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Preface

Alexander Borisovich Ezersky graduated from the Gorky State University (Russia)
in 1976 and integrated the Nonlinear Wave Department of the Institute of Applied
Physics (IAP) of the Russian Academy of Sciences (RAS) where he prepared the
doctoral thesis (Ph.D.) under the supervision of Prof. Mikhail Rabinovich. His
scientific spectrum covered different areas of physics such parametric waves,
acoustics, electronics, and hydrodynamics. Since 2000 to 2006, he had occupied
position as a regular invited professor in Le Havre where he performed a long-term
experiment of soliton excitation in wave channel and the effect of solitons in
sediment transport. He had a CNRS visiting position at the University of Rouen
where he collaborated on the stability of the wake behind a heated cylinder.

A. Ezersky worked at the Institute of Applied Physics (Russia) until September
2007 before he moved to the University of Caen Normandie in France as a
Professor of Mechanics with a research position in the Laboratory of Continental
and Coastal Morphodynamics where he reactivated research topic on the experi-
mental hydrodynamics and its applications to sediment transportation.

His colleagues from Le Havre and Caen have had long-term cooperation on
different problems of pattern formations in Taylor–Couette systems and water
waves. He brought a deep physical insight from his wide spectrum of knowledge of
nonlinear problems from electronic systems, parametric waves, pattern formation,
and marine hydrodynamics.

He has published more than a hundred of scientific papers and he coauthored
with M. Rabinovich and P. Weidman the book The Dynamics of Patterns,
published in 2000 by World Scientific. He has advised several doctoral students and
has acted as referee of many doctoral thesis and habilitations, especially in France.

Alexander had a very respectful attitude to his students and collaborators, cre-
ating a secure environment for fruitful scientific exchanges. His Russian colleagues
have expressed their experience and souvenirs while they were working at the
Institute of Applied Physics in Nizhny Novgorod, Russia.

We all have lost a great scientist and also a friend who left us very early. Our
thoughts go to his family in Caen (Natasha, Artem, Katia).
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The present book gathers chapters from his colleagues from Russia, especially
those from Nizhny Novgorod Institute of Applied Physics of the Russian Academy
of Science and from France, with whom he has been collaborating on experimental
and theoretical developments.

The book is subdivided into two parts. Part I contains eight chapters related to
nonlinear water waves and Part II addresses in five chapters, patterns dynamics in
nonequilibrium media. The contributions of Alexander B. Ezersky were valuable
from both the experimental and the theoretical points of view.

We thank all the authors for their contributions and the Springer Editor for
having kindly accepted the edition of this book in memory of our colleague and
friend, Prof. Alexander Borisovich Ezersky.

Caen, France Nizar Abcha
Le Havre, France Innocent Mutabazi
Nizhny Novgorod, Russia Efim Pelinovsky
February 2018

Alexander Ezersky (28.11.1953–21.07.2016)
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Alexander Ezersky, An Exceptional Scientist:
Colleagues’ Testimony

Alexander (Sasha) Ezersky was our close colleague and friend. We had a privilege
to work with him at the Institute of Applied Physics of the Russian Academy of
Sciences (IAP RAS) in Nizhny Novgorod for a long time. In this preface to the
book dedicated to his memory, we share our brief memories of Sasha as we knew
him and will remember him.

Alexander Ezersky at the conference “Nonlinear Wave Processes,” August 2005
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M. Rabinovich: Sasha Ezersky began his research career at my laboratory at
IAP RAS after graduating from the Radiophysics Department of the Gorky State
University in 1976. But we had got acquainted with him earlier when he was a
graduate student. He immediately became involved in the life of our team and
gained the authority of a thoughtful experimenter. He worked on the impact of
sound on a vortex wake behind a streamlined cylinder, investigation of the
dynamics of defects in Faraday ripples, and the origin of two-dimensional turbu-
lence in soap films. His very first article was published in one of the leading
physical journals—Journal of Experimental and Theoretical Physics [1].

Sasha had a rare gift to combine theory and experiment. He preferred key
experiments, and the adjective elegant was often suitable for his research. I recall
with great pleasure our joint work with Sasha and Patrick Weidman on the book
devoted to pattern formation [2]. Sasha was my student, my friend, and colleague.
I really treasure this friendship and I am sure that his name will remain in science.

Sasha was a very thoughtful person both in work and in communication with
people. He always defended his point of view, gently but persistently. Apart from
the specific research interests, he was fascinated by the history of science and
always referenced the pioneering works. He introduced me to the extremely
interesting Faraday’s Diary.

Board of the Department of Hydrophysics and Acoustics at IAP (December, 1978). Front row:
Head of the Department Vladimir Talanov (center), Heads of Laboratories Lev Ostrovsky (left)
and Mikhail Rabinovich (right). Upper row: Department activists Yury Stepanyants (left) and
Alexander Ezersky (right)
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L. Ostrovsky: Our scientific encounters with Sasha Ezersky started in the early
1980s resulted in our joint publication with him and Yury Stepanyants. We
investigated negative energy waves (NEW) in hydrodynamics in which dissipation
can cause instability. Sasha was actively involved in an important physical problem:
a fluid layer moving over a stationary viscous layer [3]. In this case, “losses” due to
radiation and viscosity, which normally produce wave attenuation, lead to expo-
nential growth for NEWs. This expands the range of classical instability of tan-
gential discontinuity known for ideal fluids. In that work, he demonstrated that he
was also a very good theoretician.

Our collaboration with Sasha included another important problem: generation of
a mean flow by a weakly nonlinear wave [3]. We showed that, along with the
well-known Stokes-type drift (mean current within the wave amplitude limits), a
depth-distributed countercurrent appears in a two-layer fluid. Also we worked with
Sasha on the interaction between acoustic waves and hydrodynamic vortices. This
problem stemmed from fundamental issues such as “superradiation” from rotating
objects first addressed by Y. B. Zel’dovch in the early 1970s. Sasha performed a
fine theoretical and experimental work in this area.

It was always easy and pleasant to communicate with Sasha, be it about science
or other topics; that was not only my impression. I often observed him discussing,
with calm emotion characteristic of him, various topics with people from my lab-
oratory. Everyone I knew liked him.

Y. Stepanyants: Our collaboration with Sasha started as soon as he joined our
Department at IAP RAS in 1976. Our first joint paper [1] was devoted to the sudden
onset of a chaotic regime of oscillations in a set of coupled oscillators under the
action of an external harmonic excitation. Then, we published jointly two other
papers on water waves in currents [3] where NEWs play an important role.

Sasha’s distinctive feature was his deep insight into the studied problems, which
greatly enhanced our understanding of complex physical phenomena not only in the
field of his direct interests. Our mutual friend and colleague Anatoly Mansfeld from
IAP RAS asked me if Sasha could help him resolve a difficulty in his work not
directly related to Sasha. I passed this request to Sasha, and he was happy to consult
Anatoly on that issue. It was just 3 months before his death in July 2016.

Sasha was a very practical person in everyday life. For instance, he easily
replaced a car accumulator for our mutual friend in France, helped me to erect a
brick wall in my house, or quickly learned how to operate a benzene saw (we used
to earn on the side together during summer vacation in taiga). Work with him was
especially pleasant thanks to his cheerful character and sense of humor.

Alexander Ezersky, An Exceptional Scientist: Colleagues’ Testimony ix



After the collapse of the Soviet Union, we were fated to live and work in
different countries, but we continued to keep in contact and sometimes met at
conferences. In December 2001, we met by chance at the Charles de Gaulle airport
in Paris and then took a flight to Moscow together. In December 2014, I visited
Sasha in Caen (France) where he lived with his family. We spent a lovely evening
together with his wife Natalia and our mutual colleague Germain Rousseaux dis-
cussing scientific, political, and many other issues. Sasha’s interests at that time
were focused basically on laboratory experiments on water waves in nonuniform
basins. Later, Germain and I demonstrated a possibility to model a Bose–Einstein
condensation in a relatively simple laboratory setup with water waves; the paper
dedicated to the memory of Sasha Ezersky is included in this book.

In August 2015, we learned that Sasha had been diagnosed with a malicious
form of cancer. For some period, it seemed that he overcame the disease.

Meeting at Charles de Gaulle airport, Paris, December, 2001. Yury Stepanyants (left) and
Alexander Ezersky (right)
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He resumed working and discussing scientific problems. Alas, that improvement
did not last long… Sasha will always be warmly remembered by many people who
knew him and especially those who had the chance to share with him scientific
activities.

Lev Ostrovsky
University of Colorado, Boulder, USA

Mikhail Rabinovich
BioCircuits Institute, University of California

San Diego, La Jolla, CA, USA

Yury Stepanyants
School of Agricultural, Computational

and Environmental Sciences
Faculty of Health, Engineering and Sciences

University of Southern Queensland
Toowoomba, QLD, Australia
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Peregrine’s System Revisited

Angel Durán, Denys Dutykh and Dimitrios Mitsotakis

Abstract In 1967, D. H. Peregrine proposed a Boussinesq-type model for long
waves in shallow waters of varying depth Peregrine (J Fluid Mech 27:815–827,
1967, [70]). This prominent paper turned a new leaf in coastal hydrodynamics along
with contributions by Serre (La Houille Blanche 8:374–388, 1953, [72]) and Green
and Naghdi (J Fluid Mech 78:237–246, 1976, [47]) and many others since then.
Several modern Boussinesq-type systems stem from these pioneering works. In
the present work, we revise the long wave model traditionally referred to as the
Peregrine system. Namely, we propose a modification of the governing equations,
which is asymptotically similar to the initial model for weakly nonlinear waves,
while preserving an additional symmetry of the complete water wave problem. This
modification procedure is called the invariantization. We show that the improved
system has well-conditioned dispersive terms in the swash zone, hence allowing for
efficient and stable run-up computations.

A. Durán
Departamento de Matemática Aplicada, E.T.S.I. Telecomunicación, Universidad
de Valladolid, Campus Miguel Delibes, Paseo de Belen 15, 47011 Valladolid, Spain
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Wellington 6140, New Zealand
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4 A. Durán et al.

1 Introduction

Nowadays, Boussinesq-type equations have become the models of choice in the
near-shore hydrodynamics. Proposed for the first time in 1871 by Boussinesq [15],
these equations have been substantially improved in works by Serre [72], Peregrine
[70], Green and Naghdi [47] and many others.1 Nowadays, it is almost impossible
to list all the bibliography on this subject. Since several decennaries researchers
have essentially focused their effort on extending the validity of these models from
shallow waters to intermediate depths [60, 61, 63] under the increasing demand of
the coastal engineering community. We refer to [20] for a recent reasoned review of
this topic. The derivation of these equations on flat geometries was reviewed in [55]
and the spherical case was covered in [54].

The true success of Boussinesq-type equations has to deal with the descrip-
tion of the wave breaking phenomenon. Classical nonlinear shallow water equations
(NSWE) predict waves to break too early. Thus, the validity region of NSWE is
limited only to the inner surf zone. The success story of Boussinesq systems begins
when they were shown to model fairly well breaking waves (see [90]). However, the
research on robust and efficient numericalmethods lags behind the current state of the
art in the modelling [8, 11, 41]. Main problems arise from the numerical treatment
of the shoreline and the stability of the resulting method. Most of the computa-
tional algorithms run into numerical troubles when a sufficiently big amplitude wave
reaches the run-up region. These problems are obviously due to the uncontrolled
numerical instabilities coming from the dispersive terms discretization (see [8]).
These difficulties were reported presumably for the first time in [62] (this emphasis
is ours):

However, to make this technique [slot technique] operational in connection with Boussinesq
typemodels a couple of problems call for special attention. […] Firstly the Boussinesq terms
are switched off at the still water shoreline,where their relative importance is extremely small
anyway. Hence in this region the equations simplify to the nonlinear shallowwater equations.

This extremely pragmatic point of view is still shared nowadays by a number of
researchers. However, in our opinion, it is the model which has to decide naturally
whether the dispersion is important or not. Ideally, the treatment of dry areas today
should be as simple and natural as the treatment of shock waves in shock-capturing
schemes [81]. In this study, we present a fully dispersive numerical simulation of
a wave run-up on a complex beach where dispersive terms are present in the entire
domain.

The main idea of this study is to revise the original Peregrine system [70]. Some
properties of the complete water wave problem have been lost as a price to pay for
the model simplification. Namely, as for many other models derived by asymptotic
methods, we loose the invariance under vertical translations. If no special care is
taken, we inevitably loose this property, since the asymptotic expansion is performed

1The steady version of the celebrated Serre–Green–Naghdi equations can be traced back up to
Lord Rayleigh [59].
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in a very particular frame of reference (around themeanwater level z = 0). However,
the full water wave problem possesses this symmetry (cf. [10]).

The model we propose in this study is asymptotically similar to the original
system since we add only higher order contributions which are formally negligible
while greatly improving structural properties of the model. Consequently, the linear
dispersion relation of the original system is conserved aswell. The great improvement
consists in dispersive terms which are better conditioned from the numerical point
of view and they fit better our physical intuition about their relative importance
when we approach the shoreline. A similar attempt of improving dispersive terms by
adding nonlinear contributions was also undertaken recently in [1, 9]. The procedure
presented in this study is sometimes referred to in the literature as the invariantization
process. Conservative versions of some Nwogu-type systems have been proposed
in [7, 44].

The present study is organized as follows. In Sect. 2, we present some rationale
on the Peregrine system and its invariantization, with particular emphasis on the
numerical generation of solitary wave solutions of the modified system, which are
studied in Sect. 3. Some elements on the numerical discretization by the finite volume
method are given in Sect. 4. Then, some numerical results are shown in Sect. 5 while
applications to waves generated due to landslides are presented in Sect. 6. Finally,
the main conclusions and perspectives of this study are outlined in Sect. 7.

2 Mathematical Modelling

Consider a Cartesian coordinate system in two space dimensions (x, z) to simplify
the notation. The z−axis is taken vertically upwards and the x−axis is horizontal and
coincides traditionally with the still water level. The fluid domain is bounded below
by the bottom z = −h (x) and above by the free surface z = η (x, t). Below we

will also need the total water depth H (x, t)
def:= h (x) + η (x, t). The sketch of the

fluid domain is given in Fig. 1. The flow is supposed to be incompressible and the
fluid is inviscid. An additional simplifying assumption of the flow irrotationality is
traditionally made as well.

h(x)

η (x, t)

H (x, t)

O x

z

Fig. 1 Sketch of the fluid domain with a sloping beach
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Remark 1 We would like to underline the fact that in the presence of a free surface
the vorticity does not remain zero even if it is so initially. A singularity at the free
surface (e.g. the wave breaking) may lead to vortex sheets creation. However, the
water wave theory is not supposed to hold when a wave breaking event occurs.

Under the previously described physical assumptions, Peregrine [70] derived the
following system of equations which is valid in the Boussinesq long wave regime:

ηt + (
(h + η) u

)
x = 0 , (1)

ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t = 0 , (2)

where u (x, t) is the depth-averaged fluid velocity, g is the gravity acceleration and

under-scripts (ux
def:= ∂u

∂x , ηt
def:= ∂η

∂t ) denote partial derivatives.

2.1 Symmetry Analysis

In this section, we assume the bottom to be flat, i.e. h = d = const > 0.Otherwise,
bathymetry variations will destroy a part of symmetries of the governing Eqs. (1),
(2). The infinitesimal generators of symmetries transformations for the classical
Peregrine system are given here:

X1 = ∂

∂t
,

X2 = ∂

∂x
,

X3 = u
∂

∂u
+ 2 (η + d)

∂

∂η
− t

∂

∂t
.

It is not difficult to see that the generator X1 corresponds to time translations:

t̃ = t + ε1 , x̃ = x , η̃ = η , ũ = u .

Similarly, the generator X2 gives translations in space:

t̃ = t , x̃ = x + ε2 , η̃ = η , ũ = u .

Finally, the generator X3 is nothing else but a scaling transformation:

t̃ = e−ε3 t , x̃ = x , η̃ = e2 ε3 (d + η) − d , ũ = eε3 u .
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There are noother symmetry transformations of the classicalPeregrine system. If
this system possessed a Lagrangian structure, we could employNoether theorem
to convert symmetries to conservation laws [67]. For instance, space translationsX2

correspond to themomentum conservation. The time translationsX1 would yield the
energy conservation equation, if we only could apply the Noether theorem. This is
one of the reasons why it is widely believed that the classical Peregrine system has
no energy functional. However, using some other complementary methods [13, 22]
we were able to compute an additional conservation law, which can be associated to
the energy:

(
1
2 u2 + g (d + η) ln(d + η) − g η − d2

6
u ux x

)

t
+

[
1
3 u3 + g u (d + η) ln(d + η) + d2

6
ux ut − d2

6
u ut x

]

x
= 0 .

The last conservation law can be used, for example, to check the accuracy of
numerical schemes over even bottoms for the sake of validation. In some situations,
additional conservation laws might be used in theoretical investigations as well.

2.2 Dimensionless Equations

Some of our developments below will be more transparent if we work in dimension-
less variables. The classical long wave scaling is the following:

x′ def:= x

�
, z′ def:= z

h0
, t′

def:= g

h0
t , η′ def:= η

a
, u′ def:= u√

g h0
,

where h0, a, � are the characteristic water depth, wave amplitude and wavelength,
respectively. The following dimensionless numbers are defined from them:

ε
def:= a

h0
, μ2 def:=

(h0
�

)2
, S

def:= ε

μ2
.

Parameters ε and μ2 measure the wave nonlinearity and dispersion, while the
so-called Stokes–Ursell number S measures the relative importance of these
effects. In the Boussinesq regime, the Stokes–Ursell number is supposed to
be of the order of one, i.e. S ∼ 1. The importance of this parameter is discussed
by, e.g. Ursell [82]. The Peregrine system (1), (2) in scaled variables at the order
O (ε + μ2) reads (primes are dropped below for the sake of convenience):

ηt + (
(h + ε η) u

)
x = 0 ,
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ut + ε u ux + ηx − μ2
(h

2
(h u)x x t − h2

6
ux x t

)
= O(ε2 + ε μ2 + μ4) ,

where on the right-hand side of the last equation we put the order of neglected terms.
Since the Stokes–Ursell number S ∼ 1, we have asymptotic similarity relations
in the Boussinesq regime:

ε2 ∼ ε μ2 ∼ μ4 .

2.3 Vertical Translations

In this section, we examine an important property of the water wave problem—
invariance under vertical translations (subgroup G5 in Theorem 4.2, Benjamin and
Olver [10]). This transformation is described by the following simple change of
variables:

z ← z + d , η ← η − d , h ← h + d , u ← u , (3)

where d is some constant. Here again, it is straightforward to check that themass con-
servation Eq. (1) remains invariant under transformation (3), while Eq. (2) produces
many additional dispersive terms proportional to the constant translation d :

ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t − h d

6
ux x t − d2

3
ux x t − d

2
(h u)x x t = 0 .

The reason for this discrepancy is that the coefficient hn (x) (n = 1, 2) in front
of the dispersive terms is not invariant under the vertical shift. The right variable to
use is the total water depth H (x, t) = h (x) + η (x, t) which is independent of
the chosen coordinate reference frame. Here again, the discrepancy is a result of the
asymptotic expansion around the still water level. Consequently, the derived model
is valid only for this particular choice of the coordinate axis O x. To make system
(1), (2) frame independent, we shall add higher order nonlinear terms which are
asymptotically negligible but have important implications in structural properties of
the resulting model.

In dimensionless variables, the total water depth is expressed as H (x, t) =
h (x) + ε η (x, t). As a corollary, we obtain two asymptotic relations which will
be used below:

h = H + O(ε) , hx = Hx + O(ε) , Ht = O(ε) .

Mathematically, it means that the bathymetry function should be completed by
an O(ε) term to become invariant under vertical translations. While performing this
invariantization, we will also recast our model in conservative variables (H , Q),
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where Q
def:= H u is the horizontal momentum. This modification will allow us to

employ those numerical methods developed in the literature for the discretization of
nonlinear shallow water equations (NSWE) [27, 35, 40, 91].

The mass conservation Eq. (1) in the new variables trivially reads:

Ht + Qx = 0 , (4)

while the momentum conservation Eq. (2) will require more computations. First of
all, we multiply Eq. (4) by u, Eq. (2) by H and add them to have

(Hu)t + (
ε H u2 + 1

2 ε
H2)

x − μ2
( H h

2
(h u)x x t − H h2

6
ux x t

︸ ︷︷ ︸
(∗∗)

)
= 1

ε
H hx . (5)

In the perspective of writing governing equations in the conservative form, the term
(**) has to be transformed using this relation:

ux x ≡
(h u

h

)

x x
= (h u)

(
2

h2x
h3

− hx x

h2

)
− 2

hx

h2
(h u)x + 1

h
(h u)x x .

Consequently, after simple computations, Eq. (5) takes the form:

(H u)t + (
ε H u2 + 1

2 ε
H2)

x − μ2
( H h

3
(h u)x x t + H

3
(h u)(h u)x x x

+ H hx

3
(h u)x t − 1

3

( H

h
h2x − 1

2
H hx x

)
(h u)t

)
= 1

ε
H hx .

The last equation is ready for the invariantization process. For illustrative purposes,
we show these computations only for the first dispersive term:

μ2 H h

3
(h u)x x t = μ2

3
H 2 (H u)x x t + O(ε μ2) = μ2

3
H 2 Qx x t + O(ε μ2) .

Thus, we add again only higher order terms which have no impact on linear
dispersive characteristics of the initial system.By proceeding in an analogousmanner
with all other dispersive terms and turning back to dimensional variables we obtain
the following momentum conservation equation:

(
1 + 1

3
H 2

x − 1

6
H Hx x

)
Qt − 1

3
H 2 Qx x t − 1

3
H Hx Qx t

+
(Q2

H
+ g

2
H 2

)

x
= g H hx .

(6)

The system (4), (6) (that will be called the modified Peregrine system or, in
a shorthand notation, the m-Peregrine system) actually has more advantages than
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being simply invariant under two additional transformations. The added value of this
invariantization process goes far beyond the initial symmetry consideration. Namely,
in this way, we extend the system validity to the run-up process and improve the
numerical conditioning of dispersive terms. For the first time, Eqs. (4), (6) were used
and validated for wave run-up problems in [37].

In natural environments, dispersive effects become gradually less and less impor-
tant when a wave travels shoreward to become negligible in the shoreline vicinity.
This is the reason why NSWE can be successfully used to describe to some extent
the run-up process. This physical observation can be translated into the mathemati-
cal language by the condition that dispersive terms go to zero when the total water
depth vanishes. If this condition is not fulfilled, numerical instabilities may appear
as reported by Bellotti and Brocchini [9]:

In our attempt to use these equations from intermediate waters up to the shoreline (see
Bellotti and Brocchini [8]) we run into numerical troubles when reaching the run-up region,
i.e. x > 0. These problems were essentially related to numerical instabilities due to the
uncontrolled growth of the dispersive contributions (i.e. O(μ2)-terms).

The reason for the extended numerical stability of the proposed model is twofold.
First of all, in the numerical algorithm, we have to invert at some point an elliptic
operator written over the time derivative in Eq. (6):

(
1 + 1

3
H 2

x − 1

6
H Hx x

)
q − 1

3
H 2 qx x − 1

3
H Hx qx = W,

where W is a known function arising from the advective terms discretization. It turns
out that the resulting linear system is better conditioned if the model is written in
terms of the total water depth. The second stability advantage comes from the fact
that almost all dispersive terms naturally vanish as we approach the shoreline.

Remark 2 It is noted that the same invariantization technique can be used also for
the case of moving bottom bathymetry and for higher dimensions, cf. Sect. 6.

2.3.1 Symmetry Analysis

The symmetries of the m-Peregrine system (over flat bottom) can be computed
using the standard methods as we did for the classical counterpart in Sect. 2.1. The
dimension of the symmetry group turns out to be the same as above. The infinitesimal
generators are given below:
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X1 = ∂

∂t
,

X2 = ∂

∂x
,

X3 = t
∂

∂t
+ 2 x

∂

∂x
+ 2H

∂

∂H
+ 3Q

∂

∂Q
.

The generated symmetry transformations are essentially the same. GeneratorX1

yields time translations:

t̃ = t + ε1 , x̃ = x , H̃ = H , Q̃ = Q ,

whileX2 gives translations in space:

t̃ = t , x̃ = x + ε2 , H̃ = H , Q̃ = Q .

Finally, X3 is a scaling transformation2:

t̃ = eε3 t , x̃ = e2 ε3 x , H̃ = e2 ε3 H , Q̃ = e3 ε3 Q .

2.3.2 Pressure Distribution

For some practical applications, we need to estimate the pressure field inside the fluid
and more particularly at the bottom. For example, the operational NOAA Tsunami
Warning System heavily relies on a network ofDARTbuoys detecting tsunamiwaves
by measuring the pressure at the ocean bottom [12, 79]. In this section, we propose
a way to reconstruct the pressure field in the whole water column.

In the original work of [70], one can find the following correct asymptotic expan-
sion for the pressure field:

p = −z + ε η + μ2
(
z (h u)x t + 1

2 z2 ux t
) + O(ε2 + ε μ2 + μ4) . (7)

The first two terms on the right-hand side correspond to the usual hydrostatic
pressure while the last two terms are purely non-hydrostatic contributions brought
by dispersive effects.

However, the original expression (7) for the pressure given by the asymptotic
expansion method has one important drawback. Namely, it satisfies the free surface
dynamic boundary condition p|z = ε η = 0 only to the leading order. Consequently,
the first improvementwe propose is to add some specific higher order terms to recover
this property at all orders we retain in the equation:

2Notice, please, that this scaling is different from X3 given in Sect. 2.1.
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p ≈ −z + ε η + μ2
(
(z − ε η) (h u)x t + 1

2 μ2 (z − ε η)2 ux t
)
.

Now, we will make a transformation consistent with the modified Peregrine
system (4), (6) which consists in replacing h by its asymptotically equivalent and
invariant by vertical translations counterpart H in the third term3 of the last formula:

p ≈ −z + ε η + μ2
(
(z − ε η) (H u)x t + 1

2 μ2 (z − ε η)2ux t
)
.

Finally, if we turn back to the dimensional and conservative variables, the final
expression for the pressure will take this form:

p

ρ
= g (η − z) + (z − η) Qx t + 1

2
(z − η)2

( Q

H

)

x t
.

whereρ is the constant fluid density. It is straightforward now to compute the pressure
value at the bottom by evaluating the last expression at z = −h:

p

ρ

∣∣∣∣
z = −h

= g H + H Qx t + 1

2
H 2

( Q

H

)

x t
.

The latter can be directly used, for example, to compute synthetic pressure records
which can be compared with real observations in deep ocean [79].

2.4 Galilean Invariance

In the same line of ideas, there is a question of the Galilean invariance of various
Boussinesq-type equations. In this section,we checkwhether thePeregrine system
(1), (2) remains invariant under theGalilean transformation. This issue was already
addressed in the context of some other systems by Christov [23].

The procedure is classical. First of all, we assume throughout this section the
bottom to be flat h = const. We choose another frame of reference which moves
uniformly rightwards with constant celerity c. Analytically, it is expressed by the
following change of variables:

x ← x − c t , t ← t , η (x, t) ← η (x − c t, t) , u (x, t) ← u (x − c t, t) + c . (8)

After some simple computations, one can easily check that the mass conservation
Eq. (1) remains invariant under the Galilean boost (8), while Eq. (2) has an extra
term (*):

3The asymptotic argument holds here since this term is O(μ2).
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ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t + c h2

3
ux x x

︸ ︷︷ ︸
(∗)

= 0 .

Consequently, the Peregrine system in its original form does not possess the
very basic Galilean invariance property while the complete water wave problem
does (subgroups G 7, 8 in three dimensions, see Theorem 4.2, Benjamin and Olver
[10]). Some consequences of this shortcoming are discussed in [23].

In order to recover the broken symmetry, we propose to modify Eq. (2) in the
following way:

ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t − h

3
u (h u)x x x = 0 . (9)

Ifwe perform the same computations as above,wewill see that themodifiedmodel
(1), (9) remains invariant under theGalilean boost (8). In order to understand better
this modification, we have to switch to dimensionless variables:

ut + ε u ux + ηx − μ2
(h

2
(h u)x x t − h2

6
ux x t

)
− ε μ2 h

3
u (h u)x x x = 0 .

Now, it is clear thatwe add a higher orderO(ε μ2) nonlinear dispersive termwhich
normally has to be omitted according to the philosophy of asymptotic methods.
However, we prefer to retain it to recover an important physical property of the
model—the Galilean invariance.

Remark 3 Since the term h
3 u (h u)x x x is a nonlinear dispersive term, it has no effect

on linear dispersion characteristics of the original model. The same remark applies
to developments presented below as well.

Consequently, we are able to add a higher order dispersive term to Eq. (2) which
makes the system Galilean invariant. The invariantization process in variables
(η, u) is straightforward. However, if we rewrite the modified system in terms of
the conservative variables (H , Q)we loose again theGalilean invariance property.
One of the reasons is that transformation (8) is more complex in these variables. For
example, the following chain rules apply:

Qt → Qt − c Qx + c (Ht − c Hx) , Qx → Qx + c Hx .

The invariantizationof themodifiedPeregrine system (4), (6) under theGalilean
symmetry remains an open question. The discussion of the Galilean invariance of
a few other nonlinear dispersive wave systems can be found in [31].
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3 Solitary Waves

Dispersive wave equations possess an important class of solutions—the solitary
waves (SW)which result fromabalance betweennonlinear and dispersive effects [21,
30, 53, 71]. The comprehension of these solutions allows to assess some properties
of the dispersive system under consideration. We note that analytical SW solutions
are not known even for the classical Peregrine system [70]. We have not been able
to construct closed-form solutions to the m-Peregrine system either. Consequently,
we will apply numerical methods which allow to approximate them accurately [89].

A travelling wave solution has the following form:

H (x, t) ≡ H (X ) , Q (x, t) ≡ Q (X ) , X
def:= x − cs t ,

where cs is the wave propagation speed in an inertial frame of reference. After
substituting this ansatz into the governing Eqs. (4), (6), we obtain the following
system of two coupled ordinary differential equations (ODEs):

− cs H ′ + Q′ = 0 , (10)

−cs

(
1 + 1

3
(H ′)2 − 1

6
H H ′′

)
Q′ + cs

3
H 2 Q′′′

+ cs

3
H H ′ Q′′ +

(Q2

H
+ g

2
H 2

)′ = 0 ,

(11)

where functions H (X ) and Q (X ) are assumed to be sufficiently smooth, even and
decaying to zero along with all their derivatives as | X | → ∞. Throughout this
section, we will consider the wave propagation over a flat bottom, i.e. h ≡ const.

The former Eq. (10) can be used to eliminate the variable Q (X ) from the latter
equation. It will be more convenient also to work with the free surface elevation
η (X ):

L0 η = (gh − c2s ) η′ + c2s h2

3
η′′′ +

( c2s η2

h + η

)′ + g

2
(η2)′ − c2s

3
(η′)3

+ c2s
3

(2 h η + η2) η′′′ + c2s
2

(h + η)η′η′′ = 0 . (12)

Once the free surface elevation η (X ) is determined, the velocity can be found
from the mass conservation (10):

u (X ) = cs η (X )

h + η (X )
, Q (X ) = cs η (X ) . (13)
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Solitary wave profiles (η (X ), u (X )) can be obtained numerically by approxi-
mating solutions to the differential Equation (12) and then using (13) to compute the
velocity profile.

Several strategies to this end exist in the literature (see [89] and references therein).
The one considered here consists of two steps. First, theNewtonmethod is applied to
(12): froman initial iterationη[0] (X ) and if the approximationη[ν] (X ), ν = 0, 1, . . .

to the profileη (X ) at the νth iteration is known, thenη[ν + 1] (X ) is obtained by solving
the equation

L[ν]Δη[ν] = −L0 η[ν] , (14)

where Δη[ν] def:= η[ν + 1] − η[ν], L0 is given by (12) and L[ν] is the linearized
operator of Eq. (12) evaluated at η[ν] (X ).

The second step of our numerical procedure is the discretization of (14), which
will be inspired by several works of J. Boyd (for more details see [16–19]). For
N ≥ 1 and large L > 0, the system (14) is discretized on the interval

(−L, L
)
by

the collocation points

xk = −L + (2k + 1) h , h = L

N
, k = 0, . . . , N − 1 . (15)

For ν = 0, 1, . . ., the approximation η
[ν]
h to the νth iteration η[ν] is sought in the

space Sh, based on (15), of trigonometric interpolation polynomials of the form

Zh (x) =
N − 1∑

j = 0

Zj cos
( π

2 L
j (x + L)

)
.

The discrete version of (14) is then as follows. If η[ν] ∈ Sh is known, we search

for the incremental term Δη
[ν]
h

def:= η
[ν + 1]
h − η

[ν]
h in Sh, i.e.

Δη[ν] (x) =
N − 1∑

j = 0

α
[ν]
j cos

( π

2 L
j (x + L)

)
,

and evaluate (14) at the collocation points (15). This leads to a linear system for the
coefficients α[ν] = (α

[ν]
0 , . . . , α

[ν]
N−1)

 of the form

L[ν]
h α[ν] = f [ν] , (16)

where the matrix L[ν]
h = (

L[ν]
ij

)N − 1
i, j = 0 and the vector f [ν] = (f [ν]

0 , . . . , f [ν]
N − 1)

 are
computed as

L[ν]
i j = L[ν] cos

( π

2 L
j (x + L)

) ∣∣∣
x = xi

, f [ν]
k = −L0 η[ν]

∣∣∣
X = xk

,
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for i, k = 0, . . . , N − 1. We note that the construction of coefficients f [ν] in (16)
requires the computation of derivatives of η

[ν]
h up to the third order at the points (15).

Finally, in order to pass to the next iteration η
[ν+1
h . Equation (16) has to be solved. The

ill-conditioning of the resulting system is treated using the pseudo-inverse technique
combined with the iterative refinement (see [18, 28, 46, 52] for more details). This
method solves Eq. (16) in the least squares sense and the solution has a minimum
norm.

The overall iterative process is controlled, in a standard way, by two parameters:
(i) a maximum number of iterations and (ii) a tolerance governing the relative error
between two consecutive iterations or the residual error:

ε1 [ν] = ‖ η[ν] − η[ν − 1] ‖
‖ η[ν] ‖ , ε2 [ν] = ‖ L0 η[ν] ‖ , (17)

measured in some norm ‖ · ‖ (in the experiments reported below, both the Euclidean
and the maximum norms (l∞) were implemented). Thus, the iteration stops when the
maximum number of iterations is attained or when any of the errors (17) is below a
prescribed tolerance.

3.1 Numerical Results

The described above numerical procedure will be tested and used now to compute
several travelling wave solutions to the m-Peregrine Equations (4), (6). For the sake
of convenience, we will solve equations in the dimensionless form which is readily
obtained by setting dimensional constants g = 1 and d = 1. The tolerance param-
eter in the control of the iterations is chosen to be equal to 10−13. The exact solution
to the classical Serre equations [25, 32, 72] is chosen as the initial approximation
at the first iteration.

The behaviour of the relative error ε1 [ν] and absolute error ε2 [ν] during the
iterations is shown in Fig. 2 for two values of the propagation velocity cs = 1.05
and 1.1. In both cases, the iterations are stopped since the first error drops below the
prescribed tolerance. The errors in Fig. 2 are measured in the maximum (l∞) norm.
The results in the Euclidean (l2) norm are completely similar. We can see that a
relatively small number of iterations is needed to achieve the convergence. However,
higher values of the propagation speed cs lead to higher nonlinearities. Consequently,
more iterations are needed until the convergence is attained. The dependence of the
number of iterations on the speed value cs is illustrated in Fig. 3. The metamorphosis
of these profiles as we change gradually the propagation speed cs is shown in Fig. 4.
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Fig. 2 Decimal logarithm of the relative errors defined in (17). Relative difference between two
iterations ε1 [ν] is shown in the left image, while the residual of the equation is depicted on the
right. The convergence is illustrated for two values of the propagation velocities cs = 1.05 (black
solid line) and 1.1 (blue dashed line)
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Fig. 3 Dependence of the number of iterations needed to achieve the convergence on the solitary
wave propagation speed cs
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Fig. 4 Solitary wave profiles for various values of the propagation speed cs are superposed on the
same image to show the evolution of the shape while changing this parameter. On the left image,
we show the free surface profile, while the right image depicts the horizontal velocity variable. The
lowest curve corresponds to the smallest values of cs = 1.02 and the highest solution is obtained
for cs = 1.2
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Fig. 5 Speed–amplitude relation for the m-Peregrine system. On the left image, we show the
free surface elevation amplitude and compare it to the 14th-order Fenton’s solution. On the right
image, we show the horizontal velocity amplitude as a function of the propagation speed cs

For illustrative purposes, we provide several computed amplitudes (free surface
elevation and horizontal velocity) of the solitary waves for various values of the
propagation speed cs. This speed–amplitude relation is represented graphically in
Fig. 5. We make also a comparison with the 14th-order Fenton’s solution for the
full water wave problem (for more details see [42, 58]). One can notice a good
agreement with the m-Peregrine system proposed in the previous Section.



Peregrine’s System Revisited 19

4 Numerical Discretization

In this section, we present briefly the rationale on numerical methods we use to
discretize the system (4), (6) we derived above: Below, we follow the great lines of
our previous work [37].

4.1 Finite Volume Scheme

We begin our presentation by a discretization of the hyperbolic part of equations
(which are simply the classical nonlinear shallow water equations) and then, in the
second time, we discuss the treatment of dispersive terms. The modified Peregrine
system (4), (6) can be formally put under this quasi-linear form:

D (vt) + [ f (v) ]x = s (v) , (18)

where v, f (v) are the conservative variables and the advective flux function, respec-
tively:

v =
(

H
Q

)
, f (v) =

⎛

⎝
Q

Q2

H
+ g

2
H 2

⎞

⎠ .

The source term s (v) contains the topography effects andD (vt) is the dispersion:

s (v) =
(

0
g H hx

)
, D (vt) =

(
Ht(

1 + 1
3 H 2

x − 1
6 H Hx x

)
Qt − 1

3 H 2 Qx x t − 1
3 H Hx Qx t

)

.

Since the time derivative of the horizontal momentum Q is defined implicitly, we
will have to invert a linear elliptic operator with non-constant coefficients.

The Jacobian of the advective flux f (v) can be easily computed:

A (v) = ∂f (v)

∂v
=

(
0 1

g H −
( Q

H

)2 2Q

H

)

.

The JacobianA (v) has two distinctive eigenvalues:

λ± = Q

H
± cs ≡ u ± cs , cs

def:= √
g H .

The corresponding right and left eigenvectors are provided here:

R =
(
1 1
λ+ λ−

)
, L = R−1 = − 1

2 cs

(
λ− −1

−λ+ 1

)
.
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Let us fix a partition of R into cells (or finite volumes) Ci = [
xi − 1

2
, xi + 1

2

]

with cell centres xi = 1
2 (xi − 1

2
+ xi + 1

2
), i ∈ Z. Let Δxi denotes the length of the

cell Ci. Without any loss of generality we assume the partition to be uniform, i.e.
Δxi ≡ Δx, ∀i ∈ Z. We would like to approximate the solution v (x, t) by discrete
values. In order to do so, we introduce the cell average of v on the cell Ci, i.e.

v̄i (t)
def:= (

H̄ i (t), Q̄i (t)
) = 1

Δx

∫

C i

v (x, t) dx .

A simple integration of (18) over the cell Ci leads the following exact relation:

D (v̄t)i + 1

Δx

(
f (v (xi + 1

2
, t) − f (v (xi − 1

2
, t))

)
= 1

Δx

∫

C i

s (v) d x .

Since the discrete solution is discontinuous at cell interfaces xi + 1
2
, i ∈ Z, the

heart of the matter in the finite volume method is to replace the flux through cell
faces by the so-called numerical flux function:

f (v (xi ± 1
2
, t)) ≈ Fi ± 1

2
(v̄L

i ± 1
2
, v̄R

i ± 1
2
) ,

where v̄
L, R
i ± 1

2
are reconstructions of conservative variables v̄ from left and right sides

of each cell interface. The reconstruction procedure employed in the present study
will be described below. Consequently, the semi-discrete scheme takes the form:

D (v̄t)i + 1

Δx

(
Fi + 1

2
− Fi − 1

2

) = §i , (19)

where §i ≈ 1
Δx

∫
C i

s (v) d x is an approximation of the topographic term on the
right-hand side of (6). In the present study we employ the standard hydrostatic
reconstruction [2] to obtain a well-balanced scheme. The expression for matrix D

will be detailed below in Sect. 4.3.
In order to discretize the advective flux f (v), we use the FVCF scheme [45]:

F (v, w) = f (v) + f (w)

2
− U (v, w)

f (w) − f (v)

2
.

The first part of the numerical flux is centred, and the second part is the upwinding
introduced through the Jacobian sign matrix U (v, w) defined as

U (v, w) = sign
(
A (μ)

)
, sign (A) = R · diag(s+, s−) · L , s± def:= sign(λ±) .
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The average state μ = (μ1 (v, w), μ2(v, w) between the left
v = (H L

i + 1
2
, uL

i + 1
2
) and the right w = (H R

i + 1
2
, uR

i + 1
2
) states4 is defined as the

Roe average:

μ1 =
H L

i + 1
2

+ H R
i + 1

2

2
, μ2 =

√
H L

i + 1
2

uL
i + 1

2
+

√
H R

i + 1
2

uR
i + 1

2√
H L

i + 1
2

+
√

H R
i + 1

2

.

After some simple algebraic computations, one can find the following expression
for the sign matrix U (v, w):

U (v, w) = 1

2 c

(
s−(μ2 + c) − s+ (μ2 − c) s+ − s−

(s+ − s−) (c2 − μ2
2) s+ (μ2 + c) − s− (μ2 − c)

)
,

with c
def:= √

g μ1. We reiterate again that the sign matrix U is evaluated at the
average state μ of left and right values.

4.2 High-Order Reconstruction

In order to obtain a higher order scheme in space, we need to replace the piecewise
constant data by a piecewise polynomial representation. This goal is achieved by var-
ious so-called reconstruction procedures such as MUSCL TVD [56, 83, 84], UNO
[51], ENO [50], WENO [88] and many others. In our previous study on Boussinesq-
type equations [37], the UNO2 scheme showed a good performance with low dissi-
pation in realistic propagation and run-up simulations.

Remark 4 In TVD schemes, the numerical operator is required (by definition) not
to increase the total variation of the numerical solution at each time-step. It follows
that the value of an isolated maximum may only decrease in time which is not a
good property for the simulation of coherent structures such as solitary waves. The
non-oscillatory UNO2 scheme, employed in our study, is only required to diminish
the number of local extrema in the numerical solution. Unlike TVD schemes, UNO
schemes are not constrained to damp the values of each local extremum at every
time-step.

The main idea of the UNO2 scheme is to construct a non-oscillatory piecewise-
parabolic interpolant Q (x) to a piecewise smooth function v (x) (see [51] for more
details). On each segment containing the face xi + 1

2
∈ [xi, xi + 1 ], the function

Q (x) = qi + 1
2
(x) is locally a quadratic polynomial and wherever v (x) is smooth

we have

4We do not take here the conservative variables (H , Q) since the reconstruction procedure is more
accurate and robust in physical variables (H , u).
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Q (x) − v (x) = O(Δx3),
dQ

dx
(x ± 0) − dv

dx
= O(Δx2) .

Also Q (x) should be non-oscillatory in the sense that the number of its local
extremadoes not exceed that ofv (x). Sinceqi + 1

2
(xi) = v̄i andqi + 1

2
(xi + 1) = v̄i + 1,

it can be written in the form:

qi + 1
2
(x) = v̄i + di + 1

2
v · x − xi

Δx
+ 1

2 Di + 1
2
v · (x − xi)(x − xi + 1)

Δx2
,

where di + 1
2
v

def:= v̄i + 1 − v̄i and Di + 1
2
v is closely related to the second deriva-

tive of the interpolant since Di + 1
2
v = Δx2 q′′

i + 1
2
(x). The polynomial qi + 1

2
(x) is

chosen to be one the least oscillatory between two candidates interpolating v (x) at
(xi − 1, xi, xi + 1) and (xi, xi + 1, xi + 2). This requirement leads to the following choice
of Di + 1

2
v:

Di + 1
2
v

def:= minmod
(
Di v, Di + 1 v

)
,

with

Di v = v̄i + 1 − 2 v̄i + v̄i − 1 , Di + 1 v = v̄i + 2 − 2 v̄i + 1 + v̄i ,

and minmod (x, y) is the usual min mod function defined as

minmod (x, y) = 1

2
(sign(x) + sign(y)) · min(| x | , | y |) .

To achieve the second orderO(Δx2) accuracy, it is sufficient to consider piecewise
linear reconstructions in each cell. Let L (x) denote this approximately reconstructed
function which can be written in this form:

L (x) = v̄i + si · x − xi

Δx
, x ∈ [

xi − 1
2
, xi + 1

2

]
.

To make L (x) a non-oscillatory approximation, we use the parabolic interpolation
Q (x) constructed below to estimate the slopes si within each cell:

si = Δx · minmod
(dQ

dx
(xi − 0),

dQ

dx
(xi + 0)

)
.

