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Preface

This is a book about a beautiful subject that begins with the topic of Möbius
transformations. Indeed, Möbius transformations

z �→ az+ b

cz+ d

are studied in complex analysis since their mapping properties demonstrate won-
derful connections with geometry. These transformations map extended circles to
extended circles, enjoy the symmetry principle, come in several types yielding
different behavior depending on their fixed point(s), and, through an identification
with 2 × 2 matrices, make connections to group theory and projective geometry.
Finite Blaschke products, the focus of this book, are products of certain types of
Möbius transformations, the automorphisms of the open unit disk D, namely

z �→ ξ
w − z

1 − wz
,

where |w| < 1 and |ξ | = 1 are fixed. These products have an uncanny way of
appearing in many areas of mathematics such as complex analysis, linear algebra,
group theory, operator theory, and systems theory. This book covers finite Blaschke
products and is designed for advanced undergraduate students, graduate students,
and researchers who are familiar with complex analysis but who want to see more
of its connections to other fields of mathematics. Much of the material in this book
is scattered throughout mathematical history, often only appearing in its original
language, and some of it has never seen a modern exposition. We gather up these
gems and put them together as a cohesive whole, taking a leisurely pace through the
subject and leaving plenty of time for exposition and examples. There are plenty of
exercises for the reader who not only wants to appreciate the beauty of the subject
but to gain a working knowledge of it as well.
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In the early twentieth century, the study of infinite products of the form

B(z) =
∏

k�1

|zk|
zk

zk − z

1 − zkz
,

in which z1, z2, . . . is a sequence in D, was initiated in 1915 by Wilhelm Blaschke
(1885–1962). This product converges uniformly on compact subsets of D if and only
if the zero sequence zk satisfies

∑
k�1(1− |zk|) < ∞. These Blaschke products are

analytic on D and have the additional property that the radial limit limr→1− B(reiθ )

exists and is of unit modulus for almost every θ ∈ [0, 2π). In other words, B is
an inner function. Blaschke products have been studied intensely since they were
first introduced and they appear in many contexts throughout complex analysis and
operator theory.

This book is concerned with finite Blaschke products, in which the zero sequence
z1, z2, . . . , zn is finite and the product terminates. Although the skeptical reader
might think this focus is too narrow, there are many fascinating connections with
geometry, complex analysis, and operator theory that demand attention.

There are already some excellent texts that cover infinite Blaschke products and,
more generally, inner functions [38, 61]. However, as the reader will see, there
are many beautiful theorems involving finite Blaschke products that have no clear
analogues in the infinite case. Finite Blaschke products are not often discussed in
the standard texts on function spaces or complex variables since the focus there is
often on inner functions as part of the broader theory of Hardy spaces. This book
focuses on finite Blaschke products and the many results that pertain only to the
finite case.

The book begins with an exposition of the Schur class S , the set of analytic
functions from D to D

−, the closure of D, and an introduction to hyperbolic
geometry. We develop this material from scratch, assuming only that the reader
has had a basic course in complex variables. We characterize the finite Blaschke
products in several different ways. First, a rational function is a finite Blaschke
product if and only if it is of the form

α0 + α1z+ · · · + αnz
n

αn + αn−1zn−1 + · · · + α0zn
,

in which the numerator is a polynomial whose n roots lie in D. Second, a finite
Blaschke product maps D onto D (and the unit circle T onto itself) precisely n times
and a theorem of Fatou confirms that these are the only functions that are continuous
on D

− and analytic on D with this property. Third, each finite Blaschke product B
satisfies

lim
|z|→1−

|B(z)| = 1
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and another result of Fatou shows that the finite Blaschke products are the only
analytic functions on D that do this. Whether as rational functions whose defining
polynomials enjoy certain symmetries, as n-to-1 analytic functions on D, or as
analytic functions with unimodular boundary values, the finite Blaschke products
distinguish themselves as special elements of the Schur class.

The approximation of a given analytic function by well-understood functions
from a fixed class is a standard technique in complex analysis. For example, there
are the well-known approximation theorems of Runge, Mergelyan, and Weierstrass.
We examine a few results of this type that involve finite Blaschke products. More
specifically, a celebrated theorem of Carathéodory ensures that any function in the
Schur class S can be approximated, uniformly on compact subsets of D, by a
sequence of finite Blaschke products. In fact, one can even take the approximating
Blaschke products to have simple zeros. After Carathéodory’s theorem, we discuss
Fisher’s theorem, which says that any function in S that extends continuously to D

−
can be approximated uniformly on D

− by convex combinations of finite Blaschke
products. As another example, a theorem of Helson and Sarason states that any
continuous function from T to T can be uniformly approximated by a sequence of
quotients of finite Blaschke products.

One might think there is not much to say about the zeros of a finite Blaschke
product. After all, the location of the zeros is part of the definition! However, there
are some beautiful gems here. The famed Gauss–Lucas theorem asserts that if P

is a polynomial, then the zeros of P ′, the derivative of P , are contained in the
convex hull of the zeros of P . There are theorems that say that the zeros of a finite
Blaschke product B are contained in the convex hull of the solutions to the equation
B(z) = 1 (or indeed the solutions to B(z) = eiθ for any θ ∈ [0, 2π)). Moreover,
the hyperbolic analogue of the Gauss–Lucas theorem says that the zeros of B ′ (the
critical points of B) are contained in the hyperbolic convex hull of the zeros of B.
For Blaschke products of low degree, these results are even more explicit and can
be stated in terms of classical geometry involving ellipses. There is also a result of
Heins which says that one can create a finite Blaschke product with any desired set
of critical points in D. Finally, for analytic functions on D

−, one can state, in terms
of finite Blaschke products, a curious converse (the Challener–Rubel theorem) to
Rouché’s theorem.

Interpolation is another important topic in complex analysis. The most basic
result in this direction is the Lagrange interpolation theorem, which guarantees
that for distinct z1, z2, . . . , zn and any w1, w2, . . . , wn there is a polynomial P for
which P(zj ) = wj for all j . The connection finite Blaschke products make with
interpolation comes from Pick’s theorem: given distinct z1, z2, . . . , zn ∈ D and any
w1, w2, . . . , wn ∈ D, then there is an f ∈ S for which f (zj ) = wj for all j if and
only if the Pick matrix

[
1 − wjwi

1 − zj zi

]

1�i,j�n
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is positive semidefinite. Furthermore, when the interpolation is possible, it can be
done with a finite Blaschke product. A more involved boundary interpolation result
is the Cantor–Phelps theorem (for which we provide two distinct proofs, one abstract
and another constructive), which says that given distinct ζ1, ζ2, . . . , ζn ∈ T and any
ξ1, ξ2, . . . , ξn ∈ T there is a finite Blaschke product B with B(ζj ) = ξj for all j .

So far we have discussed finite Blaschke product themselves and their connec-
tions to well-studied topics in complex analysis (zeros, critical points, residues,
valence, approximation, and interpolation). However, as mentioned earlier, finite
Blaschke products appear in many other places.

For example, Bohr’s inequality asserts that if f =∑n�0 anz
n ∈ S , then

∑

n�0

|an|rn � 1, r ∈ [0, 1
3 ].

The number 1
3 is optimal and is called the Bohr radius for the Schur class. Using

finite Blaschke products, we explore a Bohr-type inequality for subclasses of Schur
functions that vanish at certain points of D and for the Schur class functions whose
first several derivatives vanish at zero. It turns out that the extremal functions for
these extended Bohr problems are finite Blaschke products.

Next we cover two connections finite Blaschke products make with group theory.
For a fixed finite Blaschke product B, consider the set GB of continuous functions
u : T → T for which B ◦u = B. One can see that GB is a semigroup under function
composition. A theorem of Chalendar and Cassier reveals that GB is a cyclic group
and that one can identify a generator by considering the previously mentioned n-to-1
mapping properties of B on T. We also cover, via Cowen’s unpublished exposition,
an old theorem of Ritt that examines when we can write B as a composition B =
C ◦D, in which C and D are finite Blaschke products. The answer is in terms of the
monodromy group of B−1. We also give an equivalent formulation of Ritt’s theorem
in terms of certain subgroups of GB .

Finite Blaschke products also make connections to operator theory. For example,
if T is a contraction on a Hilbert space and B is a finite Blaschke product with n

zeros, then B(T ) is also a contraction. Moreover, a theorem of Gau and Wu says
that ‖B(T )‖ = 1 if and only if ‖T n‖ = 1. Another connection is with the numerical
range of an operator. The spectral mapping theorem says that σ(p(T )) = p(σ(T )),
in which σ(T ) is the spectrum of a bounded Hilbert space operator T and p is
a polynomial. One may wonder whether or not a similar identity W(p(T )) =
p(W(T )) holds for the numerical range

W(T ) = {〈T x, x〉 : ‖x‖ = 1}.

Although the desired identity is not true in general, there are some suitable substi-
tutes. In fact, Halmos asked whether or not W(T ) ⊆ D

− implies that W(T n) ⊆ D
−

for every n � 1. Progress was made when it was shown that if W(T ) ⊆ D
− and

B is a finite Blaschke product with B(0) = 0, then W(B(T )) ⊆ D
−. A theorem
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of Berger and Stampfli extends this result from finite Blaschke products that vanish
at the origin to the Schur functions that are continuous on D

− and vanish at the
origin. However, without the condition f (0) = 0, there are contractions T with
W(T ) ⊆ D

− for which W(f (T )) intersects the complement of D
−. A suitable

replacement here is a theorem of Drury which says that though W(f (T )) may
intersect the complement of D

−, it is contained in a certain “teardrop” region, a
slight “bulge” of D. Moreover, the use of finite Blaschke products indicates the
sharpness of Drury’s theorem.

Still another connection to finite Blaschke products comes with models of linear
transformations. In linear algebra, or more broadly in operator theory, one often
wants to create a model for certain types of linear transformations. For example,
there is the classical spectral theorem from linear algebra which says that any
normal matrix is unitarily equivalent to a diagonal matrix. One can show that any
contractive matrix T with rank(I−T ∗T ) = 1 and whose eigenvalues λ1, λ2, . . . , λn
are contained in D is unitarily equivalent to the compression of the shift operator
f �→ zf on the Hardy space H 2 to the model space

span
{ 1

1 − λj z
: 1 � j � n

}
.

Along with this result, one obtains a function-theoretic characterization of the
invariant subspaces of these operators as well. In fact, this model space is the vector
space of rational functions f with no poles in D

− for which

∫ 2π

0
f (eiθ )B(eiθ )e−inθ dθ

2π
= 0, n � 0,

in which B is the finite Blaschke product whose zeros are the eigenvalues λj .
The finite-dimensional approach undertaken in this book is intuitive and prepares
interested readers for the more advanced text [59].

Finite Blaschke products can also be used to explore rational functions f that are
analytic on D and for which f (eiθ ) is an extended real number for all θ ∈ [0, 2π ].
These functions are sometimes called the real rational functions. Examples include

f (z) = i
1 + z

1 − z
,

and, more generally,

f = i
B1 + B2

B1 − B2
,

in which B1 and B2 are finite Blaschke products such that B1 − B2 has no zeros on
D. In fact, a theorem of Helson says these are all of the real rational functions. We
will discuss various properties of real rational functions such as a characterization of
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those that are zero free on D, the valence of these functions, as well as a factorization
of a real rational function f as f = FG, where F and G are real rational functions,
F has the same zeros of f , and G is zero free.

Finally, there is the connection Blaschke products make with the Darlington
synthesis problem from electrical engineering. Here, in its simplest realization, one
is given a rational function a with no poles in D

− and one needs to find rational
functions b, c, d on D with no poles in D

− so that the matrix-valued analytic
function

M(z) =
[
a(z) b(z)

c(z) d(z)

]

is such that M(eiθ ) is a unitary matrix for every θ ∈ [0, 2π). The determinant of
such a matrix M is a finite Blaschke product B and the model space associated
with B determines the structure of and relations between the unknown functions
b, c, d. Most curiously, we see that every rational matrix inner function M(z) enjoys
a peculiar quaternionic structure.

This book is mostly self-contained and should be accessible to a student with a
background in basic real and complex analysis along with linear algebra. The proofs
are detailed and dozens of illustrations are provided. We thank Zach Glassman for
his assistance with Tikz and for producing many of our illustrations. At the end
of each chapter, we include exercises so that the reader can gain greater technical
fluency with the material. An appendix contains some background information
about operator theory and function spaces that is relevant for a few results in the
later chapters.

Claremont, CA, USA Stephan Ramon Garcia
Laval, QC, Canada Javad Mashreghi
Richmond, VA, USA William T. Ross
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Chapter 1
Geometry of the Schur Class

This chapter will cover some basic facts about the Schur class. In what follows,

D := {z ∈ C : |z| < 1}, D
− = {z ∈ C : |z| � 1}, T := {z ∈ C : |z| = 1}.

Definition 1.0.1 The Schur class S is

S := {f : D → D
− : f is analytic}. (1.0.2)

The Maximum Modulus Principle ensures that f (z) ∈ T for some z ∈ D if and only
if f is a constant function of unit modulus. Thus, S consists of the nonconstant
analytic functions f : D → D along with the constant functions with values in D

−.

1.1 The Schwarz Lemma

The Schwarz Lemma is one of the cornerstones of complex analysis. Despite its
deceptive simplicity, it has many profound consequences [31]. Schwarz proved this
lemma for injective functions. Carathéodory proved the general version.

Lemma 1.1.1 (Schwarz [125]) If f ∈ S and f (0) = 0, then

(a) |f (z)| � |z| for all z ∈ D, and
(b) |f ′(0)| � 1.

Moreover, if |f (w)| = |w| for some w ∈ D\{0} or if |f ′(0)| = 1, then there is a
ζ ∈ T so that f (z) = ζz for all z ∈ D.
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Proof (Carathéodory [15]) Define g : D → C by

g(z) =
⎧
⎨

⎩

f (z)

z
if z �= 0,

f ′(0) if z = 0,

and observe that g is analytic on D\{0}. The singularity at 0 is removable since

lim
z→0

g(z) = f ′(0)

and hence g is analytic on all of D. For r ∈ [0, 1), an application of the Maximum
Modulus Principle to the disk |z| � r yields a ζ ∈ T so that

|g(rz)| � |g(rζ )| = |f (rζ )|
|rζ | � 1

r
, z ∈ D.

Now let r → 1− to obtain statements (a) and (b).
Suppose that |f (w)| = |w| for some w ∈ D\{0} or that |f ′(0)| = 1. Then

|g(w)| = 1 for some w ∈ D. Since |g| � 1 on D, the Maximum Modulus Principle
provides a ζ ∈ T such that g(z) = ζ for all z ∈ D. Thus, f (z) = ζz for all
z ∈ D. ��

1.2 Automorphisms of the Disk

Definition 1.2.1 A bijective analytic function f : D → D is an automorphism
of D.

Since most of our work concerns the unit disk D, we often say “f is an automor-
phism” without explicit reference to D. The set of all automorphisms of D, denoted
by Aut(D), is a subset of the Schur class S .

If f is an automorphism, then the inverse bijection f−1 : D → D is analytic and
hence f−1 is also an automorphism. The identity function id : D → D defined by

id(z) = z

is an automorphism satisfying f ◦ f−1 = f−1 ◦ f = id for every f ∈ Aut(D).
Since the composition of two automorphisms is also an automorphism, and since
function composition is an associative operation, Aut(D) is a group under function
composition.

We now focus on two special automorphisms. For w ∈ D and γ ∈ T, define
ργ : D → C and τw : D → C by

ργ (z) = γ z and τw(z) = w − z

1 − wz
. (1.2.2)
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Since |γ | = 1, we see that ργ induces a rotation of D about the origin through an
angle of arg γ . Consequently, ργ ∈ Aut(D). Moreover,

ργ1 ◦ ργ2 = ργ1γ2 and ργ ◦ ργ = id. (1.2.3)

The function τw is also an automorphism of D, although to establish this requires a
little more work. First, a computation confirms that

τw ◦ τw = id, (1.2.4)

so τw is injective on D and the range of τw contains D. To show that the range of τw
is precisely D, observe that for each ζ ∈ T and w ∈ D,

|τw(ζ )| =
∣∣∣∣
w − ζ

1 − wζ

∣∣∣∣ =
|w − ζ |
|w − ζ | = 1

since ζ ζ = |ζ |2 = 1. Since the Maximum Modulus Principle implies that

|τw(z)| < 1, z ∈ D,

it follows that τw ∈ Aut(D). Therefore, by the discussion above,

{ργ ◦ τw : γ ∈ T, w ∈ D} ⊆ Aut(D).

The following theorem establishes that the preceding containment is an equality.

Theorem 1.2.5 If f ∈ Aut(D), then there are unique w ∈ D and γ ∈ T such that
f = ργ ◦ τw. In other words,

Aut(D) = {ργ ◦ τw : γ ∈ T, w ∈ D}.

Proof If f ∈ Aut(D), then there is a unique w ∈ D so that f (w) = 0. Then
g = f ◦ τw ∈ Aut(D) and g(0) = 0. Hence the Schwarz Lemma (Lemma 1.1.1)
ensures that

|g(z)| � |z|, z ∈ D.

Since g−1 ∈ Aut(D) and g−1(0) = 0, the same argument yields

|g−1(z)| � |z|, z ∈ D.

Since g(z) ∈ D, we may substitute g(z) in place of z in the previous inequality and
obtain |z| � |g(z)| for all z ∈ D. Consequently,

|g(z)| = |z|, z ∈ D,
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and hence another application of the Schwarz Lemma yields a unique unimodular
constant γ such that g(z) = γ z. Thus, f (τw(z)) = γ z for all z ∈ D. Now substitute
z in place of τw(z) in the preceding identity and use (1.2.4) to obtain f = γ τw =
ργ ◦ τw.

We now verify the uniqueness of the parameters γ and w in the representation
ργ ◦ τw of a typical element of Aut(D). Suppose that

ργ ◦ τw = ργ ′ ◦ τw′

for some γ, γ ′ ∈ T and w,w′ ∈ D. Then (1.2.3) and (1.2.4) yield

ρ
γγ ′ = τw′ ◦ τw.

Evaluate the preceding identity at z = 0 to obtain τw′(w) = 0 and so w = w′.
Hence ρ

γγ ′ = id and thus γ = γ ′. ��
Since τ0 = −id and ρ1 = id, the unique representations of τw and ργ afforded

by Theorem 1.2.5 are

τw = ρ1 ◦ τw
and

ργ = ρ−γ ◦ τ0. (1.2.6)

It is also worth noting that if f ∈ Aut(D) and f (0) = 0, then f = ργ for some
γ ∈ T; that is, the only automorphisms of D that fix the origin are the rotations.

1.3 Algebraic Structure of Aut(D)

If f = ργ1 ◦ τw1 and g = ργ2 ◦ τw2 are automorphisms of D, then Theorem 1.2.5
implies that f ◦ g = ργ ◦ τw for some unique γ ∈ T and w ∈ D. Since we often
require concrete formulas that are applicable to problems in function theory, our
primary goal in this section is to obtain expressions for γ and w in terms of the
parameters γ1, γ2, w1, and w2. At the end of this section, however, we will briefly
describe a more group-theoretic approach to Aut(D).

Lemma 1.3.1 If f = ργ ◦ τw, then w = f−1(0) and

γ =
⎧
⎨

⎩
f (0)/f−1(0) if f (0) �= 0,

−f ′(0) if f (0) = 0.

Proof Since

f (w) = ργ (τw(w)) = ργ (0) = 0
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and f is invertible, we conclude that w = f−1(0). Moreover,

f (0) = ργ (τw(0)) = ργ (w) = γw = γf−1(0),

which yields the desired formula when f (0) �= 0. When f (0) = 0, we get

w = f−1(0) = 0

and hence

f (z) = ργ (τ0(z)) = ργ (−z) = −γ z.

Thus, γ = −f ′(0) as claimed. ��
The discussion below requires the following derivative formula:

τ ′w(z) = − 1 − |w|2
(1 − wz)2 .

Let z = 0 and z = w, respectively, in the preceding and obtain

τ ′w(0) = −(1 − |w|2) (1.3.2)

and

τ ′w(w) = − 1

1 − |w|2 . (1.3.3)

The following theorem provides an explicit realization of the group operation on
Aut(D). It also yields several formulas that are needed later on.

Theorem 1.3.4 If γ1, γ2 ∈ T and w1, w2 ∈ D, then
(
ργ1 ◦ τw1

) ◦ (ργ2 ◦ τw2

) = ργ ◦ τw,
where

w = τw2(γ2w1)

and

γ =
⎧
⎨

⎩
γ1τw1w2(γ2) if w2 �= γ2w1,

−γ1γ2 if w2 = γ2w1.

In particular, if w2 = γ2w1, then
(
ργ1 ◦ τw1

) ◦ (ργ2 ◦ τw2

) = ργ1γ2 .

Proof Let f = (ργ1 ◦ τw1) ◦ (ργ2 ◦ τw2). Lemma 1.3.1 says that w is the unique
solution to the equation

f (w) = [(ργ1 ◦ τw1) ◦ (ργ2 ◦ τw2)
]
(w) = 0.
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Since ργ1(0) = 0, we see that

[
τw1 ◦ (ργ2 ◦ τw2)

]
(w) = 0

and hence
(
ργ2 ◦ τw2

)
(w) = τw1(0) = w1

by (1.2.4). An application of (1.2.3) yields

τw2(w) = ργ2(w1) = γ2w1, (1.3.5)

after which another appeal to (1.2.4) provides the desired formula for w. Now
observe that the preceding formula yields

w = 0 ⇐⇒ w2 = γ2w1.

Since w = f−1(0), the second formula in Lemma 1.3.1 asserts that γ = f (0)/w
when w �= 0. The computation

f (0) = [(ργ1 ◦ τw1

) ◦ (ργ2 ◦ τw2)
]
(0)

= γ1τw1

(
γ2τw2(0)

)

= γ1τw1(γ2w2)

and (1.3.5) reveal that

γ = f (0)

w
= γ1τw1

(
γ2w2
)

τw2(γ2w1)
= γ1τw1w2(γ2).

The final equality in the statement of the theorem is verified by direct computation.
If w = 0, then we need to evaluate f ′(0). By the chain rule and (1.3.2),

f ′(0) = γ1τ
′
w1
[(ργ2 ◦ τw2)(0)] × γ2τ

′
w2

(0)

= −γ1τ
′
w1

(γ2w2)× γ2(1 − |w2|2)
= −γ1γ2. ��

Corollary 1.3.6 If w1, w2 ∈ D and w1 �= w2, then

τw1 ◦ τw2 = ργ ◦ τw,
where

w = τw2(w1) = w2 − w1

1 − w2w1
and γ = τw1w2(1) = −1 − w1w2

1 − w1w2
.
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For the following result, let γ1 = 1 and w2 = 0, then replace γ2 by −γ and w1
by w in Theorem 1.3.4. However, we admit that direct verification might be easier;
see Exercise 1.1.

Corollary 1.3.7 If w ∈ D and γ ∈ T, then

τw ◦ ργ = ργ ◦ τγw.

Although Theorem 1.3.4 provides an explicit description, in terms of the
factorization afforded by Theorem 1.2.5, of the group operation on Aut(D), an
algebraist might find our approach unsatisfactory. Let us briefly discuss a more
abstract approach to Aut(D).

A Möbius transformation (also called a linear fractional transformation) is a
rational function of the form

f (z) = az+ b

cz+ d
, (1.3.8)

in which ad − bc �= 0. Each Möbius transformation is a bijective map from the
extended complex plane Ĉ = C ∪ {∞} (or Riemann sphere) to itself. The set of all
Möbius transformations is a group under composition; the identity is the function
id(z) = z and the inverse of f is

f−1(z) = dz− b

−cz+ a
.

If we multiply the numerator and denominator of (1.3.8) by a suitable constant, we
may assume that ad − bc = 1.

The group of Möbius transformations is isomorphic to PSL2(C), the projective
special linear group of order 2 over C. To be more specific, PSL2(C) is the quotient
of SL2(C), the group of 2×2 complex matrices with determinant 1, by the subgroup
{I,−I }. Here I denotes the 2 × 2 identity matrix. The isomorphism between the
group of Möbius transformations and PSL2(C) is given by sending the function
in (1.3.8), in which ad − bc = 1, to the coset of

[
a b

c d

]

in SL2(C)/{I,−I }.
Theorem 1.2.5 asserts that Aut(D) = {ργ ◦ τw : γ ∈ T, w ∈ D}, in which

ργ (z) = γ z+ 0

0z+ 1
and τw(z) = −1z+ w

−wz+ 1
.

The cosets in SL2(C)/{I,−I } that correspond to ργ and τw are the cosets of

[
eiθ/2 0

0 e−iθ/2

]
and

[
α β

β α

]
,
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where

γ = eiθ , α = i√
1 − |w|2 , and β = −iw√

1 − |w|2 .

Consequently, Aut(D) can be identified with PSU1,1(C), the quotient of

SU1,1(C) =
{[

a b

b a

]
: |a|2 − |b|2 = 1

}

by the subgroup {I,−I }. It is worth remarking that SU1,1(C) is the set of 2 × 2
complex matrices U for which detU = 1 and U∗Γ U = Γ , in which U∗ denotes
the conjugate transpose of U and

Γ =
[

1 0
0 −1

]
.

This suggests a connection between Aut(D) and hyperbolic geometry that will be
explored further in Chap. 2.

From a topological perspective, Aut(D) is homeomorphic to T× D via the map

(γ,w) �→ ργ ◦ τw, γ ∈ T, w ∈ D.

Thus, Aut(D) can be visualized as an open solid torus, endowed with the group
structure described in Theorem 1.3.4.

1.4 The Schwarz–Pick Theorem

The hypothesis of the Schwarz Lemma (Lemma 1.1.1) involves a function that
vanishes at the origin. A generalization can be obtained that removes this hypothesis.
The crucial idea is to employ suitable automorphisms to reduce the general case to
the classical Schwarz Lemma.

Theorem 1.4.1 (Schwarz–Pick) For each f ∈ S ,

∣∣∣∣
f (z)− f (w)

1 − f (w)f (z)

∣∣∣∣ �
∣∣∣∣
z− w

1 − wz

∣∣∣∣ , w, z ∈ D, (1.4.2)

and

|f ′(z)|
1 − |f (z)|2 � 1

1 − |z|2 , z ∈ D. (1.4.3)
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Moreover, the following are equivalent.

(a) Equality holds in (1.4.2) at two distinct z,w ∈ D.
(b) Equality holds in (1.4.2) at all z,w ∈ D with z �= w.
(c) Equality holds in (1.4.3) at some z ∈ D.
(d) Equality holds in (1.4.3) at all z ∈ D.
(e) f ∈ Aut(D).

Proof Fix w ∈ D. If |f (w)| = 1, the Maximum Modulus Principle implies that
f is constant which means that (1.4.2) and (1.4.3) hold automatically. On the other
hand, if f (w) ∈ D, the Maximum Modulus Principle implies that f (D) ⊆ D. Let

g = τf (w) ◦ f ◦ τw (1.4.4)

and observe that g : D → D is analytic and g(0) = 0. Since

g(τw(z)) = f (w)− f (z)

1 − f (w)f (z)
and g′(0) = 1 − |z|2

1 − |f (z)|2 f
′(z),

we see that (1.4.2) is equivalent to

|g(τw(z))| � |τw(z)|, w, z ∈ D (1.4.5)

and (1.4.3) is equivalent to

|g′(0)| � 1. (1.4.6)

However, (1.4.5) and (1.4.6) hold by the Schwarz Lemma.
If any of (a)–(d) hold, then an application of the Schwarz Lemma to g confirms

that g = ργ for some γ ∈ T. Thus, (1.4.4) ensures that f ∈ Aut(D). Conversely, if
f ∈ Aut(D), then (1.4.4) implies that g ∈ Aut(D) with g(0) = 0 and thus g = ργ
for some γ ∈ T. For this automorphism g, equality holds in (1.4.5) and (1.4.6) and
consequently equality holds in (1.4.2) and (1.4.3). In other words, (e) implies any of
(a)–(d). ��

As a special case of Theorem 1.4.1, let f = τz0 to obtain
∣∣∣∣∣
τz0(z)− τz0(w)

1 − τz0(w)τz0(z)

∣∣∣∣∣ =
∣∣∣∣
z− w

1 − wz

∣∣∣∣ , z, w ∈ D, (1.4.7)

and

|τ ′z0
(z)| = 1 − |τz0(z)|2

1 − |z|2 , z ∈ D. (1.4.8)

These two identities will be useful later.
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1.5 An Extremal Problem

Theorem 1.4.1 can be applied to solve certain extremal problems for S . We briefly
discuss one of them. Fix α, β ∈ D and let

Aα,β = {f ∈ S : f (α) = β}.
Observe that f = τβ ◦ τα ∈ Aα,β and hence Aα,β �= ∅. Our goal is to compute

M = sup
f∈Aα,β

|f ′(α)|,

along with the functions f ∈ Aα,β for which the supremum above is attained.
Theorem 1.4.1 implies that

|f ′(α)| � 1 − |f (α)|2
1 − |α|2 = 1 − |β|2

1 − |α|2 , f ∈ Aα,β .

A computation using (1.3.2) and (1.3.3) confirms that equality is attained when
f = τβ ◦ τα . Thus,

M = 1 − |β|2
1 − |α|2 .

Moreover, Theorem 1.4.1 asserts that the f ∈ Aα,β for which

|f ′(α)| = 1 − |β|2
1 − |α|2

are precisely the f ∈ Aut(D) that satisfy f (α) = β. Let f be such an automorphism
and let g = τβ ◦ f ◦ τα; observe that g ∈ Aut(D). Then

g(0) = τβ(f (τα(0))) = τβ(f (α)) = τβ(β) = 0

and hence g(z) = γ z for some γ ∈ T; that is, g = ργ . Hence the solutions to the
extremal problem are given by

f = τβ ◦ ργ ◦ τα,
in which γ ∈ T is a free parameter.

1.6 Julia’s Lemma

The Schwarz–Pick theorem (Theorem 1.4.1) involves two points z,w ∈ D. What
happens if one of the points approaches T? This situation was studied by Julia and it
may be interpreted as a boundary Schwarz–Pick theorem [83, p. 87]. Julia’s lemma



1.6 Julia’s Lemma 11

plays an essential role in studying the behavior of the derivative of infinite Blaschke
products. The proof of Julia’s lemma requires the important identity

1 −
∣∣∣∣
α − β

1 − βα

∣∣∣∣
2

= (1 − |α|2)(1 − |β|2)
|1 − βα|2 , α, β ∈ D, (1.6.1)

which follows from (1.4.8).

Lemma 1.6.2 (Julia [83]) Let f ∈ S . If there is a sequence zn in D such that

lim
n→∞ zn = 1, lim

n→∞ f (zn) = 1,

and

lim
n→∞

1 − |f (zn)|
1 − |zn| = A < ∞, (1.6.3)

then

|1 − f (z)|2
1 − |f (z)|2 � A

|1 − z|2
1 − |z|2 , z ∈ D. (1.6.4)

Proof The Schwarz–Pick theorem (Theorem 1.4.1) implies that

∣∣∣∣
f (z)− f (zn)

1 − f (zn)f (z)

∣∣∣∣ �
∣∣∣∣
z− zn

1 − znz

∣∣∣∣ , z ∈ D,

and hence

1 −
∣∣∣∣
z− zn

1 − znz

∣∣∣∣
2

� 1 −
∣∣∣∣
f (z)− f (zn)

1 − f (zn)f (z)

∣∣∣∣
2

.

The identity (1.6.1), applied to both sides of the above, yields

(1 − |z|2)(1 − |zn|2)
|1 − znz|2 � (1 − |f (z)|2)(1 − |f (zn)|2)

|1 − f (zn)f (z)|2
.

Rewrite the preceding inequality as

|1 − f (zn)f (z)|2
1 − |f (z)|2 � 1 − |f (zn)|2

1 − |zn|2 · |1 − znz|2
1 − |z|2 .

Now let n →∞ and apply (1.6.3) to complete the proof. ��
In the lemma above, we assumed that zn → 1 and f (zn) → 1. However, the

important issue is that the sequences zn and f (zn) converge toward points of the
unit circle T. For the sake of completeness, here is the general version of this result.
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Corollary 1.6.5 Let f ∈ S and α, β ∈ T. If there is a sequence zn in D such that

lim
n→∞ zn = α, lim

n→∞ f (zn) = β,

and

lim
n→∞

1 − |f (zn)|
1 − |zn| = A < ∞,

then

|β − f (z)|2
1 − |f (z)|2 � A

|α − z|2
1 − |z|2 , z ∈ D.

Proof Apply Lemma 1.6.2 to the function g(z) = βf (αz). ��
We can also discuss the boundary limits of functions in S that satisfy the

hypotheses of Julia’s Lemma. Let ζ ∈ T and C > 1. The region

SC(ζ ) = {z ∈ D : |z− ζ | � C(1 − |z|)}

is the Stolz domain anchored at α with constant C; see Fig. 1.1.
We say that f ∈ S has the nontangential limit L at ζ ∈ T if, for each fixed

C > 1,

lim
z→ζ

z∈SC(ζ )
f (z) = L. (1.6.6)

If so, we define f (ζ ) = L and write

� lim
z→ζ

f (z) = f (ζ ).

The quantity f (ζ ) is referred to as the boundary value of f at ζ . The restriction
that z belongs to a Stolz domain SC(ζ ) in (1.6.6) ensures that z does not approach
ζ along a path that is tangent to T at ζ . Each Schur function has non-tangential
boundary values almost everywhere with respect to Lebesgue measure on T; see
Theorem A.3.1.

Corollary 1.6.7 Let f ∈ S and let α, β ∈ T. If there is a sequence zn in D such
that zn → α, f (zn) → β, and

lim
n→∞

1 − |f (zn)|
1 − |zn| < ∞,

then

� lim
z→α

f (z) = β.
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(a) (b)

(c) (d)

Fig. 1.1 Four Stolz domains anchored at 1. (a) S1.1(1). (b) S1.5(1). (c) S2.0(1). (d) S2.5(1)

Proof Corollary 1.6.5 provides an A > 0 such that

|f (z)− β|2
1 − |f (z)|2 � A

|z− α|2
1 − |z|2 , z ∈ D.

If z ∈ SC(α), then

|f (z)− β|2 � |f (z)− β|2
1 − |f (z)|2

� A
|z− α|2
1 − |z|2

� AC
|z− α|
1 + |z|

� AC|z− α|.
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Consequently,

lim
z→α

z∈SC(α)
f (z) = β.

This holds for every Stolz domain anchored at α and thus � limz→α f (z) = β. ��
We can say a bit more. Under the hypotheses of the preceding corollary, one can

conclude that f tends to β on certain domains that are tangential to T at α. However,
Corollary 1.6.7 suffices for our applications.

1.7 Fixed Points

We say that z0 ∈ D is a fixed point of f ∈ S if f (z0) = z0. For example,
every point in D is a fixed point of the identity function id(z) = z. On the other
hand, a nonidentity rotation ργ (z) = γ z, in which γ ∈ T\{1}, has only one fixed
point in D, namely 0. In this section, we investigate and classify the fixed points of
automorphisms. We start by considering a more general problem.

Lemma 1.7.1 If f ∈ S has two distinct fixed points in D, then f = id.

Proof Suppose that f ∈ S has two distinct fixed points α, β ∈ D. Then

∣∣∣∣
f (α)− f (β)

1 − f (β)f (α)

∣∣∣∣ =
∣∣∣∣
α − β

1 − βα

∣∣∣∣ ,

so Theorem 1.4.1 says that f ∈ Aut(D). Theorem 1.2.5 provides w ∈ D and γ ∈ T

such that

f (z) = γ
w − z

1 − wz
. (1.7.2)

The fixed points of f in D are the solutions to

z = γ
w − z

1 − wz

that belong to D. Thus, z ∈ D is a fixed point of f if and only if

wz2 − (1 + γ )z+ γw = 0 and z ∈ D. (1.7.3)

There are three cases to consider.

• If w �= 0, then the two solutions to (1.7.3) must be α and β. Thus,

(z− α)(z− β) = z2 − 1 + γ

w
z+ γ

w

w
= 0
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and hence

|α||β| =
∣∣∣γ

w

w

∣∣∣ = 1.

However, this last identity is impossible since α, β ∈ D.
• If w = 0 and γ �= −1, then (1.7.3) reduces to a linear equation and hence has

only one solution. This is a contradiction.
• If w = 0 and γ = −1, then every point in D is fixed; that is, f = id.

This completes the proof. ��
A variation of the preceding argument shows that any nonidentity Möbius

transformation (1.3.8) has at most two fixed points in Ĉ.
A closer look at the proof of Lemma 1.7.1 enables us to classify automorphisms

based upon the number and location of their fixed points. Consider the automor-
phism (1.7.2), which is meromorphic on Ĉ. Its fixed points in Ĉ are the solutions to
(1.7.3). If f ∈ Aut(D) and f �≡ id, then either f has exactly one fixed point inside
D or two fixed points (possibly with repetition) on T.

In light of the preceding discussion, we introduce the following definitions.

(a) An automorphism is elliptic if it has exactly one fixed point in D.
(b) An automorphism is hyperbolic if it has two distinct fixed point on T.
(c) An automorphism is parabolic if it has one repeated fixed point in T. This case

happens if and only if w �= 0 and

(γ + 1)2 = 4γ |w|2.

The automorphism f (z) = iz is elliptic; its fixed point in D is 0. An example of
a hyperbolic automorphism is

f (z) = z− 1
2

1 − 1
2z
;

its fixed points are 1 and −1. Finally,

f (z) = i
z− ( 1

2 + i
2 )

1 −
(

1
2 − i

2

)
z

is an example of a parabolic automorphism. Its only fixed point in the closed disk
D
− is 1, which has multiplicity two. That is, the multiplicity of the zero of the

rational function f (z)− z at 1 is two.
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1.8 Exercises

1.1 Prove Corollary 1.3.7 by direct computation.

1.2 Let Ω = R× (−π/2, π/2) and suppose that f : Ω → Ω is analytic.

(a) Show that |f ′(x)| � 1 for all x ∈ R.
(b) If |f ′(x0)| = 1 for some x0 ∈ R, show that f (x0) ∈ R. Find the general form

of f .

Hint: Find appropriate conformal mappings φ : D → Ω with φ(0) = x0 and
ψ : Ω → D with ψ(f (x0)) = 0 and then apply Lemma 1.1.1 to ψ ◦ f ◦ φ.

1.3 Let Ω = R× (−π/2, π/2) and suppose that f : Ω → Ω is analytic.

(a) Show that

|f (x2)− f (x1)| � |x2 − x1|, x1, x2 ∈ R.

(b) Show that equality holds for a pair x1 �= x2 if and only if

f (z) = z+ c or f (z) = −z+ c

for some constant c ∈ R.

Hint: Note that

f (x2)− f (x1) =
∫ x2

x1

f ′(x) dx

and then apply Exercise 1.2.

1.4 Fix w ∈ (−1, 1). Show that τw maps D− := D∩{z : Im z < 0} bijectively onto
D+ := D ∩ {z : Im z > 0}, and vice versa.

1.5 Fix w ∈ D. The function

g(z,w) : D → R ∪ {+∞}
defined by

g(z,w) = log

∣∣∣∣
1 − wz

w − z

∣∣∣∣

is the Green’s function of D with singularity at w.

(a) Show that g > 0, g(w,w) = +∞, and g is harmonic on D\{w}.
(b) Show that

lim|z|→1
g(z,w) = 0.
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Remark The function

z �→ g(z,w)+ log |w − z|

is a bounded harmonic function on D. This reveals the logarithmic nature of the
singularity of g at w.

1.6 Let C+ := {z ∈ C : Im z > 0}. Show that f : C+ → C+ is an automorphism
of C+ if and only if

f (z) = az+ b

cz+ d
,

in which a, b, c, d ∈ R and ad − bc > 0.
Hint: Use the conformal mapping

z �→ z− i

z+ i
,

which maps C+ onto D, and then apply Theorem 1.2.5. State and prove correspond-
ing results for C− := {z ∈ C : Im z < 0}.
1.7 Let f ∈ Aut(D) be represented as f = ργ ◦ τw. Show that

γ = − f ′(0)
1 − |f (0)|2 = − f ′(0)

|f ′(0)| .

Hint: By (1.3.2), f ′(0) = −γ (1 − |w|2). Also note that |w| = |f (0)| and |γ | = 1.

1.8 Show that if z1 and z2 are distinct points in D, then there is an f ∈ Aut(D) so
that f (z1) = 0 and 0 < f (z2) < 1.
Hint: Consider γ τz1 for a suitable unimodular constant ζ .

1.9 Suppose that ζ1, ζ2, w1, w2 ∈ T are such that ζ1 �= ζ2 and w1 �= w2. Show that
there is an f ∈ Aut(D) such that

f (ζ1) = w1 and f (ζ2) = w2.

Hint: First suppose that ζ1 = 1 and ζ2 = −1. Then appropriately compose two such
functions.

1.10 Show that

(ργ ◦ τw)−1 = τw ◦ ργ = ργ ◦ τγw.
Hint: Use (1.2.3), (1.2.4), and Corollary 1.3.7.

1.11 Let f ∈ S and z0 ∈ D. Define

g(z) = f (w(z)), z ∈ D,
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in which w(z) = τz0(z). Show that

|g′(z)|(1 − |z|2) = |f ′(w)|(1 − |w|2).

Hint: Use (1.4.8).

1.12 Show that for all f ∈ S ,

∣∣∣∣
f (z)− f (w)

z− w

∣∣∣∣
2

� 1 − |f (z)|2
1 − |z|2 · 1 − |f (w)|2

1 − |w|2 .

Hint: Use (1.6.1) and Theorem 1.4.1.

1.13 Let f be analytic on the disk RD = {z ∈ C : |z| < R} and bounded there
by M . Show that

∣∣∣∣
f (z)− f (w)

z− w

∣∣∣∣ �
2MR

|R2 − wz| , z, w ∈ RD.

Hint: Consider g(z) = f (Rz)/M for z ∈ D, and apply Theorem 1.4.1.

1.14 Let f : C+ → C+ be analytic. Show that

∣∣∣∣
f (z)− f (w)

f (z)− f (w)

∣∣∣∣ �
∣∣∣∣
z− w

z− w

∣∣∣∣ , z, w ∈ C+.

Hint: Use the conformal mapping

z �→ z− w

z− w
,

which maps C+ onto D, and then apply Theorem 1.4.1.

1.15 Let f : C+ → C+ be analytic. Show that

∣∣∣∣
f (z)− f (w)

f (z)− f (w)

∣∣∣∣ =
∣∣∣∣
z− w

z− w

∣∣∣∣ , z, w ∈ C+,

if and only if

f (z) = az+ b

cz+ d
,

where a, b, c, d ∈ R and ad − bc > 0.
Hint: See Exercises 1.6 and 1.14.
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1.16 Let f : D → D
− be analytic. Suppose that there is a sequence zn in D such

that zn → 1, f (zn) → 1, and

lim
n→∞

1 − |f (zn)|
1 − |zn| = 0.

Show that f ≡ 1. Hint: Use Julia’s lemma.

1.17 Show that equality holds in Julia’s inequality (1.6.4) if and only if
f ∈ Aut(D).



Chapter 2
Elementary Hyperbolic Geometry

As a subset of the complex plane, the unit disk D inherits the standard Euclidean
metric

d(z,w) := |z− w|.

However, there are other metrics on D that are more natural from the perspective
of complex function theory. In this chapter we introduce the pseudohyperbolic and
Poincaré metrics on D. We also discuss the relationship between the curvature of a
metric and the Schwarz Lemma (Lemma 1.1.1), along with hyperbolic geometry in
the upper half-plane C+.

2.1 Pseudohyperbolic Metric

Definition 2.1.1 The pseudohyperbolic metric ρ on D is defined by

�(z,w) :=
∣∣∣∣
z− w

1 − wz

∣∣∣∣ , z, w ∈ D.

Since |1 − wz| < 2 for all z,w ∈ D, we have

1

2
d(z,w) � �(z,w). (2.1.2)

For each compact subset K of D, the expression |1 − wz| is bounded away from
zero for z,w ∈ K . Consequently, there is a constant CK such that

�(z,w) � CKd(z,w), z,w ∈ D. (2.1.3)
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We will soon show that � is a metric on D and that (D, �) is a complete metric
space. In contrast, the metric space (D, d) is not complete since the sequence zn =
1− 1

n
is Cauchy with respect to d but does not converge to a limit in D. Consequently,

it is more natural to endow D with the metric � (or the closely related Poincaré
metric) rather than the standard Euclidean metric.

The definition of � ensures that �(z,w) = �(w, z) and 0 � �(z,w) < 1 for
all z,w ∈ D, and that �(z,w) = 0 if and only if z = w. To verify that � satisfies
the triangle inequality is more involved. We defer the proof until Sect. 2.2. For the
moment, we assume that � is a metric on D.

The following restatement of the Schwarz–Pick Theorem (Theorem 1.4.1) says
that any function in S (the Schur class) is a contraction on D with respect to the
pseudohyperbolic metric �.

Theorem 2.1.4 (Schwarz–Pick) For f ∈ S ,

�(f (z), f (w)) � �(z,w), z,w ∈ D.

Moreover, equality holds for two distinct z,w if and only if f ∈ Aut(D).

For each z0 ∈ D and r ∈ (0, 1), the pseudohyperbolic disk with radius r centered
at z0 is

Δ(z0, r) := {z ∈ D : �(z, z0) < r}.
Since �(z, z0) = |τz0(z)| (recall (1.2.2)), it follows that Δ(z0, r) is the inverse image
of the Euclidean disk

D(0, r) := {w ∈ C : |w| < r}
under the automorphism τz0 ; that is,

Δ(z0, r) = τz0(D(0, r)), (2.1.5)

since τ−1
z0

= τz0 . To concretely describe Δ(z0, r) requires the following result about
Möbius transformations.

Lemma 2.1.6 The image of a line or a circle under a Möbius transformation is a
line or a circle.

Proof Let

f (z) = az+ b

cz+ d
, (2.1.7)

in which ad − bc �= 0. If c = 0, then f is a linear function and the desired result
holds. If c �= 0, then

f (z) = az+ b

cz+ d
=

a
c
(cz+ d)− ad

c
+ b

cz+ d
= (b − ad

c
)

cz+ d
+ a

c
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is a composition of linear functions and an inversion. Thus, it suffices to show that
z �→ 1

z
has the desired property. A circle in R

2 is determined by an equation of the
form

Ax + By + C(x2 + y2) = D, (2.1.8)

in which A,B,C,D ∈ R. Straight lines correspond to C = 0. If z = x + iy, then

1

z
=
(

x

x2 + y2

)
+ i

( −y

x2 + y2

)
= u+ iv.

Divide (2.1.8) by x2 + y2, write the result in terms of u and v, and obtain

Au− Bv −D(u2 + v2) = −C.

This is the equation of a circle if D �= 0 or a line if D = 0. ��
The preceding lemma asserts that the image of a Euclidean disk under a Möbius

transformation is either another Euclidean disk or a half plane. Since τz0 ∈ Aut(D),
the inverse image under τz0 of any Euclidean disk contained in D is a Euclidean
disk contained in D. Consequently, (2.1.5) implies that the pseudohyperbolic disk
Δ(z0, ρ0) is a Euclidean disk contained in D. Can we be more specific?

By (2.1.5) we have

Δ(z0, r0) =
{

z0 − reiϑ

1 − z0reiϑ
: 0 � r < r0, 0 � ϑ � 2π

}
. (2.1.9)

Thus,

∂Δ(z0, r0) =
{

z0 − r0e
iϑ

1 − z0r0eiϑ
: 0 � ϑ � 2π

}

is the circle that forms the boundary of Δ(z0, r0). The identity
∣∣∣∣∣
z0 − r0e

iϑ

1 − z0r0eiϑ
− 1 − |z0|2

1 − r2
0 |z0|2

z0

∣∣∣∣∣ =
1 − r2

0

1 − r2
0 |z0|2

r0, ϑ ∈ [0, 2π ],

which can verified by direct computation (see Exercise 2.1), confirms that Δ(z0, r0)

is precisely the Euclidean disk D(c0, R0), in which

c0 = 1 − r2
0

1 − r2
0 |z0|2

z0 (2.1.10)

is the center of the corresponding Euclidean disk D(c0, R0) and

R0 = 1 − |z0|2
1 − r2

0 |z0|2
r0 (2.1.11)

is its radius. This is illustrated in Fig. 2.1.
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z0
c0

zM

zm

0

(a)

z0c0

zM

zm
0

(b)

Fig. 2.1 Pseudohyperbolic disks. (a) 0 < r0 � |z0|. (b) |z0| < r0 < 1

As (2.1.10) shows, c0 lies on the line segment [0, z0] that joins 0 and z0.
Consequently, the point of maximum modulus on the boundary of Δ(z0, r0) is

zM = c0 + R0
z0

|z0| =
|z0| + r0

1 + r0|z0| ·
z0

|z0| . (2.1.12)

If 0 < r0 � |z0|, then

zm = c0 − R0
z0

|z0| =
|z0| − r0

1 − r0|z0| ·
z0

|z0| (2.1.13)

is the point of minimum modulus on ∂Δ(z0, r0); otherwise Δ(z0, r0) contains 0.
This is illustrated in Fig. 2.1b. The antipodal points zm and zM satisfy

1 − |zM | = (1 − r0)(1 − |z0|)
1 + r0|z0| � 1 − |z| � (1 + r0)(1 − |z0|)

1 − r0|z0| = 1 − |zm|

and hence

(1 − r0)(1 − |z0|)
2

� 1 − |z| � 2
1 − |z0|

1 − r0|z0| (2.1.14)

for all z ∈ Δ(z0, r0). We leave it to the reader to obtain an appropriate estimate
when |z0| < r0. In summary,

|z− c0| � R0 ⇐⇒
∣∣∣∣
z0 − z

1 − z0z

∣∣∣∣ � r0 (2.1.15)
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and

|z| � r0 ⇐⇒
∣∣∣∣
z0 − z

1 − z0z
− c0

∣∣∣∣ � R0. (2.1.16)

The second equivalence follows from the first and (1.2.4). The parameters z0, r0, c0,
and R0 are related by (2.1.10) and (2.1.11).

2.2 Generalized Triangle Inequality

In this section, we show that the pseudohyperbolic metric � satisfies the triangle
inequality. This is the final piece needed to verify that (D, �) is a metric space. A
little more work (see Theorem 2.2.4 below) shows that (D, �) is complete.

Lemma 2.2.1 If z0 ∈ D and r0 ∈ (0, 1), then

|z0| − r0

1 − r0|z0| � |z| � |z0| + r0

1 + r0|z0| , z ∈ Δ(z0, r0)
−.

Proof Use (2.1.12) and (2.1.13). ��
Corollary 2.2.2 If z1, z2 ∈ D, then

z1 − z2

1 − z1z2
∈ ∂Δ(z1, |z2|)

and

|z1| − |z2|
1 − |z1z2| �

∣∣∣∣
z1 − z2

1 − z1z2

∣∣∣∣ �
|z1| + |z2|
1 + |z1z2| .

Proof By Theorem 2.1.4,

�(z1, τz1(z2)) = �(τz1(z1), z2) = �(0, z2) = |z2|,

so τz1(z2) ∈ ∂Δ(z1, |z2|). The desired inequalities follow from Lemma 2.2.1 with
z0 = z1 and r0 = |z2|. ��

We can apply Theorem 2.1.4 to the inequalities in Corollary 2.2.2 and obtain the
following imposing inequalities that are not convenient to verify directly.

Theorem 2.2.3 If z1, z2, z3 ∈ D, then

�(z1, z3)− �(z2, z3)

1 − �(z1, z3)�(z2, z3)
� �(z1, z2) �

�(z1, z3)+ �(z2, z3)

1 + �(z1, z3)�(z2, z3)
.
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Proof We only prove the upper inequality since the proof of the lower inequality is
similar. Indeed, the upper inequality holds for all z1, z2, z3 ∈ D if and only if

�(τw(z1), τw(z2)) �
�(τw(z1), τw(z3))+ �(τw(z2), τw(z3))

1 + �(τw(z1), τw(z3))�(τw(z2), τw(z3))

for some w ∈ D and all z1, z2, z3 ∈ D. If w = z3, then the preceding is equivalent to

�(τz3(z1), τz3(z2)) �
|τz3(z1)| + |τz3(z2)|
1 + |τz3(z1)τz3(z2)| ,

whose validity was previously established in Corollary 2.2.2. ��
Theorem 2.2.3 shows that � satisfies the triangle inequality

�(z1, z2) � �(z1, z3)+ �(z3, z2)

and hence (D, �) is metric space. Unlike (D, d), in which d denotes the Euclidean
metric, (D, �) is complete. This emphasizes the importance of the pseudohyperbolic
metric for function theory on the unit disk.

Theorem 2.2.4 (D, �) is a complete metric space.

Proof If zn is a �-Cauchy sequence in D, then it is �-bounded (contained in a
pseudo-hyperbolic disk). Lemma 2.2.1 shows that zn is confined to a compact subset
K of D. Since (2.1.2) implies that zn is Cauchy with respect to the Euclidean metric
on K , the completeness of (K, d) implies that zn converges with respect to the
Euclidean metric to a limit z ∈ K . Then (2.1.3) shows that zn → z with respect
to �. Thus, (D, �) is complete. ��

2.3 Poincaré Metric

For z1, z2, z3 ∈ D, Theorem 2.2.3 says that

�(z1, z2) �
�(z1, z3)+ �(z2, z3)

1 + �(z1, z3)�(z2, z3)
.

Rewrite this as

1 + �(z1, z2)

1 − �(z1, z2)
� 1 + �(z1, z3)

1 − �(z1, z3)
· 1 + �(z2, z3)

1 − �(z2, z3)

and take logarithms to obtain

log
1 + �(z1, z2)

1 − �(z1, z2)
� log

1 + �(z1, z3)

1 − �(z1, z3)
+ log

1 + �(z2, z3)

1 − �(z2, z3)
. (2.3.1)

This motivates the following definition.
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Definition 2.3.2 The Poincaré metric on D is

℘(z,w) = log
1 + �(z,w)

1 − �(z,w)
, z,w ∈ D.

Observe that ℘(z,w) = ℘(w, z) and ℘(z,w) � 0 with equality if and only if
z = w. The triangle inequality for ℘ is (2.3.1) and hence (D, ℘) is a metric space.
Since

p(t) = log
(1 + t

1 − t

)

is a strictly increasing function on [0, 1) and limt→0+ p(t) = 0, it follows that
the metric spaces (D, �) and (D, ℘) have the same Cauchy sequences and the
same convergent sequences. Consequently, Theorem 2.2.4 implies that (D, ℘) is
a complete metric space. Theorem 2.1.4 can be rewritten as follows.

Theorem 2.3.3 (Schwarz–Pick) If f ∈ S , then

℘(f (z), f (w)) � ℘(z,w), z,w ∈ D.

Equality holds for two distinct z,w if and only if f ∈ Aut(D).

Definition 2.3.4 The hyperbolic length of a simple piecewise C1 curve Γ in D is

�(Γ ) =
∫

Γ

2|dz|
1 − |z|2 . (2.3.5)

In the remainder of this book, the unmodified term “curve” always refers to a
piecewise C1 curve. What is the curve with the least hyperbolic length between
two distinct points z,w ∈ D? The Poincaré metric helps us answer this question.

Lemma 2.3.6 Hyperbolic length is conformally invariant. That is, if Γ is a simple
C1 curve in D and f ∈ Aut(D), then

�(f (Γ )) = �(Γ ).

Proof Let f ∈ Aut(D) and let Γ be a curve in D. Since (2.3.5) is rotationally
invariant, it suffices to show that �(τz0(Γ )) = �(Γ ) for all z0 ∈ D. Let w = τz0(z)

and use (1.4.8) to obtain

|dw|
1 − |w|2 = |τ ′z0

(z)||dz|
1 − |τz0(z)|2

= |dz|
1 − |z|2 .

Then

�(τz0(Γ )) =
∫

τz0 (Γ )

2|dw|
1 − |w|2 =

∫

Γ

2|dz|
1 − |z|2 = �(Γ ). ��



28 2 Elementary Hyperbolic Geometry

The shortest distance between two points in Euclidean space is a straight line.
What is the correct analogue in the hyperbolic setting? The following lemma
concerns an instructive special case.

Lemma 2.3.7 If 0 < r < 1, then the real interval [0, r] is the shortest hyperbolic
curve between 0 and r . Moreover,

�([0, r]) = log
1 + r

1 − r
;

that is, �([0, r]) = ℘(0, r).

Proof First observe that

�([0, r]) =
∫

[0,r]
2 dz

1 − z2

=
∫ r

0

2 dt

1 − t2

= log
1 + r

1 − r
.

Let Γ be a simple C1 curve in D that starts at 0 and ends at r . Then the Cauchy
integral formula, along with the fact that Γ is a simple, piecewise C1 curve and
hence homotopic to [0, r], says that

�([0, r]) =
∣∣∣∣
∫

[0,r]
2 dz

1 − z2

∣∣∣∣

=
∣∣∣∣
∫

Γ

2 dz

1 − z2

∣∣∣∣

�
∫

Γ

2 |dz|
1 − |z|2

= �(Γ ).

For the proof of uniqueness, see Exercise 2.3 and [128, Thm. 12.2.6a]. ��
The following important theorem generalizes the preceding lemma.

Theorem 2.3.8 The curve with the least hyperbolic length between two distinct
points z1, z2 ∈ D is parametrized by

z1 − τz1(z2)t

1 − z1τz1(z2)t
, t ∈ [0, 1].

Moreover, its hyperbolic length is ℘(z1, z2).

Proof If z1, z2 ∈ D are distinct, then

f (z) = |τz1(z2)|
τz1(z2)

τz1(z)
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is an automorphism that satisfies f (z1) = 0 and 0 < f (z2) < 1 (see Exercise 1.8).
Thus, Lemmas 2.3.6 and 2.3.7 show that the curve with the shortest hyperbolic
length between z1 and z2 is f−1([0, |τz1(z2)|]). Since f−1(z) = τz1(γ z), where
γ = |τz1(z2)|/τz1(z2), a parametrization of the curve is

Γ (t) = f−1(t |τz1(z2)|)
= τz1(γ t |τz1(z2)|)
= τz1(tτz1(z2))

= z1 − τz1(z2)t

1 − z1τz1(z2)t

for t ∈ [0, 1]. Theorem 2.3.3 and Lemma 2.3.7 imply that the length of this curve is

℘(0, |τz1(z2)|) = ℘(f−1(0), f−1(|τz1(z2)|)) = ℘(z1, z2). ��

Definition 2.3.9 The curve provided by Theorem 2.3.8 is the hyperbolic line
segment between z1 and z2 (see Fig. 2.2). The (whole) hyperbolic line through two
distinct points z1, z2 ∈ D is

w(t) = z1 − ( z1−z2
1−z1z2

)t

1 − z1(
z1−z2

1−z1z2
)t
, |t | <

∣∣∣∣
1 − z1z2

z1 − z2

∣∣∣∣ . (2.3.10)

The restriction on t above guarantees that w(t) ∈ D.

Fig. 2.2 The hyperbolic line
segment between z1 and z2

z1

z2
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Fig. 2.3 Some hyperbolic
lines that pass through z0

0
z0

The hyperbolic line segment between z1 and z2 is the image of the Euclidean line
segment [0, τz1(z2)] under τz1 . Since the Euclidean line that passes through 0 and
τz1(z2) is orthogonal to T, Lemma 2.1.6 and the conformality of bijective analytic
maps ensure that the hyperbolic line segment between z1 and z2 is either an arc of a
circle orthogonal to T, or a part of a diameter of D (see Fig. 2.3).

Corollary 2.3.11 If z1, z2, z3 ∈ D are distinct, then z1, z2, z3 lie on the same
hyperbolic line if and only if

( z1 − z2

1 − z1z2

)/( z1 − z3

1 − z1z3

)
∈ R. (2.3.12)

Proof Let z1, z2, and z3 be distinct points in D. Solve (2.3.10) for t and obtain

t =
( z1 − z2

1 − z1z2

)/( z1 − w(t)

1 − z1w(t)

)
.

Since z3 lies on the hyperbolic line determined by z1 and z2 if and only if z3 = w(t)

for some t ∈ R, the desired result follows. ��

2.4 Ahlfors’s Version of the Schwarz’s Lemma

Let μ be a positive, nonvanishing, twice continuously differentiable function on D

and let Γ be a piecewise C1 curve in D. In differential geometry, μ is called a metric
since it gives rise to a metric, in the metric-space sense, as follows. The length of Γ
with respect to the metric μ is defined by
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�μ(Γ ) =
∫

Γ

μ(z) |dz|.

For example, the Euclidean length of Γ is obtained when μ ≡ 1. The Euclidean
distance between two distinct points z and w in D is the length of the shortest
piecewise C1 curve between z and w. This curve is the straight line between z and
w and its length is |z − w|. In a similar manner, the hyperbolic length (2.3.5) of a
piecewise C1 curve corresponds to the Poincaré metric

μ(z) = 2

1 − |z|2 . (2.4.1)

If μ is a metric, in the geometric sense, on D, then let dμ(z,w) denote the length
of the shortest piecewise C1 curve between z and w. As a slight generalization
of the concept above, we allow a metric μ to have isolated singularities. These
points are usually the critical points of an analytic function or the pre-images of
the singularities of another metric. This is further crystalized by the following
construction.

If f : Ω1 → Ω2 is analytic and μ is a metric on Ω2, then its pullback under f is
the metric f ∗μ defined by

(f ∗μ)(z) = μ(f (z))|f ′(z)|, z ∈ Ω1.

If Γ is a piecewise C1 curve in Ω1, then a change of variables yields

�f ∗μ(Γ ) = �μ(f ◦ Γ ). (2.4.2)

The situation becomes more interesting when Ω1 = Ω2 = Ω . In this case,
we can compare μ with its pullback f ∗μ at each point of Ω . In light of (2.4.2),
any such local relation between μ and f ∗μ gives rise to a global relation between
�μ(f ◦ Γ ) and �μ(Γ ) for all curves Γ in Ω . Thus, we are led to a relation between
dμ(f (z), f (w)) and dμ(z,w), in which z,w are arbitrary points in Ω . We treat such
possible phenomenon below.

If f : Ω → Ω is analytic and the metric μ is such that

(f ∗μ)(z) � μ(z), z ∈ Ω,

then

�μ(f ◦ Γ ) � �μ(Γ )

for all piecewise C1 curves Γ . Thus,

dμ(f (z), f (w)) � dμ(z,w), z,w ∈ Ω;

that is, f is a contraction from the metric space (Ω, dμ) to itself.
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We wish to focus on the Poincaré metric (2.4.1). With our new terminology, the
second inequality in Theorem 1.4.1 becomes

(f ∗μ)(z) � μ(z), z ∈ D, (2.4.3)

for any f ∈ S . Theorem 2.3.3 is now a corollary of the approach above. In other
words, any f ∈ S is a contraction in the hyperbolic setting. However, our goal is
not only to restate the Schwarz–Pick Theorem in terms of this local metric. We wish
to recast it in the language of differential geometry.

The Laplace operator is

� = ∂2

∂x2 + ∂2

∂y2 .

Note the difference in notation from (2.1.9). For the sake of simplicity, we are
intentionally vague about the domain of definition of this differential operator, save
that it operates on functions f : D → C. In terms of the Wirtinger derivatives

∂

∂z
= 1

2

(
∂

∂x
− i

∂

∂y

)
and

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
, (2.4.4)

one has

� = 4
∂

∂z

∂

∂z
= 4

∂

∂z

∂

∂z
. (2.4.5)

The curvature of a metric μ is

κμ(z) = −� logμ(z)

μ2(z)
.

For example, the curvature of the Euclidean metric μ ≡ 1 is identically 0. However,
this is not the only metric on D that has constant curvature.

Lemma 2.4.6 The curvature of the Poincaré metric (2.4.1) is identically equal
to −1.

