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Conclusions which are merely verbal cannot bear fruit, only those do which are based on 
demonstrated fact. For affirmation and talk are deceptive and treacherous. Wherefore one 
must hold fast to facts in generalizations also, and occupy oneself with facts persistently, 
if one is to acquire that ready and infallible habit which we call ‘the art of medicine’.

Hippocrates (c. 460–c. 370 BC)
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Abstract
Many laboratory scientists are not trained in 
epidemiology and are lacking the ability to 
interpret the relationship of the observed 
results from the laboratory bench to the out-
comes. For example, cytochrome p450 27B1 
(CYP27B1) is an enzyme that converts 
25-hydroxyvitamin D (Calcifediol) to 
1,25-dihydroxyvitamin D (calcitriol), the bio-
active hormonal form of Vitamin D in the kid-
ney. Several studies reported that vitamin D 
insufficiency may facilitate development of 
cancers. This simplistic way of thinking asserts 
that lack of vitamin D will cause cancer.

However, lipopolysaccharide (LPS) or 
Toll-like receptor2 increased the expression of 

CYP27B1. We know that precedent infec-
tions, obesity, or both would increase LPS and 
TLR2. We also know that the cause must 
occur before the outcome. Therefore, what 
happened earlier (infection and/or obesity) 
would be the real cause and the low level of 
vitamin D may be a marker for low immune 
responses. Unless we compare vitamin D, 
infection/obesity side by side in the same sta-
tistical models, we will never identify the real 
cause. This example clearly suggests that to be 
able to establish a causal relationship cor-
rectly, the bench scientists involved in transla-
tional research need to learn the basic 
epidemiologic principles. Otherwise, their 
conclusion might be incorrect or biased. In 
this chapter, we introduce the basic epidemio-
logic concepts and techniques needed to 
assess and infer causal relationships in transla-
tional research.

8.1	 �Introduction

8.1.1	 �What Is Translational Research

Translational medicine (TranM), according to the 
European Society for Translational Medicine 
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definition, is “an interdisciplinary branch of the 
biomedical field supported by three main pillars: 
bench-side, bed-side and community.” The goal 
of TranM is to combine disciplines, resources, 
expertise, and techniques within these pillars to 
promote enhancements in prevention, diagnosis, 
and therapies of diseases, including oral diseases. 
Our own interpretation of TranM is that “TranM 
is a branch of science where what has been 
learned from the laboratory bench is tested in the 
clinical settings and finally is applied to the popu-
lation to reduce human diseases.” Thus, transla-
tional research (TranR) pertains to all the research 
activities preceding TranM including laboratory 
assays and their applications to individual 
patients and the populations at large. In the appli-
cation steps, it is vital that at all steps of the prin-
ciples of epidemiology, especially the 
evidence-based principles, are adhered to.

Even as early as 400 BC, Hippocrates recog-
nized the importance of precise fact-finding 
methodology in medicine. To assess scientific 
facts precisely, one needs to utilize appropriate 
methodologies which often require accurate lab-
oratory procedures which generate reliable, con-
sistent, and reproducible data to measure 
biomarkers or other pertinent molecules. While 
both simple/classical and state-of-the-art tech-
nologies can meet the prerequisites of robust 
result acquisition, they are both, nevertheless, 
subject to the inherent need to utilize the princi-
ples of the evidence-based approach. Using elab-
orate laboratory experiments that employ 
sophisticated technology does not negate the 
necessity of recognizing and applying the princi-
ples of the evidence-based approach. These prin-
ciples include:

	1.	 Development of a scientifically sound 
rationale

	2.	 Establishing a causal relationship
	3.	 Controlling for other competing factors 

(confounding)
	4.	 Minimizing biases both in human subjects 

and instruments
	5.	 Reducing measurement errors
	6.	 Utilizing the appropriate statistical methods

Traditionally, not all laboratory scientists are 
well-informed in these areas of evidence-based 
methodology, and those who are may frequently 
overlook these principles as they become weak-
ened/obscured by various competing interests. 
Therefore, evidence-based principles remain crit-
ical and invaluable component of the transla-
tional research that demand within the context of 
this chapter elaboration. In this chapter we will 
detail the importance of an evidence-based 
approach in dental TranR and highlight 
some  examples  where these principles were 
applied successfully and not so successfully. 
Also, we hope to guide laboratory and bench 
researchers, who, while well versed in complex 
molecular pathways, are not fully aware of these 
principles so that this information can be carried 
and applied to the clinical setting.

For example, our own cross-sectional study 
“Salivary immunoglobulins and prevalent coro-
nary artery disease” reported an association 
between salivary immunoglobulin A (sIgA) and 
coronary artery disease (CAD) [1]. The word 
“prevalent” coronary artery disease in the title 
suggests that it is a cross-sectional study where 
the predictor and outcome were assessed at the 
same time. Therefore, this study could not have 
assessed causality. Prevalence is disease occur-
rence at one time point without the consideration 
of the time when it occurred. Therefore, the dis-
ease could have occurred before the predictor 
assessment. Meanwhile incidence refers to an 
occurrence of new cases starting from the study 
beginning when the predictor has been assessed. 
Therefore incidence rate indicates a longitudinal 
assessment of the relationship of predictor and 
the outcome. However, longitudinal relationship 
does not automatically establish causality. We 
will discuss the causality establishment in detail 
in the Sect. 8.3.

Although our IgA study adjusted for all pertinent 
confounding, the cross-sectional study design pre-
vents the inference of causality [1]. Nevertheless, 
this study is quite important in other ways. If infec-
tions are considered a causal driver of inflammation 
involved in atherosclerosis, the assessment of the 
infection should be done on the mucosa where 
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pathogens first contact the host. Thus, IgA, a marker 
of mucosal immunity, is an appropriate marker for 
infection. The importance of the appropriate immu-
noglobulin usage was ignored by many renowned 
investigators [2–4], but only few recognized [1, 5]. 
For this reason, Chlamydia pneumoniae IgA was 
significantly associated with coronary heart disease 
[5] while Chlamydia pneumoniae IgG was not [4]. 
Our study has proven that oral mucosal immunity 
measured by salivary IgA was positively while sys-
temic  immunity measured by salivary  IgG was 
inversely associated with CAD [1].

In non-causal association, the risk is usually 
reported by the odds ratio (OR), while the causal-
ity study usually reports incidence rate  (IR). 
However, incidence rate does not always estab-
lish causality. For example, a newly published 
study reported that canakinumab, an 
interleukin-1β inhibitor, decreased the incidence 
of lung cancers [6]. Although canakinumab low-
ered the number of new cases of lung cancer, this 
does not mean inflammation inhibited by 
interleukin-1β is a causal factor for lung cancer. 
Because lung cancer has a long (30–50  years) 
latency [7], this suggests that the true cause had 
initiated pathogenic processes 30 plus years ago. 
Thus, what was observed in 2 years cannot be a 
causal factor, although it is possible that 
canakinumab could have modified the disease 
progression after the initiation of pathogenesis. 
Because the cancer microenvironment creates a 
low immune milieu to avoid the immune sys-
tem’s detection and destruction of cancer cells 
[8]. Cancer might have been caused by other fac-
tors, but inhibiting the inflammatory process 
might have decelerated lung cancer manifesta-
tion. In summary, dental and medical researchers 
need to be critically aware of differentiating 
between association and causality.

