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Abstract Real–world behaviors of human road users in a non-regulated space

(shared space) are complex. Firstly, there is no explicit regulation in such an area.

Users self-organize to share the space. They are more likely to use as little energy

as possible to reach their destinations in the shortest possible way, and try to avoid

any potential collision. Secondly, different types of users (pedestrians, cyclists, and

vehicles) behave differently. For example, pedestrians are more flexible to change

their speed and trajectory, while cyclists and vehicles are more or less limited by

their travel device—abrupt changes might lead to danger. While there are established

models to describe the behavior of individual humans (e.g. Social Force model), due

to the heterogeneity of transport modes and diversity of environments, hand-crafted

models have difficulties in handling complicated interactions in mixed traffic. To

this end, this paper proposes using a Long Short–Term Memory (LSTM) recurrent

neural networks based deep learning approach to model user behaviors. It encodes

user position coordinates, sight of view, and interactions between different types of

neighboring users as spatio–temporal features to predict future trajectories with col-

lision avoidance. The real–world data–driven method can be trained with pre-defined

neural networks to circumvent complex manual design and calibration. The results

show that ViewType-LSTM, which mimics how a human sees and reacts to different

transport modes can well predict mixed traffic trajectories in a shared space at least

in the next 3 s, and is also robust in complicated situations.
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1 Introduction

In distinction to classic traffic designs which, in general, separately dedicate road

resources to road users by time or space division, an alternative solution—shared

space—has been proposed by traffic engineers. This concept was first introduced

by the Dutch traffic engineer Hans Monderman in the 1970s (Clarke 2006). It was

later formally defined by Reid as “a street or place designed to improve pedestrian

movement and comfort by reducing the dominance of motor vehicles and enabling

all users to share the space rather than follow the clearly defined rules implied by

more conventional designs” (Reid 2009). This design allows mixed types of users

(pedestrians, cyclists, and vehicles) to interact with each other and negotiate to take

or give their right-of-way.

It is relatively easier and cheaper to construct less or non-regulated spaces than

the classic traffic designs and more feasible for urban and crowded places (Karn-

dacharuk et al. 2014). Nevertheless, efficiency and safety in shared spaces need to

be fully investigated. At a micro level, understanding how road users behave and

how we can foresee their behaviors after a very short observation time (e.g. 3 s) are

crucial to traffic planning and autonomous driving in such areas. However, this is

not a trivial task. Mixed traffic movement data, especially in shared spaces, contain

various spatio–temporal features. The involved geographical space, objects and their

associated multidimensional attributes change over time (Andrienko et al. 2011). A

simple approach may be sufficient for simple situations, such as the Social Force

model for pedestrian dynamics (Helbing and Molnar 1995). Robust approaches are

required to handle complex situations when mixed traffic is present.

Human behaviors are affected by lots of factors which are very person dependent

(e.g. age, gender, time pressure Kaparias et al. 2012). For this reason, modeling their

decision–making process about where and when to go next in the interactions with

others is a great challenge. These hidden characteristics of personality, however, will

eventually be reflected by the change of their positions, orientations, speeds, accel-

eration, and deceleration. This phenomenon inspires us to build models which can

directly leverage hidden characteristic features and mimic how a human sees and

reacts based on his or her explicit motion sequences in the past together with the

expected behavior of other traffic participants, and then predict his or her trajecto-

ries in the future.

There are models that take movement data as input for trajectory prediction

for mixed traffic in shared spaces, but many of them still require domain experts

and manual fine–tuning efforts (Schönauer et al. 2012; Rinke et al. 2017; Pascucci

et al. 2017). On the other hand, data–driven models, for example, deep learning

neural networks, especially recurrent neural networks have achieved massive suc-

cess for sequence prediction in domains like handwriting and speech recognition

(Graves 2013; Graves and Jaitly 2014). In this paper, Long Short–Term Memory

(LSTM) recurrent neural network models are proposed for mixed traffic prediction in

shared spaces, which circumvent manual model building and calibration procedures.
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They are trained by feeding with users’ motion sequences in the past along with user

type and sight of view using a real–world dataset.

