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Abstract. The optical flow within a scene can be an arbitrarily complex
composition of motion patterns that typically differ regarding their scale.
Hence, using a single algorithm with a single set of parameters is often not
sufficient to capture the variety of these motion patterns. In particular,
the estimation of large displacements of small objects poses a problem.
In order to cope with this problem, many recent methods estimate the
optical flow by a fusion of flow candidates obtained either from differ-
ent algorithms or from the same algorithm using different parameters.
This, however, typically results in a pipeline of methods for estimating
and fusing the candidate flows, each requiring an individual model with
a dedicated solution strategy. In this paper, we investigate what results
can be achieved with a pure variational approach based on a standard
coarse-to-fine optimization. To this end, we propose a novel variational
method for the simultaneous estimation and fusion of flow candidates. By
jointly using multiple smoothness weights within a single energy func-
tional, we are able to capture different motion patterns and hence to
estimate large displacements even without additional feature matches.
In the same functional, an intrinsic model-based fusion allows to inte-
grate all these candidates into a single flow field, combining sufficiently
smooth overall motion with locally large displacements. Experiments on
large displacement sequences and the Sintel benchmark demonstrate the
feasibility of our approach and show improved results compared to a
single-smoothness baseline method.

1 Introduction

The estimation of optical flow has been a core problem in computer vision for
decades. Many successful methods for solving this task belong to the class of
variational approaches. Based on the minimization of a continuous energy func-
tional consisting of a data and a smoothness term, such methods offer dense and
sub-pixel accurate results as well as a transparent modelling. Since the pioneer-
ing work of Horn and Schunck [14], a lot of progress has been made on both the
modelling and the optimization side. On the modelling side, modern smoothness
priors allow the estimation of flow fields with both gradual transitions [6,11] and
sharp motion discontinuities [16,27], while modern data terms cope with noise
[4], outliers and varying illumination [11]. On the optimization side, coarse-to-
fine schemes [17] have been proposed that allow to handle large displacements
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of relatively large objects. Fast motions of small objects, however, are still hard
to capture.

One widely used approach to alleviate this problem is the integration of
descriptor matches [8,21,25]. While such methods allow to handle arbitrarily
large motion, they heavily rely on the uniqueness of the underlying descriptors.
Hence, in case of weakly textured regions or repetitive patterns, such methods are
likely to produce false matches which deteriorate the final optical flow estimation.
Recent approaches face this problem by applying a-posteriori regularization to
a set of descriptor matches in order to improve its quality [12].

While there are scenarios where the large displacement problem of small
objects is intrinsically unsolvable – e.g. in the presence of multiple non-unique
instances – a surprisingly large share of large displacement cases can actually be
solved even with a-priori regularization, i.e. regularization during the estimation
of the matches. In order to understand in which cases large displacements can
still be recovered correctly, we have to distinguish two scenarios: (i) One problem
is that small objects may not be present on that coarse-to-fine level that is nec-
essary for the estimation of the displacement [8]. This case cannot be handled by
standard coarse-to-fine optimization without further data transformations [18].
(ii) Another problem – which, however, has hardly been adressed in the litera-
ture so far – is the influence of the balance between data and smoothness term
on the estimation of large displacements. For small objects that undergo large
displacements, it is typically cheaper to violate the constancy assumptions in
the data term (due to the small spatial extent) than to violate the regularity
assumptions in the smoothness term (due to the large motion gradient). This
particularly holds for large values of the smoothness parameter that are typi-
cally required to obtain noise-free flow fields. So even if there is sufficient data
on the appropriate coarse-to-fine level, the smoothness term will suppress the
estimation of the corresponding large displacement.

In this context, Brox and Malik [8] made the observation that fast motion of
high-contrast objects is more likely to be accurately estimated than the motion of
low-contrast objects. This is related to the fact that there is an implicit weighting
of the constancy assumptions with the corresponding image gradient as observed
in [27]. In view of the data costs, mismatches of high-contrast objects are thus
more expensive than those of low-contrast objects. This, in turn, suggests to use
constraint normalization as in [27] when estimating large displacements.

Contributions. In this work, we address the aforementioned problem of that
the appropriate smoothness weight may depend on the local motion pattern. By
proposing a variational method that jointly estimates and fuses candidate flows
with different smoothness weights into a final flow field, we show that many
large displacement scenarios can actually be resolved without using additional
feature matches. In contrast to related work from the literature that typically
relies on a one-way pipeline based on a discrete fusion of pre-computed flows, we
model the entire approach as a single minimization problem based on standard
coarse-to-fine optimization. Moreover, we demonstrate the benefit of constraint
normalization when estimating large displacements. Please note that we do not
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focus on designing an overall top-performing method but rather on pushing the
limits of pure variational approaches w.r.t. large displacements.

