
Depth-Adaptive Computational Policies
for Efficient Visual Tracking

Chris Ying1(B) and Katerina Fragkiadaki2(B)

1 Google Brain, Mountain View, CA, USA
chrisying@google.com

2 Machine Learning Department, CMU, Pittsburgh, PA, USA
katef@cs.cmu.edu

Abstract. Current convolutional neural networks algorithms for video
object tracking spend the same amount of computation for each object
and video frame [3]. However, it is harder to track an object in some
frames than others, due to the varying amount of clutter, scene com-
plexity, amount of motion, and object’s distinctiveness against its back-
ground. We propose a depth-adaptive convolutional siamese network that
performs video tracking adaptively at multiple neural network depths.
Parametric gating functions are trained to control the depth of the con-
volutional feature extractor by minimizing a joint loss of computational
cost and tracking error. Our network achieves accuracy comparable to
the state-of-the-art on the VOT2016 benchmark. Furthermore, our adap-
tive depth computation achieves higher accuracy for a given computa-
tional cost than traditional fixed-structure neural networks. The pre-
sented framework extends to other tasks that use convolutional neural
networks and enables trading speed for accuracy at runtime.

Keywords: Visual tracking · Metric learning
Conditional computation · Deep learning

1 Introduction

Multilayer neural networks are the defacto standard machine learning tools for
many tasks in computer vision, including visual tracking [3]. Current visual
trackers use a fixed amount of computation for every object and video frame
[3,14,20–22]. However, different video scenes have varying amount of complexity,
background clutter, object motion, camera motion, or frame rate. Fixed compute
architectures do not adapt to the difficulty of the input and are can be suboptimal
computation-wise.

In this work, we propose neural architectures whose computation adapts
to the difficulty of the task from frame to frame, rather than being fixed at
runtime. We focus on the task of visual tracking in videos. We present learning

C. Ying—Work done as student at the Machine Learning Department, CMU.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Pelillo and E. Hancock (Eds.): EMMCVPR 2017, LNCS 10746, pp. 109–122, 2018.
https://doi.org/10.1007/978-3-319-78199-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78199-0_8&domain=pdf

110 C. Ying and K. Fragkiadaki

Fig. 1. Adaptive neural computational policies for visual tracking. At each frame, we
match the key frame depicting the object of interest to a search region cropped around
the location of the detected object in the previous frame. Our controllers (gates) decide
how many blocks of the VGG net [18] (divided into 5 blocks of layers) to compute before
computing a cross-correlation map and determining the target location. In general,
deeper layers yield more accurate predictions but also require more computational
power. Our depth-adaptive model picks the first depth for the uncluttered scene on the
left and the fourth for the cluttered scene on the right. Red gate color denotes halting
of computation at that gate. (Color figure online)

algorithms for training computational policies that control the depth of Siamese
convolutional networks [9] for video tracking. Siamese convolutional networks
track by computing cross-correlation maps of deep features, between a key frame,
where the object is labeled, and a search frame, where the object needs to be
localized, as shown in Fig. 2. The peak of the cross-correlation map denotes
the presence of the target object. We observe that in many search frames, the
tracked object is similar to the object in the key frame and distinct from its
background, and it would be computationally wasteful to compute elaborate
features for its detection. To address this, we propose conditional computation
controlled by gating functions that dynamically determines how many layers of
our convolutional feature extractor should be computed before computing the
cross-correlation map and thus the target’s location. In Fig. 1, our model uses
only the first block of convolutional layers to find the motorcyclist against road,
but uses 4 convolutional blocks to find the correct drummer among visually-
similar peers. Our gate controllers are trained in an end-to-end differentiable
framework without the need for sample-intense reinforcement learning. We test
our model on the challenging VOT2016 dataset [11] and demonstrate that we
perform video tracking with close to state-of-the-art accuracy at real-time speeds.