In otherwords, the solution is reconstructed on the cellswhile the solution gradient
is estimated on the dual mesh as it is often performed in more modern schemes
[3, 4]. A brief summary of the UNO2 reconstruction can be also found in [37].
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4.3 Dispersive Terms Treatment

In this section, we explain how we treat the dispersive terms of the m-Peregrine
system (4), (6). Here again, we follow in great lines our previous study [37]. The
following second-orderO(Δx2) approximations are used to discretize the dispersive
terms arising in matrix D (vt):

1

Δx

∫

C i

[
1 + 1

3
H2

x − 1

6
H Hx x

]
Qt d x ≈

(

1 + 1

3

(
Hi + 1 − Hi − 1

2Δx

)2
− 1

6
Hi

Hi + 1 − 2Hi + Hi − 1

Δx2

)

(Qt)i ,

1

Δx

∫

C i

1

3
H Hx Qx t d x ≈ 1

3
Hi

Hi + 1 − Hi − 1

2Δx

(Qt)i + 1 − (Qt)i − 1

2Δx
,

1

Δx

∫

C i

1

3
H 2 Qx x t d x ≈ 1

3
H 2

i

(Qt)i + 1 − 2 (Qt)i + (Qt)i − 1

Δx2
.

Given the previous discretizations we obtain the following semi-discrete scheme:

dH̄ i

dt
+ 1

Δx

(
F (1)

i + 1
2

− F (1)
i − 1

2

) = 0 , (20)

L
dQ̄i

dt
+ 1

Δx

(
F (2)

i + 1
2

− F (2)
i − 1

2

) = S (v̄) . (21)

The matrix D defined above in Eq. (19) can be expressed in terms of the matrix
L:

D
def:=

(
I 0
0 L

)
,

where I is the identity matrix.
Consequently, in order to obtain the fully discrete scheme from Eqs. (20), (21)

we have to invert a system of linear equations with the tridiagonal matrix L. It can
be done efficiently with linear complexity. We note that on dry cells the matrix L

becomes simply the identity matrix since Hi ≡ 0 in that regions. We reiterate again
that we do not switch off the dispersive terms at some empirically chosen depth. It is
the wave propagation physics which governs the magnitude of dispersive terms and
thus, will decide whether they are important or not.
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4.4 Time-Stepping

We assume that the linear system of equations is already inverted leading to a system
of ODEs of the form:

v̄t = N (v̄, t) , v̄ (0) = v̄0 .

In order to solve numerically the last system of equations, we apply theBogacki–
Shampine method proposed in [14]. It is a Runge–Kutta scheme of the third
order with four stages. It has an embedded second-order method which is used to
estimate the local error and thus, to adapt the time-step size.Moreover, theBogacki–
Shampine method enjoys the First Same As Last (FSAL) property so that it needs
approximately three function evaluations per step. This method is also implemented
in the ode23 function in Matlab [73]. The one step of the Bogacki–Shampine
method is given by

k1 = N (v̄(n), tn) ,

k2 = N (v̄(n) + 1
2 Δtn k1, tn + 1

2 Δt) ,

k3 = N (v̄(n)) + 3
4 Δtn k2, tn + 3

4 Δt) ,

v̄(n+1) = v̄(n) + Δtn
(
2
9 k1 + 1

3 k2 + 4
9 k3

)
,

k4 = N (v̄(n+1), tn + Δtn) ,

v̄
(n+1)
2 = v̄(n) + Δtn

(
4
24 k1 + 1

4 k2 + 1
3 k3 + 1

8 k4
)
.

Here, v̄(n) ≈ v̄ (tn), Δt is the time-step and v̄
(n+1)
2 is a second-order approxima-

tion to the solution v̄ (tn + 1), so the difference between v̄(n+1) and v̄
(n+1)
2 gives an

estimation of the local error. The FSAL property consists in the fact that k4 is equal
to k1 in the next time-step, thus saving one function evaluation.

If the new time-stepΔtn + 1 is given byΔtn + 1 = ρn Δtn, then according toH211b
digital filter approach [74, 75], the proportionality factor ρn is given by

ρn =
( δ

εn

)β1
( δ

εn − 1

)β2

ρ−α
n − 1 , (22)

where εn is a local error estimation at time-step tn and constants β1, β2 and α are
defined as

α = 1

4
, β1 = 1

4 p
, β2 = 1

4 p
.

The parameter p is the order of the scheme and p = 3 in our case.

Remark 5 The adaptive strategy (22) can be further improved if we regularize the
factor ρn before computing the next time-step Δtn + 1:
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Δtn + 1 = ρ̂n Δtn , ρ̂n = ω (ρn) .

The function ω (ρ) is called the time-step limiter and should be smooth, mono-
tonically increasing and should satisfy the following conditions:

ω (0) < 1 , ω (+∞) > 1 , ω (1) = 1 , ω′ (1) = 1 .

One possible choice was suggested in [75]:

ω (ρ) = 1 + κ arctan
(ρ − 1

κ

)
.

In our computations, the parameter κ is set to 1.

Several validations of the above presented numerical scheme, including the con-
vergence tests, run-up simulations as well as the comparison with experimental data
[76, 90] can be found in our previous numerical study [37]. Here we make a step
forward in the application of the proposed numerical model to practical coastal engi-
neering problems.

5 Numerical Results

Using the numericalmethod described in the preceding section, we can perform some
simulations of the wave run-up onto a plane beach. Consider a setup schematically
depicted in Fig. 1. The bathymetry defined on a segment

[
a, c

]
is composed of two

regions: constant depth region z = −d0, for x ∈ [
a, b

]
and the constant slope

region z = −d0 + x tan(δ), x ∈ [
b, c

]
. We will solve numerically a boundary

value problem (BVP).Namely, on the right end (x = c)we impose thewall boundary
condition u|x = c = 0,while on the left boundary (x = a)we are givenby the incident
wave height. In the present study, we will consider the run-up of a monochromatic
periodic wave entering from the left side (see Fig. 1):

H0 (t) = d0 + A sin(ω t) .

The computational domain is discretized into N = 500 equal control volumes.
The time-step value is automatically chosen by the time-stepping algorithm. The
values of various physical parameters are given in Table1.

Remark 6 The rigorous imposing of an incident wave boundary condition in the con-
text of various dispersive wave equations is essentially an open question. However,
for the m-Peregrine system under consideration, we found an operational solution
based on the hyperbolic part of these equations. The general method is described in
[68]. The numerical flux through the first left face x = a is found by considering
incoming characteristics and is given by this formula:
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Table 1 Values of various parameters used in convergence tests

Undisturbed water depth, d0 1

Gravity acceleration, g 1

Incident wave amplitude, A 0.3

Incident wave frequency, ω 0.8

Final simulation time, T 29.0

Left boundary coordinate, a −8

Transition coordinate between regions, b 0

Right boundary coordinate, c 16

Beach slope, tan(δ) 0.14
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Fig. 6 Free surface snapshot at t = 15. The blue solid line corresponds to them-Peregrine system,
the black dashed line refers to NSWE and the red dot-dashed line shows the bottom

F (x = a, t) =
(

H0 (t) u0
H0 (t) u20 + g

2 H2
0 (t)

)
, u0

def:= u1 + (
1 − H1

H0

)√
g H1 ,

where (H1, u1) are the reconstructed physical variables on the left face from the
fluid domain. Our numerical tests presented below demonstrate the robustness and
efficiency of this approach.

The afore-described situation is simulated with the modified Peregrine system
(4), (6), but also with classical nonlinear shallow water equations (NSWE) [38, 40,
91]. The comparative results of this simulation are presented in Figs. 6, 7, 8 and 9.We
underline that no friction terms are considered in this study. The numerical results
we present are based only on mathematical models described above.

During the initial stages, which are not shown in figures for the sake of manuscript
compactness, we see the periodic wave entering into the computational domain. The
non-dispersive solution is much steeper and first shock waves start to form. Then, the
wave continues its propagation towards the shore. During the propagation and run-up
processes, the solution to the m-Peregrine system is always behind the hyperbolic
wave and this is due to dispersive effects which make the wave propagation speed
closer to its physical value. The run-up process starts about t = 15 and it can be seen
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Fig. 7 Free surface snapshot at t = 18. The blue solid line corresponds to them-Peregrine system,
the black dashed line refers to NSWE and the red dot-dashed line shows the bottom
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Fig. 8 Free surface snapshot at t = 20. The blue solid line corresponds to them-Peregrine system,
the black dashed line refers to NSWE and the red dot-dashed line shows the bottom
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Fig. 9 Free surface snapshot at t = 25. The blue solid line corresponds to them-Peregrine system,
the black dashed line refers to NSWE and the red dot-dashed line shows the bottom
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in Fig. 6. The development of this process is shown in Figs. 7, 8 and 9. Both waves
about theirmaximum run-up height are depicted in Fig. 9. It is interesting to observe a
shock-likewave formed by them-Peregrine system near the shore in Fig. 9. It shows
that in the shallowest regions the wave dynamics is governed essentially by nonlinear
effects. This transition is naturally and automatically captured by our systemwithout
adding any ad hoc parameters.

6 Landslide-Generated Waves

Extreme water waves can become an important hazard in coastal areas. Main geo-
physical mechanisms include underwater earthquakes and landslides. The former
genesis mechanism has been intensively investigated since the Tsunami Boxing Day
[6, 33, 36, 39, 64–66, 77]. The list of references is far from being exhaustive. In
this section, we focus on the latter mechanism—the underwater landslides which can
cause some considerable damage in the genesis region. In general, the wavelength of
landslide-generated waves is much smaller than the length of transoceanic tsunamis.
Consequently, the dispersive effects might be important. This consideration explains
why we opt for a dispersive m-Peregrinemodel which is able to simulate the propa-
gation and run-up of weakly nonlinear weakly dispersive water waves on nonuniform
beaches.

Most of the landslide models which are currently used in the literature can be con-
ventionally divided into three big categories. The first category contains the simplest
models where the landslide shape and its trajectory are known a priori [57, 78, 80].
Another approach consists in assuming that the landslide motion is translational and
the sliding mass follows the trajectory of its barycentre. The governing equation of
the centre of mass is obtained by projecting all the forces, acting on the slide, onto
the horizontal direction of motion [29, 48, 85]. Finally, the third category of models
describes the slide-water evolution as a two-layer system, the sliding mass being
generally formulated by a Savage–Hutter type model [43]. Taking into account
all the uncertainties which exist in the modelling of the real-world events, we choose
in this chapter to study the intermediate level (i.e. the second category) which cor-
responds better to the precision of the available data in real-world situations. The
chosen landslide model will be detailed below in Sect. 6.1.

The original derivation of the Peregrine system [70] assumes that the bottom
is stationary in time, i.e. z = −h (x). However, in order to simulate the wave gen-
eration process by bottom motion, we need to include the time dependence into
the bathymetry definition [33, 34]. The bottom dynamics has been included in the
Peregrine system derivation by Wu [86, 87]:

ηt + (
(h + η) u

)
x = − ht ,



Peregrine’s System Revisited 29

ut + u ux + g ηx − h

2
(h u)x x t + h2

6
ux x t = 1

2
h hx t t

︸ ︷︷ ︸
(∗)

,

where the new termdue to the bottommotion ismarkedwith sign (*). By repeating the
same invariantization process as above, the system written in conservative variables
and with moving bottom can be straightforwardly derived:

Ht + Qx = 0 , (23)

(
1 + 1

3
H2

x − 1

6
H Hx x

)
Qt − 1

3
H2 Qx x t − 1

3
H Hx Qx t +

( Q2

H
+ g

2
H2

)

x

= g H hx + 1

2
H2 hx t t . (24)

The bottom motion enters into the momentum balance Eq. (24) through the source
term 1

2 H dx t t . The mass conservation Eq. (23) keeps naturally its initial form. We
underline that the linear dispersion relation of the m-Peregrine system (23), (24)
is identical with that the original Peregrine model [70] since these models differ
only in nonlinear terms and the source terms do not enter into the dispersion relation
analysis. The numerical scheme described in Sect. 4 is applied to the moving bottom
m-Peregrine system (23), (24) without any modification. The new source term
is just projected onto cell centres since the function h (x, t) is prescribed by the
bathymetry, the landslide shape and trajectory.

Remark 7 Following the same invariantization, one can derive the two-dimensional
modified Peregrine system including moving bottom topography:

Ht + ∇ · Q = 0 (25)

Qt + ∇ ·
(

Q ⊗ Q

H
+ g

2
H 2 I

)
− P ( H , Q ) = g H ∇ h + H 2

2
∇htt , (26)

where

P( H , Q ) = H2

2
∇(∇ · Qt) − H2

6
ΔQt −

(
|∇H |2

3
− H ΔH

6

)

Qt + 1

3
H ∇H · ∇Qt .

It is noted that in this case H depends on ( x, y, t ) and Q = H × (u, v)T with
u ( x, y, t ) and v ( x, y, t ) being the depth-averaged velocity horizontal components
of the fluids velocity in the directions x and y, respectively. This system again contains
some high-order correction terms in the source terms that can be simplified without
affecting the invariance of vertical translations.
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6.1 Landslide Model

In this section, we briefly present a model of an underwater landslide motion. This
process has to be addressed carefully since it determines the subsequent forma-
tion of water waves. In this study, we will assume the moving mass to be a solid
quasi-deformable body with a prescribed shape and known physical properties that
preserves its mass and volume. Under these assumptions, it is sufficient to compute
the trajectory of the barycentre x = xc (t) to determine the motion of the whole
body. In general, only uniform slopes are considered in the literature in conjunction
with this type of landslide models [24, 29, 48, 69, 85]. However, a novel model,
taking into account the bottom geometry and curvature effects, has been recently
proposed [6]. Hereafter we will follow in great lines this study.

The static bathymetry is prescribed by a sufficiently smooth (at least of the class
C2) and single-valued function z = −h0 (x). The landslide shape is initially pre-
scribed by a localized in space function z = ζ0 (x). For example, in this study we
choose the following shape function:

ζ0 (x) = A sech
(
k (x − x0)

)
, (27)

where the parameter A is the maximum slide height, k is inversely proportional to
the slide length and x0 is the initial position of its barycentre. Obviously, the model
description given below is valid for any other reasonable shape.

Since the landslide motion is translational, its shape at time t is given by the
function z = ζ (x, t) = ζ0 (x − xc (t)). Recall that the landslide centre is located
at the point with abscissa x = xc (t). Then, the impermeable bottom for the water
wave problem can be easily determined at any time by simply superposing the static
and dynamic components:

z = −h (x, t) = −h0 (x) + ζ (x, t) .

To simplify the subsequent presentation, we introduce the classical arc-length
parametrization, where the parameter s = s (x) is given by the following formula:

s = L (x) =
∫ x

x0

√
1 + (h′

0(ξ))2 d ξ . (28)

The function L (x) is monotonic and can be efficiently inverted to turn back to the
originalCartesian abscissa x = L−1 (s). Within this parametrization, the landslide
is initially located at point with the curvilinear coordinate s = 0. The local tangential
direction is denoted by τ and the normal by n.

The landslide motion is governed by the following differential equation obtained
by a straightforward application of Newton’s second law:

m
d2 s

dt2
= Fτ (t) ,
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where m is the mass and Fτ (t) is the tangential component of the forces acting on
the moving submerged body. In order to project the forces onto the axes of local
coordinate system, the angle θ (x) between τ and O x can be easily determined:

θ (x) = arctan
(
h′
0 (x)

)
.

Let us denote by ρw and ρ� the densities of the water and sliding material corre-
spondingly. If V is the volume of the slide, then the total mass m is given by

m
def:= (ρ� + cw ρw) V ,

where cw is the added mass coefficient [5]. A portion of the water mass has to be
added since it is entrained by the underwater body motion. The volume V can be
computed as

V = W · S = W
∫

R

ζ0 (x) d x ,

where W is the landslide width in the transverse direction. The last integral can be
computed exactly for the particular choice (27) of the landslide shape to give

V = 1

2
� A W .

The total projected force Fτ acting on the landslide can be conventionally repre-
sented as a sum of two different kinds of forces denoted by Fg and Fd :

Fτ = Fg + Fd ,

whereFg is the joint action of the gravity and buoyancy, whileFd is the total contribu-
tion of various dissipative forces (to be specified below). The gravity and buoyancy
forces act in opposite directions and their horizontal projection Fg can be easily
computed:

Fg (t) = (ρ� − ρw) W g
∫

R

ζ (x, t) sin
(
θ (x)

)
d x .

Now, let us specify the dissipative forces. The water resistance to the motion force
Fr is proportional to the maximal transversal section of the moving body and to the
square of its velocity:

Fr = −1

2
cd ρw A W σ (t)

(ds

dt

)2
,

Here, cd is the resistance coefficient of the water and σ (t)
def:= sign

(
ds
dt

)
. The

coefficient σ (t) is needed to dissipate the landslide kinetic energy independently
of its direction of motion. The friction force Ff is proportional to the normal force



32 A. Durán et al.

exerted on the body due to the weight:

Ff = −cf σ (t) N (x, t) .

The normal force N (x, t) is composed of the normal components of gravity and
buoyancy forces but also of the centrifugal force due to the variation of the bottom
slope:

N (x, t) = (ρ� − ρw) g W
∫

R
ζ (x, t) cos

(
θ (x)

)
d x + ρ� W

∫

R
ζ (x, t) κ (x)

(ds

dt

)2
d x ,

where κ (x) is the signed curvature of the bottom which can be computed by the
following formula:

κ (x) = h′′
0 (x)

(
1 + (h′

0 (x))2
) 3

2

.

We note that the last term vanishes for a plane bottom since κ (x) ≡ 0 in this
particular case.

In order to dissipate more energy along the landslide trajectory if it is needed, we
complete our model by two supplementary viscous terms:

Fd = −cv

ds

dt
− cb

ds

dt

{
ds

dt

}
,

where cv and cb are some prescribed constants. The first term cv represents the
internal energy loss inside the sliding material. The second term cb accounts for the
dissipation in the boundary layer between the landslide and the solid bottom.

Finally, if we sum up all the contributions of described above forces, we obtain
the following second-order differential equation:

(γ + cw) S
d2 s

dt2
= (γ − 1) g

(
I1 (t) − cf σ (t) I2 (t)

)

− σ (t)
(

cf γ I3 (t) + 1

2
cd A

)(ds

dt

)2 − cv

ds

dt
− cb

ds

dt

{
ds

dt

}
,

(29)

where γ
def:= ρ�

ρw
> 1 is the ratio of densities and integrals I1, 2, 3 (t) are defined as
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I1 (t) =
∫

R

ζ (x, t) sin
(
θ (x)

)
d x ,

I2 (t) =
∫

R

ζ (x, t) cos
(
θ (x)

)
d x ,

I3 (t) =
∫

R

ζ (x, t) κ (x) d x .

Note also that Eq. (29) was simplified by dividing both sides by the width value
W . In order to obtain a well-posed initial value problem, Eq. (29) has to be completed
by two initial conditions:

s (0) = 0 , s′ (0) = 0 .

From Eq. (29), it follows that the motion can start only if this condition is fulfilled
[6]:

I1 (0) − cf I2 (0) =
∫

R

ζ0 (x)
[
sin

(
θ (x)

) − cf cos
(
θ (x)

)]
d x > 0 .

In order to solve numerically Eq. (29), we employ the same Bogacki–Shampine
3rd order Runge–Kutta scheme that we used to approximate the Boussinesq
Equations (23), (24). The integrals I1, 2, 3 (t) are computed with the trapezoidal rule.
Once the landslide trajectory s = s (t) is found, Eq. (28) is used to find its motion
x = x (t) in the initial Cartesian coordinate system.

6.2 Numerical Results

Consider a one-dimensional physical domain I = [
a, b

] = [−120, 120
]
which

is divided into N equal control volumes. This domain is composed of three regions:
the left and right curvilinear sloping beaches which surround a generation region
of a deformed parabolic shape. Specifically, the static bathymetry function d0 (x) is
given by the following expression:

d0 (x) = −κ
(
x2 − c2

) + A1 e
−k1 (x − x1)2 + A2 e

−k2 (x − x2)2 .

Basically, this function represents a parabolic bottom profile deformed by two
underwater bumps. We made this nontrivial choice in order to illustrate better the
advantages of our landslide model, which was designed to handle general non-
flat bathymetries. The values of all physical and numerical parameters are given
in Table2. The bottom profile along with landslide trajectory for these parameters
are depicted in Fig. 10. The landslide motion starts from the rest position under the
action of the gravity force. We simulate its motion along with the free surface waves
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Table 2 Values of various parameters used in the numerical computations

Parameter Value

Gravity acceleration, g 1.0

Parabolic bottom flatness coefficient, κ 1.5 × 10−3

Initial shoreline position, c 100.0

Underwater bump amplitude, A1 2.8

Underwater bump amplitude, A2 −4.8

Bump characteristic steepness, k1 0.008

Bump characteristic steepness, k2 0.003

Bump centre position, x1 −60.0

Bump centre position, x2 0.0

Number of control volumes, N 2500

Slide amplitude, A 0.5

Characteristic slide inverse length, k0 0.16

Initial slide position, x0 −85.0

Added mass coefficient, cw 1.0

Water drag coefficient, cd 1.0

Friction coefficient, cf tan 2◦

Ratio between water and slide densities, γ 2.0

Boundary layer dissipation coefficient, cb 0.0035

Internal friction coefficient, cv 0.0045

Final simulation time, T 150.0

up to time T = 150.0 s. As it is expected, the landslide remains trapped between
two underwater bumps in its final equilibrium position. The speed and acceleration
of the slide barycentre during the simulation are represented in Fig. 11. We note
the discontinuities in the acceleration record which correspond to the time moments
when the velocity changes its sign. We insist that this behaviour is intrinsic to the
landslide model in use where the dissipative terms show the discontinuous behaviour
at turning points.

One of the important parameters in shallow water flows is the Froude number,
defined as the ratio between the characteristic fluid velocity to the gravitywave speed.
We computed also this parameter along the landslide trajectory:

Fr (t)
def:=

{
x′

c (t)
}

√
g d

(
xc (t), t

) .

The result is presented in Fig. 12. We can see that in our case the slide motion
remains subcritical as it is the case in most real-world situations [49].
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Fig. 13 Synthetic wave gauge records at four different locations. Note the different vertical scales
on various images. Wave gauges are located at x = x0 = −85.0, −50.0, 0.0, 50.0 from the top
correspondingly. The wave amplitude is relative to the landslide amplitude

In order to measure the free surface elevations due to the underwater landslide,
we installed four numerical wave gauges located at x = x0, −50.0, 0.0 and 50.0.
The synthetic wave records are presented in Fig. 13. One can see that the biggest
quantity of primary interest is the wave run-up onto left and right beaches surround-
ing the fluid domain. This quantity is estimated numerically using the previously
described algorithm. The shoreline motion is represented in Fig. 14. One can see that
the landslide scenario under consideration produces much higher run-up values on
the beach opposite to the slope where the sliding process takes place. Finally, in order
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Fig. 14 Wave run-up heights onto left and right non-flat beaches during the simulation

to illustrate the energy transfer process from the landslide motion to the fluid layer,
we show the evolution of both energies during the generation process in Fig. 15. We
recall that the fluid potential, kinetic and total energies are defined correspondingly
as

Π (t)
def:= 1

2

∫

R

g η2 d x , K (t)
def:= 1

2

∫

R

(d + η) u2 d x , E (t)
def:= Π (t) + K (t) .

The landslide kinetic energy is readily obtained from the differential Equa-
tion (29):

K� (t)
def:= 1

2
(γ + cw) S

(ds

dt

)2
.

Our computation shows that only about 10% of the landslide energy is transmitted to
the wave. This estimation is in complete accordance with values reported by Harbitz
et al. [49].
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Fig. 15 Fluid and landslide energies evolution during the wave generation process

7 Discussion

Below, we outline the main conclusions and perspectives of our study.

7.1 Conclusions

In the present study, we revisited the celebrated Peregrine system for long waves
propagation. Namely, our primary goal was to undertake a series of equivalent
transformations which do not modify lower order dispersive terms O(μ2), while
extending the model stability and validity up to the shoreline. Moreover, the result-
ing governing equations possess an additional symmetry of the complete water wave
problem which were broken as a result of the asymptotic expansion. Hence, our
model remains invariant under the vertical translation (subgroup G5 in Theorem 4.2,
Benjamin and Olver [10]). The application of the invariantization process presented
in this study can be extended to any other system of Boussinesq type. It can be
viewed as a post treatment procedure to be applied after the derivation of a particular
model. The Peregrine system was chosen for illustrative purposes due to its impor-
tance and popularity in the water wave community. Of course, this system possesses
also several nice properties which explain its wide usage in applications.
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The developmentsmade in this study are illustratedwith several examples. First of
all, we proposed an efficient numerical method to construct travellingwave solutions.
Some comparisons with the classical nonlinear shallow water equations (NSWE)
were presented for the wave run-up problem onto a plane beach. The effect of dis-
persive terms is exemplified. In this study, we also presented a model of a landslide
motion over general curvilinear bottoms. This model takes into account the effects
of bottom curvature, generally neglected in the literature [29, 48, 69, 85]. Despite
the inclusion of some new physical effects, the considered slide model is compu-
tationally inexpensive and can be potentially used in more operational context. We
tested the m-Peregrinemodel on this more realistic case of the wave generation by
an underwater landslide. The coupling with the m-Peregrine equations was done
through the time-dependent bathymetry. Wave run-up records on non-flat beaches
were computed. The proposed technique can be directly applied to perform a land-
slide hazard effects in real-world situations.

7.2 Perspectives

In the presentmanuscript,we focused on the two-dimensional (2D) physical problem,
which became a one-dimensional (1D) mathematical problem thanks to the elimi-
nation of explicit dependence on the vertical coordinate (1DH). In future works, we
are going to focus on the generalization of the m-Peregrine to the 2DH situation
with two horizontal directions. There is another question which can be asked even
in the 1D case—the energy conservation issue. So far, a successful response to this
question has been brought in the variational framework [26].
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Laboratory Modeling of Resonance
Phenomena in the Long Wave Dynamics

Nizar Abcha, Efim Pelinovsky and Ira Didenkulova

Abstract Two sets of experiments in a wave flume to demonstrate resonance phe-
nomena in laboratory conditions have been performed. The first set was performed
to investigate nonlinear wave run-up on the beach. It is revealed that under cer-
tain wave excitation frequencies, a significant increase in run-up amplification is
observed Ezersky et al. (Nonlin Processes Geophys 20:35, 2013, [1]). It is found that
this amplification is due to the excitation of resonant mode in the region between the
shoreline and wavemaker. The second set of experiments was performed tomodel an
excitation of localized mode (edge waves) by breaking waves propagating towards
shoreline. It is shown that the excitation of edge waves is due to parametric instability
similar to pendulum with vibrating point of suspension. The domain of instability
in the plane of parameters (amplitude—frequency) of surface wave is found. It was
found that for amplitude of surface wave slightly exceeding the threshold, the ampli-
tude of edge wave grows exponentially with time, whereas for the large amplitude,
the wave breaking appears and excitation of edge wave does not occur. It was shown
that parametric excitation of edge wave can increase significantly (up to two times)
the maximal run-up height.
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1 Introduction

The resonance phenomena play significant role in the run-up amplification and lead to
different physical effects for tsunamiswaves, leading to the long-timeweakly damped
water oscillations, in coastal areas. Recent huge tsunamis demonstrate the nonlinear
behavior on the coast leading to the strong impact. It was also revealed recently
that the number of abnormally large and suddenly appearing waves (rogue waves)
observed in the coastal zone is sufficiently larger than Gaussian statistics predicts [2,
3].Analysis of tsunami records showed that reflections due to bottom topographymay
result in appearance of resonant mode in coastal zone, see for instance [4]. The study
of the tsunami and coastal rogue waves is based on the nonlinear theory of shallow
water [5, 6]. To characterize the impact of waves on coastal infrastructure, a lot of
experimental and analytical studies of run-up processes have been published [7–10].

Recently, [1, 11] on the basis of numerical simulations of the nonlinear shallow
water equations, the existence of resonance effects in the process of the long wave
run-up was pointed out.

It should be noted that such resonance effect was predicted in the framework of
linear theory [12]. Themain result [11] is that at a certain frequency of thewaves there
exists a significant increase in the run-up amplitude. The maximal run-up height can
be 50 times greater than the free surface oscillation amplitude used as the boundary
conditions in the numerical simulation. Also it was established that the wave period
for which maximal run-up amplification appears depends on the slope of the bottom
and the depth of water where the waves are excited. This period is much larger
than the “natural period”—time needed for perturbations to run from the point of
excitation to the shoreline and return back. Results obtained in [11] raise a lot of
questions. That is why, we carried out a physical simulation of this process in the
wave flume with an inclined bottom [1].

It is known that in the coastal zone, waves coming from the open sea can excite
the so-called edge waves which are localized near the shore [13–15]. The edge wave
field cannot be represented in the dimensional approximation: edge waves propagate
along coastal line and their amplitude decreases in offshore direction.

Characteristics of linear and nonlinear edge waves were studied in numerous the-
oretical papers [16–21]. Characteristics of edge wave are also investigated in marine
experiments and numerical simulations. These studies focus on the investigation of
edge wave excitation in coastal zone and correlations between characteristics of edge
waves and the spectra of waves propagating toward the shore. The edge waves local-
ized at the shoreline are responsible for the erosion of the shore [22–24]. Therefore,
the investigation of the generation mechanisms of edge waves and the study of their
run-up are the important problems of wave—coastal zone interaction. One of the
edge wave generating mechanisms is discussed here. This mechanism is linked to
the parametric excitation of standing edge wave with frequency ω/2 by surface wave
with frequency ω propagating perpendicular to the shoreline. Such mechanism was
investigated theoretically [22, 25] and it was identified in marine experiments in the
coastal zone [26]. The laboratory experiments on parametric excitation of edge wave



Laboratory Modeling of Resonance Phenomena … 47

are described in [27]. It should be noted that in this laboratory experiments, wave
breaking was absent meanwhile breaking effects are important in natural conditions.
Principal question of the influence of wave breaking on parametric edge wave gener-
ation is not investigated yet. Exactly this problem is investigated in our chapter. We
concentrate on the influence of wave breaking on characteristics of the edge waves
and on run-up amplification occurred in this case.

The chapter is organized as follows. Section 1 presents an introduction, Sect. 2 is
devoted to the description of the experimental setup, Sect. 3 presents the results of
measurements of resonance phenomena and excitation of edge wave. In Sect. 4, we
discuss the experimental data and present a theoretical model to describe the modes
of parametric excitation of edge waves and Sect. 5, conclusion.

2 Experimental Setup

Experiments were realized in a long hydrodynamic flume. This flume has a length
of 18 m, a width of 0.5 m. The flume is equipped with a wave maker controlled by
a computer. To simulate an inclined bottom, a PVC plate with thickness of 1 cm is
used. The plate is placed at different angles relative to the horizontal bottom of the
flume in the vicinity of the wave maker (Fig. 1).

Three series of experiments have been performed for water depth h0 near the wave
maker and length L: (i) h0 � 0.245 m, L � 1.458 m, tan α � 0.168; (ii) h0 � 0.26 m,
L � 1.35 m, tan α � 0.192 and (iii) h0 � 0.32 m, L � 1.215 m, tan α � 0.263.
Three resistive probes (P1, P2, P3) are used to measure a displacement of the water
surface (Fig. 1). P1 is placed at the distance of 1 cm from the wave maker. P2 and
P3 allow us to record run-up at two different points on the plate. Besides, run-up
characteristics are determined by processing a movie which is shot by a high-speed

Fig. 1 The experimental
setup: resistive probes:
vertical probe (P1) and
inclined probes (P2, P3),
high-speed video camera (2),
wave maker (3), inclined
bottom (4), and the acoustic
Doppler Velocimeter (ADV)
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camera mounted as shown in Fig. 1. These characteristics are determined within a
precision of 2%.

3 Results of Measurements

3.1 Resonance Phenomena

In Fig. 2 are shown the frequency dependence of the amplitude of free surface
displacement near the wave maker (a), maximal run-up (R), and coefficient of run-
up amplification (C = R/a) for the slope of the bottom tan α � 0.263. It is remarkable
that amplitude of free surface displacement has peaks at frequencies f 1 � 0.44 Hz
and f 2 � 0.78 Hz. They are the resonant frequencies of the system. The maximal
run-up does not have sharp peaks, only a small increase of R in the vicinity of f 1 and
f 2 is observed (Fig. 2b). The coefficient of run-up amplification (Fig. 2c) increases
very sharply in the vicinity of f 3 � 0.28 Hz and f 4 � 0.63 Hz. It is evident that
maximal amplification of run-up is observed for frequencies corresponding to the
minimal amplitude a. In the vicinity of the wave maker, the amplitude is sufficiently
small and the signal is very noisy. That is why the coefficient of run-up amplification
requires rather delicate measurements of free surface displacement: a band-pass filter
was used to filter the signal of probe in order to measure the amplitude of harmonic
corresponding to wave maker forcing.

Amplification coefficient C was investigated for three bottom inclinations. Fre-
quencies ofmaximal amplification depend on angleα and to compare results obtained
for different angles α, the nondimensional frequency F was introduced:

F � f

f0
, f0 � K−1

√
g/h0 tan α, (1)

where g is for acceleration of gravity, h0 is for water depth near wave maker, and
K � 5.23.

In Fig. 3 are shown the nondimensional frequencies of maximal run-up ampli-
fication F � F1 � 1 for different angle α where they coincide very precisely. The
coefficient of maximal amplification, corresponding to the frequency F1 � 1 is
approximately the same for different inclinations: C ≈ 20 – 25. The second peak of
run-up amplification coefficient is observed for frequencyF2 � (2.2 – 2.3)F1. Nondi-
mensional frequency F2 slightly depends on bottom slope; small peak is observed
also for frequency F3 ≈ 3.5F1.

It should be noted that for our experimental conditions, linear run-up is observed
for small frequencies ofwave excitationF <2.While for higher excitation frequencies
F > 2 run-up occurs after the wave breaking event. The wave breaking does not
prevent precise determination of maximal run-up position. Except high frequencies
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Fig. 2 Dependence of
amplitude of free surface
displacement on frequency
(resonance curve) (a),
maximal run-up (b) and
amplification of run-up
(ration of maximal run-up
and amplitude of surface
wave) (c) for slope
tan α � 0.263

Fig. 3 Dependence of
run-up amplification on
normalized frequency for
different bottom slopes.
Frequency.
f0 � 5.23

√
g/H tan α

F > 3 the wave front on a sloping beach was one dimensional and maximal run-up
did not depend on coordinate along direction perpendicular to axis x.
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3.2 Parametric Excitation of Edge Waves

Wave maker allows us to excite harmonic wave propagating towards the shore with
controlled amplitude and frequency and to study the characteristics of edge waves
using simultaneousmeasurements of the amplitude of free surface displacement near
the wave maker and run-up height.

The subharmonic instability described above is investigated in the flume for dif-
ferent values of (aL, f ), where aL is an amplitude of surface waves in the vicinity of
the wave maker, aL ≈ a0, and f is the frequency of the wave maker. To understand if
instability occurs or not, signals from probes P2 and P3 were analyzed. Before each
experiment, we waited certain time during which all the perturbations in the flume
decayed, then the wave maker started working. An example of signals from P2 and
P3 is shown in Fig. 4a. At the beginning of perturbation, evolution time series are
presented in Fig. 4b. One can find that at the beginning of perturbation evolution,
50 s < t < 55 s time series have a frequency of wave maker and the same phase. When
instability arises Fig. 4c, 85 s < t < 90 s the period doubling is observed and phase
difference between signals recorded by probes P2 and P3 is approximately π. The
power frequency spectra for two surface wave regimes are shown in Fig. 5. The first
spectrum (Fig. 5a) is the FFT of the beginning of perturbation evolution time series.
This is a spectrum in absence of wave breaking, where the first peak indicates the
edge wave frequency and the second peak indicates the surface elevation frequency.
The second spectrum (Fig. 5b) is plotted in presence of breaking waves and indicates
the suppression of the peak for the edge wave frequency.

Water oscillations have been registered by camera. Analysis of movies showed
that subharmonic represents mode: maxima of horizontal displacement (antinodes)
are near the lateral walls of the channel, zeros of displacement (node) are in the
middle of the channel. This mode is a superposition of two edge waves propagating
in opposite directions with spatial period twice larger than the width of the flume. In
Fig. 6 are shown the snapshots of water surface over the time interval equal to a half
of the edge wave period.

Instability of subharmonic begins by exponential growth of small perturbations.
To describe the instability in the system, partition of plane (aL, f ) into regions with
different stability was performed. The results are presented in Fig. 7.

Instability occurs if the frequency f is close to double frequency of edge wave.
Curve 1 represents a border of supercritical instability occurring for points above
this curve: generation of edge waves starts from infinitely small perturbations if the
amplitude of surface wave increases. If the amplitude of surface wave decreases from
finite value, generation of edge wave is observed in small region 3 between curves 1
and 2. It is subcritical instability that is observed when we start from the regime of
supercritical instability and decrease the amplitude of surface wave.

Regimes shown in Fig. 7 occur for two qualitatively different conditions of wave
excitation. The regions corresponding to the different conditions are schematically
shown by boxes (I) and (II). In the region (I) for wave excited by wave maker
and propagating towards coast-line, wave breaking (plunging) occurs. In region (II)
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Fig. 4 Temporal evolution of wave instability developing with f � 1.08 Hz, aL � 0.66 cm: a time
series of natural perturbations recorded by probes P2 and P3; b zoom of the time series recorded
during the time interval 50 s < t < 55 s, and c during the time interval 85 s < t < 90 s

wave breaking is absent. Processing of movies obtained by high-speed video camera
shows that such excitation occurs when wave breaking parameter Br > 0.9. Under
wave breaking parameter, we mean Br � U 2

max/gR, where Umax is the maximal
flow velocity, and R is the maximal wave run-up height on the shore [17].

Amplitude of edge waves bifurcating from the zero value grows continuously
with the amplitude of surface waves aL near the wave maker. Increase in the wave
amplitude leads to generation of wave breaking at the shoreline.Whenwave breaking
is developed, subharmonic instability is suppressed.

The run-up amplitudes before and after the development of parametric instability
are measured. The results are shown in Fig. 8, which demonstrates the dependence
of run-up amplitude due to edge waves on amplitude of run-up of surface waves,
exciting parametric instability. For small amplitude of parametric excitation, one can
see that amplitude of run-up is doubled whereas amplification decreases for large
amplitude of excitation when wave breaking appears.
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Fig. 5 Power spectrum frequency: a in absence of breaking waves: the first peak indicates the edge
wave frequency, while the second peak indicates the surface elevation frequency; b in presence of
breaking waves: the peak for the edge wave frequency is suppressed

Fig. 6 Snapshots of water surface over the time interval equal to a half of the edge wave period
(approximately 1 s), f � 1.06 Hz, aL � 1.3 cm
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Fig. 7 Partition of a (aL , f ) plane into different stability regions of the system; circles correspond to
a parametric instability, diamonds correspond to stability regimes, and triangles are for the regime
of subcritical instability

Fig. 8 Dependences of run-up amplitude on wave amplitude near wave maker (f � 1.06 Hz)
without parametric excitation of edge waves (diamonds) and with parametric excitation of edge
waves (squares)

4 Discussion of Experimental Results

4.1 Resonance Phenomena

To study frequency dependence of run-up amplification more precisely, the spatial
structures of the free surface oscillations occurring at frequencies corresponding to
the resonant frequencies of the system (f 1, f 2) and at frequencies of maximum run-
up amplification (f 3, f 4) have been investigated. The results are shown in Fig. 9
for bottom slope tan α � 0.168. Amplitude and phase of free surface displacement
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Fig. 9 Comparison of the experimental results of amplitude (diamonds) and phase (circles) with
theoretical results of amplitude (thick solid lines) and phase (thick dashed lines) obtained from the
equation ξ � (4ω2x/g.tan α)1/2, tan α � 0.168; end of the horizontal axis corresponds to the position
of the wave maker edge

are shown by diamonds and circles. Experimental data are compared with the well-
known analytical solution for free surface displacement η,

η � J0

⎛

⎝

√
4ω2

g tan α

⎞

⎠ cos (ωt) (2)

This solution was obtained in shallow water with linear change in the water depth
h0: h0 � x tan α. Theoretical dependences are shown in Fig. 9 by thick lines. The
amplitude is chosen as a � |J0 |, and φ � 0 if J0 > 0 and φ � π if J0 < 0. One can find
in Fig. 9 that in the experiment, the amplitude does not go to zero and phase changes
smoothly for all frequencies. Note that frequencies of maximal run-up amplification
(f 3 � 0.205 Hz, f 4 � 0.46 Hz) correspond to spatial modes having minimal ampli-
tudes near the wave maker; resonance frequencies (f 1, f 2) have maximum amplitude
of free surface displacement near the wave maker. It should be noted that according
to solution (2), frequencies of maximal run-up amplification correspond to the spatial
modes with boundary condition η|x=L � 0, and resonant frequencies correspond to
mode with boundary conditions:

∂η

∂x

∣∣∣∣
x�L

(3)
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In other words, if one uses linear solution (2), the coefficient of run-up amplifica-
tion in this approximation would be infinite: a � 0 at x � L. Experimental amplitude
is small, but finite. Comparison of curves presented in Fig. 9 shows that difference
between theoretical solution and experimental data increase with frequency of exci-
tation. For example, these differences are much more for f 2 than for f 3.

Let us compare the experimental results with numerical simulations [11]. The
numerical simulations of wave run-up were carried out for fixed amplitude of free
surface displacement as a boundary condition at x � L. In the experiment, unlike
the numerical calculations, it is not possible to generate waves with fixed amplitude
at a definite coordinate. Instead, the simultaneous measurements of the free surface
displacement in the vicinity ofwavemaker andmaximal run-up have been performed.
In our experiment, the frequencies of maximal run-up amplification are very close to
those that were obtained in the numerical calculation. We estimated the frequencies
of the first peak as: f3 � K−1√g/h0 tan α, K ∼� 5.23; in [11]. Second peak f 4 in
the experimental frequency dependence of run-up is more visible than in numerical
simulation [11].Authors [11] did not give any estimates of the second peak frequency,
but if one uses their data it is possible to conclude that the frequencyof the secondpeak
is 2.5–2.7 times the frequency of the first one. In our experiments, frequency of the
second peak exceeds the frequency of the first one in 2.2–2.3 times. Experimental
values of frequencies f 3-4 practically coincide with frequencies of modes having
nodes near the wave maker; numerical values exceed this frequency by 2.5% for all
bottom inclinations. Authors [11] do not mention any dissipation of energy neither
nonlinear parameter, which they use in numerical simulations. As for the coefficient
of run-up amplification, the maximal value that was observed in experiment is C
� 20 – 25, whereas in [11], this value reaches C � 50 – 60. The difference is
apparently due to viscous dissipation, which is essential in our experiments.

4.2 Parametric Excitation of Edge Waves

Region of parameters corresponding to parametric excitation of edge waves was
found experimentally. Using theoretical formula (4), we are able to estimate the
threshold of parametric excitation of edge wave.

∂b

∂t
� −γ b + hb∗ + i	b + (iσ − ρ) b |b|2 (4)

Here, γ is a wave decrement due to viscose dissipation, h � a0ω3S(α)/4gtan2α,
S(α) is a function of inclination angle α determined in [20], a0 is for surface wave
amplitude at x � 0, * means complex conjugation, Δ � Ω – ω/2 is for detuning
between wave frequency and frequency of external parametric forcing, σ is a non-
linear frequency shift, and ρ is a nonlinear damping coefficient.
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Fig. 10 Visualization of the
free surface displacement: 1
is for the water surface, 2 is
for the inclined bottom, max
and min correspond to the
maximum and minimum
values of the free surface
displacement

To estimate the threshold of parametric excitation of edge waves, we have to find
eigenfrequency of the edge waves in the flume. The frequency of edge mode �0 has
minimum dissipation that is [28]:

Ω0 � √
gπ tan α/L ≈ 3.41 rad/s or f0 � Ω0/2 � 0.54Hz. (5)

To estimate the dissipation rate of harmonic edge wave, we investigate the time
evolution of amplitude of edge wave after stopping the parametric excitation. Edge
waves decay exponentially andwemeasured the decay constant γ , which is estimated
as γ � 0.1 s−1. For the resonance condition 	 � 0, parametric instability occurs
when the wave amplitude exceeds the critical wave amplitude a0:

a0 � γ
4gβ2

ω3S (β)
≈ 0.76 cm (6)

The theoretical value of the parametric instability threshold is calculated using
displacement of free surface. To compare the experimental and theoretical values
of threshold, we have to measure the displacement amplitude of the free surface
of the liquid at x � 0 in the wave excited by the wave maker. As it was noted
in several studies [5], this value has not been directly measured in experiments.
We find the displacement amplitude using flow visualization by laser sheet. The
visualization of the free surface displacement with frequency of wave maker was
carriedout in the center of theflumeat a timepreceding thedevelopment of parametric
instability of edge waves. Example of visualization is shown in Fig. 10. Note that
when the parametric instability threshold is determined, the wave breaking is absent
for all frequencies and amplitudes of waves excited by the wave maker: threshold
parameters of surface waves correspond to the region (II) in Fig. 7.

Image of free surface is obtained before development of parametric instability,
when amplitude of edge wave is zero. To estimate the amplitude of the surface wave,
the distance betweenmaximum andminimum values of the free surface is divided by
two (Fig. 10). Comparison of instability thresholds is presented in Fig. 11. Theoretical
value is larger than experimental approximately by 30%.
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Fig. 11 Comparison of
experimental and theoretical
values of the instability
threshold: triangles
correspond to the theoretical
formula, diamonds represent
experimental data

It is important to note that even when the wave breaking of surface waves takes
place, parametric excitation of edge waves occurs. Parametric generation is sup-
pressed for large enough amplitude of surface wave. What is the physical mecha-
nism that is responsible for such suppression? The wave breaking leads also to the
appearance of non-regularity in surface wave: amplitude and phase of wave vary
chaotically, periodic wave breaking leads to appearance of small-scale turbulence in
the nearshore zone. We discuss the impact of these two physical mechanisms to the
suppression of parametric instability.