8.2	 �Development of Sound 
Rationale

This criterion is of foremost importance. No mat-
ter how well other criteria are fulfilled, without a 
sound rationale, the end results can be misleading 

or may impose potentially serious undesirable 
diversion of the health resources. This oversight 
can be quite subtle, and even very experienced 
scientists may fail to notice the problems in the 
ill-conceived rationale at the study initiation 
stage. If the study involved is a randomized clini-
cal trial (RCT), the repercussions are even 
greater, because RCTs are considered the gold 
standard, and it is assumed that all the confound-
ing factors will be balanced across the groups 
under comparison. However, the bias resulting 
from an ill-conceived rationale cannot be cor-
rected by the study design or statistical analyses.

One prime example is the Women’s Health 
Initiative (WHI) group’s estrogen replacement 
therapy (ERT) and cardiovascular diseases trial 
[9]. Everything in this trial was done following 
the principles of RCT epidemiology. However, 
the investigators failed to recognize irreversible 
changes that occur with age and included women 
70 years or older in the study. Older women not 
only have subclinical vascular changes that pre-
cede cardiovascular events but also thrombotic 
tendency dramatically increases with age [10].

Thus, with additional estrogen which 
increased the thrombotic activities and resulted 
in the increased risk of cardiovascular disease 
(CVD) seen in that study. Consequently, it is not 
clear whether estrogen is the culprit or old age is 
the cause for the increased risk for CVD.  The 
uproar following the publication of the results of 
this trial forced the WHI investigators to reana-
lyze the data and published the results of post hoc 
subgroup analyses including only those women 
who were given estrogen immediately after 
menopause. The results of post hoc analyses 
showed no detrimental effects of ERT given at 
the right time to appropriate cohorts and may 
even have had some beneficial effects on various 
inflammatory diseases [11–14]. The key point is 
that age is an effect modifier in ERT, and specific 
time and appropriate cohort should be 
considered.

Another important example is the clinical tri-
als as well as their meta-analysis using bisphos-
phonates (BISPs) alone or with adjuvant as 
chemo-/hormonal therapy in cancer patients 
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which revealed inconsistencies in results regard-
ing whether BISPs have anticancer effects or not 
[15–21]. In a more recent report of clinical trials, 
it was found that at doses used for osteoporosis, 
neither alendronate nor zoledronic acid reduced 
the risk of breast cancer [22], contrary to reports 
of a protective effect seen in several observa-
tional studies [18, 19]. Furthermore, data analysis 
from adjuvant bisphosphonate trials showed no 
effect on local recurrence or contralateral breast 
cancer incidence [23]. Hence, over the several 
years, many clinical trials were conducted, yet 
the inconsistencies remain to date. Multiple defi-
ciencies in studies were observed:

(a) Ill-designed rationale.
(b) Lack of clear understanding of pharmaco-

kinetics of the drug.
(c) Impact of performing clinical trials with 

mixed patient background such as postmeno-
pausal (ages ~50–70) and premenopausal (ages 
35–50), as well as pooling those who are under-
going hormonal therapy or without hormonal 
therapy.

(d) Predetermined biased attitudes of the 
investigators based on the findings from animal 
experiments, which showed beneficial effects 
were at least ~100-fold higher than that of the 
maximum possible dose for human use.

(e) Different drug dose usage in different clin-
ical trials and variations in length of time for 
observations.

(f) Different analytical methods used for eval-
uation of the outcome of drug action.

8.2.1	 �Preconditions for Mendelian 
Randomization

A currently popular longitudinal study equivalent 
is using genetics to determine the subsequent risk 
of disease occurrence called Mendelian random-
ization. This method was hailed as an alternative 
to longitudinal study to circumvent a long fol-
low-up, confounding, and biases without con-
ducting a traditional randomized trial. Because 
genes are present at birth, genes will always pre-
cede any disease that can occur later in life. 
However, many studies ignored the fact that the 

disease of interest must be under strong genetic 
influence. One recent study reported that the gene 
loci associated with obesity such as FTO, MC4R, 
and TMEM18 did not predict periodontitis [24]. 
In our opinion, periodontitis is influenced by epi-
genetic and lifestyle factors such as aging, smok-
ing, diabetes, and general immune dysfunction. 
This study showed that genetics play a minor role 
in the relationship between periodontitis and 
obesity.

Only 20% of BMI can be explained by genet-
ics [25]. The underlying causes for obesity include 
complex interactions between genetic traits, low 
physical activity levels, excess caloric intake, and 
type of diet that encourages certain microbial 
growth in the gut, as well as environmental factors 
such as access to affordable, healthy food, and 
socioeconomic status [26]. Some twin studies 
report that 60–70% of BMI can be explained by 
genetics [27, 28]. However, it should be noted that 
a cohort of twins cannot be considered as an inde-
pendent population, and this result should not be 
applied to heterogeneous populations. Moreover, 
sophisticated gene sequencing cannot overcome a 
misguided study rationale. Conversely, it could be 
said that epigenetics and lifestyle factors such as 
smoking, physical activity, diet quality, and 
caloric intake may have stronger influence in 
developing high BMI or periodontitis than genet-
ics. These epigenetic factors are modifiable risk 
factors, and further understanding of epigenetic 
mechanisms may help prevent burgeoning BMI 
and/or periodontitis.

In another study, even the leptin receptor gene 
predicted only small portion of body weight in a 
genetically homogeneous population [29]. If life-
style factors have stronger impacts on disease 
phenotype, then the genes associated with BMI 
such as FTO (rs1121980), MC4R (rs17782313), 
and TMEM18 (rs6548238) will not show any 
association with periodontitis. Consequently, null 
results will not clarify whether “BMI is truly not 
related to periodontitis” or “BMI to periodontitis 
relationship is not strongly affected by genes” and 
merely pointing an inappropriate study rationale. 
One example in an inappropriate study rationale 
can be found in “studying sexually transmitted 
disease in nuns” for obvious reasons.
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Another early example of misguided use of 
Mendelian randomization was the first report of 
this kind regarding the causal role of C reactive 
protein (CRP) in CVD. Two studies reported null 
results discrediting CRP in causal relation to 
CVD [30, 31]. Our argument is not based on the 
fact that whether CRP is a cause for CVD or not. 
Rather, we question the validity of examining the 
genes to determine CRP’s role in CVD. CRP lev-
els change largely due to epigenetic and meta-
bolic influence such as increased BMI [32–35] 
which is a modifiable CVD risk owing to an 
imbalance in caloric intake and expenditure. As 
was reported only 20% of BMI can be explained 
by genetics [25] and CRP, which is a BMI-driven 
inflammatory marker, and the gene associated 
with CRP may not show any relationship to 
CVD. In other words, these studies missed 80% 
of CRP’s role in CVD pathogenesis.