2 Related Works

2.1 Metric Learning for Visual Tracking

Metric learning approaches for visual tracking learn an appearance distance func-
tion between image box crops, so that the distance is large between image crops
depicting different objects, and the distance is small between image crops depict-
ing deformations of the same object instance. An accurate distance function then
can be used to localize an object by computing the distances between the key
frame and various crops within the search frame. Such a distance function can
be learned using (a) Siamese networks [9], which use the same neural network

Depth-Adaptive Computational Policies for Efficient Visual Tracking 111

weights to extract features from a pair of images before using a single fully
connected layer to predict the distance, they are trained using contrastive loss
function that minimizes distance between same instance examples and requires
distances to be above a certain margin for dissimilar examples. (b) Triplet net-
works, [8] trained with a ranking loss that ensures distance of positive pairs is
lower than the distance of negative pairs, and obviates the need of a margin
hyper-parameter.

2.2 Conditional Computation

Conditional computation refers to activating different network components
depending on the input and serves as a promising way to reduce computational
cost without sacrificing representational power. In [2], conditional computation
is implemented by selectively activating different weights in each layer and is
trained via reinforcement learning. [17] uses a sparse gating function to determine
which sub-networks to execute (each of which are “experts” for different inputs),
and shows that it is possible to train the gating and network weights jointly
via back-propagation. Graves [5] proposed an adaptive computation model for
Recurrent Neural Networks (RNNs), that determines (depending on the input)
the number of computational (pondering) steps required before producing an
accurate output. Recent work [4], adapts this model to convolutional networks
for object detection in static images, where the network is trained to learn the
number of convolutional layers to be evaluated per image location, e.g.,“easy”
image regions (e.g., sky) should require less computation than more feature-rich
ones (e.g., a car). Our work differs in that (a) we use conditional computation in
videos, rather than static images, and (b) the input we predicate computational
decisions on is the quality of a cross-correlation tracking map, as opposed to
image classification accuracy.

2.3 Estimating or Back-Propagating Gradients

A central question in all works that learn adaptive computation policies is how to
train discrete gates/controllers, the discrete elements that determine how com-
putation should be scheduled. Researchers have typically used non-differentiable
score function estimators (a.k.a. REINFORCE [23]) for estimating the gradient
with respect to such binary thresholds. REINFORCE has been shown to yield
gradients with very high variance and requires too many samples for informative
gradients to be estimated. High sample complexity is an attribute of many other
model-free RL methods, e.g., Q-learning [15]. Indeed, recent works that use such
RL techniques for neural net architectural search [25] or conditional computation
[13], only scale to small networks and datasets [13], or use large computational
resources for training, e.g., in recent work 800 GPUs were used concurrently [25],
as opposed to a single GPU in our case. Alternatively, researchers have used soft,
differentiable gates with carefully designed differentiable architectures for image
generation (DRAW [7]), accessing an external memory (Neural Turing Machines
[6]), deciding halting of a recurrent networks [5], etc. Our training scheme, which

112 C. Ying and K. Fragkiadaki

similarly uses soft and differentiable gates during training to provide meaningful
gradients, allows us to scale our policies to controlling deep neural architectures.

3 Depth-Adaptive Fully-Convolutional Siamese Networks

Our model builds upon fully-convolutional Siamese networks from [3], a state-
of-the-art model for visual object tracking, which uses the same convolutional
neural network to extract deep features from the key and search frames. The
model then uses 2D cross-correlation to efficiently calculate the similarity score
of the object in the key frame to every spatial location in the search frame,
as shown in Fig. 2. This implicitly implements a triplet network-like loss by
penalizing all the negative locations and increasing the similarity at the true
location. Unlike [3], which uses an AlexNet-like [12] architecture and trains from
scratch using ImageNet Video dataset [16], we use a VGG feature extractor [18]
pretrained from the ImageNet static image classification dataset.

Fig. 2. Siamese network with 2D cross-correlation for key-search frame pairs. The deep
feature maps for the key and search frames are extracted by the same convolutional
neural network. ∗ denotes 2D cross-correlation.

