any
(necessarily unimodular) values on T with multiplicity greater than one.

This next result says that the argument of a finite Blaschke product is always
increasing. Our proof follows [30].

Corollary 3.4.9 For a finite Blaschke product B,

d . ‘
o e B(e'") = |B'(e')].

Proof The calculation from (3.4.6) shows that

n

B'(z) 1 — |z
B(z) 2 (1-Zk) @z — )

k=1

Writing B(e'') = ¢!V ® | where v/ (¢) is real valued and v (277) — v/ (0) is a multiple
of 2, (3.4.7) says that

(B 1= lul
‘t)=e€"'—+ = . .
W ( ) e B(ez[) ]; |E” _Zk|2
By (3.4.8), this last quantity equals | B’ (e'")]. O

Theorem 3.4.10 Let B be a finite Blaschke product of degree n. For each w € @,
the equation B(z) = w has exactly n solutions in C, counted according to
multiplicity.

(a) If w € D, these solutions belong to D.
(b) If w € Dy, these solutions belong to D,.
(c¢) If w € T, these solutions belong to T and are distinct.

Proof By Theorem 3.3.2 we may write B = P/P¥, where

PR =ay+ajz+- -+ a7, a, £ 0, (3.4.11)
is a polynomial of degree n whose zeros are all inside D. Looking at the form
of P/P* we can divide its numerator and denominator by |a,| and thus assume

that o, € T. Let zy, 22, ..., 2, denote the zeros of P, counted according to their
multiplicity. Then

P(z) =an(z—21)(z—22) - (2 — zZn).



3.5 Unimodular Elements of the Disk Algebra 49

Expand the preceding and compare with (3.4.11) to obtain
a0 = (—1)"z1z2 - zntn,

which belongs to D since |, | = 1.

The solutions to B(z) = w are precisely the solutions to (3.4.11). The coefficient
of 7" in (3.4.2) is nonzero if and only if a, % wag. If w € D, then |wag| < || =1
and hence B(z) = w has exactly n solutions, repeated according to multiplicity. If
w € D,, then apply (3.1.6) and the preceding result to conclude that B(z) = w has
exactly n solutions in D,, counted according to multiplicity.

If w € T, then (3.1.3), (3.1.4), and (3.1.5) imply that the n solutions to B(z) = w
belong to T. These solutions are distinct since Lemma 3.4.3 guarantees that B’ does
not vanish on T. O

Theorem 3.4.10 says that B(z) = w does not have solutions with multiplicity
greater than one if w € T. This does not hold if w ¢ T. For example, B(z) = 7"
assumes the value 0 at z = 0 (and the value co at z = co) with multiplicity .

3.5 Unimodular Elements of the Disk Algebra

Definition 3.5.1 The disk algebra <7 (D) is the set of analytic functions on D that
extend continuously to D™

Each finite Blaschke product belongs to <7 (ID). More generally, any rational
functions with no poles in D™ belongs to <7 (D). Another example is the function
defined by 3 °° | z"/n?.

Among the elements of <7 (D), the finite Blaschke products can be characterized
as those functions that map T into T.

Theorem 3.5.2 (Fatou [46]) If f is analytic on D and

lim |f(@)] =1,
|z]—>1—

then f is a finite Blaschke product.

Proof Since |f(z)] — 1 as|z] — 17, thereis an r € [0, 1) so that f does not
vanish on the annulus {z : r < |z| < 1}. The identity principle from complex
analysis asserts that f has at most a finite number of zeros in D. Let B be a finite
Blaschke product whose zeros (located in {z : |z| < r}) are precisely the zeros of f,
repeated according to multiplicity. Then f/B and B/f are analytic in D and

/@

B(z)
mm = _—
lzl—>1- | B(2)

= m
lzl—>1~ | f(2)




50 3 Finite Blaschke Products: The Basics

The Maximum Modulus Principle implies that | f/B| < 1 and |B/f| < 1 on D.
Thus, f/B is constant on ID. This constant must be unimodular, so f is a unimodular
scalar multiple of B. Thatis, f is a finite Blaschke product. O

Corollary 3.5.3 If f € &/ (D) and f(T) C T, then f is a finite Blaschke product.

Proof If f € &/(D), then | f] is continuous on D~. Since D~ is compact, | f]| is
uniformly continuous on D™, so | f(z)] — 1 uniformly as |z] — 1~. Now apply
Theorem 3.5.2. O

There is also meromorphic version of the preceding corollary.

Corollary 3.5.4 Suppose f is meromorphic on D and extends continuously to T. If
f(T) C T, then f is a quotient of two finite Blaschke products.

Proof By hypothesis, f has finitely many poles in ID. Let B, be a finite Blaschke
product whose zeros are precisely the poles of f in D, repeated according to
multiplicity. Then By = f B; is analytic on D and extends continuously to D with
B(T) < T. Corollary 3.5.3 implies that B; is a finite Blaschke product and so
f = B1/B> as required. O

3.6 Composition of Finite Blaschke Products

The family of finite Blaschke products is conformally invariant; that is, it is invariant
under any change of variables z + ¢(z) for ¢ € Aut(D). In fact, the degree of
a finite Blaschke product is a conformal invariant. Recall the automorphism t,,
from (1.2.2).

Lemma 3.6.1 Let B be a finite Blaschke product of degree n and let w € . Then
Ty © B and B o 1y, are finite Blaschke products of degree n.

Proof The function 1, o B is analytic on D, continuous on D™, and unimodular
on T. Corollary 3.5.3 ensures that 7,, o B is a finite Blaschke product. Moreover,
(tw o B)(z) = 0 if and only if B(z) = w, so Theorem 3.4.10 tells us that the
equation B(z) = w has exactly n solutions in . Thus, 7,, o B is a finite Blaschke
product of degree n. Corollary 3.5.3 implies that B o 1y, is a finite Blaschke product.
That its degree is n can be verified directly. O

Clearly the lemma above also holds for general ¢ € Aut(D).

The family of all finite Blaschke products is closed under pointwise multiplica-
tion. Indeed, if we multiply two finite Blaschke products of degree n; and n;, the
result is a finite Blaschke product of degree nin,. Less obvious is that the set of
finite Blaschke products is closed under composition. In fact, Lemma 3.6.1 already
reveals a special case of this property.

Theorem 3.6.2 If By and By are finite Blaschke products, then By o Bj is a finite
Blaschke product. Moreover; if n1 and ny are the degrees of By and By, respectively,
then the degree of By o By is ninj.
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Proof Denote the zeros of B; by z1, 22, . . ., 2, and write
B =y(t; 1y 12,),
where y is a unimodular constant. Then
B o By =y(t 0 By)(15, 0 By) -+ - (1, 0 Ba).
By Lemma 3.6.1, each 7, o B, is a finite Blaschke product of degree n>.

Consequently, By o B is a finite Blaschke product of degree nin,. O

In Chap. 9 we explore the more difficult question of when we can write a finite
Blaschke product B as a composition B = C o D, in which C and D are finite
Blaschke products, in a nontrivial way.

3.7 Constant Valence

Definition 3.7.1 For an analytic function f : D — C and w € C, the valence of f
at w is

vr(w) =[{zeD: f(z) = wll,
where | E| denotes the cardinality of a set E.
Notice that vy(w) € N U {0, co}. Theorem 3.4.10 says that for a finite Blaschke
product B of degree n,
vg(w)=n, weD.
This constant valence property characterizes the finite Blaschke products of degree
n amongst the functions in the Schur class . [43-45].

Theorem 3.7.2 (Fatou) Let f € ¥ and n € N such that with vy (w) = n for all
w € D. Then f is a finite Blaschke product of degree n.

Proof We follow the proof of Radé [116] and show that

‘ |hn} | f(2)| =1 (3.7.3)
Z|= 1"

If we can do this, then Theorem 3.5.2 would imply that f is a finite Blaschke
product. Suppose toward a contradiction that f : D — D is an analytic function
of constant valence n > 1 and that (3.7.3) fails. Then there is a sequence z,, of
distinct points in D and a wg € D so that

lim |z =1 and lim f(z,) = wo. (3.7.4)
m—00 m— 00
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Indeed, let z,, be a sequence of distinct points in D for which |z,,| — 1 and
| f (zmm)| remains bounded away from 1. Passing to a subsequence and relabeling,
we may assume that there is an » € (0, 1) so that | f(z,,)| < r < 1 for all m. The
compactness of |z| < r implies that a further subsequence, which we relabel as z,,
for convenience, satisfies (3.7.4) for some wgy € D.

Since f has constant valence n, it follows that f(z,) # wo for all but finitely
many m. Let aj, az, ..., ax be the distinct solutions of f(z) = wy, respectively,
with multiplicities ny, ns, ..., ng. By assumption,

ny+ny+---+np=n.

About each point a;, the function f has a power series expansion

(k)
0@

f(@) =wo+ Z

k=n;
in which ") (a i) # 0.1f €; > Ois sufficiently small, we can write
f@=wo+ (z—ajfi@)" (3.7.5)
for z contained in
D(aj,€j) ={z: |z —aj| < ¢€j},

in which f; is a nonvanishing analytic function on D(a;, €;). Without loss of
generality, we impose the extra restrictions

€j <min{ila; —a;j|: 1 <i<k, i#j} and € <3(1—la;])

to ensure that the disks D(a}, €;) are pairwise disjoint and do not intersect T.

Since g;(z) = (z — a;) fj(z) has a simple zero at aj, it is injective on a small
neighborhood of a;. Thus, if necessary, we can make each €; even smaller so that
g;(z) is injective on D(aj, €;). The Open Mapping Theorem says that

k
() 8i(D(@j.€))

Jj=1
is an open set that contains the origin. Let € > 0 be small enough so that

k
D(©.¢) C () &(Dj.€))
j=1

and let

V= gj—l(D(o, €)) € D(aj, €)), for1 < j <k.
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Observe that g; : V; — D(0, €) is bijective, g;(a;) = 0, and the open sets V; are
pairwise disjoint and do not intersect T. Consequently, (3.7.5) tells us that for each
w € D(wp, €)\{wp}, where

6/ — Emax{m,...,nk}
the equation f(z) = w has exactly n; distinct solutions in V; for each j.
Since f(z;,) — wo and |z,,,| — 1, for sufficiently large m we have

k
f(zm) € D(wo, €), fm) #wo, and zn & (V).

j=1

Fix any such m, and let w;, = f(z;,). Then each V; contains n; distinct points that
map to wy,. Thus, the equation f(z) = w, has at least

ni+n+---+n+l=n+1

solutions. This is a contradiction. O

3.8 Finite Blaschke Products on C

Recall that

Ci={zeC:Imz>0} and C_={z€eC:Im <0}

denote the upper and lower half planes, respectively. If z1,z2,...,2, € C4 and
y € T, then
L i—
By =y [[——= (3.8.1)
o) © %k

is a finite Blaschke product of degree n for C,. If ¢ : D — C, is the Mobius
transformation

A4z
fﬂ(z)=ll

’

(see (2.5.1) and Fig.2.4), then B is a finite Blaschke product for C if and only
if B o ¢ is a finite Blaschke product for D. In light of this relationship, we mostly
consider finite Blaschke products on D.

The following properties of (nonconstant) finite Blaschke products on the C
follow directly from the corresponding properties (3.1.3), (3.1.4), (3.1.5), and (3.1.6)
of finite Blaschke products on D:
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|IB(z)| <1, ifzeCy, (3.8.2)
IBx)| =1, ifxeR, (3.8.3)
|B(z)| > 1, ifzeC_, (3.84)
and
B@) = ——. z¢C. (3.8.5)
B(2)

An important distinction between finite Blaschke products on D and C . concerns
the locations of their poles. A nonconstant finite Blaschke product for the upper half
plane has at least one finite pole; this is evident in the definition (3.8.1). In contrast,
the nonconstant finite Blaschke products z, 72,73, ... on D are entire functions. This

difference is important to remember in certain applications.

3.9 Notes

Commuting Blaschke Products

From Theorem 3.6.2 we know that if B and B; are finite Blaschke products, then
B0 B, is another finite Blaschke product. However, see Exercise 3.6, it is not always
the case that By o B, = B o Bj. The paper [19] explores when B and B commute.

Infinite Blaschke Products

One can extend the notion of finite Blaschke products to infinite Blaschle products,
where the number of factors is infinite. As expected, there are convergence issues.
Indeed, for an infinite sequence z, of points in D\ {0}, we define the formal product

oo

B@ =] Vel 2n =2 (3.9.1)

n 1 =7z
n=1
The product above converges uniformly on compact subsets of D if and only if the
zeros z,, satisfy the Blaschke condition

[e.e]

D (= lza) < oo,

n=1
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If this occurs, then B defines a bounded analytic function on ID such that |B| < 1
on D and such that
lim B (reie)
r—>1-

exists for almost every 8. Furthermore, this value is unimodular almost everywhere
[25, 38].

There are beautiful theorems of Frostman [50] that discuss the behavior of B
on T. For a fixed 6, the radial limits of a Blaschke product (and all of its subproducts)
exist and have modulus equal to one at ¢/? if and only if

00

Z 1 —|ay]
—_— < X
et — ay|

n=1

Furthermore, the radial limit of B’ exists at ¢'? if and only if
[e¢)
3 1 lan o
|ei9 — dp |2
n=1

and, moreover, | B’ (eig)l is equal to the sum above. Compare this to (3.4.8).
By the argument used to prove Corollary 8.2.6 below, one can show that if

oo
B(z) =) ",
n=0

then ¢, = o(1). Furthermore, an argument used to prove Corollary 10.1.16 below
shows that for a finite Blaschke product we have ¢, = o(1/n). A theorem of Shapiro
and Newman [107] shows that a general Blaschke product is a finite Blaschke
product if and only if ¢;, = o(1/n). Thus, in terms of Taylor coefficients, we have
a characterization of the finite Blaschke products among the set of all Blaschke
products.

Finally, we mention that Blaschke products (finite or infinite) are special cases of
a wider class of analytic functions on D called inner functions [38, 61].

3.10 Exercises

3.1 Prove thatif f is analytic on D, then g(z) = f(z) is also analytic on D.

3.2 Prove that if B; and B, are finite Blaschke products whose degrees do not
exceed n and By = B; atn + 1 points of D, then B} = Bs.

Hint: If By = Bj at n + 1 points, then, considering B; and B, as meromorphic
functions on C, they are equal at 2n + 2 points (which ones?).
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3.3 In[108] the authors compare results about polynomials with some results about
finite Blaschke products. For some examples of this, prove the following.

(a) Let f be entire with f(C) = C. Then f is a polynomial of degree n if and only
if the valence of f is n at each point of C. This is the polynomial analogue of
Theorem 3.7.2.

(b) If f is entire and

lim |f(z)] = oo,
|z]—00

then f is a polynomial. This is the analogue of Theorem 3.5.2.

(c) If p and ¢ are polynomials whose degrees do not exceed n and if p = g atn+1
distinct points, then p = ¢. This is the analogue of Exercise 3.2.

(d) For a given w € C, p is a polynomial of degree n if and only if

p(z) — p(w)
Z—w

is also a polynomial of degree n — 1. In [5], they prove the (hyperbolic) analogue
of this for finite Blaschke products. Indeed, for z, w € D, define

[z, w] =

1 —wz
One can show that if w € D, then B is a Blaschke product of degree n if and

only if

[B(z), B(w)]
[z, w]
is a Blaschke product of degree n — 1.
3.4 Prove (3.1.6) by direct computation.

3.5 Let B be a finite Blaschke product of order n and ¢, & be distinct points on T.
If ¢1, &2, ..., &y are the solutions to B(z) = «g and &1, &, ..., &, are the solutions
to B(z) = an, show that the ¢;s alternate with the &;s as one travels around T.

3.6 Produce an example of two finite Blaschke products By, B; for which Bjo B, #
B> o Bj. See the end notes of this chapter for more on this.

3.7 (a) Use Corollary 3.5.3 to provide another proof of Theorem 3.3.2. (b) Use
Corollary 3.5.4 to provide another proof of Corollary 3.3.10.

3.8 Letzg € Dy, where D = DN C,, and set

(zo —2) (1 — z02)
(Zo—2)(1—Z02)’

f@)=

Z€D+.
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Show that

lf@)] <1, zeDy,
and

|f()] =1, z € 0D,
Hint: We have

_ 20 by
20 bz

3.9 Letzp € D4 and let

Dy ={z:lzl <1,Imz >0, |z— 1] <|z0 — 1]}.

()

ex ,

P sin? ¥

in which 9 = —arg(l — zo) € (0, 7).

Hint: Use the fact that logx < x — 1 for x > 1 and apply it to

Show that

I —z0z

N

20— 2

1—2z0z2 2
log | ——
20 — <
The identity (1.6.1) may be helpful.
310 Letr €[0,1)andz e D™.
1—-z 2
(a) Prove that < .
1—-rz 1+7r
2
(b) Prove that < .
I1—rz| 11—z
3.11 Show that
1 2

—— < —
1 —re=ifz] = |eif —z]

forall z, re'? e D.
Hint: Use Exercise 3.10.

3.12 Let f be an entire function of constant modulus on the unit circle T. Show
that f(z) = cz", in which c is a constant and » is a nonnegative integer.
Hint: Apply Corollary 3.5.3.
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3.13 Let £2; and £2; be two bounded regions in C and let f : £2; — £2, be analytic.
Suppose that there is no sequence z, in §2; that converges to a point on 9£2; with
f(zn) in £27 converges to a point on £2;. Show that f has a constant valence on £2;.

Remark The main assumption of this result is equivalent to each of the following.

(a) For each compact set K C £2», the set f “IK)isa compact subset of £2;.
(b) If E C £2, is such that dist(E, d§2;) > 0, then dist(f’1 (E),0821) > 0.

3.14 (Carathéodory—Rademacher [17]) Let £2; and £2, be two bounded regions in
C, and let f : £2; — $2 be analytic. Suppose that f has constant valence on £2;.
Show that there is no sequence z,, in £21 that converges to a point in d§2; and at the
same time the sequence f(z,) in 2 converges to a point inside £2>.

Hint: The proof of Theorem 3.7.2 may help.



Chapter 4 ®
Approximation by Finite Blaschke Qe
Products

Although finite Blaschke products are a remarkable and exclusive class of functions,
they appear in many important approximation problems.

Let H° denote the set of all bounded analytic functions on D. Since H® is
closed under addition and scalar multiplication, it is a vector space. It is also closed
under pointwise multiplication, so H® is an algebra over C. We endow H* with
the norm

I flloo := sup{| f(2)| : z € D}. (4.0.1)

With respect to this norm, H® is a Banach algebra: it is a normed algebra that
is complete with respect to the metric induced by the norm (4.0.1), which is sub-
multiplicative:

fglloe < I1fllooliglloo-

The closed unit ball {f € H*® : | flloo < 1} of H® is the Schur class .
(Definition 1.0.2).

4.1 Approximating Functions from .

If an analytic function f on ID can be uniformly approximated on D by a sequence of
finite Blaschke products, then it is uniformly continuous on ID. Consequently, f has
a unique continuous extension to D™ and, moreover, this extension is unimodular
on T. Thus, f is itself a finite Blaschke product (Corollary 3.5.3). In other words,
the set of finite Blaschke products is a proper, norm-closed subset of . with respect
to the norm (4.0.1).
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A generic element of . need not have a continuous extension to D~. For
example, consider the function

fr=en(-123)

—Z

see Exercise 4.1. Consequently, we cannot expect to approximate this function by a
sequence of finite Blaschke products in the norm (4.0.1). On the other hand, if we
consider the topology of uniform convergence on compact subsets of D, then the
finite Blaschke products are dense in ..

Theorem 4.1.1 (Carathéodory [16]) For each f € .7, there is a sequence of
finite Blaschke products that converges uniformly on compact subsets of D to f.

Proof 1Tt suffices to show that for each f € % and n > 1, there is a finite Blaschke
product B, so that f — B, has a zero of order at least n at the origin. If this occurs,
then f — B, = 7" "!g, where g € H*®, g(0) = 0, and

liglloo = 12" "glloo = I f — Bulloo < 2.

Thus, by the Schwarz Lemma (Lemma 1.1.1),
|f(2) = By(2)| <2lz|", zeD.

The preceding inequality shows that B,, — f uniformly on compact subsets of D.

To show that for each f € . and n > 1, there is a finite Blaschke product B, so
that f — B, has a zero of order at least n at the origin, we proceed by induction on 7.
Our base caseisn = 1. Foreach f € ., wehave co = f(0) € D™.If |co| = 1, then
the Maximum Modulus Principle says that f is a unimodular constant and there is
nothing to prove. If |co| < 1, then By(z) = 7¢,(2) is a finite Blaschke product with
the same constant term as f and thus f — By vanishes at the origin.

Suppose for our induction hypothesis that for each f € .# there is a finite
Blaschke product B, so that f — B, has a zero of order at least n at the origin.
Since f € .7, the Schwarz Lemma implies that

oo TL.O(JZf(z))

belongs to .. Hence there is a finite Blaschke product B, so that g — B, has a zero
of order at least n at the origin. In other words,

8@) — By(z) =7"K(2), z€D, (4.1.2)
for some K € H®. Since

f(@) = 1, (28(2)),
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and since

Byi1(z) = Teo (2B, (2))

is a finite Blaschke product by Lemma 3.6.1, we expect that B, has the desired
properties. To establish this, first observe that

(= e (z1 — 22)
Ty (22) — Tep(21) = 1 ez —Zoza) (4.1.3)

for z1, zo € D; see Exercise 4.3. Then conclude that

f(2) = Buy1(2) = 1¢,(28(2)) — Tey (2 Bn(2))
(1 —co)(zg(2) — 2Bu(2))

= by (4.1.3
(1 — 028 (@) (1 — GozBn(2) (by 139

= H(2)z(g(z) — B, (2))

=7"""K(2)H(2), (by (4.1.2))

where

1= leol®

H =
@ = Rz (1 - a02Ba ()

and K is the function from (4.1.2). This completes the induction and the proof. O

4.2 The Closed Convex Hull of the Finite Blaschke Products

Definition 4.2.1 Let ¥ be a vector space. A convex combination of vi,va, ...,
v, € ¥ is an expression of the form

AMVL+ A2V + -+ Ap vy,
in which
A, A2, A €[0,1] and Ay +Ax+ -4+ A, =10
The set
conv{vy, va, ..., V,}

of all convex combinations of v{, vp, ..., Vv, is the convex hull of vi, vy, ..., v,.
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Since each finite Blaschke product belongs to
{(fedD:flle <1},

the closed unit ball of the disk algebra o7 (D) (recall Definition 3.5.1). Any convex
combination of finite Blaschke products belongs to the unit ball of .o/ (D). In fact,
they are dense in <7 (D).

Theorem 4.2.2 (Fisher [48]) Each function in the closed unit ball of </ (D) can
be uniformly approximated on D™ by a sequence of convex combinations of finite
Blaschke products.

Proof Fix f in the closed unit ball of 27 (D) and € > 0. Since f is continuous on
D, uniform continuity implies that there is a ¢ € [0, 1) such that

€
1fe = flloo < 5

where f;(z) = f(tz) is a dilation of f. Theorem 4.1.1 provides a finite Blaschke
product B so that

sup | £(2) — B(2)| < %
zetD

Since

Ifi = Billo = Suﬂp)) | fi(z) — Bi(2)]

= sup | f(z) — B(2)
zetD
€

<=,

2
the finite Blaschke product B satisfies

If = Billoo < If = filloo + I1fi = Billoo

<

If we can show that B; is itself a convex combination of finite Blaschke products,
the proof will be complete.

To accomplish this, first observe that the product of two convex combinations of
finite Blaschke products is a convex combination of finite Blaschke products; see
Exercise 4.5. Since (gh); = g;h, for any analytic functions g and & on D, we may
assume that the finite Blaschke product B takes the form

o—z
1—0oz

B(z) =
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A computation confirms that

t(1—|al®) at—z |a|(1—13)
1— |22 1—az 1—|af??

B (2) = ol e, (4.2.3)
see Exercise 4.6. The expression on the right-hand side of (4.2.3) is almost what we
want; it is a linear combination, with positive coefficients, of a disk automorphism
and a unimodular constant (which is a finite Blaschke product). However, the
coefficients need not sum to one. Fortunately,

tA—la?) el —13) (=0 —l|a))

1- — = 0, 424
I— P2 1—|apP? T (4.2.4)
so we add
I -6 - I -6 -
o (L=nU—leh | d=nd—jab
2(1 + |alt) 2(1 + |alt)
to both sides of (4.2.3) and obtain
B(D) = t(l—laP) ar—z  Jel(1=1) 0,
! 1— |22 1—arz 1 —|af??
11— —|o 11— — |«
(=nd—jeh  (A=nl=leh
2(1 + |alt) 2(1 + |alt)
which is a convex combination of four finite Blaschke products (three of which are
unimodular constants). d

4.3 Approximating Continuous Unimodular Functions

If B; and B; are finite Blaschke products, then the restriction of B;/By to T is
a continuous unimodular function. If u is the boundary function, with unimodular
values, for a meromorphic function on ID with a finite number of zeros and poles
in D, then Corollary 3.5.4 says that u can be approximated uniformly on T by
unimodular functions of the form Bj/B,, in which Bj, B, are finite Blaschke
products. The main result of this section is an improvement of this fact.

Theorem 4.3.1 (Helson—-Sarason [77]) Letu : T — T be continuous and let € >
0. Then there are finite Blaschke products By and By such that

Bi (&)
T ) = 56

< €

The proof of this theorem requires the following technical lemma which is a
precise formulation of the fact that a closed curve that does not pass through the
origin winds around the origin either an even number or an odd number of times.
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Lemmad4.3.2 Let y : T — T be continuous. Then there exists a continuous
unimodular function n on T such that either

y@Q =n*@©), €T,

or

y(©@) =¢n*@), ¢eT.

Proof Since y : T — T is uniformly continuous, there is a positive integer N so
that

2 , o
p-01<T = -y <2 (4.3.3)
Divide T into N arcs
Tk:{eif)zwggg%_ﬂ}, 1<k<N,
N N

of equal length. The condition (4.3.3), along with the continuity of y and the
compactness of Ty, imply that y (T%) is a closed sub-arc of T that subtends an angle
strictly less than 7. Thus, there is a continuous function ¢ (6), defined for

2(k — D 2km
e 2 m )
N N
such that
y(e?) =explige(®), € €T
The ¢y are uniquely defined up to an additive multiple of 277. Since y is continuous,

we adjust those additive constants so that

2km 2k

— ) = - <k<N-—

¢k< N ) ¢k+1( N ) I1<k<N-1 (4.3.4)

Define ¢ : [0, 2] — R by

2(k — D 2km
N "N

By (4.3.4), we obtain a continuous function on [0, 27 ] such that

9O =du®), 0| | k=12..w
y(@?) =expip@®), €’ eT.
The continuity of y at 1 implies that ¢ (27) — ¢ (0) is an integer multiple of 2. If

¢ (2m) — ¢(0)
2
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is even, let

)

i¢(9))

ne’”) = exp ( >

if it is odd, let
0 =exp (1360~ 0).

Then 7 is continuous and unimodular on T and it satisfies either y(?) = n? (')
for all 6 or y (¢!?) = €'? n*(&'?) for all 6. O

Proof (of Theorem 4.3.1) By Lemma 4.3.2, it suffices to prove our claim for
unimodular functions of the form y = n2. This is because ¢'? is the boundary
function for the finite Blaschke product z. Without loss of generality, we may
assume that 0 < € < 1.

By the Stone—Weierstrass Theorem, there is a trigonometric polynomial

N
h(eie): Z aneine
n=—N
such that
€
—h —.
r;lea%ln(é) 6l < 3

Since 0 < € < 1 and 7 is unimodular, the preceding inequality implies that & has
no zeros on T. Let

h*(z) = h(1/2), z €T,

and

For¢ € T,

h(¢)
h*(¢)
_R(©)
CR(1/0)]
_ 1h@I

(0]
=1,

Lf ()] =
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that is, f is unimodular on T. Moreover, on T,

ly — f1 = In* = h/h*|

n h
(n —Wh* + (B* —n*)h
_ I = B+ 10—
[ (||
_ In=hllhl + In = hilA|
(nl|h]
= 2|y — |
<2. €. 1
2

= €.

Since f is a meromorphic function that is unimodular and continuous on T,
Corollary 3.5.4 implies that it is the quotient of two finite Blaschke products. This
concludes the proof. O

4.4 Approximation by Finite Blaschke Products with Simple
Zeros

The finite Blaschke products produced by Theorems 4.1.1, 4.2.2, and 4.3.1 might
have repeated zeros. In particular applications, one might require the approximating
finite Blaschke products to have simple zeros. The following theorem remedies this
situation.

Theorem 4.4.1 Let B be a finite Blaschke product of degree n. Then there is a
family of finite Blaschke products {B¢: 0 < € < €} with the following properties.

(a) Be is of degree n.

(b) Each B¢ has distinct zeros.

(c) Foreach €, B¢(0) # 0 and B/(0) # 0.

(d) As € — 0, B¢ converges uniformly to B on any compact subset of C that does
not contain a pole of B. In particular, B¢ converges uniformly to B on D™.

For a generalization of the preceding theorem, see Exercise 4.7. The proof of
Theorem 4.4.1 requires the following lemma.
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Lemma 4.4.2 Let

B(z)=ﬁ Lt

1 —
k=1 Ik

and suppose that we have a family of finite Blaschke products

n
Bs(Z):HM, 0 < e < e,
k=1 1- Zk,eZ
such that
lim 74 ¢ = z, 1 <k<n. (4.4.3)
e—0

Then B¢ converges uniformly to B as € — 0 on all compact subsets of C that do
not contain a pole of B. In particular, B¢ converges uniformly to B on D™.

Proof Ifay,as, ...,a, and by, by, ..., b, are two finite sequences in D™, then

n n n n
Hak—l_[bk ]_[ak—blnak+b11_[ak—l_[bk
k=1 k=1 k=2 k=2 k=1

n n n
=@ —b) [Jax+ b1 (l_[ak - ku>
k=2 k=2 k=2

n
< lar = bl [ ] laxl + b1

n n
[Ta—]Tox
k=2 k=2

< lap — by +

n n
[Tax =TTt
k=2 k=2

and hence induction yields

n n
[Tox =TTt
k=1 k=1

n

<Y lax — byl
k=1

Therefore,

Zke — 2 Ik — 2

— . 4.4.4)
1 —Zkez 1—7kz

1Be(x) — B@I <Y

k=1
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Fix a compact set K in C that does not contain any pole of B. The assumption (4.4.3)
ensures that the set of poles of B, is eventually disjoint from K. For z € K and €
sufficiently small, 1 —Z; ¢z and 1 — 7z are bounded away from zero. Consequently,

ke — 2 U —z
1 —Zkez 1-—7xz

<M |zge — 2kl (4.4.5)

for some constant M that depends on K; see Exercise 4.8. From (4.4.4) and (4.4.5)
we deduce that

|Be(2) — B(2)| < M2|zke—zk| zeKk.

Thus, B, converges uniformly to B on K. O

Proof (of Theorem 4.4.1) Write

. . mn Zk — 2 jk
B(z)=e’ﬂ1’°n< —> ’

1=
k=1 <kZ

in which 8 € [0, 2x), jir > 1,and z1, 22, .. ., Z, are distinct elements of ID\{0}. Let
zo = 0 and define

co=min |31z — 20l : 0 < ko€ <, k £ 0]
which is positive. If 0 < € < €p, then the circles
Tie=1{z€C:|z—z| =¢}

are pairwise disjoint and do not pass through the origin. On each Ik ¢, consider any
arbitrary set of distinct j; elements, say

ke, 1y Zkye2s -5 Zk,e,ji» 0<k<m, (4.4.6)
and form the finite Blaschke product
kel —
Bc(z) = P (—1)%0
@ =70 In)ﬂ) 1 —Zheez

Notice that (a), (b), and the first part of (c) are fulfilled. Property (d) follows from
Lemma 4.4.2. To verify the second part of (c), write

B(Z)—e’ﬁnl_w =
p
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in which wy, wa, ..., w, is areindexing of (4.4.6). By direct calculation, we see that
B.(0 - 1
B0 = Z w, — — .
B.(0) wp
p=1
We have some freedom to control this expression. For example, if w = ee'?, then
B.(0 1\ _; - 1
O _ <e— —>e—'9 +Z(w—,,— —)
B:(0) € ] wp

If Bé (0) = 0 for some choice of 6, we may change the value of 6 so that, without
violating the preceding properties, we obtain a B, such that B.(0) # 0. O

4.5 Generalized Rouché Theorem and Its Converse

Suppose that I" is a simple closed curve in C (recall our standing convention that
only piecewise C! curves are considered). We say that f is analytic inside and on
I' if there is a simply connected neighborhood of I" upon which f is analytic. If f
has no zeros on I', then the Argument Principle says that

1 /
Zp(I) = — f' (@)

2ri Jr f(2)

dz

is the number of zeros of f inside I", counted according to multiplicity. More
generally, if f is meromorphic on and inside I" and if f has no zeros or poles
on I, then

1@,
2ri Jr f(2)

Zy(I') = Pp(I') =

’

in which P (I") denotes the number of poles of f inside I".
Rouché’s Theorem asserts that if f and A are analytic inside and on a simple
closed curve I" and if |h| < |f| on I', then

Zp(I') = Zpn(I).

Here is an intuitive explanation that can be found in many standard complex analysis
texts. A person walks a dog around the origin along the path f(z), in whichz € I".
The dog’s position is f(z) 4+ h(z), in which z € [I'. The condition |h| < |f]
means that the leash is always shorter than the distance from the walker to the
origin. Therefore, the walker and the dog circle the origin the same number of times
(no matter how many times the dog circles the walker). Hence f and f + & have the
same number of zeros inside of I" by the Argument Principle.
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A stronger version of Rouché’s theorem is the following. It implies the weaker
form discussed above; see Exercise 4.9.

Theorem 4.5.1 (Glicksberg [64]) If f and g are analytic inside and on a simple
closed curve I' and if

If =gl <Ifl+lglon T, (4.5.2)

then f and g have the same number of zeros inside I'.

Proof First note that (4.5.2) implies that
o= <[l

on I". The strict inequality above tells us that /g < 0 cannot occur anywhere on I".
In particular, I" does not pass through a zero of either f or g. Thus, f/g maps I
into C\(—o0, 0]. If log z is the principal branch of the logarithm, then

d 1 (f) _(flg)
J— Og —_ —
dz 8 /g

on some open set containing I". Consequently,

1 d [ f@
T rﬁlog(g(@)

1 (f(2)/8) dz

C2ni Jr f(2)/8()
_ 1 /(f’(z)g(z)—f(z)g’(z) g(z)>d
1 , :
r

27i g(2)? f @
1 (f/(z) g’(z)) 4

Pt - z

~ 27 f@  g@

IR R ACORIRE S O I

T2 Jr f2) 9= r g
= Z(I') = Zo(I')

by the Argument Principle. O

Since we are primarily concerned with functions on the unit disk D, by Z; we
mean Z¢(T). That is, Z, when used without reference to a curve, denotes the
number of zeros of f inside D. Similarly, if Py denotes the number of poles of f
inside of ID. In all cases, we restrict our attention to functions that have no zeros or
poles on T.



4.5 Generalized Rouché Theorem and Its Converse 71

Suppose that f and g are analytic on |z| < R for some R > 1 and have no zeros
on T. Let By and B; be finite Blaschke products of degree n. If

|B1f + Bagl < |fI+IglonT,
then
|Bif + Bagl < |B1f|+ |B2glonT,
and hence Theorem 4.5.1 says that
n+Zy=2py=12pg=n+Zg.

Consequently, f and g have the same number of zeros in D. The converse of this
result is also true.

Theorem 4.5.3 (Challener—Rubel [20]) Suppose that f and g are analytic on
|z| < R for some R > 1 and that they have no zeros on T. If f and g have the same
number of zeros in D, then there are finite Blaschke products B and B; of the same
degree such that

|BLf + Bagl < f] +[glonT.

Proof Since f and g are continuous with no zeros on T,

m =I£n€iTIF1min{|f(§)|, lg@)1} >0 and M Z?g%maX{lf(C)l, 12D} < oo.

Leth = g/f and u = h/|h|. Since —u is a continuous unimodular function on T,
Theorem 4.3.1 provides two finite Blaschke products By and B; so that

Bi®) _

m
“OF el S u

max
EeT

On T, we have

By f + Byg| = |f||Bz|‘ﬂ + 5‘
B, f
By
=|fllh+ B_2’
=|f|u|h|+5{
B>
B
— £ u(|h|—1)+<u+B—2>‘
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5l Bi
g'f"m 1'+'f"“+32
< l|g|—|f|!+M~%
=|1f1 - Igl| +m
<If]+ gl

by the definitions of m and M; see Exercise 4.10. Since |f| = |B;f| and |g| =
|B2g| on T, the strong version of Rouché’s Theorem (Theorem 4.5.1) shows that
B f and B> g have the same number of zeros inside ID. Since f and g have the same
number of zeros inside D, the finite Blaschke products B; and B, have the same
degree. O

See Exercises 4.11 and 4.12 for meromorphic versions of the preceding theorem.

4.6 Exercises

4.1 Show that the function

f@ =exp( - 1+Z)

-z
belongs to the Schur class but does not have a continuous extension to D™

4.2 This exercise continues the discussion in Exercise 3.3 that compares finite
Blaschke products and polynomials. Prove that given any entire function f there
is a sequence of polynomials P, that converges pointwise to f. The reader will
recognize this as the analogue of Theorem 4.1.1.

4.3 Verify (4.1.3).

4.4 Show thatif f € . and f(0) = 0, then there is a sequence of finite Blaschke
products B, with B, (0) = O for all n and such that B,, — f uniformly on compact
subsets of ID.

4.5 Show that the product of two convex combinations of finite Blaschke products
is a convex combination of finite Blaschke products.

4.6 Verify (4.2.3) and (4.2.4).

4.7 Generalize Theorem 4.4.1 by showing that we can choose B, such that
BY©)#£0, 0<j<n—1

4.8 Verify (4.4.5).
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4.9 Prove that the strong version of Rouché’s theorem (Theorem 4.5.1) implies the
weak version of Rouché’s theorem.

4.10 If f and g are continuous and nonzero on T, prove that
Lf1=1gl|+m <|f1+ gl
in which

m = minmin {170, [g(€)1} > 0.

4.11 This exercise concerns a meromorphic generalization of Theorem 4.5.3.
Suppose that f and g are meromorphic on |z|] < R for some R > 1 and that
they have no zeros or poles on T. Then

Zf —Pr=2g— P

if and only if there are finite Blaschke products By and B; of the same degree such
that

|Bi1f + Bagl < |fl+IglonT.
4.12 This is a generalization of Exercise 4.11, in which we no longer assume that
the functions involved are meromorphic on a neighborhood of . Suppose that
f and g are continuous on D™, with the exception of finitely many poles in D.
Furthermore, suppose that f and g have no zeros on T. Show that

Zy—Pr=2Z,— P,

if and only if there are finite Blaschke products B and B, of the same degree such
that

|B1f + Bagl < |fI+1glonT.



Chapter 5 ®
Zeros and Residues Check for

5.1 Gauss-Lucas Theorem

There is a fascinating relationship between the zeros of a finite Blaschke product B
and the location of the solutions of the equation B(z) = ¢, in which ¢ € T is fixed.
There are also results concerning the relationship between the zeros of B and those
of B’ (discussed in the next chapter). To place all of these in context, we begin with
an old theorem of Gauss and Lucas [99]. Recall that if 7, z2, ..., 2, € C, then

n n
conv{zy, 22,...,2n} = Hijz,- A Eef0.11) 4= 1}

j=1 j=1

is the convex hull of the points z1, 22, . .., z,. This next theorem is stronger than
the corollary that follows it, which is more commonly known as the Gauss—Lucas
theorem.

Theorem 5.1.1 (Gauss-Lucas) Suppose z1,22,...,2n € Candcy, ca, ..., cy are
positive. Then

Cl 2 c
f@)= + 4o — (5.1.2)
Z—11 —22 Z— Zn
has at most n — 1 zeros, all of which belong to conv{zy, z2, ..., Zn}.
Proof Multiply both sides of the equation f(z) = 0 by
(z—z)@—22)--(2—zn)
© Springer International Publishing AG, part of Springer Nature 2018 75

S. R. Garcia et al., Finite Blaschke Products and Their Connections,
https://doi.org/10.1007/978-3-319-78247-8_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78247-8_5&domain=pdf
https://doi.org/10.1007/978-3-319-78247-8_5

76 5 Zeros and Residues

and simplify to obtain a polynomial equation of degree at most n — 1. Thus, f has
at most n — 1 zeros in C, repeated according to multiplicity. If w is a zero of (5.1.2),
then

Cl (6] Cp
+ 4+ 4 =0. (5.1.3)
w— 21 w— 22 w — Zp
Since ¢y, ¢2, ..., cp € R, (5.1.3) is equivalent to
c c c
L I E—— )
w — 7] w—72 W — Zn

Multiply each summand in the previous equation by the appropriate

w— z;

w—Zz;
to conclude that (5.1.3) is equivalent to

ciw—z1)  c(w—2) cn(w —zn) 0
lw—z1>  Jw—z22f? lw—z, 2

Rewrite this as

C1 Cn C1 Cn
—2+"'+—2 w=—211+~-~+—2zn.
lw — z1] |w — zn]| lw —zi| |lw — z,]
Thus,

w=A1z2]1 +A222 + -+ + ApzZa,

in which
Cj
lw — z;j|? .
Aj= 3 N N o , 1<j<n
lw — z1]? lw — z,]?
Since ¢y, ¢3, ..., ¢, > 0, it follows that
O<XAi, A, ... Ay <1 and A+ + -+ A, =1.
Consequently, w lies in the convex hull of {z1, z2, ..., z,} O

The following corollary is itself sometimes referred to as the Gauss—Lucas
theorem. See Exercises 6.1 and 6.2 for special cases.

Corollary 5.1.4 (Gauss—Lucas) If P is a nonconstant polynomial, then the zeros
of the derivative P’ are contained in the convex hull of the zeros of P.

Proof Without loss of generality, suppose that P is monic and write

P()=(G—z21)z—22)--(z—2zn).
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Then the zeros of the rational function

Pl(zy 1 1 g 1
P(z) z—-21 z—22 7—2n

are the zeros of P’. Theorem 5.1.1 asserts that the n — 1 zeros of P’, counted
according to multiplicity, are contained in conv{zy, 22, .. ., Zn} m]

5.2 Gauss—Lucas Theorem for Finite Blaschke Products

The Gauss—Lucas theorem can be used to prove a beautiful result (Theorem 5.2.8
below) about the location of the zeros of a finite Blaschke product in terms of its
boundary values [29, 66]. We first need some information about the derivative of a
finite Blaschke product.

The following identity, which generalizes (1.6.1), was used by Frostman to
discuss the boundary properties of the derivative of infinite Blaschke products [50]
and by Pekarskii [113] to estimate the derivative of a Cauchy transform.

Theorem 5.2.1 Let

n
Z Zj
B0 =[]—= (5.22)
j=1 J
By =1, and
k=l Z;
B =[]y 2<k<n
e Zjz
Then for each 7 € C\T,
1-BQ)I ¢ 2 1= lal?
523
T Z| WO (5.2.3)

Proof We proceed by induction on n. The case n = 1is (1.6.1). Suppose that (5.2.3)
holds for any finite Blaschke product of degree n — 1. By our inductive hypothesis,

1—|B QP & o 1 — |z
T Z| O (5.2.4)
Since
B(z) = B, (z) ,

EZ
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we have

2
in — 2
1—|B@)>=1- "

— <n

Zn_z

=1—|Bn<z>|2+|Bn<z>|2<1— T
_ZnZ

)
Y P Gl ) U 1)

11— Zpz/?

Divide the previous expression by 1 — |z|? to obtain
1— B  1-|B,) 1B @ 1 — |z,]?
1 —|z[? 1— 1z T = Zaz?

and then use the inductive hypothesis (5.2.4) to see the preceding equals

ZIB @ _'i"'|2

This completes the proof. O

Since B’ is continuous on D™, we have

}Ln} |B'(z)| = |B'(¢)], ¢ eT,

in which the convergence is uniform with respect to {. An interesting expression for
|B’(£)] is provided by the following theorem.

Theorem 5.2.5 If B is a finite Blaschke product, then

i 1—- B> . 1—|B@)|
m -—-——-—=1m —— ——-

= |B'(¢)|, eT,
I = I = B ()| ¢

in which convergence is uniform with respect to ¢.

Proof Let B denote the finite Blaschke product (5.2.2). Recall (3.4.8), which says
that

B'(0)] = Z z 'Z’;'P

From (5.2.3) we get
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1—|B(2)|?
m |(z)|_ Z'B()|2 — lzl?

>t 1—|z]? — Zxz)?
B 2”: 1— |z |?
= =gl
_ Z 1— |z ?
16—zl
= |B'(¢)]. (5.2.6)

Since the modulus of a finite Blaschke product tends uniformly to 1 as one
approaches the boundary T, (5.2.3) shows that the convergence in (5.2.6) is uniform
in ¢. Consequently,

1—- B> . 1—|B@)| 1+|B@)
1= _ . _

lim 5
= 1 —z| = 1 —z| 1+ |z|
i 1 —|B(2)]
= lim ———=~
=< 1-— |Z|

The next lemma allows us to bring in the Gauss—Lucas theorem (Theorem 5.1.1).
Before proceeding, recall that Theorem 3.4.10 ensures that for each w € T, the
equation B(z) = w has exactly n distinct solutions.

Lemma 5.2.7 Letz1,22,...,2:.—-1 €D,
-z
B(z) =z —
@ 1!:[1 1 —Zkz
and w € T. Let {1, 82, ...,¢y € T be the n distinct solutions to B({) = w and
define

Then
O< XA, A, .o <1 and M +rr+---+A,=1.