8.3	 �Criteria for Causality

To reduce human disease, it is necessary to iden-
tify the factors that cause the disease and clarify 
how to minimize the exposure to these causative 
risk factors. In 1965, Sir Austin Bradford Hill, an 
English epidemiologist, suggested a set of crite-
ria that may suggest a potential causal relation-
ship between the factors. These six criteria are:

	(a)	 Temporality
	(b)	 Strength
	(c)	 Consistency
	(d)	 Specificity
	(e)	 Biological gradient
	(f)	 Biologic plausibility

8.3.1	 �Temporal Relationship

This criterion is the most important of all criteria 
for causality  establishment and must always be 
satisfied. In other words the cause must precede 
the outcome at all time. What happens after the 
disease manifestation cannot be the cause for the 
disease. This seems obvious, but often the dis-
ease has long latency, and subclinical pathology 

is going on for a long time, and it can be difficult 
to determine whether the predictor is the cause or 
the result of the disease. For example, self-
reported periodontitis recently found to be asso-
ciated with non-Hodgkin’s lymphoma in a 
prospective follow-up study [36]. Non-Hodgkin’s 
lymphoma (NHL) in this study included several 
slow-growing lymphatic malignancies such as 
chronic lymphocytic leukemia, small lympho-
cytic lymphomas, diffuse large B-cell lympho-
mas, and follicular lymphomas. Certainly, the 
temporality requirement has been satisfied, i.e., 
predictor periodontitis was assessed before the 
diagnosis of NHL. However, causality is not as 
clear in this case because non-Hodgkin’s lym-
phoma has a long asymptomatic latency which 
accompanies low immunity [37]. Thus, immune 
dysfunction prior to the cancer diagnosis is quite 
possible due to many immature lymphocytes 
which cannot generate strong immunity crowd-
ing the circulatory system. As such, periodontitis 
may be one manifestation of low immunity origi-
nating from yet to be diagnosed NHL in this case. 
In fact, anemia and leukemia manifest in the peri-
odontium as periodontitis and gingivitis [38]. 
Therefore, reverse causation is quite possible in 
the relationship of periodontitis and non-
Hodgkin’s lymphoma [39].

Due to the temporality requirement, cross-
sectional studies which assess the predictor and 
the outcome at the same time cannot prove a 
causal relationship. Unfortunately, in dental 
research, this causality consideration is often 
neglected. The caveat is that a significant 
predictor-outcome relationship even in a longitu-
dinal study does not certify causality [40]. All 
other confounding variables must be controlled, 
and the rationale has to be sound and biologically 
plausible.

8.3.2	 �Strength (Effect Size)

Although small effect size does not preclude cau-
sality, a large effect size is more likely to suggest 
a causal relationship. For example, if smokers are 
eight times (800%) more likely to have periodon-
titis than nonsmokers, then smoking may be a 
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causal risk factor for periodontitis [41]. On the 
contrary, if the association has only a 20% 
increase in risk as in the case of having periodon-
titis and the risk of future CVD [42], it contains a 
high likelihood of having a non-causal relation-
ship such as due to residual confounding, mea-
surement errors, or even chance occurrence.

8.3.3	 �Consistency (Reproducibility)

If different scientists at different time periods 
report similar findings, this suggests the likeli-
hood of a causal relationship. However, this 
assumption of reproducibility as a marker for 
causality must be interpreted with caution. It is 
possible that if several groups used the similar 
flawed methodology, the consistency does not 
support causality. Rather, it supports the theory 
that flawed methods consistently generate similar 
erroneous conclusions. One example refers to a 
study where a questionnaire was used to assess 
periodontitis and tested whether having peri-
odontitis increased the risk of CVD.  They 
observed no relationship (null result) [43]. A sec-
ond study used exactly the same questionnaire 
and found similar null results [44]. A subsequent 
meta-analysis has proven that using an imprecise 
questionnaire in predictor assessment caused 
underestimation of the relative risk due to non-
specific misclassification [42]. Non-specific mis-
classifications will move the results toward the 
null: in other words, the contrast between the 
compared groups will diminish due to the mix-up 
in the categorization of the exposure.

8.3.4	 �Specificity

Causation is more likely if the association occurs 
in a specific population and specific tissues or 
organs with no other overlapping factors. One 
negative example is C-reactive protein (CRP). 
Minor CRP increases (2 mg/L) are observed in 
about 50% of the US population [45] and associ-
ated with over 100 biological conditions includ-
ing aging and strenuous physical activites [46, 
47]. Minor increases in CRP are presumed to 

indicate cell stresses that may or may not be 
pathologic [47]. Thus, holding CRP responsible 
for one disease may be a difficult task because it 
is necessary to control for over 100 other comor-
bidities or pathologies. Similarly, IL-6 is a pleio-
tropic signaling molecule involved in many 
biologic actions. It plays an important role in the 
immune response, hematopoiesis, inflammation, 
oncogenesis, and other transcription factor 
expressions. Thus, IL-6 is not specific enough to 
prove its role in one disease or in one pathway.

8.3.5	 �Biological Gradient

This is also called dose-response. Lower level 
exposures would generate less serious outcomes, 
while greater exposures will bring about more 
severe outcomes. Dose-response does not always 
mean causality. In some disease, there may be a 
distinct threshold rather than a dose-response, 
and yet, the predictor may be a causal risk factor. 
For example, some causal risk factors show sig-
nificant risks in the top quartile but no increased 
risks in the lower levels.

8.3.6	 �Biological Plausibility

Many bench scientists can conjure up biological 
plausibility. However, we must consider other 
parallel possibilities. For example, recent theorem 
that trimethylamine N-oxide (TMAO), a metabo-
lite of the gut microbiotas of choline increased the 
CVD risk, generated considerable interest [48]. 
Several reasons prevent us from getting overly 
excited about the role of TMA or TMAO in human 
diseases. First, there are 100 trillion microbiotas 
in a human body with complex interactions 
involving the huge quantities and diverse range of 
microbes. Thus, identifying one or several 
microbes in a disease relationship is nearly impos-
sible. Second, the gut microbiome is not readily 
accessible without special procedures. Many 
researchers use the fecal microbiome to estimate 
the alteration in gut microbiome. This is a gross 
violation of the temporality requirement of cau-
sality. The fecal microbiome is at the terminal end 
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of the alimentary track and does not precede gut 
microbiome. Thus, the fecal microbiome cannot 
be the cause for the biologic activities in the gut. 
Third, many foods generate TMAO, and the 
results were too non-specific. Consequently, the 
biologic plausibility appears to be weak. One 
recent study actually reported that TMAO analy-
ses may be biased: in stroke patients, TMAO lev-
els were lower than asymptomatic persons and 
presented dysbiosis showing more opportunistic 
pathogens, such as Enterobacter, Megasphaera, 
Oscillibacter, and Desulfovibrio, but fewer com-
mensal or beneficial genera including Bacteroides, 
Prevotella, and Faecalibacterium [49].

