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Abstract In 1967, D. H. Peregrine proposed a Boussinesq-type model for long
waves in shallow waters of varying depth Peregrine (J Fluid Mech 27:815–827,
1967, [70]). This prominent paper turned a new leaf in coastal hydrodynamics along
with contributions by Serre (La Houille Blanche 8:374–388, 1953, [72]) and Green
and Naghdi (J Fluid Mech 78:237–246, 1976, [47]) and many others since then.
Several modern Boussinesq-type systems stem from these pioneering works. In
the present work, we revise the long wave model traditionally referred to as the
Peregrine system. Namely, we propose a modification of the governing equations,
which is asymptotically similar to the initial model for weakly nonlinear waves,
while preserving an additional symmetry of the complete water wave problem. This
modification procedure is called the invariantization. We show that the improved
system has well-conditioned dispersive terms in the swash zone, hence allowing for
efficient and stable run-up computations.
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1 Introduction

Nowadays, Boussinesq-type equations have become the models of choice in the
near-shore hydrodynamics. Proposed for the first time in 1871 by Boussinesq [15],
these equations have been substantially improved in works by Serre [72], Peregrine
[70], Green and Naghdi [47] and many others.1 Nowadays, it is almost impossible
to list all the bibliography on this subject. Since several decennaries researchers
have essentially focused their effort on extending the validity of these models from
shallow waters to intermediate depths [60, 61, 63] under the increasing demand of
the coastal engineering community. We refer to [20] for a recent reasoned review of
this topic. The derivation of these equations on flat geometries was reviewed in [55]
and the spherical case was covered in [54].

The true success of Boussinesq-type equations has to deal with the descrip-
tion of the wave breaking phenomenon. Classical nonlinear shallow water equations
(NSWE) predict waves to break too early. Thus, the validity region of NSWE is
limited only to the inner surf zone. The success story of Boussinesq systems begins
when they were shown to model fairly well breaking waves (see [90]). However, the
research on robust and efficient numericalmethods lags behind the current state of the
art in the modelling [8, 11, 41]. Main problems arise from the numerical treatment
of the shoreline and the stability of the resulting method. Most of the computa-
tional algorithms run into numerical troubles when a sufficiently big amplitude wave
reaches the run-up region. These problems are obviously due to the uncontrolled
numerical instabilities coming from the dispersive terms discretization (see [8]).
These difficulties were reported presumably for the first time in [62] (this emphasis
is ours):

However, to make this technique [slot technique] operational in connection with Boussinesq
typemodels a couple of problems call for special attention. […] Firstly the Boussinesq terms
are switched off at the still water shoreline,where their relative importance is extremely small
anyway. Hence in this region the equations simplify to the nonlinear shallowwater equations.

This extremely pragmatic point of view is still shared nowadays by a number of
researchers. However, in our opinion, it is the model which has to decide naturally
whether the dispersion is important or not. Ideally, the treatment of dry areas today
should be as simple and natural as the treatment of shock waves in shock-capturing
schemes [81]. In this study, we present a fully dispersive numerical simulation of
a wave run-up on a complex beach where dispersive terms are present in the entire
domain.

The main idea of this study is to revise the original Peregrine system [70]. Some
properties of the complete water wave problem have been lost as a price to pay for
the model simplification. Namely, as for many other models derived by asymptotic
methods, we loose the invariance under vertical translations. If no special care is
taken, we inevitably loose this property, since the asymptotic expansion is performed

1The steady version of the celebrated Serre–Green–Naghdi equations can be traced back up to
Lord Rayleigh [59].
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in a very particular frame of reference (around themeanwater level z = 0). However,
the full water wave problem possesses this symmetry (cf. [10]).

The model we propose in this study is asymptotically similar to the original
system since we add only higher order contributions which are formally negligible
while greatly improving structural properties of the model. Consequently, the linear
dispersion relation of the original system is conserved aswell. The great improvement
consists in dispersive terms which are better conditioned from the numerical point
of view and they fit better our physical intuition about their relative importance
when we approach the shoreline. A similar attempt of improving dispersive terms by
adding nonlinear contributions was also undertaken recently in [1, 9]. The procedure
presented in this study is sometimes referred to in the literature as the invariantization
process. Conservative versions of some Nwogu-type systems have been proposed
in [7, 44].

The present study is organized as follows. In Sect. 2, we present some rationale
on the Peregrine system and its invariantization, with particular emphasis on the
numerical generation of solitary wave solutions of the modified system, which are
studied in Sect. 3. Some elements on the numerical discretization by the finite volume
method are given in Sect. 4. Then, some numerical results are shown in Sect. 5 while
applications to waves generated due to landslides are presented in Sect. 6. Finally,
the main conclusions and perspectives of this study are outlined in Sect. 7.

2 Mathematical Modelling

Consider a Cartesian coordinate system in two space dimensions (x, z) to simplify
the notation. The z−axis is taken vertically upwards and the x−axis is horizontal and
coincides traditionally with the still water level. The fluid domain is bounded below
by the bottom z = −h (x) and above by the free surface z = η (x, t). Below we

will also need the total water depth H (x, t)
def:= h (x) + η (x, t). The sketch of the

fluid domain is given in Fig. 1. The flow is supposed to be incompressible and the
fluid is inviscid. An additional simplifying assumption of the flow irrotationality is
traditionally made as well.

h(x)

η (x, t)

H (x, t)

O x

z

Fig. 1 Sketch of the fluid domain with a sloping beach
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Remark 1 We would like to underline the fact that in the presence of a free surface
the vorticity does not remain zero even if it is so initially. A singularity at the free
surface (e.g. the wave breaking) may lead to vortex sheets creation. However, the
water wave theory is not supposed to hold when a wave breaking event occurs.

Under the previously described physical assumptions, Peregrine [70] derived the
following system of equations which is valid in the Boussinesq long wave regime:

ηt + (
(h + η) u

)
x = 0 , (1)

ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t = 0 , (2)

where u (x, t) is the depth-averaged fluid velocity, g is the gravity acceleration and

under-scripts (ux
def:= ∂u

∂x , ηt
def:= ∂η

∂t ) denote partial derivatives.

2.1 Symmetry Analysis

In this section, we assume the bottom to be flat, i.e. h = d = const > 0.Otherwise,
bathymetry variations will destroy a part of symmetries of the governing Eqs. (1),
(2). The infinitesimal generators of symmetries transformations for the classical
Peregrine system are given here:

X1 = ∂

∂t
,

X2 = ∂

∂x
,

X3 = u
∂

∂u
+ 2 (η + d)

∂

∂η
− t

∂

∂t
.

It is not difficult to see that the generator X1 corresponds to time translations:

t̃ = t + ε1 , x̃ = x , η̃ = η , ũ = u .

Similarly, the generator X2 gives translations in space:

t̃ = t , x̃ = x + ε2 , η̃ = η , ũ = u .

Finally, the generator X3 is nothing else but a scaling transformation:

t̃ = e−ε3 t , x̃ = x , η̃ = e2 ε3 (d + η) − d , ũ = eε3 u .
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There are noother symmetry transformations of the classicalPeregrine system. If
this system possessed a Lagrangian structure, we could employNoether theorem
to convert symmetries to conservation laws [67]. For instance, space translationsX2

correspond to themomentum conservation. The time translationsX1 would yield the
energy conservation equation, if we only could apply the Noether theorem. This is
one of the reasons why it is widely believed that the classical Peregrine system has
no energy functional. However, using some other complementary methods [13, 22]
we were able to compute an additional conservation law, which can be associated to
the energy:

(
1
2 u2 + g (d + η) ln(d + η) − g η − d2

6
u ux x

)

t
+

[
1
3 u3 + g u (d + η) ln(d + η) + d2

6
ux ut − d2

6
u ut x

]

x
= 0 .

The last conservation law can be used, for example, to check the accuracy of
numerical schemes over even bottoms for the sake of validation. In some situations,
additional conservation laws might be used in theoretical investigations as well.