We extend the fully-convolutional Siamese network for depth-adaptive com-
putation by first dividing the convolutional layers into 5 “blocks” of convolutions
and adding intermediate cross-correlations after every convolutional block. To
finetune the convolutional weights, we calculate the softmax cross-entropy loss
Li between each of the computed cross-correlation maps ci and a ground-truth
map G for i = 1, . . . , 5 in our tracking training set. The ground-truth map is a
2D Gaussian centered at the true location of the object in the search frame.

Li = softmax-cross-entropy(ci, G) (1)

Furthermore, we introduce parametric gating functions between each of the con-
volutional blocks, which act as controllers for the depth of the VGG feature
extractor at runtime. These gating functions take as input the cross-correlation
map computed using the deep features at the current depth, and output a con-
fidence score for halting computation at that particular depth. In theory, we

Depth-Adaptive Computational Policies for Efficient Visual Tracking 113

could use a convolutional neural network to extract the confidence score from
each cross-correlation map. However, we would like our gating functions to be
computationally inexpensive, so instead we use a small set of intuitive features to
capture the “quality” (certainty) of each cross-correlation map, such as, kurtosis
(measures “peakiness”), entropy, top-5 max peak values, and the first 5 moments.
Let f denote the shallow feature extractor that given a cross-correlation map
outputs the features above. We then learn a linear predictor, parameterized by
φi to output the confidence score gi for the gate at each depth, re-scaled to (0, 1)
via a sigmoid function, as follows:

gi(ci;φi) = sigm(f(ci)T · φi) ∈ (0, 1). (2)

Our full depth-adaptive model is depicted in Fig. 3. At training time, we use
soft gates in order to use back-propagation for learning the gate weights, and
at test time, we use hard gate thresholding, to halt computation at a particular
network depth.

To train the model effectively and achieve a satisfactory trade-off of tracking
accuracy and computational savings, we found the following two design choices
to be crucial:

1. Intermediate supervision: Rather than training using the loss at the deep-
est layer only, like [3], we use a sum of tracking losses at all layers. This
introduces intermediate supervision, which has been found to be useful in
non-adaptive computational architectures such as [19,24].

2. Budgeted gating: We found that directly using the confidence scores gi

is insufficient for learning a depth-adaptive policy since each score does not
affect the scores at other depths, which leads to polarized policies (either
always use the shallowest depth or always use the deepest depth). Instead,
we use a “budgeted” confidence score g∗

i , in Eq. 3, where the scores sum to 1.0
and we have the desired behavior that a higher confidence score in a shallower
depth corresponds to less need for deeper layers and vice-versa.

g∗
i (ci;φi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 −
i−1∑

j=1

g∗
j (cj ;φj))gi(ci;φi), i ∈ [1, 4]

1 −
4∑

j=1

g∗
j (cj ;φj), i = 5.

(3)

We cannot train the gate parameters φi, i = 1 . . . 5 and VGG weights jointly,
since the gate feature extractor f is non-differentiable. Thus, we train in two
phases. In the first phase, we finetune the VGG weights by minimizing the non-
gated loss at all depths Lconv:

Lconv =
5∑

i=1

Li (4)

In the second phase, we fix the VGG weights and train the gate parameters by
minimizing a loss function Lgate that combines tracking loss and computational
cost in all depths:

114 C. Ying and K. Fragkiadaki

Fig. 3. Depth adaptive Siamese convolutional networks. Convolutional weights are
shared between the two network stacks. Each conv block includes 2–4 convolutions
with ReLU activation. The feature maps of the key and search frames at the end of
each block are cross-correlated to yield 5 cross-correlation (xcorr) maps. A gating func-
tion is added at the end of each convolutional block that controls whether the network
stops at this layer, or continues computation to a higher depth.

