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Abstract Surface waves often generate bedforms at the seabed. Small structures
such as ripples with a typical wavelength between ten centimeters and one meter
are very common structures in the coastal zone. The formation of these structures
under nonlinear surface waves is considered in this chapter. Under regular waves,
two modes of pattern formation from a flatbed in a wave flume are reported for well-
sorted grains andmixtures of grains. Sand ripples can formuniformly or from isolated
ripples spreading on the bedwhile growing. In this latter case, front propagation speed
is measured and a simple model based on the quintic complex Ginzburg-Landau
equation can explain features of front propagation on the granular bed. The profile
of surface waves propagating in shoaling water approaches the solitary waveform
before wave breaking. The main characteristics of solitary waves are presented. The
effect of the high nonlinearity of these waves may be very significant on bedforms
induced in the nearshore zone. The interaction between solitary waves and a sandy
bed is reported. Sandy ripples induce a strong energy dissipation of solitary waves.
When solitary waves propagate on the background of a standing harmonic wave,
bars are formed with crests located beneath the nodes of the harmonic surface wave.
In the case of harmonic standing waves alone, the bar crests are positioned beneath
the antinodes of the harmonic surface wave. Grains with different densities may be
found on the seabed. The concentration of light sedimenting particles on ripple crests
is explained by a simple theoretical model.
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1 Introduction

Bedforms are often generated on the seabed. These sedimentary structures result from
a complex interaction between the flow and the sediments. The knowledge of the size
of these structures is necessary for the estimate of their equivalent roughness, of the
bed shear stress, and of the sediment transport. Numerous studies have been carried
out on sand bedforms induced by surface waves. However, due to the complexity
of the involved processes, many questions remain unsolved, in particular, in the
case of nonlinear surface waves. Nonlinearity may generally not be neglected for
surface waves. The formation of sand bedforms under weakly nonlinear waves is
first considered in this chapter. In other respects, long waves such as tsunamis often
behave like solitary, highly nonlinear waves. After a brief introduction on these
waves, the interaction between solitary waves and a sandy bed will be considered.

2 Ripple Pattern Formation Under Regular Surface Waves

In a wave flume, ripple pattern formation from an initial plane bottom depends on the
forcing conditions applied to grains. Two distinct modes are identified and charac-
terized by two nondimensional parameters: the Reynolds number Re = U∞a/ν and
the Froude number Fr � U∞/

√
(s − 1)gd50, where a and U∞ are the fluid particle

semi-excursion and the fluid velocity amplitude at the edge of the bed boundary
layer, respectively, s is the relative density of sediment, g the gravity, and v the water
kinematic viscosity. Either ripples form on the whole bed or several isolated rippled
zones named patches first appear. In the latter case, ripples grow from a defect of
small amplitude on the initial flat bottom. This mode of formation is exhibited in
Fig. 1 for well-sorted sands and also for mixing of sands [1].

The two modes of pattern formation are represented in the (Fr, Re) plane (Fig. 2)
for tests performed with sands (111 μm < d50 < 375 μm) [2] and PVC particles (d50
= 170 μm) [12]. The dotted line on Fig. 2 delineates the domain of the two modes
of pattern formation. For a fixed Re number, if Froude number remains lower than
a critical Froude number Frc, ripples form from localized sites and the perturbation
necessary to initiate ripple growth must be of finite amplitude, whereas if Fr>Frc,
a perturbation of infinitesimal amplitude is enough to trigger ripple formation and
ripples can form spontaneously on the whole bottom. A rough estimate of the number
of cycles for observation of isolated systems of ripples before invasion on the whole
bottom nc is represented on Fig. 3. The dimensionless bed shear stress (Shields

Fig. 1 Example of bed image in grayscale for mixing of sands forming by patch for n = 2000
cycles (dm = 350 μm; Re = 4715; Fr = 1.7)
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Fig. 2 Delineation of the
two modes of pattern
formation in the (Re, Fr)
plane

Fig. 3 Number of cycles for
observation of isolated
systems of ripples before
invasion on the whole
bottom nc as a function of
the deviation to the threshold
of ripple formation

parameter) is defined with Jonsson formulae [3] for the skin friction factor f w by:
θ θ = 0.5 f wFr2, and θc is the critical Shields number. When the deviation to the
threshold for ripple formation (θ − θc) increases, the amplitude of the perturbation
necessary to destabilize the bottom decreases, the number of observed initial sites
of ripples nucleation increases and the time of observation of these ripple patches
decreases.