Proof Since

� logμ(z) = � log
2

1 − |z|2

= 4
∂

∂z

∂

∂z
log

2

1 − zz

= 4
∂

∂z

z

1 − zz
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= 4

(1 − zz)2

= 4

(1 − |z|2)2

= −μ2(z),

the desired result follows. ��
Ahlfors realized that the Schwarz Lemma is a statement about curvature. His

observation dramatically influenced the theory of functions.

Theorem 2.4.7 (Ahlfors [2]) Let Ω be a domain in C endowed with a metric σ

such that

κσ (z) � −1, z ∈ Ω.

If D is endowed with the Poincaré metric μ and f : D → Ω is analytic, then

(f ∗σ)(z) � μ(z), z ∈ D.

Proof (Minda–Schober [103]) Fix 0 < r < 1. On the disk D(0, r) the metric

μr(z) = 2r

r2 − |z|2
is well defined. A similar calculation to the one used to prove Lemma 2.4.6 shows
that

κμr (z) = −1, z ∈ D(0, r).

Let

Φ(z) = (f ∗σ)(z)
μr(z)

, z ∈ D(0, r),

and observe that Φ � 0. Since f ∗σ is continuous on D, the function Φ is continuous
on D(0, r) and

lim
|z|→r−

Φ(z) = 0.

Hence Φ attains its maximum M at some point of D(0, r)−. Our goal is to show
that M � 1.

If the maximum occurs on the boundary ∂D(0, r) or at some point z ∈ D(0, r)
with (f ∗σ)(z) = 0, then M = Φ ≡ 0. Suppose that the maximum occurs at some
point z0 ∈ D(0, r) and (f ∗σ)(z0) > 0. Since Φ is twice continuously differentiable
at z0,

� logΦ(z0) � 0.
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According to our main hypothesis on the curvature of f ∗σ ,

� logΦ(z0) = � log(f ∗σ)(z0)−� logμr(z0)

= −κf ∗σ (z0)(f
∗σ)2(z0)+ κμr (z0)μ

2
r (z0)

� (f ∗σ)2(z0)− μ2
r (z0).

Therefore,

(f ∗σ)2(z0) � μ2
r (z0),

and so Φ(z0) � 1. In either case we have

(f ∗σ)(z) � ρr(z), z ∈ D(0, r).

Let r → 1− to complete the proof. ��
When Ω = D and σ = μ (the Poincaré metric), the preceding theorem is

precisely the formulation (2.4.3) of the Schwarz–Pick Lemma.

2.5 Hyperbolic Geometry in C+

The preceding sections were concerned with hyperbolic geometry on the open unit
disk D. We can also discuss hyperbolic geometry in the upper half-plane C+. Instead
of beginning anew with an independent approach, we use a conformal mapping
between D and C+ to help establish our results.

The Möbius transformation

ϕ(z) = i
1 + z

1 − z
(2.5.1)

is a bijection of D onto C+; see Fig. 2.4. Since

ϕ(1) = ∞, ϕ(−1) = 0, ϕ(i) = −1, and ϕ(−i) = 1,

Lemma 2.1.6 ensures that ϕ provides a bijection between T\{1} and R.
Since

Imϕ(z) = 1 − |z|2
|1 − z|2 and ϕ′(z) = 2

|1 − z|2 ,

it follows that

|ϕ′(z)|
Imϕ(z)

= 2

1 − |z|2 , z ∈ D. (2.5.2)
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i

−i

1−1

j (z)

i

−i

1−1

Fig. 2.4 The linear fractional transformation ϕ in (2.5.1)

Let Γ be a piecewise C1 curve in D and let

Υ = ϕ ◦ Γ.

Then Υ is a piecewise C1 curve in C+; indeed, ϕ : D → C+ provides a bijection
between the family of piecewise C1 curves in each domain. Consequently, (2.5.2)
implies that

|Υ ′|
ImΥ

= 2|Γ ′|
1 − |Γ |2 .

Since the hyperbolic length of the curve Γ in D, as defined in (2.3.5), is

�(Γ ) =
∫

Γ

2|dz|
1 − |z|2 ,

we define the hyperbolic length of the curve Υ in C+ by

�(Υ ) =
∫

Υ

|dz|
Im z

. (2.5.3)

2.6 Exercises

2.1 Verify by direct computation that Δ(z0, ρ0) = D(c0, r0), in which c0 and r0
are given by (2.1.10) and (2.1.11), respectively.

2.2 Show that the Poincaré metric ℘ satisfies

℘(z,w) = 2 tanh−1
∣∣∣∣
z− w

1 − wz

∣∣∣∣ , z, w ∈ D.
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a

b

Fig. 2.5 Illustration of Euclid’s fifth postulate. Here α + β < π

Use the addition formula for the hyperbolic tangent function to derive the triangle
inequality for the pseudohyperbolic metric.

2.3 Let γ : [0, 1] → C be a C1 path from 0 to w ∈ D\{0} of minimal length.

(a) Why may we assume that γ does not vanish on (0, 1]?
(b) Write γ (t) = r(t)eiθ(t), in which r, θ are C1 functions on [0, 1]. Examine the

integral that defines �(Γ ) and explain why θ is constant.
(c) Prove that a straight line is the shortest hyperbolic path from 0 to w.

See [128, Thm. 12.2.6a] for more on this.

2.4 Euclid’s fifth postulate (the famous Parallel Postulate) asserts that “if two
lines are drawn which intersect a third in such a way that the sum of the inner
angles on one side is less than two right angles, then the two lines inevitably must
intersect each other on that side if extended far enough.” See Fig. 2.5 and Euclid’s
Elements [42].

(a) Prove that the Parallel Postulate is equivalent to Playfair’s Axiom: “In a plane,
given a line and a point not on it, at most one line parallel to the given line can
be drawn through the point.”

(b) In the Poincaré disk model of the hyperbolic plane, prove that given a line and a
point not on it, there are infinitely many parallel lines to the given line that can
be drawn through the point; see Fig. 2.6.

2.5 Suppose that z1, z2, . . . , zn ∈ D satisfy

℘(zi, zj ) =
{

1 if i �= j,

0 if i = j.
(2.6.1)

(a) Show that such a configuration is impossible if n � 5.
Hint: Suppose that z1, z2, z3, z4, z5 satisfy (2.6.1). Obtain circles Γ1, Γ2, both of
the same hyperbolic radius, such that z2, z3, z4, z5 ∈ Γ1 and z1, z3, z4, z5 ∈ Γ2.
Now examine Γ1 ∩ Γ2.
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Fig. 2.6 Failure of the
Parallel Postulate in the
Poincaré disk model of
hyperbolic geometry. Given a
line that does not contain z0,
there are infinitely many
hyperbolic lines through z0
that are parallel to the given
line

z0

(b) Show that such a configuration is impossible if n = 4.
Hint: The proof is simple in the Euclidean case. The Poincaré model of the
hyperbolic plane satisfies Hilbert’s axioms [68, Sect. 39]. One can show that
Propositions I.2-I.22 and I.24-I.28 of Euclid’s Elements [42] can be obtained in
the Poincaré model [68, Thm. 10.4]. Now proceed as in the Euclidean case.

2.6 In this exercise, we consider the Wirtinger differential operators ∂
∂z

and ∂
∂z

defined in (2.4.4). For the sake of simplicity, assume that the functions involved
are infinitely differentiable in the variables x and y.

(a) Verify that
∂

∂z
and

∂

∂z
commute.

(b) Show that f is analytic if and only if
∂

∂z
f = 0.

(c) Verify (2.4.5).

2.7 Let μ be a metric on D such that

�μ(f (Γ )) = �μ(Γ )

for all piecewise C1 curves Γ and for all f ∈ Aut(D). Show that

μ(z) = μ(0)

1 − |z|2 , z ∈ D.

This is the converse of Lemma 2.3.6.
Hint: Study the local behavior of f = τz0 at the origin.
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2.8 The spherical metric is defined by

σ(z) = 2

1 + |z|2 , z ∈ D.

Show that

κσ (z) = 1, z ∈ D.

Hint: Use (2.4.5).



Chapter 3
Finite Blaschke Products: The Basics

3.1 Finite Blaschke Products

Definition 3.1.1 For a finite sequence z1, z2, . . . , zn in D and γ ∈ T, the function

B(z) = γ

n∏

k=1

z− zk

1 − zkz
(3.1.2)

is a finite Blaschke product.

In the preceding, we allow repetition of the zj . For example, if

z1 = z2 = · · · = zn = 0 and γ = 1,

then B(z) = zn.
The function B is a unimodular constant (constant of modulus one) times

a product of the automorphisms τz1 , τz2 , . . . , τzn defined in (1.2.2). The finite
Blaschke product B is a rational function with zeros at the zj , and nowhere else.
It has a meromorphic extension to Ĉ = C ∪ {∞} with poles at

1/z1, 1/z2, . . . , 1/zn,

all of which lie in

De := Ĉ\D−,

the extended exterior disk. The use of the extended exterior disk is important here
since 1/zj = ∞ when zj = 0. There is also a notion of an infinite Blaschke product
which we will discuss in the endnotes of this chapter.
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Since a nonconstant finite Blaschke product B is a product of disk automor-
phisms, it belongs to the Schur class S (Definition 1.0.2) and satisfies

|B(z)| < 1, z ∈ D, (3.1.3)

|B(ζ )| = 1, ζ ∈ T, (3.1.4)

|B(z)| > 1, z ∈ Ĉ\D. (3.1.5)

For ξ ∈ T, observe that ξ = 1/ξ . By (3.1.4) we have

B(ζ ) = 1

B(ζ )
= 1

B(1/ζ )
, ζ ∈ T.

Since 1/B(1/z) is meromorphic on Ĉ and agrees with B(z) on T, the two functions
are identical, that is,

B(z) = 1

B(1/z)
, z ∈ Ĉ. (3.1.6)

The preceding equality can also be obtained from (3.1.2) by a direct computation;
see Exercise 3.4.

3.2 Uniqueness and Nonuniqueness

The alert reader might question why the unimodular constant γ is included in the
definition of a Blaschke product. In the next several sections, we will characterize
the finite Blaschke products among the functions in the Schur class and γ will play a
role. On the rare occasions when we need to distinguish the finite Blaschke products
where γ = 1, we will use the term monic finite Blaschke product for which we have
the following uniqueness theorem.

Theorem 3.2.1 (Horowitz–Rubel [80]) Suppose that

B1(z) =
n∏

k=1

z− zk

1 − zkz
and B2(z) =

n∏

k=1

z− λk

1 − λkz

are two monic finite Blaschke products of degree n and B1(wk) = B2(wk) for n

distinct points w1, w2 . . . , wn in D. Then B1(z) = B2(z) for all z ∈ D.

We follow the original proof from [80] which requires the following lemma.

Lemma 3.2.2 Suppose that

B1(z) =
n∏

k=1

z− zk

1 − zkz
and B2(z) =

n∏

k=1

z− λk

1 − λkz
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are two monic finite Blaschke products of degree n and B1(wk) = B2(wk) for n

distinct points w1, w2 . . . , wn in D. Then B1(ξ) = B2(ξ) for some ξ ∈ T.

Proof By cross multiplication of terms, note that

n∏

k=1

z− zk

1 − zkz
=

n∏

k=1

z− λk

1 − λkz

precisely when

n∏

k=1

( z− zk

z− λk

)/( 1 − zkz

1 − λkz

)
= 1.

Moreover, when |z| = 1 the identity above is equivalent to

n∏

k=1

( z− zk

z− λk

)/( z− zk

z− λk

)
= 1.

Since

w/w = e2i argw

for any w ∈ C\{0}, we will be done if we can show that

arg
n∏

k=1

ξ − zk

ξ − λk
= πm

for some ξ ∈ T and some integer m.
To do this, define

F(z) =
n∏

k=1

z− zk

z− λk
(3.2.3)

and observe that F is analytic and zero free on |z| > 1 − δ for some δ > 0 and that
F(∞) = 1. Hence there is an analytic branch of H(z) = logF(z) for |z| > 1 − δ.
But since F(∞) = 1, we may choose H(∞) = 0.

Define

h(z) = Im(H(1/z)), |z| < 1

1 − δ

and note that h is harmonic on an open neighborhood of D−. By the Mean Value
Property for harmonic functions,

0 = H(∞) = h(0) =
∫ 2π

0
h(eiθ )

dθ

2π
.

Since h is continuous and real valued on T, it follows that h(ξ) = 0 for some ξ ∈ T.
However, since ImH is a branch of argF and any two branches of argF differ by a
constant integer multiple of 2π , the lemma is proved. ��
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Proof (of Theorem 3.2.1) Let R be the rational function defined by

R(z) = B1(z)

B2(z)

and note that since B1 and B2 are finite Blaschke products, |R(ζ )| = 1 for all ζ ∈ T

by (3.1.4). By the same argument use to prove (3.1.6), we see that

R(z)R(1/z) = 1, z ∈ Ĉ.

By hypothesis,

R(w1) = R(w2) = · · · = R(wn) = 1.

The previous identity also says that

R(1/w1) = R(1/w2) = · · · = R(1/wn) = 1.

Since |wj | < 1, we see that |1/wj | > 1. Furthermore, by the previous lemma there
is a ξ ∈ T for which R(ξ) = 1. Putting this all together, we have 2n+ 1 points

w1, w2, . . . , wn, 1/w1, 1/w2, . . . , 1/wn, ξ

that are mapped to 1 by R. Since the degree of the rational function R is 2n, we see
that R ≡ 1 and thus B1 ≡ B2. ��

The fact that B1 and B2 are monic is important and was used in (3.2.3) to get
that F(∞) = 1. If we do not assume that B1 and B2 are monic, the conclusion of
Theorem 3.2.1 is not always true. Indeed, suppose that

z1, z2, . . . , zn ∈ D\{0}
and define

B1(z) = i

n∏

k=1

z− zk

1 − zkz
and B2(z) = z− iz1

1 + iz1z

n∏

k=2

z− zk

1 − zkz
.

Then B1 and B2 are finite Blaschke products of degree n with B1(zk) = B2(zk) for
all k = 2, 3, . . . , n and B1(0) = B2(0). However, B1(w) �= B2(w) for some w ∈ D.
Indeed, if this were not the case, then

1 = B1(z)

B2(z)
= i

τz1(z)

τiz1(z)
, z ∈ D.

The preceding says that τz1 = iτiz1 , and hence, using the fact that τiz1 ◦ τiz1 = id
(see (1.2.4)), we get (τz1 ◦ τiz1)(z) = i for all z ∈ D. This contradicts the fact that
τz1 ◦ τiz1 ∈ Aut(D).
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3.3 Finite Blaschke Products as Rational Functions

Two polynomials are relatively prime if they have no nonconstant common factor.
If P and Q are relatively prime polynomials and Q is not identically zero, then the
degree of the rational function f = P/Q is

deg f := max{degP, degQ},

where degP and degQ are the degrees of P and Q, respectively.
For a finite Blaschke product B, rewrite (3.1.2) to obtain

B(z) = γ

∏n
k=1(z− zk)∏n
k=1(1 − zkz)

, (3.3.1)

which confirms that B is a rational function of degree n. We regard a unimodular
constant function as a finite Blaschke product of degree 0. The following theorem
shows that the numerator and denominator in (3.3.1) are closely related.

Theorem 3.3.2 A rational function of degree n is a finite Blaschke product of
degree n if and only if it is of the form

znP (1/z)

P (z)
= αn + αn−1z+ · · · + α0z

n

α0 + α1z+ · · · + αnzn
, (3.3.3)

in which α0 �= 0 and the numerator has all of its zeros in D.

Proof Suppose that B is a finite Blaschke product and write it in the form (3.3.1).
Let γ = eit0 in (3.3.1) and define

P(z) = e−it0/2
n∏

k=1

(1 − zkz), (3.3.4)

which is a polynomial of degree at most n. Since

znP (1/z) = zneit0/2
n∏

k=1

(1 − zk/z)

= zneit0/2
n∏

k=1

(1 − zk/z)

= eit0/2
n∏

k=1

(z− zk), (3.3.5)
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we obtain

znP (1/z)

P (z)
= eit0/2∏n

k=1(z− zk)

e−it0/2
∏n

k=1(1 − zkz)

= γ

n∏

k=1

z− zk

1 − zkz

= B(z) (3.3.6)

by (3.3.1). The numerator

znP (1/z) = eit0/2
n∏

k=1

(z− zk)

has all of its zeros in D. It is a polynomial of degree n, so α0 �= 0 in (3.3.3).
Conversely, suppose that f is a rational function of the form (3.3.3), in which

α0 �= 0 and the numerator has all of its zeros in D. By scaling the numerator
and denominator in (3.3.3) by a real constant factor, we may assume that α0 ∈ T.
Then the numerator znP (1/z) is of the form (3.3.5), in which z1, z2, . . . , zn ∈ D.
Consequently, P enjoys a factorization of the form (3.3.4) and

znP (1/z)

P (z)

is of the form (3.3.1), so it is a finite Blaschke product. ��
Fix n > 0. If P is a polynomial of degree at most n, then let P #n be the

polynomial

P #n(z) = znP (1/z),

which has degree at most n. To be more specific,

(α0 + α1z+ · · · + αnz
n)#n = αn + αn−1z+ · · · + α0z

n.

That is, P #n is obtained from P by reversing the coefficients and conjugating them.
Observe that

(1)#n = zn and (zn)#n = 1.

We usually write # without reference to n since the value of n is determined by
context. Observe that

(P #)# = P (3.3.7)

and the zeros of P # are

1/z1, 1/z2, . . . , 1/zn,
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in which z1, z2, . . . , zn denote the zeros of P . Moreover,

(QR)#j+k = Q#j R#k (3.3.8)

whenever Q,R are nonconstant polynomials and j, k are positive integers.
The proof of Theorem 3.3.2 shows that a rational function is a finite Blaschke

product if and only if it is of the form

P/P #, (3.3.9)

in which P is a unimodular scalar multiple of

(z− z1)(z− z2) · · · (z− zn),

and z1, z2, . . . , zn ∈ D. This result has the following generalization.

Corollary 3.3.10 A rational function of degree n is a quotient of two finite Blaschke
products whose degrees sum to at most n if and only if it is of the form

P

P #
,

in which P is a polynomial with no zeros on T.

Proof Suppose that P is a nonconstant polynomial with no zeros on T. Write P =
QR#, in which Q is a polynomial with all of its zeros in D and R# is a polynomial
with all of its zeros in De. That is, R = (R#)# is a polynomial with all of its zeros
in D. Then (3.3.8) ensures that

f = P

P #
= QR#

(QR#)#
= QR#

Q#R
= Q

Q#

/ R

R#
, (3.3.11)

which is a quotient of two finite Blaschke products by Theorem 3.3.2. If Q and
R have any zeros in common, then cancellation occurs in (3.3.11). After this, the
degrees of the resulting finite Blaschke products sum to at most n.

Conversely, if f is a quotient of two finite Blaschke products whose degrees sum
to at most n, then by Theorem 3.3.2 we may write

f = Q

Q#

/ R

R# ,

in which Q and R are polynomials with all of their zeros in D and so that

degQ+ degR# � n.

Note that P = QR# is a polynomial with no zeros on T and that f = P/P #. ��
Corollary 3.3.10 implies that

|P(ζ )| = |P #(ζ )| (3.3.12)

for all polynomials P and ζ ∈ T. See Exercise 3.7 for alternate proofs of
Theorem 3.3.2 and Corollary 3.3.10.
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3.4 Finite Blaschke Products as n-to-1 Functions

Let B be a finite Blaschke product (3.1.2) of degree n and consider the equation

B(z) = w, (3.4.1)

in which w ∈ Ĉ. Write B = P/P # as in (3.3.9), where P is a polynomial of degree
n. Then (3.4.1) becomes

P(z)− wP #(z) = 0, (3.4.2)

in which P − wP # is a polynomial of degree at most n. Consequently, for each
w ∈ Ĉ, (3.4.1) has n solutions in Ĉ, repeated according to their multiplicity. For
example, if w = 0, then the solutions are precisely the zeros z1, z2, . . . , zn of B; that
is, the zeros of P . As another example, if w = ∞, then the solutions are precisely
1/z1, 1/z2, . . . , 1/zn, which are the poles of B.

We now show that B has constant valence on each of the disk D, the extended
exterior disk De, and the unit circle T (see Fig. 3.1). We get started on T with the
following lemma.

Lemma 3.4.3 If B is a finite Blaschke product, then B ′(ζ ) �= 0 for all ζ ∈ T.

Proof To prove this result, we require the logarithmic derivative of a product

f = f1f2 · · · fn
of meromorphic functions f1, f2, . . . , fn:

f ′

f
= f ′

1

f1
+ f ′

2

f2
+ · · · + f ′

n

fn
. (3.4.4)

The logarithmic derivative of a finite Blaschke product

B(z) = γ

n∏

k=1

z− zk

1 − zkz
, γ ∈ T, (3.4.5)

is

B ′(z)
B(z)

=
n∑

k=1

(
z− zk

1 − zkz

)′
· 1 − zkz

z− zk

=
n∑

k=1

(1 − zkz)− (z− zk)(−zk)

(1 − zkz)2 · 1 − zkz

z− zk

=
n∑

k=1

1 − |zk|2
(1 − zkz)(z− zk)

. (3.4.6)
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Fig. 3.1 Images of the circle |z| = r under the finite Blaschke product B from (3.1.2) with z1 = 0,
z2 = z3 = 4

5 , z4 = 2i
3 , and z5 = −3i

4 . All five zeros of B have modulus at most 0.8; hence the
image of |z| = r for r > 0.8 winds around the origin five times. Thus, B is a 5-to-1 map from D

onto itself. (a) r = 0.4. (b) r = 0.5. (c) r = 0.6. (d) r = 0.7. (e) r = 0.8. (f) r = 0.9. (g) r = 0.95.
(h) r = 0.9825. (i) r = 0.99

If ζ ∈ T, then

ζ
B ′(ζ )
B(ζ )

=
n∑

k=1

1 − |zk|2
ζ (1 − zkζ )(ζ − zk)

=
n∑

k=1

1 − |zk|2
|ζ − zk|2 . (3.4.7)
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Since B(ζ ) and ζ are both unimodular, it follows that

|B ′(ζ )| =
n∑

k=1

1 − |zk|2
|ζ − zk|2 > 0. �� (3.4.8)

The identity in (3.4.8) ensures that a finite Blaschke product cannot assume any
(necessarily unimodular) values on T with multiplicity greater than one.

This next result says that the argument of a finite Blaschke product is always
increasing. Our proof follows [30].

Corollary 3.4.9 For a finite Blaschke product B,

d

dt
argB(eit ) = |B ′(eit )|.

Proof The calculation from (3.4.6) shows that

B ′(z)
B(z)

=
n∑

k=1

1 − |zk|2
(1 − zkz)(z− zk)

.

Writing B(eit ) = eiψ(t), where ψ(t) is real valued and ψ(2π)−ψ(0) is a multiple
of 2π , (3.4.7) says that

ψ ′(t) = eit
B ′(eit )
B(eit )

=
n∑

k=1

1 − |zk|2
|eit − zk|2 .

By (3.4.8), this last quantity equals |B ′(eit )|. ��
Theorem 3.4.10 Let B be a finite Blaschke product of degree n. For each w ∈ Ĉ,
the equation B(z) = w has exactly n solutions in Ĉ, counted according to
multiplicity.

(a) If w ∈ D, these solutions belong to D.
(b) If w ∈ De, these solutions belong to De.
(c) If w ∈ T, these solutions belong to T and are distinct.

Proof By Theorem 3.3.2 we may write B = P/P #, where

P(z) = α0 + α1z+ · · · + αnz
n, αn �= 0, (3.4.11)

is a polynomial of degree n whose zeros are all inside D. Looking at the form
of P/P #, we can divide its numerator and denominator by |αn| and thus assume
that αn ∈ T. Let z1, z2, . . . , zn denote the zeros of P , counted according to their
multiplicity. Then

P(z) = αn(z− z1)(z− z2) · · · (z− zn).
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Expand the preceding and compare with (3.4.11) to obtain

α0 = (−1)nz1z2 · · · znαn,

which belongs to D since |αn| = 1.
The solutions to B(z) = w are precisely the solutions to (3.4.11). The coefficient

of zn in (3.4.2) is nonzero if and only if αn �= wα0. If w ∈ D, then |wα0| < |αn| = 1
and hence B(z) = w has exactly n solutions, repeated according to multiplicity. If
w ∈ De, then apply (3.1.6) and the preceding result to conclude that B(z) = w has
exactly n solutions in De, counted according to multiplicity.

If w ∈ T, then (3.1.3), (3.1.4), and (3.1.5) imply that the n solutions to B(z) = w

belong to T. These solutions are distinct since Lemma 3.4.3 guarantees that B ′ does
not vanish on T. ��

Theorem 3.4.10 says that B(z) = w does not have solutions with multiplicity
greater than one if w ∈ T. This does not hold if w /∈ T. For example, B(z) = zn

assumes the value 0 at z = 0 (and the value ∞ at z = ∞) with multiplicity n.

3.5 Unimodular Elements of the Disk Algebra

Definition 3.5.1 The disk algebra A (D) is the set of analytic functions on D that
extend continuously to D

−.

Each finite Blaschke product belongs to A (D). More generally, any rational
functions with no poles in D

− belongs to A (D). Another example is the function
defined by

∑∞
n=1 z

n/n2.
Among the elements of A (D), the finite Blaschke products can be characterized

as those functions that map T into T.

Theorem 3.5.2 (Fatou [46]) If f is analytic on D and

lim
|z|→1−

|f (z)| = 1,

then f is a finite Blaschke product.

Proof Since |f (z)| → 1 as |z| → 1−, there is an r ∈ [0, 1) so that f does not
vanish on the annulus {z : r � |z| < 1}. The identity principle from complex
analysis asserts that f has at most a finite number of zeros in D. Let B be a finite
Blaschke product whose zeros (located in {z : |z| < r}) are precisely the zeros of f ,
repeated according to multiplicity. Then f/B and B/f are analytic in D and

lim
|z|→1−

∣∣∣∣
f (z)

B(z)

∣∣∣∣ = lim
|z|→1−

∣∣∣∣
B(z)

f (z)

∣∣∣∣ = 1.
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The Maximum Modulus Principle implies that |f/B| � 1 and |B/f | � 1 on D.
Thus, f/B is constant on D. This constant must be unimodular, so f is a unimodular
scalar multiple of B. That is, f is a finite Blaschke product. ��
Corollary 3.5.3 If f ∈ A (D) and f (T) ⊆ T, then f is a finite Blaschke product.

Proof If f ∈ A (D), then |f | is continuous on D
−. Since D

− is compact, |f | is
uniformly continuous on D

−, so |f (z)| → 1 uniformly as |z| → 1−. Now apply
Theorem 3.5.2. ��

There is also meromorphic version of the preceding corollary.

Corollary 3.5.4 Suppose f is meromorphic on D and extends continuously to T. If
f (T) ⊆ T, then f is a quotient of two finite Blaschke products.

Proof By hypothesis, f has finitely many poles in D. Let B2 be a finite Blaschke
product whose zeros are precisely the poles of f in D, repeated according to
multiplicity. Then B1 = fB2 is analytic on D and extends continuously to D with
B1(T) ⊆ T. Corollary 3.5.3 implies that B1 is a finite Blaschke product and so
f = B1/B2 as required. ��

3.6 Composition of Finite Blaschke Products

The family of finite Blaschke products is conformally invariant; that is, it is invariant
under any change of variables z �→ ϕ(z) for ϕ ∈ Aut(D). In fact, the degree of
a finite Blaschke product is a conformal invariant. Recall the automorphism τw
from (1.2.2).

Lemma 3.6.1 Let B be a finite Blaschke product of degree n and let w ∈ D. Then
τw ◦ B and B ◦ τw are finite Blaschke products of degree n.

Proof The function τw ◦ B is analytic on D, continuous on D
−, and unimodular

on T. Corollary 3.5.3 ensures that τw ◦ B is a finite Blaschke product. Moreover,
(τw ◦ B)(z) = 0 if and only if B(z) = w, so Theorem 3.4.10 tells us that the
equation B(z) = w has exactly n solutions in D. Thus, τw ◦ B is a finite Blaschke
product of degree n. Corollary 3.5.3 implies that B ◦ τw is a finite Blaschke product.
That its degree is n can be verified directly. ��

Clearly the lemma above also holds for general ϕ ∈ Aut(D).
The family of all finite Blaschke products is closed under pointwise multiplica-

tion. Indeed, if we multiply two finite Blaschke products of degree n1 and n2, the
result is a finite Blaschke product of degree n1n2. Less obvious is that the set of
finite Blaschke products is closed under composition. In fact, Lemma 3.6.1 already
reveals a special case of this property.

Theorem 3.6.2 If B1 and B2 are finite Blaschke products, then B1 ◦ B2 is a finite
Blaschke product. Moreover, if n1 and n2 are the degrees of B1 and B2, respectively,
then the degree of B1 ◦ B2 is n1n2.
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Proof Denote the zeros of B1 by z1, z2, . . . , zn and write

B1 = γ (τz1τz2 · · · τzn),

where γ is a unimodular constant. Then

B1 ◦ B2 = γ (τz1 ◦ B2)(τz2 ◦ B2) · · · (τzn ◦ B2).

By Lemma 3.6.1, each τzk ◦ B2 is a finite Blaschke product of degree n2.
Consequently, B1 ◦ B2 is a finite Blaschke product of degree n1n2. ��

In Chap. 9 we explore the more difficult question of when we can write a finite
Blaschke product B as a composition B = C ◦ D, in which C and D are finite
Blaschke products, in a nontrivial way.

3.7 Constant Valence

Definition 3.7.1 For an analytic function f : D → C and w ∈ C, the valence of f
at w is

vf (w) = |{z ∈ D : f (z) = w}|,
where |E| denotes the cardinality of a set E.

Notice that vf (w) ∈ N ∪ {0,∞}. Theorem 3.4.10 says that for a finite Blaschke
product B of degree n,

vB(w) = n, w ∈ D.

This constant valence property characterizes the finite Blaschke products of degree
n amongst the functions in the Schur class S [43–45].

Theorem 3.7.2 (Fatou) Let f ∈ S and n ∈ N such that with vf (w) = n for all
w ∈ D. Then f is a finite Blaschke product of degree n.

Proof We follow the proof of Radó [116] and show that

lim
|z|→1−

|f (z)| = 1. (3.7.3)

If we can do this, then Theorem 3.5.2 would imply that f is a finite Blaschke
product. Suppose toward a contradiction that f : D → D is an analytic function
of constant valence n � 1 and that (3.7.3) fails. Then there is a sequence zm of
distinct points in D and a w0 ∈ D so that

lim
m→∞ |zm| = 1 and lim

m→∞ f (zm) = w0. (3.7.4)



52 3 Finite Blaschke Products: The Basics

Indeed, let zm be a sequence of distinct points in D for which |zm| → 1 and
|f (zm)| remains bounded away from 1. Passing to a subsequence and relabeling,
we may assume that there is an r ∈ (0, 1) so that |f (zm)| � r < 1 for all m. The
compactness of |z| � r implies that a further subsequence, which we relabel as zm
for convenience, satisfies (3.7.4) for some w0 ∈ D.

Since f has constant valence n, it follows that f (zm) �= w0 for all but finitely
many m. Let a1, a2, . . . , ak be the distinct solutions of f (z) = w0, respectively,
with multiplicities n1, n2, . . . , nk . By assumption,

n1 + n2 + · · · + nk = n.

About each point aj , the function f has a power series expansion

f (z) = w0 +
∞∑

k=nj

f (k)(aj )

k! (z− aj )
k,

in which f (nj )(aj ) �= 0. If εj > 0 is sufficiently small, we can write

f (z) = w0 +
(
(z− aj )fj (z)

)nj (3.7.5)

for z contained in

D(aj , εj ) = {z : |z− aj | < εj },
in which fj is a nonvanishing analytic function on D(aj , εj ). Without loss of
generality, we impose the extra restrictions

εj < min
{ 1

2 |aj − ai | : 1 � i � k, i �= j
}

and εj < 1
2 (1 − |aj |)

to ensure that the disks D(aj , εj ) are pairwise disjoint and do not intersect T.
Since gj (z) = (z − aj )fj (z) has a simple zero at aj , it is injective on a small

neighborhood of aj . Thus, if necessary, we can make each εj even smaller so that
gj (z) is injective on D(aj , εj ). The Open Mapping Theorem says that

k⋂

j=1

gj (D(aj , εj ))

is an open set that contains the origin. Let ε > 0 be small enough so that

D(0, ε) ⊆
k⋂

j=1

gj
(
D(aj , εj )

)

and let

Vj = g−1
j

(
D(0, ε)

) ⊆ D(aj , εj ), for 1 � j � k.
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Observe that gj : Vj → D(0, ε) is bijective, gj (aj ) = 0, and the open sets Vj are
pairwise disjoint and do not intersect T. Consequently, (3.7.5) tells us that for each
w ∈ D(w0, ε

′)\{w0}, where

ε′ = εmax{n1,...,nk},

the equation f (z) = w has exactly nj distinct solutions in Vj for each j .
Since f (zm) → w0 and |zm| → 1, for sufficiently large m we have

f (zm) ∈ D(w0, ε
′), f (zm) �= w0, and zm �∈

k⋃

j=1

Vj .

Fix any such m, and let wm = f (zm). Then each Vj contains nj distinct points that
map to wm. Thus, the equation f (z) = wm has at least

n1 + n2 + · · · + nk + 1 = n+ 1

solutions. This is a contradiction. ��

3.8 Finite Blaschke Products on C+

Recall that

C+ = {z ∈ C : Im z > 0} and C− = {z ∈ C : Im < 0}

denote the upper and lower half planes, respectively. If z1, z2, . . . , zn ∈ C+ and
γ ∈ T, then

B(z) = γ

n∏

k=1

z− zk

z− zk
(3.8.1)

is a finite Blaschke product of degree n for C+. If ϕ : D → C+ is the Möbius
transformation

ϕ(z) = i
1 + z

1 − z
,

(see (2.5.1) and Fig. 2.4), then B is a finite Blaschke product for C+ if and only
if B ◦ ϕ is a finite Blaschke product for D. In light of this relationship, we mostly
consider finite Blaschke products on D.

The following properties of (nonconstant) finite Blaschke products on the C+
follow directly from the corresponding properties (3.1.3), (3.1.4), (3.1.5), and (3.1.6)
of finite Blaschke products on D:
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|B(z)| < 1, if z ∈ C+, (3.8.2)

|B(x)| = 1, if x ∈ R, (3.8.3)

|B(z)| > 1, if z ∈ C−, (3.8.4)

and

B(z) = 1

B(z)
, z ∈ Ĉ. (3.8.5)

An important distinction between finite Blaschke products on D and C+ concerns
the locations of their poles. A nonconstant finite Blaschke product for the upper half
plane has at least one finite pole; this is evident in the definition (3.8.1). In contrast,
the nonconstant finite Blaschke products z, z2, z3, . . . on D are entire functions. This
difference is important to remember in certain applications.

3.9 Notes

Commuting Blaschke Products

From Theorem 3.6.2 we know that if B1 and B2 are finite Blaschke products, then
B1◦B2 is another finite Blaschke product. However, see Exercise 3.6, it is not always
the case that B1 ◦B2 = B2 ◦B1. The paper [19] explores when B1 and B2 commute.

Infinite Blaschke Products

One can extend the notion of finite Blaschke products to infinite Blaschle products,
where the number of factors is infinite. As expected, there are convergence issues.
Indeed, for an infinite sequence zn of points in D\{0}, we define the formal product

B(z) =
∞∏

n=1

|zn|
zn

zn − z

1 − znz
. (3.9.1)

The product above converges uniformly on compact subsets of D if and only if the
zeros zn satisfy the Blaschke condition

∞∑

n=1

(1 − |zn|) < ∞.
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If this occurs, then B defines a bounded analytic function on D such that |B| � 1
on D and such that

lim
r→1−

B(reiθ )

exists for almost every θ . Furthermore, this value is unimodular almost everywhere
[25, 38].

There are beautiful theorems of Frostman [50] that discuss the behavior of B

on T. For a fixed θ , the radial limits of a Blaschke product (and all of its subproducts)
exist and have modulus equal to one at eiθ if and only if

∞∑

n=1

1 − |an|
|eiθ − an| < ∞.

Furthermore, the radial limit of B ′ exists at eiθ if and only if

∞∑

n=1

1 − |an|2
|eiθ − an|2 < ∞

and, moreover, |B ′(eiθ )| is equal to the sum above. Compare this to (3.4.8).
By the argument used to prove Corollary 8.2.6 below, one can show that if

B(z) =
∞∑

n=0

cnz
n,

then cn = o(1). Furthermore, an argument used to prove Corollary 10.1.16 below
shows that for a finite Blaschke product we have cn = o(1/n). A theorem of Shapiro
and Newman [107] shows that a general Blaschke product is a finite Blaschke
product if and only if cn = o(1/n). Thus, in terms of Taylor coefficients, we have
a characterization of the finite Blaschke products among the set of all Blaschke
products.

Finally, we mention that Blaschke products (finite or infinite) are special cases of
a wider class of analytic functions on D called inner functions [38, 61].

3.10 Exercises

3.1 Prove that if f is analytic on D, then g(z) = f (z) is also analytic on D.

3.2 Prove that if B1 and B2 are finite Blaschke products whose degrees do not
exceed n and B1 = B2 at n+ 1 points of D, then B1 ≡ B2.
Hint: If B1 = B2 at n + 1 points, then, considering B1 and B2 as meromorphic
functions on C, they are equal at 2n+ 2 points (which ones?).
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3.3 In [108] the authors compare results about polynomials with some results about
finite Blaschke products. For some examples of this, prove the following.

(a) Let f be entire with f (C) = C. Then f is a polynomial of degree n if and only
if the valence of f is n at each point of C. This is the polynomial analogue of
Theorem 3.7.2.

(b) If f is entire and

lim|z|→∞ |f (z)| = ∞,

then f is a polynomial. This is the analogue of Theorem 3.5.2.
(c) If p and q are polynomials whose degrees do not exceed n and if p = q at n+1

distinct points, then p ≡ q. This is the analogue of Exercise 3.2.
(d) For a given w ∈ C, p is a polynomial of degree n if and only if

p(z)− p(w)

z− w

is also a polynomial of degree n−1. In [5], they prove the (hyperbolic) analogue
of this for finite Blaschke products. Indeed, for z,w ∈ D, define

[z,w] = z− w

1 − wz
.

One can show that if w ∈ D, then B is a Blaschke product of degree n if and
only if

[B(z), B(w)]
[z,w]

is a Blaschke product of degree n− 1.

3.4 Prove (3.1.6) by direct computation.

3.5 Let B be a finite Blaschke product of order n and α1, α2 be distinct points on T.
If ζ1, ζ2, . . . , ζn are the solutions to B(z) = α1 and ξ1, ξ2, . . . , ξn are the solutions
to B(z) = α2, show that the ζj s alternate with the ξj s as one travels around T.

3.6 Produce an example of two finite Blaschke products B1, B2 for which B1◦B2 �=
B2 ◦ B1. See the end notes of this chapter for more on this.

3.7 (a) Use Corollary 3.5.3 to provide another proof of Theorem 3.3.2. (b) Use
Corollary 3.5.4 to provide another proof of Corollary 3.3.10.

3.8 Let z0 ∈ D+, where D+ = D ∩ C+, and set

f (z) = (z0 − z) (1 − z0z)

(z0 − z) (1 − z0z)
, z ∈ D+.
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Show that

|f (z)| < 1, z ∈ D+,

and

|f (z)| = 1, z ∈ ∂D+.

Hint: We have

f = z0

z0
· bz0

bz0

.

3.9 Let z0 ∈ D+ and let

Dz0 =
{
z : |z| < 1, Im z � 0, |z− 1| � |z0 − 1|}.

Show that
∣∣∣∣
1 − z0 z

z0 − z

∣∣∣∣ � exp

(
2

sin2 ϑ0

)
,

in which ϑ0 = − arg(1 − z0) ∈ (0, π
2 ).

Hint: Use the fact that log x � x − 1 for x � 1 and apply it to

log

∣∣∣∣
1 − z0 z

z0 − z

∣∣∣∣
2

.

The identity (1.6.1) may be helpful.

3.10 Let r ∈ [0, 1) and z ∈ D
−.

(a) Prove that

∣∣∣∣
1 − z

1 − rz

∣∣∣∣ �
2

1 + r
.

(b) Prove that
1

|1 − rz| �
2

|1 − z| .
3.11 Show that

1

|1 − re−iθ z| �
2

|eiθ − z|

for all z, reiθ ∈ D.
Hint: Use Exercise 3.10.

3.12 Let f be an entire function of constant modulus on the unit circle T. Show
that f (z) = czn, in which c is a constant and n is a nonnegative integer.
Hint: Apply Corollary 3.5.3.
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3.13 Let Ω1 and Ω2 be two bounded regions in C and let f : Ω1 → Ω2 be analytic.
Suppose that there is no sequence zn in Ω1 that converges to a point on ∂Ω1 with
f (zn) in Ω2 converges to a point on Ω2. Show that f has a constant valence on Ω1.

Remark The main assumption of this result is equivalent to each of the following.

(a) For each compact set K ⊆ Ω2, the set f−1(K) is a compact subset of Ω1.
(b) If E ⊆ Ω2 is such that dist(E, ∂Ω2) > 0, then dist(f−1(E), ∂Ω1) > 0.

3.14 (Carathéodory–Rademacher [17]) Let Ω1 and Ω2 be two bounded regions in
C, and let f : Ω1 → Ω2 be analytic. Suppose that f has constant valence on Ω2.
Show that there is no sequence zn in Ω1 that converges to a point in ∂Ω1 and at the
same time the sequence f (zn) in Ω2 converges to a point inside Ω2.
Hint: The proof of Theorem 3.7.2 may help.



Chapter 4
Approximation by Finite Blaschke
Products

Although finite Blaschke products are a remarkable and exclusive class of functions,
they appear in many important approximation problems.

Let H∞ denote the set of all bounded analytic functions on D. Since H∞ is
closed under addition and scalar multiplication, it is a vector space. It is also closed
under pointwise multiplication, so H∞ is an algebra over C. We endow H∞ with
the norm

‖f ‖∞ := sup{|f (z)| : z ∈ D}. (4.0.1)

With respect to this norm, H∞ is a Banach algebra: it is a normed algebra that
is complete with respect to the metric induced by the norm (4.0.1), which is sub-
multiplicative:

‖fg‖∞ � ‖f ‖∞‖g‖∞.

The closed unit ball {f ∈ H∞ : ‖f ‖∞ � 1} of H∞ is the Schur class S
(Definition 1.0.2).

4.1 Approximating Functions from S

If an analytic function f on D can be uniformly approximated on D by a sequence of
finite Blaschke products, then it is uniformly continuous on D. Consequently, f has
a unique continuous extension to D

− and, moreover, this extension is unimodular
on T. Thus, f is itself a finite Blaschke product (Corollary 3.5.3). In other words,
the set of finite Blaschke products is a proper, norm-closed subset of S with respect
to the norm (4.0.1).
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A generic element of S need not have a continuous extension to D
−. For

example, consider the function

f (z) = exp
(
− 1 + z

1 − z

)
;

see Exercise 4.1. Consequently, we cannot expect to approximate this function by a
sequence of finite Blaschke products in the norm (4.0.1). On the other hand, if we
consider the topology of uniform convergence on compact subsets of D, then the
finite Blaschke products are dense in S .

Theorem 4.1.1 (Carathéodory [16]) For each f ∈ S , there is a sequence of
finite Blaschke products that converges uniformly on compact subsets of D to f .

Proof It suffices to show that for each f ∈ S and n � 1, there is a finite Blaschke
product Bn so that f − Bn has a zero of order at least n at the origin. If this occurs,
then f − Bn = zn−1g, where g ∈ H∞, g(0) = 0, and

‖g‖∞ = ‖zn−1g‖∞ = ‖f − Bn‖∞ � 2.

Thus, by the Schwarz Lemma (Lemma 1.1.1),

|f (z)− Bn(z)| � 2|z|n, z ∈ D.

The preceding inequality shows that Bn → f uniformly on compact subsets of D.
To show that for each f ∈ S and n � 1, there is a finite Blaschke product Bn so

that f −Bn has a zero of order at least n at the origin, we proceed by induction on n.
Our base case is n = 1. For each f ∈ S , we have c0 = f (0) ∈ D

−. If |c0| = 1, then
the Maximum Modulus Principle says that f is a unimodular constant and there is
nothing to prove. If |c0| < 1, then B0(z) = τc0(z) is a finite Blaschke product with
the same constant term as f and thus f − B0 vanishes at the origin.

Suppose for our induction hypothesis that for each f ∈ S there is a finite
Blaschke product Bn so that f − Bn has a zero of order at least n at the origin.
Since f ∈ S , the Schwarz Lemma implies that

g(z) = τc0(f (z))

z

belongs to S . Hence there is a finite Blaschke product Bn so that g−Bn has a zero
of order at least n at the origin. In other words,

g(z)− Bn(z) = znK(z), z ∈ D, (4.1.2)

for some K ∈ H∞. Since

f (z) = τc0(zg(z)),
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and since

Bn+1(z) = τc0(zBn(z))

is a finite Blaschke product by Lemma 3.6.1, we expect that Bn+1 has the desired
properties. To establish this, first observe that

τc0(z2)− τc0(z1) = (1 − |c0|2)(z1 − z2)

(1 − c0z1)(1 − c0z2)
(4.1.3)

for z1, z2 ∈ D; see Exercise 4.3. Then conclude that

f (z)− Bn+1(z) = τc0

(
zg(z)
)− τc0

(
zBn(z)

)

= (1 − |c0|2)(zg(z)− zBn(z))

(1 − c0zg(z))(1 − c0zBn(z))
(by (4.1.3))

= H(z)z(g(z)− Bn(z))

= zn+1K(z)H(z), (by (4.1.2))

where

H(z) = 1 − |c0|2
(1 − c0zg(z))(1 − c0zBn(z))

and K is the function from (4.1.2). This completes the induction and the proof. ��

4.2 The Closed Convex Hull of the Finite Blaschke Products

Definition 4.2.1 Let V be a vector space. A convex combination of v1, v2, . . . ,

vn ∈ V is an expression of the form

λ1v1 + λ2v2 + · · · + λnvn,

in which

λ1, λ2, . . . , λn ∈ [0, 1] and λ1 + λ2 + · · · + λn = 1.

The set

conv{v1, v2, . . . , vn}

of all convex combinations of v1, v2, . . . , vn is the convex hull of v1, v2, . . . , vn.
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Since each finite Blaschke product belongs to

{f ∈ A (D) : ‖f ‖∞ � 1},

the closed unit ball of the disk algebra A (D) (recall Definition 3.5.1). Any convex
combination of finite Blaschke products belongs to the unit ball of A (D). In fact,
they are dense in A (D).

Theorem 4.2.2 (Fisher [48]) Each function in the closed unit ball of A (D) can
be uniformly approximated on D

− by a sequence of convex combinations of finite
Blaschke products.

Proof Fix f in the closed unit ball of A (D) and ε > 0. Since f is continuous on
D
−, uniform continuity implies that there is a t ∈ [0, 1) such that

‖ft − f ‖∞ <
ε

2
,

where ft (z) = f (tz) is a dilation of f . Theorem 4.1.1 provides a finite Blaschke
product B so that

sup
z∈tD

|f (z)− B(z)| < ε

2
.

Since

‖ft − Bt‖∞ = sup
z∈D

|ft (z)− Bt(z)|

= sup
z∈tD

|f (z)− B(z)|

<
ε

2
,

the finite Blaschke product B satisfies

‖f − Bt‖∞ � ‖f − ft‖∞ + ‖ft − Bt‖∞
� ε

2
+ ε

2
= ε.

If we can show that Bt is itself a convex combination of finite Blaschke products,
the proof will be complete.

To accomplish this, first observe that the product of two convex combinations of
finite Blaschke products is a convex combination of finite Blaschke products; see
Exercise 4.5. Since (gh)t = gtht for any analytic functions g and h on D, we may
assume that the finite Blaschke product B takes the form

B(z) = α − z

1 − αz
, α ∈ D.
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A computation confirms that

Bt(z) = t (1 − |α|2)
1 − |α|2t2 · αt − z

1 − αtz
+ |α|(1 − t2)

1 − |α|2t2 · ei argα; (4.2.3)

see Exercise 4.6. The expression on the right-hand side of (4.2.3) is almost what we
want; it is a linear combination, with positive coefficients, of a disk automorphism
and a unimodular constant (which is a finite Blaschke product). However, the
coefficients need not sum to one. Fortunately,

1 − t (1 − |α|2)
1 − |α|2t2 − |α|(1 − t2)

1 − |α|2t2 = (1 − t)(1 − |α|)
1 + |α|t > 0, (4.2.4)

so we add

0 = (1 − t)(1 − |α|)
2(1 + |α|t) · 1 + (1 − t)(1 − |α|)

2(1 + |α|t) · (−1)

to both sides of (4.2.3) and obtain

Bt(z) = t (1 − |α|2)
1 − |α|2t2

· αt − z

1 − αtz
+ |α|(1 − t2)

1 − |α|2t2
· ei argα

+ (1 − t)(1 − |α|)
2(1 + |α|t) · 1 + (1 − t)(1 − |α|)

2(1 + |α|t) · (−1),

which is a convex combination of four finite Blaschke products (three of which are
unimodular constants). ��

4.3 Approximating Continuous Unimodular Functions

If B1 and B2 are finite Blaschke products, then the restriction of B1/B2 to T is
a continuous unimodular function. If u is the boundary function, with unimodular
values, for a meromorphic function on D with a finite number of zeros and poles
in D, then Corollary 3.5.4 says that u can be approximated uniformly on T by
unimodular functions of the form B1/B2, in which B1, B2 are finite Blaschke
products. The main result of this section is an improvement of this fact.

Theorem 4.3.1 (Helson–Sarason [77]) Let u : T → T be continuous and let ε >

0. Then there are finite Blaschke products B1 and B2 such that

max
ξ∈T

∣∣∣u(ξ)− B1(ξ)

B2(ξ)

∣∣∣ < ε.

The proof of this theorem requires the following technical lemma which is a
precise formulation of the fact that a closed curve that does not pass through the
origin winds around the origin either an even number or an odd number of times.
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Lemma 4.3.2 Let γ : T → T be continuous. Then there exists a continuous
unimodular function η on T such that either

γ (ζ ) = η2(ζ ), ζ ∈ T,

or

γ (ζ ) = ζη2(ζ ), ζ ∈ T.

Proof Since γ : T → T is uniformly continuous, there is a positive integer N so
that

|θ − θ ′| � 2π

N
�⇒ |γ (eiθ )− γ (eiθ

′
)| < 2. (4.3.3)

Divide T into N arcs

Tk =
{
eiθ : 2(k − 1)π

N
� θ � 2kπ

N

}
, 1 � k � N,

of equal length. The condition (4.3.3), along with the continuity of γ and the
compactness of Tk , imply that γ (Tk) is a closed sub-arc of T that subtends an angle
strictly less than π . Thus, there is a continuous function φk(θ), defined for

θ ∈
[2(k − 1)π

N
,

2kπ

N

]
,

such that

γ (eiθ ) = exp(iφk(θ)), eiθ ∈ Tk.

The φk are uniquely defined up to an additive multiple of 2π . Since γ is continuous,
we adjust those additive constants so that

φk

(2kπ

N

)
= φk+1

(2kπ

N

)
, 1 � k � N − 1. (4.3.4)

Define φ : [0, 2π ] → R by

φ(θ) = φk(θ), θ ∈
[2(k − 1)π

N
,

2kπ

N

]
, k = 1, 2, . . . , N.

By (4.3.4), we obtain a continuous function on [0, 2π ] such that

γ (eiθ ) = exp(iφ(θ)), eiθ ∈ T.

The continuity of γ at 1 implies that φ(2π)− φ(0) is an integer multiple of 2π . If

φ(2π)− φ(0)

2π
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is even, let

η(eiθ ) = exp
( iφ(θ)

2

)
;

if it is odd, let

η(eiθ ) = exp
(
i
1

2
(φ(θ)− θ)

)
.

Then η is continuous and unimodular on T and it satisfies either γ (eiθ ) = η2(eiθ )

for all θ or γ (eiθ ) = eiθ η2(eiθ ) for all θ . ��
Proof (of Theorem 4.3.1) By Lemma 4.3.2, it suffices to prove our claim for
unimodular functions of the form γ = η2. This is because eiθ is the boundary
function for the finite Blaschke product z. Without loss of generality, we may
assume that 0 < ε < 1.

By the Stone–Weierstrass Theorem, there is a trigonometric polynomial

h(eiθ ) =
N∑

n=−N

ane
inθ

such that

max
ξ∈T

|η(ξ)− h(ξ)| < ε

2
.

Since 0 < ε < 1 and η is unimodular, the preceding inequality implies that h has
no zeros on T. Let

h∗(z) = h(1/z), z ∈ T,

and

f (z) = h(z)

h∗(z)
.

For ζ ∈ T,

|f (ζ )| =
∣∣∣∣
h(ζ )

h∗(ζ )

∣∣∣∣

= |h(ζ )|
|h(1/ζ )|

= |h(ζ )|
|h(ζ )|

= 1,
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that is, f is unimodular on T. Moreover, on T,

|γ − f | = |η2 − h/h∗|

=
∣∣∣∣
η

η∗
− h

h∗

∣∣∣∣

=
∣∣∣∣
(η − h)h∗ + (h∗ − η∗)h

η∗h∗

∣∣∣∣

� |η − h||h∗| + |h∗ − η∗||h|
|η∗||h∗|

= |η − h||h| + |η − h||h|
|η||h|

= 2|η − h|
< 2 · ε

2
· 1

= ε.

Since f is a meromorphic function that is unimodular and continuous on T,
Corollary 3.5.4 implies that it is the quotient of two finite Blaschke products. This
concludes the proof. ��

4.4 Approximation by Finite Blaschke Products with Simple
Zeros

The finite Blaschke products produced by Theorems 4.1.1, 4.2.2, and 4.3.1 might
have repeated zeros. In particular applications, one might require the approximating
finite Blaschke products to have simple zeros. The following theorem remedies this
situation.

Theorem 4.4.1 Let B be a finite Blaschke product of degree n. Then there is a
family of finite Blaschke products {Bε: 0 < ε < ε0} with the following properties.

(a) Bε is of degree n.
(b) Each Bε has distinct zeros.
(c) For each ε, Bε(0) �= 0 and B ′

ε(0) �= 0.
(d) As ε → 0, Bε converges uniformly to B on any compact subset of C that does

not contain a pole of B. In particular, Bε converges uniformly to B on D
−.

For a generalization of the preceding theorem, see Exercise 4.7. The proof of
Theorem 4.4.1 requires the following lemma.
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Lemma 4.4.2 Let

B(z) =
n∏

k=1

zk − z

1 − zkz
,

and suppose that we have a family of finite Blaschke products

Bε(z) =
n∏

k=1

zk,ε − z

1 − zk,εz
, 0 < ε < ε0,

such that

lim
ε→0

zk,ε = zk, 1 � k � n. (4.4.3)

Then Bε converges uniformly to B as ε → 0 on all compact subsets of C that do
not contain a pole of B. In particular, Bε converges uniformly to B on D

−.

Proof If a1, a2, . . . , an and b1, b2, . . . , bn are two finite sequences in D
−, then

∣∣∣∣∣

n∏

k=1

ak −
n∏

k=1

bk

∣∣∣∣∣ =
∣∣∣∣∣

n∏

k=1

ak − b1

n∏

k=2

ak + b1

n∏

k=2

ak −
n∏

k=1

bk

∣∣∣∣∣

=
∣∣∣∣∣(a1 − b1)

n∏

k=2

ak + b1

(
n∏

k=2

ak −
n∏

k=2

bk

)∣∣∣∣∣

� |a1 − b1|
n∏

k=2

|ak| + |b1|
∣∣∣∣∣

n∏

k=2

ak −
n∏

k=2

bk

∣∣∣∣∣

� |a1 − b1| +
∣∣∣∣∣

n∏

k=2

ak −
n∏

k=2

bk

∣∣∣∣∣

and hence induction yields

∣∣∣∣∣

n∏

k=1

ak −
n∏

k=1

bk

∣∣∣∣∣ �
n∑

k=1

|ak − bk|.

Therefore,

|Bε(z)− B(z)| �
n∑

k=1

∣∣∣∣
zk,ε − z

1 − zk,εz
− zk − z

1 − zkz

∣∣∣∣ . (4.4.4)
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Fix a compact set K in C that does not contain any pole of B. The assumption (4.4.3)
ensures that the set of poles of Bε is eventually disjoint from K . For z ∈ K and ε

sufficiently small, 1−zk,εz and 1−zkz are bounded away from zero. Consequently,

∣∣∣∣
zk,ε − z

1 − zk,εz
− zk − z

1 − zkz

∣∣∣∣ � M |zk,ε − zk| (4.4.5)

for some constant M that depends on K; see Exercise 4.8. From (4.4.4) and (4.4.5)
we deduce that

|Bε(z)− B(z)| � M

n∑

k=1

|zk,ε − zk|, z ∈ K.

Thus, Bε converges uniformly to B on K . ��
Proof (of Theorem 4.4.1) Write

B(z) = eiβzj0

m∏

k=1

(
zk − z

1 − zkz

)jk
,

in which β ∈ [0, 2π), jk � 1, and z1, z2, . . . , zm are distinct elements of D\{0}. Let
z0 = 0 and define

ε0 = min
{

1
2 |zk − z�| : 0 � k, � � m, k �= �

}
,

which is positive. If 0 < ε < ε0, then the circles

Γk,ε = {z ∈ C : |z− zk| = ε}

are pairwise disjoint and do not pass through the origin. On each Γk,ε , consider any
arbitrary set of distinct jk elements, say

zk,ε,1, zk,ε,2, . . . , zk,ε,jk , 0 � k � m, (4.4.6)

and form the finite Blaschke product

Bε(z) = eiβ(−1)j0

m∏

k=0

jk∏

�=0

zk,ε,� − z

1 − zk,ε,�z
.

Notice that (a), (b), and the first part of (c) are fulfilled. Property (d) follows from
Lemma 4.4.2. To verify the second part of (c), write

Bε(z) = eiβ
n∏

p=1

wp − z

1 − wpz
,
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in which w1, w2, . . . , wn is a reindexing of (4.4.6). By direct calculation, we see that

B ′
ε(0)

Bε(0)
=

n∑

p=1

(
wp − 1

wp

)
.

We have some freedom to control this expression. For example, if w1 = εeiθ , then

B ′
ε(0)

Bε(0)
=
(
ε − 1

ε

)
e−iθ +

n∑

p=2

(
wp − 1

wp

)
.

If B ′
ε(0) = 0 for some choice of θ , we may change the value of θ so that, without

violating the preceding properties, we obtain a Bε such that B ′
ε(0) �= 0. ��

4.5 Generalized Rouché Theorem and Its Converse

Suppose that Γ is a simple closed curve in C (recall our standing convention that
only piecewise C1 curves are considered). We say that f is analytic inside and on
Γ if there is a simply connected neighborhood of Γ upon which f is analytic. If f
has no zeros on Γ , then the Argument Principle says that

Zf (Γ ) = 1

2πi

∫

Γ

f ′(z)
f (z)

dz

is the number of zeros of f inside Γ , counted according to multiplicity. More
generally, if f is meromorphic on and inside Γ and if f has no zeros or poles
on Γ , then

Zf (Γ )− Pf (Γ ) = 1

2πi

∫

Γ

f ′(z)
f (z)

dz,

in which Pf (Γ ) denotes the number of poles of f inside Γ .
Rouché’s Theorem asserts that if f and h are analytic inside and on a simple

closed curve Γ and if |h| < |f | on Γ , then

Zf (Γ ) = Zf+h(Γ ).

Here is an intuitive explanation that can be found in many standard complex analysis
texts. A person walks a dog around the origin along the path f (z), in which z ∈ Γ .
The dog’s position is f (z) + h(z), in which z ∈ Γ . The condition |h| < |f |
means that the leash is always shorter than the distance from the walker to the
origin. Therefore, the walker and the dog circle the origin the same number of times
(no matter how many times the dog circles the walker). Hence f and f +h have the
same number of zeros inside of Γ by the Argument Principle.
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A stronger version of Rouché’s theorem is the following. It implies the weaker
form discussed above; see Exercise 4.9.

Theorem 4.5.1 (Glicksberg [64]) If f and g are analytic inside and on a simple
closed curve Γ and if

|f − g| < |f | + |g| on Γ, (4.5.2)

then f and g have the same number of zeros inside Γ .

Proof First note that (4.5.2) implies that

∣∣∣∣
f

g
− 1

∣∣∣∣ <
∣∣∣∣
f

g

∣∣∣∣+ 1

on Γ . The strict inequality above tells us that f/g � 0 cannot occur anywhere on Γ .
In particular, Γ does not pass through a zero of either f or g. Thus, f/g maps Γ

into C\(−∞, 0]. If log z is the principal branch of the logarithm, then

d

dz
log

(
f

g

)
= (f/g)′

f/g

on some open set containing Γ . Consequently,

0 = 1

2π

∫

Γ

d

dz
log
(f (z)
g(z)

)
dz

= 1

2πi

∫

Γ

(f (z)/g(z))′

f (z)/g(z)
dz

= 1

2πi

∫

Γ

(
f ′(z)g(z)− f (z)g′(z)

g(z)2
· g(z)
f (z)

)
dz

= 1

2πi

∫

Γ

(
f ′(z)
f (z)

− g′(z)
g(z)

)
dz

= 1

2πi

∫

Γ

f ′(z)
f (z)

dz− 1

2πi

∫

Γ

g′(z)
g(z)

dz

= Zf (Γ )− Zg(Γ )

by the Argument Principle. ��
Since we are primarily concerned with functions on the unit disk D, by Zf we

mean Zf (T). That is, Zf , when used without reference to a curve, denotes the
number of zeros of f inside D. Similarly, if Pf denotes the number of poles of f
inside of D. In all cases, we restrict our attention to functions that have no zeros or
poles on T.
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Suppose that f and g are analytic on |z| < R for some R > 1 and have no zeros
on T. Let B1 and B2 be finite Blaschke products of degree n. If

|B1f + B2g| < |f | + |g| on T,

then

|B1f + B2g| < |B1f | + |B2g| on T,

and hence Theorem 4.5.1 says that

n+ Zf = ZB1f = ZB2g = n+ Zg.

Consequently, f and g have the same number of zeros in D. The converse of this
result is also true.

Theorem 4.5.3 (Challener–Rubel [20]) Suppose that f and g are analytic on
|z| < R for some R > 1 and that they have no zeros on T. If f and g have the same
number of zeros in D, then there are finite Blaschke products B1 and B2 of the same
degree such that

|B1f + B2g| < |f | + |g| on T.

Proof Since f and g are continuous with no zeros on T,

m = min
ζ∈T min

{|f (ζ )|, |g(ζ )|} > 0 and M = max
ζ∈T

max
{|f (ζ )|, |g(ζ )|} < ∞.

Let h = g/f and u = h/|h|. Since −u is a continuous unimodular function on T,
Theorem 4.3.1 provides two finite Blaschke products B1 and B2 so that

max
ξ∈T

∣∣∣u(ξ)+ B1(ξ)

B2(ξ)

∣∣∣ <
m

M
.