All these criteria may not be present, but cau-
sality is still possible or vice versa. In other 
words, satisfying all six criteria does not assure 
the relationship is causal nor does satisfying 
some of the criteria preclude causality. However, 
the foremost minimal criterion is that temporality 
must be satisfied in a causal relationship. This 
means the cause must occur before the outcome 
in all causal relationships. But we must keep in 
mind that satisfying the temporal relationship 
does not ensure causality [40]. Rather, the tempo-
rality criterion is the minimum requirement, but 
causality has to be evaluated in each case by care-
fully adjusting competing factors.

Another case in point deserves consideration: 
a popular topic in research at present is fecal 
microbiome analyses to determine the causative 
microbiota for inflammatory bowel diseases 
(IBD), such as Crohn’s disease or ulcerative coli-
tis. Are alterations in the fecal microbiome the 
cause for inflammatory bowel disease or the con-
sequence of it? Anatomically, feces come after 
the gut and cannot be the cause for the pathology 
in the gut. However, many prominent scientists 
analyze fecal microbiome to evaluate the cause 
for IBD.

Fecal analyses suggested that fecal bacteria 
that produce butyric acid are associated with 
health, and human colonic butyrate producers are 
predominantly Gram-positive Firmicutes but are 
phylogenetically diverse. The most abundant 
groups that generate butyrate are Eubacterium 
rectale, Eubacterium ramulus, and Roseburia 
cecicola. These bacteria were enriched in healthy 

individuals [50]. However, other studies reported 
that Firmicutes were increased in obesity [51–
53]. Does this mean obesity is a sign of health? 
The main question is “are these bacteria bringing 
health?” or “are they the results of health?” 
Certainly, examining fecal microbiome could not 
answer this causality question. Microbiome 
diversity changes according to the diet [54]. 
Thus, the eventual causal factor may be the diet. 
And yet, millions of health research dollars go to 
fecal microbiome sequencing studies.

Here we list the inconsistencies in fecal micro-
biome sequencing studies: Backhed et  al. 
reported that germ-free mice were protected from 
developing obesity [55]. The mechanism includes 
(1) decreased absorption of glucose, (2) genera-
tion of short-chain fatty acids from the gut lumen, 
(3) the associated reduction in hepatic lipogene-
sis, (4) increase in fatty acid oxidation, and (5) 
decrease in deposition of triglycerides in adipo-
cytes. The same group reported after gastric 
bypass surgery, the patients’ fecal microbiome 
had changed independent of BMI.  When these 
patients’ feces were transplanted to germ-free 
mice, the mice microbiome promoted less fat 
deposition [56]. This indicates certain microbio-
tas may be associated with obesity, and weight 
loss may be due to forced dietary changes post 
gastric bypass surgery, and microbiome may be 
the consequence of these dietary changes. Again, 
the temporality of diet, gut microbiome change, 
and obesity has to be determined to identify the 
true cause for obesity. Others, however, reported 
that obesity caused spontaneous endotoxemia, 
i.e., elevated serum lipopolysaccharides (LPS) 
level and subsequent microbiome alteration [54, 
57]. Thus, diets that induced obesity appear to 
initiate this cascade. These sequences of events 
and jumbled cause-effect relationship in the role 
of diet, obesity, microbiome, and metabolic 
inflammation need to be elucidated in the future.

One other baffling example of biologic plausi-
bility in causal context is dysbiosis. Dysbiosis 
can be defined “An alteration of microbial com-
munity composition from a normal healthy state.” 
It has been suggested that dysbiosis may cause 
periodontitis [58, 59]. However we must prove 
dysbiosis precedes periodontitis to be a causal 
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risk factor. So far, we have not seen a longitudinal 
assessment of oral dysbiosis causing periodonti-
tis. Let us be reminded of Hippocratic comment 
that “Conclusions which are merely verbal can-
not bear fruit, only those do which are based on 
demonstrated fact.”

8.4	 �Controlling for Confounding

“Confounding” can be defined “other competing 
factors” that are related to both the predictor and 
the outcome. A prime example is smoking in the 
relation of periodontitis to CVD.

Smoking promotes periodontitis development 
via low immunity due to reduced interferon, anti-
gen presenting cells, and immunoglobulin pro-
duction [60] and is also a strong risk factor for 
CVD by itself. Therefore, we must control for the 
smoking effects in the relationship of periodonti-
tis to CVD. By the same token, obesity and dia-
betes also increase the risk of periodontitis, and 
they themselves are directly increasing the risk of 
cardiometabolic diseases. Thus, the confounding 
must be controlled in the relationship of peri-
odontitis to CVD, as is illustrated in Fig.  8.1 
(described by a red dotted x).

In a complex biological system such as human 
physiology, the permutations of confounding fac-
tors can determine health versus disease state and 
usually are enumerated with large individual 
variations. Therefore, while difficult to achieve 
absoluteness, there are means to reduce or elimi-
nate some of their impacts as illustrated in 
Fig.  8.1 as well as use of cross-correlation 
approaches to optimize the final results.

Although we previously assumed that innate 
immune system is activated by invading patho-
gens only, as our knowledge expands, we now 
know that obesity and diabetes endogenously 
activate innate immunity and generate low-grade 
inflammation [61, 62]. Pischon et  al. reported 
that periodontal treatment resulted in decreased 
e-selectin levels. Unfortunately, this study did not 
provide pretreatment characteristics of the cohort. 
We have no way of knowing whether metabolic 
inflammation could have biased the results. 
Although it was a “self as control” study design, 
metabolic inflammation would have altered the 
serum inflammatory markers. Thus, it is impor-
tant to adjust some measure of metabolic inflam-
mation [63].

In recent years, the gut microbiome was pub-
licized as “a new organ” causing obesity [53]. 

Periodontitis

Cardiometabolic
diseases

Smoking 

Obesity
Diabetes

Fig. 8.1  It has been reported that periodontitis increases 
the risk of cardiometabolic diseases. It also has been 
proven that smoking or obesity increases periodontitis 
and that they independently contribute to cardiometabolic 
diseases. Thus, smoking or obesity becomes a confound-

ing factor for periodontitis. Therefore, if we wish to estab-
lish the unbiased relationship between periodontitis and 
cardiometabolic diseases, the effects of smoking or obe-
sity that coincides with periodontitis must be controlled
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Diet will provide substrate for gut microbiome 
and will alter the intestinal microbial composi-
tion. Indeed, African children who eat a high 
fiber diet showed a significant enrichment in 
Bacteroidetes and depletion in Firmicutes 
(P < 0.001), with an abundance of bacteria from 
the genus Prevotella and Xylanibacter. These 
bacteria are known to have genes that hydrolyze 
cellulose and xylan. Meanwhile, these findings 
were not observed in European children [64].

It appears two opposing theories are conflated 
suggesting a third factor may be involved in “diet 
drives microbiome change” or “microbiome 
alters dietary absorption” leading to obesity. A 
recent study explained that “microbes are highly 
varied between individuals and fluctuate within 
an individual.” [65] Furthermore, another study 
reported “no simple taxonomic signature of obe-
sity in the microbiota of the human gut” [66]. In 
a meta-analysis, Sze and Schloss concluded that 
most of these sequencing studies are underpow-
ered and used inappropriate statistical methods, 
and more importantly, they may show associa-
tions but not causality [67].

