
Weifei Hu    Editor 

Advanced 
Wind 
Turbine 
Technology



Advanced Wind Turbine Technology



Weifei Hu
Editor

Advanced Wind Turbine
Technology

123



Editor
Weifei Hu
Sibley School of Mechanical and Aerospace
Engineering and Department of Earth
and Atmospheric Sciences
Cornell University
Ithaca, New York, USA

ISBN 978-3-319-78165-5 ISBN 978-3-319-78166-2 (eBook)
https://doi.org/10.1007/978-3-319-78166-2

Library of Congress Control Number: 2018940663

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG part
of Springer Nature.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-78166-2


Introduction

Introduction

Wind energy has been significantly growing as one of clean, abundant, and afford-
able renewable energies worldwide during the past decades. More than 314,000
wind turbines (WT) are now operating around the world and supplied more than
4.3% of 2015 global electricity demand. The levelized cost of energy from WT
has decreased substantially in recent years making wind energy now the lowest
cost, non-hydropower renewable electricity source. A recent expert elicitation on
future wind energy costs projected reductions of levelized total annual operating
expenditures (which closely equate to operation and maintenance costs) of 9% over
the period 2015–2030. Meanwhile, WT have evolved rapidly with the rated power
increased from 100 kW in the early 1980s to 8 MW-plus today. Advanced WT
technology emerges to support these ever-increasing titans to improve efficiency,
increase reliability, reduce cost, and provide more power than their counterparts
before, eventually making wind power a better choice for power generation.

There are plenty of books addressing the fundamentals of WT technology
but very few providing in-depth and easy-to-follow discussion on the emerging
advanced technology in wind turbine analysis, design, and development. New
technology in wind energy is continuing on being developed. Thus, it is necessary to
update the WT technology portfolio which holds the latest technology. In addition,
specific technology has been researched and developed in the separate subfields of
wind energy, for example, WT structural dynamics and WT condition monitoring.
Actually, understanding the WT load and structural analysis could benefit the better
interpretation of the monitoring data. With these considerations, it is of critical
importance to put different aspects of advanced WT technology into one book and
provide a big picture of the current development.

Some unique features of this book are briefly explained as follows: (1) The
theories, analysis procedures, software codes, results are originally developed by
each chapter authors. (2) The current results presented in each chapter are accurately
calculated by using high-fidelity simulation models and/or comparing experimental
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vi Introduction

test results. As a strong support for the accuracy, large amount of high impact journal
papers related to each chapter have been published by chapter authors. (3) The book
provides unique technologies that are innovative and intelligent contributions in
wind energy fields. Many of the provided technologies are ongoing and cutting edge
research work in chapter authors’ groups. (4) The underlying methods are clearly
introduced using graphics, tables, appendixes, simulation models, and experimental
instrumentation. One of the key goals of this book is to put the most critical
challenges, the latest methodologies, discussions, and results together, and prepare
the readers a comprehensive understanding of the current status and future direction
of the selected cutting edge WT technology.

Scope

This book introduces the current challenges in modern WT analysis, design,
and development and provides a comprehensive examination of state-of-the-art
technologies from both academia and industry. The following 12 information-rich
chapters cover a wide range of topics for WT including reliability-based design,
computational fluid dynamics, gearbox and bearing analysis, lightning analysis,
structural dynamics, health condition monitoring, WT repairing, offshore floating
WT modeling and analysis, control and grid integration, as well as introduction
of some emerging technologies. Each chapter begins with the current status of
technology in a lucid, easy-to-follow treatment, and then elaborates on the corre-
sponding advanced technology using detailed methodologies, mathematical models,
numerical examples, and graphs. Relevant to a broad audience from students and
faculty to researchers, manufacturers, and wind energy engineers and designers, the
book is ideal for both educational and research needs.

A brief introduction of each chapter is provided as follows:

• Chapter 1 elaborates a reliability-based design optimization (RBDO) approach
for designing reliable and cost-effective WT systems particularly considering
wind load uncertainty and manufacturing variability.

• Chapter 2 provides a review of computational fluid dynamics (CFD) techniques
that use numerical algorithms to solve and analyze WT fluid analysis.

• Chapter 3 explains an efficient numerical method to simulate gear dynamics
of complex multibody gear system and applies the numerical method into
deterministic design optimization (DDO) and RBDO of a WT gearbox.

• Chapter 4 proposes a hierarchical multiscale method to study the rolling contact
fatigue in WT bearing with the consideration of lubrication effects.

• Chapter 5 provides the basic physics of WT lightning strike and lightning
interaction and evaluates the lightning strike damage that counts for one of the
greatest number of losses for WT.

• Chapter 6 presents the geometrically exact beam theory based on the Legendre-
spectral-finite-element method, which is used for efficient and accurate WT
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blade dynamic analysis and is implemented in the National Renewable Energy
Laboratory (NREL)’s FAST code.

• Chapter 7 offers a novel condition monitoring strategy for WT drive train and the
associated signal processing method, namely wavelet-transform-based energy
tracking technique (WETT), which utilizes readily available generator power
signal to evaluate the health condition of the whole WT drivetrain system through
extracting and assessing the energy of WT power signals at fault characteristic
frequencies.

• Chapter 8 provides a detailed survey of conventional and state-of-the-art repair-
ing techniques for WT blades and summarizes the current machining processes of
hardened steels for WT bearing and gearbox, followed by an overview of future
applications.

• Chapter 9 first explains sophisticated dynamics of the mooring system used in
offshore floating wind turbines, and then introduces state-of-the-art dynamic
analyses including dynamic responses, design standards, and fault conditions of
offshore floating wind turbines.

• Chapter 10 reviews advanced control techniques for wind turbine fatigue load
alleviation and power enhancement and discusses two combined feedforward and
feedback control designs for use with the 600 kW controls advanced research
turbine at the NREL National Wind Technology Center.

• Chapter 11 surveys different models for short-term wind forecasting and ramp
forecasting including individual and ensemble machine learning models and a
recently developed optimized swinging door algorithm.

• Finally, Chap. 12 provides a comprehensive literature review and a concise
summary for four emerging technologies: WT with permanent magnetic direct-
drive, 3D printing used for WT, WT anti-icing and de-icing techniques, and
data-mining techniques for wind energy.

I would like to acknowledge the efforts of the chapter authors for contributing
their great work to this book; Michael Luby and Brian Halm for their support in
publishing my first Springer book and Nicole Lowary, Abhishek Ravi Shanker, and
Dhanuj Nair for providing answers to my numerous questions during the manuscript
preparation.

Ithaca, NY, USA Weifei Hu
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Chapter 1
Reliability-Based Design Optimization
of Wind Turbine Systems

Weifei Hu

1.1 Introduction

1.1.1 Reliability-Based Design Optimization

Reliability-based design optimization (RBDO) has been well developed to obtain
reliable and cost-effective designs of many engineering problems under various
uncertainties. One of the applications is RBDO of fatigue-sensitive structures for
which engineers would like to evaluate an accurate fatigue lifespan. By applying
RBDO to the fatigue-sensitive structures, their design could then be fine-tuned to
reduce needless costs while satisfying the target reliability of fatigue performance.
Therefore, as an expensive energy harvest machine, designing a reliable wind
turbine is one of the most necessary tasks in wind energy business. A cost-effective
design of wind turbine systems reduces the initial investment, while a reliable design
saves maintenance cost of the wind turbine systems. Hence, RBDO can achieve both
the reduction of initial investment and maintenance cost.

Reliability-based design optimization is an optimization method based on reli-
ability analysis. In each design iteration, RBDO requires reliability analysis of
performance measures. Reliability analysis methods can be classified into two
groups: (1) sensitivity-based methods and (2) sampling-based methods. The rep-
resentative sensitivity-based methods include the first-order reliability method
(FORM) (Hasofer and Lind 1974; Tu et al. 1999, 2001), the second-order reliability
method (SORM) (Hohenbichler and Rackwitz 1988; Breitung 1984), and the
dimension reduction method (DRM) (Rahman and Wei 2006; Lee et al. 2010).

W. Hu (�)
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The FORM and SORM approximate a performance measure at the most probable
point (MPP) using first- and second-order Taylor series expansion, respectively,
and the DRM approximates a multidimensional performance function with a sum
of lower-dimensional functions to calculate the probability of failure. In order
to find the MPP, the sensitivity (gradient) of performance function needs to be
calculated. However, for many engineering applications, e.g., fatigue of wind
turbine blades, accurate sensitivities of performance functions are not available.
Therefore, in such applications, the sensitivity-based methods, which require the
sensitivities of performance functions to find the MPP, cannot be directly used.
On the other hand, the sampling-based methods do not require the sensitivity of
performance function to calculate the probability of failure (Lee et al. 2011a, b).
Instead, the sampling-based methods directly calculate the probability of failure
using Monte Carlo simulation (MCS). However, the sampling-based methods could
be computationally inefficient because the MCS may require thousands of analyses
of a performance function. In order to handle the computational issue using MCS,
surrogate models are often used to reduce computational cost. A challenge when
using sampling-based RBDO in complex engineering problems (e.g., wind turbine
design) is developing an accurate surrogate model to replace complicated, nonlinear,
and implicit performance functions (e.g., fatigue, deflection, extreme stress and
strain, dynamic frequencies, and buckling loads of wind turbine systems).

1.1.2 Wind Load Uncertainty

It is difficult to accurately predict reliability for wind turbine systems due to various
uncertainties from material properties, manufacturing process, and external loads.
Among those uncertainties, wind load uncertainty is one of the most significant
sources of uncertainty affecting the reliability of wind turbine systems, e.g., blade
and drivetrain. Hence, a better understanding of the wind load uncertainty could
facilitate the designs that are more reliable than those designed without correctly
considering the wind load uncertainty.