Outline of the paper. In this paper, we first summarize the works that have

been published for mixed traffic modeling and prediction in shared spaces and the

state–of–the–art data–driven approaches in related domains. Then we introduce our

approach motivated by a work for pedestrian modeling in Sect. 3. A real–world

dataset and evaluation metrics for our approach are described in Sect. 4. We report

our experiments and results in the following sections. In the end, we conclude our

paper with some interesting problems that we would like to investigate in future

work.

2 Related Work

Mixed traffic in shared spaces The schemes of shared spaces have been a heated

topic for an alternative traffic design. However, to the best knowledge of the authors,

only a few studies have dealt with shared space modeling: simulating mixed traffic

in shared spaces based on game theory (Schönauer et al. 2012) and mixed traffic

modeling and prediction using an extended Social Force model with collision avoid-

ance (Pascucci et al. 2015; Schiermeyer et al. 2016; Rinke et al. 2017; Pascucci et al.

2017). Nevertheless, the game proposed by Schönauer et al. for conflict handling is

heavily hand-crafted and lacks flexibility—“the type of game, the number of play-

ers, the number of games repeated, and whether the game allows cooperation must

be specified”. On the other hand, in the studies of the extended Social Force model,

mixed traffic is analyzed in a categorical fashion regarding involved transport modes,

e.g. pedestrian versus pedestrian or pedestrian versus car. Their model does not pro-

vide a mechanism that can deal with arbitrary collisions regardless of user types.

Data–driven approaches in trajectory prediction In recent years, with the

increased availability of computational power and large-scale datasets, data–driven

approaches have been largely used for learning movement data. Long and

Nelson summarized possible methods to learn trajectory–related movements

(Long and Nelson 2013). Unsupervised learning, for example clustering, and seg-

mentation are applied to recognize similar trajectory patterns (Morris and Trivedi

2009; Pelekis et al. 2011). Due to the divergence of mixed road users and their

interdependence in shared spaces, these methods are not reliable when the involved

objects and contexts change quickly.

Deep learning approaches in trajectory prediction There are deep learning

approaches for behavior modeling, e.g. a conventional neural network based model

for pedestrian behavior (Yi et al. 2016) and a recurrent neural network based model

for car–following (Wang et al. 2017). But both of these networks are limited to homo-

geneous user types. Nevertheless, these works shed light on using deep learning

approaches for trajectory modeling.
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Initially, Long Short–Term Memory recurrent neural networks proved to be pow-

erful for complex sequence generation, e.g. text and handwriting (Graves 2013) and

speech recognition (Graves and Jaitly 2014). “They can be trained by processing

real data sequences one step at a time and predict what comes next”. This process is

comparable to trajectory prediction—observing initial steps of movement and try-

ing to forecast the future motion. In comparison to an isolated sequence in a text, a

single trajectory cannot be predicted as an independent motion of a road user since

there are other road users and factors in the vicinity impacting his or her behavior,

the so-called repulsive and attractive effects (Helbing and Molnar 1995). In order

to capture these social effects, a centralized bounding grid was introduced in (Alahi

et al. 2016) to process the interactions with neighboring users when using LSTM

for trajectory prediction (Social-LSTM). Experiments on five open datasets (Lerner

et al. 2007; Pellegrini et al. 2009) showed Social-LSTM outperforming the classic

model–based approaches, such as Social Force (Yamaguchi et al. 2011) and Itera-

tive Gaussian Process (Trautman et al. 2013), for pedestrian trajectory prediction. In

addition, the data–driven approach circumvents complex manual setups needed for

fine–tuning these classic models.

However, Social-LSTM was only tested on pedestrians. There are distinctive pat-

terns regarding transport modes. For example, the involved transport modes, envi-

ronment, and density will impact the intensity of pedestrian reactions to conflicts;

cyclists have limited flexibility to deal with collisions due to their bicycles; vehicles

may behave prudently to avoid collisions with more vulnerable road users (Rinke

et al. 2017). Moreover, equipped with rear mirrors and multiple sensors, vehicles

have a larger sight of view compared with pedestrians and cyclists. Lacking a mech-

anism to handle different transport modes, Social-LSTM could not, up to now, be

directly applied to mixed traffic trajectory prediction in shared spaces.