Often many dental researchers who are not 
knowledgeable in the concept of confounding 
combine the groups together like those who have 
diabetes and periodontitis or those who smoke 
and have periodontitis and claim that periodontal 
treatment improved CVD or glycemic control. In 
these cases, the confounding by diabetes or 
smoking must be controlled meticulously, or the 
results will be biased.

Another point that should be considered in 
data management is when smoking is dichoto-
mized; it should never be smoking  =  “yes/no.” 
Even though CVD risk declines with increasing 
time from smoking cessation, past smokers are at 
an increased risk of having CVD, and this dichot-
omy wrongly places them in the “no” category. If 
one must dichotomize smoking, it should be 
“ever smoke = yes/no.” In this scenario, the past 
smokers and current smokers are grouped 
together which is more appropriate. Alternatively, 
a continuous measure of smoking exposure, such 
as pack-years, can be employed to distinguish 
those with little smoking exposure to those with 
heavy smoking exposure.

A recent classic example of a hidden con-
founder that has misled the biomedical research 
and clinical trials is the fact that at high-dose 
regimens of bisphosphonates (BISPs) for cancer 
patients and repeat doses over 3–5  years, the 
cumulative dose on the bone reaches to high 
enough level that it impacts bone osteocytes and 
bone lining cells. This approach in preclinical 
and clinical trials led the investigators evaluating 
the cancer bone metastasis and cancer bone bur-
den to observe ~20–30% reduction. This was 
interpreted in terms of BISPs having direct anti-
cancer effect. Remarkably, the impact of BISPs 
on the bone which reflects degeneration of the 
local bone cells and bone vitality becomes a con-
founding factor since the dead bone cannot sup-
port cancer colonization, and hence reduction in 
cancer bone burden was not directly attributable 
to the effect on cancer cells.

8.5	 �Minimizing Biases

Recently elaborate 16r RNA sequencing was 
done in the subgingival crevicular fluid of patients 
who have systemic lupus erythematosus (SLE) 
with and without periodontitis. They observed 
dysbiosis in the group with periodontitis [68]. 
The question still  remains: “Is dysbiosis due to 
periodontitis?” or “Are both dysbiosis and peri-
odontitis the phenotypes clustering immune-
suppressive treatments of SLE?” In translational 
research or in any research activities, the ultimate 
goal is reducing diseases. To achieve this goal, 
we must decrease the exposure to causal risk fac-
tors. Therefore, it is of utmost importance to find 
causal factors if we wish to lower human diseases 
occurrence.

8.5.1	 �Simpson’s Paradox

Simpson’s paradox is defined as “the results indi-
cate the reverse of the true relationship because a 
confounding factor is not considered.” A source 
of bias in some translational research originates 
from the lack of epidemiologic understanding 
among bench scientists. Some researchers 
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reported, “Obesity alters gut microbial ecology” 
[51]. The same group also reported “gut microbi-
ome contributes to energy harvest from the diet 
and energy storage in the host (i.e., caused obe-
sity)” [69]. These two theorems have opposing 
cause-effect directions. Backhed et  al. also 
reported that “introduction of a gut microbiota 
into adult germ-free mice caused a 57% increase 
in body fat” [69].

Alternatively, many researchers reported that 
diet-induced obesity alters gut microbiome [26, 
57, 70–73] and this process involves toll-like 
receptor activation followed by cytokine produc-
tion that is manifested in metabolic inflammation 
[74–77]. Utilizing antibiotics and changing the 
gut microbiome in leptin-deficient ob−/ob− mice 
suppressed metabolic endotoxemia, inflamma-
tion, and associated disorders [54]. The absence 
of CD14 in the same mouse group brought simi-
lar effects to antibiotics suggesting that innate 
immune sensing is involved in obesity and that 
CD14 acts as a co-receptor (along with the Toll-
like receptor TLR 4 and MD-2) for the detection 
of bacterial lipopolysaccharide (LPS). We must 
remember that the innate immune system can be 
activated by both microbial and metabolic stimuli 
[61, 78–80]. Indeed, Fleissner et al. reported that 
absence of intestinal microbiota does not protect 
mice from diet-induced obesity [81], and another 
study refuted the highly cited claim by Turnbaugh 
et  al. [53] that energy harvest from short-chain 
fatty acids by microbiota in the gut caused obe-
sity [82]. Murphy and colleagues observed a 
progressive increase in Firmicutes which was 
confirmed in both HF-fed and ob/ob mice (we 
interpret this as the diet and obesity altered gut 
microbiome). But the changes in the microbiota 
were not associated with the marker for energy 
harvest [82]. At this time, it is not clear whether 
an obesogenic diet causes gut microbial changes 
or gut microbiome alteration caused obesity.

A potential Simpson’s paradox is possible in 
the case of childhood infections or antibiotic use 
causing preadolescent obesity [83, 84]. All these 
studies ignored the fact that infectious inflamma-
tion can be confounded by metabolic inflamma-
tion [61, 85]. In a recent longitudinal study, 
infection and antibiotic use in infancy were 

reported to be causally associated with obesity in 
the adolescent [86]. However, this study ignored 
the main culprits of obesity, namely, obesogenic 
diet, insufficient physical activities, and the resul-
tant energy imbalance [26, 61].

The mainstream thesis on the cause for obe-
sity is still the excess energy due to high caloric 
intake and lack of physical activity [26]. One 
study compared high and low Toll-like receptor 5 
(TLR5) gene expression and obesity. The group 
with high TLR5 gene expression was obese 
because of the flagellin-producing microbiota 
detected by TLR5 [87]. However, a Simpson’s 
paradox may have occurred because those who 
have high expression of TLR5 gene were fatter at 
baseline (BMI = 30.6 vs 20.7, p = 0.04), much 
more insulin and leptin resistant. This finding is 
directly opposite to that of a highly touted animal 
study in molecular science [88]. In the latter 
study, Vijay-Kumar et  al. reported that TLR 
knockout mice developed spontaneous obesity 
and metabolic syndrome [88] and the transfer of 
the fecal microbiome from TLR5-deficient mice 
to wild-type germ-free mice caused obesity and 
metabolic syndrome. We are not certain whether 
mice and humans will have the same innate 
immune response triggered by TLR5 activation 
or if there are some built-in biases in these stud-
ies. Clearly, more incisive review of the studies 
using TLRs in animals and humans are needed. 
Our opinion is that TLR activation is the result of 
obesity which also caused metabolic inflamma-
tion as we and others have reported [61, 89]. 
Numerous studies support this thesis that TLR 
activation is the result of obesity: TLRs were 
activated in nonalcoholic fatty liver disease [90] 
and other obesity-related cardiometabolic dis-
eases [91, 92].

In another study, the third trimester (T3) stool 
of pregnant women showed the strongest signs of 
inflammation and energy loss. When their fecal 
microbiotas were transferred to germ-free mice, 
T3 microbiota induced greater adiposity and 
insulin insensitivity compared to that of first tri-
mester [93]. This study ignored the fact that preg-
nancy is an immune-tolerant state, and as the 
fetus grows, inflammation increases due to more 
relaxed immunity not to reject semi-allogeneic 

S.-J. Janket et al.