2.2 Dimensionless Equations

Some of our developments below will be more transparent if we work in dimension-
less variables. The classical long wave scaling is the following:

x′ def:= x

�
, z′ def:= z

h0
, t′

def:= g

h0
t , η′ def:= η

a
, u′ def:= u√

g h0
,

where h0, a, � are the characteristic water depth, wave amplitude and wavelength,
respectively. The following dimensionless numbers are defined from them:

ε
def:= a

h0
, μ2 def:=

(h0
�

)2
, S

def:= ε

μ2
.

Parameters ε and μ2 measure the wave nonlinearity and dispersion, while the
so-called Stokes–Ursell number S measures the relative importance of these
effects. In the Boussinesq regime, the Stokes–Ursell number is supposed to
be of the order of one, i.e. S ∼ 1. The importance of this parameter is discussed
by, e.g. Ursell [82]. The Peregrine system (1), (2) in scaled variables at the order
O (ε + μ2) reads (primes are dropped below for the sake of convenience):

ηt + (
(h + ε η) u

)
x = 0 ,



8 A. Durán et al.

ut + ε u ux + ηx − μ2
(h

2
(h u)x x t − h2

6
ux x t

)
= O(ε2 + ε μ2 + μ4) ,

where on the right-hand side of the last equation we put the order of neglected terms.
Since the Stokes–Ursell number S ∼ 1, we have asymptotic similarity relations
in the Boussinesq regime:

ε2 ∼ ε μ2 ∼ μ4 .

2.3 Vertical Translations

In this section, we examine an important property of the water wave problem—
invariance under vertical translations (subgroup G5 in Theorem 4.2, Benjamin and
Olver [10]). This transformation is described by the following simple change of
variables:

z ← z + d , η ← η − d , h ← h + d , u ← u , (3)

where d is some constant. Here again, it is straightforward to check that themass con-
servation Eq. (1) remains invariant under transformation (3), while Eq. (2) produces
many additional dispersive terms proportional to the constant translation d :

ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t − h d

6
ux x t − d2

3
ux x t − d

2
(h u)x x t = 0 .

The reason for this discrepancy is that the coefficient hn (x) (n = 1, 2) in front
of the dispersive terms is not invariant under the vertical shift. The right variable to
use is the total water depth H (x, t) = h (x) + η (x, t) which is independent of
the chosen coordinate reference frame. Here again, the discrepancy is a result of the
asymptotic expansion around the still water level. Consequently, the derived model
is valid only for this particular choice of the coordinate axis O x. To make system
(1), (2) frame independent, we shall add higher order nonlinear terms which are
asymptotically negligible but have important implications in structural properties of
the resulting model.

In dimensionless variables, the total water depth is expressed as H (x, t) =
h (x) + ε η (x, t). As a corollary, we obtain two asymptotic relations which will
be used below:

h = H + O(ε) , hx = Hx + O(ε) , Ht = O(ε) .

Mathematically, it means that the bathymetry function should be completed by
an O(ε) term to become invariant under vertical translations. While performing this
invariantization, we will also recast our model in conservative variables (H , Q),
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where Q
def:= H u is the horizontal momentum. This modification will allow us to

employ those numerical methods developed in the literature for the discretization of
nonlinear shallow water equations (NSWE) [27, 35, 40, 91].

The mass conservation Eq. (1) in the new variables trivially reads:

Ht + Qx = 0 , (4)

while the momentum conservation Eq. (2) will require more computations. First of
all, we multiply Eq. (4) by u, Eq. (2) by H and add them to have

(Hu)t + (
ε H u2 + 1

2 ε
H2)

x − μ2
( H h

2
(h u)x x t − H h2

6
ux x t

︸ ︷︷ ︸
(∗∗)

)
= 1

ε
H hx . (5)

In the perspective of writing governing equations in the conservative form, the term
(**) has to be transformed using this relation:

ux x ≡
(h u

h

)

x x
= (h u)

(
2

h2x
h3

− hx x

h2

)
− 2

hx

h2
(h u)x + 1

h
(h u)x x .

Consequently, after simple computations, Eq. (5) takes the form:

(H u)t + (
ε H u2 + 1

2 ε
H2)

x − μ2
( H h

3
(h u)x x t + H

3
(h u)(h u)x x x

+ H hx

3
(h u)x t − 1

3

( H

h
h2x − 1

2
H hx x

)
(h u)t

)
= 1

ε
H hx .

The last equation is ready for the invariantization process. For illustrative purposes,
we show these computations only for the first dispersive term:

μ2 H h

3
(h u)x x t = μ2

3
H 2 (H u)x x t + O(ε μ2) = μ2

3
H 2 Qx x t + O(ε μ2) .

Thus, we add again only higher order terms which have no impact on linear
dispersive characteristics of the initial system.By proceeding in an analogousmanner
with all other dispersive terms and turning back to dimensional variables we obtain
the following momentum conservation equation:

(
1 + 1

3
H 2

x − 1

6
H Hx x

)
Qt − 1

3
H 2 Qx x t − 1

3
H Hx Qx t

+
(Q2

H
+ g

2
H 2

)

x
= g H hx .

(6)

The system (4), (6) (that will be called the modified Peregrine system or, in
a shorthand notation, the m-Peregrine system) actually has more advantages than



10 A. Durán et al.

being simply invariant under two additional transformations. The added value of this
invariantization process goes far beyond the initial symmetry consideration. Namely,
in this way, we extend the system validity to the run-up process and improve the
numerical conditioning of dispersive terms. For the first time, Eqs. (4), (6) were used
and validated for wave run-up problems in [37].

In natural environments, dispersive effects become gradually less and less impor-
tant when a wave travels shoreward to become negligible in the shoreline vicinity.
This is the reason why NSWE can be successfully used to describe to some extent
the run-up process. This physical observation can be translated into the mathemati-
cal language by the condition that dispersive terms go to zero when the total water
depth vanishes. If this condition is not fulfilled, numerical instabilities may appear
as reported by Bellotti and Brocchini [9]:

In our attempt to use these equations from intermediate waters up to the shoreline (see
Bellotti and Brocchini [8]) we run into numerical troubles when reaching the run-up region,
i.e. x > 0. These problems were essentially related to numerical instabilities due to the
uncontrolled growth of the dispersive contributions (i.e. O(μ2)-terms).

The reason for the extended numerical stability of the proposed model is twofold.
First of all, in the numerical algorithm, we have to invert at some point an elliptic
operator written over the time derivative in Eq. (6):

(
1 + 1

3
H 2

x − 1

6
H Hx x

)
q − 1

3
H 2 qx x − 1

3
H Hx qx = W,

where W is a known function arising from the advective terms discretization. It turns
out that the resulting linear system is better conditioned if the model is written in
terms of the total water depth. The second stability advantage comes from the fact
that almost all dispersive terms naturally vanish as we approach the shoreline.

Remark 2 It is noted that the same invariantization technique can be used also for
the case of moving bottom bathymetry and for higher dimensions, cf. Sect. 6.

2.3.1 Symmetry Analysis

The symmetries of the m-Peregrine system (over flat bottom) can be computed
using the standard methods as we did for the classical counterpart in Sect. 2.1. The
dimension of the symmetry group turns out to be the same as above. The infinitesimal
generators are given below:
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X1 = ∂

∂t
,

X2 = ∂

∂x
,

X3 = t
∂

∂t
+ 2 x

∂

∂x
+ 2H

∂

∂H
+ 3Q

∂

∂Q
.

The generated symmetry transformations are essentially the same. GeneratorX1

yields time translations:

t̃ = t + ε1 , x̃ = x , H̃ = H , Q̃ = Q ,

whileX2 gives translations in space:

t̃ = t , x̃ = x + ε2 , H̃ = H , Q̃ = Q .

Finally, X3 is a scaling transformation2:

t̃ = eε3 t , x̃ = e2 ε3 x , H̃ = e2 ε3 H , Q̃ = e3 ε3 Q .