Related Work. To handle large displacements, Brox and Malik [8] proposed to
integrate descriptor matches into variational methods by means of a similarity
term. While Stoll et al. [21] improved the sensitivity of this strategy w.r.t. to
outliers by restricting the integration of such matches to promising locations,
Weinzaepfel et al. [25] investigated the use of improved descriptors. In contrast,
Xu et al. [26] refrained from using a similarity term, and proposed to enhance
the upsampled flow initialization by integrating SIFT-matches at each level of
the coarse-to-fine optimization. In contrast to our work, all these methods rely
on feature descriptors to estimate large displacements.

Tu et al. [23] used a similar strategy as [26] but they considered proposals gen-
erated by PatchMatch [3] and by varying the smoothness weight of a variational
method. Similarly, Lempitsky et al. [15] considered flows obtained by different
methods and different parameter sets in a discrete fusion approach. Both works
[15,23], however, did not investigate the benefit of varying the smoothness weight
for large displacement optical flow.

In all cases, descriptor matching and match integration are separate steps.

2 Baseline Method

Let us start by introducing our baseline optical flow method which is the Com-
plementary Optic Flow method [27]. It is a variational approach where the opti-
cal flow w = (u, v)� between two input color images f1 = (f1
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2 )� is computed as the minimizer of the following energy:

Ebase(w)α =
∫

Ω

ED(w) + α ES(w) dx . (1)

Here, ED is the data term, ES is the smoothness term, α>0 is a balancing weight
and x = (x, y)� ∈ Ω is the location within the image domain Ω ⊂ R

2.

Data Term. The data term relates the two input images via the optical flow
and is given by [27]
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It comprises the brightness constancy and the gradient constancy assumption in
order to allow for illumination robust flow estimation [7]. Moreover, to reduce
the influence of large gradients, constraint normalization [20] is applied via the
weights θc = 1/(|∇fc

2 |2 + ζ2) and θc
∗ = 1/(|∇fc

2,∗|2 + ζ2) (with ∗ ∈ {x, y}), where
ζ is a regularization parameter that prevents divisions by zero. Finally, both
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assumptions are rendered robust under noise by applying a sub-quadratic penal-
izer [4] – here given by the Charbonnier function [10] ΨD(s2) = 2ε2D

√
1 + s2/ε2D

with contrast parameter εD. The non-negative weights δ, γ serve as balancing
factors.

Smoothness Term. As smoothness term, we consider the anisotropic comple-
mentary smoothness term [27]

ES(w) =
2∑

i=1

ΨSi

(
|Jw · ri|2

)
, (3)

that penalizes the directional derivatives of the flow by projecting the Jacobian J
onto the local directions r1, r2 of maximum and minimum information contrast.
In this context, the directions r1 and r2 are the eigenvectors of the so-called
regularization tensor [27] which reads
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where ∗ denotes convolution with a Gaussian Kρ of standard deviation ρ.
Following [24], we apply the edge-enhancing Perona-Malik penalizer [5] given

by ΨS(s2) = ε2S1
log

(
1 + s2/ε2S1

)
in r1-direction and the edge-preserving Char-

bonnier penalizer [10] in r2-direction; the former with contrast parameter εS1

and the latter with contrast parameter εS2 .

3 Joint Estimation and Fusion Model

After we have discussed the baseline method in the previous section, we are
now in the position to describe our joint estimation and fusion model. Similar to
methods from the literature that include descriptor matches [8,21,25], we want to
estimate an optical flow wf using the baseline method Ebase and some similarity
term Esim that feeds N candidate flows w = {w1, . . . ,wN} from the candidate
model Ecand into the solution. To this end, we propose the joint variational model

E(w,wf ) = Ebase(wf )αf
+ Esim(w,wf ) + Ecand(w), (5)

that consists of three terms. On the one hand, as baseline model, we use the
approach from the previous section with smoothness weight αf . On the other
hand, as candidate model, we consider multiple instances of the baseline model
Ebase(w)α with different smoothness weights αi that estimate the corresponding
candidate optical flows wi. It is given by

Ecand(w) = λC ·
N∑

i=1

Ebase(wi)αi
(6)

Due to the different smoothness weights, the single instances can capture differ-
ent levels of motion details, i.e. displacement scales. Finally, in order to couple
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the candidate flows wi and the final optical flow wf , we introduce a similarity
term EC for each of these instances weighted by a parameter βi. The combined
similarity term reads