Moreover,

B(2)/z (z—z)-(@—zp-1) Al An

BO-w Gt G-t ot




80 5 Zeros and Residues

Proof Observe that
B(x)/z P2

B —w Q@)
in which P and Q are polynomials with deg P = n — 1 and deg Q = n. The zeros
of P are z1, 22, . .., Zn—1 and the zeros of Q are {1, {2, ..., {,. Hence
B(2)/z (z—2z1) (@ —2zn-1)

=
B(z) —w (z—=2C) (=&

for some constant @ # 0. Multiply the preceding by z, let z — oo, and conclude
that « = 1. Now perform a partial fraction expansion and obtain

BQS _ M
B(z)—w_z—élJr +z—§n

for some Ay, A2, ..., A, € C.Fixk = 1,2, ..., n, multiply the previous identity by
z — Ck, and let z — ¢ to see that

. B@) z—&
A = lim — . —————
=8 2 B(z) —w
_ B@
Sk B’ (&k)
1
= — (by (3.4.7)).
1 —zj]
1+y° >
=1 Sk — Zj|
Consequently, 0 < Ax < 1. Let z — oo in the identity
B(Z) _ Az T AnZ
B)—w z—-4 Z—4n
and conclude that
B
Mot = lim 8y, o

z—00 B(z) —w

We are now ready to state and prove the main theorem of this section.

Theorem 5.2.8 Letz1,22,...,2,—1 € D,

n—1
ik — X
B@) =z]] —
k=1

T

w € T, and let £1, 82, ..., ¢, € T be the n distinct solutions to B({) = w. Then
21,22, .- -, Zn—1 belong to conv{1, &2, .. ., Ln}.
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Fig. 5.1
conv(¢y, &2, §3, ¢4, &5}
contains z1, 22, 23, 24 (the
origin is not necessarily
contained in the convex hull)
G4
23
L]
Ci 2 [y
G
)
Proof Lemma 5.2.7 yields the representation
B(2)/z A A
( )/ — 1 4o n 7 (5.2.9)
B@z)—w z—-0 Z— &
in which the right-hand side is a convex combination of the functions
1 1 1

=4 -8 T 2=t
Since the zeros of the quotient are precisely z1, z2, ..., Zn—1, Theorem 5.1.1 says
that they belong to conv{¢1, {2, ..., &} O

Figure 5.1 illustrates Theorem 5.2.8 for a finite Blaschke product of degree
n=>5.

Corollary 5.2.10 Letz1,22,...,2,—1 €D,

lk — <
B j—
@ = ZH 1 — 7z’
weT,Z,E,. .., €T be the n distinct solutions to B(¢) = w, and

n—1

—1
xk_<1+z 1=zl ) . 1<k<n.

|§k_Z]
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Then i, A2, ..., 2, € (O, 1), A1+ X2+ ---4+ A, =1, and

1 )\41 )\vn
_ — - ...t A (5.2.11)
l-wB() 1-¢z 1-2¢,z
Proof Lemma 5.2.7 yields
B A A
@f _ My (5.2.12)
Bz)—w z-0 2= ¢n

which is valid for all z € T if properly interpreted at the poles. For such points,
zz = 1 and B(z) B(z) = 1 and so we can write (5.2.12) as

1 M An
— = — -+ —,
1-—wB(z) 1-48z 1 -8z

zeT.

Conjugate the preceding and obtain (5.2.11) for z € T. Since both sides of (5.2.11)
are meromorphic on C, the identity holds everywhere. O
5.3 Zeros as Foci of an Ellipse

For the finite Blaschke product

o —z

B(z) =z < ) , a € D\{0},

1 —oz
Theorem 5.2.8 has an interesting geometric interpretation. Any line that passes
through « intersects T at two distinct points ¢ and &,. According to Theorem 5.2.8,
B(¢1) = B(&). Conversely, if ¢1, ¢ € T are such that B(¢1) = B(&2), then o must
be on the line that connects ¢; to ¢»; Fig. 5.2.

In Theorem 5.2.8, we are free to choose any w € T and obtain the n distinct
solutions &1y, £2,ws - - -5 {n,w to B(Z) = w. Therefore, the points z1, z2, ..., Zy—1
are contained in

ﬂ conv{Z1,w, &2,ws - -+ > Cnyw} (5.3.1)

weT

For a finite Blaschke product of degree three, this phenomenon is depicted in
Fig. 5.3. It appears as if the intersection (5.3.1) determines an ellipse (Fig. 5.4). This
is not a coincidence.

Theorem 5.3.2 (Daepp—Gorkin—-Mortini [29]) Let

B(z)=z<z1__z>(zz__z),
1-712 1 -7z
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Fig. 5.2 Two points ¢1, &
with the same image under B 3

Ci

Fig. 5.3

ﬂweT conv{¢1,w, §2,ws $3,w)
for a Blaschke product of
degree three that vanishes at
the origin (the origin is not
necessarily contained in the
intersection)

in which z1,zo € D\{0} are distinct. Let w € T and let ¢1, &2, {3 be the distinct
solutions of B(¢) = w. Let

1—lzi>  1—lzf?
lgj—z1l> 15 —z2l?

—1
Aj = (1 + ) , j=123. (5.3.3)

Then the line that passes through ¢ and ¢ is tangent to the ellipse

E={z:lz—z1l+1z— 221 =1 —Z122]} (5.3.4)
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G

Fig. 5.4 The line through ¢; and ¢ is tangent to the ellipse £ from (5.3.4)

at the point

A2 A

TV v

o

Conversely, each tangent line of E intersects T at two points ny, ny such that
B(n1) = B(n2).

Proof Fix w € T. Lemma 5.2.7 ensures that

B(2)/z _ (z —z1)(z — 22)
B(z)—w (z—=¢)(z—5)(z—§3)
A Ao A3

Tia - i-a

in which A1, A, A3 are given by (5.3.3); in particular, A1 + A2 + A3 = 1. Since
A Fra=1-A4s,

we have

B@)/z _ (z—z1)(z—22) _ (0= —-o) A3
B —w (=iNE-)@—-83) E@—-te—-0) z2-§4

(5.3.5)
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see Exercise 5.1. Set z = z; and then z = z, to obtain

71—« n m. —a n m
@G- —0) 21— (- —-0) 22—

=0, (5.3.6)

in which m = A3/(1 — A3). The first identity in (5.3.5) implies that

B(G) —w= (z — Cl)_(z - 0) (f— &)
I-z12) (1 =222)

Substitute z = z; and z = z» into the preceding and obtain

(z2 = ¢1)(z2 — £2)(z2 — &3)
(1 =22z — |22

(z1 = ¢)(z1 — &2)(z1 — &3)
(1= lz1»H (1 —z22z1)

= |w]

=1

Therefore,

m|(z1 — &) (z1 — &2)] n m|(z2 — ¢1)(z2 — £2)
lz1 — &3] |z2 — &3l

ot (LR 1
lz1 — 312 |z — 312

o 1
=m|l —22z1| ()»_3_1)

= |1 —Z2z1]

lo — z1] + o — 22| =

and hence @ € E.
Set z = « in (5.3.5) and obtain

(a —z1)(a — z22) A3

@—iN@—)a—0a) a—0a

Hence

which implies that

In other words,

Lliaz) + Lopazy = 0.
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Fig. 5.5 The angles Z¢jaz;
and L{Hazo

&

Fig. 5.6 The angles /¢jaz; G

and ZHazo

&

Therefore, the line segment that connects ¢ and ¢, lies outside the triangle with
vertices «, 71, z2 and makes equal angles with the sides of triangle at the vertex «;
see Fig.5.5. Based on well-known geometric properties of an ellipse, this property
is fulfilled only by the tangent line at .

To ensure that the line segment &1 &> is tangent to the ellipse, observe that this
line cannot be the bisector of the angle /z;az7; see Fig. 5.6.
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The last statement of the theorem is a consequence of the first part. From the
point 1 there are just two tangents to the ellipse E. Each of these tangent lines
intersects T at one other point. One of these points is 7. Call the other one n3. Set
w = B(n1). Based on the discussion above, these points must be the three distinct
solutions of the equation B(¢) = w. |

5.4 A Weak Version of Sendov’s Conjecture

There are various results about the relationship between the zeros of a polynomial
and its derivative. The Gauss—Lucas theorem (Corollary 5.1.4) is a classic example
from the vast literature on the subject. A famous conjecture in the area is due to
Sendov.

Conjecture 5.4.1 (Sendov) If all the zeros z1, 22, ..., 2, of a polynomial P lie in
D, then each closed disk

Dz, 1) ={zeC: |z -z < 1}, I <k<n,
contains at least one zero of P’.

Figure 5.7a illustrates a typical disk D(zx, 1)~ relevant to Sendov’s conjecture.
It turns out that the conjecture, in a stronger form, is true if one is given that
21,22, ...,2n € T. In this case, each closed disk

D%,%)_Z{ZGCZ|Z—%|<%}, 1 <k<n,
contains at least one zero of P’ [124]. Since
D(¥}.5)” S DG )7,

this result is stronger than what one expects from Sendov’s conjecture alone; see
Fig. 5.7b for an illustration of the preceding containment.

To see the relevance of Sendov’s conjecture to the zeros of a finite Blaschke
product, consider

Kk — 2
B(z) =z

@ = l_[ 1 — %z’
in which z1, z2, ..., z,—1 are distinct points in D. For each w € T, Theorem 3.4.10
asserts that the equation B(z) = w has n distinct solutions {1, {2, ..., ¢, € T. The-
orem 5.2.8 tells us that 7y, z2, ..., z,—1 belong to the convex hull of ¢y, {2, ..., &y.

We also established (5.2.9), which implies that
B A A P’

(@)/z M g D (2) (54.2)

Bo)—w z-0 z-0 PR’
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Lk

Tk
/2

(@ (b)

Fig. 5.7 Disks relevant to Sendov’s conjecture. (a) The closed disk D(zx, 1)~. (b) The closed disk
D(%.3)”

in which
P(@) = (z—¢)M (2= &)™ (5.4.3)

The fact that ¢1, &2, ..., & € T permits us to define the preceding polynomial-like
expression on D by using suitable branch cuts for each factor. We may think of
{1, 82, ..., &y as the zeros of P and z1, 22, ..., Zy—1 as the zeros of P’. Although P
is not a polynomial, if each A; is rational, we can multiply both sides of (5.4.2) by an
appropriate integer and then take P to be a polynomial. Therefore, we are naturally
motivated to consider Sendov’s conjecture in this case.

It is known that Sendov’s conjecture does not hold for functions of the form
(5.4.3); a simple counterexample is

PR) =142 (1 -z,

in which 0 < € < 2 [65]. The only zero of P’ is € — 1. Thus, for ¢ € (0,2) and
€ # 1, one of the closed disks

D, )" ={z:1z=1]<1} or D(=1,1)" ={z:|z+1] <1}

does not contain a zero of P’. However, we show that a weaker version of Sendov’s
conjecture holds for this family. This version reveals further the relationship
between the locations of ¢, {2, ..., ¢, and z1, 22, . . ., Z,—1. We require two simple
facts that are needed in the proof of an important lemma below.

First, the Mobius transformation

L
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I

Fig. 5.8 The conformal mapping ¢

maps the open unit disk bijectively onto the half plane {z € C : Rez > 1/2} and
maps T\{1} bijectively onto the line Re z = 1/2. Hence,

1
zeD™ S Re(1

1
> -, 54.4
—z) 2 ( )

with equality if and only if z € T; see Fig.5.8.
Second, if z € C, ¢ € T, and r > 0, then

2r—1 |* 1oy ?
< 2r N % 2r
=|1- _|2—1Re(1— 0) + !
- % r % 4r2
_ 1 11—z 1
=1—zz(1-=-Re| —=— —
11— z¢| ( - e(ll—zg“|2>)+4’"2
=1-z¢*(1 1Re ! + !
- < r 1—z¢ 472
and hence
R LY., 2r—1]_1 (5.4.5)
e — | > — < —. 4.
1—z¢ " ¢ 2r £ 2r

Theorem 5.4.6 (Gorkin—-Rhoades [65]) Suppose that ¢1,82,...,¢6, € T are
distinct and A, A2, ..., Ay, > 0 are such that Ay + iy +---+ A, = 1. Let

_ (n — Dhg
T =D+ (=)’

Tk 1<k<n, (5.4.7)
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and define

A A
1 4L n

f(Z):Z—Cl =40

Then for each 1 < k < n, there is a zero of f in the closed disk

D((1 = ri) e, 1)~

Proof Theorem 5.1.1 ensures that the zeros of f are in conv{{, &2, ..., {,}. Hence,
all the zeros of f are in D™. In fact, the zeros of f are the roots of the polynomial

n

0@) =Y m]]—¢p.
k=1 j=1
Jj#k

Since A1 + A2 + - - -+ A, = 1, the polynomial Q is monic and hence
n—1
00) =[] -z
k=1

Taking the logarithmic derivative of the last two identities gives

n n n
Yy J[]e-a
_ k=1 =1 i=1
”ZE 0@ 2k ik
—z—z Q@ & n
k=1 dom]]e-¢p)
k=1  j=1
J#k
Fixanm € {1, 2, ..., n}, evaluate the preceding identity at z = ¢,,, and obtain
n n
Yokt [ Gn—¢p)
_ k=1 =1
&1 ke Fkm
— Cm — Zk B 1
k=1 oo [T @n = 1)
j=1
J#Em
_ N ot ) [
é‘m - fk ’
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Then (5.4.4) implies that

n
A+ A 1
ZRe( )=Z k+mRe( _
- Zké‘m k=1 Am 1- Skl
k#m
e Mt A
P 2Am
k#m
_ 1—Xxp n-—1
T 2w 2
The relation (5.4.4) also says that
1 1
Re| ——— 2 b
1— Zk{m 2
forall 1 <k <n — 1. Let kg be such that
1 1
Rel] — ] = max Re{——]).
11— Zk()é‘m ISksn—1 1 - Zké‘m

Thus,

1 1—Ap
Re — >
1 — zZiylm 2(n — DAy,

Finally, apply (5.4.5) with z = zx,, £ = {, and

L=y 1
T 2(n — D
to obtain
|Zko — (1 =rp)eml <.
Note that

D((1 = r)&k, rk) ™ S DGk, 2r0) s

91

see Fig. 5.9. Thus, under the conditions of Theorem 5.4.6, there is a zero of f in the

closed disk D (&g, 2ry) .
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(I=r)& /v

Fig. 5.9 The closed disks D((1 — ri)¢k, rx)~ and D (Sk, 2r%)~

5.5 A Forbidden Region

Theorems 5.1.1 and 5.4.6 tell us where the zeros of a function of the form

A A
fl@)=——+-22

)"I‘l
_ (5.5.1)
z2—0 z—& =&
in which
§17§27"'7§n G(C,
AoA2, oAy >0,
and

MA+r+...+1, =1,

might be; see Fig. 5.10. We now identify a region that excludes the zeros of f.
Theorem 5.5.2 (Gorkin—-Rhoades [65]) Let (1, &2,
AL, A2,

..., &y € T be distinct and let
A > 0besuchthat Ay + Xy +---+ Ay = 1. Let
r= lgrgljngnléi =&l
i#j
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Ci

G2

Fig. 5.10 The locus of the zeros of a finite Blaschke product of degree 5

and define

A A
1 R n_
z—10 Z—1Cn

f@)=

Then for each 1 < k < n, there is no zero of f in the open disk D (L, rii).

Proof If zg is a zero of f, then

A An
4+t =0.
20 — 1 20 — &n

For 1 < k < n, the triangle inequality implies that

Ak - Aj
< .
20 = & \j;uo—m
J#k

However, for j # k

lzo — &l 2185 — &kl — lzo0 — &kl =2 ¥ — |zo — &kl

93

(5.5.3)
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If |z0 — ¢k| = 7, then |zo — ¢k| = A and we are done. If |z9 — {x| < 7, then (5.5.3)
implies that

dici A
M Ik =
lzo— &l ~ r—lzo— &l r—lzo— &I’

which, after rearranging the terms, implies that |zg — ¢x| > rAg. O

5.6 The Best Citadel

The following result is a direct consequence of Theorems 5.4.6 and 5.5.2.

Theorem 5.6.1 (Gorkin—Rhoades [65]) Let

n—1
Bz =z [ 2==,

1 —
k=1 k2

in which z1, z2, . .., Zn—1 are distinct points in D, let w € T, and let {1, {2, ..., ¢
denote the n distinct solutions of B(¢) = w. Let

—1
e = (n—1) . 1<k<n,

”_1)+Z|§. |Z/

k_Z]

and

= min |& — ¢l
1<ij<n !
i#]

For each 1 < k < n, at least one z; belongs to the closed disk
D((1 = ri) 8k, i)~
Moreover, none of the z; belong to the open disk
D (L, €hr)-
Proof By Lemma 5.2.7,

B(z)/z Z(Z_Zl)"'(Z_Zn—l)Z At T An
B(z) —w z—=2¢1) - (@2@—=2¢ - Z—&n
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in which
1
A = , 1<k<n
1-— Iz,
1+
Z [k — Z]
Observe that

0O< A, A, Ay <1 and MA+r+---+Ar, =1

We are ready to apply Theorems 5.4.6 and 5.5.2. Via (5.4.7), the radius ry is given by

(n — Dk
Ty =

(n — DA + (1 = Ag)

_ (n—1)
S m=D+ A/ =1

(n—l)
(n—1>+2 Lolel
|§k_Zj

Theorem 5.4.6 implies that there is a z; in the closed disk D((1 — r¢)&k, rx)”. By
Theorem 5.5.2, no z; belongs to the open disk D(&k, £Ag). O

If we put Theorems 5.2.8 and 5.6.1 together, we get a better picture of the
possible locations of the zeros of a finite Blaschke product; see Fig.5.11.

5.7 Existence of a Nonzero Residue

The only entire finite Blaschke products are the unimodular scalar multiples of the
monomials 1, z, z%, . ... All other finite Blaschke products have poles in C\ID™ and
hence we may consider their residues.

Theorem 5.7.1 (Heins [72]) If B is a finite Blaschke product with at least one pole
in C\D~, then B has a nonzero residue at some pole in C\D~.

Proof Let

N my
B =e?" ] ( S ) : (5.72)
n=1

1 -7,z
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Fig. 5.11 The possible locus of zeros of B

in which zy, z2, . .., z, are the distinct zeros of B and let
z
B(2) =/ B(¢)de. (5.7.3)
0

Since B is analytic on D™, the integral in (5.7.3) is independent of the path of
integration. The Fundamental Theorem of Calculus says that 28/(z) = B(z) for
each z € D™ and that B(0) = 0. By (5.7.2), for each ¢/’ € T, we parameterize the
straight line path from 0 to ¢’? by r > re'? for 0 < r < 1, and obtain

i < Y om imd N (rel® — gy \™ i
B(e") = A B(z)dz = ; ePr'e l_[ ——— ] €'%r (5.7.4)
n=1

1 —z,ret?

As a function of z = re'?,

N .
1_[ rel@ —2Zn my
1 —zZ,ret?
n=1
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is a finite Blaschke product and hence (5.7.4) yields
|%(819)| _ / lﬁrmelme 1_[ _Zn mneiedr
1- z,,re’g

1
< / r"dr
0

1
= et (5.7.5)
Perform a partial fraction expansion on (5.7.2) to obtain
.
B(z) = Zanz + ZZ q f”%z)z. (5.7.6)
n=1¢=1
Suppose toward a contradiction that all of the residues of B are zero; that is
Bii=pr1=--=Bn1=0.
By integration,
B(z) = i n "+1+a+XN:§ i) (5.7.7)
n+1 nuz(l—zz)(1 o
is an antiderivative of B on C\{1/z7, ..., 1/zn}. The constant « is arbitrary and we

choose it so that 26(0) = 0.

Since B has a zero of degree m at the origin, B(0) = 0, and B’ = B, we conclude
that *B has a zero of degree m + 1 at the origin. Taking the common denominator in
(5.7.7), we see that

m+1
B(z) = i< , (5.7.8)

[T, (1 = Zzymn—1

where P is a polynomial of degree at most 2111\1:1 (my,—1). On the other hand, (5.7.6)
and (5.7.7) imply that

lim M =1. (5.7.9)
7—00 zB(2)

Define

(m+ 1D)B()

f@= B
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and use (5.7.2) and (5.7.8) to obtain
(m + PR [, (1 = Z2)
[Thi G = za)™

which reveals that f is analytic on C\D. Since B has at least one pole in C\D~, f
has at least one zero in C\ID™. This enables us to produce a contradiction as follows.
By (5.7.9) we know that

f@)=

’

Zl_i)lgo fl@=1,
and by (5.7.5),
(m + HB(?)
ei? B(ei?)
= |(m + 1)B ()|

<1

1f(e)] =

for each ¢'? € T. Since f is analytic on C\D, | f(¢)| < 1 for ¢ € T, and

lim f(z) =1,
Z—> 00

the Maximum Modulus Principle ensures that f = 1. This contradicts the
assumption that f has zeros in C\ID. Thus, for some n € {1,2,..., N}, we must
have g,.1 # 0. a

5.8 Exercises

5.1 Verify (5.3.5) and (5.3.6).

5.2 Let
G
By =z []——
o L2
in which z1, z2,...,2,—1 € D are distinct, let w € T, and let ¢, be any of the n

distinct solutions of B(¢) = w. Show that there is A, with 0 < A, < 1 and a finite
Blaschke product C of degree n — 1 with C(0) = 0 such that

B(x)/z A B C@/z
B@)—w z—2¢ =) Cix)—w
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Hint: Using the notation of Lemma 5.2.7, consider

_ B(z) Mz
R(Z)_I—A,<B(z)—w z—;r)’

and then define

Note that R has n — 1 simple poles on T and
1
Re R(Z)ZE’ zeT.

5.3 In Theorem 5.7.1 the reader should be aware, as was pointed out by Heins
[72] in this following construction, that there exist finite Blaschke products with at
least two finite poles whose residue at some finite pole vanishes. Construct such an
example as follows. Let 0 < a; < a2 < 1 and define

z—ay \2/z—ax\2
3o = (=) (=)
1—az 1—apz

Fix a; and adjust the a; so that the residue at 1/a; vanishes.




Chapter 6 ®
Critical Points Chock or

In this chapter we consider the set of critical points {z : B’(z) = 0} of a finite
Blaschke product B. We first discuss their location, in terms of the zeros of B, and
then we discuss the possibility of creating a finite Blaschke product with a desired
set of critical points.

6.1 Location of the Critical Points

If B is a finite Blaschke product of degree n, then Theorem 3.3.2 and the quotient
rule for derivatives ensure that B’ = P/Q, in which P and Q are polynomials and
deg P < 2n — 2. Lemma 3.4.3 implies that there are no zeros of B’ on T. They are
either in D or in D,. In fact, we have the following symmetry result.

Lemma 6.1.1 Let B be finite Blaschke product. Suppose that w € C\{0}, B(w) #
0, and B(w) # oo. Then B'(w) = 0 if and only if B'(1/w) = 0.

Proof For each z € C\{0}, (3.1.6) tells us that
B(z)B(1/2) = 1. (6.1.2)
This implies
Bw)#0 <<= B(l/w) # co. (6.1.3)

Taking the derivative with respect to z of the expression in (6.1.2) reveals that

- 1 -
B'(z)B(1/7) — 2—23(Z)B’(1/Z) =0,

© Springer International Publishing AG, part of Springer Nature 2018 101
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and hence, using (6.1.3), we have

Bw) =0 <<= B'{d/w)=0. i

Be mindful of the hypotheses B(w) # 0 and B(w) # oo when applying this
lemma. For example, if

e )2, « € D\(0},

B(Z)=<l—6z

then B’(a) = 0 but B'(1/@) = oo. This fact is crystallized in the following theorem.

Theorem 6.1.4 Let B be a finite Blaschke product of degree n. Write

. . mn Zk — 2 jk
B(2) =e”32’°n( > ’

=
k=1 <kZ

in which g € [0, 27), jo = 0, j1, jo, ..., jm are positive integers with
Jotji+- 4 jm=n,

and 71,22, ..., 2m are distinct points in D\{O}. Then B’ has n — 1 zeros in D
(counting multiplicity). The number of zeros in C\D~ is m if jo > 0 and less than
orequaltom — 1 if jo = 0.

Proof We again remind the reader that there are no critical points of B on T
(Lemma 3.4.3). First suppose that the zeros of B are distinct and that neither B
nor B’ have any zeros at the origin. By (3.4.6), B’(z) = 0 if and only if

n 2
1—
Z —— |zk| -0
= (1 =%2)(z = z)
Multiplying both sides of the preceding by
n
[T0-z%)G@ -0,
k=1
we obtain a polynomial equation of degree 2n — 2 whose zeros are not in

{0,21,22, ...z, /20, 12200 1/ Z0 )

By Lemma 6.1.1, there are exactly n — 1 zeros in D and n — 1 zeros in C\D™.
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In the general case, Theorem 4.4.1 permits us to approximate B by a family B,
of finite Blaschke products of degree n with distinct zeros so that neither B¢ nor B,
have any zeros at the origin (the convergence is uniform on compact subsets of D).
It follows that B’ has exactly n — 1 zeros, counted according to multiplicity, in D.
However, it may have fewer zeros in D,.

We now consider the zeros of B’ in D,. First assume that jo # 0. By direct
verification,

_ Lo [Timi @ = z) !

P(z2),

in which P is a polynomial of degree 2m with no zeros in {0, z1, ..., z,}. As a
result, B’ has n + m — 1 zeros in C. These are the zeros of B and of P, repeated
according to multiplicity. Lemma 6.1.1 implies that the zeros of P are of the form

wly l/w_]5 w27 1/w_27"'5 wm7 1/@9

in which wy, wa, ..., w, € D\{0, 21,22, ..., Zm}-
Now suppose that jo = 0 and write

[T (2 — 2 ( 0(2) )
B(z) =C _=C|(1 _ ),
@ = =1z - h

in which C is constant and Q is a polynomial of degree n — 1. Thus,

/ _ H;CnZI(Z - Zk)jk_l

P(z),

in which P is a polynomial of degree at most 2m — 2 that has no zeros among
{z1,22, ..., Zm}. Consequently, B’ has at most n + m — 2 zeros in C. These are the
zeros of B and of P, repeated according to multiplicity. In this case, P might have
zeros at the origin. For the rest of its zeros, Lemma 6.1.1 applies. Therefore, P can
have, say, £ zeros at the origin and the rest are of the form

wy, 1/wy, wa, 1/wz, ..., we, 1/wy,

where wi, wy, ..., wy € D\{0, 21,22, ..., Zm}. Since £’ +2¢ = deg P < 2m — 2,
we have ¢/ <m — 1. O

Recall that Corollary 5.1.4 (commonly known as the Gauss—Lucas theorem,
although we have reserved that name for the more general Theorem 5.1.1) asserts
that if P is a nonconstant polynomial, then the zeros of P’ are contained in the
convex hull of the zeros of P. An analogous result holds for the zeros of the
derivative of a finite Blaschke product B: the zeros of B’ are in the convex hull
of B_l({O}) U {0} [18]. A refinement of this result from [49] (see also [129, 137])
involves some hyperbolic geometry.



104 6 Critical Points

Fig. 6.1 The hyperbolic
convex hull of the set

{z1, 22, 23, 24, 25}

>

Definition 6.1.5 We say that A C D is hyperbolically convex if

7 — A&

- -7z

Z1,22€ Aandt € [0,1] = _—712_12222 €A.
1=z 1—ﬂzzt

The complicated quotient above is the parametric formula for the hyperbolic line
segment between z; and z;; see (2.3.10). The hyperbolic convex hull of A C D is
the smallest hyperbolically convex set that contains A. It is the intersection of all
hyperbolically convex sets that contain A. Figure 6.1 shows the hyperbolic convex
hull of a set of five points in D.

Theorem 6.1.6 If B is a finite Blaschke product, then the zeros of B’ in D belong
to the hyperbolic convex hull of the zeros of B.

Proof LetDy =DN{z:Imz > 0} and D_ = DN {z: Imz < 0} denote the upper
and lower half disks, respectively. Suppose that the zeros of B all belong to D .. By
(3.4.6), we have

B'(2) - 1 — |z |? )
= I ). 6.1.7
m(B(z)) 2 m((l—EZ)(z—Zk) ©17
Let
() = 1——|a|2
Y= 0 i —a)

in which a € D is fixed.
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Fig. 6.2 The image of T_ 40
and the interval [—1, 1] under
the mapping ¢ fora =
0.25,0.4,0.55,0.70, 0.85

To study ¢(ID_), we examine the image of the boundary
(€ —x <o <0juU[-1,1]
of D_ under ¢ (see Fig.6.2). On T_ = {¢/? : —7 < 6 < 0} we have

1 —Ja

0\ _
Y€)= 2@ —a)

2
I e g
|ei0—a|2

and hence T_ is mapped onto a curve in Cy UR. For ¢t € [—1, 1],

1 —|al?
o) = m
1—lal® _
Sla—ana—op! "D
and hence

Imp() = m — 1
(I —at)(t —a)

1 —|al?

_ 2
=10 —Et)(t—a)lz(l t“)Ima.
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Therefore, [—1, 1] is also mapped to a curve in C; U R and hence the boundary of
D_ is mapped to a simple closed curve in C; U R. Since ¢ is analytic on (D_)~,
we deduce that ¢ maps D_ into C.. Equivalently,

zeD. = Img(z)>0.

Since the zeros of B are in C, the representation (6.1.7) implies

B'(2)
zeD_ — Im(B(z)>>0

Hence B’ does not have any zeros in D_. By continuity, it follows that if all zeros
of B are in Dy U (—1, 1), then so are the zeros of B’ (recall that we only consider
the zeros inside D).

Let f = B o t,. By Lemma 3.6.1, f is also a finite Blaschke product with

zeros 14(z1), t4(22), . . ., Ta(zn) (Fig.6.3). If we denote the zeros of B’ in D by
wi, wy, ..., wy_1, then the zeros of f” in D are
Ta(w1), Ta(W2), ..., Ta(Wy—1).

If we choose a such that Im7,(zx) > O for 1 < k < n, then the preceding
observation shows that

Imzg(wg) >0, 1<k<n—lL.

This means that if the zeros of B are on one side of the hyperbolic line

—=t, te[-1,1],
1—az

then the zeros of B’ are also on the same side. Similar comments apply if we
replace 7, by a rotation p,. The intersection of all such hyperbolic planes gives
the hyperbolic convex hull of the zeros of B. O

Example 6.1.8 Leta, b € D be unequal and let

a—z m b —z n
1 —az 1 —bz
Then B’ has m +n — 1 zeros in D. To be more specific, they are a (with multiplicity

m—1), b (with multiplicity n— 1), and ¢ (with multiplicity one), which is the solution
of the equation
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(@) (b)

(© (d)
Fig. 6.3 (a)—(d) depict the hyperbolic convex hulls of the zeros of finite Blaschke products B of
degrees 3, 4, 5, 6 (respectively) along with the zeros of B’. Observe how the zeros of B’ lie within

the hyperbolic convex hull of the zeros of B. We thank Tongzhou Wang and Raymone Cao for
rendering these drawings

m(1 — |al?) (a—z)m_1<b—z)"
(1—-az)? \1-az 1—bz

a—z\"(b—z\""n(l =P
— — =0
+<1—5Z> <1—bz> (1 —bz)?
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Since the above can be written as

<Z—a )/< —b ) N (m(l - |a|2>>/<n<1 - |b|2)>
1-az)/ \1-bz) 1 —az|? 11 —bz> )’
Corollary 2.3.11 ensures that a, b, and c lie on the same hyperbolic line. Moreover,

as m and n vary independently over the positive integers, the point ¢ traverses a
dense subset of the hyperbolic line segment between a and b; see Exercise 6.3.

6.2 Controlling the Critical Points

Theorem 6.1.4 says that a Blaschke product of order d + 1 has d critical points. The
following theorem of Heins [74] shows that one has complete freedom to choose
the location of these critical points.

Theorem 6.2.1 Let cy, ¢y, ..., cq be d (not necessarily distinct) points in D. Then
there is a unique finite Blaschke product f of degree d + 1 with f(0) = 0 and
f(1) = 1 and having c1, ca, . .., cq as its critical points. Moreover, if g is any other
finite Blaschke product of degree d + 1 with critical points c1, ca, ..., cq, then there
is a T € Aut(D) such that

Tog=f

Our proof follows Zakeri [139] and requires some preliminary ideas from point
set and algebraic topology. Informally, the main idea is to show that the map

{07Z17Z27"'3Zd}H {Cl,cZ,...,Cd}

which takes the zeros {0, z1, z2, ..., zq} of a finite Blaschke product f of degree
d + 1 with f(0) =0and f(1) = 1 to the critical points {c1, ¢, ..., cq} of a finite
Blaschke product of degree d+1 is onto. We will do this by defining certain quotient
topologies on the domain and range spaces of this map. To get started, let us first
define some topological notions on the set of finite Blaschke products of degree d.
For sequences y,, € T and a,, € D, consider the sequence of disk automorphisms

If y2, > ¢ € T and a, — a € D, then one can see that the sequence
of automorphisms above converges uniformly on compact subsets of ID to the
automorphism
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Therefore, if

d

Z— aj n

B, (z) =y R —
n n Jlj[l 1-— ajnz
is a finite Blaschke product of degree d with y, — ¢ € Tand aj, — a; € D
as n — oo, then B, converges uniformly on compact subsets of I to the finite

Blaschke product

d

z—aj

B =v]] g
j=1

1 —ajz

Under the circumstances above, the degree of B, remains invariant. Indeed, the
limiting finite Blaschke product has the same degree d as each of the B,,.

Now let us consider the case when some of the zeros a;, tend to a point
on T. Here the situation changes and the interplay between the zeros a; , and the
unimodular constant y, becomes important. This leads us to consider following
normalized disk automorphisms. For each a € D, define

l—a z—a

Bla,z) =

. . 6.2.2
l—a 1-—az ( )

Observe that B(a, z) is the unique element of Aut(ID) for which
Ba,1) =1 and PB(a,a)=0.
The following proposition focuses on what happens to §(a, z) when the parameter

a € D approaches a point of T.

Proposition 6.2.3 Suppose that a, is a sequence in D and let B(ay,, z) be the
corresponding sequence of disk automorphisms defined by (6.2.2).

(a) If a, — a € T\{1}, then B(ay,, z) — 1 uniformly on compact subsets of D.
(b) If a, — 1, then for each accumulation point o € T of the sequence

| —ay,

9
1—a,

there is a subsequence of the B(ay, 7) that converges to the constant function
—a uniformly on compact subsets of D. In particular, if

then B(ay, z7) converges to —a uniformly on compact subsets of D.
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Proof
(a) Fix acompactset K € D and z € K. Since g, is bounded away from 1 we have
_ -1

11— an||l —anz|

< Cx (1 — |an %),

|B(an, 2) — 1] (1 —la,?

which goes to zero as n — oo.
(b) Without loss of generality assume that

Then foreach z € K,

1—a, ( z—a, 1—a,
|ﬁ(an,z)+a|=‘ ( In +1)+(<x— )

1—a, \1—a,z 1 —a,
zl+1 1—a,
\H—_|1—an|+ o — .
11— ayz| l—a,
1 —a,
< Ckll —ap| + |o — s
1—a,
which goes to zero as n — 0. O

Let %, denote the family of all finite Blaschke products of the form

d
B(z) =z ][] Blan. 2. (6.2.4)

j=l1
Each element of %, is of degree d + 1 and is normalized so that
B(0O)=0 and B(1)=1.

Proposition 6.2.3 yields the following corollary.

Corollary 6.2.5 For a sequence B, € %y, either B, converges uniformly on
compact subsets of D to some B € By or each subsequence of By, has a subsequence
that converges uniformly on compact subsets of D to y B for some y € T and
B e By with0<d <d.
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6.3 The Topological Space X,

For an equivalence relation ~ on a topological space X, let
x]={x"e X:x ~x}
denote the equivalence class of x and
X/~ ={[x]:x € X}
the set of equivalence classes. If
Tm:X—> X/~ nwnkx) =][x] (6.3.1)

is the canonical projection map, then

{vcX/~: N v)is open in X}
is a collection of open sets that defines the quotient topology on X /~. The resulting
topological space X/~ is a quotient space.

Given A C X, its saturation is the set
7 (T (A)).
In other words, the saturation of A is the collection of all elements of X that are
related to some element of A via ~. As a consequence of the definitions, we see that
7 is an open mapping if and only if the saturation of each open subset of X is open.
We now apply the general construction above to the polydisk

D! = {(z1, 22, ..., 24) : zj € D},

endowed with the product topology. That is, given
(21,22, ..., 24) € DY,
a local basis for the Cartesian (product) topology is the collection of sets
Vix-ox Vg,

where V; C D is an open neighborhood of z;. Let S; be the symmetric group on
the set {1, 2, ..., d}, that is, the set of bijective mappings of {1, 2, ..., d} to itself.

We define an equivalence relation ~ on D¢ by setting

(ar,az,...,aq) ~ (b1,ba,...,bg)
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if there is a permutation o € S,z such that
bj=as, 1<j<d.

Then the quotient space D/ ~, denoted by X, can be thought of as the set of

unordered d-tuples (a multiset) (a1, az, ..., aq), witha; € D.
We use the bracket notation (ay, az, ..., aq) rather than the standard set notation
{a1, a2, ..., aq}, since we are not concerned with the order of how the as are listed

in the set and we are allowing repetitions of the a;s. For example, we permit (0, 0, %)
to be an element of X3. If we use the conventional set notation, the set {0, 0, %} is

the same as the set {0, %}. In our application of this, the multiset (ay, az, ..., aq)
denotes the zeros of a finite Blaschke product so the order in which we list the zeros
does not matter but the repetitions do matter.

The quotient space X; plays a crucial role in our study of the critical points of
finite Blaschke products. In what follows, = denotes the canonical projection of D9
onto X; from (6.3.1).

A local base at the pointa = (ay, a2, ..., aq) € Xq is obtained as follows. Given
& > 0, consider the saturated open set

Ve :i= | (D(as. &) x D(as(2). &) x -+ x D(@ga). £)) S D",
€Sy

where D(aj, €) is the open disk of radius € centered at a; and the radius ¢ is taken
small enough so that all of the disks D(a;, ¢) remain in D. Then 7 (V;) is an open
neighborhood of a € X; which, for shorthand, we denote by D (a, ¢). In other
words, D (a, ¢) is the set of multisets b = (by, by, ..., bg) € X4 for which there is
a permutation o € Sy such that
lai —boyl <&, lax—bo)| <&, ..., laa —bs@)l < €.
Example 6.3.2 Ifa = (0,0, §) € Zs, then
Da.e) = [b= (b1, ko b3) € By : Ibi] <, Ibo] <, b3 —1/2] <,

or |b1| <e, |bp —1/2] < e, |b3| <e,

or b1 —1/2] <&, |ba| <&, |bs| < s}.
The inverse image of ©(a, €) under 7 is

Ve ={lzl < e} x {12l < e} x {Iz = 1/2] < e}

Uflel < e} x {1z = 172] < e} x {121 < e}

u {Iz— 1/2] < e} x {|z] < e} x {|z| < 8}}.
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This observation enables us to characterize convergent sequences in X;. We see
that a, = (an.1,an2,...,anq) converges to a = (aj,az,...,aq) in Xy if and
only if for each ¢ > 0 there is an N = N (¢) such that for each n > N there is a
permutation o € S; (which may depend on n) such that

|an,1 - ao(l)| <§g, |an,2 - aa(2)| <& ..., |an,d - aa(d)| <é.

Proposition 6.3.3 7 is an open mapping, meaning that if U is an open subset of D?
in the product topology, then w(U) is an open subset of X4 in the quotient topology.

Proof For each fixed o € Sy, the mapping
Fp DY 5D Fyar,a,...,a1) = o1y, Go)s - - - » o)),

is a homeomorphism of D¢ (endowed with its natural product topology). Since for
each subset A € D9,

@A) = | Fa(A),

oeSy
the saturation of each open set is open. Hence, 77 is an open mapping. O
Let us discuss an equivalent interpretation of X;. Fora = (a1, az, ..., aq) € Xy,

define the corresponding finite Blaschke product B(a, z) € %, by

d
B(a,2) =z ][] B, 2. (6.3.4)

j=1
As discussed in the previous section, if a, = {a,.1,an.2, ..., an 4} is a sequence in
X4, thena, — a = {ay, az, ..., aq} in the topology of X if and only if for each

& > O thereis an N = N (¢) such that for eachn > N there is a permutation o € Sy
(which may depend on n) such that

lan1 —asyl <&, lan2 —as)| <&, ..., lana — as@)l < e.

Therefore, a, — a in X; implies that B(a,, z) — B(a, z) uniformly on compact
subsets of . Conversely, if the latter holds, then by Hurwitz’s theorem, the zeros of
B(ay,, 7) must be close to the zeros of B(a, z). More precisely, for each ¢ > 0 small
enough, there is an N = N (¢) such that foreachn > N

lan,1 —asyl <&, lan2 —as)| <&, ..., lanad — as@a)l <&,

for a suitable permutation o € S;. Therefore, a, — a in the topology of Xj,.
In short, convergence of a sequence in X; is equivalent to uniform convergence on
compact subsets of D of the corresponding sequence (via (6.3.4)) of finite Blaschke
products in %,;.
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The set %, is endowed with the topology of uniform convergence on compact
subsets of D. Using the metric

a(f. & =’§2—nsup{|f(z) —g@|:lzl <1 - ;],

we see that %,;, and hence X;, via the identification (6.3.4), is metrizable [26,
p- 143]. This observation is useful when discussing the critical points of a finite
Blaschke product.

To get started, we define

@3, — T4 D) =c, (6.3.5)

where c is the unordered list of critical points of the finite Blaschke product B(a, z).
Note that B(a, z) is a finite Blaschke product of order d + 1 and thus, counting
multiplicities, it has precisely d critical points in D (Theorem 6.1.4). A key part of
proving Theorem 6.2.1 (any set of d points in ID can be the set of critical points of a
finite Blaschke product of degree d + 1) is showing that @ is onto.

Lemma 6.3.6 @ is continuous.

Proof Let a, — a in the topology of X;. Thus, by the discussion above,
B(a,, 7) — B(a, z) uniformly on compact subsets of D. Therefore, by the Cauchy
integral formula for the derivative,

dB( ) dB( )
—B(a — —B(a
dZ nsy X dZ » <

uniformly on compact subsets of . Applying Hurwitz’ theorem [26, p. 152] to the
critical points of B(a,, z), we conclude that ¢, — c in the topology of X;. O

As mentioned before, our ultimate goal is to show that @ is a homeomorphism.
We need another concept to do this.

Definition 6.3.7 For two metric spaces X and Y, a continuous mapping f : X — Y
is proper if for each compact set K C Y, the inverse image f~!(K) is compact in X

For more on proper mappings, see [98]. A sequential characterization of proper
mappings is as follows.

Definition 6.3.8 A sequence x, € X escapes to infinity if for each compact subset
K C X, theset {n : x, € K} is finite.

One can see that if x,, escapes to infinity, then so does every subsequence of x;,.

Proposition 6.3.9 For f : X — Y, a continuous map between two metric spaces
X and Y, the following are equivalent.

(a) f is proper.
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(b) If x,, € X is any sequence that escapes to infinity, then f(x,) escapes to infinity
inY.

Proof (a) — (b) Suppose x, is a sequence in X that escapes to infinity. If
f(x,,) does not escape to infinity in Y, then there is a compact set K C Y such
that the cardinality of {n : f(x,) € K} is infinite. Hence the cardinality of {n :
X, € f7Y(K)} is infinite. Since f is proper, f~!(K) is compact in X and this is
a contradiction to the definition of escapes to infinity. Therefore, f(x,) escapes to
infinity in Y.

(b) = (a) Suppose K is a compact subset of Y. Since X and Y are metric spaces,
it suffices to show that f “L(K) is sequentially compact (that is, if x,, € f -k,
then there is a subsequence that converges in f —1(K)). To this end, let x, be a
sequence in f —1(K). Since f(xy) € K, it does not escape to infinity in Y. By
assumption, x, also does not escape to infinity in X. Hence, there is a compact set
L C X such that the cardinality of the set {n : x,, € L} is infinite. The sequential
compactness of L provides a subsequence of x, that converges in L. By continuity,
f~Y(K) is closed in X. Thus, x, has a subsequence that converges to a point in

K. O

Proposition 6.3.10 Let X and Y be metric spaces and let f : X — Y be a proper
continuous map. Then f(X) is a closed subset of Y.

Proof Suppose toward a contradiction that yp € f(X)™\f(X). Then there is a
sequence y, € f(X) such that y, — yg. Therefore, the set

E={y}Ufyp:n=>1}

is compact in Y. Since f is proper, f~'(E) compact in X. However, yo & f(X)
and hence

FUE) = (" Uyn)) in > 1)

Take any x, € f~'({y,}). This sequence, being in a compact subset of X, has
a convergent subsequence. Without loss of generality, we may assume that x,
converges to xo € X. By continuity, yo = f(xo) € f(X), which is a contradiction.

O

By Lemma 6.3.6, the mapping @ from (6.3.5) is continuous. Using Proposi-
tion 6.3.9, we can say more.

Lemma 6.3.11 & : X¥; — X, is proper.

Proof We will apply the criterion from Proposition 6.3.9. Suppose that a, =
(an,1,an2,...,anq) is a sequence in X, that escapes to infinity, but for which
@ (ay) does not escape to infinity in X;. By passing to a subsequence if necessary,
we can assume that @ (a,) is confined to a compact subset of X ;. Since a, escapes
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to infinity, by passing to a further subsequence and relabeling, we may assume that
a, converges to a = (wy, wa, ..., wg), where [wi| = 1 and |w;| < 1 for the other
indices j.

By Proposition 6.2.3, the corresponding sequence of normalized finite Blaschke
products B(ay, z) has a subsequence that converges uniformly on compact subsets
of D to a finite Blaschke product B of degree d’ 4+ 1 with 0 < d’ < d. In fact, the
zeros of B are precisely at the origin and those w; with |w;| < 1. Therefore, B has
d’ critical points in D (Theorem 6.1.4).

However, uniform convergence on compact subsets of D and the fact that @ (a,,)
is confined to a compact subset of X; implies that B has at least d critical points in
. This contradicts the fact that B has d’ < d critical points. O

6.4 The Distance-Ratio Function
Let f belong to the Schur class . and endow f (D) with the Poincaré metric
2|dw|
1—|w|?
from (2.4.1). Then its pullback under f is o (z)|dz|, where
2| f"(2)]
1—|f@*

The metric o 7(z)|dz| has constant curvature —1 on I, except at the critical points
of f. This follows from the identity

of(z) =

Alogoy(z) =07 (2). (6.4.1)
From the Schwarz—Pick Lemma, f is contractive in the Poincaré metric, that is,

|f'(2)] 1
< .
L—1f@P = 1—z?

This leads us to consider the distance-ratio function

Ry = = ) 64.2)
T 20r0) -

which compares the pullback metric with the Poincaré metric. We gather some
elementary properties of Ry below. Recall that a function R : D — C is real
analytic if it can be represented as

R(z) = Z am,nzmz_nv

m,n>0
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where the partial sums of the series converges absolutely and uniformly on compact
subsets of ID.