2.3.2 Pressure Distribution

For some practical applications, we need to estimate the pressure field inside the fluid
and more particularly at the bottom. For example, the operational NOAA Tsunami
Warning System heavily relies on a network ofDARTbuoys detecting tsunamiwaves
by measuring the pressure at the ocean bottom [12, 79]. In this section, we propose
a way to reconstruct the pressure field in the whole water column.

In the original work of [70], one can find the following correct asymptotic expan-
sion for the pressure field:

p = −z + ε η + μ2
(
z (h u)x t + 1

2 z2 ux t
) + O(ε2 + ε μ2 + μ4) . (7)

The first two terms on the right-hand side correspond to the usual hydrostatic
pressure while the last two terms are purely non-hydrostatic contributions brought
by dispersive effects.

However, the original expression (7) for the pressure given by the asymptotic
expansion method has one important drawback. Namely, it satisfies the free surface
dynamic boundary condition p|z = ε η = 0 only to the leading order. Consequently,
the first improvementwe propose is to add some specific higher order terms to recover
this property at all orders we retain in the equation:

2Notice, please, that this scaling is different from X3 given in Sect. 2.1.
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p ≈ −z + ε η + μ2
(
(z − ε η) (h u)x t + 1

2 μ2 (z − ε η)2 ux t
)
.

Now, we will make a transformation consistent with the modified Peregrine
system (4), (6) which consists in replacing h by its asymptotically equivalent and
invariant by vertical translations counterpart H in the third term3 of the last formula:

p ≈ −z + ε η + μ2
(
(z − ε η) (H u)x t + 1

2 μ2 (z − ε η)2ux t
)
.

Finally, if we turn back to the dimensional and conservative variables, the final
expression for the pressure will take this form:

p

ρ
= g (η − z) + (z − η) Qx t + 1

2
(z − η)2

( Q

H

)

x t
.

whereρ is the constant fluid density. It is straightforward now to compute the pressure
value at the bottom by evaluating the last expression at z = −h:

p

ρ

∣∣∣∣
z = −h

= g H + H Qx t + 1

2
H 2

( Q

H

)

x t
.

The latter can be directly used, for example, to compute synthetic pressure records
which can be compared with real observations in deep ocean [79].

2.4 Galilean Invariance

In the same line of ideas, there is a question of the Galilean invariance of various
Boussinesq-type equations. In this section,we checkwhether thePeregrine system
(1), (2) remains invariant under theGalilean transformation. This issue was already
addressed in the context of some other systems by Christov [23].

The procedure is classical. First of all, we assume throughout this section the
bottom to be flat h = const. We choose another frame of reference which moves
uniformly rightwards with constant celerity c. Analytically, it is expressed by the
following change of variables:

x ← x − c t , t ← t , η (x, t) ← η (x − c t, t) , u (x, t) ← u (x − c t, t) + c . (8)

After some simple computations, one can easily check that the mass conservation
Eq. (1) remains invariant under the Galilean boost (8), while Eq. (2) has an extra
term (*):

3The asymptotic argument holds here since this term is O(μ2).
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ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t + c h2

3
ux x x

︸ ︷︷ ︸
(∗)

= 0 .

Consequently, the Peregrine system in its original form does not possess the
very basic Galilean invariance property while the complete water wave problem
does (subgroups G 7, 8 in three dimensions, see Theorem 4.2, Benjamin and Olver
[10]). Some consequences of this shortcoming are discussed in [23].

In order to recover the broken symmetry, we propose to modify Eq. (2) in the
following way:

ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t − h

3
u (h u)x x x = 0 . (9)

Ifwe perform the same computations as above,wewill see that themodifiedmodel
(1), (9) remains invariant under theGalilean boost (8). In order to understand better
this modification, we have to switch to dimensionless variables:

ut + ε u ux + ηx − μ2
(h

2
(h u)x x t − h2

6
ux x t

)
− ε μ2 h

3
u (h u)x x x = 0 .

Now, it is clear thatwe add a higher orderO(ε μ2) nonlinear dispersive termwhich
normally has to be omitted according to the philosophy of asymptotic methods.
However, we prefer to retain it to recover an important physical property of the
model—the Galilean invariance.

Remark 3 Since the term h
3 u (h u)x x x is a nonlinear dispersive term, it has no effect

on linear dispersion characteristics of the original model. The same remark applies
to developments presented below as well.

Consequently, we are able to add a higher order dispersive term to Eq. (2) which
makes the system Galilean invariant. The invariantization process in variables
(η, u) is straightforward. However, if we rewrite the modified system in terms of
the conservative variables (H , Q)we loose again theGalilean invariance property.
One of the reasons is that transformation (8) is more complex in these variables. For
example, the following chain rules apply:

Qt → Qt − c Qx + c (Ht − c Hx) , Qx → Qx + c Hx .

The invariantizationof themodifiedPeregrine system (4), (6) under theGalilean
symmetry remains an open question. The discussion of the Galilean invariance of
a few other nonlinear dispersive wave systems can be found in [31].
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3 Solitary Waves

Dispersive wave equations possess an important class of solutions—the solitary
waves (SW)which result fromabalance betweennonlinear and dispersive effects [21,
30, 53, 71]. The comprehension of these solutions allows to assess some properties
of the dispersive system under consideration. We note that analytical SW solutions
are not known even for the classical Peregrine system [70]. We have not been able
to construct closed-form solutions to the m-Peregrine system either. Consequently,
we will apply numerical methods which allow to approximate them accurately [89].

A travelling wave solution has the following form:

H (x, t) ≡ H (X ) , Q (x, t) ≡ Q (X ) , X
def:= x − cs t ,

where cs is the wave propagation speed in an inertial frame of reference. After
substituting this ansatz into the governing Eqs. (4), (6), we obtain the following
system of two coupled ordinary differential equations (ODEs):

− cs H ′ + Q′ = 0 , (10)

−cs

(
1 + 1

3
(H ′)2 − 1

6
H H ′′

)
Q′ + cs

3
H 2 Q′′′

+ cs

3
H H ′ Q′′ +

(Q2

H
+ g

2
H 2

)′ = 0 ,

(11)

where functions H (X ) and Q (X ) are assumed to be sufficiently smooth, even and
decaying to zero along with all their derivatives as | X | → ∞. Throughout this
section, we will consider the wave propagation over a flat bottom, i.e. h ≡ const.

The former Eq. (10) can be used to eliminate the variable Q (X ) from the latter
equation. It will be more convenient also to work with the free surface elevation
η (X ):

L0 η = (gh − c2s ) η′ + c2s h2

3
η′′′ +

( c2s η2

h + η

)′ + g

2
(η2)′ − c2s

3
(η′)3

+ c2s
3

(2 h η + η2) η′′′ + c2s
2

(h + η)η′η′′ = 0 . (12)

Once the free surface elevation η (X ) is determined, the velocity can be found
from the mass conservation (10):

u (X ) = cs η (X )

h + η (X )
, Q (X ) = cs η (X ) . (13)
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Solitary wave profiles (η (X ), u (X )) can be obtained numerically by approxi-
mating solutions to the differential Equation (12) and then using (13) to compute the
velocity profile.

Several strategies to this end exist in the literature (see [89] and references therein).
The one considered here consists of two steps. First, theNewtonmethod is applied to
(12): froman initial iterationη[0] (X ) and if the approximationη[ν] (X ), ν = 0, 1, . . .

to the profileη (X ) at the νth iteration is known, thenη[ν + 1] (X ) is obtained by solving
the equation

L[ν]Δη[ν] = −L0 η[ν] , (14)

where Δη[ν] def:= η[ν + 1] − η[ν], L0 is given by (12) and L[ν] is the linearized
operator of Eq. (12) evaluated at η[ν] (X ).

The second step of our numerical procedure is the discretization of (14), which
will be inspired by several works of J. Boyd (for more details see [16–19]). For
N ≥ 1 and large L > 0, the system (14) is discretized on the interval

(−L, L
)
by

the collocation points

xk = −L + (2k + 1) h , h = L

N
, k = 0, . . . , N − 1 . (15)

For ν = 0, 1, . . ., the approximation η
[ν]
h to the νth iteration η[ν] is sought in the

space Sh, based on (15), of trigonometric interpolation polynomials of the form

Zh (x) =
N − 1∑

j = 0

Zj cos
( π

2 L
j (x + L)

)
.