3 Methodology

In order to differentiate transport modes and apply Social-LSTM (Alahi et al. 2016)

for mixed traffic trajectory prediction in shared spaces, we introduce a bounding

grid which incorporates both user type and sight of view based on Social-LSTM. In

the interactions, the regarding user is addressed as an ego-user, which is the same

denomination used in (Rinke et al. 2017), and the other users in his or her vicinity

are addressed as neighboring users.

Every user is trained as a single LSTM, whereas the interactions with neighboring

users are filtered by the bounding grid mentioned above. The basic network structure

for our models is derived from Social-LSTM (see Fig. 1). For the input layer, it has

a spatial input part to store the user’s x and y coordinates and a tensor input part

to capture the neighboring users within a predefined bounding grid for each ego-

user (see Fig. 3a). Instead of simply pooling a binary indicator to tell the ego-user

about the existence of other users in a uniformly sized grid as in the Social-LSTM,

the tensor input here also customizes the grid according to the ego-user’s sight of
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Fig. 1 Basic structure of the long short–term memory network. NU: number of users, 2 ∗
Embedding: embedding dimensions of weight WS for spatial input, (m ∗ n ∗ RNN) ∗ Embedding:

embedding dimensions of weight WT for tensor input, RNN: recurrent neural network size,

OutputSize = 5

view (see Fig. 3c) and distinguishes user types. Equation (1) describes the process.

Gi
t(m, n, ∶) stands for the hidden state at time t for user i with a m × n cell bounding

grid. This grid monitors all neighboring users whose positions are within ego-user

i’s grid and sight of view, and also stores the user type information for the ego- and

neighboring users. Here, user j is from set Ni containing all user i’s neighbors within

Gi
t(m, n, ∶). View

i
t(pos

j
t) is a binary function that filters the neighboring users based

on their positions in ego-user i’s sight of view at time t—a value one is assigned if

the neighboring user is in the ego-user’s sight of view, otherwise zero is assigned.

(type
i
, type

j) stores the pairwise user type information for ego-user i and neighboring

user j. In total, there are nine different pairwise user types and they are coded in

distinctive numerical values and stored in the m × n cell.

Since we can easily differentiate these two features—user type and sight of view—

in Eq. (1), it empowers us to build controlled experiments to analyze the incorpo-

ration of user type and/or sight of view into different models. In order to guarantee

valid comparisons, all the models defined in Sect. 5.1 have the same dimensions as

described here but only with different pooling values in the bounding grid.

Gi
t(m, n, ∶) =

∑

j∈Ni

(type
i
, type

j)[View
i
t(pos

j
t)]. (1)

From the input layer to the hidden input layer in Fig. 1, the spatial input and tensor

input are embedded separately with Rectified Linear Unit (ReLU) as depicted by

Eq. 2. WS and WT stand for the embedding weights for the spatial input and the tensor

input respectively.

Si
t = ReLU(WS ⋅ (xi

t, y
i
t)); Ti

t = ReLU(WT ⋅ Gi
t). (2)
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The embedded spatial input Si
t and the embedded tensor input Ti

t are concatenated

to form a complete input for the LSTM cell. Equation (3) denotes the forward prop-

agation. hi
t−1 is the hidden state at time t − 1 and W stands for the corresponding

weights for the LSTM.

hi
t = LSTM[hi

t−1, (S
i
t + Ti

t ),W]. (3)

We apply the same method to train our models as (Alahi et al. 2016), which was

initially used in (Graves 2013). Depicted by Fig. 1, the initial output of the neural

network is a 5-dimensional vector (o𝜇x, o𝜇y, o𝜎x, o𝜎y, and o𝜌) learned at time t, which

is used to predict the position of user i for the next time-step t + 1 using a bivariate

Gaussian distribution (see Eq. (4)). 𝜇
i

is a 2-dimensional vector for the arithmetic

means of the respective distributions in x and y coordinates. 𝜎
i

is a 2-dimensional

vector for the corresponding standard deviations, and 𝜌

i
is the correlation.