91

fetus. Thus, it is plausible that T3 stool would 
display more prominent metabolic dysfunction 
and inflammation.

8.5.2	 �Conundrum in Microbiome 
Research

Lately, popular topics in research include gut 
microbiome and gene sequencing. These clinical 
and translational research studies hold significant 
potential impact for leading to improve under-
standing and ultimate application to dental dis-
ease and cardiovascular disease. But since this is 
a new area of research, it is fraught with many 
deficiencies arising from inappropriate method-
ology, misconceived study rationale, and misin-
terpretation of results. Consequently there are 
many conflicting reports. Beyond potential 
reverse causation due to using feces to estimate 
gut microbiome function, additional reasons for 
this disparity exist: the high functional redun-
dancy in host-microbiome interactions, normal 
individual variation in microbiome composition, 
differences in study design, diet composition, the 
host system between studies, and inherent limita-
tions to the resolution of rRNA-based microbial 
profiling [94].

Initial evidence for obesity-altered microflora 
came from an animal study that leptin-deficient 
ob/ob mice displayed a decrease in Bacteroidetes 
and a proportional increase in Firmicutes com-
pared with lean siblings (ob/+) given the same 
diet [51]. Confounders in the relationship of gut 
microbiome and obesity are diet and the genetic 
lineage of the animals [71].

Some microbiome studies used germ-free 
mice to prove gut microbiota cause obesity. We 
question the validity of using germ-free mice and 
extrapolating the results to humans. Although 
infection can change metabolism, the germ-free 
state in humans is unnatural, and its clinical inter-
pretability is limited. At birth, the gut of a human 
newborns is sterile but by passing through the 
birth canal, subsequent breast feeding, and intro-
duction of solid foods, the infant’s gut is colo-
nized with a microbial community [95]. This 
colonization has multiple benefits because micro-

biome educates the developing immune system 
[96] and trains it how to distinguish harmful 
pathogens from harmless commensals, or part of 
self, and to react accordingly [97, 98]. If this 
introduction of microbiota is disturbed, some 
autoimmune disease, such as Type 1 diabetes, 
may occur [99]. Another benefit of having well-
colonized microbiome is breaking down indi-
gestible food components, degrading potentially 
toxic food compounds like oxalate, and synthe-
sizing certain vitamins and amino acids [100]. 
Additionally, a more powerful driver of obesity 
and metabolic syndrome is diet and physical 
activity balance [26]. Diet changes gut microbi-
ome and intestinal permeability which allows 
some microbiota to translocate into the blood 
stream [57].

Additionally, the gut microbiome is usually 
assessed in the feces and is likely to be the results 
of obesity rather than the cause. For this reason, 
the fecal transplant from lean persons improved 
insulin sensitivity, and it is plausible because lean 
donors have the normal microbial community, 
which is not affected by obesity [101]. However, 
it is not clear whether these changes are perma-
nent or if insulin resistance will return as soon as 
the recipients resume their obesogenic diets. 
Moreover, microbiome change is transient [102], 
and perhaps, it is prudent to make dietary change 
and increase energy expenditure by exercising 
more. As we have stated in the previous section, 
that fecal microbiome assessment is not appro-
priate for establishing the causal role of microbi-
ota in the gut immunity. In addition, modulating 
gut microbiome by antibiotics appeared to 
improve insulin signaling and glucose tolerance 
by reducing circulating LPS levels and inflamma-
tory signaling in mice [103]. However, this phe-
nomenon was not duplicated in humans in a 
recent randomized trial [104]. Moreover, using 
antibiotic treatment to mimic germ-free state in 
an attempt to prevent obesity via changing gut 
microbiome in humans has some obvious prob-
lems such as the development of resistance to 
antibiotics. Additional problems using antibiotics 
are gut microbiome is necessary to protect the 
host from invading pathogens, energy extraction, 
and developing immune system [100]. Moreover, 
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reduced exposure to important gut bacteria may 
result in higher incidence of human allergies and 
autoimmune diseases [105].

Current knowledge of the mucosa-associated 
bacterial communities in the intestine and colon 
is limited because the knowledge was largely 
based on fecal microbiome analyses. It was 
reported that the lumenal and fecal bacterial 
communities were significantly different [106, 
107]. It was demonstrated that the cecum con-
tained 100 times more bacteria than the terminal 
ileum [108]. Admittedly, collecting colonic sam-
ples is difficult because of their viscosity and the 
difficulties in ensuring adequate anaerobic condi-
tions. This proves potential sources of discrep-
ancy in aerobic fecal and anaerobic intestinal 
microbiome. Only intubation and pyxigraphy can 
be performed in healthy subjects, and both should 
be repeated to study the stability of the flora or 
the influence of various parameters on its compo-
sition [106]. Some microorganisms, such as the 
methanogens, represent <0.003–0.03% in the 
right colon, and the same bacteria are present at 
5–12% or more of all bacteria in the feces. Strict 
anaerobes analyzed using probes specific for the 
Bacteroides (Bacteroides, Porphyromonas, and 
Prevotella spp.) and Clostridium groups 
(Clostridium, Eubacterium, and Ruminococcus 
spp.) revealed that these bacteria represented 
44% of fecal bacterial rRNA and only 13% of 
cecal bacterial rRNA. These differences suggest 
that studying the right-sided colonic flora would 
be more appropriate than studying feces for the 
diseases involving the right part of the colon, 
such as ileocecal Crohn’s disease [106].

Many studies report the dietary intake shaping 
gut microbiome [109] as well as causing obesity 
[54, 110, 111]. However, equally numerous stud-
ies report gut microbiome causing obesity inde-
pendent of dietary effects. Some studies, once 
scrutinized carefully, erroneously reported gut 
microbiome causes obesity although dietary fac-
tors precede alteration in gut microbiome [53, 94, 
112]. Clearly, the lack of understanding of the 
causality principle, namely, the temporal rela-
tionship, made them to refer an imprecise asso-
ciation as causal relationship [53, 112]. 
Furthermore, the gut microbiome consisting of 

approximate 1000 species and their composition 
can change due to antibiotics, illness, stress, 
aging, bad dietary habits, and other lifestyle fac-
tors [113]. Gut microbiome evolves with the 
human development from germ-free state of 
newborn infants to approximating adults’ micro-
biome by the age of 1–3 years [114]. Incidental 
environmental exposures play a major role in 
determining the distinctive characteristics of the 
microbial community [114].

A recent randomized trial utilizing 
Lactobacillus rhamnosus GG has been shown to 
decrease neuropsychiatric disorders later in the 
childhood by stabilizing gut permeability and 
restoring epithelial barrier function by tight junc-
tion control, mucin production, and antigen-
specific immunoglobulin A production [115]. 
The underlying pathology in many autoimmune 
or allergic disorders is the increased intestinal 
permeability that brings dysregulation of immune 
responses as well as dysbiosis in response to 
ubiquitous environmental antigens. It should be 
noted that obesity causes increased intestinal per-
meability [116]. Thus, finding the very first initial 
trigger may prove to be a causal factor.