The parametric wave excitation by the irregular oscillating field has been studied
in [18, 29]. It was shown that chaotic amplitude and chaotic phase of external wave
field caused increase in the threshold of parametric excitation and decrease in the
amplitude of parametrically excited oscillations.

We verified if these results may be applied for explanation of decrease in the edge
wave amplitude when breaking surface waves appear. For this purpose, we calculate
amplitude and phase of surface wave. Surface wave excited by the wave maker may
be presented as ηm cos(ωt + �), where ηm, is a slow varying amplitude, and � is a
slow varying phase. To extract the amplitude and the phase of the signal, the Hilbert
transformation is used:

η̂ � 1

π
PV

[∫ +∞

−∞
η (t, τ )

t − τ

]
� ηmsin (ωt + Φ) , (7)

where PV denotes the principal value of the integral. It is also possible to determine
the wave amplitude and phase:

η (t) � Re {a (t) exp (iωt)} , a (t) � |a| eiΦ, (8)

where

|a| �
√

η2 + η̂2, Φ � arctan

(
η̂

η

)
− ωt (9)
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Fig. 12 a Time-series
measured by P1 with
aL � 1 cm, f � 1.06 Hz;
b nondimensional wave
amplitude and phase
obtained by the Hilbert
transformation

Extracted amplitudes and phases for the time-series measured in presence of
the surface wave breaking are shown in Fig. 12. The time-series itself is given in
Fig. 12a, while the extracted amplitudes and phases are shown in Fig. 12b. The root
mean square of phase and amplitude fluctuations for the intensive wave breaking
(a � 1.4 cm) is

√〈
Φ2

〉 ≈ 0.1,

√〈
(a − 〈a〉)2〉

〈a〉 ≈ 0.1 (10)

It is also possible to estimate the influence of chaotic phases and amplitudes on
the parametric wave excitation. It has been revealed that chaotic phases decrease the
effective amplitude of the external force [30]. Suppose, that the wave breaking leads
to the Gaussian noise, then the corresponding decrease in the external forcing may
be estimated as [30]

e−(〈Φ2〉)/2 ≈ 0.995 (11)

This small decrease in the effective external forcing cannot explain suppression
of the parametric excitation for the wave breaking regime.

The influence of turbulence seems to bemore important.Wave breaking generates
turbulence and the intensity of turbulent velocity fluctuations increases with the
surface wave amplitude. The turbulence leads to the appearance of turbulent shear
stresses and eddy viscosity νed . We measure experimentally some components of
the kinematic turbulent energy in the water appearing on the background of edge
wave (Fig. 13b). According to our measurements, the most important components of
shear stresses are connectedwith longitudinal componentVx of turbulent fluctuations
(Fig. 13b).
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Fig. 13 a Dependence of the exponential index of parametric instability γ on the surface wave
amplitude aL , shown by the black dots; b dependence of the kinetic turbulent energy components
on the surface wave amplitude aL ; Vx is shown by blue diamonds, while Vy is shown by black
squares. Solid lines represent a fit to the experimental data

The eddy viscosity is proportional to kinetic energy of turbulence νed . For the
wave breaking case, it is possible to consider that νed is proportional to a2 (Fig. 13b).
In this case, coefficient γ of the exponential decay in Eq. (4) has the following form:
γ � γ 0 + γ 1a2, where γ 0 is the exponential decay of edge waves in the absence of
wave breaking, and coefficient γ 1 is responsible for the dissipation of energy due to
the eddy viscosity.

Since the external forcing μ grows linearly with the surface wave amplitude
and the dissipation grows as the amplitude squared, the parametric instability is
suppressed for large surface wave amplitudes. Exactly, this effect is observed in
experiment when wave breaking occurs.

5 Conclusion

Amplification coefficients and frequencies, at which run-up amplification maxima
are observed, correlate with results of numerical simulations. The most important
conclusion is the existence of an abnormally large increase of the coefficientC due to
the resonant modes: this coefficient becomes very large because of its determination:
the amplitude at themode node is taken as the amplitude of free surface displacement.
This effect is very important for the explanation of rogue waves on the shore and
for the prediction of tsunami run-up using the tide-gauge data. It is not sufficient to
know the amplitude of free surface displacement in the nearshore zone. Each time,
it is necessary to know if this value corresponds to the amplitude A of a propagating
wave or to the amplitude a of a standing wave at a fixed point.

Second, parametric generation of edge waves is investigated for different regimes
of surface wave propagation. It is shown that the threshold amplitude of parametric
excitation is close to the theoretically calculated value.

It was found that for parametrically excited edge waves, there exists region of sub-
critical instability. In experiments hysteresis is observed: different regimes of edge
wave excitation are observed for decreasing and increasing of surface wave ampli-



60 N. Abcha et al.

tude. It should be noted that subcritical instability was not found in [20], although
experimental conditions were very close to our experiments.

It is shown experimentally that increase in the surface wave amplitude leads
to the appearance of wave breaking. The wave breaking regime does not prevent
parametric generation of edgewaves.Only the developedwave breaking can suppress
parametric generation of edge waves. We compared two mechanisms of parametric
instability suppression: phase non-regularity of the parametric force and generation
of hydrodynamic turbulence. It was found that the most probable mechanism is
the increase in the threshold of parametric excitation and suppression of parametric
generation due to hydrodynamic turbulence appearing as a result of wave breaking.
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Standing Gravity Wave Regimes in a
Shallow-Water Resonator

Alexey Slunyaev, Alexander Ezersky, Dominique Mouaze
and Wuttersack Chokchai

Abstract Arisingmodulations of surface gravitywaves in a shallow-water resonator
under harmonic forcing is discovered in laboratory experiments. Different types of
modulations are found. When certain conditions are satisfied (appropriate frequency
and sufficient force of excitation), the standing waves become modulated, and the
envelopes of standing waves propagate in the channel. Strongly nonlinear numeri-
cal simulations of the Euler equations are performed reproducing the modulational
regimes observed in the laboratory experiments. The physicalmechanism responsible
for the occurrence of modulated waves is determined on the basis of the simulations;
quantitative estimates aremadewith the help of a simplifiedweakly nonlinear theory.
This work was initiated by and performed under the guidance of Prof. A. Ezersky.
We dedicate this text to the memory of him.

Keywords Gravity waves · Standing waves · Resonator · Modulations
Three-wave interaction · Shallow water

1 Introduction

Nonlinear instabilities of water waves are the source of large waves and wave pattern
formation. The Benjamin—Feir (modulational) instability is suggested by a number
of researchers as a possible and regular mechanism of rogue wave formation in the
ocean [1].Meanwhile, theoretically proved instabilitiesmay often be hardly observed
in laboratory conditions, and perhaps ineffective in the conditions of a real sea. It
takes time to enhance due to nonlinear interactions. Thus, limited sizes of laboratory
facilities often make impossible direct observations of the nonlinear focusing effects
when progressive waves are considered.
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Standing waves, which may be understood as two counter-propagating waves,
are free of this drawback: the wave fetch may be much more than the size of the
laboratory facility. Although the case of two wave systems may exhibit a more
complex dynamics [2, 3], in [4] they report that weakly nonlinear standing water
waves are modulationally unstable only if the traveling waves are modulationally
unstable. The modulational instability is supported by the Lighthill’s condition

ω′′
0(k)ω2(k) < 0, (1)

where ω0(k) is the dispersion relation for linear waves, k is the wavenumber, and
ω2(k) is the nonlinear addition to the frequency, ω(k)=ω0(k)+ω2(k)|ka|2, a is the
wave amplitude. When the water is sufficiently shallow, kh <1.363, where h is the
water depth, condition (1) is broken due to the change of sign of the nonlinear
frequency correction, ω2, and the modulational instability vanishes.

In this chapter, we consider a shallow-water case, and the condition for the exis-
tence of longitudinal modulation instability (1) is not satisfied. In general, the sta-
bility analysis established for deep-water waves becomes trickier for shallow-water
conditions [5].

Condition (1) is relevant forweakly nonlinear quasi-sinusoidal progressivewaves.
As we show in this chapter, nonlinear wave modulations of standing shallow-water
wavesmay significantly grow and lead to the formation of intense traveling envelopes
of standing waves.We show that similar to (1), this effect is due to the combination of
the shallow-water dispersion and nonlinear frequency shift, what makes short-scale
waves in resonance with long perturbations. In contrast to (1), this process is due to
the three-wave interaction, which leads to other modulation growth rate as a function
of wave amplitude. The action of an external forcing enables resonator waves to get
more energy. The described effect was first observed in laboratory (the facility is
described in Sect. 2, and the laboratory measurements are summarized in Sect. 3),
and then reproduced by means of numerical simulations, which is briefly described
in Sects. 4 and 7. A more detailed description of the laboratory measurements and
numerical simulations may be found in [6]. Section 5 represents a simplified theory,
which gives us a quantitative estimate for the condition of the modulation onset.

2 Experimental Setup

The laboratory tests are carried out in a hydrodynamic channel, see Fig. 1. The
length of the channel is L =5 m, its width is 0.5 m, and the depth of the liquid
layer is h =0.17 m. A piston type wavemaker consisting of a vertical plate set in
motion by a DC motor is placed at one end of the channel. The plate is moved in
the horizontal direction by a harmonic law. Amplitude, B, and oscillation frequency,
f , of the wavemaker could be changed. Free surface oscillations are registered by
resistive wave probe placed at the end of the channel (see Fig. 1). Signals from the
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Fig. 1 The scheme of the experiments, (1) is the wavemaker, (2) is the transducer of horizontal
displacement of wavemaker, (3) is the resistive probe of a free surface displacement

surface wave transducers and wavemaker displacement are recorded in a computer
simultaneously for further data processing.

The channel used during the tests represents a resonator for surface gravity waves.
Natural frequencies of resonator modes, f n, are defined by the dispersion relation as

fn � 1

2π

√
g
π

L
n tanh

(π

L
nh

)
, n � 1, 2, 3, . . . . (2)

where n counts the modes and g is the gravity acceleration.
The experiments are accomplished at the frequencies 0.34 Hz< f <0.48 Hz corre-

sponding to the excitation ofmodeswith numbers 8<n <12, hence, in the experiment
we have the depth parameter 0.28<kh <0.42,whatmakes condition (1) unobtainable.

3 Observation of Modulations in the Laboratory Tank

Three regimeswere observed in the experiments. They are as follows: (1) steady-state
generation of nonlinear waves with constant amplitude; (2) regime with modulation,
including chaoticmodulationwithoutwave breaking; and (3) regimewithmodulation
accompanied by wave breaking. A map of these regimes on a plane (amplitude of
oscillation of the wavemaker plate, B, versus oscillation frequency, f ) is given in
Fig. 2.

It is clear from the diagram that the wavemodulation and breaking arise at smaller
amplitudes of wavemaker oscillations if the excitation frequency does not coincide
with the natural frequency of resonator modes (2).

Time series of the free surface displacement corresponding to the regular standing
wave regime and regular modulation regime are presented in Fig. 3. An excitation of
harmonics with frequencies, multiple of the frequency of external forcing occurs for
the regime without modulation. Consequently, a nonlinear steady wave is recorded
(Fig. 3a). For the regime with regular modulation, the smallest period of the envelope
wave (Fig. 3b) was approximately equal to the period of basic mode of resonator,
1/f 1, where f 1 ≈ 0.04 Hz. Besides, double-modulated regular regime was observed,
and also irregular (chaotic) wave dynamics with and without wave breaking [6].
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Fig. 2 The diagram of the regimes observed in the laboratory experiments amplitude of the wave-
maker, B, versus its frequency, f : rhombs—constant-amplitude standing waves; squares—regular
modulated waves; triangles—chaotic wave modulation; stars—double modulation, crosses—wave
breaking. The dashed lines show natural mode linear frequencies

Fig. 3 Time series for different conditions of excitation: a the regime without modulation (ampli-
tude B =45 mm, f =0.3744 Hz), b the regular modulation (B =48 mm, f =0.3616 Hz)

Sometimes, the appearance ofmodulation in the channel needs a finite time. At the
first stage of wave excitation, steady nonlinear wave are generated. After, some time
(as rule 3–5 min) modulation may develop and maximal wave height in resonator
becomes about two times more than that before development of instability. Example
of such a process is shown in Fig. 4. A band-pass filtering (high and low cutoff
frequency) was used to determine growing amplitudes of the spectral harmonics.
The harmonics grow in amplitude from very small values, and when they become of
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Fig. 4 Development of modulation from steady nonlinear waves. The excitation frequency
f =0.406 Hz

the magnitude of the fundamental harmonic, saturation takes place. The exponential
function gives us the best-fit approximation for the initial stage of the harmonic
growth.

4 Numerical Simulation of the Modulations

The regimes observed in the laboratory experiment are reproduced in numerical
simulations of primitive equations of ideal fluid. The potential Euler equations are
solved with the help of the High-Order Spectral Method (HOSM), following [7]. The
kinematic and dynamic boundary conditions on the free surface are written in form

∂η

∂t
� −∂Φ

∂x

∂η

∂x
+

(
1 +

(
∂η

∂x

)2
)

∂ϕ

∂z
+ δ

∂2η

∂x2
, (3)

∂Φ

∂t
� −η − 1

2

(
∂Φ

∂x

)2

+
1

2

(
∂ϕ

∂z

)2
[
1 +

(
∂η

∂x

)2
]

− Pa + δ
∂2Φ

∂x2

where x and z are horizontal and vertical (upward) coordinates, respectively, and t
is time. Conditions z =–h and z =η(x, t) specify the waterbed and the free surface
displacement correspondingly. The function ϕ(x, z, t) specifies the velocity potential
and is obtained at every step of numerical integration through strongly nonlinear
iterative solution of the Laplace equation with the potential at the surface specified
by 	 � ϕ(x, z =η(x, t), t), see [7]. Term Pa in (3) denotes the atmosphere pressure;
its variation in time is used to introduce wave excitation force. Damping effect was
found crucial to obtain regular wave patterns. Coefficient δ is chosen to have a better
agreement between laboratory registration and simulations; it defines viscous wave
dissipation.

A 30 m computational domain with periodic boundary conditions is used in the
numerical simulations of the 15 m laboratory resonator. It is supposed that x =0
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Fig. 5 Spatiotemporal diagrams of regular non-modulated waves a and standing wave modulation
b observed in the numerical simulations

corresponds to the rigid wall of the laboratory resonator (where the gauge is situated,
see Fig. 1), while x =15m corresponds to the other wall (position of the wavemaker).

Regular standing wave (Figs. 3a, 5a) and regular modulated standing wave
(Figs. 3b, 5b) regimes are reproduced by means of numerical simulations. On the
spatiotemporal diagram in Fig. 5b, the traveling intense wave patterns are clearly
seen in contrast to Fig. 5a, where the wave field picture is uniform.

Strongly nonlinear numerical simulation of weakly perturbed standing waves
showed that longmodulations of standingwaves lead to the excitation and subsequent
growth of the sidebands, and also to the energy leakage to a number of low modes
of the resonator. Many modes of the resonator become excited with time, and the
standingwaves appear to be stronglymodulated. It is found that the growth rate of the
excited spectral modes at the early stage corresponds to the three-wave interaction
(see [6]). Thus, in contrast to the Benjamin—Feir modulational instability, three-
wave interactions, which are common for the shallow-water waves, play the major
role in the dynamics of modulated standing waves.

The diagrams of spatiotemporal spectra are obtained on the basis of the numerical
simulation data as follows. First, the spatial Fourier transform of the surface elevation
as function of space and time is performed. Then, the temporal Fourier transform is
applied to the modes of the spatial Fourier spectrum, represented by the complex-
valued data time series. Thus, spatiotemporal spectrum Sp(n, f ) is obtained, where
n is the mode number, and f is frequency. The length of a time series defines the
frequency resolution, which is not less than 0.005 Hz for the presented below figures.
To render the intensity of the Fourier spectrum, Sp, every value of it (for the grid
in the plane of modes and frequencies) is plotted by a filled circle with diameter,
D, proportional to the amplitude of Sp in logarithmic scale; too small (insignificant)
values of Sp are not plotted.
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Fig. 6 Spatiotemporal spectral plane for the numerical experiment when standing wave modula-
tions are not observed (a) and when regular modulations occur (b). The dash-dotted lines represent
the exact linear dispersion, its shallow-water limit is given by the dashed straight lines. The hori-
zontal dotted lines show the frequency and multiple frequencies of the excitation. The solid straight
lines show the phase velocity of the most energetic standing wave

Figure 6a shows the regime whenmodulations do not occur, while Fig. 6b demon-
strates the case whenmodulations develop. The horizontal dotted lines in Fig. 6 show
the forcing frequency, f , and themultiple values 2f , 3f , etc. The dash-dotted lines rep-
resent the exact linear dispersion (2), its shallow-water limit is given by the dashed
straight lines. The solid straight lines in Fig. 6 pass through the reference origin
(0, 0), and through the point (n, f ), where n � 9 is the most excited mode at the forc-
ing frequency f . Thus, this line on the spectral plane represents the phase velocity of
the most excited standing wave.

The spots in Fig. 6a are discrete in both mode and frequency. The frequency
discretization is due to the regular character of the record. The driving force at a given
frequency excites many modes. Figure 6b represents the regime with modulations
and looks quite different from Fig. 6a. There are much more energetic spots; the
energy is spread along the curve of the shallow-water dispersion limit, and in a less
extent—along the linear dispersion curve. For a given mode number the frequency
spectrum is rather wide.

It is known, that in a three-oscillator system with quadratic nonlinearity, lower
frequencies may effectively get energy from the high-frequency oscillator (this pro-
cess is exponential at its early stage, see [8]). It clearly follows from Fig. 6a, b that
modulations do not occur when the forcing wave velocity line (the straight lines in
Fig. 6) is characterized by the declination smaller than the shallow-water limit of the
dispersion. On the contrary, the modulations grow when the forcing wave velocity
is higher than the long-wave speed (Fig. 6b). It may be concluded that the three-
wave resonance condition becomes fulfilled for the driving wave due to the positive
nonlinear frequency shift for a number of low modes. The dynamics involve many
wave triplets, thus the nonlinear energy exchange between them may be difficult to
interpret. Besides free waves, many bound waves are excited, proving that the waves
are essentially cnoidal.
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5 Weakly Nonlinear Theory for Shallow-Water Resonances

As it is discussed in the previous part, the nonlinear three-wave interactions are
responsible for the dynamics observed in the laboratory experiments, and also
in the strong nonlinear numerical simulations. Since the waves are essentially
cnoidal, direct application of known theories for weakly nonlinear weakly modu-
lated waves (such as coupled equations describing quasi-sinusoidal waves) is ques-
tionable.Meanwhile, let us suppose that the effect of interaction between twocounter-
propagatingwave systems is of secondary importance and that the resonance between
long perturbations and shorter nonlinear waves is the most essential effect for the
observed instability. Then, let us consider a simplified weakly nonlinear dispersive
shallow-water theory for cnoidal waves, the Korteweg—de Vries equation (KdV)

∂η

∂t
+ c

∂η

∂x
+ γ η

∂η

∂x
+ μ

∂3η

∂x3
� 0, c � √

gh, γ � 3c

2h
, μ � ch2

6
(4)

Equation (4) possesses stationary exact solutions, the cnoidal waves, expressed
in terms of the Jacobi elliptic functions

η (x, t) � 2a

s2

[
dn2

(√
γ a

6μs2
(x − (c + Vcn) t) , s

)
− E (s)

K (s)

]
(5)

(see for instance [9]), where K and E are complete elliptic integrals of the first and
the second kinds,

K �
π/2∫
0

(
1 − s2 sin2 θ

)− 1
2 dθ, E �

π/2∫
0

√
1 − s2 sin2 θdθ (6)

The velocity of the cnoidal wave is defined by

Vcn � − γ a

3s2

(
3
E (s)

K (s)
+ s2 − 2

)
(7)

and the wave amplitude, a, is linked with the wavelength, �, through the relation

Λ �
√
24μ

γ a
sK (s) (8)

The cnoidal wavesmay have strong vertical asymmetry, and the amplitude param-
eter a has the meaning that the value 2a is equal to the wave height from the trough
to the crest.

The “nonlinear” dispersion relation may be obtained from (7) and (8); it is given
by formula (see [9])
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Fig. 7 Dispersion plane in terms of the cyclic frequency versus the mode number

ω(k) − ck � −μk3
(
2K (s)

π

)2 (
3
E (s)

K (s)
+ s2 − 2

)
(9)

Parameter 0≤ s≤ 1 controls the strength of nonlinearity. Linearwaves correspond
to s�0, then (9) transforms toω(k) – ck�–μk3,which is the linear dispersive relation
of the KdV Eq. (4). The right-hand-side term in (9) becomes zero or even positive
when s is large enough. Thus, nonlinearity may give the opposite frequency shift
than dispersion, and the condition

3
E (s)

K (s)
+ s2 − 2 � 0 (10)

determines the nonlinear threshold when small-scale cnoidal waves may become
resonant with long linear waves.

The dispersion curves for the parameters of the laboratory resonator, when the
condition (10) is fulfilled, are shown in Fig. 7. The solid line corresponds to the
nonlinear frequency (9) of the cnoidal wave. It is straight and coincides with the
long-wave limit of the linear water wave dispersion. The curve of the linear disper-
sion provided by the KdV model (4) (dotted line) is quite close to the exact linear
dispersion (2) shown by the dashed line.

Solution of the threshold condition (10) gives the value of about s≈ 0.98; then, the
threshold wave amplitude when the nonlinear frequency correction in (9) is positive,
may be estimated as

a >
2s2K 2h3

3L2
n2 ≈ 5.9

h3

L2
n2 (11)

The strength of the three-wave nonlinear effects may be estimated with the help
of the Ursell parameter, which may be defined as

Ur � aΛ2

h3
� 4aL2

n2h3
(12)

The Ursell number is equal to 4, when the soliton solution of the Korteweg–de
Vries equation is concerned (when nonlinearity and dispersion are of the same order);
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Fig. 8 Comparison of the estimated threshold wave amplitude (the curve) and the laboratory exper-
iment (the circles). Experimental points correspond to the wave amplitude before development of
the modulation in the system

estimate (11) results in the value of the Ursell number of about 74, what corresponds
to a strongly nonlinear case.

Comparison of the theoretical estimate (11) with the experimental data is given
in Fig. 8. The solid line represents the condition (11), and the circles give the heights
of measured standing waves divided by factor 4 (we suppose that a wave height
is twice the amplitude, and that a standing wave height is twice the progressive
wave height). It is important to note that the experimental data displayed in Fig. 8
correspond to the minimum wave amplitudes when modulations occur, thus it tends
to overestimate the amplitude threshold.Wave dissipationwas clearly observed in the
laboratory experiments and may also have effect on the wave amplitude threshold.
Thus, although the experimental points lie somewhat higher than the theoretical
curve, Fig. 8 reports a reasonable agreement between the theoretical estimate and
the laboratory experiments.

6 Extreme States in the Numerical Simulations
of the Wave Tank

As it was mentioned in Sect. 4, different regimes of the wave dynamics in the
laboratory facility were reproduced in the numerical simulations. In a series of
numerical simulations, the action of the wavemaker was modeled by the variable
pressure Pa(x, t) in the form

Pa � P0 sin (2π f t) exp

[
−

(
x − xwm

lwm

)2
] (

1 − exp

(
− t

twm

))
(13)

where P0 is the pressure amplitude, xwm � 15 m is the location of the virtual wave-
maker, lwm is its characteristic size, and twm � 20 s provides a smooth start of the
excitation. In the numerical experiments, the situation when the forcing frequency, f ,
at some moment changes the value was considered, and also the situation when the
frequency remains the same, but the oscillatory forcing experiences an abrupt phase
jump. It could be expected that the frequency change may alter the wave dynamics
regime in the entire wave basin. It is more surprising that a sudden change of the
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Fig. 9 Time series at the wall (a), the evolution of the energy in the most energetic Fourier modes
(b) and the total energy evolution (c) in the numerical simulation with the forcing frequency f
=0.489 Hz and lwm =0.3 m

phase may switch the resonator to another dynamical regime. Such a situation is
shown in Figs. 9 and 10.

The forcing pressure (13) is characterized by the same frequency, f , and the same
amplitude, P0, in the both cases shown in Figs. 9 and 10, but the length of the virtual
wavemaker lwm is larger in the second case. Initially, after a short transition stage,
which corresponds to a smooth activation of the forcing, the surface elevation record
is characterized by approximately constant wave amplitudes (Figs. 9a and 10a); most
of the energy is accumulated in the eleventh and twelfth resonator modes (Figs. 9b
and 10b). At the moment, t � 600 s the virtual wavemaker’s phase experiences an
abrupt change. As a result, the maximum surface elevation doubles for a dozen of
wave periods, and the balance of energy distributed among the most excited modes
gets disturbed. After that, thewave system seems to restore the initial state (Fig. 9a, b)
or switches to another regime as shown in Fig. 10a, b. In the latter case, several modes
hold significant amounts of energy,which strongly vary in time; they exhibit unsteady
behavior. Correspondingly, the surface displacement record exhibitsmodulatedwave
patterns. The change of the dynamical regime in the second example is so signifi-
cant that after the bifurcation the total energy in the resonator is noticeably larger
(cf. Figs. 9c and 10c). The wave amplitudes and the accumulated total wave energy
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Fig. 10 Similar to Fig. 9, but the size of the virtual wavemaker is larger, lwm =0.5 m

are abnormally large, shortly after the phase change. These extreme events are pro-
voked by almost unnoticeable causes; they possess the attributes of rogue waves.

7 Conclusion

A rich variety of wave regimes is observed in the shallow-water resonator: regu-
lar standing waves, modulated and double-modulated wave trains, and also chaotic
behavior. The non-breaking regimes have been simulated numerically. The standing
wave modulations develop from the initially uniform waves when the certain thresh-
old condition is satisfied providing sufficiently strong nonlinearity. In the leading
order, the three-wave nonlinear resonance is responsible for the modulation. Varia-
tion of the forcing parameters may lead to the change of the dynamical regime in a
nontrivial way, which still desires the further research.
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Focusing Wave Group Propagating
in Finite Depth in the Presence
of Surface Current and Vorticity

Julien Touboul and Christian Kharif

Abstract The kinematics of two-dimensional focusing wave trains on a shearing
flow in water of finite depth are investigated analytically. In the absence of waves,
the vorticity due to the vertical gradient of the horizontal current velocity is assumed
constant. A linear kinematic model based on the spatio-temporal evolution of the fre-
quency is derived predicting the focusing distance and time of a chirped wave packet
in the presence of constant vorticity, and surface current. Based on this model, the
kinematic behavior of the transient wave packet is analyzed, and described in terms
of spreading of the focusing point into a wider area. The effects of bathymetry, vor-
ticity, and surface current are analyzed and discussed. Twomain results are obtained:
(i) the combined effects of surface current and vorticity, in deep water, are nontrivial,
highly depending on the presence of surface current (ii) the effects of bathymetry,
in the presence of shear, are also counterintuitive in the presence of vorticity, since
significant effects can be observed when considering high values of the depth param-
eter.

1 Introduction

Freak, rogue, or giant waves are extreme events, localized in time and space. Most
of the time, they are defined by a wave height briefly exceeding some statistical
properties of the wave field, such as twice the significant wave height. They are
characterized by their unpredictability, which explains that they are known as “waves
from nowhere”. They are responsible for an important number of large damages,
caused to ships or offshore rigs, which explains they have focused the attention of
the scientific community for the last 30 years.
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Formation of these waves might be explained through various mechanisms, such
as spatio-temporal focusingKharif et al. [15], Johannessen andSwan [11], Brown [4],
Brown and Jensen [5], nonlinear or modulational instability Benjamin and Feir [2],
Dyachenko and Zakharov [9], envelope soliton and breather interactions Clamond
and Grue [6]. These mechanisms have been reviewed by Kharif and Pelinovsky [14]
and by Dysthe [10].

Wave–current interaction contributes also in the freak wave formation and histor-
ically; this mechanism was the first to explain the origin of freak waves Lavrenov
[20], White and Fornberg [35]. This is due to an important modification of water
waves kinematics in the presence of currents reviewed extensively in Peregrine [23]
and Jonsson [13].

Since all these mechanisms can exist simultaneously at sea, it is interesting to
analyze their robustness when considered together. This, for instance, was achieved
for studying the influence of sheared currents on modulational instability in Johnson
[12]. The influence of wind on dispersive focusing was studied in Touboul et al. [27],
and in Kharif et al. [16], while the evolution of modulation instability under wind
action was studied in [17, 30, 31].

Such a question can be asked about the dispersive focusing under the action of
currents. This was initially addressed by Touboul et al. [28], who investigated the
modification of the dispersive focusing mechanism for water waves propagating in
deepwater in the presence of uniformcurrents. But generally, the characteristic length
scales of windwaves and swells aremuch smaller than the spatial scales of horizontal
variations in oceanic currents. On the opposite, there are many circumstances in
which this claim cannot be applied to current velocity variations in vertical direction.
Consequently, the vorticity due to the vertical gradient of the horizontal current
velocity which may have an important effect on the dynamics of ocean surface waves
cannot be ignored. Various studies of water waves propagating in such conditions
can be found in the literature. Among them, one can cite Tsao [33], Dalrymple [8],
Brevik [3], Simmen [24], Simmen and Saffman [25] Teles da Silva and Peregrine
[26], Kishida and Sobey [19], Pak and Chow [22], Constantin [7], etc. Thus, Touboul
and Kharif [32] extended their previous study [28] to this more realistic case of water
waves propagating in the presence of vorticity.

Besides, such vortical flows are observed in coastal areas [1, 29]. As pointed
out by Professor Ezersky, the effect of bathymetry on dispersive properties should
be taken into account. This study was realized experimentally and numerically for
water waves propagating in waters of finite depth, in the presence of uniform currents
in Merkoune et al. [21].

The purpose of this work is to analyze both the effects of surface current and
vorticity for rogue waves propagating in waters of finite depth, extending results
presented in [21] to take vorticity into account. To achieve this goal, attention is
focused on the kinematic behavior of a focusing wave group. The components
should merge at a given point in both time and space, producing a rogue wave.
The transformation of this point into a wider area, under the combined effects of
surface current, vorticity, and depth is investigated here. The chapter is organized as
follows: in Sect. 2, the kinematic model is formulated, focusing on the computation
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of the coordinates of the focusing point without and with current and vorticity, in
finite depth. In Sect. 3, the results are discussed in detail, and briefly summarized in
Sect. 4, describing the main conclusions of the work.

2 The Kinematic Model

Since water waves are known to be dispersive, short waves propagating in front
of longer ones will be overtaken, and a large amplitude wave can occur at a fixed
point. A linear approach of the problem would lead to consider sea surface as
a superposition of linear waves of frequencies ω (x, t). The following nonlinear
hyperbolic equation governs the spatiotemporal evolution of these components, as
pointed out by Brown [2] and Whitham [34],

∂ω

∂t
+ Cg (ω)

∂ω

∂x
� 0, (1)

whereCg is the group velocity, defined asCg � ∂ω/∂k. The boundary value problem
for this equation can be solved using the method of characteristics. Its solution is

ω (x, t) � ω0 (τ ) , on t � τ + x/Cg (ω) , (2)

where ω0 corresponds to the temporal frequency distribution of the wave train at
x � 0. By differentiating the frequency, it comes

∂ω

∂t
�

∂ω0
∂τ

1 − x
C2
g

∂Cg

∂ω
dω0
dτ

(3)

The latter equation can be solved once the dispersion equation is known, and var-
ious examples of solutions can be found in the literature. In the classical formulation
of water propagating in deep water, for instance, this dispersion equation reads

ω2 � gk, (4)

where k stands for the wavenumber, and g is the acceleration due to gravity. We can
now obtain an expression of the group velocity given by Cg � g/ (2ω). Equation (3)
might thus be rewritten

∂ω

∂t
�

∂ω0
∂τ

1 − 2x
g

dω0
dτ

, (5)

and one can notice that the case dω0/dτ < 0, which corresponds to the case of
short waves emitted before longer waves, leads to a singularity. This singularity
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corresponds to the focusing of several waves at t � Tf and x � Xf . Given the
expression of the group velocity in the case at hand, we can find out the frequency
to impose to a wave maker located at x � 0, and for 0 < t < T , given by

ω (0, t) � g

2

Tf − t

Xf
(6)

This frequency modulation, varying linearly from ωmin to ωmax, provides the opti-
mal focusing of the linear wave packets in still water of infinite depth, and is very
often applied in the laboratory conditions. Such awave train will involve components
which will propagate and all merge at the same place Xf , and at the same time Tf .
Coordinates of the focusing point in the (x − t) plane would thus be given by

Xf � gT

2

1

ωmax − ωmin
, and Tf � 2ωmax

g
Xf . (7)

If we now consider water waves propagating in deep water, in the presence of
uniform currents, the dispersion Eq. (4) can be modified to take a Doppler shift into
account, and now reads

(ω − kU )2 � gk. (8)

This specific case was investigated in Touboul et al. [28], where Eq. (5) was
demonstrated not to be solution anymore, but to be replaced with

∂ω

∂t
�

dω0
dτ

1 + 2gx
[g+2U0(ω−kU0)]2

dω0
dτ

(9)

This is true, since the group velocity admits a new expression, Cg � U0 +
g/ (2ω − kU0). Equation (9) shows a difference in the kinematics of the wave group,
which becomesmore complicated. Indeed, the denominator is now a function of time,
and is equal to zero for several values of space and time. The focusing point is not
a unique singularity anymore, and the waves present in the group do not merge at
a single location of time and space. The singularity is now spread over a focusing
area, ranging from Lmin and Lmax, where

Lmin � Xf

(
1 +

2U0σmin

g

)2

, and Lmax � Xf

(
1 +

2U0σmax

g

)2

, (10)

where σmin and σmax are the intrinsic, Doppler shifted, frequencies, respectively given
by σmin � (ωmin − kminU0) � √

gkmin, and σmax � (ωmax − kmaxU0) � √
gkmax.

In a recent work, Touboul and Kharif [32] investigated the evolution of a chirped
wave packet in the presence of a horizontally constant current presenting linear
variations with respect to depth, so that
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U (z) � U0 + Sz, (11)

whereU0 is the current velocity at the undisturbed free surface, and S is the value of
the shear of the current. As an immediate consequence, the vorticity vector associated
to this flow field is given by � � ∇ ∧ U � (0, S, 0). In such a configuration, the
dispersion equation is also known analytically (see, e.g., [13, 18, 29])

(ω − kU0) (ω − kU0 + S) � g |k| , (12)

and the related group velocity now readsCg � U0 +g/ [σ0 + σ2], where σ0 and σ2 are
respectively the Doppler shifted intrinsic frequencies (ω − kU0) and (ω − kU2) �
(ω − k (U0 − S/k)). In such configuration, neither Eq. (5) nor Eq. (9) is the solution
of Eq. (1) anymore. Instead, the solution (3) reads

∂ω

∂t
�

dω0
dt

1 + 2gx
[g+U0(σ0+σ2)]2

dω0
dt

. (13)

Here again, the focusing point turns out to be a focusing area, where the values
of Lmin and Lmax are now given by

Lmin � Xf

(
1 +

U0
(
σ0,min + σ2,min

)
g

)2

, andLmax � Xf

(
1 +

U0
(
σ0,max + σ2,max

)
g

)2

(14)

where σ0,min, σ2,min, σ0,max and σ2,max are respectively the minimum and maximum
of intrinsic frequencies σ0 and σ2.

The latter formulation might reduce to both previous cases. Indeed, for S=0, we
find the result σ0 � σ2, and Eq. (14) reduces to Eq. (10). Furthermore, withU0 � 0,
this equation further reduces to Lmin � Lmax � Xf , correspondingly to the solution
(7) of Eq. (5).

Still, as pointed out inTouboul andKharif [32], solution (14) also has an interesting
behavior, when investigating the only effect of vorticity S, independently of any
surface currentU0. Indeed, when considering the absence of surface current,U0 � 0,
a nonzero vorticity S �� 0 turns out to change the focusing area in a single point.
All frequencies have group velocities affected in such a way that the focusing point
is not affected by the value of the vorticity. On the other hand, the focusing time is
significantly affected, and all components of the chirped wave packet will reach the
focusing point Xf at a time T given by

T � Tf +
S

g
Xf (15)

This result is very different from what was observed in the presence of uniform
current. Indeed, when uniform current was considered, each component was affected
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by Doppler shift, so that the focusing was not optimal. Here, the components are also
affected, but the focusing point remains unchanged. This means that the focusing of
energy remains optimal, even if delayed or leaded.

These three configurations are interesting, since they admit analytical solutions,
allowing to emphasize the effect of a uniform current, or a sheared current, on the
focusing behavior of a chirped wave packet. But another effect, of possible great
significance, was not considered here. This effect is the influence of the water depth,
which has, as it is classically known, a significant impact on dispersive properties of
water waves. This idea was raised by Pr. Ezersky, and investigated both numerically
and experimentally in Merkoune et al. [21]. In this work, we extend this analysis to
the presence of a linearly sheared current.

In the latter case, the above derivation of Cg and ∂Cg/∂ω can still be performed.
The dispersion equation now reads σ0σ2 � gktanh (kh), where σ0 and σ2 are still
the previous Doppler shifted frequencies, but now read respectively (ω − kU0) and
(ω − kU0 + Sth (kh)). This new dispersion equation provides the following expres-
sion:

Cg � U0 +
gtanh (kh)

σ0 + σ2
+
gkh + σ0Sh

σ0 + σ2

(
1 − tanh (kh)2

)
(16)

Starting from this group velocity, and after some algebra, one may derive the
expression of ∂Cg/∂ω. We obtain

∂Cg

∂ω
� −2

(
Cg −U0

)2
(σ0 + σ2)Cg

+ 2

(
1 − tanh (kh)2

)
(σ0 + σ2)Cg

(
gh +

(
gkh2 + σ0Sh

2
)
tanh (kh)

)
(17)

Finally, introducing these values in the denominator of Eq. (3) leads to the fol-
lowing relationship:

x

C2
g

∂Cg

∂ω

dω0

dτ
� − gx

Xf

(
Cg +U0

)2
(σ0 + σ2)C3

g
+
gx

Xf

(
1 − tanh (kh)2

)
(σ0 + σ2)C3

g

(
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(
gkh2 + σ0Sh

2
)
tanh (kh)

)

(18)

Here again, we notice the complexity of Eq. (18), which is time dependent. Indeed,
the denominator of Eq. (3) now admits an infinity of singularities, ranging from

Lmin � Xf

(
σ0,min + σ2,min

)
C3
g (ωmin)

g
× F (ωmin, kmin) , and

Lmax � Xf

(
σ0,max + σ2,max

)
C3
g (ωmax)

g
× F (ωmax, kmax) , (19)

where the function F (ω, k) is given by

F (ω, k) � 1(
Cg (ω) +U0

)2 + (
gh +

(
gkh2 + σ0 (ω, k) Sh2

)
tanh (kh)

) (
1 − tanh (kh)2

) . (20)
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3 Results and Discussion

Results presented here aim to describe the influence of bathymetry, surface current,
and vorticity on the focusing behavior of a wave packet. To achieve this goal, the
chirped wave packet considered here corresponds to the packet studied in a previ-
ous work by Touboul and Kharif [32]. The focusing wave group considered had
a frequency varying from fmax � 1.3Hz to fmin � 0.7Hz. The peak frequency is
thus given by ωmean � 2π (fmax + fmin) /2 � 2π rad/s. This chirped wave packet,
when propagating in deep water, in the absence of current and vorticity, presented a
focusing location of Xf � 16.26m and a focusing time of Tf � 27 s.

To illustrate the kinematic effects of bathymetry, surface current, and vorticity, we
focus in the following subsections on the spreading of the focusing point. Based on
the expression of the minimum and maximum distance for caustic formation, Lmin
and Lmax, provided by Eq. (19), the spreading of the focusing area can be described
as

Aspread � Lmax − Lmin
Xf

(20)

This quantity will provide good insights on how vorticity, surface current, and
bathymetry affect dispersion.

a. Effect of vorticity and surface current

In this section, we focus on the combined effects of vorticity and a surface current,
homogeneous with depth, on the spreading area Aspread . In every case considered,
the bathymetry effects are neglected, and water waves propagating in deep water are
considered.

Figure 1 depicts the spreading areaAspread of the chirpedwave packet as a function
of the normalized vorticity S/ωmean. In the figure, various lines are represented.
These lines are colored as a function of the reference current velocity U0/cmean.
The word “reference” here means the wavenumber considered that corresponds to
the wavenumber computed in the absence of vorticity (S/ωmean � 0) for the mean
pulsation of the wave packet ωmean.

This figure shows the strong dependence of the focusing area to both the vorticity
and the surface current, in a nontrivial coupling. Indeed, it appears that for strong
currents, either positive or negative, the width of the focusing area is sensitive to the
vorticity. For positive values of the surface current, the width of the area increases
with the vorticity, while it decreases when considering negative values of the surface
current. Furthermore, when considering counter flowing currents (negative values of
U0/cmean), the spreading of the focusing area tends to be limited. This is connected to
the limiting value of the blocking current velocity. When considering positive values
of the current, this limiting behavior is not observed, and the focusing area seems
to be unbounded. One may observe it is greater than 1, meaning the width of the
focusing is as wide as the focusing distance, for relatively weak values of the surface
current.
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Fig. 1 Spreading area Aspread of the focusing wave packet plotted versus normalized vorticity
S/ωmean. Various lines are colored as a function of the normalized reference current velocity
U0/cmean

In the meantime, when considering zero surface current (this case is emphasized
by the thick black line in Fig. 1), the focusing area turns out to remain a singularity,
corresponding to a focusing point, and to be insensitive to the vorticity. This is a
confirmation of the result initially obtained in Touboul and Kharif [32]. This result
appears not to remain valid for constant, but nonzero values of the surface current.

The dependence of the width of this focusing area can also be analyzed as a
function of the normalized effective surface current velocity. The word “effective”
here means the phase velocity considered for normalization is still the phase velocity
of the average pulsation of the group, ωmean, but now accounts for the actual value
of vorticity. This behavior is presented in Fig. 2, where the spreading area is plotted
versus the normalized effective current velocity,U0/cmean. In this figure, various lines
appear, colored as a function of the normalized vorticity, S/ωmean.

Confirming the previous result, every curve intersects in Aspread � 0 for the value
of surface current U0/cmean � 0. But beyond this point, it is interesting to notice
that the area of focusing always increases with the velocity of the surface current (in
modulus). Though, from these curves, it also appears the vorticity has an influence
on this behavior, since for strong positive vorticities, the increase rate is smaller than
it is when considering strong negative vorticities.

These results are summarized in Fig. 3, where the evolution of the spreading area
(in modulus) of the focusing wave packet is presented in the (U0/cmean, S/ωmean)

plane. From this figure, the dependence of the focusing area to both surface current
velocity and vorticity might become more intuitive. It appears that for zero values
of the surface current, the focusing area is always zero, corresponding to optimal
focusing. But this focusing area is found to depend on both surface velocity and
vorticity. However, this coupling is nontrivial, since the enlargement of the focus-
ing area is more sensitive to the surface current when considering strong negative



Focusing Wave Group Propagating … 85

Fig. 2 Spreading area Aspread of the focusing wave packet plotted versus normalized effective
current velocityU0/cmean.Various lines are colored as a functionof the normalizedvorticityS/ωmean

Fig. 3 Evolution of the modulus of the focusing area in the (S/ωmean,U0/cmean) plane

vorticity. It can also be emphasized that the dependence of this area with vorticity is
more important when considering strong values (positive or negative) of the surface
velocity.

b. Effect of Vorticity and Bathymetry

In this section, we focus on the combined effects of bathymetry and vorticity on the
spreading area Aspread . In every case considered, the surface current velocity is taken
equal to zero.
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Fig. 4 Spreading area Aspread of the focusing wave packet plotted versus normalized vorticity.
Various lines are colored as a function of the reference depth parameter kh

Figure 4 depicts the spreading areaAspread of the chirpedwave packet as a function
of the normalized vorticity S/ωmean. On the figure, various lines are represented.
These lines are colored as a function of the reference depth parameter kh. The word
“reference” means the wavenumber considered that corresponds to the wavenumber
computed in the absence of vorticity (S/ωmean � 0) for the mean pulsation of the
wave packet ωmean. From this figure, various behaviors appear for large or small
values of kh. Indeed, for large values of the depth parameter, the spreading area
Aspread is zero for almost every value of the vorticity. This is a confirmation of the
result initially obtained in Touboul and Kharif [32] for wave packets propagating in
deep water. In this study, the focusing location was found to be unaffected, whatever
the value of the vorticity. The vorticity, in deep water, has no effect on the dispersive
behavior of the chirped wave packet.

On the other hand, for strong negative values of the vorticity S/ωmean, Fig. 4 shows
a spreading of the focusing area, even for the strongest values of the kh parameter
(up to values of kh � 48). These values of the vorticity correspond to a strong co-
flowing current, which will intuitively result in large values of the wavelength. Thus,
the effective wavenumber, taking the influence of the vorticity into account, will be
smaller, and the influence of the bathymetry will have a significant effect on the
dispersive behavior of the wave packet, resulting in a spreading of the focusing area.