On T, we have

|B1f + B2g| = |f ||B2|
∣∣∣∣
B1

B2
+ g

f

∣∣∣∣

= |f |
∣∣∣∣h+

B1

B2

∣∣∣∣

= |f |
∣∣∣∣u|h| +

B1

B2

∣∣∣∣

= |f |
∣∣∣∣u(|h| − 1)+

(
u+ B1

B2

)∣∣∣∣
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� |f |
∣∣∣∣
|g|
|f | − 1

∣∣∣∣+ |f |
∣∣∣∣u+

B1

B2

∣∣∣∣

<
∣∣|g| − |f |∣∣+M · m

M

= ∣∣|f | − |g|∣∣+m

< |f | + |g|

by the definitions of m and M; see Exercise 4.10. Since |f | = |B1f | and |g| =
|B2g| on T, the strong version of Rouché’s Theorem (Theorem 4.5.1) shows that
B1f and B2g have the same number of zeros inside D. Since f and g have the same
number of zeros inside D, the finite Blaschke products B1 and B2 have the same
degree. ��

See Exercises 4.11 and 4.12 for meromorphic versions of the preceding theorem.

4.6 Exercises

4.1 Show that the function

f (z) = exp
(
− 1 + z

1 − z

)

belongs to the Schur class but does not have a continuous extension to D
−.

4.2 This exercise continues the discussion in Exercise 3.3 that compares finite
Blaschke products and polynomials. Prove that given any entire function f there
is a sequence of polynomials Pn that converges pointwise to f . The reader will
recognize this as the analogue of Theorem 4.1.1.

4.3 Verify (4.1.3).

4.4 Show that if f ∈ S and f (0) = 0, then there is a sequence of finite Blaschke
products Bn with Bn(0) = 0 for all n and such that Bn → f uniformly on compact
subsets of D.

4.5 Show that the product of two convex combinations of finite Blaschke products
is a convex combination of finite Blaschke products.

4.6 Verify (4.2.3) and (4.2.4).

4.7 Generalize Theorem 4.4.1 by showing that we can choose Bε such that

B(j)
ε (0) �= 0, 0 � j � n− 1.

4.8 Verify (4.4.5).
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4.9 Prove that the strong version of Rouché’s theorem (Theorem 4.5.1) implies the
weak version of Rouché’s theorem.

4.10 If f and g are continuous and nonzero on T, prove that

∣∣|f | − |g|∣∣+m � |f | + |g|,

in which

m = min
ζ∈T min

{|f (ζ )|, |g(ζ )|} > 0.

4.11 This exercise concerns a meromorphic generalization of Theorem 4.5.3.
Suppose that f and g are meromorphic on |z| < R for some R > 1 and that
they have no zeros or poles on T. Then

Zf − Pf = Zg − Pg

if and only if there are finite Blaschke products B1 and B2 of the same degree such
that

|B1f + B2g| < |f | + |g| on T.

4.12 This is a generalization of Exercise 4.11, in which we no longer assume that
the functions involved are meromorphic on a neighborhood of D. Suppose that
f and g are continuous on D

−, with the exception of finitely many poles in D.
Furthermore, suppose that f and g have no zeros on T. Show that

Zf − Pf = Zg − Pg

if and only if there are finite Blaschke products B1 and B2 of the same degree such
that

|B1f + B2g| < |f | + |g| on T.



Chapter 5
Zeros and Residues

5.1 Gauss–Lucas Theorem

There is a fascinating relationship between the zeros of a finite Blaschke product B
and the location of the solutions of the equation B(z) = ζ , in which ζ ∈ T is fixed.
There are also results concerning the relationship between the zeros of B and those
of B ′ (discussed in the next chapter). To place all of these in context, we begin with
an old theorem of Gauss and Lucas [99]. Recall that if z1, z2, . . . , zn ∈ C, then

conv{z1, z2, . . . , zn} =
{ n∑

j=1

λj zj : λj ∈ [0, 1],
n∑

j=1

λj = 1
}

is the convex hull of the points z1, z2, . . . , zn. This next theorem is stronger than
the corollary that follows it, which is more commonly known as the Gauss–Lucas
theorem.

Theorem 5.1.1 (Gauss–Lucas) Suppose z1, z2, . . . , zn ∈ C and c1, c2, . . . , cn are
positive. Then

f (z) = c1

z− z1
+ c2

z− z2
+ · · · + cn

z− zn
(5.1.2)

has at most n− 1 zeros, all of which belong to conv{z1, z2, . . . , zn}.
Proof Multiply both sides of the equation f (z) = 0 by

(z− z1)(z− z2) · · · (z− zn)
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and simplify to obtain a polynomial equation of degree at most n − 1. Thus, f has
at most n−1 zeros in C, repeated according to multiplicity. If w is a zero of (5.1.2),
then

c1

w − z1
+ c2

w − z2
+ · · · + cn

w − zn
= 0. (5.1.3)

Since c1, c2, . . . , cn ∈ R, (5.1.3) is equivalent to

c1

w − z1
+ c2

w − z2
+ · · · + cn

w − zn
= 0.

Multiply each summand in the previous equation by the appropriate

w − zj

w − zj

to conclude that (5.1.3) is equivalent to

c1(w − z1)

|w − z1|2 + c2(w − z2)

|w − z2|2 + · · · + cn(w − zn)

|w − zn|2 = 0.

Rewrite this as
(

c1

|w − z1|2 + · · · + cn

|w − zn|2
)
w = c1

|w − z1|2 z1 + · · · + cn

|w − zn|2 zn.

Thus,

w = λ1z1 + λ2z2 + · · · + λnzn,

in which

λj =
cj

|w − zj |2
c1

|w − z1|2 + · · · + cn

|w − zn|2
, 1 � j � n.

Since c1, c2, . . . , cn > 0, it follows that

0 < λ1, λ2, . . . , λn < 1 and λ1 + λ2 + · · · + λn = 1.

Consequently, w lies in the convex hull of {z1, z2, . . . , zn}. ��
The following corollary is itself sometimes referred to as the Gauss–Lucas

theorem. See Exercises 6.1 and 6.2 for special cases.

Corollary 5.1.4 (Gauss–Lucas) If P is a nonconstant polynomial, then the zeros
of the derivative P ′ are contained in the convex hull of the zeros of P .

Proof Without loss of generality, suppose that P is monic and write

P(z) = (z− z1)(z− z2) · · · (z− zn).
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Then the zeros of the rational function

P ′(z)
P (z)

= 1

z− z1
+ 1

z− z2
+ · · · + 1

z− zn

are the zeros of P ′. Theorem 5.1.1 asserts that the n − 1 zeros of P ′, counted
according to multiplicity, are contained in conv{z1, z2, . . . , zn}. ��

5.2 Gauss–Lucas Theorem for Finite Blaschke Products

The Gauss–Lucas theorem can be used to prove a beautiful result (Theorem 5.2.8
below) about the location of the zeros of a finite Blaschke product in terms of its
boundary values [29, 66]. We first need some information about the derivative of a
finite Blaschke product.

The following identity, which generalizes (1.6.1), was used by Frostman to
discuss the boundary properties of the derivative of infinite Blaschke products [50]
and by Pekarskiı̆ [113] to estimate the derivative of a Cauchy transform.

Theorem 5.2.1 Let

B(z) =
n∏

j=1

z− zj

1 − zj z
, (5.2.2)

B1 = 1, and

Bk(z) =
k−1∏

j=1

z− zj

1 − zj z
, 2 � k � n.

Then for each z ∈ C\T,

1 − |B(z)|2
1 − |z|2 =

n∑

k=1

|Bk(z)|2 1 − |zk|2
|1 − zkz|2 . (5.2.3)

Proof We proceed by induction on n. The case n = 1 is (1.6.1). Suppose that (5.2.3)
holds for any finite Blaschke product of degree n− 1. By our inductive hypothesis,

1 − |Bn(z)|2
1 − |z|2 =

n−1∑

k=1

|Bk(z)|2 1 − |zk|2
|1 − zkz|2 . (5.2.4)

Since

B(z) = Bn(z)
z− zn

1 − znz
,
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we have

1 − |B(z)|2 = 1 − |Bn(z)|2
∣∣∣∣
zn − z

1 − znz

∣∣∣∣
2

= 1 − |Bn(z)|2 + |Bn(z)|2
(

1 −
∣∣∣∣
zn − z

1 − znz

∣∣∣∣
2
)

= 1 − |Bn(z)|2 + |Bn(z)|2 (1 − |z|2)(1 − |zn|2)
|1 − znz|2 .

Divide the previous expression by 1 − |z|2 to obtain

1 − |B(z)|2
1 − |z|2 = 1 − |Bn(z)|2

1 − |z|2 + |Bn(z)|2 1 − |zn|2
|1 − znz|2

and then use the inductive hypothesis (5.2.4) to see the preceding equals

n∑

k=1

|Bk(z)|2 1 − |zk|2
|1 − zkz|2 .

This completes the proof. ��
Since B ′ is continuous on D

−, we have

lim
z→ζ

|B ′(z)| = |B ′(ζ )|, ζ ∈ T,

in which the convergence is uniform with respect to ζ . An interesting expression for
|B ′(ζ )| is provided by the following theorem.

Theorem 5.2.5 If B is a finite Blaschke product, then

lim
z→ζ

1 − |B(z)|2
1 − |z|2 = lim

z→ζ

1 − |B(z)|
1 − |z| = |B ′(ζ )|, ζ ∈ T,

in which convergence is uniform with respect to ζ .

Proof Let B denote the finite Blaschke product (5.2.2). Recall (3.4.8), which says
that

|B ′(ζ )| =
n∑

k=1

1 − |zk|2
|ζ − zk|2 .

From (5.2.3) we get
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lim
z→ζ

1 − |B(z)|2
1 − |z|2 = lim

z→ζ

n∑

k=1

|Bk(z)|2 1 − |zk|2
|1 − zkz|2

=
n∑

k=1

1 − |zk|2
|1 − zkζ |2

=
n∑

k=1

1 − |zk|2
|ζ − zk|2

= |B ′(ζ )|. (5.2.6)

Since the modulus of a finite Blaschke product tends uniformly to 1 as one
approaches the boundary T, (5.2.3) shows that the convergence in (5.2.6) is uniform
in ζ . Consequently,

lim
z→ζ

1 − |B(z)|2
1 − |z|2 = lim

z→ζ

1 − |B(z)|
1 − |z| · 1 + |B(z)|

1 + |z|
= lim

z→ζ

1 − |B(z)|
1 − |z| . ��

The next lemma allows us to bring in the Gauss–Lucas theorem (Theorem 5.1.1).
Before proceeding, recall that Theorem 3.4.10 ensures that for each w ∈ T, the
equation B(z) = w has exactly n distinct solutions.

Lemma 5.2.7 Let z1, z2, . . . , zn−1 ∈ D,

B(z) = z

n−1∏

k=1

zk − z

1 − zkz
,

and w ∈ T. Let ζ1, ζ2, . . . , ζn ∈ T be the n distinct solutions to B(ζ ) = w and
define

λk =
(

1 +
n−1∑

j=1

1 − |zj |2
|ζk − zj |2

)−1

, 1 � k � n.

Then

0 < λ1, λ2, . . . , λn < 1 and λ1 + λ2 + · · · + λn = 1.

Moreover,

B(z)/z

B(z)− w
= (z− z1) · · · (z− zn−1)

(z− ζ1) · · · (z− ζn)
= λ1

z− ζ1
+ · · · + λn

z− ζn
.
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Proof Observe that

B(z)/z

B(z)− w
= P(z)

Q(z)
,

in which P and Q are polynomials with degP = n − 1 and degQ = n. The zeros
of P are z1, z2, . . . , zn−1 and the zeros of Q are ζ1, ζ2, . . . , ζn. Hence

B(z)/z

B(z)− w
= α

(z− z1) · · · (z− zn−1)

(z− ζ1) · · · (z− ζn)

for some constant α �= 0. Multiply the preceding by z, let z → ∞, and conclude
that α = 1. Now perform a partial fraction expansion and obtain

B(z)/z

B(z)− w
= λ1

z− ζ1
+ · · · + λn

z− ζn

for some λ1, λ2, . . . , λn ∈ C. Fix k = 1, 2, . . . , n, multiply the previous identity by
z− ζk , and let z → ζk to see that

λk = lim
z→ζk

B(z)

z
· z− ζk

B(z)− w

= B(ζk)

ζkB ′(ζk)

= 1

1 +
n−1∑

j=1

1 − |zj |2
|ζk − zj |2

(by (3.4.7)).

Consequently, 0 < λk < 1. Let z →∞ in the identity

B(z)

B(z)− w
= λ1z

z− ζ1
+ · · · + λnz

z− ζn

and conclude that

λ1 + · · · + λn = lim
z→∞

B(z)

B(z)− w
= 1. ��

We are now ready to state and prove the main theorem of this section.

Theorem 5.2.8 Let z1, z2, . . . , zn−1 ∈ D,

B(z) = z

n−1∏

k=1

zk − z

1 − zkz
,

w ∈ T, and let ζ1, ζ2, . . . , ζn ∈ T be the n distinct solutions to B(ζ ) = w. Then
z1, z2, . . . , zn−1 belong to conv{ζ1, ζ2, . . . , ζn}.
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Fig. 5.1
conv{ζ1, ζ2, ζ3, ζ4, ζ5}
contains z1, z2, z3, z4 (the
origin is not necessarily
contained in the convex hull)

z4

z5

z1

z2

z3

z3

0

z4

z1 z2

Proof Lemma 5.2.7 yields the representation

B(z)/z

B(z)− w
= λ1

z− ζ1
+ · · · + λn

z− ζn
, (5.2.9)

in which the right-hand side is a convex combination of the functions

1

z− ζ1
,

1

z− ζ2
, . . . ,

1

z− ζn
.

Since the zeros of the quotient are precisely z1, z2, . . . , zn−1, Theorem 5.1.1 says
that they belong to conv{ζ1, ζ2, . . . , ζn}. ��

Figure 5.1 illustrates Theorem 5.2.8 for a finite Blaschke product of degree
n = 5.

Corollary 5.2.10 Let z1, z2, . . . , zn−1 ∈ D,

B(z) = z

n−1∏

k=1

zk − z

1 − zkz
,

w ∈ T, ζ1, ζ2, . . . , ζn ∈ T be the n distinct solutions to B(ζ ) = w, and

λk =
(

1 +
n−1∑

j=1

1 − |zj |2
|ζk − zj |2

)−1

, 1 � k � n.
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Then λ1, λ2, . . . , λn ∈ (0, 1), λ1 + λ2 + · · · + λn = 1, and

1

1 − wB(z)
= λ1

1 − ζ 1z
+ · · · + λn

1 − ζ nz
. (5.2.11)

Proof Lemma 5.2.7 yields

B(z)/z

B(z)− w
= λ1

z− ζ1
+ · · · + λn

z− ζn
, (5.2.12)

which is valid for all z ∈ T if properly interpreted at the poles. For such points,
zz = 1 and B(z)B(z) = 1 and so we can write (5.2.12) as

1

1 − wB(z)
= λ1

1 − ζ1z
+ · · · + λn

1 − ζnz
, z ∈ T.

Conjugate the preceding and obtain (5.2.11) for z ∈ T. Since both sides of (5.2.11)
are meromorphic on C, the identity holds everywhere. ��

5.3 Zeros as Foci of an Ellipse

For the finite Blaschke product

B(z) = z

(
α − z

1 − αz

)
, α ∈ D\{0},

Theorem 5.2.8 has an interesting geometric interpretation. Any line that passes
through α intersects T at two distinct points ζ1 and ζ2. According to Theorem 5.2.8,
B(ζ1) = B(ζ2). Conversely, if ζ1, ζ2 ∈ T are such that B(ζ1) = B(ζ2), then α must
be on the line that connects ζ1 to ζ2; Fig. 5.2.

In Theorem 5.2.8, we are free to choose any w ∈ T and obtain the n distinct
solutions ζ1,w, ζ2,w, . . . , ζn,w to B(ζ ) = w. Therefore, the points z1, z2, . . . , zn−1
are contained in

⋂

w∈T
conv{ζ1,w, ζ2,w, . . . , ζn,w} (5.3.1)

For a finite Blaschke product of degree three, this phenomenon is depicted in
Fig. 5.3. It appears as if the intersection (5.3.1) determines an ellipse (Fig. 5.4). This
is not a coincidence.

Theorem 5.3.2 (Daepp–Gorkin–Mortini [29]) Let

B(z) = z

(
z1 − z

1 − z1z

)(
z2 − z

1 − z2z

)
,
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Fig. 5.2 Two points ζ1, ζ2
with the same image under B

z1

z2

0

a

Fig. 5.3⋂
w∈T conv{ζ1,w, ζ2,w, ζ3,w}

for a Blaschke product of
degree three that vanishes at
the origin (the origin is not
necessarily contained in the
intersection)

z1

z2

in which z1, z2 ∈ D\{0} are distinct. Let w ∈ T and let ζ1, ζ2, ζ3 be the distinct
solutions of B(ζ ) = w. Let

λj =
(

1 + 1 − |z1|2
|ζj − z1|2 + 1 − |z2|2

|ζj − z2|2
)−1

, j = 1, 2, 3. (5.3.3)

Then the line that passes through ζ1 and ζ2 is tangent to the ellipse

E = {z : |z− z1| + |z− z2| = |1 − z1z2|} (5.3.4)
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0

z1

z2

a

z2

z3

z1

Fig. 5.4 The line through ζ1 and ζ2 is tangent to the ellipse E from (5.3.4)

at the point

α = λ2

λ1 + λ2
ζ1 + λ1

λ1 + λ2
ζ2.

Conversely, each tangent line of E intersects T at two points η1, η2 such that
B(η1) = B(η2).

Proof Fix w ∈ T. Lemma 5.2.7 ensures that

B(z)/z

B(z)− w
= (z− z1)(z− z2)

(z− ζ1)(z− ζ2)(z− ζ3)

= λ1

z− ζ1
+ λ2

z− ζ2
+ λ3

z− ζ3
,

in which λ1, λ2, λ3 are given by (5.3.3); in particular, λ1 + λ2 + λ3 = 1. Since

λ1 + λ2 = 1 − λ3,

we have

B(z)/z

B(z)− w
= (z− z1)(z− z2)

(z− ζ1)(z− ζ2)(z− ζ3)
= (1 − λ3)(z− α)

(z− ζ1)(z− ζ2)
+ λ3

z− ζ3
; (5.3.5)
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see Exercise 5.1. Set z = z1 and then z = z2 to obtain

z1 − α

(z1 − ζ1)(z1 − ζ2)
+ m

z1 − ζ3
= z2 − α

(z2 − ζ1)(z2 − ζ2)
+ m

z2 − ζ3
= 0, (5.3.6)

in which m = λ3/(1 − λ3). The first identity in (5.3.5) implies that

B(z)− w = (z− ζ1) (z− ζ2) (z− ζ3)

(1 − z1 z) (1 − z2 z)
.

Substitute z = z1 and z = z2 into the preceding and obtain

∣∣∣∣
(z1 − ζ1)(z1 − ζ2)(z1 − ζ3)

(1 − |z1|2)(1 − z2z1)

∣∣∣∣ =
∣∣∣∣
(z2 − ζ1)(z2 − ζ2)(z2 − ζ3)

(1 − z2z1)(1 − |z2|2)
∣∣∣∣

= |w|
= 1.

Therefore,

|α − z1| + |α − z2| = m|(z1 − ζ1)(z1 − ζ2)|
|z1 − ζ3| + m|(z2 − ζ1)(z2 − ζ2)|

|z2 − ζ3|

= m|1 − z2z1|
(

1 − |z1|2
|z1 − ζ3|2 + 1 − |z2|2

|z2 − ζ3|2
)

= m|1 − z2z1|
(

1

λ3
− 1

)

= |1 − z2z1|
and hence α ∈ E.

Set z = α in (5.3.5) and obtain

(α − z1)(α − z2)

(α − ζ1)(α − ζ2)(α − ζ3)
= λ3

α − ζ3
.

Hence

z1 − α

ζ1 − α
· z2 − α

ζ2 − α
= λ3,

which implies that

arg

(
z1 − α

ζ1 − α

)
+ arg

(
z2 − α

ζ2 − α

)
= 0.

In other words,

� ζ1αz1 + � ζ2αz2 = 0.
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Fig. 5.5 The angles � ζ1αz1
and � ζ2αz2

z1

z2

a

z2

z1

Fig. 5.6 The angles � ζ1αz1
and � ζ2αz2

z1

z2

a

z2

z1

Therefore, the line segment that connects ζ1 and ζ2 lies outside the triangle with
vertices α, z1, z2 and makes equal angles with the sides of triangle at the vertex α;
see Fig. 5.5. Based on well-known geometric properties of an ellipse, this property
is fulfilled only by the tangent line at α.

To ensure that the line segment ζ1αζ2 is tangent to the ellipse, observe that this
line cannot be the bisector of the angle � z1αz2; see Fig. 5.6.



5.4 A Weak Version of Sendov’s Conjecture 87

The last statement of the theorem is a consequence of the first part. From the
point η1 there are just two tangents to the ellipse E. Each of these tangent lines
intersects T at one other point. One of these points is η2. Call the other one η3. Set
w = B(η1). Based on the discussion above, these points must be the three distinct
solutions of the equation B(ζ ) = w. ��

5.4 A Weak Version of Sendov’s Conjecture

There are various results about the relationship between the zeros of a polynomial
and its derivative. The Gauss–Lucas theorem (Corollary 5.1.4) is a classic example
from the vast literature on the subject. A famous conjecture in the area is due to
Sendov.

Conjecture 5.4.1 (Sendov) If all the zeros z1, z2, . . . , zn of a polynomial P lie in
D
−, then each closed disk

D(zk, 1)− = {z ∈ C : |z− zk| � 1}, 1 � k � n,

contains at least one zero of P ′.

Figure 5.7a illustrates a typical disk D(zk, 1)− relevant to Sendov’s conjecture.
It turns out that the conjecture, in a stronger form, is true if one is given that
z1, z2, . . . , zn ∈ T. In this case, each closed disk

D(
zk
2 , 1

2 )
− =
{
z ∈ C : |z− zk

2 | � 1
2

}
, 1 � k � n,

contains at least one zero of P ′ [124]. Since

D(
zk
2 , 1

2 )
− ⊆ D(zk, 1)−,

this result is stronger than what one expects from Sendov’s conjecture alone; see
Fig. 5.7b for an illustration of the preceding containment.

To see the relevance of Sendov’s conjecture to the zeros of a finite Blaschke
product, consider

B(z) = z

n−1∏

k=1

zk − z

1 − zkz
,

in which z1, z2, . . . , zn−1 are distinct points in D. For each w ∈ T, Theorem 3.4.10
asserts that the equation B(z) = w has n distinct solutions ζ1, ζ2, . . . , ζn ∈ T. The-
orem 5.2.8 tells us that z1, z2, . . . , zn−1 belong to the convex hull of ζ1, ζ2, . . . , ζn.
We also established (5.2.9), which implies that

B(z)/z

B(z)− w
= λ1

z− ζ1
+ · · · + λn

z− ζn
= P ′(z)

P (z)
, (5.4.2)
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zk

1

(a)

zk/2

zk

1

(b)

Fig. 5.7 Disks relevant to Sendov’s conjecture. (a) The closed disk D(zk, 1)−. (b) The closed disk
D(

zk
2 , 1

2 )
−

in which

P(z) = (z− ζ1)
λ1 · · · (z− ζn)

λn . (5.4.3)

The fact that ζ1, ζ2, . . . , ζn ∈ T permits us to define the preceding polynomial-like
expression on D by using suitable branch cuts for each factor. We may think of
ζ1, ζ2, . . . , ζn as the zeros of P and z1, z2, . . . , zn−1 as the zeros of P ′. Although P

is not a polynomial, if each λi is rational, we can multiply both sides of (5.4.2) by an
appropriate integer and then take P to be a polynomial. Therefore, we are naturally
motivated to consider Sendov’s conjecture in this case.

It is known that Sendov’s conjecture does not hold for functions of the form
(5.4.3); a simple counterexample is

P(z) = (1 + z)ε/2(1 − z)1−ε/2,

in which 0 < ε < 2 [65]. The only zero of P ′ is ε − 1. Thus, for ε ∈ (0, 2) and
ε �= 1, one of the closed disks

D(1, 1)− = {z : |z− 1| � 1} or D(−1, 1)− = {z : |z+ 1| � 1}
does not contain a zero of P ′. However, we show that a weaker version of Sendov’s
conjecture holds for this family. This version reveals further the relationship
between the locations of ζ1, ζ2, . . . , ζn and z1, z2, . . . , zn−1. We require two simple
facts that are needed in the proof of an important lemma below.

First, the Möbius transformation

ϕ(z) = 1

1 − z
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1 1
2

j

Fig. 5.8 The conformal mapping ϕ

maps the open unit disk bijectively onto the half plane {z ∈ C : Re z > 1/2} and
maps T\{1} bijectively onto the line Re z = 1/2. Hence,

z ∈ D
− �⇒ Re

(
1

1 − z

)
� 1

2
, (5.4.4)

with equality if and only if z ∈ T; see Fig. 5.8.
Second, if z ∈ C, ζ ∈ T, and r > 0, then

∣∣∣∣z−
2r − 1

2r
ζ

∣∣∣∣
2

=
∣∣∣∣(1 − zζ )− 1

2r

∣∣∣∣
2

= |1 − zζ |2 − 1

r
Re(1 − zζ )+ 1

4r2

= |1 − zζ |2
(

1 − 1

r
Re

(
1 − zζ

|1 − zζ |2
))

+ 1

4r2

= |1 − zζ |2
(

1 − 1

r
Re

(
1

1 − zζ

))
+ 1

4r2

and hence

Re

(
1

1 − zζ

)
� r �⇒

∣∣∣∣z−
2r − 1

2r
ζ

∣∣∣∣ �
1

2r
. (5.4.5)

Theorem 5.4.6 (Gorkin–Rhoades [65]) Suppose that ζ1, ζ2, . . . , ζn ∈ T are
distinct and λ1, λ2, . . . , λn > 0 are such that λ1 + λ2 + · · · + λn = 1. Let

rk = (n− 1)λk
(n− 1)λk + (1 − λk)

, 1 � k � n, (5.4.7)
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and define

f (z) = λ1

z− ζ1
+ · · · + λn

z− ζn
.

Then for each 1 � k � n, there is a zero of f in the closed disk

D((1 − rk)ζk, rk)
−.

Proof Theorem 5.1.1 ensures that the zeros of f are in conv{ζ1, ζ2, . . . , ζn}. Hence,
all the zeros of f are in D

−. In fact, the zeros of f are the roots of the polynomial

Q(z) =
n∑

k=1

λk

n∏

j=1
j �=k

(z− ζj ).

Since λ1 + λ2 + · · · + λn = 1, the polynomial Q is monic and hence

Q(z) =
n−1∏

k=1

(z− zk).

Taking the logarithmic derivative of the last two identities gives

n−1∑

k=1

1

z− zk
= Q′(z)

Q(z)
=

n∑

k=1

λk

n∑

j=1
j �=k

n∏

i=1
i �=j,k

(z− ζi)

n∑

k=1

λk

n∏

j=1
j �=k

(z− ζj )

.

Fix an m ∈ {1, 2, . . . , n}, evaluate the preceding identity at z = ζm, and obtain

n−1∑

k=1

1

ζm − zk
=

n∑

k=1
k �=m

(λk + λm)

n∏

j=1
j �=k,m

(ζm − ζj )

λm

n∏

j=1
j �=m

(ζm − ζj )

=
n∑

k=1
k �=m

(λk + λm)/λm

ζm − ζk
.
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Then (5.4.4) implies that

n−1∑

k=1

Re

(
1

1 − zkζm

)
=

n∑

k=1
k �=m

λk + λm

λm
Re

(
1

1 − ζkζm

)

=
n∑

k=1
k �=m

λk + λm

2λm

= 1 − λm

2λm
+ n− 1

2
.

The relation (5.4.4) also says that

Re

(
1

1 − zkζm

)
� 1

2

for all 1 � k � n− 1. Let k0 be such that

Re

(
1

1 − zk0ζm

)
= max

1�k�n−1
Re

(
1

1 − zkζm

)
.

Thus,

Re

(
1

1 − zk0ζm

)
� 1 − λm

2(n− 1)λm
+ 1

2
.

Finally, apply (5.4.5) with z = zk0 , ζ = ζm, and

r = 1 − λm

2(n− 1)λm
+ 1

2
,

to obtain

|zk0 − (1 − rm)ζm| � rm. ��
Note that

D
(
(1 − rk)ζk, rk

)− ⊆ D(ζk, 2rk)
−;

see Fig. 5.9. Thus, under the conditions of Theorem 5.4.6, there is a zero of f in the
closed disk D(ζk, 2rk)−.
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(1− rk)zk

zk

0

1

Fig. 5.9 The closed disks D
(
(1 − rk)ζk, rk

)− and D(ζk, 2rk)−

5.5 A Forbidden Region

Theorems 5.1.1 and 5.4.6 tell us where the zeros of a function of the form

f (z) = λ1

z− ζ1
+ λ2

z− ζ2
+ · · · + λn

z− ζn
, (5.5.1)

in which

ζ1, ζ2, . . . , ζn ∈ C,

λ1, λ2, . . . , λn > 0,

and

λ1 + λ2 + . . .+ λn = 1,

might be; see Fig. 5.10. We now identify a region that excludes the zeros of f .

Theorem 5.5.2 (Gorkin–Rhoades [65]) Let ζ1, ζ2, . . . , ζn ∈ T be distinct and let
λ1, λ2, . . . , λn > 0 be such that λ1 + λ2 + · · · + λn = 1. Let

r = min
1�i,j�n

i �=j

|ζi − ζj |
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Fig. 5.10 The locus of the zeros of a finite Blaschke product of degree 5

and define

f (z) = λ1

z− ζ1
+ · · · + λn

z− ζn
.

Then for each 1 � k � n, there is no zero of f in the open disk D(ζk, rλk).

Proof If z0 is a zero of f , then

λ1

z0 − ζ1
+ · · · + λn

z0 − ζn
= 0.

For 1 � k � n, the triangle inequality implies that

λk

|z0 − ζk| �
n∑

j=1
j �=k

λj

|z0 − ζj | . (5.5.3)

However, for j �= k

|z0 − ζj | � |ζj − ζk| − |z0 − ζk| � r − |z0 − ζk|.
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If |z0 − ζk| � r , then |z0 − ζk| � rλk and we are done. If |z0 − ζk| < r , then (5.5.3)
implies that

λk

|z0 − ζk| �

∑n
j=1
j �=k

λj

r − |z0 − ζk| =
1 − λk

r − |z0 − ζk| ,

which, after rearranging the terms, implies that |z0 − ζk| � rλk . ��

5.6 The Best Citadel

The following result is a direct consequence of Theorems 5.4.6 and 5.5.2.

Theorem 5.6.1 (Gorkin–Rhoades [65]) Let

B(z) = z

n−1∏

k=1

zk − z

1 − zk z
,

in which z1, z2, . . . , zn−1 are distinct points in D, let w ∈ T, and let ζ1, ζ2, . . . , ζn
denote the n distinct solutions of B(ζ ) = w. Let

rk = (n− 1)

(n− 1)+
n−1∑

j=1

1 − |zj |2
|ζk − zj |2

, 1 � k � n,

and

� = min
1�i,j�n

i �=j

|ζi − ζj |.

For each 1 � k � n, at least one zi belongs to the closed disk

D((1 − rk)ζk, rk)
−.

Moreover, none of the zi belong to the open disk

D(ζk, �λk).

Proof By Lemma 5.2.7,

B(z)/z

B(z)− w
= (z− z1) · · · (z− zn−1)

(z− ζ1) · · · (z− ζn)
= λ1

z− ζ1
+ · · · + λn

z− ζn
,
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in which

λk = 1

1 +
n−1∑

j=1

1 − |zj |2
|ζk − zj |2

, 1 � k � n.

Observe that

0 < λ1, λ2, . . . , λn < 1 and λ1 + λ2 + · · · + λn = 1.

We are ready to apply Theorems 5.4.6 and 5.5.2. Via (5.4.7), the radius rk is given by

rk = (n− 1)λk
(n− 1)λk + (1 − λk)

= (n− 1)

(n− 1)+ (1/λk − 1)

= (n− 1)

(n− 1)+
n−1∑

j=1

1 − |zj |2
|ζk − zj |2

.

Theorem 5.4.6 implies that there is a zi in the closed disk D((1 − rk)ζk, rk)
−. By

Theorem 5.5.2, no zi belongs to the open disk D(ζk, �λk). ��
If we put Theorems 5.2.8 and 5.6.1 together, we get a better picture of the

possible locations of the zeros of a finite Blaschke product; see Fig. 5.11.

5.7 Existence of a Nonzero Residue

The only entire finite Blaschke products are the unimodular scalar multiples of the
monomials 1, z, z2, . . .. All other finite Blaschke products have poles in C\D− and
hence we may consider their residues.

Theorem 5.7.1 (Heins [72]) If B is a finite Blaschke product with at least one pole
in C\D−, then B has a nonzero residue at some pole in C\D−.

Proof Let

B(z) = eiβzm
N∏

n=1

(
z− zn

1 − znz

)mn

, (5.7.2)
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Fig. 5.11 The possible locus of zeros of B

in which z1, z2, . . . , zn are the distinct zeros of B and let

B(z) =
∫ z

0
B(ζ ) dζ. (5.7.3)

Since B is analytic on D
−, the integral in (5.7.3) is independent of the path of

integration. The Fundamental Theorem of Calculus says that B′(z) = B(z) for
each z ∈ D

− and that B(0) = 0. By (5.7.2), for each eiθ ∈ T, we parameterize the
straight line path from 0 to eiθ by r �→ reiθ for 0 � r � 1, and obtain

B(eiθ ) =
∫ eiθ

0
B(z) dz =

∫ 1

0
eiβrmeimθ

N∏

n=1

(
reiθ − zn

1 − znreiθ

)mn

eiθ dr. (5.7.4)

As a function of z = reiθ ,

N∏

n=1

(
reiθ − zn

1 − znreiθ

)mn
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is a finite Blaschke product and hence (5.7.4) yields

|B(eiθ )| =
∣∣∣∣
∫ 1

0
eiβrmeimθ

N∏

n=1

(
reiθ − zn

1 − znreiθ

)mn

eiθ dr

∣∣∣∣

�
∫ 1

0
rmdr

= 1

m+ 1
. (5.7.5)

Perform a partial fraction expansion on (5.7.2) to obtain

B(z) =
m∑

n=0

αnz
n +

N∑

n=1

mn∑

�=1

βn,�

(1 − znz)�
. (5.7.6)

Suppose toward a contradiction that all of the residues of B are zero; that is

β1,1 = β2,1 = · · · = βN,1 = 0.

By integration,

B(z) =
m∑

n=0

αn

n+ 1
zn+1 + α +

N∑

n=1

mn∑

�=2

βn,�
zn(�−1)

(1 − znz)�−1 (5.7.7)

is an antiderivative of B on C\{1/z1, . . . , 1/zN }. The constant α is arbitrary and we
choose it so that B(0) = 0.

Since B has a zero of degree m at the origin, B(0) = 0, and B′ = B, we conclude
that B has a zero of degree m+ 1 at the origin. Taking the common denominator in
(5.7.7), we see that

B(z) = zm+1P(z)
∏N

n=1(1 − znz)mn−1
, (5.7.8)

where P is a polynomial of degree at most
∑N

n=1(mn−1). On the other hand, (5.7.6)
and (5.7.7) imply that

lim
z→∞

(m+ 1)B(z)

zB(z)
= 1. (5.7.9)

Define

f (z) = (m+ 1)B(z)

zB(z)
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and use (5.7.2) and (5.7.8) to obtain

f (z) = (m+ 1)P (z)
∏N

n=1(1 − znz)∏N
n=1(z− zn)mn

,

which reveals that f is analytic on C\D. Since B has at least one pole in C\D−, f
has at least one zero in C\D−. This enables us to produce a contradiction as follows.
By (5.7.9) we know that

lim
z→∞ f (z) = 1,

and by (5.7.5),

|f (eiθ )| =
∣∣∣∣
(m+ 1)B(eiθ )

eiθB(eiθ )

∣∣∣∣

= ∣∣(m+ 1)B(eiθ )
∣∣

� 1

for each eiθ ∈ T. Since f is analytic on C\D, |f (ζ )| � 1 for ζ ∈ T, and

lim
z→∞ f (z) = 1,

the Maximum Modulus Principle ensures that f ≡ 1. This contradicts the
assumption that f has zeros in C\D. Thus, for some n ∈ {1, 2, . . . , N}, we must
have βn,1 �= 0. ��

5.8 Exercises

5.1 Verify (5.3.5) and (5.3.6).

5.2 Let

B(z) = z

n−1∏

k=1

zk − z

1 − zk z
,

in which z1, z2, . . . , zn−1 ∈ D are distinct, let w ∈ T, and let ζr be any of the n

distinct solutions of B(ζ ) = w. Show that there is λr with 0 < λr < 1 and a finite
Blaschke product C of degree n− 1 with C(0) = 0 such that

B(z)/z

B(z)− w
= λr

z− ζr
+ (1 − λr)

C(z)/z

C(z)− w
.
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Hint: Using the notation of Lemma 5.2.7, consider

R(z) = 1

1 − λr

(
B(z)

B(z)− w
− λrz

z− ζr

)
,

and then define

C(z) = wR(z)

R(z)− 1
.

Note that R has n− 1 simple poles on T and

Re R(z) = 1

2
, z ∈ T.

5.3 In Theorem 5.7.1 the reader should be aware, as was pointed out by Heins
[72] in this following construction, that there exist finite Blaschke products with at
least two finite poles whose residue at some finite pole vanishes. Construct such an
example as follows. Let 0 < a1 < a2 < 1 and define

B(z) =
( z− a1

1 − a1z

)2( z− a2

1 − a2z

)2
.

Fix a1 and adjust the a2 so that the residue at 1/a1 vanishes.



Chapter 6
Critical Points

In this chapter we consider the set of critical points {z : B ′(z) = 0} of a finite
Blaschke product B. We first discuss their location, in terms of the zeros of B, and
then we discuss the possibility of creating a finite Blaschke product with a desired
set of critical points.

6.1 Location of the Critical Points

If B is a finite Blaschke product of degree n, then Theorem 3.3.2 and the quotient
rule for derivatives ensure that B ′ = P/Q, in which P and Q are polynomials and
degP � 2n− 2. Lemma 3.4.3 implies that there are no zeros of B ′ on T. They are
either in D or in De. In fact, we have the following symmetry result.

Lemma 6.1.1 Let B be finite Blaschke product. Suppose that w ∈ C\{0}, B(w) �=
0, and B(w) �= ∞. Then B ′(w) = 0 if and only if B ′(1/w) = 0.

Proof For each z ∈ C\{0}, (3.1.6) tells us that

B(z)B(1/z) = 1. (6.1.2)

This implies

B(w) �= 0 ⇐⇒ B(1/w) �= ∞. (6.1.3)

Taking the derivative with respect to z of the expression in (6.1.2) reveals that

B ′(z)B(1/z)− 1

z2
B(z)B ′(1/z) = 0,
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and hence, using (6.1.3), we have

B ′(w) = 0 ⇐⇒ B ′(1/w) = 0. ��

Be mindful of the hypotheses B(w) �= 0 and B(w) �= ∞ when applying this
lemma. For example, if

B(z) =
( z− α

1 − αz

)2
, α ∈ D\{0},

then B ′(α) = 0 but B ′(1/α) = ∞. This fact is crystallized in the following theorem.

Theorem 6.1.4 Let B be a finite Blaschke product of degree n. Write

B(z) = eiβzj0

m∏

k=1

(
zk − z

1 − zkz

)jk
,

in which β ∈ [0, 2π), j0 � 0, j1, j2, . . . , jm are positive integers with

j0 + j1 + · · · + jm = n,

and z1, z2, . . . , zm are distinct points in D\{0}. Then B ′ has n − 1 zeros in D

(counting multiplicity). The number of zeros in C\D− is m if j0 > 0 and less than
or equal to m− 1 if j0 = 0.

Proof We again remind the reader that there are no critical points of B on T

(Lemma 3.4.3). First suppose that the zeros of B are distinct and that neither B

nor B ′ have any zeros at the origin. By (3.4.6), B ′(z) = 0 if and only if

n∑

k=1

1 − |zk|2
(1 − zkz)(z− zk)

= 0.

Multiplying both sides of the preceding by

n∏

k=1

(1 − zkz)(z− zk),

we obtain a polynomial equation of degree 2n− 2 whose zeros are not in

{0, z1, z2, . . . , zn, 1/z1, 1/z2 . . . , 1/zn}.

By Lemma 6.1.1, there are exactly n− 1 zeros in D and n− 1 zeros in C\D−.



6.1 Location of the Critical Points 103

In the general case, Theorem 4.4.1 permits us to approximate B by a family Bε

of finite Blaschke products of degree n with distinct zeros so that neither Bε nor B ′
ε

have any zeros at the origin (the convergence is uniform on compact subsets of D).
It follows that B ′ has exactly n − 1 zeros, counted according to multiplicity, in D.
However, it may have fewer zeros in De.

We now consider the zeros of B ′ in De. First assume that j0 �= 0. By direct
verification,

B ′(z) = zj0−1
∏m

k=1(z− zk)
jk−1

∏m
k=1(z− 1/zk)jk+1

P(z),

in which P is a polynomial of degree 2m with no zeros in {0, z1, . . . , zm}. As a
result, B ′ has n + m − 1 zeros in C. These are the zeros of B and of P , repeated
according to multiplicity. Lemma 6.1.1 implies that the zeros of P are of the form

w1, 1/w1, w2, 1/w2, . . . , wm, 1/wm,

in which w1, w2, . . . , wm ∈ D\{0, z1, z2, . . . , zm}.
Now suppose that j0 = 0 and write

B(z) = C

∏m
k=1(z− zk)

jk

∏m
k=1(z− 1/zk)jk

= C

(
1 + Q(z)∏m

k=1(z− 1/zk)jk

)
,

in which C is constant and Q is a polynomial of degree n− 1. Thus,

B ′(z) =
∏m

k=1(z− zk)
jk−1

∏m
k=1(z− 1/zk)jk+1

P(z),

in which P is a polynomial of degree at most 2m − 2 that has no zeros among
{z1, z2, . . . , zm}. Consequently, B ′ has at most n+m− 2 zeros in C. These are the
zeros of B and of P , repeated according to multiplicity. In this case, P might have
zeros at the origin. For the rest of its zeros, Lemma 6.1.1 applies. Therefore, P can
have, say, � zeros at the origin and the rest are of the form

w1, 1/w1, w2, 1/w2, . . . , w�′, 1/w�′ ,

where w1, w2, . . . , w�′ ∈ D\{0, z1, z2, . . . , zm}. Since �′ + 2� = degP � 2m− 2,
we have �′ � m− 1. ��

Recall that Corollary 5.1.4 (commonly known as the Gauss–Lucas theorem,
although we have reserved that name for the more general Theorem 5.1.1) asserts
that if P is a nonconstant polynomial, then the zeros of P ′ are contained in the
convex hull of the zeros of P . An analogous result holds for the zeros of the
derivative of a finite Blaschke product B: the zeros of B ′ are in the convex hull
of B−1({0}) ∪ {0} [18]. A refinement of this result from [49] (see also [129, 137])
involves some hyperbolic geometry.
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Fig. 6.1 The hyperbolic
convex hull of the set
{z1, z2, z3, z4, z5}

z2

z1z5

z4

z3

Definition 6.1.5 We say that A ⊆ D is hyperbolically convex if

z1, z2 ∈ A and t ∈ [0, 1] �⇒ z1 − z1−z2
1−z1z2

t

1 − z1
z1−z2

1−z1z2
t
∈ A.

The complicated quotient above is the parametric formula for the hyperbolic line
segment between z1 and z2; see (2.3.10). The hyperbolic convex hull of A ⊆ D is
the smallest hyperbolically convex set that contains A. It is the intersection of all
hyperbolically convex sets that contain A. Figure 6.1 shows the hyperbolic convex
hull of a set of five points in D.

Theorem 6.1.6 If B is a finite Blaschke product, then the zeros of B ′ in D belong
to the hyperbolic convex hull of the zeros of B.

Proof Let D+ = D∩ {z : Im z > 0} and D− = D∩ {z : Im z < 0} denote the upper
and lower half disks, respectively. Suppose that the zeros of B all belong to D+. By
(3.4.6), we have

Im

(
B ′(z)
B(z)

)
=

n∑

k=1

Im

(
1 − |zk|2

(1 − zkz)(z− zk)

)
. (6.1.7)

Let

ϕ(z) = 1 − |a|2
(1 − az)(z− a)

,

in which a ∈ D+ is fixed.
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Fig. 6.2 The image of T−
and the interval [−1, 1] under
the mapping ϕ for a =
0.25, 0.4, 0.55, 0.70, 0.85

-2 -1 0 1 2

1

2

3

4

To study ϕ(D−), we examine the image of the boundary

{eiθ : −π � θ � 0} ∪ [−1, 1]
of D− under ϕ (see Fig. 6.2). On T− = {eiθ : −π � θ � 0} we have

ϕ(eiθ ) = 1 − |a|2
(1 − aeiθ )(eiθ − a)

= 1 − |a|2
|eiθ − a|2 e

−iθ

and hence T− is mapped onto a curve in C+ ∪ R. For t ∈ [−1, 1],

ϕ(t) = 1 − |a|2
(1 − at)(t − a)

= 1 − |a|2
|(1 − at)(t − a)|2 (1 − at)(t − a),

and hence

Imϕ(t) = Im
1 − |a|2

(1 − at)(t − a)

= 1 − |a|2
|(1 − at)(t − a)|2 (1 − t2) Im a.
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Therefore, [−1, 1] is also mapped to a curve in C+ ∪ R and hence the boundary of
D− is mapped to a simple closed curve in C+ ∪ R. Since ϕ is analytic on (D−)−,
we deduce that ϕ maps D− into C+. Equivalently,

z ∈ D− �⇒ Imϕ(z) > 0.

Since the zeros of B are in C+, the representation (6.1.7) implies

z ∈ D− �⇒ Im

(
B ′(z)
B(z)

)
> 0.

Hence B ′ does not have any zeros in D−. By continuity, it follows that if all zeros
of B are in D+ ∪ (−1, 1), then so are the zeros of B ′ (recall that we only consider
the zeros inside D).

Let f = B ◦ τa . By Lemma 3.6.1, f is also a finite Blaschke product with
zeros τa(z1), τa(z2), . . . , τa(zn) (Fig. 6.3). If we denote the zeros of B ′ in D by
w1, w2, . . . , wn−1, then the zeros of f ′ in D are

τa(w1), τa(w2), . . . , τa(wn−1).

If we choose a such that Im τa(zk) � 0 for 1 � k � n, then the preceding
observation shows that

Im τa(wk) � 0, 1 � k � n− 1.

This means that if the zeros of B are on one side of the hyperbolic line

a − z

1 − az
= t, t ∈ [−1, 1],

then the zeros of B ′ are also on the same side. Similar comments apply if we
replace τa by a rotation ργ . The intersection of all such hyperbolic planes gives
the hyperbolic convex hull of the zeros of B. ��

Example 6.1.8 Let a, b ∈ D be unequal and let

B(z) =
(

a − z

1 − az

)m (
b − z

1 − bz

)n
.

Then B ′ has m+n− 1 zeros in D. To be more specific, they are a (with multiplicity
m−1), b (with multiplicity n−1), and c (with multiplicity one), which is the solution
of the equation
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Fig. 6.3 (a)–(d) depict the hyperbolic convex hulls of the zeros of finite Blaschke products B of
degrees 3, 4, 5, 6 (respectively) along with the zeros of B ′. Observe how the zeros of B ′ lie within
the hyperbolic convex hull of the zeros of B. We thank Tongzhou Wang and Raymone Cao for
rendering these drawings

m(1 − |a|2)
(1 − az)2

(
a − z

1 − az

)m−1 (
b − z

1 − bz

)n

+
(

a − z

1 − az

)m (
b − z

1 − bz

)n−1
n(1 − |b|2)
(1 − bz)2

= 0.



108 6 Critical Points

Since the above can be written as

(
z− a

1 − az

)/( z− b

1 − bz

)
= −
(
m(1 − |a|2)
|1 − az|2

)/(n(1 − |b|2)
|1 − bz|2

)
,

Corollary 2.3.11 ensures that a, b, and c lie on the same hyperbolic line. Moreover,
as m and n vary independently over the positive integers, the point c traverses a
dense subset of the hyperbolic line segment between a and b; see Exercise 6.3.

6.2 Controlling the Critical Points

Theorem 6.1.4 says that a Blaschke product of order d+ 1 has d critical points. The
following theorem of Heins [74] shows that one has complete freedom to choose
the location of these critical points.

Theorem 6.2.1 Let c1, c2, . . . , cd be d (not necessarily distinct) points in D. Then
there is a unique finite Blaschke product f of degree d + 1 with f (0) = 0 and
f (1) = 1 and having c1, c2, . . . , cd as its critical points. Moreover, if g is any other
finite Blaschke product of degree d+1 with critical points c1, c2, . . . , cd , then there
is a τ ∈ Aut(D) such that

τ ◦ g = f.

Our proof follows Zakeri [139] and requires some preliminary ideas from point
set and algebraic topology. Informally, the main idea is to show that the map

{0, z1, z2, . . . , zd} �→ {c1, c2, . . . , cd}

which takes the zeros {0, z1, z2, . . . , zd} of a finite Blaschke product f of degree
d + 1 with f (0) = 0 and f (1) = 1 to the critical points {c1, c2, . . . , cd} of a finite
Blaschke product of degree d+1 is onto. We will do this by defining certain quotient
topologies on the domain and range spaces of this map. To get started, let us first
define some topological notions on the set of finite Blaschke products of degree d.

For sequences γn ∈ T and an ∈ D, consider the sequence of disk automorphisms

γn
z− an

1 − anz
.

If γn → ζ ∈ T and an → a ∈ D, then one can see that the sequence
of automorphisms above converges uniformly on compact subsets of D to the
automorphism

γ
z− a

1 − az
.
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Therefore, if

Bn(z) = γn

d∏

j=1

z− aj,n

1 − aj,nz

is a finite Blaschke product of degree d with γn → ζ ∈ T and aj,n → aj ∈ D

as n → ∞, then Bn converges uniformly on compact subsets of D to the finite
Blaschke product

B(z) = γ

d∏

j=1

z− aj

1 − aj z
.

Under the circumstances above, the degree of Bn remains invariant. Indeed, the
limiting finite Blaschke product has the same degree d as each of the Bn.

Now let us consider the case when some of the zeros aj,n tend to a point
on T. Here the situation changes and the interplay between the zeros aj,n and the
unimodular constant γn becomes important. This leads us to consider following
normalized disk automorphisms. For each a ∈ D, define

β(a, z) := 1 − a

1 − a
· z− a

1 − az
. (6.2.2)

Observe that β(a, z) is the unique element of Aut(D) for which

β(a, 1) = 1 and β(a, a) = 0.

The following proposition focuses on what happens to β(a, z) when the parameter
a ∈ D approaches a point of T.

Proposition 6.2.3 Suppose that an is a sequence in D and let β(an, z) be the
corresponding sequence of disk automorphisms defined by (6.2.2).

(a) If an → a ∈ T\{1}, then β(an, z) → 1 uniformly on compact subsets of D.
(b) If an → 1, then for each accumulation point α ∈ T of the sequence

1 − an

1 − an
,

there is a subsequence of the β(an, z) that converges to the constant function
−α uniformly on compact subsets of D. In particular, if

1 − an

1 − an
→ α,

then β(an, z) converges to −α uniformly on compact subsets of D.
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Proof

(a) Fix a compact set K ⊆ D and z ∈ K . Since an is bounded away from 1 we have

|β(an, z)− 1| = |z− 1|
|1 − an||1 − anz| (1 − |an|2)

� CK(1 − |an|2),

which goes to zero as n →∞.
(b) Without loss of generality assume that

lim
n→∞

1 − an

1 − an
→ α.

Then for each z ∈ K ,

|β(an, z)+ α| =
∣∣∣∣
1 − an

1 − an

(
z− an

1 − anz
+ 1

)
+
(
α − 1 − an

1 − an

)∣∣∣∣

� |z| + 1

|1 − anz| |1 − an| +
∣∣∣∣α − 1 − an

1 − an

∣∣∣∣

� CK |1 − an| +
∣∣∣∣α − 1 − an

1 − an

∣∣∣∣ ,

which goes to zero as n →∞. ��
Let Bd denote the family of all finite Blaschke products of the form

B(z) = z

d∏

j=1

β(an, z). (6.2.4)

Each element of Bd is of degree d + 1 and is normalized so that

B(0) = 0 and B(1) = 1.

Proposition 6.2.3 yields the following corollary.

Corollary 6.2.5 For a sequence Bn ∈ Bd , either Bn converges uniformly on
compact subsets of D to some B ∈ Bd or each subsequence of Bn has a subsequence
that converges uniformly on compact subsets of D to γB for some γ ∈ T and
B ∈ Bd ′ with 0 � d ′ < d.
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6.3 The Topological Space Σd

For an equivalence relation ∼ on a topological space X, let

[x] = {x′ ∈ X : x′ ∼ x}

denote the equivalence class of x and

X/∼ = {[x] : x ∈ X}

the set of equivalence classes. If

π : X → X/∼, π(x) = [x] (6.3.1)

is the canonical projection map, then

{V ⊆ X/∼ : π−1(V ) is open in X}

is a collection of open sets that defines the quotient topology on X/∼. The resulting
topological space X/∼ is a quotient space.

Given A ⊆ X, its saturation is the set

π−1(π(A)).

In other words, the saturation of A is the collection of all elements of X that are
related to some element of A via ∼. As a consequence of the definitions, we see that
π is an open mapping if and only if the saturation of each open subset of X is open.

We now apply the general construction above to the polydisk

D
d = {(z1, z2, . . . , zd) : zj ∈ D},

endowed with the product topology. That is, given

(z1, z2, . . . , zd) ∈ D
d ,

a local basis for the Cartesian (product) topology is the collection of sets

V1 × · · · × Vd,

where Vj ⊆ D is an open neighborhood of zj . Let Sd be the symmetric group on
the set {1, 2, . . . , d}, that is, the set of bijective mappings of {1, 2, . . . , d} to itself.
We define an equivalence relation ∼ on D

d by setting

(a1, a2, . . . , ad) ∼ (b1, b2, . . . , bd)
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if there is a permutation σ ∈ Sd such that

bj = aσ(j), 1 � j � d.

Then the quotient space D/ ∼, denoted by Σd , can be thought of as the set of
unordered d-tuples (a multiset) 〈a1, a2, . . . , ad〉, with aj ∈ D.

We use the bracket notation 〈a1, a2, . . . , ad〉 rather than the standard set notation
{a1, a2, . . . , ad}, since we are not concerned with the order of how the aj s are listed
in the set and we are allowing repetitions of the aj s. For example, we permit 〈0, 0, 1

2 〉
to be an element of Σ3. If we use the conventional set notation, the set {0, 0, 1

2 } is
the same as the set {0, 1

2 }. In our application of this, the multiset 〈a1, a2, . . . , ad〉
denotes the zeros of a finite Blaschke product so the order in which we list the zeros
does not matter but the repetitions do matter.

The quotient space Σd plays a crucial role in our study of the critical points of
finite Blaschke products. In what follows, π denotes the canonical projection of Dd

onto Σd from (6.3.1).
A local base at the point a = 〈a1, a2, . . . , ad〉 ∈ Σd is obtained as follows. Given

ε > 0, consider the saturated open set

Vε :=
⋃

σ∈Sd

(
D(aσ(1), ε)×D(aσ(2), ε)× · · · ×D(aσ(d), ε)

) ⊆ D
d ,

where D(aj , ε) is the open disk of radius ε centered at aj and the radius ε is taken
small enough so that all of the disks D(aj , ε) remain in D. Then π(Vε) is an open
neighborhood of a ∈ Σd which, for shorthand, we denote by D(a, ε). In other
words, D(a, ε) is the set of multisets b = 〈b1, b2, . . . , bd〉 ∈ Σd for which there is
a permutation σ ∈ Sd such that

|a1 − bσ(1)| < ε, |a2 − bσ(2)| < ε, . . . , |ad − bσ(d)| < ε.

Example 6.3.2 If a = 〈0, 0, 1
2 〉 ∈ Σ3, then

D(a, ε) =
{
b = 〈b1, b2, b3〉 ∈ Σ3 : |b1| < ε, |b2| < ε, |b3 − 1/2| < ε,

or |b1| < ε, |b2 − 1/2| < ε, |b3| < ε,

or |b1 − 1/2| < ε, |b2| < ε, |b3| < ε
}
.

The inverse image of D(a, ε) under π is

Vε =
{
|z| < ε} × {|z| < ε} × {|z− 1/2| < ε}

}

∪
{
|z| < ε} × {|z− 1/2| < ε} × {|z| < ε}

}

∪
{
|z− 1/2| < ε} × {|z| < ε} × {|z| < ε}

}
.
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This observation enables us to characterize convergent sequences in Σd . We see
that an = 〈an,1, an,2, . . . , an,d〉 converges to a = 〈a1, a2, . . . , ad〉 in Σd if and
only if for each ε > 0 there is an N = N(ε) such that for each n � N there is a
permutation σ ∈ Sd (which may depend on n) such that

|an,1 − aσ(1)| < ε, |an,2 − aσ(2)| < ε, . . . , |an,d − aσ(d)| < ε.

Proposition 6.3.3 π is an open mapping, meaning that if U is an open subset of Dd

in the product topology, then π(U) is an open subset of Σd in the quotient topology.

Proof For each fixed σ ∈ Sd , the mapping

Fσ : Dd → D
d , Fσ (a1, a2, . . . , ad) = (aσ(1), aσ(2), . . . , aσ(d)),

is a homeomorphism of Dd (endowed with its natural product topology). Since for
each subset A ⊆ D

d ,

π−1(π(A)) =
⋃

σ∈Sd
Fσ (A),

the saturation of each open set is open. Hence, π is an open mapping. ��
Let us discuss an equivalent interpretation of Σd . For a = 〈a1, a2, . . . , ad〉 ∈ Σd ,

define the corresponding finite Blaschke product B(a, z) ∈ Bd by

B(a, z) = z

d∏

j=1

β(aj , z). (6.3.4)

As discussed in the previous section, if an = {an,1, an,2, . . . , an,d} is a sequence in
Σd , then an → a = {a1, a2, . . . , ad} in the topology of Σd if and only if for each
ε > 0 there is an N = N(ε) such that for each n � N there is a permutation σ ∈ Sd
(which may depend on n) such that

|an,1 − aσ(1)| < ε, |an,2 − aσ(2)| < ε, . . . , |an,d − aσ(d)| < ε.

Therefore, an → a in Σd implies that B(an, z) → B(a, z) uniformly on compact
subsets of D. Conversely, if the latter holds, then by Hurwitz’s theorem, the zeros of
B(an, z) must be close to the zeros of B(a, z). More precisely, for each ε > 0 small
enough, there is an N = N(ε) such that for each n � N

|an,1 − aσ(1)| < ε, |an,2 − aσ(2)| < ε, . . . , |an,d − aσ(d)| < ε,

for a suitable permutation σ ∈ Sd . Therefore, an → a in the topology of Σd .
In short, convergence of a sequence in Σd is equivalent to uniform convergence on
compact subsets of D of the corresponding sequence (via (6.3.4)) of finite Blaschke
products in Bd .



114 6 Critical Points

The set Bd is endowed with the topology of uniform convergence on compact
subsets of D. Using the metric

d(f, g) =
∞∑

n=2

1

2n
sup
{
|f (z)− g(z)| : |z| � 1 − 1

n

}
,

we see that Bd , and hence Σd , via the identification (6.3.4), is metrizable [26,
p. 143]. This observation is useful when discussing the critical points of a finite
Blaschke product.

To get started, we define

Φ : Σd → Σd, Φ(a) = c, (6.3.5)

where c is the unordered list of critical points of the finite Blaschke product B(a, z).
Note that B(a, z) is a finite Blaschke product of order d + 1 and thus, counting
multiplicities, it has precisely d critical points in D (Theorem 6.1.4). A key part of
proving Theorem 6.2.1 (any set of d points in D can be the set of critical points of a
finite Blaschke product of degree d + 1) is showing that Φ is onto.

Lemma 6.3.6 Φ is continuous.

Proof Let an → a in the topology of Σd . Thus, by the discussion above,
B(an, z) → B(a, z) uniformly on compact subsets of D. Therefore, by the Cauchy
integral formula for the derivative,

d

dz
B(an, z) → d

dz
B(a, z)

uniformly on compact subsets of D. Applying Hurwitz’ theorem [26, p. 152] to the
critical points of B(an, z), we conclude that cn → c in the topology of Σd . ��

As mentioned before, our ultimate goal is to show that Φ is a homeomorphism.
We need another concept to do this.

Definition 6.3.7 For two metric spaces X and Y , a continuous mapping f : X → Y

is proper if for each compact set K ⊆ Y , the inverse image f−1(K) is compact in X.

For more on proper mappings, see [98]. A sequential characterization of proper
mappings is as follows.

Definition 6.3.8 A sequence xn ∈ X escapes to infinity if for each compact subset
K ⊆ X, the set {n : xn ∈ K} is finite.

One can see that if xn escapes to infinity, then so does every subsequence of xn.

Proposition 6.3.9 For f : X → Y , a continuous map between two metric spaces
X and Y , the following are equivalent.

(a) f is proper.
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(b) If xn ∈ X is any sequence that escapes to infinity, then f (xn) escapes to infinity
in Y .

Proof (a) �⇒ (b) Suppose xn is a sequence in X that escapes to infinity. If
f (xn) does not escape to infinity in Y , then there is a compact set K ⊆ Y such
that the cardinality of {n : f (xn) ∈ K} is infinite. Hence the cardinality of {n :
xn ∈ f−1(K)} is infinite. Since f is proper, f−1(K) is compact in X and this is
a contradiction to the definition of escapes to infinity. Therefore, f (xn) escapes to
infinity in Y .

(b) �⇒ (a) Suppose K is a compact subset of Y . Since X and Y are metric spaces,
it suffices to show that f−1(K) is sequentially compact (that is, if xn ∈ f−1(K),
then there is a subsequence that converges in f−1(K)). To this end, let xn be a
sequence in f−1(K). Since f (xn) ∈ K , it does not escape to infinity in Y . By
assumption, xn also does not escape to infinity in X. Hence, there is a compact set
L ⊆ X such that the cardinality of the set {n : xn ∈ L} is infinite. The sequential
compactness of L provides a subsequence of xn that converges in L. By continuity,
f−1(K) is closed in X. Thus, xn has a subsequence that converges to a point in
f−1(K). ��
Proposition 6.3.10 Let X and Y be metric spaces and let f : X → Y be a proper
continuous map. Then f (X) is a closed subset of Y .

Proof Suppose toward a contradiction that y0 ∈ f (X)−\f (X). Then there is a
sequence yn ∈ f (X) such that yn → y0. Therefore, the set

E = {y0} ∪ {yn : n � 1}

is compact in Y . Since f is proper, f−1(E) compact in X. However, y0 �∈ f (X)

and hence

f−1(E) = {f−1({yn}) : n � 1}.

Take any xn ∈ f−1({yn}). This sequence, being in a compact subset of X, has
a convergent subsequence. Without loss of generality, we may assume that xn
converges to x0 ∈ X. By continuity, y0 = f (x0) ∈ f (X), which is a contradiction.

��
By Lemma 6.3.6, the mapping Φ from (6.3.5) is continuous. Using Proposi-

tion 6.3.9, we can say more.

Lemma 6.3.11 Φ : Σd → Σd is proper.

Proof We will apply the criterion from Proposition 6.3.9. Suppose that an =
〈an,1, an,2, . . . , an,d〉 is a sequence in Σd that escapes to infinity, but for which
Φ(an) does not escape to infinity in Σd . By passing to a subsequence if necessary,
we can assume that Φ(an) is confined to a compact subset of Σd . Since an escapes
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to infinity, by passing to a further subsequence and relabeling, we may assume that
an converges to a = 〈w1, w2, . . . , wd〉, where |w1| = 1 and |wj | � 1 for the other
indices j .