In order to consider the wind load uncertainty, partial safety factors have been
introduced in wind turbine standards (International Electrotechnical Commission
2005; Germanischer Lloyd 2010). Researchers applied the partial safety factors
on wind load for design of wind turbine blades (Ronold et al. 1999; Ronold and
Christensen 2001; Kong et al. 2005, 2006), wind turbine drivetrain (Derks 2008;
Guo et al. 2015), wind turbine tower and foundation (Nicholson 2011), and other
wind turbine systems (Bansal et al. 2002). Although using the partial safety factors
to account for the wind load uncertainty is convenient, the spatial and temporal wind
load variation cannot be represented accurately. Another disadvantage of using the
partial safety is that the produced design may be too conservative if unnecessary
large safety factors are used.
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A number of studies have also applied probabilistic models for mean wind speed
to characterize the annual wind load variation (Ronold et al. 1999; Ronold and
Christensen 2001; Shokrieh and Rafiee 2006; Griffith and Ashwill 2011; Manwell
et al. 2010; Burton et al. 2011; Manuel et al. 2001; Messac et al. 2011; Carta
et al. 2009). One of the most widely used models is the two-parameter Weibull
distribution, which is based on annual wind speed data. This distribution has been
used to determine the percentage of time that the wind turbine experiences different
mean wind speeds during its life cycle. Using this time percentage, the wind loads
are calculated under each mean wind speed, and the long-term turbine performances
(e.g., wind power and fatigue damage) can then be accumulated using the specified
mean wind speed distribution. However, by applying a fixed Weibull distribution,
only deterministic turbine performances can be obtained because the assumed
Weibull distribution is constant in different years. The fixed Weibull distribution
based either on wind turbine standards (International Electrotechnical Commission
2005; Germanischer Lloyd 2010) or measured wind data at a specific location
cannot truly render the wind load uncertainty over a large spatiotemporal range,
for instance, at different locations and in different years.

Besides the mean wind speed, the fluctuations in the wind speed about the short-
term mean naturally have a major impact on the design loadings, as they are the
source of extreme gust loads and a large part of the blade fatigue loading (Burton
et al. 2011; Manwell et al. 2010). However, very few turbulence intensities are used
in reliability analysis and design optimization of wind turbines. Only three deter-
ministic turbulence intensities are used to classify different wind turbine designs
in the International Electrotechnical Commission (IEC) standard (International
Electrotechnical Commission 2005). Noda and Flay applied a single turbulence
intensity when simulating the wind turbine blade fatigue damage in a typical New
Zealand site, by which different sites are classified as either low- or high-intensity
turbulence sites (Noda and Flay 1999). In reality, the turbulence intensity should
follow a certain distribution at a specific site. For example, Ronold et al. assumed
the turbulence intensity followed a lognormal distribution (Ronold et al. 1999).
Consequently, in order to facilitate new wind turbine design surviving under realistic
uncertain wind load, both variations of wind speed and turbulence intensity have to
be involved. Hu et al. identified the distribution of 10-min turbulence intensity to be
a log-logistic distribution and applied both the distributions of 10-min mean wind
speed and 10-min turbulence intensity in reliability analysis of wind turbine blades
for fatigue life (Hu et al. 2012).

As the wind load varies over a large spatiotemporal range, the wind turbines are
expected to survive the uncertain wind load at different locations and in different
years. However, this level of wind load uncertainty has not been found in existing
research or wind energy standards (International Electrotechnical Commission
2005; Germanischer Lloyd 2010). Fixed distribution for mean wind speed is still
widely applied for wind turbine designs (e.g., (Ronold et al. 1999; Shokrieh and
Rafiee 2006; Do et al. 2014)), which assumes that the same mean wind speed
distribution continues for the entire lifespan.
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1.1.3 Current Reliability-Based Design of Wind Turbines

As a modern MW-scale wind turbine involving complex subassemblies, the current
reliability-based design of wind turbines often targets to design specific subassem-
bly, for example, rotor blade, gearbox, bearing, and tower. One of the very beginning
works is investigated by Ronold et al. who studied reliability-based design of wind
turbine blades against fatigue failure using a probabilistic model with measured
bending moments at the blade root of a site-specific wind turbine (Ronold et al.
1999). Even though no optimization procedure is involved, this work has developed
reliability-based safety factor calibration to calibrate site- and wind turbine-specific
safety factors applicable to flapwise bending of rotor blades (Ronold et al. 1999).
A probabilistic framework for designing wind turbine blades is presented in Toft
and Sørensen (2011), which requires tests with the basic composite materials and
full-scale blades during the design process. Reliability-based design of wind turbine
blades against failure under extreme conditions was studied by Ronold and Larsen
(2000) and Cheng (2002). However, fatigue failure under wind load uncertainty
was not included in their reliability-based design. Reliability-based design has also
been implemented in designing offshore wind turbine systems. For example, Lee et
al. investigated RBDO of a monopole transition piece in an offshore wind turbine
system (Lee et al. 2014). In the thesis (Firouzianbandpey 2016), reliability-based
design facilitates the development of a low-cost foundation for future offshore
wind farms by focusing on the geotechnical site assessment. Cheng et al. applied
statistical methods to determine the distribution of the extreme response of offshore
wind turbines (Cheng et al. 2003). However, none of the aforementioned works
have specifically involved load uncertainty into a design optimization process. In
addition, it is more challenging to accurately and efficiently integrate a realistic
wind load uncertainty into RBDO. A recent endeavor has been carried out by Hu
et al. who implemented a dynamic wind load uncertainty model into a reliability-
based design optimization procedure to obtain an optimal 5-MW wind turbine blade
satisfying the target probability of failure of 2.275% (Hu et al. 2016b).

This chapter aims to present reliability-based design optimization methods which
could design reliable and cost-effective wind turbine systems to reduce the cost of
wind energy. In order to achieve this goal, several challenges have been taken on,
including development of a realistic wind load uncertainty model and development
of an RBDO procedure that can be easily adopted for various wind turbine systems
to minimize their cost and satisfy the reliability requirement under uncertain wind
load. The reminder of this chapter is outlined as follows: The dynamic wind load
uncertainty model is explained in detail in Sect. 1.2 followed by the elaboration of
a reliability analysis method for wind turbine systems in Sect. 1.3. Finally, Sect.
1.4 presents a sampling-based RBDO method and its application in composite wind
turbine blades.
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1.2 Dynamic Wind Load Uncertainty

A dynamic wind load uncertainty model has been developed based on measured
wind data. The wind load uncertainty model involves both the annual wind load
variation and the wind load variation in a large spatiotemporal range, for example,
in different years and at different locations. The annual wind load variation is
represented by the joint probability density function (PDF) of 10-min mean wind
speed V10 and 10-min turbulence intensity I10. The wind load variation in a large
spatiotemporal range is represented by the distributions of five marginal distribution
and correlation parameters C, k, a, b, and τ, which determine the joint PDF of V10
and I10 as described in this section. The basic structure of the dynamic wind load
uncertainty model is shown in Fig. 1.1.

1.2.1 Annual Wind Load Variation

1.2.1.1 Marginal Distributions of Random Parameters for Wind Speed

The annual wind load variation means that the wind load under different wind
conditions, which are often determined by mean wind speed and turbulence intensity
during a short period (e.g., 10 min or 1 h), is varying due to the frequency of
occurrence of the individual wind conditions in 1 year and at one location. The
variable wind load is often represented by the variation of 10-min mean wind speed,

Fig. 1.1 Dynamic wind load uncertainty model
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V10, in the state-of-the-art wind energy standards (International Electrotechnical
Commission 2005; Germanischer Lloyd 2010). In this chapter, another factor,
10-min turbulence intensity, I10, which also affects both dynamic response and
fatigue damage during 10 min, is considered. Thus, the annual wind load variation
is represented by the joint probability density function (PDF) of V10 and I10. In
addition, it is found that there is a correlation between V10 and I10 based on
measured wind data. In order to properly consider this correlation in the joint PDF
of V10 and I10, the 10-min standard deviation �10 of wind speed is used. This
section will first provide the marginal distributions of the three random parameters
for wind speed, i.e., V10, I10, and �10. The correlation between these parameters is
then studied by using copula (Noh et al. 2009, 2010; Lee et al. 2011a). The joint
distribution of V10 and I10 is derived using the copula for V10 and�10 and marginal
distributions of V10 and �10.

Before identifying the marginal distributions, the wind speed data is first
transformed to the same hub height from different measured heights, since the
wind speed is inherently different at different heights. The hub height wind
speed is calculated by a normal wind profile model (International Electrotechnical
Commission 2005; Germanischer Lloyd 2010) using the measured wind speed at
other heights as

Vhub = Vz

(z/zhub)
α (1.1)

where z is the measured height above the ground, zhub is the hub height, and Vz
is the measured wind speed at the height z. The power law exponent α is assumed
to be 0.2 according to the standards (International Electrotechnical Commission
2005; Germanischer Lloyd 2010). The following distribution-identifying procedure
is based on adjusted wind data at the wind turbine hub height.

The probability distributions of V10, I10, and �10 are fitted using seven different
positive-valued distribution types, gamma, Weibull, log-logistic, lognormal, Nak-
agami, Rayleigh, and Rician (Hu et al. 2016a). The maximum likelihood estimation
(MLE) is implemented to find parameters for fitting the candidate distributions
(Hoog et al. 2005). The likelihood function L(θ) and its natural logarithm l(θ) are,
respectively, given by

L (θ) =
n∏

i=1

f (xi; θ) (1.2)

l (θ) =
n∑

i=1

ln f (xi; θ) (1.3)

where f (xi;θ) is the PDF value of a candidate distribution calculated at data xi given
the vector of distribution parameter θ. For each group of wind data, the distribution
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Fig. 1.2 Distribution fit of V10

type corresponding to the largest log-likelihood value is viewed as the best fit
distribution. One example marginal distribution fit for V10 is shown in Fig. 1.2, in
which the Weibull distribution corresponds to the largest log-likelihood value among
the seven candidate distribution types. Thus the Weibull distribution is selected
for the annual V10 distribution, which is consistent with the fact that the Weibull
distribution has been widely accepted for representing the annual mean wind speed
distribution. Similarly, using the MLE, the best marginal distribution types of I10 and
�10 have been identified as a log-logistic distribution type and a gamma distribution
type, respectively (Hu et al. 2016a, b). Examples of marginal distribution fits for
I10 and �10 are shown in Figs. 1.3 and 1.4, respectively. The PDF of the Weibull
distribution of V10 is given by

fV 10 (v10;C, k) = k

C

(v10

C

)k−1
exp

[
−
(v10

C

)k]
(1.4)

where v10 is a realization of V10 and C and k are the scale parameter and shape
parameter, respectively. The PDF of the log-logistic distribution of I10 is given by

fI10 (i10; γ, δ) =
exp

(
ln i10−γ

δ

)

δi10

[
1 + exp

(
ln i10−γ

δ

)]2 (1.5)



8 W. Hu

Fig. 1.3 Distribution fit of I10

Fig. 1.4 Distribution fit of �10
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where i10 is a realization of I10 and γ and δ are the log-location parameter and log-
scale parameter, respectively. ln i10 is the natural logarithm of i10. The PDF of the
gamma distribution of �10 is given by

f�10 (σ10; a, b) = 1

ba�(a)
σ a−1

10 exp
(
−σ10

b

)
(1.6)

where σ 10 is a realization of �10 and a and b are the shape parameter and scale
parameter, respectively. �(a) is the gamma function of a.