When considering the smallest values of the reference depth parameter kh, it
turns out that the spreading area is not equal to zero. This means no optimal focusing
can be reached in such conditions, and the influence of bathymetry is predominant,
regardless to the value of vorticity. Nevertheless, it seems the value of zero will
eventually be reached asymptotically, for values of the vorticity large enough.
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Fig. 5 Spreading area Aspread of the focusing wave packet plotted versus depth parameter kh.
Various lines are colored as a function of the normalized vorticity S/ωmean

Given the previous results, it is also interesting to consider the influence of effec-
tive depth parameter kh on the focusing area Aspread . This is the purpose of Fig. 5,
which presents the evolution of the spreading area as a function of the effective depth
parameter. The word “effective” here means kh is evaluated using the real wavenum-
ber k, computed using the mean pulsation of the wave packet ωmean, and taking the
real vorticity value into account. In this figure, several lines are observed, colored as
a function of the normalized vorticity magnitude, S/ωmean.

In this figure, we observe various behaviors given the magnitude of the vorticity
considered. Indeed, when considering strong vorticity, the spreading area appears
to tend to a zero value, meaning the parameter kh has less influence when vorticity
is important. On the opposite, for strong, but negative values of the vorticity, the
parameter kh is found to have a strong influence on the focusing area of the chirped
wave packet.

The values of the parameter kh are striking. Indeed, in the absence of vorticity,
depicted by the green lines in Fig. 5, the bathymetry seems to have an influence up to
kh � 7. This is explained through the frequency width involved in the chirped wave
packet. But in the meantime, these values are larger than 10 when vorticity becomes
important, but negative.

In Fig. 6, the evolution of the spreading area (in modulus) of the focusing wave
packet is presented in the (S/ωmean, kh) plane. From this figure, it appears that the
focusing area is zero, corresponding to optimal focusing, for deep water conditions,
and for positive values of the vorticity. On the other hand, the important influence
of the depth parameter on the focusing area appears clearly on that figure, when
considering important opposing vorticities. This observation is probably explained
through a broadening of the spectral width of the group in the presence of vorticity.
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Fig. 6 Evolution of the modulus of the focusing area in the (S/ωmean, kh) plane

Thus, the mean frequency is not accurate enough to provide a good indicator of the
depth effects on the spreading area. Indeed, components involved in the wave packet
are now sensitive to finite depth effects, resulting in a spreading of the focusing
area. Same remark can be done when considering the vorticity effects for waves
propagating in shallow water (small values of the kh parameter). When components
of the group tend to become nondispersive, due to shallowness, vorticity has no
influence anymore, and the focusing cannot be reached anymore.

4 Conclusion

The kinematic behavior of a focusing wave group propagating in finite depth, in the
presence of constant vorticity and surface currents is studied analytically. Within the
framework of the linear theory we use an approximate kinematic model allowing to
describe the focusing point, and its transformation to a focusing area.

Confirming previous results by Touboul and Kharif [34], the effect of vorticity
in deep water is found to be surprising, and very different from what is expected
in the presence of surface current, varying uniformly with depth. Indeed, when the
only vorticity is present, the spreading of the focusing area is not expected anymore.
On the other hand, when both current and vorticity are present the focusing area of
the wave packets exhibits a dependence on the vorticity. Namely, the modulus of
the focusing area always increases with the modulus of the vorticity, whatever its
sign. On the other hand, this area is always found to depend on the surface current
intensity, with or without vorticity. However, the rate of this dependence is found to
be sensitive to the value of vorticity considered.
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The effect of bathymetry on the focusing area is also investigated. Here again,
results are surprising, since bathymetry turns out to have a strong impact on the
focusing area, even for very large values of kh. Indeed, this can be explained by
a broadening of the wavelength within the wave group. In the presence of strong
negative vorticities, the spatial spectral width is increased in such a way the reference
wave number might be misleading. Thus, some parts of the components suffer the
influence of the bathymetry where we should not expect it. Influence of bathymetry
is thus found, indirectly, to have even more significant impact on the dispersive
behavior of the chirped wave packet than surface currents do.
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Modeling of Bose–Einstein Condensation
in a Water Tank

Germain Rousseaux and Yury Stepanyants

Abstract A theoretical basis for the possibility to emulate Bose–Einstein conden-
sates (BEC) in a water tank is elaborated. It is shown that the equation governing the
mean-field BEC dynamics, viz., the Gross–Pitaevskii (GP) equation, can be derived
in the same form for surface water waves in a tank with a spatially varying back-
ground current. Depending on the wavenumber of the carrier wave, the GP equation
for the surface waves is tantamount to the GP equation corresponding to the attractive
or repulsive inter-atomic interactions in BEC. The external potential in the effective
GP equation can be easily implemented in the water tank with an uneven bottom
featuring a well or hump. Examples of particular stable exact solutions of the GP
equation with the effective potential are presented. Estimates for physical parameters
of the hydrodynamic setting are given.

1 Introduction

The Bose–Einstein condensation (BEC) has drawn a great deal of attention in course
of the last two decades. The condensate effect was experimentally demonstrated
in various media, including ultracold atomic and exciton-polariton gases, etc. (see,
e.g., Refs. [1–4] and references therein). The use of particular external potentials is a
necessary ingredient of these experiments, which are run in sophisticated setups. On
the other hand, many dynamical matter-wave regimes characteristic to BEC may be
emulated, using simpler equipment, in water-wave tanks. To promote this possibility,
in the present work we demonstrate that the basic mean-field BEC model, known as
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the Gross–Pitaevskii (GP) equation, can be derived for surface water waves in a tank
with a spatially varying current. Depending on the wavenumber of the carrier wave,
the effective GP equation for the surface waves can be made equivalent to the GP
equationwith both attractive and repulsive inter-atomic interactions in BEC. External
potentials in the GP equation for water waves can be easily emulated in the water
tank with an uneven bottom, featuring wells or humps. Particular exact solutions of
the effective GP equation are reported here, and estimates for their realization in the
water tank are given.

2 Derivation of the Effective Gross–Pitaevskii Equations
for Waves on the Surface of Moving Water

FollowingRef. [5], we considerwater-wave propagation on top of a smoothly varying
current along the x-axis, with flow velocity U(x)=U0 +U1(x) including a constant
mean value U0 and a small variable component U1(x), with max[|U1(x)|]/U0 �1
(as shown below, the latter term may be induced by a bottom profile of the tank).
For a counter-current propagating sinusoidal wave of a small but finite amplitude A,
with frequency ω and wavenumber k, the dispersion relation for deepwater in the
laboratory reference frame is [5]

ω � −U (x)k +
√
gk

(
1 + T k2

) (
1 +

A2k2

2

)
, (2.1)

where g is the gravity acceleration, T =σ /ρ g, σ is the surface tension, ρ the water
density, and only the term~ε2 with respect to the wave steepnes, ε =Ak, is retained
in the respective expression for the Stokes’ correction to the wave frequency (see,
e.g., Refs. [6, 7]). It is assumed that spatial scale L of the variation of the external
current is much greater than the wavelength λ =2π /k, which makes it meaningful to
consider the x-dependent frequency in Eq. (2.1). Figure 1 schematically illustrates
the respective configuration of the flow and counter-current propagatingwave packet.

We consider a weakly modulated wavetrain with the central wave number k0 and

frequencyω0 � −U0k0 +
√
gk0

(
1 + T k20

)
. Dispersion relation (2.1) can be expanded

around the point (ω0, k0, A =0) into the Taylor series up to the terms of the order of
ε2 (see Refs. [5, 8, 9])

ω − ω0 � ∂ω

∂k
(k − k0) −U1k0 − 1

2

∂2ω

∂k2
(k − k0)

2 +
∂ω

∂A2
(Ak0)

2, (2.2)

where

∂ω

∂k
� cg

1 + 3T k20√
1 + T k20

−U0,
∂2ω

∂k2
� cg

2k0

(
1 − 3T k20

)2 − 12T 2k40(
1 + T k20

)3/ 2 ,
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Fig. 1 A sketch of the surface wave train propagating against the current in a water tank with a
bottom well

∂ω

∂A2
� cgk0

8

8 + T k20 + 2T 2k40(
1 + T k20

)3/ 2 (
1 − 2T k20

) (Ak0)2,

where cg � (1/2)
√
g0k0 is the group velocity of a purely gravity wave with the

wavenumber k0 on still water, and

ω−ω0 ∼ k−k0 ∼ ε, max [|U1(x)|] /U0 ∼ ε2. (2.3)

(recall that ε�1 is the small wave steepness).
The evolution equation in the (x, t)-space corresponding to dispersion

relation (2.2) can be easily restored by replacing ω – ω0 → i ∂/∂t
and k – k 0 → –i ∂/∂x [5, 10, 11]. Thus we obtain the equation
for a slowly varying in space and time complex amplitude of a wave
train

i

(
∂A

∂t
+ Vg

∂A

∂x

)
� U1(x)k0A − α |A|2 A − β

∂2A

∂x2
, (2.4)

where the group velocity of gravity-capillary waves propagating on top of a current
is

Vg(k0,U0) � cg
1 + 3T k20√
1 + T k20

−U0, (2.5)

and the coefficients in Eq. (2.4) are

α � cgk30
8

8 + T k20 + 2T 2k40(
1 + T k20

)3/ 2 (
1 − 2T k20

) , (2.6a)
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Fig. 2 Intervals of instability (1 and 3) and stability (2) for sinusoidal surface waves

β � 1

2

d2ω

dk2

∣∣∣∣
k�k0

� cg
4k0

(
1 − 3T k20

)2 − 12T 2k40(
1 + T k20

)3/2 . (2.6b)

A similar equation was derived in Ref. [12] for purely gravity waves (the rigorous
derivation of such equation with the help of the asymptotic expansion method can
be found in Rev. [5]).

If we choose for the counter-current propagating wave the speed of the underlying
current such that Vg =0, i.e., U0 =cg (1+3Tk20)/(1+Tk

2
0)

1/2, then we obtain the
standard Gross–Pitaevskii equation [1]

i
∂A

∂t
+ α |A|2 A + β

∂2A

∂x2
−U1(x)k0A � 0, (2.7)

where U1(x) plays a role of the external potential, which is shaped as a well, with
U1(x)<0, and as a hump, with U1(x)>0.

Equation (2.7) without the external potential reduces to the integrable
nonlinear Schrödinger (NLS) equation [7–10]. Depending on coefficients
α and β, cnoidal-wave periodic solutions of the NLS equation can be
stable or unstable against self-modulating perturbations. According to the
Lighthill criterion [7, 9], the stability occurs at αβ <0, and the instabil-
ity takes place at αβ >0. The analysis of coefficients α and β shows
[8, 9] that, in the case of purely gravity waves, both α and β are positive, hence
the sinusoidal wavetrains are unstable, when T k20 < 2/

√
3 − 1 ≈ 0.155. In the

relatively narrow range, 2
√
3/3 − 1 < T k20 < 1/2, the signs are α >0 and β <0,

hence the waves are modulationally stable. Finally, when T k20 > 1/2, both α and
β are negative, hence the cnoidal waves are again modulationally unstable. The
critical wavenumbers, at which coefficients β and α change their signs for clean
water at temperature 25 °C are, respectively, k1 =1.452 cm−1 (λ1 =4.33 cm) and
k2 =2.61 cm−1 (λ1 =2.41 cm). Note that the group velocity in still water, Vg(k, 0),
attains a minimum at the former critical point k1 [7]. At both critical points k1,2,
Eq. (2.7) should be replaced with a more complex equation [5] (we do not consider
such degenerate cases in detail here). Figure 2 shows the intervals of wavenumbers
where the modulational stability and instability occur.

In the next sections we demonstrate that, using various shapes of the bottom well,
one can produce different corrections to the main flow U1(x) in a water tank, via the
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conservation of the flow rate through the tank’s cross-section, U1(x)h1(x)=const.
For some shapes of the bottom well, exact solutions of the effective GP equation can
be constructed both for the repulsive and attractive signs of the nonlinear term. It is
easy to make bottom wells of various shapes in the tank, and trapped surface waves
on top of the corresponding current can be readily observed in the experiment.

3 An Example of Exact Solution of the Effective
Gross–Pitaevskii Equation in the Modulationally
Stable Case

In this section,we demonstrate that one of the basic exact solutions of theGP equation
can be realized in the laboratory experimentwithmodulationally stable surfacewaves
belonging to the interval 2 shown in Fig. 2. To this end, we first assume the presence
of a constant water flow U0 =0.185 m/s in the tank of constant depth h0 =0.45 m.
Figure 3 displays the dispersion relation (2.1) for surface waves of infinitesimal
amplitude (with A =0) and constant current speed U0.

Further, we assume the presence of a shallow well in the central part of the tank’s
bottom, which modifies the total depth so that

h(x) � h0
{
1 + F

[
tanh

( x

�
+ φ

)
− tanh

( x

�
− φ

)]}
, (3.1)

where φ � 1
4 ln

1+ν
1−ν

, � �
√

−6β
νFk0U0

, F >0 and ν being free parameters (0<ν <1),
which control the depth of the cavity and its shape. The largest variation of the depth,
corresponding to Eq. (3.1), is

δh � h(0) − h0 � 2h0F
1 − √

1 − ν2

ν
. (3.2)

The front and rear slopes of the well, �, depend monotonically on parameter ν,
decreasing from infinity to �min � √−6β/ (Fk0U0), when ν varies from 0 to 1.
The characteristic width of the well, L, i.e., the distance between its frontal and rear
segments at the half-maximum level, δh/2, is

L �
√

−6β

νFk0U0
ln

(
2
√
1 − ν2 + 1 +

√
4 − 3ν2 + 4

√
1 − ν2

√
1 − ν2

)
. (3.3)

At ν →0, the well takes the shape of an inverted bell, whose width increases as

1/
√

ν: L ≈
√

−6β
νFk0U0

ln
(
3 +

√
8
)
. In another limit, ν → 1, the well becomes very

wide too, with the width increasing as L ≈
√

−3β
2Fk0U0

ln 2
1−ν

. The minimum width,
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(a)

(b)

Fig. 3 The dispersion relation for surface waves with an infinitesimal amplitude. Frame a shows ω

(k) as per Eq. (2.1) with A =0; frame b shows the group velocity in the presence of the underlying
current. Lines 1 and 2 pertain, respectively, to counter-and co-current propagating waves (the group
velocity for the latter branch is not shown). Vertical dashed lines 3 and 6 correspond to the carrier
waves with k0 =2.1 cm−1 and k0 =0.985 cm−1, respectively; dashed lines 4 and 5 show the bound-
aries of the shaded domain where sinusoidal waves are modulationally stable. Line 4 corresponds
to k1, and line 5—to k2, as per Fig. 2

Lmin ≈ 2.2
√

−6β
Fk0U0

, is attained at ν ≈ 0.821. All such shapes can be readily designed
in the experimental setup.

Due to the conservation of the mass flux through any cross-section, the variation
of the depth causes the variation of the speed, therefore, above the bottom well, the
current varies as follows:

U (x) � U0

1 + F
[
tanh

( x
�
+ φ

) − tanh
( x

�
− φ

)] ≈ U0

{
1 − F

[
tanh

( x

�
+ φ

)
− tanh

( x

�
− φ

)]}
,

(3.4)

where the condition F �1 is assumed, hence the effective potential in Eq. (2.7) is

U1(x) � −U0F
[
tanh

( x

�
+ φ

)
− tanh

( x

�
− φ

)]
. (3.5)
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To realize the dynamical regime corresponding to the GP equation with the
self-attraction, we chose a surface mode with wavelength λ0 =3 cm (k0 =2π /λ0

=2.1 cm−1) and amplitude A ≈ 1 mm, hence the corresponding wave steepness, ε

=Ak0 =0.21, may be considered as a small parameter. For such a wave, even in a
relatively shallow section of the tank we have k0h0 =135 � 1, which means that the
deepwater condition is achieved. The absolute value of the group velocity of such
a wave in the absence of the underlying current is Vg(k0, 0)=18.5 cm/s, whereas
the minimal group velocity for given parameters is Vmin =–0.79 cm/s, see Fig. 3b.
An obviously interesting possibility is to observe a “standing water soliton”, i.e., to
bring the wavetrain, traveling counter-current, to a halt in the laboratory frame. To

this end, we set U0 � cg
(
1 + 3T k20

)
/

√
1 + T k20; according to Eqs. (2.5), and (2.6a,

2.6b) this determines the nonlinearity and dispersion coefficients in GP Eq. (2.7): α
=3.348 × 102 cm−2 s−1, β =–1.806 × 102 cm2 s−1.

As has been shown in Ref. [13], the GP equation with the potential given by
Eq. (3.5) admits the exact solution in the form of

A(x, t) � exp (−i�t)

√
νFk0U0

3α

[
tanh

( x

�
+ φ

)
− tanh

( x

�
− φ

)]
, (3.6)

where �=2ν F k0U0/3 is a nonlinear correction to the wave frequency ω0, and the
amplitude of the localized state is

Amax � 2

√
Fk0U0

3αν

(
1 −

√
1 − ν2

)
. (3.7)

The total norm of this solution (which gives a scaled number of atoms in the
application to BEC) is

N �
+∞∫

−∞
|A(x)|2dx � 4νFk0U0�

3α
[2φ coth(2φ) − 1] . (3.8)

The normalized squared absolute value of solution (3.6), corresponding to the
local density of atoms in BEC, along with the normalized potential,U1(x)/(U0F), are
shown in Fig. 4 for several values of free parameter ν. As demonstrated in Ref. [13],
this exact solution is actually the ground state of the GP equation with the repulsive
nonlinearity and potential well (3.5), hence this solution is definitely stable.

Thus, a surface gravity-capillary wave with carrier wavelength λ0 =3 cm can be
trapped in the water flow over the bottom well. If one takes, for example, the value
of the free parameter F =0.15, the largest depth of the well at ν =0.999 is δh ≡ hmax

– h0 =12.9 cm, so that δh/h0 =0.29. The width of the well is L ≈ 53 cm, according
to Eq. (3.2), the envelope of the trapped wavetrain having the same width, see
Fig. 4. The amplitude of the wave is Amax =1.5 mm, hence (k0Amax)2 =0.3, whereas
(|U1(x)/U0|)max =0.29, which agrees with the assumption of the smallnesses of the
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Fig. 4 Normalized solution (3.6) in terms of 3α |A(x)|2/(FU0k0) (lines labeled 1, 2, 3), and the
corresponding normalized potentials U1(x)/(U0F) (lines labeled 1′, 2′, 3′) as functions of dimen-
sionless coordinate ξ =x/�. Lines 1 and 1′ pertain to ν =0.9; lines 2 and 2′ to ν =0.999; lines 3 and
3′ to ν =0.99999

wave steepness and modulation of the basic current, (|U1(x)/U0|)max and ε2 being
of the same order of magnitude, in agreement with Eq. (2.3).

It has been shown in Ref. [13] that there are many other exact stable solutions of
the GP equation with the corresponding potentials, which can be easily realized in a
water tank.

4 An Example of Exact Solution of the Effective
Gross–Pitaevskii Equation in the Modulationally
Unstable Case

We now consider the situation with a small bell-shaped well in the central part of the
tank’s bottom which modifies the depth as [cf. Eq. (3.1), which represented another
well’s profile]

h(x) � h0

[
1 +

F

1 + B cosh(x/�)

]
, (4.1)

where � and B >1 are free parameters, which control the depth and width of the
cavity, and F is a function of �, to be specified below. The maximal variation of
well’s depth is

δh ≡ h(x) − h0 � h0F

1 + B
. (4.2)

where it is assumed that second term in the square brackets is small in comparison
with 1.



Modeling of Bose–Einstein Condensation in a Water Tank 99

To consider the effective GP equation with the self-attraction, i.e., modulational
instability of the surface wave, we choose it with wavelength λ0 =6.4 cm (k0 =2π /λ0

=0.985 cm−1) and amplitude A ≈ 3.24 mm, so that the wave steepness ε =Ak0
≈ 0.32 may again be treated as a small parameter. For such a wave, even in a
relatively shallow section of the tank we have k0h0 =44.33>>1, which means that
the deepwater approximation remains valid. The group velocity of such a wave in
the absence of the underlying current is the same as in the previous example, viz.,
Vg(k0, 0)=18.5 cm/s, see Fig. 3b. To bring a counter-current traveling wavetrain to
a halt in the laboratory frame (as done above, to produce a “standing water hump”)
we again set U0 =Vg(k0, 0), pursuant to Eq. (2.5). Then Eq. (2.6a, 2.6b) produces
the nonlinearity and dispersion coefficients of GP Eq. (2.7): α =18.6, cm−2 s−1, β
=2.385 × 102, cm2 s−1, and the effective potential,

U1(x) � −U0F

1 + B cosh(x/�)
. (4.4)

It is easy to check that the GP equation with this potential and self-attractive cubic
term has an exact localized solution (a soliton pinned to the potential well) in the
form of

A(x, t) � R exp (−i�t)

1 + B cosh(x/�)
, (4.5)

where �=β /�
2 is a nonlinear correction to the wave frequency ω0, and R and F are

expressed in terms of free parameters B and �:

R � 1

�

√
2β

α

(
B2 − 1

)
, F � −3β

U0k0�2
. (4.6)

The amplitude of this pinned soliton is

Amax � R

1 + B
� 1

�

√
2β

α

B − 1

B + 1
. (4.7)

The stability of this solution was verified in Ref. [13]. The profile of its squared
absolute value, corresponding to the local density of atoms in BEC, along with the
respective normalized potential, U1(x)/(U0b), are shown in Fig. 5 for dimensionless
parameter B =2.5 and �=25 cm.

Thus, we see that the surface gravity wave with the carrier wavelength λ0 =6.4 cm
can be trapped in the water flow over the bottomwell considered here. For the chosen
free parameters B and � we find that the maximal depth of the well is δh ≡ hmax

– h0 =0.8 cm (δh/h0 ≈ 0.018). The number of periods of the carrier wave within
the envelope of the localized trapped mode is 2�/λ0 ≈ 8. The same width has the
envelope of the trapped wave train. The amplitude of the mode is Amax ≈ 1.3 mm,
hence the corresponding wave steepness is ε ≡ k0Amax ≈ 0.13. The largest variation
of the mean flow, induced by the bottom well, is |U1(x)/U0|max ≈ 0.018. This agrees
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Fig. 5 The squared absolute value of solution (4.5) (line 1) and the corresponding normalized
potential U1(x)/(U0) (line 2), as functions of dimensionless coordinate ξ =x/�. The left and right
scales pertains, respectively, to lines 1 and 2

well with our underlying assumptions about the smallnesses of the wave steepness,
and |U1(x)/U0|max ~ε2, see Eq. (2.3).

In the case of purely gravity waves, when the GP equation has the attractive non-
linearity, many other exact solutions with the corresponding potentials are available
[13]; they can be relatively easy realized in the water tank, using the surface waves
with λ >4.3 cm.

5 Conclusion

In this chapter we have shown that surface waves propagating against the external
current, slowly varying in the horizontal direction in deepwater, are governed by
the equation which is tantamount to the GP (Gross–Pitaevskii) equation modeling
the mean-field BEC dynamics. The repulsive or attractive sign of the cubic term
is controlled by the choice of the carrier wavelength of the surface waves, while
the spatial variation of the current plays the role of the external potential in the GP
equation. The current profile can be easily controlled in the experiments by small
variation of bottom profile, so that the corresponding effective potential in the GP
equation can be made in the form of a well or hump. We assume that the free surface
remains flat when water flows around a bottom obstacle which is simplification of
course because the current induces in general a standing free surface perturbation.
But at certain conditions the surface perturbation can be made small.

For some particular bottom profiles the effective GP equation admits exact solu-
tions, which can be experimentally implemented in the water tank with the back-
ground current. Thus, the phenomenon of the Bose–Einstein condensation can be
effectively emulated in relatively simple laboratory setups for water waves. Generat-
ing perturbations with an appropriate carrier wavelength, one can create patterns in
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the form of trapped waves which correspond to pinned states of the GP equation with
local potentials. Our estimates presented in the chapter demonstrate that the param-
eters of bottom profile, background current, and surface waves are quite accessible
to laboratory experiments.

Finally, we note that, formally speaking, in addition to what is elaborated above,
theGP equation can be also implemented in the domain 3 in Fig. 4 for purely capillary
waves with λ <2.4 cm. However, for such short waves water viscosity becomes
important, which would complicate the comparison between the theoretical results
predicted by the GP equation and observations.
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Surface
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Abstract The objective of this chapter is to perform laboratory and direct numerical
modeling of turbulent wind over water surface under stable stratification conditions.
Laboratory and numerical experiments are performed under the same bulk Reynolds
andRichardson numberswhich allow a direct comparison between themeasurements
and calculations. The laboratory experiments are performed in a wind-wave flume
on the basis of a thermostratified tank facility at IAP RAS. A sufficiently strong
stable stratification (with the air–water temperature difference of up to 18 K) and a
comparatively large bulk Richardson number (up to Ri ≈ 0.04) in the experiment
are created by heating the incoming air flow while maintaining a relatively low wind
speed (up to 3 m/s) and the corresponding bulk Reynolds number up to Re ≈ 60000.
The air velocity field is retrieved by employing both contact (Pitot tube) and PIV
methods, and the air temperature profile is measured simultaneously by a set of
contact probes. The samebulkRi andRe are prescribed in direct numerical simulation
where turbulentCouette flow is considered as amodel of the nearwater constant stress
atmospheric boundary layer. The mean velocity and temperature profiles obtained
in our laboratory and numerical experiments agree well and also are well predicted
by the Monin–Obukhov similarity theory. The results show that sufficiently strong
stratification, although allowing a statistically stationary turbulent regime, leads to
a drastic reduction of both turbulent momentum and heat fluxes. Under this regime,
the flow turbulent Reynolds number (based on the Obukhov length scale and friction
velocity) is found to be in agreement with known criteria characterizing stationary
strongly stratified turbulence.
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1 Introduction

Detailed knowledge of the properties of small-scale processes occurring in atmo-
spheric boundary layer over water surface is important for correct parameterization
of turbulent exchange in marine atmospheric boundary layer in large-scale weather
and climate prognostic models. Under the conditions of relatively small (about sev-
eral degrees of K) air–water temperature difference and sufficiently high wind speed
(typically, about several m/s) the air flow in the boundary layer (BL) is weakly strat-
ified and turbulent, and its properties are well predicted by the Monin–Obukhov
similarity theory (MOST) [7]. Of special interest are subcritical regimes under a
sufficiently strong stratification, where the flow is still statistically stationary and
turbulent although turbulent momentum and heat fluxes are drastically reduced as
compared to the weakly stratified flow. In practice, such BL regime can be realized,
for example, when a relatively warm inland air is advected over a cooler sea or
lake in the spring season wherein the air–water temperature difference can become
quite significant (more than 10 K) to render stratification effects to become strong at
sufficiently low winds (about or below 3 m/s) [1, 2].

Available field observations and laboratory experimental measurements show that
strong stable stratification effectively suppresses turbulentmomentumandheat fluxes
in the boundary layer as compared to the weakly stratified turbulent regime under
which MOST parameterization is still applicable [3]. Detailed experimental mea-
surements of the velocity and temperature profiles in the stably stratified boundary
layer, both for weakly stratified and strongly stratified regimes, were performed by
Ohya et al. [4]. In this experiment, the air flow over a cooled flat solid floor in ther-
mally stratified wind tunnel was investigated. The bulk inflow air velocity U0 was in
the range from 0.8m/s to 3m/s and the difference between the air and surface temper-
atures�T was in the range from 46 to 53 Kwith the resulting bulk Reynolds number
Re � O(104 ÷ 105) and bulk Richardson number Ri � O(0.1 ÷ 1). These experi-
mental results suggest that under the influence of stable stratification the air velocity
in the boundary layer, normalized by the free-stream air velocity, is decreased as
compared to the non-stratified flow. The results also show that turbulent momentum
flux was reduced by strong stable stratification as compared to the neutrally stratified
flow case. However, there was no comparison given between the experimental results
obtained under strong stratification conditions and predictions of MOST.

In our earlier study, we investigated stably stratified turbulent flow over water sur-
face by performing direct numerical simulation (DNS) for a range of bulkRichardson
and Reynolds numbers [5]. DNS does not require any parameterization and resolves
all physically relevant flow scales up to viscous dissipation (Kolmogorov) length. At
sufficiently small Ri, DNS reproduces statistically stationary turbulent regime with
vertical profiles of mean velocity and temperature obeying theMonin–Obukhov sim-
ilarity theory. At large Ri turbulence degenerates.We investigated the transition from
turbulent to laminar regime as dependent on both Reynolds and Richardson num-
bers, and compared our results with those of the previous study by Flores and Riley
[6]. These authors compiled available laboratory and numerical data and performed
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DNS of their own to analyze the transition from turbulent to laminar regime in terms
of a turbulent Reynolds number, ReL, based on the Obukhov length scale and fric-
tion velocity. The basic result obtained by Flores and Riley [6] is that the stationary
turbulent regime is maintained at ReL > 100; otherwise turbulence degenerates and
the flow becomes laminar. Our DNS confirmed this conclusion. However, there is
still an insufficient knowledge of a threshold regime, where BL can still be regarded
in a statistically stationary turbulent regime, where MOST predictions still correctly
predicts the flow properties. This study aims at laboratory and numerical study of
such regimes.

We perform both laboratory modeling and DNS of turbulent air wind over water
surface under both weak and strong stable stratification conditions. The laboratory
andnumerical experiments are performedunder the samebulkReynolds andRichard-
son numbers which allow a direct comparison between the measurements and DNS
results. The laboratory experiment is performed in a wind-wave flume on the basis of
a thermostratified tank facility at IAP RAS. A sufficiently strong stable stratification
(with the air–water temperature difference up to 18 K) and a comparatively large
bulk Richardson number (up to Ri ≈ 0.04) in the experiment is created by heating
the incoming air flow while maintaining a relatively low wind speed (up to 3 m/s)
and the corresponding bulk Reynolds number up to Re ≈ 60000. The air velocity
field is retrieved by employing both contact (Pitot) and PIV methods, and the air
temperature profile is measured simultaneously by a set of contact probes. The same
bulk Ri and Re are prescribed in DNS. The mean velocity and temperature profiles
obtained in laboratory and numerical experiments, for both regimes of weak and
strong stratification, agree well and also are well predicted by the Monin–Obukhov
similarity theory. The results also show that under strong stratification conditions,
both turbulent momentum and heat fluxes are drastically reduced as compared to the
weak stratification regime.

The chapter is organized as follows. In the next Sect. 2, for convenience, we
briefly formulate the predictions of Monin–Obukhov similarity theory (MOST) for
weakly stratified BL flow. In Sect. 3, laboratory and numerical experimental set-
tings are presented, and the results are discussed. Section 4 contains discussion and
conclusions.

2 MOST Predictions for Velocity and Temperature Profiles
in Weakly Stratified BL Flow

Stably stratified boundary layers typically are classified asweakly stable if buoyancy
effects are weak enough to allow a statistically stationary turbulent regime [3]. In this
weakly stratified boundary-layer flow, the dependence of the mean velocityU(z) and
the deviation of mean temperature from its surface value, on height z in the region of
constant turbulent stresses are described by the Monin–Obukhov similarity theory
(MOST) (cf. [7]) as
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where κ is the von Karman constant, CU and CT are empirical dimensionless con-
stants and Prt is the turbulent Prandtl number. The common estimates are κ � 0.4,
CU � 2, CT ~ CU , and Prt � 0.85 as observed in most laboratory and field experi-
ments. The turbulent velocity and temperature scales, namely, u∗ (friction velocity
measured in m/s) and T∗ (measured in K) are expressed through turbulent stresses
(i.e. momentum and heat fluxes), τ and F, as
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τ , T∗ � F/
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τ , (3)

where τ and F are taken at sufficiently large distance from the surface, where they
reach asymptotically constant values. The turbulent Prandtl number, Prt , is defined
as
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The Obukhov turbulent length scale L (measured in m) is

L � u2∗
(g/T0)T∗

, (5)

where g is the gravitational acceleration and T 0 the reference temperature. (Note
that our definition of the Obukhov length scale L, Eq. (5), does not include the von
Karman constant, κ , whereas the popular version of this scale, L̃ , includes κ in the
denominator, so that L̃ � L/κ . Then the second term on the right-hand side in
brackets in Eqs. (1) and (2) becomes CU
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Roughness lengths z0U and z0� in the case of an aerodynamically smooth flat
surface are determined by conventional relations (e.g., [7])

z0U � ν
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exp(−5κ), (6)
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where ν is the kinematic viscosity of the air.
The bulk Reynolds and Richardson numbers are conventionally defined as
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Note that Eq. (1) does not give a direct answer to the question whether the air
velocity will be enhanced or reduced, relative to bulk velocity, if the stratification
strength (measured by the bulk Richardson number, Ri) is increased, since the turbu-
lent stress (measured by the friction velocity) as well as the Obukhov length L both
depend on the stratification strength.

3 Laboratory and Numerical Experiments

The laboratory experiment was performed in a Thermostratified wind-wave tank
(TSWiWaT) of IAP over a smooth water surface (Figs. 1 and 2). Experiments
were carried out for two cases: weakly stratified and strongly stratified air flow.
In order to simulate stable temperature stratification of the air boundary layer, the
input wind flow was heated before income but the temperature of the water sur-
face remained unchanged. Thus in the weakly stratified case, the bulk temperature
difference between air and water was about 4 K whereas in the strongly stratified
case the temperature difference was about 20 K, and the wind bulk velocity was
from 2 to 3 m/s in both cases. This setting of the laboratory experiment provides
the bulk Reynolds and Richardson numbers in the range Re ≈ 40000–60000 and
Ri ≈ 0.01–0.04, respectively. The measurements of the air velocity in the working
section at the distance of 7.5 m from the inlet were performed with the use of Pitot
tubes at different heights above the water surface (Fig. 1). Hotwire installed together
with Pitot tubes was used for simultaneous air temperature measurements. In order
to reduce statistical errors an ensemble averaging was performed over five different
experimental realizations.

PIV techniquewas applied for retrieving instantaneouswindvelocityfields. 20µm
polyamide seeding particleswere injected in the flow at the first section of the channel
(Fig. 2). Over the working section (with fetch 7.5 m) a continuous laser (1.5 Wt,
527 nm) was installed. Vertical laser sheet parallel to side walls of the channel was
formed by a cylindrical lens. Motions of illuminated particles were recorded by a
high-speed camera Videoscan Videosprint (3012 fps, exposure time 100 µs, frame
size 1280 × 166 px (250 × 32 mm), scale 195 µm/px). For each regime, 20 records
were obtained, and each record has the duration of 0.5–2 s. Instantaneous velocity
fieldswere retrieved by comparison of consequent frameswith the use of a correlation
postprocessing analysis where mean visible displacement of particles corresponded
to shift peak of cross-correlation function. Calculationswere carried for interrogation
window of 64 × 32 px evenly distributed on a rectangular grid with 50% overlap.
Sub-pixel interpolation of CCF peak position by three points was used. Due to high
levels of peak-locking (since whole values of displacement were more probable to
retrieve) comparison between neighbor frames provided wrong results for velocity
fluctuations and turbulent fluxes. So each framewas compared to the frame separated
by three, five, and seven frames after it. Using this method increased visible particle
displacement and reduced peak-locking influence. The resulting profileswere similar
for different framedistances. These velocityfieldswerefilteredbydifferencebetween
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Fig. 1 Schematic of the laboratory experiment on the TSWiWaT (side view). All dimensions given
in cm. 1—the wind channel 2—vertical beds 3—expanded-narrow section 4—hotwire controlling
the incoming flow 5—wave damping beach 6—surface water temperature gauge 7—Pitot gauge
installed on the scanning probe in the working section on the 8 m length from the income 8—hot
wire installed together with Pitot

local velocity value and the median value at the given height. Mean velocity profiles
were retrieved by averaging of the filtered velocity fields over time and horizontal
coordinate.Mean velocity profileswere used for evaluation of the velocity fluctuation
field which was also averaged in a similar way. By these means, the mean velocity
and turbulent momentum flux profiles were retrieved for each record.

Direct numerical simulations of stably stratified Couette flow were performed at
the same Re and Ri as in the laboratory experiment. The setup of the numerical
experiment was similar to the one considered by Druzhinin et al. [5]. A Cartesian
framework was considered where x-axis was oriented along the mean wind, z-axis is
directed vertically upwards and y-axis was orthogonal to the mean flow. Periodical
boundary conditions were considered in the x and y directions. The no-slip bound-
ary conditions were prescribed at the top and bottom horizontal boundary planes
separated by distance D and moving in the opposite directions along the x-axis with
velocities ±0.5U0. The stable density stratification was specified by prescribing the
air temperature at the bottom surface as T � T 0 and the top boundary plane as
T � T 0 + �T , where �T > 0.

Numerical algorithm was based on the integration of full, 3D Navier–Stokes
equations for incompressible fluid under the Boussinesq approximation [5]. The
governing parameters in DNS were the bulk Reynolds and Richardson numbers
defined as

Re � U0D

ν
, (10)
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Fig. 2 Cross-wind section of the channel: 1—continuous laser; 2—water surface; 3—laser sheet;
4—wind direction; 5—PIV-particles; 6—underwater part of the channel; 7—high-speed camera in
semi-submerged box

Ri � g
�T

T0

D

U 2
0

. (11)

In DNS we prescribed Re � 40000 and Ri � 0, in the non-stratified case, and
Ri � 0.04, in the stratified case, which are in agreement with the parameters of the
laboratory experiment. The organization of DNS procedure was similar to the one
discussed by [5]. The velocity field in DNS was initialized as a weakly perturbed
laminar Couette flow with the initial temperature deviation field put to zero. The
integration was advanced in time until a statistically stationary flow regime was
established. Then the sampling of the velocity and temperature fields was performed,
and the mean vertical profiles of all fields were obtained by averaging over time and
x and y coordinates.

Figure 3 compares mean velocity and temperature profiles obtained in the labo-
ratory experiment and DNS. The figure also shows theoretically predicted profiles
of mean velocity and temperature obtained with the use of Eqs. (1)–(5). Figure 3
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Fig. 3 Vertical mean velocity (left panel) and temperature (right panel) profiles in weakly- and
strongly stratified boundary layer over smooth water surface obtained in laboratory experiment
(symbols) and DNS (dashed curves). Theoretical predictions of MOST are in dotted line

presents profiles of turbulent fluxes, τ and F, and turbulent Prandtl number, Prt,
evaluated as described in (4), obtained in DNS. The experimental velocity profiles
are normalized by the maximum (bulk) velocity U0 � U(z � H0), approximately in
the middle of the flume at height z � H0 ≈ 24 cm. The mean temperature profile
was normalized with T 0 � T (H0). The DNS profiles are normalized by the mean
velocity and temperature in the middle of the computational domain at z � 0.5D.

Figure 3 shows very good agreement between the experimental and numerical
results and theoretical prediction. Note that the best agreement for the mean temper-
ature profile was obtained for constant coefficient CT � 6.

Note also that the flow inDNS is in statistically stationary turbulent regime accord-
ing to characterization developed by Flores and Riley [6]. These authors compiled
available laboratory and numerical data and performed DNS of their own to analyze
the transition from turbulent to laminar regime in terms of the turbulent Reynolds
number, ReL, based on the Obukhov length scale and friction velocity

ReL � Lu∗
κν

. (12)
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Fig. 4 Vertical profiles of
turbulent momentum flux,
normalized by the bulk
velocity, τ/U2

0 , obtained in
the laboratory experiment in
weakly stratified regime
(squares), and the reduction
of the momentum flux in the
experiment and DNS (circles
and dashed curve,
respectively) under the
strong stratification
conditions

The basic result obtained by Flores and Riley [6] is that the stationary turbulent
regime is maintained at ReL > 100; otherwise turbulence degenerates and the flow
becomes laminar. In our numerical experiment u∗ ≈ 0.018U0 and L ≈ 0.37D, so
that ReL ≈ 270.

Figure 4 presents vertical profiles of turbulent momentum flux, normalized by
the bulk velocity, τ/U 2

0 , obtained in the laboratory experiment in weakly stratified
regime with Ri ≈ 0.01 (squares), and the reduction of the momentum flux �τ/U 2

0
obtained in the experiment and DNS for bulk Rishardson and Reynolds numbers
Ri ≈ 0.04 and Re ≈ 60000 (circles and dashed curve, respectively). The figure
shows a drastic reduction of turbulent momentum flux (by more than 50%) under
the strong stratification regime.

4 Conclusions

We have performed laboratory experiment and direct numerical modeling of turbu-
lent wind over water surface under stable stratification conditions. The laboratory
and numerical experiments have been performed under the same bulk Reynolds and
Richardson numbers which allowed a direct comparison between the measurements
and calculations. Laboratory study and DNS considered both regimes of weak
and strong stable stratification. Under the latter regime, the air–water temperature
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difference created in the laboratory experiment was of up to 18 K and a relatively
low wind speed of about 3 m/s which allowed us to reach a comparatively large bulk
Richardson number (up to Ri ≈ 0.04) and the corresponding bulk Reynolds number
up to Re ≈ 60000. Both contact (Pitot tube) and PIV methods were employed
to measure the air velocity whereas the air temperature profile was measured
simultaneously by a set of contact probes. The same bulk Ri and Re were prescribed
in direct numerical simulation where turbulent Couette flow was considered as a
model of the near water constant-stress atmospheric boundary layer.

Both experimental and DNS results show that mean velocity and temperature pro-
files obtained in our laboratory and numerical experiments agree well and also are
well predicted by theMonin–Obukhov similarity theory.Although under strong strat-
ification conditions a drastic reduction of both turbulent momentum and heat fluxes
was observed, the prediction of MOST was still found to be a good approximation
for the wind velocity and temperature profiles.

Acknowledgements This work is supported by RFBR (16-55-52022, 17-05-00703, 18-05-00265,
16-05-00839) and by the grants of the President (MK-2041.2017.5, SP-1740.2016.1). Postpro-
cessing of the experimental data and numerical simulations were supported by the Russian
Science Foundation (15-17-20009). Laboratory experiments were carried out on the Unique
Scientific Facility “Complex of Large-Scale Geophysical Facilities” (http://www.ckp-rf.ru/usu/
77738/).

References

1. Melas D. 1989. The temperature structure in a stably stratified internal boundary layer over a
cold sea. Boundary-Layer Meteorol. 48: 361–375.

2. Mulhearn P.J. 1981. On the formation of a stably stratified internal boundary layer by advection
of warm air over a cooler sea. Boundary-Layer Meteorology, 21: 247–254.

3. Mahrt L. 2014. Stably stratified atmospheric boundary layers.Annu.Rev. FluidMech. 46: 23–45,
https://doi.org/10.1146/annurev-fluid-010313-141354.

4. Ohya Y., Neff D., Meroney R. N. “Turbulence structure in a stratified boundary layer under
stable conditions”, Boundary-Layer Meteorology 83: 139–161, 1997.

5. Druzhinin O.A., Troitskaya Yu. I., Zilitinkevich S.S. 2016. Stably stratified air flow over waved
water surface. Part 1: Stationary turbulent regime. Q.J.R.M.S.

6. Flores O., Riley J.J. Analysis of turbulence collapse in the stably stratified surface layer using
direct numerical simulation. Boundary-Layer Meteorol. 139: 241–259.

7. Monin A. S., Yaglom A.M. 1971. Statistical Fluid Mechanics: Mechanics of Turbulence. V. 1.
MIT Press: Cambridge, Massachusetts, and London, England; 769 pp.

http://www.ckp-rf.ru/usu/77738/
https://doi.org/10.1146/annurev-fluid-010313-141354


Formation of Sand Bedforms Under
Surface Waves

François Marin and Armelle Jarno

Abstract Surface waves often generate bedforms at the seabed. Small structures
such as ripples with a typical wavelength between ten centimeters and one meter
are very common structures in the coastal zone. The formation of these structures
under nonlinear surface waves is considered in this chapter. Under regular waves,
two modes of pattern formation from a flatbed in a wave flume are reported for well-
sorted grains andmixtures of grains. Sand ripples can formuniformly or from isolated
ripples spreading on the bedwhile growing. In this latter case, front propagation speed
is measured and a simple model based on the quintic complex Ginzburg-Landau
equation can explain features of front propagation on the granular bed. The profile
of surface waves propagating in shoaling water approaches the solitary waveform
before wave breaking. The main characteristics of solitary waves are presented. The
effect of the high nonlinearity of these waves may be very significant on bedforms
induced in the nearshore zone. The interaction between solitary waves and a sandy
bed is reported. Sandy ripples induce a strong energy dissipation of solitary waves.
When solitary waves propagate on the background of a standing harmonic wave,
bars are formed with crests located beneath the nodes of the harmonic surface wave.
In the case of harmonic standing waves alone, the bar crests are positioned beneath
the antinodes of the harmonic surface wave. Grains with different densities may be
found on the seabed. The concentration of light sedimenting particles on ripple crests
is explained by a simple theoretical model.

Keywords Solitary waves · Surface waves · Bedforms · Ripples · Bars
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1 Introduction

Bedforms are often generated on the seabed. These sedimentary structures result from
a complex interaction between the flow and the sediments. The knowledge of the size
of these structures is necessary for the estimate of their equivalent roughness, of the
bed shear stress, and of the sediment transport. Numerous studies have been carried
out on sand bedforms induced by surface waves. However, due to the complexity
of the involved processes, many questions remain unsolved, in particular, in the
case of nonlinear surface waves. Nonlinearity may generally not be neglected for
surface waves. The formation of sand bedforms under weakly nonlinear waves is
first considered in this chapter. In other respects, long waves such as tsunamis often
behave like solitary, highly nonlinear waves. After a brief introduction on these
waves, the interaction between solitary waves and a sandy bed will be considered.