Lemma 6.4.3 Let f, g € .&.

(a) Ry < 1, with equality if and only if f € Aut(D).

(b) Ryog = (Ry o g) Ry. In particular, for every t € D,
Rrof = Rf and Rfot = Rf oT.

(c) Ry is a nonnegative function on D with zeros at the critical points of f. It is
real analytic on D, except at its zeros. Moreover; at each zero ¢ of R f» we have

Ri(z) =z — /"R (z),
where m > 1 is the order of the zero of f' at ¢ and Risa positive real-analytic
function in a neighborhood of c.

Proof

(a) This follows from the Schwarz—Pick theorem (Theorem 1.4.1).
(b) This is a consequence of the chain rule. Indeed, by (6.4.2),

Ry :il(fog)’(zﬂ

A BT TETE
S e | PP NE AN
T I (fgnpr! e
__LoBOP gy Ll
= ToiG e TR @

= Ry(g(2)) Rg(2)
= (R 08)(2) Rg(2).

Since R; = 1 for any T € Aut(D), the other identities follow.
(c) Suppose that f’ has degree m at c. Then the expansion

f@=r@+ f"P@@ "+
holds in a neighborhood of ¢ and £+ (c) # 0. Thus,
(@) =(z—0)"g),

where g is analytic and g(c) # 0. Plugging this into (6.4.2) yields the result. O

This next detail follows from Theorem 5.2.5. We will discuss an extended version
of it with Theorem 6.5.2 below.
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Lemma 6.4.4 Let f be a finite Blaschke product. Then Ry has a continuous
extension to D™ and

lim Rf(z) = 1.
lz]—>1

Recall that if a twice continuously differentiable function F on a domain in the
complex plane has a local maximum at a point zg, then

AF(z0) <0. (6.4.5)
This fact from calculus is the main ingredient needed to show that the map @ from
(6.3) is injective.
Lemma 6.4.6 @ : X; — X, is injective.

Proof Leta, b € X, be such that @ (a) = @(b). Let f and g be the corresponding
finite Blaschke products in %, from (6.2.4). Our assumption means that f and g
have the same critical points. Consider the function

Observe that off the critical points of f and g, the function % is real ana-
lytic. Moreover, any singularity of 4 will arise from a zero of R, which, by
Lemma 6.4.3(c), cancels out with a zero of R . Hence,  is a real-analytic function
on [D. Lemma 6.4.4 tells us that 4 has a continuous extension to D™ and

lim h(z) = 1.

|z]—>1

Let us show that 2 < 1 on D. Suppose to the contrary that # has a maximum at
z0 € D with h(zp) > 1. By (6.4.5),

Alogh(zp) < 0. (6.4.7)
However, h = Ry/Ry = 0y /0, and thus, by (6.4.1),

Alogh = Alogoy — Alogo,

_ 2

=07 —0y.
The identity above holds off the critical points of f and g. By continuity, it holds
everywhere. We have h(zg) > 1, which can be rewritten as o ¢(z0) > 0,(z0). On
the other hand, (6.4.7) says that o 7(z0) < 04(z0). Therefore, o7(z0) = 04(z0), or
equivalently, n(z¢9) = 1, a contradiction. A similar argument shows that 1/7 > 1
and so & = 1. From here we get
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'@ 8@

= , D.
- If@F  1-1g@pr °F

A theorem of Liouville (see [90, Thm. C]) says the identity above implies that f = g
and so @ is injective. O

Theorem 6.4.8 @ : X; — X, is a homeomorphism.

Proof By Lemmas 6.3.6, 6.3.11, and 6.4.6, @ is continuous, proper, and injective.
We also know from Proposition 6.3.10 that @ has closed range. Brouwer’s
Invariance of Domain Theorem [12] says that @ (X;) is an open subset of X;. Since
X, is connected and @ (X,;) is both open and closed (and nonempty), we see that
D(Xy) = Xy, thatis, @ : Xy — X; is a homeomorphism. |

With all the heavy lifting complete, here is the proof of Theorem 6.2.1. The
existence and uniqueness of f is precisely the bijectivity of @, which was proved in
Theorem 6.4.8. For the second part, suppose g is a finite Blaschke product of degree
d + 1 with the same critical points as f. Since critical points do not change upon
post-composing with a disk automorphism, we may choose v € Aut(ID) such that

(tog)0)=0 and (rog)(l)=1.

Therefore, f and T o g € %, and, moreover, they have the same critical points. But,
since the mapping @ is injective we see that f = 7 o g and the result follows.

6.5 A Characterization of Heins

We saw in Lemma 6.4.4 that if f is a finite Blaschke product, then the distance-ratio
function

_ (=PI @)

Rr@ =00

satisfies

lim Ry(z) = 1.

lz|—>1—

A theorem of Heins [74] (see Theorem 6.5.2 below) says that this condition
characterizes the finite Blaschke products amongst the Schur class . functions.
To state this theorem we need the following definition.
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Definition 6.5.1 An analytic function f : D — C has the asymptotic value a at
the point ¢ € T if there is a curve I” inside D which terminates at ¢ such that

lim f(z) = a.
—>¢
zel

For example, consider the function

fo=ep(-15)

1 -z

and notice that f belongs to .. Furthermore,

1+¢
1-¢

€iR, ¢ eT\{l1}

and so for each ¢ € T\{1}, f has an asymptotic value f(¢) € T at each ¢ € T\{1}.
Since

lim f(r) =0,

r—>1-

we see that f has an asymptotic value of O at 1.

A theorem of Lindelof [25] says that if f € H and f has the asymptotic value
a at the point ¢ € T, then the nontangential limit (see (1.6.6)) of f at ¢ is equal to
a.

Theorem 6.5.2 (Heins [74]) For f € .7, the following are equivalent.

(a) f is a nonconstant finite Blaschke product.
(b) For each sequence ay in D with ay — y for some y € T, the functions

Tf(a) © f © Tay
converge uniformly on compact subsets of D to a rotation.
(¢) lim Ry(z) =1.
|z]—>1
(d) f has no asymptotic values in D and has a finite set of critical points.

Moreover, if any of the conditions above hold, then the rotation promised in (b) is
pr. where L. = f' () /1 f'(¥)l-

Proof (a) = (b) If f is a finite Blaschke product of degree n > 1, then for each
fixed k € N, the function

Je =Tt o f oty (6.5.3)
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is also a finite Blaschke product of degree n (Lemma 3.6.1). Let
2,15 Tk,25 -+ > Zkon
denote the n zeros of fj and observe that these zeros are the solutions to the equation
f (1 (2)) = fag).
Now let wy ; = 74, (2, ;) and note that
Wi 1, Wk 2, ..., Wk

are the solutions to f(w) = f(ax). Number these so that wi 1 = ay for k € N.
Note that foreach fixed j = 1,2, ...,n,

lim |wg ;| =1,
k— o0
and
|lwi,;j —wi,jl =8, 1<i<j<n,

for some constant &;. In fact, for any finite Blaschke product B whose zeros are
£,&,...,&, and any M with

max{|§1l, [&2f, ..., &l <M < 1,

there is a constant § = §(M, B) > 0 such that, for any two distinct points z, w in
the annulus {z : M < |z| < 1/M}, we have

B(z) = B(w) = [z—w| > 4.
This uniform separation occurs because the annulus is free from the critical points

of B (Lemma 3.4.3). More precisely, as k — oo, the wy, ; tend to the n distinct
(Theorem 3.4.10) solutions to

fw) = fy).
By the argument used to prove Proposition 6.2.3, 7, converges uniformly on
compact subsets of D to y. Since 4, (2k, j) = wg, j for j > 1 and wy,; does not tend

to y as k — oo, we conclude that

Hm |z ;| = lim |7 (we )l =1, 2<j<n. (6.5.4)
k— 00 k— o0
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Note that f is a finite Blaschke product with zeros at the origin and at zx_; for
2 < j < k. Thus,

k]_Z
l—Zk/Z

Ji(@) = mkz ]_[
where n; € T. This formula yields

£ =i [Tz

j=2

and hence

j:zg - (]H 1. )(1—[ |Zk,]:| IZk_,J'%Z>Z'

- |zk, ;1 i= Tk, j
On the other hand, (6.5.3) reveals that

FO) = Ty (f @) f @) 7, (0)

Ll

= f@p’ @

This gives us the representation

_ - lal? / o ©olzkl oz —z
O = o *f(“k)(};£|zhj|>(]_l 2, 1-3;7Z)Z

j=2

By (6.5.4) and a variation of Proposition 6.2.3,

n
. 1—[|Zk'| Zk,j — 2
llm _"/’]—_)1
kaooj_2 2k 1 =7k 52

uniformly on compact subsets of . By Theorem 5.2.5,

— | f @l lim L= If@)P
—_— = Im — 0
k—oo 1— |ak|2 =y 11— |Z|2

LF' )l
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Therefore,

')

@ = T

uniformly on compact subsets of ID.

(b) = (c) If (c) does not hold, then there is a sequence a,, in ID that converges to
apoint ¢ € T but

— lak )| (ax)
1m
k—oo 1 —|f(ap)?

# 1.
However, in the light of the formula

1— 2\ ¢/ )
%m = (tr@ © f 0 1a) 0),

we have a contradiction since T4 © f o 74, tends to a rotation and thus

im |(Tf@) o fotq) 0) = 1.
k—o00

(¢) = (d) Since

1=z
m — = 1
=1 1—]f()?

)

one can see that the set of critical points {z € D : f'(z) = 0} of f is finite. Toward
a contradiction, assume that f has an asymptotic value a € D. By the Lindelof
theorem discussion earlier, f has a nontangential limit equal to a at { € T. Consider
the family

g =fodr, O<r<l,

where

z2+r¢
l—l—rzz.

or(2) =

As r — 1, the automorphisms ¢, converge uniformly on compact subsets of I to
the constant function ¢. Therefore, g, converges uniformly on compact subsets of
DD to the constant function a. Since a € D, we conclude that

RO
m --————==
r—11—g,(0)2
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The contradiction becomes more apparent when we note that

A= CDl 18 O)]
L= 1f P =18 O

and, by assumption, we must have

i (A= re)If/ro)l
im =1
r—>1 1= |f@ro)?

(d) = (a) This is the bulk of the theorem and its most difficult part. We first
show that condition (d) (f € % has no asymptotic values in ID and has a finite set
of critical points) implies that f has finite constant valence. By Theorem 3.7.2 this
will imply that f is a finite Blaschke product.

Suppose toward a contradiction that the valence function v is not constant. Let

m =min{vy(w) : w € D}

and note that since vy is not constant, we have 0 < m < oc. Using the lower
semicontinuity of v [73, Thm. 7.1] one can show that

{webD:vr(w) =m)

is closed in D and hence is a proper subset of D.

One can also choose b € D that belongs to the boundary of {vs(w) =m : w €
D}. Since f has a finite number of critical points, there is an a € DD such that the
interval [a, b) is free from any critical values, that is,

(zeD: f'm)=0N f'(a, b)) =@ (6.5.5)

and vy (a) > m (b itself might be a critical value).
Now consider

L@)=0—-ta+1tb, 0<r<1,

the line segment from a to b, and the analytic continuations of f~! along ¢. Starting
with the initial point ¢ € f @) (corresponding to ¢ = 0), consider how far one of
the analytic continuations of f~! starting at ¢ can go without running into difficulty
in getting all the way to t = 1. We denote the curve (a “pullback”) formed by this
analytic continuation by y,.. We need to verify that

(a) we can indeed get all the way to t = 1;
(b) y. does not approach T.
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Indeed, if ¢ and d are distinct points in f~!(a), then y,. and y; are necessarily
disjoint paths in D. Such paths can collide just at critical points which were already
excluded by (6.5.5). Suppose that a pullback tends to T. Then either

(a) it converges to a single point;
(b) it converges to a finite set of points on T;
(c) it has an oscillatory nature and accumulates on a subarc T.

Option (a) is excluded since f has no asymptotic values inside ). The mere
existence of such a curve that terminates at { € T means that (1 — z.)a + t.b is
an asymptotic value for f. Option (b) is also excluded since if the curve converges
to a finite set of points on T, then the curve has accumulation points in ID. This
means that f is constant on these accumulation points, forcing f to be a constant
function, which it is not. Option (c) is also excluded since otherwise, f would have
the constant nontangential value (1 — .)a + t.b almost everywhere on this sub-arc
which forces f to be a constant function. Here we are using a fact from the theory of
H®® functions [38, Thm. 2.2] which says that if the non-tangential boundary values
of an H function are equal to ¢ almost everywhere on a subarc of T, then this
function is identically equal to the constant function c. Therefore all curves remain
in D and since there are no critical values on [a, b) we can pull back up to t = 1.

Now we arrive at our contradiction. Since vy(a) > m, there are at least m + 1
such paths created above and all of them terminate at points of f~!(b). This forces
vr(b) > m, which contradicts the fact that {vs(w) = m : w € D} is closed and
contains b on its boundary. Thus, v is constant on ID.

‘We now show that v is not identically equal to oo on ID. Suppose to the contrary
that vy = oo. First observe that the set of critical points is nonempty. If this was
not the case, then f would be locally injective at each point of D. Moreover, since
f has no asymptotic values in ID, this means that the analytic continuation of f~!
between any two points of D remains within D. By the monodromy theorem [100,
Vol. 11, Ch. 8], f ~! has an analytic continuation to all of . In other words, f is
injective and thus vy = 1, which we are assuming is not the case.

Since f has a nonempty set of critical points, we let wy, wa, ..., w, denote
the distinct critical values of f, in other words, w; = f(&;) for some &§; € D
with f'(&;) = 0. Consider m mutually disjoint smooth curves yx, parameterized by
t € [0, 1], with

() =wr, 70, D) <D, w()eT.

Let

2 =D\ [ w0, D).

k=1

Since £ is an open, simply connected region, so is f~!(£2). We study the
components of f~1(£2) to obtain a contradiction to our assumption that v F=o00.
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Let @ be a component of f~!(£2). Then the restricted function f : @ — £
cannot have any asymptotic values in £2. Otherwise, there is a curve in w that tends
to dw and on this curve f tends to a limit inside 2. By assumption, this curve cannot
terminate on T. Hence, it would have to terminate at some point { € D N dw. Then
f(¢) € £2 and since w is a component of £~ (£2) we must have { € » which
cannot be the case. In a manner similar to our previous discussion, the monodromy
theorem implies that f : @ — 2 is a bijection.

Since vy = oo, there are infinitely many components of f —1(£2). The set of
critical points is finite and thus can meet the boundaries of only finitely many
components. Hence, we may pick a component « whose boundary does not contain
of any critical point. Let & : £2 — w be the inverse of f : @ — §2. Hence

fh(2) =2z, z€K. (6.5.6)

We show that / can be analytically continued to all of .

Let us study the behavior of 7 as we approach yi(t), for 0 < t < 1. If I" is
any curve inside §2 that terminates at 4 (0), then the pullback Kl (I') € w cannot
terminate at a point of T. It also cannot oscillate toward a subarc of T (see the
discussion above). Hence, by (6.5.6), it has to terminate at a point of D N dw. By
similar reasoning, oscillatory behavior is excluded even at the boundary of D N
dw. Moreover, for different curves I and I»> in §2 that terminate at y;(0), their
pullbacks cannot converge to different points of D N dw. By (6.5.6), the injectivity
of f: w — £2 would be violated. This means that

Ge=_lim h(z)
ey (0)
€82

exists and belongs to D N dw. In particular, f'(¢x) # 0.

Using a similar argument, /4 has a limit when we approach yx(¢), for 0 < ¢ < 1,
from one side of the arc y,. Hence one-sided limits exist at all points yi(¢), for
0 < t < 1, and h is necessarily continuous on each side and its limiting values
converge to ¢ when we move toward y,(0) from either side. Since f is univalent
on a small neighborhood of ¢ and f (k) = yx(0), we see that & coincides with f -1
on a small neighborhood of y(0). Therefore, the one-sided limits of # must agree
at least for small values of r > 0. Thus, & has continuous extension to

QU@ :0<t <1}

for some value of T € (0, 1). By Morera’s theorem, it has an analytic continuation
to 2U{y(¢) : 0 <t < t}. As a matter of fact, we must have sup T = 1. Otherwise,
we could repeat the argument above with y; (7) playing the role of y4(0) and extend
further and thus obtain a contradiction. In short, / extends analytically to 2U{y; (¢) :
0 <t < 1}, and hence to D. Let us denote this extension by H. According to (6.5.6),
we have

f(H() =12z, zeD.
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Set a = H(0) and write the identity above as
(foto(tuoH)z) =2z, zeD. (6.5.7)

Since f is not a conformal mapping (this was ruled out at the beginning), the
Schwarz Lemma says that

I(f o) O] < 1. (6.5.8)
Also by the Schwarz Lemma,
[(ta 0 H)'(0)] < 1, (6.5.9)
since (t; o H)(0) = 0 and 7, o H maps D into itself. However, (6.5.7) implies that
(f 01)'(0) x (t, 0 H)'(0) = 1,

which is a contradiction of (6.5.8) and (6.5.9). The proof is now complete. |

6.6 Notes

Critical Values

For a finite Blaschke product B of degree n,
{weD:w=B(z), B'(z) =0}

is the set of critical values of B. We state the following result from [6]. For each
critical value w j, there are most n distinct points in B! ({w;}). The number

Sp(w;) =n— B~ ((w; ),

where |E] is the cardinality of a set E, is the deficiency of B at w;. One can show
that if wq, wo, ..., wy are the critical values of B, then

k
> sp(wj)=n—1.
j=1

Moreover, for distinct points wy, wa, ..., wx € D and 81, 82, ..., 8 € N such that
Zl;zl 8; = n—1, there is a finite Blaschke product of degree n whose critical values
are {wy, wa, ..., w} and with 6g(w;) = §; forall j = 1,2, ..., k. The paper [6]
also discusses a version of this theorem for polynomials.
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Asymptotic Values

There is a literature concerning asymptotic values of functions (continuous,
harmonic, analytic) on D (recall Definition 6.5.1) [4, 25, 84, 85, 102].

6.7 Exercises

6.1 Show that if P is a polynomial of degree two, then the zero of P’ is the average
of the roots of P.

6.2 Show that if P is a polynomial of degree three with distinct zeros, then the
zeros of P’ are the foci of the ellipse that is tangent to the midpoints of the triangle
determined by the zeros of P. This is known as Marden’s theorem and the ellipse
is known as the Steiner inellipse. See [86] for a history of this theorem as well as a
proof.

6.3 Let

m n P
a—z b—z c—z
1—az 1—-bz7 1—-¢z
in which a, b, c € D and m, n, p > 1. Find the zeros of B’ and show that as m, n, p

range over the positive integers, the zeros of B’ form a dense subset of the hyperbolic
convex hull of a, b, c.

6.4 Show that an entire function is proper if and only if it is a polynomial.
Hint: Use Picard’s theorem.

6.5 Show that an analytic function f : D — D is proper if and only if it is a finite
Blaschke product.
Hint: Use Theorem 3.5.2.



Chapter 7 ®
Interpolation Qe

Interpolation of data by functions from a given class has a rich history dating back
to Newton and Lagrange. Famous examples involve interpolation by polynomials,
rational functions, and bounded analytic functions. This chapter covers various types
of interpolation and the connection these problems make to finite Blaschke products.

In a typical interpolation problem, one considers a class of analytic functions .#

on a domain £2 C C and asks, for a given list of distinct points z1, z2, ..., 2, € §2
and a given list of values wi, wy, ..., w, € C, if there is an f € .% such that
S (@k) = wg, 1<k<n. (7.0.1)

There are additional questions that can be considered.

(i) Characterize all pairs (z1, wy), (z2, w2), ..., (24, wy) for which (7.0.1) has a

solution in .%.

(i1) Characterize the set of points z1, 22, . . ., 2, such that (7.0.1) has a solution in
& for all values of wy, wy, ..., w, in a fixed given set.

(ii1) If the interpolation problem has a solution, give an explicit formula for it or
provide an algorithm to find it.

(iv) If the interpolation problem has a solution, is the solution unique? If the
solution is not unique, find one that is extremal with respect to a given property.

In this chapter, we study interpolation by finite Blaschke products. We focus on
the following two questions.

(a) For distinct z1, z2,...,2, € D and any wy, wa, ..., w, € D, is there a finite
Blaschke product B such that B(zx) = wy for 1 < k < n?

(b) For distinct ¢, &2,...,¢, € T and any &1, &, ...,&, € T, is there a finite
Blaschke product B such that B(¢;) = & for 1 <k < n?
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The first of these problems (interpolation in D) was settled long ago by Pick. The
second problem (boundary interpolation), although settled, is more delicate. We give
several solutions to these problems. Some of these are short existence proofs while
others are longer but more constructive.

7.1 Lagrange Interpolation: Polynomials

In order to place this subject in context, we begin with some classical interpolation
results. When .7 is the set of analytic polynomials

n
{Zakzk careCon > 0},
k=0

the following classical result settles the interpolation problem (7.0.1).

Theorem 7.1.1 (Lagrange Interpolation Theorem) Given distinct zi, z2, ...,
zn € Cand any wy, wy, ..., w, € C, there is a unique polynomial P of degree
at most n — 1 such that

P(z) = wg, 1 <k<n. (7.1.2)

Proof Fork = 1,2, ..., n, define the Lagrange polynomials by

n

L@=[]—%  1<k<n, (7.13)
=1 Tk T
i#k

and verify thatdeg Ly = n —1 and Ly (z;) = 6 i, the Kronecker delta function. The
polynomial

n
P = Z wy Ly
k=1

is of degree at most n — 1 and satisfies P(zx) = wy for 1 < k < n. If Q is another
solution to the interpolation problem (7.1.2) and deg Q < n—1, then P — Q vanishes

at the n distinct points z1, z2, . . . , 2, and is of degree at most n — 1. Thus, P— Q0 =0

and hence P = Q. Therefore, P is the unique solution to (7.1.2) of degree at most

n—1. |
Observe that

Q0(2)

—(z—z) (2 —2 Ly(2) = —— 7,
0@ =G =)= = L) = F=r—
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See Exercise 7.1 for another proof of Theorem 7.1.1 and see Exercises 7.2, 7.3,
and 7.4 for further applications. There is also Hermite interpolation [87] which
interpolates not only the function but also its derivatives; see the notes at the end
of this chapter.

7.2 Lagrange Interpolation: Rational Functions

In this section, we treat some interpolation problems involving rational functions.
These results will be used later on for interpolation by finite Blaschke products. In
what follows,

R := R U {00}

denotes the extended real line (as a subset of the Riemann sphere @).

Lemma 7.2.1 (Gorkin—Rhoades [65]) Let f be the rational function

Z—x)@E—x2) (2 —xp)

f@) = ,
(z=p)@—=p2)--- (2= pa)
where x1, x2, ..., Xy and p1, p2, ..., pn are real numbers for which
Pl <X <Pp2<XxX3<-+<pPp<Xp. (7.2.2)

Then f satisfies the following.

(a) f(Cy) < Ch
(b) f(C_)cC_.

(c) fF(R) SR
(d) f has a simple zero at each x1, x2, ..., Xy.
(e) f has a simple pole with a negative residue at each p1, p2, ..., Pn.

Proof We leave it to the reader to verify (c), (d) and the first part of (e). To prove the
second part of (e), perform a partial fraction expansion, noting that f is the quotient
of two monic polynomials of equal degree, along with the fact that

lim f(z) =1,
Z—> 00

to obtain

)\1 )\n
z—pi Z—pn

f@Q=1+ (7.2.3)
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Fix 1 < k < n and multiply both sides of the previous equation by z — py and then
set z = py to see that

[Tk —xp)
j=1

= -
[Tk —pp)
j=1

j#

Ak

Rewrite this as

k—1 n
H(Pk_xj) l_[ (P — xj)
i=1

j=k+1

e = (pk — Xk) - If: e
[Te—p» 1 e—pp
j=1

j=k+1

and observe, via the hypothesis (7.2.2), that 14 < 0.
Ife < 0and B € R, the function

(@) = —
)= ——
8 B
satisfies
Im(z)
Img(z) = —a
|z — B2
and hence g satisfies (a) and (b). By (7.2.3), the function f — 1 is a finite sum of
such functions and hence must also satisfy (a) and (b). m|
The function
b
f@)=a+—, (7.2.4)
z—c¢

in which a,b,c € R and b < 0, is from a class of functions introduced in
Lemma 7.2.1. We will encounter this function in the proof of Corollary 7.2.6.

The following result resembles Lagrange interpolation. A weaker version of this
result was first given by Younis [138]. Even though the method of Younis was
constructive, the degree of his interpolating function could be as large as n> —n; see
Exercise 7.5. The following provides a constructive solution of degree n. Moreover,

the solution exhibits further interesting properties.
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Theorem 7.2.5 (Gorkin—Rhoades [65]) Let x1, x>, ..., x, and p1, p2, ..., pn be
real numbers that satisfy

PL<XI<p2<Xx2<-<pp<2Xp

and let y1, y2, ..., yn be any real numbers. Then there is a rational function f of
degree n that satisfies the following.

(a) f(Cs) S Cs.
(b) f(C)CC.

(c) fF(R) SR

(d) f(xk) =yrforl <k<n

(e) f has a simple pole with a negative residue at each py, p2, ..., Pn-

Proof Without loss of generality, we can assume that yy, y2, ..., y, > 0. If this is

not the case, let M € R be so large that y,’( =M+ yr > 0for 1 <k < n. Then
solve the interpolation problem for g(x;) = y; as described below. The answer to
the original interpolation problemis f = g — M.

The functions

n
Z—Xj
h@=]]—=. 1<k<n,
._1z—pj
/_
J#k

satisfy the properties described in Lemma 7.2.1. Moreover, for each k,

1Yk TP)
J#k
k—1 "
_ X —Xj 1—[ Sl
j=t TP S YR TP
and fx(x;) = 0 for j # k. Define
S
f: fk.
= Jib)

Since the coefficients yx/fx(xx) are all positive and since the f; satisfy the
properties described in Lemma 7.2.1, f satisfies properties (a), (b), and (c). The
coefficients were chosen so that f(xgx) = yk.

The function f is of degree at most n and its possible poles are p1, p2, ..., Pn.
To ensure that these singularities are not removable, condition (e) of Lemma 7.2.1
implies that
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n

y;
Res(f, pr) = Y, ——+—Res(fj, p) <0,
o fit)
J#k
Hence the degree of f is precisely n. This completes the proof. O

The following important corollary can be used to obtain theorems about bound-
ary interpolation by finite Blaschke products; see Sect. 7.5.

Corollary 7.2.6 Let xy,x2,...,x, € Randay,as, ..., a, € R satisfy
ap<x|<ay<xy<---<dap<xy
and let yo, ¥1, ..., Yn € R satisfy yo # yi for 1 < k < n. Then there is a rational

function f of degree n that satisfies the following.

(a) f(Cs) S Cy

(b) F(CHCC.

() f® CR

(d) f(x0)=yefor1 <k <n.
(e) fla) =yofor 1 <k<n.

Proof Let

1
8(@)=yo—-.
Z
By (7.2.4), g satisfies the properties in Lemma 7.2.1. Let
=g '), 1<k<n
Since yo # yx, we have y; € R (only yp is sent to y;, = 00). Theorem 7.2.5 says

that there is a rational function 4 of degree n that satisfies (a), (b), and (c), and such
that

h(xe) = ¥

with simple poles at points a; for 1 < k < n.
Set f = goh. Then f is a rational function of degree n that satisfies (a), (b), and
(c), and such that

N
»
/N
=

fxr) = gh(xx) = g = i, 1

Moreover, since /& has a simple pole at each ay,

flar) = g(h(ax)) = g(o0) = yo, 1

N
»
N
S

Thus, f is the desired function. m]
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7.3 Pick Interpolation Theorem

We now discuss a famous interpolation problem for the Schur class .. Given
distinct z1, z2, ..., 2, € D and arbitrary wy, wp, ..., w, € C, is there an f € .
such that

fzr) = wg, 1 <k<n?

Since f € .7, if there is a solution to this problem we must have lwj| < 1 for
all j. Moreover, if wj, € T for some jo € {1,2,...,n}, then by the Maximum
Modulus Principle, f = wj,. Even when all the z; and w; belong to D, we cannot
always solve interpolation problem. For example, if f € .7 solves the two-point
interpolation problem

fz1))=w; and f(0) =0, (7.3.1)

then the Schwarz Lemma (Lemma 1.1.1) tells us that |wq| = | f(z1)| < |z1]. Thus,
a necessary condition for the solvability of (7.3.1) is

lwi] < lz1l- (7.3.2)
A closer examination of the generic two-point interpolation problem

f@)=w; and f(22) = w2 (7.3.3)

is instructive, although it requires a few important facts from linear algebra. Recall
that for vectors

Xz(xlv-"a-xn)v yz(yl,---,}’n)e(cna

their inner product (x, y) is

n
xy) = Z Xjyj.
j=1

If M,, denotes the set of all n x n complex matrices and A € M,,, then A* denotes
the conjugate transpose of A and (Ax, y) = (x, A*y) for all x,y € C".

Definition 7.3.4 A € M, is positive semidefinite if
(Ax,x) >0, xeC".

A positive semidefinite matrix A is automatically Hermitian: A = A*. The spectral
theorem says that a Hermitian matrix is positive semidefinite if and only if its
eigenvalues are nonnegative; see Exercise 7.6. If A € M, is positive semidefinite
and S is m x n, then SAS* is positive semidefinite; see Exercise 7.7.
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Returning to our discussion of the two point interpolation problem (7.3.3), the
Schwarz—Pick theorem (Theorem 1.4.1) tells us that

fz) — f(z2)

1= f(z2) f(z1)
foreach f € . If f € & satisfies (7.3.3), then (1.6.1) yields

21— 22
, 21,22€D

<

1 —2z1

2 2
21— 22 71— 22 w1 — w2

= 1-

wi; — w2
X

|

I —waw 1 -2z 1—2221 1 —wow

(I —1lz1»HA =122 _ A = w1 = [wa]?)
11— 22212 = |1 — waw |

11 —wawi > (1= |wi > = w2l
1—2z12 =~ (1 =[z1) = |z2?)

1—|wi?> 1 —wwz

1—z112 1—-z1z2
det |z1] 122
I —wiwy 1—|ws|

1—7Z1z2 1 —|z2)?
Since z1, 22, wi, wy € I, the trace of the Hermitian matrix

1—|wi)? 1 —ww;

1—1z112 1—-z2122
P(z1,z2; wi, wp) = 21l 1<2 (7.3.5)

1 —wiwy 1—|wa)?

1—Ziza 11—z

is positive and thus the sum of its eigenvalues is positive. Since the determinant of
a square matrix equals the product of its eigenvalues,

det P(z1, z0; wi, wo) 2 0

if and only if (7.3.5) is positive semidefinite. Consequently, a necessary condition
for the solvability of the two-point interpolation problem (7.3.3) is the positive
semidefiniteness of (7.3.5). If zp = wy = 0, then

1= fwnf?
0 < det P(z1,0; wy, 0) = Tl -1 = |wl<lal

which recovers the necessary condition (7.3.2) for the solvability of the special two-
point problem (7.3.1).
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The following celebrated result of Pick provides a complete solution to the n-
point interpolation problem. It has been extended in many directions (see [1] for a
thorough discussion).

Theorem 7.3.6 (Pick [114]) Suppose

21,22,-.-,2n €D
are distinct and wi, ws ..., w, € C. Thereis an f € . such that
fe=w.  1<k<n, (73.7)
if and only if
1-— wiw_j n
P=P(Z[,...,Zn;'l,Ul,...,wn): - — (738)
1 —zz; i,j=1

is positive semidefinite. Moreover, if a solution exists, then there is a finite Blaschke
product of degree at most n that does the interpolation in (7.3.7).

Remark 7.1 Before proceeding to the proof, we make a few remarks about some
degenerate situations that might occur when applying an induction argument
below.

(a) If lwj,| > 1 for some jo € {1,2,...,n}, then, since | f| < 1 forall f € .77,
there is no solution to the interpolation problem (7.3.7). Moreover, still under
the assumption that |wj,| > 1 for some jy, the corresponding Pick matrix has
the property that (Pej,, e,) =1 — |wj0|2 < 0.

(b) If lwj,| = 1 for some jo € {1,2,...,n}, then for the interpolation problem
(7.3.7) to have a solution, it must be the case that f = wj, and consequently
w; = wj, for all j. Furthermore, this constant function solution to the
interpolation is a finite Blaschke product of degree 0. The Pick matrix P is
the zero matrix, which is positive semidefinite.

(c) If zo = wop = 0 and f is a solution to the interpolation problem (7.3.7), then
the Schwarz lemma says that either | f(z;)| < |wj| forall j € {2,3,...,n} or
there exists a £ € T such that f(z) = £z (and consequently z; = &w; for all
-

Proof (of Theorem 7.3.6) As mentioned in Remark 7.1, we can assume that |w ;| <

1 for all j. We proceed by induction on n. The base case is n = 1. If |wi| = 1,

then the constant function f = wj, which is a finite Blaschke product of degree

0, accomplishes the interpolation. Furthermore, the associated 1 x 1 (scalar) Pick

matrix is

1—wi)?

PG w) = 7— T

’
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which is positive semidefinite. If |w;| < 1, the one-point interpolation problem
f(z1) = wy has the solution f = 1y, o 7;,, which is a finite Blaschke product of
degree 1. Since the 1 x 1 (scalar) Pick matrix

1= |w?

P(z1, wy) = P

is positive semidefinite for all 7, w; € D, the theorem is true when n = 1.

For our induction hypothesis, suppose that the theorem holds for n — 1 points.
First observe that the n-point interpolation problem (7.3.7) has a solution with f €
. that is a finite Blaschke product of degree at most » if and only if, for any wo, zo €
D, the interpolation problem

g(TZ() (zk)) = TwO(U)k), 1 <k<n, (7.3.9)

has a solution with g € . that is a finite Blaschke product of degree at most .
Indeed, write

f=twogoty (7.3.10)

in order to pass from a solution to (7.3.7) to a solution to (7.3.9) and back;
Lemma 3.6.1 says that deg f = deg g. Now observe that the identity

=ty (W) Twy (W) _ 1= |wol* 1 —wWow; 1| —wiw; 1—wow;

— = > — — Yl 73.01)
=1zt (z)  1—lzol* 1—20z 1—-2zZ; 1—2z07j
implies that
[
1= Tug (W) T () _ 1= lwol” _|w0|2APA* (7.3.12)
1 — 17 (zi) T2 (z) ij=1 1 —|zo?

in which A is the n x n diagonal matrix

)

A:diag(l_w_owl 1 — wows l—w_own>;

1-%0z1 ~ 1 —7%022 1 —Z0zn

see Exercise 7.8. Therefore, P is positive semidefinite if and only if

1 — Ty (W) Twy (W) '
1-— Tzo(zi) tZO(Zj) i,j=1

is positive semidefinite; see Exercise 7.7. For simplicity in our labeling, set

7 =1,i),  w=1y, W)
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and then relabel so that z; = z; and w; = w;.. With this relabeling we have z,, =
wy, = 0 (this is important to remember in practice when we want to find an explicit
solution to the interpolation problem). Then each entry of the last row and column of

_l—wiw_j "
[ I —zizj

A=
ij=1

is 1. Let S be the following n x n matrix

[10---0—1
01---0—1
S: . . o . . ’
00---1-1
[00---0 1

which is invertible, and observe that

1—w;w; _ ]n—l
SAS* — [1—z.—z7 i =1 [O1n—n1 | (7.3.13)

[0l1x(n—-1) 1
Consequently, A is positive semidefinite if and only if
|:1 —wwj l]n—l
1 —2zz; i,j=1
is positive semidefinite. Since

wp Wj

_ =TI n—1 1— =
[ﬂ—l} =p|—%Y D*. (7.3.14)

1 —zizj i,j=1 l—zizj |
i,j=1

where

D = diag(z1, z2, - - - Zn—1),

=i

l—zizj ] jo ’

in which z, = w, = 0, is positive semidefinite if and only if the (n — 1) x (n — 1)
matrix

the matrix

o n—1
—w

Zi Zj
=7 |
i,j=1
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is positive semidefinite (recall that z1, z2, ..., z,—1 are nonzero since z, = 0 and
the z; are distinct). By the induction hypothesis, this occurs if and only if there is
a finite Blaschke product g of degree at most n — 1 that solves the (n — 1)-point
interpolation problem

wj .
g(zi) = —, 1<i<n—1. (7.3.15)
i
If f € . satisfies the n-point interpolation problem
f@) =wr, 1<k<n-—1, and f(0)=0, (7.3.16)

then g(z) = f(z)/z belongs to . (Schwarz Lemma) and is a solution to the (n —1)-
point interpolation problem (7.3.15). Conversely if g € .7 solves (7.3.15), then

f2) =28 (7.3.17)

solves (7.3.16). See Remark 7.1 about what happens if |w;/z;| = 1 for some j.
Also observe that g is a finite Blaschke product of degree n — 1 if and only if f isa
finite Blaschke product of degree n. This completes the induction. O

Among its many consequences, the preceding theorem can be used to provide
a new proof of the Carathéodory approximation theorem (Theorem 4.1.1); see
Exercise 7.12.

We now discuss the uniqueness of the solution to the Pick problem.

Theorem 7.3.18 Suppose
21,22, 2n €D

are distinct and wi, wy ..., w, € C. If

1—ww; "
]
I —ziZj 1; jo

is positive semidefinite, then the n-point interpolation problem
S zk) = wy, 1<k<n, (7.3.19)

in which f € &, has a unique solution if and only if det P = 0. In this case,
f is a finite Blaschke product of degree m = rank P. Conversely, if (7.3.19) is
satisfied by a finite Blaschke product of degree m < n, then the solution is unique
and m = rank P.

Proof As in the proof of Theorem 7.3.6, we may assume that z, = w,, = 0. Then
(7.3.17) shows that (7.3.19) is uniquely solved by a finite Blaschke product of degree
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m if and only if the corresponding (n — 1)-point problem (7.3.15) for g is uniquely
solved by a finite Blaschke product of degree m — 1. Moreover, (7.3.13) and (7.3.14)
show that

rank P, = 1 +rank P,_1,
in which we employ the notation of (7.3.8), namely
Py,=P1,..., 20 WL, ..., Wy)
and

P, = P(Zl, ooy Zn—1; f—ll, ey %)

The result now follows by induction.

If the interpolation problem is satisfied by a finite Blaschke product of degree
m < n, then after m repetitions of the procedure above, the remaining interpolation
problem must be solved by a finite Blaschke product of degree zero; that is, a
unique constant unimodular function. Thus, the corresponding matrix for the final
interpolation problem is identically zero, which shows that the solution is unique
and rank P = m. |

Let

1 —wyw; "
P = [—_’} ,
1 —z;7; i j=1

in which z1,z2,...,2z, € D are distinct and wy, wa, ..., w, € C are arbitrary.
Theorem 7.3.18 tells us that if rank P = m < n and if we choose m + 1 indices
ki, ky, ..., kym+1 among 1,2, ..., n such that

1 ___m 1 m+1

— Wk, Wk; — Wk, Wk

det | ————~ >0 and det| —— =0,
1 — zp,%; . 1 — 2, 2%; )

then the conditions
f(zki)zwk,'a 1§l<m+1,

determine a unique finite Blaschke product f of degree m. Moreover, this finite
Blaschke product automatically satisfies f(zx) = wy for those indices k that are
not among ki, k2, . .., kj+1. Although this may seem surprising at first, one should
keep in mind that the hypothesis that rank P = m < n says that the remaining
conditions are dependent on the data zy,, Zk,, - - - » 2k, ADd Wky, Wiy, .« .oy W,y -
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If det P > 0, which is equivalent to rank P = n, then there are infinitely many
solutions. Indeed, if » = 1 and z; = w; = 0, then P is the 1 x 1 scalar matrix
[1] and any f € . with f(0) = O is a solution. In particular, any finite Blaschke
product that vanishes at the origin is a solution.

Corollary 7.3.20 Suppose

21,22, ..-,2n €D
are distinct and

wy, wy ..., w, €D.
Suppose that

1—ww; "
<[22
U —zizj 1 jo

is positive semidefinite and det P > 0. Fix z,4+1 € D\{z1, 22, ..., Zu}. Then
W={f(u1) : fe, flzx) =wr, 1 <k < nj

is a closed disk of positive radius in D. If f is a finite Blaschke product of degree n
that satisfies

fzi) = wg, 1 <k<n,

then f(zp+1) € OW. Conversely, if wy+1 € OW, then there is a unique finite
Blaschke product f of degree n such that

f(zr) = wg, I1<k<n+1.
Proof Recall from Lemma 2.1.6 that if W is a closed disk in D and 7 € Aut(D),
then 7 (W) is also a disk in . Moreover, T maps d W onto d7 (W) bijectively.
Our proof is by induction. However, even the base case n = 1 is rich enough to

give a panoramic view of the whole process. As in the proof of Theorem 7.3.6, for
fixed z1, w; € D, there is an f € .% such that

f(z1) = wy (7.3.21)
if and only if

f=ty 0801y (7.3.22)
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for some g € .¢ and g(0) = 0. Therefore we obtain an infinite number of solutions
(7.3.22) to (7.3.21) as g runs over all the Schur class functions vanishing at the
origin. This parameterization of solutions implies that for zo € D\{z;}

W ={f(z2): f € .7 satisfies (7.3.21)}
={tw, 0801 (22): g €.7,28(0) =0}
= {rw, (g(M) : g € &, 8(0) = 0,7 = 77, (22)}. (7.3.23)
By the Schwarz Lemma (Lemma 1.1.1)
{g(n) : g €.7,20) =0} =D, [n)".

Furthermore, if £ € dD(0, |n|)~ and g € % with g(0) = 0 and g() = ¢, then
lg(m)| = |n|. Thus, g(z) = yz for some y € T by the Schwarz Lemma. In fact,
each point on d D (0, |n])~ corresponds to a unique y € T via g(z) = yz.

By the remarks at the beginning of the proof,

W =1y, (DO, [n) ™)
is a closed disk in D and
oW =1y, (0D, |n)7). (7.3.24)
Suppose that f is a finite Blaschke product of degree one (an automorphism)

with f(z1) = wy. Then by (7.3.22) f = 7y, 0 py 0 75, for some y € T. By (7.3.23)
and (7.3.24) we have

f(z2) = tw, (yn) € IW.
Conversely if wy € 9W, then wy = 1y, (¥ 1) for some y € T. If
f=7tw 0pyoty,
then f is a finite Blaschke product of degree one with f(z1) = w; and
f(z2) = T, (¥ 72, (22)) = Tw, (¥ 1) = wa.

This establishes the base case n = 1.

For the inductive step, suppose that z1, z2,...,z, € Dand wy, wa, ..., w, € D
are given. Then f € .’ is a solution to

fzj))=w;, 1<j<n, (7.3.25)

if and only if

f=1w,0(gort, (7.3.26)
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for some g € . with

g =wj, 1<j<n—1, (7.3.27)
where
/o i ! TZn(wj)
Zj_TZn(Z!) and wJ—T(Z])
If zo4+1 € D\{z1. 22, ..., 2}, then

W ={f(zn+1) : f € & satisfies (7.3.25)}
= {tw, (21182, 1)) : g € S satisfies (7.3.27)},

where Z;/1+1 = 1, (zp+1) # 0. As g € . runs through the solutions to (7.3.27), the
inductive hypothesis says that

{8(z)41) : g € 7 satisfies (7.3.27)}
is a closed disk in D and each point on its boundary is of the form g(z/, +1)» in which
g 1is the unique finite Blaschke product of degree n — 1 satisfying (7.3.27). Thus,
W is also a closed disk in D and, considering (7.3.26), each point of its boundary
is of the form f(z,+1), where f is the unique finite Blaschke product of degree n
satisfying (7.3.25).
Conversely, if f is a Blaschke product of degree n with

f@p)=w;, 1<j<n+1,

then, via (7.3.26), there is a finite Blaschke product g of degree n — 1 for which
/ /! .

g =w;, I<j<n—1,

and
8(Z;+1) = w;m'

Therefore,

wy, 1 € 3{g(z,,) : g satisfies (7.3.27)},

which in turn implies that w;, 1 € OW. m|
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7.4 Boundary Interpolation: Cantor—Phelps Solution

Given distinct ¢, ¢2, ..., ¢, € T and arbitrary &1, &, ..., &, € T, is there a finite
Blaschke product B so that

B(¢k) = &, 1<k<n?

It turns out that this interpolation problem is always solvable. In this section, we
provide an existence proof that involves the Cantor—Phelps theorem, a remarkable
general result. In the next section, we give a more constructive approach.

Let S be a semigroup, that is, a set endowed with an associative binary operation
and an identity element. Examples include N with the operation of multiplication
or M, with the operation of (matrix) multiplication. The semigroup that will be
important here is T under multiplication. In fact, T is a group since each z € T has
the multiplicative inverse 7 € T.

Let .7 be a collection of functions from a semigroup S into itself. If f, g € .7,
then both fog and fg are well-defined functions on S. More precisely, when writing
(fg)(a) = f(x)g(a) we use the binary operation on S to calculate f(«)g(«). In the
following, we consider families .# that are closed with respect to both operations;
that is,

frgeF = fogeF and fgeZF.

Definition 7.4.1 Let.Z be a collection of functions from a semigroup S into itself.

Then .7 is n-transitive if for any n distinct o1, a3, -+ - , @, € S and any arbitrary
Bi, B2, ..., Bu € S, thereis an f € % such that
fla) = Bi, 1<i<n.

We say that .% is transitive if it is n-transitive for all n > 1. Although transitive
families can be defined without the assumption that the common domain S forms
a semigroup, for our purposes, we also require .% to be closed under pointwise
products.

Is there a family that is n-transitive but not (n + 1)-transitive? For n = 1, the
answer is yes: the family of all constant functions on a semigroup is 1-transitive but
not 2-transitive. See Exercise 7.13 for an example of a family that is 2-transitive but
not 3-transitive. The following result shows that under some mild conditions, any
3-transitive family is transitive.

Lemma 7.4.2 (Cantor-Phelps [14]) Let S be a semigroup with identity element 1
and suppose that S contains an element § such that 1, 8, 8% are distinct elements of
S. If F is a collection of functions from S into itself that is closed under composition,
closed under pointwise multiplication, and 3-transitive, then .7 is transitive.