2.1 Dynamics of Propagation Fronts

Experimental determination
Ripples form by amechanism of amplification of initial perturbations of small ampli-
tude. When ripples form from isolated nucleation sites, the front propagation on the
granular bed plays an important role in the pattern formation processes. The work
performed with A. B. Ezersky [2] was focused on a test with a well-sorted sand with
a slow dynamics (Test B, Re = 5512; Fr = 2.2), where isolated systems of ripples can
be observed for more than 1000 excitation cycles before total invasion on the whole
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Fig. 4 Longitudinal position
of detected ripple fronts for
Test B (Re = 5512, Fr = 2.2)
as a function of number of
excitation
cycles. Estimated front
propagation velocities

bed. For each patch, the two fronts are processed separately. Fourier spectrum of the
bed elevation signal η(x, t) is calculated for a selected y-transverse line along the
x-longitudinal direction in the front zone and harmonics are filtered to conserve only
ηm(x, t), the slow-varying amplitude, and φ(x, t), the slow-varying phase. After the
filtering process, we get: η(x, t) � ηm(x, t) cos (kx +φ(x, t)). In the next step of the
processing, Hilbert transform is processed and the module of the complex amplitude
a(x) and unwrapped phase φ(x) of the envelope wave of the front are extracted.
The wavefront is localized in the region, where a transition from a low amplitude
to a high nearly constant value is detected. The chosen detection threshold is fixed
to 15% of the maximum amplitude of the selected patch. An example of detected
mean ripple fronts is presented in Fig. 4. The upflow vp− and down flow front vp+

velocities designate, respectively, a front propagation in the direction opposite to the
surface wave propagation and in the same direction of surface waves. Fronts propa-
gate linearly with time with a good regression coefficient and a greater velocity for
the fronts propagating in the direction of surface waves. The difference between the
two mean front velocities has been attributed to the drift along the direction wave
propagation induced by surface waves in the bed boundary layer [4].

(P1) : vp− � −0.23 mm s−1; vp+ � +0.62 mm s−1;

(P2) : vp− � −0.19 mm s−1; vp+ � +0.53 mm s−1;

(P3) : vp− � −0.16 mm s−1; vp+ � +0.45 mm s−1

Model for propagation of ripple fronts
The quintic complex Ginzburg-Landau equation was used to model the propagation
of sandy ripples fronts:

∂A

∂t
� (1 + ic1)

∂2A

∂x2
+ εA + (1 + ic3) |A|2 A − (1 − ic5) |A|4 A (1)

whereA is the complex amplitude of sand ripples, ε is criticality and c1, c2, c3 are real
coefficients. Equation (1) is a model equation for subcritical bifurcation as observed
for sand ripple dynamics. Indeed, experiments showed us that there is a threshold
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value of the amplitude: an amplification of the perturbations occurs for amplitudes
more than a threshold value and a decay with time is observed for amplitudes less
than threshold value. The analytical solution of Eq. (1) [5] can be expressed in the
form: A � e−iωt a(ξ )eiϕ(ξ ), ξ � x ∓ V t , where V is the front velocity and ω the
frequency of sand ripples. The analytical solution for the amplitude and phase of
propagating fronts (see [1] for more details) can be written as follows:

a � aN
eKL∓ξ

√
1 + e2KL∓ξ

(2)

and

φ � qN ξ − (qN − qL)

KL∓ξ

lna (3)

The ξ sign “+” corresponds to a front, which propagates in the positive direction,
KL+ < 0, a(x � −∞, t � 0) � aN is the limit of the exponential growth, a(x �
+∞, t � 0) � 0, and the sign “−” corresponds to a front propagating in the opposite
direction: KL− > 0, a(x � −∞, t � 0) � 0, a(x � +∞, t � 0) � aN . In the
phase expression (Eq. 3), qL , qN may be considered as the contributions to the wave
number for waves of bottom profile with infinitesimal and finite amplitudes.

Excluding the linear growingphase in space for a given instant, Eq. 3 canbe simpli-
fied in the form φ(x) � qL−qN

KL± ln a, predicting a theoretical local linear dependence
between the wave phase and logarithm of the wave amplitude a(x).

Experimental data were used to check if this correlation occurs for wavefronts in
sand ripples. The linear dependence between lna andϕ was found and the coefficients
qL−qN
KL± were estimated at different instants for one patch and for fronts propagating

in both directions. This result validates the model prediction.