The Weibull distribution of V10 characterizes the 10-min mean wind speed
variation during the year, while the log-logistic distribution of I10 and the gamma
distribution of �10 represent the variation of fluctuation in wind speed in 10 min.
It is useful to think of the wind as consisting of a mean wind speed with turbulent
fluctuations superimposed. The mean wind speed and turbulence intensity are often
used to represent the wind load strength/level by wind turbine design standards
(International Electrotechnical Commission 2005; Germanischer Lloyd 2010). It is
found that using V10 and �10 could better represent the correlated joint PDF of V10
and I10. The correlation between V10 and I10 and the correlation between V10 and
�10 are discussed as follows.

1.2.1.2 Correlation Between Random Parameters for Wind Speed

In order to calculate the probability of a certain wind condition, i.e., V10 and I10,
in 1 year, the joint PDF of V10 and I10 is necessary. If the random variables V10
and I10 are assumed to be independent, the joint PDF of V10 and I10 can be simply
calculated as

fV I = fV 10 · fI10 (1.7)

where fVI0 and fI10 are the marginal PDFs of V10 and I10, respectively. However,
the scatter plots of (V10, I10) and (V10, �10) in Fig. 1.5 clearly show that there are
strong correlations among these three random parameters.

For bivariate correlated input random variables X = [Xi, Xj]T, the joint PDF of X
can be expressed using copula as (Noh et al. 2009, 2010; Lee et al. 2011a)

fX (x;μ) = ∂2C(u,v;θ)
∂u∂v

fXi (xi;μi) fXj
(
xj ;μj

)

= C,uv (u, v; θ) fXi (xi;μi) fXj
(
xj ;μj

) (1.8)

where C is the copula function; fXi and fXj are the marginal PDFs for Xi and Xj,
respectively; u = FXi(xi; μi) and v = FXj(xj; μj) are marginal CDFs for Xi and
Xj, respectively; and θ is the correlation coefficient between Xi and Xj. The partial
derivative of the copula function with respect to u and v is called the copula density
function and is written as
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Fig. 1.5 (a) Scatter plot of one group of measured (V10, I10) and (b) scatter plot of one group of
measured (V10, �10)

c (u, v; θ) ≡ ∂2C (u, v; θ)
∂u∂v

= C,uv (u, v; θ) (1.9)

It might be straightforward to derive the joint PDF of V10 and I10 by using
the marginal PDF of V10 and I10 as well as identify the copula between V10 and
I10. However, there is a mathematical correlation between V10 and I10 because I10
is calculated by �10/V10. In contrast, the V10 and �10 data are directly obtained
from the measured wind data. To exclude the mathematical correlation and consider
statistical correlation between V10 and I10, the joint PDF of V10 and�10 is obtained
first and then transferred to the joint PDF of V10 and I10 (Hu et al. 2016b).

The statistical correlation between V10 and �10 is represented using copula
density function for V10 and �10. Among eight candidate copula types, the best
copula type for V10 and �10 is found to be the Gumbel copula using 249 groups of
V10 and �10 data (Hu et al. 2016b). The Gumbel copula function CVΣ and copula
density function cVΣ for V10 and �10 are expressed, respectively, as

CV� (u, v; τ) = exp
(
−w1−τ) (1.10)

cV� (u, v; τ) =
(− ln u)

τ
1−τ (− ln v)

τ
1−τ
(

1
1−τ + w1−τ − 1

)
w−1−τ exp

(−w1−τ )

uv
(1.11)

where u and v are marginal CDFs of V10 and �10, respectively. The parameter w is
calculated as

w = (− ln u)
1

1−τ + (− ln v)
1

1−τ (1.12)
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where τ is Kendall’s tau (Noh et al. 2010) for V10 and �10.

θ = 1/ (1 − τ) (1.13)

By substituting Eqs (1.4), (1.6), and (1.11) into Eq. (1.8), the joint PDF of V10
and �10 is expressed as

fV� (v10, σ10;C, k, a, b, τ ) = cV� (v10, σ10; τ) fV 10 (v10;C, k) f�10 (σ10; a, b)
(1.14)

The joint PDF of V10 and I10 could be derived using the joint PDF of V10 and
�10 based on the one-to-one transformation from the random vector (V10, �10) to
the random vector (V10, I10) with the Jacobian of the transformation J = v10. Thus,
the joint PDF of V10 and I10 is expressed as

fV I (v10, i10;C, k, a, b, τ ) = fV� (v10, σ10;C, k, a, b, τ ) |J |
= fV� (v10, v10 · i10;C, k, a, b, τ ) v10

(1.15)

where v10, i10, and σ 10 are realizations of random variables V10, I10, and �10,
respectively; i10 = σ 10 / v10; C and k are the scale parameter and shape parameter,
respectively, of the Weibull distribution of V10; a and b are the shape parameter and
scale parameter, respectively, of the gamma distribution of �10; and τ is Kendall’s
tau for V10 and �10.

Applying the derived joint PDF of V10 and σ 10, the 1-year fatigue damage can
be calculated as

D1year (d, C, k, a, b, τ ) = 52560
∫ Vupp

Vlow

∫ Iupp

Ilow

fV I (v10, i10;C, k, a, b, τ )

D10 (d, v10, i10) dv10di10

= 52560
∫ Vupp

Vlow

∫ Iupp

Ilow

cV� (v10, v10 · i10; τ) fV 10 (v10;C, k)

f�10 (v10 · i10; a, b) v10D10 (d, v10, i10) dv10di10

(1.16)

where d is a design vector of a wind turbine subassembly (e.g., composite laminate
thickness of wind turbine blades); cV� is the Gumbel copula for V10 and �10;
fV10 and f�10 are the Weibull PDF and gamma PDF of V10 and �10, respectively;
Vlow and Vupp are the lower and upper bounds of V10, respectively; and Ilow and
Iupp are the lower and upper bounds of I10, respectively. D10 is the 10-min fatigue
damage which is determined by the design d of a wind turbine subassembly under
the specified wind condition (v10, i10).
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1.2.2 Wind Load Variation in a Large Spatiotemporal Range

The joint PDF of V10 and I10 accounts for the wind load variation during 1 year
at a specific location. However, the wind load is also varying year to year for a
specific location. In addition, the wind load could be different at different locations
for various reasons, e.g., the nonuniformity of the earth’s surface or the thermal
effect due to differences in altitude. Even though the variation of wind load in a
large spatiotemporal range seems unpredictable, the distributions and correlation
type of the random wind parameters, V10, I10, and �10, are assumed to be the
same. For example, significant amount of literatures use a Weibull distribution
to represent the mean wind speed distribution, disregarding when or where their
research investigation has been carried out (Burton et al. 2011; Germanischer
Lloyd 2010; Griffith and Ashwill 2011; International Electrotechnical Commission
2005; Manwell et al. 2010; Ronold et al. 1999; Shokrieh and Rafiee 2006). In this
study, the wind load variation in a large spatiotemporal range is represented by the
distributions of the marginal distribution and correlation parameters, i.e., C, k, a, b,
and τ, which determine the joint PDF of V10 and I10 in Eq. (1.15).

Previous study has used 249 groups of wind data measured from different years
and at different locations to obtain 249 sets of (C, k, a, b, τ) values (Hu et al. 2016a,
b). Then marginal distribution types of C, k, a, b, and τ can be identified using the
same MLE method as explained in Sect. 1.2.1. The log-likelihood function values
for each candidate marginal distribution type for C, k, a, b, and τ can be calculated
similarly. Based on the 249 sets of (C, k, a, b, τ) values, it is found that the largest
log-likelihood values for C, k, a, b, and τ correspond to log-logistic distribution,
normal distribution, generalized extreme value distribution, Weibull distribution,
and extreme value distribution, respectively. Consequently, the specific PDFs of
random parameters C, k, a, b, and τ, as listed in Table 1.1, are obtained after
calculating the distribution parameters using MLE. The best fit distributions for C,
k, a, b, and τ are shown in Fig. 1.6.

Table 1.1 Identified PDFs of C, k, a, b, and τ using 249 groups of wind data (Hu et al. 2016a)

Parametere Distribution type PDF

C Log-logistic
fC(x) = exp

[
ln(x)−2.0701

0.1024

]

0.1024x
[
1+exp

(
ln(x)−2.0701

0.1024

)]2

k Normal fk(x) = 1
0.2532

√
2π

exp
[−(x−2.1913)2

0.1282

]

a Generalized extreme
value

fa(x) = 1.1888 (0.7429+0.0827x)−15.3746

exp
[
(0.7429+0.0827x)−14.3746]

b Weibull fb(x) = 4.1254
0.3470

(
x

0.3470

)3.1254 exp
[
−( x

0.3470

)4.1254
]

τ Extreme value fτ (x) = 0.0986−1 exp
(
x−0.5696

0.0986

)
exp

[
− exp

(
x−0.5696

0.0986

)]
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Fig. 1.6 Best fit distributions for C, k, a, b, and τ (a) Log-logistic distribution fit for C data (b)
Normal distribution fit for k data (c) Generalized extreme value distribution fit for a data (d)
Weibull distribution fit for b data (e) Extreme value distribution fit for τ data

1.2.3 Wind Load Probability Table

As explained at the end of Sect. 1.2.1, the 1-year fatigue damage is determined by
the design vector d and random parameters C, k, a, b, and τ. However, the theoretical
equation to calculate the 1-year fatigue damage, as shown in Eq. (1.16), cannot be
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explicitly expressed as a function of d, C, k, a, b, and τ, due to the complexity
of the joint PDF and 10-min fatigue damage calculation for wind turbine systems.
Thus, in real damage calculation, the double integration in Eq. (1.16) is numerically
calculated using the Riemann integral as

D1year (d, C, k, a, b, τ )

≈ 52560
m∑

i=1

n∑

j=1

P
i,j
V I

(
vi10, i

j

10;C, k, a, b, τ
)
D
i,j

10

(
d, vi10, i

j

10

) (1.17)

where the probability of V10 and I10 being in a small cell can be calculated as

P
i,j
V I

(
vi10, i

j

10;C, k, a, b, τ
)

= fV I

(
vi10, i

j

10;C, k, a, b, τ
)
v10i10 (1.18)

Here, v10 and i10 are the intervals discretizing ranges of V10 and I10,
respectively. In this study, the ranges of V10 and I10 are evenly discretized. The
numbers of selected V10 and I10 are m and n, respectively. vi10 is the value of V10 at
the center of ith interval in the V10 direction. Therefore, vi10 = v1

10 + (i − 1)v10.