146 7 Interpolation

Proof Fix n > 4. Given any n distinct elements a1, a2, ..., o, € S and arbitrary
Bi, Bz, ..., Bu € S, we need to show that there is an f € .% such that
flo) = Bi, 1<i<n. (7.4.3)
Since S has an identity element and .% is closed under pointwise multiplication, it
suffices to show that there are f1, f>, ..., f; € % such that
B ifi=j,
fitay=14""" """
1 ifi#j.

Indeed, the function

f=nffu (7.4.4)

so constructed will solve the interpolation problem (7.4.3). We now show the
existence of fi. The other cases are similar.

Suppose that .# is (n — 1)-transitive. Then there are g, h € % such that g(«;) =
h(ar) =34,

glaj) =1, 2<i<n—1,
and
hia)) =1, 3<i<nm
we have no control over g(oy,) and 2 («y). For simplicity, let

y =gla,) and Yy = h(ay).

Based on the values of y and y’ there are three special cases.

(a) Suppose that y # 8. Since .% is 3-transitive, there is a k € .% such that k(§) =
Brand k(1) =k(y)=1.Let fi =kog.

(b) Suppose that y" # 8. This is similar to the preceding case. We have a k € #
such that k(8) = By and k(1) = k(y’) = 1. Let fi =k o h.

(c) Suppose that y = y’ = 8. In this situation, gh € .% maps o to 82, both as
and a, to §, and the other arguments to 1. Hence, we pick up a k € .% such that
k(8%) = By and k(1) = k(8) = 1. Now take f; = k o (gh).

Thus, f] has the desired properties and hence % is n-transitive.
Since .% is 3-transitive and since .% is n-transitive whenever it is (n — 1)-
transitive, induction guarantees that .% is transitive. m]

As a consequence of Lemma 7.4.2, we obtain an existence result for boundary
interpolation by finite Blaschke products.
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Theorem 7.4.5 The family of all finite Blaschke products, considered as functions
on T, is transitive.

Proof The unit circle T is a group with identity 1. If § = i,then 1, §, 82 are distinct.
Theorem 3.6.2 ensures that the family .% of all finite Blaschke products is closed
under pointwise multiplication and composition. By Lemma 7.4.2, it suffices to
show that .% is 3-transitive.

First suppose that @1, @y € T are distinct and B1, B2 € T are arbitrary. By pre-
and post-composing the desired interpolating function with appropriate rotations
(which are finite Blaschke products of order 1), we may assume that

o =, B2 = Bi, Ime; >0, and Imp; > 0. (7.4.6)
There are two cases to consider.
() If By # Bo, let

_ Bi—o

a = ——.
1 — Bray

Then a = a and

4(1 I
| _ g2 = ddmoan)( m,fl) -0
1 — o1
by (7.4.6). Thus, a € (—1, 1) and the Mobius transformation

Z—a

f@)=

9

1—az

satisfies f (o) = B1 and f(a2) = Ba.

(b) If B1 = po, then (7.4.6) implies that 81 = B = 1. Although the constant
function 1 solves the two-point interpolation problem f (1) = f(a2) = 1, it is
not ideal for our future applications. Use (a) to produce a disk automorphism g
such that g(or;) = 1 and g(az) = —1. Then f = g2 is a finite Blaschke product
of degree 2 such that f(«1) = f(ap) = 1. Since f is a Blaschke product of
degree 2, Theorem 3.4.10 implies that f(«) # 1 for any o € T\{«o1, or2}.

Suppose that a1, o, 3 € T are distinct and By, B2, 83 € T are arbitrary.
Mimicking the construction (7.4.4) in the proof of Lemma 7.4.2, we may assume
that 81 = B2 = 1 and B3 € T is arbitrary. By (b) of the preceding discussion, there
is a finite Blaschke product g such that g(«1) = g(a2) = 1 and g(«3) # 1. By (a),
there is an &2 € Aut(D) such that 4(1) = 1 and h(g(a3)) = B3. Then f = hog
satisfies f(o;) = B; fori = 1,2, 3. Thus, .7 is 3-transitive. |

We repeat the content of Theorem 7.4.5 in the more familiar language of
interpolation below. This version is more appropriate in our context.
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Theorem 7.4.7 Let (1,8, ...,¢, € T be distinct and let &1,&,...,&, € T be
arbitrary. Then there is a finite Blaschke product B such that

B(&i) = &, I<i<n (7.4.8)

Another nonconstructive approach to the preceding theorem that also optimizes
the degree of the interpolating Blaschke product is due to Jones and Ruscheweyh
[82]. See also [78].

7.5 Boundary Interpolation: A Constructive Solution

Theorem 7.4.7, which concerns boundary interpolation by finite Blaschke products,
deserves more attention. The proof that we gave, which depends upon the Cantor—
Phelps lemma (Lemma 7.4.2), does not provide a transparent construction. We
provide a more constructive approach in this section.

Let ¢1,¢2,...,¢, € T be distinct and let &,&>,...,&, € T be arbitrary.
We wish to produce a finite Blaschke product B that satisfies (7.4.8). Pick ¢ €
T\{¢1, ¢2, ..., &n}. We apply the Mobius transformation

+z
—z

p)=i

to transfer our problem from T to R. Observe how ¢ provides bijective mappings
between D and C, between C\D™ and C_, and between T and R=RuU {o0}.

One constructive approach to our interpolation problem originates in [138].
Exercise 7.5 outlines the construction of a rational function f so that B = ¢~ o fogp
is a finite Blaschke product that solves (7.4.8). A closer look at the construction
reveals that that the order of f, and hence the order of B, is at most n? —n. However,
it is natural to wonder if we can do better.

There are n free parameters that determine a Blaschke product of order n — 1;
these are the n — 1 zeros and a unimodular constant factor. Consequently, we expect
that the boundary interpolation problem (7.4.8) of Theorem 7.4.7 has a solution that
is a finite Blaschke product of order at most n— 1. This is obtained using the methods
introduced in [65], which we describe below.

As above, apply the conformal mapping ¢ to reduce the problem to an

interpolation problem on R. Given distinct af, a2, ...,0, € R and arbitrary
B1, B2, ..., Bn € R, we seek a rational function f of order at most n — 1 such that
fla) = Bi, 1<i<m

moreover, f must map C;, C_, and R into themselves. The idea is to apply
Corollary 7.2.6 with some of the «x playing the role of the x; and the rest the acting
as ais. Hence the function f would be of order at most n — 1.
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Without loss of generality, we assume that
o) <0y < - < 0Oy

If all of the B; are the same, then the interpolation problem can be solved by a
constant function. If not, there is a j such that

Bj # Bj+1 =Bjr2="---= Bn.

We partition o1, o2, . . ., o, into two sets Eq and E, defined by
Ey ={a;: Bi =B;} and Er ={aj,o,..., 0, \El;
observe that each set is nonempty and
|E1| + [E2| = n.

If the points of E and E; are interlaced, then their elements can play the role of
ays and xis, respectively, in Corollary 7.2.6. In this case, we are done. In general,
there is no reason to believe that the elements of £ and E» interlace appropriately.
If this occurs, then we must add extra points in order to interlace the elements of £
and E,.

Suppose that E is partitioned into m nonempty subsets so that the elements of
each subset are adjacent, with respect to the natural ordering on R, and so that two
neighboring subsets are separated by at least one element of E,. Denote the number
of points in these subsets by €1, 2, ..., £, and observe that

Ly + -+ Ly = |Eq].
The kth subset consists of £; points
Qjp < Ojp41 < - < 44y

with o, 14,41 € E2. If i1 > 1, then o;, 1 € E3. Select £ — 1 real numbers
1,0, 11 such that

o, < < Q41 <) < <ty <t
and let
m
& =E> U ( U{thtz, Bt}
k=1
Then

&l =|E+ U =D+ +Un—D=I|El+|E]l-—m=n—m.
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Now consider E| and &, together. The elements of E| and &> are intended to
play the role of a; and xj in Corollary 7.2.6. At present, we have sufficiently many
candidates x; so that no two candidates aj are adjacent. However, some of the
elements of E; may be adjacent to each other. Suppose that these determine m’
line segments, none of which contain any elements of E;. Denote the number of
elements of these segments by £/, £}, ..., E;n, so that

Gttty =&l =n—m.

Since o, & E1, we have

' — JE1 ifoa) € Ejy,
|[E1|+1 ifa; ¢ Ey.

As we did above for E3, enlarge E| to obtain an &7 so that the elements of &7 and
&, are interlaced. Then

Sl =|Eil+ =D+ + U, —D)=|Ei|—m +n—m.

There are two possibilities.

(a) If |E1| = m’, then we have two interlaced sets &} and &, each with n — m
elements, and so that the first element of &1 U &> belongs to &7.

(b) If |E1| = m’ — 1, then the two sets & and & are interlaced, but the first element
of & U & belongs to &3. In this case, one last modification is needed. Pick an
element that is smaller than any point in &1 U &> and add it to &7. For simplicity,
we label this new set &]. Then we have two interlaced sets &1 and &>, each
having n — m elements, and the first element of &1 U & belongs to &7.

All the elements of & should be mapped to the y;s. Some elements of &7 are the
ay of Corollary 7.2.6 and we know where they must be mapped to. For the image of
the rest, pick arbitrary real numbers R. Then Corollary 7.2.6 yields the existence of
a rational function f whose order is n — m that performs the desired interpolation.
If m > 1, we can add m — 1 extra appropriate points to both &1 and & so that we
obtain a solution of order n — 1.

As the construction above shows, if {81, B2, ..., B,} is not a singleton, then it
is possible to find a Blaschke product B of order n — 1 that performs the boundary
interpolation (7.4.8). This hypothesis cannot be relaxed. For example, if «; = 1 and
ar = —1, then there is no Blaschke product B of degree one such that 8 = B(1) =
B(—1); this is a consequence of Theorem 3.4.10. As a matter of fact, if

0—2
I-20z

B(z)=vy , veT, z0eD,



7.6 Exercises 151

then the assumption B(1) = B(—1) implies lzo/> = 1, which is absurd. Hence,
the only solution for the interpolation problem is the unimodular constant function
B = 8.

7.6 Exercises

7.1 Show that the Vandermonde matrix

—1
lzyzi-2f
-1
12223 2
V(ZI’ZZ""vzn)z .
lzyz2--- 20!
is invertible if and only if z1, z2, . .., 2, are distinct. Use this to prove the Lagrange

interpolation theorem (Theorem 7.1.1).

7.2 Let A € M, with distinct eigenvalues A, A2, ..., A, and corresponding eigen-
vectors X{, Xp, ..., X, € C". Prove that x|, X, .. ., X, are linearly independent.
Hint: Suppose that ¢;x; + ¢2x2 + --- + ¢X, = 0. Use Lagrange interpolating
polynomials to show that all of the ¢; vanish.

7.3 Suppose that A € M,, has distinct eigenvalues. Let {A} denote the commutant
of A, the set of all matrices that commute with A. Prove that {A} = {p(A) :
p is a polynomial} and dim{A} = n.

Hint: Use the Lagrange interpolation theorem and the fact that A is diagonalizable.

7.4 Suppose that Ay, Ay, ..., A, € M, are normal matrices: A’;Aj = AjAj for

each j. Prove that there is a polynomial p so that A? =p(A)fori=1,2,... k.
Hint: Use the Lagrange interpolation theorem.

7.5 (Younis [138]) Letxy, x2, ..., x, be a finite sequence of distinct real numbers,
and let y1, ya, ..., y, be real numbers. Let
- 1 1
PR == )+ — 1D D
=17 =17
j#k J#k
and
2
-y
a(z) = —*~
z

for 1 < k < n. Define

f=(qop)+(gzop2)+---+(gnopn).
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Show that f is a rational function that satisfies the following.

(@ f(Cy) cCy.
(b) f(R) € R. In particular, f only has real poles and real zeros.
©) f(xg) =y foralll <k < n.

Give an upper bound for the order of f.

Remark This result is a weaker version of Corollary 7.2.6. However, its proof is
simpler.

7.6 Show that A € M, is positive semidefinite if and only if A = A* and all of its
eigenvalues are nonnegative.

7.7 Suppose that A € M,, and positive semidefinite and S is m x n. (a) Show that
SAS* is positive semidefinite. (b) If S € M, is invertible, show that A is positive
semidefinite if and only if SAS* is positive semidefinite.

7.8 Verify (7.3.11) and (7.3.12).

7.9 Suppose that z1, z2, z3 € D are distinct and wy, wy, w3 € D are arbitrary. If
there are finite Blaschke products f1, f2, f3 so that f;(z;) = w; fori # j, does
there exist a finite Blaschke product f so that f(z;) = w; fori =1, 2, 3?

710 Letzy, z2, ..., 2, be aset of distinct points in C. Foreachi = 1,2, ...,n,let
w;j, for j =0,1,..., J(i), be an arbitrary set of complex numbers. Find the unique
polynomial of degree n — 1 + J(1) + - - - + J(n) such that

fPC)=wij, 1<i<n, 0<j<J0).

This is known as Hermite interpolation [87].
Hint: Consider linear combination of polynomials

-2z =22 (2 — ).

Remark The case studied in this chapter (Lagrange interpolation) corresponds to
J(@) =0foralli.

7.11 Let z1, 22, z3 € C be distinct and let wi, wy, w3 € C be arbitrary. Show that
there is a unique Mdobius transformation f such that f(zx) = wy fork = 1,2, 3.
Hint: Consider

(w —wi)(w3z — w) _ (z —z1)(z3 — 22)
(w—w)(w3—wy) (z—22)(@3—21)

7.12 Use the Pick interpolation theorem (Theorem 7.3.6) to give a new proof of
Carathéodory’s theorem (Theorem 4.1.1).
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Hint: Pick z1, z2, . . ., z, to be the vertices of a regular n-gon that is inscribed in the
circle |z| = ¢ and find a finite Blaschke product B such that B(zx) = f(zx) for all
k. Then f — B = Cg, where g € .% and C is a finite Blaschke product with zeros
at zx. Hence | f — B| < |C]. Fix a compact set K and lete — 0 and n — oo.

7.13 Let.% be the family of all linear maps on R with the operation of composition.
Show that .% is 2-transitive, but not 3-transitive.

7.14 The goal of this exercise is to show that in Lemma 7.4.2 the requirement that
1, B, ,32 are distinct cannot be relaxed. Let G = {1, a, b, c} be the Klein four-group,
whose multiplication table is

o=
Q=0
— Q|| |o

oS [ =] X
O[S [ ==

b

and let .# be the family of all functions f : G — G such that

S x fla) x f(b) x f(c)=1.
Observe that 82 = 1 for each B € G. Prove the following.

(1) & is closed under pointwise multiplication.
(i) Z is closed under composition.
(iii) .Z is 3-transitive.
(iv) .Z is not 4-transitive.

Hint: Observe that .# contains precisely the following functions:

(a) the constant functions;

(b) the bijective functions;

(c) those functions whose range contains 2 elements of G, and each element in the
range is the image of two elements in the domain.

715 Letzy,z2,...,2z4and &1, &2, - .., &, be elements of T that satisfy
O<argd) <argzy <argly < argzp < --- < argf, < argz, < 2m,

and let wg, wi, ..., w, € T be such that wg # wy for 1 < k < n. Show that there
is a finite Blaschke product of degree n such that

B(zx) = wx, I <k<n,
and
B(¢r) = wo, I1<k<n.

Hint: Use Corollary 7.2.6.



Chapter 8 )
The Bohr Radius Chock or

The Bohr radius was examined over a century ago by H. Bohr [9] and it is still a
source of inspiration and further studies. We take up this subject for two reasons.
First, the solution to certain extremal problems involves either disk automorphisms
or a finite Blaschke product of order two. Second, there are several questions in this
area that are not yet settled and it is conjectured that the solution to these problems
should involve a finite Blaschke product.

Recall from (1.0.2) the Schur class .7 of all analytic functions f : D — D~.
For f € . with Taylor series expansion

f@ =) ad"
n=0

at the origin, one can ask about the possible values of r € [0, 1) such that
o
Z lan|r™ < 1, fe. (8.0.1)
n=0

This inequality holds when r = 0 since
laol = 1 f(0)] < 1, fes.

H. Bohr [9] observed that (8.0.1) is true when r € [0, %]. This work was expanded
further by M. Riesz, Schur, and Wiener [32] who independently showed that (8.0.1)
holds when r € [0, %] and that %, now called the Bohr radius *By, is the best possible
constant.

© Springer International Publishing AG, part of Springer Nature 2018 155
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8.1 The Classical Bohr Radius 2B

In this section we present four equivalent definitions of the Bohr radius 28¢. Each

point of view has its own merits and is important for further generalizations.

In subsequent sections, we will provide several proofs of the fact that B¢ = %

For f € .7, let
o
m(f.r) =Y lalr".  rel0,1). 8.1.1)
n=0
Observe that for each f € . the function r — m(f, r) is increasing on [0, 1) with
m(f,0) = lag|] < 1.

It is important to note that for some f € .7, the function m(f, r) assumes values
larger than 1. To see this, let b be the disk automorphism

a—z

b(z) = (8.1.2)

1—az’

in which a is a free parameter in (0, 1). Then b € .¥ and a geometric series
computation confirms that

o0
bx)=a+@ -1 a" ' (8.1.3)
n=1
Thus,
1 — 24>
mp,ry = EL 290 o, (8.1.4)
1 —ar

and hence m(b,r) > 1 whenever r > (1 + 2a)~!. This allows us to make the
following definition.

Definition 8.1.5 The Bohr radius is the unique value B € [0, 1] that satisfies the
following.

(a) Forall f =Y "7 a,z" €.7,

oo
D lanlr" <1, ref0,Bol.
n=0
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(b) For eachr € (*By, 1), thereis an f = ZZO:O a,7" € & such that

o
Zlan|r" > 1.

n=0

Although we have claimed, in our introductory remarks, that By = % at this
point we can only conclude that 98¢ exists and belongs to [0, 1). This will be
remedied shortly.

Definition 8.1.6 Suppose that f = Y o> a,z" € L. If > 02 lay| > 1, define
¢ = c(f) to be the unique value in [0, 1) such that

m(f,c) =1, (8.1.7)
otherwise, let c¢(f) = 1. For example, (8.1.4) shows that m (b, c(b)) = 1 when

1

b) = . 8.1.8
c(®) 1+ 2a ( )
Also define
M(S, r) := sup m(f,r), rel0,1), (8.1.9)
fes

and observe that 91(.¥, 0) = 1.

Since M(7, r) is an increasing function of r, we conclude that M (7, r) > 1
for all . Although the notation . in 9(., r) might appear redundant, later on we
will define a similar quantity for sets of functions other than the Schur class .. We
leave it to the reader as an exercise (see Exercise 8.1) to prove the following.

Proposition 8.1.10 The Bohr radius B satisfies the following.

(a) By =inf{c(f): f e S}

(b) By is the value for which (., r) = 1 forr € [0, Bo] and M(S,r) > 1 for
r € (B, 1).

(c) By is the largest r € [0, 1) for which (S, r) = 1.

If f is an arbitrary bounded analytic function on D, not necessarily in the Schur
class, then

m(f,r) <M, )l flloo, r €0, 1). (8.1.11)

Therefore, computing or estimating 9(.7, r) is of relevance for understanding the
rate of growth of bounded analytic functions. This is not an easy task. In fact,
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a precise formula for 9(.7, r) for all values of r € [0, 1) is unknown. Some
elementary upper and lower bounds for 91(.%, r) are provided below. We also
provide a formula for 91(.7, r) for certain values of r.

Before getting into the proof of the following lemma, the reader may wish to
review Fatou’s theorem concerning radial boundary values of bounded analytic
functions (Theorem A.3.1 in Appendix A.3) along with some basic facts about
Hardy spaces; see (A.4.1) in Appendix A.4.

Lemma 8.1.12 (Upper Bound)

M(S,r) < rel0,1).

1
vl—rz’

Proof Let f =Y 72 ay,z" € .. By the Cauchy—Schwarz inequality,

m(f.r) =Y lan|r"
n=0

i~ 5 /oo 3
n=0 n=0
1

271’ X d@
=(/0 |f<e19>|25) T (by (A.4.1))

Il —

1
< flloo » —= (by Theorem A.3.1)
> V1 —r?
1
< ——
V1 —r?
Now take the supremum with respect to f € . and obtain the desired result. O

Lemma 8.1.13 (Lower Bound)

1 ifo<r<i,

ML, r) > 3_m

if % <r< 1.

,

Proof The constant function f = 1 belongs to . and so
m(<,r) > 1, r e[0,1).

We now obtain a better estimate for r > % by using the automorphism b
from (8.1.2). Then (8.1.4) provides
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Fig. 8.1 The lower bound in 3r
Lemma 8.1.13

wl=
wIN

a+ (1 =2a>r

1—ar

ML, r) > , r €[0,1). (8.1.14)

For each fixed r, we maximize the right-hand side in the preceding inequality. If
r € [0, %], then (8.1.14) yields 9(,r) > 1, which is already known. When
r>= % the optimal value of

a+ (1 =2a%r

(8.1.15)
1—ar

occurs when

2— 20 =)

a=——.
2r

Substituting a into (8.1.14) yields the required lower bound; see Fig. 8.1. O

8.2 Computing 8
We provide two proofs of the fact By = % Our first proof is from [110] and relies

on the following lemma that handles a special case.

Lemma 8.2.1 (Paulsen—Popescu-Singh) Ler

00
f=2
n=0
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be analyticon D. IfRe f < 1 and f(0) > O, then m(f,r) < 1 wheneverr € [0, %].
Proof For fixedr € [0,1) andn > 1,

1 2 . .
—/ Re (1- f(re'™)) e do
T Jo

__/2n<1_l ( l@)_lﬁ) _in9d9
=7 2fre 2fre e

—_—

1 2w 1 0 1 o]
= —/ _ 5 Zakr elk9 - Zakrke—th E_ln9d9

b

k=0 k 0

1 2 ) 00 2 46 00 o 40
= _/ o—inf gy _ Zakrk/ el(k—n)92_ _ @rk/ el(_k_n)gz_

T k=0 0 T =0 0 T

n

= —aur

by (A.4.4). Since Re f < 1 and ag = f(0) > 0,

1 2 )
" <~ f IRe(1 — f(rei®))|d8

T Jo

1 27

=— (1 —Re f(re'?))do
T Jo

=2(1 — ag) (8.2.2)

by the mean value theorem for harmonic functions, or a power series computation
based upon (A.4.4). Let r — 1~ to obtain the important estimate

lan| < 2(1 — ao), n> 1. (8.2.3)

This can be strengthened significantly; see Lemma 8.2.8 below. If r € [0, %], then

[e.e]

m(f,r) =Y lan|r" < ap+2(1 —ao)Z O

n=0 n= l

We continue to follow [110] and apply Lemma 8.2.1 to obtain the following.
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Theorem 8.2.4 B = 1.

Proof If f € .#,then Re f < 1 and a suitable unimodular constant multiple of f is
nonnegative at the origin. Then (8.2.3) implies m(f, r) < 1 forr € [0, %] as above.
Taking the supremum over f € . yields

M, <1, relo il
Thus, By > % Now let b denote the automorphism (8.1.2) and use (8.1.8) to get

1 1
= f < i = —. 8.2.5
Bo = m () 0<n;<1 1+2a 3 ( )

This completes the proof. O

The proof above provides disk automorphisms b for which c(b) is arbitrarily
close to 5 It is natural to wonder whether there is an f € % such that c(f) = 3
The following corollary shows that no such extremal function exists.

Corollary 8.2.6 There isno [ € .7 for which c(f) = §

|—.

Proof Suppose toward a contradiction that f = Y °2 a,z" € . and c(f) = %
Then (8.2.3) yields
oo (o) 1
1= lanl(3)" < laol +2(1 ~ lao) Y 5 =1
n=0 n=1
and hence
lan| = 2(1 — laol), n>l. (8.2.7)

However, f € . and hence Parseval’s formula (A.4.3) ensures that

o 27

. do
Z|an|2=/ [P <1
n=0 0

In particular, @, — 0, which along with (8.2.7), shows that |ag| = 1 and @, = 0
for all n > 1. In other words, f is a constant function that satisfies c(f) = 1, a
contradiction. O

We now provide another proof of Theorem 8.2.4, also from [110]. This proof
employs Wiener’s inequality (Lemma 8.2.8), which is a strengthened version
of (8.2.3). The advantage of this second method is that it permits us to compute
some of the other Bohr coefficients; see Sect. 8.3.
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Lemma 8.2.8 (Wiener’s Inequality) If
o
f == Z anZ” (S y N
n=0

then
lan] < 1—laol®>, n>1.

Proof Since f € ., we may consider the bounded linear operator on the Hardy
space H? (see Appendix A.4) given by

Ty : H* — H?, Trg = fg;

this is a special example of a Toeplitz operator (see Appendix A.7). In fact, the
operator norm ||T7|| of Ty satisfies ||T¢]l = | flloo (Theorem A.7.3). We can
identify Ty with its matrix representation with respect to the orthonormal basis
1,z,2%, ... of H? thatis,

ap 0 00 ---
aiay 0 0 ---

Ty=|@arap 0 ---|; (8.2.9)
asz az ay ag - - -

see Exercise 8.4. Let ¥ = span{l, z"} and let T be the compression of T to ¥;
that is T = Py Ty|y, in which Py is the orthogonal projection of H 2 onto 7.
Then (8.2.9) reveals that
T _ |:ao 0] ’
ap ao

where we have identified 7 with its matrix representation with respect to the
orthonormal basis {1, "} of #. Since | T|| < [|T¢]l < || flloo < 1, it follows that T
is a contraction. This occurs precisely when

—apay 1— |a()|2
is positive semidefinite; see (A.6.5). A computation confirms that
0 <det(/ = T*T) = (1 — lao|*)* — lan|?,

which implies the desired result. O
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Proof (Second Proof of Theorem 8.2.4) Using disk automorphisms, we proved
in (8.2.5) that By < % Hence it suffices to establish the reverse inequality. If
f=>2panz" € 7, then Lemma 8.2.8 yields

m(f,r) = lanlr"
n=0

o0
< laol + (1= lao) Y r"

n=1

.
= lao| + (1 — |ag|*) ——
1—r

whenever r € [0, 1). If r = %, then

m(f, 3) < laol + 3(1 — Jaol?),

in which |ag| < 1. Since the maximum of the function
1 2
X x+ 5(1 —x°)

on [0, 1] is 1, we conclude that m(f, %) < 1. Take the supremum over f € . to
obtain (., %) < 1. O

8.3 The Generalized Bohr Radius 23

We follow the path laid out in Sect. 8.1 and generalize the concept of the Bohr radius,
where the Schur class .# is replaced by

Fs=f ey
that is,
Fs=(fes fO=FfO = =fDO)=0). (8.3.1)

Definition 8.3.2 Fix any integer k > 0. The Bohr radius of order k, denoted by By,
is the constant 2B € [0, 1] that satisfies the following.

(a) Foreach f =3 ", ap7"t* e k7,



164 8 The Bohr Radius

oo
Dolanlr"™ <1 e 0, Byl
n=0

(b) Foreachr € (B, 1), thereisan f = Y °° apz"t* € zF.7 such that
n=0

o0
> lan ™t > 1.
n=0

Implicit in the preceding definition is the existence and uniqueness of the B;. An
approach analogous to that used in the discussion prior to Definition 8.1.5 justifies
this apparent oversight; we leave the details to the reader. In terms of the quantity
c(f) from (8.1.7), we may write

B = inf c(Z* F).
k flélyc(Zf)

In terms of the quantity (%, r) from (8.1.9), for k > 1 it follows that By is
the unique solution to

M, r) = 1. (8.3.3)

Indeed, for £ > 1 the function r +— rkﬁﬁ(ﬁﬁ , 1) is strictly increasing and hence
r (S, r) = 1 has a unique solution in (0, 1). Observe that Definition 8.3.2 is
equivalent to the classical one when k& = 0. For k = 0, we have (¥, r) = 1 on
the interval [0, 2B¢] and that is why in Proposition 8.1.10 we insisted that B is the
largest solution to M (S, r) = 1.

From (8.3.1) we may also say that

By = inflc(f): f €, fO) =f(©0) == 4D =0}

Since r**1 < r¥ on (0, 1) and M(Z, r) is increasing and satisfies (., r) > 1
for r > *By, it follows that By < Bjiq. Since M(S,r) - oo asr — 1~ by
(8.6.17), we also see that B, — 1 as k — oo.

We now compute the Bohr coefficient 8. The estimate

0.6 <*B; < 0.7071

was first obtained by Ricci [117]. Fields Medalist Enrico Bombieri [10] gave an
explicit formula for M (.7, r) when r € [%, %@]. This result is Theorem 8.6.15 and

in particular it implies that 81 = \/LE We follow Paulsen—Popescu—Singh [110] and

use the upper and lower bounds provided earlier to evaluate 5.

Theorem 8.3.4 B, = fz
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Proof By Lemma 8.1.12,

MS, ) < V2,
and, by Lemma 8.1.13,
1

Therefore
1 1y _
zégn(ép,zé)-— 1.

L

This identity, together with (8.3.3), implies that ‘B = —=. O

S

8.4 A Localized Bohr Radius

Let us introduce another generalization of the Bohr radius, in which the Schur class
. is replaced by

Sho={f e f(0)=1r}, A€ [0, 1).
Observe that each member of ., has a Taylor series representation of the form
f@=rt+arz+a?+---.

Definition 8.4.1 5(()) is the unique number in [0, 1] that satisfies the following.
(@) Forall f = A+ 02 a,7" € S,

o
Y lanlr" <1, r€[0, Bo)].
n=1

(b) Foreachr € (Bo(hr), 1), thereisan f =1+ > 2, a,2" € .7 such that

o
A+ Z lap | > 1.
n=1

As with Proposition 8.1.10,

Bo(h) = fien% c(f)
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and Bo(A) is unique solution to M(F, r) = 1. Since By = % and ¥, C .7, we
conclude that

1
Bo(h) = 3 A €0, 1).

Furthermore, as a consequence of the definitions,

By = inf Bo(h).

oa<l

After developing more tools, we will estimate B (1) in Corollary 8.6.8 below.

In Corollary 8.2.6 we showed, for the classical Bohr radius 8¢ = %, that there is
no f € . for which By = ¢(f). In other words, there is no f = Zf,ozo a7’ € S
for which

o0
> lan B = 1.
n=0

For the generalized Bohr radius B (1), the story is different.

Theorem 8.4.2 For each ) € [0, 1), there isan f = A + Z;ﬁ] a,7" € S such
that Bo(A) = c(f), that is

o0
hot D lan|Bo()" = 1.

n=1

Proof By (8.1.2) and (8.1.8),

Bo(A) < <1

1
14 2A
Since

Bo(h) = fien;k c(f)s

there is a sequence f, € . such that

Bo(2) < ¢(fp) < min {%o(k) + % } : (8.4.3)

I+ 2A

Because f, € . C ., we see that { f,, : n > 1} is a normal family. By Montel’s
theorem, it has a subsequence that converges uniformly on compact subsets of D.
Without loss of generality, we may assume that f;, itself converges to f uniformly
on compact subsets of .
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First, f(0) = lim,—,  f;,(0) = X and hence f € .. Second, writing

H@ =24 a(f) and f@)=xr+) a()i,

k=1 k=1

the Cauchy integral formula confirms that

Jim ai(fn) = ak(f), k=1 (8.4.4)

Third,
Y la(fle(f) =1,
k=1

and the terms of the series are dominated by

i(uzx)k =

k=1

Note the use of the fact that |a, (f;,)| < 1 since f, € .%: see Exercise 8.5. Therefore,
by (8.4.3) and (8.4.4) and the discrete version of the dominated convergence
theorem,

Y lar(HIBo)k = 1. (8.4.5)

k=1

An important observation is that, since A < 1, (8.4.5) implies that there is a k
with ax(f) # 0. Hence, f is not a constant function and thus m(f, r) is strictly
increasing. Therefore, (8.4.5) also implies that c(f) = Bo(A). |

If one attempts to adapt the procedure above for ., then the proof works up
to (8.4.5). But ax(f) = 0forall k > 1 and |ag(f)| = 1. Hence we cannot proceed.
In fact, we have Corollary 8.2.6 which says that f does not exist!

We call functions that satisfy the conclusion of Theorem 8.4.2 extremal functions.
Later on, we will show that they are disk automorphisms.

The local Bohr coefficients Bo(}) can be generalized in the following way.

Definition 8.4.6 Fix any integer k > 0 and A € [0, 1) and define B4 ()) to be the
number in [0, 1] that satisfies the following conditions.

(a) Forall f = Azk 4+ 3" a,z"t e .7,
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o
k> a1 e [0, Bo)].

n=1

(b) Foreachr € (Bo(A), 1), there is an f = Azk + 3°°%, a,z"* € X7 with

o
ark 4 Z |an|r"+k > 1.

n=1

As in previous situations, we define

Br(r) == fie‘?% cZ* f)

and By (1) is the unique solution of the equation r*9t(.%#;, r) = 1. Furthermore,

By = inf Br(h), k>0,
0<a<l

and
B (0) = By, k>0.

We did not consider B4 (1) for a good reason. Indeed, .#] contains only the
constant function 1 and hence there is little to say.

8.5 Estimates of Landau and Bombieri

For p € (0, 00), r € [0, 1), and an analytic function f on D, let
f(€%) = fire'”)

be a dilation of f and let

2 . do %
— 0y p
||fr||p—</O [f(re™)] 271)

If p € [1, 00), then lim,_, |- || | » gives rise to the norm on the Hardy space H?.
This is entirely analogous to the introduction of the space H?; see Appendix A.4.
For p € (0, 1), the expression lim,_, |- || f-|| , no longer defines a norm because it
fails to satisfy the triangle inequality.
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Lemma 8.5.1 (Landau [92]) Suppose that f is analytic on |z| < R and has at
least one zero there. If z1 is a zero with minimal modulus, then for r € (|z1|, R) and
any p € (0, 00),

rif Ol _

B |Zl|'
I llp

Proof If z; = 0, then f(0) = 0 and the result is trivial. Consequently, we may
assume that f(0) # 0 so that z; # 0. Let z1, z2, ..., 2, be the zeros of f in |z| < r,
ordered so that

O0<lzil <lz2l €+ < anl <1

By Jensen’s formula (Theorem A.5.1),

n 2 ) 4o
log | £O)] = 3 log ('Z"') + [ ogifeeist.
k=1

o
Each term in the sum is negative and hence
|1 n o dO
log|f(0)] < log <— +/ log|f(re'")| ==,
r 0 2

which we rewrite as

27
r1f(0)] gexp</ 10g|f(re,-e)|d_9)'
|z1] 0 27

Take the pth power of both sides of the inequality above and then apply Jensen’s
inequality (Theorem A.5.2) to the right-hand side of

p 2
<r|f(0)|> gexp</ 10g|f(r€i0)|pd—9>
1] 0 27

p 2
(r|f(0)|) <\/ |f(r619)|pﬁ
|z1] 0 2

The result now follows upon rearranging the terms and taking pth roots. O

and deduce that

To effectively use Lemma 8.5.1 when p = 2, we need to estimate

2 ) d6
FAR =f If(re’e)l2—2 :
0 T
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1

0 0.25 0.5 0.75 1

Fig. 8.2 The upper bound from the right-hand side of (8.5.3) (as a function of r) plotted for the
values A = 0, 0.2, 0.4, 0.6, 0.8, 0.99

This is done in the following lemma.

Lemma 8.5.2 (Bombieri [10]) Let f € .%,. Then for each r € [0, 1),

1

2 2 242\ 2
AT —=2r°A

r—l——r) ) (8.5.3)

1 —r2A2

I frll2 < (

Moreover, the following statements are equivalent (Fig. 8.2).

(a) The equality holds in (8.5.3) for some r # Q.
(b) The equality holds in (8.5.3) for all values of r € [0, 1).
(¢) The function f is a disk automorphism

A — io
f@ =+ S

_ Aei“z ’
in which o is an arbitrary real constant.

Proof Let b, denote the disk automorphism

A—2z
by(z) = oz

and note that b, € .¥). Then
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g=brof
satisfies g(0) = 0, which means g € .#). By the Schwarz Lemma (Lemma 1.1.1),

lg()| <zl zeD, (8.5.4)

with equality for some z # 0if and only if g(z) = 'z for some real or. Write (8.5.4)
in terms of f as

|F(re'®y — Al < r|l — Af(re'?)], relo,1). (8.5.5)

Parseval’s formula (A.4.3) provides

1 2 .
> /0 I — freD?do = aPr* + laafr* + - = 1113 - 2% (8.5.6)

On the other hand, using the same technique,

1 2 )
o fo 11— Af(re')?do =1 —202 + 22| f+1I5. (8.5.7)

Then (8.5.5), (8.5.6), and (8.5.7) reveal that
£ 13— 22 < P21 =222 + A2 13,

from which the desired result follows. Equality holds in the preceding for some
r > 0 if and only if equality holds in (8.5.5) for almost all re’?. This occurs if and
only if g(z) = €'z for some real «. This leads to the proposed formula for f as a
disk automorphism. O

8.6 A Theorem of Bombieri and Ricci

We are now ready to find the precise formula for 9U(S;, r) for certain values of r
and 2By (1) for % < A < 1. We also provide estimates for the remaining values of r
and A; see Fig. 8.3.

Theorem 8.6.1 (Bombieri [10]) [f0 < A < 1, then

A+ =2)22r
m(y}”r): %, r e [O,)\,],
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0

IS
NI F
Hlw -
N

Fig. 8.3 Graphs of % for the values A = 0, 0.2, 0.4, 0.6, 0.8. For r € [0, A], this quantity
equals M(A, r); for r € (A, 1), it is a lower bound for M(.7, r)

and

1

A+ (1 =222 1—22\2
A2 o <t r () e,

1—ar 1 — 2

Proof To establish the lower bound, consider the disk automorphism
A — eiaZ
= 8.6.2
f@ =T (8.6.2)

in which « is real. Then f € .%;,

o0
f@ =1+ 2= DAl zeD,

n=1

and

oo 2
At (1 =21
m(for)y=r+Yy (1= " = % re[0, ).

n=1
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Consequently,

A+ (1 =222
M(F5. 1) > ’Lf—k)r o el0,1). (8.6.3)
— AT

Finding functions f that yield equality in (8.6.3) is more delicate. Let

00
f:)\—l—Zanz"eY;h

n=1

be nonconstant and define

o0
g@) = x4 ) laylz".

n=1

Analogous to the radius ¢ = ¢(f) defined in Sect. 8.1, let ¢, = ¢, (f) be the point in
(0, 1) for which g(c,) = o. Note that we need to assume that ¢ > A. One can also
see that ¢ = cj. Since the coefficients of g(z) are all nonnegative, |g(z)| < o for
all |z| < ¢5. Thus, we can apply Lemma 8.5.1 to the auxiliary function 7 = o — g.
Note that i(c;) = 0 and % has no zeros in |z]| < ¢5. Forcs < r < 1, Lemma 8.5.1
implies that

(0 —Mr
> 0o 8.6.4
“Z T (8.04)

The parameter p = 2 has the advantage that we can relate the L>-norm of /, with
that of f;.. In fact,

5 ] 2 0512
115 = 5/0 |h(re™)|"d6
=0 =2+ la PP+
=0’ =20+ W2+ rr+-0)
1 27T .
=02 20 + —[ | f(re'?)|>do
2 0
=02 = 2% + | £ 13-
Therefore, by (8.6.4),
(o0 — Mr
T
(02 =2x0 + [ £13)?

Co =
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Up to now, we know that the inequality above is valid whenever r € (cq, 1).
However, since || f; |2 = | f(0)| = A, for any r € [0, 1) we have

(0 — Mr
(02 —2%0 + ||fr||%)%

<r.

In particular, for r € [0, ¢, ], we see that
(o0 — Mr

Co 2T 2 T
(02 =220 + 1 -13)°

Therefore, for each f € .#), the estimate
(o0 — Mr
1
(02 = 2% +11£13)?

co(f) = (8.6.5)

holds for all € [0, 1). Applying the upper estimate in Lemma 8.5.2 gives us

1
2 )\'2 ) 2)\'2 )
H—r] . (8.6.6)

co(f) = (@ = Mr [02 —2%0+ —

We have freedom in the choice of r € [0, 1) to obtain a good lower bound. By
continuity, any value of r € [0, 1] is acceptable. At this point, we need to consider
two cases.

Case I, o0 € [A,2X] The optimal result is obtained when
1

o—A 2
r=\————— .
A1 =2X2 +2o)

The restriction o € [A, 2A] ensures that r € [0, 1]. By (8.6.6), this choice leads to
the lower bound

o—A

>
<) > T e — e

Therefore, for each f € .7,

o—A
5 | <0, € [A, 2A].

m<f1+xo—2x2) o o2
If we put

o—A
§=——
14 Xxo —2)2
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in the above we obtain

A4+ (1 —212)s

m(fs) <

. sel0,Al (8.6.7)

Note that the restriction o € [A, 2A] implies s € [0, A] and thus, by (8.6.3), we
obtain the precise formula for 91(.%,, s) for s € [0, A].

Case ll, 0 € [2A, 00) The optimal radius is » = 1. Hence, by (8.6.6), we obtain the
rough estimate

o—A
/ (1+02—2)»o)%.

Therefore, for each f € .%,

o—A
m|f,——— | <o, o =2
(14+0%2—2x0)2

Put
o—A
§=—
(14+02—-2)0)2

in the above to obtain the desired result. O

Corollary 8.6.8 (Bombieri [10], Ricci [117])

(a) Bo(r) =

T o for%<A<1.

_|_
1
1—2)\?2 1 21
(b) (T) < Bo(M) < for fz <A<
1

1+2x
1—2\2 1 V2-1
%) < < — <A< )
(c)( 5 ) \%0()\)\\/z for0 < A < 3

Moreover, when A € [%, 1), the extremal functions from Theorem 8.4.2 are precisely
the disk automorphisms (8.6.2).

Proof Casel, A € [%, 1): According to the equality in Theorem 8.6.1, the equation
M(.-S., r) = 1is equivalent to

A+ (1 —=22%r
1—Ar
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Solve for r and obtain

r=Bo(A) = Ton

In order for r € [0, A] to occur, we must have

which leads to the imposed condition % <A<

(8.6.9)

We now discuss the extremal functions. In the first place, the previous paragraph
shows that the disk automorphisms from (8.6.2) are extremal functions (even when

A= %). Now, suppose that f is an extremal function for this case; that is,

1
fed ad ()= 150 re(d, .
Hence by (8.6.5),
1 lzx> d=Dr e,
+ (1 =21+ [1£13)*

Rearranging the terms, we can write the inequality above as

Il > (=220 +20%% = 1422)° . relo.D).

For the specific radius r = (A + 212)_% € (0, 1), this inequality becomes

1
242 - 2r2A2) 2

FAPE ( T

Hence by Lemma 8.5.2, equality holds and f is the suggested disk automorphism.

Case II, ) € [0, %) We now appeal to the inequalities in Theorem 8.6.1. We see

that if 21(Sy, r) = 1, then

1

A+ (1 =222 1—2a2\2

ArA =2 ,
1—Ar 1—r2

Solving for r gives
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In this case r € [A, 1). Hence, we need to assume that

1 —2\2
I >A"
2

which leadsto 0 < A < % The lower bound is established, but we can improve the

upper bound for A < @

Case 1L 0 < 1 < Y31 Let
a—z
f@=x2+1-2z ; (8.6.10)
1—az
in which a is a free parameter in (0, 1). Then f € %} and, by (8.1.2),
o0
f@=r+0=naz+1-1@ 1) a" " (8.6.11)

n=2

Hence

m(fir) =i+ (1 —=Nar+ 1 =21 —a% Za”_zr"
n=2

ar + (1 — 2a2)r2

=i+d-=% 1—ar

Consequently, ¢ = c¢(f), which is obtained via the equation m(f, ¢) = 1, satisfies
(1 —2a*c? —2ac—1=0. (8.6.12)

The smallest c is obtained when a = % (see Exercise 8.6), which incidentally gives

c(f) = (8.6.13)

1
V2
Therefore, again recalling that
Bo(A) = inf c(f),
0(A) At o))
we conclude that

Bo(r) < A el0, D).

1
\/57

Compared with the bound 1/(1 4 21), this new bound is better if A < f— O
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Corollary 8.6.8 implies B (0) = %@ However, 281 = 8(0), and thus we obtain
the second proof of that 8| = Lz
From Lemma 8.1.13, we have the lower bound
3-8 —=r?2) 1

ms,rn>—Y" 2 reli (8.6.14)

r

The estimates in Theorem 8.6.1 enable us to show that the preceding is, in fact, an
equality forr € [%, \/Lj].

Theorem 8.6.15 (Bombieri [10])

— ./ _ 2
zm(y,r)zw, refy, 1.

W=

Proof In light of (8.6.14), we need only establish that 91(.%, r) is at most the given
quantity for r in the given range. Fix r € [%, %]. Since

M(S,r) = sup IM(SA,r),
0<a<1

the estimates in Theorem 8.6.1 yield

M(S, r) < max{A, B},

in which
1
A1 =227 1—2%2\?2
A = sup u and B = sup k+r(—2> .
r<a<t L —Ar 0<A<r lL—r
One confirms (see Exercise 8.7) that
3-8 —=r?) 1
A= ——— - B=——, (8.6.16)
r /1_ /2
11
andA}Bforre[g,ﬁ]. a

A formula for 9(, r) for all values of r € [0, 1) is still unknown. Currently
we know that

M, r)=1, rel0 ]

and



8.7 Notes 179

Forr > % a formula for M (7, r) is unknown. E. Bombieri and J. Bourgain [11]

proved that
3
! 1 T cms ! L1
ﬁ—c(s) Ogl—r NS ( ,V)<ﬁ, re[ﬁ, )

(8.6.17)
In particular, this estimate implies that

lim IM(S, r) = o0,

r—>1-

which is an interesting and nontrivial fact.

8.7 Notes

Alternate Proofs

Alternate proofs and generalizations of the Bohr radius can be found in [110, 117,
120, 126, 134].

Other Bohr Inequalities

There are other Bohr inequalities for various subclasses of the Schur class. We refer
the reader to the nice survey paper [104].

Harald Versus Nils

There is another “Bohr radius” from atomic physics due to Nils Bohr, the older
brother of Harald Bohr.