Lgate =
5∑

i=1

g∗
i Li

︸ ︷︷ ︸
tracking loss

+λ
5∑

i=1

pig∗
i

︸ ︷︷ ︸
computational cost

, (5)

where the hyper-parameter λ trades off tracking accuracy and computational
efficiency. We found that λ ∈ [0.5, 1.0] resulted in a diverse set of depths of com-
putation (greater or less than that range generally led to “polarized” results,
either all deepest layer or all shallowest layer). The parameter pi encodes the
relative incremental computational cost of each successive layer. For our exper-
iments, we set each pi to the incremental additional cost as reported in Table 1
with the p1 = 1.0. For example, p2 = 2.43 − p1 = 1.43.

Much like [17], our training method provides balanced updates to all gates,
meaningful gradients, and requires less training data. Though soft gates are
used during training to enable back-propagation, at runtime, we threshold the
budgeted confidence score and halt computation at a gate if the score exceeds
some tune-able value. The score is a value in [0, 1] and in our experiments we set
the threshold at 0.25, 0.5, or 0.75 for increasing degrees of strictness (i.e. higher
threshold means we are less likely to accept the tracking result at a shallower
layer).

3.1 Implementation Details

The base architecture we use for the convolutional layers is the 19-layer VGG
architecture [18]. We remove the fully connected layers of the architecture and
treat the remaining convolutional and max-pool layers as the feature extractor.

Depth-Adaptive Computational Policies for Efficient Visual Tracking 115

The VGG architecture is divided into 5 blocks of convolutions with 2–4 convolu-
tional layers each, each ending in a max-pool layer. We remove the last max-pool
layer in order to keep the deep feature maps as large as possible (i.e. 16 × 16
in the last layer). To improve training, we normalize the key and search feature
maps via batch normalization and rescale the output cross-correlation map to
[0, 1]. Cross-correlation is an expensive operation so to keep the computational
costs low, we downsample the feature maps to 16 × 16 before cross-correlation.

Since training is performed with a single key frame and a batch of search
frames, cross-correlation can be efficiently implemented on GPU by performing
2D convolution on the search feature maps with the key feature maps as the
filter, treating the feature channels as the input channel size (the output channel
size is 1).

Our model is implemented in TensorFlow v1.0.0 [1] using pretrained VGG
network weights on ImageNet [16] for image classification. All training and evalu-
ation was performed on a single NVIDIA TITAN X GPU, an Intel Xeon E5-2630
v3 CPU, and 16 GB of RAM.

To efficiently implement hard-gating, we use TensorFlow’s control flow oper-
ators (tf.cond). Hard-gating is only fully efficient when the batch size of the
search frames is 1 since the computation is bottlenecked by the deepest cross-
correlation map that is required by a sample in a batch. In practice, this is
not as much of an issue since consecutive frames tend to use similar depths for
prediction.

4 Experiments

We train and test our model on the Visual Object Tracking dataset VOT2016
[11]. The dataset consists of 60 videos with a total of 21455 frames of various
resolutions. Each frame is labelled with the box corner coordinates of a bounding
box that corresponds to a single object being tracked in the video. The videos
have noisy backgrounds, the object can change shape or orientation, and there is
occlusion in some frames. Since the VOT2016 dataset does not include a train-
validation split, we randomly pick 25% of the videos to hold out as the test
set. Note that the VOT dataset is designed for an evaluation-only competition
so our results are not directly comparable to existing benchmarks. Our goal is
not necessarily to beat state-of-the-art methods, but rather to present a useful
technique for fast video tracking which can improve nearly any convolutional
model.

We preprocess the videos by selecting a key frame every 10 frames and the
subsequent up-to-100 frames as the search frames. We resize and crop the key
frames to 128 × 128 centered at the tracked object such that there is at least
25% padding around the bounding box. Each of the search frames are resized
with the same scale and cropped to 256 × 256 such that the frame is centered
at the object at the previous frame. If the cropped search frame extends beyond
the edge of the image, we pad the extra pixels with the mean RGB value of the
dataset. The predicted object box is found using the position of the maximum

116 C. Ying and K. Fragkiadaki

value in the cross-correlation map as the offset and the bounding box dimensions
are the same as the key frame reference box.