(x̂i
, ŷi)t+1 ∼  (𝜇i

, 𝜎

i
, 𝜌

i)t, (4)

where

𝜇

i = (𝜇i
x, 𝜇

i
y) = (o𝜇x, o𝜇y), (5)

𝜎

i = (𝜎i
x, 𝜎

i
y) = (exp(o𝜎x), exp(o𝜎y)), (6)

𝜌

i = tanh (o𝜌). (7)

The cost between the predicted position and the target position (true position) is

computed by a negative log–likelihood loss function using Eqs. (4) and (8), and the

complete loss for the user is the sum of all the costs in predicted time-steps.

Loss = −
∑

log Pr(xi
t+1, y

i
t+1|𝜇

i
t , 𝜎

i
t , 𝜌

i
t), (8)

where

 (𝜇i
, 𝜎

i
, 𝜌

i) = 1
2𝜋𝜎i

x𝜎
i
y

√
1 − (𝜌i)2

exp
[ −Z
2(1 − (𝜌i)2)

]
, (9)

Z =
(xi

true − 𝜇

i
x)
2

(𝜎x
i)2

+
(yi

true − 𝜇

i
y)
2

(𝜎y
i)2

−
2𝜌(xi

true − 𝜇

i
x)(y

i
true − 𝜇

i
y)

𝜎
i
x𝜎

i
y

. (10)

To avoid overfitting, least square errors (L2) are used as the regularization to

penalize all the learned weights. Hence, the total loss is the sum of the Loss computed

by Eq. (8) and L2, and is optimized using Stochastic Gradient Decedent.
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4 Dataset and Evaluation Metrics

4.1 Dataset

In this paper, LSTM–based models are evaluated on a real–world dataset provided

by Pascucci et al. (2017). The whole area of a shared space is close to a busy train

station in the German city of Hamburg and the shared space of a street is 63 m long

(see Fig. 2a). There were two cameras positioned at C1 and C2 with an elevation of

7 m towards both directions of the street for incoming vehicles and cyclists. Vehicles

are allowed to drive at a maximum speed of 20 km/h with a priority over other types

of road users in the shared zone. Meanwhile, pedestrians and cyclists are allowed

to cross the street at any point from both sides of the street. However, the captured

data shows that rather than strictly followed the regulation, vehicles, cyclists, and

pedestrians negotiated the space spontaneously and often gave priority to each other

to share the space. More details can be found in Pascucci et al. (2017).

In a 30 min video, there were 1115 pedestrian, 22 cyclist, and 338 vehicle (331

cars and 7 motorcycles) trajectories. Figure 2b shows the corresponding velocity dis-

tributions. This video was divided into 1800 time-steps with each time-step lasting

0.5 s. After calibration, all the trajectories were tracked manually and projected onto

a 2D plane with the help of video analysis and modeling tool Tracker.
1

After pre-

processing, each trajectory contains information of user positions with time-step and

user type. The first 10 min (31% of the dataset) are saved as a test set and the last

20 min (69% of the dataset) are used as a training set. 20% of the trajectories in the

training set are selected as a validation set for tuning the models. Please note that the

number of trajectories were not perfectly evenly distributed and none of the users

returned to the shared space in the 30 min video footage.

4.2 Evaluation Metrics

To measure the performance between the predicted and true trajectories of each

model, we use four metrics as follows:

1. Euclidean distance—The measurement used here is similar to the one used in

(Alahi et al. 2016) and (Pellegrini et al. 2009). It is the mean square error (MSE)

over all predicted positions and true positions.

2. Hausdorff distance—Unlike the Euclidean distance that gives a pointwise aver-

age displacement error between each predicted trajectory and true trajectory, the

Hausdorff distance measures the largest distance from the set of predicted posi-

tions (X
pred

) to the set of true positions (X
true

, see Eq. (11)) (Munkres 2000). It

can more explicitly show how far a predicted trajectory deviates from the true

trajectory and also gives less penalty than the Euclidean distance when errors

1
http://physlets.org/tracker.

http://physlets.org/tracker
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(a) (b)

Fig. 2 a Layout of the shared space. Trajectories are denoted by color coded dot-lines with respec-

tive markers for different types of users. A color with larger size and opacity denotes a later time

point. (Background image: Imagery ©2017 Google, Map data ©2017 GeoBasis–DE/BKG (©2009),