Esim(w,wf ) =
N∑

i=1

βi EC(w,wf )i , (7)

where the distinct similarity terms are defined as

EC(w,wf )i =
∫

Ω

ci(x,w) · ΨC

(|wi − wf |2) dx . (8)

Here, ci is a local confidence function for the candidate flow wi and ΨC is the
Charbonnier penalizer [10] that makes the estimation more robust against out-
liers in the candidate flows. In Sect. 4, we will define appropriate confidence
functions ci that steer the local influence of each instance flow wi on the final
flow wf . The overall weight λC balances Ecand(w) and Ebase(wf ) by steering the
direction of information flow between the candidate flows and the final flow. The
higher it is, the more remains the estimation of the candidates w unaffected by
the similarity term and the information only flows from w to wf via Esim while
backward information flow is suppressed.

4 Smoothness Weights and Confidence Functions

Since we desire candidate flows at different smoothness scales, the questions arise
how to choose the global smoothness weights of these flows and how to locally
decide which flow candidate is the most appropriate. Let us discuss these two
issues in the following sections.

4.1 Smoothness Weights

First of all, we define a maximum smoothness weight α1 which is intended to
be appropriate at most locations. Moreover, we consider smoothness weights
that are significantly smaller in order to be able to capture large displacement
motions. Our choice for the smoothness weights αi of the flow candidates wi is
an exponential decrease w.r.t. α1:

αi :=
α1

2i−1
. (9)

With this choice, we can cover a wide range of different smoothness scales with
only a low number of candidate flows. By the example of the Tennis sequence [8]
depicted in Fig. 1 (top row), one can see at which smoothness scale the different
motion patterns appear. While the first, smoothest flow covers the background
motion and the overall motion of the Tennis player smoothly, the second flow
covers the motion of the racket and the arm well, the third flow covers the motion
of the hand and the right foot while the fifth flow covers the motion of the ball.
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Fig. 1. Top row: Candidate flows with isotropic regularisation. Bottom row: nor-
malized visualizations of the local confidence functions c1, . . . , c5. Right: Final flow.

4.2 Assumptions on Local Confidences

Given a set of candidate flows wi with different smoothness scales, we take into
account the considerations from the introduction to state the local assumptions
on how to integrate these flows in the estimation of the final flow wf :

1. A less smooth flow is likely to fulfill the data term better than a smoother
flow, independently from being reliable or unreliable. Hence, a less smooth
flow shall only have influence if it provides significantly less data costs than
both the next smoother flow candidate and the smoothest flow candidate
(similar to considerations in [21]).

2. The less smooth a flow is, the more texture is necessary in order to achieve
meaningful flow vectors (similar to [8]). Otherwise, we might likely get
trapped into the aperture problem.

3. A less smooth flow should not be considered if the data is unreliable (i.e. in
over- or undersaturated regions).

In order to integrate those assumptions in our local confidence functions ci, we
need measures for the data cost and for the local structure. While the data costs
are simply given by evaluating the data term, we compute the structure tensor
[13] to measure structureness [8], both on local patches to increase robustness.

4.3 Composition of the Local Confidence Function ci

Following the assumptions from the last section, we model the local confidence
function ci (where i is the index of the candidate flow) as the product of three
weights which will be defined in the following.

Structureness Weight. Let s(x) be the smaller eigenvalue of the structure
tensor (integrated over a 7 × 7 neighborhood) of the reference frame f1, let s̄ be
its average value over the whole image and let ri = α1

αi
. The structureness weight

is then defined as

ws
i (x) :=

(
s(x)

s̄

)κs·log(ri)

, (10)

where the exponent κs is a free parameter. Here, the structureness weight is
more pronounced for less smooth candidate flows (i.e. if ri is bigger).
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Cost Reduction Weight. Let ED be the data costs and let ρL×L(g,x) be a
functional that averages the function g in a L × L neighborhood around x. The
following two functions describe the patch-wise energy improvement of flow wi

compared to the previous, smoother flow wi−1 and the first and smoothest flow
w1, respectively:

δprev,L(x,w, i) := ρL×L(ED(wi−1),x) − ρL×L(ED(wi),x) ,

δfirst,L(x,w, i) := ρL×L(ED(w1 ),x) − ρL×L(ED(wi),x).

The cost reduction weight is then defined as

wd
i (x) := log

(
1 + eκd(δprev,L(x,w,i)+δfirst,L(x,w,i))

)
, (11)

where κd is a free parameter. Please note that this function resembles a linear
one for large arguments of the exponential while it approaches zero for decreasing
(negative) arguments.