The discrete version of (14) is then as follows. If η[ν] ∈ Sh is known, we search

for the incremental term Δη
[ν]
h

def:= η
[ν + 1]
h − η

[ν]
h in Sh, i.e.

Δη[ν] (x) =
N − 1∑

j = 0

α
[ν]
j cos

( π

2 L
j (x + L)

)
,

and evaluate (14) at the collocation points (15). This leads to a linear system for the
coefficients α[ν] = (α

[ν]
0 , . . . , α

[ν]
N−1)

 of the form

L[ν]
h α[ν] = f [ν] , (16)

where the matrix L[ν]
h = (

L[ν]
ij

)N − 1
i, j = 0 and the vector f [ν] = (f [ν]

0 , . . . , f [ν]
N − 1)

 are
computed as

L[ν]
i j = L[ν] cos

( π

2 L
j (x + L)

) ∣∣∣
x = xi

, f [ν]
k = −L0 η[ν]

∣∣∣
X = xk

,
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for i, k = 0, . . . , N − 1. We note that the construction of coefficients f [ν] in (16)
requires the computation of derivatives of η

[ν]
h up to the third order at the points (15).

Finally, in order to pass to the next iteration η
[ν+1
h . Equation (16) has to be solved. The

ill-conditioning of the resulting system is treated using the pseudo-inverse technique
combined with the iterative refinement (see [18, 28, 46, 52] for more details). This
method solves Eq. (16) in the least squares sense and the solution has a minimum
norm.

The overall iterative process is controlled, in a standard way, by two parameters:
(i) a maximum number of iterations and (ii) a tolerance governing the relative error
between two consecutive iterations or the residual error:

ε1 [ν] = ‖ η[ν] − η[ν − 1] ‖
‖ η[ν] ‖ , ε2 [ν] = ‖ L0 η[ν] ‖ , (17)

measured in some norm ‖ · ‖ (in the experiments reported below, both the Euclidean
and the maximum norms (l∞) were implemented). Thus, the iteration stops when the
maximum number of iterations is attained or when any of the errors (17) is below a
prescribed tolerance.

3.1 Numerical Results

The described above numerical procedure will be tested and used now to compute
several travelling wave solutions to the m-Peregrine Equations (4), (6). For the sake
of convenience, we will solve equations in the dimensionless form which is readily
obtained by setting dimensional constants g = 1 and d = 1. The tolerance param-
eter in the control of the iterations is chosen to be equal to 10−13. The exact solution
to the classical Serre equations [25, 32, 72] is chosen as the initial approximation
at the first iteration.

The behaviour of the relative error ε1 [ν] and absolute error ε2 [ν] during the
iterations is shown in Fig. 2 for two values of the propagation velocity cs = 1.05
and 1.1. In both cases, the iterations are stopped since the first error drops below the
prescribed tolerance. The errors in Fig. 2 are measured in the maximum (l∞) norm.
The results in the Euclidean (l2) norm are completely similar. We can see that a
relatively small number of iterations is needed to achieve the convergence. However,
higher values of the propagation speed cs lead to higher nonlinearities. Consequently,
more iterations are needed until the convergence is attained. The dependence of the
number of iterations on the speed value cs is illustrated in Fig. 3. The metamorphosis
of these profiles as we change gradually the propagation speed cs is shown in Fig. 4.
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Fig. 2 Decimal logarithm of the relative errors defined in (17). Relative difference between two
iterations ε1 [ν] is shown in the left image, while the residual of the equation is depicted on the
right. The convergence is illustrated for two values of the propagation velocities cs = 1.05 (black
solid line) and 1.1 (blue dashed line)
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Fig. 3 Dependence of the number of iterations needed to achieve the convergence on the solitary
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Fig. 4 Solitary wave profiles for various values of the propagation speed cs are superposed on the
same image to show the evolution of the shape while changing this parameter. On the left image,
we show the free surface profile, while the right image depicts the horizontal velocity variable. The
lowest curve corresponds to the smallest values of cs = 1.02 and the highest solution is obtained
for cs = 1.2
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Fig. 5 Speed–amplitude relation for the m-Peregrine system. On the left image, we show the
free surface elevation amplitude and compare it to the 14th-order Fenton’s solution. On the right
image, we show the horizontal velocity amplitude as a function of the propagation speed cs

For illustrative purposes, we provide several computed amplitudes (free surface
elevation and horizontal velocity) of the solitary waves for various values of the
propagation speed cs. This speed–amplitude relation is represented graphically in
Fig. 5. We make also a comparison with the 14th-order Fenton’s solution for the
full water wave problem (for more details see [42, 58]). One can notice a good
agreement with the m-Peregrine system proposed in the previous Section.
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4 Numerical Discretization

In this section, we present briefly the rationale on numerical methods we use to
discretize the system (4), (6) we derived above: Below, we follow the great lines of
our previous work [37].

4.1 Finite Volume Scheme

We begin our presentation by a discretization of the hyperbolic part of equations
(which are simply the classical nonlinear shallow water equations) and then, in the
second time, we discuss the treatment of dispersive terms. The modified Peregrine
system (4), (6) can be formally put under this quasi-linear form:

D (vt) + [ f (v) ]x = s (v) , (18)

where v, f (v) are the conservative variables and the advective flux function, respec-
tively:

v =
(

H
Q

)
, f (v) =

⎛

⎝
Q

Q2

H
+ g

2
H 2

⎞

⎠ .

The source term s (v) contains the topography effects andD (vt) is the dispersion:

s (v) =
(

0
g H hx

)
, D (vt) =

(
Ht(

1 + 1
3 H 2

x − 1
6 H Hx x

)
Qt − 1

3 H 2 Qx x t − 1
3 H Hx Qx t

)

.

Since the time derivative of the horizontal momentum Q is defined implicitly, we
will have to invert a linear elliptic operator with non-constant coefficients.

The Jacobian of the advective flux f (v) can be easily computed:

A (v) = ∂f (v)

∂v
=

(
0 1

g H −
( Q

H

)2 2Q

H

)

.

The JacobianA (v) has two distinctive eigenvalues:

λ± = Q

H
± cs ≡ u ± cs , cs

def:= √
g H .

The corresponding right and left eigenvectors are provided here:

R =
(
1 1
λ+ λ−

)
, L = R−1 = − 1

2 cs

(
λ− −1

−λ+ 1

)
.
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Let us fix a partition of R into cells (or finite volumes) Ci = [
xi − 1

2
, xi + 1

2

]

with cell centres xi = 1
2 (xi − 1

2
+ xi + 1

2
), i ∈ Z. Let Δxi denotes the length of the

cell Ci. Without any loss of generality we assume the partition to be uniform, i.e.
Δxi ≡ Δx, ∀i ∈ Z. We would like to approximate the solution v (x, t) by discrete
values. In order to do so, we introduce the cell average of v on the cell Ci, i.e.

v̄i (t)
def:= (

H̄ i (t), Q̄i (t)
) = 1

Δx

∫

C i

v (x, t) dx .

A simple integration of (18) over the cell Ci leads the following exact relation:

D (v̄t)i + 1

Δx

(
f (v (xi + 1

2
, t) − f (v (xi − 1

2
, t))

)
= 1

Δx

∫

C i

s (v) d x .