Google); b Velocity distributions

are caused by time offsets. For example, in order to avoid collisions, the pre-

dicted trajectory for a user which depicts less accurate deceleration or accelera-

tion compared with the true trajectory should be penalized less if the displace-

ment error is small.

dH(Xpred
,X

true
) = max{supx

pred
∈X

pred

infx
true

∈X
true

d(x
pred

, x
true

)}. (11)

3. Speed deviation—Instead of measuring the MSE over all predicted positions and

true positions, the speed deviation measures the MSE over all predicted speeds

and true speeds in every time-step.

4. Heading error—This measurement computes the average degree for the angles

between the predicted final heading directions and the true final heading direc-

tions over all the trajectories.

Altogether, these metrics allow comprehensive performance analyses for mixed

traffic trajectory prediction in terms of positions, speeds, and heading directions.

5 Experiments

To analyze the contributions of incorporating user type and sight of view as described

in Sect. 3, five LSTM–based models are tested on the aforementioned real–world

dataset with the same configuration.
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5.1 LSTM–Based Models

Table 1 lists the features which are used to feed each model respectively. Social-

LSTM is the baseline model, which only considers the ego-user’s position coordi-

nates and corresponding pre-defined bounding grid. This model does not distinguish

user types. In other words, pedestrians, cyclists, and vehicles are treated equally. It

also does not consider the effect of the user’s sight of view. The grid is the same for

all four sides (right, left, front, and back, see Fig. 3a).

The average speeds of cyclists and vehicles in this shared space are about two

times faster than the average pedestrian speed. Compared with cyclists and pedes-

trians, vehicles also occupy larger areas and generate bigger speed deviation (see

Fig. 2b). Therefore, the bounding grid should be defined in a way that takes the type

of ego-user into account. We call the corresponding model User-LSTM. To be more

specific, vehicles and cyclists have twice the distance and 1.5–times the distance

to the boundary of their bounding grid than pedestrians, respectively (see Fig. 3b).

Given the reality that a user may have different levels of awareness regarding the

type of neighbouring users (Rinke et al. 2017), UserType-LSTM not only defines a

user-type aware bounding grid for the ego-user, but also accounts for the neighboring

users’ type. Therefore, the ego-user’s interactions with different types of neighboring

users are handled differently by this model.

However, the aforementioned models all have ego-user centralized grids. Unlike

vehicles which are equipped with rear mirrors and sensors, pedestrians and cyclists

normally do not have a good view of their back side. Humans have a maximum hor-

izontal field of view of approximately 190◦ with two eyes, 120◦ of which make up

the so-called binocular field of view (Henson 1993). As studied in personal space,

people tend to preserve an elliptic protective zone around their body. Collision risks

in front will be perceived higher than from the side (Gérin-Lajoie et al. 2005). Treat-

ing back and front sides of pedestrian or cyclist ego-users equally may lead to noisy

information. Hence, on top of User-LSTM and UserType-LSTM, and for compu-

tational simplicity, we truncate the bounding grid according to the sight of view

with 180◦ centralized towards the heading direction for pedestrian and cyclist ego-

users (see Fig. 3c). The adjusted User-LSTM and UserType-LSTM are then called

Fig. 3 Bounding grids in different models: a Social-LSTM, b User-LSTM/UserType-LSTM, and c
View-LSTM/ViewType-LSTM
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Table 1 LSTM–based models

Model name Input features

Social-LSTM (baseline) Coordinates, bounding grid

User-LSTM Coordinates, user-type aware bounding grid

UserType-LSTM Coordinates, user-type aware bounding grid,

user-type aware interaction

View-LSTM Coordinates, user-view aware bounding grid

ViewType-LSTM Coordinates, user-view aware bounding grid,

user-type aware interaction

Table 2 Details of hyper–parameters

Training Testing

Sequence length: 12 time-steps Observed sequence: 6 time-steps

Mini–batch size: 16 Predicted sequence: 6 time-steps

Learning rate: 0.003

Number of epochs: 100

View-LSTM and ViewType-LSTM, respectively. It is worth mentioning that even

the back side is treated passively from the ego-user’s perspective for pedestrians and

cyclists as this area is still in the sight of approaching users.