2.2 Ripple Growth in Pattern

Complex demodulation byHilbert transformationwas used to extract geometric char-
acteristics of each ripple and to build distributions of ripple characteristics of patterns
while they form. Three examples of growth of dominant ripple wavelength in the
pattern are presented in Fig. 5. For the test performed with light PVC particles (Test
A, Re = 214; Fr = 1.4; d = 1.35; D50 = 0.17 mm), ripples form on the whole bottom
from an initial network of short fragments of three-dimensional ripples and they grow
by coalescence processes. Ripples initially formed are rolling-grain ripples. During
this stage, the pattern is characterized by a constant dominant ripple length and a low
steepness (h/L<0.1) in agreement with Sleath empirical criterion [6]. For Test B con-
ducted with a well-sorted sand characterized by a pattern formation from nucleation
sites, rolling-grain ripples are not detected. Vortex ripples grow with an exponen-
tial relaxation law. The equilibrium length is reached before the whole bottom is
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Fig. 5 Dominant ripple
wavelength versus the
number of excitation cycles
for Test A: solid diamonds,
Re = 214, Fr = 1.4, PVC
particles; Test B: open
diamonds, Re = 5512, Fr =
2.2, well-sorted sand and
Test C: solid triangles, Re =
4640, Fr = 2.2, sand mixture

covered by ripples. Thus, the selection of the dominant equilibrium wavelength is
not significantly influenced by the initial mode of pattern growth. A similar expo-
nential relaxation law is found in the case of a mixing of sands (Test C, Fr = 2.2,
Re = 4640, median diameter dm = (d16 .d50.d84)1/3 � 350 μm). Grain heterogeneity
does not influence significantly the growth law for pattern dominant length.

3 Sand Bedforms Induced by Strongly Nonlinear
Surface Waves

3.1 Solitary Waves

Solitary waves have been the object of attention from Prof. Alexander Ezersky.
The solitary water wave, localized wave that propagates along one space direction
only with undeformed shape has been experimentally discovered in 1834 by John
Scott Russell. A model equation representing the dynamics of solitary waves was
obtained by Korteweg and de Vries [7]. This well-known KdV equation, which has
been obtained for shallow water under the assumption of wave propagation in one
direction, may be written as follows:

∂η

∂t
+ V0

∂η

∂x
+
3

2

V0

H
η

∂η

∂x
+
1

6
V0H

2 ∂3

∂x3
� 0 (4)

where η is the displacement of free surface, t the time, V0 � √
gH the velocity of

surface waves of infinitely small amplitude in shallow water, H the water depth, and
x the wave propagation direction. The localized solution resulting from the balance
of nonlinearity and dispersion has the form of a single hump as observed by Russell:

ηs (x − Vst) � Ascosh
−2

(√
3As

4H 3
(x − Vst)

)
(5)
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Vs � V0

(
1 +

As

2H

)
(6)

where Vs is the velocity of the solitary wave which depends linearly on its amplitude,
As . The duration of this wave is proportional to A−1/2

s .

As an oscillatory wave moves into shoaling water, the wave amplitude becomes
higher, the trough becomes flatter, and the surface profile approaches the solitary
waveform before wave breaking [8]. The cnoidal wave theory approaches the solitary
wave theory as the wavelength becomes very long. In other respects, long waves
such as tsunamis and waves resulting from large displacements of water caused
by landslides and earthquakes often behave like solitary waves. Ezersky et al. [9]
studied the generation of solitary waves (solitons) in a 10 m long hydrodynamic
resonator used in shallow water. Surfaces waves were produced by an oscillating
paddle at one end of the flume, and a near-perfect reflection took place at the other
end. The frequency of the wavemaker was chosen close to the resonant frequency
of the mode whose wavelength is equal to the flume length. For small values of
the amplitude of displacement of the wavemaker, only standing harmonic waves
are generated in the channel. For values of this amplitude greater than a critical
value, pulses propagating from one end of the flume to the other end are excited on
the background of the standing wave. The characteristics of such pulses are close
to those of the theoretical soliton. In particular, the soliton width decreases with
increasing values of its amplitude, as illustrated in Fig. 6. Moreover, these pulses
resulting from the excitation of high harmonics are not altered by collision with
other pulses. They are called solitons by Ezersky et al. [9]. The KdV equation does
not describe the interaction of contra-propagative waves. The Boussinesq equations
can be used to depict counter-propagating solitary waves.