8.5.3	 �Toll-Like Receptors 
in Infection and Metabolism

Germ-free mice [55] were protected from devel-
oping obesity even with a high-fat diet while 
Toll-like receptor 5 (TLR5) knockout mice 
became obese and hyperphagic [88]. These 
results prompted the conjecture that infection or 
the gut microbiotas may be at the root of obesity 
[88]. However, in an in vitro study, subcutaneous 
adipocytes cultured and exposed to saturated 
fatty acids expressed increased TLR4 and MyD88 
and upregulated NF-kB activity with signifi-
cantly increased secretion of IL-6 and TNF-α 
[117]. This suggests fatty acids caused TLR4 
expression, and not TLR4 caused fat-related 
inflammation observed in obesity. This further 
proves that TLR4 can be activated by metabolic 
factors [61].

As we wrote in the previous section, a high-fat 
diet (HFD)-fed mice expressed increased LPS in 
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the serum (metabolic endotoxemia) [57] and acti-
vated TLR4. TLR4, in turn, induced enteric neu-
ronal apoptosis in a p-JNK1 dependent pathway 
[118]. The authors also observed that the HFD-
fed mice had a statistically significant reduction 
in Bacteroidetes (P  <  0.001) and a significant 
increase in Firmicutes, Bifidobacteria, and E. 
coli (P  <  0.001) relative to mice fed a regular 
diet. When they supplemented the mice’s diet 
with oligofructose (prebiotic), the level of endo-
toxemia decreased in HFD-fed mice. The 
researchers interpreted prebiotics restored dysbi-
osis, but we consider that prebiotics prevented 
high-fat diet induced intercellular permeability 
which resulted in a lesser degree of dysbiosis. 
Again, it was proven that the high-fat diets initi-
ated increased intercellular permeability, meta-
bolic endotoxemia, and gut dysbiosis and also 
activated TLR4, which in turn induced intestinal 
neuronal apoptosis resulting in gut motility 
reduction [118]. It is important to recognize 
which factor initiated the sequence of the events 
and that factor should be considered as the cause.

A recent human trial largely refuted all the 
animal studies reporting that gut microbial colo-
nization may cause obesity. Reijnders and col-
leagues manipulated gut microbiota by antibiotics 
(7-day administration of amoxicillin, vancomy-
cin, or placebo) and observed host metabolism in 
57 obese, prediabetic men. Vancomycin, but not 
amoxicillin, decreased bacterial diversity but did 
not affect tissue-specific insulin sensitivity, 
energy/substrate metabolism, postprandial 
hormones and metabolites, systemic inflamma-
tion, gut permeability, and adipocyte size. More 
importantly, energy harvest, adipocyte size, and 
whole-body insulin sensitivity were not altered at 
8 weeks of follow-up, despite considerable alter-
ation in microbial composition [104]. We inter-
pret this as antibiotics, or the lack of innate 
immune sensor such as TLR5 may alter the gut 
microbiome but may not affect metabolism or 
obesity. This was also the view of an expert who 
first reported diet-induced endotoxemia, 
increased serum levels of LPS due to increased 
intestinal permeability [119].

Germ-free mice colonized with Bacteroides 
thetaiotaomicron had improved host nutrient 

absorption and thus potentially increases the pos-
sibility of developing obesity [120]. However, the 
multicomponent ileal/cecal flora produced no 
significant change in levels of either mRNA com-
pared with germ-free controls [120]. We interpret 
these results as “germ-free mice being colonized 
with one or two microbes may introduce bias 
because it is acting as an infection while multi-
microbial inoculation may have balancing effects 
among the microbes” and produced less detri-
mental impacts.

8.6	 �Reducing Measurement 
Errors

Traditionally, translational studies tend to have a 
lesser degree of measurement error than large 
epidemiologic studies. However, it is still possi-
ble that measurement errors may lead to para-
doxical results. For example, the gut microbiome 
includes over 1000 microbial species [121], and 
identifying a few microbes that are causally asso-
ciated with the disease of interest is truly a daunt-
ing task. This also applies to all the large-scale 
proteomics studies by mass spectrometry and/or 
protein arrays where definition of a biomarker for 
causal or diagnosis is evaluated.

Traditional  culture-dependent methods have 
numerous drawbacks such as the time and money 
required, difficulties in identifying the different 
colonies grown in agar, the lack of sensitivity, 
predilection for the most common culture condi-
tions favoring fast-growing and easy-growing 
species, and ignoring those in low concentration 
or requiring unusual culture conditions, such as 
anaerobic conditions. Conversely, the cutting-
edge analytical method of 16S rRNA also has 
several limitations: Firstly, the accuracy of iden-
tification is directly dependent on the complete-
ness of the reference database. Secondly, the 
identification power is lower at the species than 
higher taxonomic levels. Thirdly, many studies 
use a fragment of the gene, which restricts its dis-
criminatory power even more. Fourthly, many 
bacterial species have more than one copy of 16S 
rRNA, and inter-copy sequence variations may 
be present [121]. In addition, the presence of 
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microbe in the diseased tissue does not prove that 
microbe caused the disease. Some microbes have 
the unusual capability of slipping through inter-
cellular spaces and are ubiquitously present in 
many diseased and non-diseased tissues. Some 
examples are Fusobacterium nucleatum (F. 
nucleatum) and Porphyromonas gingivalis (P. 
gingivalis). Whether they are innocent bystand-
ers or truly causal microbiotas has yet to be 
proven. The reason for that is the majority of the 
studies have some methodological flaws. For 
example, oral gavage with P. gingivalis resulted 
in intestinal dysbiosis in mice [122]. This study 
provided a novel concept that orally ingested 
microbial species can cause gut dysbiosis linking 
the oral cavity to the gut microbiome. However, 
to prove that P. gingivalis is unique in causing gut 
dysbiosis, the control group should have been 
other microbiotas, such as Salmonella, 
Escherichia coli, or Staphylococcus. Using saline 
as control, they had proved that ingestion of 
“bacteria,” not specifically P. gingivalis, caused 
dysbiosis which is not unlike food poisoning. 
Additionally, ingesting P. gingivalis is not the 
same as P. gingivalis present in human periodon-
titis. To be a cause for an infection, microbiota 
must overcome several obstacles [123]: First, 
they must outcompete the huge number of com-
mensal bacteria [124]; second, they must disrupt 
epithelial barrier function [125]. In the manipula-
tion of epithelial barrier function, several mecha-
nisms have been recognized. One is via over 
expression of IL-6 [126] or manipulation of the 
actin cytoskeleton [127]. Here we need to be 
reminded that obesity and metabolic inflamma-
tion overexpress IL-6 [128, 129] and also increase 
intercellular permeability.