By Proposition 6.2.3, the corresponding sequence of normalized finite Blaschke
products B(an, z) has a subsequence that converges uniformly on compact subsets
of D to a finite Blaschke product B of degree d ′ + 1 with 0 � d ′ < d. In fact, the
zeros of B are precisely at the origin and those wj with |wj | < 1. Therefore, B has
d ′ critical points in D (Theorem 6.1.4).

However, uniform convergence on compact subsets of D and the fact that Φ(an)

is confined to a compact subset of Σd implies that B has at least d critical points in
D. This contradicts the fact that B has d ′ < d critical points. ��

6.4 The Distance-Ratio Function
Let f belong to the Schur class S and endow f (D) with the Poincaré metric

2|dw|
1 − |w|2

from (2.4.1). Then its pullback under f is σf (z)|dz|, where

σf (z) = 2|f ′(z)|
1 − |f (z)|2 .

The metric σf (z)|dz| has constant curvature −1 on D, except at the critical points
of f . This follows from the identity

� log σf (z) = σ 2
f (z). (6.4.1)

From the Schwarz–Pick Lemma, f is contractive in the Poincaré metric, that is,

|f ′(z)|
1 − |f (z)|2 � 1

1 − |z|2 .

This leads us to consider the distance-ratio function

Rf (z) := 1 − |z|2
1 − |f (z)|2 |f

′(z)| (6.4.2)

which compares the pullback metric with the Poincaré metric. We gather some
elementary properties of Rf below. Recall that a function R : D → C is real
analytic if it can be represented as

R(z) =
∑

m,n�0

am,nz
mzn,
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where the partial sums of the series converges absolutely and uniformly on compact
subsets of D.

Lemma 6.4.3 Let f, g ∈ S .

(a) Rf � 1, with equality if and only if f ∈ Aut(D).
(b) Rf ◦g = (Rf ◦ g)Rg . In particular, for every τ ∈ D,

Rτ◦f = Rf and Rf ◦τ = Rf ◦ τ.

(c) Rf is a nonnegative function on D with zeros at the critical points of f . It is
real analytic on D, except at its zeros. Moreover, at each zero c of Rf , we have

Rf (z) = |z− c|mR̃(z),

where m � 1 is the order of the zero of f ′ at c and R̃ is a positive real-analytic
function in a neighborhood of c.

Proof

(a) This follows from the Schwarz–Pick theorem (Theorem 1.4.1).
(b) This is a consequence of the chain rule. Indeed, by (6.4.2),

Rf ◦g = 1 − |z|2
1 − |(f ◦ g)(z)|2 |(f ◦ g)′(z)|

= 1 − |z|2
1 − |(f (g(z))|2 |f

′(g(z))| |g′(z)|

= 1 − |g(z)|2
1 − |(f (g(z))|2 |f

′(g(z))| 1 − |z|2
1 − |g(z)|2 |g

′(z)|

= Rf (g(z)) Rg(z)

= (Rf ◦ g)(z) Rg(z).

Since Rτ = 1 for any τ ∈ Aut(D), the other identities follow.
(c) Suppose that f ′ has degree m at c. Then the expansion

f (z) = f (c)+ f (m+1)(c)(z− c)m+1 + · · ·

holds in a neighborhood of c and f (m+1)(c) �= 0. Thus,

f ′(z) = (z− c)mg(z),

where g is analytic and g(c) �= 0. Plugging this into (6.4.2) yields the result. ��
This next detail follows from Theorem 5.2.5. We will discuss an extended version

of it with Theorem 6.5.2 below.
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Lemma 6.4.4 Let f be a finite Blaschke product. Then Rf has a continuous
extension to D

− and

lim|z|→1
Rf (z) = 1.

Recall that if a twice continuously differentiable function F on a domain in the
complex plane has a local maximum at a point z0, then

�F(z0) � 0. (6.4.5)

This fact from calculus is the main ingredient needed to show that the map Φ from
(6.3) is injective.

Lemma 6.4.6 Φ : Σd → Σd is injective.

Proof Let a, b ∈ Σd be such that Φ(a) = Φ(b). Let f and g be the corresponding
finite Blaschke products in Bd from (6.2.4). Our assumption means that f and g

have the same critical points. Consider the function

h(z) = Rf (z)

Rg(z)
, z ∈ D.

Observe that off the critical points of f and g, the function h is real ana-
lytic. Moreover, any singularity of h will arise from a zero of Rg which, by
Lemma 6.4.3(c), cancels out with a zero of Rf . Hence, h is a real-analytic function
on D. Lemma 6.4.4 tells us that h has a continuous extension to D

− and

lim|z|→1
h(z) = 1.

Let us show that h � 1 on D. Suppose to the contrary that h has a maximum at
z0 ∈ D with h(z0) > 1. By (6.4.5),

� log h(z0) � 0. (6.4.7)

However, h = Rf /Rg = σf /σg and thus, by (6.4.1),

� log h = � log σf −� log σg

= σ 2
f − σ 2

g .

The identity above holds off the critical points of f and g. By continuity, it holds
everywhere. We have h(z0) > 1, which can be rewritten as σf (z0) > σg(z0). On
the other hand, (6.4.7) says that σf (z0) � σg(z0). Therefore, σf (z0) = σg(z0), or
equivalently, h(z0) = 1, a contradiction. A similar argument shows that 1/h � 1
and so h ≡ 1. From here we get
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|f ′(z)|
1 − |f (z)|2 = |g′(z)|

1 − |g(z)|2 , z ∈ D.

A theorem of Liouville (see [90, Thm. C]) says the identity above implies that f ≡ g

and so Φ is injective. ��
Theorem 6.4.8 Φ : Σd → Σd is a homeomorphism.

Proof By Lemmas 6.3.6, 6.3.11, and 6.4.6, Φ is continuous, proper, and injective.
We also know from Proposition 6.3.10 that Φ has closed range. Brouwer’s
Invariance of Domain Theorem [12] says that Φ(Σd) is an open subset of Σd . Since
Σd is connected and Φ(Σd) is both open and closed (and nonempty), we see that
Φ(Σd) = Σd , that is, Φ : Σd → Σd is a homeomorphism. ��

With all the heavy lifting complete, here is the proof of Theorem 6.2.1. The
existence and uniqueness of f is precisely the bijectivity of Φ, which was proved in
Theorem 6.4.8. For the second part, suppose g is a finite Blaschke product of degree
d + 1 with the same critical points as f . Since critical points do not change upon
post-composing with a disk automorphism, we may choose τ ∈ Aut(D) such that

(τ ◦ g)(0) = 0 and (τ ◦ g)(1) = 1.

Therefore, f and τ ◦g ∈ Bd and, moreover, they have the same critical points. But,
since the mapping Φ is injective we see that f = τ ◦ g and the result follows.

6.5 A Characterization of Heins

We saw in Lemma 6.4.4 that if f is a finite Blaschke product, then the distance-ratio
function

Rf (z) = (1 − |z|2)|f ′(z)|
1 − |f (z)|2

satisfies

lim
|z|→1−

Rf (z) = 1.

A theorem of Heins [74] (see Theorem 6.5.2 below) says that this condition
characterizes the finite Blaschke products amongst the Schur class S functions.
To state this theorem we need the following definition.
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Definition 6.5.1 An analytic function f : D → C has the asymptotic value a at
the point ζ ∈ T if there is a curve Γ inside D which terminates at ζ such that

lim
z→ζ
z∈Γ

f (z) = a.

For example, consider the function

f (z) = exp
(
− 1 + z

1 − z

)

and notice that f belongs to S . Furthermore,

1 + ζ

1 − ζ
∈ iR, ζ ∈ T\{1}

and so for each ζ ∈ T\{1}, f has an asymptotic value f (ζ ) ∈ T at each ζ ∈ T\{1}.
Since

lim
r→1−

f (r) = 0,

we see that f has an asymptotic value of 0 at 1.
A theorem of Lindelöf [25] says that if f ∈ H∞ and f has the asymptotic value

a at the point ζ ∈ T, then the nontangential limit (see (1.6.6)) of f at ζ is equal to
a.

Theorem 6.5.2 (Heins [74]) For f ∈ S , the following are equivalent.

(a) f is a nonconstant finite Blaschke product.
(b) For each sequence ak in D with ak → γ for some γ ∈ T, the functions

τf (ak) ◦ f ◦ τak
converge uniformly on compact subsets of D to a rotation.

(c) lim|z|→1
Rf (z) = 1.

(d) f has no asymptotic values in D and has a finite set of critical points.

Moreover, if any of the conditions above hold, then the rotation promised in (b) is
ρλ, where λ = f ′(γ )/|f ′(γ )|.
Proof (a) �⇒ (b) If f is a finite Blaschke product of degree n � 1, then for each
fixed k ∈ N, the function

fk = τf (ak) ◦ f ◦ τak (6.5.3)
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is also a finite Blaschke product of degree n (Lemma 3.6.1). Let

zk,1, zk,2, . . . , zk,n

denote the n zeros of fk and observe that these zeros are the solutions to the equation

f (τak (z)) = f (ak).

Now let wk,j = τak (zk,j ) and note that

wk,1, wk,2, . . . , wk,n

are the solutions to f (w) = f (ak). Number these so that wk,1 = ak for k ∈ N.
Note that for each fixed j = 1, 2, . . . , n,

lim
k→∞ |wk,j | = 1,

and

|wk,i − wk,j | � δk, 1 � i < j � n,

for some constant δk . In fact, for any finite Blaschke product B whose zeros are
ξ1, ξ2, . . . , ξn and any M with

max{ |ξ1|, |ξ2|, . . . , |ξn|} < M < 1,

there is a constant δ = δ(M,B) > 0 such that, for any two distinct points z,w in
the annulus {z : M � |z| � 1/M}, we have

B(z) = B(w) �⇒ |z− w| � δ.

This uniform separation occurs because the annulus is free from the critical points
of B (Lemma 3.4.3). More precisely, as k → ∞, the wk,j tend to the n distinct
(Theorem 3.4.10) solutions to

f (w) = f (γ ).

By the argument used to prove Proposition 6.2.3, τak converges uniformly on
compact subsets of D to γ . Since τak (zk,j ) = wk,j for j > 1 and wk,j does not tend
to γ as k →∞, we conclude that

lim
k→∞ |zk,j | = lim

k→∞ |τ−1
ak

(wk,j )| = 1, 2 � j � n. (6.5.4)
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Note that fk is a finite Blaschke product with zeros at the origin and at zk,j for
2 � j � k. Thus,

fk(z) = ηkz

n∏

j=2

zk,j − z

1 − zk,j z
,

where ηk ∈ T. This formula yields

f ′
k(0) = ηk

n∏

j=2

zk,j

and hence

fk(z)

f ′
k(0)

=
( n∏

j=2

1

|zk,j |
)( n∏

j=2

|zk,j |
zk,j

zk,j − z

1 − zk,j z

)
z.

On the other hand, (6.5.3) reveals that

f ′
k(0) = τ ′f (ak)(f (ak)) f

′(ak) τ ′ak (0)

= 1 − |ak|2
1 − |f (ak)|2 f

′(ak).

This gives us the representation

fk(z) = 1 − |ak|2
1 − |f (ak)|2 f ′(ak)

( n∏

j=2

1

|zk,j |
)( n∏

j=2

|zk,j |
zk,j

zk,j − z

1 − zk,j z

)
z.

By (6.5.4) and a variation of Proposition 6.2.3,

lim
k→∞

n∏

j=2

|zk,j |
zk,j

zk,j − z

1 − zk,j z
→ 1

uniformly on compact subsets of D. By Theorem 5.2.5,

lim
k→∞

1 − |f (ak)|2
1 − |ak|2 = lim

z→γ

1 − |f (z)|2
1 − |z|2

= |f ′(γ )|.
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Therefore,

fk(z) → f ′(γ )
|f ′(γ )|z

uniformly on compact subsets of D.

(b) �⇒ (c) If (c) does not hold, then there is a sequence an in D that converges to
a point ζ ∈ T but

lim
k→∞

(1 − |ak|2)|f ′(ak)|
1 − |f (ak)|2 �= 1.

However, in the light of the formula

(1 − |ak|2)f ′(ak)
1 − |f (ak)|2 = (τf (ak) ◦ f ◦ τak

)′
(0),

we have a contradiction since τf (ak) ◦ f ◦ τak tends to a rotation and thus

lim
k→∞ |(τf (ak) ◦ f ◦ τak

)′
(0)| = 1.

(c) �⇒ (d) Since

lim|z|→1

(1 − |z|2) |f ′(z)|
1 − |f (z)|2 = 1,

one can see that the set of critical points {z ∈ D : f ′(z) = 0} of f is finite. Toward
a contradiction, assume that f has an asymptotic value a ∈ D. By the Lindelöf
theorem discussion earlier, f has a nontangential limit equal to a at ζ ∈ T. Consider
the family

gr := f ◦ φr, 0 < r < 1,

where

φr(z) = z+ rζ

1 + rζ z
.

As r → 1, the automorphisms φr converge uniformly on compact subsets of D to
the constant function ζ . Therefore, gr converges uniformly on compact subsets of
D to the constant function a. Since a ∈ D, we conclude that

lim
r→1

|g′r (0)|
1 − |gr(0)|2 = 0.
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The contradiction becomes more apparent when we note that

(1 − |rζ |2) |f ′(rζ )|
1 − |f (rζ )|2 = |g′r (0)|

1 − |gr(0)|2 ,

and, by assumption, we must have

lim
r→1

(1 − |rζ |2) |f ′(rζ )|
1 − |f (rζ )|2 = 1.

(d) �⇒ (a) This is the bulk of the theorem and its most difficult part. We first
show that condition (d) (f ∈ S has no asymptotic values in D and has a finite set
of critical points) implies that f has finite constant valence. By Theorem 3.7.2 this
will imply that f is a finite Blaschke product.

Suppose toward a contradiction that the valence function νf is not constant. Let

m = min{νf (w) : w ∈ D}

and note that since νf is not constant, we have 0 � m < ∞. Using the lower
semicontinuity of vf [73, Thm. 7.1] one can show that

{w ∈ D : νf (w) = m}

is closed in D and hence is a proper subset of D.
One can also choose b ∈ D that belongs to the boundary of {νf (w) = m : w ∈

D}. Since f has a finite number of critical points, there is an a ∈ D such that the
interval [a, b) is free from any critical values, that is,

{z ∈ D : f ′(z) = 0} ∩ f−1([a, b)) = ∅ (6.5.5)

and νf (a) > m (b itself might be a critical value).
Now consider

�(t) = (1 − t)a + tb, 0 � t � 1,

the line segment from a to b, and the analytic continuations of f−1 along �. Starting
with the initial point c ∈ f−1(a) (corresponding to t = 0), consider how far one of
the analytic continuations of f−1 starting at c can go without running into difficulty
in getting all the way to t = 1. We denote the curve (a “pullback”) formed by this
analytic continuation by γc. We need to verify that

(a) we can indeed get all the way to t = 1;
(b) γc does not approach T.
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Indeed, if c and d are distinct points in f−1(a), then γc and γd are necessarily
disjoint paths in D. Such paths can collide just at critical points which were already
excluded by (6.5.5). Suppose that a pullback tends to T. Then either

(a) it converges to a single point;
(b) it converges to a finite set of points on T;
(c) it has an oscillatory nature and accumulates on a subarc T.

Option (a) is excluded since f has no asymptotic values inside D. The mere
existence of such a curve that terminates at ζ ∈ T means that (1 − tc)a + tcb is
an asymptotic value for f . Option (b) is also excluded since if the curve converges
to a finite set of points on T, then the curve has accumulation points in D. This
means that f is constant on these accumulation points, forcing f to be a constant
function, which it is not. Option (c) is also excluded since otherwise, f would have
the constant nontangential value (1 − tc)a + tcb almost everywhere on this sub-arc
which forces f to be a constant function. Here we are using a fact from the theory of
H∞ functions [38, Thm. 2.2] which says that if the non-tangential boundary values
of an H∞ function are equal to c almost everywhere on a subarc of T, then this
function is identically equal to the constant function c. Therefore all curves remain
in D and since there are no critical values on [a, b) we can pull back up to t = 1.

Now we arrive at our contradiction. Since νf (a) > m, there are at least m + 1
such paths created above and all of them terminate at points of f−1(b). This forces
νf (b) > m, which contradicts the fact that {vf (w) = m : w ∈ D} is closed and
contains b on its boundary. Thus, νf is constant on D.

We now show that νf is not identically equal to ∞ on D. Suppose to the contrary
that νf ≡ ∞. First observe that the set of critical points is nonempty. If this was
not the case, then f would be locally injective at each point of D. Moreover, since
f has no asymptotic values in D, this means that the analytic continuation of f−1

between any two points of D remains within D. By the monodromy theorem [100,
Vol. III, Ch. 8], f−1 has an analytic continuation to all of D. In other words, f is
injective and thus vf ≡ 1, which we are assuming is not the case.

Since f has a nonempty set of critical points, we let w1, w2, . . . , wm denote
the distinct critical values of f , in other words, wj = f (ξj ) for some ξj ∈ D

with f ′(ξj ) = 0. Consider m mutually disjoint smooth curves γk , parameterized by
t ∈ [0, 1], with

γk(0) = wk, γk([0, 1)) ⊆ D, γk(1) ∈ T.

Let

Ω = D\
m⋃

k=1

γk([0, 1)).

Since Ω is an open, simply connected region, so is f−1(Ω). We study the
components of f−1(Ω) to obtain a contradiction to our assumption that vf ≡ ∞.
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Let ω be a component of f−1(Ω). Then the restricted function f : ω → Ω

cannot have any asymptotic values in Ω . Otherwise, there is a curve in ω that tends
to ∂ω and on this curve f tends to a limit inside Ω . By assumption, this curve cannot
terminate on T. Hence, it would have to terminate at some point ζ ∈ D ∩ ∂ω. Then
f (ζ ) ∈ Ω and since ω is a component of f−1(Ω) we must have ζ ∈ ω which
cannot be the case. In a manner similar to our previous discussion, the monodromy
theorem implies that f : ω → Ω is a bijection.

Since νf ≡ ∞, there are infinitely many components of f−1(Ω). The set of
critical points is finite and thus can meet the boundaries of only finitely many
components. Hence, we may pick a component ω whose boundary does not contain
of any critical point. Let h : Ω → ω be the inverse of f : ω → Ω . Hence

f (h(z)) = z, z ∈ Ω. (6.5.6)

We show that h can be analytically continued to all of D.
Let us study the behavior of h as we approach γk(t), for 0 � t < 1. If Γ is

any curve inside Ω that terminates at γk(0), then the pullback h−1(Γ ) ⊆ ω cannot
terminate at a point of T. It also cannot oscillate toward a subarc of T (see the
discussion above). Hence, by (6.5.6), it has to terminate at a point of D ∩ ∂ω. By
similar reasoning, oscillatory behavior is excluded even at the boundary of D ∩
∂ω. Moreover, for different curves Γ1 and Γ2 in Ω that terminate at γk(0), their
pullbacks cannot converge to different points of D ∩ ∂ω. By (6.5.6), the injectivity
of f : ω → Ω would be violated. This means that

ζk = lim
z→γk(0)
z∈Ω

h(z)

exists and belongs to D ∩ ∂ω. In particular, f ′(ζk) �= 0.
Using a similar argument, h has a limit when we approach γk(t), for 0 < t < 1,

from one side of the arc γk . Hence one-sided limits exist at all points γk(t), for
0 < t < 1, and h is necessarily continuous on each side and its limiting values
converge to ζk when we move toward γk(0) from either side. Since f is univalent
on a small neighborhood of ζk and f (ζk) = γk(0), we see that h coincides with f−1

on a small neighborhood of γk(0). Therefore, the one-sided limits of h must agree
at least for small values of t > 0. Thus, h has continuous extension to

Ω ∪ {γk(t) : 0 � t < τ }

for some value of τ ∈ (0, 1). By Morera’s theorem, it has an analytic continuation
to Ω ∪{γk(t) : 0 � t < τ }. As a matter of fact, we must have sup τ = 1. Otherwise,
we could repeat the argument above with γk(τ ) playing the role of γk(0) and extend
further and thus obtain a contradiction. In short, h extends analytically to Ω∪{γk(t) :
0 � t < 1}, and hence to D. Let us denote this extension by H . According to (6.5.6),
we have

f (H(z)) = z, z ∈ D.



6.6 Notes 127

Set a = H(0) and write the identity above as

(f ◦ τa) ◦ (τa ◦H)(z) = z, z ∈ D. (6.5.7)

Since f is not a conformal mapping (this was ruled out at the beginning), the
Schwarz Lemma says that

|(f ◦ τa)′(0)| < 1. (6.5.8)

Also by the Schwarz Lemma,

|(τa ◦H)′(0)| � 1, (6.5.9)

since (τa ◦H)(0) = 0 and τa ◦H maps D into itself. However, (6.5.7) implies that

(f ◦ τa)′(0)× (τa ◦H)′(0) = 1,

which is a contradiction of (6.5.8) and (6.5.9). The proof is now complete. ��

6.6 Notes

Critical Values

For a finite Blaschke product B of degree n,

{w ∈ D : w = B(z), B ′(z) = 0}

is the set of critical values of B. We state the following result from [6]. For each
critical value wj , there are most n distinct points in B−1({wj }). The number

δB(wj ) = n− |B−1({wj })|,

where |E| is the cardinality of a set E, is the deficiency of B at wj . One can show
that if w1, w2, . . . , wk are the critical values of B, then

k∑

j=1

δB(wj ) = n− 1.

Moreover, for distinct points w1, w2, . . . , wk ∈ D and δ1, δ2, . . . , δk ∈ N such that∑k
j=1 δj = n−1, there is a finite Blaschke product of degree n whose critical values

are {w1, w2, . . . , wk} and with δB(wj ) = δj for all j = 1, 2, . . . , k. The paper [6]
also discusses a version of this theorem for polynomials.
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Asymptotic Values

There is a literature concerning asymptotic values of functions (continuous,
harmonic, analytic) on D (recall Definition 6.5.1) [4, 25, 84, 85, 102].

6.7 Exercises

6.1 Show that if P is a polynomial of degree two, then the zero of P ′ is the average
of the roots of P .

6.2 Show that if P is a polynomial of degree three with distinct zeros, then the
zeros of P ′ are the foci of the ellipse that is tangent to the midpoints of the triangle
determined by the zeros of P . This is known as Marden’s theorem and the ellipse
is known as the Steiner inellipse. See [86] for a history of this theorem as well as a
proof.

6.3 Let

B(z) =
(

a − z

1 − az

)m (
b − z

1 − bz

)n (
c − z

1 − cz

)p
,

in which a, b, c ∈ D and m, n, p � 1. Find the zeros of B ′ and show that as m, n, p

range over the positive integers, the zeros of B ′ form a dense subset of the hyperbolic
convex hull of a, b, c.

6.4 Show that an entire function is proper if and only if it is a polynomial.
Hint: Use Picard’s theorem.

6.5 Show that an analytic function f : D → D is proper if and only if it is a finite
Blaschke product.
Hint: Use Theorem 3.5.2.



Chapter 7
Interpolation

Interpolation of data by functions from a given class has a rich history dating back
to Newton and Lagrange. Famous examples involve interpolation by polynomials,
rational functions, and bounded analytic functions. This chapter covers various types
of interpolation and the connection these problems make to finite Blaschke products.

In a typical interpolation problem, one considers a class of analytic functions F
on a domain Ω ⊆ C and asks, for a given list of distinct points z1, z2, . . . , zn ∈ Ω

and a given list of values w1, w2, . . . , wn ∈ C, if there is an f ∈ F such that

f (zk) = wk, 1 � k � n. (7.0.1)

There are additional questions that can be considered.

(i) Characterize all pairs (z1, w1), (z2, w2), . . . , (zn, wn) for which (7.0.1) has a
solution in F .

(ii) Characterize the set of points z1, z2, . . . , zn such that (7.0.1) has a solution in
F for all values of w1, w2, . . . , wn in a fixed given set.

(iii) If the interpolation problem has a solution, give an explicit formula for it or
provide an algorithm to find it.

(iv) If the interpolation problem has a solution, is the solution unique? If the
solution is not unique, find one that is extremal with respect to a given property.

In this chapter, we study interpolation by finite Blaschke products. We focus on
the following two questions.

(a) For distinct z1, z2, . . . , zn ∈ D and any w1, w2, . . . , wn ∈ D, is there a finite
Blaschke product B such that B(zk) = wk for 1 � k � n?

(b) For distinct ζ1, ζ2, . . . , ζn ∈ T and any ξ1, ξ2, . . . , ξn ∈ T, is there a finite
Blaschke product B such that B(ζk) = ξk for 1 � k � n?
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The first of these problems (interpolation in D) was settled long ago by Pick. The
second problem (boundary interpolation), although settled, is more delicate. We give
several solutions to these problems. Some of these are short existence proofs while
others are longer but more constructive.

7.1 Lagrange Interpolation: Polynomials

In order to place this subject in context, we begin with some classical interpolation
results. When F is the set of analytic polynomials

{ n∑

k=0

akz
k : ak ∈ C, n � 0

}
,

the following classical result settles the interpolation problem (7.0.1).

Theorem 7.1.1 (Lagrange Interpolation Theorem) Given distinct z1, z2, . . . ,

zn ∈ C and any w1, w2, . . . , wn ∈ C, there is a unique polynomial P of degree
at most n− 1 such that

P(zk) = wk, 1 � k � n. (7.1.2)

Proof For k = 1, 2, . . . , n, define the Lagrange polynomials by

Lk(z) =
n∏

i=1
i �=k

z− zi

zk − zi
, 1 � k � n, (7.1.3)

and verify that degLk = n−1 and Lk(zj ) = δjk , the Kronecker delta function. The
polynomial

P =
n∑

k=1

wkLk

is of degree at most n− 1 and satisfies P(zk) = wk for 1 � k � n. If Q is another
solution to the interpolation problem (7.1.2) and degQ � n−1, then P−Q vanishes
at the n distinct points z1, z2, . . . , zn and is of degree at most n−1. Thus, P−Q ≡ 0
and hence P = Q. Therefore, P is the unique solution to (7.1.2) of degree at most
n− 1. ��

Observe that

Q(z) = (z− z1) · · · (z− zn) �⇒ Lk(z) = Q(z)

Q′(zk)(z− zk)
, 1 � k � n.
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See Exercise 7.1 for another proof of Theorem 7.1.1 and see Exercises 7.2, 7.3,
and 7.4 for further applications. There is also Hermite interpolation [87] which
interpolates not only the function but also its derivatives; see the notes at the end
of this chapter.

7.2 Lagrange Interpolation: Rational Functions

In this section, we treat some interpolation problems involving rational functions.
These results will be used later on for interpolation by finite Blaschke products. In
what follows,

R̂ := R ∪ {∞}

denotes the extended real line (as a subset of the Riemann sphere Ĉ).

Lemma 7.2.1 (Gorkin–Rhoades [65]) Let f be the rational function

f (z) = (z− x1)(z− x2) · · · (z− xn)

(z− p1)(z− p2) · · · (z− pn)
,

where x1, x2, . . . , xn and p1, p2, . . . , pn are real numbers for which

p1 < x1 < p2 < x2 < · · · < pn < xn. (7.2.2)

Then f satisfies the following.

(a) f (C+) ⊆ C+.
(b) f (C−) ⊆ C−.
(c) f (R̂) ⊆ R̂.
(d) f has a simple zero at each x1, x2, . . . , xn.
(e) f has a simple pole with a negative residue at each p1, p2, . . . , pn.

Proof We leave it to the reader to verify (c), (d) and the first part of (e). To prove the
second part of (e), perform a partial fraction expansion, noting that f is the quotient
of two monic polynomials of equal degree, along with the fact that

lim
z→∞ f (z) = 1,

to obtain

f (z) = 1 + λ1

z− p1
+ · · · + λn

z− pn

. (7.2.3)
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Fix 1 � k � n and multiply both sides of the previous equation by z− pk and then
set z = pk to see that

λk =

n∏

j=1

(pk − xj )

n∏

j=1
j �=k

(pk − pj )

.

Rewrite this as

λk = (pk − xk) ·

k−1∏

j=1

(pk − xj )

k−1∏

j=1

(pk − pj )

·

n∏

j=k+1

(pk − xj )

n∏

j=k+1

(pk − pj )

and observe, via the hypothesis (7.2.2), that λk < 0.
If α < 0 and β ∈ R, the function

g(z) = α

z− β

satisfies

Im g(z) = −α
Im(z)

|z− β|2

and hence g satisfies (a) and (b). By (7.2.3), the function f − 1 is a finite sum of
such functions and hence must also satisfy (a) and (b). ��

The function

f (z) = a + b

z− c
, (7.2.4)

in which a, b, c ∈ R and b < 0, is from a class of functions introduced in
Lemma 7.2.1. We will encounter this function in the proof of Corollary 7.2.6.

The following result resembles Lagrange interpolation. A weaker version of this
result was first given by Younis [138]. Even though the method of Younis was
constructive, the degree of his interpolating function could be as large as n2−n; see
Exercise 7.5. The following provides a constructive solution of degree n. Moreover,
the solution exhibits further interesting properties.
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Theorem 7.2.5 (Gorkin–Rhoades [65]) Let x1, x2, . . . , xn and p1, p2, . . . , pn be
real numbers that satisfy

p1 < x1 < p2 < x2 < · · · < pn < xn

and let y1, y2, . . . , yn be any real numbers. Then there is a rational function f of
degree n that satisfies the following.

(a) f (C+) ⊆ C+.
(b) f (C−) ⊆ C−.
(c) f (R̂) ⊆ R̂.
(d) f (xk) = yk for 1 � k � n.
(e) f has a simple pole with a negative residue at each p1, p2, . . . , pn.

Proof Without loss of generality, we can assume that y1, y2, . . . , yn > 0. If this is
not the case, let M ∈ R be so large that y′k = M + yk > 0 for 1 � k � n. Then
solve the interpolation problem for g(xk) = y′k as described below. The answer to
the original interpolation problem is f = g −M .

The functions

fk(z) =
n∏

j=1
j �=k

z− xj

z− pj

, 1 � k � n,

satisfy the properties described in Lemma 7.2.1. Moreover, for each k,

fk(xk) =
n∏

j=1
j �=k

xk − xj

xk − pj

=
k−1∏

j=1

xk − xj

xk − pj

·
n∏

j=k+1

xk − xj

xk − pj

> 0

and fk(xj ) = 0 for j �= k. Define

f =
n∑

k=1

yk

fk(xk)
fk.

Since the coefficients yk/fk(xk) are all positive and since the fk satisfy the
properties described in Lemma 7.2.1, f satisfies properties (a), (b), and (c). The
coefficients were chosen so that f (xk) = yk .

The function f is of degree at most n and its possible poles are p1, p2, . . . , pn.
To ensure that these singularities are not removable, condition (e) of Lemma 7.2.1
implies that
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Res(f, pk) =
n∑

j=1
j �=k

yj

fj (xj )
Res(fj , pk) < 0.

Hence the degree of f is precisely n. This completes the proof. ��
The following important corollary can be used to obtain theorems about bound-

ary interpolation by finite Blaschke products; see Sect. 7.5.

Corollary 7.2.6 Let x1, x2, . . . , xn ∈ R and a1, a2, . . . , an ∈ R satisfy

a1 < x1 < a2 < x2 < · · · < an < xn

and let y0, y1, . . . , yn ∈ R satisfy y0 �= yk for 1 � k � n. Then there is a rational
function f of degree n that satisfies the following.

(a) f (C+) ⊆ C+.
(b) f (C−) ⊆ C−.
(c) f (R̂) ⊆ R̂.
(d) f (xk) = yk for 1 � k � n.
(e) f (ak) = y0 for 1 � k � n.

Proof Let

g(z) = y0 − 1

z
.

By (7.2.4), g satisfies the properties in Lemma 7.2.1. Let

y′k = g−1(yk), 1 � k � n.

Since y0 �= yk , we have y′k ∈ R (only y0 is sent to y′0 = ∞). Theorem 7.2.5 says
that there is a rational function h of degree n that satisfies (a), (b), and (c), and such
that

h(xk) = y′k

with simple poles at points ak for 1 � k � n.
Set f = g ◦h. Then f is a rational function of degree n that satisfies (a), (b), and

(c), and such that

f (xk) = g(h(xk)) = g(y′k) = yk, 1 � k � n.

Moreover, since h has a simple pole at each ak ,

f (ak) = g(h(ak)) = g(∞) = y0, 1 � k � n.

Thus, f is the desired function. ��
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7.3 Pick Interpolation Theorem

We now discuss a famous interpolation problem for the Schur class S . Given
distinct z1, z2, . . . , zn ∈ D and arbitrary w1, w2, . . . , wn ∈ C, is there an f ∈ S
such that

f (zk) = wk, 1 � k � n?

Since f ∈ S , if there is a solution to this problem we must have |wj | � 1 for
all j . Moreover, if wj0 ∈ T for some j0 ∈ {1, 2, . . . , n}, then by the Maximum
Modulus Principle, f ≡ wj0 . Even when all the zj and wj belong to D, we cannot
always solve interpolation problem. For example, if f ∈ S solves the two-point
interpolation problem

f (z1) = w1 and f (0) = 0, (7.3.1)

then the Schwarz Lemma (Lemma 1.1.1) tells us that |w1| = |f (z1)| � |z1|. Thus,
a necessary condition for the solvability of (7.3.1) is

|w1| � |z1|. (7.3.2)

A closer examination of the generic two-point interpolation problem

f (z1) = w1 and f (z2) = w2 (7.3.3)

is instructive, although it requires a few important facts from linear algebra. Recall
that for vectors

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ C
n,

their inner product 〈x, y〉 is

〈x, y〉 =
n∑

j=1

xjyj .

If Mn denotes the set of all n × n complex matrices and A ∈ Mn, then A∗ denotes
the conjugate transpose of A and 〈Ax, y〉 = 〈x, A∗y〉 for all x, y ∈ C

n.

Definition 7.3.4 A ∈ Mn is positive semidefinite if

〈Ax, x〉 � 0, x ∈ C
n.

A positive semidefinite matrix A is automatically Hermitian: A = A∗. The spectral
theorem says that a Hermitian matrix is positive semidefinite if and only if its
eigenvalues are nonnegative; see Exercise 7.6. If A ∈ Mn is positive semidefinite
and S is m× n, then SAS∗ is positive semidefinite; see Exercise 7.7.
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Returning to our discussion of the two point interpolation problem (7.3.3), the
Schwarz–Pick theorem (Theorem 1.4.1) tells us that

∣∣∣∣
f (z1)− f (z2)

1 − f (z2)f (z1)

∣∣∣∣ �
∣∣∣∣
z1 − z2

1 − z2z1

∣∣∣∣ , z1, z2 ∈ D

for each f ∈ S . If f ∈ S satisfies (7.3.3), then (1.6.1) yields

∣∣∣∣
w1 − w2

1 − w2w1

∣∣∣∣ �
∣∣∣∣
z1 − z2

1 − z2z1

∣∣∣∣ ⇐⇒ 1 −
∣∣∣∣
z1 − z2

1 − z2z1

∣∣∣∣
2

� 1 −
∣∣∣∣
w1 − w2

1 − w2w1

∣∣∣∣
2

⇐⇒ (1 − |z1|2)(1 − |z2|2)
|1 − z2z1|2 � (1 − |w1|2)(1 − |w2|2)

|1 − w2w1|2

⇐⇒ |1 − w2w1|2
|1 − z2z1|2 � (1 − |w1|2)(1 − |w2|2)

(1 − |z1|2)(1 − |z2|2)

⇐⇒ det

⎡

⎢⎢⎢⎣

1 − |w1|2
1 − |z1|2

1 − w1w2

1 − z1z2

1 − w1w2

1 − z1z2

1 − |w2|2
1 − |z2|2

⎤

⎥⎥⎥⎦ � 0.

Since z1, z2, w1, w2 ∈ D, the trace of the Hermitian matrix

P(z1, z2;w1, w2) =

⎡

⎢⎢⎢⎣

1 − |w1|2
1 − |z1|2

1 − w1w2

1 − z1z2

1 − w1w2

1 − z1z2

1 − |w2|2
1 − |z2|2

⎤

⎥⎥⎥⎦ (7.3.5)

is positive and thus the sum of its eigenvalues is positive. Since the determinant of
a square matrix equals the product of its eigenvalues,

detP(z1, z2;w1, w2) � 0

if and only if (7.3.5) is positive semidefinite. Consequently, a necessary condition
for the solvability of the two-point interpolation problem (7.3.3) is the positive
semidefiniteness of (7.3.5). If z2 = w2 = 0, then

0 � detP(z1, 0;w1, 0) = 1 − |w1|2
1 − |z1|2 − 1 ⇐⇒ |w1| � |z1|,

which recovers the necessary condition (7.3.2) for the solvability of the special two-
point problem (7.3.1).
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The following celebrated result of Pick provides a complete solution to the n-
point interpolation problem. It has been extended in many directions (see [1] for a
thorough discussion).

Theorem 7.3.6 (Pick [114]) Suppose

z1, z2, . . . , zn ∈ D

are distinct and w1, w2 . . . , wn ∈ C. There is an f ∈ S such that

f (zk) = wk, 1 � k � n, (7.3.7)

if and only if

P = P(z1, . . . , zn;w1, . . . , wn) =
[

1 − wiwj

1 − zizj

]n

i,j=1
(7.3.8)

is positive semidefinite. Moreover, if a solution exists, then there is a finite Blaschke
product of degree at most n that does the interpolation in (7.3.7).

Remark 7.1 Before proceeding to the proof, we make a few remarks about some
degenerate situations that might occur when applying an induction argument
below.

(a) If |wj0 | > 1 for some j0 ∈ {1, 2, . . . , n}, then, since |f | � 1 for all f ∈ S ,
there is no solution to the interpolation problem (7.3.7). Moreover, still under
the assumption that |wj0 | > 1 for some j0, the corresponding Pick matrix has
the property that 〈P ej0, ej0〉 = 1 − |wj0 |2 < 0.

(b) If |wj0 | = 1 for some j0 ∈ {1, 2, . . . , n}, then for the interpolation problem
(7.3.7) to have a solution, it must be the case that f ≡ wj0 and consequently
wj = wj0 for all j . Furthermore, this constant function solution to the
interpolation is a finite Blaschke product of degree 0. The Pick matrix P is
the zero matrix, which is positive semidefinite.

(c) If z0 = w0 = 0 and f is a solution to the interpolation problem (7.3.7), then
the Schwarz lemma says that either |f (zj )| < |wj | for all j ∈ {2, 3, . . . , n} or
there exists a ξ ∈ T such that f (z) = ξz (and consequently zj = ξwj for all
j ).

Proof (of Theorem 7.3.6) As mentioned in Remark 7.1, we can assume that |wj | �
1 for all j . We proceed by induction on n. The base case is n = 1. If |w1| = 1,
then the constant function f ≡ w1, which is a finite Blaschke product of degree
0, accomplishes the interpolation. Furthermore, the associated 1 × 1 (scalar) Pick
matrix is

P(z1, w1) = 1 − |w1|2
1 − |z1|2 = 0,
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which is positive semidefinite. If |w1| < 1, the one-point interpolation problem
f (z1) = w1 has the solution f = τw1 ◦ τz1 , which is a finite Blaschke product of
degree 1. Since the 1 × 1 (scalar) Pick matrix

P(z1, w1) = 1 − |w1|2
1 − |z1|2

is positive semidefinite for all z1, w1 ∈ D, the theorem is true when n = 1.
For our induction hypothesis, suppose that the theorem holds for n − 1 points.

First observe that the n-point interpolation problem (7.3.7) has a solution with f ∈
S that is a finite Blaschke product of degree at most n if and only if, for any w0, z0 ∈
D, the interpolation problem

g(τz0(zk)) = τw0(wk), 1 � k � n, (7.3.9)

has a solution with g ∈ S that is a finite Blaschke product of degree at most n.
Indeed, write

f = τw0 ◦ g ◦ τz0 (7.3.10)

in order to pass from a solution to (7.3.7) to a solution to (7.3.9) and back;
Lemma 3.6.1 says that deg f = deg g. Now observe that the identity

1 − τw0(wi)τw0(wj )

1 − τz0(zi)τz0(zj )
= 1 − |w0|2

1 − |z0|2
1 − w0wi

1 − z0zi
· 1 − wiwj

1 − zizj
· 1 − w0wj

1 − z0zj
(7.3.11)

implies that

[
1 − τw0(wi)τw0(wj )

1 − τz0(zi) τz0(zj )

]n

i,j=1

= 1 − |w0|2
1 − |z0|2 ΛPΛ∗, (7.3.12)

in which Λ is the n× n diagonal matrix

Λ = diag

(
1 − w0w1

1 − z0z1
,

1 − w0w2

1 − z0z2
, . . . ,

1 − w0wn

1 − z0zn

)
;

see Exercise 7.8. Therefore, P is positive semidefinite if and only if

[
1 − τw0(wi) τw0(wj )

1 − τz0(zi) τz0(zj )

]n

i,j=1

is positive semidefinite; see Exercise 7.7. For simplicity in our labeling, set

z′j = τzn(zj ), w′
j = τwn(wj )
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and then relabel so that zj = z′j and wj = w′
j . With this relabeling we have zn =

wn = 0 (this is important to remember in practice when we want to find an explicit
solution to the interpolation problem). Then each entry of the last row and column of

A =
[

1 − wiwj

1 − zizj

]n

i,j=1

is 1. Let S be the following n× n matrix

S =

⎡

⎢⎢⎢⎢⎢⎣

1 0 · · · 0 −1
0 1 · · · 0 −1
...
...
. . .

...
...

0 0 · · · 1 −1
0 0 · · · 0 1

⎤

⎥⎥⎥⎥⎥⎦
,

which is invertible, and observe that

SAS∗ =
⎡

⎣
[

1−wiwj

1−zizj
− 1
]n−1

i,j=1
[0](n−1)×1

[0]1×(n−1) 1

⎤

⎦ . (7.3.13)

Consequently, A is positive semidefinite if and only if
[

1 − wiwj

1 − zizj
− 1

]n−1

i,j=1

is positive semidefinite. Since

[
1 − wiwj

1 − zizj
− 1

]n−1

i,j=1
= D

⎡

⎣
1 − wi

zi

wj

zj

1 − zizj

⎤

⎦
n−1

i,j=1

D∗, (7.3.14)

where

D = diag(z1, z2, . . . , zn−1),

the matrix

[
1 − wiwj

1 − zizj

]n

i,j=1
,

in which zn = wn = 0, is positive semidefinite if and only if the (n− 1)× (n− 1)
matrix

⎡

⎣
1 − wi

zi

wj

zj

1 − zizj

⎤

⎦
n−1

i,j=1
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is positive semidefinite (recall that z1, z2, . . . , zn−1 are nonzero since zn = 0 and
the zj are distinct). By the induction hypothesis, this occurs if and only if there is
a finite Blaschke product g of degree at most n − 1 that solves the (n − 1)-point
interpolation problem

g(zi) = wi

zi
, 1 � i � n− 1. (7.3.15)

If f ∈ S satisfies the n-point interpolation problem

f (zk) = wk, 1 � k � n− 1, and f (0) = 0, (7.3.16)

then g(z) = f (z)/z belongs to S (Schwarz Lemma) and is a solution to the (n−1)-
point interpolation problem (7.3.15). Conversely if g ∈ S solves (7.3.15), then

f (z) = zg(z) (7.3.17)

solves (7.3.16). See Remark 7.1 about what happens if |wj/zj | = 1 for some j .
Also observe that g is a finite Blaschke product of degree n− 1 if and only if f is a
finite Blaschke product of degree n. This completes the induction. ��

Among its many consequences, the preceding theorem can be used to provide
a new proof of the Carathéodory approximation theorem (Theorem 4.1.1); see
Exercise 7.12.

We now discuss the uniqueness of the solution to the Pick problem.

Theorem 7.3.18 Suppose

z1, z2, . . . , zn ∈ D

are distinct and w1, w2 . . . , wn ∈ C. If

P =
[

1 − wiwj

1 − zizj

]n

i,j=1

is positive semidefinite, then the n-point interpolation problem

f (zk) = wk, 1 � k � n, (7.3.19)

in which f ∈ S , has a unique solution if and only if detP = 0. In this case,
f is a finite Blaschke product of degree m = rankP . Conversely, if (7.3.19) is
satisfied by a finite Blaschke product of degree m < n, then the solution is unique
and m = rankP .

Proof As in the proof of Theorem 7.3.6, we may assume that zn = wn = 0. Then
(7.3.17) shows that (7.3.19) is uniquely solved by a finite Blaschke product of degree
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m if and only if the corresponding (n− 1)-point problem (7.3.15) for g is uniquely
solved by a finite Blaschke product of degree m−1. Moreover, (7.3.13) and (7.3.14)
show that

rankPn = 1 + rankPn−1,

in which we employ the notation of (7.3.8), namely

Pn = P(z1, . . . , zn;w1, . . . , wn)

and

Pn−1 = P(z1, . . . , zn−1; w1
z1
, . . . ,

wn−1
zn−1

).

The result now follows by induction.
If the interpolation problem is satisfied by a finite Blaschke product of degree

m < n, then after m repetitions of the procedure above, the remaining interpolation
problem must be solved by a finite Blaschke product of degree zero; that is, a
unique constant unimodular function. Thus, the corresponding matrix for the final
interpolation problem is identically zero, which shows that the solution is unique
and rankP = m. ��

Let

P =
[

1 − wiwj

1 − zizj

]n

i,j=1
,

in which z1, z2, . . . , zn ∈ D are distinct and w1, w2, . . . , wn ∈ C are arbitrary.
Theorem 7.3.18 tells us that if rankP = m < n and if we choose m + 1 indices
k1, k2, . . . , km+1 among 1, 2, . . . , n such that

det

[
1 − wkiwkj

1 − zki zkj

]m

i,j=1

> 0 and det

[
1 − wkiwkj

1 − zki zkj

]m+1

i,j=1

= 0,

then the conditions

f (zki ) = wki , 1 � i � m+ 1,

determine a unique finite Blaschke product f of degree m. Moreover, this finite
Blaschke product automatically satisfies f (zk) = wk for those indices k that are
not among k1, k2, . . . , km+1. Although this may seem surprising at first, one should
keep in mind that the hypothesis that rankP = m < n says that the remaining
conditions are dependent on the data zk1 , zk2 , . . . , zkm+1 and wk1 , wk2 , . . . , wkm+1 .
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If detP > 0, which is equivalent to rankP = n, then there are infinitely many
solutions. Indeed, if n = 1 and z1 = w1 = 0, then P is the 1 × 1 scalar matrix
[1] and any f ∈ S with f (0) = 0 is a solution. In particular, any finite Blaschke
product that vanishes at the origin is a solution.

Corollary 7.3.20 Suppose

z1, z2, . . . , zn ∈ D

are distinct and

w1, w2 . . . , wn ∈ D.

Suppose that

P =
[

1 − wiwj

1 − zizj

]n

i,j=1

is positive semidefinite and detP > 0. Fix zn+1 ∈ D\{z1, z2, . . . , zn}. Then

W = {f (zn+1) : f ∈ S , f (zk) = wk, 1 � k � n}

is a closed disk of positive radius in D. If f is a finite Blaschke product of degree n

that satisfies

f (zk) = wk, 1 � k � n,

then f (zn+1) ∈ ∂W . Conversely, if wn+1 ∈ ∂W , then there is a unique finite
Blaschke product f of degree n such that

f (zk) = wk, 1 � k � n+ 1.

Proof Recall from Lemma 2.1.6 that if W is a closed disk in D and τ ∈ Aut(D),
then τ (W) is also a disk in D. Moreover, τ maps ∂W onto ∂τ(W) bijectively.

Our proof is by induction. However, even the base case n = 1 is rich enough to
give a panoramic view of the whole process. As in the proof of Theorem 7.3.6, for
fixed z1, w1 ∈ D, there is an f ∈ S such that

f (z1) = w1 (7.3.21)

if and only if

f = τw1 ◦ g ◦ τz1 (7.3.22)
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for some g ∈ S and g(0) = 0. Therefore we obtain an infinite number of solutions
(7.3.22) to (7.3.21) as g runs over all the Schur class functions vanishing at the
origin. This parameterization of solutions implies that for z2 ∈ D\{z1}

W = {f (z2) : f ∈ S satisfies (7.3.21)}
= {τw1 ◦ g ◦ τz1(z2) : g ∈ S , g(0) = 0}
= {τw1(g(η)) : g ∈ S , g(0) = 0, η = τz1(z2)}. (7.3.23)

By the Schwarz Lemma (Lemma 1.1.1)

{g(η) : g ∈ S , g(0) = 0} = D(0, |η|)−.
Furthermore, if ζ ∈ ∂D(0, |η|)− and g ∈ S with g(0) = 0 and g(η) = ζ , then
|g(η)| = |η|. Thus, g(z) = γ z for some γ ∈ T by the Schwarz Lemma. In fact,
each point on ∂D(0, |η|)− corresponds to a unique γ ∈ T via g(z) = γ z.

By the remarks at the beginning of the proof,

W = τw1(D(0, |η|)−)
is a closed disk in D and

∂W = τw1(∂D(0, |η|)−). (7.3.24)

Suppose that f is a finite Blaschke product of degree one (an automorphism)
with f (z1) = w1. Then by (7.3.22) f = τw1 ◦ ργ ◦ τz1 for some γ ∈ T. By (7.3.23)
and (7.3.24) we have

f (z2) = τw1(γ η) ∈ ∂W.

Conversely if w2 ∈ ∂W , then w2 = τw1(γ η) for some γ ∈ T. If

f = τw1 ◦ ργ ◦ τz1 ,

then f is a finite Blaschke product of degree one with f (z1) = w1 and

f (z2) = τw1(γ τz1(z2)) = τw1(γ η) = w2.

This establishes the base case n = 1.
For the inductive step, suppose that z1, z2, . . . , zn ∈ D and w1, w2, . . . , wn ∈ D

are given. Then f ∈ S is a solution to

f (zj ) = wj , 1 � j � n, (7.3.25)

if and only if

f = τwn ◦ (zg) ◦ τzn (7.3.26)
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for some g ∈ S with

g(z′j ) = w′
j , 1 � j � n− 1, (7.3.27)

where

z′j = τzn(zj ) and w′
j =

τzn(wj )

τwn(zj )
.

If zn+1 ∈ D\{z1, z2, . . . , zn}, then

W = {f (zn+1) : f ∈ S satisfies (7.3.25)}
= {τwn(z

′
n+1g(z

′
n+1)) : g ∈ S satisfies (7.3.27)},

where z′n+1 = τzn(zn+1) �= 0. As g ∈ S runs through the solutions to (7.3.27), the
inductive hypothesis says that

{g(z′n+1) : g ∈ S satisfies (7.3.27)}

is a closed disk in D and each point on its boundary is of the form g(z′n+1), in which
g is the unique finite Blaschke product of degree n − 1 satisfying (7.3.27). Thus,
W is also a closed disk in D and, considering (7.3.26), each point of its boundary
is of the form f (zn+1), where f is the unique finite Blaschke product of degree n

satisfying (7.3.25).
Conversely, if f is a Blaschke product of degree n with

f (zj ) = wj , 1 � j � n+ 1,

then, via (7.3.26), there is a finite Blaschke product g of degree n− 1 for which

g(z′j ) = w′
j , 1 � j � n− 1,

and

g(z′n+1) = w′
n+1.

Therefore,

w′
n+1 ∈ ∂{g(z′n+) : g satisfies (7.3.27)},

which in turn implies that wn+1 ∈ ∂W . ��
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7.4 Boundary Interpolation: Cantor–Phelps Solution

Given distinct ζ1, ζ2, . . . , ζn ∈ T and arbitrary ξ1, ξ2, . . . , ξn ∈ T, is there a finite
Blaschke product B so that

B(ζk) = ξk, 1 � k � n?

It turns out that this interpolation problem is always solvable. In this section, we
provide an existence proof that involves the Cantor–Phelps theorem, a remarkable
general result. In the next section, we give a more constructive approach.

Let S be a semigroup, that is, a set endowed with an associative binary operation
and an identity element. Examples include N with the operation of multiplication
or Mn with the operation of (matrix) multiplication. The semigroup that will be
important here is T under multiplication. In fact, T is a group since each z ∈ T has
the multiplicative inverse z ∈ T.

Let F be a collection of functions from a semigroup S into itself. If f, g ∈ F ,
then both f ◦g and fg are well-defined functions on S. More precisely, when writing
(fg)(α) = f (α)g(α) we use the binary operation on S to calculate f (α)g(α). In the
following, we consider families F that are closed with respect to both operations;
that is,

f, g ∈ F �⇒ f ◦ g ∈ F and fg ∈ F .

Definition 7.4.1 Let F be a collection of functions from a semigroup S into itself.
Then F is n-transitive if for any n distinct α1, α2, · · · , αn ∈ S and any arbitrary
β1, β2, . . . , βn ∈ S, there is an f ∈ F such that

f (αi) = βi, 1 � i � n.

We say that F is transitive if it is n-transitive for all n � 1. Although transitive
families can be defined without the assumption that the common domain S forms
a semigroup, for our purposes, we also require F to be closed under pointwise
products.

Is there a family that is n-transitive but not (n + 1)-transitive? For n = 1, the
answer is yes: the family of all constant functions on a semigroup is 1-transitive but
not 2-transitive. See Exercise 7.13 for an example of a family that is 2-transitive but
not 3-transitive. The following result shows that under some mild conditions, any
3-transitive family is transitive.

Lemma 7.4.2 (Cantor–Phelps [14]) Let S be a semigroup with identity element 1
and suppose that S contains an element δ such that 1, δ, δ2 are distinct elements of
S. If F is a collection of functions from S into itself that is closed under composition,
closed under pointwise multiplication, and 3-transitive, then F is transitive.
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Proof Fix n � 4. Given any n distinct elements α1, α2, . . . , αn ∈ S and arbitrary
β1, β2, . . . , βn ∈ S, we need to show that there is an f ∈ F such that

f (αi) = βi, 1 � i � n. (7.4.3)

Since S has an identity element and F is closed under pointwise multiplication, it
suffices to show that there are f1, f2, . . . , fn ∈ F such that

fj (αi) =
{
βj if i = j,

1 if i �= j.

Indeed, the function

f = f1f2 · · · fn (7.4.4)

so constructed will solve the interpolation problem (7.4.3). We now show the
existence of f1. The other cases are similar.

Suppose that F is (n− 1)-transitive. Then there are g, h ∈ F such that g(α1) =
h(α1) = δ,

g(αi) = 1, 2 � i � n− 1,

and

h(αi) = 1, 3 � i � n;

we have no control over g(αn) and h(α2). For simplicity, let

γ = g(αn) and γ ′ = h(α2).

Based on the values of γ and γ ′ there are three special cases.

(a) Suppose that γ �= δ. Since F is 3-transitive, there is a k ∈ F such that k(δ) =
β1 and k(1) = k(γ ) = 1. Let f1 = k ◦ g.

(b) Suppose that γ ′ �= δ. This is similar to the preceding case. We have a k ∈ F
such that k(δ) = β1 and k(1) = k(γ ′) = 1. Let f1 = k ◦ h.

(c) Suppose that γ = γ ′ = δ. In this situation, gh ∈ F maps α1 to δ2, both α2
and αn to δ, and the other arguments to 1. Hence, we pick up a k ∈ F such that
k(δ2) = β1 and k(1) = k(δ) = 1. Now take f1 = k ◦ (gh).

Thus, f1 has the desired properties and hence F is n-transitive.
Since F is 3-transitive and since F is n-transitive whenever it is (n − 1)-

transitive, induction guarantees that F is transitive. ��
As a consequence of Lemma 7.4.2, we obtain an existence result for boundary

interpolation by finite Blaschke products.



7.4 Boundary Interpolation: Cantor–Phelps Solution 147

Theorem 7.4.5 The family of all finite Blaschke products, considered as functions
on T, is transitive.

Proof The unit circle T is a group with identity 1. If δ = i,then 1, δ, δ2 are distinct.
Theorem 3.6.2 ensures that the family F of all finite Blaschke products is closed
under pointwise multiplication and composition. By Lemma 7.4.2, it suffices to
show that F is 3-transitive.

First suppose that α1, α2 ∈ T are distinct and β1, β2 ∈ T are arbitrary. By pre-
and post-composing the desired interpolating function with appropriate rotations
(which are finite Blaschke products of order 1), we may assume that

α2 = α1, β2 = β1, Imα1 > 0, and Imβ1 � 0. (7.4.6)

There are two cases to consider.

(a) If β1 �= β2, let

a = β1 − α1

1 − β1α1
.

Then a = a and

1 − a2 = 4(Imα1)(Imβ1)

|1 − α1β1|2 > 0

by (7.4.6). Thus, a ∈ (−1, 1) and the Mobius transformation

f (z) = z− a

1 − az
,

satisfies f (α1) = β1 and f (α2) = β2.
(b) If β1 = β2, then (7.4.6) implies that β1 = β2 = 1. Although the constant

function 1 solves the two-point interpolation problem f (α1) = f (α2) = 1, it is
not ideal for our future applications. Use (a) to produce a disk automorphism g

such that g(α1) = 1 and g(α2) = −1. Then f = g2 is a finite Blaschke product
of degree 2 such that f (α1) = f (α2) = 1. Since f is a Blaschke product of
degree 2, Theorem 3.4.10 implies that f (α) �= 1 for any α ∈ T\{α1, α2}.

Suppose that α1, α2, α3 ∈ T are distinct and β1, β2, β3 ∈ T are arbitrary.
Mimicking the construction (7.4.4) in the proof of Lemma 7.4.2, we may assume
that β1 = β2 = 1 and β3 ∈ T is arbitrary. By (b) of the preceding discussion, there
is a finite Blaschke product g such that g(α1) = g(α2) = 1 and g(α3) �= 1. By (a),
there is an h ∈ Aut(D) such that h(1) = 1 and h(g(α3)) = β3. Then f = h ◦ g

satisfies f (αi) = βi for i = 1, 2, 3. Thus, F is 3-transitive. ��
We repeat the content of Theorem 7.4.5 in the more familiar language of

interpolation below. This version is more appropriate in our context.
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Theorem 7.4.7 Let ζ1, ζ2, . . . , ζn ∈ T be distinct and let ξ1, ξ2, . . . , ξn ∈ T be
arbitrary. Then there is a finite Blaschke product B such that

B(ζi) = ξi, 1 � i � n. (7.4.8)

Another nonconstructive approach to the preceding theorem that also optimizes
the degree of the interpolating Blaschke product is due to Jones and Ruscheweyh
[82]. See also [78].

7.5 Boundary Interpolation: A Constructive Solution

Theorem 7.4.7, which concerns boundary interpolation by finite Blaschke products,
deserves more attention. The proof that we gave, which depends upon the Cantor–
Phelps lemma (Lemma 7.4.2), does not provide a transparent construction. We
provide a more constructive approach in this section.

Let ζ1, ζ2, . . . , ζn ∈ T be distinct and let ξ1, ξ2, . . . , ξn ∈ T be arbitrary.
We wish to produce a finite Blaschke product B that satisfies (7.4.8). Pick ζ ∈
T\{ζ1, ζ2, . . . , ζn}. We apply the Möbius transformation

ϕ(z) = i
ζ + z

ζ − z

to transfer our problem from T to R. Observe how ϕ provides bijective mappings
between D and C+, between C\D− and C−, and between T and R̂ = R ∪ {∞}.

One constructive approach to our interpolation problem originates in [138].
Exercise 7.5 outlines the construction of a rational function f so that B = ϕ−1◦f ◦ϕ
is a finite Blaschke product that solves (7.4.8). A closer look at the construction
reveals that that the order of f , and hence the order of B, is at most n2−n. However,
it is natural to wonder if we can do better.

There are n free parameters that determine a Blaschke product of order n − 1;
these are the n−1 zeros and a unimodular constant factor. Consequently, we expect
that the boundary interpolation problem (7.4.8) of Theorem 7.4.7 has a solution that
is a finite Blaschke product of order at most n−1. This is obtained using the methods
introduced in [65], which we describe below.

As above, apply the conformal mapping ϕ to reduce the problem to an
interpolation problem on R. Given distinct α1, α2, . . . , αn ∈ R and arbitrary
β1, β2, . . . , βn ∈ R, we seek a rational function f of order at most n− 1 such that

f (αi) = βi, 1 � i � n;

moreover, f must map C+, C−, and R̂ into themselves. The idea is to apply
Corollary 7.2.6 with some of the αk playing the role of the xk and the rest the acting
as aks. Hence the function f would be of order at most n− 1.
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Without loss of generality, we assume that

α1 < α2 < · · · < αn.

If all of the βk are the same, then the interpolation problem can be solved by a
constant function. If not, there is a j such that

βj �= βj+1 = βj+2 = · · · = βn.

We partition α1, α2, . . . , αn into two sets E1 and E2 defined by

E1 = {αi : βi = βj } and E2 = {α1, α2, . . . , αn}\E1;

observe that each set is nonempty and

|E1| + |E2| = n.

If the points of E1 and E2 are interlaced, then their elements can play the role of
aks and xks, respectively, in Corollary 7.2.6. In this case, we are done. In general,
there is no reason to believe that the elements of E1 and E2 interlace appropriately.
If this occurs, then we must add extra points in order to interlace the elements of E1
and E2.

Suppose that E1 is partitioned into m nonempty subsets so that the elements of
each subset are adjacent, with respect to the natural ordering on R, and so that two
neighboring subsets are separated by at least one element of E2. Denote the number
of points in these subsets by �1, �2, . . . , �m and observe that

�1 + · · · + �m = |E1|.

The kth subset consists of �k points

αik < αik+1 < · · · < αik+�k

with αik+�k+1 ∈ E2. If i1 > 1, then αik−1 ∈ E2. Select �k − 1 real numbers
t1, t2, . . . , t�k−1 such that

αik < t1 < αik+1 < t2 < · · · < t�k−1 < αik+�k

and let

E2 = E2 ∪
( m⋃

k=1

{t1, t2, . . . , t�k−1}
)
.

Then

|E2| = |E2| + (�1 − 1)+ · · · + (�m − 1) = |E2| + |E1| −m = n−m.
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Now consider E1 and E2 together. The elements of E1 and E2 are intended to
play the role of ak and xk in Corollary 7.2.6. At present, we have sufficiently many
candidates xk so that no two candidates ak are adjacent. However, some of the
elements of E1 may be adjacent to each other. Suppose that these determine m′
line segments, none of which contain any elements of E1. Denote the number of
elements of these segments by �′1, �′2, . . . , �′m′ so that

�′1 + · · · + �′m′ = |E2| = n−m.

Since αn �∈ E1, we have

m′ =
{
|E1| if α1 ∈ E1,

|E1| + 1 if α1 /∈ E1.

As we did above for E2, enlarge E1 to obtain an E1 so that the elements of E1 and
E2 are interlaced. Then

|E1| = |E1| + (�′1 − 1)+ · · · + (�′m′ − 1) = |E1| −m′ + n−m.

There are two possibilities.

(a) If |E1| = m′, then we have two interlaced sets E1 and E2, each with n − m

elements, and so that the first element of E1 ∪ E2 belongs to E1.
(b) If |E1| = m′ −1, then the two sets E1 and E2 are interlaced, but the first element

of E1 ∪ E2 belongs to E2. In this case, one last modification is needed. Pick an
element that is smaller than any point in E1∪E2 and add it to E1. For simplicity,
we label this new set E1. Then we have two interlaced sets E1 and E2, each
having n−m elements, and the first element of E1 ∪ E2 belongs to E1.

All the elements of E2 should be mapped to the yj s. Some elements of E1 are the
αk of Corollary 7.2.6 and we know where they must be mapped to. For the image of
the rest, pick arbitrary real numbers R. Then Corollary 7.2.6 yields the existence of
a rational function f whose order is n − m that performs the desired interpolation.
If m > 1, we can add m − 1 extra appropriate points to both E1 and E2 so that we
obtain a solution of order n− 1.