4.1 Evaluation Metrics

We measure tracking accuracy using Intersection-Over-Union (IOU) between the
predicted object box bpred and the ground truth box bgt:

IOU(bpred,bgt) =
|bpred ∩ bgt|
|bpred ∪ bgt| . (6)

We measure IOU at up-to 1, 5, and 25 frames ahead of the key frame, e.g., for
IOU@25, we take the average IOU of the tracker with key frame t and search
frames t + 1, t + 2, . . . , t + 25. The larger the frame gap between key frame and
search frame, the more the tracking target deforms and the harder it is to track.

We measure computational cost by computing the number of floating point
operations (FLOPs) required to perform tracking on a batch of 25 search frames.
Experimentally, we find that FLOPs is a good proxy for true computational cost
as measured in frames-per-second (FPS). The reason FLOPs is the preferable
metric is that FPS is heavily tied to hardware and software constraints, which
may prevent the architecture from achieving the theoretical speedup.

4.2 Siamese Tracker Performance

We finetune our VGG feature extractor starting from pretrained weights using
the tracking loss of Eq. 4. The tracking performance during finetuning is shown
in Fig. 4. Using pretrained weights allows the model to reach peak performance
after only a few epochs. For this evaluation we use the full network depth.

Fig. 4. Finetuning. Training and testing IOU curves during metric learning for different
frame gaps. Starting with weights pretrained on ImageNet image classification, our
VGG feature extractor fast reaches top performance.

Our implementation is comparable to the top submissions to the VOT2016
competition [10] in IOU over sequence length, as seen in Fig. 5. Though it is not

Depth-Adaptive Computational Policies for Efficient Visual Tracking 117

as accurate as the best trackers at small sequence lengths, it is competitive with
many trackers at around 100 frames. Note also that the top four trackers from
VOT2016 run at under 1 FPS while our system runs at over 54 FPS using the
shallowest layer (xcorr1) and over 37 FPS using the deepest layer (xcorr5).
Note that our code was not optimized so FPS is not a very good metric for
computational cost. Additional software engineering (e.g. multithreaded inputs,
better GPU utilization) should bring the xcorr1 FPS to well over 100.

Fig. 5. VOT2016. Comparison of our full-computation model against top submissions
to VOT2016 [10]. The stars represent our tracker’s accuracy at selected sequence
lengths.

4.3 Effect of Intermediate Supervision

We compare the performance of the tracker when trained with loss only at the
deepest layer against the tracker when trained with losses added in all depths.
The IOU@25 comparison is shown in Fig. 6.

Training with all intermediate losses yields increased accuracy as depth
increases, while training with only the deepest yields a big jump in accuracy
at depth 5 but lower accuracy at shallower depths. If computational cost is not
a factor, using only the deepest loss gives around 0.01 IOU benefit over using all
depths. Since our goal is to use depth-adaptive feature extraction, intermediate
supervision is essential.

4.4 Depth-Adaptive Computational Policies

The computational policies we compare are:

– Fixed-depth: always use the cross-correlation map at a fixed depth (i.e.
xcorr1, . . . , xcorr5).

118 C. Ying and K. Fragkiadaki

– Soft-gating: use a sum of the cross-correlation maps at all the depths, weighted
by the budgeted confidence score. This policy does not save computational
cost but serves as a baseline that also utilizes the gating functions.

– Hard-gating: we halt computation if the budgeted confidence score exceeds
a tune-able threshold, which is a model hyper-parameter. We report
performance while varying hyper-parameters in order to obtain accu-
racy/computation trade offs across the whole spectrum.

Fig. 6. Intermediate supervision. Supervision at intermediate layers (as opposed to the
top layer only) increases the accuracy of the intermediate cross-correlation maps, and
makes depth-adaptation at runtime worthwhile.

Table 1. Theoretical FLOPs for varying network depth. xcorri denotes network eval-
uation up until the i-th cross-correlation map. Soft-gating uses all five cross-correlation
maps weighted by the gating confidence. The gating feature computation is negligible
in comparison to convolutional feature extraction.