Data Reliability Weight. We define χI(x) as an indicator function that
excludes under- and oversaturated regions. It reads

χI(x) =
{

1 if fc
1(x) > τ and fc

1(x) < 255 − τ ∀c ∈ {1, 2, 3}
0 else , (12)

where τ = 1 is a robustness threshold.

Overall Confidence Function. The overall confidence functions c1, . . . , cN

are then defined as follows

ĉi(x,w) := wd
i (x) · ws

i (x) · χI(x) (i > 1). (13)

In order to be numerically robust, they are bounded from above via

ci(x,w) := min (ĉi(x,w), 1000) . (14)

Since the smoothest flow w1 serves as reference, it should be used everywhere
except for those locations where a less smooth flow could improve the result.
Hence, we define the confidence c1 of the smoothest flow as

c1(x,w) := 1, (15)

which corresponds to the confidence of the other flows at average structured
areas with only a small energy reduction.

Exemplary visualizations of these local confidence functions ci for the Tennis
sequence are shown in Fig. 1 (bottom row) where brighter values indicate higher
confidence. As one can see, for each large displacement we have a high confidence
in the smoothest candidate flow that is able to capture it.
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5 Minimization

The whole variational model is minimized in a standard coarse-to-fine setting
with warping and incremental computations [17]. Due to the nonlinearity of
the penalizer functions, we additionally apply the lagged nonlinearity method
in order to transform the nonlinear subproblems into series of linear equation
systems. These linear equation systems are then solved using a multicolor variant
of the successive overrelaxation (SOR) method [1].

Please note that in Eq. 8 the flow w is apparent in both the confidence
functions and the coupling term. In order to avoid multiplications of unknowns
during the minimization, in each coarse-to-fine level we compute the confidence
functions based on the flow from the previous level. This can also be seen as a
lagged nonlinearity method regarding the computation of the confidences.

6 Evaluation

In order to evaluate the performance of our method, we conducted several exper-
iments. These include a qualitative comparison against LDOF [8] that investi-
gates the large displacement capabilities of our method, an experiment that ana-
lyzes the effect of constraint normalization in this context, an experiment that
evaluates the effect of different types of data costs and a quantitative experi-
ment on the MPI Sintel benchmark [9] that shows improvements compared to
the baseline method. In all experiments, we optimized only the following param-
eters: the number N of candidates, the data weights δ and γ and the smoothness
weight α1. To this end, we used the downhill simplex method as implemented in
[22]. The remaining parameters are kept fixed throughout all experiments. They
are given by βi = αf = α1, L = 5, λC = 1000, κs = 0.3, κd = 5, εD = 0.01,
ζ = 0.01, εS1 = 0.02, εS2 = 0.03.

6.1 Large Displacement Sequences

In our first experiment, we evaluate the performance of our method in the con-
text of large displacements. To this end, we consider various challenging large
displacement sequences from the literature and compare our results to those
of the method of Brox and Malik (LDOF) [8] which has introduced descrip-
tor matching in variational methods for large displacement optical flow. The
parameters for all sequences are δ = γ = 0.5, α1 = 2 and N = 7 candidate flows.

In Figs. 2 and 3 we show the results of both the publicly available implemen-
tation of LDOF and our novel variational method for large displacement optical
flow. As one can see, our method correctly estimates the large displacements that
LDOF is able to estimate – and even some more (see e.g. Tennis sequence 496).
This particularly includes the displacements of the tennis balls that evidently
extent their sizes. The extremely challenging Bird sequence [26] shows the limi-
tations of both methods as none of them could capture the motion of the bird’s
head. In order to demonstrate that the correct estimation of large displacements
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Fig. 2. Left to right: Baseball sequence [26], Beanbags sequence [2], Bird sequence,
Football sequence [26], Human Eva sequence [19]. Top to down: Overlayed frames,
baseline result, LDOF, our result (isotropic), our result (anisotropic).

does not depend on the anisotropic regularizer, we also added results for our
method with an isotropic smoothness term (which is also used in LDOF).

While we have chosen the number of candidate flows fixed for all sequences,
one may actually improve the results further by choosing it according to the
extent of large displacements. For the beanbags sequences, already a value of
N = 3 is sufficient, while we need a value of N = 7 in order to capture the
motion of the tennis ball in the Tennis sequence 577.

6.2 Constraint Normalization

In our second experiment we show that constraint normalization [27] is helpful in
the context of large displacements. To this end, we estimated flow fields without
normalization and with normalization for different values of the normalization
parameter ζ. While the general benefits of the constraint normalization have
already been shown in [27], Fig. 4 shows the results on two large displacement
sequences. As one can see particularly at hand of the tennis balls, both the
deactivation of the constraint normalization and a too high value of ζ inhibit
the estimation of large displacements. A too low value for ζ, in contrast, leads to
noisier results. Using constraint normalization with a value between 0.001 and
0.01 (our standard value) for ζ provides the best results.