Similarly,ij10 is the value of I10 at the center of the jth interval in the I10 direction.

Hence, ij10 = i110 + (j − 1)i10. fVI is the joint probability density function (PDF)
of V10 and I10.

In this study, a large range of V10 and I10 has been considered to examine the
fatigue damage considering all probable wind conditions. Moriarty et al. applied the
cut-in wind speed and the cut-out wind speed as the lower bound and upper bound,
respectively, of 10-min segments in 1-year fatigue simulation, and the calculated
fatigue load cycles agreed well with those obtained by a long-term extrapolation
method in their work (Moriarty et al. 2004). The turbines were assumed to operate
100% of the time between cut-in and cut-out wind speed with 100% availability
(Moriarty et al. 2004). Even though the unsteadiness when wind speed is larger than
cut-out wind speed can cause large fluctuating loads, the probability of occurrence of
such extreme wind conditions is very small, which makes little fatigue contribution
in long term. The damage due to extreme wind condition may be better addressed by
wind turbine extreme analysis, which is beyond the scope of this study. In this study,
the lower bound and upper bound of V10 are set to be the cut-in wind speed of 3 m/s
and cut-out wind speed of 25 m/s, respectively (Jonkman et al. 2009). The lower
bound and upper bound of I10 are set to be 0.02 and 1, respectively. The 10-min
fatigue analyses for a wind turbine system, e.g., blade and gearbox, are run over the
range of V10 between 3 m/s and 25 m/s in 2 m/s increments and the range of I10
between 0.02 and 1 in 0.02 increments. Therefore, the number of V10 and I10 are 12
and 50, respectively (i.e., m = 12 and n = 50 in Eq. (1.17)). There are 600 different
wind conditions in total. All the wind conditions are listed in Table 1.2.

At each wind condition, a wind load probability P i,jV I is calculated using Eq.

(1.18), and a 10-min fatigue damage Di,j10 is calculated using a fatigue analysis
procedure for a wind turbine system. In this way, a 12-by-50 wind load probability
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Table 1.2 Selected 600 wind conditions
���������V10 (m/s)

I10
0.02 0.04 0.06 . . . 0.96 0.98 1

3 3, 0.02 3, 0.04 3, 0.06 . . . 3, 0.96 3, 0.98 3, 1
5 5, 0.02 5, 0.04 5, 0.06 . . . 5, 0.96 5, 0.98 5, 1
7 7, 0.02 7, 0.04 7, 0.06 . . . 7, 0.96 7, 0.98 7, 1
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

21 21, 0.02 21, 0.04 21, 0.06 . . . 21, 0.96 21, 0.98 21, 1
23 23, 0.02 23, 0.04 23, 0.06 . . . 23, 0.96 23, 0.98 23, 1
25 25, 0.02 25, 0.04 25, 0.06 . . . 25, 0.96 25, 0.98 25, 1

Table 1.3 Wind load
probability table

����V10

I10
i110 i210 · · · i50

10

v1
10 P

1,1
V I P

1,2
V I · · · P

1,50
V I

v2
10 P

2,1
V I P

2,2
V I · · · P

2,50
V I

.

.

.
.
.
.

.

.

.
. . .

.

.

.

v12
10 P

12,1
V I P

12,2
V I · · · P

12,50
V I

Table 1.4 Ten-minute
fatigue damage table

����V10

I10
i110 i210 · · · i50

10

v1
10 D

1,1
V I D

1,2
V I · · · D

1,50
V I

v2
10 D

2,1
V I D

2,2
V I · · · D

2,50
V I

.

.

.
.
.
.

.

.

.
. . .

.

.

.

v12
10 D

12,1
V I D

12,2
V I · · · D

12,50
V I

table and a 12-by-50 10-min fatigue damage table can be constructed. For brevity,
the wind load probability table and the 10-min fatigue damage table are symboli-
cally shown in Tables 1.3 and 1.4, respectively.

To facilitate understanding of the two types of tables, a typical wind load
probability table and a typical 10-min fatigue damage table are illustrated by 3-
D bar charts in Figs. 1.7 and 1.8, respectively. In Fig. 1.7, the C, k, a, b, and τ used
to generate the illustrated wind load probability table are C = 6.5856, k = 2.5178,
a = 3.1570, b = 0.4123, and τ = 0.6826. Figure 1.8 uses 10-min fatigue damages
calculated at a node-section point randomly selected from the blade model (Hu
et al. 2016b). As shown in Fig. 1.7, the large probabilities are concentrated at
mild wind conditions, e.g., V10 < 11 m/s, I10 < 0.3. For extreme wind conditions,
the probabilities are much smaller than those corresponding to mild wind load
conditions. The reason these extreme wind conditions are also considered is that the
10-min fatigue damages under extreme wind conditions are often much larger than
those under mild wind conditions. As shown in Fig. 1.8, the 10-min fatigue damage
increases exponentially as V10 and I10 increase. Hence, it is necessary to include all
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Fig. 1.7 A 3-D bar chart of a wind load probability table

Fig. 1.8 A 3-D bar chart of a 10-min fatigue damage table

the wind conditions when calculating the 1-year fatigue damage. A 3-D bar chart of
the multiplication of the wind load probability table (Fig. 1.7) and the 10-min fatigue
damage table (Fig. 1.8) are shown in Fig. 1.9. As shown in Fig. 1.9, in this case the
distribution of the multiplication is more close to that of the wind load probability
table. The large multiplication values are clustered at the mild wind conditions. The
reason is that the magnitude of probability at the extreme wind conditions is much
smaller than that at the mild wind conditions. For example, PVI = 0.0453 when
V10 = 7 m/s, I10 = 0.22, while PVI = 2.27E − 36 when V10 = 17 m/s, I10 = 1
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Fig. 1.9 A 3-D bar chart of the multiplication of a wind load probability table and a 10-min fatigue
damage table

in Fig. 1.7. Even though the D10 is relatively large at the extreme wind conditions,
the multiplication of the probability and the D10 is smaller at the extreme wind
conditions than that at the mild wind conditions in this case.

In cases that wind load variation in a large spatiotemporal range is not considered,
e.g., deterministic design optimization (DDO) only considering the average wind
load effect, a mean wind load probability table is generated using the Monte Carlo
simulation (MCS) method. The main procedure to calculate the mean wind load
probability table is listed below.

1. Generate one million MCS sample sets of (C, k, a, b, τ) based on the identified
distributions in Table 1.1. Assume C, k, a, b, and τ are independent.

2. Create one million joint PDFs of V10 and I10 based on the MCS samples of
(C, k, a, b, τ). The joint PDF of V10 and I10 is shown in Eq. (1.15).

3. Create a wind load probability table based on each joint PDF of V10 and I10. The
probability value P i,jV I in each cell (corresponding to each combination of vi10

and ij10 in the probability table) is calculated using Eq. (1.18). Thus, one million
wind load probability tables can be created using one million joint PDFs of V10
and I10.

4. Calculate an average value P
i,j

V I of one million probability values corresponding

to the same wind condition vi10 and ij10. Then use the average value as the
probability value in the cell of the mean wind load probability table. Similarly,
the mean probability values corresponding to other wind conditions can be
obtained. Finally, the mean wind load probability table using one million MCS
samples of (C, k, a, b, τ) is obtained.
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Fig. 1.10 3-D bar chart of the mean wind load probability table

The generated mean wind load probability table based on the identified dis-
tributions of (C, k, a, b, τ) in Table 1.1 is schematically shown in Fig. 1.10. As
shown in Fig. 1.10, the largest probability value 0.0218 corresponds to V10 = 7 m/s
and I10 = 0.1. Each cell in the mean wind load probability table contains an
averaged probability of one wind load considering the wind load variation in a large
spatiotemporal range. The mean wind load probability table essentially represents
the average wind load distribution of the variable wind load at large spatiotemporal
range.

1.3 Reliability Analysis of Wind Turbine Systems

This section describes the reliability analysis method for wind turbine systems
under dynamic wind load uncertainty. The Monte Carlo simulation (MCS) method
is used to simulate uncertain wind load based on the developed dynamic wind
load uncertainty model. The reliability analysis method using MCS can estimate
the probability that a wind turbine could survive 20 years of target lifespan. The
reliability analyses at an initial design and a deterministic optimal design have been
demonstrated. In addition, results and discussion are provided in this section. The
overall procedure to carry out reliability analysis for a given design under wind load
uncertainty is shown in Fig. 1.11.
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Fig. 1.11 Flowchart of reliability analysis of a wind turbine design under dynamic wind load
uncertainty

1.3.1 Reliability Analysis Using Monte Carlo Simulation

In this study, the wind load condition table includes 600 wind load conditions and
does not change, as shown in Table 1.2. Thus, the 1-year fatigue damage calculation
(Eq. (1.17)) depends only on the wind load probability table and the 10-min
fatigue damage table. Furthermore, the wind load probability table is determined
by (C, k, a, b, τ), and the 10-min fatigue damage table is determined only by design
d. Therefore, for a given design d, the 1-year fatigue damage is a function of (C, k,
a, b, τ) only. Finally, considering the wind load variation in a 20-year range, 20-year
fatigue damage at a given design d can be calculated as

D20year (d; C,k, a,b, τ) =
20∑
t=1
Dt1year

(
d, Ct , kt , at , bt , τ t

)

= 52560
20∑
t=1

12∑
i=1

50∑
j=1

P
i,j
V I

(
vi10, i

j

10;Ct , kt , at , bt , τ t
)
D
i,j

10

(
d, vi10, i

j

10

)