Harald Bohr, Footballer

The mathematician Harald Bohr was a member of the Danish national football team.
He won a silver medal at the 1908 Summer Olympics.
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8.8 Exercises

8.1 Prove Proposition 8.1.10.
8.2 In the proof of Lemma 8.1.13, prove that the optimal value of
a+ (1=2a%r
1—ar

occurs when

2—2(1-12)

a=—=
2r

8.3 Complete the details of the proof of Lemma 8.1.13.

8.4 In the proof of Wiener’s inequality (Lemma 8.2.8), prove that the matrix
representation of M y is the Toeplitz matrix in (8.2.9).

8.5 Use Fourier coefficients (see (A.1.2)) along with Fatou’s theorem (Theo-
rem A.3.1) to verify that if

00
F=Yu
n=0

belongs to ., then |a,| < 1 for all n.

8.6 In (8.6.12) show that the smallest ¢ in (1 — 2a?)c2 — 2ac — 1 = 0 is obtained
when a = %@

8.7 Confirm the identities in (8.6.16).



Chapter 9 ®
Finite Blaschke Products and Group Qe
Theory

In this chapter we explore two connections between finite Blaschke products and
finite group theory. For each finite Blaschke product B, we discuss the group
of continuous maps u : T — T for which B ou = B on T. We also
investigate conditions under which a finite Blaschke product B can be written as
the composition of two non-automorphic finite Blaschke products. This is related to
the monodromy group associated with B.

9.1 A Cyclic Subgroup

Let B be a finite Blaschke product of degree n. For each w € T, Theorem 3.4.10
says that the equation B(z) = w has exactly n distinct solutions on T. Thus, the sets
B~!({w}) for w € T form a partition of T and each set in the partition has exactly
n elements. Write

B7{1}) = {1, €2, ..., e},
in which the arguments are arranged so that
0<HH << <y <2m.
Define ¥ € [0, 27) for k € Z by
Y = ¥ (mod 2m) <— k=/{ (modn),
where k = £ (mod n) when k — ¢ € n’Z. For example, ¥,,+1 = ¥ and 99 = ¥,,.

As ¢ moves once counterclockwise on T, the Argument Principle shows that
the image B(¢) traverses the unit circle n times. As ¢ passes from e/ to e!Pk+1,

© Springer International Publishing AG, part of Springer Nature 2018 181
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B

e 0k+1 /\

&%

Fig. 9.1 B maps the arc subtended by ¢/’ and ¢!”*+1 once around the unit circle

the image B(¢) makes exactly one complete traversal of T; see Fig.9.1. Thus, B
bijectively maps each of the arcs

[0 | [ [ [ [,
[e'V1, e'P2), [e'72,e'™3), ..., [T, eV,

onto T. For each k € Z, define the bijective continuous function
@i e, M) > T, dp(e’?) = B(e'?). (9.1.1)
This produces only n distinct functions since
=Py < k=L (modn).

For two functions f and g on a set E, we use the notation f = g when f(x) = g(x)
for all x € E. According to the definition of the arguments ¥, we see that

lim @p(e'?) = lim @) =1 9.1.2
0—1>mz9k k(€ 0—:119113“ e(e”) ( )
0> 0<Vk41
and
B(o;' () =€, €7 eT. (9.1.3)

Define an equivalence relation ~ on T by
9~ %  B() = B(?).

Then

(B~'({w)) : w e T} (9.1.4)
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is the family of equivalence classes of ~. Each of the n arcs described above contains
exactly one element from each equivalence class. The following result shows that
elements of a conjugacy class (9.1.4) are uniformly separated from each other.

Lemma 9.1.5 If B is a finite Blaschke product, then there is 5 > 0 so that

0<le? —e? <5 = B #B(").

Proof Lemma 3.4.3, along with continuity and compactness, show that |B’| is
bounded away from_ ZEero on ']I‘ Thus, by the Mean Value Theorem, there is a constant
C > 0 sothat |B(e") — B(e'")| > C|s — t| for all s, ¢. |

Let € be the set of all continuous functions u# : T — T. This set, when endowed
with the binary operation of function composition, is a semigroup. Indeed,

(@) uj,up €¥ — ujour €%,
(b) (uyoup)ous =ujo (upous)foralluy,us, usz € ¢,
(¢c) ide%.

Here id denotes the identity map on T, which satisfies # o id = id o u = u for each
u € ¢. It is important to note that an arbitrary element of 4" need not be invertible
under composition. For example, consider u(z) = z> (a branch of /z cannot be
defined on all of T).

If B is a finite Blaschke product, then we may regard it as a (generally non-
invertible) element of & and define

Gp.={ue%:Bou=B}.
A short argument shows that G p is a sub-semigroup of €. In fact, much more is true.

Theorem 9.1.6 (Cassier—Chalendar [18]) Let B be a finite Blaschke product of
degree n. Then G g is a cyclic group of order n.

Proof Consider the bijective mappings @ defined in (9.1.1). For k € Z, define
functions u; : T — T by

. (0 i iVik iU (0 —1 i0
up : [, eVl — [e!Vith e Vitket), ur(e'’) = @7, (®;(e'?),

for j € Z (see Fig.9.2). Upon gluing these pieces together, we obtain a continuous
bijection u; : T — T. Moreover, (9.1.2) implies that

up(e) =€Vt and  lim ug(e'?) = Vit
9~>l7j+1
<41

Now observe that (9.1.3) ensures that

B(uk(e')) = B(@jfjk(qﬁj(e”))) = @;('’) = B(e')
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i

Up

\_/;[ﬂﬁrkﬂ

e Vjk

Fig. 9.2 The map uy takes the half open arcs subtended by 'V, ¢!?i+1 bijectively to the half open
arc subtended by e?i+k, e Ptk

for each ¢ € T. In other words, by the construction above, we obtain n elements
of G B-
To further clarify the situation, let us make the following observations.

(a) up =id.

®) uy =uy <= k=4« (mod n).

(©) up=uyoujo---oup (ktimes).

(d) upoug = ujyq.

(e) naively speaking, we say that u shifts forward each of the arcs

[, ™), [e'72,e'™), ..., [, "),

by k steps in such a way that it preserves the equivalence classes of ~. The
identity ui(¢) = ux(§) implies that ¢ and & belong to the same equivalence
class of ~.

These observations reveal that {ug, u1, ..., u,—1} is a cyclic subgroup of order n
in G . We claim that this exhausts G . This fact is based on the following property:
ifu, v € Gp are such that u(e!%) = v(e'%) for some ¢!% e T, then u = v. To verify
this, let

E ={e? € T:u(?) =v(?).

By assumption ¢/% e E. Since u and v are continuous functions, E is a closed
subset of T. By uniform continuity, there is a ' > 0 such that

dist(¢’?, E) <8 = |u('?) —v(?)| <3,

in which § > 0 is the parameter introduced in Lemma 9.1.5. According to the
definition of G g, we have

Bu(e®) = Bw(e”) = B(”), ¢’ €T,
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By Lemma 9.1.5, u(e'?y = v(e'?) at least for all ¢! such that dist(¢’?, E) < §'.
This shows that E is also an open set, so E = T.
To finish the proof, let u € G . Then

B(u(e'™)) = B(e'™) = 1,
and hence
ue’y e BTI{1) = {1, e, . e
Suppose that u(e'?1) = ¢!’ for some 1 < k < n. If we rewrite this identity as
u(e’1y = uy ('), then the preceding observation shows that u = uy. |

The following fact was stated and verified in the proof of Theorem 9.1.6.

Corollary 9.1.7 Let B be a finite Blaschke product. Let u : T — T be a continuous
function such that Bou = B. Suppose that there is an €% € T so that u(e'®) = %,
Then u = id.

9.2 Decomposable Finite Blaschke Products

We have seen in Theorem 3.6.2 that finite Blaschke products are closed under
composition. Indeed, if C and D are finite Blaschke products, then B =C o D isa
finite Blaschke product with deg B = (deg C)(deg D). In this section we consider
the following question.

Question 9.2.1 When can a finite Blaschke product B be written as
B=CoD,

in which C and D are finite Blaschke products of degree greater than one?
The restriction that both C and D are of degree greater than one avoids “trivial”
decompositions such as

B=¢o(@ 'oB) or B=(Bop)og !,

where ¢ € Aut(D) (which is a finite Blaschke product of degree one).

Definition 9.2.2 If B = C o D in a nontrivial way, then B is decomposable.
Otherwise, B is indecomposable.

Observe that if B is of prime degree, then B is indecomposable (Theorem 3.6.2).
The decomposability criterion covered here is a deep theorem of Ritt [119] (see
Theorem 9.6.1 below) that classifies decomposability in terms of the monodromy
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group associated with B. Our treatment is based on unpublished notes of Carl
Cowen [28] which he kindly agreed to let us use. Two other good sources for this
are [108, 109].

Definition 9.2.3 If B is a finite Blaschke product of degree n, then B is in
normalized form if

ak ap — 2
B(z) =z 9.24
©= H|ak|1—akz 029
in which ay, ..., a, € D\{0} are distinct. This is equivalent to the properties
B(0) =0, B'(0) > 0, B(a) =0 = B'(a) #0. (9.2.5)

Indeed, the first property follows from the factor of z in (9.2.4) and the last
property follows from the simplicity of the zeros. The second property follows from
the identity

d /& aiy ap — 2 “ ay ax — 2
B(Z)—Z—< ——_>+H——_,
k

dz bl lag| 1 — agz i lag| 1 — agz

which implies that
n
B'(0) = [ ] laxl > o.
k=2

Since we will state our decomposability condition for a finite Blaschke product
in normalized form, we first need to reduce the original decomposability problem,
stated for general finite Blaschke products, to one for Blaschke products in
normalized form.

Proposition 9.2.6 If B is a finite Blaschke product, then there are o, B € D and
& € T such that B = §(tp o B o 7o) is a finite Blaschke product in normalized form.
Moreover, B is decomposable if and only if B is decomposable.

Proof If B is a finite Blaschke product of degree n, let
={zeD:B'(z) =0}

denote the set of critical points of B and observe that V has cardinality n — 1
(Theorem 6.1.4). The set B(V) is also finite and hence there is a 8 € D\ B(V'). Thus

BB = a1, 02, ..., an)
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(the fact that there are n pre-images follows from Theorem 3.4.10) with the
property that

B(aj)=p and B'(aj) #0. (9.2.7)
Let o = «;. For a unimodular constant £ to be determined shortly, define
B(z) =&(tgo Bo1y) (9.2.8)

and notice that B is a finite Blaschke product of degree n that is a composition (pre-
and post-) of B with disk automorphisms. This will be important in a moment.
Since 74 (0) = a, we have

B-B@) _,

PO = @ —

and hence B satisfies the first property in (9.2.5) of a normalized form.
A calculation with the quotient and chain rules yields

~,  B(t)t,(=1+ B

B ' =¢ — (9.2.9)
(1 = BB(w))?
Using the identity
—1 +|a|?
4 —
WO =g

we can substitute z = 0 into the expression above for B’ to get

1 — o

2
0
1—1B2 ?

B'(0) = £B' ()

s~ince B'(a) = B'(a1) # 0 by (9.2.7). Now adjust the unimodular constant & so that
B’(0) > 0, which yields the second property in (9.2.5) of a normalized form.
Next, observe in the definition of B and (9.2.7) that the zeros of B are

rt;l({al, oy, ..., 0n}) = {wy, wo, ..., wy}.
Note that w; = 0. From (9.2.9) we see that

1= lef?
(1 —awp)*1 - |81

B'(wj) = £B'(t4(w)))
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1 — Jof?
(1 —aw)2(1 —1B81»)

= £B'(a))
£0

since B’(oej) # 0 from (9.2.7). Thus, B satisfies the third property in (9.2.5) of a
normalized form.

To finish, we need to argue that B is decomposable if and only if B is
decomposable. To this end, suppose that By, B; are finite Blaschke products with

Bi=¢oByot,

in which ¢,¢¥ € Aut(D) and B, = C o D is decomposable. Then, via the
associativity of function composition,

By =(poC)o(Do).
Moreover,
deg(¢p o C) =degC and deg(D o) =degD.

A similar argument applies to B> and hence B is decomposable if and only if B is
decomposable. Apply this fact to By = B and B, = B to complete the proof. O

Thus, in terms of whether or not a finite Blaschke product is decomposable, we
can assume that it is in normalized form.

9.3 The Monodromy Group

For a finite Blaschke product B of degree n in normalized form (9.2.4) let
Sp={weD:w=B(z), B'(z)=0} (9.3.1)
denote the set of critical values of B. Notice that .#p is the image of the set of
critical points {z € D : B’(z) = 0} of B. Since there are n — 1 critical points in D
(Theorem 6.1.4), .#p has at most n — 1 points in D. Now define
g = B~ N(I%) (9.3.2)
and observe that ,573 contains at most n(n — 1) points of D.

Consider the n-valued analytic function B! on D\.#3. Since 0 € D\.#3 by our
normalizing assumption, B~! has n branches

81782,-~~7gn
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at 0 where, for normalizing purposes, we number these branches so that
81(0) =0.

Example 9.3.3 Let

1
B() =z231—
2

and observe that B is in normalized form. The only critical point (in D) is
z=2—~/3~0.267949
and the critical value is
B2 —+/3) =7 - 4/3 ~ 0.0717968.

The two branches are

189

_1 V2 ldz+1 _ 1 Ny
81(2)—1(Z+1— z —14Z+1) and gz(Z)—Z(z+1+ z —14z+1).

Observe that g1(0) = 0 while g2(0) = % (and that 0, % are the two zeros of B).

Let

Lp ={y:[0,1] > D\ : y is continuous, y (0) = y (1) = 0}

be the set of continuous closed curves in ID\.#p that begin and end at the origin; see

Fig.9.3.

Fig. 9.3 A typical curve

y € Lp. Notice how y does
not intersect the critical
values of B
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Fig. 9.4 The curve y - § is
obtained by following § with
4

For y,§ € Lp, let
y -8 9.3.4)

be the element of Lp obtained by starting with  and then continuing with y; see
Fig. 9.4. This is the usual product of curves used in algebraic topology.

If y € Lp, then g can be analytically continued along y and we let y*g denote
the final element of this continuation (see [100, Vol. III, Ch. 8] for a treatment of
analytic continuation along arcs). Since y*g; must be one of the branches of B~
at 0, we have

y*g1 €{g1. 82, ... &n}-

We can do an analogous construction to define the final elements

Y. v es, ... v .

In each case,

y*gj €{g1.82, ... &}

The alert reader might think that the definition of y*g;, the final element of the
continuation of g; along y, depends on the curve y. It does not. Indeed, if y1, y» €
L g with y; homotopic in D\.#3 to y, then by the homotopy lemma [105], y,"g; =
Y5 &;- In other words, the definition of y*g; depends only on an element of the
equivalence class of curves in L p that are homotopic to y in D\.5. We now think
of y* as a function from the set of branches {g1, g2, ..., g} to itself.
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Fig. 9.5 The curve ¥ is the same as y but traversed in the opposite direction

Definition 9.3.5 For a finite Blaschke product B in normal form, let
Yp = {y*:y € Lp).
For y € Lp, define ¥ € Lp by the parameterization
y#)y=y(l—1), tel0,1]

Observe that ¥ is just  with the direction reversed; see Fig. 9.5. We use e to denote
the element of L p parameterized by

e(r) =0, re]0,1]
With the operation y - § defined in (9.3.4), note that
Vivy=vy-v=e

We also see that

and
(y-8)"gj=v"(6%g), 1<j<n.

Thus, ¥p is a set with a well-defined binary operation y* o §* (which is also
compatible with the operation y - §) and with an identity element e*. Moreover,
the preceding also shows that
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and hence each element of ¢p has an inverse. Consequently, ¥p is a group, the
monodromy group of B, and each element of ¥ is a permutation of the branches.

By equating the branches {g1, g2, ..., g,} with the set {1, 2, ..., n} in the natural
way, we see that ¥p is isomorphic to a subgroup of the symmetric group S, the
group of permutations of the set {1, 2, ..., n}.

9.4 Examples of Monodromy Groups

Through the next several examples, we use a technique of Cowen [28] to “see” the
monodromy group ¥5.

Example 9.4.1 The finite Blaschke product
b(z) = 7*

is not in normalized form since, among other things, it has a zero of degree 4 at
the origin. We follow the recipe from the proof of Proposition 9.2.6. Indeed, we
compute the critical points

V ={z:b'(z) =0} = {0}

and choose % € D\b(0) = D\{0}. To put b in normalized form, observe that since
b(%) = %, we can use the formula in (9.2.8) to define

1 _b(l/z—z)
16 1—-z/2
B(z) =t1y160bo 1120 = i
- 160(=7)
A computation shows that
32
B(0)==>0
0) 55
and that B has zeros at
—0 10 6 _10+6i 4
1 =Y, Z2—17 17° Z3—17 17° Z4—5~

Thus, B is in normalized form. One computes the set of critical points
zeD:B'()=0}={3)
and the set of critical values

g ={weD:w= B(), B/(Z)=0}={1_16}_
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(5]

()

=

B

(@)

o (@ B

Fig. 9.6 (Left) The line § that connects « and 8 and passes through the critical value z = %.

(Right) The inverse image of B~1(8). The point on the right where all of the curves meet is the
critical point z = % which gets mapped to the critical value % by B. If one travels on one of the
triangular shaped regions that does not contain one of the zeros of B (marked by dots in the right
hand image), from («) to the center point % to (B) and then along T back to «, then Rouché’s

theorem ensures that B maps this path from « through the critical value % to B along T (to the
right) back to «

Let us now compute ¢ using [28]. The first step is to pick two different points
o and B on T and a curve § € D™ that passes through «, 8 and the critical value %.
For this particular case, we pick

__W 1@’ __+W 1@

and let § be the chord that connects o and 8 (which passes through % but not 0);
see Fig. 9.6.

Observe that B~1(8) is, at least locally, a curve except at the critical points of

B, where B~1(8) will consist of intersecting curves; see Fig.9.6 in which (a) =

~I({a}) and (B) = B~1({B})). The curve 8, a straight line in this case, divides
D into two regions, one of which contains zero, while B! (8) divides D into eight
regions, four of which contain a zero of B; see Fig. 9.6.

There are several types of homotopy classes of curves y € Lp one can consider
when exploring y*. The first are the curves y that do not loop around the critical
value 7 = 1—16. A representative example of such a curve is shown in Fig. 9.7. Notice
how y; starts at the origin, crosses § between z = 11—6 and z = B, loops around,
crosses § again between z = % and B, before it returns to the origin. This means
that B~ (1) will start at the z;, cross B! (8) between the critical point z =  and
(B), turn around, recross B~!(8) between () and the critical point z = %, before it
returns to z;. With g1, g2, g3, g4 being the branches of B~! with the understanding
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B

RN

B)
T \
0 0L 21

a @ B)

r

(@)

)

()

5 ®
=
23
X )

2

(@)

Fig. 9.7 (Left) A curve y) that starts at the origin, crosses § between z = % and z = B, loops

around, crosses § again between z = 11—6 and B, before returning to the origin. (Right) The inverse
image curves for y;. Observe how y; starts at 0, crosses § (the straight line connecting « and )
between the critical value z = 11—6 and B, turns and crosses & again before it returns to 0. Notice

how the image curves B~!(y;) start at the zeros of B, crosses B~1(8) between the critical point
= % and (B), turn and cross B~!(8) again before they return to the respective zero of B

that g1 (0) = 0, we see that the final element y,"g; is indeed g;. Thus, we have

v {81, 82, 83, 84} — {81 82, &3, 84}, (g =g;.

In other words, y;" is the identity permutation.

Now consider y» € Lp which loops once around the critical value z = %; see
Fig.9.8. Notice how y» first crosses  between the critical value % and «, turns,
recrosses & between f§ and the critical value, before it returns to the origin. With this
in mind, observe how B~!(y») starts off at Zj, Crosses B~1(8) between («) and the
critical point z = %, crosses B~ (8) between (8) and z = %, and finally arrives at
Zj+1 (again see Fig. 9.8). This means that

vy {81, 82, 83, 84} — {81, &2, &3, 84} Y5 (8j) = gj+1.

This computation also shows that

Vs () = (2 v2)* 1 {81, 82, 83, 84} — {81, 82, 83. 84}, V3 (¥3)gj = &j+2-

Since there are only two basic homotopy classes in L g, namely those curves that
do not loop around the critical value z = % (for example, y;) and those that loop
around z = 11—6 (for example, y», y2 - 2, and y» - y2 - ¥2), we see that the monodromy
group ¥ is a cyclic group of order four that is isomorphic to the subgroup of Sy
generated by the 4-cycle (1 2 3 4). This last observation will be important later.
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9

B ®

O\
’ ®)

(@)

(5]

()

a (@) B)

Fig. 9.8 The curve y» (left) and the inverse image curves for y» (right). Notice how y» first crosses
8 between the critical value % and «, turns, recrosses § between § and the critical value, before
it returns to the origin. With this in mind, observe how B‘l(yz) starts off at z;, crosses B~1(%)
between (o) and the critical point z = % crosses B~1(8) between (8) and z = % finally arriving
at zj41

Example 9.4.2 The finite Blaschke product
b =2( ik )
)=z \—
1- %z

is not in normalized form since it has zeros of order two at the origin and at z = %
One can normalize b to obtain a finite Blaschke product B that has four distinct
Zeros 21, 22, 23, 24 (with z; = 0), three critical points p1, p2, p3, and two distinct
critical values vy, v2. We are intentionally vague about the exact numbers involved
since they are typographically cumbersome and were only selected to make the
illustrations reasonable to view.

‘We connect the two critical values v; and vy with a curve § that meets the circle
at two points o and B. Note that this curve does not pass through the origin; see
Fig.9.9. As with the previous example, we draw the inverse image curves B! ().
Observe that § divides D into two regions, one of which contains the origin, while
B~1(8) divides I into eight regions, four of which contain a zero of B.

Next we label the zeros of B counterclockwise as z1, 22, 23, z4 (with z; = 0)
and, as usual, denote the branches of B! at 0 by g1, &2, &3, g4. For the four most
basic types of homotopy classes in Lp, y1, 2, ¥3, V4, We draw B! (yj) and take
note of the permutations of the zeros; see Figs.9.10, 9.11, 9.12, and 9.13.

Observe from the corresponding drawings, and the discussion from the previous
example, that

Y8 =g&j j=1234,
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/—\ B)Tz3 e )
B v (@)l :

B

Fig. 9.9 The curve § passing through the critical values (leff) and the curves B~!(8) passing
through the critical points (interior intersection points) (right)

B (@) B) (o)

® s o ®
B e % (a%)

y ()

s o (@)

N

Fig. 9.10 The curve y; (left) and B! (y)) (right)

Y2 81 = &2, Vs 83 = 84,
Y381 = 82, Y382 = 83, Y383 = &4 Y384 = 81,
Y481 = 83, Y482 = 82, Y484 = 84

Equating g; with j, we see that ¢p is the subgroup of Sj generated by the
permutations

1234, 1234, @13).

In fact, ¢p is isomorphic to the dihedral group of a square; see Exercise 9.3.
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N B ®)
B v (@7

> B) @)
72
0 21
Fig. 9.11 The curve y; (left) and B! (y2) (right)
/\ B)Tz3 B
B (a)
> B) (@)
73
0 4
Fig. 9.12 The curve y3 (left) and B! (y3) (right)
Example 9.4.3 The finite Blaschke product
1 1
Z—3 Z— 5
b(Z) — Z2 . 3 2
1- %z 1- 1z

is not in normalized form since it has a double zero at the origin. One can
normalize b and obtain a normalized finite Blaschke product B. This normalized
finite Blaschke product has four distinct zeros z1, z2, z3, z4 (With z; = 0), three
distinct critical points ¢y, ¢2, ¢3, and three distinct critical values vi, va, v3. In
Fig.9.14, we plot the curve § that passes through the three critical values (along
with o and B) together with the inverse image curves B —1(8) that intersect at the
critical points.

From Figs.9.15 and 9.16 we see that ¥ contains a group element that transposes
g3 and g4 and a group element that implements the permutation g; — g2 > g3 —
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/B\ @ o 7 E)
23
. @7 ©

‘ B

V4 o (@)

21

Fig. 9.13 The curve y4 (left) and B~ (y4) (right)

V2 Vi V3

Oe

B

Fig. 9.14 The curve § passing through the critical values (left) and the curves B~!(8) passing
through the critical points (right)

ga4. In other words, ¢ is isomorphic to the subgroup of S4 that contains the cycles
(3 4) and (1 2 3 4). Since these two cycles generate Ss, we conclude that ¥p is
isomorphic to Sy.

9.5 Primitive Versus Imprimitive

Let B denote a normalized finite Blaschke product of degree n with monodromy
group ¥p. By the construction in the previous section, each y* € ¥ is a
permutation of the branches {g1, g2, . . ., g»} at 0. Also recall that e is the trivial loop
and hence e* is the identity element of ¥g. The group ¥ acts on {g1, g2, ..., &u}
in that the function

¢ Gp x {gls 82, ""gn} - {gl’ 82, ~--,gn}, ¢(V*,gj) = y*gjv
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Fig. 9.15 A curve circulating around vz (left) and its corresponding pre-image (right). Observe
how this yields the identity on g and g, and reverses g3 and g4

B @ @ B

Nl @ T s (@

B)

24

(@ ®

Fig. 9.16 A curve circulating around vy and v3 and its corresponding pre-image. Notice how this
yields the cycle g1 — g2 > g3 +— g4

satisfies
egj=g;, 1<j<n, (identity axiom),
and
(y*8")g; =vy*(6"g)). 1<j<n, (compatibility axiom).

Definition 9.5.1 For a finite group G acting on a finite set X, we say that G respects
a partition & of X if gP € P forall P € & andall g € G.

Here is another way of thinking about this concept that yields a little more
information.
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Lemma 9.5.2 For a finite group G acting on a finite set X, the following are
equivalent.

(a) G respects a partition & of X.
(b) Foreach g € G and P € 2, thereisa P' € 9 such that gP C P’.

Proof The proof of (a) = (b) is automatic. To see that (b) — (a), observe
thatif gP € P’ forallg € G and P € 22, then g~' P’ C P” for some P’ € 2.
Note that P € g~! P’ and since £ is a partition of X, we have P = g~' P’ = P,
Hence, gP = P'. o

Any partition &2 that G respects partitions X into subsets of equal size. The size
of these sets is called the order of the partition. There are at least two partitions of X
that G respects, namely { X}, the whole set, and {{x} : x € X}, the set of singletons.

Definition 9.5.3 If {X} and {{x} : x € X} are the only two partitions that G
respects, then the action of G on X is primitive. If there is another partition &?
of X that G respects, then the action of G on X is imprimitive.

Definition 9.5.4 The action of a group G on a set X is transitive if Gx = X for
some (and hence all) x € X.

We will make use of the following classification of primitive group actions (see
[81] or [135] for a proof).

Theorem 9.5.5 Suppose that G is a group that acts transitively on a set X. Then G
acts primitively on X if and only if for each x € X, the stabilizer

{geG:gx=ux}

is a maximal subgroup of G. That is, there is no subgroup H of G such that {g €
G:gx=x}C HCG.

To apply this result to G = ¥p, we need the following result.

Theorem 9.5.6 For a normalized finite Blaschke product B, the monodromy group
Yy acts transitively on the branches {g1, g2, ..., gn} at O.

Proof Let § be a curve that meets T at two distinct points, does not pass through the
origin, and does not pass through any of the critical values of B. Let y be a loop that
starts at 0, circulates counterclockwise, surrounds all of the critical values of B, and
meets § in exactly two places, before it returns to zero; see Fig. 9.17. We leave it as
an exercise (Exercise 9.1) to use the analysis from our previous examples to see that
the powers of y* form a cycle of the branches g1, g2, ..., g, in the sense that

viei=g, v?a=g ... v Vg i=g, y"gm=2a.

This proves that ¥ is transitive. O
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Fig. 9.17 The curves y and § °
from Theorem 9.5.6

9.6 Ritt’s Theorem

With all of the pieces in place, we are ready for Ritt’s theorem [119].

Theorem 9.6.1 (Ritt) A normalized Blaschke product B of degree n > 1 is
decomposable if and only if the monodromy group 9p acts imprimitively on the
branches {g1, g2, ..., 8&n} ofB_1 atz =0.

Proof We follow Cowen’s proof from [28]. Suppose that ¥p acts imprimitively on
the branches {g1, g2, ..., g} of B~1 at 0. Then there is a partition

P ={P, P, ..., Py}

of the branches {g1, g2, ..., g:} where, by the remark following Definition 9.5.1,
each P; has the same order k and hence n = mk. Renumbering the branches if
necessary, we write

Pr={g1,82,---, 8}
Py = {gk+1, 8ky» - - - » 82k}

Py = {8m-1)k+1> 8n—1k+2+ - - - » &mk}-

Recall the critical values .5 from (9.3.1) and the set % = B‘fl\gflg)
from (9.3.2). Each g; o B is arbitrarily continuable to D\.#s since B(D\.”p) C
D\.p and g; is arbitrarily continuable to D\.#. For z in some neighborhood of
zero contained in D\.#3, define
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2;(0) _
D(z )_z]"[| OB

= 21(B(2) H | 1(0)|gj(B(z)),

in which the last equality follows from the identity g;(B(z)) = z, which in turn
follows from the fact that B(g1(B(z))) = B(z) and g1(B(0)) = 0. Since each factor
gj o B is arbitrarily continuable on D\.#5 so will D be with the appropriate product
formula holding for all z € D\.%5.

Let § be a closed loop in D\.#3 that includes 0. Continuing D along § is
essentially the same as continuing the function

0
g1(w )H |gj§O;|gj(w)

along the closed curve y = B o § in D\.5. We claim that y*(g;) = g1. Indeed,
g1(B(z)) = z is single valued on C and hence continuing g; along y is the same
as continuing z along 8. Thus, y*g; = g1. Now observe that since ¢5 respects the
partition &2, we have y*P; = P; for some 1 < s < m. However, we already know
that y*g; = g1 and so it must be the case that y*P; = P;. All of this implies
that continuing D along § results only in rearranging the factors in_D and hence
the continuation of D is D. Since D is arbitrarily continuable in ]D)\YB and single
valued in a neighborhood of 0, we conclude that D is single valued on all of D\.“5.
But since we also have |D| < 1 on D\.¥5 and .¥3 is a finite set, D defines an
analytic function on all of .

Everything we have done so far can also be done not only on ID but also in an open
neighborhood of D~ where B defines an analytic function (just avoid the poles of
B). Thus, D defines an analytic function in an open neighborhood of D~. For § € T,
the g;(B(£)) is unimodular and hence D is unimodular on T. By Fatou’s theorem
(Theorem 3.5.2), D is a finite Blaschke product. In particular, D is a finite Blaschke
product whose zeros are g1(0), g2(0), ..., gx(0) and hence D has degree equal to
k, the order of the partition &2. From the formula defining D, we have D’(0) > 0.

We now claim that

D(g1(0)) = D(g2(0)) = --- = D(gr(0)),
D(gr+1(0)) = D(gk42(0)) = --- = D(gx),
D(g2k+1(0)) = D(g2k+2(0)) = --- = D(g3:(0)),

D(gm-1k+1(0))) = -+ = D(gmr(0)).



9.6 Ritt’s Theorem 203

We will do this by showing that

k [
D(grk+(0)) = (]"[ |g (0)|> (1"[ grk+l(0)>

Observe that the right-hand side of the preceding equation is independent of j. To
prove this formula, let  be a closed curve in D\.# such that

Y*81 = grktj-

Note how we are using the transitivity of ¢p (Theorem 9.5.6). Let § be the lift of y to
]D)\YB (via B~!) with §(0) = 0. Thus, §(1) = &rik+;(0). By definition, D(g,x+;(0))
is the continuation of

B
1_[ (O)I gz( ()

2

along §. Since y*g1 = grk+; and ¥p respects the partition ¢ we see that y* Py =
P, and hence

k —= k
2(0)
D(grk+‘<0>)=< —)( grk+l(o>>. (9.6.2)
! ,ll|gl<0)| E

Let C be the finite Blaschke product with C’(0) > 0 and whose zeros are

0=D(g1(0), D(gk+1(0), D(g2k+1(0)), ..., D(gum-1)k+1(0)).
By (9.6.2), C o D is a Blaschke product with (C o D)'(0) > 0 and with zeros
81(0), £2(0), ..., gn(0).
Since B is a finite Blaschke product with the same zeros and B’(0) > 0, we conclude

that B = C o D; see Exercise 9.4.
To prove the converse, suppose that B = C o D (where C and D are finite

Blaschke products of degree greater than one) and {g1, g2, . . ., g} are the branches
of B~! at zero. For each g, we know that D o g; is a branch of C~! at zero. This
allows us to define an equivalence relation on {g1, g2, ..., gx} by

8gj ~ &) < Dogj:Dogj/

on their common domain. This equivalence relation produces a partition &2 of
{g1,82,...,8n}. That ¥p respects & is a consequence of the permanence of
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functional relations [100]. Indeed, observe that for all curves y € Lp we have
Dogj=Dogy = Do(y*gj) =Do(y*gj).

In other words, ¢5 respects the partition &. ]

9.7 Examples of Decomposability

Example 9.7.1 Revisiting Example 9.4.1, where B is a normalization of b(z) = z*,
we saw that ¥ is a cyclic group of order 4 that can be viewed as the cyclic group
generated by the 4-cycle (1 2 3 4) acting on {1, 2, 3, 4}. Here we identify 1 with
the zero z1, 2 with the zero z», and so forth. A quick verification confirms that
g acts transitively. One can also see that the stabilizer of {1} is the trivial group,
which is properly contained in the proper subgroup H generated by the 2-cycle
(1, 3). Thus, ¥ acts imprimitively on {g1, g2, g3, g4} which makes B (and hence
b) decomposable. Indeed, b = z% o 2.

Example 9.7.2 Revisiting Example 9.4.2, where B is a normalization of

b(z) = Z2<1% _1Z )z’

— 2z

we saw that ¢ was isomorphic to the dihedral group D4, which acts transitively.
One can view Dy as acting on the vertices of a square labeled in order as 1, 2, 3, 4.
The elements of D4 (using cycle notation) are

1234), (13), (1432), (13), 24), (12)34), (14)(23), (1).

Direct computation reveals that the stabilizer of {1} is the subgroup ((2 4)) (the
subgroup generated by (2 4)) and that

(24) C (24),(13) C Dy

= =

Thus, ¥p acts imprimitively on {g1, g2, g3, g4} which makes B (and hence b)
decomposable. Indeed,

1
2 7 ¢
b=z O(Zl_l )
QZ

Example 9.7.3 Revisiting Example 9.4.3, where B is a normalization of

2 Z
b Z)=27 -
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we saw that ¥p was isomorphic to S4, which acts transitively. The stabilizer of
{1} is isomorphic to the group of permutations of {2, 3, 4}, a group of order 6. A
proper subgroup of Sy that contains the stabilizer would have to be of order 12
by Lagrange’s Theorem. However, the only subgroup of S4 of order 12 is A4, the
alternating group on four letters. However, A4 does not contain the 2-cycle (2 3),
which belongs to the stabilizer of {1}, since this element is a transposition and hence
is not an even permutation. Thus, the stabilizer of {1} is a maximal subgroup of S4.
Analogous arguments show that the stabilizers of {2}, {3}, and {4} are also maximal
subgroups of S4. Consequently, ¥p acts primitively on {g1, g2, g3, g4} and hence B
and b are indecomposable finite Blaschke products.

9.8 Notes

Ritt’s Theorem for Polynomials

There is a statement of Ritt’s theorem for polynomials. A polynomial p can be
written as a nontrivial composition p = g o r of polynomials ¢ and r if and only if
the associated monodromy group is imprimitive [119] (see also [108]).

Ritt’s Theorem Redux

There are several other characterizations of decomposable finite Blaschke products
[23, 30, 130].

Ritt’s Theorem and Cyclic Groups

For a finite Blaschke product B of degree n, we defined the group
Gp={ue%:Bou= B}

and proved in Theorem 9.1.6 that this group was cyclic of order x. It turns out that
we can rephrase Ritt’s theorem in terms of G g. From [30] we have the following
theorem: a finite Blaschke product B of degree n = mk, in whichm > 1,is a
composition of two nontrivial finite Blaschke products B = C o D if and only if
there is a finite Blaschke product D of degree k > 1 such that the group Gp is
generated by u™, where u is a generator of the group G p.
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Chebyshev Blaschke Products

In [108] there is an exposition of Chebyshev Blaschke products. The Chebyshev
polynomials

T, (z) = cos(n arccos z7)
are well-known orthogonal polynomials and have the nesting property
Tnn =Ty o Ty
with respect to function composition. The monodromy group of 7,, was computed
by Ritt [119]. There is also a family of Chebyshev Blaschke products B, ., where
n € Nand tr € iR,. These Blaschke products satisfy the nesting property

an,r = Bm,nr o Bn,r

and one can compute the monodromy group of B, ;.

An Interesting Approximation Result

The indecomposable finite Blaschke products are uniformly dense in the set of
all finite Blaschke products [22] and thus, by Carathéodory’s Theorem (Theo-
rem 4.1.1), such indecomposable finite Blaschke products are dense in the unit ball
of H*.

Further Examples

Further, more complicated, examples of monodromy groups associated with finite
Blaschke products were worked out in a thesis of B. Sokolowsky [130].

9.9 Exercises

9.1 Maintaining the notation of Theorem 9.5.6 and its proof, show that the powers
of y* form a cycle of the branches in the sense that

*(n—1) *n

Yiai=g, vZP@=g. ... vy g-1=28n Y& =g
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9.2 Show that if a finite group G acts on a finite set X, then the cardinality of X
divides the cardinality of G.
Hint: Use the orbit-stabilizer theorem.

9.3 Finish the details of the proof of Example 9.4.2 and show that ¢ is isomorphic
to the dihedral group of a square.

9.4 Show that if B; and B; are normalized finite Blaschke products with the same
zeros, then B; = B».

9.5 Which subgroups of S3 are realizable as monodromy groups of finite Blaschke
products? Which subgroups of S4?

9.6 Suppose that B is a finite Blaschke product of degree n. If B has more than 5
critical values, then B is decomposable [130].



Chapter 10 ®
Finite Blaschke Products and Operator Qe
Theory

In this chapter we explore some of the connections that finite Blaschke products
make with operators on Hilbert spaces. In particular, we focus on norms of
contractions and the mapping properties of the numerical range. A review of some
relevant operator theory notions such as the norm, spectrum, functional calculus,
and spectral mapping theorem can be found in Appendix A.6.

10.1 Contractions

A function of the form

N

PO =Y a", €T, (10.1.1)

n=—N

is a trigonometric polynomial. Although initially defined on T, every trigonometric
polynomial is defined and analytic on C\{0}. The term “trigonometric” stems from
the fact that if we write ¢ = ¢’ = cos6 + i sin6 and substitute this into (10.1.1),
the result is a complex linear combination of sines and cosines. If the trigonometric
polynomial p has no negatively indexed coefficients, that is,

N
p@) =) a", (€T,
n=0

then p is an analytic polynomial. This terminology reflects the fact that p(z) =
2,11\;0 apz" is a polynomial in the usual sense. The term “polynomial,” when used
without modifiers, refers to an analytic polynomial.
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Each trigonometric polynomial is continuous on T and hence is bounded there.
Consequently, we may define

[Plloc = max |p(5)].
¢eT
If p is an analytic polynomial, then the Maximum Modulus Principle implies that
max | p(z)| = max .
max lp(2)l may POl

A trigonometric polynomial p is positive if p(¢) > Oforall ¢ € T.If g is a
trigonometric polynomial, then

p=4q = lql?

is a positive trigonometric polynomial. The following theorem of Fejér [47] and
Riesz [118] asserts that every positive trigonometric polynomial arises in this
manner. Many generalizations of this result are discussed in [35].

Theorem 10.1.2 (Fejér-Riesz) If p is a positive trigonometric polynomial, then
p = |q|? on T for some analytic polynomial g with no roots in ID.

Proof Suppose that p(¢) = Z,}l\]=7 N an¢" is a positive trigonometric polynomial.
Then ay = a_y since p = p on T and hence we may assume that a_y # O.
Thus, f(z) = z"¥p(z) is an analytic polynomial of degree 2N with f(0) # 0. In
particular, the zeros in C of f(z) are precisely the zeros of p(z). Since

p()=p@) =pl/), <¢eT,

we conclude that p(z) = p(1/7) for z € C\{0}. Consequently, each zero o # 0 of
f in C\T occurs as a pair {«, 1 /a} with matching multiplicities.

Suppose that 8 € T is a zero of f of order m and fix a small neighborhood U
of B whose closure includes no other zeros of f. For € > 0, we observe that p + €
is a trigonometric polynomial that is strictly positive on T. In particular, it has no
zeros on T. Since p + € converges uniformly to p on C as € — 0, it follows that
fe(2) = ZV(p(2) + €) converges uniformly to f on U as € — 0. Hurwitz’ theorem
[26, p. 152] says that for sufficiently small € > 0, f has exactly m zeros in U. The
reasoning in the first paragraph ensures that the zeros of f¢ occur in pairs {«, 1/a}
with matching multiplicities. Moreover, f, has no zeros on T since p + € does not.
We conclude from this that m is even.

The preceding discussion implies that

N
f@=c]]e-w0/z -2,

i=1
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in which z1, z2, ..., zy are in C\ID and ¢ # 0. Then

P =¢"NF©)

N
=[] —z0/z )

i=1

N
=Cc[[¢-wC -

i=1

N N
=c[Jec - []C =z

i=1 i=1

in which
L
C=c — #0.
e
j=1

Since p is a positive trigonometric polynomial, we conclude that C > 0. Thus,
p = qq = |q|?, in which

N
q@)=vC[] -

i=1
is an analytic polynomial with no roots in D. O

Let 27 denote a Hilbert space and let £ () denote the set of all bounded linear
operators on 7. If p is given by (10.1.1), we may write

N N
PO =ao+ Y anl"+ Y a i (10.1.3)

n=1 n=1

and define the operator

N N
p(T) =aol + Y a,T"+ Y a ,T*" (10.1.4)

n=1 n=1

for T € £ (7). The map p — p(T) is well defined and linear; see Exercise 10.1.
Less obvious is the fact that this map preserves positivity. This is Lemma 10.1.10
below: if T € .Z(7¢) is a contraction and p is a positive trigonometric polynomial,
then p(T) > 0O (recall the definition of a positive operator from Appendix A.6).
Our proof relies upon a powerful result of Béla Sz&kefalvi-Nagy which asserts



212 10 Finite Blaschke Products and Operator Theory

that, for many purposes, a contraction can be replaced by a unitary operator [131].
The unitary operator U constructed in the following theorem is called a unitary
dilation of T.

Theorem 10.1.5 (Szokefalvi-Nagy Dilation Theorem) If T € £ (J¢) is a con-
traction, then there is a Hilbert space J that contains ¢ and a unitary U €
L () such that

T" = PyU"\ ., n=0,1,..., (10.1.6)

where Pp is the orthogonal projection of %~ onto €.

Proof 1f T is a contraction, then I — T*T and I — T T* are positive and hence the
defect operators

Dr =~I1-T*T and D« =~I1—-TT*

can be defined by the functional calculus for self-adjoint operators. Furthermore, we
also have

Dy+T =T Dr, (10.1.7)
which implies that
Dg+S = S*Dg+ =0
for any isometry S. The identity (10.1.7) requires a polynomial approximation argu-
ment along with the identity p(T*T)T = Tp(T T*) for any analytic polynomial p;

see Exercise 10.2.
Then

: (10.1.8)

~ o O O
(=l el o]

which acts on the Hilbert space

is an isometric dilation of 7. That is, $*S = I (which says that S is an isometry)
and p(T') equals the restriction of p(S) to the first direct summand for each analytic
polynomial p; see Exercise 10.4. Now observe that
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S Dgx
= 10.1.
U |:0 —S*]’ (10.1.9)
which acts on
H =7 7,

is a unitary dilation of the isometry S; see Exercise 10.5. In other words, U is unitary
and p(S) equals the restriction of p(U) to the first direct summand. If we identify
the original 7 upon which T acts with the first direct summand of the first direct
summand _¢ in the decomposition of ¢, then p(T') equals the restriction of p(U)
to a subspace of 7. O

Lemma 10.1.10 If T € £ (%) is a contraction and p is a positive trigonometric
polynomial, then p(T) > 0.

Proof The Fejér—Riesz theorem implies that p = |¢|? on T for some analytic poly-
nomial g. Let U € £ () be a unitary dilation of T € £ () (Theorem 10.1.5)
and let P denote the orthogonal projection from % onto 7. Since U is unitary,
we have UU* = U*U = I and hence p(U) = q(U)*q(U). For each x € /7,

(P(T)X,X) s = (P p(U)X, X)
q(U)*qU)X, X) ¢
qU)X, q(U)X) ¢

= lq(U)xI1%,

> 0.

=
= (p(U)X,X)
=
=

Thus, p(T) > 0. |

An alternate proof of Lemma 10.1.10 is outlined in Exercise 10.3. We are now
ready to prove a seminal result of von Neumann (see Exercise 10.6 for another

proof).

Theorem 10.1.11 (von Neumann’s Inequality [136]) If T is a contraction and p
is an analytic polynomial, then

lp(D)Il < Ipllco-
Proof Let T € £ () be a contraction with unitary dilation U € .Z(.¢"). Without

loss of generality, suppose that || p|lcc = 1 and consider the positive trigonometric
polynomial

g=1-Ip>=1-Dp.
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Then q(U) = I — p(U)*p(U) since UU* = U*U = I. For x € X,
Lemma 10.1.10 ensures that

< @)% x) 0

= (I = pU)* pU))X. X)

= (Ix,x) = (p(U)* p(U)X, X)
= (x,%) = (pU)x, p(U)X)
= lIxI% — I p(W)x1%

and hence ||p(U)x|» < |Ix||# forall x € . Since p(T) = Ppp(U)| », we
conclude that || p(T)x|| s» < |IX|| s for x € SZ. This completes the proof. m|

The Wiener algebra # (D) consists of all analytic functions

f@ =) a"
n=0

on D such that

[e.¢]

Z lay| < oo. (10.1.12)

n=0

As its name suggests, the Wiener algebra is indeed an algebra; see Exercise 10.7.
For each f € % (D), the summability condition (10.1.12) guarantees that the Taylor
polynomials

N
PN (@) =) and",
n=0

converge uniformly to f on D~. Consequently,

[ fllooc = sup |f(5)| = 11m SUPIPN(E)I (10.1.13)
zeT

The property (10.1.12) implies that for any contraction T € .Z(J€), the sequence
pn (T) is Cauchy with respect to the operator norm. Thus, we can define the operator

N
f(T) = Zan =Nli_r>n002(:)anT". (10.1.14)
n=|

Theorem 10.1.11 and (10.1.13) now yield
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/(DI < Suglf(é“)l. (10.1.15)
ce

If Hol(D™) denotes the set of functions that are analytic in a neighborhood of
D™, then Hol(D™) € #/ (D). Indeed, for f = ijo:o apz" € Hol(D™), the Cauchy—
Hadamard formula for the radius of convergence of a power series tells us that

1/n

limsup |a,|"/" < 1.

n—oo

Thus, we can define f(T') for any f € Hol(ID™) and any contraction 7. Moreover,
we have the operator norm estimate (10.1.15).