2 Ripple Pattern Formation Under Regular Surface Waves

In a wave flume, ripple pattern formation from an initial plane bottom depends on the
forcing conditions applied to grains. Two distinct modes are identified and charac-
terized by two nondimensional parameters: the Reynolds number Re = U∞a/ν and
the Froude number Fr � U∞/

√
(s − 1)gd50, where a and U∞ are the fluid particle

semi-excursion and the fluid velocity amplitude at the edge of the bed boundary
layer, respectively, s is the relative density of sediment, g the gravity, and v the water
kinematic viscosity. Either ripples form on the whole bed or several isolated rippled
zones named patches first appear. In the latter case, ripples grow from a defect of
small amplitude on the initial flat bottom. This mode of formation is exhibited in
Fig. 1 for well-sorted sands and also for mixing of sands [1].

The two modes of pattern formation are represented in the (Fr, Re) plane (Fig. 2)
for tests performed with sands (111 μm < d50 < 375 μm) [2] and PVC particles (d50
= 170 μm) [12]. The dotted line on Fig. 2 delineates the domain of the two modes
of pattern formation. For a fixed Re number, if Froude number remains lower than
a critical Froude number Frc, ripples form from localized sites and the perturbation
necessary to initiate ripple growth must be of finite amplitude, whereas if Fr>Frc,
a perturbation of infinitesimal amplitude is enough to trigger ripple formation and
ripples can form spontaneously on the whole bottom. A rough estimate of the number
of cycles for observation of isolated systems of ripples before invasion on the whole
bottom nc is represented on Fig. 3. The dimensionless bed shear stress (Shields

Fig. 1 Example of bed image in grayscale for mixing of sands forming by patch for n = 2000
cycles (dm = 350 μm; Re = 4715; Fr = 1.7)
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Fig. 2 Delineation of the
two modes of pattern
formation in the (Re, Fr)
plane

Fig. 3 Number of cycles for
observation of isolated
systems of ripples before
invasion on the whole
bottom nc as a function of
the deviation to the threshold
of ripple formation

parameter) is defined with Jonsson formulae [3] for the skin friction factor f w by:
θ θ = 0.5 f wFr2, and θc is the critical Shields number. When the deviation to the
threshold for ripple formation (θ − θc) increases, the amplitude of the perturbation
necessary to destabilize the bottom decreases, the number of observed initial sites
of ripples nucleation increases and the time of observation of these ripple patches
decreases.

2.1 Dynamics of Propagation Fronts

Experimental determination
Ripples form by amechanism of amplification of initial perturbations of small ampli-
tude. When ripples form from isolated nucleation sites, the front propagation on the
granular bed plays an important role in the pattern formation processes. The work
performed with A. B. Ezersky [2] was focused on a test with a well-sorted sand with
a slow dynamics (Test B, Re = 5512; Fr = 2.2), where isolated systems of ripples can
be observed for more than 1000 excitation cycles before total invasion on the whole
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Fig. 4 Longitudinal position
of detected ripple fronts for
Test B (Re = 5512, Fr = 2.2)
as a function of number of
excitation
cycles. Estimated front
propagation velocities

bed. For each patch, the two fronts are processed separately. Fourier spectrum of the
bed elevation signal η(x, t) is calculated for a selected y-transverse line along the
x-longitudinal direction in the front zone and harmonics are filtered to conserve only
ηm(x, t), the slow-varying amplitude, and φ(x, t), the slow-varying phase. After the
filtering process, we get: η(x, t) � ηm(x, t) cos (kx +φ(x, t)). In the next step of the
processing, Hilbert transform is processed and the module of the complex amplitude
a(x) and unwrapped phase φ(x) of the envelope wave of the front are extracted.
The wavefront is localized in the region, where a transition from a low amplitude
to a high nearly constant value is detected. The chosen detection threshold is fixed
to 15% of the maximum amplitude of the selected patch. An example of detected
mean ripple fronts is presented in Fig. 4. The upflow vp− and down flow front vp+

velocities designate, respectively, a front propagation in the direction opposite to the
surface wave propagation and in the same direction of surface waves. Fronts propa-
gate linearly with time with a good regression coefficient and a greater velocity for
the fronts propagating in the direction of surface waves. The difference between the
two mean front velocities has been attributed to the drift along the direction wave
propagation induced by surface waves in the bed boundary layer [4].

(P1) : vp− � −0.23 mm s−1; vp+ � +0.62 mm s−1;

(P2) : vp− � −0.19 mm s−1; vp+ � +0.53 mm s−1;

(P3) : vp− � −0.16 mm s−1; vp+ � +0.45 mm s−1

Model for propagation of ripple fronts
The quintic complex Ginzburg-Landau equation was used to model the propagation
of sandy ripples fronts:

∂A

∂t
� (1 + ic1)

∂2A

∂x2
+ εA + (1 + ic3) |A|2 A − (1 − ic5) |A|4 A (1)

whereA is the complex amplitude of sand ripples, ε is criticality and c1, c2, c3 are real
coefficients. Equation (1) is a model equation for subcritical bifurcation as observed
for sand ripple dynamics. Indeed, experiments showed us that there is a threshold
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value of the amplitude: an amplification of the perturbations occurs for amplitudes
more than a threshold value and a decay with time is observed for amplitudes less
than threshold value. The analytical solution of Eq. (1) [5] can be expressed in the
form: A � e−iωt a(ξ )eiϕ(ξ ), ξ � x ∓ V t , where V is the front velocity and ω the
frequency of sand ripples. The analytical solution for the amplitude and phase of
propagating fronts (see [1] for more details) can be written as follows:

a � aN
eKL∓ξ

√
1 + e2KL∓ξ

(2)

and

φ � qN ξ − (qN − qL)

KL∓ξ

lna (3)

The ξ sign “+” corresponds to a front, which propagates in the positive direction,
KL+ < 0, a(x � −∞, t � 0) � aN is the limit of the exponential growth, a(x �
+∞, t � 0) � 0, and the sign “−” corresponds to a front propagating in the opposite
direction: KL− > 0, a(x � −∞, t � 0) � 0, a(x � +∞, t � 0) � aN . In the
phase expression (Eq. 3), qL , qN may be considered as the contributions to the wave
number for waves of bottom profile with infinitesimal and finite amplitudes.

Excluding the linear growingphase in space for a given instant, Eq. 3 canbe simpli-
fied in the form φ(x) � qL−qN

KL± ln a, predicting a theoretical local linear dependence
between the wave phase and logarithm of the wave amplitude a(x).

Experimental data were used to check if this correlation occurs for wavefronts in
sand ripples. The linear dependence between lna andϕ was found and the coefficients
qL−qN
KL± were estimated at different instants for one patch and for fronts propagating

in both directions. This result validates the model prediction.

2.2 Ripple Growth in Pattern

Complex demodulation byHilbert transformationwas used to extract geometric char-
acteristics of each ripple and to build distributions of ripple characteristics of patterns
while they form. Three examples of growth of dominant ripple wavelength in the
pattern are presented in Fig. 5. For the test performed with light PVC particles (Test
A, Re = 214; Fr = 1.4; d = 1.35; D50 = 0.17 mm), ripples form on the whole bottom
from an initial network of short fragments of three-dimensional ripples and they grow
by coalescence processes. Ripples initially formed are rolling-grain ripples. During
this stage, the pattern is characterized by a constant dominant ripple length and a low
steepness (h/L<0.1) in agreement with Sleath empirical criterion [6]. For Test B con-
ducted with a well-sorted sand characterized by a pattern formation from nucleation
sites, rolling-grain ripples are not detected. Vortex ripples grow with an exponen-
tial relaxation law. The equilibrium length is reached before the whole bottom is



118 F. Marin and A.Jarno

Fig. 5 Dominant ripple
wavelength versus the
number of excitation cycles
for Test A: solid diamonds,
Re = 214, Fr = 1.4, PVC
particles; Test B: open
diamonds, Re = 5512, Fr =
2.2, well-sorted sand and
Test C: solid triangles, Re =
4640, Fr = 2.2, sand mixture

covered by ripples. Thus, the selection of the dominant equilibrium wavelength is
not significantly influenced by the initial mode of pattern growth. A similar expo-
nential relaxation law is found in the case of a mixing of sands (Test C, Fr = 2.2,
Re = 4640, median diameter dm = (d16 .d50.d84)1/3 � 350 μm). Grain heterogeneity
does not influence significantly the growth law for pattern dominant length.

3 Sand Bedforms Induced by Strongly Nonlinear
Surface Waves

3.1 Solitary Waves

Solitary waves have been the object of attention from Prof. Alexander Ezersky.
The solitary water wave, localized wave that propagates along one space direction
only with undeformed shape has been experimentally discovered in 1834 by John
Scott Russell. A model equation representing the dynamics of solitary waves was
obtained by Korteweg and de Vries [7]. This well-known KdV equation, which has
been obtained for shallow water under the assumption of wave propagation in one
direction, may be written as follows:

∂η

∂t
+ V0

∂η

∂x
+
3

2

V0

H
η

∂η

∂x
+
1

6
V0H

2 ∂3

∂x3
� 0 (4)

where η is the displacement of free surface, t the time, V0 � √
gH the velocity of

surface waves of infinitely small amplitude in shallow water, H the water depth, and
x the wave propagation direction. The localized solution resulting from the balance
of nonlinearity and dispersion has the form of a single hump as observed by Russell:

ηs (x − Vst) � Ascosh
−2

(√
3As

4H 3
(x − Vst)

)
(5)
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Vs � V0

(
1 +

As

2H

)
(6)

where Vs is the velocity of the solitary wave which depends linearly on its amplitude,
As . The duration of this wave is proportional to A−1/2

s .

As an oscillatory wave moves into shoaling water, the wave amplitude becomes
higher, the trough becomes flatter, and the surface profile approaches the solitary
waveform before wave breaking [8]. The cnoidal wave theory approaches the solitary
wave theory as the wavelength becomes very long. In other respects, long waves
such as tsunamis and waves resulting from large displacements of water caused
by landslides and earthquakes often behave like solitary waves. Ezersky et al. [9]
studied the generation of solitary waves (solitons) in a 10 m long hydrodynamic
resonator used in shallow water. Surfaces waves were produced by an oscillating
paddle at one end of the flume, and a near-perfect reflection took place at the other
end. The frequency of the wavemaker was chosen close to the resonant frequency
of the mode whose wavelength is equal to the flume length. For small values of
the amplitude of displacement of the wavemaker, only standing harmonic waves
are generated in the channel. For values of this amplitude greater than a critical
value, pulses propagating from one end of the flume to the other end are excited on
the background of the standing wave. The characteristics of such pulses are close
to those of the theoretical soliton. In particular, the soliton width decreases with
increasing values of its amplitude, as illustrated in Fig. 6. Moreover, these pulses
resulting from the excitation of high harmonics are not altered by collision with
other pulses. They are called solitons by Ezersky et al. [9]. The KdV equation does
not describe the interaction of contra-propagative waves. The Boussinesq equations
can be used to depict counter-propagating solitary waves.

3.2 Formation of Sand Bedforms Under Solitary Waves

The effect of the high nonlinearity of solitary waves may be very significant on
bedforms induced in the nearshore zone. Let us consider the formation of sand
bedforms under solitary waves.

Numerous studies have been carried out on bedforms under linear or weakly non-
linear waves [6, 10–13]. In the nearshore zone, bars consisting of ridges of sediments
running roughly parallel to the shore are common features on sandy beaches. These
structures provide a possible mechanism of natural beach protection from the energy
of incident waves. The mode of sediment transport has a key role on the bar posi-
tion under partially standing waves, the bars having spacing equal to half the surface
wavelength. This spacing corresponds to the Bragg condition for which strong reflec-
tion of the incident waves may occur. The bar position is a very significant parameter
as far as the ability of bars to reflect wave incident energy is concerned. The effect of
solitary waves on the bar position, and more generally on bedforms generation has
been carefully studied by Prof. A. E. Ezersky. Experimental and theoretical work has
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Fig. 6 Schematic comparison between the size of two theoretical solitons (solutions of the KdV
equation)

Fig. 7 Sketch of ripples formation under solitary waves propagating on the background of a stand-
ing harmonic wave

been carried out at this aim. As far as the experimental work is concerned, Ezersky
chose to use the original method of solitary waves generation in a hydrodynamic
resonator described in the previous section and considered the interaction between
solitary waves and a loose sandy bed. When high nonlinear waves are excited in the
resonator, small ripples form rapidly everywhere in the flume, except in the central
part, where the bed remains flat as illustrated in Fig. 7. This region corresponds to the
zone of collision of counter-propagating solitons, which have horizontal velocities
of opposite sign, leading to a horizontal velocity close to zero in the collision zone
[14]. The value of bed shear stress is then close to zero, anyway below the critical
value θc for incipient motion given by Soulsby and Whitehouse [15]:
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Fig. 8 Interaction between
the free surface and the
sandy bed. Frequency of the
oscillating paddle: f =
0.173 Hz. Amplitude of the
horizontal displacement of
the oscillating paddle
averaged over depth: a =
6 cm. H = 0.26 m; s = 2.65;
D = 0.15 mm. a and b
Beginning of the test, just
after the solitary waves
formation. c and d After
ripple formation

θc � 0.24

D∗
+ 0.055

[
1 − exp (−0.020D∗)

]
(7)

where D∗ � [
g (s − 1) /v2

]1/3
D, s is the sediment relative density, D, the sedi-

ment median diameter, and ν the kinematic viscosity. A strong interaction between
the sandy bed and the free surface occurs, as shown in Fig. 8, where the temporal
evolution of the free surface η at the reflective end of the flume is depicted with
a sketch of the sand distribution in the flume. The level 0 mm corresponds to the
water level at rest. The peaks in the free surface elevation correspond to the passage
of solitary waves. Neglecting the interaction of contra-propagative waves, the free
surface displacement at the fixed end of the flume can be described by
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Fig. 9 Variation of the
amplitude of the solitary
wave with time. Same test
conditions as for Fig. 8

Fig. 10 Variation of the
mean ripple height with
time. Same test conditions as
for Fig. 8

η (t) � 2ηs (t) + 2A0sin (ωt − ϕs) (8)

where ω is the angular pulsation of the flow, A0 the harmonic wave amplitude, and
ϕs the phase shift between the soliton and the harmonic waves. The sandy bed is
initially flat (Fig. 8b).

Figure 8c, d shows that after about 27 min, that is when the dimensionless time
τ � tω ∼� 1760, the bed is rippled and the peak values of the free surface are
significantly lower than at the beginning of the test. This results from the dissipation
at the now rippled bed.

The variation of the soliton amplitude As with the time t is depicted in Fig. 9 for the
same test as in Fig. 8. The decrease of As is particularly marked during the beginning
of ripple formation. The temporal variations of the ripple height h and wavelength
L, averaged over the flume length, are exhibited in Figs. 10 and 11, respectively.
The ripple dimensions forming on the bed increase for increasing values of time,
when the soliton amplitude decreases, as shown in Fig. 8. Let us consider the soliton
energy Es :
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Fig. 11 Variation of the
mean ripple wavelength with
time. Same test conditions as
for Fig. 8

Es �
+∞∫

−∞
η2
s dx ∼ A3/2

s (9)

Taking into account the energy dissipation due to ripples, the temporal variation
of the soliton energy may be written as follows:

dEs

dt
� 3

2

ωA0

H
Es cosϕs − (β + αh) Es (10)

In this equation, β is a coefficient describing the part of the damping of the soliton,
which is independent of the scale of the perturbations, and α a phenomenological
coefficient for the dissipation of the soliton due to sand ripples. This part of dissipation
is supposed to be proportional to the ripple height, as a linear function is the simplest
parameterization.

Once the ripples are formed, two sand accumulation zones progressively appear
(Fig. 12). At the equilibrium state, that is for t ∼� 60 h, they form bars with crests
located beneath the nodes of the harmonic surface wave. In the case of harmonic
standing waves (without solitons), the bar crests are positioned beneath the antinodes
of the surface elevation when the suspended load transport is dominant [16]. In the
present case, where solitons are excited on the background of a standing harmonic
wave, ripples generate vortices, which lift into suspension a lot of sand, leading
to a significant amount of suspended load transport. Present bar positions may be
explained by the variation of the time window between the passage of the contra-
propagating solitons with the distance along the flume [17].

Grains with different physical characteristics (size, shape, and density) are often
found on the seabed. This led Ezersky to study the segregation of sedimenting grains
of different densities on a rippled bed under a velocity field induced by solitary
waves. These waves were excited in a hydrodynamic resonator as described above
in the section “solitary waves”. The hydrodynamic forcing was stopped, the water
waves damped, and sedimentation of suspended particles occurred. The grainmixture
consisted of particles of different densities: sand grains (s = 2.65) and PVC grains
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Fig. 12 Sand accumulation zones with superimposed ripples. Same test conditions as for Fig. 8.
Equilibrium state; z: altitude from the flume bottom

(s = 1.35). It was found that light particles (PVC grains) accumulate on the ripple
crests. This can be explained as follows. Taking into account the Stokes force and
neglecting the turbulent drag, the grain velocity �V may be obtained from the flow
velocity �U [18]:

�V � �U +
St
ω

ρw

ρgr

d �U
dt

+

(
ρgr − ρw

ρw

)
�g − St

ω

d �V
dt

(11)

where St � D2ρgrω/18vρw is the Stokes number, ρw the fluid density, and ρgr the
grain density. For small values of the Stokes number, it is possible to use St as an
expansion parameter for the grain velocity:

�V � �V (0) + St �V (1) + S2t �V (2) + · · · (12)

Let us consider in the first approximation a very simple model defined in the
vicinity of each sand crest by the stream function ψ � −a (αx + z) z, with α a
nondimensional coefficient and a a coefficient corresponding to an angular frequency.
While the flow direction changes periodically, a stationary hyperbolic point takes
place. After some transformation, the time-averaged velocity of particles may be
expressed in the horizontal direction in the following way:

〈Vx 〉 � −x

(
s ′

2
a0α0e

−γ t +
St
4ω

a20α
2
0e

−2γ t

)
(13)

where s ′ � 1 − ρw/ρgr , γ is the rate of exponential decay of surface waves, a0
and α0 the amplitudes of a and α, respectively. The expression of 〈Vx 〉 is such as
whatever the side of the ripple crest, where the particles are, the grains move toward
the ripple top. The sand grains which are heavier than the PVC grains settle faster
than the PVC grains. When most sand grains have settled on the bottom, only PVC
grain concentrate near the ripple crests.
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4 Conclusions

Seabed is rarely flat. Sand bedforms are very common. Many studies have been
carried out on these sedimentary structures, in particular under the assumption of
linear waves. However, the nonlinearity of surface waves cannot be neglected inmost
of practical cases, and the physical processes involved in the bedforms generation, in
this case, are poorly understood. Prof. A.B. Ezersky carried out pioneering work in
this field, and he has significantly contributed to the emergence of new approaches.
The interaction between a sandy bed and extreme waves propagating in the shoaling
zone is one of the subjects he outlined the need for further work, owing to the
significance of the practical applications for the evolution of the shore. In order
to bring a contribution to this topic, a PhD project was launched in October 2016
between the LOMC (CNRS, University Le Havre Normandie) and M2C (CNRS,
UniversityCaenNormandie) laboratories, started in the end of 2016with the financial
support of the Normandie Regional Council. A PhDwas hired and Prof. A. E. should
have been his co-advisor together with us.

Acknowledgements The authors thank the Normandie Regional Council for its contribution for
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Aggregation of Fibers by Waves

Gautier Verhille and Patrice Le Gal

Abstract Sea balls also called aegagropila, can be found onMediterranean beaches.
They are made of Posidonia fibers, which aggregate on the seabed due to the sea
motions. To understand themechanism of aggregation and compaction of these struc-
tures, we have performed a laboratory investigation on the dynamics of aggregation
of fibers by surface gravity waves generated in a water tank. Amazingly, depend-
ing on the flexibility of the fibers, two different sites of aggregation are observed.
Following our experiments, we propose an analytical derivation of the clustering of
particles by the Stokes drift. This theoretical calculation is quite general and empha-
sizes the respective roles of the Stokes number and the density of the particles; it
also underlines the importance of the fiber flexibility in their drift and explains our
experimental observations.

Keywords Fiber aggregation · Fiber dynamics in flow · Stokes drift

1 Introduction

Aegagropila are sea balls composed ofPosidoniafibers, which can be found along the
Mediterranean beaches. Posidonia are aquatic plants that fade in autumn. Their roots
then release on the seabed a large quantity of fibers thatwill get caught by the seawater
flows and waves. After a certain time (still unknown), clusters of entangled fibers are
deposited on the beaches in the form of compact balls. These structures have a large
size dispersion (a few millimeters for the smaller ones to about ten centimeters for
the larger ones). Figure 1a presents a photograph of these sea balls constituted by one
to two centimeter long fibers having a diameter around 100μm. A statistical study of
the size and mass of aegagropila shows that these distributions obey a lognormal law,
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Fig. 1 a Photographs of Posidonia aegagropila (Plage du Prophète, Marseille). b Close up of the
extremities of a marine rope piece, where some fibers have been agglomerated on the nylon fiber
bundles. c Two aegagropila that have aggregated on a textile thread

Fig. 2 a Photograph of a bottlebrush flower (Marseille). b Bottlebrush flower stamens fallen on
the floor in the course of aggregation under the action of a turbulent wind. c An aggregate of bottle
brush flower fibers

which is compatible with an aggregation of fibers trapped randomly by the forming
balls [1]. Some of these fiber aggregates can also be encountered around Posidonia
rhizome fragments or even foreign bodies as it is the case in Figs. 1b, c, where the
fibers have been trapped on the extremities of a marine rope piece or along a textile
thread. These examples show if the aggregation process does not need any nucleus,
some of the sea balls possess synthetic or natural nuclei thatmay help their formation.

More generally, natural fibers have the tendency to agglomerate to form bundles
or balls when agitated by fluid turbulent motions. Figure 2 presents an example
of aggregation of fibers in air: under the action of wind, bottlebrush (Callistemon)
flower stamens whose length is around 3 cm for a diameter about 300 μm aggregate
when they fall on the floor. Figure 3 gives another example of natural fiber accretion
by the sea, but this time of living seaweeds. Contrary to the short fibers of Posidonia
or bottlebrush flower fiber aggregates, in the case of these long seaweeds, fiber self-
entanglements are certainly at the origin of the bundles that can be seen along the
shore.

These different structures pose several questions ranging from their formation
(physicalmechanisms, duration of the aggregation process, etc.) to the understanding
of the observed size distributions. In the absence of in situmeasurements, we propose
to study in the laboratory, the dynamics of formation of fiber clusters in a simple
flow generated by the periodic excitation of surface waves in a tank. Then, we will
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Fig. 3 Photographs of seaweed aggregates along the Pacific seashore (Gator beach, San Diego,
California). The length of the seaweeds, between ½ and 1 m, enhances self-entanglements that
sustain the aggregates (pen length ~15 cm)

propose a nonlinear model that explains the observed transport of the fibers by a
flow.

2 Experimental Observation of Fiber Aggregation in a Flow

2.1 Experimental Device

In order to stay close to the back and forth movement that exists at the bottom of the
sea, we choose to study the dynamics of fibers in a flow induced by the oscillation of
a plate in a basin of length L� 80 cm (along the x direction). The basin is 28 cmwide
(y direction) and 40 cm deep in the vertical z direction. When oscillating at angular
frequency ω, the plate drives a stationary wave in a h � 10 cm deep layer of water.
The two-dimensional flow field can then be approximated by a periodic potential φ:

φ � U0cos (kx) cosh ((z + h) /λ) sin (ωt) , (1)

where k � 2π /λ is the wave number of the surface gravity wave and λ its wavelength.
The resonance frequency of the basin is close to 0.8 Hz. In order to test the influence
of fiber stiffness on the formation of aggregates, we used two types of fiber material:
nylon and cotton. The length of the threads is around 5 cm and the diameter of the
cotton threads is 150 and 400μm for the nylon threads. Therefore, the aspect ratio of
the fibers that we use in the experiment is between 100 and 300, i.e., in the same order
of magnitude of the aspect ratio of the Posidonia fibers found in natural aegagropila
(50–100). The cotton fibers are very flexible and can be easily deformed in the flow
while the nylon fibers are rigid and do not deform. In both cases, the density of the
fiber material is greater than the one of the fluid and since the flow velocities are
relatively small, all the dynamics occurs on the smooth bottom of the basin. Finally,
only a unique concentration of threads (500 threads in total) will be considered here.
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Fig. 4 Comparison of the dynamics of rigid fibers (a) and flexible fibers (b) in the experiments.
Above and below on each side, are the initial and final conditions of the experiment, respectively.
In the center, the space-time diagrams visualize the dynamics of fiber agglomeration toward the
quarter and three-quarters of the basin for the rigid nylon fibers and toward the center for the flexible
cotton fibers

2.2 Localization of the Fiber Aggregates

Consider first, a forcing frequency below the resonance frequency. The amplitude
of the surface wave at the free surface is around 1 cm with a wavelength of 0.8 m.
At initial time, the threads are arranged randomly (in position and orientation) on
the bottom of the basin. After several hours, once the equilibrium is reached, we
see in Fig. 4 that the threads have migrated toward some particular locations in the
basin: the rigid nylon fibers (on the left of Fig. 4) are mainly located at a quarter and
three-quarters of the tank length, whereas the flexible cotton fibers (on the right of
Fig. 4) go mainly to the center of the basin. It is found that in both cases, at least
during the 5–10 h of the experimental run duration, the clusters are not very tight
and compact.

In order to understand the localization of these clusters, we propose in the follow-
ing a one-dimensional model since Fig. 4 shows that the system is almost invariant
over the width of the tank (this is expected because of the symmetries of the forcing
and because of the random initial conditions). Because each fiber is first rapidly
oriented in the flow before it drifts, it is fully justified to model it by a point particle
moving in a velocity field as described by the potential flow given by Eq. (1). By
neglecting the history terms (Basset terms) and the interactions between particles,
the equation of evolution of the velocity of a spherical particle νp is simply [2]:

dvp/dt � αDu/Dt +
(
u − vp

)
/St, (2)

where d/dt and D/Dt represent the Lagrangian derivative when following a solid
particle and the Lagrangian derivative when following a fluid particle, respectively.
The density coefficient α is equal to 3ρ f / (2ρ f + ρp), where ρ f and ρp are the fluid and
the solid particle density. When α is less than unity the particles sink at the bottom of
the fluid layer contrary to the cases when α is larger than 1, where particles float on
the fluid surface. The Stokes number characterizes the relative importance of inertia
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to viscous effects. For instance, for a spherical particle of radius a, immersed in a
fluid of kinetic viscosity ν f , the Stokes number reads:

St � 2a2ω/3vf α

In Eq. (2), all magnitudes are made dimensionless using the wavelength λ for
the lengths, the inverse of the angular frequency 1/ω for the time and U0 for the
velocities. Thus, the forcing velocity field at a fixed depth z near the bottom of the
tank is simply u � sin(x) sin(t). Using these quantities, and the fact that the flow is
essentially one-dimensional at the bottomof the basin along its length, theLagrangian
total derivatives can be cast under the form:

d/dt � ∂t + εvp∂x and D/Dt � ∂t + εu∂x,

where ε is equal to U0/ωλ. Using the orders of magnitude of the experimental
parameters (observed velocity U0 ~ 1 cms−1, frequency ω ~ 1 Hz and λ ~ 1 m),
we can estimate that the order of magnitude of ε is around 10−2. Therefore, ε can
be considered as a small parameter and this will allow studying the solutions of the
particle transport Eq. (2) and their stability by making a perturbative development in
power of ε:

vp � v0p + εv1p + ε2v2p + . . .

At order 0 in ε, introducing the shape of the fluid velocity field in Eq. (2), leads
to the determination of v0p with the condition that νp � 0 at initial time:

v0p � (A sin t + B (cos t − e−t/St))sinx, (3)

where the analytical expressions of the coefficients A and B are:

A � (1 + αSt2)/(1 + St2),B � St(α − 1)/(1 + St2)

The two first terms in (3) represent the stationary oscillatory response of the
particle to the oscillatory forcing of the flow. This stationary oscillation will be
reached after a transient represented by the third term, which is parametrized by the
Stokes number St. We can see on formula (3) that the fixed points, i.e., the positions
in the basin, where the particles will always stay at the same place are xe � 0 or xe
� ± π , thus at the center and near the sidewalls of the tank. At this order, we can
also see that after the transient, the time-averaged velocity of any particle will be
zero: 〈v0p〉 � 0. The drift of the particles, which is here at the origin of aggregation
in our experiment does not appear at this zero order in ε and will only be recovered
when taking into account the nonlinearity of Eq. (2) as expected for a Stokes drift.
The integration of Eq. (2) at first order in ε, leads to the analytical expression of v1p:

v1p � sin 2x[St(α − A2 − B2)/2 + C cos 2t + D sin 2t
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+ (B2sint + 2AB cost + δ) e−t/St + e−2t/StB2St/2)]/2

with the following constants:

C � [4ABSt2 + St(A2 − B2 − α2)]/2(1 + 4St2),

D � (A2 − α − B2St2 − ABSt)/2(1 + 4St2)

and δ, a constant of integration that allows to set vp � 0 at initial time.
The transients having disappeared, the mean velocity in time 〈v1p〉 is non zero

now because of the first term in the expression of v1p . This nonzero drift velocity
Vs � 〈v1p〉 gives rise to what is classically called the Stokes drift of the particles.
The physical meaning of this drift comes from the fact that the oscillating flow is
nonhomogeneous as its amplitude varies along the x axis of the tank. Therefore, after
one period of oscillation, a particle never comes back exactly at the same position in
space and as a consequence slowly drifts in time. This phenomenon should be similar
to the drift of sand grains by steady streaming that forms seabed ripples under shallow
water waves [3, 4]. In our case, this drift velocity can be analytically calculated:

V s � sin2x(1 − α)(αSt2 − 1)/4
(
1 + St2

)2

So, depending on the sign of Vs, the equilibrium positions xe � 0 or xe � ± π can
be either stable or unstable. The calculation of the sign of Vs leads to the diagram
presented in Fig. 5 that presents the repulsive or attractive characteristics of the
positions xe as a function of St and α. When α < 1 (particles denser than the fluid),
the aggregates are located in xe � 0 or xe � ± π , that is at the center and the
sidewall of the container. This case is stable for St2 < 1/α (white area on Fig. 5) and
corresponds to the situation, where the friction force (u-vp)/St acting on the particle
is greater than the pressure force. In the opposite case, the drift of the particle is
dominated by inertia effects (gray areas). Note that this criterion is exactly the same
as the one found by Xu and Nadim in the case of the drift of particles under the action
of the Coriolis force in a librating flow [5].

The numerical integration of the particle dynamics Eq. (2) confirms the previous
stability analysis result. As an initial condition, we consider 128 particles homo-
geneously distributed on a line between −π and π . Integration in time of Eq. (2)
reproduces the two cases that we have discovered analytically. In the first case, where
the equilibrium positions are stable, we observe that the particles slowly drift and
merge at the expected locations xe � 0 or xe � ± π . The numerical space-time
plot of Fig. 5a illustrates this case. In the other case, when the drift velocity expels
the particles from the equilibrium positions xe, we found that the nonlinear solu-
tion converges toward limit cycles, where the particles oscillate indefinitely around
xc � ± π /2. Figure 5b illustrates this computation.

The comparison of the space-time diagrams of Figs. 4 and 6 shows that the dynam-
ics of the rigid nylon fibers correspond to case,where xe � 0 or xe �±π are repulsive,
whereas the dynamics of the flexible (cotton) fibers correspond to that of the case,



Aggregation of Fibers by Waves 133

Fig. 5 Stability diagram of the equilibrium positions xe as function of the Stokes number St and
the density parameter α. The gray areas correspond to cases, where xe are unstable and the white
areas to cases, where xe are stable

Fig. 6 Numerical simulations of the drift of 128 particles (without interaction) in a periodic flow
U0 sin(x) sin(t). Space-time diagram of the dynamics: a attraction of the particles in locations
xe � 0 or xe � ± π ; b repulsion of the particles from locations xe � 0 or xe � ± π and attraction
by limit cycles around xc � ± π /2

where xe � 0 or xe � ± π are attractive. Since the geometry and density of the
two types of fibers are very close (ρp ~ 1.2 kg m−3 for nylon and ρp ~ 1.4 kg m−3

for cotton), it seems that the difference in behavior is more likely associated with
the stiffness of the two different fibers. Indeed, we think that flexible fibers are less
sensitive to inertia effects as they can deform under the action of pressure forces.
Therefore, it is logical to observe the drift of the flexible cotton fibers toward xe. On
the contrary, the rigid, nondeformable nylon fibers are more sensitive to pressure,
and thus drift away from xe as expected from the model.
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Fig. 7 Pictures of the initial and final states in the case of compaction of rigid nylon fibers (left)
and flexible cotton fibers (right). Corresponding spatiotemporal diagrams revealing the compaction
dynamics

Let us consider now a forcing with a frequency ω around the resonance frequency
resulting in a wave having an amplitude larger than in the previous experiments.
Moreover, a transverse mode of oscillation appears also in the tank. We see in Fig. 7
that relatively compact clusters are formed now and that whatever the nature of the
fibers, these balls stand in the center of the basin after the experiments have run
several hours. The associated space-time diagrams of Fig. 7 show, however that, in
the case of the rigid nylon wires, the aggregation occurs initially (and as before) at
xc � ± π /2 before the cluster drifts to the equilibrium location xe � 0. This original
phenomenon can be understood using our model as presented earlier. A time t � 0,
the rigid nylon fibers are expelled from the fixed points toward attractors located at
xc � ± π /2. The forcing being sufficiently strong this time and three-dimensional
because of the presence of basin transverse mode, the fibers will form a deformable
cluster of fibers, which in consequence increases the influence of the viscous force
and reduces the effects of pressure. After a certain time, the cluster behaves as
a deformable particle and migrates as a whole to the fixed equilibrium points as
expected for flexible particles by our model and as observed in the experiments.

Finally, to follow the compaction rate in time, we have defined the ratio β of the
projected areas occupied by the fibers on the bottom of the tank (the black pixels on
the video images) to the total horizontal section of the basin. β is a function of time
and the ratio of β by the initial β0 represents the compaction rate of the system. The
temporal evolution of the averages on ten independent realizations of the ratio β/β0

is represented in Fig. 8 for both cotton and nylon fibers. As can be seen, clear power
laws are visible for both rigid fibers and flexible fibers clustering. Power laws fit of
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Fig. 8 Evolution of the
compaction rate β/β0 as a
function of time. An average
of 10 independent
realizations have been
performed. Power laws are
clearly visible in both cases
with a transition in the
exponent values

the experimental curves give an exponent close to −1/8 at the beginning of the run
(up to 10 s for the flexible fibers, and up to 100 s for the rigid ones). A transition then
occurs and a regime with power laws with an exponent equal to −1/2 takes place in
both cases. We suspect that the appearance of fiber interactions to be at the origin of
these power laws that escape our modeling.

3 Conclusion

Inspired by the observation of natural aggregates formed by the motions of air or
sea water, our studies on the dynamics of formation of fiber aggregates show that
the Stokes drift is at the origin of the movement of the fibers and finally of their
clustering in our set-up. The location of the clusters in the experiment is understood
by the study of the stability of the fixed points of the particle dynamics equation
when forced by a simple periodic (in space and time) fluid velocity field. A criterion
based on the relative magnitude of the pressure effects compared to the viscous drag
is deduced from a simple one-dimensional point particle model. This criterion based
on the zeroing of the Stokes drift is quite general and may be useful to understand
and even promote particle segregation. Our experiments, using flexible or rigid fibers
confirmed the predicted attractive (where the aggregates form) or repulsive locations.
Thismodel even leads to the interpretation of the difference in behavior between rigid
and flexible fibers. Finally, we observe that the aggregation process obeys temporal
power laws that escape our modeling and are probably related to fiber interactions.
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Part II
Patterns in Nonequilibrium Media



Order and Chaos in 2D Nonequilibrium
Media: Review of Ezersky’s Experiments

Mikhail Rabinovich and Patrick Weidman

1 Introduction

As emphasized in our joint publication with Aleksandr Ezersky of the book The
Dynamics of Patterns [12], regular and chaotic pattern formation has traditionally
been studied in nonequilibrium physics from the viewpoint of describing the basic
structures and their interactions in different media. Particular attention has been paid
to the analysis of generic properties of certain simple planforms, such as periodic
(cellular) structures, quasiperiodic structures, as well as the dynamics and interac-
tions of localized structures, topological defects, and features of 2D turbulence; see
François et al. [8].While this is still an important area of research, the emphasis in the
past few years has been shifting toward analysis of specific properties of patterns in
various complex media. In the past two decades in addition to “conventional” pattern
formation, scientists have focused much attention on novel phenomena occurring in
“smart” brain-like media that are characterized by highly nontrivial local dynam-
ics and complex networks with nonlocal interactions. Scientists have addressed the
dynamics and studied the general principles of learning and memory, and so forth.
The ideas and principles also are used in modern technology; see François et al. [7].

Aleksandr Ezersky became interested in the nonlinear dynamics of patterns more
then 30 years ago. He has focused mainly on the following three aspects: patterns
on parametrically excited capillary waves; patterns in a cell with Rayleigh-Bénard
and Bénard-Marangoni convection; and vortices in the vibrated soap film. Although
his convection experiments are of great importance (see, for example, [2]), in this
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tribute we will discuss his contributions to parametrically excited liquid layers and
soap films. It is important at this point to note here that Ezersky’s experimental results
are still in demand.

2 Faraday Ripples

Ezersky’s first experiments on spatiotemporal chaos in parametrically excited cap-
illary waves were published in 1985 [4]. These seminal experiments form the basis
for a series of deep investigations into the transition to spatiotemporal disorder in 2D
media and the origin of 2D turbulence.

The primary patterns and the secondary chaotic instabilities of parametrically
forced surface waves (Faraday ripples) in a large system have been observed by
Ezersky and coauthors for the first time. In general, the symmetry of the primary
pattern (stripes, squares, or hexagons) depends on the kinematic viscosity ν and
driving frequency f0. A lot of new phenomena have been analyzed in subsequent
publications [5, 6]. Hexagons are observed at low f0 over the whole viscosity range.
Boundary-induced distortion is absent for the hexagonal and square patterns, but
present for stripes. Phase defects occur between hexagonal domains differing in
phase by π (with respect to the forcing). Patterns of different symmetries coexist and
produce patterns with defects in certain parameter ranges; see Fig. 1 reproduced here
fromKiyashko et al. [10] with panels (a), (b), (c) separated by 2.0 s. The transition to
spatiotemporal chaos depends on the symmetry of the primary patterns; see Ezersky
et al. [5] and Kudrolly and Gollub [11].

The development of 2D turbulence has been investigated both experimentally and
theoretically. It was shown that modulation in the form of quasiperiodic “focusing”
appears with an increase of the supercriticality e on the background of the Faraday
ripples, and with further increase of e this focusing goes over (via intermittency) to
spatiotemporal chaos. The dynamical nature of the observed chaos is established.
Two examples are given. First, in Fig. 2, the complexity of the patterns of the cap-
illary ripple on the surface of a vibrating layer of silicone oil increases with the
supercriticality as shown in panels (a) e = 0.4, (b) e = 0.53, and (c) e = 1.13. Second,
in Fig. 3, the transverse modulation of a standing ripple wave outside the region with
square cells is found at e = 0.1.

The onset of parametric turbulence of capillary waves is an example of the cre-
ation, in a real nonequilibrium medium, of spatiotemporal chaos that is dynamical
in nature and does not require for its explanation any prior “chaotic hypotheses”.
The transition to chaos and its finite-dimensional description are determined by the
resonance character of the parametric excitation of waves and do not depend on the
boundary conditions on the periphery of the medium.

To describe the 2D turbulence theoretically one can derive a parametric variant of
the well-known Ginzburg–Landau equation (GLE). The experimentally observed
two-dimensional chaos on a background of elementary cells near the threshold
for the onset of turbulence is almost a superposition of one-dimensional mutually
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Fig. 1 Faraday ripples in a laboratory experiment: a a target with four dislocations (two positive
and two negative); b one dislocation is attracted to the target core, spiral is formed; c all dislocations
have been attracted to the center and annihilated, a perfect target reappeared; d asymptotic state of
another experiment where a three-armed spiral was formed and rotated for a long time

(a) (b) (c)

Fig. 2 Increasing complexity e of patterns of the capillary ripple in the Faraday experiment with
silicone oil. a e = 0.4; b e = 0.53; c e = 1.13



142 M. Rabinovich and P. Weidman

Fig. 3 Transverse
modulation of a standing
ripple wave outside the
region with square cells at
supercriticality e = 0.1

orthogonal structures with random modulation, and is justified by the constructed
one-dimensional theory. As the numerical experiments have shown, the GLE with
the same parameter values can describe different steady-state chaotic regimes. This
implies that in its phase space several different chaotic attractors exist simultane-
ously, and which of these is eventually reached is determined by the initial condi-
tions. Visually, in an experiment, a set of spatial forms (patterns) is established on
the background of the capillary ripples at the same supercriticality. The transition to
chaos is investigated experimentally in a system of capillary waves parametrically
excited in a thin layer of fluid in a cavity oscillating in the vertical direction. In a
certain range of fluid depths, when the amplitude of oscillation is increased, a regular
wave system is replaced quasiperiodically in time by a chaotic field.

The above-discussed experiments have shown that the low-frequency oscillations
appearing in the large system can be the result of subsequent intermittency of chaos
and explained by the resonance between capillary ripples and gravity waves. Accord-
ing to the estimates, the group velocity of capillary waves at 70Hz is close to the
velocity of gravity waves. If the fluid depth is such that the velocity of gravity waves
does not belong to this range, neither the excitation of low-frequency waves nor the
temporal intermittency of chaos occurs (details of the spectra are presented in Fig. 3a
of [6]).

Ten years after the observation and analyses of spatiotemporal chaos, Kiyashko
et al. [10] discovered rotating spirals in a large Faraday experiment. Spirals in such
media are waves. These may be waves of density or temperature, or waves of ampli-
tudes and phases of oscillating fields. Figure 1a–c shows Faraday ripples in a labora-
tory experiment with production and annihilation of dislocations and Fig. 1d shows
an asymptotic state in which a three-armed spiral was formed and rotated for a long
time.
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Fig. 4 Snapshots of multiarmed spiral formation in numerical simulation with parameters γ = 1.0,
ν = 0.5, α = 0.0, κ = 1.0, k0 = 1.0, ξ = 0.1. A target with two dislocations on the periphery was
taken as the initial condition. a t = 10, b t = 100, c t = 200, d t = 300

Multiarmed spiral waves are found in a Faraday experiment performed in a thin
layer of viscous liquid placed in a vessel subjected to the oscillating gravity field
normal to the quiescent free surface of the liquid. These objects are standing capillary
waves with spiral-like fronts slowly rotating around the core. Examples of spiral
structures and their formation from a target pattern via defect dynamics are given in
Fig. 4 reproduced here fromKiyashko et al. [10]. Spirals having different topological
charges born as a result of the motion of a defect toward the center of cylindrical
pattern were observed. Experiments indicated that the existence of capillary spirals
is sustained by the mean flow generated near the walls of the cell by rapidly damped
viscous surface waves.

A theoretical description of these spiral waveswas devised using amodel equation
for the complex order parameter ψ that takes into account the principal features of
parametrically excited structures [10], viz.,

Dψ

Dt
= iγψ∗ − ν∇2ψ − (1 + iα)|ψ |2ψ + iκ(∇2 + k20)ψ (2.1)
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Here, D/Dt = ∂/∂t + u · ∇ is the substantial derivative where u is the velocity
of the induced mean flow, ψ is the complex amplitude of surface oscillations at
the parametric frequency ω0 (half of the driving frequency), γ is the amplitude
of external forcing, κ is the dispersion parameter, and the superscript ∗ denotes
complex conjugate. Linear terms in this equation can be derived from the dispersion
relation for capillary waves under parametric excitation, expanded near ω = ω0 and
wavenumber k = k0. The nonlinear term is written here in its simplest possible form
and describes two mechanisms of stabilization of parametric instability—one due
to nonlinear energy dissipation (|ψ |2ψ) and the other due to a nonlinear mismatch
from parametric resonance (iα|ψ |2ψ).

Equation (2.1) with periodic boundary conditions was studied numerically using
a pseudospectral split-step method with 256 × 256 collocation points, domain size
d = 200, and integration time step 0.05. To simulate waves in a circular cavity, we
ramp the linear dissipation outside the circle of radius r0 = 86, i.e., v = v0, r < r0, and
v = v0[1 + k(r − r0)], r > r0, where k varied between 0.5 and 1.0. It is assumed that
the flow is directed radially and is azimuthally symmetric, i.e., u = u(r) r̂. The profile
for flow velocity, u(r) = u0 exp[ξ(r − r0)] is used. For γ > νk20 the trivial state
ψ = 0 is unstablewith respect to perturbationswithwavenumbers near k0.Numerical
simulations show that at the nonlinear stage, these perturbations give rise to various
cellular patterns, including plane waves, targets, and spirals. Without the mean flow
term (u0 = 0), these patterns remain stationary even when nonlinear coefficient in
(2.1) is complex. A nonlinear frequency shift proportional toα only leads to deviation
of the selected wavenumber from k = k0. In systems with ordinary (nonparametric)
pattern forming instabilities, non-potential effects usually lead to wave propagation.
However, when the near-wall flow is introduced in (2.1), standing waves comprising
targets and spirals begin to drift slowly toward the center. The multiarmed spirals
are born due to dislocation motion toward the core of the structure. The topological
charge of the spiral is equal to the sum of topological charges of the dislocations.