3.2 Formation of Sand Bedforms Under Solitary Waves

The effect of the high nonlinearity of solitary waves may be very significant on
bedforms induced in the nearshore zone. Let us consider the formation of sand
bedforms under solitary waves.

Numerous studies have been carried out on bedforms under linear or weakly non-
linear waves [6, 10–13]. In the nearshore zone, bars consisting of ridges of sediments
running roughly parallel to the shore are common features on sandy beaches. These
structures provide a possible mechanism of natural beach protection from the energy
of incident waves. The mode of sediment transport has a key role on the bar posi-
tion under partially standing waves, the bars having spacing equal to half the surface
wavelength. This spacing corresponds to the Bragg condition for which strong reflec-
tion of the incident waves may occur. The bar position is a very significant parameter
as far as the ability of bars to reflect wave incident energy is concerned. The effect of
solitary waves on the bar position, and more generally on bedforms generation has
been carefully studied by Prof. A. E. Ezersky. Experimental and theoretical work has
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Fig. 6 Schematic comparison between the size of two theoretical solitons (solutions of the KdV
equation)

Fig. 7 Sketch of ripples formation under solitary waves propagating on the background of a stand-
ing harmonic wave

been carried out at this aim. As far as the experimental work is concerned, Ezersky
chose to use the original method of solitary waves generation in a hydrodynamic
resonator described in the previous section and considered the interaction between
solitary waves and a loose sandy bed. When high nonlinear waves are excited in the
resonator, small ripples form rapidly everywhere in the flume, except in the central
part, where the bed remains flat as illustrated in Fig. 7. This region corresponds to the
zone of collision of counter-propagating solitons, which have horizontal velocities
of opposite sign, leading to a horizontal velocity close to zero in the collision zone
[14]. The value of bed shear stress is then close to zero, anyway below the critical
value θc for incipient motion given by Soulsby and Whitehouse [15]:
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Fig. 8 Interaction between
the free surface and the
sandy bed. Frequency of the
oscillating paddle: f =
0.173 Hz. Amplitude of the
horizontal displacement of
the oscillating paddle
averaged over depth: a =
6 cm. H = 0.26 m; s = 2.65;
D = 0.15 mm. a and b
Beginning of the test, just
after the solitary waves
formation. c and d After
ripple formation

θc � 0.24

D∗
+ 0.055

[
1 − exp (−0.020D∗)

]
(7)

where D∗ � [
g (s − 1) /v2

]1/3
D, s is the sediment relative density, D, the sedi-

ment median diameter, and ν the kinematic viscosity. A strong interaction between
the sandy bed and the free surface occurs, as shown in Fig. 8, where the temporal
evolution of the free surface η at the reflective end of the flume is depicted with
a sketch of the sand distribution in the flume. The level 0 mm corresponds to the
water level at rest. The peaks in the free surface elevation correspond to the passage
of solitary waves. Neglecting the interaction of contra-propagative waves, the free
surface displacement at the fixed end of the flume can be described by
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Fig. 9 Variation of the
amplitude of the solitary
wave with time. Same test
conditions as for Fig. 8

Fig. 10 Variation of the
mean ripple height with
time. Same test conditions as
for Fig. 8

η (t) � 2ηs (t) + 2A0sin (ωt − ϕs) (8)

where ω is the angular pulsation of the flow, A0 the harmonic wave amplitude, and
ϕs the phase shift between the soliton and the harmonic waves. The sandy bed is
initially flat (Fig. 8b).

Figure 8c, d shows that after about 27 min, that is when the dimensionless time
τ � tω ∼� 1760, the bed is rippled and the peak values of the free surface are
significantly lower than at the beginning of the test. This results from the dissipation
at the now rippled bed.

The variation of the soliton amplitude As with the time t is depicted in Fig. 9 for the
same test as in Fig. 8. The decrease of As is particularly marked during the beginning
of ripple formation. The temporal variations of the ripple height h and wavelength
L, averaged over the flume length, are exhibited in Figs. 10 and 11, respectively.
The ripple dimensions forming on the bed increase for increasing values of time,
when the soliton amplitude decreases, as shown in Fig. 8. Let us consider the soliton
energy Es :
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Fig. 11 Variation of the
mean ripple wavelength with
time. Same test conditions as
for Fig. 8

Es �
+∞∫

−∞
η2
s dx ∼ A3/2

s (9)

Taking into account the energy dissipation due to ripples, the temporal variation
of the soliton energy may be written as follows:

dEs

dt
� 3

2

ωA0

H
Es cosϕs − (β + αh) Es (10)

In this equation, β is a coefficient describing the part of the damping of the soliton,
which is independent of the scale of the perturbations, and α a phenomenological
coefficient for the dissipation of the soliton due to sand ripples. This part of dissipation
is supposed to be proportional to the ripple height, as a linear function is the simplest
parameterization.