Since the discrete solution is discontinuous at cell interfaces xi + 1
2
, i ∈ Z, the

heart of the matter in the finite volume method is to replace the flux through cell
faces by the so-called numerical flux function:

f (v (xi ± 1
2
, t)) ≈ Fi ± 1

2
(v̄L

i ± 1
2
, v̄R

i ± 1
2
) ,

where v̄
L, R
i ± 1

2
are reconstructions of conservative variables v̄ from left and right sides

of each cell interface. The reconstruction procedure employed in the present study
will be described below. Consequently, the semi-discrete scheme takes the form:

D (v̄t)i + 1

Δx

(
Fi + 1

2
− Fi − 1

2

) = §i , (19)

where §i ≈ 1
Δx

∫
C i

s (v) d x is an approximation of the topographic term on the
right-hand side of (6). In the present study we employ the standard hydrostatic
reconstruction [2] to obtain a well-balanced scheme. The expression for matrix D

will be detailed below in Sect. 4.3.
In order to discretize the advective flux f (v), we use the FVCF scheme [45]:

F (v, w) = f (v) + f (w)

2
− U (v, w)

f (w) − f (v)

2
.

The first part of the numerical flux is centred, and the second part is the upwinding
introduced through the Jacobian sign matrix U (v, w) defined as

U (v, w) = sign
(
A (μ)

)
, sign (A) = R · diag(s+, s−) · L , s± def:= sign(λ±) .
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The average state μ = (μ1 (v, w), μ2(v, w) between the left
v = (H L

i + 1
2
, uL

i + 1
2
) and the right w = (H R

i + 1
2
, uR

i + 1
2
) states4 is defined as the

Roe average:

μ1 =
H L

i + 1
2

+ H R
i + 1

2

2
, μ2 =

√
H L

i + 1
2

uL
i + 1

2
+

√
H R

i + 1
2

uR
i + 1

2√
H L

i + 1
2

+
√

H R
i + 1

2

.

After some simple algebraic computations, one can find the following expression
for the sign matrix U (v, w):

U (v, w) = 1

2 c

(
s−(μ2 + c) − s+ (μ2 − c) s+ − s−

(s+ − s−) (c2 − μ2
2) s+ (μ2 + c) − s− (μ2 − c)

)
,

with c
def:= √

g μ1. We reiterate again that the sign matrix U is evaluated at the
average state μ of left and right values.

4.2 High-Order Reconstruction

In order to obtain a higher order scheme in space, we need to replace the piecewise
constant data by a piecewise polynomial representation. This goal is achieved by var-
ious so-called reconstruction procedures such as MUSCL TVD [56, 83, 84], UNO
[51], ENO [50], WENO [88] and many others. In our previous study on Boussinesq-
type equations [37], the UNO2 scheme showed a good performance with low dissi-
pation in realistic propagation and run-up simulations.

Remark 4 In TVD schemes, the numerical operator is required (by definition) not
to increase the total variation of the numerical solution at each time-step. It follows
that the value of an isolated maximum may only decrease in time which is not a
good property for the simulation of coherent structures such as solitary waves. The
non-oscillatory UNO2 scheme, employed in our study, is only required to diminish
the number of local extrema in the numerical solution. Unlike TVD schemes, UNO
schemes are not constrained to damp the values of each local extremum at every
time-step.

The main idea of the UNO2 scheme is to construct a non-oscillatory piecewise-
parabolic interpolant Q (x) to a piecewise smooth function v (x) (see [51] for more
details). On each segment containing the face xi + 1

2
∈ [xi, xi + 1 ], the function

Q (x) = qi + 1
2
(x) is locally a quadratic polynomial and wherever v (x) is smooth

we have

4We do not take here the conservative variables (H , Q) since the reconstruction procedure is more
accurate and robust in physical variables (H , u).
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Q (x) − v (x) = O(Δx3),
dQ

dx
(x ± 0) − dv

dx
= O(Δx2) .

Also Q (x) should be non-oscillatory in the sense that the number of its local
extremadoes not exceed that ofv (x). Sinceqi + 1

2
(xi) = v̄i andqi + 1

2
(xi + 1) = v̄i + 1,

it can be written in the form:

qi + 1
2
(x) = v̄i + di + 1

2
v · x − xi

Δx
+ 1

2 Di + 1
2
v · (x − xi)(x − xi + 1)

Δx2
,

where di + 1
2
v

def:= v̄i + 1 − v̄i and Di + 1
2
v is closely related to the second deriva-

tive of the interpolant since Di + 1
2
v = Δx2 q′′

i + 1
2
(x). The polynomial qi + 1

2
(x) is

chosen to be one the least oscillatory between two candidates interpolating v (x) at
(xi − 1, xi, xi + 1) and (xi, xi + 1, xi + 2). This requirement leads to the following choice
of Di + 1

2
v:

Di + 1
2
v

def:= minmod
(
Di v, Di + 1 v

)
,

with

Di v = v̄i + 1 − 2 v̄i + v̄i − 1 , Di + 1 v = v̄i + 2 − 2 v̄i + 1 + v̄i ,

and minmod (x, y) is the usual min mod function defined as

minmod (x, y) = 1

2
(sign(x) + sign(y)) · min(| x | , | y |) .

To achieve the second orderO(Δx2) accuracy, it is sufficient to consider piecewise
linear reconstructions in each cell. Let L (x) denote this approximately reconstructed
function which can be written in this form:

L (x) = v̄i + si · x − xi

Δx
, x ∈ [

xi − 1
2
, xi + 1

2

]
.

To make L (x) a non-oscillatory approximation, we use the parabolic interpolation
Q (x) constructed below to estimate the slopes si within each cell:

si = Δx · minmod
(dQ

dx
(xi − 0),

dQ

dx
(xi + 0)

)
.

In otherwords, the solution is reconstructed on the cellswhile the solution gradient
is estimated on the dual mesh as it is often performed in more modern schemes
[3, 4]. A brief summary of the UNO2 reconstruction can be also found in [37].
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4.3 Dispersive Terms Treatment

In this section, we explain how we treat the dispersive terms of the m-Peregrine
system (4), (6). Here again, we follow in great lines our previous study [37]. The
following second-orderO(Δx2) approximations are used to discretize the dispersive
terms arising in matrix D (vt):

1

Δx

∫

C i

[
1 + 1

3
H2

x − 1

6
H Hx x

]
Qt d x ≈

(

1 + 1

3

(
Hi + 1 − Hi − 1

2Δx

)2
− 1

6
Hi

Hi + 1 − 2Hi + Hi − 1

Δx2

)

(Qt)i ,

1

Δx

∫

C i

1

3
H Hx Qx t d x ≈ 1

3
Hi

Hi + 1 − Hi − 1

2Δx

(Qt)i + 1 − (Qt)i − 1

2Δx
,

1

Δx

∫

C i

1

3
H 2 Qx x t d x ≈ 1

3
H 2

i

(Qt)i + 1 − 2 (Qt)i + (Qt)i − 1

Δx2
.

Given the previous discretizations we obtain the following semi-discrete scheme:

dH̄ i

dt
+ 1

Δx

(
F (1)

i + 1
2

− F (1)
i − 1

2

) = 0 , (20)

L
dQ̄i

dt
+ 1

Δx

(
F (2)

i + 1
2

− F (2)
i − 1

2

) = S (v̄) . (21)

The matrix D defined above in Eq. (19) can be expressed in terms of the matrix
L:

D
def:=

(
I 0
0 L

)
,

where I is the identity matrix.
Consequently, in order to obtain the fully discrete scheme from Eqs. (20), (21)

we have to invert a system of linear equations with the tridiagonal matrix L. It can
be done efficiently with linear complexity. We note that on dry cells the matrix L

becomes simply the identity matrix since Hi ≡ 0 in that regions. We reiterate again
that we do not switch off the dispersive terms at some empirically chosen depth. It is
the wave propagation physics which governs the magnitude of dispersive terms and
thus, will decide whether they are important or not.
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4.4 Time-Stepping

We assume that the linear system of equations is already inverted leading to a system
of ODEs of the form:

v̄t = N (v̄, t) , v̄ (0) = v̄0 .