Recent advances in the physics of parametric fluid sloshing and related problems
are discussed in a very good review paper written by Ibrahim [9]. Parametric liq-
uid sloshing, i.e., Faraday waves, has been a long standing subject of interest. The
development of the theory of Faraday waves has witnessed a number of controversies
regarding the analytical treatment of sloshing modal equations and mode competi-
tion. One of the significant contributions is that the energy is transferred from lower to
higher harmonics and the nonlinear coupling generates static components in the tem-
poral Fourier spectrum, leading to the contribution of a non-oscillating permanent
sinusoidally deformed surface state. These also include the boundary value prob-
lem of parametric liquid sloshing, like Kiyashko at al. [10] have emphasized. The
physics of Faraday wave competition together with pattern formation under single-,
two-, three-, and multi-frequency parametric excitations is a very promising area of
research. Significant efforts have been expended to understand and predict the pattern
selection using analytical and numerical tools. Mechanisms for selecting the main
frequency responses, different from the first sub-harmonic, were identified in the lit-
erature. Nontraditional sources of parametric excitation like earthquake and Faraday
waves of ferromagnetic films and ferrofluids also have attracted a lot of attention.
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3 Vortices in Oscillating Soap Films

Realizing the wealth of studies available on the Faraday problem for a liquid layer,
Weidman, while on sabbatical leave visiting the International Center for Advanced
Studies in Nizhny Novgorod during the summer of 1996, conceived the idea to
apply the Faraday problem to a soap film. The results reported here may be found in
Afenchenko et al. [1].

The experimental apparatus used to vibrate soap films supported on circular (8cm
diameter) and square (7cm on a side) support frames is depicted in Fig. 5. The cavity
was made of clear Plexiglass with the lower half attached to the vibrator. The support
frames were rigidly located inside the upper half the cavity to minimize evaporation
and protect the film from external air currents and surface contamination. The upper
half of the cavity could be removed to form a soap film composed of 5% glycerin,
1% Russian baby soap, and 94% tap water. With both halves assembled, the soap
film was symmetrically disposed between the upper and lower Plexiglas boundaries.
Figure 5 shows the overhead lighting, accelerometer, and small ports open to the
atmosphere to adjust the pressure drop across the film so as to obtain a flat film

Fig. 5 Schematic of the experiment to vertically vibrate a soap film



146 M. Rabinovich and P. Weidman

(a) (b)

Fig. 6 Shadowgraphs of nonstationary flexural wave patterns in circular and rectangular support
frames: a amplitude modulation at f = 75 Hz; b quasiperiodic rotation at f = 45 Hz

prior to vibration. Vortex structures were excited in the frequency range 20–200 Hz
with accelerations 3–18 g0, where g0 is Earth’s gravity. For future reference, we
denote the film thickness as h(x, y) and the film deflection as η(x, y) where (x ,y)
are coordinates in the horizontal plane of the undisturbed film.

Early in the experiment incoherent light interference by the relatively thickO(μm)
films produced clear shadowgraph images of the planforms of transverse oscillation.
These membrane modes formed interesting spatiotemporal patterns as shown in Fig.
6. Pulsations of mode amplitude with pulsation frequencies in the range 0.3–1.0Hz
are shown in Fig. 6a and the quasiperiodic rotation of harmonic modes with angular
frequencies in the range 0.5–1.0Hz are shown in Fig. 6b. The frequencies f of
excitation are noted in the figure captions. Also, in the square support frame, rolls
parallel to the x-axis alternating with rolls parallel to the y-axis at frequencies in
the range 0.3–0.6Hz were observed at excitation frequency f = 59 Hz. Through
evaporation and by internal redistribution of liquid in the film, very thin O(nm)
regions evolved. The organized interference patterns of colored fringes associated
with these thin films afforded a means of tracking the horizontal fluid motion and
also of estimating thickness variations across the film surface.

The photographs in Fig. 7 reveal that transverse periodic vibration of the cavity can
induce in the film quasi-steady motion in the form of counter-rotating vortices. Two
types of regular vortex structureswere observed: (i) counter-rotating vortex pairswith
continuous rotation to the center of each vortex as in Fig. 7b, and (ii) counter-rotating
vortex pairs whose cores evolve to stationary black islands—a small elliptical black
core may be seen at the center of the vortex on the right in Fig. 7a. It should be noted
that this counter-rotating vortex pair was formed by a sudden change in amplitude at



Order and Chaos in 2D Nonequilibrium Media … 147

Fig. 7 Vortex motion in a circular cell: a single counter-rotating vortex pair at f = 127 Hz with
feint dark circles indicating nodes of the background flexural mode pattern; b two counter-rotating
vortex pairs at f = 50 Hz
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the fixed frequency f = 127 Hz. The thinnest films (h = 4.5 nm) are called black
films and the next largest (h = 30 nm) has a distinct silver hue [3]. Once formed,
these ultrathin films are irreversibly stable, i.e., they cannot reinflate. At high-forcing
frequencies many pairs of counter-rotating vortices, periodically distributed around
the perimeter of the circular cellwere observed as in Fig. 8a. These vortices ultimately
coalesce to form larger vortices; a snapshot during this vortex merging process is
given in Fig. 8b where the flow in a square cell has evolved for some time leading to
the appearance of black film patches forming the vortex cores.

Not all vortices are linked to the film boundary; they often appear spontaneously
at internal positions as shown in Fig. 9a for a circular cell and Fig. 9b for a square
cell. At weak-forcing amplitude, the films take on one of two characteristic patterns
depending on the excitation frequency. At low frequencies, one observes a stable
symmetric pattern of thin films with vortex structures separated by thick bladders
as in Fig. 10a; counting the fringes in this pictures gives an estimate of the ratio
of bladder to black film thickness greater than 1000:1. At higher frequencies, the
evolution of black films inevitably breaks the pattern symmetry as in Fig. 10b; here
the flow is forced to meander around isolated black islands and thick bladders that
appear irregularly over the film surface.

Two models have been developed to explain the vortex patterns observed in the
experiments. One is a wave-boundary interaction model that neglects the presence of
the surrounding air. The other is a model accounting for the complicated interaction
between the liquid film and the surrounding air that neglects the wave-boundary
interaction. These models are described in the following sections.

3.1 Marangoni Wave Model

Three types of waves are known to exist in soap films. In addition to the hydrody-
namical transverse waves of symmetric (varicose) and antisymmetric (sinuous) type,
there exists a longitudinal Marangoni wave produced by the variations in the surface
concentration of soap molecules. Ezersky (in [1]) modeled the interaction between
theMarangoni waves and the circular boundary of the soap film using the assumption
of zero deflection η(x, y) = 0 and neglected the role of air. For this flat liquid layer,
Marangoni waves in the absence of dissipation are described by the inviscid film
equations [3]

Dh

Dt
= −h(∇ · u),

Du
Dt

= − E(h)

ρh2
∇h, (3.1a, b)
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Fig. 8 High-frequency patterns: a 14 pairs of counter-rotating vortices adjacent to the perimeter
of a circular cell at f = 199 Hz; b vortex pattern in a square cell at f = 176 Hz showing vortex
pairing and the evolution of black films at vortex centers
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Fig. 9 Vortex patterns generated away from soap film boundaries: a two counter-rotating vortex
pairs in a circular cell at f = 65 Hz; b four counter-rotating vortex pairs symmetrically disposed
around the center of a square cell at f = 180 Hz
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Fig. 10 Late time features of vibrating soap films: a four vortices symmetrically disposed between
four thick fluid bladders at f = 53Hz—each vortex around the circle rotates opposite to its neighbor
and a thick bladder resides in the center of the cavity; b symmetry breaking of a regular pattern due
to vortex pairing and the formation of black films at f = 84 Hz
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where u(x, y) is the two-dimensional velocity field in the plane of the film, ρ is the
liquid density, and E(h) is the film elasticity. Small disturbances of ũ and h̃ of a
stationary film of uniform thickness h0 lead to the linear wave equation

∂2h̃

∂2t
− c2∇2h̃ = 0, c =

√
E0

ρh0
(3.2)

where E0 = E(h0) and c is the Marangoni wave speed.
The Marangoni waves torsionally rotate in the plane of the liquid creating a thin

Stokes layer at the film boundary. The thickness of the Stokes layer scales as δ ∼
(ν/�)1/2, where ν is the effective kinematic film viscosity (soap films possess both
bulk and surface viscosities) and � is the frequency of Marangoni wave oscillation.
To analyze what mean flows are produced by the Marangoni waves, Afenchenko et
al. [1] consider the simple geometry of a film supported by a circular frame of radius
R0. In (r, θ ) cylindrical coordinates, the disturbance velocities are (ũr , ũθ ). Solution
of (3.2) for h̃ is readily obtained and then ũθ is computed from h̃ using Eq. 3.1a, b
giving

ũθ = Uτ (r, θ) cos(�t), Uτ = −
(

nE0

ρ�h20

)
1

r
Jn

(
�r

c

)
sin[n(θ + θ0)], (3.3)

where Jn(z) is the Bessel function of order n ≥ 1 and � is the intrinsic frequency
of the Marangoni mode found from the impermeability condition J ′

n(�R0/c) = 0.
Following [13], the steady-streaming velocity induced at the edge of the Stokes layer
is given by

Uθ = − 3

4�
Uτ (R0, θ)

∂Uτ (R0, θ)

∂τ
= −V0 sin[2n(θ + θ0)]. (3.4)

where τ = R0θ and

V0 =
(

3n3E2
0

8ρ2�3h40R
3
0

)
J 2
n

(
�R0

c

)
. (3.5)

Finally, for the small disturbances h̃ � h0, a Stokes streamfunction� exists which in
cylindrical coordinates is related to the velocities (ur , uθ ) by (r−1∂�/∂θ ,−∂�/∂r ).
For the weak flows observed in the experiment, Ezersky assumed it was sufficient to
consider only the zero Reynolds number two-dimensional Navier–Stokes equations

∇4� = 0. (3.6)

The solution of (3.6) regular at the origin and satisfying the steady-streaming bound-
ary condition uθ = Uθ is given by
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�(r, θ) = −1

2
V0R0

(
r

R0

)2n
[
1 −

(
r

R0

)2
]
sin[2n(θ + θ0)]. (3.7)

Flow patterns for n = 1, 2, 3 are displayed in Fig. 11.
As the azimuthal mode number increases, the vortex cores, lying at discrete points

on the circle rc = √
n/(n + 1)R0, shift toward the cell boundary in agreement with

experiments. Note that the lowest mode shown in Fig. 11a produces two pairs of
counter-rotating vortices; hence this simple model cannot describe the vortex pat-
tern shown in Fig. 7a. This single counter-rotating vortex pair was observed in both
circular and square cells. Ezersky showed, however, that a crude model of such a
configuration in the circular cell is obtained if two Marangoni waves of neighboring

Fig. 11 Two-dimensional vortices generated byMarangoni wave-boundary interaction in a circular
domain according to Eq. (3.7): a mode n=1; b mode n=2; c mode n=3; and d a vortex pair induced
by a superposition of equal amplitude, in-phase modes n = 20 and n = 21
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large angular mode numbers n and (n + 1) are excited. Then, by virtue of nonlin-
earity, the mean flow may be a pair of intense vortices. An example of computed
streamlines for stationary vortices generated in this manner is presented in Fig. 11d.

3.2 The Role of Air

Assuming no evaporation from the film surfaces, no formation of black films, and
no wave-boundary interaction, Vega et al. [14] modeled the oscillatory and non-
oscillatory interaction of the liquid with the surrounding air. The analysis is very
subtle and tedious, and also because this is not a contribution of Ezersky, only an
outline of themethodology leading to the final governing equationswill be presented.

Themotionof the air above andbelow thefilmobeys the incompressible continuity
and Navier–Stokes equations with continuous velocity and pressure conditions at the
liquid–air interfaces. Here x = (x, y) are Cartesian coordinates in the plane of the
unperturbed film, ∇ = (∂/∂x, ∂/∂y), u = (u, v) is the horizontal velocity of the
liquid averaged across the film thickness, and z is the coordinate from the center
plane of the quiescent horizontal film. The film interfaces lie at z = η ± h/2 and
satisfy h � η � l, where l is the characteristic horizontal length of the flow in
the film. The full three-dimensional equations for the liquid motion are written in a
coordinate system attached to the film. Averaging the equations across the film gives,
to an approximation sufficient for the analysis, the governing equations

Dh

Dt
+ h(∇ · u) = 0 (3.8)

h
Du
Dt

= 2

ρ
∇σ − h

(
∂2η

∂t2
+ g

)
∇η + 1

ρ
∇ · τ ′ + 2ν∇(h∇ · u) + 1

ρ
τ b (3.9)

ρh

(
∂2η

∂t2
+ g + 2u · ∇ ∂η

∂t

)
= 2σ∇2η − �pg. (3.10)

Eqs. (3.8) and (3.9) are the continuity and momentum equations for the thin liquid
layer and Eq. (3.10) governs the deflection of the layer. Here g is gravity, and the
subscript g is attached to stresses produced on the film by the gas phase. The surface
tension coefficient σ is a function of the local surface concentration of soap which
depends only on the local film thickness h; these variations are linear if the soap
concentration is below the critical micelle limit. Here τ ′

i j = ρ(hν + νs)(∂ui/∂x j +
∂u j/∂xi ) is the viscous stress tensor containing contributions from the bulk liquid
and its interfaces, with respective kinematic viscosities ν and νs , τ g is the sum of
the shear stresses of the air on both sides of the film, and �pg = p+

g − p−
g is the

difference of air pressures across the film.
The velocity and pressure in the air and the deflection of the film are decomposed

into oscillatory (eiωt ) and non-oscillatory (subscript s) parts
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(ug, wg, pg) = (Ug,Wg, Pg)e
iωt + c.c. + (ugs, wgs, pgs) + . . . (3.11a)

η = �eiωt + c.c. + ηs + . . . (3.11b)

where complex notation is usedwith c.c. denoting complex conjugate. The gas veloc-
ities and pressure depend on (x, z) and � and ηs depend on x only. These quantities
may also depend on time, in a characteristic time scalemuch larger thanω−1, so these
terms are described as being quasi-steady. Using the same notation as in Eq. (3.11),
the liquid velocity and film thickness are decomposed as

u = Ueiωt + c.c. + us + . . . , h = Heiωt + c.c. + hs + . . . (3.12a, b)

where U, H , us , and hs depend on x only.
The analysis is divided into four parts: the oscillatory problems for the gas and the

liquid and the quasi-steady problems for the gas and the liquid. For the oscillatory
gas problem, the leading order gas variables and film deflection (Ug , Wg , Pg , �)
of expansions (3.11) satisfy linearized continuity and momentum equations in the
air, Eq. (3.10) across the film and continuity of normal velocity at each liquid–air
interface. Solution of this inviscid gas-phase problem gives the flexural modes of the
air-film system and the potential oscillatory horizontal velocity of the air outside the
thin viscous Stokes layers adjacent to the film surfaces, the structure ofwhich is deter-
mined to within the unknown horizontal velocity U of the liquid in the film. Turning
now to the oscillatory liquid problem, the leading oscillatory terms (U, H ) of expan-
sions (3.12a, b) satisfy linearized forms of the liquid film continuity and momentum
equations (3.8) and (3.9) with appropriate interfacial boundary conditions. Elimi-
nation of H then gives a single-vector equation for U which describes Marangoni
waves in the liquid film forced by vertical oscillations of the air and the film.

Next, omitting details found in Vega et al. [14], solution of the quasi-steady gas
problem yields the governing equation

2σ∇2ηs = −ρω[�∗∇ · (hsU) + 2hsU · ∇�∗ + c.c.] − ρs(|U+
g |2 − |U−

g |2) − ρghs

(3.13)

where U±
g = Ug(x, y, 0±) and the superscript ∗ denotes complex conjugate. Finally,

again omitted details, the leading order equations governing the quasi-steady stream-
ing in the liquid film are found to be

Dhs
Dt

+ hs(∇ · us) = 0 (3.14a)

hs
Dus
Dt

= −c2s∇hs + 1

ρ
∇ · τ ′

s + 2ν∇(hs∇ · us) + G + L. (3.14b)

The term c2s = c2(hs) = −2[dσ(hs)/dhs]/ρ is the square of the Marangoni wave
speed. Several contributions to the quasi-steady viscous stress surface forcing terms
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Fig. 12 a Solution of Eq. (3.14) with the dominant volume forcing term given in the text. Plotted are
six equispaced contours of hs between 0.15 and 2.02 (dotted), six contours of vorticity ωs between
−20 and 10 (solid for ωs > 0 and dashed for ωs < 0, and velocity arrows). b Solution of Eq. (3.14)
with both volume and surface-forcing terms given in the text. Plotted are eight equispaced contours
of hs between 0.44 and 5.83 (dotted), eight contours of vorticity ωs between −4 and 4 (solid for
ωs > 0 and dashed for ωs < 0, and velocity arrows)
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are lumped into the single vector G and the non-oscillatory contributions appearing
from time-averaging the nonlinear terms inEq. (3.9) are volume forcing terms lumped
into the single vector L, both containing components derivable from a potential
� and components not derivable from a potential. In summary, the leading order
quasi-steady evolution of film deflection and thickness, ηs and hs , and of the the
liquid velocity us are governed by the coupled system of equations (3.13) and (3.14)
supplemented by appropriate initial and boundary conditions.

Rather than solve the entire system of steady and unsteady equations in both the
air and the liquid film, the type of flows allowed by Eq. (3.14) may be found by
choosing typical, but simplified, forcing terms L and G and prescribing periodic
boundary conditions. Before integration, the variables are normalized so that the
undisturbed thickness is hs = 1 and the spatial domain lies in the square region
0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. In the first simulation L = hs∇�L is represented by
�L = 0.5 sin(2πx) sin(2πy). The dominant volume forcing term does not induce
anymotion by itself, but leads to a spatial thickness that enables or enhances the action
of other terms. Thus, in order to mimic the strong recirculation regions sometimes
observed in variable thickness regions around patches of black films, a non-potential
forcing G = (∂�g/∂x,−∂�g/∂y) with �G = 0.2�L is added to L. Contours of
constant film thickness and of vorticity along with some velocity vectors are shown
in Fig. 12a. One observes two strong clockwise-rotating vortices in quadrants two
and four in regions of small film thickness, and two weak counter-clockwise-rotating
vortices in quadrants one and three where the film is relatively thick.

We now look at the combined effects of volume plus surface forcing by choosing
the same volume potential �L = 0.5 sin(2πx) sin(2πy) as above, but now taking
the surface potential as �G = 0.1 sin(2πx + π/2) sin(2πy + π/2). The result dis-
played in Fig. 12b shows four vortices of alternate signs appearing around each of
the two bladders of large thickness on the main diagonal; two vortices with positive
circulation at the left and right and two with negative circulation above and below.
Again the velocity is higher outside the bladders than inside. The two counter-rotating
vortex pairs in this square cell computation bear resemblance to the vortex system
observed at the interior of the circular cell in Fig. 9a. Replacing �G by �2

G gives
a flow with eight vortices around each bladder, similar to what is observed at the
interior of the square cell in Fig. 9b.
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Abstract Kuramoto and Battogtokh [Nonlinear Phenom. Complex Syst. 5, 380
(2002)] described chimera states as a coexistence of synchrony and asynchrony in a
one-dimensional oscillatory medium. After a reformulation in terms of a local com-
plex order parameter, the problem can be reduced to a system of partial differential
equations.We further reduce finding of uniformly rotating, spatially periodic chimera
patterns to solving a reversible ordinary differential equation, and demonstrate that
the latter has many solutions. In the limit of neutral coupling, analytical solutions in
the form of one- and two-point chimera patterns as well as localized chimera solitons
are found. Based on these analytic results, patterns at weakly attracting coupling are
characterized by virtue of a perturbative approach. Stability analysis reveals that only
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1 Introduction

Chimera states in oscillatory media have attracted great attention since their first
observation and theoretical explanation by Kuramoto and Battogtokh [1]. The sur-
prising feature of chimera is the breaking of the translational symmetry: although a
homogeneous fully symmetric synchronous state exists, yet another nontrivial state
combining synchrony and asynchrony is possible and can even be stable. In terms
of the local complex order parameter, chimera is a solution wherein a part of the
space this parameter has absolute value one (full local synchrony), and in another
part its absolute value is less than one (partial local synchrony). This description
links chimera patterns to a general problem of pattern formation in media described
by a complex field [2].

Chimeras (see [3] for a recent review) can be found at interaction of several popu-
lations of oscillators [4–7], or in an oscillatory medium [8–11]. Here, formulation in
terms of a local coarse-grained complex order parameter indeed allows one to reduce
the problem to that of evolution of a complex field [10, 11].

The goal of this chapter is to present a theory of chimera patterns in a one-
dimensional (1D) medium. The main questions we address are: (i) How complex
can be chimera states? (ii) Do solitary chimera states exist in an infinite medium?
(iii) Is there a way of an analytical description of chimera patterns? (iv) What are the
stability properties of chimera patterns?

This chapter extends a short communication [12] and is organized as follows. In
Sect. 2, we briefly summarize the key provisions of the studiedmodel. This will make
it possible to introduce the required equations and reformulate the problemof chimera
patterns in a 1D medium of coupled oscillators as a system of partial differential
equations (PDEs). This allows us to represent uniformly rotating chimera states
as solutions of ordinary differential equations (ODEs). Spatially periodic chimeras
correspond to periodic orbits, of different complexities, of these ODEs. In Sect. 4,
we develop the analytical approach for chimera states. First of all (in Sect. 4.1), we
show that in the limit of neutral coupling, the obtained system of ODEs is integrable,
yielding singular solitary “one-point” and “two-point” chimeras. Then (in Sect. 4.2),
for a weakly attracting coupling we find the properties of the chimera states by a
perturbation analysis of these solutions. The developed perturbation theory allows us
to estimate typical sizes of the synchronous regions for simplest chimera patterns. In
Sect. 5, we describe the numerical calculation procedure based onODEs of the spatial
structure of stationary chimera states. Here, we demonstrate a variety of chimera
patterns. However, within the framework of this paper, we mainly concentrate on the
analysis of chimeras in which no more than two synchronous regions are singled out
with allowance for periodic boundary conditions. Furthermore, in Sect. 6, we study
the stability of the found chimera patterns by employing a numericalmethod allowing
one to disentangle essential continuous and discrete (point) parts (see [13, 14] and
Sect. 6.1) of the stability spectrum. The proposed numerical method (see Sect. 6.2)
is based on variation of a starting point of discretization and calculating eigenvalues
of matrix several times. This allows us to determine all the point eigenvalues for
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chimera states. Based on the location of point spectrum, we can make a conclusion
regarding the temporal stability of the stationary chimeras.

2 Formulation of the Problem. Basic Approaches
and Equations

The original Kuramoto–Battogtokh (KB) model [1] is formulated as a 1D field of
weakly nonlocally coupled identical phase oscillators, which are continuously dis-
tributed on an infinite domain. In this system, there are spatially periodic patterns of
the distribution of the phases, which are called chimera states and characterized by
the existence of a region or regions of coherent, phase-locked elements embedded
in a background of incoherent oscillators.

In this chapter, as in most of the works, dedicated to the chimera phenomenon,
we study the system of nonlocally coupled identical phase oscillators, which are
continuously distributed on a finite interval [0, L) and satisfy periodic boundary
conditions. Such a configuration is completely equivalent to the case where the phase
oscillators are equally spaced on a ring of length L .

In the discussed situation, the systemof nonlocally coupled identical phase oscilla-
torswith the natural frequencyω (which can be,without loss of generality, set equal to
zero) is mathematically described using the dynamic phase variable φ (x, t), which
is defined at each point x of the interval [0, L) and obeys the following integral-
differential equation:

∂φ

∂t
= ω −

L∫

0

G (x − x̃) sin
(
φ (x, t) − φ (x̃, t) + α

)
dx̃, (1)

where the constant α describes the phase shift effects. The last term on the right-hand
side of Eq. (1) is an integral operator with the kernel G (y). This kernel described
the effects of nonlocal interaction inside the considered 1D oscillatory medium and
satisfies the normalization condition, according to which the integral of G (y)within
the limits of 0 to L is equal to unity.

The KB model [1] exactly corresponds to Eq. (1) if the integration is performed
in the infinite domain with the exponential kernel

GKB (y) = κ exp
(−κ |y|)/2, (2)

while the 1D field of phase oscillators φ (x, t) are assumed to have a period L .
In our case, when the integration over the domain of size L is performed, we use

the kernel
G(y) = κ

2 sinh
(
κL

/
2
) cosh(κ (|y| − L

/
2
))

, (3)
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which is the Green’s function of the inhomogeneous Helmholtz equation (7) with the
source on the right-hand side and periodic boundary conditions at the points x = 0
and x = L . It appears that G (y) in the form (3) is more adequate for a periodic 1D
oscillatory medium of size L , compared to the original purely exponential kernel.
Note that Eq. (3) in the limit κL → +∞ converges to the exponential kernelGKB (y)
of the original KB paper [1].

Using the procedure of averaging over a small δ-vicinity of the point x , one can
reformulate this setup as a continuous oscillatory medium described by the complex
field Z (x, t) [10, 11], which represents a coarse-grained order parameter of the
phases:

Z (x, t) = 1

2δ

x+δ∫

x−δ

exp
[
iφ(x̃, t)

]
dx̃ . (4)

This complex relatively smooth function of the coordinate x and time t satisfies
the condition |Z (x, t)| ≤ 1. In the regions where |Z (x, t)| = 1, the neighboring
phase oscillators move synchronously (local distribution of the phases is a delta
function). For a smooth local distribution of the phases, which corresponds to partial
synchrony, |Z (x, t)| < 1. The dynamics of such a function Z (x, t) follows locally
the Ott–Antonsen equation [3, 15]

∂Z

∂t
= iωZ + 1

2

(
e−iαH − eiαH∗Z2

)
. (5)

Here, H (x, t) is a coupling field defined via a temporarily instantaneous, spatially
integral linear operator:

H(x, t) =
L∫

0

G (x − x̃) Z (x̃, t) dx̃ . (6)

In the considered case, using a specific form (3) for the kernel G (y), it is easy to
proceed from the integral coupling (6) between Z (x, t) and H (x, t) to the equivalent
differential equation

∂2H

∂x2
− κ2H = −κ2Z (7)

with periodic (for finite values of L) boundary conditions:

H (0) = H (L) ,
∂H

∂x

∣∣∣
x=0

= ∂H

∂x

∣∣∣
x=L

(8)

Note that in an infinite medium |x | < ∞, the solution of (7) is H (x, t) =∫
GKB (x − x̃) Z (x̃, t) dx̃ as in Ref. [1]. It is also worth mentioning that the same

nonlocal coupling stems from the following model for the interaction of oscillators
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via the “auxiliary” field H (x, t) (cf. Refs. [9, 16, 17]):

τ
∂H

∂t
= 1

κ2

∂2H

∂x2
− H + Z . (9)

In this case, parameter τ indicates the characteristic time scale of the relaxation
of H (x, t). In the limit of the infinitely fast relaxation of the auxiliary field, where
τ → 0, Eq. (9) reduces to Eq. (7).

The reformulated problem (5), (7), as the initial problem (1), (3) contains two
parameters having the dimension of length: L and κ−1. By rescaling x , we can set
one of these parameters to one. Therefore, we assume, without loss of generality,
that κ = 1. Then the only parameter is the size of the system L .

3 Stationary Chimera States as Solutions of ODE

We look for the rotating wave solutions of system (5), (7), which are stationary in
a rotating reference frame. For this purpose we assume, that the complex functions
Z (x, t) and H (x, t) have the following form:

Z (x, t) = z (x) ei(ω+Ω)t , H (x, t) = h (x) ei(ω+Ω)t , (10)

where Ω is some unknown frequency, depending on the period of the solution (here
our definition of the frequencyΩ is the same as in the KB paper [1]). This frequency
will be negative, if α � π

/
2. It is convenient, however, not to fix the period L ,

but to fix the frequency of the rotating chimera Ω and then find periodic patterns
as solutions of the equations to be formulated below; period L of these solutions
depends on Ω . This will, after the inversion the yield dependence Ω (L).

After the substitution of Eq. (10) into relation (5), we obtain an algebraic equation

eiαh∗z2 + 2iΩz − e−iαh = 0, (11)

which can be treated as a quadratic equation with respect to z with two solutions that
can be written formally as

z (x) = −Ω ±
√

Ω2 − |h (x)|2
h∗ (x) exp (−iβ)

. (12)

Here, for convenience of the further notation, we define the parameter measuring
deviation of α from π/2:

β = π
/
2 − α. (13)
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Which sign (plus or minus) in the relation between z (x) and h (x) has to be chosen
in Eq. (12), is determined by the physical meaning of the complex order parameter
Z(x, t). First, the amplitude of Z(x, t) cannot be greater than unity, i.e., |Z (x, t)| ≤
1. It follows from relation (12) that for |h (x)| ≥ |Ω| the equality |z (x)| = 1 is
always fulfilled. But if |h (x)| < |Ω|, then |z (x)| ≤ 1 only when in expression (12)
the negative sign in chosen. In other words, z (x) is uniquely related to h (x) as
follows:

z (x) = −Ω +
√

Ω2 − |h (x)|2
h∗ (x) exp (−iβ)

. (14)

Substituting Eq. (10) into Eq. (7) and making use of Eq. (14), for the complex
function h (x) we obtain an ODE of the second order:

h′′ − h = Ω +
√

Ω2 − |h|2
h∗ exp (−iβ)

. (15)

Hereafter, by primes at the functions of the variable x we will denote derivatives
with respect to the spatial coordinate x . Equation (15) is complemented by boundary
conditions h (0) = h (L) and h′ (0) = h′ (L).

Let us represent h (x) in the form

h (x) = r (x) eiθ(x), (16)

where r (x) and θ (x) are real functions. However, unlike the classical definition of
the amplitude and the phase of a complex function, we assume that r (x) can reverse
sign and take both positive and negative values. In this case, θ (x) will not undergo
±π jumps at the points where r (x) vanishes and retain its smoothness when passing
through such points. It should be mentioned that Z (x, t) and H (x, t), and therefore
both z (x) and h (x) are defined up to a constant phase shift (gauge invariance θ (x) →
θ (x) + θ0). Hence, without loss of generality, we can put θ (0) = 0.

Substituting Eq. (16) into Eq. (15) and separating real and imaginary parts, we
arrive at a real system of ODEs of the third order:

r ′′ = r + q2

r3
+ Ω

r
cosβ −

√
r2 − Ω2

r
sin β, (17)

q ′ = Ω sin β +
√
r2 − Ω2 cosβ (18)

in the domain where |r (x)| ≥ |Ω|, i.e., in the region of synchronous motion of phase
oscillators, and

r ′′ = r + q2

r3
+ Ω + √

Ω2 − r2

r
cosβ, (19)

q ′ =
(
Ω +

√
Ω2 − r2

)
sin β (20)
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in the domain where |r (x)| < |Ω|, i.e., in the region characterized by partially syn-
chronous behavior. Here, for convenience, we defined a new variable

q (x) = r2 (x) θ ′ (x) . (21)

Below, we confine ourselves to the analysis of stationary solutions without the phase
gradient, i.e., we discuss only cases where θ(L) = θ(0) (in general also solutions
with θ(L) = θ(0) + 2πn are admissible).

4 Analytical Approach for Chimera States

In this section, we describe an analytical approach to find nontrivial solutions of
system (17)–(20). In the next section, numerical approaches are presented.

4.1 One- and Two-Point Chimeras

Remarkably, it is possible to describe basic chimera profiles analytically, for α �
π

/
2 (β 	 1). Let us first consider the limiting case of a purely neutral coupling

between the phase oscillators, where α = π
/
2 (β = 0). In this situation, from

Eq. (18) it follows that q ′ (x) is nonnegative in the synchronous state, i.e., q ′ (x) ≥ 0
for |r (x)| ≥ |Ω|. In turn, according to Eq. (20), the derivative q ′ (x) vanishes in the
partially synchronous state. Therefore, q (x) does not depend on x and remains con-
stant in partially synchronous regions, i.e., q (x) = const for |r (x)| < |Ω|. Thus,
a periodic solution with q (x) = q (x + L) should be everywhere partially syn-
chronous, possibly except for one or two points at which r (x) achieves an extremum
|r | = |Ω|. This allows us to set in Eqs. (20) and (19) q = 0, so that Eq. (19) reduces
to an integrable second-order equation

r ′′ = −dU (r)
/
dr ,

U (r) = −r2
/
2 − √

Ω2−r2 − Ω ln
(√

Ω2−r2−Ω
)

.
(22)

Potential U (r) is depicted in Fig. 1. In Eq. (22) there are two types of trajectories
having the maximum at rmax = |Ω|, depending on the value of Ω . For −1 < Ω <

Ω∗ = 2 (ln 2 − 1) this is a periodic orbit with 0 < rmin ≤ r ≤ |Ω|. It reaches the
boundary of the partially synchronous region at one point and corresponds to a
degenerate “one-point chimera” [which can be considered as the limiting case of
curve A in Fig. 3], where the synchronous region shrinks to a point. ForΩ∗ < Ω < 0
there is a symmetric periodic orbit with− |Ω| ≤ r (x) ≤ |Ω|. This degenerate “two-
point chimera” corresponds to curve B in Fig. 3. These two types of solutions merge
in a homoclinic orbit with infinite period at Ω = Ω∗, which can be named “chimera
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Fig. 1 a Effective potential Û (r) (see Eq. (28)) for different values of Ω: Ω = −0.4 (dash-
dotted blue curve), Ω = Ω∗ = −2 (ln 2 − 1) ≈ −0.77 (dashed green curve), Ω = −0.8 (solid red
curve). Here Û0 = −Ω ln (2 |Ω|) − |Ω|. b The period of the one- and two-point chimera solutions
vs parameterΩ . bDependence of the chimera spatial period on the rotation frequencyΩ . The inset
shows examples of one -and two-point chimeras

soliton” (one- or two-point, depending on which side of the criticality the orbit is
considered). Physically, chimera solitons correspond to localized states of enhanced
synchrony in an infinite medium, with full synchrony (maximal coarse-grained order
parameter |z| = 1) being achieved just at one (or two) point. The dependencies Ω

versus (L) for these solutions are shown in Fig. 1b. Note that additionally there is a
branch of synchronous solutions with Ω = −1 which are steady states r (x) = 1.

4.2 Perturbation Theory Near One- and Two-Point Chimeras

Now, we consider the case where the parameter α is slightly different from π
/
2. In

this limit, a small parameterβ 	 1 appears in the problem, and it becomes possible to
construct a perturbation theory allowing to estimate typical sizes of the synchronous
and the partially synchronous areas for solutions directly related to the one-and two-
point chimera states mentioned above.

Besides β 	 1, we assume that Ω is not too close to the value Ωsyn = − sin α,
which corresponds to a stable, purely synchronous motion of the phase oscillators.
Then it can be stated (based on the structure of system (17)–(20)) that: (i) the typ-
ical sizes of the synchronous regions are much smaller than the sizes of partially
synchronous regions; (ii) the maximum value rmax of the function r (x) only slightly
exceeds |Ω|, and (iii) the quantity q (x) is small for all 0 ≤ x < L . Using these prop-
erties and keeping only the main terms in relations (17)–(20), we obtain approximate
equations

r ′′ = r + Ωr−1, (23)

q ′ = Ωβ +
√
r2 − Ω2 (24)
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if |r (x)| ≥ |Ω| and

r ′′ = r +
(
Ω +

√
Ω2 − r2

)
r−1, (25)

q ′ =
(
Ω +

√
Ω2 − r2

)
β (26)

if |r (x)| < |Ω|. In Eqs. (23) and (25), we have neglected the small terms having an
order β2 or higher, including the term q2

/
r3.

Thus, in the first approximation, the equations for the function r (x), both in the
synchronous and asynchronous domains, cease to depend on β and q (x), making it
possible, as for β = 0, to rewrite them in the form of a unified equation of motion in
the potential field

r ′′ = −dÛ (r)
/
dr , (27)

where the effective potential Û (r) extends potential U to the domain |r | > |Ω|:

Û (r) =
{−r2

/
2 − Ω ln |r | , if |r | ≥ |Ω| ,

U (r) , if |r | < |Ω| .
(28)

Fig. 1 shows characteristic profiles Û (r) for three values of Ω in the interval −1 <

Ω < 0. In addition to the discussed above point chimera solutions with rmax ≤ |Ω|,
now the solutions with rmax ≥ |Ω| are possible. The reason is, that unlike to the
case of vanishing β = 0, according to Eq. (26), the derivative q ′ (x) is nonzero
and proportional to β, which leads to a variation in the function q (x) not only for
|r (x)| ≥ |Ω|, but also for |r (x)| < |Ω|. This circumstance makes it possible to
satisfy the periodic boundary conditions, not only for r (x) and r ′ (x), but also for
q (x), even if there are areas where |r (x)| > |Ω|.

As a result, the problem for a fixedΩ can be formulated as follows. First, one finds
periodic solutions r (x) in potential Û as solutions of the second-order ODE (27),
with one or two synchronous regions with |r (x)| > |Ω|. We stress once again that
when β 	 1 and Ω are not too close to Ωsyn =− sin α, the sizes of these regions
can be assumed small compared with the total period L (rmax). Then one substitutes
r (x) in relations (24) and (26) and finds q (x). Finally, the periodicity condition
q (x + L (rmax)) = q (x), which is equivalent to

L(rmax)∫

0

q ′(r (x)
)
dx = 0, (29)

should be fulfilled which fixes the chimera state. If in Eq. (29), we consistently
integrate over synchronous and asynchronous areas, replacing q ′(r (x)

)
by expres-

sions (24) or (26), respectively, in each of them, then we obtain
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NSR

Lsyn∫

0

√
r2 − Ω2 (x) dx = −βΩL (rmax) − βNSR

L psyn∫

0

√
Ω2 − r2 (x) dx . (30)

When deriving Eq. (30) we used the fact that we are interested first of all in the
simplest stationary chimera states, which in the limit β → 0 convert directly either
to a “one-point chimera” or a “two-point chimera”. This means that for a small, but
nonzero β the solutions of interest have one (NSR = 1) or two (NSR = 2) identical
synchronous regions (by virtue of symmetry and periodicity the number of partially
synchronous states is the same). Here, Lsyn is the size of a separate synchronous
area and Lasyn is the individual length of the partially synchronous interval, i.e.,
NSR

(
Lsyn + Lasyn

) = L (rmax). We also note that Lsyn and Lasyn depend on rmax.
We assume that the maximum value rmax of the function r (x) exceeds |Ω| only

slightly. Therefore, we represent rmax in the form rmax = |Ω| + Δrmax, where 0 <

Δrmax 	 |Ω|. Assuming Δrmax ∼ β, it is possible to calculate the right-hand side
of equality (30) approximately, neglecting terms having an order β2 or higher:

−βΩL (rmax) −βNSR

Lasyn∫

0

√
Ω2 − r2 (x) dx ≈ −βΩL

(|Ω|) − β

L(|Ω|)∫

0

√
Ω2 − R2(x) dx =

− β

∮ (
Ω+

√
Ω2−R2(x)

)
dx=β

∮ (
R′2+R2

)
dx . (31)

When making transformations in Eq. (31) we took into account that

L (rmax ) = L
(|Ω| + Δrmax

) ≈ L
(|Ω|) + dL

drmax

∣∣∣∣|Ω|
Δrmax, (32)

Lasyn (rmax) = Lasyn
(|Ω| + Δrmax

) ≈ L
(|Ω|)
NSR

+ dLasyn

drmax

∣∣∣∣|Ω|
Δrmax. (33)

Moreover, in the considered case, r (x) is close (all the differences are of the same
order as Δrmax ∼ β) to the trajectory R (x) corresponding to the case β = 0, which
totally lies in the partially synchronous region, except for one (NSR = 1) or two
(when NSR = 2) turning points where |r | = |Ω| in modulus. Actually, in the first
approximation, for estimates of the integrals in Eq. (31) it suffices to take, instead of
r (x), the solution R (x) at β = 0, i.e. solution of the equation

R′′ = R +
(
Ω +

√
Ω2 − R2

)
R−1 (34)

with boundary conditions

R (0)= R
(
L
(|Ω|))=|Ω| , R′ (0)= R′ (L(|Ω|))=0 . (35)
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Using relations (34) and (35), it is easy to perform the last transition in Eq. (31).
Note that by a cyclic integral we denote the integral over the period L

(|Ω|) of the
function R (x).

We now analyze the left-hand side of relation (30). For this, we consider in more
detail the behavior of r (x) on the synchronous area where |Ω| ≤ r (x) ≤ rmax. Since
the sizes Lsyn of this region are assumed small, rmax = |Ω| + Δrmax, and Δrmax 	
|Ω|, the solution of Eq. (23) can be sought in the form

r (x) = |Ω| + rsyn1 (x) + rsyn2 (x) + . . . , (36)

where by identical indices we denoted the terms having the same order of smallness.
After the substitution of Eq. (36) into Eq. (23), for the main x-dependent term of
expansion rsyn1 (x) we obtain

r ′′
syn1

= |Ω| − 1. (37)

Allowing for the fact that the corrections to |Ω| of any order should become zero at
the boundaries of the considered area, while at its center the function rsyn1 (x) should
reach the maximum value Δrmax, we find

rsyn1 (ξ) = Δrmax + (|Ω| − 1
)
ξ 2

/
2 (38)

Here, for convenience, instead of x , we introduced the spatial coordinate ξ reckoned
from the central point of the synchronous region, i.e., ξ = 0, when r (x) = rmax. For
r (x) = |Ω|, ξ takes the values ±ξ0, where

ξ0 =
√
2Δrmax

/(
1 − |Ω|) (39)

Now it is easy to directly calculate the integral on the left-hand side of expression (30)
in the first approximation:

Lsyn∫

0

√
r2 (x) − Ω2 dx ≈

ξ0∫

−ξ0

√
2 |Ω| rsyn1 (ξ) dξ =

√
|Ω| (1−|Ω|)

ξ0∫

−ξ0

√
ξ 2
0 −ξ 2 dξ = π

2

√
|Ω| (1−|Ω|) ξ 2

0 . (40)

Finally, substituting Eqs. (31) and (40) into relation (30), we find, with accuracy
up to corrections of the first order of smallness in β, that

πNSR

√|Ω| (1 − |Ω|) ξ 2
0 = 2β I0 (Ω) , (41)
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Here, we introduced a notation

I0 (Ω) =
∮ (

R′2 + R2
)
dx, (42)

and the integration was performed over the period L
(|Ω|) of the function R (x),

which is the solution of Eq. (34) with boundary conditions (35). From Eq. (42)
estimates follow for the sizes of the synchronous region

Lsyn ≈ 2ξ0 =
√

8β I0 (Ω)

πNSR
√|Ω| (1 − |Ω|) (43)

and for the maximum value rmax, which is reached on the trajectory r (x) “trapped”
by the potential (28):

rmax = |Ω| + Δrmax = |Ω| + β

√
1 − |Ω|

|Ω|
I0 (Ω)

πNSR
. (44)

It is also possible to find the corresponding expression for characteristic scales of
the whole stationary chimera and its partially synchronous parts for a given Ω and
small β:

Lch ≈L (rmax )≈L0+β
dL
drmax

∣∣∣∣|Ω|

√
1−|Ω|

|Ω|
I0 (Ω)

πNSR
, (45)

Lasyn = Lch

NSR
− Lsyn, (46)

where L0 = L
(|Ω|) is the length of the one- or two-point chimera for a given Ω .

The result of the developed perturbation theory is that the size Lsyn of synchronous
regions becomes finite for β > 0. Physically, the constructed solutions are periodic
in space patterns, where oscillators are partially synchronized almost everywhere,
except for one or two small regions of enhanced coherence, which is full in small
core zones. It should bementioned that forΩ close toΩsyn =− sin α, the presence of
a stable, purely synchronous state has a strong effect, and the approach we proposed
ceases to work. However, the chimeras found for such values of Ω are strongly
unstable and deteriorate rapidly. Therefore, the case where Ω differs very slightly
from Ωsyn was not considered in detail.

Figure2 demonstrates a comparison of the results of the developed perturbation
theory and the data obtained numerically (see Sect. 5 for more details). A fairly good
agreement between the line and the markers indicates the validity of the analytical
description presented in this section.
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Fig. 2 Dependence of the
size Lsyn of a separate
synchronous area on β for
Ω = −0.8. Here, the
unshaded markers show the
results obtained by direct
numerical simulation
immediately within the
framework of the system of
ODEs (17)–(20) and the
solid lines show the law
determined by the analytical
formula (43)
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5 Numerical Calculation of Spatial Structure of Stationary
Chimera States

In this section, we find numerically stationary rotating periodic chimera patterns
described by Eqs. (17)–(20) satisfying the periodicity condition r(x + L) = r(x),
q(x + L) = q(x) in the form of chimeras, which consist simultaneously of syn-
chronous and partially synchronous parts. Before discussing the proposed numerical
procedure based on theODEs (17)–(20),wewould like tomention that Eqs. (17)–(20)
are invariant with respect to a shift of variable x , as well as to the involution x → −x ,
r (x) → r (x), and q (x) → −q (−x). The latter property implies that the system is
reversible and thus has properties similar to Hamiltonian dynamical systems. This
means that the simplest partial solutions can be sought in the class of symmetric r (x)
and antisymmetric functions q (x) with respect to the point x = L

/
2. For such solu-

tions, by virtue of the periodic boundary conditions, the equalities r ′ (0) = r ′ (L) and
q (0) = q (L) should be fulfilled only if r ′ (x) and q (x) vanish at the points x = 0,
x = L

/
2, and x = L . Also recall that we are interested in stationary states in the

form of chimeras, which on the spatial interval [0, L) have regions with |r (x)| ≥ |Ω|
and |z (x)| = 1, where the nonlocally coupled phase oscillators are locked, as well
as regions with |r (x)| < |Ω| and |z (x)| < 1, where the elements of the consid-
ered oscillatory medium are partially synchronous. The aforementioned constraints
determine the value of Ω and the possible form of the functions r (x) and q (x) (and
therefore also h (x)) for a given length L .