5.2 Setup

The experiments were performed on a PC with the Intel(R) Core(TM) i5-6600T

CPU and 16 RAM using the framework of TensorFlow.
2

This can be optimized with

a more powerful machine with GPU(s) in the future work.

To achieve an optimal configuration for all of the models, 20% of the trajecto-

ries in the training set are selected as a validation set to tune hyper–parameters (e.g.

learning rate, mini-batch size, the lengths of observed and predicted trajectories),

which play an important role in controlling the algorithm’s behavior but cannot be

directly learned through training (Goodfellow et al. 2016). Table 2 lists the values

for the hyper–parameters that are applied in our experiments.

All the models observe six positions in historical trajectories as the input to predict

the next six positions. In other words, the models observe 3 s trajectories and try to

predict the trajectories of the next 3 s. This can be easily scaled up for longer term

prediction by modifying the sequence parameters accordingly. In general, 2.4 s are

sufficient for most drivers for a brake reaction (Taoka 1989). Hence, here we only

report performances for the next 3 s prediction.

2
https://www.tensorflow.org.

https://www.tensorflow.org
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6 Results

6.1 Evaluation of the Models

Our assumption is that a model that mimics how a human sees and reacts to differ-

ent transport modes in a shared space (ViewType-LSTM) can well predict human

behavior. To validate this assumption, the performance of such a model is com-

pared with other models (Social-LSTM, User-LSTM, UserType-LSTM, and View-

LSTM) which do not or do not fully utilize human characteristics in this regard (see

Sect. 5.1).

In many situations, road users make decisions based on narrow gaps between the

approaching users. For example, a pedestrian may decide to continue crossing the

street when the distance of an incoming vehicle is slightly above his or her expected

safety distance. Hence, the evaluation metrics should be able to capture small but

non-negligible differences of the models. For a close observation of how the models

can be used for predicting trajectories of the next 3 s, here we take a look at average

values of Euclidean distance, Hausdorff distance, speed deviation, and heading error

between the true trajectories and the predicted trajectories (see Sect. 4.2).

From Table 3 we can see the average Euclidean distances from the predicted

trajectories to the true trajectories for mixed traffic (all transport modes), pedestri-

ans, cyclists, and vehicles, respectively. UserType-LSTM and User-LSTM generate

larger Euclidean distances than the baseline model for all road users, and more pro-

found errors for cyclists and vehicles. On the other hand, ViewType-LSTM gives

the best performance, beating the baseline model and View-LSTM. The average

Euclidean distance for all transport modes is reduced by 9%, from 0.93 to 0.85 m,

for ViewType-LSTM compared with the baseline model. For vehicles, the Euclidean

distance is reduced by 11%, from 1.15 to 1.02 m.

The differences of performances are more pronounced when measured by the

Hausdorff distance. ViewType-LSTM reduces the error by 13%, from 1.30 to 1.13 m

for all transport modes compared with the baseline. Similar improvements can be

found for pedestrians, cyclists, and vehicles. However, UserType-LSTM and User-

LSTM fall behind the baseline model remarkably.

The average speed deviation of the predicted trajectories to the true trajectories for

ViewType-LSTM is 0.25 m/s for all transport modes, which is slightly smaller than

the baseline model (0.26 m/s). But more profound improvements can be found for

cyclists (ViewType-LSTM 0.34 m/s vs. baseline 0.37 m/s) and vehicles (ViewType-

LSTM 0.37 m/s vs. baseline 0.41 m/s). Interestingly, the speed deviations for pedes-

trians are almost identical for View-LSTM, ViewType-LSTM, and the baseline. This

can be explained by pedestrians traveling at a relatively slow and constant speed com-

pared with cyclists and vehicles (see Fig. 2b). In the dataset we use, there are many

more pedestrians than cyclists and vehicles (see Sect. 4.1). Therefore, the overall

improvement measured by the speed deviation for all transport modes for ViewType-