Corollary 10.1.16 If T is a contraction and

B =¢[]
k=1

1 =2z

is a finite Blaschke product, then B(T) is a contraction. Furthermore,

B(T)=¢ [ [l = TH(I = %)~ (10.1.17)
k=1

Proof Observe that B(T) is well defined since B € Hol(D™) € # (D). It is a
contraction by (10.1.15). The formula for B(T') follows since B(T'), defined by the
power series in (10.1.14), and the power series expansion of the right-hand side
of (10.1.17), are the same. o

10.2 Norms of Contractions

From Corollary 10.1.16 we know that if 7 is a contraction and

B =¢ [ L= (10.2.1)
=1

1-7jz

is a finite Blaschke product of degree n, then B(T) is also a contraction. When is
I1B(T)|| =17

Theorem 10.2.2 (Gau-Wu [63]) Suppose T is a contraction and n € N. The
following are equivalent.

(a) |B(T)|| = 1 for some finite Blaschke product of degree n.
(b) |B(T)|| = 1 for every finite Blaschke product of degree n.
(c) IT"I = 1.
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We closely follow the original proof from [63], which requires two lemmas. The
first lemma is the asymptotic version of the fact that

ITx|| = lIxIl <= x€ker(I —T*T)

whenever 7 is a contraction.

Lemma 10.2.3 If T is a contraction and Xy, is a sequence such that || X || — 1, then
ITxll =1 <= (1 =T"T)x| — 0.
Proof First observe that

I = T*T)xi|1> = ((I — T*T)xi, (I — T*T)x)
= (Xp, Xg) — (X, T*Txi) — (T*Txp, xi) + (T*Txy, T*Txy)
= Ixill® = (e T*Txi) + (Xe, T7Txp)) + [ T*T x|
= Ixll* = 2Re(x¢, T*Txi) + | T*Txi |I*
= [Ixll* — 2Re(Txy, Tx) + [ T*T x|
= Ixll® = 20T x> + 17T (10.2.4)
Now use the fact that 7" is a contraction to obtain

IT*Txicll < N7 T x|

<
<ATHIIT N =l
<

Il
Apply this inequality to (10.2.4) to see that
I — T*T)xell® < 20> — 20T xl|>.

If we assume that ||x;|| — 1 and |Txg|| — 1, we obtain ||(/ — T*T)xx|| — O.
Conversely, if ||x¢|| — 1 and ||(I — T*T)x| — 0, then

W = T*T)xe, xi)| < (I = T*T)xi|| [ xe ]l = O.
Hence
ITxe)1? = Ixell® — (I = T*T)xe, %) — 1

as required. O
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Since we will be computing the operator norm of B(T), we can dispense with
the unimodular constant £ in (10.2.1) and that assume our finite Blaschke product
B takes the form

j—ll_Z-/Z
Let
Zj—2
bi(z) = —
D=1

be the jth factor. The following is the key step to proving Theorem 10.2.2.

Lemma 10.2.5 [fT is a contraction, then
\Tbo(T) - by, (T =1 <<  ||bi(T)bo(T)---by(T)| = 1.

Proof Let R = by(T) ---b,(T) and assume that |7 R|| = 1. By the definition of
the operator norm, there is a sequence X; of unit vectors such that |7 Rxx| — 1.
Define

Yo =U =21 T)xi
and let us first argue that
I161(T) Ryx 1> — llyll* — 0. (10.2.6)
Indeed,
I61(T)Ryil1> = llyell* = I(T — 21 DRxi 1> — (1 — 21 T)xe|*
= |IT Rxi||* — 2Re(@1{T Rxi, Rx¢)) + |21 17| Rxc||*
— I%ell* + 2Re(z1 (e, Txi)) — |21 121 T %))
= (ITRx¢l|* — [Ixk1*) — 2Re [z1 ((Rx, TRxy) — (xi, Txx))]
+ 21 PRk = 1 Tx11%)
= (ITRx¢ | — IIxk|1*) — 2Re[z1 (xk, (I — R*R)Txy)]
+ 21 PURXE N = 1 Txel|?). (10.2.7)



218 10 Finite Blaschke Products and Operator Theory

Since ||x¢|| = 1 and ||T Rxx|| — 1 (along with the facts that | T|| < 1 and ||R|| < 1),
we can use the inequalities

17 Rxi |l < IRkl <1
and
17 Rxi|l = IRTXe || < ITxe ]l <1
to conclude that
IRxt]| = 1 and || Txg| — 1.

Combine this with the fact that || RT x| — 1, along with Lemma 10.2.3, to see that
I(I — R*R)TXg|| — 0. Substitute this limit along with the limits

Ixell = 1, ITRxll — 1, IRx¢|l = I, [ITx¢]| — 1

into (10.2.7) to conclude that ||b; (T) Ryx||> — |lyx||> — 0, which proves (10.2.6).
Use the inequality

1= |Ix
=l =2 T) " — T T)xe|
<A =)A= 7 T)xll

= I(I —z1T) " |l Iyl

to obtain

lycll 2 —————>0
I =z )~

Using (10.2.6) we get

] 1o

and hence ||b1 (T)R| = 1.
Conversely, assume that

b1 (T)Ybo(T) - - - b, (T)|| = 1.



10.3 Numerical Range 219

Let

Z+ 21
14712

v(z) =

bl

which equals the inverse of by, and define
Vi@ =bjoy, 2<j<n
If T = b1(T), then b;(T) = ;(T7) for 2 < j < n. Since
161(T)D2(T) - - - bp (D) = 1 <= | T1y2(T1) - - - Y (T = 1,
the previous argument shows that

[V1(T) - YTl =1 = [T12(T1) - Yu(TD| = L.

The proof is now complete. O

To prove Theorem 10.2.2, apply Lemma 10.2.5 n times.

10.3 Numerical Range

Let o (T) denote the spectrum of T € £ (). For each T € £ () and analytic
polynomial p, the operator p(T) is well defined. The Spectral Mapping Theorem
(Theorem A.7.6) asserts that o (p(T)) = p(o(T)). See Appendix A.6 for a brief
review of operator spectra.

Although there is no spectral mapping theorem for the numerical range (defined
below), there are some substitutes from work of Halmos, Berger, Stampfli, and
Drury in which finite Blaschke products come into play. We first require a few facts
about the numerical range.

Definition 10.3.1 For T € £ (5¢),
W(T) = {(Tx,x) :x e 2, |x|| =1}

is the numerical range of T .

Proposition 10.3.2 Let T € L (7).

(@) W(T) S {z: |zl <ITI}.

(b) If A is finite dimensional, then W (T) is compact.

(¢) If U is unitary, then W({U*TU) = W(T).
(d) If S =aT + bl, in whicha, b € C, then



220 10 Finite Blaschke Products and Operator Theory

Fig. 10.1 The numerical
range of a normal matrix is A
the convex hull of its
eigenvalues A ;
As
A3
A
gy
0
W(S) =aW(T)+b. (10.3.3)

(e) W(T) contains the eigenvalues of T.
(f) If T € M,, is normal, then W (T) is the convex hull of its eigenvalues.

The proof of the preceding is left to the reader; see Exercise 10.8. Proposi-
tion 10.3.2.f is illustrated in Fig. 10.1.

Definition 10.3.4 The numerical radius of T € £ () is
w(T) :=sup{|{Tx,x)| : x € 2, |x|| = 1}.
By (10.3.3) we see that
wAT) = |A|w(T), reC, (10.3.5)
and
wlS+T) <w(S)+w(), S, T e L(). (10.3.6)

The numerical radius is related to the operator norm via the following inequalities.

Lemma 10.3.7 If T € £ (7)), then

IT
—— <w(@) < |T|.
2
Proof For any unit vector x € J#, the Cauchy—Schwarz inequality and the
definition of the operator norm, yield
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w(T) = sup [(Tx,x)| < sup [ Tx|[[Ix]| < [T].

lIxl=1 Ixl=1
For the lower inequality, we need the polarization identity

HTx,y) = (T(x+y), x+y) = (Tx=y), (x=y)
+ (T (x+iy), (x +iy)) — i(T(x — iy), (x — iy)).

This implies

ATx, W < HTE+Y), E+)+ T —-y), ®x—y)
+ (T (x+iy), X +iy)| + (T (x = iy), (x = iy))|.

From the definition of w(7) we get the inequality
(T2, 2)| < w(T)llz]®
for any z € 7. Apply this estimate to the previous line to get

4UTX, y) | < w(Dx+yII> + w(@)|x - y|I*

+w(@)x +iy|* + w(@)llx - iyl
For unit vectors X, y, two applications of the parallelogram identity
lIx+ 1%+ l1x = yII* = 2(0x11> + 1y11)
provide

AUTX, Y| < w@ X+ I+ 11X — ylI? + Ix + iyl + [Ix — iyl?)
= 4w(T)(IxII* + IylI*)
< 8w(T).

Thus,
1T =sup{{Tx, y)| : [Ix]| < 1, Iyl <1} <2w(T). O

Both of the inequalities in Lemma 10.3.7 can be attained; see Exercise 10.12.

Corollary 10.3.8 If S, T € L (37), then

lw(S) —w(@)| < IIS=T].



222 10 Finite Blaschke Products and Operator Theory

Proof The subadditivity of the numerical radius from (10.3.6) shows that
[w(S) —w(@)| < w(S—=T).

Now apply Lemma 10.3.7. O

Since the expression (Tx,y) involves only two vectors, it is often fruitful to
consider the compression of 7 onto the two-dimensional subspace spanned by x
and y. This reduces a potentially infinite-dimensional problem to a two-dimensional
problem. Our proof of the following seminal result of Hausdorff [69] and Toeplitz
[133] employs this strategy. After the initial reduction, our proof largely follows the
well-known matrix case [96].

Theorem 10.3.9 (Hausdorff-Toeplitz) W (T) is convex for all T € £ ().

Proof Leta, b € W(T). Then there are unit vectors X, y € ¢ such that
(Tx,x) =a and (Ty,y)=>b.

We wish to show that the line segment [a, b] connecting the complex numbers a
and b remains in W (T'). If x and y are scalar multiples of each other, then the result
is immediate. Hence we assume that x and y are linearly independent. Let

J = span{x, y}
and let P denote the orthogonal projection of .7#” onto .#". Then

a = (Tx,x) = (PTPx,Xx) and b= (Ty,y) = (PTPy,Y).
Consider the compression
T' = PTP|y

of T to ¥ observe that W(T') € W(T). In fact, foreach z € .7,

(T'z,2) y = (PTPz,7)
= (T Pz, Pz)

= (Tz,2) .

Thus, it suffices to show that [a, b] € W(T"). Because T" is a linear transformation
from a two-dimensional space to itself, it suffices to prove that the numerical range
of a2 x 2 matrix is convex.

Suppose that T € M. If T is normal, then Proposition 10.3.2 implies that W (T')
is convex. If T is not normal, then the matrix
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T — Ste(T)I

has trace zero and, by (10.3.3), its numerical range is convex if and only if the
numerical range of T is convex. Thus, we may assume that 7 has trace zero.
Since the trace is invariant under unitary equivalence, Schur’s theorem on unitary
triangularization (Theorem A.8.1) implies that T is unitarily equivalent to

a
[o _a} (10.3.10)

for some «, B € C. Moreover, 8 # 0 since we are assuming that 7' is not normal.

If « = 0, then a computation with the Arithmetic-Geometric mean inequality
(see (10.4.3) below) confirms that W (T') is a disk about the origin of radius |8|/2.
If o # 0, we may appeal to (10.3.3) and replace the matrix in (10.3.10) by

12y
0—-1]/’
in which y > 0. Another computation shows that the numerical range of this matrix

is an ellipse with principal axes of lengths 2y and 2,/1 4 y2. In both cases, W (T)
is convex. o

Corollary 10.3.11 o(T) € W(T)™ forall T € £ (7).

Proof If . € 90 (T), then A belongs to the approximate point spectrum of 7 [27,
VIL.6.7] and hence there are unit vectors X, € . such that (T'x,,x,) — X as
n — oo. Therefore, A € W(T)™.If A € o(T)\0o(T), then any line through A
intersects do (T') in at least two points, say A1, A2. Indeed, let

ty =sup{fteR:theo(T)} and ¢_ =inf{r e R:tA € o(T)},
then verify that 7_A and 74 A belong to do (T'). The preceding discussion ensures that
M, Ay € W(T)™. Since W(T) is convex (Theorem 10.3.9) and since the closure of

a convex set is also convex (see Exercise 10.10), it follows that W (T)~ is convex.
Thus, A € W(T)". |

10.4 Halmos’ Conjecture

Is there a version of the spectral mapping theorem for the numerical range? In other
words, is

W(p(T)) = p(W(T))
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for analytic polynomials p and T € .Z(7¢)? The following simple example shows
that in this generality the conjecture is not true.

Example 10.4.1 We claim that W(T) = D™ when

02
T = [0 o} . (10.4.2)

Indeed, for all unit vectors x = (x1, x2) € C2, the Arithmetic-Geometric Mean
inequality implies that

(Tx, x)| = 2/¥1x2] < |1 + |02 < L. (10.4.3)
Thus, W(T) CD~.If x; = e ®cosf, xo = sin6, and &, 0 € [0, 2], then
(Tx,x) = ¢'®sin 26.

Let o and 6 vary in [0, 2] and conclude that W(T') = D™. However, since T2 =0,
it follows that W (T'2) = {0} and hence the naive conjecture

W(p(T)) = p(W(T))

fails for the polynomial p(z) = z2.

Despite this shortcoming, some weaker results hold. Halmos conjectured that
TeZH) and W(T)CD — WT"HCD, n=>l
By (10.3.5) and Lemma 10.3.7, this conjecture translates into
w(T <w(@", n>l. (10.4.4)
We prove a more general version of the conjecture in which the map z — z" is

replaced with certain finite Blaschke products. Our proof follows [88].

Theorem 10.4.5 Let T € £ (), w(T) < 1, and let B be a finite Blaschke
product with B(0) = 0. Then w(B(T)) < 1.

Proof Since w(T) < 1, we have W(T) <€ D~ and hence o(T) € D~ by
Corollary 10.3.11. We first suppose that o (T') C ID; the general case will be handled
by an approximation argument. Theorem 10.1.16 ensures that B(T) is well defined
and the spectral mapping theorem (Theorem A.7.6) implies that

o(B(T)) = B(o(T)) < D.
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Let x € JZ with |x|| = 1. Since B(0) = 0, for each « € T, Corollary 5.2.10

provides ¢1,¢2 ..., ¢, € Tand ¢y, ca, ..., ¢, > 0sothat
1
. (10.4.6)
1 —oB(z) 1-¢z 1—-2¢,2

In particular, each I — ¢; T is invertible because o (T') is contained in ID. Then

1 —a(B(T)x,x) = (I —aB(T))x, X)

=y, —aB{T)y) (y=(U—aB(T))x)
=(v. 2« -TYy) by (1046)
k=1
=Y aly, U =D 'y) (1,62, 0,0 > 0)
k=1
=Y ol = LDz, ) (= —-T)7y)
k=1

=Y crlllzl® = Cd Tz, ).

k=1
Since w(T) < 1, we have
Re (ll2|* = Cx (T2, z4)) > 0,
and since ¢, > 0 for all &, it follows that
Re(l —a(B(T)x,x)) = 0.
Because the preceding holds for all @ € T and all unit vectors X, we conclude that
w(B(T)) < 1.

Now we relax the assumption that o (7)) € . Let us first show that

lim B(rT) = B(T) (10.4.7)

r—1

in the operator norm. By Corollary 10.3.11, we know that o(7T) € D™, and hence
the spectral radius formula (Theorem A.6.11) implies that

lim |77V < 1.
n—oo
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Since B(z) = Z?lio anz" € Hol(D7), the Cauchy-Hadamard formula for the
radius of convergence of a power series implies that

1/n

lim sup |ay | < 1.

n—oo

Thus,

IB(rT)— B(T)| < Z lan|(1 =" T"|.
n=0

The Dominated Convergence Theorem now yields (10.4.7). Since w(B(rT)) < 1
forallr < 1, weletr — 17 and use to Corollary 10.3.8 to complete the proof. O

10.5 The Wiener Algebra Versus the Disk Algebra

We would like to expand the above discussion beyond the Wiener algebra # (D) to
the disk algebra <7 (D) (the set of continuous functions on D~ that are analytic on
D). We have already discussed the definition of f(7) when f € # (D). We need
to do the same when f belongs to .o/ (D). Moreover, since the Taylor coefficients
of an f € # (D) are absolutely summable, the Taylor polynomials of f converge
uniformly on D~ and hence f € &/ (ID). It turns out that the containment # (D) C
<7 (D) is proper.

Theorem 10.5.1 7' (D) C </ (D)

The remainder of this section is devoted to the proof of Theorem 10.5.1 which
was inspired by du Bois Reymond (see the end notes of this chapter). In order to
prove this, we need a sequence of analytic polynomials

dy
P =) anit (10.5.2)
k=0

with the following two properties.
(a) They are uniformly bounded on D™:

P <1, n=1zeD .

(b) Their ¢! norms are not uniformly bounded:

d)'l
lim E |an k| = 00.
n—oo

k=0
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Toward the end of this section, we present an explicit construction. Assuming the
existence of such a sequence of polynomials, we construct f as follows. According
to (a), we can replace the sequence p, by a subsequence so that

00 1 d,
Z;(Z'“M') = o0. (10.5.3)
n=l1 k=0

Then we multiply each polynomial p, by an appropriate monomial z* so that the
nonvanishing coefficients of the new sequence never coincide. For example, we can
take k1 = 1 and

kn=ki+ - +ky_1+n. (10.5.4)

Then let

1
f@ =3 2" (@) (10.5.5)

n=1

Property (a) ensures that f € /(D). Property (b), or more precisely the
choice (10.5.3), says that f & # (D).

To construct the sequence p,, which is the heart of the construction above, we
need a technical lemma (Fig. 10.2).

Lemma 10.5.6 Let

n .
ko
sn(e)zzsmﬁ< ) u>1.6¢R
k=1

Then |S,(0)| < Sforalln > 1and 6 € R.

Proof Since §,, is a 2m-periodic odd function, we may assume that 6 € (0, ). If
l7/0] < n, we write

Lm/6]

MOESY

k=1 k=|m/6]+1

=51 0) + 52 ).

sin(k0) n Z sin(k0)
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Fig. 10.2 The graph of S, for n = 10, 20, 30, 40

Then
/6], .
ko6
sy < Y
k=1
7 /6] %0
k=1 k
=0|n/6]
<
and
n .
sPe=| Yy S
k=|m/6]+1 k
1 1
< © =
lr/0] +1 sin(6/2)
b4
< e
(lm/6] + 1)6

< 1.

Hence, |S,(0)| < 1+ 7 < 5: see Exercise 10.15.
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If |7/6] > n, then the estimate above for S,(,I) shows that |S,(0)| <7 <5. O

Write S, as

n . .
_ Lo _iko L ik
$,(0) = Z (ﬂe ko _ ﬁe’ )

k=1

to see that S, is a trigonometric polynomial of degree n. Now define
i0 1 in6
Pa(e”) = €775 (0). (10.5.7)

Then p, is an analytic polynomial of the form in (10.5.2) with d, = 2n. By
Lemma 10.5.6 and the Maximum Modulus Principle, property (a) is fulfilled.
Furthermore,

d, 1 n 1

Z lan k| = 3 ZE =< logn — oo.
k=0 k=1

Hence, property (b) is also satisfied.

We can get a bit more out of the above construction. Let us, instead of (10.5.3),
choose the subsequence such that it satisfies the more restrictive condition

d}l
> 3
Ian,k| PROE
k=0

For the specific choice of polynomials above, this is equivalent to
logd, > n’. (10.5.8)

As we saw before, we have f € o/ (D)\# (D). Moreover, the Taylor series of f
does not converge uniformly to f on D™. Even more dramatically, the Taylor series
for f diverges at z = 1. To see this, write

f@ =) "
n=1
and

N
Ty(2) =) an2".
n=1
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Recall from (10.5.4) that the Taylor coefficients of the polynomials Zk p,(2) have
disjoint support and p, (1) = 0. Choose N to be the index of the midpoint for Taylor
coefficients of the mth polynomial. Then, by (10.5.5) and (10.5.7), we have

N
Tn(1) =) o
n=1

R IO (L IS B
=t 10m2\a, " d, -1 2
_ logdp

m2

The assumption (10.5.8) now ensures that Ty (1) = O(m) — oo. Thus, the Taylor
series for f diverges at z = 1.

10.6 The Berger—Stampfli Mapping Theorem

In this section we present a proof of a theorem of Berger and Stampfli [7] that
serves as a generalization of the Halmos conjecture. Since this theorem concerns
the numerical range of f(T) for certain T € Z(5¢) and f in the disk algebra
o7 (D), we first need to define f (7). Recall from (10.1.15) that we defined f(T') for
f in the Wiener algebra # (D). However, # (D) is a proper subset of <7 (D) and
hence the definition of f(T) for f € .o/ (D) requires more care. The proof of the
next lemma, which depends on finite Blaschke products in a crucial way, follows
[88].

Lemma 10.6.1 If f € &/ (D), T € £ (), and w(T) < 1, then
lim f(rT)
r—1-

exists in the operator norm.

Proof Suppose that T € Z() and w(T) < 1. Corollary 10.3.11 implies that
o(T) € W(T)~ € D™. Let us first prove that

w(g(T)) < liglleo (10.6.2)

whenever g is analytic in a neighborhood of D™, g(0) = 0, and o(T) < D. By
scaling, we may also assume that ||g|l.c = 1. Since g € Hol(D™) we can employ
the argument used to prove (10.4.7) to see that g(7) is a well-defined element of
£ (). Carathéodory’s Theorem (Theorem 4.1.1) provides a sequence of finite
Blaschke products B, that converges uniformly on compact subsets of D to g. Since
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g(0) = 0, we can also arrange that B, (0) = O for all n; see Exercise 4.4. From
Theorem 10.4.5, we know that w(B,(T)) < 1 for all n. The Spectral Mapping
Theorem (Theorem A.7.6) says that

o(By(T)) = By(o(T)) €D and o(g(T)) =g(o(T)) < D.

From here, we can use the Riesz functional calculus (see (A.7.5)) to see that B, (T)
converges in norm to g(7'). It follows from Corollary 10.3.8 that w(g(T)) < 1.
We apply the argument above to

grs(@) = frz) — f(s2), r,s € (0, 1),

which is analytic in a neighborhood of D™ and vanishes at the origin, and to the
operator g, (7). For r, s close enough to 1, we have | g, s|lcoc < 1 and hence

G(gr,s(T)) = &r.s (o(T)) € D

by the Spectral Mapping Theorem. By what we have already shown,

w(gr,s(T)) < 1Igrslloo

and hence, by Lemma 10.3.7,

IfT) = fGDI = llgrs(TIl < 2w (grs(T)) < 2l 8rslloos (10.6.3)

which tends to zero as r, s — 17. It follows that for each sequence r, — 17, the
corresponding sequence f(r,T) is Cauchy in .Z(J¢) and hence convergent. The
estimate (10.6.3) ensures that the limit is independent of the choice of sequence r;,.
Therefore, lim,_, - f(rT) exists. O

The preceding theorem permits us to define
f(T):= lim f(@T)
r—1-

for f € (D) and T € £ () with w(T) < 1. Now that f(T) is defined, we state
the main theorem of this section.

Theorem 10.6.4 (Berger—Stampfli) If f € &/ (D), f(0) =0, T € L (), and
w(T) < 1, then w(f(T)) < |1 f lloo-

Proof The hypotheses imply that o(T) € W(T)~ € D~. We have already proved
the result when o (7)) C Dj; this is (10.6.2). We now relax the assumption that
o(T) € D. From the proof of the previous lemma, we know that w(f(r7T)) <
| flloo for all ¥ € (0, 1). Since f(T) = lim,_, - f(rT), Corollary 10.3.8 implies
that w(f(T)) < I f lloo- m
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What happens if f(0) # 0 in Theorem 10.6.4? This will be addressed in the next
few sections.

10.7 A Local Inequality

Let T € £ () and x € 7. The left-hand inequality in Lemma 10.3.7 amounts to
saying that || 7x|| < 2 whenever w(7') < 1 and ||x|| < 1. The following result from
[88] is local refinement of this fact.

Theorem 10.7.1 (Mashreghi—Ransford) If w(T) < 1 and ||x|| < 1, then

ITx|? <24 2,/1 — (Tx, x)2. (10.7.2)

Proof Without loss of generality, we may assume that ||x]| = 1 and (Tx, x) > 0.
Observe that

1 N 1 .
A=—-(T+T*) and B=—(T-T%)
2 2i
are self-adjoint and have numerical radius at most 1 by (10.3.6). Consequently,

|A] < 1 and ||B| < 1. The condition (T'x, x) > 0 implies that (Ax, x) = (Tx, X)
and (Bx, x) = 0. This yields

\/IITXII2 — KTx,x)|* = ITx — (Tx, x)x|

< [[Ax = (AX, x)x|| + || Bx — (BX, x)X|

= VIAXIP = [(Ax, 012 + /I BxI = [(Bx, x)

<= UTx,x)[2+1,

which, after some arithmetic, implies (10.7.2). |

From Theorem 10.7.1 we derive the following operator inequality. This result is
needed for the proof of Corollary 10.7.6 below.

Corollary 10.7.3 If w(T) < 1, then
[+21(T +T*+ (> = DT*T >0, 1[0, 4] (10.7.4)
Proof The inequality (10.7.4) is equivalent to

1+2tRe(Tx, X) + (12 — DITxII* >0, te[0,11, Ix|=1
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To prove this, we consider two cases. If ||Tx||2 < 2, then for all ¢ € [0, %],

142 Re(Tx, x) + (12 — DITx|? > 142 Re(Tx, x) +2(* — 1)

T 21— Tx, x)?
=2H( X, X) (Tx, x)|
2 2
> 0.
If | Tx||? > 2, then write (10.7.2) in the form
ITx|? —2 < 2¢/1— [(Tx, x)[2
and square both sides to get
AITx|* = | Tx|* — 4(Tx,x)|> > 0.
Forallr € [0, l], we have
1+2¢t Re(Tx, x) + (12 — DIITx|?
Tx,x) > 4|Tx|? — | Tx||* — 4/(Tx, x)|?
x| t+( sz) 17x]1* — I Tx]| . (Tx, x)| >0 o
17x|l 4\ Tx|l

For fixed T € £ (%), let Q(T, t, s) be the operator defined by
O, t,s)=1+t(T+T* +sT*T.
Definition 10.7.5 Let S denote the set of all (¢, s) € [0, 00) x R such that whenever

 is a Hilbert space and T € Z(5¢) with w(T) < 1 we have Q(T,1,s) > 0.

The following corollary characterizes S; see Fig. 10.3. We will need this in order
to extend Theorem 10.6.4 to the case when f(0) # O.

Corollary 10.7.6 The region S from Definition 10.7.5 is characterized by the
following inequalities:
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Fig. 10.3 The region S

Proof We divide the argument into three cases, according to the value of 7.
Casel (0 <t < %): Ifts > 12— }‘, then Corollary 10.7.3 shows that, for all T with
w(T) < 1,

QT t,5) > 1+t(T + T+ — DT*T > 0.

On the other hand, if s < 12 — % and

T _ 02 ’
00
then w(T) < 1 and

1o
T, 1.5) = |:2t 1+4s] 20,

since it has negative determinant. Thus, for this range of values of 7, we have (¢, s) €
S e s>t?—1
Case Il (% <t < 1):Ifs > 2t — 1, then, for all T with w(T) < 1,
O, t,s) 21 +t(T+T*"~+ Q2t—1DT*T
=1-0DQRI-T+TNH+Q-DU+T)"U+T)>0.
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On the other hand, if s <2t — 1 and T = —1, then w(T) < 1 and
O, t,s) =1 —=2t+s)I 20.

Therefore, for this range of values of ¢, we have (¢,5) € S < s > 2 — 1.
Caselll (t > 1):If s > t2, then, for all T with w(T) <1,

OT,t,s) =1+ (T +T"+*T*T
= +1tT)*( +1T) > 0.

On the other hand, if t < s < 2 and T = —(t/s)I,then w(T) < 1 and
O(T,t,s) = (1 —1?/s)I #0.

Thus, for this range of values of 7, we have (¢,5) € § < s > £2. m]

10.8 Teardrops and Drury’s Theorem

We can formulate the Berger—Stampfli theorem as a numerical range mapping
theorem: if f : D™ — D~ belongs to </ (D) and f(0) = 0, then

W) cbh™ = W({((T)cDh.
If £(0) # 0, the preceding implication may fail; see Sect. 10.9. In this case, the best

result is a theorem due to Drury [36]. To state his result, we need to introduce some
terminology.

Definition 10.8.1 (Drury’s Teardrop Region) Foro € D™,
td(a) := conv (D™ U D(at, 1 — |a|?)7)

is a teardrop region.

The region td(«) is the convex hull of the union of the closed unit disk and the
closed disk of center o and radius 1 — |oz|2; see Fig. 10.4. When o € [0, 1), td(«)
also equals the intersection of the two families of half planes

{z :Re(e™¥7) < 1}, cosf < a, (10.8.2)
and

{z:Re(¢e " (z—a)) <1—a?), cosf > a; (10.8.3)

see Exercise 10.14 and Fig. 10.5. Drury’s theorem can now be stated as follows.
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Se
Qe

.....

Fig. 10.4 The Drury teardrop region td(c)

Theorem 10.84 Let T € L (), W(T) C D, and let f : D™ — D~ bea
function in of (D). Then

W(f(T)) < td(f(0)).

Proof We follow [36], with a few details added. Let « = f(0). We can assume that
|| < 1, since otherwise, by the Maximum Modulus Principle, f is constant and
there is nothing to prove. Let ¢, be the disk automorphism

o +z

a2 = T2

and set g = gboj] o f. Then g belongs to the disk algebra, ||g]looc < 1, and g(0) =
0. By Theorem 10.6.4, we have W(g(T)) € D™. Since f = ¢, o g, we may
proceed by replacing T by g(T) and just study the case f = ¢,. Since ¢y (T) =
B) (e 48T, we may also assume that a € [0, 1).

Because td(«) is the intersection of the two families of half planes (10.8.2)
and (10.8.3) (see Exercise 10.14), to show that W (¢, (T)) C td(a), it suffices to
prove that

Re(e ¢, (T)) < I, cosf < a, (10.8.5)
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(a)

(c) (d)

Fig. 10.5 (a) is the intersection of the half planes {z : Re(e?) < 1} with cos6 < a. (b) is the
intersection of the half planes {z : Re(e™'?) < 1} with cos & < « together with the circles |z] = 1
and |z — | < 1 — |a|2. (c) is the intersection of the half planes {z : Re(e ¥ (z —a) < 1— |a|2}
with cos@ > «. (d) is the intersection of the two families of half planes (which form the Drury
teardrop region)

and
Re(e (¢ (T) — al)) < (1 — &)1, cosb > a. (10.8.6)
We begin by proving (10.8.5), which is equivalent to
21 — e 0P (T) — € o (T*) = 0. (10.8.7)
If A, B € Z(J) and B is invertible, then

A>0 < (Ax,x) > O0forallx € 7
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< (ABy, By) > Oforally € ¢
<= (B*ABy,y) > 0forally € 5#
&= B*AB > 0.
Applying this with A equal to the left-hand side of (10.8.7) and B = (I + aT), we
see that the desired inequality (10.8.5) is equivalent to
2(1 —acosO) + Qa — €' —a?e T

+ Qo — e — @2 T* + 2a(a — cosO)T*T > 0.

If we let

20 — el — g2ei? 2o — €

w = A - = s
200 — et —a2e~ %] 1 —2acosh + a?

0 _ 2010

then we may rewrite the last inequality as

2(1 —acosO)I + (1 —2acosd + a®)(wT + (wT)*)
4+ 20(a — cos 0)(@wT)*(wT) > 0,

or equivalently, as Q(wT, ¢, s) > 0, in which

1 —2acost + o d a(o —cosh)
= an §=—=

= =2t —1.
2(1 —acosB) 1 —acosh

For —1 < cosé < «, one can show that r € [%, 1]. By Corollary 10.7.6, we have
Q(wT,t,s) = 0. This establishes (10.8.5).
Now we turn to (10.8.6), which is equivalent to

21 — e 0 (T) — 4o (T*) > 0,

where

z
l4+az

Yo (2) =

As before, when considering B*AB with B = (I 4+ «T), the preceding inequality
is equivalent to

21 + Qo — e NT + Qo — €T*) + 2a(a — cosO)T*T > 0.

If we let
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20 — 10 20 — ™10

w= 2, i) ’
200 — e 2,/a(a—cos€)—|—%

then we may rewrite the last inequality as

I+ /a(a —cosf) + %(a)T + (wT)*) + a(a — cos 0) (wT)*(wT) > 0,

or equivalently, as Q(wT, t,s) > 0, in which

t=,/a(a—cos@)+}‘ and s:a(a—cos@):tz—}l.

For ¢ < cosf < 1, one can show that r € [0, %]. By Corollary 10.7.6, we have
Q(wT,t,s) = 0. This establishes (10.8.6) and completes the proof. O

The part of the numerical range of f(7) “sticking out” of the unit disk is
governed by the inequality (10.8.6), which corresponds to the slice of S (see
Definition 10.7.5) where 0 < t < %, which is, in turn, determined by the operator
inequality in Corollary 10.7.3.

Corollary 10.8.8 Let T € £ () and W(T) C D, and let f : D — D belong to
o/ (D). Then

w(f(T) <1+ I£ O] —fO) < 3.

10.9 Sharpness of Drury’s Result via Disk Automorphisms

The optimality of the teardrop region in Theorem 10.8.4 is established by an
example. To set the stage, let us properly formulate the question: find the smallest
convex set §2 such that

f(T) c £

for all functions f € o/ (D) with f(0) = « fixed.

If o = 0, thanks to the Halmos conjecture and simple examples (diagonal 2 x 2
matrices or the example below), we know that 2 = ID™. Hence, for the rest of
discussion, we may assume that o # 0. The function

o +2z
1+ oz

f@)=
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belongs to the disk algebra and f(0) = «. We consider two classes of operators to
show that the two disks in the definition of td(«) have to be in £2. Thus, the Drury
teardrop region td(«) is optimal.

Example 10.9.1 Let

-2
0 —«

in which ¢ € T. A computation confirms that W(T) = [—«, ] € D™. Moreover,

F(T) = [f(c) 0}

0 0

and hence W(f(T)) = [0, f(¢)]. As ¢ runs once through the unit circle T, the
argument principle ensures that f(¢) does as well. Thus, D™ C £2.

Example 10.9.2 Consider the matrix 7 given by (10.4.2); that is,

B3

Example 10.4.1 tells us that W(T) = D™ and a computation shows

Je20 —JaP)
f(T)—[O . ]

To find the numerical range of f(T), it is better to write it as
f(I) =al +1 —|a|)T.
This identity reveals that

W(f(T) =a+ (1—|aHW(T)
=a+(1—|a)D”

=D(a,1—|a|®)".

Therefore, D(a, 1 — |Ot|2)7 C .
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10.10 Notes

von Neumann’s Inequality in Finite Dimensions

Our presentation of von Neumann’s inequality (Theorem 10.1.11) depended on the
dilation theorem (Theorem 10.1.5) which is an infinite-dimensional proof. When
the contraction 7 is on a finite-dimensional space (and thus can be considered as a
matrix), there are proofs that use either a finite-dimensional version of the dilation
theorem [40, 95] or the singular value decomposition [115, Ch. 1].

More on the Numerical Range

Lax and Wendroff [93, 94] showed that if .77 is finite dimensional, then w(7T) < 1
implies that for some M > 0, we have |T"| < M for all n > 1. However, their
method is such that the upper bound M depends on the dimension of .7 and it tends
to infinity as the dimension grows. Halmos believed that M should be a universal
constant, independent of T and the dimension of .7Z. In fact, his conjecture is even
stronger than believing M to be a universal constant. If (10.4.4) holds, then w(7T") <
1 and thus Lemma 10.3.7 implies that

17" < 2w(T") < 2, nzl.

Example 10.4.2 shows that the universal constant 2 is optimal. Brown (unpublished)
proved the conjecture for dim.# = 2. Then Bernau and Smithies [8] proved
the conjecture for n = 2F. This special case was also independently proved by
Fumita, Halmos, and Pearcy (unpublished). Using dilation theory, the conjecture
was finally proved by Berger. Shortly after, Pearcy [112] gave an elementary proof
of the conjecture.

Berger and Stampfli [7] gave a simplified version of Berger’s proof. In fact, they
obtained a more general mapping theorem for functions in the disk algebra with
f(0) =0.If w(T) < 1, then, for all f in the disk algebra with f(0) = 0,

w(f (1)) < [ flloo-

After this period, there was a tremendous amount of research on different types
of numerical-range mapping theorems. The one covered in this chapter (Theo-
rem 10.8.4) was discovered about 40 years later by Drury in 2008. He introduced
the teardrop region and gave a complete mapping theorem for functions in the disk
algebra (not necessarily f(0) = 0) [36]. At the heart of the teardrop theorem is
an operator inequality, which Drury proved by citing a decomposition theorem of
Dritschel and Woerdeman, and then performing some rather complicated calcula-
tions. The approach here is adopted from [88] where the authors circumvented these
difficulties, and thus simplified Drury’s argument, by exploiting finite Blaschke
products and a refinement of the inequality in Lemma 10.3.7.
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The Wiener Algebra Versus the Disk Algebra Again

The construction in the proof of Theorem 10.5.1 is essentially due to Paul du Bois-
Reymond [37]. His goal was to construct a function whose Fourier series diverges
at a point of continuity. Working with power series on the disk (rather than a Fourier
series) needs some special care. For example, we constructed an f € o/ (D) whose
Taylor polynomials do not converge uniformly on D™. In fact, there is a construction
of Sierpinski [127] of a holomorphic function f on D whose Taylor polynomials
converge pointwise on D~ and yet f & o7 (D).

10.11 Exercises

10.1 Show that (a1 p1 + a2p2)(T) = a1p1(T) + a2 p2(T) for all trigonometric
polynomials pj, py and ap, ap € C.

10.2 Prove that p(T*T)T = Tp(T T*) for any analytic polynomial p.

10.3 This exercise outlines another proof of Lemma 10.1.10. Suppose that T €
ZL(S¢) is a contraction and that p is a trigonometric polynomial.

(a) Explain why we may assume that ||| < 1.

(b) For¢ e T,let S(¢) = —¢T)" '+ T —¢T*)~! — I. Prove that
(I—-¢THSEOUI —¢T)=1-T*T. (10.11.4)

(c) Prove that

S@)=U—-¢TH' U -T*T)U —¢T)7!

for { € T. Conclude that S(¢) > Oforall ¢ € T.
(d) Prove that

n i0 i0 do
p(T)=/ pe”)S(e )—2
0 s

and conclude that p(T) > 0.

10.4 Show that the operator S defined by (10.1.8) is an isometric dilation of the
contraction 7.

10.5 Show that the operator U defined by (10.1.9) is a unitary dilation of the
isometry S defined by (10.1.8).

10.6 Suppose that T € £ () is a contraction and that p is a trigonometric
polynomial with || p|lcc = 1.
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(a) Show that a = Re p and b = Im p are trigonometric polynomials.

(b) Use Lemma 10.1.10 to prove that —1 < a(T) < Tand —1 < b(T) < I.

(¢) Conclude that || p(T)]| < 2| plloo-

(d) Apply the preceding result to the n-fold tensor product of 7' with itself and
conclude that || p(T)|I" < 2| pll%.

(e) Deduce von Neumann’s inequality (Theorem 10.1.11) from the preceding.

10.7 Prove that the Wiener algebra % (D) is an algebra. More specifically, show
that it is closed under multiplication.

10.8 Provide the details of the proof of Proposition 10.3.2.

10.9 Prove that if T € M, is normal, then W(T) is the convex hull of the
eigenvalues of T'.

10.10 Show that the closure of any convex set is convex.

10.11 Modify the proof of Lemma 10.3.7 to show that w(7T) = ||T| whenever
T € Z(J2) is self-adjoint.
Hint: Choose y € T such that y(Tx, y) = [(Tx, y)|.

10.12 Use 2 x 2 matrices to show that both of the inequalities in Lemma 10.3.7 can
be attained.

10.13 Show that w is not submultiplicative. That is, we do not have the inequality
w(TS) < w(T)w(S), S, T € Z().
Hint: (Pearcy [112]) Let 7 = C* and

0100
0010
0001
0000

Consider S = N and T = N2. One needs to show that
wN) =wN) =1 and w(N)=3.

The last identity might be difficult. However, one can more easily show that w(N) <
1, which is enough for this application.

10.14 Show that td(«) is the intersection of the two families of half planes (10.8.2)
and (10.8.3).



244 10 Finite Blaschke Products and Operator Theory

10.15 Show that

q eik@ 1
2 5| < prsm@n
= plsin(@/2)]
Hint: Use the Abel summation method and the fact that

il 1
Zeike < -
= Isin(0/2)]

k=p



Chapter 11
Real Complex Functions

11.1 Real Rational Functions

l‘)

Check for
updates

In this chapter we connect finite Blaschke products to the class of rational functions

f such that

f@Q) eR, ¢eT,

where we recall that R = R U {00} is the extended real line, regarded as a subset
of the Riemann sphere C = C U {oo}. We denote the set of such “real rational

functions” by PR. Our main focus here is the class

RY ;= {f € R : f is analytic on D).

Example 11.1.1 The function

1+z
1 -z

fl@)=i
belongs to R since it is rational, analytic on D, and

1+
1= et

fe) =
02102 i0)2)
T G072 (g—16/2 _ 4i6]2)
. 2cos(60/2)
=]—
—2isin(6/2)
= —cot(6/2),
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which belongs to R for all/\@ € [0, 2m]. Because )f is a Mobius transformation,

it maps extended circles in C to extended circles in C. The values

f(=1) =0, FO) =1, f(1) = oo, f@)=-1,

show that f maps DD onto the upper-half plane C..
Example 11.1.2 Consider the two Blaschke products

z+ % z
B1(z) = = and Bi(z) =

1+ 5z 1—5z
A short computation confirms that

Bi(z) + Bx(z) _ 3 iz
Bi(z) —Bx(z) 21—2z%

fl@) =i

which is rational and analytic on ID. Furthermore,

0y _ 3
fle )—2’1_ezi9

—_3
= 4csc@,

and f(—i)=1,

(11.1.3)

(11.1.4)

which belongs to R for all 8 € [0, 2]. Thus, f € Rt In light of (11.1.4), we

conclude that

F(T\{1}) = (00, —2] U [3, +00)

and hence f maps D onto the complement of the rays (—oo, —%] and [%, +00).

This is illustrated in Fig. 11.1.

Example 11.1.5 Let

Z

TO=""1"0

and observe that f is rational and analytic on D. Furthermore,

ei9

iy _
f(e )_ 4(1—6‘[9)2
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A \[ocxt)) 7>

2
r=0.95 r=0.999

Fig. 11.1 Images of the disk |z| < r under the function f(z) = % i izzz from (11.1.3) for four
values of r € (0, 1)

0
—4 (€i0/2(e~16/2 — i0/2))2
i0
= _4 i0 .e. 2
e'%(—=2isin(6/2))
= csc?(6/2), (11.1.6)

which belongs to R for all 6 € [0, 27]. Thus, f € AT, From (11.1.6) we see that

S(M\{1}) =1, 00)
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el
\ﬁ"%’é

Fig. 11.2 Images of the disk |z| < r under the function f(z) = —4z/(1 —z)? from Example 11.1.5
for several values of r € (0, 1)

and hence f maps D onto C\[1, co). This is illustrated in Fig. 11.2. Observe how f
is related to the Koebe function

z

k(z) = ——,
(2) -2z
which plays an important role in the study of univalent functions [39, 70, 89].

The alert reader might have noticed that all of the examples of real-rational
functions presented above had at least one pole on T. This is no accident.

Proposition 11.1.7 Suppose f is a nonconstant function in R". Then f has at least
one pole on T.
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Proof Suppose toward a contradiction that f € SR is nonconstant and has no pole
on T. Since f is rational and analytic on D, f must actually be analytic in some
neighborhood of D~. The open mapping theorem ensures that f (D) is open. Since f
is continuous on D7, it follows that f(T) is a curve in C that contains the boundary
of (D). However, f is real valued on T and hence f(T) is a compact, connected
subset of R; that is, f(T) is a closed interval. This forces the open set f(DD) to be
unbounded, which is a contradiction. m]

11.2 Helson’s Characterization

For two finite Blaschke products By and B, we claim that

_l.Bl+BZ
- Bi—B

belongs to fR. To see this, observe that

in which

14z
1—z

g2) =i (11.2.1)

is the function from Example 11.1.1, which maps T onto R. Since B1/B> is
unimodular on T, this says that f € 2R. A theorem of Helson, presented below,
asserts that every function in fR takes this form.

To state Helson’s theorem precisely, we require a definition. Two finite Blaschke
products By and B; are relatively prime if they share no common zeros. Equiv-
alently, there is no nonconstant Blaschke product B for which By = B(Cp and
B> = B(; for finite Blaschke products Cp, C».

Theorem 11.2.2 (Helson [76]) Suppose f is a rational function.

(a) If f € R, then there are two relatively prime finite Blaschke products B and
By such that

_.Bi+ B

= . 11.2.3
Y B, ( )

(b) If f € K™, then there are two relatively prime finite Blaschke products By and
By such that By — By has no zeros on D and (11.2.3) holds.
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(c) If f € BT has no zeros in D, then there are two relatively prime finite Blaschke

products By and By such that Bl2 — B% has no zeros on D and (11.2.3) holds.