Below, we describe the used numerical chimera-seeking approach on the example
of a chimera state with one synchronous region. First of all, we choose the value of
Ω and fix it, assuming that L is arbitrary. The system of ODEs (17)–(20) is solved
numerically (using the Runge–Kutta method of fourth order) with the starting point
r (0) = r0, r ′ (0) = 0, and q (0)=0. Integration ends at a point x=�, where the
conditions r ′ (�) = 0 and q (�) = 0 are fulfilled, at this point r(�) = r1. We have to
satisfy the condition r1 = r0; this is a one-dimensional root-finding problem which
is easy to accomplish. At the final stage, we put L = 2�, substitute the previously
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Fig. 3 Spatial profiles of the simplest chimera patterns (with at most two synchronous regions) for
α = 1.457, |z|: solid lines, |h|: dotted lines. A: the KB chimera with one synchronous region for
Ω = −0.648, B: symmetric chimera with synchronous regions for Ω = −0.558, C : asymmetric
chimera with two synchronous regions (here, the sizes of the synchronous domains are different,
and their phases differ not by π , unlike in case B) forΩ = −0.672, D: nearly synchronous chimera
with one synchronous region for Ω = −0.98762. The colors correspond to coding of the solutions
in Fig. 4

chosen value of Ω into Eq. (15) and solve it numerically on the interval of 0 to
L , taking h (0) = r0 and h′ (0) = 0 as “initial” conditions. Here, we use the fact
that without loss of generality we can assume θ (0) = 0. Finally, we find the spatial
distribution h (x), and using Eq. (12) we retrieve the complex coarse-grained order
parameter z (x), which corresponds to the stationary state in the form of a chimera
with one synchronous region for the locally interacting phase oscillators distributed
continuously over an interval of length L = 2�. The described method can also
be easily generalized to the case of chimeras with a large number of synchronous
regions, by choosing not the first point where r ′(x), q(x) vanish, but the second one,
third one, etc. If one seeks for solutions with a fixed period L , then the corresponding
value of Ω (and then the corresponding profiles z (x) and h (x)) is determined by an
additional root-finding procedure.

We show in Fig. 3 typical solutions for α = 1.457 (the value used in [1]) with
period L ≈ 11.2. These patterns (types A and B have been already discussed in
the literature [1, 3, 14]) are just the simplest possible chimeras with at most two
synchronous regions.

In Fig. 4 we compare the the periods of the found chimeras with the results of the
analytical approach above, for several values of α. Panel (a) shows that for small β
chimera states (of types A and B in Fig. 3) are close to degenerate regimes at β = 0.
One can see in panels (a) and (b) that the two analytic solutions at α = π

/
2 (the one-

point chimera and the synchronous state) merge into one branch at α � π
/
2 with a

nonmonotonic dependence Ω on L , cf. chimeras (with one synchronous region) A
and D in Fig. 3. In panel (b) one can see an additional branch corresponding to the
asymmetric chimera (with two synchronous regions) C in Fig. 3. As a result, in (b)
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Fig. 4 Periods of chimera patterns L versus parameter Ω for α = 1.514 (a), α = 1.457 (b), α =
1.229 (c), and α = 0.944 (d). Chimera states for α = π

/
2, obtained by integration equation (22),

are shown with violet solid lines (cf. Fig. 1b). Different markers correspond to the chimera types
shown in Fig. 3, as specified in panel (b). Cyan dashed lines show the frequency of the synchronous
state Ω = − sin α
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Fig. 5 a Poincaré map for system (17)–(20) for α = 1.457 and Ω = −0.8. The condition for the
surface of section: r ′ = 0, r ′′ < 0. bComplex patterns with three synchronous regions for L ≈ 15.1
and Ω = −0.796 (solid red line), Ω = −0.726 (dashed blue line) and Ω = −0.674 (dotted black
line)

and (c) one has four solutions in some range of periods L . Only two of them survive
for small α; diagrams for α < 0.9 are qualitatively the same as panel (d) in Fig. 4.

In a more general context, the system (17)–(20) as a reversible (with respect to
involution r → r , q → −q) third-order system of ODEs may possess a plethora
of solutions, including chaotic ones. We illustrate this by constructing a two-
dimensional Poincaré map in Fig. 5a. It shows a typical picture of tori and periodic
orbits of different periods for nearly integrable Hamiltonian systems. Not all points
on the Poincaré surface lead to physically relevant solutions: the trajectories which
resulted in values |r | > 1 should be discarded. Therefore only in a small region of
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initial values (r, q) the Poincaré map is well defined, outside of this region there are
only isolated periodic orbits.

The fixed point of the map Fig. 5a at q = 0, r ≈ 0.84 describes the one-hump
chimera state A in Fig. 3. The Poincaré map is constructed for a fixed value of Ω . It
provides several branches of periodic orbits having different periods. Collecting solu-
tions at a fixed period L , we obtain many coexisting long-periodic chimera patterns;
several chimeras with three synchronous regions are illustrated in Fig. 5b. Similar
complex patterns appear also in other physical setups (e.g., multi-peak solitons in
nonlinear optics), a special feature of chimera patterns is that they are non-smooth in
terms of the order parameter |z| and look like sharp zebra stripes “order-disorder”.
Our aim in this study is not to follow all possible periodic and chaotic solutions
of this reversible system. Below in exploring the stability properties, we focus on
the simplest ones illustrated in Fig. 3, corresponding to fixed points and period-two
orbits of the Poincaré map. In other words, we focus on solutions with the number
of extreme values of |r (x)| not exceeding four (one or two minima, or one or two
maxima).

6 Temporal Stability of the Chimera Patterns

6.1 Linear Stability Analysis. Fundamental Properties of the
Corresponding Spectral Problem

In this section, we discuss stability of the obtained chimera patterns. Contrary to the
problem of finding chimera solutions, this analysis cannot be reduced to that of dif-
ferential equations, rather we have to consider the integral-differential equation (5),
(6) for Z (x, t) with the kernel (3). Temporal stability of the chimera state with a
certain value of Ω can be studied by linearizing this integral-differential equation
near the stationary rotating solution (10). To this end, we use an ansatz

Z (x, t) =
(
z (x) + Z̃ (x, t)

)
ei(ω+Ω)t , (47)

where Z̃ (x, t) represents a generic small deviation from z (x). Substituting (47) into
Eq. (5) and linearizing the result with respect to the variations Z̃ (x, t), we obtain

∂ Z̃

∂t
= −[

iΩ + eiαz (x) h∗(x)
]
Z̃ + e−iα

2
H̃ − eiα

2
z2(x) H̃∗ , (48)

where H̃(x, t) is the coupling force for Z̃(x, t) as in (6).
Now we rewrite this integro-differential equation for the complex function

Z̃ (x, t) = ζ1 (x, t) + iζ2 (x, t) as a system for two real components ζ1 (x, t) and
ζ2 (x, t) which are periodic in space with period L:
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∂ζ1

∂t
= μ1 (x)ζ1 − μ2 (x) ζ2 + 1

2

(
cosα−η1 (x)

) L∫

0

G(x− x̃) ζ1(x̃, t) dx̃+

1

2

(
sin α−η2 (x)

) L∫

0

G(x− x̃) ζ2(x̃, t) dx̃ , (49)

∂ζ2

∂t
= μ2 (x) ζ1 + μ1 (x) ζ2 − 1

2

(
sin α+η2 (x)

) L∫

0

G(x− x̃) ζ1(x̃, t) dx̃+

1

2

(
cosα+η1 (x)

) L∫

0

G(x− x̃) ζ2(x̃, t) dx̃ . (50)

Here we introduce four real functions of spatial coordinate x :

μ1 (x) = −(
hRe (x) zRe (x) + hIm (x) zIm (x)

)
cosα

− (
hIm (x) zRe (x) − hRe (x) zIm (x)

)
sin α, (51)

μ2 (x) = −Ω − (
hRe (x) zRe (x) + hIm (x) zIm (x)

)
sin α

+ (
hIm (x) zRe (x) − hRe (x) zIm (x)

)
cosα, (52)

η1 (x) = (
zRe (x)

)2
cosα + (

zIm (x)
)2
cosα − 2zRe (x) zIm (x) sin α, (53)

η2 (x) = (
zRe (x)

)2
sin α + (

zIm (x)
)2
sin α + 2zRe (x) zIm (x) cosα. (54)

The symbolic indices “Re” and “Im” denote the real and imaginary parts of a complex
variables z (x) and h (x), respectively. Using relation (14) one can transform (51)
and (52) to the following expressions:

μ1 (x) =
{

−
√

|h (x)|2 − Ω2, if |h (x)| ≥ |Ω| ,
0, if |h (x)| < |Ω| , (55)

μ2 (x) =
{
0, if |h (x)| ≥ |Ω| ,
−

√
Ω2 − |h (x)|2, if |h (x)| < |Ω| . (56)

It is easy to see that (49) togetherwith (50) can be reformulated in the form of an oper-
ator equation for the two-component vector function ζ (x, t)=(

ζ1(x, t) , ζ2(x, t)
)T

(see, e.g., [13, 14]):
∂ζ

∂t
=

(
M̂ + K̂

)
ζ , (57)

where M̂ is a multiplication operator
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M̂ =
(

μ1(x) −μ2(x)
μ2(x) μ1(x)

)
, (58)

and K̂ is an integral operator

K̂ζ =

⎛
⎜⎜⎜⎜⎜⎜⎝

L∫

0

[
G11(x, x̃) ζ1(x̃) + G12(x, x̃) ζ2(x̃)

]
dx̃

L∫

0

[
G21(x, x̃) ζ1(x̃) + G22(x, x̃) ζ2(x̃)

]
dx̃

⎞
⎟⎟⎟⎟⎟⎟⎠

(59)

with a (2 × 2)-matrix kernel given by

Ĝ (x, x̃) =
(
G11 (x, x̃) G12 (x, x̃)
G21 (x, x̃) G22 (x, x̃)

)
=

1

2

(
cosα − η1 (x) sin α − η2 (x)
sin α + η2 (x) cosα + η1 (x)

)
G (x − x̃) . (60)

Moreover, definitions (59), (60) imply that the integral operator K̂ is compact for any
piecewise-smooth coupling function G (y), particularly, for our default choice (3),
and continuous in x stationary profiles z (x) and h (x).

Solution of Eq. (57) is sought in the form ζ (x, t) = Re
[
Ξ(x) eλt

]
leading to the

eigenvalue problem

λΞ =
(
M̂ + K̂

)
Ξ , (61)

where Ξ(x) = (
Ξ1 (x) ,Ξ2 (x)

)T
. Therefore, the stability properties of the chimera

states can now be investigated by analyzing the spectrum of the linear time-
independent operator M̂ + K̂. It is reasonable to expect that this spectrum consists of
two different parts, a continuous spectrum λc and a (possibly empty) point spectrum
λp (see, e.g., [13, 14, 18]). Note that each part is symmetric with respect to the real
axis.

Continuous spectrum is invariant under compact perturbations [13, 14], hence
the continuous spectrum λc of the composed operator M̂ + K̂ is given just by the
continuous spectrum of M̂. Since M̂ is a multiplication operator, it only has an
essential continuous spectrum consisting of all complex values λc with

det

(
μ1(x) − λc −μ2(x)

μ2(x) μ1(x) − λc

)
= 0 (62)

for some x ∈ [0, L). For a stationary chimera solution, we have synchronous regions,
where |h (x)| ≥ |Ω|, and partially synchronous domains, where |h (x)| < |Ω|.
Therefore, according to formulas (55) and (56), for such a pattern the multiplication
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operator M̂ has a T -shaped continuous spectrum with a symmetric interval of purely
imaginary (with their zero real parts) eigenvalues λc corresponding to the partially
synchronous areas. In contrast, for the other intervals corresponding to synchronous
regions, eigenvalues λc are real and lie in the left complex half-plane. Notably, this
is one more argument supporting for our choice of the solution branches in rela-
tion (12): choosing the opposite sign there, the real branch of λc is located in the
positive half-plane and the corresponding stationary rotating wave with coherent
domains would be unstable.

Thus, the continuous spectrum λc is either stable (negative) or neutrally stable
(purely imaginary). The temporal stability of the chimera states is determined by
the point spectrum λp of the composed operator M̂ + K̂, but the remaining point
eigenvalues λp have no simple representation, and it is not easy to calculate this part
of the spectrum λ numerically using only standard spatial discretization procedure
and replacing in (61) integral operators with M×M matrix.

6.2 Numerical Calculation of the Point Spectrum

There are some difficulties in numerical calculation of stability properties of the
stationary chimera states. The main difficulty here is that, according to Sect. 6.1, the
original eigenvalue problem (61) has an essential continuous T -shaped spectrum λc

consisting of eigenvalues on the imaginary and the negative real axes, but stability
is determined by the point spectrum λp. After spatial discretization, we get a matrix
eigenvalue problem. Unfortunately, it is not easy to discriminate essential and point
parts of the spectrum λ in the eigenvalues of the approximate matrix, because the
eigenvalues representing the T -shaped essential part λc of spectrum λ lie not exactly
on the imaginary and the negative real axes.

We suggest the following approach to identify the point spectrumλp . For a chimera
state in the domain x ∈ [0, L), we discretize the linearized system (61) by using
a set of points x0 + jΔ, j = 0, 1, . . . , M − 1, where Δ = L

/
M and 0 ≤ x0 ≤ Δ

is an arbitrary continuous parameter. This leads to an 2M×2M real matrix, the
eigenvalues λ of which we obtained numerically. The main idea is to vary the offset
of the discretization x0. We find that while the components of the essential spectrum
vary with x0, the point spectrum λp components vary extremely weakly with x0.
This allows us to determine the point spectrum λp reliably for most values of the
parameters.

In Fig. 6 we present the results of the stability analysis for α = 1.457, for branches
A, B,C, D (see Fig. 4b). Four characteristic types of spectra are shown in panels (a–
d). Only case (c) where the point spectrum λp has a negative real part corresponds to
a stable chimera pattern, while all other patterns are unstable (oscillatory instability
for cases (a) and (b) and monotonous instability for case (d)). The dependence of the
point spectrum λp on parameterΩ for α = 1.457, for branches A, B, D, is shown in
Fig. 6e, f. One can see that in the region−0.68 � Ω � −0.64 there are four points of
λp; for other values ofΩ , there is only one pair of eigenvalues (or one real eigenvalue
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Fig. 6 Panels a–d: Essential (blue markers) and point (red markers) spectra for chimera states at
α = 1.457 and four values of Ω: a Ω = 0.45, b Ω = 0.675 and c Ω = 0.8, d Ω = 0.95. In these
diagrams, all 2MN eigenvalues with M = 2048 and N = 128 are plotted. e, f : real and imaginary
parts of the point spectrum λp for solutions A, D (red circles) and B (blue diamonds) in Fig. 4b.

for branch D). This property may be explained by closeness to the homoclinic orbit
Ω ≈ Ω∗, where the length of the patterns is large, so two discrete modes are possible
here. The only stable chimera state is of type A (we refer here to Figs. 3 and 4b) with
−0.91 � Ω � −0.69. On the contrary, chimera states with two synchronous regions
(type B) are unstable. Most difficult was the analysis of the solutions of type C with
two synchronous regions (Fig. 7), here the unstable branch of the point spectrum λp

is real, and there are up to three stable complex pairs. In some cases, only a very fine
discretization with M = 6144 allowed us to reveal unstable point eigenvalues λp.
We attribute this to a complex profile of this solution, requiring a high resolution of
perturbations.

Stability properties described above are confirmedbydirect numerical simulations
of the ensemble governed by Eq. (1), (3), see Fig. 8 for space-time plots of field

∣∣H (k, t)
∣∣ =

∣∣∣∣∣∣
∑
j

G
(|k − j |/K L

)
exp

(
iφ j

)
∣∣∣∣∣∣ (63)

We initialize the chimera patterns as the periodic solutions of ODEs; in the unsta-
ble regions these patterns are eventually destroyed, while a stable chimera per-
sists. Remarkably, for weakly unstable chimeras with two synchronous regions for
Ω ≈ −0.58, where the real part of the point eigenvalue λp has a minimum (see
Fig. 6e), the life time of the initial chimera pattern is relatively large.
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Fig. 7 Eigenvalues [a Ω = −0.645, b Ω = −0.735, here M = 4096, N = 64] of continuous and
point spectra in dependence on Ω (c, d) for the asymmetric branch C

Fig. 8 Direct numerical simulations of the evolution of stable and unstable chimeras for α = 1.457.
a Chimera of type A for Ω = −0.71377, L = 6.03; b chimera of type B for Ω = −0.575, L =
12.06; c: chimera of type C, Ω = −0.6, L = 12.06. The number of oscillators was K = 700 per
length unit

7 Conclusion

In this chapter, we described a PDE-based approach to the problem of chimera pat-
terns in a 1Dmedium of coupled oscillators. The equations resemble those typical for
the pattern formation problem (e.g., the complex Ginzburg–Landau equation), but
have several peculiarities stemming from the synchronization setup. For example,
the complex order parameter cannot exceed one. This leads to a coexistence of syn-
chronous and partially synchronous regions in the chimera patterns. The uniformly
rotating chimera states are found as solutions of an ODE. We demonstrated a variety
of patterns with different profiles and periods, but focused on the simplest ones, with
at most two synchronous domains. Remarkably, these profiles can be analytically
described in the limit of neutral coupling between oscillators. For a coupling close
to the neutral one, we developed a perturbation theory which yields approximate
solutions. Exploring the stability of the found solutions appears to be a nontrivial
numerical problem. We describe an approach to characterize the essential and the
point parts of the spectrum via finite discretizations. The calculations show that only
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chimeras of the type originally studied byKuramoto and Battogtokh are stable, while
others are linearly unstable.

This chapter presents a novel object in a zoo of patterns, so nicely described by
Sasha Ezersky with co-workers in the book [2]. He made seminal contributions also
to nonlinear phenomena in hydrodynamics and acoustics. All who knewS.E. enjoyed
discussions and collaborations with him, he was an inspiration for many of us.
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Radial Propagation of the Instability
Modes Observed in a Viscoelastic
Couette–Taylor Flow

Nizar Abcha, Fayçal Kelai, Noureddine Latrache, Olivier Crumeyrolle
and Innocent Mutabazi

Abstract Experimental investigation of the flow of a high-molecular-mass polymer
solution in the Couette–Taylor systemwith fixed outer cylinder was performed using
visualization and particle image velocimetry (PIV) techniques. Spatiotemporal dia-
grams of the reflected light intensity and of velocity data allow to describe the flow
dynamics in the meridional cross section. When the elasticity and inertia effects are
comparable (inertioelastic regime), the circular Couette flow bifurcates to standing
waves—in the axial direction—called ribbons. These critical waves also propagate
in the radial direction toward the outer cylinder. The higher instability mode mani-
fests in form of domains with disordered oscillations separated by fluctuating walls
characterized by strong radial inflow.
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1 Introduction

Flows of viscoelastic liquids exhibit features that are very different from those of
Newtonian flows. One can cite the Weissenberg effect which consists of a liquid
climb along with a rotating vertical rod partially immersed in a viscoelastic liquid,
or the turbulent drag reduction due to polymer additives to Newtonian flows. The
late case seems counterintuitive if one considers that, for example, the turbulent flow
in a pipe requires a lower pressure gradient for viscoelastic fluid at the same flow
rate and viscosity than for a viscous fluid. An important class of viscoelastic liquids
is formed by high molecular weight polymer solutions such as polyethyleneoxide
(PEO) or polyacrylamide (PAM) solutions [1, 2]. A small amount of these polymers
in aqueous solutions may significantly alter the transition scenario from laminar to
turbulent flows, the nature of flow structures and the torque exerted by the fluid
on rotating surface or the pressure drop in pipe flows, compared to the Newtonian
flows. Since the observation of the turbulent drag reduction effect by Toms in 1948
[3], the use of polymer additives has been tested in different applications such as the
increase of flow rate in pipe flows for firefighting or drainage, the design of ships and
submarines with an increased speed and a reduced energy cost, the transportation of
oil pipelines over long distances, wastewater treatment or inkjet printer [1]. Despite
these different applications, theoretical investigations of viscoelastic flows are much
limited because of the lack of universal equations that can describe their dynamics.
Different constitutive equations that are available in literature to model viscoelastic
fluids depend on the rheological properties of the solutions: dependence of viscosity
on shear rate, elasticity and relaxation time spectrum. This situation limits the pre-
dictability of these models and has motivated a large number of experimental studies
since the second half of the last century [4–8].

Flows of viscoelastic fluids can be characterized by the following dimension-
less numbers [9]: the Reynolds number Re � ργ̇ d2/η, the Weissenberg number
Wi � γ̇ λ, the elasticity number E � λ/τ ν and the viscosity ratio S = ηp/η, where ρ is
the density of the solution, d is the gap between the cylinders, γ̇ is the shear rate, λ is
the polymer relaxation time, η is the solution viscosity, ηp is the polymer contribu-
tion to the solution viscosity, τ ν = ρd2/η is the viscous diffusion time. The solvent
viscosity is ηs � η − ηp. The Weissenberg number is the analog of the Reynolds
number, while the elasticity number is a property of the fluid and geometry.

One of the privilegedflow set up to investigate the transition to turbulence in closed
flows is the Couette–Taylor system which consists of a flow in the gap between
two coaxial cylinders that can rotate independently. Flows in the Couette–Taylor
system are well documented for Newtonian fluids [10]. This system was also used to
investigate flow structures developing in viscoelastic fluids, and the features peculiar
to non-Newtonian character of the fluid can be easily identified. Flows of fluids
with very weak values of the elasticity number behave like the Newtonian flows
with the identical transition scenario [10]. Flows with very high elasticity become
unstable to disordered oscillatory waves which correspond to the elastic response
of polymer molecules to the applied shear. This elastic instability was first reported
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in the study of Boger fluids (highly viscoelastic liquids with constant viscosity) for
low shear rate [7]. Higher modes of this instability can lead to elastic turbulence
[7, 8, 11–14] in conditions for which a Newtonian fluid with comparable viscosity
would remain laminar. For solutions with E ~ 10−1, the base circular Couette flow
becomes unstable and transits to the ribbons, inertio-elasticmodes formed of counter-
propagating spirals with equal amplitude and frequency [11–13, 15–19], resulting
in standing waves in the axial direction. Among previous experimental results on
the stability of the Couette flow in inertio-elastic regime, the experimental study
by Groisman and Steinberg [12] reported the observation of an instability mode
called Radial Waves (RW) propagating both axially and radially, which was not fully
characterized.

In this chapter, we present the results on the rotating radial waves observed in the
Couette–Taylor flow of a viscoelastic fluid when the inner cylinder is rotating while
the outer one is fixed. The flow was visualized using reflective Kalliroscope flakes,
or seeded with glass particles for particle image velocimetry (PIV) in order to mea-
sure the radial and axial velocity components. Space-time diagrams extracted from
reflected light intensity and from the velocity fields provide a good representation of
the flow dynamics.

The chapter is organized as follows: after the description of experimental setup
and procedure (visualization, PIV) in Sect. 2, we present the main results in Sect. 3.
The last section contains discussion and concluding remarks.

2 Experimental Setup and Polymer Characterization

Polymer solutions were prepared by mixing a solution of polyethyleneoxide (PEO)
of large molecular mass (M ∼ 106 g/mol) with 100 ml of isopropyl alcohol in
1900 ml of water (with the pH � 7) at room temperature. Viscosity measurements
revealed a shear-thinning behavior, i.e., the solution viscosity is constant for low
shear rates and then decreases according to a power law when the shear rate of
the flow increases (Fig. 1). The viscosity data were fitted with the Carreau formula
[9]: η � η0

(
1 + (λγ̇ )2

)−n
, from which we extracted the viscosity at zero shear

η0, the relaxation time λ of the solution and the shear-thinning index n. We found
η0 � 26 mPa × s, λ � 0.69 s and n � 0.26 for c � 1200 ppm. The validity of Car-
reau equation has been tested on solutions with eight different concentrations. The
solutions have sufficiently low viscosities to avoid the viscous heat-induced patterns
that can occur in high viscosity polymer solutions [14].

The experimental system consists of two vertical coaxial cylinders immersed in
a large rectangular plexiglass box filled with water for thermal insulation (Fig. 2).
The inner cylinder has a radius a � 4 cm, the gap between the cylinders is d � 1 cm
and the cylinder working length is L � 45.9 cm. The radius ratio is μ = a/ (a +
d) � 0.8 and the aspect ratio is L/a � 45.9. Such an aspect ratio is sufficiently large
for the system to be considered as an extended one, i.e., for the end plates to have
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Fig. 1 Master viscosity curve from Carreau equation

Fig. 2 Experimental apparatus: scheme of visualization and data acquisition system

negligible effects on the flow dynamics. Both cylinders may rotate independently
at angular frequencies Ω i and Ωo for inner and outer cylinder, respectively. For
the visualization of flow structures, we have added 2% by volume of Kalliroscope
AQ1000, which is a suspension of 1–2% of reflective flakes [20, 21]. The amount
of this added suspension is small enough that it does not affect the rheology of the
resulting solution.

In the present experiment, the outer cylinder is fixed. The average shear rate is
defined as γ̇c � 	i a/d. We introduce a zero-shear rate Taylor number Ta0 and an
effective Taylor number Ta: Ta0 � γ̇ d2ρ

η0

√
d/a and Ta � γ̇ d2ρ

η

√
d/a.

Optical flow visualization was made in the (r, z) cross section with a
He–Ne laser sheet (1 mm wide beam), spread by a cylindrical lens (Fig. 2).
A 2-d CCD camera (A641f, Basler) was used to record intensity of the
reflected light by the flow structures at regular time intervals, more pre-
cisely, every 1/25th of a second, yielding signal denoted I (z, r, t). The
signal was recorded over a length of 12 cm in the central part of the
system (Fig. 3). The axial distribution of the light intensity, at regular time inter-
vals on the line r � a + d/2 can be plotted in the space-time diagram I(z, t)
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Fig. 3 Flow patterns in the (r, z) plane over a length of 4.482 cm in the central part of the flow
system and time duration of 60 s: a a cross section of the flow structures, b space-time diagram near
the inner cylinder (x � 0.25), c I(z, t) at the mid-gap (x � 0.5), c I(z, t) at x � 0.75 where x � (r −
a)/d

(Fig. 3b–d). We also recorded the intensity at different radial positions in the plane
z� 
/2 and then plotted the space-time diagram I(r, t) (Fig. 4). Space-time diagrams
from reflected light intensity allow for the precise measurements of spatiotemporal
properties of the patterns (Fig. 5). However, they do not provide any quantitative data
of velocity. The latter can be obtained by PIV measurements, which allow for the
estimate of energy and momentum transfer in different flow regimes.

For PIVmeasurements, theworking fluidwas seededwith spherical glass particles
of mean diameter 12.9 μm (standard deviation between particles of 5.5 μm) and a
density of 1.6 g/cm3, with a concentration of about 1 ppm and with a relatively large
refractive index of 1.85.

The PIV system (from Tecflow) features two Nd-YAG laser sources, a MasterPIV
processor and a CCD camera (Kodak) with 1034 × 779 pixels. The time delay
between two laser pulses varies from 0.5 to 25 ms, depending on the values of Re. In
the PIV technique, the flow in the test area of the plane (r, z) is visualized with a thin
light sheet that illuminates the glass particles, the positions of which can be recorded
at short time intervals. We have recorded 195 pairs of images of size 1034 × 779
pixels. Each image of a pair was sampled into windows of 32 × 32 pixels with an
overlapping of 50%. The velocity fields were computed using the intercorrelation
function, which is implemented in the software “Corelia-V2IP” (Tecflow). From
velocity fields, we have deduced the azimuthal component of the vorticity ωθ �
(∂vr/∂z − ∂vz/∂r). We have performed PIV measurements in the circular Couette
flow (CCF), in the Taylor vortex flow (TVF), and Wavy vortex flow (WVF) regimes
in order to calibrate our data acquisition system and to fit data available in the



186 N. Abcha et al.

Fig. 4 Spatiotemporal diagrams I (r, t) obtained at two different axial positions: a z � z1, b z � z2

Fig. 5 Two-dimensional power spectra of spatiotemporal diagrams I (z, t) obtained at different
radial positions: a x � 0.25, b x � 0.5, c x � 0.75
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Fig. 6 Instantaneous velocity and vorticity of the flow regime at γ̇c � 12.6s−1 (Tac � 41.8) for 4
consecutive records (ti+1 = ti + 0.5 s)

literature for these regimes [22–25]. The PIV allows for the visualization of velocity
and vorticity fields in the cross section (r, z) (Fig. 6). From the instantaneous data,
we have plotted the space-time diagrams of velocity components, as illustrated for
the radial Vr component in the axial (Fig. 7a, b) and radial directions (Fig. 7c, d)
and extracted from them the amplitudes and phases using the complex demodulation
technique described in Bot et al. [26, 27].

3 Results

We describe results obtained for a polymer solution with a fixed concentration
c � 1200 ppm of PEO. Results for concentrations below c � 1200 can be found
in our previous works [15–19]. Increasing the angular frequency of the inner cylin-
der, i.e., the shear rateγ̇ , leads to the bifurcation of the circular Couette flow to regular
time-dependent structures. The threshold occurs at the shear rate γ̇c � 12.56s−1. The
shear viscosity corresponding to this critical shear rate is η � 15 mPa × s and the
viscous diffusion time is τ ν � ρd2/η = 6.66 s. Thus, the critical value of the effective
Taylor number is Tac � 41.8 and the critical Weissbenberg number computed with
the solution relaxation time Wic � γ̇cλ � 8.7.
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Fig. 7 Space-time diagrams of the flow velocity components for γ̇c � 12.6 s−1 (Tac � 41.8): a
Vz(z, t), b Vr(r, t), c Vz(r, t), d Vr(r, t)
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Critical flow structures
The critical structures are axially counter-propagating waves called inertio-elastic
waves (Fig. 3). Their critical wavelength and frequency are λc � 1.96 cm � 2d
and f c � 0.178 Hz, respectively, yielding a dimensionless critical wavenumber qc
� 2πd/λc � 3.21 and a dimensionless critical frequency ωc � 2πf cτ ν � 7.45. The
critical structures also propagate in the radial direction. Their space-time diagrams
are shown in Figs. 3b–d and 4. The elasticity number corresponding to this solution is
E � λ/τν � 0.10 and the viscosity ratio S � ηp/η � 0.93. Linear stability analysis
of the viscoelastic solutions with such parameters shows that the critical modes are
oscillatory modes [9].

The space-time diagrams I (r, t), shown in Fig. 4, are extracted from I (z, r, t)
at the positions z1 and z2 mentioned in Fig. 3a. These diagrams show the radial
propagation of the critical mode toward the outer cylinder. We noted clear difference
between the pattern of Fig. 3b and the other two diagrams (Fig. 3c, d). The first
pattern, Fig. 3a, for r = a + 0.25d, is close to the pattern associated with strongly
coupled contra-propagative modes [15], while the other two correspond to patterns
with lower coupling.

The two-dimensional Fourier power spectra of the space-time diagrams are pre-
sented in Fig. 5. The spectra exhibit finite peaks, corresponding to the left and right
propagating spirals located at (−qc, ωc) and (qc, ωc), respectively. Second harmonic
modes (−2qc, 2ωc) and (2qc, 2ωc) propagate with the same phase velocity as the
fundamental modes. The spectrum exhibits, aside from these peaks, two large peaks
corresponding one to a stationary spatial harmonic mode (2qc, 0), and the other to a
temporal homogeneous harmonic mode (0.2 ωc). These unlocked harmonic modes
result from a multiplicative coupling between right and left spirals [15], and exhibit
a power 3.1 times greater than that of the fundamental mode (qc, ωc) at r = a +
0.25d, while for the other investigated radial positions, the powers of the unlocked
harmonics and the fundamental mode are closer. This confirms the above remark
about I(z, t) patterns of Fig. 3a. The spectra in Fig. 5 show from a general point
of view the significant coupling between fundamental modes, harmonics and mean
flows. The amplitudes of the different harmonics can be obtained from complex
demodulation technique. Locked harmonics (±2qc, 2ωc) and higher modes can be
ignored in the following as their magnitude in the power spectrum is relatively small.
The real signal can then be represented as follows:

I (z, t) � Re
{
A (z, t) exp (iφA) + B (z, t) exp (iφB ) +Uω (z, t) exp (2iωt) +Uq (z, t) exp (2iqz)

}
,

(1)

where A(z, t), B(z, t), Uω(z, t), and Uq(z, t) are the amplitudes of right- and left-
traveling modes, the temporal and spatial harmonics, respectively; φA � ωA(z, t)t
− qA(z, t)z, and φB � ωB(z, t)t + qB(z, t)z represent the phases of the right- and
left-traveling waves, respectively. The amplitudes A, B, Uω, and Uq satisfy a system
of coupled nonlinear equations that were developed in [17].
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Analysis of the variations of the amplitudes, frequencies, andwavenumbers shows
that the right-and left-traveling waves have approximately the same amplitudes, fre-
quencies, and wavenumbers i.e.

|A (z, t)| ∼� |B (z, t)| , ωA
∼� ωB and qA

∼� qB (2)

meaning that the inertia-elasticwaves are ribbons (standingwaves) [23]. The estimate
of the hysteresis shows that the inertio-elastic waves occur via a supercritical bifur-
cation. In the neighborhood of the threshold, they can be described by the coupled
Landau equations:

⎧
⎪⎨

⎪⎩

d A

dt
� [

aε − b |A|2 + c |B|2] A
dB

dt
� [

aε − b |B|2 + c |A|2] B
, (3)

where ε � (Ta − Tac)
/
Tac is the criticality, a, b, c are complex coefficients; the

spatial and temporal harmonics are ignored. The amplitudes of ribbons are given by:
⎧
⎨

⎩

|A|2 � |B|2 � ε
/

(cr − br )

ωA � ωB � [−ai + (bi − ci )
/

(br − cr )
]
ε

(4)

For further investigations of observed amplitudes |A| and |B|, the PIV technique
was used.

Velocity fields
The instantaneous velocity and vorticity fields of the flow regime in the meridional
cross section, just above the transition to supercritical flow for 4 records (ti+1 � ti
+ 0.5 s) are shown in Fig. 6. The inner cylinder corresponds to the bottom line of the
images and the values of the vorticity are coded colors: red for positive values and
blue for negative values. From the velocity fields, we have extracted radial and axial
velocity components Vr(z), Vz(z) at a given a radial position r � a + 0.5d and to an
axial position Vr(r) and Vz(r).

The instantaneous velocity components can also be superposed chronologically at
regular time intervals in order to obtain space-time diagrams (Fig. 7) of the velocity
field. The resulting diagrams are color-coded as follows: the red color corresponds
to positive values and blue to the negative values of the velocity. The diagrams of
radial velocity for different positions in the axial direction Vr(z, t) show that the first
mode of instability manifests as a pattern of two counter-propagating waves (Fig. 7a,
b). The space-time diagrams of the two velocity components Vr(r, t) and Vz(r, t) are
presented in Fig. 7c, d. It is visible on Vz(r, t) that the waves propagate in the radial
direction from the inner cylinder to the outer cylinder. We have observed that the
vortices occupy the whole gap. Fourier two-dimensional filtering of the space-time
diagrams allowed us to extract (Fig. 8) time variations of Vr(z, t) for the left and right
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Fig. 8 Temporal variation of
Vr(z, t) for right-traveling
mode a (blue curve) and
left-traveling mode b (red
curve), in the mid-gap (r � a
+ d/2)

modes separately, and the common amplitude, |A| � |B|, as expected for ribbons, is
observed.

4 Disordered Wave Domains and Fluctuating Walls

When the control parameter is increased aboveTa� 1.113Tac, the pattern of counter-
propagating spirals becomes disordered while forming domains separated by fluctu-
ating in time and space walls. These walls represent zones with a strong inflow (i.e., a
strong flow toward the inner cylinder). To follow the dynamics of the walls, we have
plotted in Fig. 9a, b the time-averaged intensity of light reflected by the pattern as a
function of the axial coordinate Ī (z) � ∑t1+�t

t1
I (z, t)/�t .Wemeasured the velocity

field in the neighborhood of the domain wall. The domain walls appear as holes in
light intensity (Fig. 9c) or as zones in which the radial velocity is strong toward the
inner cylinder (Fig. 9d, f). The pattern exhibits a disorder more pronounced in the
time than in space. In fact, the frequency spectrum of the pattern is completely noisy
while the wavenumber spectrum exhibits a peak (with its harmonics), corresponding
to a wavelength λ � 5.36 cm. The maximal radial velocity in the wall is approxi-
mately equal to the ratio of the gap width to the characteristic viscous time V r,max

≈ d/tvis � 0.97 cm/s. The walls observed in our experiment are fluctuating in space
and in time, they can disappear or be generated erratically in space and in time. To
investigate their statistical distribution with their duration and spatial width, we have
performed a digitalization as follows (Fig. 10): walls have been represented as black
(value 0) and inertia-elastic waves as white (value 1). In order to reduce the noise
of the processing, only the skeleton of the resulting pattern was used for statistics.
Then, the histograms of walls with respect to their size and their duration have been
constructed (Fig. 11) and they allow for the determination of the mean width and
lifetime of the walls.
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Fig. 9 Disordered wave domains with fluctuating walls for Ta � 1.122 Tac: a r-z cross section
of the flow, b space-time diagrams of the pattern, c Time-averaged profile of the intensity Ī (z), d
velocity field in the r-z plane near the wall, e space-time diagram of the radial velocity near the wall
and f time-averaged radial velocity profile focused on the wall

5 Discussion

The destabilization of the circular Couette flow of a viscoelastic shear-thinning aque-
ous solution of polyethylene oxide of c � 1200 ppm appears at the effective Taylor
number Tac � 41.8 and the Weissenberg number of Wic � γ̇cλ � 8.7. The critical
pattern is composed of counter-propagating spirals in the axial direction with radial
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10 mn

17 cm

10 mn

17 cm(a) (b) (c)

Fig. 10 Digitalization procedure: a space-time diagram of the pattern of inertia-elastic waves with
fluctuating walls, b digitalized pattern (black: 0, white � 1), c skeleton of the walls

Fig. 11 Distribution of the wall in size and in duration for Ta � 1.122 Tac: the mean width of the
walls is 〈l〉 � 0.44 cm and their lifetime is 〈�t〉 � 35.3 s

propagation to the outer cylinder, in agreement with the linear stability theory [9].
The instability in a Newtonian liquid appears at Tac � 47.4 and the critical pattern
is formed by stationary axisymmetric vortices of Taylor. The difference between the
two thresholds and the nature of critical structures is associated with the elasticity of
the solution. The elasticity of polymer solution may lead to the destabilization of the
flow through a Hopf bifurcation leading to inertio-elastic waves. The shear-thinning
also is destabilizing but it does not necessarily lead to oscillatory modes. In fact, the
shear-thinning effect can be estimated by the ratio of the polymer viscosity to the
solution viscosity S � ηp/η. Linear stability analysis for Oldroyd B model (i.e., for
solution with constant viscosity) shows that the threshold decreases with increas-
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ing S and for shear-thinning solution, the threshold decreases with the increase of
shear-thinning index. The working solution with c � 1200 ppm is semi-dilute as the
critical concentration is c* � 180 ppm. In the same flow geometry, but for dilute
solution, i.e., with c 	 c*, the critical state occurs in form of stationary vortices
(Taylor vortices) and the secondary modes are wavy vortices [15].

We note that the spatiotemporal diagrams of the radial velocity component are
very similar to those obtained by the visualization with the Kalliroscope flakes. This
confirms the result obtained in the comparison of PIV data and the visualization
patterns from Kalliroscope aqueous suspension in the Newtonian Couette–Taylor
flow [24].

The fundamental frequency of the pattern in units of the effective time of viscous
diffusion is f c × τ ν � 1.19, roughly in agreement with the predictions of Larson et al.
[7], the regime seems more inertial than elastic. radial waves, but toward the inner
cylinder, were observed byGroisman and Steinberg [11] using highmolecularweight
polyacrylamide dissolved in 58% solution of saccharose in water in a Couette–Taylor
cell with radius ratioμ = 0.829. The spatial period, for example, in the axial direction
of a regime with radial propagation observed by Groisman and Steinberg [11], was
much smaller than the characteristic size of the gap size. Moreover, the wave regime
reported in [11] containedmany sinks and sources,whereas thewave regimeobserved
in the present experiment is very regular. The disordered inertio-elastic waves with
walls have been observed in the experiment of Baumert andMuller [14] in non-shear-
thinning dilute polymer solutions (polyisobutylene/polybutene) in a Taylor–Couette
system with radius ratio μ = 0.827, where the walls were called flame patterns
because of their resemblance with the combustion flames.

6 Conclusion

The present chapter was concerned with the experimental study of the instability
modes observed in viscoelastic Couette–Taylor flow with a shear-thinning semi-
dilute high molecular weight polymer aqueous solution. Flow visualization was
made by either adding 2% Kalliroscope aqueous suspension or by Particle Image
Velocimetry (PIV). Space-time diagrams for different radial positions have allowed
following the flow dynamics in the radial and axial directions. The critical modes are
ribbons, which are superposition of equal amplitude right- and left- traveling waves.
These critical modes propagate in the radial direction toward the outer cylinder. The
secondary instability is characterized by domains of disordered waves separated by
fluctuating in time and in spacewalls, which are characterized by strong radial inflow.
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The Heated Bénard–Kármán Street: A
Review of the Effective Reynolds Number
Concept

Pierre Paranthoën and Jean-Claude Lecordier

Abstract This chapter focuses on the wake flow behind a heated circular cylinder in
the laminar vortex shedding regime where the Bénard–Kármán street appears. This
flow is of fundamental importance both from the viewpoint of the hydrodynamic
stability theory and engineering applications. Even in absence of buoyancy forces,
this wake flow is more complicated than in the isothermal case due to temperature
differences generated within the fluid leading to variations of its physical properties.
In this situation, experiments showed that heat is never a passive contaminant. Due
to the respective thermal dependence of the kinematic viscosity, heating the cylinder
stabilizes the flow in air while it destabilizes the flow in water. This phenomenon led
to the definition of an effective Reynolds number that is associated to an effective
temperature. Value of the effective temperature is shown to depend on the nature of
the fluid. In air, global and local flow similarities between wake flows of the same
“effective” Reynolds numbers are pointed out, underlying the physical significance
of this concept.

1 Introduction

Since the early works of Bénard [1] and von Karmàn [2], the regular pattern of
the vortex street behind circular cylinders at low Reynolds numbers (30 < Re �
U∞d/ν < 180) has always attracted considerable attention of researchers because of
its theoretical interest as well as practical importance. Here,U∞ is the velocity of the
oncoming flow, d is the diameter of the cylinder and ν is the kinematic viscosity of the
fluid. From a theoretical point of view, flows over a bluff body represents an important
class of problems within the domain of fluid mechanics, which involves different
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phenomena such as wake characteristics, vortex shedding, drag, and lift coefficients.
A large number of theoretical investigations have been developed in terms of the
concepts of absolute and convective instabilities. The inceptionofwake instability has
been described in the framework of the Stuart-Landaumodel [3, 4]. This problem has
also been significantly studied as the circular cylinder is the most widely used shape
in various engineering applications making appearances in aeronautical, chemical,
civil, electrical, nuclear, offshore, and wind engineering [5]. A very large number of
results concerning vortex shedding have already been discussed in the literature and
several reviews for the wake of a cylinder are available, [6–8].

Most of the authors agree that over the laminar state of flow, there is a transition
from a 2D steady to a 2D periodic wake at Rec � 45 and a 3D transition at a
Reynolds number Rec between 150 and 210. Over the 2D laminar vortex regime, a
universal St−Re number relationship is found when parallel and oblique shedding is
considered, Hammache and Gharib [9]. Here, St � fd/U∞ is the Strouhal number,
where f is the frequency of eddy shedding.

The majority of researches concerning this flow has been mainly devoted to the
case, where the cylinder and the oncoming flow are at the same temperature. In
comparison, the case of heat input on the cylinder wake has received little attention.
This situation is also of great importance as it is also related to a large class of
engineering applications like hot-wire anemometry, cooling of electronic equipment,
combustion devices, heat exchangers and chemical reactors, etc.

The wake behavior downstream a heated cylinder is generally more compli-
cated. Depending on the value of the ratio between buoyancy and inertial forces,
characterized by the Richardson number Ri � Gr/Re2, the heat transfer can
be controlled by forced convection, mixed convection or free convection. Here,
Gr � gβ(Tw − T∞)d3/ν2 is the Grashof number, g is the acceleration of grav-
ity, β is the coefficient of thermal expansion, Tw and T∞ are the temperatures of the
heated cylinder and the free stream, respectively. When mixed or free convection is
present, the influence of heating also depends on orientation of the flow direction
with respect to the direction of gravity. The case of a horizontal heated cylinder
embedded in an incoming flow directed either horizontally or vertically—upward or
downward—involves various phenomena [10–17].