As the construction above shows, if {β1, β2, . . . , βn} is not a singleton, then it
is possible to find a Blaschke product B of order n − 1 that performs the boundary
interpolation (7.4.8). This hypothesis cannot be relaxed. For example, if α1 = 1 and
α2 = −1, then there is no Blaschke product B of degree one such that β = B(1) =
B(−1); this is a consequence of Theorem 3.4.10. As a matter of fact, if

B(z) = γ
z0 − z

1 − z0 z
, γ ∈ T, z0 ∈ D,
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then the assumption B(1) = B(−1) implies |z0|2 = 1, which is absurd. Hence,
the only solution for the interpolation problem is the unimodular constant function
B ≡ β.

7.6 Exercises

7.1 Show that the Vandermonde matrix

V (z1, z2, . . . , zn) =

⎡

⎢⎢⎢⎣

1 z1 z2
1 · · · zn−1

1
1 z2 z2

2 · · · zn−1
2

...
...

...
. . .

...

1 zn z2
n · · · zn−1

n

⎤

⎥⎥⎥⎦

is invertible if and only if z1, z2, . . . , zn are distinct. Use this to prove the Lagrange
interpolation theorem (Theorem 7.1.1).

7.2 Let A ∈ Mn with distinct eigenvalues λ1, λ2, . . . , λr and corresponding eigen-
vectors x1, x2, . . . , xr ∈ C

n. Prove that x1, x2, . . . , xr are linearly independent.
Hint: Suppose that c1x1 + c2x2 + · · · + crxr = 0. Use Lagrange interpolating
polynomials to show that all of the cj vanish.

7.3 Suppose that A ∈ Mn has distinct eigenvalues. Let {A}′ denote the commutant
of A, the set of all matrices that commute with A. Prove that {A}′ = {p(A) :
p is a polynomial} and dim{A}′ = n.
Hint: Use the Lagrange interpolation theorem and the fact that A is diagonalizable.

7.4 Suppose that A1, A2, . . . , Ar ∈ Mn are normal matrices: A∗
jAj = AjA

∗
j for

each j . Prove that there is a polynomial p so that A∗
i = p(Ai) for i = 1, 2, . . . , k.

Hint: Use the Lagrange interpolation theorem.

7.5 (Younis [138]) Let x1, x2, . . . , xn be a finite sequence of distinct real numbers,
and let y1, y2, . . . , yn be real numbers. Let

pk(z) = yk −
n∑

j=1
j �=k

1

xj − xk
+

n∑

j=1
j �=k

1

xj − z

and

qk(z) = −y2
k

z

for 1 � k � n. Define

f = (q1 ◦ p1)+ (q2 ◦ p2)+ · · · + (qn ◦ pn).
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Show that f is a rational function that satisfies the following.

(a) f (C+) ⊆ C+.
(b) f (R̂) ⊆ R̂. In particular, f only has real poles and real zeros.
(c) f (xk) = yk for all 1 � k � n.

Give an upper bound for the order of f .

Remark This result is a weaker version of Corollary 7.2.6. However, its proof is
simpler.

7.6 Show that A ∈ Mn is positive semidefinite if and only if A = A∗ and all of its
eigenvalues are nonnegative.

7.7 Suppose that A ∈ Mn and positive semidefinite and S is m × n. (a) Show that
SAS∗ is positive semidefinite. (b) If S ∈ Mn is invertible, show that A is positive
semidefinite if and only if SAS∗ is positive semidefinite.

7.8 Verify (7.3.11) and (7.3.12).

7.9 Suppose that z1, z2, z3 ∈ D are distinct and w1, w2, w3 ∈ D are arbitrary. If
there are finite Blaschke products f1, f2, f3 so that fj (zi) = wi for i �= j , does
there exist a finite Blaschke product f so that f (zi) = wi for i = 1, 2, 3?

7.10 Let z1, z2, . . . , zn be a set of distinct points in C. For each i = 1, 2, . . . , n, let
wij , for j = 0, 1, . . . , J (i), be an arbitrary set of complex numbers. Find the unique
polynomial of degree n− 1 + J (1)+ · · · + J (n) such that

f (j)(zi) = wij , 1 � i � n, 0 � j � J (i).

This is known as Hermite interpolation [87].
Hint: Consider linear combination of polynomials

(z− z1)
k1(z− z2)

k2 · · · (z− zn)
kn .

Remark The case studied in this chapter (Lagrange interpolation) corresponds to
J (i) = 0 for all i.

7.11 Let z1, z2, z3 ∈ C be distinct and let w1, w2, w3 ∈ C be arbitrary. Show that
there is a unique Möbius transformation f such that f (zk) = wk for k = 1, 2, 3.
Hint: Consider

(w − w1)(w3 − w2)

(w − w2)(w3 − w1)
= (z− z1)(z3 − z2)

(z− z2)(z3 − z1)
.

7.12 Use the Pick interpolation theorem (Theorem 7.3.6) to give a new proof of
Carathéodory’s theorem (Theorem 4.1.1).
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Hint: Pick z1, z2, . . . , zn to be the vertices of a regular n-gon that is inscribed in the
circle |z| = ε and find a finite Blaschke product B such that B(zk) = f (zk) for all
k. Then f − B = Cg, where g ∈ S and C is a finite Blaschke product with zeros
at zk . Hence |f − B| � |C|. Fix a compact set K and let ε → 0 and n →∞.

7.13 Let F be the family of all linear maps on R with the operation of composition.
Show that F is 2-transitive, but not 3-transitive.

7.14 The goal of this exercise is to show that in Lemma 7.4.2 the requirement that
1, β, β2 are distinct cannot be relaxed. Let G = {1, a, b, c} be the Klein four-group,
whose multiplication table is

× 1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

and let F be the family of all functions f : G → G such that

f (1)× f (a)× f (b)× f (c) = 1.

Observe that β2 = 1 for each β ∈ G. Prove the following.

(i) F is closed under pointwise multiplication.
(ii) F is closed under composition.

(iii) F is 3-transitive.
(iv) F is not 4-transitive.

Hint: Observe that F contains precisely the following functions:

(a) the constant functions;
(b) the bijective functions;
(c) those functions whose range contains 2 elements of G, and each element in the

range is the image of two elements in the domain.

7.15 Let z1, z2, . . . , zn and ζ1, ζ2, . . . , ζn be elements of T that satisfy

0 � arg ζ1 < arg z1 < arg ζ2 < arg z2 < · · · < arg ζn < arg zn < 2π,

and let w0, w1, . . . , wn ∈ T be such that w0 �= wk for 1 � k � n. Show that there
is a finite Blaschke product of degree n such that

B(zk) = wk, 1 � k � n,

and

B(ζk) = w0, 1 � k � n.

Hint: Use Corollary 7.2.6.



Chapter 8
The Bohr Radius

The Bohr radius was examined over a century ago by H. Bohr [9] and it is still a
source of inspiration and further studies. We take up this subject for two reasons.
First, the solution to certain extremal problems involves either disk automorphisms
or a finite Blaschke product of order two. Second, there are several questions in this
area that are not yet settled and it is conjectured that the solution to these problems
should involve a finite Blaschke product.

Recall from (1.0.2) the Schur class S of all analytic functions f : D → D
−.

For f ∈ S with Taylor series expansion

f (z) =
∞∑

n=0

anz
n

at the origin, one can ask about the possible values of r ∈ [0, 1) such that

∞∑

n=0

|an|rn � 1, f ∈ S . (8.0.1)

This inequality holds when r = 0 since

|a0| = |f (0)| � 1, f ∈ S .

H. Bohr [9] observed that (8.0.1) is true when r ∈ [0, 1
6 ]. This work was expanded

further by M. Riesz, Schur, and Wiener [32] who independently showed that (8.0.1)
holds when r ∈ [0, 1

3 ] and that 1
3 , now called the Bohr radius B0, is the best possible

constant.
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8.1 The Classical Bohr Radius B0

In this section we present four equivalent definitions of the Bohr radius B0. Each
point of view has its own merits and is important for further generalizations.
In subsequent sections, we will provide several proofs of the fact that B0 = 1

3 .
For f ∈ S , let

m(f, r) :=
∞∑

n=0

|an|rn, r ∈ [0, 1). (8.1.1)

Observe that for each f ∈ S the function r �→ m(f, r) is increasing on [0, 1) with

m(f, 0) = |a0| � 1.

It is important to note that for some f ∈ S , the function m(f, r) assumes values
larger than 1. To see this, let b be the disk automorphism

b(z) = a − z

1 − az
, (8.1.2)

in which a is a free parameter in (0, 1). Then b ∈ S and a geometric series
computation confirms that

b(z) = a + (a2 − 1)
∞∑

n=1

an−1zn. (8.1.3)

Thus,

m(b, r) = a + (1 − 2a2)r

1 − ar
, r ∈ [0, 1), (8.1.4)

and hence m(b, r) > 1 whenever r > (1 + 2a)−1. This allows us to make the
following definition.

Definition 8.1.5 The Bohr radius is the unique value B0 ∈ [0, 1] that satisfies the
following.

(a) For all f =∑∞
n=0 anz

n ∈ S ,

∞∑

n=0

|an|rn � 1, r ∈ [0,B0].
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(b) For each r ∈ (B0, 1), there is an f =∑∞
n=0 anz

n ∈ S such that

∞∑

n=0

|an|rn > 1.

Although we have claimed, in our introductory remarks, that B0 = 1
3 , at this

point we can only conclude that B0 exists and belongs to [0, 1). This will be
remedied shortly.

Definition 8.1.6 Suppose that f = ∑∞
n=0 anz

n ∈ S . If
∑∞

n=0 |an| > 1, define
c = c(f ) to be the unique value in [0, 1) such that

m(f, c) = 1; (8.1.7)

otherwise, let c(f ) = 1. For example, (8.1.4) shows that m(b, c(b)) = 1 when

c(b) = 1

1 + 2a
. (8.1.8)

Also define

M(S , r) := sup
f∈S

m(f, r), r ∈ [0, 1), (8.1.9)

and observe that M(S , 0) = 1.

Since M(S , r) is an increasing function of r , we conclude that M(S , r) � 1
for all r . Although the notation S in M(S , r) might appear redundant, later on we
will define a similar quantity for sets of functions other than the Schur class S . We
leave it to the reader as an exercise (see Exercise 8.1) to prove the following.

Proposition 8.1.10 The Bohr radius B0 satisfies the following.

(a) B0 = inf{c(f ) : f ∈ S }.
(b) B0 is the value for which M(S , r) = 1 for r ∈ [0,B0] and M(S , r) > 1 for

r ∈ (B0, 1).
(c) B0 is the largest r ∈ [0, 1) for which M(S , r) = 1.

If f is an arbitrary bounded analytic function on D, not necessarily in the Schur
class, then

m(f, r) � M(S , r)‖f ‖∞, r ∈ [0, 1). (8.1.11)

Therefore, computing or estimating M(S , r) is of relevance for understanding the
rate of growth of bounded analytic functions. This is not an easy task. In fact,
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a precise formula for M(S , r) for all values of r ∈ [0, 1) is unknown. Some
elementary upper and lower bounds for M(S , r) are provided below. We also
provide a formula for M(S , r) for certain values of r .

Before getting into the proof of the following lemma, the reader may wish to
review Fatou’s theorem concerning radial boundary values of bounded analytic
functions (Theorem A.3.1 in Appendix A.3) along with some basic facts about
Hardy spaces; see (A.4.1) in Appendix A.4.

Lemma 8.1.12 (Upper Bound)

M(S , r) � 1√
1 − r2

, r ∈ [0, 1).

Proof Let f =∑∞
n=0 anz

n ∈ S . By the Cauchy–Schwarz inequality,

m(f, r) =
∞∑

n=0

|an|rn

�
( ∞∑

n=0

|an|2
) 1

2
( ∞∑

n=0

r2n

) 1
2

=
(∫ 2π

0
|f (eiθ )|2 dθ

2π

) 1
2 1√

1 − r2
(by (A.4.1))

� ‖f ‖∞ · 1√
1 − r2

(by Theorem A.3.1)

� 1√
1 − r2

.

Now take the supremum with respect to f ∈ S and obtain the desired result. ��
Lemma 8.1.13 (Lower Bound)

M(S , r) �

⎧
⎪⎨

⎪⎩

1 if 0 � r � 1
3 ,

3 −√8(1 − r2)

r
if 1

3 � r < 1.

Proof The constant function f ≡ 1 belongs to S and so

m(S , r) � 1, r ∈ [0, 1).

We now obtain a better estimate for r � 1
3 by using the automorphism b

from (8.1.2). Then (8.1.4) provides



8.2 Computing B0 159

Fig. 8.1 The lower bound in
Lemma 8.1.13

0
1
3

2
3

1

1

2

3

M(S , r) � a + (1 − 2a2)r

1 − ar
, r ∈ [0, 1). (8.1.14)

For each fixed r , we maximize the right-hand side in the preceding inequality. If
r ∈ [0, 1

3 ], then (8.1.14) yields M(S , r) � 1, which is already known. When
r � 1

3 , the optimal value of

a + (1 − 2a2)r

1 − ar
(8.1.15)

occurs when

a = 2 −√2(1 − r2)

2r
.

Substituting a into (8.1.14) yields the required lower bound; see Fig. 8.1. ��

8.2 Computing B0

We provide two proofs of the fact B0 = 1
3 . Our first proof is from [110] and relies

on the following lemma that handles a special case.

Lemma 8.2.1 (Paulsen–Popescu–Singh) Let

f =
∞∑

n=0

anz
n
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be analytic on D. If Re f � 1 and f (0) � 0, then m(f, r) � 1 whenever r ∈ [0, 1
3 ].

Proof For fixed r ∈ [0, 1) and n � 1,

1

π

∫ 2π

0
Re
(

1 − f (reiθ )
)
e−inθ dθ

= 1

π

∫ 2π

0

(
1 − 1

2
f (reiθ )− 1

2
f (reiθ )

)
e−inθ dθ

= 1

π

∫ 2π

0

(
1 − 1

2

∞∑

k=0

akr
keikθ − 1

2

∞∑

k=0

akr
ke−ikθ

)
e−inθ dθ

= 1

π

∫ 2π

0
e−inθ dθ −

∞∑

k=0

akr
k

∫ 2π

0
ei(k−n)θ dθ

2π
−

∞∑

k=0

akr
k

∫ 2π

0
ei(−k−n)θ dθ

2π

= −anr
n

by (A.4.4). Since Re f � 1 and a0 = f (0) > 0,

|an|rn � 1

π

∫ 2π

0
|Re(1 − f (reiθ ))|dθ

= 1

π

∫ 2π

0
(1 − Re f (reiθ ))dθ

= 2(1 − a0) (8.2.2)

by the mean value theorem for harmonic functions, or a power series computation
based upon (A.4.4). Let r → 1− to obtain the important estimate

|an| � 2(1 − a0), n � 1. (8.2.3)

This can be strengthened significantly; see Lemma 8.2.8 below. If r ∈ [0, 1
3 ], then

m(f, r) =
∞∑

n=0

|an|rn � a0 + 2(1 − a0)

∞∑

n=1

1

3n
= 1. ��

We continue to follow [110] and apply Lemma 8.2.1 to obtain the following.
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Theorem 8.2.4 B0 = 1
3 .

Proof If f ∈ S , then Re f � 1 and a suitable unimodular constant multiple of f is
nonnegative at the origin. Then (8.2.3) implies m(f, r) � 1 for r ∈ [0, 1

3 ] as above.
Taking the supremum over f ∈ S yields

M(S , r) � 1, r ∈ [0, 1
3 ].

Thus, B0 � 1
3 . Now let b denote the automorphism (8.1.2) and use (8.1.8) to get

B0 = inf
f∈S

c(f ) � inf
0�a<1

1

1 + 2a
= 1

3
. (8.2.5)

This completes the proof. ��
The proof above provides disk automorphisms b for which c(b) is arbitrarily

close to 1
3 . It is natural to wonder whether there is an f ∈ S such that c(f ) = 1

3 .
The following corollary shows that no such extremal function exists.

Corollary 8.2.6 There is no f ∈ S for which c(f ) = 1
3 .

Proof Suppose toward a contradiction that f = ∑∞
n=0 anz

n ∈ S and c(f ) = 1
3 .

Then (8.2.3) yields

1 =
∞∑

n=0

|an|( 1
3 )

n � |a0| + 2(1 − |a0|)
∞∑

n=1

1

3n
= 1

and hence

|an| = 2(1 − |a0|), n � 1. (8.2.7)

However, f ∈ S and hence Parseval’s formula (A.4.3) ensures that

∞∑

n=0

|an|2 =
∫ 2π

0
|f (eiθ )|2 dθ

2π
� 1.

In particular, an → 0, which along with (8.2.7), shows that |a0| = 1 and an = 0
for all n � 1. In other words, f is a constant function that satisfies c(f ) = 1, a
contradiction. ��

We now provide another proof of Theorem 8.2.4, also from [110]. This proof
employs Wiener’s inequality (Lemma 8.2.8), which is a strengthened version
of (8.2.3). The advantage of this second method is that it permits us to compute
some of the other Bohr coefficients; see Sect. 8.3.



162 8 The Bohr Radius

Lemma 8.2.8 (Wiener’s Inequality) If

f =
∞∑

n=0

anz
n ∈ S ,

then

|an| � 1 − |a0|2, n � 1.

Proof Since f ∈ S , we may consider the bounded linear operator on the Hardy
space H 2 (see Appendix A.4) given by

Tf : H 2 → H 2, Tf g = fg;

this is a special example of a Toeplitz operator (see Appendix A.7). In fact, the
operator norm ‖Tf ‖ of Tf satisfies ‖Tf ‖ = ‖f ‖∞ (Theorem A.7.3). We can
identify Tf with its matrix representation with respect to the orthonormal basis
1, z, z2, . . . of H 2, that is,

Tf =

⎡

⎢⎢⎢⎢⎢⎣

a0 0 0 0 · · ·
a1 a0 0 0 · · ·
a2 a1 a0 0 · · ·
a3 a2 a1 a0 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎦
; (8.2.9)

see Exercise 8.4. Let V = span{1, zn} and let T be the compression of Tf to V ;
that is T = PV Tf |V , in which PV is the orthogonal projection of H 2 onto V .
Then (8.2.9) reveals that

T =
[
a0 0
an a0

]
,

where we have identified T with its matrix representation with respect to the
orthonormal basis {1, zn} of V . Since ‖T ‖ � ‖Tf ‖ � ‖f ‖∞ � 1, it follows that T
is a contraction. This occurs precisely when

I − T ∗T =
[

1 − |a0|2 − |an|2 −a0an

−a0an 1 − |a0|2
]

is positive semidefinite; see (A.6.5). A computation confirms that

0 � det(I − T ∗T ) = (1 − |a0|2)2 − |an|2,

which implies the desired result. ��
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Proof (Second Proof of Theorem 8.2.4) Using disk automorphisms, we proved
in (8.2.5) that B0 � 1

3 . Hence it suffices to establish the reverse inequality. If
f =∑∞

n=0 anz
n ∈ S , then Lemma 8.2.8 yields

m(f, r) =
∞∑

n=0

|an|rn

� |a0| + (1 − |a0|2)
∞∑

n=1

rn

= |a0| + (1 − |a0|2) r

1 − r

whenever r ∈ [0, 1). If r = 1
3 , then

m(f, 1
3 ) � |a0| + 1

2 (1 − |a0|2),

in which |a0| � 1. Since the maximum of the function

x �→ x + 1

2
(1 − x2)

on [0, 1] is 1, we conclude that m(f, 1
3 ) � 1. Take the supremum over f ∈ S to

obtain M(S , 1
3 ) � 1. ��

8.3 The Generalized Bohr Radius Bk

We follow the path laid out in Sect. 8.1 and generalize the concept of the Bohr radius,
where the Schur class S is replaced by

zkS = {zkf : f ∈ S };

that is,

zkS = {f ∈ S : f (0) = f ′(0) = · · · = f (k−1)(0) = 0}. (8.3.1)

Definition 8.3.2 Fix any integer k � 0. The Bohr radius of order k, denoted by Bk ,
is the constant Bk ∈ [0, 1] that satisfies the following.

(a) For each f =∑∞
n=0 anz

n+k ∈ zkS ,
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∞∑

n=0

|an|rn+k � 1, r ∈ [0,Bk].

(b) For each r ∈ (Bk, 1), there is an f =∑∞
n=0 anz

n+k ∈ zkS such that

∞∑

n=0

|an|rn+k > 1.

Implicit in the preceding definition is the existence and uniqueness of the Bk . An
approach analogous to that used in the discussion prior to Definition 8.1.5 justifies
this apparent oversight; we leave the details to the reader. In terms of the quantity
c(f ) from (8.1.7), we may write

Bk = inf
f∈S

c(zkf ).

In terms of the quantity M(S , r) from (8.1.9), for k � 1 it follows that Bk is
the unique solution to

rkM(S , r) = 1. (8.3.3)

Indeed, for k � 1 the function r �→ rkM(S , r) is strictly increasing and hence
rkM(S , r) = 1 has a unique solution in (0, 1). Observe that Definition 8.3.2 is
equivalent to the classical one when k = 0. For k = 0, we have M(S , r) ≡ 1 on
the interval [0,B0] and that is why in Proposition 8.1.10 we insisted that B0 is the
largest solution to M(S , r) = 1.

From (8.3.1) we may also say that

Bk = inf{c(f ) : f ∈ S , f (0) = f ′(0) = · · · = f (k−1)(0) = 0}.

Since rk+1 < rk on (0, 1) and M(S , r) is increasing and satisfies M(S , r) > 1
for r > B0, it follows that Bk < Bk+1. Since M(S , r) → ∞ as r → 1− by
(8.6.17), we also see that Bk → 1 as k →∞.

We now compute the Bohr coefficient B1. The estimate

0.6 < B1 < 0.7071

was first obtained by Ricci [117]. Fields Medalist Enrico Bombieri [10] gave an
explicit formula for M(S , r) when r ∈ [ 1

3 ,
1√
2
]. This result is Theorem 8.6.15 and

in particular it implies that B1 = 1√
2
. We follow Paulsen–Popescu–Singh [110] and

use the upper and lower bounds provided earlier to evaluate B1.

Theorem 8.3.4 B1 = 1√
2

.
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Proof By Lemma 8.1.12,

M(S , 1√
2
) �

√
2,

and, by Lemma 8.1.13,

M(S , 1√
2
) �

√
2.

Therefore

1√
2
M(S , 1√

2
) = 1.

This identity, together with (8.3.3), implies that B1 = 1√
2
. ��

8.4 A Localized Bohr Radius

Let us introduce another generalization of the Bohr radius, in which the Schur class
S is replaced by

Sλ := {f ∈ S : f (0) = λ}, λ ∈ [0, 1).

Observe that each member of Sλ has a Taylor series representation of the form

f (z) = λ+ a1z+ a2z
2 + · · · .

Definition 8.4.1 B0(λ) is the unique number in [0, 1] that satisfies the following.

(a) For all f = λ+∑∞
n=1 anz

n ∈ Sλ,

λ+
∞∑

n=1

|an|rn � 1, r ∈ [0,B0(λ)].

(b) For each r ∈ (B0(λ), 1), there is an f = λ+∑∞
n=1 anz

n ∈ Sλ such that

λ+
∞∑

n=1

|an|rn > 1.

As with Proposition 8.1.10,

B0(λ) = inf
f∈Sλ

c(f )
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and B0(λ) is unique solution to M(Sλ, r) = 1. Since B0 = 1
3 and Sλ ⊆ S , we

conclude that

B0(λ) �
1

3
, λ ∈ [0, 1).

Furthermore, as a consequence of the definitions,

B0 = inf
0�λ<1

B0(λ).

After developing more tools, we will estimate B0(λ) in Corollary 8.6.8 below.
In Corollary 8.2.6 we showed, for the classical Bohr radius B0 = 1

3 , that there is
no f ∈ S for which B0 = c(f ). In other words, there is no f =∑∞

n=0 anz
n ∈ S

for which

∞∑

n=0

|an|Bn
0 = 1.

For the generalized Bohr radius B0(λ), the story is different.

Theorem 8.4.2 For each λ ∈ [0, 1), there is an f = λ +∑∞
n=1 anz

n ∈ Sλ such
that B0(λ) = c(f ); that is

λ+
∞∑

n=1

|an|B0(λ)
n = 1.

Proof By (8.1.2) and (8.1.8),

B0(λ) �
1

1 + 2λ
< 1.

Since

B0(λ) = inf
f∈Sλ

c(f ),

there is a sequence fn ∈ Sλ such that

B0(λ) � c(fn) � min

{
B0(λ)+ 1

n
,

1

1 + 2λ

}
. (8.4.3)

Because fn ∈ Sλ ⊆ S , we see that {fn : n � 1} is a normal family. By Montel’s
theorem, it has a subsequence that converges uniformly on compact subsets of D.
Without loss of generality, we may assume that fn itself converges to f uniformly
on compact subsets of D.
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First, f (0) = limn→∞ fn(0) = λ and hence f ∈ Sλ. Second, writing

fn(z) = λ+
∞∑

k=1

ak(fn)z
k and f (z) = λ+

∞∑

k=1

ak(f )z
k,

the Cauchy integral formula confirms that

lim
n→∞ ak(fn) = ak(f ), k � 1. (8.4.4)

Third,

λ+
∞∑

k=1

|ak(fn)|c(fn)k = 1,

and the terms of the series are dominated by

∞∑

k=1

(
1

1 + 2λ

)k
< ∞.

Note the use of the fact that |an(fn)| � 1 since fn ∈ S : see Exercise 8.5. Therefore,
by (8.4.3) and (8.4.4) and the discrete version of the dominated convergence
theorem,

λ+
∞∑

k=1

|ak(f )|B0(λ)
k = 1. (8.4.5)

An important observation is that, since λ < 1, (8.4.5) implies that there is a k

with ak(f ) �= 0. Hence, f is not a constant function and thus m(f, r) is strictly
increasing. Therefore, (8.4.5) also implies that c(f ) = B0(λ). ��

If one attempts to adapt the procedure above for S , then the proof works up
to (8.4.5). But ak(f ) = 0 for all k � 1 and |a0(f )| = 1. Hence we cannot proceed.
In fact, we have Corollary 8.2.6 which says that f does not exist!

We call functions that satisfy the conclusion of Theorem 8.4.2 extremal functions.
Later on, we will show that they are disk automorphisms.

The local Bohr coefficients B0(λ) can be generalized in the following way.

Definition 8.4.6 Fix any integer k � 0 and λ ∈ [0, 1) and define Bk(λ) to be the
number in [0, 1] that satisfies the following conditions.

(a) For all f = λzk +∑∞
n=1 anz

n+k ∈ zkSλ,
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λrk +
∞∑

n=1

|an|rn+k � 1, r ∈ [0,B0(λ)].

(b) For each r ∈ (B0(λ), 1), there is an f = λzk +∑∞
n=1 anz

n+k ∈ zkSλ with

λrk +
∞∑

n=1

|an|rn+k > 1.

As in previous situations, we define

Bk(λ) := inf
f∈Sλ

c(zkf )

and Bk(λ) is the unique solution of the equation rkM(Sλ, r) = 1. Furthermore,

Bk = inf
0�λ<1

Bk(λ), k � 0,

and

Bk(0) = Bk+1, k � 0.

We did not consider Bk(1) for a good reason. Indeed, S1 contains only the
constant function 1 and hence there is little to say.

8.5 Estimates of Landau and Bombieri

For p ∈ (0,∞), r ∈ [0, 1), and an analytic function f on D, let

fr(e
iθ ) = f (reiθ )

be a dilation of f and let

‖fr‖p =
(∫ 2π

0
|f (reiθ )|p dθ

2π

) 1
p

.

If p ∈ [1,∞), then limr→1− ‖fr‖p gives rise to the norm on the Hardy space Hp.
This is entirely analogous to the introduction of the space H 2; see Appendix A.4.
For p ∈ (0, 1), the expression limr→1− ‖fr‖p no longer defines a norm because it
fails to satisfy the triangle inequality.
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Lemma 8.5.1 (Landau [92]) Suppose that f is analytic on |z| < R and has at
least one zero there. If z1 is a zero with minimal modulus, then for r ∈ (|z1|, R) and
any p ∈ (0,∞),

r|f (0)|
‖fr‖p � |z1|.

Proof If z1 = 0, then f (0) = 0 and the result is trivial. Consequently, we may
assume that f (0) �= 0 so that z1 �= 0. Let z1, z2, . . . , zn be the zeros of f in |z| < r ,
ordered so that

0 < |z1| � |z2| � · · · � |zn| < r.

By Jensen’s formula (Theorem A.5.1),

log |f (0)| =
n∑

k=1

log

( |zk|
r

)
+
∫ 2π

0
log |f (reiθ )| dθ

2π
.

Each term in the sum is negative and hence

log |f (0)| � log

( |z1|
r

)
+
∫ 2π

0
log |f (reiθ )| dθ

2π
,

which we rewrite as

r|f (0)|
|z1| � exp

(∫ 2π

0
log |f (reiθ )| dθ

2π

)
.

Take the pth power of both sides of the inequality above and then apply Jensen’s
inequality (Theorem A.5.2) to the right-hand side of

(
r|f (0)|
|z1|
)p

� exp

(∫ 2π

0
log |f (reiθ )|p dθ

2π

)

and deduce that

(
r|f (0)|
|z1|
)p

�
∫ 2π

0
|f (reiθ )|p dθ

2π
.

The result now follows upon rearranging the terms and taking pth roots. ��
To effectively use Lemma 8.5.1 when p = 2, we need to estimate

‖fr‖2 =
∫ 2π

0
|f (reiθ )|2 dθ

2π
.
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Fig. 8.2 The upper bound from the right-hand side of (8.5.3) (as a function of r) plotted for the
values λ = 0, 0.2, 0.4, 0.6, 0.8, 0.99

This is done in the following lemma.

Lemma 8.5.2 (Bombieri [10]) Let f ∈ Sλ. Then for each r ∈ [0, 1),

‖fr‖2 �
(
r2 + λ2 − 2r2λ2

1 − r2λ2

) 1
2

. (8.5.3)

Moreover, the following statements are equivalent (Fig. 8.2).

(a) The equality holds in (8.5.3) for some r �= 0.
(b) The equality holds in (8.5.3) for all values of r ∈ [0, 1).
(c) The function f is a disk automorphism

f (z) = λ− eiαz

1 − λeiαz
,

in which α is an arbitrary real constant.

Proof Let bλ denote the disk automorphism

bλ(z) = λ− z

1 − λz

and note that bλ ∈ Sλ. Then
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g = bλ ◦ f

satisfies g(0) = 0, which means g ∈ S0. By the Schwarz Lemma (Lemma 1.1.1),

|g(z)| � |z|, z ∈ D, (8.5.4)

with equality for some z �= 0 if and only if g(z) = eiαz for some real α. Write (8.5.4)
in terms of f as

|f (reiθ )− λ| � r|1 − λf (reiθ )|, r ∈ [0, 1). (8.5.5)

Parseval’s formula (A.4.3) provides

1

2π

∫ 2π

0
|λ− f (reiθ )|2 dθ = |a1|2r2 + |a2|2r4 + · · · = ‖fr‖2

2 − λ2. (8.5.6)

On the other hand, using the same technique,

1

2π

∫ 2π

0
|1 − λf (reiθ )|2 dθ = 1 − 2λ2 + λ2‖fr‖2

2. (8.5.7)

Then (8.5.5), (8.5.6), and (8.5.7) reveal that

‖fr‖2
2 − λ2 � r2(1 − 2λ2 + λ2‖fr‖2

2),

from which the desired result follows. Equality holds in the preceding for some
r > 0 if and only if equality holds in (8.5.5) for almost all reiθ . This occurs if and
only if g(z) = eiαz for some real α. This leads to the proposed formula for f as a
disk automorphism. ��

8.6 A Theorem of Bombieri and Ricci

We are now ready to find the precise formula for M(Sλ, r) for certain values of r
and B0(λ) for 1

2 � λ < 1. We also provide estimates for the remaining values of r
and λ; see Fig. 8.3.

Theorem 8.6.1 (Bombieri [10]) If 0 � λ < 1, then

M(Sλ, r) = λ+ (1 − 2λ2)r

1 − λr
, r ∈ [0, λ],
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Fig. 8.3 Graphs of λ+(1−2λ2)r
1−λr

for the values λ = 0, 0.2, 0.4, 0.6, 0.8. For r ∈ [0, λ], this quantity
equals M(Sλ, r); for r ∈ (λ, 1), it is a lower bound for M(Sλ, r)

and

λ+ (1 − 2λ2)r

1 − λr
� M(Sλ, r) � λ+ r

(
1 − λ2

1 − r2

) 1
2

, r ∈ [λ, 1).

Proof To establish the lower bound, consider the disk automorphism

f (z) = λ− eiαz

1 − λeiαz
, (8.6.2)

in which α is real. Then f ∈ Sλ,

f (z) = λ+
∞∑

n=1

(λ2 − 1)λn−1einαzn, z ∈ D,

and

m(f, r) = λ+
∞∑

n=1

(1 − λ2)λn−1rn = λ+ (1 − 2λ2)r

1 − λr
, r ∈ [0, 1).
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Consequently,

M(Sλ, r) �
λ+ (1 − 2λ2)r

1 − λr
, r, λ ∈ [0, 1). (8.6.3)

Finding functions f that yield equality in (8.6.3) is more delicate. Let

f = λ+
∞∑

n=1

anz
n ∈ Sλ

be nonconstant and define

g(z) = λ+
∞∑

n=1

|an|zn.

Analogous to the radius c = c(f ) defined in Sect. 8.1, let cσ = cσ (f ) be the point in
(0, 1) for which g(cσ ) = σ . Note that we need to assume that σ � λ. One can also
see that c = c1. Since the coefficients of g(z) are all nonnegative, |g(z)| < σ for
all |z| < cσ . Thus, we can apply Lemma 8.5.1 to the auxiliary function h = σ − g.
Note that h(cσ ) = 0 and h has no zeros in |z| < cσ . For cσ < r < 1, Lemma 8.5.1
implies that

cσ � (σ − λ)r

‖hr‖2
. (8.6.4)

The parameter p = 2 has the advantage that we can relate the L2-norm of hr with
that of fr . In fact,

‖hr‖2
2 =

1

2π

∫ 2π

0
|h(reiθ )|2 dθ

= (σ − λ)2 + |a1|2r2 + · · ·
= σ 2 − 2λσ + (λ2 + |a1|2r2 + · · · )

= σ 2 − 2λσ + 1

2π

∫ 2π

0
|f (reiθ )|2dθ

= σ 2 − 2λσ + ‖fr‖2
2.

Therefore, by (8.6.4),

cσ � (σ − λ)r
(
σ 2 − 2λσ + ‖fr‖2

2

) 1
2

.
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Up to now, we know that the inequality above is valid whenever r ∈ (cσ , 1).
However, since ‖fr‖2 � |f (0)| = λ, for any r ∈ [0, 1) we have

(σ − λ)r
(
σ 2 − 2λσ + ‖fr‖2

2

) 1
2

� r.

In particular, for r ∈ [0, cσ ], we see that

cσ � r � (σ − λ)r
(
σ 2 − 2λσ + ‖fr‖2

2

) 1
2

.

Therefore, for each f ∈ Sλ, the estimate

cσ (f ) �
(σ − λ)r

(
σ 2 − 2λσ + ‖fr‖2

2

) 1
2

(8.6.5)

holds for all r ∈ [0, 1). Applying the upper estimate in Lemma 8.5.2 gives us

cσ (f ) � (σ − λ)r

[
σ 2 − 2λσ + r2 + λ2 − 2r2λ2

1 − r2λ2

]− 1
2

. (8.6.6)

We have freedom in the choice of r ∈ [0, 1) to obtain a good lower bound. By
continuity, any value of r ∈ [0, 1] is acceptable. At this point, we need to consider
two cases.

Case I, σ ∈ [λ, 2λ] The optimal result is obtained when

r =
(

σ − λ

λ(1 − 2λ2 + λσ)

) 1
2

.

The restriction σ ∈ [λ, 2λ] ensures that r ∈ [0, 1]. By (8.6.6), this choice leads to
the lower bound

cσ (f ) �
σ − λ

1 + λσ − 2λ2 .

Therefore, for each f ∈ Sλ,

m

(
f,

σ − λ

1 + λσ − 2λ2

)
� σ, σ ∈ [λ, 2λ].

If we put

s = σ − λ

1 + λσ − 2λ2
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in the above we obtain

m(f, s) � λ+ (1 − 2λ2)s

1 − λs
, s ∈ [0, λ]. (8.6.7)

Note that the restriction σ ∈ [λ, 2λ] implies s ∈ [0, λ] and thus, by (8.6.3), we
obtain the precise formula for M(Sλ, s) for s ∈ [0, λ].
Case II, σ ∈ [2λ,∞) The optimal radius is r = 1. Hence, by (8.6.6), we obtain the
rough estimate

cσ (f ) �
σ − λ

(1 + σ 2 − 2λσ)
1
2

.

Therefore, for each f ∈ Sλ,

m

(
f,

σ − λ

(1 + σ 2 − 2λσ)
1
2

)
� σ, σ � 2λ.

Put

s = σ − λ

(1 + σ 2 − 2λσ)
1
2

in the above to obtain the desired result. ��
Corollary 8.6.8 (Bombieri [10], Ricci [117])

(a) B0(λ) = 1

1 + 2λ
for 1

2 � λ < 1.

(b)

(
1 − λ

2

) 1
2

� B0(λ) �
1

1 + 2λ
for

√
2 − 1

2
� λ � 1

2
.

(c)

(
1 − λ

2

) 1
2

� B0(λ) �
1√
2

for 0 � λ �
√

2 − 1

2
.

Moreover, when λ ∈ [ 1
2 , 1), the extremal functions from Theorem 8.4.2 are precisely

the disk automorphisms (8.6.2).

Proof Case I, λ ∈ [ 1
2 , 1): According to the equality in Theorem 8.6.1, the equation

M(Sλ, r) = 1 is equivalent to

λ+ (1 − 2λ2)r

1 − λr
= 1.
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Solve for r and obtain

r = B0(λ) = 1

1 + 2λ
. (8.6.9)

In order for r ∈ [0, λ] to occur, we must have

1

1 + 2λ
� λ,

which leads to the imposed condition 1
2 � λ < 1.

We now discuss the extremal functions. In the first place, the previous paragraph
shows that the disk automorphisms from (8.6.2) are extremal functions (even when
λ = 1

2 ). Now, suppose that f is an extremal function for this case; that is,

f ∈ Sλ and c(f ) = 1

1 + 2λ
, λ ∈ ( 1

2 , 1).

Hence by (8.6.5),

1

1 + 2λ
� (1 − λ)r
(
1 − 2λ+ ‖fr‖2

2

) 1
2

, r ∈ [0, 1).

Rearranging the terms, we can write the inequality above as

‖fr‖2 �
(
(1 − λ)2(1 + 2λ)2r2 − 1 + 2λ

) 1
2
, r ∈ [0, 1).

For the specific radius r = (λ+ 2λ2)− 1
2 ∈ (0, 1), this inequality becomes

‖fr‖2 �
(
r2 + λ2 − 2r2λ2

1 − r2λ2

) 1
2

.

Hence by Lemma 8.5.2, equality holds and f is the suggested disk automorphism.

Case II, λ ∈ [0, 1
2 ) We now appeal to the inequalities in Theorem 8.6.1. We see

that if M(Sλ, r) = 1, then

λ+ (1 − 2λ2)r

1 − λr
� 1 � λ+ r

(
1 − λ2

1 − r2

) 1
2

.

Solving for r gives

(
1 − λ

2

) 1
2

� r � 1

1 + 2λ
.
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In this case r ∈ [λ, 1). Hence, we need to assume that

(
1 − λ

2

) 1
2

� λ,

which leads to 0 � λ � 1
2 . The lower bound is established, but we can improve the

upper bound for λ �
√

2−1
2 .

Case III, 0 � λ �
√

2−1
2 Let

f (z) = λ+ (1 − λ)z
a − z

1 − az
, (8.6.10)

in which a is a free parameter in (0, 1). Then f ∈ Sλ and, by (8.1.2),

f (z) = λ+ (1 − λ)az+ (1 − λ)(a2 − 1)
∞∑

n=2

an−2zn. (8.6.11)

Hence

m(f, r) = λ+ (1 − λ)ar + (1 − λ)(1 − a2)

∞∑

n=2

an−2rn

= λ+ (1 − λ)
ar + (1 − 2a2)r2

1 − ar
.

Consequently, c = c(f ), which is obtained via the equation m(f, c) = 1, satisfies

(1 − 2a2)c2 − 2ac − 1 = 0. (8.6.12)

The smallest c is obtained when a = 1√
2

(see Exercise 8.6), which incidentally gives

c(f ) = 1√
2
. (8.6.13)

Therefore, again recalling that

B0(λ) = inf
f∈Sλ

c(f ),

we conclude that

B0(λ) �
1√
2
, λ ∈ [0, 1).

Compared with the bound 1/(1 + 2λ), this new bound is better if λ �
√

2−1
2 . ��
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Corollary 8.6.8 implies B0(0) = 1√
2

. However, B1 = B0(0), and thus we obtain

the second proof of that B1 = 1√
2

.
From Lemma 8.1.13, we have the lower bound

M(S , r) � 3 −√8(1 − r2)

r
, r ∈ [ 1

3 , 1]. (8.6.14)

The estimates in Theorem 8.6.1 enable us to show that the preceding is, in fact, an
equality for r ∈ [ 1

3 ,
1√
2
].

Theorem 8.6.15 (Bombieri [10])

M(S , r) = 3 −√8(1 − r2)

r
, r ∈ [ 1

3 ,
1√
2
].

Proof In light of (8.6.14), we need only establish that M(S , r) is at most the given
quantity for r in the given range. Fix r ∈ [ 1

3 ,
1√
2
]. Since

M(S , r) = sup
0�λ<1

M(Sλ, r),

the estimates in Theorem 8.6.1 yield

M(S , r) � max{A,B},

in which

A = sup
r�λ<1

λ+ (1 − 2λ2)r

1 − λr
and B = sup

0�λ�r

λ+ r

(
1 − λ2

1 − r2

) 1
2

.

One confirms (see Exercise 8.7) that

A = 3 −√8(1 − r2)

r
, B = 1√

1 − r2
, (8.6.16)

and A � B for r ∈ [ 1
3 ,

1√
2
]. ��

A formula for M(S , r) for all values of r ∈ [0, 1) is still unknown. Currently
we know that

M(S , r) = 1, r ∈ [0, 1
3 ],

and

M(S , r) = 3 −√8(1 − r2)

r
, r ∈ [ 1

3 ,
1√
2
].
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For r > 1√
2

a formula for M(S , r) is unknown. E. Bombieri and J. Bourgain [11]
proved that

1√
1 − r2

− c(ε)

(
log

1

1 − r

) 3
2+ε

� M(S , r) <
1√

1 − r2
, r ∈ [ 1√

2
, 1).

(8.6.17)
In particular, this estimate implies that

lim
r→1−

M(S , r) = ∞,

which is an interesting and nontrivial fact.

8.7 Notes

Alternate Proofs

Alternate proofs and generalizations of the Bohr radius can be found in [110, 117,
120, 126, 134].

Other Bohr Inequalities

There are other Bohr inequalities for various subclasses of the Schur class. We refer
the reader to the nice survey paper [104].

Harald Versus Nils

There is another “Bohr radius” from atomic physics due to Nils Bohr, the older
brother of Harald Bohr.

Harald Bohr, Footballer

The mathematician Harald Bohr was a member of the Danish national football team.
He won a silver medal at the 1908 Summer Olympics.
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8.8 Exercises

8.1 Prove Proposition 8.1.10.

8.2 In the proof of Lemma 8.1.13, prove that the optimal value of

a + (1 − 2a2)r

1 − ar

occurs when

a = 2 −√2(1 − r2)

2r
.

8.3 Complete the details of the proof of Lemma 8.1.13.

8.4 In the proof of Wiener’s inequality (Lemma 8.2.8), prove that the matrix
representation of Mf is the Toeplitz matrix in (8.2.9).

8.5 Use Fourier coefficients (see (A.1.2)) along with Fatou’s theorem (Theo-
rem A.3.1) to verify that if

f =
∞∑

n=0

anz
n

belongs to S , then |an| � 1 for all n.

8.6 In (8.6.12) show that the smallest c in (1 − 2a2)c2 − 2ac − 1 = 0 is obtained
when a = 1√

2
.

8.7 Confirm the identities in (8.6.16).



Chapter 9
Finite Blaschke Products and Group
Theory

In this chapter we explore two connections between finite Blaschke products and
finite group theory. For each finite Blaschke product B, we discuss the group
of continuous maps u : T → T for which B ◦ u = B on T. We also
investigate conditions under which a finite Blaschke product B can be written as
the composition of two non-automorphic finite Blaschke products. This is related to
the monodromy group associated with B.

9.1 A Cyclic Subgroup

Let B be a finite Blaschke product of degree n. For each w ∈ T, Theorem 3.4.10
says that the equation B(z) = w has exactly n distinct solutions on T. Thus, the sets
B−1({w}) for w ∈ T form a partition of T and each set in the partition has exactly
n elements. Write

B−1({1}) = {eiϑ1 , eiϑ2 , . . . , eiϑn},

in which the arguments are arranged so that

0 � ϑ1 < ϑ2 < · · · < ϑn < 2π.

Define ϑk ∈ [0, 2π) for k ∈ Z by

ϑk = ϑ� (mod 2π) ⇐⇒ k ≡ � (mod n),

where k ≡ � (mod n) when k − � ∈ nZ. For example, ϑn+1 = ϑ1 and ϑ0 = ϑn.
As ζ moves once counterclockwise on T, the Argument Principle shows that

the image B(ζ ) traverses the unit circle n times. As ζ passes from eiϑk to eiϑk+1 ,
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eiJk

eiJk+1
B

Fig. 9.1 B maps the arc subtended by eiϑk and eiϑk+1 once around the unit circle

the image B(ζ ) makes exactly one complete traversal of T; see Fig. 9.1. Thus, B
bijectively maps each of the arcs

[eiϑ1 , eiϑ2), [eiϑ2 , eiϑ3), . . . , [eiϑn, eiϑn+1),

onto T. For each k ∈ Z, define the bijective continuous function

Φk : [eiϑk , eiϑk+1) → T, Φk(e
iθ ) = B(eiθ ). (9.1.1)

This produces only n distinct functions since

Φk ≡ Φ� ⇐⇒ k ≡ � (mod n).

For two functions f and g on a set E, we use the notation f ≡ g when f (x) = g(x)

for all x ∈ E. According to the definition of the arguments ϑk , we see that

lim
θ→ϑk
θ>ϑk

Φk(e
iθ ) = lim

θ→ϑk+1
θ<ϑk+1

Φk(e
iθ ) = 1 (9.1.2)

and

B
(
Φ−1

k (eiθ )
) = eiθ , eiθ ∈ T. (9.1.3)

Define an equivalence relation ∼ on T by

eiθ1 ∼ eiθ2 ⇐⇒ B(eiθ1) = B(eiθ2).

Then

{B−1({w}) : w ∈ T} (9.1.4)
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is the family of equivalence classes of∼. Each of the n arcs described above contains
exactly one element from each equivalence class. The following result shows that
elements of a conjugacy class (9.1.4) are uniformly separated from each other.

Lemma 9.1.5 If B is a finite Blaschke product, then there is δ > 0 so that

0 < |eiθ − eiϑ | < δ �⇒ B(eiθ ) �= B(eiϑ ).

Proof Lemma 3.4.3, along with continuity and compactness, show that |B ′| is
bounded away from zero on T. Thus, by the Mean Value Theorem, there is a constant
C > 0 so that |B(eis)− B(eit )| � C|s − t | for all s, t . ��

Let C be the set of all continuous functions u : T → T. This set, when endowed
with the binary operation of function composition, is a semigroup. Indeed,

(a) u1, u2 ∈ C �⇒ u1 ◦ u2 ∈ C ;
(b) (u1 ◦ u2) ◦ u3 = u1 ◦ (u2 ◦ u3) for all u1, u2, u3 ∈ C ;
(c) id ∈ C .

Here id denotes the identity map on T, which satisfies u ◦ id = id ◦ u = u for each
u ∈ C . It is important to note that an arbitrary element of C need not be invertible
under composition. For example, consider u(z) = z2 (a branch of

√
z cannot be

defined on all of T).
If B is a finite Blaschke product, then we may regard it as a (generally non-

invertible) element of C and define

GB := {u ∈ C : B ◦ u = B}.
A short argument shows that GB is a sub-semigroup of C . In fact, much more is true.

Theorem 9.1.6 (Cassier–Chalendar [18]) Let B be a finite Blaschke product of
degree n. Then GB is a cyclic group of order n.

Proof Consider the bijective mappings Φk defined in (9.1.1). For k ∈ Z, define
functions uk : T → T by

uk : [eiϑj , eiϑj+1) → [eiϑj+k , eiϑj+k+1), uk(e
iθ ) = Φ−1

j+k

(
Φj(e

iθ )
)
,

for j ∈ Z (see Fig. 9.2). Upon gluing these pieces together, we obtain a continuous
bijection uk : T → T. Moreover, (9.1.2) implies that

uk(e
iϑj ) = eiϑj+k and lim

θ→ϑj+1
θ<ϑj+1

uk(e
iθ ) = eiϑj+k+1 .

Now observe that (9.1.3) ensures that

B
(
uk(e

iθ )
) = B

(
Φ−1

j+k(Φj (e
iθ ))
) = Φj(e

iθ ) = B(eiθ )
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eiJ j
eiJ j+1

eiJ j+k
eiJ j+k+1

uk

Fig. 9.2 The map uk takes the half open arcs subtended by eiϑj , eiϑj+1 bijectively to the half open
arc subtended by eiϑj+k , eiϑj+k+1

for each eiθ ∈ T. In other words, by the construction above, we obtain n elements
of GB .

To further clarify the situation, let us make the following observations.

(a) u0 ≡ id.
(b) uk ≡ u� ⇐⇒ k ≡ � (mod n).
(c) uk ≡ u1 ◦ u1 ◦ · · · ◦ u1 (k times).
(d) uk ◦ u� ≡ uk+�.
(e) naïvely speaking, we say that uk shifts forward each of the arcs

[eiϑ1 , eiϑ2), [eiϑ2 , eiϑ3), . . . , [eiϑn, eiϑn+1),

by k steps in such a way that it preserves the equivalence classes of ∼. The
identity uk(ζ ) = uk(ξ) implies that ζ and ξ belong to the same equivalence
class of ∼.

These observations reveal that {u0, u1, . . . , un−1} is a cyclic subgroup of order n
in GB . We claim that this exhausts GB . This fact is based on the following property:
if u, v ∈ GB are such that u(eiθ0) = v(eiθ0) for some eiθ0 ∈ T, then u = v. To verify
this, let

E = {eiθ ∈ T : u(eiθ ) = v(eiθ )}.
By assumption eiθ0 ∈ E. Since u and v are continuous functions, E is a closed
subset of T. By uniform continuity, there is a δ′ > 0 such that

dist(eiθ , E) < δ′ �⇒ |u(eiθ )− v(eiθ )| < δ,

in which δ > 0 is the parameter introduced in Lemma 9.1.5. According to the
definition of GB , we have

B(u(eiθ )) = B(v(eiθ )) = B(eiθ ), eiθ ∈ T.
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By Lemma 9.1.5, u(eiθ ) = v(eiθ ) at least for all eiθ such that dist(eiθ , E) < δ′.
This shows that E is also an open set, so E = T.

To finish the proof, let u ∈ GB . Then

B(u(eiϑ1)) = B(eiϑ1) = 1,

and hence

u(eiϑ1) ∈ B−1({1}) = {eiϑ1 , eiϑ2 , . . . , eiϑn}.

Suppose that u(eiϑ1) = eiϑk for some 1 � k � n. If we rewrite this identity as
u(eiϑ1) = uk(e

iϑ1), then the preceding observation shows that u = uk . ��
The following fact was stated and verified in the proof of Theorem 9.1.6.

Corollary 9.1.7 Let B be a finite Blaschke product. Let u : T → T be a continuous
function such that B◦u = B. Suppose that there is an eiθ0 ∈ T so that u(eiθ0) = eiθ0 .
Then u = id.

9.2 Decomposable Finite Blaschke Products

We have seen in Theorem 3.6.2 that finite Blaschke products are closed under
composition. Indeed, if C and D are finite Blaschke products, then B = C ◦D is a
finite Blaschke product with degB = (degC)(degD). In this section we consider
the following question.

Question 9.2.1 When can a finite Blaschke product B be written as

B = C ◦D,

in which C and D are finite Blaschke products of degree greater than one?

The restriction that both C and D are of degree greater than one avoids “trivial”
decompositions such as

B = φ ◦ (φ−1 ◦ B) or B = (B ◦ φ) ◦ φ−1,

where φ ∈ Aut(D) (which is a finite Blaschke product of degree one).

Definition 9.2.2 If B = C ◦ D in a nontrivial way, then B is decomposable.
Otherwise, B is indecomposable.

Observe that if B is of prime degree, then B is indecomposable (Theorem 3.6.2).
The decomposability criterion covered here is a deep theorem of Ritt [119] (see

Theorem 9.6.1 below) that classifies decomposability in terms of the monodromy
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group associated with B. Our treatment is based on unpublished notes of Carl
Cowen [28] which he kindly agreed to let us use. Two other good sources for this
are [108, 109].

Definition 9.2.3 If B is a finite Blaschke product of degree n, then B is in
normalized form if

B(z) = z

n∏

k=2

ak

|ak|
ak − z

1 − akz
, (9.2.4)

in which a2, . . . , an ∈ D\{0} are distinct. This is equivalent to the properties

B(0) = 0, B ′(0) > 0, B(a) = 0 �⇒ B ′(a) �= 0. (9.2.5)

Indeed, the first property follows from the factor of z in (9.2.4) and the last
property follows from the simplicity of the zeros. The second property follows from
the identity

B ′(z) = z
d

dz

( n∏

k=2

ak

|ak|
ak − z

1 − akz

)
+

n∏

k=2

ak

|ak|
ak − z

1 − akz
,

which implies that

B ′(0) =
n∏

k=2

|ak| > 0.

Since we will state our decomposability condition for a finite Blaschke product
in normalized form, we first need to reduce the original decomposability problem,
stated for general finite Blaschke products, to one for Blaschke products in
normalized form.

Proposition 9.2.6 If B is a finite Blaschke product, then there are α, β ∈ D and
ξ ∈ T such that B̃ = ξ(τβ ◦B ◦ τα) is a finite Blaschke product in normalized form.
Moreover, B is decomposable if and only if B̃ is decomposable.

Proof If B is a finite Blaschke product of degree n, let

V = {z ∈ D : B ′(z) = 0}

denote the set of critical points of B and observe that V has cardinality n − 1
(Theorem 6.1.4). The set B(V ) is also finite and hence there is a β ∈ D\B(V ). Thus

B−1({β}) = {α1, α2, . . . , αn}
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(the fact that there are n pre-images follows from Theorem 3.4.10) with the
property that

B(αj ) = β and B ′(αj ) �= 0. (9.2.7)

Let α = α1. For a unimodular constant ξ to be determined shortly, define

B̃(z) = ξ(τβ ◦ B ◦ τα) (9.2.8)

and notice that B̃ is a finite Blaschke product of degree n that is a composition (pre-
and post-) of B with disk automorphisms. This will be important in a moment.

Since τα(0) = α, we have

B̃(0) = ξ
β − B(α)

1 − βB(α)
= 0

and hence B̃ satisfies the first property in (9.2.5) of a normalized form.
A calculation with the quotient and chain rules yields

B̃ ′ = ξ
B ′(τα)τ

′
α(−1 + |β|2)

(1 − βB(τα))2
. (9.2.9)

Using the identity

τ ′α(z) =
−1 + |α|2
(1 − αz)2 ,

we can substitute z = 0 into the expression above for B̃ ′ to get

B̃ ′(0) = ξB ′(α)1 − |α|2
1 − |β|2 �= 0

since B ′(α) = B ′(α1) �= 0 by (9.2.7). Now adjust the unimodular constant ξ so that
B̃ ′(0) > 0, which yields the second property in (9.2.5) of a normalized form.

Next, observe in the definition of B̃ and (9.2.7) that the zeros of B̃ are

τ−1
α ({α1, α2, . . . , αn}) = {w1, w2, . . . , wn}.

Note that w1 = 0. From (9.2.9) we see that

B̃ ′(wj ) = ξB ′(τα(wj ))
1 − |α|2

(1 − αwj )2(1 − |β|2)
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= ξB ′(αj )
1 − |α|2

(1 − αwj )2(1 − |β|2)
�= 0

since B ′(αj ) �= 0 from (9.2.7). Thus, B̃ satisfies the third property in (9.2.5) of a
normalized form.

To finish, we need to argue that B is decomposable if and only if B̃ is
decomposable. To this end, suppose that B1, B2 are finite Blaschke products with

B1 = φ ◦ B2 ◦ ψ,

in which φ,ψ ∈ Aut(D) and B2 = C ◦ D is decomposable. Then, via the
associativity of function composition,

B1 = (φ ◦ C) ◦ (D ◦ ψ).

Moreover,

deg(φ ◦ C) = degC and deg(D ◦ ψ) = degD.

A similar argument applies to B2 and hence B1 is decomposable if and only if B2 is
decomposable. Apply this fact to B1 = B and B2 = B̃ to complete the proof. ��

Thus, in terms of whether or not a finite Blaschke product is decomposable, we
can assume that it is in normalized form.

9.3 The Monodromy Group

For a finite Blaschke product B of degree n in normalized form (9.2.4) let

SB = {w ∈ D : w = B(z), B ′(z) = 0} (9.3.1)

denote the set of critical values of B. Notice that SB is the image of the set of
critical points {z ∈ D : B ′(z) = 0} of B. Since there are n − 1 critical points in D

(Theorem 6.1.4), SB has at most n− 1 points in D. Now define

S̃B := B−1(SB) (9.3.2)

and observe that S̃B contains at most n(n− 1) points of D.
Consider the n-valued analytic function B−1 on D\SB . Since 0 ∈ D\SB by our

normalizing assumption, B−1 has n branches

g1, g2, . . . , gn
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at 0 where, for normalizing purposes, we number these branches so that

g1(0) = 0.

Example 9.3.3 Let

B(z) = z

1
2 − z

1 − z
2

and observe that B is in normalized form. The only critical point (in D) is

z = 2 −√
3 ≈ 0.267949

and the critical value is

B(2 −√
3) = 7 − 4

√
3 ≈ 0.0717968.

The two branches are

g1(z) = 1

4

(
z+ 1 −

√
z2 − 14z+ 1

)
and g2(z) = 1

4

(
z+ 1 +

√
z2 − 14z+ 1

)
.

Observe that g1(0) = 0 while g2(0) = 1
2 (and that 0, 1

2 are the two zeros of B).

Let

LB = {γ : [0, 1] → D\SB : γ is continuous, γ (0) = γ (1) = 0}

be the set of continuous closed curves in D\SB that begin and end at the origin; see
Fig. 9.3.

Fig. 9.3 A typical curve
γ ∈ LB . Notice how γ does
not intersect the critical
values of B

0

g
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Fig. 9.4 The curve γ · δ is
obtained by following δ with
γ

0

g

d

For γ, δ ∈ LB , let

γ · δ (9.3.4)

be the element of LB obtained by starting with δ and then continuing with γ ; see
Fig. 9.4. This is the usual product of curves used in algebraic topology.

If γ ∈ LB , then g1 can be analytically continued along γ and we let γ ∗g1 denote
the final element of this continuation (see [100, Vol. III, Ch. 8] for a treatment of
analytic continuation along arcs). Since γ ∗g1 must be one of the branches of B−1

at 0, we have

γ ∗g1 ∈ {g1, g2, . . . , gn}.

We can do an analogous construction to define the final elements

γ ∗g2, γ
∗g3, . . . , γ

∗gn.

In each case,

γ ∗gj ∈ {g1, g2, . . . , gn}.

The alert reader might think that the definition of γ ∗gj , the final element of the
continuation of gj along γ , depends on the curve γ . It does not. Indeed, if γ1, γ2 ∈
LB with γ1 homotopic in D\SB to γ2, then by the homotopy lemma [105], γ ∗

1 gj =
γ ∗

2 gj . In other words, the definition of γ ∗gj depends only on an element of the
equivalence class of curves in LB that are homotopic to γ in D\SB . We now think
of γ ∗ as a function from the set of branches {g1, g2, . . . , gn} to itself.
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0 0
g

˜g

Fig. 9.5 The curve γ̃ is the same as γ but traversed in the opposite direction

Definition 9.3.5 For a finite Blaschke product B in normal form, let

GB := {γ ∗ : γ ∈ LB}.

For γ ∈ LB , define γ̃ ∈ LB by the parameterization

γ̃ (t) = γ (1 − t), t ∈ [0, 1].

Observe that γ̃ is just γ with the direction reversed; see Fig. 9.5. We use e to denote
the element of LB parameterized by

e(t) = 0, t ∈ [0, 1].

With the operation γ · δ defined in (9.3.4), note that

γ̃ · γ = γ · γ̃ = e.

We also see that

e∗gj = gj , 1 � j � n,

and

(γ · δ)∗gj = γ ∗(δ∗gj ), 1 � j � n.

Thus, GB is a set with a well-defined binary operation γ ∗ ◦ δ∗ (which is also
compatible with the operation γ · δ) and with an identity element e∗. Moreover,
the preceding also shows that

γ̃ ∗ ◦ γ ∗ = γ ∗ ◦ γ̃ ∗ = e∗
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and hence each element of GB has an inverse. Consequently, GB is a group, the
monodromy group of B, and each element of GB is a permutation of the branches.
By equating the branches {g1, g2, . . . , gn} with the set {1, 2, . . . , n} in the natural
way, we see that GB is isomorphic to a subgroup of the symmetric group Sn, the
group of permutations of the set {1, 2, . . . , n}.

9.4 Examples of Monodromy Groups

Through the next several examples, we use a technique of Cowen [28] to “see” the
monodromy group GB .

Example 9.4.1 The finite Blaschke product

b(z) = z4

is not in normalized form since, among other things, it has a zero of degree 4 at
the origin. We follow the recipe from the proof of Proposition 9.2.6. Indeed, we
compute the critical points

V = {z : b′(z) = 0} = {0}

and choose 1
2 ∈ D\b(0) = D\{0}. To put b in normalized form, observe that since

b( 1
2 ) = 1

16 , we can use the formula in (9.2.8) to define

B(z) = τ1/16 ◦ b ◦ τ1/2 =
1

16 − b(
1/2−z
1−z/2 )

1 − 1
16b(

1/2−z
1−z/2 )

.

A computation shows that

B ′(0) = 32

85
> 0

and that B has zeros at

z1 = 0, z2 = 10

17
− 6i

17
, z3 = 10

17
+ 6i

17
, z4 = 4

5
.

Thus, B is in normalized form. One computes the set of critical points

{z ∈ D : B ′(z) = 0} = { 1
2 }

and the set of critical values

SB = {w ∈ D : w = B(z), B ′(z) = 0} = { 1
16 }.



9.4 Examples of Monodromy Groups 193

1
16

b

a

(b )

(b )

(b )

(b )

(a )

(a )

(a )

(a )

B

Fig. 9.6 (Left) The line δ that connects α and β and passes through the critical value z = 1
16 .

(Right) The inverse image of B−1(δ). The point on the right where all of the curves meet is the
critical point z = 1

2 which gets mapped to the critical value 1
16 by B. If one travels on one of the

triangular shaped regions that does not contain one of the zeros of B (marked by dots in the right
hand image), from (α) to the center point 1

2 to (β) and then along T back to α, then Rouché’s
theorem ensures that B maps this path from α through the critical value 1

16 to β along T (to the
right) back to α

Let us now compute GB using [28]. The first step is to pick two different points
α and β on T and a curve δ ⊆ D

− that passes through α, β and the critical value 1
16 .