Gating policy FLOPs (×109) Relative to xcorr1

xcorr1 2.78 1.00×
xcorr2 67.70 2.43×
xcorr3 160.75 5.78×
xcorr4 253.79 9.12×
xcorr5 280.37 10.07×
Soft-gating 280.53 10.08×
Hard-gating Varies Varies

Table 1 shows the theoretical FLOPs required to compute the cross-
correlation maps for a single key-search batch of 1 key frame and 25 search
frames. For simplicity of calculation, the values only include the floating point
multiplication operations, which comprise the overwhelming majority of the com-
putation. As mentioned earlier, FLOPs is a better metric than FPS because it
is independent of implementation details of the algorithm.

Depth-Adaptive Computational Policies for Efficient Visual Tracking 119

Fig. 7. Accuracy versus computation curves for our model and baselines. We generated
the curve for our model (hard gating) by varying the relative weight λ of computational
cost and tracking accuracy. For our fixed depth baseline, we obtain five points by
varying the number of convolutional blocks from 1 to 5. Top left of the diagram is
more desirable. Our model clearly outperforms the non-learned fixed-depth policies.

Fig. 8. Tracking results. Green box is ground truth, red box is prediction, red numbers
are confidence weights. In (a), the tracker learns that xcorr1 is sufficient for tracking.
In (b), the tracker learns that it needs to compute xcorr5 in order to confidently track
the object. (Color figure online)

120 C. Ying and K. Fragkiadaki

Figure 7 compares the accuracy and computational cost of each of the policies.
Both soft and hard-gating can achieve accuracy values that exceed any fixed-
depth policy and furthermore hard-gating uses significantly less computational
cost to achieve the same or better accuracy. By varying hyper-parameter λ, we
achieve different trade-offs of accuracy and computational cost depending on the
requirements of the task.

The cross-correlation maps for selected video frames can be viewed in Fig. 8.

5 Discussion

Our experimental results show that our proposed depth-adaptive fully convo-
lutional siamese network successfully tracks at accuracies comparable to state-
of-the-art submissions to VOT2016. We demonstrate that our learned depth-
adaptive policies can outperform fixed-depth networks while using significantly
less computational power. Furthermore, we show that we can easily trade
accuracy for computational cost as necessary by changing the model hyper-
parameters.

Our work is limited by the following factors:

– Our model is finetuned purely on VOT2016 data unlike most other submis-
sions which use ImageNet VID, or other tracking datasets for training the
Siamese network. VOT2016 dataset is considerably smaller than ImageNet
VID and the videos are considered more difficult to track.

– Fully-convolutional Siamese networks do not support updating the tracking
model (i.e. key frame object appearance) since it does not naively support
bounding box rescaling.

– Our final cross-correlation map resolution is 16 × 16, which is too coarse
for fine-grained tracking. We experimented with higher resolution cross-
correlation maps and obtained 15% improvement to IOU. However, this
method is incompatible with hard-gating since it requires cross-correlation
at multiple depths.

6 Conclusion

We have presented a conditional computation model for visual tracking, where
computational depth is allocated based on a frame’s tracking difficulty. Our
model is comprised of continuous weight filter variables and discrete learned
controllers that dynamically manage the depth of the network at runtime, and
balance accuracy with computational cost. The proposed model saves compu-
tation on “easy” frames without sacrificing representational power on difficult
frames that require deeper features to track. We show our model outperforms
naive non-adaptive policies by a significant margin, as measured by accuracy at a
various computational costs. Paths for future work include multi-scale tracking

Depth-Adaptive Computational Policies for Efficient Visual Tracking 121

and more complex gating features, potentially using the history of the cross-
correlation maps to determine computation. Though this work investigates poli-
cies that control the depth of the network, other promising “actions” for condi-
tional computation in visual tracking include adaptive spatial computation e.g.,
by using motion to focus attention to the moving parts of the scene, or frame
skipping e.g., by using only a subset of frames to localize the target without
sacrificing tracking accuracy.