In order to solve numerically the last system of equations, we apply theBogacki–
Shampine method proposed in [14]. It is a Runge–Kutta scheme of the third
order with four stages. It has an embedded second-order method which is used to
estimate the local error and thus, to adapt the time-step size.Moreover, theBogacki–
Shampine method enjoys the First Same As Last (FSAL) property so that it needs
approximately three function evaluations per step. This method is also implemented
in the ode23 function in Matlab [73]. The one step of the Bogacki–Shampine
method is given by

k1 = N (v̄(n), tn) ,

k2 = N (v̄(n) + 1
2 Δtn k1, tn + 1

2 Δt) ,

k3 = N (v̄(n)) + 3
4 Δtn k2, tn + 3

4 Δt) ,

v̄(n+1) = v̄(n) + Δtn
(
2
9 k1 + 1

3 k2 + 4
9 k3

)
,

k4 = N (v̄(n+1), tn + Δtn) ,

v̄
(n+1)
2 = v̄(n) + Δtn

(
4
24 k1 + 1

4 k2 + 1
3 k3 + 1

8 k4
)
.

Here, v̄(n) ≈ v̄ (tn), Δt is the time-step and v̄
(n+1)
2 is a second-order approxima-

tion to the solution v̄ (tn + 1), so the difference between v̄(n+1) and v̄
(n+1)
2 gives an

estimation of the local error. The FSAL property consists in the fact that k4 is equal
to k1 in the next time-step, thus saving one function evaluation.

If the new time-stepΔtn + 1 is given byΔtn + 1 = ρn Δtn, then according toH211b
digital filter approach [74, 75], the proportionality factor ρn is given by

ρn =
( δ

εn

)β1
( δ

εn − 1

)β2

ρ−α
n − 1 , (22)

where εn is a local error estimation at time-step tn and constants β1, β2 and α are
defined as

α = 1

4
, β1 = 1

4 p
, β2 = 1

4 p
.

The parameter p is the order of the scheme and p = 3 in our case.

Remark 5 The adaptive strategy (22) can be further improved if we regularize the
factor ρn before computing the next time-step Δtn + 1:
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Δtn + 1 = ρ̂n Δtn , ρ̂n = ω (ρn) .

The function ω (ρ) is called the time-step limiter and should be smooth, mono-
tonically increasing and should satisfy the following conditions:

ω (0) < 1 , ω (+∞) > 1 , ω (1) = 1 , ω′ (1) = 1 .

One possible choice was suggested in [75]:

ω (ρ) = 1 + κ arctan
(ρ − 1

κ

)
.

In our computations, the parameter κ is set to 1.

Several validations of the above presented numerical scheme, including the con-
vergence tests, run-up simulations as well as the comparison with experimental data
[76, 90] can be found in our previous numerical study [37]. Here we make a step
forward in the application of the proposed numerical model to practical coastal engi-
neering problems.

5 Numerical Results

Using the numericalmethod described in the preceding section, we can perform some
simulations of the wave run-up onto a plane beach. Consider a setup schematically
depicted in Fig. 1. The bathymetry defined on a segment

[
a, c

]
is composed of two

regions: constant depth region z = −d0, for x ∈ [
a, b

]
and the constant slope

region z = −d0 + x tan(δ), x ∈ [
b, c

]
. We will solve numerically a boundary

value problem (BVP).Namely, on the right end (x = c)we impose thewall boundary
condition u|x = c = 0,while on the left boundary (x = a)we are givenby the incident
wave height. In the present study, we will consider the run-up of a monochromatic
periodic wave entering from the left side (see Fig. 1):

H0 (t) = d0 + A sin(ω t) .

The computational domain is discretized into N = 500 equal control volumes.
The time-step value is automatically chosen by the time-stepping algorithm. The
values of various physical parameters are given in Table1.

Remark 6 The rigorous imposing of an incident wave boundary condition in the con-
text of various dispersive wave equations is essentially an open question. However,
for the m-Peregrine system under consideration, we found an operational solution
based on the hyperbolic part of these equations. The general method is described in
[68]. The numerical flux through the first left face x = a is found by considering
incoming characteristics and is given by this formula:
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Table 1 Values of various parameters used in convergence tests

Undisturbed water depth, d0 1

Gravity acceleration, g 1

Incident wave amplitude, A 0.3

Incident wave frequency, ω 0.8

Final simulation time, T 29.0

Left boundary coordinate, a −8

Transition coordinate between regions, b 0

Right boundary coordinate, c 16

Beach slope, tan(δ) 0.14
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Fig. 6 Free surface snapshot at t = 15. The blue solid line corresponds to them-Peregrine system,
the black dashed line refers to NSWE and the red dot-dashed line shows the bottom

F (x = a, t) =
(

H0 (t) u0
H0 (t) u20 + g

2 H2
0 (t)

)
, u0

def:= u1 + (
1 − H1

H0

)√
g H1 ,

where (H1, u1) are the reconstructed physical variables on the left face from the
fluid domain. Our numerical tests presented below demonstrate the robustness and
efficiency of this approach.

The afore-described situation is simulated with the modified Peregrine system
(4), (6), but also with classical nonlinear shallow water equations (NSWE) [38, 40,
91]. The comparative results of this simulation are presented in Figs. 6, 7, 8 and 9.We
underline that no friction terms are considered in this study. The numerical results
we present are based only on mathematical models described above.

During the initial stages, which are not shown in figures for the sake of manuscript
compactness, we see the periodic wave entering into the computational domain. The
non-dispersive solution is much steeper and first shock waves start to form. Then, the
wave continues its propagation towards the shore. During the propagation and run-up
processes, the solution to the m-Peregrine system is always behind the hyperbolic
wave and this is due to dispersive effects which make the wave propagation speed
closer to its physical value. The run-up process starts about t = 15 and it can be seen
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Fig. 7 Free surface snapshot at t = 18. The blue solid line corresponds to them-Peregrine system,
the black dashed line refers to NSWE and the red dot-dashed line shows the bottom
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Fig. 8 Free surface snapshot at t = 20. The blue solid line corresponds to them-Peregrine system,
the black dashed line refers to NSWE and the red dot-dashed line shows the bottom
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Fig. 9 Free surface snapshot at t = 25. The blue solid line corresponds to them-Peregrine system,
the black dashed line refers to NSWE and the red dot-dashed line shows the bottom
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in Fig. 6. The development of this process is shown in Figs. 7, 8 and 9. Both waves
about theirmaximum run-up height are depicted in Fig. 9. It is interesting to observe a
shock-likewave formed by them-Peregrine system near the shore in Fig. 9. It shows
that in the shallowest regions the wave dynamics is governed essentially by nonlinear
effects. This transition is naturally and automatically captured by our systemwithout
adding any ad hoc parameters.

6 Landslide-Generated Waves

Extreme water waves can become an important hazard in coastal areas. Main geo-
physical mechanisms include underwater earthquakes and landslides. The former
genesis mechanism has been intensively investigated since the Tsunami Boxing Day
[6, 33, 36, 39, 64–66, 77]. The list of references is far from being exhaustive. In
this section, we focus on the latter mechanism—the underwater landslides which can
cause some considerable damage in the genesis region. In general, the wavelength of
landslide-generated waves is much smaller than the length of transoceanic tsunamis.
Consequently, the dispersive effects might be important. This consideration explains
why we opt for a dispersive m-Peregrinemodel which is able to simulate the propa-
gation and run-up of weakly nonlinear weakly dispersive water waves on nonuniform
beaches.

Most of the landslide models which are currently used in the literature can be con-
ventionally divided into three big categories. The first category contains the simplest
models where the landslide shape and its trajectory are known a priori [57, 78, 80].
Another approach consists in assuming that the landslide motion is translational and
the sliding mass follows the trajectory of its barycentre. The governing equation of
the centre of mass is obtained by projecting all the forces, acting on the slide, onto
the horizontal direction of motion [29, 48, 85]. Finally, the third category of models
describes the slide-water evolution as a two-layer system, the sliding mass being
generally formulated by a Savage–Hutter type model [43]. Taking into account
all the uncertainties which exist in the modelling of the real-world events, we choose
in this chapter to study the intermediate level (i.e. the second category) which cor-
responds better to the precision of the available data in real-world situations. The
chosen landslide model will be detailed below in Sect. 6.1.