Proof
(a) Suppose f € *R. Let g denote the function (11.2.1) and observe that
—1 z—1
)= ——
g T

(b)

(©)

maps R onto T. It follows that g~ ! o f is arational function with unimodular

boundary values. If f has a pole on T, then (f —i)/(f + i) has the value 1 at
this pole. Thus, the preceding quotient is unimodular on T and meromorphic on
D with a continuous extension to D™. Corollary 3.5.4 implies that

—1 B
g of=— (11.2.4)
B,
for two finite Blaschke products B; and B,. By factoring out any common
Blaschke factors, we can also assume that B; and B, are relatively prime.
Consequently, we obtain f = g(B;/B>), which proves (11.2.3).
Since Rt C R, the preceding tells us that f enjoys a representation of the
form (11.2.3) with relatively prime finite Blaschke products B and B,. Suppose
toward a contradiction that By — By, the denominator of f, has a zero w € D.

Since f is analytic on D, the numerator B + B> must vanish at w as well. Then
B + B, = b,G and B, — B, =b,H,

in which b, = (z — w)(1 — wz)~! and G, H are rational analytic functions on
D. Solving this system for B; and B; reveals that

By =1by(G+H) and By = 1b,(G — H).

Thus, By and B, have a common zero at w. This is a contradiction to the fact
that By and B, were chosen to be relatively prime.
Proceeding as in (b) we see that B; + Bj also has no zeros on . Thus,

B} — By = (B + B2)(B1 — B))
has no zeros on D as well. O
To obtain the Helson decomposition for a general f € ‘R, use the identity

f@)—i _ B1(2)
f@Q+i  B2)
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and compute
{wi, wa, ..., wa} = T {IHND,
and
22 dnd = f A=) N,

Then

m

n
Z—Wwj Z—Aj
Bi(z) = — and By(z) = —,
1(2) gjl:[ll—wjz 2 /1:[11—)»/1

for some unimodular constant &.

Example 11.2.5 Let us compute the Helson decomposition of the function

Z

TO=""1"0

from Example 11.1.5. From (11.2.4),

f@—i _ Z-2042)z+i B
f@+i 2-201-2z4+i B

The single zero of Bj is the solution to f(z) =i, or
2 -2(1+20)z+i=0,
that belongs to D. A computation shows that
w &~ 0.0898203 — 0.197368i.

Similarly, the single zero of B; is the solution to f(z) = —i that lies in D, which
turns out to be w. The unimodular constant factors in By and B, should be chosen
so that

_JO-i_B©
FO+i B0

Thus,

Z—w z—w
Bi1(z) =6 —— and By(z) = ,
1 —wz 1 —wz
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in which £ = —w/w. This yields the Helson representation

. B1(z) + B2(2)

J &=l =B

11.3 Real Rational Functions Without Zeros

Theorem 11.2.2 says that f € 93" has no zeros on I if and only if

Bi + By

szl B,

for two relatively prime finite Blaschke products By and B; so that B12 — 822 has no
zeros on ID. Our aim in this section is to obtain a more precise description of these
nonvanishing R functions.

Example 11.3.1 For ¢'®, ¢! e T, consider the function

fup@) =3 >< _Z>. (11.3.2)

eb —z
Observe that fy g is rational, analytic on I, and satisfies

P22 _ p—it/2,i0

i0
Jape™) = B2 _ o—iB/24i0

oi@=0)/2 _ ,—i(a—0)/2

T pi(B—6)/2 _ p—i(f—6)/2
i (5% (50|

This means that f, g belongs to 81 and has no zeros on D. For example, letting
o = B + m yields the function

E+z
£E—z

(11.3.3)

which belongs to R.

We now prove that these functions f, g are the building blocks for R functions
without zeros in D.

Theorem 11.3.4 Suppose f € R" and has no zeros on D. Then either f is a
nonzero real constant function or
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f@) =ck H

zﬂ —Z

forsomec € R, & €T, and oy, a, ...,a,, B1, B2, ..., By €10, 27].
Proof Theorem 11.2.2 says that

fe ?1 + B
1 — By
where B and B, are relatively prime finite Blaschke products such that By — B;
and B; + B have no zeros on D. Consequently, any zeros or poles of f must lie in
|z| = 1. However, the reflection identity (3.1.6) implies that the zeros or poles of f
cannot be in |z| > 1. Thus, any zeros or poles of f belong to T.
The zeros of f occur at those z for which

Bi1(2) _
B>(2)

Clear the denominators in the preceding and rewrite it as a polynomial equation in
z. Suppose that the resulting equation has n > 0 solutions

io i i,
et et*2 . et

Similarly, the poles occur at those z for which

Bi(z) _
B> (z)

Suppose that this equation has m > 0 solutions

&P ethr  oiPm
Since f is a rational function with no other zeros or poles, we must have

e 1

f(@)=c§ H(eia'i—Z) Hm,

Jj=1 j=1
for some real constant ¢ and some unimodular constant &. There are several
possibilities.

(a) If n =m = 0, then f is a real constant function.
(b) If m =0and n > 0, then
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f@ =cE [ -2,

j=1

which says that f € PR is nonconstant and bounded. However, this contradicts
Proposition 11.1.7.
(¢) If n =0and m > 0, then

1 L
—=c &[] ~2),
f i

which implies that 1/f € 9™ is nonconstant and bounded. This also contradicts
Proposition 11.1.7.

(d Ifm > 0,n > 0, but m < n, then for some appropriately chosen unimodular
constant ¢, the function

m [o
{ elOl_/ —7z
g - | elﬁj _Z7
j=1

along with f/g, belongs to R™. Then

——ccs H (€' = 2)

j=m+1

belongs to Si™ and is bounded (and nonconstant). However, this contradicts
Proposition 11.1.7.
(e) A similar contradiction arises whenm > 0, n > 0, butn < m.

Thus, m = n and we have the desired factorization

f@)=ct H

lOl i—1z
for some real constant ¢ and some unimodular constant &. O

11.4 Factorization

One can factor any analytic function f on D as f = F G, where F is analytic on D
and whose zeros are precisely those of f (including multiplicity) and G is analytic
on D with no zeros on D [26, Thm. 5.25]. When f belongs to a certain class of
functions, one often wants a factorization f = FG in which F and G not only



11.5 Valence 255

satisfy the properties above but also belong to the same class of functions as f. For
example, if f is a bounded analytic function on D, then f = BG, where B is a
bounded analytic function on D with the same zeros of f (including multiplicity)
and G is a bounded analytic function on D with no zeros [38].

Suppose that f € R*. Then one can write f = BG, where B is a finite Blaschke
product whose zeros are precisely those of f, repeated according to multiplicity, and
G = f/B. However, it will not always be the case that the two factors belong to
MT. The following theorem remedies this situation.

Theorem 11.4.1 If f € R, then f = FG, in which

(a) F,G e R,

(b) F has precisely the same zeros of f (with the same multiplicities),
(¢) G has no zeros in D,

(d) 1f1<1GlonT,

(e) f and G have the same sign on T.

Proof Let f € SR™. Since f is a rational function, it has a finite number of zeros
in D. If f has no zeros in D, then let B = i. Otherwise, let B be a finite Blaschke
product whose zeros are those of f, with the same multiplicities. Set H = f/B and
observe that H has no zeros on ID. Furthermore,

—4B (1 — B)?
= : H=FG
f (1 — B)? —4 ’
where
—4B (1= B)?
= and G = H
(1 — B)? —4

If f has no zeros in D, then F is a real constant function and G is a rational
function. From Example 11.1.5, observe that F € Rt and F > 1 on T. This says
that G € R (and has no zeros on I by construction) and |G| = |f/F| < |f| on
T. Finally, since f/G = F > 1 on T, we see that f and G have the same sign
onT. |

11.5 Valence

Recall that | E| denotes the cardinality of a set E. For f € R" and w € C\R, let

v(fiw)=NHzeD: f(z) = wl

denote the valence of f at w. This is the number of times, counting multiplicity, that
f assumes the value w in D. By Theorem 11.2.2, each f € R takes the form
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_; B+ B
B - B’
in which Bj, B; are finite Blaschke products with no common zeros and such that
B1 — B; has no zeros on D. Since finite Blaschke products have constant valence

on D and C\D~ (Theorem 3.4.10), this should translate into information about the
valence of f on C4 and C_.

Theorem 11.5.1 Let f € R be of the form
_; By + B
o B — By’

where B1, By are finite Blaschke products with no common zeros and such that
By — By has no zeros on D. Then

deg B, ifw e Cy,

v(f,w) = .
deg B ifweC_.

In other words, f has constant valence on each of C4 and C_.

Proof First observe that the Mobius transformation

z—1
741

Y(z) =

is injective; it maps C onto D and it maps C_ onto C\D~. There are several cases
to consider.

(a) If w € C,, then the number of solutions to f(z) = w is the same as the number
of solutions to

Yo f(z)=vy(w)=neD.
This, in turn, equals the number of solutions in D to

G YO
f@+i B

We need to examine the number of zeros of B, — nBj in . Since
mBi| = Inl <1=|B|

on T, Rouché’s theorem (see Sect. 4.5) implies that the number of zeros of B;
and By — nBj in D are the same. Thus, v(f, w) = deg B, whenever w € C,..
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(b) If w e C_ and w # —i, then n = ¥ (w) € C\D™. In particular, n = ¥ (w) #
o0. We want to count the number of zeros of B, — nBjp in . Since

|B2| =1 < |nl = |nBil

on T, Rouché’s theorem implies that n By and By — nBj have the same number
of zeros in D. Thus, v(f, w) = deg B; for any w € C_\{—i}.

(¢) If w = —i, then we need to find the number of solutions in D to
B>
— = o0.
B

Since Bj and B; are relatively prime, this is the same as the number of zeros of
B1, which is deg Bj.

This completes the proof. O

Theorem 11.5.1 shows that any f € SR has constant valence on each of C and
C_. It turns out that we can make these two (constant) valences anything we want.

Theorem 11.5.2 (Helson [75]) For a given pair of m,n € N U {0}, there is an
f € R with valence m on C,. and valence n on C_.

Proof Fixm,n e NU {0} and let P = {¢1, {2, ..., im} and N = {&1, &>, ..., &y}
be sets of distinct points on T with P N N = &. If either m or n equals zero, take
the corresponding set P or N to be the empty set. f m = n = 0 set f = 1 and note
that f € RT with vy = 0 of both Cy and C_. If m, n € N, define

m n

f(Z)=i2§j+Z—iZ$k+z

j:1§j_Z ol S

and observe that f is a rational function which belongs to SR in light of (11.3.3).
Notice that f(¢;) = oo and that f maps a neighborhood of ¢; in D to a
neighborhood of co in C;. Since ¢1, &2, ..., §, are distinct, f maps D onto a
neighborhood of oo in C, exactly m times. By Theorem 11.5.1, the valence of
f equals m on all of C,.. In a similar way, f(£;) = oo and f maps a neighborhood
of & in D to a neighborhood of co in C_. Since &1, &, .. ., &, are distinct, f maps
D onto a neighborhood of co in C_ exactly n times. Thus, f has valence n on all of
C_. The arguments above even take care of the case when either m or n are equal
to zero. a

The observant reader might want to use Theorem 11.5.1 to produce an f € R*
with prescribed valences. Indeed, in the representation

.B1+ B

=1 B
f By — B
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one just needs to make the degrees of B; and B, match the desired valences on C.
and C_. However, in order for f to belong to R, we also need B; — B» to have no
zeros in D, which is not always easy to do.

11.6 Notes

The study of “real complex" functions goes beyond the rational setting we presented
in this chapter [56, 60, 75, 76]. In this more general setting, finite Blaschke products
are replaced by inner functions.

Connection with Model Spaces

There is a connection between real rational functions and model spaces with kernels
of Toeplitz operators [51, 53].

11.7 Exercises

11.1 Explore the Helson decomposition of the Koebe function

Z

k(z) = a_22

and for k(z).
11.2 Compute the Helson decomposition of the function fy g(z) from (11.3.2).
11.3 For f € R, what types of domains can be the image f (D) of f?

11.4 Consider the Mo6bius transformation

1—iz

T(z) =i

1+iz

and observe that 7 maps D onto C; and maps T onto R. Prove the following
identities.

1 __
-1 = = — = — — = 7
@ T 7 ()=TU/z2) = T® T(—2)=T®.

(b) (T o T)(2) =% and (ToToToT)(z) =z
T@)T(z2) +T(z1) +T(z2) — 1
14+ T+ T(z2) =TT (z2)

(©) T(z122) =
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T)T(z2) —T(z1)+T(zp) +1

TgZJL)T(Z%) + T(Zl72 — T(ZZ.)T‘F I ]
() T(z1+z22)= (z)T(z2) +iT(z1) +iT(22) +

3i4+T(@)+T()+iTE)NT(z2)

(d) T(z2/71) =

11.5 Suppose that fi = T(By) and f> = T (B3) for some finite Blaschke products
By and Bj. Then fi + f» is rational, real valued on R, and maps D into C.
Consequently, Exercise 11.4 and a rephrasing of Helson’s theorem provide a finite
Blaschke product B so that f1 + f> = T (B). Use the identities in Exercise 11.4 to
show that

. 3iB1Bo+ B1+ By +i
 34iB +iBy+ BBy’

11.6 Helson’s theorem tells us that each f € fR can be written as f = T (B2/B),
where By and B, are relatively prime finite Blaschke products. Using the identities
in Exercise 11.4, show thatif f| = T(B1) and f» = T(B3), then

_Nhh-h+ ]
b+ fi—fHh+1




Chapter 12 ®
Finite-Dimensional Model Spaces Qe

Model spaces are of great importance to operator theory since the corresponding
compressions of the shift operator (see (12.6.4) below) can be used to represent
certain contractions [59, 106, 131]. In this chapter, we develop finite-dimensional
model spaces using elementary techniques to give the reader a taste of a much larger
picture.

The reader familiar with model spaces in their full glory may complain that we
are not as comprehensive as we should be. For the sake of the novice, however, our
presentation involves little more than the Cauchy integral formula (in the guise of
Lemma A.2.2 below) and linear algebra. The interested reader can further explore
model spaces and their applications in the recent text [59].

12.1 Model Spaces

Definition 12.1.1 For a finite Blaschke product B with zeros Ag, A2, ..., Ap,
repeated according to multiplicity, the model space J¢p is the set of rational
functions of the form

Hp = |% Pe %_1}, (12.12)
in which
R@ = (1=2z2)(1 —2z) (1 — Ay2). (12.1.3)

In what follows, R denotes the denominator (12.1.3) that appears in the definition
of Jp. Its degree and the location of its zeros can be inferred from context. Since
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S. R. Garcia et al., Finite Blaschke Products and Their Connections,
https://doi.org/10.1007/978-3-319-78247-8_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78247-8_12&domain=pdf
https://doi.org/10.1007/978-3-319-78247-8_12

262 12 Finite-Dimensional Model Spaces

P,—1 is the set of (analytic) polynomials of degree at most n — 1, it follows that
Jp is a complex vector space and

dim #p = n. (12.1.4)

Example 12.1.5 If B(z) = 7", then R(z) = 1 and hence J&;n = &2, ;.
Example 12.1.6 If > € D and

z—A
B(z) = —,
@ 1—Az

then R(z) = 1 — Az and n = 1. Thus,

1
g = span — 1.
B {l—kz}

Example 12.1.7 If A € D and

z—A 2
B(Z)_<1—Xz) ,

then R(z) = (1 — xz)? and n = 2. Partial fractions confirm that

1 1
B = span —, — .
B =P {l—kz (1—Az)2}

Example 12.1.8 If A, n € D with A # n and

Z—A Z—
B(z) = —— 221
1—xz 1—7z

then R(z2) = (1 — x2)(1 — 7z) and n = 2. Consequently,

1 1
%:span{ —, _}.
1—xz 1—7z

A useful observation is the following.

Proposition 12.1.9 _#3 contains the constant functions if and only if B(0) = 0.

Proof Let B denote a finite Blaschke product of degree n with zeros A1, A2, ..., Ay,
repeated according to multiplicity. If B(0) = 0O, then degR < n — 1. Thus, P =
¢cR € P,y forall ¢ € C and hence ¢ = cR/R € #p. Conversely, suppose
that ¢ € Jp for some ¢ € C\{0}. Then cR = P for some P € &,_. In light
of (12.1.3), this can occur if and only if deg R < n — 1; that is, if at least one of
A, A2, ..., Ay is zero. Thus, B(0) = 0. O
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We can make .#3 into a Hilbert space by endowing it with the inner product

o ———df
(fi8) = fg(e?) > (12.1.10)
0 T

and norm

g\
1Al =v{f )= (f | £ () 2—)
0 T

it inherits by regarding the elements of .#p as members of the Lebesgue space
L? := L*(T) (see the Appendix). That is, we can identify f € .# with its boundary
function f : T — C and consider %3 as a finite-dimensional subspace of L?. This
permits us to refer to the inner product (12.1.10) between any two rational functions
with no poles in D™. Indeed, the boundary functions of such rational functions are
square-integrable on T and hence (12.1.10) is well defined for such f, g.

Building upon Example 12.1.6, we identify some conspicuous residents of 5.
For A € D, the corresponding Cauchy kernel is

1
a(z) = —. 12.1.11
'@ = T (12.1.11)

The Cauchy integral formula (Lemma A.2.2) implies that

(f,a)y=fn), feXp. (12.1.12)
More generally, this holds for any rational function with no poles in D~ if we regard
the inner product as being performed in L2.

Example 12.1.13 We can use (12.1.12) to compute ||c; ||:

lieall* = (i, 1)
=c(A)
1
1— a2

In what follows, it is sometimes convenient to use the normalized version of ¢y :

v1—|Ar]?
Gy = 4 (12.1.14)
1—Az

By construction, ¢y is a unit vector.

A computation similar to (12.1.12) reveals that

(f, ey = O,
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in which

. ilzJ
A (12.1.15)
(1 —az)i+!

is the jth derivative, with respect to 2, of the Cauchy kernel ¢, (z); see Exercise 12.1.
The functions (12.1.11) and (12.1.15) appear frequently in what follows.

Proposition 12.1.16 If B is a finite Blaschke product with distinct zeros
A, A2, ..., Ar and corresponding multiplicities my, mo, . .., m;, then

%stpan{cif) L1<i<n 0<j<mi—l}.

Proof We prove this under the assumption that each of the zeros of B is simple; that

is,m; =my =---=m, = 1. See Exercise 12.2 for the general case.
If P/R € 45, in which P € &7,_; and R is given by (12.1.3), then a partial
fraction expansion renders P/Q as a linear combination of ¢, cx,, ..., ca,.

Conversely, any linear combination }_; a;c;; can be put over the common
denominator R by writing

ia_c = Zim Gk P
= R(2) T RE

in which
degP <degR—-1<n—1.

Thus, any such linear combination belongs to J75. O

One can see from (12.1.2) that the elements of J#p are rational functions with no
poles in D~. Using the ideas above, we can give the following characterization of
¢ in terms of inner products.

Proposition 12.1.17 A rational function f with no poles in D~ belongs to #p if
and only if { f, BzF) = 0 for all k > 0.

Proof We prove this under the assumption that each of the zeros Ay, Az, ..., A,
of B is simple; see Exercise 12.3 for the general case. Under this assumption,
Proposition 12.1.16 implies that

B = span{cy,, Cy,, ..., Ch, )}

(=) If f € 3, then

n
f=2 aje,
j=l1
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for some ay, as, ..., a, € C. Forany k > 0,

n
(2B, f)=(*B. )Y ajc,)
j=1
n
= Za_j<ZkB, ij>
j=1

n

= a5 B())
j=1

= 0.

(<) Suppose that f is a rational function with no poles in D~ and (z*B, f) = 0
for k > 0. We assume that the poles of f are finite and simple; for the general
case, see Exercise 12.3. Then we may write

m
f=) ajcu;. (12.1.18)

j=1
in which wy, wa, ..., w, € D aredistinctand a;, as, ..., a, are nonzero. For
i €{1,2,...,m}, use the Lagrange interpolation theorem (Theorem 7.1.1) to

obtain polynomials p; so that p; (w;) = §; ;. Then (12.1.12) yields

0={(piB, f)

m
= (ptizaijj)
=1

I
NE

@ (piB. cu,)
1

~.
Il

I
NE

ajpi(w;)B(w;)

~
I
_

= a; B(w;).
Thus, B(w;) = 0 and hence w; is a zero of B; that is, w; = A; for some j.
Consequently,
f espan{c,,, cr,, ..., C0,} = HB.

This completes the proof. O
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If f € #, then we may write
f@@) =ap+arz+az* +azz® +---,

in which the a,, are the Taylor coefficients at the origin for f. The backward shift of
f is the function

()= fO)

Z

=aqa +a222+a3z2+a4z3+~-~ . (12.1.19)

The following corollary shows that finite-dimensional model spaces are invariant
under the backward shift.

Corollary 12.1.20 If f € #p, then

@)= FO

Z

Hp.
Proof If f € #p and k > 0, then
(@ FB) = (£~ £©0),2%'B)
= (£, 2T B) — £(0)(1, "' B).

The first inner product is zero by Proposition 12.1.17. The second inner product
is zero by Cauchy’s Theorem. Proposition 12.1.17 implies that (f — f(0))/z
€ Xp. o

12.2 The Takenaka Basis

The computation

2
(zj,zk)Z/ " it 49
0 2w

2
_ / Jii—he 40
0 2w
=38jk
shows that {1, z, 2, ..., z”_l} is an orthonormal basis for

Hn = Py_y =span{l, z, 2%, ..., 2" 7).
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One construction of an orthonormal basis for a general finite-dimensional model
space .#p is due to Takenaka [132]. To simplify things, we employ the shorthand

Z—A
by(z) = .y

(12.2.1)

for A € D.

Proposition 12.2.2 Let B be a finite Blaschke product with zeros i, Ao, ..., Ay,
repeated according to multiplicity. Let vi = ¢y, and

Ve = (byy -+~ by )Chy (12.2.3)

for2 < £ < n. Then {vy, v, ..., v,} is an orthonormal basis for #p.

Proof Since bxib_M =1lonTfori =1,2,...,n, the definition (12.1.10) of the
inner product on #p ensures that for j < k we have

(vkv U]> = (b)ulb)nz c 'bkkflg)uka b)\.]b)\z T 'b)»jflg)»j>

=4/ 1 - |aj|2<b)»jb)\j+1 c 'b)ukflz:)\ks C)Lj)
=1 = 1a;?bs; A )b, Onj) -+ - by (Aj)Cry (X))

=0
since by; (Aj) = 0. If j = k, a similar computation yields

(vj,vj) = (baybay -+~ ba;_ Co;y baybay - by, Ca;)

= @, 8, =1

Thus, {vi,v2,...,v,} is an orthonormal set in #p. Since dim.#3 = n
(see (12.1.4)), we conclude that {vi,vo,...,v,} is an orthonormal basis
for #3. O

12.3 Reproducing Kernel

Let 7 be a Hilbert space of analytic functions on a domain §2 € C. Then 7 is a
reproducing kernel Hilbert space if there is a kernel

Kz, ):2x 2 —C
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such that for each fixed A € £2, the function
k. (z) = K(z,2) (12.3.1)
belongs to .7 and has the reproducing property
FO=(fO).K( L), ref, fet.

For example, the Hardy space H> (see Appendix A.4) is a reproducing kernel
Hilbert space with kernel

1
K(z,)) = —. 12.3.2
@0 =15 (123.2)

In particular, the kernel for the Hardy space is the Cauchy kernel encountered
in (12.1.11). More information about reproducing kernel Hilbert spaces can be
found in the texts [1, 111].

Let B be a finite Blaschke product and let

1 - B(M)B(2)

k) (z) := =
2 (2) 3z

(12.3.3)

The following result shows that J#p is a reproducing kernel Hilbert space with
kernel K(z,)) = k;(z). Before proceeding, we should remark that although
f) = (f,cy) forall f € #p and A € D, the function (12.3.2) does not serve
as a reproducing kernel for J#p since ¢, does not, in general, belong to #p.

Proposition 12.3.4 Let B be a finite Blaschke product, let ). € D, and define k; (z)

by (12.3.3).
(a) kk € %
(b) {f.ka) = f %) for f € Hp.
1 —|B@)|
(0) Wall* = — 5 for k€ D.
Proof

(a) Since BB = 1 on T, for any polynomial ¢ we have

1 —@B(z)>
1— Xz

= (Bq.c1) — B(\)(Bq, Bcy)

= (Bq.c1) — B(W){q. c))

= B(A)g(A) — B(M)gq(h)

=0.

(Bq. ki) = (B,
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Proposition 12.1.17 implies that k) € J#3.
(b) Forany f € #5p,

1 —WB(z)>
1 —Xz

= (f, 1) — BA(f, Bcy)

= f(A) — BA(f, Bcy).

(fika = (1.

By Proposition 12.1.17, the inner product in the second term equals

Note that the series above converges since [A| < 1 and

(A" < NfIN"BI =[£Il

by the Cauchy—Schwarz inequality. Thus, f(X) = (f, kx).
(c) It follows from (a) and (b) that for each A € D,

kil = (k.. ki)
= kp(A)
_1—[BW?
1— a2
This completes the proof. O
Since the Takenaka basis {vy, v, ... v,} is an orthonormal basis for J#p (Propo-

sition 12.2.2), the reproducing property of k; (Proposition 12.3.4) implies that

n

k() =Y (ki vj)v;(2)

j=1

= Zvj(,\)vj(z). (12.3.5)

j=1
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In fact, the same argument holds for any orthonormal basis of JZ5. See Corol-
lary 12.8.4 for other natural orthonormal bases of .#p.

One can also consider kg for & € T. From (12.2.3) we observe that the values
v1(§), v12(§), ..., v,(&) are well defined. In light of (12.3.5), we define

ke(2) =Y 0;E)v;(2). (12.3.6)

j=l1
Proposition 12.3.7 Let B be a finite Blaschke product and let & € T.

(a) ke € Hp.

(b) lkell = /IB"(6)I.

(c) f&) = ([ ke)forevery f € Ap.

Proof

(a) The identity in (12.3.6) says that k¢ is a linear combination of the basis vectors
v, V2, ..., Uy. We conclude that kg € JZ3.

(b) Suppose that B has zeros A1, A2, ..., A,, repeated according to multiplicity. The
identity in (12.3.6) shows that

llke 1> = (ke ke )
G
j=1
= Xn: =P (by (12.2.3))
L — e
= |B'(&)| (by (3.4.8)).

(c) Sinceeach f € Jp is analytic in a neighborhood of D™ and k; — kg uniformly
onTas A — &,

/€ = Jim )
= Ali_lfyf’ k)
= ([, ke).

Indeed, uniform convergence permits the interchange of limit and integral that
is implicit in the preceding computation. O
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12.4 Projections onto Model Spaces

Let 57 be a complex Hilbert space. An orthogonal projection P is a bounded linear
transformation P : # — # that is self-adjoint (P = P*) and idempotent (P> =
P). Such an operator has closed range and fixes each element of its range. Moreover,
the kernel of an orthogonal projection is orthogonal to its range (see A.6.7).

By considering the boundary function f : T — C of each f € %5, we may
regard #3 as a finite-dimensional subspace of L2. This permits us to consider
the orthogonal projection Pg : L?> — L?* whose range is .#p. This projection is
intimately related to the kernels

1 1 - B(\)B(z)
¢, = = and k= ————.
1 —Az 1—Az

Proposition 12.4.1 Let B be a finite Blaschke product.

(a) (Pgf)(X) = (f, k) for each f € L.
(b) Pgcy = k; for each A € .

Proof
(a) Since Ppf € #p, the reproducing property of k; implies that

(Pgf)(A) = (P f, k)
= (f, Pgk.)
= (f. k). (12.4.2)

The preceding two equalities follow from the self-adjointness of Pp and the fact
that k) € 3, respectively.
(b) Apply (12.4.2) with f = ¢, and deduce that

(Ppci)(z) = (en, kz)
= (kz, 1)
= k()
= kx(2).

The final line follows from (12.3.3); see also Exercise 12.7. m]
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12.5 Conjugation

Let

n
B =y [[ —=L, (12.5.1)
i1 1 -z

in which y € T. From (12.1.2), we see that each f € 3 is of the form

where P € £2,_1 and
R(Z) = (1 —x12)(1 — A22) - (1 — An2). (12.5.2)

Define a conjugate-linear map C : £ — £ by

(7)-%
Cl=)=—. (12.5.3)
R R

in which
Pty =""1PA/2).

That is, P* is the polynomial of degree at most n— 1 obtained from P by conjugating
its coefficients and reversing their order; see Sect. 3.3 for a review of the # operation.
It follows from (12.1.2) that Cf € J#p whenever f € #p.

The map C is a conjugation on . That is, it is conjugate-linear, involutive, and
isometric.

Proposition 12.5.4 The map C : Zp — p has the following properties.

(a) Claf +g) =aCf + Cgforall f,g,e H#p anda € C.
(b) C*=1.

(c) ICfl=|flonTforall f € #p.

(d) ICfIl = |lfl forall f € Hp.

(e) {f,8)=(Cg,Cf) forall f,g € %p.

Proof Let B and R be defined as in (12.5.1) and (12.5.2), respectively.

(a) This follows from the fact that the map P — P* on &,_; is conjugate linear.

(b) Since (P*)* = P by (3.3.7), it follows that C%2(P/R) = C(P*/R) = P/R for
all P € #,_y. Thus, C* = I.

(c) If f € Hp, write f = P/R, in which P € &,_;. Since |P| = |P¥*| on T
by (3.3.12), it follows that | f| = |P/R| = |P*/R| = |Cf| on T.
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(d) From the preceding we see that
2
; do
IcrP = [ icre P g
0 T

2 ) d@
_ 0y (2
= fo P
= fI*

(e) See Exercise 12.6. O

For some purposes, it is more convenient to work on the unit circle than on the
unit disk. This is particularly true for model spaces.

Proposition 12.5.5 Let B be a finite Blaschke product.
(a) If f € KB, then

(CHE) = fFEEB(Q), ¢eT. (12.5.6)

(b) A rational function f that is analytic on a neighborhood of D™ belongs to #p
if and only if there is a rational function g that is analytic on a neighborhood
of D™ so that f(¢) = g(¢)¢ B(¢) on T. If this occurs, then Cf = g.

Proof

(a) Let B denote the finite Blaschke product (12.5.1) and let R denote the
polynomial from (12.5.2). Since B is of degree n, each f € J#p can be written
as f = P/R for some P € #,_;.By (3.3.9), we have B = R*/R, in which

R =Gz—aNz—a) - (z—ay).

Since C(P/R) = P*/R, where P¥(z) = 2"~ P(1/z), it follows that

P*(¢)
) =
_ PO R
R R
_ETPUD
¢"RO/D)
= P8 g

¢R()
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PO
= — B
(R(o{) ©

= f($)¢B(?)

for all ¢ € T. This establishes (12.5.6).

(b) If f € 3, then (a) ensures that g = Cf satisfies the desired condition. Con-
versely, suppose that f is a rational function that is analytic on a neighborhood
of D™ and that g is another such rational function so that f(¢) = g(¢)¢B(¢)
onT. Forall k > 0,

27
(B, f) = / B(e®)e ¥ Fen) 20
0 27[

2 : oy — d0
= / B(e'")e*? g (e1f)ei? B(ei®) —
0 2

:/2n eikeg(eie)ieieﬁ

0 2
1 k

=5 Tf g(&)dg

=0

by Cauchy’s theorem. Proposition 12.1.17 implies that f € J#p. The computa-
tion in the proof of (a) confirms that Cf = g. O

Example 12.5.7 What is the conjugate of the kernel k, € #p defined in (12.3.3)?
Since BB =1 on T, for { € T we appeal to (12.5.6) and obtain

1—-B(O)B(Q) \~
k, = ——
(Ch)(©) ( . );B(;)
_1-BWBE®) BE)
1—a ¢
_ B(t)— B
= —g“ —
The identity principle implies that
B(z) — B(»)

(Ck)(@) = ———]
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for all z, A € . In particular, for B(0) = 0 it follows that ko = 1 and

B(z
@ =22 (12.5.8)
z
The conjugation C acts on the Takenaka basis {v1, v, ..., v,} as follows.
(b)L b)L -~-b)hn)a ifk=1,2,...,n—1,
Proposition 12.5.9 Cv; = e ‘
Z‘J)w ifk =n.

Proof In what follows, we compute on T with ¢ as the independent variable. For
£=1,2,...,n—1,(12.2.3) and (12.5.6) yield

Cvg = v (B
= (b)»lb)»z te b)»gflg)\.g)é‘(b)ulb)»z te b)»n)

IVARIE

= by, b --b —
Ao }\l+l An 1 _ )\.[é‘
— ST TP biybigys -+ b,
& — Ag

=V 1= M2 by bagys - bagen,

= (blwlbluz T b)»n)g)»z'

The proof that Cv,, = €, is similar; see Exercise 12.9. O

12.6 Compressed Shift

For the remainder of the chapter, we assume that B is a finite Blaschke product with
B(0) = 0. (12.6.1)

This assumption simplifies many of the following computations. A consequence of
our assumption follows from Proposition 12.2.2, which tells us that vy = 1 € #5p.
For an analytic function f on DD, we define

($/) @) =zf(2). (12.6.2)

This is the unilateral shift operator (initially studied on the Hardy space H?; see
Appendix A.4). It is one of the most important objects in operator theory [59, 106].
We leave it to the reader to verify that the adjoint S* of S on H? is given by
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f @) — f(0)
(" i = L2=1O,
z
Definition 12.6.3 The operator
Sp: B — Xp, Sp=PpSly (12.6.4)

is the compressed shift.

The importance of this operator stems from the fact that it can be used to
represent certain types of contractions. Before getting into the details, we first
establish some basic properties of Sp. From Corollary 12.1.20 we know that

f=1O
z

ferdp — Jp.

The following proposition asserts that Sy is the restriction of the backward shift
operator (12.1.19) to #p; that is Sj = S| ;.

Proposition 12.6.5 For a finite Blaschke product B,

A
—

Spf = f € 3.

Proof Forany f, g € 5,

(Sp.f.8) = (/. SBg)
= (f, Pp(zg))
= (P f,z8)
=(f.z8)
= (f,zg) — f(0)(1, z8) (by Lemma A.2.2)
=(f = f(0),zg)
= @(f = f(0). 8)
_ <f— f(O)’g>.
Z

Since this holds for all f, g € #p, we obtain the desired identity. m]

We can use the Takenaka basis {vi, vy, ..., v,} for g, along with Proposi-
tion 12.4.1 and (A.6.8), to write the compressed shift Sp as

Spf = Z(zf, vj)vj.

j=1
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The matrix representation [Sp] of Sp with respect to the Takenaka basis is then
[SB] = [{zvk, vj) i kgn-

Proposition 12.6.6 If B is a finite Blaschke with zeros A1, X2, ..., A,, repeated

according to multiplicity, then [Sp] is lower triangular and has M1, L2, . . ., A, along
its main diagonal.

Proof For j <k,

[SBljx = (zvk, vj)

= (2 babay - bay_ Gy baybay -+ by, G0

= U= 1Py 1 = PPzt by, - by )

k—1

=\/1—|Aj|2\/1—|xk|2,\j ]—[ﬁ e
vy

i=j

=0.
Thus, [Sp] lower triangular. The diagonal entries are

[Sglj.j = (zbabay -+ - ba;  Ciys baybay -+ ba;_ Cx)
= (1= %) (zen, . ex))

= (1= [xj1Prjer, ()

= —Prj—
SR ETVTE

=Aj.

This completes the proof. O
See Exercise 12.12 for more about the matrix representation of Sp.
Corollary 12.6.7 The eigenvalues of Sp are L1, Lo, ..., Ay.

We end this section with a relationship between the compressed shift Sp and
the conjugation C on #p. The following asserts that the compressed shift Sp is a
complex symmetric operator.

Proposition 12.6.8 CSpC = Sj.
Proof For f, g € Jp, use the formula

(CHE) =¢fB(©)
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for ¢ € T (Proposition 12.5.5) along with Proposition 12.5.4 to show that

(CSECf,8) = (Cg, SECf)
= (Cg, S*Cf)
= (8Cg, Cf)
= (¢Big. BLf)
= (¢3, )
=(¢f. 8)
= (Sf. &)
= (Sf, Ppg)
= (PgSf, g)
= (S8 /. 8)-

Since this holds for all f, g € J#p, the desired identity follows. O

12.7 Partial Isometries

Definition 12.7.1 A bounded linear operator on a Hilbert space J¢ is a partial
isometry if A is isometric on (ker A)L; that is,

IAX| = [Ix]l. x € (ker A)*.
Example 12.7.2 Let {uj, uy, ..., u,} be an orthonormal basis for C* and let 1 <
k < n.If we regard uy, uy, ..., u, as column vectors, then A € M,, defined by

A:[ll] u ... U 00 ... 0]
is a partial isometry. To be more precise, A is the matrix representation, with respect
to the standard basis of C”, of a partial isometry. As a slight abuse of language, we
will say that A is a partial isometry. Indeed,
ker A = span{ext1, €x+2, ..., €,}

and

(kerA)l = span{e, ez, ..., €},
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in which ey, e;, . . ., e, denotes the standard basis for C". If
2= (21,22, ...,2%,0,0,...0) € (ker A)*,
then
Az = zju; + 22U + - - - + ZgUg.
The fact that the vectors uy, uo, . .., u; are orthonormal yields
1AZIZn = lz1l + |22l + - + lzxl* = 12013

The following proposition asserts that Example 12.7.2 is typical [71, Cor. 2];
see also Exercise 12.14. Recall the definition of unitary equivalence of operators
from (A.7.7).

Proposition 12.7.3 A partial isometry of rank k on a Hilbert space of degree n is
unitarily equivalent to an n x n matrix of the form

[upuw ... w00 ... 0]

for some (possibly empty) list of orthonormal column vectors ug, uy, ..., u; € C".

We leave it to the reader to verify the following facts about partial isometries; see
Exercise 12.13.

Proposition 12.7.4 For A € £ () the following are equivalent.

(a) A is a partial isometry.

(b) A* is a partial isometry.

(c) A= AA*A.

(d) A*A is an orthogonal projection.
(e) AA* is an orthogonal projection.

If A is a partial isometry, then A*A € L(J€) is the orthogonal projection
with range (ker A)* and AA* € L () is the orthogonal projection with range
(ker A*)L.

Recall the linear transformation x ® y : 5 — ¢ defined by
xQy)(2) = (z,y)x, z€H.

It has rank one if X, y # 0. Its adjoint is y ® X (see (A.6.9)).
In what follows, recall the hypothesis B(0) = 0 from (12.6.1). This ensures that
B/z is analytic on . It belongs to ~#p by Proposition 12.1.17.



280 12 Finite-Dimensional Model Spaces

Proposition 12.7.5 If B(0) = 0, then
. . B B
SpSp=1—-1®1  and  SpSp=1—-—® —. (12.7.6)
z  z

Proof For each [ € 5,

(I —SgSE)f=f—Pp(SS*f) (by Proposition 12.6.5)
=f—Pp(f—f(0)
= f(0)Ppl
=(f, 1)1 (by Proposition 12.4.1)
=1eDf

This proves the first identity in (12.7.6). To prove the second, first show that
Cfeel=CfecCs:
see Exercise (12.10). Then

C(1 — SS3)C = CC — CSESEC
=1 — CSECCS;C
=1—S;Sp (by Proposition 12.6.8)

and hence

I —S5Sp=C( — SpSH)C
=Cc(1®1)C

(CH® (L

B B

= 2gZ2 (by (12.5.8)).
Z Z

This completes the proof. O
Corollary 12.7.7 If B(0) = 0, then Sp is a partial isometry with

B
ker Sp = span {—} and ker Sj; = span{1}.
z

Proof Since 1 and B/z are unit vectors, 1 ® 1 and B/z ® B/z are orthogonal
projections on #p which ranges are span{l} and span{B/z} respectively. The
conclusions now follow from Propositions 12.7.4 and 12.7.5. O
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For a finite Blaschke product B with B(0) = 0, the compressed shift Sp
is a partial isometry on a finite-dimensional space. Moreover, its kernel is one
dimensional and its eigenvalues are contained in ID. It turns out that Sp is a “model”
for such operators.

Theorem 12.7.8 Suppose that

(a) A € M, is a partial isometry;
(b) dimker A = 1;
(c) the eigenvalues of A lie inside D.

If {0, Az, A3, ..., An} are the eigenvalues of A, repeated according to multiplicity,
and

n A —z

B(z) =z I~

@ H]—XjZ
j=2

then A is unitarily equivalent to Sp.
This representation theorem is a consequence of the following result.

Theorem 12.7.9 (Halmos—McLaughlin [67]) Suppose U and V are two partial
isometries with one-dimensional kernels. Then U and V are unitarily equivalent if
and only if they have the same eigenvalues and the same multiplicities.

Proof We choose to work with matrices instead of operators here. If U, V € M,
are unitarily equivalent, then they are similar and hence have the same characteristic
polynomials. Thus, U and V have the same eigenvalues with the same multiplicities.

Now for the converse. We proceed by induction on n. If n = 1, then each 1 x 1
partial isometry with one-dimensional kernel is the 1 x 1 zero matrix [0]. Suppose
for our induction hypothesis that each pair of n x n partial isometries sharing the
same eigenvalues and multiplicities is unitarily equivalent.

Let U and V be two (n+1) x (n+ 1) partial isometries with the same eigenvalues
and multiplicities. Schur’s theorem on unitary triangularization (Theorem A.8.1)
permits us, via unitary equivalence, to assume that U and V are upper-triangular
matrices of the form

U'u Vv
U= [0* a] and V= [0* a} , (12.7.10)

in whicha € C,u,v,0 € C", and U’, V' are n x n upper-triangular matrices with
0, A2, A3, ..., A, (in that order) along their main diagonals.

Since U is upper triangular and has a 0 in the (1, 1) position, we may write

U=[0c2c3 ... ¢ut1] (12.7.11)



282 12 Finite-Dimensional Model Spaces

in column-by-column format. Let ey, 3, . . ., e,4+1 denote the standard basis vectors
for C"+!. By hypothesis, dimker U = 1 and hence ker U = span{e,}. Since U is a
partial isometry, it is isometric on

(ker U)* = span{es, €3, ..., €41} (12.7.12)
and hence
n+1 2 n+l 2 n+1
oS s0) =[S = S
j=2 j=2 j=2
for any z», z3, ..., Zu+1 € C. We also have
0
n+1 o n+1
U(Zz,e,-):[()cz C3 ... €1l ZZZiCj-
j=2 Jj=2
Zn+1

Using the previous equation, along with (12.7.12), it follows that

n+1

n+1
2
SlP=|u(Xue)| = X ymEew (12.7.13)
j=2 j=2

2<j,k<n+1
for all 73, z3, ..., 2,41 € C. Thus, {c2,¢3, ..., ¢y4+1} is an orthonormal basis for

(ker U)*. In particular, since U is upper triangular, the matrix U’ from (12.7.10)
takes the form

U=[0q ... qus1l, (12.7.14)
in which {q», q3, . . ., q,+1} is an orthonormal set and u is orthogonal to the columns
of U’. Proposition 12.7.3 ensures that U’ is a partial isometry. From (12.7.14), we
conclude that U’ has a one-dimensional kernel. An analogous argument shows that
V' has the same properties.

By our induction hypothesis, U’ and V' are unitarily equivalent, and so

W()U()Wék =W

for some n x n unitary matrix Wy. Fix £ € T and consider the (n 4+ 1) x (n + 1)

matrix
Wo 0
We = .
¢ [0* s]
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Then
V' EWou
WeUWE =

is a partial isometry of rank n whose first column is zero. Consequently, £ Wou is
orthogonal to the columns of V’. Since v is also orthogonal to the columns of V| it
follows that

EWou = cv (12.7.15)
for some ¢ € C. From (12.7.10),
] o ]
o a
are unit vectors and hence ||u|| = ||v||. Since Wy is unitary and |£| = 1, we conclude
from (12.7.15) that
lall = Wl = [c]l|v],

so |c| = 1. Hence there is a £ € T such that £ Wou = v. With this & we have

/
WeUWS = [(‘)/* H =V,

which says that U is unitarily equivalent to V. This completes the induction. O

12.8 Unitary Extensions of the Compressed Shift

A partial isometry on a finite-dimensional Hilbert space .7’ can always be extended
to a unitary operator on J# [71]; see Exercise 12.15. That is, there is a unitary
operator U : 5 — ¢ so that

U|(ker V)J_ == V

This is no longer the case if one considers partial isometries on infinite-dimensional
spaces: the unilateral shift (12.6.2) is a partial isometry that has no unitary
extensions.

For a finite Blaschke product B with B(0) = 0, we observed in Corollary 12.7.7
that Sp is a partial isometry on the model space .#3. In this section we identify all
unitary extensions of Sp and discuss their eigenvalues and eigenvectors. This work
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of D. Clark [24] is valid in a much broader setting than we present here; see [59] for
more details.
For a fixed o € T define U, : #p — J£p by

B
Uy i=Sp+a(1® ). (12.8.1)
Z
In other words,
B
Uaf=SBf+Ot(f, ;>, fep.
Theorem 12.8.2 If B is a finite Blaschke product with B(0) = 0 and « € T, then

Uy, is unitary on Jp.

Proof Since 3 is finite dimensional, a left inverse of U, is also a right inverse of
Uyg. Thus, it suffices to show that

UtUy = 1.

We use (A.6.10) and compute

= (2o(10) ({10}
= <S§ +a<1 ® g)*> (SB +a(1 ® g))
- (sg +a(§ ® 1)><SB +a(1 ® g))
= S5 Sp +a<§ ® 1)53 +ozS§<1 ® g) + <§ ® 1)(1 ® g)

By Corollary 12.7.7, the range of Sp is orthogonal to the span of the constant

function 1. Thus,
B
<— ® 1)53 =0.
z

Appealing to Corollary 12.7.7 again, we have ker S% = span{1}, which yields

S*<1®E>—O
B 2 )=

Since (1, 1) = 1, a short computation shows that
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B B\ B _B
<—®1)(1®—>=—®—.
< < < <

Finally observe from Proposition 12.7.5 that

. B _B
SySp=1-—® —,
Z 4

which proves that U U, = I. |

The operators U, for @ € T are the Clark unitary operators. Since each U, is
unitary, its eigenvalues are contained in T. We now compute them, along with their
corresponding eigenvectors. In what follows, we need the boundary reproducing
kernels kg for & € T, along with their basic properties; see Proposition 12.3.7. We
follow the proof from [59, p. 237].

Theorem 12.8.3 Let B be a finite Blaschke product of degree n. For each o € T,

the eigenvalues of Uy are the distinct solutions &1,&,...,&, to B(§) = «. The
corresponding eigenvectors are kg, , ke, , . . ., kg, and they form an orthogonal basis
for Hp.