(1.19)

where random vectors C, k, a, b, and τ contain 20 sets of (C, k, a, b, τ) as C = [C1,
C2, . . . , C20], k = [k1, k2, . . . , k20], a = [a1, a2, . . . , a20], b = [b1, b2, . . . , b20],
and τ = [τ1, τ2, . . . , τ20]. Hence, there are 100 random parameters in Eq. (1.19).
In this study, the random vectors are assumed to be independent. The 20 random
parameters in one random vector are also assumed to be independent, which means
last year’s wind load is independent from this year’s.
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In Eq. (1.19), the 20-year fatigue damage D20year is also random because the
random vectors C, k, a, b, and τ are random. Consequently, a fatigue failure
(D20year > 1) in 20 years can be measured with its probability. The probability
of fatigue failure cannot be calculated using a sensitivity-based reliability method
such as the first-order reliability method (FORM) or the second-order reliability
method (SORM) because the sensitivity (gradient) of D20year is not available due to
its implicit feature. In this study, the probability of fatigue failure is calculated using
a sampling-based reliability method that uses MCS. Using Eq. (1.19) and MCS, the
probability of fatigue failure is calculated as

P (Fatigue Life < 20 years) = P
(
D20year (d; X) > 1

)

=
∫

D20year (d,X)>1
fX (x) dx

=
∫

RN

I�F (x) fX (x) dx

∼= 1

NMCS

NMCS∑

i=1

I�F

[
x(i)
]

(1.20)

where X = [C, k, a, b, τ] and x(i) is the ith realization of X. It is worth noting that
the realization x(i) is randomly generated based on the PDFs of (C, k, a, b, τ) in
Table 1.1. Each realization includes 20 sets of (C, k, a, b, τ). NMCS is the number
of realizations for MCS. �F is the failure domain such that D20year(d; X) > 1, and
I�F (· ) is an indicator function defined as

I�F (x) =
{

1, for x ∈ �F
0, otherwise

. (1.21)

Though the reliability analysis calculation is straightforward, there are two points
that need to be noted. One is that the uncertainty of design variables (e.g., laminate
thicknesses of wind turbine blades) due to manufacturing has not been considered in
the following reliability analysis examples. Instead, the design variable uncertainty
will be discussed in Sect. 1.4. The other is that each MCS realization, which includes
20 sets of (C, k, a, b, τ), represents the wind load variation in 20 years.

1.3.2 Reliability Analysis Examples, Results, and Discussion

The reliability analyses of fatigue in a wind turbine blade at an initial design and
an optimal design obtained from the deterministic design optimization (DDO) (Hu
et al. 2016a) have been carried out in this section. The blade model at the DDO
optimum design, which is used for the reliability analysis, has the same laminate
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schedule as the initial design. The detailed laminate schedule, composite material
distribution, and blade part composition of the initial and DDO optimum designs
are seen in (Hu et al. 2016a, b).

The basic procedure of reliability analysis is explained briefly as follows. The
reliability analyses are carried out for all the 60,954 node-section points (Hu et
al. 2016a). Fifty thousand realizations of C, k, a, b, and τ have been generated for
reliability analysis. As explained earlier, each realization is 20 sets of (C, k, a, b, τ).
Then, 50,000 20-year fatigue damages have been calculated using Eq. (1.19) at
each node-section point. The probability of fatigue life smaller than 20 years is
then calculated by Eq. (1.20). The largest probability of failure among node-section
points associated with one finite element (FE) node is selected as the probability
of failure for that FE node. It is noted that all the 10-min fatigue damage tables
for 60,954 node-section points have already been obtained in the DDO procedure
(Hu et al. 2016a). In this example, the probability tables for 50,000 realizations are
generated, and the generation requires only small computational cost. Therefore,
the reliability analysis considering only wind load uncertainty is computationally
affordable.

The reliability analysis has been carried out on the Linux machine (Dell Pow-
erEdge R720 single server, 8 quad-core Xeon E5–2690 CPUs-32 cores, 2.9 GHz,
256 GB of RAM). Ten cores were used in parallel. Given the 10-min fatigue damage
tables of all 60,954 node-section points, the computational time for reliability
analyses is about 7 h. It is worth noting that the computational time for generating
the 10-min fatigue damage tables of all the node-section points using the same
machine is about 14 h. Thus, the total computational time would be about 21 h
for a given blade design using the machine.

The probability of fatigue failure contours of the initial design and the DDO
optimum design is shown in Fig. 1.12. As shown in Fig. 1.12a, the probability of
failure of the initial design is 100%, especially at the rear parts of the aft shear web,
forward shear web, and spar cap. The reason for the high probability of failure may
be that the initial design of these parts is too small, as these parts often endure much
larger aerodynamic wind loads than the root part. After the DDO procedure, the
design variables associated with the rear parts of the aft shear web, forward shear
web, and spar cap are increased by 62.8%, 76.5%, and 54%, respectively (Hu et al.
2016a). The maximum probability of failure of the DDO optimum design is reduced
to 49.9%, which occurs at the leading edge. Other areas with high probability of
failure are isolated on the root of the blade as shown in Fig. 1.12b.

The reliability analysis results show that there is a significant reduction of the
probability of fatigue failure from 100% at the initial design to 49.9% at the
DDO optimum design. This indicates that the DDO procedure indeed reduces the
probability of failure. However, the probability of failure of the DDO optimum
design is still up to 49.9%, which obviously does not satisfy the target reliability
requirement. Thus, the reliability-based design optimization (RBDO) is necessary
to further improve the fatigue reliability of the wind turbine systems as explained in
the following section.
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Fig. 1.12 Probability of failure contour of (a) the initial design and (b) the DDO optimum design

1.4 Reliability-Based Design Optimization of Wind Turbine
Systems

The fundamental theory of a sampling-based RBDO method provided in this section
lays the foundation to design reliable and economic wind turbine systems in which
design sensitivities are often complicated, nonlinear, and implicit. One wind turbine
system, rotor blade, is implemented into the RBDO procedure to assure the target
reliability under dynamic wind load uncertainty and manufacturing uncertainty.
The RBDO case study is elaborated in detail including random design variables,
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objective function, probabilistic constraints, and RBDO formulation. The RBDO
optimum design obtained using the developed procedure can achieve the target
97.725% reliability for a designed lifespan of 20 years.

1.4.1 Sampling-Based RBDO Theory

1.4.1.1 Reliability Analysis

Reliability analysis is a procedure to calculate the probability of failure of a
performance measure. The probability of failure, denoted by PF, can be calculated
using a multidimensional integral as (Madsen et al. 2006)

PF ≡ P [G(X) > 0] =
∫

G(X)>0
fX (x) dx (1.22)

where P[•] represents a probability measure, X = [X1, X2, . . . , XN]T is an
N-dimensional vector of input random variables Xi, G(X) is a performance measure
function such that G(X) > 0 is defined as failure, and fX(x) is a joint probability
density function (PDF) of the input random variables. For real engineering
problems, it is very difficult to evaluate Eq. (1.22) analytically, because the type
of joint PDF is usually not Gaussian (multivariate normal distribution), and the
performance measure G(X) is nonlinear and implicit. To solve this kind of problem,
there are two approaches: sensitivity-based reliability analysis and sampling-based
reliability analysis. The sensitivity-based reliability analysis needs to transform the
random variable vector X, which follows a non-Gaussian PDF, into independent
standard normal space (U-space) and approximate the nonlinear performance
measure by Taylor series expansion in the U-space. The Taylor series expansion
requires the sensitivity (gradient) of the performance measure G(X), while the wind
turbine performance is a complicated, nonlinear, and implicit function. Thus, it is
not suitable to use the sensitivity-based reliability analysis method for the reliability
analysis of wind turbine systems. In contrast, the sampling-based reliability analysis
does not require the sensitivity of the performance. Instead, it directly uses the
Monte Carlo simulation (MCS) method, which applies samples drawn from the
input joint PDF fX(x). Thus, sampling-based reliability analysis is used for the
reliability analysis method of wind turbine systems and is explained as follows.

1.4.1.2 Sampling-Based Reliability Analysis

The sampling-based reliability analysis calculates the probability of failure in Eq.
(1.22) by applying the MCS method as (Lee et al. 2011a, b)
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PF =
∫

G(X)>0
fX (x) dx =

∫

RN

I�F (x) fX (x) dx

∼= 1

NMCS

NMCS∑

i=1

I�F

[
x(i)
] (1.23)

where x(i) is the ith realization of X (ith MCS sample), NMCS is the number of MCS
samples, �F is the failure domain such that G(X) > 0, and I�F (· ) is an indicator
function defined as Eq. (1.21).

Although sampling-based reliability analysis does not require the sensitivity
of the performance measure, the accuracy of the calculated probability of failure
depends on the number of MCS samples NMCS. To calculate an accurate probability
of failure, a large number of MCS samples are required. Based on the 95%
confidence interval of the estimated probability of failure, the percentage error can
be defined as (Haldar and Mahadevan 2000)

ε% =
√ (

1 − PT arF

)

NMCS × PT arF

× 200% (1.24)

where NMCS is the number of MCS samples and PT arF is the target probability
of failure. Equation (1.24) shows that NMCS should be increased to maintain the
accuracy as the target probability of failure reduces. Because real engineering
problems may involve expensive computational time, a large number of MCS
samples could be unaffordable. In order to solve the computational issue, surrogate
models are often used for sampling-based reliability analysis, as well as sampling-
based RBDO.

1.4.1.3 Sampling-Based RBDO

The general formulation of an RBDO problem can be expressed as

minimize Cost (d)

subject to P
[
Gj (X) > 0

] ≤ PT arFj
, j = 1, . . . , NC

dL ≤ d ≤ dU , d ∈ R
NDV and X ∈ R

N

(1.25)

where X is the N-dimensional random variable vector, d is the NDV-dimensional
random design variable vector, Gj is the jth constraint function, P[Gj(X) >0] is
the probability of failure of the jth constraint, PT arFj

is the target probability of
failure of the jth constraint, and NC is the number of constraints. The different
dimensionalities of the design variable vector d and X is due to the fact that X
contains random parameters, such as C, k, a, b, and τ, in addition to the random
design variables. It is noted that a random design variable di is the mean μj of
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the corresponding random variable Xj. Also, standard deviation σ j of Xj is linearly
changing as random design variable di changes in this study.