To limit the scope of the material, the primary focus of this chapter is restrained
to the study of the heated cylinder in the forced convection regime, i.e., when the
Richardson number Ri � 1.

For a horizontal heated cylinder with a horizontal oncoming flow, even in absence
of buoyancy effects, the wake is already complicated. Due to the presence of heat
transfer, the fluid temperature varies, which causes variations of its physical prop-
erties as density �, kinematic viscosity, ν, and thermal diffusivity a. The choice of
a reference temperature for the kinematic viscosity of fluid ν in order to calculate
the reference Reynolds number for describing the flow regime is a crucial issue
for studying the flow around a heated cylinder. It is important to point out that, 30
years ago, it did not exist any consistent analysis to select this reference temperature.
Therefore, it was not possible to determine the value of the Reynolds number of a
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heated cylinder over the laminar regime and to anticipate on the steady or periodic
nature of the flow regime around and downstream the cylinder.

Most of the previous studies concerning the horizontal heated cylinder exposed
to a horizontal air cross-flow rather were focused on the determination of semiem-
pirical correlations to characterize the forced convective heat transfer. From these
approaches, a large number of Nu − Re relationships have been proposed in the
literature, Mc Adams (1954) [18–24].

The Nusselt number Nu is defined as Nu � hd/λ, where h is the mean heat
transfer coefficient over the whole cylinder surface and λ is the thermal conductivity
of the fluid. Some of these relations are also function of the Prandtl numberPr � ν/a
and can be used for fluids other than air. In these relations, the Reynolds number is
dependent on the temperature through the temperature dependence of the kinematic
viscosity ν � μ/ρ. Depending on the authors, various reference temperatures were
selected. Fluid properties were calculated either at the film temperature, defined as
Tfilm � (Tw +T∞)/2 [20–24], or the dynamic viscosity μ at the film temperature and
the density ρ at the free stream temperature, Mc Adams [19].

In addition to the value of the mean heat transfer coefficient, local heat transfer
coefficient around the circumference of the cylinder was measured by Eckert and
Soehngen [25]. On the other hand, information concerning the velocity and temper-
ature fields in the forced regime over this low Reynolds numbers range was scarce.
One of the main reason for this situation was linked to the experimental difficulties
of performing accurate velocity and temperature measurements at low velocities in
a wake of small dimensions.

In this context, extensive experiments on the laminar wake of a heated cylinder
have been carried out since 1988 at Rouen and Nizhny Novgorod in order to improve
the knowledge of this flow. Initially, these researches were conducted in an indepen-
dent way until some cooperation has been developed between the two laboratories
via the support of CNRS. These experiments have used a wide variety of specific
measurements techniques including visualization, hot-wire, cold wire, LDA, PIV,
acoustic scattering. The first researches on this subject have shown that the structure
of the wake downstream a heated cylinder was very sensitive to the heat input. It was
found that even in absence of buoyancy effects, heat was never a passive contaminant
[26, 27].

In order to get a better knowledge of the phenomenon, further researches have
been led to identify and quantify the conditions controlling the flow regime in the
wake of a heated cylinder, namely:

• How the heat input modifies the transition from a 2D periodic to a 2D steady wake
or vice versa?

• How the vortex shedding frequency varies with the heat input?
• Is it possible to find out an effective Reynolds number and an effective temperature
for characterizing the flow regime?

• These are some of the questions discussed in the chapter.
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Fig. 1 Schematic of
horizontal flow arrangement
around a heated cylinder
with wall temperature Tw

higher than the free stream
temperature T∞

This chapter is organized as follows. After a brief description of the onset of
vortex street in isothermal conditions, the history of the effective Reynolds number
and effective temperature concepts is presented in Sect. 2. The experimental deter-
mination of the effective temperature is discussed in Sect. 3. The physical reality of
the effective temperature is examined in Sect. 4 in relation to similarities of the flow
dynamic and heat transfer at the same effective Reynolds numbers. Some limitations
of this approach are discussed in Sect. 5.

2 The Isothermal Bénard–Kárman Vortex Street

In the case of a horizontal unheated cylinder exposed to a horizontal cross-flow, as
presented in Fig. 1, the description of the flow is commonly characterized by the
Reynolds number Re:

Re � U∞d/ν0 (1)

For unheated cylinders, the onset of the vortex shedding appears at a Reynolds
number Rec0 defined by:

Rec0 � Ucd/ν0 (2)

where Uc is the critical velocity.
As shown in Table 1, the critical Reynolds number Rec0 of a cylinder determined

in isothermal conditions ranges from 40 to 49. For Reynolds numbers Re > Rec0,
the wake becomes unstable which generates the vortex shedding phenomenon in
which vortices are shed alternately at each side of the cylinder at a given frequency
f. A cross-sectional view of the vortex shedding illustrates in Fig. 2 the development
of the Bénard–Kárman street.

For a ribbon, the critical Reynolds number was found to be Rec0 � 32, LeMasson
[32]. The Strouhal number St � fd/U∞ is commonly used to characterize the vortex
shedding. For the isothermal case, the St − Re relations given by Roshko [34]
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Table 1 Values of the critical
Reynolds number for
unheated cylinder

Authors Rec0

Collis and Williams [24] 44

Fey et al. [28] 47

Godard et al. [29] 45

Hamma [27] 45.5

Kovasznay [30] 40

Lange et al. [31] 45.9

Le Masson [32] 43.3

Wang et al. [33] 46.1

Williamson [8] 49

Fig. 2 Flow visualization of the vortex street behind a ribbon located in a water flow

St � A − B/Re withA � 0.212 andB � 4.452 (3)

or Williamson and Brown [35]:

St � A′ − B′/
√
Re withA′ � 0.2665 andB′ � 1.0175 (4)

are often used.

3 The Heated Bénard–Kárman Vortex Street

In the case of a horizontal heated cylinder exposed to a horizontal cross-flow, the
description of the flow is commonly characterized by the Reynolds number Re and
the overheat ratio η defined from the cylinder temperature Tw and the free stream
temperature T∞ by:

η � �Tw/T∞, (5)

where:

�Tw � (Tw − T∞) (6)
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When the cylinder is heated, temperature differences generated within the fluid
lead to variations of its physical properties: viscosity ν, density ρ, thermal diffusivity
a. The temperature variations also modify the value of the Prandtl number Pr � ν/a,
which controls the relative thickness of the momentum and thermal layers.

3.1 Background and History of the Effective Reynolds
Number Concept

An extensive review of the literature revealed that previous experimentalists had
already mentioned that cylinder heating stabilizes the wake flow. It would appear
that this result was first mentioned by Freymuth, Berger (private communication).
The same result was also briefly cited in the report of the IUTAM symposium on
concentrated vortex motions in fluids [36]. In this symposium, Uberoi presented
some experimental results on the formation and properties of the vortex wake behind
a heated circular cylinder. He found that with increasing cylinder temperature, the
critical Reynolds number for the cylinder itself increases and the Strouhal number
of the periodic vortex shedding decreases.

The same interest concerning the periodic or steady character of the near-heated
wake was found in experiments of dispersion of heat in turbulent flows [37–41]. In
these experiments, heat was injected in turbulent flow by means of a fine wire heated
by direct current. The initial instantaneous wake was supposed to be a steady laminar
wake in relation to the increase of the kinematic viscosity. However, for the authors,
the precise value of the effective temperature to be used for the physical properties
of fluid was no clear. It is worth to note, as for the Nu−Re relationships, the authors
rather used the wire temperature Tw [26], Crum and Hanratty (1970), or the film
temperature Tfilm [32, 34, 28] to identify an effective kinematic viscosity in order to
calculate an effective Reynolds number.

The previous examples show that while, in air, the phenomenon of stabilization of
the wake owing to a heat input was already well-known, there was no clear answer to
the question of how to determine the effective Reynolds number of a heated cylinder.
In order to clarify this issue, detailed and controlled experimental studies of the
thermal wake of a horizontal heated cylinder have been carried out at Rouen [27, 42,
43].

By using fine cold wire, authors measured the wake temperature downstream a
horizontal heatedwire (d� 0.254mm). In air, with a constant free streamvelocity, the
experiments showed that the heat inputP/l could significantly alter characteristics of
vortex shedding. Total suppression could be achieved by increasing the power per unit
length P/l sufficiently. An example of suppression of vortex shedding is presented
in Fig. 3. Measurements of temperature fluctuations in the near heated wake showed

that Iθ �
(
θ

′2
)1/2

/�θ the intensity of temperature fluctuations, canceled when

P/l reaches a critical value. The minimum heat input needed to suppress the vortex
shedding increases when (Re − Rec0) increased. The influence of heating on the
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Fig. 3 The effect of heating on the intensity of temperature fluctuations measured in the heated
wake of the cylinder showing the suppression of vortex shedding in air [27]

Fig. 4 The effect of heating on the vortex shedding frequency f for the cylinder in air, f 0 is the
frequency measured in isothermal conditions [27]

frequency f of vortex shedding in air appears in Fig. 4, where f /f0 has been plotted
as a function of P/l. Here, f0 is the frequency of vortex shedding in the absence of
heating. Cylinder heating caused a decrease in frequency similar to that observed
when the free velocity decreased in an unheated flow.

At the same time, similar experiments performed at Nizhny Novgorod by Ezer-
sky [26] led to the same results. By using vertical heated wires (d � 0.1–0.8 mm),
hot-wire measurements indicated that an increase in the temperature of a streamlined
cylinder provided a decrease in shedding frequency and eventually led to suppres-
sion of periodic shedding of vortices. The characteristics of temperature fluctuations
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observed for increasing cylinder temperature and the characteristics of velocity fluc-
tuations observed in the wake of a decreasing flow velocity were similar for moderate
heating.

For both experiments, this stabilizing effect was attributed to the increase in kine-
matic air viscosity ν and the apparent decrease of the Reynolds number. Further
analysis of this phenomenon showed a broad similarity of the near-wake flows in
isothermal and non-isothermal conditions. This led the authors to the definition of
an effective Reynolds number Reeff associated with an effective temperature Teff
[27, 42]. The effective Reynolds number was proposed on the basis of a similarity
hypothesis that the onset of vortex shedding occurs at the same value of the critical
effective Reynolds number for all heated and unheated cylinders. At the transition,
the critical Reynolds numbers Rec0 and Rec,eff were the same for both unheated and
heated cases:

Rec0 � Rec,eff (7)

Ucd/ν0 � Ud/νeff , (8)

where νeff � ν
(
Teff

)
is the effective viscosity. By knowing the temperature depen-

dence of the air kinematic viscosity ν, it was then possible to deduce the effective
temperature Teff . The determination of this effective temperature Teff is presented in
Sect. 3.2 for various experiments.

Another possible explanation for this thermal effect was also proposed by
Lecordier et al. [42], suggesting that the control could result of a slight change
of the location of the separation point due to the increase of the dynamic viscosity
of the fluid. However, additional experiments realized with a heated ribbon showed
the same result, in a situation, where the separation point of the bluff body is fixed,
[44].

At the same time, a different interpretation of this phenomenon was given by
Yu and Monkewitz [45]. These authors linked the suppression of vortex shedding,
through heat addition to the near wake, to the reduction of absolute instability due
to the decrease of the density in the near wake. In their stability analysis, using
similar profiles for velocity and temperature, calculations for constant or temperature-
dependent viscosity did not lead to significant differences. These authors concluded
that “the change in the stability characteristics brought about by heating the cylinder
was the result of a subtly modified interaction between the two mixing layers via the
inertial terms and not a viscous effect”. For a heated circular cylinder [4] showed
suppression of vortex shedding up to twice the critical Reynolds number based on
free stream temperature. Following the analysis of Yu and Monkewitz [45], they
related this control to ratio of average density in the recirculation region to free
stream density. These authors had to point out that in their experiment, buoyancy
effects could be considerable.

In the presence of these two plausible interpretations related to the predominant
role either of kinematic viscosity or density, new experiments were carried out at
Rouen in water with heated cylinder and ribbon. This choice was related to the
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Fig. 5 The effect of heating on the intensity of temperature fluctuations measured in the heated
wake of the ribbon, showing the onset of vortex shedding in water [32]

Fig. 6 The effect of heating on the vortex shedding frequency f for the cylinder in water. f0 is the
frequency measured in isothermal conditions, [32]

opposite dependence of kinematic viscosity with temperature for water and air. As
shown in Fig. 5, inwater the reverse tendencywas observed indicating that the heating
of the cylinder destabilizes the flow. The minimum heat input needed to generate the
vortex shedding increased when (Rec −Re) increases. In parallel, as shown in Fig. 6,
the cylinder heating increased the frequency of vortex shedding, [32, 34, 28, 29–31,
33, 35]. This dominant viscous effect supported by the opposite behavior observed
for air and water was confirmed numerically by Socolescu et al. [46].

Since then, a large amount of experimental and numerical investigations has
closely confirmed the influence of these thermal effects on the wake flow behind
a heated circular cylinder operating in the forced convection regime. For the case
of air, Yahagi [47] studied experimentally the heated wake behind a cylinder at a
very high overheat ratio η � 3.66. He observed a decrease of the vortex shedding
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frequency when cylinder temperature increased, indicating that the local kinematic
viscosity plays a key role in the vortex structure. As a result, the vortex frequency of
the heated cylinder could be expressed as a function of the Strouhal and Reynolds
numbers, when the local kinematic viscosity was reasonably estimated by taking into
account the effect of the cylinder heating.

Wang and his collaborators have brought a large body of information concerning
the determination of the effective temperature in air [33, 48, 49, 50] (see Sect. 3.2).
Their results were concerned also with the validity of the St−Reeff relationship [33].
Other studies focused on the heat transfer and showed that a representative temper-
ature could also be used to describe the heat transfer correlation as well [51]. More
recently, consistently with the known effect of flow stabilization by cylinder heating,
they showed that cylinder cooling destabilizes the wake flow in air [52]. Sabanca
and Durst [53], were the first to obtain numerically the decrease of the wake fre-
quency with heating in absence of free convection effects. Shi et al. [54] investigated
numerically the influence of the overheat ratio on characteristic quantities of the 2D
horizontal flow past a heated cylinder. They showed the strong stabilizing effect on
the flow due to the increase in the kinetic viscosity of air. The Strouhal number St at
various overheat ratios could be satisfactorily correlated by the effective Reynolds
number based on the effective temperature given by Wang et al. [33]. Baranyi et al.
[55] investigated experimentally and numerically the effect of heat transfer on the
flow around a heated cylinder. Results for heated and unheated cylinders in terms
of St − Re relationships agreed reasonably well with Williamson [8] results pro-
viding the use of an effective temperature depending on the overheat ratio. For the
case of water, Vit et al. [56] confirmed experimentally that cylinder heating in water
increases the frequency. They showed that the concept of effective temperature, orig-
inally suggested for heated cylinders in air, can be also used for heated cylinders in
water. Pech [57] studied numerically the impacts of heating for flow of water and air.
Computations showed that the Strouhal number decreases with temperature increase
in the case of air and increases in case of water. The separation angle also showed
some dependence on temperature ratios.

3.2 Experimental Determination of the Effective Temperature

As mentioned above, the concepts of effective Reynolds number and effective tem-
perature were introduced on the assumption that onset of vortex shedding is the same
for both heated and unheated cases, i.e., Rec0 � Rec,eff � Ud/νeff .

Here, the effective viscosity νeff � ν(Teff ) is used to account for the thermal
effect. The effective temperature Teff is related to the cylinder temperature Tw by the
following relation:

Teff � T∞ + c (Tw − T∞) , (9)

where 0 ≤ c ≤ 1 is a constant. The ratio of viscosities is then given by:
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νeff /ν0 � (
Teff /T∞

)1,777 � (1 + c η)1,777 , (10)

where the power-law exponent of the dynamic viscosity of air is given by [58].
However, various methods have been used to determine experimentally the effective
temperature.

Determination of the effective temperature at the transition
Themore simplemethod consists of deducingTeff at the transition from the definition
of Rec,eff :

Ucd/ν0 � Ud/νeff (11)

where Uc is the critical velocity determined without heating and U is the critical
velocity with the heated cylinder. From (11) the ratio νeff /ν0 is calculated and the
relative effective temperature Teff /T∞ can be deduced from (12):

Teff /T∞ � (U/Uc)
0.563 (12)

and the value c from the relation (9). Using this method, the experiments carried
out by Hamma [27] and Lecordier et al. [42] with a 0.254 mm diameter heated wire
led to c-values: 0.275 and 0.3. Dumouchel et al. [59, 60] with a 1 mm diameter
tube found c-values: 0.27 and 0.24. Wang et al. [33] showed that their experimental
results with c � 0.28 satisfies the concept of constant critical Reynolds number for
the temperature ratio Tw/T∞ up to 2.

The value of the effective temperature Teff can be also determined at the transition
in an instationnary situation. When the heating is sufficient to stabilize the wake, it
is possible to observe, on the temperature signal Ts(t) measured in the wake, the
apparition of vortices after the electric power is put off at t � 0, as shown in Fig. 7.
The decrease in the cylinder temperature Tw(t) is controlled with the thermal inertia
of the heated cylinder and involves the decrease in the wake temperature Ts(t). When
the vortices appear at t � tapp the effective temperature can be deduced from the
measurement of Ts(tapp.). With this method, Hamma [27] found a value c � 0.275.

Determination of the effective temperature from a universal St−Reeff relationship
When the heat input is not sufficient to suppress the vortex shedding, it is then possible
to determine the effective temperature from frequencymeasurements. Assuming that
the effectiveReynolds concept is also valid for the St−Reeff , the effective temperature
can be deduced from the best fit found between the St − Reeff curve and the St–Re
relation of the isothermal case. This method of determination of Teff was used by
Vit et al. [56] due to experimental difficulties to detect the critical Reynolds in their
experiment in water. Using the St–Re relation given by Williamson and Brown [35],
the best fitting of all St−Re data onto one St−Reeff curve was obtained for c � 0.97.

Other authors have also deduced the effective temperature assuming the validity of
the St−Reeff relationship at some particular values. Bymeasuring the same frequency
f both downstream an unheated cylinder and a heated cylinder, Lecordier et al. [42]
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Fig. 7 Temperature signal measured in the heated wake. After suppression of the heating at t � 0,
the onset of vortex shedding occurs at t � tapp [27]

determined two values of Strouhal numbers St0 � fd/U0 and Steff � fd/U . Using
the relation of Roshko [24] with A � 0.212, they deduced the ratio νeff /ν0:

νeff /ν0 � (U/U0)((1 − Steff /A)/(1 − St0/A)) (13)

The relative effective temperature Teff /T∞ deduced from this relation gave
c � 0.30. Ezersky [26] used a similar approach by considering at constant velocity
U, the variation of the Strouhal number St with the overheat ratio η. By using the
relation of Roshko [34],

St � fd/U � A − B/Reeff (14)

St � A − Bνg(Teff )/Ud (15)

∂St/∂η � −(B/Ud )∂νg(1 + cη)/∂η (16)

∂St/∂η � −1.777(Bc/Re0)(1 + cη)0.777 (17)

With B=4.494, experiments carried out with 0.1
mm and 0.8 mm diameter heated wires led to
c-values: 0.23 and 0.255.

The values of c are listed in Table 2. If we exclude the value given by Baranyi et al.
[55], it appears that the mean value of c is about 0.275, very close to the c-value 0.28
determined byWang et al. [33] and commonly accepted for the effective temperature
in air. The higher value proposed by Baranyi et al. [56] could be due to the fact that
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Table 2 Experimental values of c for the heated cylinder in air and water

Authors Fluid Cylinder l/d η c

Hamma [27] Air d � 0.254 mm wire 590 0 < η < 1.17 0.3
0.275

Ezersky [26] Air d � 0.1 mm
d � 0.3 mm
d � 0.8 mm wires

3000
1000
375

0 < η < 0.75 0.255
0.255
0.23

Lecordier et al. [42] Air d � 0.254 mm wire 590 0 < η < 1.17 0.3

Dumouchel et al. [59,
60]

Air d � 1 mm tube 150 0 < η < 1.2
0 < η < 0.5

0.275
0.24

Wang et al. [33] Air d � 1.07 mm tube 93.5 0 < η < 1 0.28

Vit et al. [56] Water d � 4.5 mm tube 45.3 0 < η < 0.0096 0.97

Baranyi et al. [55] Air d � 10 mm tube 60 0 < η < 1.3 0.5–0.55

their experiments were related to the transitional regimes in modes A and B, instead
of to the laminar regime as mentioned by Trávníček and Wang [61]. In water, the
c-value is 0.97 in relation with the higher value of the Prandtl number in water.

Fedorchenko et al. [49] have shown that assuming small c�T ∗
w values, the c-value

for any dilute gas is related to an exponent n of the kinematic viscosity–temperature
power law by a simple formula c � 1/2n. They deduced a linear increase of the
critical Reynolds number in the heated case given by the relation:

Rec � Rec0T
∗
film (18)

and arrived at the important conclusion that the effective Reynolds number can be
determined for any dilute gas without knowing the particular c-value. Here, �T ∗

w �
�Tw/T∞ and T ∗

film � Tfilm/T∞.
However, when higher values of c�T ∗

w are considered, the effective Reynolds
number is given by the nonlinear expression:

Rec � Rec0(1 + 2c�T ∗
film)

1.777 (19)

Figure 8 shows Rec/Rec0—T ∗
film dependence for air according to relations (18)

and (19). The solid line is the linear prediction given by relation (18) [48]. Dashed
lines are the prediction given by using relation (19) for the c-values 0.24 and 0.3.
The points are experimental data of Wang et al. [33], Hamma [27], Dumouchel et al.
[59]. For air, whatever the selected c-value, the linear assumption seems sufficient
for overheat ratio lower than 0.4. For higher overheat ratio, the nonlinear character
appears and depends on the selected c-value.

It is worth to note that in water the linear assumption would be only valid for
overheat ratio lower than 0.03. This could complete the issue raised by Fedorchenko
et al. [49].
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Fig. 8 Variation of Rec/Rec0 with T ∗
film

3.3 Interpretation of the Effective Temperature

It is worth to note that the effective temperature Teff is much lower than the film
temperature Tfilm generally used to take into account the influence of temperature on
fluid properties on Nu−Re relationships. As mentioned by Dumouchel et al. [60], in
air the effective temperature Teff is close to the temperature of the recirculation zone
and is not just an artificial value. Temperaturemeasurements obtained at Rouen, in air
and water, in the near wake for both heated cylinder and ribbon are shown in Fig. 9,
[27, 60, 62]. The values of�Tmax/�Tw have been plotted as a function of x/d . In air,
the relative maximum temperature in the near wake is between 0.2 and 0.3, the range
of values found in c. Temperatures measured at x/d � 1.25 by Yahagi [47] are also
presented. They are very close to the �Teff /�Tw values calculated by Wang et al.
[33] for this experiment. In water, the values of �Tmax/�Tw in the near wake are
higher than in air. They reach 0.5–0.6 at x/d � 1 and are consistent with the rather
high value of c � 0.97 measured by Vit et al. (2006). A comparison of the results
obtained for heat transfer, in air and water, require to account for the values of Prandtl
number Pr. The Prandtl number of air and water, at the free stream temperature, are
about 0.7 and 7. Experimental and numerical studies have shown that just behind
the heated cylinder the velocity fields, in air, oil, and water, at the same effective
Reynolds number are similar [44, 63]. Conversely, the corresponding thermal fields
are very different. In air, a relatively thick thermal layer near the cylinder transforms
into a thinnest layer in oil. In the near wake of a heated cylinder in oil, the isotherms
show a small temperature protuberance in the vicinity of the separation point [63].
This situation can also explain the strong double-peaked character of the temperature
profiles observed in the near wake in water, Lecordier et al. [62].
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Fig. 9 Variation of
�Tmax/�Tw in the near
wake of heated cylinder and
ribbon

In air, recent numerical simulation of Xin et al. [64] showed that heating different
places of cylinder surface results in different control effects. The stabilization effect
was found stronger for heating on the leeward side. This can be related to the results
of Strykowski and Sreenivasan [65], Paranthoën and Lecordier [66], where the use
of a heated secondary cylinder located just at the end of the recirculation zone allows
to suppress the vortex shedding phenomenon. In this case, for the same value of
(Re−Rec0), the power per unit length needed to suppress the vortices was about one
hundred times lower in this second situation.

3.4 Similarities of the Heated Wake in Relation to Reeff

Concerning the dynamics of the flow, some similarities were found with the effective
Reynolds number concept for the global quantities such as Strouhal number St.

Wang et al. [33] found experimentally that their experimental data of the parallel
vortex shedding (PVS) mode fell on a “universal” St−Reeff curve over a wide range
of overheat ratio. This result was confirmed numerically by Shi et al. [54]. Wu et al.
[67] showed that similar trend also can be found for the vortex shedding frequency of
Oblique Vortex Shedding (OVS) mode. Moreover, the onsets of OVS that results in
discontinuities in the St−Reeff relationships were found at about the same effective
Reynolds number for both isothermal and non-isothermal cases.

In accordancewith the similarity of this global quantity St withReeff , Shi et al. [54]
indicated the existence of a local similarity in the dimensionless viscous force over



212 P. Paranthoën and J.-C. Lecordier

the cylinder surface for flows with the same effective Reynolds number. This local
similarity was also observed in the rear portion of the cylinder for the dimensionless
pressure force. Moreover, the results indicated that the same effective Reynolds
number also characterizes the velocity field in the proximity of the cylinder and in
the near-wake region with good accuracy.

Extensive measurements of velocity carried out downstream of a heated circular
cylinder or ribbon have shown the influence of heat input on the velocity field in
the near wake [44]. In presence of the heating in air, the heated mean longitudi-
nal velocity profiles were slightly wider than the isothermal profiles. This behavior
was also characterized in each section by a decrease of the centerline mean longi-
tudinal velocity and of the RMS values of the transverse velocities in comparison
with the isothermal case. By considering the effective Reynolds number Reeff , some
characteristics of the heated or unheated wake were found in close agreement. For
example, for the same values of Reeff , the length of the wake bubble s∗, the evo-
lutions of the normalized RMS transverse velocity σ ∗

v were found similar in both
isothermal and non-isothermal cases. Furthermore, detailed comparison of experi-
mental results showed that, in similar effective Reynolds numbers conditions, the
interaction between the two shear layers at the end of the recirculation zone was
roughly the same. Following the analysis of Abernathy and Kronauer, Gerrard [68,
69], this interaction could be calculated, at the end of the recirculation zone, as the
ratio I between the rate of circulation in the shear layer and the shear layer spacing
� [44, 70].

I �
∣∣∣∣
d�

dt

∣∣∣∣ /� � (∂U/∂y)max
�

δU(�/2)

In this term, δ is the shear layer thickness.
For better comparison between experiments with the cylinder and the ribbon in

air and in water I was normalized by using the frequency of vortex shedding fRec and
the velocity U(�/2)Rec determined at the critical Reynolds number:

I∗ � (∂U/∂y)maxδU(�/2)

�

1

fRecU(�/2)U(�/2)Rec

In Fig. 10, this normalized interaction term I∗ has been plotted as a function of
(Reeff − Rec). As shown in this figure, the results obtained from cylinder and ribbon
experiments in air and water agree reasonably well. Vortex shedding is present when
the normalized interaction term I∗ is larger than a threshold value of about 5.5–6.
In air, in presence of heating, the value of I∗ decreases with increasing heating and
suppression of vortices could occur when this threshold value is reached. In water,
the opposite trend was observed.

The same unanimity for the choice of Teff was not observed for the global heat
transfer aspect characterized by the Nusselt number Nu. Shi et al. [54] found that the
calculated values of Nu were well correlated with the relation of Collis andWilliams
(1956)when the fluid propertieswere evaluated at the film temperatureTfilm. The tem-
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Fig. 10 Variation of the normalized interaction term for heated and unheated cylinders and ribbons
versus (Reeff − Rec), [32, 71]

perature loading factor (Tfilm/T∞)−0.17 was needed to take into account the variation
of the overheat ratio. Dumouchel et al. [60] showed that it was possible to plot Nu as
a continuous function of either (Refilm)0,45 or (Reeff )0,45 under the condition to use a
temperature loading factor (Tfilm/T∞)−0.25, close to the value of Collis and Williams
[24], or (Teff /T∞)0.28, respectively. They noted that the change of slope of the heat
transfer curve appeared more clearly in the Nu (Teff /T∞)0.28—Reeff formulation as
Reeff characterize the regime of the wake. Wang and Trávníček [51] proposed a dif-
ferent correlation method based on the “representative” Reynolds number deduced
from “representative temperature” defined as Trep � T∞ + 0.36(Tw − T∞). By intro-
ducing this “representative”Reynolds numberRerep linear correlation equationswere
successfully derived.

Shi et al. [54] compared these different approaches by examining the local sim-
ilarity of the Nusselt number. For steady conditions, they observed a better local
similarity on the correlation concept of Collis and Williams [24]. For the unsteady
regime, a local similarity was observed except for the rear part of the cylinder. These
results suggested that the front part of the cylinder from the stagnation point up to
the separation point could be only dependent on the thermal boundary layer around
the cylinder characterized by Refilm. Conversely, the downstream part of the cylinder,
from the separation point up to the rear stagnation point would depend on thewake by
the influence of the recirculation zone and would be characterized by Reeff . A similar
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analysis has been made by various authors [20, 23, 72] who proposed a correlation
in the following form:Nu � aRe0.5film+bRe

0.67
film , where the first term represents the heat

transfer through the laminar boundary layer on the front part of the cylinder and the
second term, the heat transfer of the rear portion. This second term could depend on
Reeff .

4 Limits of the Effective Reynolds Number Approach

As shown in the previous examples, the effective Reynolds number concept allows
to take into account the influence of the thermal effect on the heated wake. However,
there seems to be some evidence that some phenomena appearing when the cylin-
der is strongly heated cannot be only reduced to renormalization of the Reynolds
number, even in the absence of buoyancy forces. When the effective Reynolds num-
ber approach works, the spectral characteristics of temperature fluctuations observed
for increasing cylinder temperature and the characteristics of velocity fluctuations
observed in the wake of a decreasing flow velocity have to be similar. However,
some experiments [73–76] showed that such similarity only exists for a range of
heating power. Over a definite range of P/l values, spectra of temperature fluctua-
tions or acoustic wave scattering became essentially nonsymmetrical relative to the
maximal values, whereas at higher and lower heating, power spectra had the same
symmetrical shape for all Reynolds numbers. Signal amplitude A(t) and phase φ(t),
extracted from the time series of temperature fluctuations using Hilbert transforma-
tion, showed that for the regime of nonsymmetrical power spectrum, a sequence of
defects occurred in the time series of temperature fluctuations. For a such defect,
the amplitude dropped down to zero and the phase decreased by about 2π and one
period was lost in such an impulse, which explains the nonsymmetrical spectra [74].
The visualizations of the heated wake for Re � 89, showed that these defects existed
over the range 2.02 ≤ T ∗

w ≤ 2.6 [76]. Outside this range, no defects were formed
either at small or at large heating power. For large heating, the wake was stabilized
as Reeff < Rec. It is worth to note that, in isothermal conditions, similar defects
have already been observed for the Reynolds numbers range 160 < Re < 230 [77].
This kind of defects may also be excited artificially, at smaller Reynolds numbers
(Re � 140) by creating on the cylinder a zone of larger diameter, Williamson [8].
These defects caused by heating arising at lower Reynolds numbersmight result from
the instability described by [78]. They showed that for a single vortex, flexible modes
are excited when a large enough difference existed between the core and periphery
densities. For a strongly heated cylinder, the motion of temperature stratified and,
hence, density stratified vortices could become important and differ from the motion
of a homogeneous fluid, even in the absence of buoyancy forces. The generation of
these modes connected with the motion of a density stratified fluid under the action
of centrifugal forces may change the wake dynamics fundamentally. It seems that
there are no studies mentioning the existence of the defects arising in the street at
certain heating intensities.
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5 Conclusion

This chapter is concerned with a review of the heated Bénard–Kármán street in
relation to the effective Reynolds number concept. From the literature, it is clear that
this laminar flow regime is strongly dependent on the level of heating and, even in
absence of buoyancy effects, heat is never a passive contaminant. The results obtained
in the pioneer works of [26, 42] have been fully confirmed. In air, the frequency of
vortex shedding is found to decreasewith heatingwhile the opposite trend is observed
in water. This is due to the increase in the kinematic viscosity of air and the decrease
in the kinematic viscosity of water with increasing overheat ratio. This phenomenon
has led to the definition of an effective Reynolds number Reeff that is associated to an
effective temperature Teff � T∞+c(Tw −T∞). This concept assumes that the critical
Reynolds numbers in isothermal and no isothermal situations is the same. In relation
to the respective values of Prandtl number Pr, c-values of 0.28 for air and 0.97 for
water have been found. The values of the corresponding effective temperature were
found close to the near-wake temperature.

The underlying physics of the concept of effective temperature was revealed with
the similarities of global (Strouhal number, drag coefficient, etc.) or local (dimen-
sionless viscous force on the cylinder surface, dimensionless pressure force in the
rear portion of the cylinder surface, etc.) flow characteristics found with the same
Reeff . Concerning the Nusselt number, in air, there is no consensus on the choice of
the temperature selected for use in the Nu − Re relationships. The film temperature
Tfilm or the representative temperature Trep are both used by authors to characterize
fluid properties for the steady and the periodic wake regimes. It is worth noting that
at least for the rear part of the heated cylinder, the correlation ought to take into
account the effective temperature linked to the flow regime.

However, when the cylinder is strongly heated, there exists some range of heating
power within which defects are able to grow in a vortex street against the back-
ground of a periodic structure. In this case, the phenomena cannot be only reduced
to renormalization of the Reynolds number.

Over the past three decades, many advances have been made in the understanding
of the wake downstream a heated cylinder in the periodic laminar regime. Never-
theless, the complexity of this flow should continue to motivate the development
of further numerical simulations and experimental works. These studies could help
resolve some of the problems associated with small scales in the heated turbulent
flows. Up to now, these researches have especially concerned the case of air flows
and, to a lesser extent, the case of water flows. They could be extended to fluid flows
at various Prandtl numbers.
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Laboratory Modelling and Acoustic
Diagnostics of Hydrodynamical Processes

Vladimir Chernov and Alexander Ezersky

Abstract In the present chapter, results of modelling of wind interaction with a
water layer surface and research of the vortical structures arising downstream of the
flow around bodies are described. Results using the method of acoustic diagnostics
of spatially periodic vortical flows are presented. At physical modelling in laboratory
conditions wind was created with a low-velocity wind tunnel. The structure of an air
stream and convective cells on water surface was investigated with the help of visual-
ization. Some pictures of structures on the shallow sea surface are also demonstrated
and discussed.

1 Introduction

Study of interaction of wind with ocean surface is important for the understanding of
heat exchange between the ocean and the atmosphere and for interpretation of radar
and visual pictures of the ocean surface. The important role for this is played by the
thin subsurface water layer.

A large amount of experimental observations of a near-surface layer in different
water basins (including the ocean, seas and lakes) showed that in many cases the
water surface is colder compared to the bulk [1]. The cooling of water surface due
to evaporation gives rise to the formation of a thermal boundary layer having the
scale of about one millimeter, which is frequently termed ‘a cold liquid film’ [1].
The inverse temperature distribution can give rise to the convective instability, which
usually develops in the presence of a wind-driven flow. The convective instability
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is one of the possible causes of the Langmuir circulations in natural water basins,
which are associated with roll-like vortex, structures elongated in the direction of
the wind [2]. Besides, interaction of wind with sea surface produces vortices in the
water and in the air. However, it is extremely difficult to study such processes in the
ocean.

Numerical simulation of the roll convection caused by evaporation was performed
mainly for the sea conditions (e.g., [2, 3]). In this work, the convective (Rayleigh–Bé-
nard) instability in the liquid layer affected by evaporation and tangential wind
stresses is studied from the viewpoint of the non-linear dynamics, i.e. attention is
focused on the peculiarities of structure development. The laboratory experiment
is performed with heated silicon oil and a well-evaporating liquid (alcohol) and a
two-dimensional theoretical model corresponding to the experimental conditions is
constructed.

Currently, laboratory remote acoustic diagnostics of vortical and temperature pul-
sations in air flows have been carried out for a number of well-studied flows: the
Karman vortex street behind a round cylinder [4–6], vortex rings [7], vortices behind
a heated body [8], buoyant thermic [9] and heated jet [10]. These experiments have
established the parameters of hydrodynamic flows, which can be determined by the
characteristics of scattered sound. The experimental concept was that data obtained
for flows with controlled parameters were to be compared to a calculation carried
out within the models described by a small number of parameters: vortex circulation,
vortex motion velocity and quantity of heat transferred by vortices. The flows studied
were actually laminar.

Laboratory acoustic diagnostics, making it possible to control all the parameters
of flows, can be efficient in the simulation of acoustic sounding of the atmosphere
and water reservoirs. However, to compare laboratory and field experimental data on
acoustic diagnostics of the atmosphere [11], scattering at more complex flows is to
be studied.

The laminar flow was accompanied by systematic vortex separations, as well
as Karman streets behind cylinder. In the turbulent mode, the flow consists of a
large number of randomly arranged vortices. Thus, for full research of a vortical
Karman street behind the heated up cylinder, we have executed experiments on
visualization and remote acoustic diagnostics of vortical current. Earlier, it was found
that topological defects may arise in a wake behind a heated cylinder [12] as vortex
merging that results in the loss of one spatial period. To control two-dimensional
flows, a method of acoustic diagnostics was developed that allows one to detect
topological defects in a periodic street by spectra of the scattered sound [13].
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2 Modelling of Convective Processes

A rectangular, cavity filled with alcohol is allocated in the plate of organic glass. The
plate is placed in the operating part of the low-turbulence wind tunnel. For the flow
visualization, the light-reflecting powder is used. After impeller of the wind tunnel
is switched on, the wind velocity V0 reaches quickly (in the time less than 1 min) a
steady value within 1.5–2.5 m/s range and a turbulent boundary layer is formed over
the cavity. The measured thickness of the boundary layer is equal approximately to
2 cm.

The velocity of the wind-driven flow increased progressively to its steady value
(which is about 2.5 cm/s). Top view of the flow structure in the cavity is presented in
Fig. 1a. A sequence of visualization pictures arising with growing wind velocity is
displayed in Fig. lb–d. Figure 1b shows hexagon-like structures,whichwere observed
without wind blowing. Figure 1c demonstrates the effects of enlargement of the
hexagons and their elongation in the directionof thewind at fairly smallwindvelocity.
When the wind velocity approaches its steady value, the system of black and white
strips corresponding to the roll convection in the liquid layer appears on the surface
(Fig. 1d).

Similar experiments were carried out with 0.4 cm silicon oil layer heated from
below. In absence of wind above liquid surface (2V=0) at excess of critical value of
temperature difference convection arises. A picture of convective cells obtained for
bottom temperature 50 °C is shown in Fig. . After turning on wind tunnel wind stress
on silicon oil surface produces shear current in liquid that results in increase of the
convective cell size and their drift in the direction of air stream (V=12 cm/c). Thus,
characteristic spatial period of cells increases in wind direction. Above the critical
value of stream velocity, cellular convection is replaced by convective roll patterns
whose axes are directed along the wind (V=160 cm/c). At higher wind velocities,
convective rolls contain numerous defects.

The similar phenomenon occurrence of roll structure was observed byWoodcock
on water surface in narrow straits, bays and on a surface of long waves at the high-sea
states [14]. We also observed similar structures on surface of the “Nizhny Novgorod
sea” (a reservoir at Volga river). Corresponding picture is presented in Fig. 3. It was
obtained in solar weather at 25 °C and at weak wind. Visualization of roll structure,
in this case, became possible due to phytoplankton. Rolls are extended along wind
direction, the spatial period of rolls is few centimeters. More detailed description of
experiment and the theoretical analysis are given in [15, 16].
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�Fig. 1 Sketch of the experimental setup a and images of the fluid surface for immovable air
(b) immediately after starting of the wind blowing (c) and at the steady wind velocity Vo =
1.5 m/s (d). Designations in (a) are 1-forward air flow, 2 (dashed arrows)—wind-driven fluid flow, 3
(dashed arrows)—counter fluid flow, 4 (shaded fields)—horizontal screens above the counter flow,
5—vertical screens delimiting the accompanying and counterflows

Fig. 2 Photo images of the silicon oil heated from below for immovable air (a), immediately after
starting of the wind blowing (b, V=12 cm/c) and at the steady wind velocity Vo = 160 cm/s (c),
and 180 cm/c (d)

3 Acoustic Diagnostics of Vertical Structures

This part of the work is devoted to the study of vortical flows in air by means
of the acoustic diagnostic method. The main attention is paid to investigation of
vortical flows behind a heated cylinder—influence of heating on characteristics of
vortical structure. The experimental setup is similar to that in [17]. The used cylinder
is made of a nickel-chrome alloy wire of 0.6 mm diameter. It was heated from a
source of the direct current. The temperature of the cylinder can be estimated from
the known heat transfer expression established empirically for the round cylinders
[18]: Nu � 0.36

√
Re + 0.057

3
√
Re2 and was equal TC − T∞ � �T � Q

π.L.λ0.Nu(Re)
,

whereQ—quantity of heat in Joules generated in the cylinder by the direct electrical
current, L—length of the cylinder, λ0—heat conductivity of gas at temperature of the
air stream. Reynolds number of an accumulating stream was Re � 81, and Reynolds
effective number changed in a range 35 < Reeff < 81.
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Fig. 3 The roll structure on the surface of the “Nizhny Novgorod sea”

A piezoceramic sound source was placed behind a screen with a square hole
(2×2 cm). The source was placed 65 cm apart from the Karman’s street center for
the Fraunhofer approximation to be satisfied DF ≈ Λ2/λ = 30 cm, where Λ is the
source size. The radiator settled down under angle 40° to the normal to air flow.

The periodic vortical street was observed downstream behind the cylinder. To
measure parameters of the received ultrasound we used a high-frequency 4135 B&K
microphone. Signal was transferred into the frequency range 0–20 kHz by the hetero-
dyning technique. The microphone was placed 1.6 m apart from the vortex street. Its
position varied in the angular range from 45° to −45° with respect to the direction
of the ultrasound source. The spectral characteristics of the scattered signal were
measured using a computer.

Angular dependence of sound scattered by the vortex street (that is the mov-
ing periodic grid) represents a few number of angular maxima and minima, which
correspond to spatial harmonics of scattered sound field. During experiments, we
measured time spectra of the first spatial harmonic of scattered sound for several
temperatures of the cylinder. Measurements were carried out as follows: for each
temperature of the cylinder, first of all, it was found the angle of the first spatial
harmonics (maximum of amplitude), and then the time spectrum of signal was reg-
istered and analyzed. Increase of the cylinder temperature resulted in the downshift
of vortex frequency that was also observed in [19]. The obtained data are shown
in Fig. 4. It is seen from the figure that in the definite range of temperatures of the
cylinder, some asymmetry in the spectrum arises. Below and above this temperature
range, spectra are symmetric. This asymmetry is similar to that was observed in [19]
in a spectrum of pulsations of a field of temperature.

In experiments, we also used visualization of a vortical street at various tempera-
tures of the cylinder. Visualization was carried out bymeans of a thin wire of 0.2 mm,
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Fig. 4 Spectra of the scattered sound

which was stretched parallel to the basic cylinder at distance of~9d downstream.
The wire was covered by oil and electrical current through it was turned on. Smoke
from the wire made it possible to visualize the vortical trace. Pictures were taken
by means of a digital camera (Fig. 5). From Fig. 5 one can see defects in vortical
street. In the photo, the basic cylinder and a visualizing wire are located on the right
side, the air flow is directed from right to left and the distance from the cylinder
to the left side of picture is ∼ 200d . It is necessary to note that without heating
axes of vortices have some vertical angle relatively the basic cylinder, while during
heating axes of vortices are parallel to the axis of the basic cylinder. Thus, even
small heating (�T � 155 ◦C) resulted in ‘ordering’ a vortical street. For tempera-
tures above �T � 308 ◦C, large-scale defects can be observed. At �T � 434 ◦C a
number of defects such as«pulses of blackout»are observed up to the temperature
�T � 480 ◦C. Further increase in heating, results in ordered vortical street again
with axes parallel to the cylinder. At the maximal heating, �T � 665 ◦C a vortical
street is not observed anymore, since Reeff < Rec (where Rec—Reynolds critical
number at which there is a periodic vortex street). In this case, there are only low-
frequency pulsations caused, apparently, by the convective instability of the heated
air. Defects in vortical street are responsible for asymmetry of spectra in Fig. 4.
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Fig. 5 Visualization of a vortical trace

4 Conclusion

Themethod of physical modellingwas used in the givenwork for research of features
of thermoconvection in the upper sea layer. Thermoconvection is caused by cooling
of a thin water film under action of wind. Wind stress, in turn, results in formation of
roll structure convective flows againstwell-known cellular structure of the convection
in absence of wind.

The method of acoustic diagnostics of hydrodynamic vortex flow was demon-
strated for the vortical structure generated in an air flow behind heated cylinder.
Experiments have for the first time shown that in a vortical street behind the heated
cylinder at not too big supercriticality (Reeff ∼ 45÷55) and temperatures of heating
of the cylinder (300°–480 °C) there are defects such as�pulses of blackout	 . The
visualization of vortex flow at the specified parameters has allowed to confirm the
existence of these defects, which are related to the density stratification of the vortex
flow. Detailed theoretical description of this phenomenon is to be done.

Thus, the method of acoustic diagnostics can be effectively used for investigation
of flow structures in gas and liquids.
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