Proof Theorem 3.4.10 ensures that for each fixed o € T, the equation
B() =«

has n distinct solutions &1, &, ...,&, € T. Since Uy, is llnitary its eigenvalues are
unimodular. Moreover, U, f = £f if and only if U} f = & f. The computation

U;f=S§f+a<§®1)f

S Sk AN
4 <
SO 0B
Z 4

implies that U} f = & f if and only if

_ 0 B
$f=f f()-i-&f(o)
This happens precisely when
f=ro—%
N 1-— gz
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1 - BG)B
= 0)——————
O,

= f(O)k;:

thatis, f is a constant multiple of kg_,. . Because the eigenvalues &1, &, .. ., &, are dis-
tinct, the corresponding eigenvectors kg, , ke, , . . ., kg, are orthogonal. By (12.1.4),
dim .#p = n, which says that these eigenvectors form an orthogonal basis. O

For a unitary operator, eigenvectors corresponding to distinct eigenvalues are
orthogonal. Consequently, Proposition 12.3.7 provides the following corollary.

Corollary 12.8.4 Let B be a finite Blaschke product of degree n and let o € T.
Denote by &1, &, . .., &, the distinct solutions to B(§) = a. Then the functions

ke .
i 1<j<n,

€ = —F——m,
VIB' (&)
form an orthonormal basis for Hp.

The basis {e1, e2, ..., e,} is called a Clark basis for #p.

12.9 Notes

Model Spaces

The characterization of #p provided by Proposition 12.1.17 can be greatly gen-
eralized. If u is an inner function, then the corresponding model space %, is the
orthogonal complement of u H? in the Hardy space H>. That is, f € H? belongs to
;, if and only if f is orthogonal to uh for all A € H?. Since the polynomials are
dense in H?, this is equivalent to insisting that ( f, uz*) = 0 for k > 0.

Partial Isometries

For more about partial isometries on finite dimensional spaces, see [41, 71]. There
are also some results about operators that are similar to a partial isometry [57].
The analogue of Theorem 12.7.9 is not always true when the kernel of the partial
isometry is not one dimensional. Indeed, the matrices
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0100 0100
A 0010 and B— 0000
0000 0001
0000 0000

are partial isometries (verify that A = AA*A and B = BB*B and then use
Proposition 12.7.4) whose characteristic polynomials are both equal to z*. However,
A and B are not unitarily equivalent (they are not even similar) since they have
different Jordan canonical forms. Note that both A and B have two-dimensional
kernels.

It turns out that for partial isometries with N-dimensional kernels, where
N > 1, there is an N x N matrix-valued analytic function on D, called the
Livsic characteristic function [97], that determines when partial isometries (whose
eigenvalues all lie in D) are unitarily equivalent. When the n x n matrix has one-
dimensional kernel with eigenvalues A1, Ap, ..., A, (all contained in D and counted
with multiplicity), then the LivSic characteristic function turns out to be

n Iy
nl_rjz’

j=1

the finite Blaschke product whose zeros are the A ;. For the matrices A and B above,
the LivSic characteristic functions A4 and Ap (which will be 2 x 2 matrix-valued
analytic functions on D since the kernels are two dimensional) are

0 20
Ap(2) = [(Z) Z3i| and Ag = |:ZO Z21| .

The functions A4 and Ap turn out to be “significantly different” (in a sense defined
by LivS$ic) and reveal that the partial isometries A and B are not unitarily equivalent.

The Commutant

Theorem 12.7.8 shows that the compressed shift Sg on the model space J#p serves
as a model for a certain class of partial isometries. One can identify the commutant

{Sp) ={T € L(Hp) : TSp = SpT}

of Sp via one the crowning achievements of operator theory, the commutant lifting
theorem [59, p. 229].
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Conjugations

The subject of conjugations goes far beyond model spaces and appears in many
contexts (with many applications) in operator theory [54, 55, 58].

Model Spaces

Model spaces are important in operator theory and complex analysis. For one,
they have infinite-dimensional analogues and, like in our Halmos—McLaughlin
presentation, the associated compressed shift is a model operator for certain types
of contractions. Good sources are [59, 106, 131]. In particular, Theorem 12.7.8 can
be expanded to the following. Suppose A € M, is a contraction, the eigenvalues of
A are contained in D, and / — A* A has rank one. Then A is unitarily equivalent to
the compressed shift Sp for some finite Blaschke product B.

Numerical Range

The numerical range W (Sp) of the compressed shift Sp has been discussed in [21,
29, 62]. In particular, there is the following result. If B is a finite Blaschke product,
let By = zB. For each 0 € [0, 2], let Fy denote the convex hull of the solutions to
Bi(z) = ¢'?. Then

WSe) = [ Fe.

0€[0,2r]

Observe that the eigenvalues of Sp are the zeros of B (Corollary 12.6.7). Further-
more, each Fy contains the zeros of By (Theorem 5.2.8), which, in turn, contains
the zeros of B. This illustrates the fact that the numerical range of an operator
contains the eigenvalues of the operator (Proposition 10.3.2). We should mention an
upcoming book Finding Ellipses: What Blaschke Products, Poncelet’s Theorem and
the Numerical Range Know about Each Other by Gorkin, Daepp, Shaffer, and Voss
that will cover in greater detail the beautiful geometry surrounding the numerical
range of a compressed shift.

Clark Theory

There is a well-developed theory of D. Clark concerning unitary extensions of the
compressed shift Sp beyond the finite Blaschke product case covered in this chapter.
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There are many technicalities to overcome since the kernel functions kg for § €
T are not always well defined when B is an infinite Blaschke product or, more
generally, an inner function. Nevertheless, there is a lot one can say and the theory
is beautiful and appears in a variety of settings. The original source is [24] while a
more recent treatment can be found in [59].

12.10 Exercises

12.1 Prove that (f, ¢’y = £ (a) for all f € #5.

12.2 Prove Proposition 12.1.16 in the general case, in which m, my, ..., m, are
no longer assumed to all equal 1.

12.3 Prove Proposition 12.1.17 in the general case by using the Hermite interpola-
tion theorem [87] and the Leibniz formula

o, I/ di=s
—(&*B) = B® — k.
dz/ @5 Z (s dz/=s ¢

s=0

12.4 For two finite Blaschke products By and B, show that %, C 3, if and
only if B; divides Bj.

12.5 For the reader familiar with Toeplitz operators on the Hardy space H? (see
Appendix A.7), show that for any finite Blaschke product B, the model space .Z5
is the kernel of the Toeplitz operator T7.

12.6 (a) Prove the polarization identity
1 2 2 . o2 . )
(u,v) = Z(IIH+VII —lu=vlI* +ilu+iv]* —ifu—iv]?),
valid for vectors u, v in any complex Hilbert space. (b) Use the polarization identity

to prove Proposition 12.5.4.d.

12.7 Let K (z, A) be a reproducing kernel on a complex Hilbert space .77. Prove
that K(z, A) = K(}, 2).

12.8 Let 57 be a complex Hilbert space. Show that if (x, h) = (y, h) forallh € JZ,
then x = y. This principle is used in the proof of Proposition 12.4.1.

12.9 Complete the proof of Proposition 12.5.9 by showing that Cv, = ¢),,.
12.10 Show that C(f ® g)C = Cf @ Cgforall f, g € #p.
12.11 Use Proposition 12.6.5 to prove that

"= PpS" |y, n=12 ...
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12.12 Extend the statement of Proposition 12.6.6 to show that the matrix represen-
tation of Sp with respect to the Takenaka basis is

where

k—1
au=| 1 @ | 1= 1021 = ar.
i=j+1
12.13 Verify Proposition 12.7.4.
12.14 Prove that for V € M,, the following are equivalent.

(a) V is a partial isometry.

®) V=Q0uu ... u, 00 ... 0]0*, where {uj,up,...,u, : 1 <r <n}isa
(possibly empty) set of orthonormal vectors in C" and Q is a unitary matrix.

(c) V = U P, where U is a unitary matrix and P is an orthogonal projection.

12.15 Use Proposition 12.7.3 to show that a partial isometry on a finite-dimensional
Hilbert space has a unitary extension.



Chapter 13 )
The Darlington Synthesis Problem Qe

The (scalar-valued) Darlington synthesis problem from electrical network theory
asks the following question. Given a € H®, do there exist b, ¢, d € H* such that
the matrix-valued analytic function

a —b
U= [C d :| (13.0.1)

is unitary almost everywhere on T? That is, do there exist b, ¢, d € H* so that

ue) =0,

for almost every ¢ € T? Recall that Fatou’s theorem (Theorem A.3.1) ensures
that functions in H* have well-defined radial limits almost everywhere on T.
The negative sign in the (1, 2) entry of the matrix in (13.0.1) is for notational
convenience and is largely inconsequential.

In the early 1970s, Arov [3], and independently, Douglas and Helton [33],
showed that a solution to the Darlington synthesis problem exists if and only if
lallco < 1 and a is “pseudocontinuable of bounded type,” a sort of generalized
analytic continuation that originated in a seminal paper of Douglas, Shapiro,
and Shields [34]. A survey of generalized analytic continuation can be found
in [121].

In this chapter, we study the Darlington synthesis problem with rational data a €
H®°. In addition to providing an algorithm to construct all rational solutions, this
work involves computations with finite Blaschke products and their corresponding
model spaces. The model-space perspective also reveals an interesting quaternionic
structure to the problem. The following material originates in [51, 52], both of which
also address the more general case when a belongs to H > but is no longer assumed
to be rational.
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13.1 Factorization of Rational Functions

In what follows, we often let u denote a finite Blaschke product. Although we have
used B heavily for this purpose in the past, it turns out that # is more appropriate
for this subject matter since # = detU turns out to be a finite Blaschke product
whenever U is an analytic matrix-valued rational function on DD that is unitary-
valued on T (see Sect. 13.3).

If f is a rational function that is analytic on D, then it has a finite number of
zeros there. If u is a finite Blaschke product with these zeros, repeated according to
multiplicity, then

F ==
u

is a rational function with no zeros on ID and

f=uF. (13.1.1)

This factorization of a rational function is a special case of the Nevanlinna
factorization of Smirnov functions [38].

Definition 13.1.2 If f is a rational function that is analytic on D and factored as
in (13.1.1), then u is the inner factor of f and F is the outer factor. If u is a
unimodular constant function, then f is a rational outer function.

Although we frequently use “the” when we refer to inner or outer factors,
it is technically inappropriate according to our definition (Definition 3.1.2) of
a finite Blaschke product. Indeed, we have said that any finite product of disk
automorphisms is a finite Blaschke product. More advanced texts, which treat
infinite Blaschke products, require certain normalizations before a function can
be called a “Blaschke product” or an “outer function” [38, 106]. In light of
Definition 13.1.2, it is more precise to say that ¥ and F are determined up to
offsetting unimodular constant factors since uF = (¢u)(¢F) for all ¢ € T. For
convenience, however, we continue our relentless abuse of the article “the” in what
follows.

Example 13.1.3 Let 11 € D and A, A3 € C\DD™, and define

(z—=AD(z—22)
zZ— A3 '

f) =

Then

72— A <(1 —22)(z— A2)

z—MA3

) =u(z)F(z),
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where

(1 —M2)(z — A2)

F@) = Z—A3

Observe that the inner factor u is a degree-one Blaschke product and F is a rational
function with no poles or zeros in D; that is, a rational outer function.

The inner—outer factorization of a rational analytic function on D is unique, up to
unimodular constant factors. Suppose that u| F| = uy F> are two such factorizations.
Since F; and F, are rational functions that do not vanish on D, the zeros of u; and
uy are the same and they have the same multiplicities. Thus, u; = ¢uy for some
¢ € T and hence F| = ¢ F>.

The following important lemma tells us that the outer factor of a rational
function that is analytic on D is determined by the modulus of the function
onT.

Lemma 13.1.4 [f f, g are rational functions that are analytic on D and |f| = |g|
on'T, then f = ByF and g = By F for some finite Blaschke products By and B,
and some rational outer function F.

Proof If either f or g has zeros or poles on T, then the identity |f| = |g| on T
shows that these zeros or poles (on T) must be of the same order. Consequently,
f/g has a removable singularity at such points and hence f/g is a continuous,
unimodular, rational function on T. Corollary 3.5.4 produces two finite Blaschke
products By and B; so that f/g = Bj/B;. The inner—outer factorization of
B> f = Bjg provides a finite Blaschke product B and a rational outer function F
so that

BF = B, f = Big.

The zeros of B; f and B; g are among those of B, so By = B/B; and By = B/B;
are finite Blaschke products. Thus, f = By F and g = BgF. O

Example 13.1.5 Let u denote a finite Blaschke product and let k, € %, denote
the kernel function (12.3.3). By Proposition 12.5.4, |Ck;| = |k,| on T (which can
also be verified directly). According to the preceding lemma, k; and Ck; share a
common outer factor. Since k;, is rational, analytic on DD, and does not vanish on D,
it is outer. Thus, we expect that Ck, is a finite Blaschke product times k;. Let us
verify this. As in (12.2.1), let

Z—A

bi(z) = — 2
W& =15,

Picking up where Example 12.5.7 left off, we deduce that



294 13 The Darlington Synthesis Problem
u(@) —u@)

—A
_u@—u@) 1= 1 —u@u)

L—u@u@) &=+  1-X

_ (bun) o M)(())k
by (%)

(Chkp)(2) =

2(0). (13.1.6)

Now observe that b, (3 ou is a finite Blaschke product (Theorem 3.6.2) that vanishes
at 1. Consequently, it is divisible by b, and hence the factor in front of k; (z)
in (13.1.6) is a finite Blaschke product. We conclude from this that k; and Ck;
share the outer factor k; .

13.2 Finite Blaschke Products as Divisors in Model Spaces

Let u be a finite Blaschke product of degree n. Proposition 12.5.4 tells us that
ICf] = |f|l on T for all f € #,. Thus, Lemma 13.1.4 yields finite Blaschke
products By and Bcy, along with a rational outer function F, so that

f=B;F and  Cf = Bc/F. (13.2.1)

Proposition 12.5.5 ensures that

Cf = fzu
on T. Thus,
BcyF = ByFzu
and hence
ByBcy = @
F

on the subset of T where F is nonzero; that is, at all but finitely many points.
Consequently, the finite Blaschke product

ip := BfBcy (13.2.2)
depends only upon F and u. It does not depend upon the particular pair of conjugate
functions in %, with common outer factor F that are chosen. If u is fixed and there
is no chance of confusion, we say that i is the finite Blaschke product associated

with F. On T, it satisfies

irF = Fzu. (13.2.3)
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In the lattice of finite Blaschke products that occur as factors of functions in J#3,
the function i has the following maximality property.

Proposition 13.2.4 Let u and B be finite Blaschke products and let F be the outer
factor of a function in ;. Then BF € %, if and only if B divides iF.

Proof Suppose that f = BF € .. Since Cf = fzu = BFzu on T, (13.2.3)
implies that

BCf =Fzu=ipF

on T. The identity principle guarantees that BCf = irF on D and hence the
uniqueness of the inner—outer factorization confirms that B divides ir.

Conversely, suppose that B divides ir. Then ir = BBj, in which Bj is a finite
Blaschke product. From (13.2.3) we see that BB F = Fu on T and hence

BF = B1Fzu.

Proposition 12.5.5 shows that BF € %, and that C(BF) = B, F. |

Example 13.2.5 The constant function 1 belongs to .7, (Proposition 12.1.9) and
Cl = lzzu = u. In this case, F = 1 and i = u. Thus, the only finite Blaschke
products that belong to 77, are the divisors of u.

Example 13.2.6 Building upon Example 13.1.5, Proposition 13.2.4 implies that the
only finite Blaschke products B for which Bk, € %, are the divisors of the finite
Blaschke product (b, ) o u)/b;..

13.3 Quaternionic Structure of Solutions

Let a € H® be a rational function and suppose that the corresponding Darlington
synthesis problem has a solution U, in which b, ¢, and d are rational functions in
H. Then the matrix-valued function U from (13.0.1) is analytic on ID and unitary
on T and hence u = det U is a finite Blaschke product. Indeed,
@) = |detU@)?

=detU(¢)detU ()

=detU*(¢)detU(¢)

= detU*(OHU(¢)

=det]

=1

for { € T, so Theorem 3.5.2 implies that u is a finite Blaschke product.
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The precise relationship between the finite Blaschke product u and the entries
of U is given in the following theorem from [51], where it is proved without the
assumption that a is rational (the proof is largely similar).

Theorem 13.3.1 Let a,b,c,d € H be rational functions and let u be a finite
Blaschke product. Then the matrix-valued analytic function U given by (13.0.1) is
unitary on T and satisfies det U = u if and only if the following hold.

(a) avbvcvde"%/Zu' _

(b) Ca =d and Cb = ¢, where C is the conjugation on J¢,,; that is, Cf = fu on
T.

(c) la>+ bl*=10nT.

Proof (=) If U is unitary on T, then u = det U is a finite Blaschke product by the
argument above. Compare entries in U = (U*)~! and obtain

a=du and b=rcu

on T. Proposition 12.5.5 implies that a,b,c,d € J#,, Ca = d, and Cb = c.
Examine the diagonal entries of the identity UU* = I to obtain lal> + |b|> = 1 on
T.

(<) Suppose that (a), (b), and (c) hold. Write « = B, F, b = ByG, c = B.G,
and d = By F, in which B,, By, B, By are finite Blaschke products and F, G are
rational outer functions in J#;,. Observe that Proposition 12.5.4 and Lemma 13.1.4
say that the outer factors of a and d = Ca are the same (as are the outer factors of
b and ¢ = Cb). Condition (c) implies that the entries on the main diagonal of the
matrix product

(13.3.2)

UU* — [BaF —B;,G:| [ B,F BCG]

B.G ByF —B»G BgF
are both identically 1 on T. The upper right-hand corner of the product (13.3.2) is
X =B,FB.G — ByGByF,

and a few more manipulations yield

B.By F G

X =BaBd?—BbBC€

on T (except for at most finitely many poles). Since a,d and b, c are pairs of
conjugates in ¢z, it follows from (13.2.2) that B, B; = ir and B, B, = ig. Then

B:By . F G
=1F:—1G:=M—M=0

FG F G

X
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on T by (13.2.3). The identity principle implies that X vanishes identically. A similar
argument shows that the bottom left-hand corner of the matrix product (13.3.2)
vanishes and hence U is unitary on T. To complete the proof we use (13.2.3) to
compute:

detU = ad + bc
= B,ByF? + B,B.G?
=ipF? +igG?
=|F)%u+|G*u

=Uu.

This completes the proof. O
As a byproduct of Theorem 13.3.1 we obtain two convenient representations for
u=detU:

u=aCa+bCbhb (13.3.3)
=ipF? +igG>. (13.3.4)

These formulas will be useful in what follows.
Theorem 13.3.1 shows that any solution to the Darlington synthesis problem is
(almost) a quaternion-valued function on T with values of unit modulus on T. Recall

that the quaternions are a division algebra, denoted by H in honor of their discoverer
William Rowan Hamilton, that consists of all expressions of the form

a+ Bi+6j + vk,
in which «, 8,8,y € Rand i, j, and k are symbols that satisfy
i?=j?=k=-1, ij=k, and ji=—k.
One can show that H is isomorphic to the division algebra formed by the complex

matrices

w z

[ﬁ __w} , (13.3.5)

in which

z=a+pi and w=-(+iy).
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The square of the absolute value of the quaternion @ + 8i 4+ §j + yk is
2+ lw? = o + B2 + 82 + y.

The matrix representation (13.3.5) is reminiscent of that obtained in Theo-
rem 13.3.1, which asserts that any solution to the Darlington synthesis problem
with data a is of the form

U= a =b| |a —-b| _ |[10|a-b
“|CbCal| |buaul|l |ou|lp @ |’
13.4 Primitive Solution Sets

Suppose that the scalar-valued Darlington synthesis problem with rational data
a € H® is solvable and that U is one particular solution. That is, U is a 2 x 2
rational, matrix-valued analytic function on D) and its (1, 1) entry is the function a.
Theorem 13.3.1 tells us that u = det U is a finite Blaschke product and

a —b
U= ,
|:Cb Ca]
in which Ca and Cb are the respective conjugates of a and b in 7. Each such U

provides us with infinitely many other rational solutions via the following method.
If B and B, are finite Blaschke products (possibly constant), then

a —Bib
V= 13.4.1
|:32Cb B]BQCai| ( )

is another solution to the Darlington synthesis problem with data a. Indeed, V is
analytic on D and satisfies

a B,Cbh a —B1b
ViV =
| —B1b B1B,Ca | [ B2.Cb B1B2Ca
la®> + |Cb|*>  —aBib+ B;CaCh
| —aBib + BCaCh  —|b|> + |Cal?

[ Jal?+|b)*>  By(—ab + aubn)
| Bi(—ab +awbu)  la? + b2

=1.
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As predicted by Theorem 13.3.1, we may write

_ a —(Bb)
V_[CU(Blb) Cya }

in which
v=detV = B1Bu
is a finite Blaschke product and
Cuof = f(B1Bou)

is the conjugation on J#;p, p,,. Since u divides v, we are prompted to consider
solutions to the Darlington synthesis problem that have minimal determinant.

We say that a solution U is primitive if the finite Blaschke product u = det U is
the minimal finite Blaschke such that det U divides det V for any other solution
V. This is equivalent to requiring that u is the minimal finite Blaschke product
such that a belongs to .%7,. Note also that every primitive solution shares the same
determinant, up to a unimodular constant factor. We call u the minimal determinant
for the problem.

Any solution V to the Darlington synthesis problem with data a can be written
in terms of a primitive solution via (13.4.1). Indeed, suppose that V is a solution
with determinant V = wuv, in which v is a finite Blaschke product and u is the
minimal determinant for the problem. Let the outer functions F and G be defined as
in the proof of Theorem 13.3.1 and letir and i denote the finite Blaschke products
associated with F and G with respect to u. That is,

irF=Fu and icG = Gu

on T. Theorem 13.3.1 permits us to write

a —c
V=|_ _ ,
cuv auv

in which ¢ € J#,,, and has outer factor G. Since the conjugate Ca of a in J,
equals au on T, we conclude that

detV =uv = iFsz + Bsz,

in which B is a finite Blaschke product. Compare this with (13.3.4) to conclude that
ic = B. In particular,

c(cuv) = inG2
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since on T, cuv is the boundary function for the conjugate of ¢ in J#7,,,. Thus, V can
be written in the form (13.4.1) for some finite Blaschke products By and B> such
that B; B, = v.

It therefore suffices to describe all primitive solutions. We call a complete
collection of primitive solutions sharing the same minimal determinant a primitive
solution set. Since the minimal determinant is determined only up to a unimodular
constant factor, there will be infinitely many primitive solution sets. These are
related to each other by (13.4.1), in which the finite Blaschke products By and B;
are just unimodular constants.

Fix a minimal determinant u to the Darlington synthesis problem with data a; that
is, u is minimal with the property that a € J#;,. We want to describe all solutions
U with detU = u. Theorem 13.3.1 permits us to identify each such solution with
its upper right-hand entry, b. Indeed, a, b, and u uniquely determine the remaining
entries Ch = bu and Ca = au. Since the outer factor G of b is determined by
condition (c) of Theorem 13.3.1, we can identify each solution U with the maximal
finite Blaschke product that divides b.

Since b divides ig, which is determined by (13.3.4), there is a bijective corre-
spondence between elements of our primitive solution set and the finite Blaschke
products that divide ig. In particular, a primitive solution set has a natural partial
order that derives from this correspondence.

Example 13.4.2 1f ig is a unimodular constant, then each primitive solution set
consists of precisely one solution. Since ig is the product of the finite Blaschke
product factors of b and Cb, this occurs precisely when b is a self-conjugate, rational
outer function. For example, suppose that « is a finite Blaschke product and

a=31+u. (13.4.3)

Since a generates %7, (Exercise 13.1), any solution to the Darlington synthesis
problem with data a is primitive. Since

Ca=iCl+Cuw)y=tw+1) =a,

we see that a is self-conjugate. Moreover, the rational outer function

b=2(1—u)
belongs to 77, and is also self-conjugate. In particular, i = 1. Thus,

a—b

o=
is the unique solution to the Darlington synthesis problem with data a that has
minimal determinant u.
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Example 13.4.4 Suppose that ig is a finite Blaschke product of order n. Then a
primitive solution set contains at most 2" solutions. The exact number depends upon
the multiplicities of the zeros of ig. Moreover, a primitive solution set is linearly
ordered (via divisibility of the corresponding inner functions) if and only if i is a
unimodular multiple of a power of a single Blaschke factor.

Example 13.4.5 If ig is the square of a finite Blaschke product, then a symmetric
U = UT) primitive solution exists. If ig = B2, in which B is a finite Blaschke
product, then b = BG belongs to 77, and is self-conjugate. This yields the

primitive solution
a—b
bCa|’

Using (13.4.1) with By = —i and By = i, we obtain the symmetric solution
a ib
ibCal’

13.5 Construction of the Solutions

Suppose that a € H® is a rational function with ||a|ec < 1. Writea = P/R, in
which P is a polynomial that is relatively prime to

R(@) = (1—=2z)(1 —Az) -+ (1 — Ay2).
Since a is bounded on D, it follows that A1, Ao, ..., A, € D. There are two cases
to consider, depending on m = deg P.
Case I If m < n, thena € 7, where

n Z—)&k
u(z) = —.

By (12.1.2) every function in JZ7,, is of the form Q /R, in which Q is a polynomial of

degree at most n. Since u is the minimal (up to a unimodular constant factor) finite

Blaschke product so that a € J#,, to find all primitive solutions to the Darlington

synthesis problem with data a, it suffices to describe all solutions U withu = detU..
By the definition of the conjugation C from (12.5.3),

Q#
C(Q/R) = = (13.5.1)



302 13 The Darlington Synthesis Problem
in which
0*(2) ="0(1/2).
We require two special cases of (13.5.1):
Ca=P*/R and u=R¥R. (13.5.2)
The second formula follows from the fact that C1 = C(R/R) = R#/ R; that is, 1

and u are conjugates in Jz2,,.
By Theorem 13.3.1 and (13.3.3), the desired U are of the form

a —b
U= ,
|:Cb Ca]
in which
u=aCa+bCbh. (13.5.3)

Write b = Q/R, in which Q is a polynomial of degree at most n. In light of (13.5.1)
and (13.5.2), to solve (13.5.3) we must solve

R# P#P Q#Q
— = — 13.5.4
R R? + R? ( )

for Q. This reduces to
0*0 = R*R — P*P. (13.5.5)

Note that P# and R¥ can be obtained from a without factoring R. Consequently,
one can proceed directly to (13.5.5).

Write b = BpG and Cb = B¢pG, in which By, and B¢y are finite Blaschke
products and G is the common outer factor of b and Cb. Since

R*R — P*P

bCh= .

it follows that

R*R — P*P

icG?* = ByBcpG* = =

(13.5.6)
As discussed in Sect. 13.4, we need only find G and ig in order to parameterize
all solutions U with det U = u. To find these functions, we need only produce the
inner—outer factorization of
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R*R — P*P
R2 ’

a rational function that is directly obtained from the datum a.

Since the outer factor of any function in 7, also lies in JZ7,, it follows that
G € . Therefore, G = S/R, in which § is a polynomial of degree at most n.
Since G and R are outer, it follows that S is outer. Thus, (13.5.6) reduces to

icS? = R*R — P*P, (13.5.7)

in which i is a finite Blaschke product, possibly constant, whose zeros are the zeros
of R* R — P* P that lie in D, repeated according to multiplicity. Although the degree
of R¥R — P*P is 2n, at most n of its zeros (up to multiplicity) belong to ID. This is
because R¥ R — P* P is invariant under the transformation z > 1/Z. This yields the
(possibly identical) solutions

P/R —S/R d P/R —S*/R
s*/R P*/R an S/R P*/R |’

We now identify the remaining (if any) primitive solutions with determinant u.
Since G = S/R is an outer function in .#;,,, we have

Therefore the desired finite Blaschke product ig is given by

16 = S .

Since S is an outer function, the zeros of i must be precisely the zeros of S* that
lie in D. However, S and S* may have common zeros on T. We can discard these
without actually finding them by simply calculating the greatest common divisor of
the polynomials § and S# (this can be accomplished using the Euclidean algorithm
and hence it does not require factoring S or $*). Without loss of generality, we
assume that the zeros of S* all lie in ID.

Once the zeros of S* have been found, the primitive solutions with determinant
u can be identified with functions

b=B,G=B8B S
- b - va

in which Bj is a finite Blaschke product that divides ig. The polynomials Q
from (13.5.4) are the functions B}S.
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Case Il If m > n, then use z”" " u in place of u and define
0%(2) ="0(1/2)

for polynomials Q of degree at most m. We may proceed as before, the only
difference being that R*R — P*P is now of degree at most 2m. The details are
left to the reader; see Exercise 13.2.

What is the significance of the polynomial R*R — P*P? For the sake of
simplicity, we suppose that m < n. Since

R*R — P*P
T:u—aCa,

the zeros of R*R — P*P correspond are the zeros of u — a Ca. On T, we have

R*R — P*P )
T = M(l — |Cl| )
Consequently, the zeros of R* R — P* P that lie on T are exactly the points at which
la| = 1. Since the zeros of R* R — P* P occur in pairs symmetric with respect to T,
the number of zeros inside the unit disk, counted according to multiplicity, depends
on the degree of R R — P* P and the number of times, according to multiplicity, that
a assumes its maximum modulus on T. Thus, the number of solutions in a primitive
solution set depends on how many times the datum a assumes values on T.

Example 13.5.8 If deg(R*R — P*P) = 2n and a assumes values with modulus
one n times on T, then R*R — P* P, and hence ig, has no zeros in . In this case,
the solution Darlington synthesis problem with data a is essentially unique because
each primitive solution set contains only one solution; see Example 13.4.2.

We conclude with an algorithm to produce a complete primitive solution set to
the scalar valued Darlington synthesis problem.

Algorithm
Suppose that we are given a rational a € H* with ||a|e < 1.

(a) Write a = P/R, in which R is a polynomial with constant term 1 and P is
relatively prime to R. Let m = deg P and n = deg R.

(b) If m < n, then form the polynomial R*R — P# P, in which 0% (z) = 27 Q(1/7)
for polynomials Q(z) of degree at most n.

(i) The outer factor of R*R — P* P is a polynomial S? of degree at most 2n
(see (13.5.7)). Then

P/R —S/R d P/R —S*/R
s*/R P*/R an S/R P*/R

are primitive solutions with determinant u = R¥/R.
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(ii) The roots of the polynomial

S#
Sl = —’
gcd(S, $%)
which is of degree N < n, all lie in D.
(iii) For each subset {z1, 22, ..., zx} of the roots of S1 such that k < L%J,

k .
T =80 [[ at
j=1

SRR
is a polynomial of degree N — k that yields the primitive solutions

[P/R —T/R} and [P/R —T#/R}
T#*/R P*/R T/R P*/R |’

This yields a complete set of primitive solutions with determinant u.

(c) If m > n, then form the polynomial R¥R — P# P (of degree at most 2m) using
the definition Q%(z) = z™Q(1/z) for polynomials Q of degree at most m.
Proceed as in the previous case.

13.6 Notes

The Schur—Cohn algorithm [91] can detect the number of zeros of a polynomial
inside the disk, on its boundary, and outside. Therefore in many situations, we can
produce information on the number of solutions in a primitive solution set without
explicitly finding the roots of polynomials.

13.7 Exercises

13.1 Show that the function a = %(1 + u) generates .%;,; that is,
span{S™a:n=0,1,2,...} = H,,

in which §* is the backward shift operator.
13.2 Fill in the details of the construction from Sect. 13.5.

13.3 Example 13.1.3 suggests a method for factoring

p(2)

( ) = —_—
Je ﬂ’}=1(1 —Xj2)
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into its inner and outer factors. Assume that f is not identically zero and write

R S T
r@=c[]e—2)-[Je—2) []@—wn. (13.7.1)
r=1 s=1 t=1

where
c#0, A €D, ¢&eT, weC\D™, and R4+S+T7T =degp<n—1.

(a) Divide f by the finite Blaschke product

R

By = [[ L

r=1 1—)»,2

and verify that

S T
F@=c[]e=¢) - []@—wn

s=1 t=1

is the outer factor of f.
(b) Verify that F belongs to .%7,.

134 If

p(z)

S [

with

R S T
r@=c[Je-¢) []c—2r) []—w)
r=1 s=1 t=1

asin (13.7.1), prove that

N T

B =[[-2  ad B =[]

gt 1 sz 1 L/

from which it follows that

S Z—A TZ—I/F
ir=BBcr=]]—=" -
reer }:[ll—ksz 1_[1—z/wt

t=1




Appendix A
Some Reminders

This appendix briefly covers several peripheral topics that have arisen occasionally
in the preceding text. We do not aim to give a complete account of any of the
following subjects and we provide relatively few proofs. The reader is invited to
consult the references discussed below for more details.

A.1 Fourier Analysis

Let L2 := L*(T, d9/2m) denote the space of complex-valued Lebesgue measurable

functions on T such that
2 do
o i0y]2
172 \//O Fe)PS

is finite. The Lebesgue theory of integration [122, 123] can be used to show that L?
is a Hilbert space when endowed with inner product

M g—— db
(f.8)2 = fe )g(e"e)z— (A.1.1)
0 s
arising from the norm || - ||;2. For f € L? and n € Z, the nth Fourier coefficient of
fis
~ = . do
fn) = / fe?ye 0 — (A.12)
0 2
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and the Fourier series of f is

o0

Z J’c‘(n)einﬂ.

n=—oo

Convergence of a Fourier series is with respect to the L2-norm.

o0
Theorem A.1.3 (Parseval’s Theorem) For f € L?, || f|7.= > | F ()2

n=—oo

A.2 The Cauchy Integral Formula

The Cauchy integral formula [123] says that if f is analytic on a neighborhood of
D~ and A € D, then

1 S
S )— Ry dE. (A2.1)

We often use the following rephrasing in terms of L?-inner products.

Lemma A.2.2 (Cauchy Integral Formula) Suppose that f is analytic on a neigh-
borhood of D™ and A € D. Then f|1 € L* and

L )= r00.

1—Az

(.

Proof By the definition of the L2-inner product from (A.1.1) we have

2 do
_ i0
<f’ ]—XZ>_ 0 f( ) )\, i0 27T
o 1 db
_ i0 d
=), T T
B 2 0 ei@ do
- 0 f(e )ei9 — )\.E
_ L@ o
i b )\dé (E=¢e")
= f).

The final equality is due to the Cauchy integral formula from (A.2.1). O
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A.3 Fatou’s Theorem

Analytic functions on D need not have limiting values anywhere on T. However,
bounded analytic functions are nicer. This is made more precise with the following
theorem of Fatou [38].

Theorem A.3.1 (Fatou) If f is a bounded analytic function on D, then the radial
limit

f?) = lir1117 fret?)

exists for almost every 6 € [0, 2]

A.4 Hardy Space Theory

Here are some standard facts about the Hardy space H?2. Several good sources are
[38, 61, 101]. The Hardy space H 2 is the set of analytic functions f on D for which

2 . do
sup / |f(re’®))>— < .
0<r<1J0 2

A well-known result from H? theory says that for almost every 8 € [0, 2], the
radial limit

(' = lim f(re')

exists (and is finite). Furthermore, the boundary function e > f (€' belongs to
L? and satisfies

2 . do 2T ) do
/0 |f(e’9)|2E= Sup/O |f(re'9)|2§. (A4.1)

O<r<l1

Thus, via radial limits and boundary functions, one can view H 2 as a closed
subspace of L. If f € H? has the Taylor series expansion

f@ =) a"
n=0
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about z = 0, then

—[n@ﬁ

2 .
an= [ f()e
0 27

In other words, the Fourier coefficients of the (almost everywhere defined) boundary
function ¢!? > f(¢'?) are equal to the corresponding Taylor coefficients. From here
one can view H? as

H>={fel?: fn)=0forn < —1}.

The Riesz projection is the operator P : L?> — L? with range equal to H> defined
by

o0

P( 3 f(n)e""") =3 Fwe. (A42)
n=0

n=—oo

We also have the following Parseval’s formula for H* functions:

S 2w . do
Sl = [ 15" PSL (A43)
0 T
n=0
The integral computation
2 :
g dO f
/ im0 49 _ )0 ifn £0, (A.4.4)
0 27 1 ifn=0,

shows that {1, z, 2, .. .} is an orthonormal set in H 2, In fact, it is an orthonormal
basis for HZ.
From Parseval’s formula, we obtain the identities

00 2 S /)
7 i0 i0
E anb, = fe”)g(e?)— (A4)5)
0 2
n=0
and
& 2 . do
> ran|* = / |f<re'9>|2—2 : (A.4.6)
0 T

n=0
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A.5 Jensen’s Formula and Jensen’s Inequality

Suppose that f is an analytic function on |z| < r with no zeros. The mean value
property for harmonic functions, applied to the harmonic function log | f|, says that

2 0 do
10g|f(0)|=/ log | f(re )I—2 -
0 T

For a function with finitely many zeros zi, 22, ..., 2, there is the following
generalization [123].

Theorem A.5.1 (Jensen’s Formula) Let f be an analytic function on |z| < r with
f(0) # 0 and with zeros 21, 22, ..., Zn in 2| < r. Then

r

Ly [T g do
og170) = Y )+ [ toelee ISt

There is a probabilistic inequality, also due to Jensen, which says the following.

Theorem A.5.2 (Jensen’s Inequality) Suppose that ($2, A, u) is a probability
space and g is a real-valued ju-integrable function on S2. If ¢ is a real-valued convex

function on R, then
¢></ gdu) </ pogdu.
2 2

A.6 Hilbert Spaces and Their Operators

An excellent source for operators on Hilbert spaces is [27]. The proofs of the
material presented below can be found there.

Inner Product

Let 7 be a separable complex Hilbert space with inner product (x,y) and
corresponding norm ||x|| = 4/(Xx, X). Three important facts that will be used in this
book are the polarization identity

4x,y) = IX+ylI? = lIx — ylI* +illx +iyl* —ilx — iyl
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the parallelogram identity

x4 12+ 1x = yII* = 2(0x11> + 111,
and the Cauchy—Schwarz inequality

[, Y < Iyl

The Vector Space C"

Finite-dimensional Hilbert spaces play a prominent role in this book. One of the
most important finite-dimensional Hilbert spaces is the complex vector space

C" :={(x1,x2,...,x,) : xj € C}. (A.6.1)
We will use the notation

e; =(0,0,...,0,1,0,0,...,0),
where the 1 appears in the jth slot. Observe that {e; : j = 1,2, ..., n}is a basis for

C", called the standard basis. We can make C" into a Hilbert space if we endow it
with the inner product

n
(X, Y)er =Y x;7;.
j=1

This yields the norm

Ixllen = | D Ixjl2
j=1
Notice that {e; : j = 1,2, ..., n} is an orthonormal basis for C".

Operators

Let 57 be a separable Hilbert space. A linear transformation (operator) T : 5 —
H is bounded if

sup{||Tx| : x € 72, ||x|| < 1} < o0.
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The operator norm ||T|| of T is
1T := sup{l|Tx|| : x € A, |Ix]| < 1}. (A.6.2)

The set of all bounded linear operators on 7 is denoted £ (7). Observe that
L () is a complex linear space as well as a normed algebra whose norm is
submultiplicative:

1IN < T T2), Th, T € L(IF).

For T € £ (), the adjoint of T, denoted by T*, is the unique T* € Z()
satisfying

(Tx,y) = (x,T"y), X,ye .
One can show that (T*)* =T,
1T =IT"],
and
IT*T | = T (A.6.3)

With respect to the operator norm, £ () is a C*-algebra; that is, a complete
normed algebra with an involution * that satisfies (A.6.3).
Definition A.6.4 T € £ (7)) is

(a) self-adjoint if T = T,

(b) unitaryif TT* =T*T =1,

(¢) positive semidefinite if (Tx, x) > 0 for all x € 7
(d) acontraction if ||T| < 1.

If T is positive semidefinite, then we write T > 0. The notation 7 < § indicates
that § — T is positive semidefinite. A short exercise shows that

[—T*T >0 = 1T < 1. (A.6.5)

If T is a strict contraction, thatis || 7'|| < 1, then

o]

Yorr=a-1)"". (A.6.6)

n=0

Convergence of the series above is with respect to the operator norm.
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Orthogonal Projections

If .4 is a closed subspace of 77, the orthogonal complement of . is
Mt ={xeH:(x,y)=0 Vye.#4).

Note that .#~ is a closed subspace of .7 and that every x € % can be written
uniquely as

X=Xy+X, 1, Xy M, Xy € A

This orthogonal decomposition is denoted by

H =M M
Moreover, there exists a P, € £ () such that

Pyx=xy4, xeJ. (A.6.7)

This operator P, is called the orthogonal projection (projection for short) of 7
onto .Z . One can show that P, is a self-adjoint contraction and that Pff/ =Py.
Furthermore,

I—-Py=P,.
For example, the Riesz projection P : L? — L? defined in (A.4.2) is an orthogonal

projection.
If {x; : j > 1} is an orthonormal basis for .#, one can show that

Pax = (X.X)x;. (A.6.8)
j>1

We can also define an orthogonal projection on . without reference to a
subspace. We say a P € Z(H) is an orthogonal projection if P> = P and
ker P = (ran P)L. In this case, P is the orthogonal projection of .7 onto ran P. One
can show that if P € .2 () satisfies P2 = P, then the following are equivalent (i)
P is an orthogonal projection; (ii) || P|| = 1; (iii)) P = P*.

Rank-One Operators

Forx,y € 77, definex® y € £ () by

xXQ®y)(z) =(z,y)x, ze . (A.6.9)
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Ifx,y # 0, then Xx®y is a rank-one operator whose range is span{x}. A computation
confirms that

Xy =yQ®x. (A.6.10)

If ||x|| = 1, then x ® X is the orthogonal projection from .7 onto span{x}.

Spectrum

For T € £ (), the spectrum o (T) of T is
o(T) :={x € C: Al — T is not invertible in .Z (J7)}.
The spectrum is a nonempty compact subset of C and
o(T) S{z:lzZI < ITI}-

There is also the following finer relationship between o (7') and || T||.

Theorem A.6.11 (Spectral Radius Formula) [fT € £ (5¢), then

lim | 77" = sup{lz| : z € o/(T)}.

n—o0

Let
op(T) :={r € C:ker(A] — T) # {0}}
denote the point spectrum of T (the eigenvalues of T') and note that o, (T) C o (T).
Though the spectrum o (T') is always nonempty, the point spectrum o, (T') might be
empty. The approximate point spectrum of T is
oap(T) :={r € C: 3xy, [IXn]l = 1, (AL — T)xX, || — O}.
One can show that
00 (T) C 0,p(T) (A.6.12)

and hence the approximate point spectrum of an operator is nonempty.
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A.7 Toeplitz Operators

For a Lebesgue measurable subset E C T, let m(E) denote normalized Lebesgue
measure of E. By normalized we mean that m(T) = 1. Let L™ denote the set of
complex-valued Lebesgue measurable functions f on T whose essential supremum
norm

1 /loe = sup fa > 0:m((g € T:1 /@) > a)) > 0]
is finite. Note that

Ifellz <l fllooliglpe,  feL® gelL? (A7.1)
This shows that for each ¢ € L, the multiplication operator
My:L> — L*, Myf = ¢f,
is bounded. Furthermore, one can show that

Myl = ll}lco-
For ¢ € L, the Toeplitz operator Ty € £ (H?) with symbol ¢ is
Ty := PMy|y2,

where P is the Riesz projection from (A.4.2). The (m,n) entry of the matrix
representation of T with respect to the orthonormal basis {1, z, 2,23, .. .} for H Zis

(Tyt™, ") = §(m —n). (A7.2)

-~

With o = ¢ (k), this produces an infinite Toeplitz matrix

adpo_1 02 X_30_4 -
o] op 1 X203 ---
Q) o] oy O—] —p -+ -
a3 o) o] Q) O—q c--
a4 a3 o Q] oy -

There is a simple expression for the operator norm of T.
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Theorem A.7.3 (Brown-Halmos [13]) [|T4]| = (¢l co-

Observe that the inequality [|74]| < [l¢llcc follows from (A.7.1). The reverse
inequality is more involved.

Riesz Functional Calculus

For T € £ (%) and a polynomial
p@) =ao+arz+az? + -+ a7,
define p(T) by
p(T) =apl +a1T + arT? + -+ +a,T". (A7.4)

Defining p(T) for a wider class of functions p is more subtle. For example, there
are convergence issues if the finite series above is replaced by an infinite one. If f is
analytic in a neighborhood of o (T) and I is a rectifiable Jordan curve (or positively
oriented system of Jordan curves) with o (T') inside I" (positive winding number),
the Cauchy Integral formula says

f(é)d%_

F@ = o FE—z

for z inside I", where n(I’, z) is the winding number of I" about z. It makes sense
to define f(T) by

1

— ol
P i /F FE)ET - T)-de, (AT5)

The preceding expression is well defined since & € C\o (T). This definition of f(T)
agrees with the definition of f(7) from (A.7.4) when f is a polynomial. There is
also the following relationship between o (f(T)) and f (o (T)).

Theorem A.7.6 (Spectral Mapping Theorem) If f is analytic in a neighborhood
of o(T), then o (f(T)) = f(o(T)).

This definition of f(T') forany T € .Z(J¢) and f analytic in a neighborhood of
o (T) is the Riesz functional calculus. If one places further restrictions on 7' (normal,
contraction, etc.), one can sometimes extend the class of functions f for which one
can meaningfully define f (7).
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Unitary Equivalence

If JA1 and % are Hilbert spaces, we say that T] € Z(J#4) and T, € 7% are
unitarily equivalent if there is a linear isometry U from 7] onto 5% such that

LU =UT. (A.7.7)

Note that unitarily equivalent operators have the same norm, eigenvalues, and
spectrum.

A.8 Schur’s Theorem

If A € M,, is a self-adjoint matrix, that is A = A*, the spectral theorem says that A
is unitarily equivalent to the diagonal matrix

where A1, A2, ..., A, are the eigenvalues of A. For a general matrix A € M,, we
have the following [79].

Theorem A.8.1 (Schur’s Theorem) IfA € M, has eigenvalues A1, A2, ..., Ay, in
any prescribed order, then A is unitarily equivalent to an upper-triangular matrix
with main diagonal Ay, Ay, ..., Ay.
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