In sampling-based RBDO, the probability of failure used in a probabilistic
constraint is directly calculated using Eq. (1.23). The design sensitivity of the
probabilistic constraint is derived using the score function and the MCS method
(Lee et al. 2011a, b). The design sensitivity is calculated during estimation of
the probability of failure using the same MCS samples and constraint function
evaluations. Thus, no extra MCS samples are required for calculating the design
sensitivity.

Before derivation of the design sensitivity, the following four regularity condi-
tions should be satisfied (Rubinstein and Shapiro 1993; Rahman 2009).

1. The joint PDF fX(x;μ,σ) is continuous.
2. The mean μi ∈ Mi ⊂ R, i = 1, . . . , N, where Mi is an open interval on R.
3. The partial derivative ∂fX(x; μ, σ)/∂μi exists and is finite for all x and μi. In

addition, PF(μ) is a differentiable function of μ.
4. There exists a Lebesgue integrable dominating function r(x) for all μ such that

∣∣∣∣h (x)
∂fX (x;μ,σ)

∂μi

∣∣∣∣ ≤ r (x) (1.26)

where h(x) is a general function and can be I�F (x).
With the four conditions satisfied, taking the partial derivative of Eq. (1.23) with

respect to di yields

∂PF (μ)

∂di
= ∂

∂di

∫

RN

I�F (x) fX (x;μ,σ) dx

=
∫

RN

I�F (x)
∂fX (x;μ,σ)

∂di
dx

=
∫

RN

I�F (x)
∂ ln fX (x;μ,σ)

∂di
fX (x;μ) dx

= E

[
I�F (x)

∂ ln fX (x;μ,σ)

∂di

]

(1.27)

The partial derivative of the log function of the joint PDF in Eq. (1.27) with
respect to di is called the first-order score function for di and is denoted as

s
(1)
di
(x;μ,σ) ≡ ∂ ln fX (x;μ,σ)

∂di
(1.28)

As shown in Eq. (1.27), the design sensitivity using the first-order score function
does not depend on the sensitivity of the constraint function G(X). Instead, it can
be analytically obtained using the score function in Eq. (1.28). The reason is well
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Fig. 1.13 Design sensitivity
for sampling-based RBDO

illustrated in Fig. 1.13. As shown in Fig. 1.13, the horizontal axis is the random
vector, and the vertical axis represents the jth constraint Gj(X). The failure region
of the constraint is set as Gj(X) > 0, and the gray area in Fig. 1.13 represents
the probability of failure. When the random design variable d changes in the
optimization process, the constraint function Gj(X) holds its position, whereas the
joint PDF fX(x; μ, σ) moves along with the random design variable. Consequently,
the gray area, i.e., the probability of failure, changes as the random design variable
changes. The rate of the probability of failure change is the same as the rate of the
gray area change, which depends on the shape (slope) of the PDF on the limit state.
The shape (slope) of the PDF on the limit state is related to the score function. This
is the reason that the design sensitivity of the probabilistic constraint with respect
to random design variable is related to the score function, not the sensitivity of the
constraint function in Eq. (1.27).

In this study, the random design variables and random parameters are assumed
to be independent. For statistically independent random variables, the first-order
score function for di in Eq. (1.28) can be expressed with the marginal PDF as
fXj

(
xj ;μj , σj

)
as

s
(1)
di
(x;μ,σ)≡ ∂ ln fX (x;μ,σ)

∂di
=∂ ln fXj

(
xj ;μj , σj

)

∂μj
+ ∂σj
∂μj

∂ ln fXj
(
xj ;μj , σj

)

∂σj
(1.29)

where the random design variable di corresponds to the random variable Xj. If the
random variables are statistically correlated, the score function needs to consider
the correction between random variables. Noh et al. used a copula to consider the
correlation between two random variables in RBDO problems (Noh et al. 2009),
and Lee et al. derived the first-order score function of mean μj for both independent
and correlated random variables (Lee et al. 2011a). Cho et al. developed the first-
order score functions for fixed coefficient of variation (CoV) problems for both
independent and correlated random variables (Cho et al. 2015).
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1.4.2 RBDO of Composite Wind Turbine Blades

1.4.2.1 Random Design Variables

In RBDO, the uncertainty of composite laminate thickness due to the manufacturing
process has been considered. Three assumptions are made for uncertainty of
laminate thickness due to the manufacturing variability, as explained below.

1. The variability of laminate thickness is assumed to follow normal distribution.
2. The coefficient of variation (CoV) of the laminate thickness is assumed to be the

same at different designs. Therefore, standard deviation of the laminate thickness
changes linearly as design (thickness) changes. The CoV of the two composite
materials used in the blade, QQ1 and P2B, are referred from the SNL/MSU/DOE
composite material fatigue database (Mandell and Smaborsky 2014).

3. The randomness of laminate thickness in seven parts of the blade is assumed to
be independent. Thus the laminate thicknesses in seven parts are represented by
seven independent random variables, respectively.

The current RBDO process starts from a DDO optimum design obtained
previously (Hu et al. 2016a). Based on the third assumption above, seven random
design variables are used in RBDO. As we consider the manufacturing variability,
the laminate thickness becomes random. A random variable transformation is used
to bridge the seven RBDO random design variables and the twelve random thickness
variables (Hu et al. 2016a). In summary, the properties of random design variables
for RBDO are listed in Table 1.5, where μL, μO, and μU are the normalized
lower bound, mean, and upper bound of the random design variables in RBDO,
respectively. μi, i = 1, 2, . . . , 7 are RBDO design variables, each of which is the
mean of random design variables.

Table 1.5 Properties of random design variables (Hu et al. 2016a)

Random
design
variable Distribution μL μO μU CoV Corresponding part

Composite
material

μ1 Normal 0.5010 1 2.0039 0.0323 Root QQ1
μ2 Normal 0.5707 1 1.7988 0.0323 Forward shear web QQ1
μ3 Normal 1.0000 1 1.8184 0.0323 Aft shear web QQ1
μ4 Normal 1.0000 1 4.0000 0.0323 Tip QQ1
μ5 Normal 0.4230 1 1.6919 0.0323 Leading edge QQ1
μ6 Normal 0.3764 1 1.5057 0.0323 Trailing edge QQ1
μ7 Normal 0.3898 1 1.1695 0.0203 Spar cap P2B
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1.4.2.2 Objective Function

The normalized total cost of composite materials that are used in the blade is set as
the objective function, which is expressed as

C (μ) =
(

4.18 × 1000 ×
6∑

i

M0
i

μi

μ0
i

+ 11.70 × 1000 ×M0
7
μ7

μ0
7

)/
CostDDO

(1.30)

where M0
i (unit, ton) is the mass of the ith part at the RBDO initial design, i.e., the

DDO optimum design; μ0
i is the normalized RBDO initial design corresponding to

the ith part;μi is the current design corresponding to the ith part; i = 1, 2, . . . , 7; and
CostDDO is the RBDO initial cost, i.e., the cost of the DDO optimum design, which
is $125,605 obtained in DDO. According to (TPI Composites 2003), the material
costs of QQ1 and P2B are $4.18/kg and $11.70/kg, respectively. It is worth noting
that the cost of the carbon/glass-hybrid-fiber-reinforced laminate P2B is 2.8 times
more expensive than that of QQ1, which is a glass-fiber-reinforced laminate. The
objective function in Eq. (1.30) is minimized in the RBDO process.

1.4.2.3 Probabilistic Constraints

The probabilistic constraint is the probability of fatigue failure (fatigue life smaller
than 20 years) at a selected hotspot being smaller than a target probability of
failure P tarF =2.275%. The hotspots for RBDO are the node-section points where
probability of fatigue failure is considered as the RBDO constraints. In this study,
the event that fatigue life is smaller than 20 years fatigue damage is larger than 1.
Thus, the 20-year fatigue damage is calculated first. Considering the manufacturing
variability and wind load uncertainty, the 20-year fatigue damage can be calculated
as

D20year (X,C,k, a,b, τ) =
20∑

t=1

Dt1year
(
X, Ct , kt , at , bt , τ t

)

= 52560
20∑

t=1

12∑

i=1

50∑

j=1

P
i,j
V I

(
vi10, i

j

10;Ct , kt , at , bt , τ t
)

D
i,j

10

(
X, vi10, i

j

10

)

(1.31)

where X is a random thickness vector and random vectors C, k, a, b, and τ contain
20 sets of (C, k, a, b, τ ) as C = [C1, C2, . . . , C20], k = [k1, k2, . . . , k20], a = [a1,
a2, . . . , a20], b = [b1, b2, . . . , b20], and τ = [τ 1, τ 2, . . . , τ 20]. The realizations of
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random vectors can be randomly drawn from the obtained PDFs of C, k, a, b, and τ
(Table 1.1 in Sect. 1.2.2).

In this study, the probability of fatigue failure is calculated using a sampling-
based reliability analysis introduced in Sect. 1.4.1. Using Eq. (1.31) and MCS, the
probability of fatigue failure is calculated as

P (Fatigue Life < 20 years) = P
(
D20year (Y) > 1

) =
∫

D20year (Y)>1
fY (y) dy

=
∫

RN

I�F (y) fY (y) dy ∼= 1

NMCS

NMCS∑

i=1

I�F

[
y(i)
]

(1.32)

where Y = [X, C, k, a, b, τ] and y(i) is the ith realization of Y. It is worth noting that
the realization y(i) is randomly generated based on the PDF of a random thickness
vector X and the PDFs of random parameters (C, k, a, b, τ ) in the dynamic wind load
uncertainty model. The mean of the random thickness vector X is the random design
vector μ in RBDO. Each realization y(i) includes 20 sets of (C, k, a, b, τ ), which
represent the wind load variation in 20 years. NMCS is the number of realizations
for MCS. �F is the failure domain such that D20year(Y) > 1, and I�F is an indicator
function defined as

I�F (y) =
{

1, for y ∈ �F
0, otherwise

(1.33)

By using Eqs. (1.31) and (1.32), the probabilistic constraints can be expressed as

P
(
D
j

20year (Y) > 1
)

≤ P tar
Fj

= 2.275%, j = 1, . . . , NC (1.34)

where NC is the number of probabilistic constraints.
In order to accurately carry out RBDO with affordable computational time,

two issues need to be addressed. The first issue is that the hotspots for RBDO
probabilistic constraints need to be carefully selected. By using enough hotspots,
the RBDO optimum design obtained in the future could guarantee that all the node-
section points in the blade model satisfy the 2.275% target probability of failure
requirement. However, too many hotspots increase the computational cost. The
second issue is that the 20-year fatigue damage in Eq. (1.31) needs to be accurately
and efficiently calculated, so that the probability of failure calculation in Eq. (1.32)
will be accurate and efficient. Three hotspot selection criteria are developed to
resolve the first issue, and the second issue that the 20-year fatigue damage needs
to be accurately and efficiently calculated is well addressed by using local surrogate
models of 10-min fatigue damages (Hu et al. 2016b).
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1.4.2.4 RBDO Formulation

In summary, the RBDO problem can be formulated as

minimize C (μ)

subject to P
(
D
j

20year (Y) > 1
)

≤ P tar
Fj

= 2.275%, j = 1, . . . , n

μL ≤ μ ≤ μU , μ ∈ R
7 and Y ∈ R

107

(1.35)

where Y is the 107-dimensional random vector including seven random thickness
variables and 20 sets of (C, k, a, b, τ ), μ is the seven-dimensional random design
variable vector, C(μ) is the normalized cost as shown in Eq. (1.30), and Dj20year is

the 20-year fatigue damage for the jth probabilistic constraint P(Dj20year (Y) > 1)
≤ P tarFj

. Figure 1.14 shows a schematic picture of the RBDO process of composite
wind turbine blades.