The original derivation of the Peregrine system [70] assumes that the bottom
is stationary in time, i.e. z = −h (x). However, in order to simulate the wave gen-
eration process by bottom motion, we need to include the time dependence into
the bathymetry definition [33, 34]. The bottom dynamics has been included in the
Peregrine system derivation by Wu [86, 87]:

ηt + (
(h + η) u

)
x = − ht ,
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ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t = 1

2
h hx t t

︸ ︷︷ ︸
(∗)

,

where the new termdue to the bottommotion ismarkedwith sign (*). By repeating the
same invariantization process as above, the system written in conservative variables
and with moving bottom can be straightforwardly derived:

Ht + Qx = 0 , (23)

(
1 + 1

3
H2

x − 1

6
H Hx x

)
Qt − 1

3
H2 Qx x t − 1

3
H Hx Qx t +

( Q2

H
+ g

2
H2

)

x

= g H hx + 1

2
H2 hx t t . (24)

The bottom motion enters into the momentum balance Eq. (24) through the source
term 1

2 H dx t t . The mass conservation Eq. (23) keeps naturally its initial form. We
underline that the linear dispersion relation of the m-Peregrine system (23), (24)
is identical with that the original Peregrine model [70] since these models differ
only in nonlinear terms and the source terms do not enter into the dispersion relation
analysis. The numerical scheme described in Sect. 4 is applied to the moving bottom
m-Peregrine system (23), (24) without any modification. The new source term
is just projected onto cell centres since the function h (x, t) is prescribed by the
bathymetry, the landslide shape and trajectory.

Remark 7 Following the same invariantization, one can derive the two-dimensional
modified Peregrine system including moving bottom topography:

Ht + ∇ · Q = 0 (25)

Qt + ∇ ·
(

Q ⊗ Q

H
+ g

2
H 2 I

)
− P ( H , Q ) = g H ∇ h + H 2

2
∇htt , (26)

where

P( H , Q ) = H2

2
∇(∇ · Qt) − H2

6
ΔQt −

(
|∇H |2

3
− H ΔH

6

)

Qt + 1

3
H ∇H · ∇Qt .

It is noted that in this case H depends on ( x, y, t ) and Q = H × (u, v)T with
u ( x, y, t ) and v ( x, y, t ) being the depth-averaged velocity horizontal components
of the fluids velocity in the directions x and y, respectively. This system again contains
some high-order correction terms in the source terms that can be simplified without
affecting the invariance of vertical translations.
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6.1 Landslide Model

In this section, we briefly present a model of an underwater landslide motion. This
process has to be addressed carefully since it determines the subsequent forma-
tion of water waves. In this study, we will assume the moving mass to be a solid
quasi-deformable body with a prescribed shape and known physical properties that
preserves its mass and volume. Under these assumptions, it is sufficient to compute
the trajectory of the barycentre x = xc (t) to determine the motion of the whole
body. In general, only uniform slopes are considered in the literature in conjunction
with this type of landslide models [24, 29, 48, 69, 85]. However, a novel model,
taking into account the bottom geometry and curvature effects, has been recently
proposed [6]. Hereafter we will follow in great lines this study.

The static bathymetry is prescribed by a sufficiently smooth (at least of the class
C2) and single-valued function z = −h0 (x). The landslide shape is initially pre-
scribed by a localized in space function z = ζ0 (x). For example, in this study we
choose the following shape function:

ζ0 (x) = A sech
(
k (x − x0)

)
, (27)

where the parameter A is the maximum slide height, k is inversely proportional to
the slide length and x0 is the initial position of its barycentre. Obviously, the model
description given below is valid for any other reasonable shape.

Since the landslide motion is translational, its shape at time t is given by the
function z = ζ (x, t) = ζ0 (x − xc (t)). Recall that the landslide centre is located
at the point with abscissa x = xc (t). Then, the impermeable bottom for the water
wave problem can be easily determined at any time by simply superposing the static
and dynamic components:

z = −h (x, t) = −h0 (x) + ζ (x, t) .

To simplify the subsequent presentation, we introduce the classical arc-length
parametrization, where the parameter s = s (x) is given by the following formula:

s = L (x) =
∫ x

x0

√
1 + (h′

0(ξ))2 d ξ . (28)

The function L (x) is monotonic and can be efficiently inverted to turn back to the
originalCartesian abscissa x = L−1 (s). Within this parametrization, the landslide
is initially located at point with the curvilinear coordinate s = 0. The local tangential
direction is denoted by τ and the normal by n.

The landslide motion is governed by the following differential equation obtained
by a straightforward application of Newton’s second law:

m
d2 s

dt2
= Fτ (t) ,



Peregrine’s System Revisited 31

where m is the mass and Fτ (t) is the tangential component of the forces acting on
the moving submerged body. In order to project the forces onto the axes of local
coordinate system, the angle θ (x) between τ and O x can be easily determined:

θ (x) = arctan
(
h′
0 (x)

)
.

Let us denote by ρw and ρ� the densities of the water and sliding material corre-
spondingly. If V is the volume of the slide, then the total mass m is given by

m
def:= (ρ� + cw ρw) V ,

where cw is the added mass coefficient [5]. A portion of the water mass has to be
added since it is entrained by the underwater body motion. The volume V can be
computed as

V = W · S = W
∫

R

ζ0 (x) d x ,

where W is the landslide width in the transverse direction. The last integral can be
computed exactly for the particular choice (27) of the landslide shape to give

V = 1

2
� A W .

The total projected force Fτ acting on the landslide can be conventionally repre-
sented as a sum of two different kinds of forces denoted by Fg and Fd :

Fτ = Fg + Fd ,

whereFg is the joint action of the gravity and buoyancy, whileFd is the total contribu-
tion of various dissipative forces (to be specified below). The gravity and buoyancy
forces act in opposite directions and their horizontal projection Fg can be easily
computed:

Fg (t) = (ρ� − ρw) W g
∫

R

ζ (x, t) sin
(
θ (x)

)
d x .

Now, let us specify the dissipative forces. The water resistance to the motion force
Fr is proportional to the maximal transversal section of the moving body and to the
square of its velocity:

Fr = −1

2
cd ρw A W σ (t)

(ds

dt

)2
,

Here, cd is the resistance coefficient of the water and σ (t)
def:= sign

(
ds
dt

)
. The

coefficient σ (t) is needed to dissipate the landslide kinetic energy independently
of its direction of motion. The friction force Ff is proportional to the normal force
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exerted on the body due to the weight:

Ff = −cf σ (t) N (x, t) .

The normal force N (x, t) is composed of the normal components of gravity and
buoyancy forces but also of the centrifugal force due to the variation of the bottom
slope:

N (x, t) = (ρ� − ρw) g W
∫

R
ζ (x, t) cos

(
θ (x)

)
d x + ρ� W

∫

R
ζ (x, t) κ (x)

(ds

dt

)2
d x ,

where κ (x) is the signed curvature of the bottom which can be computed by the
following formula:

κ (x) = h′′
0 (x)

(
1 + (h′

0 (x))2
) 3

2

.

We note that the last term vanishes for a plane bottom since κ (x) ≡ 0 in this
particular case.

In order to dissipate more energy along the landslide trajectory if it is needed, we
complete our model by two supplementary viscous terms:

Fd = −cv

ds

dt
− cb

ds

dt

{
ds

dt

}
,

where cv and cb are some prescribed constants. The first term cv represents the
internal energy loss inside the sliding material. The second term cb accounts for the
dissipation in the boundary layer between the landslide and the solid bottom.

Finally, if we sum up all the contributions of described above forces, we obtain
the following second-order differential equation:

(γ + cw) S
d2 s

dt2
= (γ − 1) g

(
I1 (t) − cf σ (t) I2 (t)

)

− σ (t)
(

cf γ I3 (t) + 1

2
cd A

)(ds

dt

)2 − cv

ds

dt
− cb

ds

dt

{
ds

dt

}
,

(29)

where γ
def:= ρ�

ρw
> 1 is the ratio of densities and integrals I1, 2, 3 (t) are defined as
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I1 (t) =
∫

R

ζ (x, t) sin
(
θ (x)

)
d x ,

I2 (t) =
∫

R

ζ (x, t) cos
(
θ (x)

)
d x ,

I3 (t) =
∫

R

ζ (x, t) κ (x) d x .