88 M. Stoll et al.

Fig. 3. Left to right: Tennis sequences 496, 502, 538, 577 [8]. Top to down: Over-
layed frames, baseline result, LDOF, our result (isotropic), our result (anisotropic).

Fig. 4. From left to right: No constraint normalization, ζ = 1, ζ = 0.1, ζ = 0.001,
ζ = 0.00001. From top to bottom: Tennis sequences 496 and 577.

6.3 Influence of the Data Constancy Assumptions

In our third experiment, we analyze the two types of data terms we used in our
model w.r.t. their data costs and their influence on the fusion scheme. While the
Brightness Constancy Assumption (BCA) can produce high costs at any part
of a mismatched object, the Gradient Constancy Assumption (GCA) can only
produce data costs where edges are involved. It is hence a lot sparser (see Fig. 5,
top row). As can be seen from the bottom row of Fig. 5, the fusion using only the
GCA data term is by far inferior to the results of using BCA or combining both
data terms. The data costs of a pure GCA data term for incorrect matches are
too low and hence it cannot compete with the smoothness term which prevents
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Fig. 5. From left to right: Brightness Constancy Assumption (BCA), Gradient Con-
stancy Assumption (GCA) and both combined. From top to bottom: Data costs of
the baseline flow (brighter grey values indicate larger energies), final result.

the motion discontinuity of a large displacement. In contrast, when including
the BCA, the denser data costs make the misestimation of large displacements
more expensive and thus increase the probability to estimate large displacements
correctly. This shows that data costs with dense coverage for mismatched objects
are important for our fusion scheme.

6.4 MPI Sintel Benchmark

In our fourth experiment, we compare our strategy with the baseline method
(Complementary Optical Flow [27]) on the MPI Sintel benchmark [9]. To this
end, we use our method with the first order complementary regularizer and
computed results both for the training and the evaluation data.

Regarding the training data, Table 1 shows a clear improvement over the
baseline (N = 0). The average endpoint error (AEE) decreases from 4.273 down
to 3.974 (by 7%). This behavior is confirmed by the results for the evaluation
data sets that are listed on the MPI Sintel webpage where our method is denoted
as ContFusion and the baseline is denoted as COF. Here, the error decreases from
6.496 to 6.263 (by 3.6%) for the clean pass and from 8.204 to 7.857 (by 4.2%) for
the final pass. This shows that the our novel strategy of simultaneous estimation
and fusion of motion candidates is also beneficial in a quantitative sense.

Table 1. Quantitative results on the clean training data of the MPI Sintel benchmark.

N 0 1 2 3 4 5 6

AEE 4.273 4.191 4.136 3.974 3.984 4.134 4.316

6.5 Limitations

The behavior at occlusions is a limitation of our method. This can be seen both
visually at the large displacement sequences (in Figs. 2 and 3) and quantitatively
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at the unmatched EPE in the MPI Sintel benchmark (that increases compared to
the baseline). Additionally to regions with mismatched objects, occluded regions
produce potentially high data costs. Since our confidence function heavily relies
on data costs, correct smooth flows are replaced by less smooth candidate flows
that lead to a smaller local data energy but are often meaningless.

7 Conclusion

In this work, we pushed the limits of variational approaches that are minimized
using a standard coarse-to-fine scheme a little bit further w.r.t. large displace-
ments. We have shown that many large displacement cases from the literature
can be estimated without the need for descriptor matches. The weaknesses of
prior variational methods in these cases are not due to weak data represen-
tations on coarse resolutions but due to a weight balancing of data term and
smoothness term that is inappropriate for large displacement optical flow esti-
mation. With multiple instances of the baseline model and appropriate choices
of weighted similarity terms, we can estimate different scales of motions within a
single variational model that simultaneously estimates and fuses candidate flows
with different smoothness weights. The findings were confirmed by the evaluation
which showed a good performance for large displacements and an improvement
over its baseline method.

Limitations include the behavior at occluded regions where advanced occlu-
sion handling would be necessary. Future work includes the handling of severe
illumination changes where the BCA is not applicable at all and the GCA alone
cannot help to estimate large displacements correctly, as well as the inclusion of
second order smoothness terms for non-fronto-parallel motion patterns.

Acknowledgements. We thank the German Research Foundation (DFG) for finan-
cial support within project B04 of SFB/Transregio 161.
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