Another example of the use of inappropriate 
control group is highly touted “Justification for 
the Use of Statins in Primary Prevention: An 
Intervention Trial Evaluating Rosuvastatin 
(JUPITER)” trial where in a cohort who were 
overweight, many of them smoked, and were 
hypertensive but had not yet developed heart dis-
ease, these subjects were given rosuvastatin and 
the results were compared to the control group 
who took placebo. Certainly this cohort needed 
to lower their body weight and decrease smoking 

and hypertension by lifestyle changes. Thus the 
appropriate comparison group should have been 
lifestyle changes comparable to pharmaceutical 
intervention. Moreover, the outcome of cardiac 
events included “hospitalization for unstable 
angina” in the arithmetic sum of all cardiac 
events. This means “hospitalization for unstable 
angina” had equal weight as did myocardial 
infarctions or cardiac deaths. This is clinically 
inappropriate. When we look at the major cardiac 
events only, the cardiac event rate in the rosuvas-
tatin group was 83/8901 and numerically 0.009 
which means less than 1% had a cardiac event. 
The placebo group event rate was 157/8901 
which can be translated as 0.018 which is less 
than 2%. And yet, the relative risk decreased 
about 50% (0.009 vs 0.018) with rosuvastatin 
administration. Despite the low actual number of 
events involved in this cohort, now statin treat-
ment for the asymptomatic population is accepted 
as a standard of care. Some minute improvement 
in outcome can be manipulated to be highly sig-
nificant by increasing the sample size because the 
power of a study (i.e., the probability of obtaining 
a statistically significant result) is dependent on 
the sample size. P-value is calculated by a Z-score 
which indicates how many standard deviations 
the observed value is away from the mean.

Let us review how P-value is derived. In the 
standard normal curve, when a value is located 
about ±1.96 standard deviations away from the 
mean, that value is deemed to be significant 
because only 2.5% on each end (5% combined) 
of standard normal curve will assume this or sim-
ilar values. (This is why we set the α-level at 
0.05.) The Z-score is calculated shown in the 
equation below.

	
Z

X

n
=

− µ
σ / 	

X: sample mean; μ: population mean or true 
mean; σ: standard deviation (SD); n: sample size.

As we know X, sample mean, and σ, standard 
deviation, come from the experiment results 
which should not be changed. However, the sam-
ple size can be manipulated by recruiting a large 
number of participants. If the sample size (n) 
increases, the denominator becomes smaller 
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because denominator is SD divided by the square 
root of the sample size. If the denominator is 
small, even minute changes in the enumerator 
(the outcome) can generate a large Z-score, and 
the P-value becomes significant. Thus, it is 
important to realize that although the P-value is 
significant, sometimes the results may not be 
clinically meaningful. Inevitably, with a large 
sample size, often the measurement will be done 
by using questionnaires or proxies that are less 
precise. Consequently, their results are often 
imprecise but highly significant. Nevertheless, 
journals and funding agencies tend to believe 
results from studies with large sample sizes. 
Hence, it is always important to ask whether sta-
tistical significance is actually clinically rele-
vant. An extension of the above concept can be 
also found in the misleading conclusions of the 
experimental data being different by only 
10–20% between the comparators with P-value 
<0.05 and hence touted as “statistically signifi-
cant”. In most cases a difference of 10–20% 
between the compared groups, although it may 
be statistically significant, such data or changes 
are frequently not biologically significant or 
relevant.

8.7	 �Utilizing the Appropriate 
Statistical Methods

Translational research often involves small sam-
ple size because the elaborate laboratory meth-
odology requires time and money to conduct. 
Also, the results are affected by the techniques 
used (mass spectrometry or polymerase chain 
reaction, etc.), researchers’ skills to perform the 
experiment, and the animal models or species 
used. In some research, using the appropriate 
animal model is important. For example, in 
short-chain fatty acids assessment, murine mod-
els may be of limited value, while pigs or dogs 
are much better to estimate the human relation-
ship with short-chain fatty acids and gut 
microbiotas.

The pervasive problems in translational stud-
ies are sample sizes are too small and using inap-
propriate statistical methods. When the sample 

size is five or six in each group, we cannot expect 
that these data will have a normal distribution. 
However, many researchers use the t-test which 
assumes that the underlying data has a normal 
distribution. Also, multigroup comparisons often 
use ANOVA, but the ANOVA requires that each 
compared group must have a normal distribution 
and each group must have the same sample size. 
Even a total sample size of 32 (each group con-
sists of N  =  8  in four groups), the each group 
(n = 8) must be normally distributed. In addition, 
for ANOVA, homogeneity of variance assump-
tion is crucial to obtaining valid statistical results. 
Particularly in laboratory studies involving count 
data, variance may increase exponentially with 
group means, which can be problematic. 
Especially, in some 16s rRNA sequencing, the 
usual sample size is less than ten due to the con-
straints of cost, time, and computing ability. So, 
the sample size issue has been raised with regard 
to the gut microbiota research in a recent meta-
analysis, and the median classification accuracy 
for predicting obesity by the gut microbiome 
composition was very modest, being between 
33.01% and 64.77% [67].

One of our own students conducted a four-
group comparison where how various reagents 
affect microbial growth. The total sample size 
was over 200, but the underlying assumption of 
homogeneity of variance was violated, and sev-
eral different experimental variations were 
involved such as the timing of adding reagents, 
different numbers of microbes added at the begin-
ning of the experiment, and differing composi-
tion of microbes. Due to these limitations in 
study design and data distribution, we could not 
use parametric regression methods. Thus, we cre-
ated each subgroup reflecting on the variation in 
the methodology and compared to appropriate 
reference via nonparametric methods. In addition 
to concerns about sample size and variance, 
problems arise when the underlying distributions 
under comparison are highly skewed. In most 
biological data where the groups being compared 
are highly skewed, it is generally more appropri-
ate to utilize nonparametric testing.

Some randomized trials select egregiously 
poor reference groups to amplify the efficacy of 
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their interventions. For example, if the interven-
tion is giving milk to school children and assess-
ing obesity outcome, the correct reference group 
should be drinking water [130] or diet soda [131]. 
If the chosen reference group is sugared soda 
which has been established as obesogenic [132], 
the results may not substantiate much health ben-
efit from drinking milk.

Another example of using an inappropriate 
reference group can be found in a heart failure 
medicine trial. In a pharmaceutical company 
sponsored PARADIGM-HF trial [133], a new 
added ingredient LCZ696 to a previously mar-
keted angiotensin receptor blocker valsartan was 
tested. Since the new product has a new added 
ingredient to valsartan, the appropriate reference 
group should be valsartan without LCZ696 and 
substantiate that added ingredient is safe and 
equally efficacious or better. However, they com-
pared its efficacy to enalapril, an early 
angiotensin-converting enzyme inhibitor with 
well-known side effects of cough in many 
patients. To our opinion, since this drug will be 
given to advanced heart disease patients, the 
safety issue should be tested carefully. We do not 
comprehend why this point is not recognized by 
the leaders of the American Cardiologists group.

In conclusion, even in translational research, 
all of the epidemiologic principles such as devel-
oping scientifically sound rationale, establishing 
causal relationship, controlling for confounding, 
minimizing biases and measurement errors, and 
using appropriate statistical methods are of para-
mount importance.
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