For this particular case, we pick

α = 1

16
− i

√
1 − 1

162 , β = 1

16
+ i

√
1 − 1

162 ,

and let δ be the chord that connects α and β (which passes through 1
16 but not 0);

see Fig. 9.6.
Observe that B−1(δ) is, at least locally, a curve except at the critical points of

B, where B−1(δ) will consist of intersecting curves; see Fig. 9.6 in which (α) =
B−1({α}) and (β) = B−1({β})). The curve δ, a straight line in this case, divides
D into two regions, one of which contains zero, while B−1(δ) divides D into eight
regions, four of which contain a zero of B; see Fig. 9.6.

There are several types of homotopy classes of curves γ ∈ LB one can consider
when exploring γ ∗. The first are the curves γ that do not loop around the critical
value z = 1

16 . A representative example of such a curve is shown in Fig. 9.7. Notice
how γ1 starts at the origin, crosses δ between z = 1

16 and z = β, loops around,
crosses δ again between z = 1

16 and β, before it returns to the origin. This means
that B−1(γ1) will start at the zj , cross B−1(δ) between the critical point z = 1

2 and
(β), turn around, recross B−1(δ) between (β) and the critical point z = 1

2 , before it
returns to zj . With g1, g2, g3, g4 being the branches of B−1 with the understanding
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0 1
16

b

a

g1

z1 z3

z4

z2

(b )

(b )

(b )

(b )

(a )

(a )

(a )

(a )

B

Fig. 9.7 (Left) A curve γ1 that starts at the origin, crosses δ between z = 1
16 and z = β, loops

around, crosses δ again between z = 1
16 and β, before returning to the origin. (Right) The inverse

image curves for γ1. Observe how γ1 starts at 0, crosses δ (the straight line connecting α and β)
between the critical value z = 1

16 and β, turns and crosses δ again before it returns to 0. Notice
how the image curves B−1(γ1) start at the zeros of B, crosses B−1(δ) between the critical point
z = 1

2 and (β), turn and cross B−1(δ) again before they return to the respective zero of B

that g1(0) = 0, we see that the final element γ ∗
1 gj is indeed gj . Thus, we have

γ ∗
1 : {g1, g2, g3, g4} → {g1, g2, g3, g4}, γ ∗

1 (gj ) = gj .

In other words, γ ∗
1 is the identity permutation.

Now consider γ2 ∈ LB which loops once around the critical value z = 1
16 ; see

Fig. 9.8. Notice how γ2 first crosses δ between the critical value 1
16 and α, turns,

recrosses δ between β and the critical value, before it returns to the origin. With this
in mind, observe how B−1(γ2) starts off at zj , crosses B−1(δ) between (α) and the
critical point z = 1

2 , crosses B−1(δ) between (β) and z = 1
2 , and finally arrives at

zj+1 (again see Fig. 9.8). This means that

γ ∗
2 : {g1, g2, g3, g4} → {g1, g2, g3, g4}, γ ∗

2 (gj ) = gj+1.

This computation also shows that

γ ∗
2 (γ

∗
2 ) = (γ2 · γ2)

∗ : {g1, g2, g3, g4} → {g1, g2, g3, g4}, γ ∗
2 (γ

∗
2 )gj = gj+2.

Since there are only two basic homotopy classes in LB , namely those curves that
do not loop around the critical value z = 1

16 (for example, γ1) and those that loop
around z = 1

16 (for example, γ2, γ2 ·γ2, and γ2 ·γ2 ·γ2), we see that the monodromy
group GB is a cyclic group of order four that is isomorphic to the subgroup of S4
generated by the 4-cycle (1 2 3 4). This last observation will be important later.
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b

a

0 1
16

g2

z1 z3

z4

z2

(b )

(b )

(b )

(b )

(a )

(a )

(a )

(a )

B

Fig. 9.8 The curve γ2 (left) and the inverse image curves for γ2 (right). Notice how γ2 first crosses
δ between the critical value 1

16 and α, turns, recrosses δ between β and the critical value, before
it returns to the origin. With this in mind, observe how B−1(γ2) starts off at zj , crosses B−1(δ)

between (α) and the critical point z = 1
2 , crosses B−1(δ) between (β) and z = 1

2 , finally arriving
at zj+1

Example 9.4.2 The finite Blaschke product

b(z) = z2
( 1

2 − z

1 − 1
2z

)2

is not in normalized form since it has zeros of order two at the origin and at z = 1
2 .

One can normalize b to obtain a finite Blaschke product B that has four distinct
zeros z1, z2, z3, z4 (with z1 = 0), three critical points p1, p2, p3, and two distinct
critical values v1, v2. We are intentionally vague about the exact numbers involved
since they are typographically cumbersome and were only selected to make the
illustrations reasonable to view.

We connect the two critical values v1 and v2 with a curve δ that meets the circle
at two points α and β. Note that this curve does not pass through the origin; see
Fig. 9.9. As with the previous example, we draw the inverse image curves B−1(δ).
Observe that δ divides D into two regions, one of which contains the origin, while
B−1(δ) divides D into eight regions, four of which contain a zero of B.

Next we label the zeros of B counterclockwise as z1, z2, z3, z4 (with z1 = 0)
and, as usual, denote the branches of B−1 at 0 by g1, g2, g3, g4. For the four most
basic types of homotopy classes in LB , γ1, γ2, γ3, γ4, we draw B−1(γj ) and take
note of the permutations of the zeros; see Figs. 9.10, 9.11, 9.12, and 9.13.

Observe from the corresponding drawings, and the discussion from the previous
example, that

γ ∗
1 gj = gj , j = 1, 2, 3, 4,
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b
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(b )

(a )

(a )

(a )
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(b ) (b )

z1

z2
z4

z3

B

Fig. 9.9 The curve δ passing through the critical values (left) and the curves B−1(δ) passing
through the critical points (interior intersection points) (right)

0

b

a

v1
v2

(b )

(b )

(a )

(a )

(a )

(a )
(b ) (b )

z1

z2
z4

z3

B

g1

Fig. 9.10 The curve γ1 (left) and B−1(γ1) (right)

γ ∗
2 g1 = g2, γ ∗

2 g3 = g4,

γ ∗
3 g1 = g2, γ ∗

3 g2 = g3, γ ∗
3 g3 = g4, γ ∗

3 g4 = g1,

γ ∗
4 g1 = g3, γ ∗

4 g2 = g2, γ ∗
4 g4 = g4.

Equating gj with j , we see that GB is the subgroup of S4 generated by the
permutations

(1 2)(3 4), (1 2 3 4), (1 3).

In fact, GB is isomorphic to the dihedral group of a square; see Exercise 9.3.
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Fig. 9.11 The curve γ2 (left) and B−1(γ2) (right)
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b

a
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v2

z1

(b )

(b )

(a )

(a )

(a )
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(b ) (b )

z2
z4

z3

B

g 3

Fig. 9.12 The curve γ3 (left) and B−1(γ3) (right)

Example 9.4.3 The finite Blaschke product

b(z) = z2 · z− 1
3

1 − 1
3z

· z− 1
2

1 − 1
2z

is not in normalized form since it has a double zero at the origin. One can
normalize b and obtain a normalized finite Blaschke product B. This normalized
finite Blaschke product has four distinct zeros z1, z2, z3, z4 (with z1 = 0), three
distinct critical points c1, c2, c3, and three distinct critical values v1, v2, v3. In
Fig. 9.14, we plot the curve δ that passes through the three critical values (along
with α and β) together with the inverse image curves B−1(δ) that intersect at the
critical points.

From Figs. 9.15 and 9.16 we see that GB contains a group element that transposes
g3 and g4 and a group element that implements the permutation g1 �→ g2 �→ g3 �→
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Fig. 9.13 The curve γ4 (left) and B−1(γ4) (right)

0
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(b ) (b )
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z4

z3

B

Fig. 9.14 The curve δ passing through the critical values (left) and the curves B−1(δ) passing
through the critical points (right)

g4. In other words, GB is isomorphic to the subgroup of S4 that contains the cycles
(3 4) and (1 2 3 4). Since these two cycles generate S4, we conclude that GB is
isomorphic to S4.

9.5 Primitive Versus Imprimitive

Let B denote a normalized finite Blaschke product of degree n with monodromy
group GB . By the construction in the previous section, each γ ∗ ∈ GB is a
permutation of the branches {g1, g2, . . . , gn} at 0. Also recall that e is the trivial loop
and hence e∗ is the identity element of GB . The group GB acts on {g1, g2, . . . , gn}
in that the function

φ : GB × {g1, g2, . . . , gn} → {g1, g2, . . . , gn}, φ(γ ∗, gj ) = γ ∗gj ,
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Fig. 9.15 A curve circulating around v3 (left) and its corresponding pre-image (right). Observe
how this yields the identity on g1 and g2 and reverses g3 and g4
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z2

z4
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B

Fig. 9.16 A curve circulating around v1 and v3 and its corresponding pre-image. Notice how this
yields the cycle g1 �→ g2 �→ g3 �→ g4

satisfies

e∗gj = gj , 1 � j � n, (identity axiom),

and

(γ ∗δ∗)gj = γ ∗(δ∗gj ), 1 � j � n, (compatibility axiom).

Definition 9.5.1 For a finite group G acting on a finite set X, we say that G respects
a partition P of X if gP ∈ P for all P ∈ P and all g ∈ G.

Here is another way of thinking about this concept that yields a little more
information.
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Lemma 9.5.2 For a finite group G acting on a finite set X, the following are
equivalent.

(a) G respects a partition P of X.
(b) For each g ∈ G and P ∈ P , there is a P ′ ∈ P such that gP ⊆ P ′.

Proof The proof of (a) �⇒ (b) is automatic. To see that (b) �⇒ (a), observe
that if gP ⊆ P ′ for all g ∈ G and P ∈ P , then g−1P ′ ⊆ P ′′ for some P ′′ ∈ P .
Note that P ⊆ g−1P ′ and since P is a partition of X, we have P = g−1P ′ = P ′′.
Hence, gP = P ′. ��

Any partition P that G respects partitions X into subsets of equal size. The size
of these sets is called the order of the partition. There are at least two partitions of X
that G respects, namely {X}, the whole set, and {{x} : x ∈ X}, the set of singletons.

Definition 9.5.3 If {X} and {{x} : x ∈ X} are the only two partitions that G

respects, then the action of G on X is primitive. If there is another partition P
of X that G respects, then the action of G on X is imprimitive.

Definition 9.5.4 The action of a group G on a set X is transitive if Gx = X for
some (and hence all) x ∈ X.

We will make use of the following classification of primitive group actions (see
[81] or [135] for a proof).

Theorem 9.5.5 Suppose that G is a group that acts transitively on a set X. Then G

acts primitively on X if and only if for each x ∈ X, the stabilizer

{g ∈ G : gx = x}

is a maximal subgroup of G. That is, there is no subgroup H of G such that {g ∈
G : gx = x} � H � G.

To apply this result to G = GB , we need the following result.

Theorem 9.5.6 For a normalized finite Blaschke product B, the monodromy group
GB acts transitively on the branches {g1, g2, . . . , gn} at 0.

Proof Let δ be a curve that meets T at two distinct points, does not pass through the
origin, and does not pass through any of the critical values of B. Let γ be a loop that
starts at 0, circulates counterclockwise, surrounds all of the critical values of B, and
meets δ in exactly two places, before it returns to zero; see Fig. 9.17. We leave it as
an exercise (Exercise 9.1) to use the analysis from our previous examples to see that
the powers of γ ∗ form a cycle of the branches g1, g2, . . . , gn in the sense that

γ ∗g1 = g2, γ ∗2g2 = g3 . . . γ ∗(n−1)gn−1 = gn, γ ∗ngn = g1.

This proves that GB is transitive. ��
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Fig. 9.17 The curves γ and δ

from Theorem 9.5.6

g

d

0

9.6 Ritt’s Theorem

With all of the pieces in place, we are ready for Ritt’s theorem [119].

Theorem 9.6.1 (Ritt) A normalized Blaschke product B of degree n > 1 is
decomposable if and only if the monodromy group GB acts imprimitively on the
branches {g1, g2, . . . , gn} of B−1 at z = 0.

Proof We follow Cowen’s proof from [28]. Suppose that GB acts imprimitively on
the branches {g1, g2, . . . , gn} of B−1 at 0. Then there is a partition

P = {P1, P2, . . . , Pm}

of the branches {g1, g2, . . . , gn} where, by the remark following Definition 9.5.1,
each Pj has the same order k and hence n = mk. Renumbering the branches if
necessary, we write

P1 = {g1, g2, . . . , gk},
P2 = {gk+1, gk2 , . . . , g2k},

...

Pm = {g(m−1)k+1, g(m−1)k+2, . . . , gmk}.

Recall the critical values SB from (9.3.1) and the set S̃B = B−1(SB)

from (9.3.2). Each gj ◦ B is arbitrarily continuable to D\S̃B since B(D\S̃B) ⊆
D\SB and gj is arbitrarily continuable to D\SB . For z in some neighborhood of
zero contained in D\S̃B , define
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D(z) = z

k∏

j=2

gj (0)

|gj (0)|gj (B(z))

= g1(B(z))

k∏

j=2

gj (0)

|gj (0)|gj (B(z)),

in which the last equality follows from the identity g1(B(z)) = z, which in turn
follows from the fact that B(g1(B(z))) = B(z) and g1(B(0)) = 0. Since each factor
gj ◦B is arbitrarily continuable on D\S̃B so will D be with the appropriate product
formula holding for all z ∈ D\S̃B .

Let δ be a closed loop in D\S̃B that includes 0. Continuing D along δ is
essentially the same as continuing the function

g1(w)

k∏

j=2

gj (0)

|gj (0)|gj (w)

along the closed curve γ = B ◦ δ in D\SB . We claim that γ ∗(g1) = g1. Indeed,
g1(B(z)) = z is single valued on C and hence continuing g1 along γ is the same
as continuing z along δ. Thus, γ ∗g1 = g1. Now observe that since GB respects the
partition P , we have γ ∗P1 = Ps for some 1 � s � m. However, we already know
that γ ∗g1 = g1 and so it must be the case that γ ∗P1 = P1. All of this implies
that continuing D along δ results only in rearranging the factors in D and hence
the continuation of D is D. Since D is arbitrarily continuable in D\S̃B and single
valued in a neighborhood of 0, we conclude that D is single valued on all of D\S̃B .
But since we also have |D| < 1 on D\S̃B and S̃B is a finite set, D defines an
analytic function on all of D.

Everything we have done so far can also be done not only on D but also in an open
neighborhood of D− where B defines an analytic function (just avoid the poles of
B). Thus, D defines an analytic function in an open neighborhood of D−. For ξ ∈ T,
the gj (B(ξ)) is unimodular and hence D is unimodular on T. By Fatou’s theorem
(Theorem 3.5.2), D is a finite Blaschke product. In particular, D is a finite Blaschke
product whose zeros are g1(0), g2(0), . . . , gk(0) and hence D has degree equal to
k, the order of the partition P . From the formula defining D, we have D′(0) > 0.

We now claim that

D(g1(0)) = D(g2(0)) = · · · = D(gk(0)),

D(gk+1(0)) = D(gk+2(0)) = · · · = D(g2k),

D(g2k+1(0)) = D(g2k+2(0)) = · · · = D(g3k(0)),

...

D(g(m−1)k+1(0))) = · · · = D(gmk(0)).
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We will do this by showing that

D(grk+j (0)) =
(

k∏

l=2

gl(0)

|gl(0)|

)(
k∏

l=1

grk+l (0)

)
.

Observe that the right-hand side of the preceding equation is independent of j . To
prove this formula, let γ be a closed curve in D\SB such that

γ ∗g1 = grk+j .

Note how we are using the transitivity of GB (Theorem 9.5.6). Let δ be the lift of γ to
D\S̃B (via B−1) with δ(0) = 0. Thus, δ(1) = grk+j (0). By definition, D(grk+j (0))
is the continuation of

z

k∏

l=2

gl(0)

|gl(0)|gl(B(z))

along δ. Since γ ∗g1 = grk+j and GB respects the partition GB we see that γ ∗P1 =
Pr and hence

D(grk+j (0)) =
(

k∏

l=2

gl(0)

|gl(0)|

)(
k∏

l=1

grk+l (0)

)
. (9.6.2)

Let C be the finite Blaschke product with C′(0) > 0 and whose zeros are

0 = D(g1(0)), D(gk+1(0)), D(g2k+1(0)), . . . , D(g(m−1)k+1(0)).

By (9.6.2), C ◦D is a Blaschke product with (C ◦D)′(0) > 0 and with zeros

g1(0), g2(0), . . . , gn(0).

Since B is a finite Blaschke product with the same zeros and B ′(0) > 0, we conclude
that B = C ◦D; see Exercise 9.4.

To prove the converse, suppose that B = C ◦ D (where C and D are finite
Blaschke products of degree greater than one) and {g1, g2, . . . , gn} are the branches
of B−1 at zero. For each gj , we know that D ◦ gj is a branch of C−1 at zero. This
allows us to define an equivalence relation on {g1, g2, . . . , gn} by

gj ∼ gj ′ ⇐⇒ D ◦ gj = D ◦ gj ′

on their common domain. This equivalence relation produces a partition P of
{g1, g2, . . . , gn}. That GB respects P is a consequence of the permanence of
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functional relations [100]. Indeed, observe that for all curves γ ∈ LB we have

D ◦ gj = D ◦ gj ′ �⇒ D ◦ (γ ∗gj ) = D ◦ (γ ∗gj ′).

In other words, GB respects the partition P . ��

9.7 Examples of Decomposability

Example 9.7.1 Revisiting Example 9.4.1, where B is a normalization of b(z) = z4,
we saw that GB is a cyclic group of order 4 that can be viewed as the cyclic group
generated by the 4-cycle (1 2 3 4) acting on {1, 2, 3, 4}. Here we identify 1 with
the zero z1, 2 with the zero z2, and so forth. A quick verification confirms that
GB acts transitively. One can also see that the stabilizer of {1} is the trivial group,
which is properly contained in the proper subgroup H generated by the 2-cycle
(1, 3). Thus, GB acts imprimitively on {g1, g2, g3, g4} which makes B (and hence
b) decomposable. Indeed, b = z2 ◦ z2.

Example 9.7.2 Revisiting Example 9.4.2, where B is a normalization of

b(z) = z2
( 1

2 − z

1 − 1
2z

)2
,

we saw that GB was isomorphic to the dihedral group D4, which acts transitively.
One can view D4 as acting on the vertices of a square labeled in order as 1, 2, 3, 4.
The elements of D4 (using cycle notation) are

(1 2 3 4), (1 3), (1 4 3 2), (1 3), (2 4), (1 2)(3 4), (1 4)(2 3), (1).

Direct computation reveals that the stabilizer of {1} is the subgroup 〈(2 4)〉 (the
subgroup generated by (2 4)) and that

〈(2 4)〉 � 〈(2 4), (1 3)〉 � D4.

Thus, GB acts imprimitively on {g1, g2, g3, g4} which makes B (and hence b)
decomposable. Indeed,

b = z2 ◦
(
z

1
2 − z

1 − 1
2z

)
.

Example 9.7.3 Revisiting Example 9.4.3, where B is a normalization of

b(z) = z2 · z− 1
3

1 − 1
3z

· z− 1
2

1 − 1
2z

,
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we saw that GB was isomorphic to S4, which acts transitively. The stabilizer of
{1} is isomorphic to the group of permutations of {2, 3, 4}, a group of order 6. A
proper subgroup of S4 that contains the stabilizer would have to be of order 12
by Lagrange’s Theorem. However, the only subgroup of S4 of order 12 is A4, the
alternating group on four letters. However, A4 does not contain the 2-cycle (2 3),
which belongs to the stabilizer of {1}, since this element is a transposition and hence
is not an even permutation. Thus, the stabilizer of {1} is a maximal subgroup of S4.
Analogous arguments show that the stabilizers of {2}, {3}, and {4} are also maximal
subgroups of S4. Consequently, GB acts primitively on {g1, g2, g3, g4} and hence B

and b are indecomposable finite Blaschke products.

9.8 Notes

Ritt’s Theorem for Polynomials

There is a statement of Ritt’s theorem for polynomials. A polynomial p can be
written as a nontrivial composition p = q ◦ r of polynomials q and r if and only if
the associated monodromy group is imprimitive [119] (see also [108]).

Ritt’s Theorem Redux

There are several other characterizations of decomposable finite Blaschke products
[23, 30, 130].

Ritt’s Theorem and Cyclic Groups

For a finite Blaschke product B of degree n, we defined the group

GB = {u ∈ C : B ◦ u = B}

and proved in Theorem 9.1.6 that this group was cyclic of order n. It turns out that
we can rephrase Ritt’s theorem in terms of GB . From [30] we have the following
theorem: a finite Blaschke product B of degree n = mk, in which m > 1, is a
composition of two nontrivial finite Blaschke products B = C ◦ D if and only if
there is a finite Blaschke product D of degree k > 1 such that the group GD is
generated by um, where u is a generator of the group GB .
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Chebyshev Blaschke Products

In [108] there is an exposition of Chebyshev Blaschke products. The Chebyshev
polynomials

Tn(z) = cos(n arccos z)

are well-known orthogonal polynomials and have the nesting property

Tmn = Tm ◦ Tn
with respect to function composition. The monodromy group of Tn was computed
by Ritt [119]. There is also a family of Chebyshev Blaschke products Bn,τ , where
n ∈ N and τ ∈ iR+. These Blaschke products satisfy the nesting property

Bmn,τ = Bm,nτ ◦ Bn,τ

and one can compute the monodromy group of Bn,τ .

An Interesting Approximation Result

The indecomposable finite Blaschke products are uniformly dense in the set of
all finite Blaschke products [22] and thus, by Carathéodory’s Theorem (Theo-
rem 4.1.1), such indecomposable finite Blaschke products are dense in the unit ball
of H∞.

Further Examples

Further, more complicated, examples of monodromy groups associated with finite
Blaschke products were worked out in a thesis of B. Sokolowsky [130].

9.9 Exercises

9.1 Maintaining the notation of Theorem 9.5.6 and its proof, show that the powers
of γ ∗ form a cycle of the branches in the sense that

γ ∗g1 = g2, γ ∗2g2 = g3, . . . γ ∗(n−1)gn−1 = gn, γ ∗ngn = g1.
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9.2 Show that if a finite group G acts on a finite set X, then the cardinality of X
divides the cardinality of G.
Hint: Use the orbit-stabilizer theorem.

9.3 Finish the details of the proof of Example 9.4.2 and show that GB is isomorphic
to the dihedral group of a square.

9.4 Show that if B1 and B2 are normalized finite Blaschke products with the same
zeros, then B1 ≡ B2.

9.5 Which subgroups of S3 are realizable as monodromy groups of finite Blaschke
products? Which subgroups of S4?

9.6 Suppose that B is a finite Blaschke product of degree n. If B has more than n
2

critical values, then B is decomposable [130].



Chapter 10
Finite Blaschke Products and Operator
Theory

In this chapter we explore some of the connections that finite Blaschke products
make with operators on Hilbert spaces. In particular, we focus on norms of
contractions and the mapping properties of the numerical range. A review of some
relevant operator theory notions such as the norm, spectrum, functional calculus,
and spectral mapping theorem can be found in Appendix A.6.

10.1 Contractions

A function of the form

p(ζ ) =
N∑

n=−N

anζ
n, ζ ∈ T, (10.1.1)

is a trigonometric polynomial. Although initially defined on T, every trigonometric
polynomial is defined and analytic on C\{0}. The term “trigonometric” stems from
the fact that if we write ζ = eiθ = cos θ + i sin θ and substitute this into (10.1.1),
the result is a complex linear combination of sines and cosines. If the trigonometric
polynomial p has no negatively indexed coefficients, that is,

p(ζ ) =
N∑

n=0

anζ
n, ζ ∈ T,

then p is an analytic polynomial. This terminology reflects the fact that p(z) =∑N
n=0 anz

n is a polynomial in the usual sense. The term “polynomial,” when used
without modifiers, refers to an analytic polynomial.
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Each trigonometric polynomial is continuous on T and hence is bounded there.
Consequently, we may define

‖p‖∞ = max
ζ∈T

|p(ζ )|.

If p is an analytic polynomial, then the Maximum Modulus Principle implies that

max
z∈D

|p(z)| = max
ζ∈T

|p(ζ )|.

A trigonometric polynomial p is positive if p(ζ ) � 0 for all ζ ∈ T. If q is a
trigonometric polynomial, then

p = qq = |q|2

is a positive trigonometric polynomial. The following theorem of Fejér [47] and
Riesz [118] asserts that every positive trigonometric polynomial arises in this
manner. Many generalizations of this result are discussed in [35].

Theorem 10.1.2 (Fejér–Riesz) If p is a positive trigonometric polynomial, then
p = |q|2 on T for some analytic polynomial q with no roots in D.

Proof Suppose that p(ζ ) = ∑N
n=−N anζ

n is a positive trigonometric polynomial.
Then aN = a−N since p = p on T and hence we may assume that a−N �= 0.
Thus, f (z) = zNp(z) is an analytic polynomial of degree 2N with f (0) �= 0. In
particular, the zeros in C of f (z) are precisely the zeros of p(z). Since

p(ζ ) = p(ζ ) = p(1/ζ ), ζ ∈ T,

we conclude that p(z) = p(1/z) for z ∈ C\{0}. Consequently, each zero α �= 0 of
f in C\T occurs as a pair {α, 1/α} with matching multiplicities.

Suppose that β ∈ T is a zero of f of order m and fix a small neighborhood U

of β whose closure includes no other zeros of f . For ε > 0, we observe that p + ε

is a trigonometric polynomial that is strictly positive on T. In particular, it has no
zeros on T. Since p + ε converges uniformly to p on C as ε → 0, it follows that
fε(z) = zN(p(z)+ ε) converges uniformly to f on U as ε → 0. Hurwitz’ theorem
[26, p. 152] says that for sufficiently small ε > 0, fε has exactly m zeros in U . The
reasoning in the first paragraph ensures that the zeros of fε occur in pairs {α, 1/α}
with matching multiplicities. Moreover, fε has no zeros on T since p + ε does not.
We conclude from this that m is even.

The preceding discussion implies that

f (z) = c

N∏

i=1

(z− zi)(1/zi − z),
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in which z1, z2, . . . , zN are in C\D and c �= 0. Then

p(ζ ) = ζ−Nf (ζ )

= cζ
N

N∏

i=1

(ζ − zi)(1/zi − ζ )

= C

N∏

i=1

(ζ − zi)(ζ − zi)

= C

N∏

i=1

(ζ − zi)

N∏

i=1

(ζ − zi),

in which

C = c

n∏

j=1

1

zj
�= 0.

Since p is a positive trigonometric polynomial, we conclude that C > 0. Thus,
p = qq = |q|2, in which

q(ζ ) = √
C

N∏

i=1

(ζ − zi)

is an analytic polynomial with no roots in D. ��
Let H denote a Hilbert space and let L (H ) denote the set of all bounded linear

operators on H . If p is given by (10.1.1), we may write

p(ζ ) = a0 +
N∑

n=1

anζ
n +

N∑

n=1

a−nζ n (10.1.3)

and define the operator

p(T ) = a0I +
N∑

n=1

anT
n +

N∑

n=1

a−nT
∗n (10.1.4)

for T ∈ L (H ). The map p �→ p(T ) is well defined and linear; see Exercise 10.1.
Less obvious is the fact that this map preserves positivity. This is Lemma 10.1.10
below: if T ∈ L (H ) is a contraction and p is a positive trigonometric polynomial,
then p(T ) � 0 (recall the definition of a positive operator from Appendix A.6).
Our proof relies upon a powerful result of Béla Szőkefalvi-Nagy which asserts



212 10 Finite Blaschke Products and Operator Theory

that, for many purposes, a contraction can be replaced by a unitary operator [131].
The unitary operator U constructed in the following theorem is called a unitary
dilation of T .

Theorem 10.1.5 (Szőkefalvi-Nagy Dilation Theorem) If T ∈ L (H ) is a con-
traction, then there is a Hilbert space K that contains H and a unitary U ∈
L (K ) such that

T n = PH Un|H , n = 0, 1, . . . , (10.1.6)

where PH is the orthogonal projection of K onto H .

Proof If T is a contraction, then I − T ∗T and I − T T ∗ are positive and hence the
defect operators

DT = √
I − T ∗T and DT ∗ = √

I − T T ∗

can be defined by the functional calculus for self-adjoint operators. Furthermore, we
also have

DT ∗T = TDT , (10.1.7)

which implies that

DS∗S = S∗DS∗ = 0

for any isometry S. The identity (10.1.7) requires a polynomial approximation argu-
ment along with the identity p(T ∗T )T = Tp(T T ∗) for any analytic polynomial p;
see Exercise 10.2.

Then

S =

⎡

⎢⎢⎢⎢⎢⎣

T 0 0 0 · · ·
DT 0 0 0 · · ·
0 I 0 0 · · ·
0 0 I 0 · · ·
...

...
...

...
. . .

⎤

⎥⎥⎥⎥⎥⎦
, (10.1.8)

which acts on the Hilbert space

J =
∞⊕

i=1

H ,

is an isometric dilation of T . That is, S∗S = I (which says that S is an isometry)
and p(T ) equals the restriction of p(S) to the first direct summand for each analytic
polynomial p; see Exercise 10.4. Now observe that
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U =
[
S DS∗
0 −S∗

]
, (10.1.9)

which acts on

K = J ⊕ J ,

is a unitary dilation of the isometry S; see Exercise 10.5. In other words, U is unitary
and p(S) equals the restriction of p(U) to the first direct summand. If we identify
the original H upon which T acts with the first direct summand of the first direct
summand J in the decomposition of K , then p(T ) equals the restriction of p(U)

to a subspace of K . ��
Lemma 10.1.10 If T ∈ L (H ) is a contraction and p is a positive trigonometric
polynomial, then p(T ) � 0.

Proof The Fejér–Riesz theorem implies that p = |q|2 on T for some analytic poly-
nomial q. Let U ∈ L (K ) be a unitary dilation of T ∈ L (H ) (Theorem 10.1.5)
and let PH denote the orthogonal projection from K onto H . Since U is unitary,
we have UU∗ = U∗U = I and hence p(U) = q(U)∗q(U). For each x ∈ H ,

〈p(T )x, x〉H = 〈PH p(U)x, x〉H
= 〈p(U)x, x〉K
= 〈q(U)∗q(U)x, x〉K
= 〈q(U)x, q(U)x〉K
= ‖q(U)x‖2

K

� 0.

Thus, p(T ) � 0. ��
An alternate proof of Lemma 10.1.10 is outlined in Exercise 10.3. We are now

ready to prove a seminal result of von Neumann (see Exercise 10.6 for another
proof).

Theorem 10.1.11 (von Neumann’s Inequality [136]) If T is a contraction and p

is an analytic polynomial, then

‖p(T )‖ � ‖p‖∞.

Proof Let T ∈ L (H ) be a contraction with unitary dilation U ∈ L (K ). Without
loss of generality, suppose that ‖p‖∞ = 1 and consider the positive trigonometric
polynomial

q = 1 − |p|2 = 1 − pp.
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Then q(U) = I − p(U)∗p(U) since UU∗ = U∗U = I . For x ∈ K ,
Lemma 10.1.10 ensures that

0 � 〈q(U)x, x〉K
= 〈(I − p(U)∗p(U))x, x〉K
= 〈Ix, x〉 − 〈p(U)∗p(U)x, x〉K
= 〈x, x〉 − 〈p(U)x, p(U)x〉K
= ‖x‖2

K − ‖p(U)x‖2
K

and hence ‖p(U)x‖K � ‖x‖K for all x ∈ K . Since p(T ) = PH p(U)|H , we
conclude that ‖p(T )x‖H � ‖x‖H for x ∈ H . This completes the proof. ��

The Wiener algebra W (D) consists of all analytic functions

f (z) =
∞∑

n=0

anz
n

on D such that

∞∑

n=0

|an| < ∞. (10.1.12)

As its name suggests, the Wiener algebra is indeed an algebra; see Exercise 10.7.
For each f ∈ W (D), the summability condition (10.1.12) guarantees that the Taylor
polynomials

pN(z) =
N∑

n=0

anz
n,

converge uniformly to f on D
−. Consequently,

‖f ‖∞ = sup
ζ∈T

|f (ζ )| = lim
N→∞ sup

ζ∈T
|pN(ζ )|. (10.1.13)

The property (10.1.12) implies that for any contraction T ∈ L (H ), the sequence
pN(T ) is Cauchy with respect to the operator norm. Thus, we can define the operator

f (T ) =
∞∑

n=0

anT
n = lim

N→∞

N∑

n=0

anT
n. (10.1.14)

Theorem 10.1.11 and (10.1.13) now yield
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‖f (T )‖ � sup
ζ∈T

|f (ζ )|. (10.1.15)

If Hol(D−) denotes the set of functions that are analytic in a neighborhood of
D
−, then Hol(D−) ⊆ W (D). Indeed, for f =∑∞

n=0 anz
n ∈ Hol(D−), the Cauchy–

Hadamard formula for the radius of convergence of a power series tells us that

lim sup
n→∞

|an|1/n < 1.

Thus, we can define f (T ) for any f ∈ Hol(D−) and any contraction T . Moreover,
we have the operator norm estimate (10.1.15).

Corollary 10.1.16 If T is a contraction and

B(z) = ξ

n∏

k=1

zk − z

1 − zkz

is a finite Blaschke product, then B(T ) is a contraction. Furthermore,

B(T ) = ξ

n∏

k=1

(zkI − T )(I − zkT )−1. (10.1.17)

Proof Observe that B(T ) is well defined since B ∈ Hol(D−) ⊆ W (D). It is a
contraction by (10.1.15). The formula for B(T ) follows since B(T ), defined by the
power series in (10.1.14), and the power series expansion of the right-hand side
of (10.1.17), are the same. ��

10.2 Norms of Contractions

From Corollary 10.1.16 we know that if T is a contraction and

B(z) = ξ

n∏

j=1

zj − z

1 − zj z
(10.2.1)

is a finite Blaschke product of degree n, then B(T ) is also a contraction. When is
‖B(T )‖ = 1?

Theorem 10.2.2 (Gau–Wu [63]) Suppose T is a contraction and n ∈ N. The
following are equivalent.

(a) ‖B(T )‖ = 1 for some finite Blaschke product of degree n.
(b) ‖B(T )‖ = 1 for every finite Blaschke product of degree n.
(c) ‖T n‖ = 1.
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We closely follow the original proof from [63], which requires two lemmas. The
first lemma is the asymptotic version of the fact that

‖T x‖ = ‖x‖ ⇐⇒ x ∈ ker(I − T ∗T )

whenever T is a contraction.

Lemma 10.2.3 If T is a contraction and xk is a sequence such that ‖xk‖ → 1, then

‖T xk‖ → 1 ⇐⇒ ‖(1 − T ∗T )xk‖ → 0.

Proof First observe that

‖(I − T ∗T )xk‖2 = 〈(I − T ∗T )xk, (I − T ∗T )xk
〉

= 〈xk, xk〉 − 〈xk, T ∗T xk〉 − 〈T ∗T xk, xk〉 + 〈T ∗T xk, T ∗T xk〉
= ‖xk‖2 − (〈xk, T ∗T xk〉 + 〈xk, T ∗T xk〉

)+ ‖T ∗T xk‖2

= ‖xk‖2 − 2 Re〈xk, T ∗T xk〉 + ‖T ∗T xk‖2

= ‖xk‖2 − 2 Re〈T xk, T xk〉 + ‖T ∗T xk‖2

= ‖xk‖2 − 2‖T xk‖2 + ‖T ∗T xk‖2. (10.2.4)

Now use the fact that T is a contraction to obtain

‖T ∗T xk‖ � ‖T ∗‖ ‖T xk‖
� ‖T ∗‖ ‖T ‖ ‖xk‖
� ‖xk‖.

Apply this inequality to (10.2.4) to see that

‖(I − T ∗T )xk‖2 � 2‖xk‖2 − 2‖T xk‖2.

If we assume that ‖xk‖ → 1 and ‖T xk‖ → 1, we obtain ‖(I − T ∗T )xk‖ → 0.
Conversely, if ‖xk‖ → 1 and ‖(I − T ∗T )xk‖ → 0, then

|〈(I − T ∗T )xk, xk〉| � ‖(I − T ∗T )xk‖ ‖xk‖ → 0.

Hence

‖T xk‖2 = ‖xk‖2 − 〈(I − T ∗T )xk, xk
〉→ 1

as required. ��
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Since we will be computing the operator norm of B(T ), we can dispense with
the unimodular constant ξ in (10.2.1) and that assume our finite Blaschke product
B takes the form

B(z) =
n∏

j=1

zj − z

1 − zj z
.

Let

bj (z) = zj − z

1 − zj z

be the j th factor. The following is the key step to proving Theorem 10.2.2.

Lemma 10.2.5 If T is a contraction, then

‖T b2(T ) · · · bn(T )‖ = 1 ⇐⇒ ‖b1(T )b2(T ) · · · bn(T )‖ = 1.

Proof Let R = b2(T ) · · · bn(T ) and assume that ‖T R‖ = 1. By the definition of
the operator norm, there is a sequence xk of unit vectors such that ‖T Rxk‖ → 1.

Define

yk = (I − z1T )xk

and let us first argue that

‖b1(T )Ryk‖2 − ‖yk‖2 → 0. (10.2.6)

Indeed,

‖b1(T )Ryk‖2 − ‖yk‖2 = ‖(T − z1I )Rxk‖2 − ‖(I − z1T )xk‖2

= ‖T Rxk‖2 − 2 Re(z1〈T Rxk, Rxk〉)+ |z1|2‖Rxk‖2

− ‖xk‖2 + 2 Re(z1〈xk, T xk〉)− |z1|2‖T xk‖2

= (‖T Rxk‖2 − ‖xk‖2)− 2 Re
[
z1(〈Rxk, T Rxk〉 − 〈xk, T xk〉)

]

+ |z1|2(‖Rxk‖2 − ‖T xk‖2)

= (‖T Rxk‖2 − ‖xk‖2)− 2 Re[z1〈xk, (I − R∗R)T xk〉]
+ |z1|2(‖Rxk‖2 − ‖T xk‖2). (10.2.7)
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Since ‖xk‖ = 1 and ‖T Rxk‖ → 1 (along with the facts that ‖T ‖ � 1 and ‖R‖ � 1),
we can use the inequalities

‖T Rxk‖ � ‖Rxk‖ � 1

and

‖T Rxk‖ = ‖RT xk‖ � ‖T xk‖ � 1,

to conclude that

‖Rxk‖ → 1 and ‖T xk‖ → 1.

Combine this with the fact that ‖RT xk‖ → 1, along with Lemma 10.2.3, to see that
‖(I − R∗R)T xk‖ → 0. Substitute this limit along with the limits

‖xk‖ → 1, ‖T Rxk‖ → 1, ‖Rxk‖ → 1, ‖T xk‖ → 1

into (10.2.7) to conclude that ‖b1(T )Ryk‖2 − ‖yk‖2 → 0, which proves (10.2.6).
Use the inequality

1 = ‖xk‖
= ‖(I − z1T )−1(I − z1T )xk‖
� ‖(I − z1T )−1‖ ‖(I − z1T )xk‖
= ‖(I − z1T )−1‖ ‖yk‖

to obtain

‖yk‖ � 1

‖(I − z1T )−1‖ > 0.

Using (10.2.6) we get

∥∥∥b1(T )R
yk
‖yk‖
∥∥∥− 1 → 0

and hence ‖b1(T )R‖ = 1.
Conversely, assume that

‖b1(T )b2(T ) · · · bn(T )‖ = 1.
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Let

ψ(z) = z+ z1

1 + z1z
,

which equals the inverse of b1, and define

ψj (z) = bj ◦ ψ, 2 � j � n.

If T1 = b1(T ), then bj (T ) = ψj(T1) for 2 � j � n. Since

‖b1(T )b2(T ) · · · bn(T )‖ = 1 ⇐⇒ ‖T1ψ2(T1) · · ·ψn(T1)‖ = 1,

the previous argument shows that

‖ψ1(T1) · · ·ψn(T1)‖ = 1 �⇒ ‖T1ψ2(T1) · · ·ψn(T1)‖ = 1.

The proof is now complete. ��
To prove Theorem 10.2.2, apply Lemma 10.2.5 n times.

10.3 Numerical Range

Let σ(T ) denote the spectrum of T ∈ L (H ). For each T ∈ L (H ) and analytic
polynomial p, the operator p(T ) is well defined. The Spectral Mapping Theorem
(Theorem A.7.6) asserts that σ(p(T )) = p(σ(T )). See Appendix A.6 for a brief
review of operator spectra.

Although there is no spectral mapping theorem for the numerical range (defined
below), there are some substitutes from work of Halmos, Berger, Stampfli, and
Drury in which finite Blaschke products come into play. We first require a few facts
about the numerical range.

Definition 10.3.1 For T ∈ L (H ),

W(T ) := {〈T x, x〉 : x ∈ H , ‖x‖ = 1}

is the numerical range of T .

Proposition 10.3.2 Let T ∈ L (H ).

(a) W(T ) ⊆ {z : |z| � ‖T ‖}.
(b) If H is finite dimensional, then W(T ) is compact.
(c) If U is unitary, then W(U∗T U) = W(T ).
(d) If S = aT + bI , in which a, b ∈ C, then
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Fig. 10.1 The numerical
range of a normal matrix is
the convex hull of its
eigenvalues λj

0

l1

l2

l3

l4

l5

W(S) = aW(T )+ b. (10.3.3)

(e) W(T ) contains the eigenvalues of T .
(f) If T ∈ Mn is normal, then W(T ) is the convex hull of its eigenvalues.

The proof of the preceding is left to the reader; see Exercise 10.8. Proposi-
tion 10.3.2.f is illustrated in Fig. 10.1.

Definition 10.3.4 The numerical radius of T ∈ L (H ) is

w(T ) := sup{|〈T x, x〉| : x ∈ H , ‖x‖ = 1}.

By (10.3.3) we see that

w(λT ) = |λ|w(T ), λ ∈ C, (10.3.5)

and

w(S + T ) � w(S)+ w(T ), S, T ∈ L (H ). (10.3.6)

The numerical radius is related to the operator norm via the following inequalities.

Lemma 10.3.7 If T ∈ L (H ), then

‖T ‖
2

� w(T ) � ‖T ‖.

Proof For any unit vector x ∈ H , the Cauchy–Schwarz inequality and the
definition of the operator norm, yield
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w(T ) = sup
‖x‖=1

|〈T x, x〉| � sup
‖x‖=1

‖T x‖‖x‖ � ‖T ‖.

For the lower inequality, we need the polarization identity

4〈T x, y〉 = 〈T (x + y), (x + y)〉 − 〈T (x − y), (x − y)〉
+ i〈T (x + iy), (x + iy)〉 − i〈T (x − iy), (x − iy)〉.

This implies

4|〈T x, y〉| � |〈T (x + y), (x + y)〉| + |〈T (x − y), (x − y)〉|
+ |〈T (x + iy), (x + iy)〉| + |〈T (x − iy), (x − iy)〉|.

From the definition of w(T ) we get the inequality

|〈T z, z〉| � w(T )‖z‖2

for any z ∈ H . Apply this estimate to the previous line to get

4|〈T x, y〉| � w(T )‖x + y‖2 + w(T )‖x − y‖2

+ w(T )‖x + iy‖2 + w(T )‖x − iy‖2.

For unit vectors x, y, two applications of the parallelogram identity

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2)

provide

4|〈T x, y〉| � w(T )(‖x + y‖2 + ‖x − y‖2 + ‖x + iy‖2 + ‖x − iy‖2)

= 4w(T )(‖x‖2 + ‖y‖2)

� 8w(T ).

Thus,

‖T ‖ = sup{|〈T x, y〉| : ‖x‖ � 1, ‖y‖ � 1} � 2w(T ). ��

Both of the inequalities in Lemma 10.3.7 can be attained; see Exercise 10.12.

Corollary 10.3.8 If S, T ∈ L (H ), then

|w(S)− w(T )| � ‖S − T ‖.
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Proof The subadditivity of the numerical radius from (10.3.6) shows that

|w(S)− w(T )| � w(S − T ).

Now apply Lemma 10.3.7. ��
Since the expression 〈T x, y〉 involves only two vectors, it is often fruitful to

consider the compression of T onto the two-dimensional subspace spanned by x
and y. This reduces a potentially infinite-dimensional problem to a two-dimensional
problem. Our proof of the following seminal result of Hausdorff [69] and Toeplitz
[133] employs this strategy. After the initial reduction, our proof largely follows the
well-known matrix case [96].

Theorem 10.3.9 (Hausdorff–Toeplitz) W(T ) is convex for all T ∈ L (H ).

Proof Let a, b ∈ W(T ). Then there are unit vectors x, y ∈ H such that

〈T x, x〉 = a and 〈T y, y〉 = b.

We wish to show that the line segment [a, b] connecting the complex numbers a

and b remains in W(T ). If x and y are scalar multiples of each other, then the result
is immediate. Hence we assume that x and y are linearly independent. Let

K = span{x, y}

and let P denote the orthogonal projection of H onto K . Then

a = 〈T x, x〉 = 〈PT Px, x〉 and b = 〈T y, y〉 = 〈PT Py, y〉.

Consider the compression

T ′ = PT P |K
of T to K observe that W(T ′) ⊆ W(T ). In fact, for each z ∈ K ,

〈T ′z, z〉K = 〈PT P z, z〉H
= 〈T P z, P z〉H
= 〈T z, z〉H .

Thus, it suffices to show that [a, b] ⊆ W(T ′). Because T ′ is a linear transformation
from a two-dimensional space to itself, it suffices to prove that the numerical range
of a 2 × 2 matrix is convex.

Suppose that T ∈ M2. If T is normal, then Proposition 10.3.2 implies that W(T )

is convex. If T is not normal, then the matrix
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T − 1
2 tr(T )I

has trace zero and, by (10.3.3), its numerical range is convex if and only if the
numerical range of T is convex. Thus, we may assume that T has trace zero.
Since the trace is invariant under unitary equivalence, Schur’s theorem on unitary
triangularization (Theorem A.8.1) implies that T is unitarily equivalent to

[
α β

0 −α

]
(10.3.10)

for some α, β ∈ C. Moreover, β �= 0 since we are assuming that T is not normal.
If α = 0, then a computation with the Arithmetic-Geometric mean inequality

(see (10.4.3) below) confirms that W(T ) is a disk about the origin of radius |β|/2.
If α �= 0, we may appeal to (10.3.3) and replace the matrix in (10.3.10) by

[
1 2γ
0 −1

]
,

in which γ > 0. Another computation shows that the numerical range of this matrix
is an ellipse with principal axes of lengths 2γ and 2

√
1 + γ 2. In both cases, W(T )

is convex. ��
Corollary 10.3.11 σ(T ) ⊆ W(T )− for all T ∈ L (H ).

Proof If λ ∈ ∂σ(T ), then λ belongs to the approximate point spectrum of T [27,
VII.6.7] and hence there are unit vectors xn ∈ H such that 〈T xn, xn〉 → λ as
n → ∞. Therefore, λ ∈ W(T )−. If λ ∈ σ(T )\∂σ(T ), then any line through λ

intersects ∂σ(T ) in at least two points, say λ1, λ2. Indeed, let

t+ = sup{t ∈ R : tλ ∈ σ(T )} and t− = inf{t ∈ R : tλ ∈ σ(T )},

then verify that t−λ and t+λ belong to ∂σ(T ). The preceding discussion ensures that
λ1, λ2 ∈ W(T )−. Since W(T ) is convex (Theorem 10.3.9) and since the closure of
a convex set is also convex (see Exercise 10.10), it follows that W(T )− is convex.
Thus, λ ∈ W(T )−. ��

10.4 Halmos’ Conjecture

Is there a version of the spectral mapping theorem for the numerical range? In other
words, is

W(p(T )) = p(W(T ))
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for analytic polynomials p and T ∈ L (H )? The following simple example shows
that in this generality the conjecture is not true.

Example 10.4.1 We claim that W(T ) = D
− when

T =
[

0 2
0 0

]
. (10.4.2)

Indeed, for all unit vectors x = (x1, x2) ∈ C
2, the Arithmetic-Geometric Mean

inequality implies that

|〈T x, x〉| = 2|x1x2| � |x1|2 + |x2|2 � 1. (10.4.3)

Thus, W(T ) ⊆ D
−. If x1 = e−iα cos θ , x2 = sin θ , and α, θ ∈ [0, 2π ], then

〈T x, x〉 = eiα sin 2θ.

Let α and θ vary in [0, 2π ] and conclude that W(T ) = D
−. However, since T 2 = 0,

it follows that W(T 2) = {0} and hence the naïve conjecture

W(p(T )) = p(W(T ))

fails for the polynomial p(z) = z2.

Despite this shortcoming, some weaker results hold. Halmos conjectured that

T ∈ L (H ) and W(T ) ⊆ D
− �⇒ W(T n) ⊆ D

−, n � 1.

By (10.3.5) and Lemma 10.3.7, this conjecture translates into

w(T n) � w(T )n, n � 1. (10.4.4)

We prove a more general version of the conjecture in which the map z �→ zn is
replaced with certain finite Blaschke products. Our proof follows [88].

Theorem 10.4.5 Let T ∈ L (H ), w(T ) � 1, and let B be a finite Blaschke
product with B(0) = 0. Then w(B(T )) � 1.

Proof Since w(T ) � 1, we have W(T ) ⊆ D
− and hence σ(T ) ⊆ D

− by
Corollary 10.3.11. We first suppose that σ(T ) ⊆ D; the general case will be handled
by an approximation argument. Theorem 10.1.16 ensures that B(T ) is well defined
and the spectral mapping theorem (Theorem A.7.6) implies that

σ(B(T )) = B(σ(T )) ⊆ D.
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Let x ∈ H with ‖x‖ = 1. Since B(0) = 0, for each α ∈ T, Corollary 5.2.10
provides ζ1, ζ2 . . . , ζn ∈ T and c1, c2, . . . , cn > 0 so that

1

1 − αB(z)
= c1

1 − ζ 1z
+ · · · + cn

1 − ζ nz
. (10.4.6)

In particular, each I − ζkT is invertible because σ(T ) is contained in D. Then

1 − α〈B(T )x, x〉 = 〈(I − αB(T ))x, x〉
= 〈y, (I − αB(T ))−1y〉 (y = (I − αB(T ))x)

=
〈
y,

n∑

k=1

ck(I − ζ kT )−1y
〉

(by (10.4.6))

=
n∑

k=1

ck〈y, (I − ζ kT )−1y〉 (c1, c2, . . . , cn > 0)

=
n∑

k=1

ck〈(I − ζ kT )zk, zk〉 (zk = (I − ζ kT )−1y)

=
n∑

k=1

ck(‖zk‖2 − ζ k〈T zk, zk〉).

Since w(T ) � 1, we have

Re
(‖zk‖2 − ζ k〈T zk, zk〉

)
� 0,

and since ck > 0 for all k, it follows that

Re(1 − α〈B(T )x, x〉) � 0.

Because the preceding holds for all α ∈ T and all unit vectors x, we conclude that
w(B(T )) � 1.

Now we relax the assumption that σ(T ) ⊆ D. Let us first show that

lim
r→1−

B(rT ) = B(T ) (10.4.7)

in the operator norm. By Corollary 10.3.11, we know that σ(T ) ⊆ D
−, and hence

the spectral radius formula (Theorem A.6.11) implies that

lim
n→∞‖T n‖1/n � 1.
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Since B(z) = ∑∞
n=0 anz

n ∈ Hol(D−), the Cauchy–Hadamard formula for the
radius of convergence of a power series implies that

lim sup
n→∞

|an|1/n < 1.

Thus,

‖B(rT )− B(T )‖ �
∞∑

n=0

|an|(1 − rn)‖T n‖.

The Dominated Convergence Theorem now yields (10.4.7). Since w(B(rT )) � 1
for all r < 1, we let r → 1− and use to Corollary 10.3.8 to complete the proof. ��

10.5 The Wiener Algebra Versus the Disk Algebra

We would like to expand the above discussion beyond the Wiener algebra W (D) to
the disk algebra A (D) (the set of continuous functions on D

− that are analytic on
D). We have already discussed the definition of f (T ) when f ∈ W (D). We need
to do the same when f belongs to A (D). Moreover, since the Taylor coefficients
of an f ∈ W (D) are absolutely summable, the Taylor polynomials of f converge
uniformly on D

− and hence f ∈ A (D). It turns out that the containment W (D) ⊆
A (D) is proper.

Theorem 10.5.1 W (D) � A (D)

The remainder of this section is devoted to the proof of Theorem 10.5.1 which
was inspired by du Bois Reymond (see the end notes of this chapter). In order to
prove this, we need a sequence of analytic polynomials

pn(z) =
dn∑

k=0

an,kz
k (10.5.2)

with the following two properties.

(a) They are uniformly bounded on D
−:

|pn(z)| � 1, n � 1, z ∈ D
−.

(b) Their �1 norms are not uniformly bounded:

lim
n→∞

dn∑

k=0

|an,k| = ∞.
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Toward the end of this section, we present an explicit construction. Assuming the
existence of such a sequence of polynomials, we construct f as follows. According
to (a), we can replace the sequence pn by a subsequence so that

∞∑

n=1

1

n2

( dn∑

k=0

|an,k|
)
= ∞. (10.5.3)

Then we multiply each polynomial pn by an appropriate monomial zkn so that the
nonvanishing coefficients of the new sequence never coincide. For example, we can
take k1 = 1 and

kn = k1 + · · · + kn−1 + n. (10.5.4)

Then let

f (z) =
∞∑

n=1

1

n2 z
knpn(z). (10.5.5)

Property (a) ensures that f ∈ A (D). Property (b), or more precisely the
choice (10.5.3), says that f �∈ W (D).

To construct the sequence pn, which is the heart of the construction above, we
need a technical lemma (Fig. 10.2).

Lemma 10.5.6 Let

Sn(θ) =
n∑

k=1

sin(kθ)

k
, n � 1, θ ∈ R.

Then |Sn(θ)| � 5 for all n � 1 and θ ∈ R.

Proof Since Sn is a 2π -periodic odd function, we may assume that θ ∈ (0, π). If
�π/θ� < n, we write

Sn(θ) =
�π/θ�∑

k=1

sin(kθ)

k
+

n∑

k=�π/θ�+1

sin(kθ)

k
= S(1)

n (θ)+ S(2)
n (θ).
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Fig. 10.2 The graph of Sn for n = 10, 20, 30, 40

Then

|S(1)
n (θ)| �

�π/θ�∑

k=1

| sin(kθ)|
k

�
�π/θ�∑

k=1

kθ

k

= θ�π/θ�
� π

and

|S(2)
n (θ)| =

∣∣∣∣∣∣

n∑

k=�π/θ�+1

sin(kθ)

k

∣∣∣∣∣∣

� 1

�π/θ� + 1
· 1

sin(θ/2)

� π

(�π/θ� + 1)θ

� 1.

Hence, |Sn(θ)| � 1 + π � 5: see Exercise 10.15.



10.5 The Wiener Algebra Versus the Disk Algebra 229

If �π/θ� � n, then the estimate above for S(1)
n shows that |Sn(θ)| � π � 5. ��

Write Sn as

Sn(θ) =
n∑

k=1

(
i

2k
e−ikθ − i

2k
eikθ
)

to see that Sn is a trigonometric polynomial of degree n. Now define

pn(e
iθ ) = 1

5
einθSn(θ). (10.5.7)

Then pn is an analytic polynomial of the form in (10.5.2) with dn = 2n. By
Lemma 10.5.6 and the Maximum Modulus Principle, property (a) is fulfilled.
Furthermore,

dn∑

k=0

|an,k| = 1

5

n∑

k=1

1

k
� log n →∞.

Hence, property (b) is also satisfied.
We can get a bit more out of the above construction. Let us, instead of (10.5.3),

choose the subsequence such that it satisfies the more restrictive condition

dn∑

k=0

|an,k| � n3.

For the specific choice of polynomials above, this is equivalent to

log dn � n3. (10.5.8)

As we saw before, we have f ∈ A (D)\W (D). Moreover, the Taylor series of f

does not converge uniformly to f on D
−. Even more dramatically, the Taylor series

for f diverges at z = 1. To see this, write

f (z) =
∞∑

n=1

αnz
n

and

TN(z) =
N∑

n=1

αnz
n.
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Recall from (10.5.4) that the Taylor coefficients of the polynomials zknpn(z) have
disjoint support and pn(1) = 0. Choose N to be the index of the midpoint for Taylor
coefficients of the mth polynomial. Then, by (10.5.5) and (10.5.7), we have

TN(1) =
N∑

n=1

αn

=
m−1∑

n=1

1

n2 pn(1)+ i

10m2

(
1

dm
+ 1

dm − 1
+ · · · + 1

2
+ 1

)

� log dm

m2 .

The assumption (10.5.8) now ensures that TN(1) = O(m) → ∞. Thus, the Taylor
series for f diverges at z = 1.

10.6 The Berger–Stampfli Mapping Theorem

In this section we present a proof of a theorem of Berger and Stampfli [7] that
serves as a generalization of the Halmos conjecture. Since this theorem concerns
the numerical range of f (T ) for certain T ∈ L (H ) and f in the disk algebra
A (D), we first need to define f (T ). Recall from (10.1.15) that we defined f (T ) for
f in the Wiener algebra W (D). However, W (D) is a proper subset of A (D) and
hence the definition of f (T ) for f ∈ A (D) requires more care. The proof of the
next lemma, which depends on finite Blaschke products in a crucial way, follows
[88].

Lemma 10.6.1 If f ∈ A (D), T ∈ L (H ), and w(T ) � 1, then

lim
r→1−

f (rT )

exists in the operator norm.

Proof Suppose that T ∈ L (H ) and w(T ) � 1. Corollary 10.3.11 implies that
σ(T ) ⊆ W(T )− ⊆ D

−. Let us first prove that

w(g(T )) � ‖g‖∞ (10.6.2)

whenever g is analytic in a neighborhood of D−, g(0) = 0, and σ(T ) ⊆ D. By
scaling, we may also assume that ‖g‖∞ = 1. Since g ∈ Hol(D−) we can employ
the argument used to prove (10.4.7) to see that g(T ) is a well-defined element of
L (H ). Carathéodory’s Theorem (Theorem 4.1.1) provides a sequence of finite
Blaschke products Bn that converges uniformly on compact subsets of D to g. Since
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g(0) = 0, we can also arrange that Bn(0) = 0 for all n; see Exercise 4.4. From
Theorem 10.4.5, we know that w(Bn(T )) � 1 for all n. The Spectral Mapping
Theorem (Theorem A.7.6) says that

σ(Bn(T )) = Bn(σ(T )) ⊆ D and σ(g(T )) = g(σ (T )) ⊆ D.

From here, we can use the Riesz functional calculus (see (A.7.5)) to see that Bn(T )

converges in norm to g(T ). It follows from Corollary 10.3.8 that w(g(T )) � 1.
We apply the argument above to

gr,s(z) = f (rz)− f (sz), r, s ∈ (0, 1),

which is analytic in a neighborhood of D− and vanishes at the origin, and to the
operator gr,s(T ). For r, s close enough to 1, we have ‖gr,s‖∞ < 1 and hence

σ(gr,s(T )) = gr,s(σ (T )) ⊆ D

by the Spectral Mapping Theorem. By what we have already shown,

w(gr,s(T )) � ‖gr,s‖∞
and hence, by Lemma 10.3.7,

‖f (rT )− f (sT )‖ = ‖grs(T )‖ � 2w(grs(T )) � 2‖grs‖∞, (10.6.3)

which tends to zero as r, s → 1−. It follows that for each sequence rn → 1−, the
corresponding sequence f (rnT ) is Cauchy in L (H ) and hence convergent. The
estimate (10.6.3) ensures that the limit is independent of the choice of sequence rn.
Therefore, limr→1− f (rT ) exists. ��

The preceding theorem permits us to define

f (T ) := lim
r→1−

f (rT )

for f ∈ A (D) and T ∈ L (H ) with w(T ) � 1. Now that f (T ) is defined, we state
the main theorem of this section.

Theorem 10.6.4 (Berger–Stampfli) If f ∈ A (D), f (0) = 0, T ∈ L (H ), and
w(T ) � 1, then w(f (T )) � ‖f ‖∞.

Proof The hypotheses imply that σ(T ) ⊆ W(T )− ⊆ D
−. We have already proved

the result when σ(T ) ⊆ D; this is (10.6.2). We now relax the assumption that
σ(T ) ⊆ D. From the proof of the previous lemma, we know that w(f (rT )) �
‖f ‖∞ for all r ∈ (0, 1). Since f (T ) = limr→1− f (rT ), Corollary 10.3.8 implies
that w(f (T )) � ‖f ‖∞. ��
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What happens if f (0) �= 0 in Theorem 10.6.4? This will be addressed in the next
few sections.

10.7 A Local Inequality

Let T ∈ L (H ) and x ∈ H . The left-hand inequality in Lemma 10.3.7 amounts to
saying that ‖T x‖ � 2 whenever w(T ) � 1 and ‖x‖ � 1. The following result from
[88] is local refinement of this fact.

Theorem 10.7.1 (Mashreghi–Ransford) If w(T ) � 1 and ‖x‖ � 1, then

‖T x‖2 � 2 + 2
√

1 − |〈T x, x〉|2. (10.7.2)

Proof Without loss of generality, we may assume that ‖x‖ = 1 and 〈T x, x〉 � 0.
Observe that

A = 1

2
(T + T ∗) and B = 1

2i
(T − T ∗)

are self-adjoint and have numerical radius at most 1 by (10.3.6). Consequently,
‖A‖ � 1 and ‖B‖ � 1. The condition 〈T x, x〉 � 0 implies that 〈Ax, x〉 = 〈T x, x〉
and 〈Bx, x〉 = 0. This yields

√
‖T x‖2 − |〈T x, x〉|2 = ‖T x − 〈T x, x〉x‖

� ‖Ax − 〈Ax, x〉x‖ + ‖Bx − 〈Bx, x〉x‖

=
√
‖Ax‖2 − |〈Ax, x〉|2 +

√
‖Bx‖2 − |〈Bx, x〉|2

�
√

1 − |〈T x, x〉|2 + 1,

which, after some arithmetic, implies (10.7.2). ��
From Theorem 10.7.1 we derive the following operator inequality. This result is

needed for the proof of Corollary 10.7.6 below.

Corollary 10.7.3 If w(T ) � 1, then

I + 2t (T + T ∗)+ (t2 − 1
4 )T

∗T � 0, t ∈ [0, 1
2 ]. (10.7.4)

Proof The inequality (10.7.4) is equivalent to

1 + 2t Re〈T x, x〉 + (t2 − 1
4 )‖T x‖2 � 0, t ∈ [0, 1

2 ], ‖x‖ = 1.
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To prove this, we consider two cases. If ‖T x‖2 � 2, then for all t ∈ [0, 1
2 ],

1 + 2t Re〈T x, x〉 + (t2 − 1
4 )‖T x‖2 � 1 + 2t Re〈T x, x〉 + 2(t2 − 1

4 )

= 2

∣∣∣∣t +
〈T x, x〉

2

∣∣∣∣
2

+ 1 − |〈T x, x〉|2
2

� 0.

If ‖T x‖2 > 2, then write (10.7.2) in the form

‖T x‖2 − 2 � 2
√

1 − |〈T x, x〉|2

and square both sides to get

4‖T x‖2 − ‖T x‖4 − 4|〈T x, x〉|2 � 0.

For all t ∈ [0, 1
2 ], we have

1+2t Re〈T x, x〉 + (t2 − 1
4 )‖T x‖2

= ‖T x‖2
∣∣∣∣t +

〈T x, x〉
‖T x‖2

∣∣∣∣
2

+ 4‖T x‖2 − ‖T x‖4 − 4|〈T x, x〉|2
4‖T x‖2 � 0. ��

For fixed T ∈ L (H ), let Q(T, t, s) be the operator defined by

Q(T, t, s) = I + t (T + T ∗)+ sT ∗T .