Note also that Eq. (29) was simplified by dividing both sides by the width value
W . In order to obtain a well-posed initial value problem, Eq. (29) has to be completed
by two initial conditions:

s (0) = 0 , s′ (0) = 0 .

From Eq. (29), it follows that the motion can start only if this condition is fulfilled
[6]:

I1 (0) − cf I2 (0) =
∫

R

ζ0 (x)
[
sin

(
θ (x)

) − cf cos
(
θ (x)

)]
d x > 0 .

In order to solve numerically Eq. (29), we employ the same Bogacki–Shampine
3rd order Runge–Kutta scheme that we used to approximate the Boussinesq
Equations (23), (24). The integrals I1, 2, 3 (t) are computed with the trapezoidal rule.
Once the landslide trajectory s = s (t) is found, Eq. (28) is used to find its motion
x = x (t) in the initial Cartesian coordinate system.

6.2 Numerical Results

Consider a one-dimensional physical domain I = [
a, b

] = [−120, 120
]
which

is divided into N equal control volumes. This domain is composed of three regions:
the left and right curvilinear sloping beaches which surround a generation region
of a deformed parabolic shape. Specifically, the static bathymetry function d0 (x) is
given by the following expression:

d0 (x) = −κ
(
x2 − c2

) + A1 e
−k1 (x − x1)2 + A2 e

−k2 (x − x2)2 .

Basically, this function represents a parabolic bottom profile deformed by two
underwater bumps. We made this nontrivial choice in order to illustrate better the
advantages of our landslide model, which was designed to handle general non-
flat bathymetries. The values of all physical and numerical parameters are given
in Table2. The bottom profile along with landslide trajectory for these parameters
are depicted in Fig. 10. The landslide motion starts from the rest position under the
action of the gravity force. We simulate its motion along with the free surface waves
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Table 2 Values of various parameters used in the numerical computations

Parameter Value

Gravity acceleration, g 1.0

Parabolic bottom flatness coefficient, κ 1.5 × 10−3

Initial shoreline position, c 100.0

Underwater bump amplitude, A1 2.8

Underwater bump amplitude, A2 −4.8

Bump characteristic steepness, k1 0.008

Bump characteristic steepness, k2 0.003

Bump centre position, x1 −60.0

Bump centre position, x2 0.0

Number of control volumes, N 2500

Slide amplitude, A 0.5

Characteristic slide inverse length, k0 0.16

Initial slide position, x0 −85.0

Added mass coefficient, cw 1.0

Water drag coefficient, cd 1.0

Friction coefficient, cf tan 2◦

Ratio between water and slide densities, γ 2.0

Boundary layer dissipation coefficient, cb 0.0035

Internal friction coefficient, cv 0.0045

Final simulation time, T 150.0

up to time T = 150.0 s. As it is expected, the landslide remains trapped between
two underwater bumps in its final equilibrium position. The speed and acceleration
of the slide barycentre during the simulation are represented in Fig. 11. We note
the discontinuities in the acceleration record which correspond to the time moments
when the velocity changes its sign. We insist that this behaviour is intrinsic to the
landslide model in use where the dissipative terms show the discontinuous behaviour
at turning points.

One of the important parameters in shallow water flows is the Froude number,
defined as the ratio between the characteristic fluid velocity to the gravitywave speed.
We computed also this parameter along the landslide trajectory:

Fr (t)
def:=

{
x′

c (t)
}

√
g d

(
xc (t), t

) .

The result is presented in Fig. 12. We can see that in our case the slide motion
remains subcritical as it is the case in most real-world situations [49].
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Fig. 10 Bathymetry profile and the landslide trajectory for the parameters given in Table2. The
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Fig. 11 Landslide speed and acceleration along its trajectory
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Fig. 12 Local Froude number computed along the slide motion
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Fig. 13 Synthetic wave gauge records at four different locations. Note the different vertical scales
on various images. Wave gauges are located at x = x0 = −85.0, −50.0, 0.0, 50.0 from the top
correspondingly. The wave amplitude is relative to the landslide amplitude

In order to measure the free surface elevations due to the underwater landslide,
we installed four numerical wave gauges located at x = x0, −50.0, 0.0 and 50.0.
The synthetic wave records are presented in Fig. 13. One can see that the biggest
quantity of primary interest is the wave run-up onto left and right beaches surround-
ing the fluid domain. This quantity is estimated numerically using the previously
described algorithm. The shoreline motion is represented in Fig. 14. One can see that
the landslide scenario under consideration produces much higher run-up values on
the beach opposite to the slope where the sliding process takes place. Finally, in order
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Fig. 14 Wave run-up heights onto left and right non-flat beaches during the simulation

to illustrate the energy transfer process from the landslide motion to the fluid layer,
we show the evolution of both energies during the generation process in Fig. 15. We
recall that the fluid potential, kinetic and total energies are defined correspondingly
as

Π (t)
def:= 1

2

∫

R

g η2 d x , K (t)
def:= 1

2

∫

R

(d + η) u2 d x , E (t)
def:= Π (t) + K (t) .

The landslide kinetic energy is readily obtained from the differential Equa-
tion (29):

K� (t)
def:= 1

2
(γ + cw) S

(ds

dt

)2
.

Our computation shows that only about 10% of the landslide energy is transmitted to
the wave. This estimation is in complete accordance with values reported by Harbitz
et al. [49].
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Fig. 15 Fluid and landslide energies evolution during the wave generation process

7 Discussion

Below, we outline the main conclusions and perspectives of our study.

7.1 Conclusions

In the present study, we revisited the celebrated Peregrine system for long waves
propagation. Namely, our primary goal was to undertake a series of equivalent
transformations which do not modify lower order dispersive terms O(μ2), while
extending the model stability and validity up to the shoreline. Moreover, the result-
ing governing equations possess an additional symmetry of the complete water wave
problem which were broken as a result of the asymptotic expansion. Hence, our
model remains invariant under the vertical translation (subgroup G5 in Theorem 4.2,
Benjamin and Olver [10]). The application of the invariantization process presented
in this study can be extended to any other system of Boussinesq type. It can be
viewed as a post treatment procedure to be applied after the derivation of a particular
model. The Peregrine system was chosen for illustrative purposes due to its impor-
tance and popularity in the water wave community. Of course, this system possesses
also several nice properties which explain its wide usage in applications.
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The developmentsmade in this study are illustratedwith several examples. First of
all, we proposed an efficient numerical method to construct travellingwave solutions.
Some comparisons with the classical nonlinear shallow water equations (NSWE)
were presented for the wave run-up problem onto a plane beach. The effect of dis-
persive terms is exemplified. In this study, we also presented a model of a landslide
motion over general curvilinear bottoms. This model takes into account the effects
of bottom curvature, generally neglected in the literature [29, 48, 69, 85]. Despite
the inclusion of some new physical effects, the considered slide model is compu-
tationally inexpensive and can be potentially used in more operational context. We
tested the m-Peregrinemodel on this more realistic case of the wave generation by
an underwater landslide. The coupling with the m-Peregrine equations was done
through the time-dependent bathymetry. Wave run-up records on non-flat beaches
were computed. The proposed technique can be directly applied to perform a land-
slide hazard effects in real-world situations.

7.2 Perspectives

In the presentmanuscript,we focused on the two-dimensional (2D) physical problem,
which became a one-dimensional (1D) mathematical problem thanks to the elimi-
nation of explicit dependence on the vertical coordinate (1DH). In future works, we
are going to focus on the generalization of the m-Peregrine to the 2DH situation
with two horizontal directions. There is another question which can be asked even
in the 1D case—the energy conservation issue. So far, a successful response to this
question has been brought in the variational framework [26].
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