1.4.2.5 RBDO Results and Discussion

The RBDO process has been carried out on the Linux machine (Dell PowerEdge
R720 single server, 8 quad-core Xeon E5–2690 CPUs-32 cores, 2.9 GHz, 256 GB
of RAM). Fifteen cores were used in parallel. The entire RBDO process has 12
design iterations, 12 line searches, and 4 episodes of hotspot checking. Each design
iteration or line search requires one set of local surrogate models and one reliability
analysis. Thus, 25 sets of local surrogate models have been generated, including one
set for the RBDO initial design. Accordingly, there are 25 reliability analyses for the
RBDO initial design and designs at 12 iterations and 12 line searches. It takes about
16 h to generate one set of local surrogate model and 3 h for one reliability analysis.
The computational time is about 15 h for checking hotspots at one design. The total
computational time for the entire RBDO process is about 535 h (22.3 days).

Table 1.6 provides detailed histories of random design variables, normalized cost
(objective function), true cost, mass, and the maximum probability of failure. As
shown in Table 1.6, the maximum probability of fatigue failure has been reduced
from 50.06% at the RBDO initial design to 2.28% at the RBDO optimum design,
while the cost is only increased by 3.01%. In spite of the little cost increase, the
mass of the RBDO optimum design is increased by 10.95% compared to that of the
RBDO initial design. The reason for the large increase in mass is that more cheap
but heavy composite material, QQ1, is applied at the RBDO optimum design than
at the RBDO initial design. Meanwhile, the expensive composite material, which is
P2B corresponding to the random design variable μ7, at the RBDO optimum design
is used 13.33% less than at the RBDO initial design. The hotspots are checked at
four designs, which correspond to iterations 0, 4, 8, and 12 highlighted in bold in
Table 1.6.
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Fig. 1.14 RBDO of composite wind turbine blades for fatigue life under dynamic wind load
uncertainty. (a) Dynamic wind load uncertainty and manufacturing variability modeling; (b)
Deterministic blade fatigue analysis procedure; (c) RBDO procedure (see next page)
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Fig. 1.14 (continued)

Table 1.7 provides the history of probability of failure of each probabilistic
constraint. The maximum probability of failure at each iteration is highlighted
in bold. As shown in Table 1.7, the probabilistic constraint with the maximum
probability of failure is changing as the design iteration proceeds, which indicates
the most probable fatigue failure location is changing as the design changes. The
probabilistic constraint 9 has no results of probability of failure at iterations 0, 1,
2, and 3 because the corresponding hotspot was not identified until checking the
hotspots at the fourth design iteration. The largest probability of failure at the RBDO
optimum design occurs at the probabilistic constraint 3. In order to distinguish the
probabilities of failure at the last iteration, three decimal places are used for the
probabilities of failure at the last iteration.

Table 1.8 compares the laminate thickness, true cost, mass, and probability of
failure of three designs: the initial design, the DDO optimum design, and the RBDO
optimum design. As shown in Table 1.8, at the RBDO optimum design, the laminate
thicknesses t4, t7, and t8 corresponding to forward shear panels 10–13, aft shear
web panels 9–12, and aft shear web panels 13–16, respectively, are significantly
increased by 155.75%, 221%, and 100%, respectively, compared to those at the
initial design. Along the direction from root to tip, the blade becomes thinner and
thinner, which makes the two shear webs inside the blade shell decrease the height
significantly close to the blade tip. Thus, a much thicker rear part of the two shear
webs is necessary in order to keep the shear webs stiff, which makes the blade
more fatigue reliable. This explains why the laminate thicknesses t4, t7, and t8
are significantly increased. Table 1.8 also shows that the laminate thicknesses, for
example, t5 and t6, are decreased from the initial design to the DDO optimum design
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Table 1.7 History of probability of failure of each probabilistic constraint

Probability of 

Failure (%)

Probabilistic Constraints

1 2 3 4 5 6 7 8 9 10

Iterations

0 0 0.36 5.18 0 50.06 49.10 18.75 49.37 48.74

1 0 0.22 3.05 0 1.52 12.78 7.97 12.47 12.38

2 0 0.17 2.55 0 0.02 5.86 4.02 4.76 4.91

3 0 0.18 2.52 0 0.00 3.29 2.81 2.80 2.99

4 0 0.15 2.19 0 0.00 2.39 2.22 2.40 22.22 2.41

5 0 0.16 2.25 0 0.01 2.30 2.27 0.56 7.75 2.42

6 0 0.16 2.26 0 0.02 2.29 2.27 0.21 3.67 2.45

7 0 0.14 2.25 0 1.62 2.37 2.25 0.03 0.66 2.93

8 0 0.15 2.51 0 2.39 0.52 2.30 0.02 0.81 2.28

9 0 0.15 2.40 0 2.39 0.66 2.24 0.05 1.58 2.37

10 0 0.15 2.31 0 2.30 0.53 2.23 0.07 2.15 2.29

11 0 0.15 2.30 0 2.25 0.34 2.27 0.08 2.27 2.28

12 0 0.144 2.281 0 2.262 0.304 2.279 0.076 2.265 2.277

but increased from the DDO optimum design to the RBDO optimum design, in
order to satisfy the target 2.275% probability of failure requirement. The laminate
thickness in spar cap, which is made of expensive composite material P2B, is
decreased by 13.51% from the DDO optimum design to the RBDO optimum design
in order to minimize the cost.

The mass distributions of the initial design, the DDO optimum design, and the
RBDO optimum design have been studied. Table 1.9 compares the mass of each
part in the blade model. As shown in Table 1.9, the DDO procedure significantly
increases the mass of the trailing edge and the spar cap by 24.31% and 53.91%,
respectively, in order to satisfy the 20-year fatigue life constraint. The RBDO
procedure significantly increases the mass of the forward shear web and the aft shear
web by 46.38% and 62.20%, respectively, while the mass of the spar cap is reduced
by 13.33% through the RBDO procedure. This finding indicates that the two shear
webs play important role in fatigue reliability of the blade. By enhancing the two
shear webs, the thickness of the spar cap, which is made of expensive composite
material P2B, can be reduced in order to decrease the total cost. The total mass of
the DDO optimum design and the RBDO are increased by 17.88% and 30.78%,
respectively, comparing that of the initial design. The reasons of the significant
increment of the total mass may be that:
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Table 1.8 Comparison of the initial design, the DDO optimum design, and the RBDO optimum
design

Laminate
thickness (mm)

Corresponding
panel Initial design

DDO optimum
design

RBDO
optimum design

t1 Root 4 3.99 4.52
t2 Forward shear

panels 1–5
4 3.50 5.50

t3 Forward shear
panels 6–9

4 4.45 6.99

t4 Forward shear
panels 10–13

4 6.51 10.23

t5 Aft shear web
panels 1–4

4 2.00 3.64

t6 Aft shear web
panels 5–8

4 2.00 3.64

t7 Aft shear web
panels 9–12

4 7.06 12.84

t8 Aft shear web
panels 13–16

4 4.40 8.00

t9 Tip 4 2.00 2.60
t10 Leading edge 4 4.73 5.27
t11 Trailing edge 4 5.31 5.80
t12 Spar cap 2.5 3.85 3.33
True cost ($) 95494.42 125605.49 129384.14
Mass (ton) 18.4981 21.8048 24.1918
Probability of
failure (%)

100 50.06 2.28

Table 1.9 Comparison of part mass of the initial design, the DDO optimum design, and the RBDO
optimum design

Part mass (ton)
Part name Initial design DDO optimum design RBDO optimum design

Root 1.5246 1.5217 1.7245
Forward shear web 2.1122 2.1400 3.1326
Aft shear web 2.4529 1.9422 3.1503
Tip 0.2230 0.1115 0.1448
Leading edge 2.4673 2.8191 3.0814
Trailing edge 5.7002 7.0862 7.5984
Spar cap 4.0180 6.1840 5.3598
Total mass (ton) 18.4981 21.8048 24.1918
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1. The composite material QQ1 is too heavy to be used in the blade model.
2. The defined laminate schedule in the blade model may not be an optimal laminate

schedule.
3. The assumed constant life diagram (CLD) in shear direction may be too

conservative comparing to the true CLD in shear direction.
4. The objective function of both DDO and RBDO only considers the total cost

of composite materials. The optimization procedure tends to apply more heavy
but cheap material QQ1, instead of light but expensive material P2B, in order to
minimize the cost.

The total mass is an important factor when designing wind turbine blades. It is
not only related to the material cost but also affects the blade transportation, energy
generation, and blade control. For designing a cost-effective, reliable, and light wind
turbine blade, optimization problem could use a multi-objective function including
both the mass and the cost and subject to probabilistic constraints. This work may
be carried out in the future.

Table 1.10 compares section mass in the spanwise direction of the initial design,
the DDO optimum design, and the RBDO optimum design. Figure 1.15 clearly
shows the distributed section mass in the spanwise direction of the above three
designs, as well as the 5-MW NREL reference wind turbine blade (Jonkman et al.
2009). The larger section mass of the DDO optimum design and the RBDO optimum
design comparing that of the 5-MW NREL reference wind turbine blade could also
be because of the above four points.