Definition 10.7.5 Let S denote the set of all (t, s) ∈ [0,∞)×R such that whenever
H is a Hilbert space and T ∈ L (H ) with w(T ) � 1 we have Q(T, t, s) � 0.

The following corollary characterizes S; see Fig. 10.3. We will need this in order
to extend Theorem 10.6.4 to the case when f (0) �= 0.

Corollary 10.7.6 The region S from Definition 10.7.5 is characterized by the
following inequalities:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s � t2 − 1
4 , if 0 � t � 1

2 ,

s � 2t − 1, if 1
2 � t � 1,

s � t2, if t � 1.
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0.5 1 1.5 2

1

2

3

4

0
t

s

Fig. 10.3 The region S

Proof We divide the argument into three cases, according to the value of t .
Case I (0 � t � 1

2 ): If s � t2 − 1
4 , then Corollary 10.7.3 shows that, for all T with

w(T ) � 1,

Q(T, t, s) � I + t (T + T ∗)+ (t2 − 1
4 )T

∗T � 0.

On the other hand, if s < t2 − 1
4 and

T =
[

0 2
0 0

]
,

then w(T ) � 1 and

Q(T, t, s) =
[

1 2t
2t 1 + 4s

]
�� 0,

since it has negative determinant. Thus, for this range of values of t , we have (t, s) ∈
S ⇐⇒ s � t2 − 1

4 .
Case II ( 1

2 � t � 1): If s � 2t − 1, then, for all T with w(T ) � 1,

Q(T, t, s) � I + t (T + T ∗)+ (2t − 1)T ∗T

= (1 − t)(2I − (T + T ∗))+ (2t − 1)(I + T )∗(I + T ) � 0.
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On the other hand, if s < 2t − 1 and T = −I , then w(T ) � 1 and

Q(T, t, s) = (1 − 2t + s)I �� 0.

Therefore, for this range of values of t , we have (t, s) ∈ S ⇐⇒ s � 2t − 1.
Case III (t � 1): If s � t2, then, for all T with w(T ) � 1,

Q(T, t, s) � I + t (T + T ∗)+ t2T ∗T

= (I + tT )∗(I + tT ) � 0.

On the other hand, if t � s < t2 and T = −(t/s)I , then w(T ) � 1 and

Q(T, t, s) = (1 − t2/s)I �� 0.

Thus, for this range of values of t , we have (t, s) ∈ S ⇐⇒ s � t2. ��

10.8 Teardrops and Drury’s Theorem

We can formulate the Berger–Stampfli theorem as a numerical range mapping
theorem: if f : D− → D

− belongs to A (D) and f (0) = 0, then

W(T ) ⊆ D
− �⇒ W(f (T )) ⊆ D

−.

If f (0) �= 0, the preceding implication may fail; see Sect. 10.9. In this case, the best
result is a theorem due to Drury [36]. To state his result, we need to introduce some
terminology.

Definition 10.8.1 (Drury’s Teardrop Region) For α ∈ D
−,

td(α) := conv
(
D
− ∪D(α, 1 − |α|2)−)

is a teardrop region.

The region td(α) is the convex hull of the union of the closed unit disk and the
closed disk of center α and radius 1 − |α|2; see Fig. 10.4. When α ∈ [0, 1), td(α)
also equals the intersection of the two families of half planes

{z : Re(e−iθ z) � 1}, cos θ � α, (10.8.2)

and

{z : Re(e−iθ (z− α)) � 1 − α2}, cos θ � α; (10.8.3)

see Exercise 10.14 and Fig. 10.5. Drury’s theorem can now be stated as follows.
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0 a

Fig. 10.4 The Drury teardrop region td(α)

Theorem 10.8.4 Let T ∈ L (H ), W(T ) ⊆ D
−, and let f : D

− → D
− be a

function in A (D). Then

W(f (T )) ⊆ td(f (0)).

Proof We follow [36], with a few details added. Let α = f (0). We can assume that
|α| < 1, since otherwise, by the Maximum Modulus Principle, f is constant and
there is nothing to prove. Let φα be the disk automorphism

φα(z) = α + z

1 + αz

and set g = φ−1
α ◦ f . Then g belongs to the disk algebra, ‖g‖∞ � 1, and g(0) =

0. By Theorem 10.6.4, we have W(g(T )) ⊆ D
−. Since f = φα ◦ g, we may

proceed by replacing T by g(T ) and just study the case f = φα . Since φα(T ) =
φ|α|(e−i argαT ), we may also assume that α ∈ [0, 1).

Because td(α) is the intersection of the two families of half planes (10.8.2)
and (10.8.3) (see Exercise 10.14), to show that W(φα(T )) ⊆ td(α), it suffices to
prove that

Re(e−iθφα(T )) � I, cos θ � α, (10.8.5)
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Fig. 10.5 (a) is the intersection of the half planes {z : Re(e−iθ ) � 1} with cos θ � α. (b) is the
intersection of the half planes {z : Re(e−iθ ) � 1} with cos θ � α together with the circles |z| = 1
and |z − α| � 1 − |α|2. (c) is the intersection of the half planes {z : Re(e−iθ (z − α) � 1 − |α|2}
with cos θ � α. (d) is the intersection of the two families of half planes (which form the Drury
teardrop region)

and

Re(e−iθ (φα(T )− αI)) � (1 − α2)I, cos θ � α. (10.8.6)

We begin by proving (10.8.5), which is equivalent to

2I − e−iθφα(T )− eiθφα(T
∗) � 0. (10.8.7)

If A,B ∈ L (H ) and B is invertible, then

A � 0 ⇐⇒ 〈Ax, x〉 � 0 for all x ∈ H
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⇐⇒ 〈ABy, By〉 � 0 for all y ∈ H

⇐⇒ 〈B∗ABy, y〉 � 0 for all y ∈ H

⇐⇒ B∗AB � 0.

Applying this with A equal to the left-hand side of (10.8.7) and B = (I + αT ), we
see that the desired inequality (10.8.5) is equivalent to

2(1 − α cos θ)I + (2α − eiθ − α2e−iθ )T

+ (2α − e−iθ − α2eiθ )T ∗ + 2α(α − cos θ)T ∗T � 0.

If we let

ω = 2α − eiθ − α2e−iθ

|2α − eiθ − α2e−iθ | =
2α − eiθ − α2e−iθ

1 − 2α cos θ + α2 ,

then we may rewrite the last inequality as

2(1 − α cos θ)I + (1 − 2α cos θ + α2)(ωT + (ωT )∗)

+ 2α(α − cos θ)(ωT )∗(ωT ) � 0,

or equivalently, as Q(ωT, t, s) � 0, in which

t = 1 − 2α cos θ + α2

2(1 − α cos θ)
and s = α(α − cos θ)

1 − α cos θ
= 2t − 1.

For −1 � cos θ � α, one can show that t ∈ [ 1
2 , 1]. By Corollary 10.7.6, we have

Q(ωT, t, s) � 0. This establishes (10.8.5).
Now we turn to (10.8.6), which is equivalent to

2I − e−iθψα(T )− eiθψα(T
∗) � 0,

where

ψα(z) = z

1 + αz
.

As before, when considering B∗AB with B = (I + αT ), the preceding inequality
is equivalent to

2I + (2α − e−iθ )T + (2α − eiθT ∗)+ 2α(α − cos θ)T ∗T � 0.

If we let
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ω = 2α − e−iθ

|2α − e−iθ | =
2α − e−iθ

2
√
α(α − cos θ)+ 1

4

,

then we may rewrite the last inequality as

I +
√
α(α − cos θ)+ 1

4

(
ωT + (ωT )∗

)+ α(α − cos θ)(ωT )∗(ωT ) � 0,

or equivalently, as Q(ωT, t, s) � 0, in which

t =
√
α(α − cos θ)+ 1

4 and s = α(α − cos θ) = t2 − 1
4 .

For α � cos θ � 1, one can show that t ∈ [0, 1
2 ]. By Corollary 10.7.6, we have

Q(ωT, t, s) � 0. This establishes (10.8.6) and completes the proof. ��
The part of the numerical range of f (T ) “sticking out” of the unit disk is

governed by the inequality (10.8.6), which corresponds to the slice of S (see
Definition 10.7.5) where 0 � t � 1

2 , which is, in turn, determined by the operator
inequality in Corollary 10.7.3.

Corollary 10.8.8 Let T ∈ L (H ) and W(T ) ⊆ D
−, and let f : D → D belong to

A (D). Then

w(f (T )) � 1 + |f (0)| − |f (0)|2 � 5
4 .

10.9 Sharpness of Drury’s Result via Disk Automorphisms

The optimality of the teardrop region in Theorem 10.8.4 is established by an
example. To set the stage, let us properly formulate the question: find the smallest
convex set Ω such that

f (T ) ⊆ Ω

for all functions f ∈ A (D) with f (0) = α fixed.
If α = 0, thanks to the Halmos conjecture and simple examples (diagonal 2 × 2

matrices or the example below), we know that Ω = D
−. Hence, for the rest of

discussion, we may assume that α �= 0. The function

f (z) = α + z

1 + αz
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belongs to the disk algebra and f (0) = α. We consider two classes of operators to
show that the two disks in the definition of td(α) have to be in Ω . Thus, the Drury
teardrop region td(α) is optimal.

Example 10.9.1 Let

T =
[
ζ 0
0 −α

]
,

in which ζ ∈ T. A computation confirms that W(T ) = [−α, ζ ] ⊆ D
−. Moreover,

f (T ) =
[
f (ζ ) 0

0 0

]

and hence W(f (T )) = [0, f (ζ )]. As ζ runs once through the unit circle T, the
argument principle ensures that f (ζ ) does as well. Thus, D− ⊆ Ω .

Example 10.9.2 Consider the matrix T given by (10.4.2); that is,

T =
[

0 2
0 0

]
.

Example 10.4.1 tells us that W(T ) = D
− and a computation shows

f (T ) =
[
α 2(1 − |α|2)
0 α

]
.

To find the numerical range of f (T ), it is better to write it as

f (T ) = αI + (1 − |α|2)T .

This identity reveals that

W(f (T )) = α + (1 − |α|2)W(T )

= α + (1 − |α|2)D−

= D(α, 1 − |α|2)−.

Therefore, D(α, 1 − |α|2)− ⊆ Ω .
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10.10 Notes

von Neumann’s Inequality in Finite Dimensions

Our presentation of von Neumann’s inequality (Theorem 10.1.11) depended on the
dilation theorem (Theorem 10.1.5) which is an infinite-dimensional proof. When
the contraction T is on a finite-dimensional space (and thus can be considered as a
matrix), there are proofs that use either a finite-dimensional version of the dilation
theorem [40, 95] or the singular value decomposition [115, Ch. 1].

More on the Numerical Range

Lax and Wendroff [93, 94] showed that if H is finite dimensional, then w(T ) � 1
implies that for some M > 0, we have ‖T n‖ � M for all n � 1. However, their
method is such that the upper bound M depends on the dimension of H and it tends
to infinity as the dimension grows. Halmos believed that M should be a universal
constant, independent of T and the dimension of H . In fact, his conjecture is even
stronger than believing M to be a universal constant. If (10.4.4) holds, then w(T n) �
1 and thus Lemma 10.3.7 implies that

‖T n‖ � 2w(T n) � 2, n � 1.

Example 10.4.2 shows that the universal constant 2 is optimal. Brown (unpublished)
proved the conjecture for dim H = 2. Then Bernau and Smithies [8] proved
the conjecture for n = 2k . This special case was also independently proved by
Fumita, Halmos, and Pearcy (unpublished). Using dilation theory, the conjecture
was finally proved by Berger. Shortly after, Pearcy [112] gave an elementary proof
of the conjecture.

Berger and Stampfli [7] gave a simplified version of Berger’s proof. In fact, they
obtained a more general mapping theorem for functions in the disk algebra with
f (0) = 0. If w(T ) � 1, then, for all f in the disk algebra with f (0) = 0,

w(f (T )) � ‖f ‖∞.

After this period, there was a tremendous amount of research on different types
of numerical-range mapping theorems. The one covered in this chapter (Theo-
rem 10.8.4) was discovered about 40 years later by Drury in 2008. He introduced
the teardrop region and gave a complete mapping theorem for functions in the disk
algebra (not necessarily f (0) = 0) [36]. At the heart of the teardrop theorem is
an operator inequality, which Drury proved by citing a decomposition theorem of
Dritschel and Woerdeman, and then performing some rather complicated calcula-
tions. The approach here is adopted from [88] where the authors circumvented these
difficulties, and thus simplified Drury’s argument, by exploiting finite Blaschke
products and a refinement of the inequality in Lemma 10.3.7.
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The Wiener Algebra Versus the Disk Algebra Again

The construction in the proof of Theorem 10.5.1 is essentially due to Paul du Bois-
Reymond [37]. His goal was to construct a function whose Fourier series diverges
at a point of continuity. Working with power series on the disk (rather than a Fourier
series) needs some special care. For example, we constructed an f ∈ A (D) whose
Taylor polynomials do not converge uniformly on D

−. In fact, there is a construction
of Sierpinski [127] of a holomorphic function f on D whose Taylor polynomials
converge pointwise on D

− and yet f �∈ A (D).

10.11 Exercises

10.1 Show that (α1p1 + α2p2)(T ) = α1p1(T ) + α2p2(T ) for all trigonometric
polynomials p1, p2 and α1, α2 ∈ C.

10.2 Prove that p(T ∗T )T = Tp(T T ∗) for any analytic polynomial p.

10.3 This exercise outlines another proof of Lemma 10.1.10. Suppose that T ∈
L (H ) is a contraction and that p is a trigonometric polynomial.

(a) Explain why we may assume that ‖T ‖ < 1.
(b) For ζ ∈ T, let S(ζ ) = (I − ζT )−1 + (I − ζT ∗)−1 − I . Prove that

(I − ζT ∗)S(ζ )(I − ζT ) = I − T ∗T . (10.11.4)

(c) Prove that

S(ζ ) = (I − ζT ∗)−1(I − T ∗T )(I − ζT )−1

for ζ ∈ T. Conclude that S(ζ ) � 0 for all ζ ∈ T.
(d) Prove that

p(T ) =
∫ 2π

0
p(eiθ )S(eiθ )

dθ

2π

and conclude that p(T ) � 0.

10.4 Show that the operator S defined by (10.1.8) is an isometric dilation of the
contraction T .

10.5 Show that the operator U defined by (10.1.9) is a unitary dilation of the
isometry S defined by (10.1.8).

10.6 Suppose that T ∈ L (H ) is a contraction and that p is a trigonometric
polynomial with ‖p‖∞ = 1.
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(a) Show that a = Rep and b = Imp are trigonometric polynomials.
(b) Use Lemma 10.1.10 to prove that −I � a(T ) � I and −I � b(T ) � I .
(c) Conclude that ‖p(T )‖ � 2‖p‖∞.
(d) Apply the preceding result to the n-fold tensor product of T with itself and

conclude that ‖p(T )‖n � 2‖p‖n∞.
(e) Deduce von Neumann’s inequality (Theorem 10.1.11) from the preceding.

10.7 Prove that the Wiener algebra W (D) is an algebra. More specifically, show
that it is closed under multiplication.

10.8 Provide the details of the proof of Proposition 10.3.2.

10.9 Prove that if T ∈ Mn is normal, then W(T ) is the convex hull of the
eigenvalues of T .

10.10 Show that the closure of any convex set is convex.

10.11 Modify the proof of Lemma 10.3.7 to show that w(T ) = ‖T ‖ whenever
T ∈ L (H ) is self-adjoint.
Hint: Choose γ ∈ T such that γ 〈T x, y〉 = |〈T x, y〉|.
10.12 Use 2×2 matrices to show that both of the inequalities in Lemma 10.3.7 can
be attained.

10.13 Show that w is not submultiplicative. That is, we do not have the inequality

w(T S) � w(T )w(S), S, T ∈ L (H ).

Hint: (Pearcy [112]) Let H = C
4 and

N =

⎡

⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ .

Consider S = N and T = N2. One needs to show that

w(N2) = w(N3) = 1
2 and w(N) = 3

4 .

The last identity might be difficult. However, one can more easily show that w(N) <

1, which is enough for this application.

10.14 Show that td(α) is the intersection of the two families of half planes (10.8.2)
and (10.8.3).
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10.15 Show that
∣∣∣∣∣∣

q∑

k=p

eikθ

k

∣∣∣∣∣∣
� 1

p| sin(θ/2)| .

Hint: Use the Abel summation method and the fact that
∣∣∣∣∣∣

q∑

k=p

eikθ

∣∣∣∣∣∣
� 1

| sin(θ/2)| .



Chapter 11
Real Complex Functions

11.1 Real Rational Functions

In this chapter we connect finite Blaschke products to the class of rational functions
f such that

f (ζ ) ∈ R̂, ζ ∈ T,

where we recall that R̂ = R ∪ {∞} is the extended real line, regarded as a subset
of the Riemann sphere Ĉ = C ∪ {∞}. We denote the set of such “real rational
functions” by R. Our main focus here is the class

R+ := {f ∈ R : f is analytic on D}.

Example 11.1.1 The function

f (z) = i
1 + z

1 − z

belongs to R+ since it is rational, analytic on D, and

f (eiθ ) = i
1 + eiθ

1 − eiθ

= i
eiθ/2(e−iθ/2 + eiθ/2)

eiθ/2(e−iθ/2 − eiθ/2)

= i
2 cos(θ/2)

−2i sin(θ/2)

= − cot(θ/2),
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which belongs to R̂ for all θ ∈ [0, 2π ]. Because f is a Möbius transformation,
it maps extended circles in Ĉ to extended circles in Ĉ. The values

f (−1) = 0, f (0) = i, f (1) = ∞, f (i) = −1, and f (−i) = 1,

show that f maps D onto the upper-half plane C+.

Example 11.1.2 Consider the two Blaschke products

B1(z) = z+ 1
2

1 + 1
2z

and B2(z) = z− 1
2

1 − 1
2z

.

A short computation confirms that

f (z) = i
B1(z)+ B2(z)

B1(z)− B2(z)
= 3

2

iz

1 − z2 , (11.1.3)

which is rational and analytic on D. Furthermore,

f (eiθ ) = 3
2 i

eiθ

1 − e2iθ

= 3
2 i

1

e−iθ − eiθ

= 3
2 i

1

−2i sin θ

= − 3
4 csc θ, (11.1.4)

which belongs to R̂ for all θ ∈ [0, 2π ]. Thus, f ∈ R+. In light of (11.1.4), we
conclude that

f (T\{1}) = (−∞,− 3
4 ] ∪ [ 3

4 ,+∞)

and hence f maps D onto the complement of the rays (−∞,− 3
4 ] and [ 3

4 ,+∞).
This is illustrated in Fig. 11.1.

Example 11.1.5 Let

f (z) = −4
z

(1 − z)2

and observe that f is rational and analytic on D. Furthermore,

f (eiθ ) = −4
eiθ

(1 − eiθ )2
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Fig. 11.1 Images of the disk |z| � r under the function f (z) = 3
2

iz
1−z2 from (11.1.3) for four

values of r ∈ (0, 1)

= −4
eiθ

(eiθ/2(e−iθ/2 − eiθ/2))2

= −4
eiθ

eiθ (−2i sin(θ/2))2

= csc2(θ/2), (11.1.6)

which belongs to R̂ for all θ ∈ [0, 2π ]. Thus, f ∈ R+. From (11.1.6) we see that

f (T\{1}) = [1,∞)
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Fig. 11.2 Images of the disk |z| � r under the function f (z) = −4z/(1−z)2 from Example 11.1.5
for several values of r ∈ (0, 1)

and hence f maps D onto C\[1,∞). This is illustrated in Fig. 11.2. Observe how f

is related to the Koebe function

k(z) = z

(1 − z)2 ,

which plays an important role in the study of univalent functions [39, 70, 89].

The alert reader might have noticed that all of the examples of real-rational
functions presented above had at least one pole on T. This is no accident.

Proposition 11.1.7 Suppose f is a nonconstant function in R+. Then f has at least
one pole on T.



11.2 Helson’s Characterization 249

Proof Suppose toward a contradiction that f ∈ R+ is nonconstant and has no pole
on T. Since f is rational and analytic on D, f must actually be analytic in some
neighborhood of D−. The open mapping theorem ensures that f (D) is open. Since f
is continuous on D

−, it follows that f (T) is a curve in C that contains the boundary
of f (D). However, f is real valued on T and hence f (T) is a compact, connected
subset of R; that is, f (T) is a closed interval. This forces the open set f (D) to be
unbounded, which is a contradiction. ��

11.2 Helson’s Characterization

For two finite Blaschke products B1 and B2, we claim that

f = i
B1 + B2

B1 − B2

belongs to R. To see this, observe that

f = g

(
B1

B2

)
,

in which

g(z) = i
1 + z

1 − z
(11.2.1)

is the function from Example 11.1.1, which maps T onto R̂. Since B1/B2 is
unimodular on T, this says that f ∈ R. A theorem of Helson, presented below,
asserts that every function in R takes this form.

To state Helson’s theorem precisely, we require a definition. Two finite Blaschke
products B1 and B2 are relatively prime if they share no common zeros. Equiv-
alently, there is no nonconstant Blaschke product B for which B1 = BC1 and
B2 = BC2 for finite Blaschke products C1, C2.

Theorem 11.2.2 (Helson [76]) Suppose f is a rational function.

(a) If f ∈ R, then there are two relatively prime finite Blaschke products B1 and
B2 such that

f = i
B1 + B2

B1 − B2
. (11.2.3)

(b) If f ∈ R+, then there are two relatively prime finite Blaschke products B1 and
B2 such that B1 − B2 has no zeros on D and (11.2.3) holds.
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(c) If f ∈ R+ has no zeros in D, then there are two relatively prime finite Blaschke
products B1 and B2 such that B2

1 − B2
2 has no zeros on D and (11.2.3) holds.

Proof

(a) Suppose f ∈ R. Let g denote the function (11.2.1) and observe that

g−1(z) = z− i

z+ i

maps R̂ onto T. It follows that g−1 ◦ f is a rational function with unimodular
boundary values. If f has a pole on T, then (f − i)/(f + i) has the value 1 at
this pole. Thus, the preceding quotient is unimodular on T and meromorphic on
D with a continuous extension to D

−. Corollary 3.5.4 implies that

g−1 ◦ f = B1

B2
(11.2.4)

for two finite Blaschke products B1 and B2. By factoring out any common
Blaschke factors, we can also assume that B1 and B2 are relatively prime.
Consequently, we obtain f = g(B1/B2), which proves (11.2.3).

(b) Since R+ ⊆ R, the preceding tells us that f enjoys a representation of the
form (11.2.3) with relatively prime finite Blaschke products B1 and B2. Suppose
toward a contradiction that B1 − B2, the denominator of f , has a zero w ∈ D.
Since f is analytic on D, the numerator B1 +B2 must vanish at w as well. Then

B1 + B2 = bwG and B1 − B2 = bwH,

in which bw = (z− w)(1 −wz)−1 and G,H are rational analytic functions on
D. Solving this system for B1 and B2 reveals that

B1 = 1
2bw(G+H) and B2 = 1

2bw(G−H).

Thus, B1 and B2 have a common zero at w. This is a contradiction to the fact
that B1 and B2 were chosen to be relatively prime.

(c) Proceeding as in (b) we see that B1 + B2 also has no zeros on D. Thus,

B2
1 − B2

2 = (B1 + B2)(B1 − B2)

has no zeros on D as well. ��
To obtain the Helson decomposition for a general f ∈ R, use the identity

f (z)− i

f (z)+ i
= B1(z)

B2(z)
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and compute

{w1, w2, . . . , wn} = f−1({i}) ∩ D,

and

{λ1, λ2 . . . , λm} = f−1({−i}) ∩ D.

Then

B1(z) = ξ

n∏

j=1

z− wj

1 − wjz
and B2(z) =

m∏

j=1

z− λj

1 − λj z
,

for some unimodular constant ξ .

Example 11.2.5 Let us compute the Helson decomposition of the function

f (z) = −4
z

(1 − z)2

from Example 11.1.5. From (11.2.4),

f (z)− i

f (z)+ i
= −z2 − 2(1 + 2i)z+ i

z2 − 2(1 − 2i)z+ i
= B1

B2
.

The single zero of B1 is the solution to f (z) = i, or

z2 − 2(1 + 2i)z+ i = 0,

that belongs to D. A computation shows that

w ≈ 0.0898203 − 0.197368i.

Similarly, the single zero of B2 is the solution to f (z) = −i that lies in D, which
turns out to be w. The unimodular constant factors in B1 and B2 should be chosen
so that

−1 = f (0)− i

f (0)+ i
= B1(0)

B2(0)
.

Thus,

B1(z) = ξ
z− w

1 − wz
and B2(z) = z− w

1 − wz
,
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in which ξ = −w/w. This yields the Helson representation

f (z) = i
B1(z)+ B2(z)

B1(z)− B2(z)
.

11.3 Real Rational Functions Without Zeros

Theorem 11.2.2 says that f ∈ R+ has no zeros on D if and only if

f = i
B1 + B2

B1 − B2

for two relatively prime finite Blaschke products B1 and B2 so that B2
1 − B2

2 has no
zeros on D. Our aim in this section is to obtain a more precise description of these
nonvanishing R+ functions.

Example 11.3.1 For eiα, eiβ ∈ T, consider the function

fα,β(z) := e−i(
α−β

2 )

(
eiα − z

eiβ − z

)
. (11.3.2)

Observe that fα,β is rational, analytic on D, and satisfies

fα,β(e
iθ ) = eiα/2 − e−iα/2eiθ

eiβ/2 − e−iβ/2eiθ

= ei(α−θ)/2 − e−i(α−θ)/2

ei(β−θ)/2 − e−i(β−θ)/2

=
[

sin
(θ − α

2

)
/ sin
(θ − β

2

)]
.

This means that fα,β belongs to R+ and has no zeros on D. For example, letting
α = β + π yields the function

i
ξ + z

ξ − z
, (11.3.3)

which belongs to R+.

We now prove that these functions fα,β are the building blocks for R+ functions
without zeros in D.

Theorem 11.3.4 Suppose f ∈ R+ and has no zeros on D. Then either f is a
nonzero real constant function or
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f (z) = cξ

n∏

j=1

eiαj − z

eiβj − z
,

for some c ∈ R, ξ ∈ T, and α1, α2, . . . , αn, β1, β2, . . . , βn ∈ [0, 2π ].
Proof Theorem 11.2.2 says that

f = i
B1 + B2

B1 − B2
,

where B1 and B2 are relatively prime finite Blaschke products such that B1 − B2
and B1 + B2 have no zeros on D. Consequently, any zeros or poles of f must lie in
|z| � 1. However, the reflection identity (3.1.6) implies that the zeros or poles of f
cannot be in |z| > 1. Thus, any zeros or poles of f belong to T.

The zeros of f occur at those z for which

B1(z)

B2(z)
= −1.

Clear the denominators in the preceding and rewrite it as a polynomial equation in
z. Suppose that the resulting equation has n � 0 solutions

eiα1 , eiα2 , . . . , eiαn .

Similarly, the poles occur at those z for which

B1(z)

B2(z)
= 1.

Suppose that this equation has m � 0 solutions

eiβ1 , eiβ2 , . . . , eiβm.

Since f is a rational function with no other zeros or poles, we must have

f (z) = cξ

⎛

⎝
n∏

j=1

(eiαj − z)

⎞

⎠
m∏

j=1

1

eiβj − z
,

for some real constant c and some unimodular constant ξ . There are several
possibilities.

(a) If n = m = 0, then f is a real constant function.
(b) If m = 0 and n > 0, then
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f (z) = cξ

n∏

j=1

(eiαj − z),

which says that f ∈ R+ is nonconstant and bounded. However, this contradicts
Proposition 11.1.7.

(c) If n = 0 and m > 0, then

1

f
= c−1ξ

n∏

j=1

(eiβj − z),

which implies that 1/f ∈ R+ is nonconstant and bounded. This also contradicts
Proposition 11.1.7.

(d) If m > 0, n > 0, but m < n, then for some appropriately chosen unimodular
constant ζ , the function

g = ζ

m∏

j=1

eiαj − z

eiβj − z
,

along with f/g, belongs to R+. Then

f

g
= ζcξ

n∏

j=m+1

(eiαj − z)

belongs to R+ and is bounded (and nonconstant). However, this contradicts
Proposition 11.1.7.

(e) A similar contradiction arises when m > 0, n > 0, but n < m.

Thus, m = n and we have the desired factorization

f (z) = cξ

n∏

j=1

eiαj − z

eiβj − z

for some real constant c and some unimodular constant ξ . ��

11.4 Factorization

One can factor any analytic function f on D as f = FG, where F is analytic on D

and whose zeros are precisely those of f (including multiplicity) and G is analytic
on D with no zeros on D [26, Thm. 5.25]. When f belongs to a certain class of
functions, one often wants a factorization f = FG in which F and G not only
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satisfy the properties above but also belong to the same class of functions as f . For
example, if f is a bounded analytic function on D, then f = BG, where B is a
bounded analytic function on D with the same zeros of f (including multiplicity)
and G is a bounded analytic function on D with no zeros [38].

Suppose that f ∈ R+. Then one can write f = BG, where B is a finite Blaschke
product whose zeros are precisely those of f , repeated according to multiplicity, and
G = f/B. However, it will not always be the case that the two factors belong to
R+. The following theorem remedies this situation.

Theorem 11.4.1 If f ∈ R+, then f = FG, in which

(a) F,G ∈ R+,
(b) F has precisely the same zeros of f (with the same multiplicities),
(c) G has no zeros in D,
(d) |f | � |G| on T,
(e) f and G have the same sign on T.

Proof Let f ∈ R+. Since f is a rational function, it has a finite number of zeros
in D. If f has no zeros in D, then let B ≡ i. Otherwise, let B be a finite Blaschke
product whose zeros are those of f , with the same multiplicities. Set H = f/B and
observe that H has no zeros on D. Furthermore,

f = −4B

(1 − B)2
· (1 − B)2

−4
H = FG,

where

F = −4B

(1 − B)2 and G = (1 − B)2

−4
H.

If f has no zeros in D, then F is a real constant function and G is a rational
function. From Example 11.1.5, observe that F ∈ R+ and F � 1 on T. This says
that G ∈ R+ (and has no zeros on D by construction) and |G| = |f/F | � |f | on
T. Finally, since f/G = F � 1 on T, we see that f and G have the same sign
on T. ��

11.5 Valence

Recall that |E| denotes the cardinality of a set E. For f ∈ R+ and w ∈ C\R, let

v(f,w) = |{z ∈ D : f (z) = w}|

denote the valence of f at w. This is the number of times, counting multiplicity, that
f assumes the value w in D. By Theorem 11.2.2, each f ∈ R+ takes the form
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f = i
B1 + B2

B1 − B2
,

in which B1, B2 are finite Blaschke products with no common zeros and such that
B1 − B2 has no zeros on D. Since finite Blaschke products have constant valence
on D and C\D− (Theorem 3.4.10), this should translate into information about the
valence of f on C+ and C−.

Theorem 11.5.1 Let f ∈ R+ be of the form

f = i
B1 + B2

B1 − B2
,

where B1, B2 are finite Blaschke products with no common zeros and such that
B1 − B2 has no zeros on D. Then

v(f,w) =
{

degB2 if w ∈ C+,
degB1 if w ∈ C−.

In other words, f has constant valence on each of C+ and C−.

Proof First observe that the Möbius transformation

ψ(z) = z− i

z+ i

is injective; it maps C+ onto D and it maps C− onto Ĉ\D−. There are several cases
to consider.

(a) If w ∈ C+, then the number of solutions to f (z) = w is the same as the number
of solutions to

ψ ◦ f (z) = ψ(w) = η ∈ D.

This, in turn, equals the number of solutions in D to

η = f (z)− i

f (z)+ i
= B2(z)

B1(z)
.

We need to examine the number of zeros of B2 − ηB1 in D. Since

|ηB1| = |η| < 1 = |B2|

on T, Rouché’s theorem (see Sect. 4.5) implies that the number of zeros of B2
and B2 − ηB1 in D are the same. Thus, v(f,w) = degB2 whenever w ∈ C+.
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(b) If w ∈ C− and w �= −i, then η = ψ(w) ∈ C\D−. In particular, η = ψ(w) �=
∞. We want to count the number of zeros of B2 − ηB1 in D. Since

|B2| = 1 < |η| = |ηB1|

on T, Rouché’s theorem implies that ηB1 and B2 − ηB1 have the same number
of zeros in D. Thus, v(f,w) = degB1 for any w ∈ C−\{−i}.

(c) If w = −i, then we need to find the number of solutions in D to

B2

B1
= ∞.

Since B1 and B2 are relatively prime, this is the same as the number of zeros of
B1, which is degB1.

This completes the proof. ��
Theorem 11.5.1 shows that any f ∈ R+ has constant valence on each of C+ and

C−. It turns out that we can make these two (constant) valences anything we want.

Theorem 11.5.2 (Helson [75]) For a given pair of m, n ∈ N ∪ {0}, there is an
f ∈ R+ with valence m on C+ and valence n on C−.

Proof Fix m, n ∈ N ∪ {0} and let P = {ζ1, ζ2, . . . , ζm} and N = {ξ1, ξ2, . . . , ξn}
be sets of distinct points on T with P ∩ N = ∅. If either m or n equals zero, take
the corresponding set P or N to be the empty set. If m = n = 0 set f ≡ 1 and note
that f ∈ R+ with vf ≡ 0 of both C+ and C−. If m, n ∈ N, define

f (z) = i

m∑

j=1

ζj + z

ζj − z
− i

n∑

k=1

ξk + z

ξk − z

and observe that f is a rational function which belongs to R+ in light of (11.3.3).
Notice that f (ζj ) = ∞ and that f maps a neighborhood of ζj in D to a
neighborhood of ∞ in C+. Since ζ1, ζ2, . . . , ζm are distinct, f maps D onto a
neighborhood of ∞ in C+ exactly m times. By Theorem 11.5.1, the valence of
f equals m on all of C+. In a similar way, f (ξk) = ∞ and f maps a neighborhood
of ξk in D to a neighborhood of ∞ in C−. Since ξ1, ξ2, . . . , ξn are distinct, f maps
D onto a neighborhood of ∞ in C− exactly n times. Thus, f has valence n on all of
C−. The arguments above even take care of the case when either m or n are equal
to zero. ��

The observant reader might want to use Theorem 11.5.1 to produce an f ∈ R+
with prescribed valences. Indeed, in the representation

f = i
B1 + B2

B1 − B2
,
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one just needs to make the degrees of B1 and B2 match the desired valences on C+
and C−. However, in order for f to belong to R+, we also need B1 −B2 to have no
zeros in D, which is not always easy to do.

11.6 Notes

The study of “real complex" functions goes beyond the rational setting we presented
in this chapter [56, 60, 75, 76]. In this more general setting, finite Blaschke products
are replaced by inner functions.

Connection with Model Spaces

There is a connection between real rational functions and model spaces with kernels
of Toeplitz operators [51, 53].

11.7 Exercises

11.1 Explore the Helson decomposition of the Koebe function

k(z) = z

(1 − z)2

and for k(z)2.

11.2 Compute the Helson decomposition of the function fα,β(z) from (11.3.2).

11.3 For f ∈ R+, what types of domains can be the image f (D) of f ?

11.4 Consider the Möbius transformation

T (z) = i
1 − iz

1 + iz

and observe that T maps D onto C+ and maps T onto R̂. Prove the following
identities.

(a) T −1(z) = T (1/z) = 1

T (z)
= −T (−z) = T (z).

(b) (T ◦ T )(z) = 1

z
and (T ◦ T ◦ T ◦ T )(z) = z.

(c) T (z1z2) = T (z1)T (z2)+ T (z1)+ T (z2)− 1

1 + T (z1)+ T (z2)− T (z1)T (z2)
.
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(d) T (z2/z1) = T (z1)T (z2)− T (z1)+ T (z2)+ 1

T (z1)T (z2)+ T (z1)− T (z2)+ 1
.

(e) T (z1 + z2) = 3T (z1)T (z2)+ iT (z1)+ iT (z2)+ 1

3i + T (z1)+ T (z2)+ iT (z1)T (z2)
.

11.5 Suppose that f1 = T (B1) and f2 = T (B2) for some finite Blaschke products
B1 and B2. Then f1 + f2 is rational, real valued on R, and maps D into C.
Consequently, Exercise 11.4 and a rephrasing of Helson’s theorem provide a finite
Blaschke product B so that f1 + f2 = T (B). Use the identities in Exercise 11.4 to
show that

B = 3iB1B2 + B1 + B2 + i

3 + iB1 + iB2 + B1B2
.

11.6 Helson’s theorem tells us that each f ∈ R can be written as f = T (B2/B1),
where B1 and B2 are relatively prime finite Blaschke products. Using the identities
in Exercise 11.4, show that if f1 = T (B1) and f2 = T (B2), then

f = f1f2 − f1 + f2 + 1

f1f2 + f1 − f2 + 1
.



Chapter 12
Finite-Dimensional Model Spaces

Model spaces are of great importance to operator theory since the corresponding
compressions of the shift operator (see (12.6.4) below) can be used to represent
certain contractions [59, 106, 131]. In this chapter, we develop finite-dimensional
model spaces using elementary techniques to give the reader a taste of a much larger
picture.

The reader familiar with model spaces in their full glory may complain that we
are not as comprehensive as we should be. For the sake of the novice, however, our
presentation involves little more than the Cauchy integral formula (in the guise of
Lemma A.2.2 below) and linear algebra. The interested reader can further explore
model spaces and their applications in the recent text [59].

12.1 Model Spaces

Definition 12.1.1 For a finite Blaschke product B with zeros λ1, λ2, . . . , λn,
repeated according to multiplicity, the model space KB is the set of rational
functions of the form

KB :=
{P(z)

R(z)
: P ∈ Pn−1

}
, (12.1.2)

in which

R(z) = (1 − λ1z)(1 − λ2z) · · · (1 − λnz). (12.1.3)

In what follows, R denotes the denominator (12.1.3) that appears in the definition
of KB . Its degree and the location of its zeros can be inferred from context. Since

© Springer International Publishing AG, part of Springer Nature 2018
S. R. Garcia et al., Finite Blaschke Products and Their Connections,
https://doi.org/10.1007/978-3-319-78247-8_12

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78247-8_12&domain=pdf
https://doi.org/10.1007/978-3-319-78247-8_12


262 12 Finite-Dimensional Model Spaces

Pn−1 is the set of (analytic) polynomials of degree at most n − 1, it follows that
KB is a complex vector space and

dim KB = n. (12.1.4)

Example 12.1.5 If B(z) = zn, then R(z) ≡ 1 and hence Kzn = Pn−1.

Example 12.1.6 If λ ∈ D and

B(z) = z− λ

1 − λz
,

then R(z) = 1 − λz and n = 1. Thus,

KB = span

{
1

1 − λz

}
.

Example 12.1.7 If λ ∈ D and

B(z) =
(

z− λ

1 − λz

)2

,

then R(z) = (1 − λz)2 and n = 2. Partial fractions confirm that

KB = span

{
1

1 − λz
,

1

(1 − λz)2

}
.

Example 12.1.8 If λ, η ∈ D with λ �= η and

B(z) = z− λ

1 − λz
· z− η

1 − ηz
,

then R(z) = (1 − λz)(1 − ηz) and n = 2. Consequently,

KB = span

{
1

1 − λz
,

1

1 − ηz

}
.

A useful observation is the following.

Proposition 12.1.9 KB contains the constant functions if and only if B(0) = 0.

Proof Let B denote a finite Blaschke product of degree n with zeros λ1, λ2, . . . , λn,
repeated according to multiplicity. If B(0) = 0, then degR � n − 1. Thus, P =
cR ∈ Pn−1 for all c ∈ C and hence c = cR/R ∈ KB . Conversely, suppose
that c ∈ KB for some c ∈ C\{0}. Then cR = P for some P ∈ Pn−1. In light
of (12.1.3), this can occur if and only if degR � n − 1; that is, if at least one of
λ1, λ2, . . . , λn is zero. Thus, B(0) = 0. ��
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We can make KB into a Hilbert space by endowing it with the inner product

〈f, g〉 =
∫ 2π

0
f (eiθ )g(eiθ )

dθ

2π
(12.1.10)

and norm

‖f ‖ = √〈f, f 〉 =
(∫ 2π

0
|f (eiθ )|2 dθ

2π

)1/2

it inherits by regarding the elements of KB as members of the Lebesgue space
L2 := L2(T) (see the Appendix). That is, we can identify f ∈ KB with its boundary
function f : T → C and consider KB as a finite-dimensional subspace of L2. This
permits us to refer to the inner product (12.1.10) between any two rational functions
with no poles in D

−. Indeed, the boundary functions of such rational functions are
square-integrable on T and hence (12.1.10) is well defined for such f, g.

Building upon Example 12.1.6, we identify some conspicuous residents of KB .
For λ ∈ D, the corresponding Cauchy kernel is

cλ(z) = 1

1 − λz
. (12.1.11)

The Cauchy integral formula (Lemma A.2.2) implies that

〈f, cλ〉 = f (λ), f ∈ KB. (12.1.12)

More generally, this holds for any rational function with no poles in D
− if we regard

the inner product as being performed in L2.

Example 12.1.13 We can use (12.1.12) to compute ‖cλ‖:

‖cλ‖2 = 〈cλ, cλ〉
= cλ(λ)

= 1

1 − |λ|2 .

In what follows, it is sometimes convenient to use the normalized version of cλ:

c̃λ =
√

1 − |λ|2
1 − λz

. (12.1.14)

By construction, c̃λ is a unit vector.

A computation similar to (12.1.12) reveals that

〈f, c(j)λ 〉 = f (j)(λ),
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in which

c
(j)
λ = j !zj

(1 − λz)j+1
(12.1.15)

is the j th derivative, with respect to λ, of the Cauchy kernel cλ(z); see Exercise 12.1.
The functions (12.1.11) and (12.1.15) appear frequently in what follows.

Proposition 12.1.16 If B is a finite Blaschke product with distinct zeros
λ1, λ2, . . . , λr and corresponding multiplicities m1,m2, . . . , mr , then

KB = span
{
c
(j)
λi

: 1 � i � r, 0 � j � mi − 1
}
.

Proof We prove this under the assumption that each of the zeros of B is simple; that
is, m1 = m2 = · · · = mr = 1. See Exercise 12.2 for the general case.

If P/R ∈ KB , in which P ∈ Pn−1 and R is given by (12.1.3), then a partial
fraction expansion renders P/Q as a linear combination of cλ1 , cλ2 , . . . , cλn .

Conversely, any linear combination
∑n

j=1 aj cλj can be put over the common
denominator R by writing

n∑

j=1

aj cλj (z) =
∑n

j=1 ajR(z)/(1 − λj z)

R(z)
= P(z)

R(z)
,

in which

degP � degR − 1 � n− 1.

Thus, any such linear combination belongs to KB . ��
One can see from (12.1.2) that the elements of KB are rational functions with no

poles in D
−. Using the ideas above, we can give the following characterization of

KB in terms of inner products.

Proposition 12.1.17 A rational function f with no poles in D
− belongs to KB if

and only if 〈f,Bzk〉 = 0 for all k � 0.

Proof We prove this under the assumption that each of the zeros λ1, λ2, . . . , λn
of B is simple; see Exercise 12.3 for the general case. Under this assumption,
Proposition 12.1.16 implies that

KB = span{cλ1 , cλ2 , . . . , cλn}.

(⇒) If f ∈ KB , then

f =
n∑

j=1

aj cλj
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for some a1, a2, . . . , an ∈ C. For any k � 0,

〈zkB, f 〉 = 〈zkB,

n∑

j=1

aj cλj
〉

=
n∑

j=1

aj 〈zkB, cλj 〉

=
n∑

j=1

ajλ
k
jB(λj )

= 0.

(⇐) Suppose that f is a rational function with no poles in D
− and 〈zkB, f 〉 = 0

for k � 0. We assume that the poles of f are finite and simple; for the general
case, see Exercise 12.3. Then we may write

f =
m∑

j=1

aj cwj
, (12.1.18)

in which w1, w2, . . . , wm ∈ D are distinct and a1, a2, . . . , am are nonzero. For
i ∈ {1, 2, . . . , m}, use the Lagrange interpolation theorem (Theorem 7.1.1) to
obtain polynomials pi so that pi(wj ) = δi,j . Then (12.1.12) yields

0 = 〈piB, f 〉

= 〈piB,

m∑

j=1

aj cwj
〉

=
m∑

j=1

aj 〈piB, cwj
〉

=
m∑

j=1

ajpi(wj )B(wj )

= aiB(wi).

Thus, B(wi) = 0 and hence wi is a zero of B; that is, wi = λj for some j .
Consequently,

f ∈ span{cλ1 , cλ2 , . . . , cλn} = KB.

This completes the proof. ��
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If f ∈ KB , then we may write

f (z) = a0 + a1z+ a2z
2 + a3z

3 + · · · ,

in which the an are the Taylor coefficients at the origin for f . The backward shift of
f is the function

f (z)− f (0)

z
= a1 + a2z

2 + a3z
2 + a4z

3 + · · · . (12.1.19)

The following corollary shows that finite-dimensional model spaces are invariant
under the backward shift.

Corollary 12.1.20 If f ∈ KB , then

f (z)− f (0)

z
∈ KB.

Proof If f ∈ KB and k � 0, then

〈f − f (0)

z
, zkB
〉
= 〈f − f (0), zk+1B〉

= 〈f, zk+1B〉 − f (0)〈1, zk+1B〉.

The first inner product is zero by Proposition 12.1.17. The second inner product
is zero by Cauchy’s Theorem. Proposition 12.1.17 implies that (f − f (0))/z
∈ KB . ��

12.2 The Takenaka Basis

The computation

〈zj , zk〉 =
∫ 2π

0
eijθ eikθ

dθ

2π

=
∫ 2π

0
ei(j−k)θ dθ

2π

= δj,k

shows that {1, z, z2, . . . , zn−1} is an orthonormal basis for

Kzn = Pn−1 = span{1, z, z2, . . . , zn−1}.
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One construction of an orthonormal basis for a general finite-dimensional model
space KB is due to Takenaka [132]. To simplify things, we employ the shorthand

bλ(z) = z− λ

1 − λz
(12.2.1)

for λ ∈ D.

Proposition 12.2.2 Let B be a finite Blaschke product with zeros λ1, λ2, . . . , λn,
repeated according to multiplicity. Let v1 = c̃λ1 and

v� = (bλ1 · · · bλ�−1 )̃cλ� , (12.2.3)

for 2 � � � n. Then {v1, v2, . . . , vn} is an orthonormal basis for KB .

Proof Since bλi bλi = 1 on T for i = 1, 2, . . . , n, the definition (12.1.10) of the
inner product on KB ensures that for j < k we have

〈vk, vj 〉 = 〈bλ1bλ2 · · · bλk−1 c̃λk , bλ1bλ2 · · · bλj−1 c̃λj 〉

=
√

1 − |aj |2〈bλj bλj+1 · · · bλk−1 c̃λk , cλj 〉

=
√

1 − |aj |2bλj (λj )bλj+1(λj ) · · · bλk−1(λj )̃cλk (λj )

= 0

since bλj (λj ) = 0. If j = k, a similar computation yields

〈vj , vj 〉 = 〈bλ1bλ2 · · · bλj−1 c̃λj , bλ1bλ2 · · · bλj−1 c̃λj 〉
= 〈̃cλj , c̃λj 〉 = 1.

Thus, {v1, v2, . . . , vn} is an orthonormal set in KB . Since dim KB = n

(see (12.1.4)), we conclude that {v1, v2, . . . , vn} is an orthonormal basis
for KB . ��

12.3 Reproducing Kernel

Let H be a Hilbert space of analytic functions on a domain Ω ⊆ C. Then H is a
reproducing kernel Hilbert space if there is a kernel

K(z, λ) : Ω ×Ω → C



268 12 Finite-Dimensional Model Spaces

such that for each fixed λ ∈ Ω , the function

kλ(z) = K(z, λ) (12.3.1)

belongs to H and has the reproducing property

f (λ) = 〈f (·),K(·, λ)〉H , λ ∈ Ω, f ∈ H .

For example, the Hardy space H 2 (see Appendix A.4) is a reproducing kernel
Hilbert space with kernel

K(z, λ) = 1

1 − λz
. (12.3.2)

In particular, the kernel for the Hardy space is the Cauchy kernel encountered
in (12.1.11). More information about reproducing kernel Hilbert spaces can be
found in the texts [1, 111].

Let B be a finite Blaschke product and let

kλ(z) := 1 − B(λ)B(z)

1 − λz
. (12.3.3)

The following result shows that KB is a reproducing kernel Hilbert space with
kernel K(z, λ) = kλ(z). Before proceeding, we should remark that although
f (λ) = 〈f, cλ〉 for all f ∈ KB and λ ∈ D, the function (12.3.2) does not serve
as a reproducing kernel for KB since cλ does not, in general, belong to KB .

Proposition 12.3.4 Let B be a finite Blaschke product, let λ ∈ D, and define kλ(z)

by (12.3.3).

(a) kλ ∈ KB .
(b) 〈f, kλ〉 = f (λ) for f ∈ KB .

(c) ‖kλ‖2 = 1 − |B(λ)|2
1 − |λ|2 for λ ∈ D.

Proof

(a) Since BB = 1 on T, for any polynomial q we have

〈Bq, kλ〉 =
〈
Bq,

1 − B(λ)B(z)

1 − λz

〉

= 〈Bq, cλ〉 − B(λ)〈Bq,Bcλ〉
= 〈Bq, cλ〉 − B(λ)〈q, cλ〉
= B(λ)q(λ)− B(λ)q(λ)

= 0.
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Proposition 12.1.17 implies that kλ ∈ KB .
(b) For any f ∈ KB ,

〈f, kλ〉 =
〈
f,

1 − B(λ)B(z)

1 − λz

〉

= 〈f, cλ〉 − B(λ)〈f,Bcλ〉
= f (λ)− B(λ)〈f,Bcλ〉.

By Proposition 12.1.17, the inner product in the second term equals

〈
f,

B

1 − λz

〉
=
〈
f,B

∞∑

n=0

λ
n
zn
〉

=
∞∑

n=0

λ
n〈f, znB〉

= 0.

Note that the series above converges since |λ| < 1 and

|〈f, znB〉| � ‖f ‖‖znB‖ = ‖f ‖

by the Cauchy–Schwarz inequality. Thus, f (λ) = 〈f, kλ〉.
(c) It follows from (a) and (b) that for each λ ∈ D,

‖kλ‖2 = 〈kλ, kλ〉
= kλ(λ)

= 1 − |B(λ)|2
1 − |λ|2 .

This completes the proof. ��
Since the Takenaka basis {v1, v2, . . . vn} is an orthonormal basis for KB (Propo-

sition 12.2.2), the reproducing property of kλ (Proposition 12.3.4) implies that

kλ(z) =
n∑

j=1

〈kλ, vj 〉vj (z)

=
n∑

j=1

vj (λ)vj (z). (12.3.5)
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In fact, the same argument holds for any orthonormal basis of KB . See Corol-
lary 12.8.4 for other natural orthonormal bases of KB .

One can also consider kξ for ξ ∈ T. From (12.2.3) we observe that the values
v1(ξ), v2(ξ), . . . , vn(ξ) are well defined. In light of (12.3.5), we define

kξ (z) :=
n∑

j=1

vj (ξ)vj (z). (12.3.6)

Proposition 12.3.7 Let B be a finite Blaschke product and let ξ ∈ T.

(a) kξ ∈ KB .
(b) ‖kξ‖ = √|B ′(ξ)|.
(c) f (ξ) = 〈f, kξ 〉 for every f ∈ KB .

Proof

(a) The identity in (12.3.6) says that kξ is a linear combination of the basis vectors
v1, v2, . . . , vn. We conclude that kξ ∈ KB .

(b) Suppose that B has zeros λ1, λ2, . . . , λn, repeated according to multiplicity. The
identity in (12.3.6) shows that

‖kξ‖2 = 〈kξ , kξ 〉

=
n∑

j=1

|vj (ξ)|2

=
n∑

j=1

1 − |λj |2
|1 − λj ξ |2

(by (12.2.3))

= |B ′(ξ)| (by (3.4.8)).

(c) Since each f ∈ KB is analytic in a neighborhood of D− and kλ → kξ uniformly
on T as λ → ξ ,

f (ξ) = lim
λ→ξ

f (λ)

= lim
λ→ξ

〈f, kλ〉

= 〈f, kξ 〉.

Indeed, uniform convergence permits the interchange of limit and integral that
is implicit in the preceding computation. ��
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12.4 Projections onto Model Spaces

Let H be a complex Hilbert space. An orthogonal projection P is a bounded linear
transformation P : H → H that is self-adjoint (P = P ∗) and idempotent (P 2 =
P ). Such an operator has closed range and fixes each element of its range. Moreover,
the kernel of an orthogonal projection is orthogonal to its range (see A.6.7).

By considering the boundary function f : T → C of each f ∈ KB , we may
regard KB as a finite-dimensional subspace of L2. This permits us to consider
the orthogonal projection PB : L2 → L2 whose range is KB . This projection is
intimately related to the kernels

cλ = 1

1 − λz
and kλ = 1 − B(λ)B(z)

1 − λz
.

Proposition 12.4.1 Let B be a finite Blaschke product.

(a) (PBf )(λ) = 〈f, kλ〉 for each f ∈ L2.
(b) PBcλ = kλ for each λ ∈ D.

Proof

(a) Since PBf ∈ KB , the reproducing property of kλ implies that

(PBf )(λ) = 〈PBf, kλ〉
= 〈f, PBkλ〉
= 〈f, kλ〉. (12.4.2)

The preceding two equalities follow from the self-adjointness of PB and the fact
that kλ ∈ KB , respectively.

(b) Apply (12.4.2) with f = cλ and deduce that

(PBcλ)(z) = 〈cλ, kz〉
= 〈kz, cλ〉
= kz(λ)

= kλ(z).

The final line follows from (12.3.3); see also Exercise 12.7. ��
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12.5 Conjugation

Let

B(z) = γ

n∏

j=1

z− λj

1 − λj z
, (12.5.1)

in which γ ∈ T. From (12.1.2), we see that each f ∈ KB is of the form

f = P

R
,

where P ∈ Pn−1 and

R(z) = (1 − λ1z)(1 − λ2z) · · · (1 − λnz). (12.5.2)

Define a conjugate-linear map C : KB → KB by

C

(
P

R

)
= P #

R
, (12.5.3)

in which

P #(z) = zn−1P(1/z).

That is, P # is the polynomial of degree at most n−1 obtained from P by conjugating
its coefficients and reversing their order; see Sect. 3.3 for a review of the # operation.
It follows from (12.1.2) that Cf ∈ KB whenever f ∈ KB .

The map C is a conjugation on KB . That is, it is conjugate-linear, involutive, and
isometric.

Proposition 12.5.4 The map C : KB → KB has the following properties.

(a) C(αf + g) = αCf + Cg for all f, g,∈ KB and α ∈ C.
(b) C2 = I .
(c) |Cf | = |f | on T for all f ∈ KB .
(d) ‖Cf ‖ = ‖f ‖ for all f ∈ KB .
(e) 〈f, g〉 = 〈Cg,Cf 〉 for all f, g ∈ KB .

Proof Let B and R be defined as in (12.5.1) and (12.5.2), respectively.

(a) This follows from the fact that the map P �→ P # on Pn−1 is conjugate linear.
(b) Since (P #)# = P by (3.3.7), it follows that C2(P/R) = C(P #/R) = P/R for

all P ∈ Pn−1. Thus, C2 = I .
(c) If f ∈ KB , write f = P/R, in which P ∈ Pn−1. Since |P | = |P #| on T

by (3.3.12), it follows that |f | = |P/R| = |P #/R| = |Cf | on T.
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(d) From the preceding we see that

‖Cf ‖2 =
∫ 2π

0
|Cf (eiθ )|2 dθ

2π

=
∫ 2π

0
|f (eiθ )|2 dθ

2π

= ‖f ‖2.

(e) See Exercise 12.6. ��
For some purposes, it is more convenient to work on the unit circle than on the

unit disk. This is particularly true for model spaces.

Proposition 12.5.5 Let B be a finite Blaschke product.

(a) If f ∈ KB , then

(Cf )(ζ ) = f (ζ )ζB(ζ ), ζ ∈ T. (12.5.6)

(b) A rational function f that is analytic on a neighborhood of D− belongs to KB

if and only if there is a rational function g that is analytic on a neighborhood
of D− so that f (ζ ) = g(ζ )ζB(ζ ) on T. If this occurs, then Cf = g.

Proof

(a) Let B denote the finite Blaschke product (12.5.1) and let R denote the
polynomial from (12.5.2). Since B is of degree n, each f ∈ KB can be written
as f = P/R for some P ∈ Pn−1. By (3.3.9), we have B = R#/R, in which

R#(z) = (z− a1)(z− a2) · · · (z− an).

Since C(P/R) = P #/R, where P #(z) = zn−1P(1/z), it follows that

(Cf )(ζ ) = P #(ζ )

R(ζ )

= P #(ζ )

R#(ζ )
· R

#(ζ )

R(ζ )

= ζ n−1P(1/ζ )

ζ nR(1/ζ )
· B(ζ )

= P(ζ )

ζR(ζ )
· B(ζ )
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=
(
P(ζ )

R(ζ )
ζ

)
B(ζ )

= f (ζ )ζB(ζ )

for all ζ ∈ T. This establishes (12.5.6).
(b) If f ∈ KB , then (a) ensures that g = Cf satisfies the desired condition. Con-

versely, suppose that f is a rational function that is analytic on a neighborhood
of D− and that g is another such rational function so that f (ζ ) = g(ζ )ζB(ζ )

on T. For all k � 0,

〈Bzk, f 〉 =
∫ 2π

0
B(eiθ )eikθf (eiθ )

dθ

2π

=
∫ 2π

0
B(eiθ )eikθg(eiθ )eiθB(eiθ )

dθ

2π

=
∫ 2π

0
eikθg(eiθ )ieiθ

dθ

2πi

= 1

2πi

∮

T

ζ kg(ζ ) dζ

= 0

by Cauchy’s theorem. Proposition 12.1.17 implies that f ∈ KB . The computa-
tion in the proof of (a) confirms that Cf = g. ��

Example 12.5.7 What is the conjugate of the kernel kλ ∈ KB defined in (12.3.3)?
Since BB = 1 on T, for ζ ∈ T we appeal to (12.5.6) and obtain

(Ckλ)(ζ ) =
(

1 − B(λ)B(ζ )

1 − λζ

)
ζB(ζ )

= 1 − B(λ)B(ζ )

1 − λζ
· B(ζ )

ζ

= B(ζ )− B(λ)

ζ − λ
.

The identity principle implies that

(Ckλ)(z) = B(z)− B(λ)

z− λ
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for all z, λ ∈ D. In particular, for B(0) = 0 it follows that k0 ≡ 1 and

(C1)(z) = B(z)

z
. (12.5.8)

The conjugation C acts on the Takenaka basis {v1, v2, . . . , vn} as follows.

Proposition 12.5.9 Cvk =
⎧
⎨

⎩
(bλ�+1bλ�+2 · · · bλn )̃cλ� if k = 1, 2, . . . , n− 1,

c̃λn if k = n.

Proof In what follows, we compute on T with ζ as the independent variable. For
� = 1, 2, . . . , n− 1, (12.2.3) and (12.5.6) yield

Cv� = v�ζB

= (bλ1bλ2 · · · bλ�−1 c̃λ�)ζ (bλ1bλ2 · · · bλn)

= bλ�bλ�+1 · · · bλn
ζ
√

1 − |λ�|2
1 − λ�ζ

= √1 − |λ�|2 bλ�bλ�+1 · · · bλn
ζ − λ�

= √1 − |λ�|2 bλ�+1bλ�+2 · · · bλncλ�
= (bλ�+1bλ�+2 · · · bλn )̃cλ� .

The proof that Cvn = c̃λn is similar; see Exercise 12.9. ��

12.6 Compressed Shift

For the remainder of the chapter, we assume that B is a finite Blaschke product with

B(0) = 0. (12.6.1)

This assumption simplifies many of the following computations. A consequence of
our assumption follows from Proposition 12.2.2, which tells us that v1 ≡ 1 ∈ KB .

For an analytic function f on D, we define

(Sf )(z) = zf (z). (12.6.2)

This is the unilateral shift operator (initially studied on the Hardy space H 2; see
Appendix A.4). It is one of the most important objects in operator theory [59, 106].
We leave it to the reader to verify that the adjoint S∗ of S on H 2 is given by
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(S∗f )(z) = f (z)− f (0)

z
.

Definition 12.6.3 The operator

SB : KB → KB, SB = PBS|KB
(12.6.4)

is the compressed shift.

The importance of this operator stems from the fact that it can be used to
represent certain types of contractions. Before getting into the details, we first
establish some basic properties of SB . From Corollary 12.1.20 we know that

f ∈ KB �⇒ f − f (0)

z
∈ KB.

The following proposition asserts that S∗B is the restriction of the backward shift
operator (12.1.19) to KB ; that is S∗B = S∗|KB

.

Proposition 12.6.5 For a finite Blaschke product B,

S∗Bf = f − f (0)

z
, f ∈ KB.

Proof For any f, g ∈ KB ,

〈S∗Bf, g〉 = 〈f, SBg〉
= 〈f, PB(zg)〉
= 〈PBf, zg〉
= 〈f, zg〉
= 〈f, zg〉 − f (0)〈1, zg〉 (by Lemma A.2.2)

= 〈f − f (0), zg〉
= 〈z(f − f (0)), g〉

=
〈f − f (0)

z
, g
〉
.

Since this holds for all f, g ∈ KB , we obtain the desired identity. ��
We can use the Takenaka basis {v1, v2, . . . , vn} for KB , along with Proposi-

tion 12.4.1 and (A.6.8), to write the compressed shift SB as

SBf =
n∑

j=1

〈zf, vj 〉vj .
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The matrix representation [SB ] of SB with respect to the Takenaka basis is then

[SB ] = [〈zvk, vj 〉]1�j,k�n.

Proposition 12.6.6 If B is a finite Blaschke with zeros λ1, λ2, . . . , λn, repeated
according to multiplicity, then [SB ] is lower triangular and has λ1, λ2, . . . , λn along
its main diagonal.

Proof For j < k,

[SB ]j,k = 〈zvk, vj 〉
= 〈z · bλ1bλ2 · · · bλk−1 c̃λk , bλ1bλ2 · · · bλj−1 c̃λj 〉

=
√

1 − |λj |2
√

1 − |λk|2〈zbλj bλj+1 · · · bλk−1cλk , cλj 〉

=
√

1 − |λj |2
√

1 − |λk|2λj
⎛

⎝
k−1∏

i=j

λj − λi

1 − λiλj

⎞

⎠ cλk (λj )

= 0.

Thus, [SB ] lower triangular. The diagonal entries are

[SB ]j,j = 〈zbλ1bλ2 · · · bλj−1 c̃λj , bλ1bλ2 · · · bλj−1 c̃λj 〉
= (1 − |λj |2)〈zcλj , cλj 〉
= (1 − |λj |2)λj cλj (λj )

= (1 − |λj |2)λj 1

1 − |λj |2
= λj .

This completes the proof. ��
See Exercise 12.12 for more about the matrix representation of SB .

Corollary 12.6.7 The eigenvalues of SB are λ1, λ2, . . . , λn.

We end this section with a relationship between the compressed shift SB and
the conjugation C on KB . The following asserts that the compressed shift SB is a
complex symmetric operator.

Proposition 12.6.8 CSBC = S∗B .