The methods presented in this work can be extended to any task which uses
deep neural networks. By treating neural networks as a series of composable
feature extractors, we have the ability to select feature embeddings at various
degrees of complexity, which can both reduce computational cost and potentially
improve performance.

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: large-scale machine learning on heterogeneous systems. Software:
tensorflow.org (2015)

2. Bengio, E., Bacon, P., Pineau, J., Precup, D.: Conditional computation in neural
networks for faster models. CoRR, abs/1511.06297 (2015)

3. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-
convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.)
ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-48881-3 56

4. Figurnov, M., Collins, M.D., Zhu, Y., Zhang, L., Huang, J., Vetrov, D.P., Salakhut-
dinov, R.: Spatially adaptive computation time for residual networks. In: CVPR
(2017)

5. Graves, A.: Adaptive computation time for recurrent neural networks. CoRR,
abs/1603.08983 (2016)

6. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. CoRR,
abs/1410.5401 (2014)

7. Gregor, K., Danihelka, I., Graves, A., Rezende, D.J., Wierstra, D.: DRAW: a recur-
rent neural network for image generation. In: ICML, pp. 1462–1471 (2015)

8. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. CoRR,
abs/1412.6622 (2014)

9. Koch, G.: Siamese neural networks for one-shot image recognition. Ph.D. thesis,
University of Toronto (2015)

10. Kristan, M., et al.: The visual object tracking VOT2016 challenge results. In: Hua,
G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 777–823. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48881-3 54

11. Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Cehovin, L., Fernandez, G.,
Vojir, T., Hager, G., Nebehay, G., Pflugfelder, R.: The visual object tracking
VOT2015 challenge results. In: ICCV, pp. 1–23 (2015)

https://www.tensorflow.org/
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1007/978-3-319-48881-3_56
https://doi.org/10.1007/978-3-319-48881-3_54

122 C. Ying and K. Fragkiadaki

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

13. Liu, L., Deng, J.: Dynamic deep neural networks: optimizing accuracy-efficiency
trade-offs by selective execution. arXiv:1701.00299 (2017)

14. Ma, C., Huang, J.-B., Yang, X., Yang, M.-H.: Hierarchical convolutional features
for visual tracking. In: ICCV, pp. 3074–3082 (2015)

15. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.A.: Playing atari with deep reinforcement learning. arXiv:1312.5602
(2013)

16. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large
scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

17. Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q.V., Hinton, G.E., Dean,
J.: Outrageously large neural networks: the sparsely-gated mixture-of-experts layer.
CoRR, abs/1701.06538 (2017)

18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556 (2014)

19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)

20. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional
networks. In: 2015 IEEE International Conference on Computer Vision (ICCV),
pp. 3119–3127, December 2015

21. Wang, N., Yeung, D.-Y.: Learning a deep compact image representation for visual
tracking. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.
(eds.), Advances in Neural Information Processing Systems, vol. 26, pp. 809–817
(2013)

22. Weng, S.-K., Kuo, C.-M., Tu, S.-K.: Video object tracking using adaptive kalman
filter. J. Vis. Commun. Image Represent. 17(6), 1190–1208 (2006)

23. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

24. Xie, S., Tu, Z.: Holistically-nested edge detection. CoRR, abs/1504.06375 (2015)
25. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning.

arXiv:1611.01578 (2016)

http://arxiv.org/abs/1701.00299
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1611.01578

	Depth-Adaptive Computational Policies for Efficient Visual Tracking
	1 Introduction
	2 Related Works
	2.1 Metric Learning for Visual Tracking
	2.2 Conditional Computation
	2.3 Estimating or Back-Propagating Gradients

	3 Depth-Adaptive Fully-Convolutional Siamese Networks
	3.1 Implementation Details

	4 Experiments
	4.1 Evaluation Metrics
	4.2 Siamese Tracker Performance
	4.3 Effect of Intermediate Supervision
	4.4 Depth-Adaptive Computational Policies

	5 Discussion
	6 Conclusion
	References