Once the ripples are formed, two sand accumulation zones progressively appear
(Fig. 12). At the equilibrium state, that is for t ∼� 60 h, they form bars with crests
located beneath the nodes of the harmonic surface wave. In the case of harmonic
standing waves (without solitons), the bar crests are positioned beneath the antinodes
of the surface elevation when the suspended load transport is dominant [16]. In the
present case, where solitons are excited on the background of a standing harmonic
wave, ripples generate vortices, which lift into suspension a lot of sand, leading
to a significant amount of suspended load transport. Present bar positions may be
explained by the variation of the time window between the passage of the contra-
propagating solitons with the distance along the flume [17].

Grains with different physical characteristics (size, shape, and density) are often
found on the seabed. This led Ezersky to study the segregation of sedimenting grains
of different densities on a rippled bed under a velocity field induced by solitary
waves. These waves were excited in a hydrodynamic resonator as described above
in the section “solitary waves”. The hydrodynamic forcing was stopped, the water
waves damped, and sedimentation of suspended particles occurred. The grainmixture
consisted of particles of different densities: sand grains (s = 2.65) and PVC grains
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Fig. 12 Sand accumulation zones with superimposed ripples. Same test conditions as for Fig. 8.
Equilibrium state; z: altitude from the flume bottom

(s = 1.35). It was found that light particles (PVC grains) accumulate on the ripple
crests. This can be explained as follows. Taking into account the Stokes force and
neglecting the turbulent drag, the grain velocity �V may be obtained from the flow
velocity �U [18]:

�V � �U +
St
ω

ρw

ρgr

d �U
dt

+

(
ρgr − ρw

ρw

)
�g − St

ω

d �V
dt

(11)

where St � D2ρgrω/18vρw is the Stokes number, ρw the fluid density, and ρgr the
grain density. For small values of the Stokes number, it is possible to use St as an
expansion parameter for the grain velocity:

�V � �V (0) + St �V (1) + S2t �V (2) + · · · (12)

Let us consider in the first approximation a very simple model defined in the
vicinity of each sand crest by the stream function ψ � −a (αx + z) z, with α a
nondimensional coefficient and a a coefficient corresponding to an angular frequency.
While the flow direction changes periodically, a stationary hyperbolic point takes
place. After some transformation, the time-averaged velocity of particles may be
expressed in the horizontal direction in the following way:

〈Vx 〉 � −x

(
s ′

2
a0α0e

−γ t +
St
4ω

a20α
2
0e

−2γ t

)
(13)

where s ′ � 1 − ρw/ρgr , γ is the rate of exponential decay of surface waves, a0
and α0 the amplitudes of a and α, respectively. The expression of 〈Vx 〉 is such as
whatever the side of the ripple crest, where the particles are, the grains move toward
the ripple top. The sand grains which are heavier than the PVC grains settle faster
than the PVC grains. When most sand grains have settled on the bottom, only PVC
grain concentrate near the ripple crests.
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4 Conclusions

Seabed is rarely flat. Sand bedforms are very common. Many studies have been
carried out on these sedimentary structures, in particular under the assumption of
linear waves. However, the nonlinearity of surface waves cannot be neglected inmost
of practical cases, and the physical processes involved in the bedforms generation, in
this case, are poorly understood. Prof. A.B. Ezersky carried out pioneering work in
this field, and he has significantly contributed to the emergence of new approaches.
The interaction between a sandy bed and extreme waves propagating in the shoaling
zone is one of the subjects he outlined the need for further work, owing to the
significance of the practical applications for the evolution of the shore. In order
to bring a contribution to this topic, a PhD project was launched in October 2016
between the LOMC (CNRS, University Le Havre Normandie) and M2C (CNRS,
UniversityCaenNormandie) laboratories, started in the end of 2016with the financial
support of the Normandie Regional Council. A PhDwas hired and Prof. A. E. should
have been his co-advisor together with us.
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