Proof For f, g ∈ KB , use the formula

(Cf )(ζ ) = ζf (ζ )B(ζ )
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for ζ ∈ T (Proposition 12.5.5) along with Proposition 12.5.4 to show that

〈CS∗BCf, g〉 = 〈Cg, S∗BCf 〉
= 〈Cg, S∗Cf 〉
= 〈SCg,Cf 〉
= 〈ζBζg, Bζf 〉
= 〈ζg, f 〉
= 〈ζf, g〉
= 〈Sf, g〉
= 〈Sf, PBg〉
= 〈PBSf, g〉
= 〈SBf, g〉.

Since this holds for all f, g ∈ KB , the desired identity follows. ��

12.7 Partial Isometries

Definition 12.7.1 A bounded linear operator on a Hilbert space H is a partial
isometry if A is isometric on (kerA)⊥; that is,

‖Ax‖ = ‖x‖, x ∈ (kerA)⊥.

Example 12.7.2 Let {u1,u2, . . . ,un} be an orthonormal basis for Cn and let 1 <

k � n. If we regard u1,u2, . . . ,un as column vectors, then A ∈ Mn defined by

A = [u1 u2 . . . uk 0 0 . . . 0]

is a partial isometry. To be more precise, A is the matrix representation, with respect
to the standard basis of Cn, of a partial isometry. As a slight abuse of language, we
will say that A is a partial isometry. Indeed,

kerA = span{ek+1, ek+2, . . . , en}

and

(kerA)⊥ = span{e1, e2, . . . , ek},
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in which e1, e2, . . . , en denotes the standard basis for Cn. If

z = (z1, z2, . . . , zk, 0, 0, . . . 0) ∈ (kerA)⊥,

then

Az = z1u1 + z2u2 + · · · + zkuk.

The fact that the vectors u1,u2, . . . ,uk are orthonormal yields

‖Az‖2
Cn = |z1|2 + |z2|2 + · · · + |zk|2 = ‖z‖2

Cn .

The following proposition asserts that Example 12.7.2 is typical [71, Cor. 2];
see also Exercise 12.14. Recall the definition of unitary equivalence of operators
from (A.7.7).

Proposition 12.7.3 A partial isometry of rank k on a Hilbert space of degree n is
unitarily equivalent to an n× n matrix of the form

[u1 u2 . . . uk 0 0 . . . 0]

for some (possibly empty) list of orthonormal column vectors u1,u2, . . . ,uk ∈ C
n.

We leave it to the reader to verify the following facts about partial isometries; see
Exercise 12.13.

Proposition 12.7.4 For A ∈ L (H ) the following are equivalent.

(a) A is a partial isometry.
(b) A∗ is a partial isometry.
(c) A = AA∗A.
(d) A∗A is an orthogonal projection.
(e) AA∗ is an orthogonal projection.

If A is a partial isometry, then A∗A ∈ L (H ) is the orthogonal projection
with range (kerA)⊥ and AA∗ ∈ L (H ) is the orthogonal projection with range
(kerA∗)⊥.

Recall the linear transformation x ⊗ y : H → H defined by

(x ⊗ y)(z) := 〈z, y〉x, z ∈ H .

It has rank one if x, y �= 0. Its adjoint is y ⊗ x (see (A.6.9)).
In what follows, recall the hypothesis B(0) = 0 from (12.6.1). This ensures that

B/z is analytic on D. It belongs to KB by Proposition 12.1.17.
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Proposition 12.7.5 If B(0) = 0, then

SBS
∗
B = I − 1 ⊗ 1 and S∗BSB = I − B

z
⊗ B

z
. (12.7.6)

Proof For each f ∈ KB ,

(I − SBS
∗
B)f = f − PB(SS

∗f ) (by Proposition 12.6.5)

= f − PB(f − f (0))

= f (0)PB1

= 〈f, 1〉1 (by Proposition 12.4.1)

= (1 ⊗ 1)f.

This proves the first identity in (12.7.6). To prove the second, first show that

C(f ⊗ g)C = Cf ⊗ Cg;

see Exercise (12.10). Then

C(1 − SBS
∗
B)C = CC − CSBS

∗
BC

= I − CSBCCS∗BC

= I − S∗BSB (by Proposition 12.6.8)

and hence

I − S∗BSB = C(I − SBS
∗
B)C

= C(1 ⊗ 1)C

= (C1)⊗ (C1)

= B

z
⊗ B

z
(by (12.5.8)).

This completes the proof. ��
Corollary 12.7.7 If B(0) = 0, then SB is a partial isometry with

ker SB = span

{
B

z

}
and ker S∗B = span{1}.

Proof Since 1 and B/z are unit vectors, 1 ⊗ 1 and B/z ⊗ B/z are orthogonal
projections on KB which ranges are span{1} and span{B/z} respectively. The
conclusions now follow from Propositions 12.7.4 and 12.7.5. ��
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For a finite Blaschke product B with B(0) = 0, the compressed shift SB
is a partial isometry on a finite-dimensional space. Moreover, its kernel is one
dimensional and its eigenvalues are contained in D. It turns out that SB is a “model”
for such operators.

Theorem 12.7.8 Suppose that

(a) A ∈ Mn is a partial isometry;
(b) dim kerA = 1;
(c) the eigenvalues of A lie inside D.

If {0, λ2, λ3, . . . , λn} are the eigenvalues of A, repeated according to multiplicity,
and

B(z) = z

n∏

j=2

λj − z

1 − λj z
,

then A is unitarily equivalent to SB .

This representation theorem is a consequence of the following result.

Theorem 12.7.9 (Halmos–McLaughlin [67]) Suppose U and V are two partial
isometries with one-dimensional kernels. Then U and V are unitarily equivalent if
and only if they have the same eigenvalues and the same multiplicities.

Proof We choose to work with matrices instead of operators here. If U,V ∈ Mn

are unitarily equivalent, then they are similar and hence have the same characteristic
polynomials. Thus, U and V have the same eigenvalues with the same multiplicities.

Now for the converse. We proceed by induction on n. If n = 1, then each 1 × 1
partial isometry with one-dimensional kernel is the 1 × 1 zero matrix [0]. Suppose
for our induction hypothesis that each pair of n × n partial isometries sharing the
same eigenvalues and multiplicities is unitarily equivalent.

Let U and V be two (n+1)×(n+1) partial isometries with the same eigenvalues
and multiplicities. Schur’s theorem on unitary triangularization (Theorem A.8.1)
permits us, via unitary equivalence, to assume that U and V are upper-triangular
matrices of the form

U =
[
U ′ u
0∗ α

]
and V =

[
V ′ v
0∗ α

]
, (12.7.10)

in which α ∈ C, u, v, 0 ∈ C
n, and U ′, V ′ are n × n upper-triangular matrices with

0, λ2, λ3, . . . , λn (in that order) along their main diagonals.
Since U is upper triangular and has a 0 in the (1, 1) position, we may write

U = [0 c2 c3 . . . cn+1] (12.7.11)
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in column-by-column format. Let e1, e2, . . . , en+1 denote the standard basis vectors
for Cn+1. By hypothesis, dim kerU = 1 and hence kerU = span{e1}. Since U is a
partial isometry, it is isometric on

(kerU)⊥ = span{e2, e3, . . . , en+1} (12.7.12)

and hence

∥∥∥U
( n+1∑

j=2

zjej
)∥∥∥

2 =
∥∥∥
n+1∑

j=2

zj ej
∥∥∥

2 =
n+1∑

j=2

|zj |2.

for any z2, z3, . . . , zn+1 ∈ C. We also have

U
( n+1∑

j=2

zj ej
)
= [0 c2 c3 . . . cn+1]

⎡

⎢⎢⎢⎣

0
z2
...

zn+1

⎤

⎥⎥⎥⎦ =
n+1∑

j=2

zicj .

Using the previous equation, along with (12.7.12), it follows that

n+1∑

j=2

|zj |2 =
∥∥∥U
( n+1∑

j=2

zj ej
)∥∥∥

2 =
∑

2�j,k�n+1

zj zk〈cj , ck〉 (12.7.13)

for all z2, z3, . . . , zn+1 ∈ C. Thus, {c2, c3, . . . , cn+1} is an orthonormal basis for
(kerU)⊥. In particular, since U is upper triangular, the matrix U ′ from (12.7.10)
takes the form

U ′ = [0 q2 . . . qn+1], (12.7.14)

in which {q2,q3, . . . ,qn+1} is an orthonormal set and u is orthogonal to the columns
of U ′. Proposition 12.7.3 ensures that U ′ is a partial isometry. From (12.7.14), we
conclude that U ′ has a one-dimensional kernel. An analogous argument shows that
V ′ has the same properties.

By our induction hypothesis, U ′ and V ′ are unitarily equivalent, and so

W0U0W
∗
0 = V0

for some n × n unitary matrix W0. Fix ξ ∈ T and consider the (n + 1) × (n + 1)
matrix

Wξ =
[
W0 0
0∗ ξ

]
.



12.8 Unitary Extensions of the Compressed Shift 283

Then

WξUW ∗
ξ =
[
V ′ ξW0u
0∗ α

]

is a partial isometry of rank n whose first column is zero. Consequently, ξW0u is
orthogonal to the columns of V ′. Since v is also orthogonal to the columns of V ′, it
follows that

ξW0u = cv (12.7.15)

for some c ∈ C. From (12.7.10),

[
u
α

]
and

[
v
α

]

are unit vectors and hence ‖u‖ = ‖v‖. Since W0 is unitary and |ξ | = 1, we conclude
from (12.7.15) that

‖u‖ = ‖W ′u‖ = |c|‖v‖,

so |c| = 1. Hence there is a ξ ∈ T such that ξW0u = v. With this ξ we have

WξUW ∗
ξ =
[
V ′ v
0∗ α

]
= V,

which says that U is unitarily equivalent to V . This completes the induction. ��

12.8 Unitary Extensions of the Compressed Shift

A partial isometry on a finite-dimensional Hilbert space H can always be extended
to a unitary operator on H [71]; see Exercise 12.15. That is, there is a unitary
operator U : H → H so that

U |(kerV )⊥ = V.

This is no longer the case if one considers partial isometries on infinite-dimensional
spaces: the unilateral shift (12.6.2) is a partial isometry that has no unitary
extensions.

For a finite Blaschke product B with B(0) = 0, we observed in Corollary 12.7.7
that SB is a partial isometry on the model space KB . In this section we identify all
unitary extensions of SB and discuss their eigenvalues and eigenvectors. This work
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of D. Clark [24] is valid in a much broader setting than we present here; see [59] for
more details.

For a fixed α ∈ T define Uα : KB → KB by

Uα := SB + α
(

1 ⊗ B

z

)
. (12.8.1)

In other words,

Uαf = SBf + α
〈
f,

B

z

〉
, f ∈ KB.

Theorem 12.8.2 If B is a finite Blaschke product with B(0) = 0 and α ∈ T, then
Uα is unitary on KB .

Proof Since KB is finite dimensional, a left inverse of Uα is also a right inverse of
Uα . Thus, it suffices to show that

U∗
αUα = I.

We use (A.6.10) and compute

U∗
αUα =

(
SB + α

(
1 ⊗ B

z

))∗(
SB + α

(
1 ⊗ B

z

))

=
(
S∗B + α

(
1 ⊗ B

z

)∗)(
SB + α

(
1 ⊗ B

z

))

=
(
S∗B + α

(
B

z
⊗ 1

))(
SB + α

(
1 ⊗ B

z

))

= S∗BSB + α

(
B

z
⊗ 1

)
SB + αS∗B

(
1 ⊗ B

z

)
+
(
B

z
⊗ 1

)(
1 ⊗ B

z

)
.

By Corollary 12.7.7, the range of SB is orthogonal to the span of the constant
function 1. Thus,

(
B

z
⊗ 1

)
SB = 0.

Appealing to Corollary 12.7.7 again, we have ker S∗B = span{1}, which yields

S∗B
(

1 ⊗ B

z

)
= 0.

Since 〈1, 1〉 = 1, a short computation shows that
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(
B

z
⊗ 1

)(
1 ⊗ B

z

)
= B

z
⊗ B

z
.

Finally observe from Proposition 12.7.5 that

S∗BSB = I − B

z
⊗ B

z
,

which proves that U∗
αUα = I . ��

The operators Uα for α ∈ T are the Clark unitary operators. Since each Uα is
unitary, its eigenvalues are contained in T. We now compute them, along with their
corresponding eigenvectors. In what follows, we need the boundary reproducing
kernels kξ for ξ ∈ T, along with their basic properties; see Proposition 12.3.7. We
follow the proof from [59, p. 237].

Theorem 12.8.3 Let B be a finite Blaschke product of degree n. For each α ∈ T,
the eigenvalues of Uα are the distinct solutions ξ1, ξ2, . . . , ξn to B(ξ) = α. The
corresponding eigenvectors are kξ1 , kξ2 , . . . , kξn and they form an orthogonal basis
for KB .

Proof Theorem 3.4.10 ensures that for each fixed α ∈ T, the equation

B(ξ) = α

has n distinct solutions ξ1, ξ2, . . . , ξn ∈ T. Since Uα is unitary its eigenvalues are
unimodular. Moreover, Uαf = ξf if and only if U∗

αf = ξf . The computation

U∗
αf = S∗Bf + α

(
B

z
⊗ 1

)
f

= f − f (0)

z
+ α〈f, 1〉B

z

= f − f (0)

z
+ αf (0)

B

z

implies that U∗
αf = ξf if and only if

ξf = f − f (0)

z
+ αf (0)

B

z
.

This happens precisely when

f = f (0)
1 − αB

1 − ξz
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= f (0)
1 − B(ξj )B

1 − ξj z

= f (0)kξj ;

that is, f is a constant multiple of kξj . Because the eigenvalues ξ1, ξ2, . . . , ξn are dis-
tinct, the corresponding eigenvectors kξ1 , kξ2 , . . . , kξn are orthogonal. By (12.1.4),
dim KB = n, which says that these eigenvectors form an orthogonal basis. ��

For a unitary operator, eigenvectors corresponding to distinct eigenvalues are
orthogonal. Consequently, Proposition 12.3.7 provides the following corollary.

Corollary 12.8.4 Let B be a finite Blaschke product of degree n and let α ∈ T.
Denote by ξ1, ξ2, . . . , ξn the distinct solutions to B(ξ) = α. Then the functions

ej =
kξj√|B ′(ξj )|

, 1 � j � n,

form an orthonormal basis for KB .

The basis {e1, e2, . . . , en} is called a Clark basis for KB .

12.9 Notes

Model Spaces

The characterization of KB provided by Proposition 12.1.17 can be greatly gen-
eralized. If u is an inner function, then the corresponding model space Ku is the
orthogonal complement of uH 2 in the Hardy space H 2. That is, f ∈ H 2 belongs to
Ku if and only if f is orthogonal to uh for all h ∈ H 2. Since the polynomials are
dense in H 2, this is equivalent to insisting that 〈f, uzk〉 = 0 for k � 0.

Partial Isometries

For more about partial isometries on finite dimensional spaces, see [41, 71]. There
are also some results about operators that are similar to a partial isometry [57].
The analogue of Theorem 12.7.9 is not always true when the kernel of the partial
isometry is not one dimensional. Indeed, the matrices
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A =

⎡

⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ and B =

⎡

⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦

are partial isometries (verify that A = AA∗A and B = BB∗B and then use
Proposition 12.7.4) whose characteristic polynomials are both equal to z4. However,
A and B are not unitarily equivalent (they are not even similar) since they have
different Jordan canonical forms. Note that both A and B have two-dimensional
kernels.

It turns out that for partial isometries with N -dimensional kernels, where
N � 1, there is an N × N matrix-valued analytic function on D, called the
Livšic characteristic function [97], that determines when partial isometries (whose
eigenvalues all lie in D) are unitarily equivalent. When the n × n matrix has one-
dimensional kernel with eigenvalues λ1, λ2, . . . , λn (all contained in D and counted
with multiplicity), then the Livšic characteristic function turns out to be

n∏

j=1

z− λj

1 − λj z
,

the finite Blaschke product whose zeros are the λj . For the matrices A and B above,
the Livšic characteristic functions ΛA and ΛB (which will be 2 × 2 matrix-valued
analytic functions on D since the kernels are two dimensional) are

ΛA(z) =
[
z 0
0 z3

]
and ΛB =

[
z2 0
0 z2

]
.

The functions ΛA and ΛB turn out to be “significantly different” (in a sense defined
by Livšic) and reveal that the partial isometries A and B are not unitarily equivalent.

The Commutant

Theorem 12.7.8 shows that the compressed shift SB on the model space KB serves
as a model for a certain class of partial isometries. One can identify the commutant

{SB}′ = {T ∈ L (KB) : T SB = SBT }

of SB via one the crowning achievements of operator theory, the commutant lifting
theorem [59, p. 229].
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Conjugations

The subject of conjugations goes far beyond model spaces and appears in many
contexts (with many applications) in operator theory [54, 55, 58].

Model Spaces

Model spaces are important in operator theory and complex analysis. For one,
they have infinite-dimensional analogues and, like in our Halmos–McLaughlin
presentation, the associated compressed shift is a model operator for certain types
of contractions. Good sources are [59, 106, 131]. In particular, Theorem 12.7.8 can
be expanded to the following. Suppose A ∈ Mn is a contraction, the eigenvalues of
A are contained in D, and I − A∗A has rank one. Then A is unitarily equivalent to
the compressed shift SB for some finite Blaschke product B.

Numerical Range

The numerical range W(SB) of the compressed shift SB has been discussed in [21,
29, 62]. In particular, there is the following result. If B is a finite Blaschke product,
let B1 = zB. For each θ ∈ [0, 2π ], let Fθ denote the convex hull of the solutions to
B1(z) = eiθ . Then

W(SB) =
⋂

θ∈[0,2π ]
Fθ .

Observe that the eigenvalues of SB are the zeros of B (Corollary 12.6.7). Further-
more, each Fθ contains the zeros of B1 (Theorem 5.2.8), which, in turn, contains
the zeros of B. This illustrates the fact that the numerical range of an operator
contains the eigenvalues of the operator (Proposition 10.3.2). We should mention an
upcoming book Finding Ellipses: What Blaschke Products, Poncelet’s Theorem and
the Numerical Range Know about Each Other by Gorkin, Daepp, Shaffer, and Voss
that will cover in greater detail the beautiful geometry surrounding the numerical
range of a compressed shift.

Clark Theory

There is a well-developed theory of D. Clark concerning unitary extensions of the
compressed shift SB beyond the finite Blaschke product case covered in this chapter.
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There are many technicalities to overcome since the kernel functions kξ for ξ ∈
T are not always well defined when B is an infinite Blaschke product or, more
generally, an inner function. Nevertheless, there is a lot one can say and the theory
is beautiful and appears in a variety of settings. The original source is [24] while a
more recent treatment can be found in [59].

12.10 Exercises

12.1 Prove that 〈f, c(j)a 〉 = f (j)(a) for all f ∈ KB .

12.2 Prove Proposition 12.1.16 in the general case, in which m1,m2, . . . , mr are
no longer assumed to all equal 1.

12.3 Prove Proposition 12.1.17 in the general case by using the Hermite interpola-
tion theorem [87] and the Leibniz formula

dj

dzj
(zkB) =

j∑

s=0

(
j

s

)
B(s) dj−s

dzj−s
zk.

12.4 For two finite Blaschke products B1 and B2, show that KB1 ⊆ KB2 if and
only if B1 divides B2.

12.5 For the reader familiar with Toeplitz operators on the Hardy space H 2 (see
Appendix A.7), show that for any finite Blaschke product B, the model space KB

is the kernel of the Toeplitz operator TB .

12.6 (a) Prove the polarization identity

〈u, v〉 = 1

4

(‖u + v‖2 − ‖u − v‖2 + i‖u + iv‖2 − i‖u − iv‖2),

valid for vectors u, v in any complex Hilbert space. (b) Use the polarization identity
to prove Proposition 12.5.4.d.

12.7 Let K(z, λ) be a reproducing kernel on a complex Hilbert space H . Prove
that K(z, λ) = K(λ, z).

12.8 Let H be a complex Hilbert space. Show that if 〈x,h〉 = 〈y,h〉 for all h ∈ H ,
then x = y. This principle is used in the proof of Proposition 12.4.1.

12.9 Complete the proof of Proposition 12.5.9 by showing that Cvn = c̃λn .

12.10 Show that C(f ⊗ g)C = Cf ⊗ Cg for all f, g ∈ KB .

12.11 Use Proposition 12.6.5 to prove that

Sn
B = PBS

n|KB
, n = 1, 2, . . . .
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12.12 Extend the statement of Proposition 12.6.6 to show that the matrix represen-
tation of SB with respect to the Takenaka basis is

⎡

⎢⎢⎢⎢⎢⎣

a1

a2
. . .

qj,k an−1

an

⎤

⎥⎥⎥⎥⎥⎦
,

where

qj,k =
⎛

⎝
k−1∏

i=j+1

(−ai)

⎞

⎠
√

1 − |aj |2
√

1 − |ak|2.

12.13 Verify Proposition 12.7.4.

12.14 Prove that for V ∈ Mn, the following are equivalent.

(a) V is a partial isometry.
(b) V = Q[u1 u2 . . . ur 0 0 . . . 0]Q∗, where {u1,u2, . . . ,ur : 1 � r � n} is a

(possibly empty) set of orthonormal vectors in C
n and Q is a unitary matrix.

(c) V = UP , where U is a unitary matrix and P is an orthogonal projection.

12.15 Use Proposition 12.7.3 to show that a partial isometry on a finite-dimensional
Hilbert space has a unitary extension.



Chapter 13
The Darlington Synthesis Problem

The (scalar-valued) Darlington synthesis problem from electrical network theory
asks the following question. Given a ∈ H∞, do there exist b, c, d ∈ H∞ such that
the matrix-valued analytic function

U =
[
a −b

c d

]
(13.0.1)

is unitary almost everywhere on T? That is, do there exist b, c, d ∈ H∞ so that

U(ζ )−1 = U∗(ζ ),

for almost every ζ ∈ T? Recall that Fatou’s theorem (Theorem A.3.1) ensures
that functions in H∞ have well-defined radial limits almost everywhere on T.
The negative sign in the (1, 2) entry of the matrix in (13.0.1) is for notational
convenience and is largely inconsequential.

In the early 1970s, Arov [3], and independently, Douglas and Helton [33],
showed that a solution to the Darlington synthesis problem exists if and only if
‖a‖∞ � 1 and a is “pseudocontinuable of bounded type,” a sort of generalized
analytic continuation that originated in a seminal paper of Douglas, Shapiro,
and Shields [34]. A survey of generalized analytic continuation can be found
in [121].

In this chapter, we study the Darlington synthesis problem with rational data a ∈
H∞. In addition to providing an algorithm to construct all rational solutions, this
work involves computations with finite Blaschke products and their corresponding
model spaces. The model-space perspective also reveals an interesting quaternionic
structure to the problem. The following material originates in [51, 52], both of which
also address the more general case when a belongs to H∞ but is no longer assumed
to be rational.
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13.1 Factorization of Rational Functions

In what follows, we often let u denote a finite Blaschke product. Although we have
used B heavily for this purpose in the past, it turns out that u is more appropriate
for this subject matter since u = detU turns out to be a finite Blaschke product
whenever U is an analytic matrix-valued rational function on D that is unitary-
valued on T (see Sect. 13.3).

If f is a rational function that is analytic on D, then it has a finite number of
zeros there. If u is a finite Blaschke product with these zeros, repeated according to
multiplicity, then

F = f

u

is a rational function with no zeros on D and

f = uF. (13.1.1)

This factorization of a rational function is a special case of the Nevanlinna
factorization of Smirnov functions [38].

Definition 13.1.2 If f is a rational function that is analytic on D and factored as
in (13.1.1), then u is the inner factor of f and F is the outer factor. If u is a
unimodular constant function, then f is a rational outer function.

Although we frequently use “the” when we refer to inner or outer factors,
it is technically inappropriate according to our definition (Definition 3.1.2) of
a finite Blaschke product. Indeed, we have said that any finite product of disk
automorphisms is a finite Blaschke product. More advanced texts, which treat
infinite Blaschke products, require certain normalizations before a function can
be called a “Blaschke product” or an “outer function” [38, 106]. In light of
Definition 13.1.2, it is more precise to say that u and F are determined up to
offsetting unimodular constant factors since uF = (ζu)(ζF ) for all ζ ∈ T. For
convenience, however, we continue our relentless abuse of the article “the” in what
follows.

Example 13.1.3 Let λ1 ∈ D and λ2, λ3 ∈ C\D−, and define

f (z) = (z− λ1)(z− λ2)

z− λ3
.

Then

f (z) = z− λ1

1 − λ1z

(
(1 − λ1z)(z− λ2)

z− λ3

)
= u(z)F (z),



13.1 Factorization of Rational Functions 293

where

F(z) = (1 − λ1z)(z− λ2)

z− λ3
.

Observe that the inner factor u is a degree-one Blaschke product and F is a rational
function with no poles or zeros in D; that is, a rational outer function.

The inner–outer factorization of a rational analytic function on D is unique, up to
unimodular constant factors. Suppose that u1F1 = u2F2 are two such factorizations.
Since F1 and F2 are rational functions that do not vanish on D, the zeros of u1 and
u2 are the same and they have the same multiplicities. Thus, u1 = ζu2 for some
ζ ∈ T and hence F1 = ζF2.

The following important lemma tells us that the outer factor of a rational
function that is analytic on D is determined by the modulus of the function
on T.

Lemma 13.1.4 If f, g are rational functions that are analytic on D and |f | = |g|
on T, then f = Bf F and g = BgF for some finite Blaschke products Bf and Bg

and some rational outer function F .

Proof If either f or g has zeros or poles on T, then the identity |f | = |g| on T

shows that these zeros or poles (on T) must be of the same order. Consequently,
f/g has a removable singularity at such points and hence f/g is a continuous,
unimodular, rational function on T. Corollary 3.5.4 produces two finite Blaschke
products B1 and B2 so that f/g = B1/B2. The inner–outer factorization of
B2f = B1g provides a finite Blaschke product B and a rational outer function F

so that

BF = B2f = B1g.

The zeros of B2f and B1g are among those of B, so Bf = B/B2 and Bg = B/B1
are finite Blaschke products. Thus, f = Bf F and g = BgF . ��
Example 13.1.5 Let u denote a finite Blaschke product and let kλ ∈ Ku denote
the kernel function (12.3.3). By Proposition 12.5.4, |Ckλ| = |kλ| on T (which can
also be verified directly). According to the preceding lemma, kλ and Ckλ share a
common outer factor. Since kλ is rational, analytic on D, and does not vanish on D,
it is outer. Thus, we expect that Ckλ is a finite Blaschke product times kλ. Let us
verify this. As in (12.2.1), let

bλ(z) = z− λ

1 − λz
.

Picking up where Example 12.5.7 left off, we deduce that
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(Ckλ)(z) = u(ζ )− u(λ)

ζ − λ

= u(ζ )− u(λ)

1 − u(λ)u(ζ )
· 1 − λζ

ζ − λ
· 1 − u(λ)u(ζ )

1 − λζ

= (bu(λ) ◦ u)(ζ ))
bλ(ζ )

kλ(ζ ). (13.1.6)

Now observe that bu(λ)◦u is a finite Blaschke product (Theorem 3.6.2) that vanishes
at λ. Consequently, it is divisible by bλ and hence the factor in front of kλ(z)

in (13.1.6) is a finite Blaschke product. We conclude from this that kλ and Ckλ
share the outer factor kλ.

13.2 Finite Blaschke Products as Divisors in Model Spaces

Let u be a finite Blaschke product of degree n. Proposition 12.5.4 tells us that
|Cf | = |f | on T for all f ∈ Ku. Thus, Lemma 13.1.4 yields finite Blaschke
products Bf and BCf , along with a rational outer function F , so that

f = Bf F and Cf = BCf F. (13.2.1)

Proposition 12.5.5 ensures that

Cf = f zu

on T. Thus,

BCf F = Bf Fzu

and hence

BfBCf = Fzu

F

on the subset of T where F is nonzero; that is, at all but finitely many points.
Consequently, the finite Blaschke product

iF := BfBCf (13.2.2)

depends only upon F and u. It does not depend upon the particular pair of conjugate
functions in Ku with common outer factor F that are chosen. If u is fixed and there
is no chance of confusion, we say that iF is the finite Blaschke product associated
with F . On T, it satisfies

iFF = Fzu. (13.2.3)
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In the lattice of finite Blaschke products that occur as factors of functions in KB ,
the function iF has the following maximality property.

Proposition 13.2.4 Let u and B be finite Blaschke products and let F be the outer
factor of a function in Ku. Then BF ∈ Ku if and only if B divides iF .

Proof Suppose that f = BF ∈ Ku. Since Cf = f zu = BFzu on T, (13.2.3)
implies that

B Cf = Fzu = iFF

on T. The identity principle guarantees that B Cf = iFF on D and hence the
uniqueness of the inner–outer factorization confirms that B divides iF .

Conversely, suppose that B divides iF . Then iF = BB1, in which B1 is a finite
Blaschke product. From (13.2.3) we see that BB1F = Fu on T and hence

BF = B1Fzu.

Proposition 12.5.5 shows that BF ∈ Ku and that C(BF) = B1F . ��
Example 13.2.5 The constant function 1 belongs to Kzu (Proposition 12.1.9) and
C1 = 1zzu = u. In this case, F ≡ 1 and iF = u. Thus, the only finite Blaschke
products that belong to Kzu are the divisors of u.

Example 13.2.6 Building upon Example 13.1.5, Proposition 13.2.4 implies that the
only finite Blaschke products B for which Bkλ ∈ Ku are the divisors of the finite
Blaschke product (bu(λ) ◦ u)/bλ.

13.3 Quaternionic Structure of Solutions

Let a ∈ H∞ be a rational function and suppose that the corresponding Darlington
synthesis problem has a solution U , in which b, c, and d are rational functions in
H∞. Then the matrix-valued function U from (13.0.1) is analytic on D and unitary
on T and hence u = detU is a finite Blaschke product. Indeed,

|u(ζ )|2 = | detU(ζ )|2

= detU(ζ ) detU(ζ )

= detU∗(ζ ) detU(ζ )

= detU∗(ζ )U(ζ )

= det I

= 1

for ζ ∈ T, so Theorem 3.5.2 implies that u is a finite Blaschke product.
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The precise relationship between the finite Blaschke product u and the entries
of U is given in the following theorem from [51], where it is proved without the
assumption that a is rational (the proof is largely similar).

Theorem 13.3.1 Let a, b, c, d ∈ H∞ be rational functions and let u be a finite
Blaschke product. Then the matrix-valued analytic function U given by (13.0.1) is
unitary on T and satisfies detU = u if and only if the following hold.

(a) a, b, c, d ∈ Kzu.
(b) Ca = d and Cb = c, where C is the conjugation on Kzu; that is, Cf = f u on

T.
(c) |a|2 + |b|2 = 1 on T.

Proof (⇒) If U is unitary on T, then u = detU is a finite Blaschke product by the
argument above. Compare entries in U = (U∗)−1 and obtain

a = du and b = cu

on T. Proposition 12.5.5 implies that a, b, c, d ∈ Kzu, Ca = d, and Cb = c.
Examine the diagonal entries of the identity UU∗ = I to obtain |a|2 + |b|2 = 1 on
T.

(⇐) Suppose that (a), (b), and (c) hold. Write a = BaF , b = BbG, c = BcG,
and d = BdF , in which Ba,Bb, Bc, Bd are finite Blaschke products and F,G are
rational outer functions in Kzu. Observe that Proposition 12.5.4 and Lemma 13.1.4
say that the outer factors of a and d = Ca are the same (as are the outer factors of
b and c = Cb). Condition (c) implies that the entries on the main diagonal of the
matrix product

UU∗ =
[
BaF −BbG

BcG BdF

] [
BaF BcG

−BbG BdF

]
. (13.3.2)

are both identically 1 on T. The upper right-hand corner of the product (13.3.2) is

X = BaFBcG− BbGBdF ,

and a few more manipulations yield

X
BcBd

FG
= BaBd

F

F
− BbBc

G

G

on T (except for at most finitely many poles). Since a, d and b, c are pairs of
conjugates in Kzu, it follows from (13.2.2) that BaBd = iF and BbBc = iG. Then

X
BcBd

FG
= iF

F

F
− iG

G

G
= u− u = 0
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on T by (13.2.3). The identity principle implies that X vanishes identically. A similar
argument shows that the bottom left-hand corner of the matrix product (13.3.2)
vanishes and hence U is unitary on T. To complete the proof we use (13.2.3) to
compute:

detU = ad + bc

= BaBdF
2 + BbBcG

2

= iFF
2 + iGG

2

= |F |2u+ |G|2u
= u.

This completes the proof. ��
As a byproduct of Theorem 13.3.1 we obtain two convenient representations for

u = detU :

u = a Ca + b Cb (13.3.3)

= iFF
2 + iGG

2. (13.3.4)

These formulas will be useful in what follows.
Theorem 13.3.1 shows that any solution to the Darlington synthesis problem is

(almost) a quaternion-valued function on T with values of unit modulus on T. Recall
that the quaternions are a division algebra, denoted by H in honor of their discoverer
William Rowan Hamilton, that consists of all expressions of the form

α + βi + δj + γ k,

in which α, β, δ, γ ∈ R and i, j , and k are symbols that satisfy

i2 = j2 = k2 = −1, ij = k, and ji = −k.

One can show that H is isomorphic to the division algebra formed by the complex
matrices

[
z −w

w z

]
, (13.3.5)

in which

z = α + βi and w = −(δ + iγ ).
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The square of the absolute value of the quaternion α + βi + δj + γ k is

|z|2 + |w|2 = α2 + β2 + δ2 + γ 2.

The matrix representation (13.3.5) is reminiscent of that obtained in Theo-
rem 13.3.1, which asserts that any solution to the Darlington synthesis problem
with data a is of the form

U =
[
a −b

Cb Ca

]
=
[
a −b

bu au

]
=
[

1 0
0 u

] [
a −b

b a

]
.

13.4 Primitive Solution Sets

Suppose that the scalar-valued Darlington synthesis problem with rational data
a ∈ H∞ is solvable and that U is one particular solution. That is, U is a 2 × 2
rational, matrix-valued analytic function on D and its (1, 1) entry is the function a.
Theorem 13.3.1 tells us that u = detU is a finite Blaschke product and

U =
[
a −b

Cb Ca

]
,

in which Ca and Cb are the respective conjugates of a and b in Kzu. Each such U

provides us with infinitely many other rational solutions via the following method.
If B1 and B2 are finite Blaschke products (possibly constant), then

V =
[

a −B1b

B2Cb B1B2Ca

]
(13.4.1)

is another solution to the Darlington synthesis problem with data a. Indeed, V is
analytic on D and satisfies

V ∗V =
[

a B2Cb

−B1b B1B2Ca

][
a −B1b

B2Cb B1B2Ca

]

=
[ |a|2 + |Cb|2 −aB1b + B1CaCb

−aB1b + B1CaCb −|b|2 + |Ca|2

]

=
[ |a|2 + |b|2 B1(−ab + aubu)

B1(−ab + aubu) |a|2 + |b|2

]

= I.
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As predicted by Theorem 13.3.1, we may write

V =
[

a −(B1b)

Cv(B1b) Cva

]
,

in which

v = detV = B1B2u

is a finite Blaschke product and

Cvf = f (B1B2u)

is the conjugation on KzB1B2u. Since u divides v, we are prompted to consider
solutions to the Darlington synthesis problem that have minimal determinant.

We say that a solution U is primitive if the finite Blaschke product u = detU is
the minimal finite Blaschke such that detU divides detV for any other solution
V . This is equivalent to requiring that u is the minimal finite Blaschke product
such that a belongs to Kzu. Note also that every primitive solution shares the same
determinant, up to a unimodular constant factor. We call u the minimal determinant
for the problem.

Any solution V to the Darlington synthesis problem with data a can be written
in terms of a primitive solution via (13.4.1). Indeed, suppose that V is a solution
with determinant V = uv, in which v is a finite Blaschke product and u is the
minimal determinant for the problem. Let the outer functions F and G be defined as
in the proof of Theorem 13.3.1 and let iF and iG denote the finite Blaschke products
associated with F and G with respect to u. That is,

iFF = Fu and iGG = Gu

on T. Theorem 13.3.1 permits us to write

V =
[

a −c

cuv auv

]
,

in which c ∈ Kzuv and has outer factor G. Since the conjugate Ca of a in Kzu

equals au on T, we conclude that

detV = uv = iFF
2v + BG2v,

in which B is a finite Blaschke product. Compare this with (13.3.4) to conclude that
iG = B. In particular,

c(cuv) = iGvG
2
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since on T, cuv is the boundary function for the conjugate of c in Kzuv . Thus, V can
be written in the form (13.4.1) for some finite Blaschke products B1 and B2 such
that B1B2 = v.

It therefore suffices to describe all primitive solutions. We call a complete
collection of primitive solutions sharing the same minimal determinant a primitive
solution set. Since the minimal determinant is determined only up to a unimodular
constant factor, there will be infinitely many primitive solution sets. These are
related to each other by (13.4.1), in which the finite Blaschke products B1 and B2
are just unimodular constants.

Fix a minimal determinant u to the Darlington synthesis problem with data a; that
is, u is minimal with the property that a ∈ Kzu. We want to describe all solutions
U with detU = u. Theorem 13.3.1 permits us to identify each such solution with
its upper right-hand entry, b. Indeed, a, b, and u uniquely determine the remaining
entries Cb = bu and Ca = au. Since the outer factor G of b is determined by
condition (c) of Theorem 13.3.1, we can identify each solution U with the maximal
finite Blaschke product that divides b.

Since b divides iG, which is determined by (13.3.4), there is a bijective corre-
spondence between elements of our primitive solution set and the finite Blaschke
products that divide iG. In particular, a primitive solution set has a natural partial
order that derives from this correspondence.

Example 13.4.2 If iG is a unimodular constant, then each primitive solution set
consists of precisely one solution. Since iG is the product of the finite Blaschke
product factors of b and Cb, this occurs precisely when b is a self-conjugate, rational
outer function. For example, suppose that u is a finite Blaschke product and

a = 1
2 (1 + u). (13.4.3)

Since a generates Kzu (Exercise 13.1), any solution to the Darlington synthesis
problem with data a is primitive. Since

Ca = 1
2 (C1 + Cu) = 1

2 (u+ 1) = a,

we see that a is self-conjugate. Moreover, the rational outer function

b = 1
2i (1 − u)

belongs to Kzu and is also self-conjugate. In particular, iG = 1. Thus,

U =
[
a −b

b a

]

is the unique solution to the Darlington synthesis problem with data a that has
minimal determinant u.
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Example 13.4.4 Suppose that iG is a finite Blaschke product of order n. Then a
primitive solution set contains at most 2n solutions. The exact number depends upon
the multiplicities of the zeros of iG. Moreover, a primitive solution set is linearly
ordered (via divisibility of the corresponding inner functions) if and only if iG is a
unimodular multiple of a power of a single Blaschke factor.

Example 13.4.5 If iG is the square of a finite Blaschke product, then a symmetric
(U = UT) primitive solution exists. If iG = B2, in which B is a finite Blaschke
product, then b = BG belongs to Kzu and is self-conjugate. This yields the
primitive solution

[
a −b

b Ca

]
.

Using (13.4.1) with B1 = −i and B2 = i, we obtain the symmetric solution

[
a ib

ib Ca

]
.

13.5 Construction of the Solutions

Suppose that a ∈ H∞ is a rational function with ‖a‖∞ � 1. Write a = P/R, in
which P is a polynomial that is relatively prime to

R(z) = (1 − λ1z)(1 − λ2z) · · · (1 − λnz).

Since a is bounded on D
−, it follows that λ1, λ2, . . . , λn ∈ D. There are two cases

to consider, depending on m = degP .

Case I If m � n, then a ∈ Kzu, where

u(z) =
n∏

k=1

z− λk

1 − λkz
.

By (12.1.2) every function in Kzu is of the form Q/R, in which Q is a polynomial of
degree at most n. Since u is the minimal (up to a unimodular constant factor) finite
Blaschke product so that a ∈ Kzu, to find all primitive solutions to the Darlington
synthesis problem with data a, it suffices to describe all solutions U with u = detU .

By the definition of the conjugation C from (12.5.3),

C(Q/R) = Q#

R
, (13.5.1)
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in which

Q#(z) = znQ(1/z).

We require two special cases of (13.5.1):

Ca = P #/R and u = R#/R. (13.5.2)

The second formula follows from the fact that C1 = C(R/R) = R#/R; that is, 1
and u are conjugates in Kzu.

By Theorem 13.3.1 and (13.3.3), the desired U are of the form

U =
[
a −b

Cb Ca

]
,

in which

u = a Ca + b Cb. (13.5.3)

Write b = Q/R, in which Q is a polynomial of degree at most n. In light of (13.5.1)
and (13.5.2), to solve (13.5.3) we must solve

R#

R
= P #P

R2
+ Q#Q

R2
(13.5.4)

for Q. This reduces to

Q#Q = R#R − P #P. (13.5.5)

Note that P # and R# can be obtained from a without factoring R. Consequently,
one can proceed directly to (13.5.5).

Write b = BbG and Cb = BCbG, in which Bb and BCb are finite Blaschke
products and G is the common outer factor of b and Cb. Since

b Cb = R#R − P #P

R2 ,

it follows that

iGG
2 = BbBCbG

2 = R#R − P #P

R2 . (13.5.6)

As discussed in Sect. 13.4, we need only find G and iG in order to parameterize
all solutions U with detU = u. To find these functions, we need only produce the
inner–outer factorization of
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R#R − P #P

R2
,

a rational function that is directly obtained from the datum a.
Since the outer factor of any function in Kzu also lies in Kzu, it follows that

G ∈ Kzu. Therefore, G = S/R, in which S is a polynomial of degree at most n.
Since G and R are outer, it follows that S is outer. Thus, (13.5.6) reduces to

iGS
2 = R#R − P #P, (13.5.7)

in which iG is a finite Blaschke product, possibly constant, whose zeros are the zeros
of R#R−P #P that lie in D, repeated according to multiplicity. Although the degree
of R#R − P #P is 2n, at most n of its zeros (up to multiplicity) belong to D. This is
because R#R−P #P is invariant under the transformation z �→ 1/z. This yields the
(possibly identical) solutions

[
P/R −S/R

S#/R P #/R

]
and

[
P/R −S#/R

S/R P #/R

]
.

We now identify the remaining (if any) primitive solutions with determinant u.
Since G = S/R is an outer function in Kzu, we have

Ĝ = iGG = S#

R
.

Therefore the desired finite Blaschke product iG is given by

iG = S#

S
.

Since S is an outer function, the zeros of iG must be precisely the zeros of S# that
lie in D. However, S and S# may have common zeros on T. We can discard these
without actually finding them by simply calculating the greatest common divisor of
the polynomials S and S# (this can be accomplished using the Euclidean algorithm
and hence it does not require factoring S or S#). Without loss of generality, we
assume that the zeros of S# all lie in D.

Once the zeros of S# have been found, the primitive solutions with determinant
u can be identified with functions

b = BbG = Bb

S

R
,

in which Bb is a finite Blaschke product that divides iG. The polynomials Q

from (13.5.4) are the functions BbS.
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Case II If m > n, then use zm−nu in place of u and define

Q#(z) = zmQ(1/z)

for polynomials Q of degree at most m. We may proceed as before, the only
difference being that R#R − P #P is now of degree at most 2m. The details are
left to the reader; see Exercise 13.2.

What is the significance of the polynomial R#R − P #P ? For the sake of
simplicity, we suppose that m � n. Since

R#R − P #P

R2 = u− a Ca,

the zeros of R#R − P #P correspond are the zeros of u− a Ca. On T, we have

R#R − P #P

R2
= u(1 − |a|2).

Consequently, the zeros of R#R−P #P that lie on T are exactly the points at which
|a| = 1. Since the zeros of R#R − P #P occur in pairs symmetric with respect to T,
the number of zeros inside the unit disk, counted according to multiplicity, depends
on the degree of R#R−P #P and the number of times, according to multiplicity, that
a assumes its maximum modulus on T. Thus, the number of solutions in a primitive
solution set depends on how many times the datum a assumes values on T.

Example 13.5.8 If deg(R#R − P #P) = 2n and a assumes values with modulus
one n times on T, then R#R − P #P , and hence iG, has no zeros in D. In this case,
the solution Darlington synthesis problem with data a is essentially unique because
each primitive solution set contains only one solution; see Example 13.4.2.

We conclude with an algorithm to produce a complete primitive solution set to
the scalar valued Darlington synthesis problem.

Algorithm
Suppose that we are given a rational a ∈ H∞ with ‖a‖∞ � 1.

(a) Write a = P/R, in which R is a polynomial with constant term 1 and P is
relatively prime to R. Let m = degP and n = degR.

(b) If m � n, then form the polynomial R#R − P #P , in which Q#(z) = znQ(1/z)
for polynomials Q(z) of degree at most n.

(i) The outer factor of R#R − P #P is a polynomial S2 of degree at most 2n
(see (13.5.7)). Then

[
P/R −S/R

S#/R P #/R

]
and

[
P/R −S#/R

S/R P #/R

]

are primitive solutions with determinant u = R#/R.
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(ii) The roots of the polynomial

S1 = S#

gcd(S, S#)
,

which is of degree N � n, all lie in D.
(iii) For each subset {z1, z2, . . . , zk} of the roots of S1 such that k � �N2 �,

T (z) = S(z)

k∏

j=1

z− zj

1 − zj z

is a polynomial of degree N − k that yields the primitive solutions

[
P/R −T/R

T #/R P #/R

]
and

[
P/R −T #/R

T/R P #/R

]
.

This yields a complete set of primitive solutions with determinant u.
(c) If m > n, then form the polynomial R#R − P #P (of degree at most 2m) using

the definition Q#(z) = zmQ(1/z) for polynomials Q of degree at most m.
Proceed as in the previous case.

13.6 Notes

The Schur–Cohn algorithm [91] can detect the number of zeros of a polynomial
inside the disk, on its boundary, and outside. Therefore in many situations, we can
produce information on the number of solutions in a primitive solution set without
explicitly finding the roots of polynomials.

13.7 Exercises

13.1 Show that the function a = 1
2 (1 + u) generates Kzu; that is,

span{S∗na : n = 0, 1, 2, . . .} = Kzu,

in which S∗ is the backward shift operator.

13.2 Fill in the details of the construction from Sect. 13.5.

13.3 Example 13.1.3 suggests a method for factoring

f (z) = p(z)
∏n

j=1(1 − λj z)
∈ Ku
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into its inner and outer factors. Assume that f is not identically zero and write

p(z) = c

R∏

r=1

(z− λr) ·
S∏

s=1

(z− ζs) ·
T∏

t=1

(z− wt), (13.7.1)

where

c �= 0, λr ∈ D, ζs ∈ T, wt ∈ C\D−, and R + S + T = degp � n− 1.

(a) Divide f by the finite Blaschke product

Bf (z) =
R∏

r=1

z− λr

1 − λrz

and verify that

F(z) = c

S∏

s=1

(z− ζs) ·
T∏

t=1

(z− wt)

is the outer factor of f .
(b) Verify that F belongs to Ku.

13.4 If

f (z) = p(z)
∏n

j=1(1 − λj z)
∈ Ku,

with

p(z) = c

R∏

r=1

(z− ζr ) ·
S∏

s=1

(z− λs) ·
T∏

t=1

(z− wt)

as in (13.7.1), prove that

Bf (z) =
S∏

s=1

z− λs

1 − λsz
and BCf (z) =

T∏

t=1

z− 1/wt

1 − z/wt

,

from which it follows that

iF = BfBCf =
S∏

s=1

z− λs

1 − λsz
·

T∏

t=1

z− 1/wt

1 − z/wt

.



Appendix A
Some Reminders

This appendix briefly covers several peripheral topics that have arisen occasionally
in the preceding text. We do not aim to give a complete account of any of the
following subjects and we provide relatively few proofs. The reader is invited to
consult the references discussed below for more details.

A.1 Fourier Analysis

Let L2 := L2(T, dθ/2π) denote the space of complex-valued Lebesgue measurable
functions on T such that

‖f ‖L2 :=
√∫ 2π

0
|f (eiθ )|2 dθ

2π

is finite. The Lebesgue theory of integration [122, 123] can be used to show that L2

is a Hilbert space when endowed with inner product

〈f, g〉L2 =
∫ 2π

0
f (eiθ )g(eiθ )

dθ

2π
(A.1.1)

arising from the norm ‖ · ‖L2 . For f ∈ L2 and n ∈ Z, the nth Fourier coefficient of
f is

f̂ (n) :=
∫ 2π

0
f (eiθ )e−inθ dθ

2π
(A.1.2)
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and the Fourier series of f is

∞∑

n=−∞
f̂ (n)einθ .

Convergence of a Fourier series is with respect to the L2-norm.

Theorem A.1.3 (Parseval’s Theorem) For f ∈ L2, ‖f ‖2
L2 =

∞∑

n=−∞
|f̂ (n)|2.

A.2 The Cauchy Integral Formula

The Cauchy integral formula [123] says that if f is analytic on a neighborhood of
D
− and λ ∈ D, then

f (λ) = 1

2πi

∮

T

f (ξ)

ξ − λ
dξ. (A.2.1)

We often use the following rephrasing in terms of L2-inner products.

Lemma A.2.2 (Cauchy Integral Formula) Suppose that f is analytic on a neigh-
borhood of D− and λ ∈ D. Then f |T ∈ L2 and

〈
f,

1

1 − λz

〉
= f (λ).

Proof By the definition of the L2-inner product from (A.1.1) we have

〈
f,

1

1 − λz

〉
=
∫ 2π

0
f (eiθ )

1

1 − λeiθ

dθ

2π

=
∫ 2π

0
f (eiθ )

1

1 − λe−iθ

dθ

2π

=
∫ 2π

0
f (eiθ )

eiθ

eiθ − λ

dθ

2π

= 1

2πi

∮

T

f (ξ)

ξ − λ
dξ (ξ = eiθ )

= f (λ).

The final equality is due to the Cauchy integral formula from (A.2.1). ��
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A.3 Fatou’s Theorem

Analytic functions on D need not have limiting values anywhere on T. However,
bounded analytic functions are nicer. This is made more precise with the following
theorem of Fatou [38].

Theorem A.3.1 (Fatou) If f is a bounded analytic function on D, then the radial
limit

f (eiθ ) := lim
r→1−

f (reiθ )

exists for almost every θ ∈ [0, 2π ].

A.4 Hardy Space Theory

Here are some standard facts about the Hardy space H 2. Several good sources are
[38, 61, 101]. The Hardy space H 2 is the set of analytic functions f on D for which

sup
0<r<1

∫ 2π

0
|f (reiθ )|2 dθ

2π
< ∞.

A well-known result from H 2 theory says that for almost every θ ∈ [0, 2π ], the
radial limit

f (eiθ ) := lim
r→1−

f (reiθ )

exists (and is finite). Furthermore, the boundary function eiθ �→ f (eiθ ) belongs to
L2 and satisfies

∫ 2π

0
|f (eiθ )|2 dθ

2π
= sup

0<r<1

∫ 2π

0
|f (reiθ )|2 dθ

2π
. (A.4.1)

Thus, via radial limits and boundary functions, one can view H 2 as a closed
subspace of L2. If f ∈ H 2 has the Taylor series expansion

f (z) =
∞∑

n=0

anz
n
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about z = 0, then

an =
∫ 2π

0
f (eiθ )e−inθ dθ

2π
.

In other words, the Fourier coefficients of the (almost everywhere defined) boundary
function eiθ �→ f (eiθ ) are equal to the corresponding Taylor coefficients. From here
one can view H 2 as

H 2 = {f ∈ L2 : f̂ (n) = 0 for n � −1}.

The Riesz projection is the operator P : L2 → L2 with range equal to H 2 defined
by

P
( ∞∑

n=−∞
f̂ (n)einθ

)
:=

∞∑

n=0

f̂ (n)einθ . (A.4.2)

We also have the following Parseval’s formula for H 2 functions:

∞∑

n=0

|an|2 =
∫ 2π

0
|f (eiθ )|2 dθ

2π
. (A.4.3)

The integral computation

∫ 2π

0
einθ

dθ

2π
=
{

0 if n �= 0,

1 if n = 0,
(A.4.4)

shows that {1, z, z2, . . .} is an orthonormal set in H 2. In fact, it is an orthonormal
basis for H 2.

From Parseval’s formula, we obtain the identities

∞∑

n=0

anbn =
∫ 2π

0
f (eiθ )g(eiθ )

dθ

2π
(A.4.5)

and

∞∑

n=0

r2n|an|2 =
∫ 2π

0
|f (reiθ )|2 dθ

2π
. (A.4.6)



Appendix A Some Reminders 311

A.5 Jensen’s Formula and Jensen’s Inequality

Suppose that f is an analytic function on |z| � r with no zeros. The mean value
property for harmonic functions, applied to the harmonic function log |f |, says that

log |f (0)| =
∫ 2π

0
log |f (reiθ )| dθ

2π
.

For a function with finitely many zeros z1, z2, . . . , zn, there is the following
generalization [123].

Theorem A.5.1 (Jensen’s Formula) Let f be an analytic function on |z| � r with
f (0) �= 0 and with zeros z1, z2, . . . , zn in |z| < r . Then

log |f (0)| =
n∑

k=1

log
( |zk|

r

)
+
∫ 2π

0
log |f (reiθ )| dθ

2π
.

There is a probabilistic inequality, also due to Jensen, which says the following.

Theorem A.5.2 (Jensen’s Inequality) Suppose that (Ω,A,μ) is a probability
space and g is a real-valued μ-integrable function on Ω . If φ is a real-valued convex
function on R, then

φ

(∫

Ω

g dμ

)
�
∫

Ω

φ ◦ g dμ.

A.6 Hilbert Spaces and Their Operators

An excellent source for operators on Hilbert spaces is [27]. The proofs of the
material presented below can be found there.

Inner Product

Let H be a separable complex Hilbert space with inner product 〈x, y〉 and
corresponding norm ‖x‖ = √〈x, x〉. Three important facts that will be used in this
book are the polarization identity

4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2,
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the parallelogram identity

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2),

and the Cauchy–Schwarz inequality

|〈x, y〉| � ‖x‖‖y‖.

The Vector Space C
n

Finite-dimensional Hilbert spaces play a prominent role in this book. One of the
most important finite-dimensional Hilbert spaces is the complex vector space

C
n := {(x1, x2, . . . , xn) : xj ∈ C}. (A.6.1)

We will use the notation

ej = (0, 0, . . . , 0, 1, 0, 0, . . . , 0),

where the 1 appears in the j th slot. Observe that {ej : j = 1, 2, . . . , n} is a basis for
C

n, called the standard basis. We can make C
n into a Hilbert space if we endow it

with the inner product

〈x, y〉Cn :=
n∑

j=1

xjyj .

This yields the norm

‖x‖Cn =
√√√√

n∑

j=1

|xj |2.

Notice that {ej : j = 1, 2, . . . , n} is an orthonormal basis for Cn.

Operators

Let H be a separable Hilbert space. A linear transformation (operator) T : H →
H is bounded if

sup{‖T x‖ : x ∈ H , ‖x‖ � 1} < ∞.
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The operator norm ‖T ‖ of T is

‖T ‖ := sup{‖T x‖ : x ∈ H , ‖x‖ � 1}. (A.6.2)

The set of all bounded linear operators on H is denoted L (H ). Observe that
L (H ) is a complex linear space as well as a normed algebra whose norm is
submultiplicative:

‖T1T2‖ � ‖T1‖‖T2‖, T1, T2 ∈ L (H ).

For T ∈ L (H ), the adjoint of T , denoted by T ∗, is the unique T ∗ ∈ L (H )

satisfying

〈T x, y〉 = 〈x, T ∗y〉, x, y ∈ H .

One can show that (T ∗)∗ = T ,

‖T ‖ = ‖T ∗‖,

and

‖T ∗T ‖ = ‖T ‖2. (A.6.3)

With respect to the operator norm, L (H ) is a C∗-algebra; that is, a complete
normed algebra with an involution ∗ that satisfies (A.6.3).

Definition A.6.4 T ∈ L (H ) is

(a) self-adjoint if T = T ∗;
(b) unitary if T T ∗ = T ∗T = I ;
(c) positive semidefinite if 〈T x, x〉 � 0 for all x ∈ H ;
(d) a contraction if ‖T ‖ � 1.

If T is positive semidefinite, then we write T � 0. The notation T � S indicates
that S − T is positive semidefinite. A short exercise shows that

I − T ∗T � 0 ⇐⇒ ‖T ‖ � 1. (A.6.5)

If T is a strict contraction, that is ‖T ‖ < 1, then

∞∑

n=0

T n = (I − T )−1. (A.6.6)

Convergence of the series above is with respect to the operator norm.
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Orthogonal Projections

If M is a closed subspace of H , the orthogonal complement of M is

M⊥ := {x ∈ H : 〈x, y〉 = 0 ∀y ∈ M }.

Note that M⊥ is a closed subspace of H and that every x ∈ H can be written
uniquely as

x = xM + xM⊥ , xM ∈ M , xM⊥ ∈ M⊥.

This orthogonal decomposition is denoted by

H = M ⊕ M⊥.

Moreover, there exists a PM ∈ L (H ) such that

PM x = xM , x ∈ H . (A.6.7)

This operator PM is called the orthogonal projection (projection for short) of H
onto M . One can show that PM is a self-adjoint contraction and that P 2

M = PM .

Furthermore,

I − PM = PM⊥ .

For example, the Riesz projection P : L2 → L2 defined in (A.4.2) is an orthogonal
projection.

If {xj : j � 1} is an orthonormal basis for M , one can show that

PM x =
∑

j�1

〈x, xj 〉xj . (A.6.8)

We can also define an orthogonal projection on H without reference to a
subspace. We say a P ∈ L (H ) is an orthogonal projection if P 2 = P and
kerP = (ranP)⊥. In this case, P is the orthogonal projection of H onto ranP . One
can show that if P ∈ L (H ) satisfies P 2 = P , then the following are equivalent (i)
P is an orthogonal projection; (ii) ‖P ‖ = 1; (iii) P = P ∗.

Rank-One Operators

For x, y ∈ H , define x ⊗ y ∈ L (H ) by

(x ⊗ y)(z) = 〈z, y〉x, z ∈ H . (A.6.9)
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If x, y �= 0, then x⊗y is a rank-one operator whose range is span{x}. A computation
confirms that

(x ⊗ y)∗ = y ⊗ x. (A.6.10)

If ‖x‖ = 1, then x ⊗ x is the orthogonal projection from H onto span{x}.

Spectrum

For T ∈ L (H ), the spectrum σ(T ) of T is

σ(T ) := {λ ∈ C : λI − T is not invertible in L (H )}.

The spectrum is a nonempty compact subset of C and

σ(T ) ⊆ {z : |z| � ‖T ‖}.

There is also the following finer relationship between σ(T ) and ‖T ‖.

Theorem A.6.11 (Spectral Radius Formula) If T ∈ L (H ), then

lim
n→∞‖T n‖1/n = sup{|z| : z ∈ σ(T )}.

Let

σp(T ) := {λ ∈ C : ker(λI − T ) �= {0}}

denote the point spectrum of T (the eigenvalues of T ) and note that σp(T ) ⊆ σ(T ).
Though the spectrum σ(T ) is always nonempty, the point spectrum σp(T ) might be
empty. The approximate point spectrum of T is

σap(T ) := {λ ∈ C : ∃xn, ‖xn‖ = 1, ‖(λI − T )xn‖ → 0}.

One can show that

∂σ(T ) ⊆ σap(T ) (A.6.12)

and hence the approximate point spectrum of an operator is nonempty.
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A.7 Toeplitz Operators

For a Lebesgue measurable subset E ⊆ T, let m(E) denote normalized Lebesgue
measure of E. By normalized we mean that m(T) = 1. Let L∞ denote the set of
complex-valued Lebesgue measurable functions f on T whose essential supremum
norm

‖f ‖∞ := sup
{
a � 0 : m({ξ ∈ T : |f (ξ)| > a}) > 0

}

is finite. Note that

‖fg‖L2 � ‖f ‖∞‖g‖L2 , f ∈ L∞, g ∈ L2. (A.7.1)

This shows that for each φ ∈ L∞, the multiplication operator

Mφ : L2 → L2, Mφf = φf,

is bounded. Furthermore, one can show that

‖Mφ‖ = ‖φ‖∞.

For φ ∈ L∞, the Toeplitz operator Tφ ∈ L (H 2) with symbol φ is

Tφ := PMφ |H 2 ,

where P is the Riesz projection from (A.4.2). The (m, n) entry of the matrix
representation of Tφ with respect to the orthonormal basis {1, z, z2, z3, . . .} for H 2 is

〈Tφζm, ζ n〉 = φ̂(m− n). (A.7.2)

With αk = φ̂(k), this produces an infinite Toeplitz matrix

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0 α−1 α−2 α−3 α−4 · · ·
α1 α0 α−1 α−2 α−3 · · ·
α2 α1 α0 α−1 α−2 · · ·
α3 α2 α1 α0 α−1 · · ·
α4 α3 α2 α1 α0 · · ·
...

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

There is a simple expression for the operator norm of Tφ .
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Theorem A.7.3 (Brown–Halmos [13]) ‖Tφ‖ = ‖φ‖∞.

Observe that the inequality ‖Tφ‖ � ‖φ‖∞ follows from (A.7.1). The reverse
inequality is more involved.

Riesz Functional Calculus

For T ∈ L (H ) and a polynomial

p(z) = a0 + a1z+ a2z
2 + · · · + anz

n,

define p(T ) by

p(T ) = a0I + a1T + a2T
2 + · · · + anT

n. (A.7.4)

Defining p(T ) for a wider class of functions p is more subtle. For example, there
are convergence issues if the finite series above is replaced by an infinite one. If f is
analytic in a neighborhood of σ(T ) and Γ is a rectifiable Jordan curve (or positively
oriented system of Jordan curves) with σ(T ) inside Γ (positive winding number),
the Cauchy Integral formula says

f (z) = 1

n(Γ, z)2πi

∫

Γ

f (ξ)

ξ − z
dξ

for z inside Γ , where n(Γ, z) is the winding number of Γ about z. It makes sense
to define f (T ) by

f (T ) := 1

n(Γ, z)2πi

∫

Γ

f (ξ)(ξI − T )−1dξ. (A.7.5)

The preceding expression is well defined since ξ ∈ C\σ(T ). This definition of f (T )

agrees with the definition of f (T ) from (A.7.4) when f is a polynomial. There is
also the following relationship between σ(f (T )) and f (σ(T )).

Theorem A.7.6 (Spectral Mapping Theorem) If f is analytic in a neighborhood
of σ(T ), then σ(f (T )) = f (σ(T )).

This definition of f (T ) for any T ∈ L (H ) and f analytic in a neighborhood of
σ(T ) is the Riesz functional calculus. If one places further restrictions on T (normal,
contraction, etc.), one can sometimes extend the class of functions f for which one
can meaningfully define f (T ).
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Unitary Equivalence

If H1 and H2 are Hilbert spaces, we say that T1 ∈ L (H1) and T2 ∈ H2 are
unitarily equivalent if there is a linear isometry U from H1 onto H2 such that

T2U = UT1. (A.7.7)

Note that unitarily equivalent operators have the same norm, eigenvalues, and
spectrum.

A.8 Schur’s Theorem

If A ∈ Mn is a self-adjoint matrix, that is A = A∗, the spectral theorem says that A
is unitarily equivalent to the diagonal matrix

⎡

⎢⎢⎢⎢⎢⎣

λ1

λ2
. . .

λn−1

λn

⎤

⎥⎥⎥⎥⎥⎦
,

where λ1, λ2, . . . , λn are the eigenvalues of A. For a general matrix A ∈ Mn, we
have the following [79].

Theorem A.8.1 (Schur’s Theorem) If A ∈ Mn has eigenvalues λ1, λ2, . . . , λn, in
any prescribed order, then A is unitarily equivalent to an upper-triangular matrix
with main diagonal λ1, λ2, . . . , λn.
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