LSTM is not as profound as the ones measured by the Euclidean distance or the

Hausdorff distance.
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Table 3 Prediction errors for LSTM–based models. Euclidean and Hausdorff distances are mea-

sured by meter, speed deviation is measured by meter per second, and heading error is measured

by degree. The best values are highlighted in boldface

Metrics User type Social-
LSTM

User-
LSTM

UserType-
LSTM

View-
LSTM

ViewType-
LSTM

Avg. Euclidean distance (m) Mixed 0.93 0.98 1.11 0.91 0.85
Pedestrian 0.77 0.87 0.97 0.75 0.71
Cyclist 1.08 1.18 1.23 1.08 1.01
Vehicle 1.15 1.09 1.30 1.11 1.02

Avg. Hausdorff distance (m) Mixed 1.30 1.44 1.65 1.32 1.13
Pedestrian 1.24 1.41 1.66 1.24 1.08
Cyclist 1.39 1.73 1.60 1.33 1.25
Vehicle 1.48 1.56 1.74 1.52 1.26

Avg. speed deviation (m/s) Mixed 0.26 0.27 0.31 0.26 0.25
Pedestrian 0.17 0.20 0.22 0.17 0.17
Cyclist 0.37 0.37 0.44 0.38 0.34
Vehicle 0.41 0.40 0.47 0.41 0.37

Avg. heading error (
◦
) Mixed 32.72 31.99 38.91 31.68 27.74

Pedestrian 36.79 38.81 45.78 36.44 31.79
Cyclist 6.28 5.49 7.77 5.99 5.09
Vehicle 26.39 20.95 28.33 24.90 22.28

The last lines in Table 3 show how far the predicted trajectories rotate from

the true trajectories regarding final heading directions. The smallest average errors

between the predicted and the true trajectories for all user types, pedestrians, and

cyclists are again given by ViewType-LSTM. Interestingly, the best performance for

vehicles is given by User-LSTM, which slightly outperforms the second best one—

ViewType-LSTM. Overall, the heading errors are much smaller for cyclists than for

the other user types across all models. This is caused by the small cyclist set and

their similar behaviors (see Sect. 4.1).

To summarize, incorporating user types simply by extending bounding grids, i.e.

by increasing the potential influence area for different user types cannot lead to a

better performance. To the contrary, it can even degrade the model’s performance

by including noisy information, especially from the back side of road users. This

is further proven by truncating the bounding grids regarding the sight of view for

pedestrians and cyclists. Moreover, acknowledgement of neighboring users’ trans-

port modes along with sight of view can further boost the accuracy of predictions

for the next 3 s trajectories.
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(a) (b)

(c) (d)

Fig. 4 Trajectory prediction in different situations: a Free flows of a vehicle and two pedestrians,

b complicated situation with multiple users, c vehicles avoid an incoming pedestrian, d pedestrians

avoid incoming vehicles and cyclist. True trajectories are denoted by black dot-lines with respective

markers for different types of users. Predicted trajectories are color coded and a color with larger

size and opacity denotes a later time point

6.2 Predicted Trajectories

In this section we show that ViewType-LSTM is able to mimic how a human sees and

reacts to different transport modes in a shared space in the next 3 s and is also robust

in complicated scenarios. Figure 4 shows different scenarios modeled by ViewType-

LSTM.

From Fig. 4a we can see that the predicted trajectories for two pedestrians and

one vehicle overlay their respective true trajectories. Since they are far from each

other, their trajectories are barely impacted by interaction. On the lower left corner,

ViewType-LSTM is able to correctly predict a left–turn for the pedestrian using a

3 s observed trajectory.

Figure 4b denotes a more complicated situation with multiple vehicles and pedes-

trians going in different directions. There is no collision in such busy mixed traffic.

With only slight speed deviation and displacement for the upper right corner vehicle,

predicted trajectories for the others are very close to the true trajectories.
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Figure 4c, d depict different situations of how interactions happen between dif-

ferent road users and how ViewType-LSTM deals with potential collisions. The dis-

placements from the predicted trajectories to the true trajectories in those two sit-

uations are barely noticeable, but most of them are caused by collision avoidance.

In the upper right corner in Fig. 4c, there is a pedestrian waiting to cross the street.

From the prediction, two approaching vehicles decelerate their speed to reduce the

risks of hitting this pedestrian. On the lower left corner in Fig. 4d, three pedestrians

are crossing the street. As a cyclist and a vehicle are approaching, ViewType-LSTM

predicts a detour to the left side for the pedestrian who is very close to the incom-

ing cyclist. It also predicts deceleration and slight left detours for the following two

pedestrians to reduce the risks of potential collisions.

To more intuitively show how ViewType-LSTM can predict trajectories that

have equal lengths as the observed trajectories, a scenario with mixed road users

is depicted second by second in Fig. 5, in which a cyclist overtakes a vehicle from

the right side to the left side after a pedestrian crossed the street in front of them. In

this case, the prediction is also scaled up from a fixed length (six steps in 3 s) to a

range of different lengths (1 s up to 6 s).

After only 1 s or 2 s observations, there are very few historical steps that can

be referred to for the prediction. ViewType-LSTM, however, still predicts precise

heading directions for each user, with average heading errors being 8.3◦ and 5.3◦,

respectively (see Fig. 5a, b).

After an appropriate length of observation (3 s), the performance for predicted

trajectories is enhanced further. The predicted trajectories overlap their respective

true trajectories (see Fig. 5c).

On the other hand, when the observed and predicted trajectory lengths are further

increased to 4 and 5 s, the performances for the predictions of the cyclist and the

pedestrian fall down. The reason is that, from the fifth second to the sixth second,

both the cyclist and the pedestrian make a small right turn. Without observing the

changes (the observed time point is only up to the fifth second), ViewType-LSTM

keeps predicting straight trajectories for them (see Fig. 5d, e).

When the observation is extended to 6 s, the changes mentioned above are

detected by ViewType-LSTM. In response to the changes, ViewType-LSTM cali-

brates the predicted trajectories to the right side for the cyclist and the pedestrian.

In addition, the deceleration of the vehicle at later time points is also predicted by

ViewType-LSTM, with the error for its speed deviation being 0.32 m/s (see Fig. 5f).

In summary, ViewType-LSTM generates reasonable and collision–free predic-

tions in mixed traffic. Even with little information, it can estimate precise heading

directions of road users. Moreover, ViewType-LSTM can be easily scaled up for

longer term (e.g. up to 6 s) trajectory prediction. However, it is difficult to decide

appropriate lengths for observed and predicted trajectories. A long observation for a

short prediction might not be feasible in real–world trajectory prediction, but a short
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Predictions of future trajectories that have equal lengths as the observed trajectories from

1 to 6 s: a–f Observing 1 s and predicting 1 s trajectories to observing 6 s and predicting 6 s

trajectories, respectively. True trajectories are denoted by black dot-lines with respective markers

for different types of users. Predicted trajectories are color coded and a color with larger size and

opacity denotes a later time point

observation for a long prediction may fail to handle sudden changes made by road

users at a later time. Hence, finding optimal observation and prediction lengths needs

to be further investigated in future work.
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7 Conclusion and Future Work

In this work we showed that LSTM–based models are capable of mixed traffic tra-

jectory prediction in shared spaces. Spatio–temporal features—coordinates, sight of

view, and interactions between different types of neighboring users—are encoded to

mimic how a human sees and reacts to different transport modes. Instead of manual

settings, LSTM–based models can be trained using real–world data for complicated

traffic situations and can be easily scaled up for long term trajectory prediction.

In addition to the Spatio–temporal features mentioned above, user behaviors in

shared spaces are also impacted by environment and context. An online survey shows

that context– and design–specific factors significantly impact the comfort perceived

by pedestrians and the willingness of car drivers to share road resources with oth-

ers in shared spaces (Kaparias et al. 2012). Investigation of context–aware behavior

modeling in shared spaces is a promising direction to further increase the accuracy

of mixed traffic prediction.

Moreover, in order to extend our models on multiple and more balanced mixed tra-

jectories in shared spaces with divergent space layouts, and make such data available

for other studies, object detection and deep learning trajectory tracking techniques

(i.e. Fully-Convolutional Siamese Networks, (Bertinetto et al. 2016)) will largely be

employed for data acquisition and pre-processing procedures in our future work.
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