One question about the obtained RBDO optimum design is that are all the
node-section points at the RBDO optimum design satisfying the target reliability
requirement when considering both wind load uncertainty and manufacturing
variability? The difficulty to solve this question is that it is very computationally
expensive to carry out reliability analysis for all node-section points considering
both wind load uncertainty and manufacturing variability. On the other side, it is
affordable to check the probability of failure only considering wind load uncertainty
and to calculate 1-year fatigue damage under the mean wind load for all node-
section pints, as explained in Sect. 1.3. Moreover, by studying the results of the
probability of failure considering only wind load uncertainty and the results of the
1-year fatigue damage under the mean wind load, it is possible to see if there are
any missing node-section points which may violate the target reliability requirement
when considering both wind load uncertainty and manufacturing variability. Details
are explained as follows.

Both the probability of failure considering only wind load uncertainty and the
1-year fatigue damage under the mean wind load for all node-section points at the
RBDO optimum design have been calculated. Table 1.11 provides the probability
of failure PFwind considering only wind load uncertainty, the probability of failure
PFwind + manu considering both wind load uncertainty and manufacturing variability
(surrogate models for 10-min fatigue damage are used), and the 1-year fatigue
damage under the mean wind load at the selected ten hotspots. In order to study
the fatigue effect due to different load types, i.e., wind load, gravity load, and
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Fig. 1.15 Comparison of sectional mass distribution

centrifugal load, the 1-year fatigue damage due to wind load, gravity load, and
centrifugal load is also calculated. In Table 1.11, the D1year-wind, D1year-gravity,
and D1year-centrifugal indicate that only aerodynamic wind load, gravity load, and
centrifugal load, respectively, are applied when calculating 10-min fatigue damage.
The D1year in Table 1.11 indicates that all three kinds of load are applied when
calculating 10-min fatigue damage. For each case, the mean wind load probability
table is used to calculate the 1-year fatigue damage. Some interesting findings
extracted from Table 1.11 are listed below.

1. The probability of failure considering both wind load uncertainty and manu-
facturing variability is either larger than or equal to the probability of failure
considering only wind load uncertainty. The larger probability of failure con-
sidering both wind load uncertainty and manufacturing variability is due to that
the manufacturing variability introduces design uncertainty, which increases the
probability of failure. The equal probability of failure occurs at two hotspots,
node 61-section point 15 and at node 1167-section point 3, which have 0
probability of failure due to very small fatigue damage as indicated in Table 1.11.
For these two hotspots, the RBDO optimum design is in a very safe region, and
the introduction of manufacturing variability does not increase the probability of
failure at all.

2. The node-section points, for which the wind load dominates the overall fatigue
damage, have probability of failure considering both wind load uncertainty and
manufacturing variability close to that considering only wind load uncertainty.
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For example, the wind load dominates the fatigue damage at node 1074-section
point 9 as shown in Table 1.11. The PFwind + manu is close to PFwind at this
hotspot. The reason of the closed probability of failure is that the introduction
of manufacturing variability has nonsignificant influence on the probability of
failure calculation since the wind load dominates the overall fatigue damage.
This finding also holds true for node 1099-section point 9 and node 2297-section
point 1 as shown in Table 1.11.

3. The node-section points, for which the gravity load dominates the overall fatigue
damage, may have much larger probability of failure considering both wind
load uncertainty and manufacturing variability than that considering only wind
load uncertainty. The reason is that manufacturing variability is directly related
to the gravity load uncertainty. By introducing the manufacturing variability
for gravity load-dominated node-section points, the probability of failure may
increase significantly due to the gravity load uncertainty. For example, the gravity
load-dominated hotspots, node 1582-section point 9, node 2657-section point 15,
and node 2881-section point 1 in Table 1.11, have much larger PFwind + manu than
PFwind.

Among the probabilities of failure of all node-section points considering only
wind load uncertainty, the largest probability of failure is 2.19% and occurs at node
2297-section point 1. Thus, there is no node-section point at the RBDO optimum
design violating the target probability of failure if only wind load uncertainty is
considered. It is also found that node 1582-section point 9, node 2657-section point
15, node 2644-section point 1, and node 1988-section point 15 are top four gravity
load-dominated node-section points among all node-section points by ordering 1-
year fatigue damage. These four node-section points have already been selected as
hotspots. In addition, another four node-section points are selected at the RBDO
optimum design to calculate the probability of failure considering both wind load
uncertainty and manufacturing variability. The four node-section points are not
close to any selected hotspots. The 1-year fatigue damages corresponding to the
four node-section points are among the top 50 large 1-year fatigue damages of all
node-section points. In order to calculate the probability of failure, the surrogate
models for 10-min fatigue damages of the four node-section points are generated
first. Then, the probability of failure considering both wind load uncertainty and
manufacturing variability is calculated using the surrogate models. The probability
of failure and 1-year fatigue damage of the additional four node-section points are
shown in Table 1.12. As shown in Table 1.12, all of the additional tested four node-
section points satisfy the target 2.275% probability of failure considering both wind
load uncertainty and manufacturing variability.

In summary, all of the node-section points at the RBDO optimum design
satisfying the target reliability requirement when considering both wind load
uncertainty and manufacturing variability.
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1.5 Conclusions and Future Recommendations

1.5.1 Conclusions

A dynamic wind load uncertainty model has been developed using 249 groups of
measured wind data. The wind load uncertainty model involves both the annual
wind load variation and the wind load variation in a large spatiotemporal range. The
annual wind load variation is represented by the joint probability density function
(PDF) of V10 and I10. In order to properly represent the joint PDF of V10 and
I10, the marginal distributions and copula types (correlation) for V10 and 10-min
standard deviation of wind speed �10 have been studied. Based on the 249 groups
of measured wind data, the best fit marginal distribution types of V10 and �10 are
identified to be Weibull distribution and gamma distribution, respectively. The best
copula type for V10 and �10 is also identified as Gumbel. The joint PDF of V10
and I10 is derived from the joint PDF of V10 and �10. The wind load variation in
a large spatiotemporal range is represented by the PDFs of five parameters C, k, a,
b, and τ, which determine the joint PDF of V10 and I10. Using the 249 sets of (C,
k, a, b, τ), the best fit PDFs of C, k, a, b, and τ are identified to be log-logistic
distribution, normal distribution, generalized extreme value distribution, Weibull
distribution, and extreme value distribution, respectively. Using two different sets
of (C, k, a, b, τ), a case study has been carried out to predict the fatigue damage of
the developed composite wind turbine blade. One case study result shows that the
calculated maximum 1-year fatigue damage using one set of (C, k, a, b, τ) is 5.32
times larger than that when the other set is used. This finding confirms that the wind
load variation in the lifespan of wind turbine blades plays a critical role in blade
fatigue analysis and that the uncertain wind load must be considered in the fatigue
reliability analysis of wind turbines.

The reliability analysis method under wind load uncertainty is then proposed
using the sampling-based reliability analysis method. The MCS method simulates
uncertain wind load using the proposed wind load uncertainty model. The reliability
analysis estimates the probability that a wind turbine could survive 20 years of
target lifespan. The reliability analyses of the initial wind turbine blade design and
the DDO optimum design are taken as examples. The reliability analysis has been
carried out for all 60,954 node-section points of the blade. Thus the probability
of failure of each node-section point is obtained. Detailed probability of failure
contours have been obtained for both the initial design and the DDO optimum
design. Using the probability of failure contour, the largest probability of failure
can be located. The reliability analysis results show that the probability of failure
considering only wind load uncertainty is reduced from 100% at the initial design to
49.9% at the DDO optimum design, which indicates that the DDO procedure indeed
reduces the probability of failure. However, the high probability of failure (49.9%) at
the DDO optimum design also indicates that RBDO is necessary to further improve
the fatigue reliability of the composite wind turbine blade.
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Finally, the RBDO procedure for composite wind turbine blades considering
both wind load uncertainty and manufacturing variability is developed. The wind
load uncertainty model could provide realistic uncertain wind load through the
designed 20-year lifespan. The fundamental theories of sampling-based RBDO
with fixed coefficient of variation (CoV) are reviewed. The 12 random thickness
variables are linked to seven random design variables by using the DDO optimum
design result. The RBDO objective function is normalized cost based on true
cost at the DDO optimum design. The probabilistic constraints are probability
of fatigue failure at the selected hotspots. During the RBDO iterations, local
surrogate models of 10-min fatigue damages are created to calculate 20-year fatigue
damage efficiently and accurately. Using the surrogate models, probability of fatigue
failure is calculated considering both wind load uncertainty and manufacturing
variability. The obtained RBDO optimum design reduces the maximum probability
of failure from 50.06% at the RBDO initial design to 2.28% at the RBDO optimum
design. This research demonstrates that applying RBDO methods to wind turbine
blades could provide reliable and yet economical designs considering wind load
uncertainty. The developed wind load uncertainty, the reliability analysis method,
and the RBDO methods could be applicable to other wind turbine components, such
as rotor hub, gears, and bearings.

1.5.2 Future Recommendations

The proposed wind load uncertainty model utilizes 249 groups of measured wind
data. If more wind data is available, the developed dynamic wind load uncertainty
model could generate more realistic uncertainty wind load for reliability analysis
and RBDO. At the current state, due to lack of wind data over 20 years, the random
variables of C, k, a, b, and τ are assumed to be independent. In other words, the wind
load variation over years is assumed to be independent. In reality, the wind load
distribution in 1 year at a location is probably close to the wind load distribution in
the following years at the same location. That means there is a correlation between
the wind loads in years. In the future, the correlation among random variables of
C, k, a, b, and τ may be studied. For example, by adding the correlation into the
wind load uncertainty model, the correlation between wind loads generated from
sequential years may be considered.
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Chapter 2
Computational Fluid Dynamics Methods
for Wind Turbines Performance Analysis

Navid Goudarzi

2.1 Introduction

2.1.1 Wind Turbines

The importance of reducing greenhouse gases leads to developing sustainable and
efficient technologies. Wind power as a free, abundant, and globally available
energy source is one of the most promising energy resources for green electricity
generation. Figure 2.1 shows the world’s total cumulative installed wind power
capacity between 1991 and 2016 (Goudarzi and Zhu 2013). The average annual
growth in the total installed wind power capacity in the last 10 years is more than
25% per year; it is anticipated that 12% of the world’s electricity consumption will
be provided by wind power by 2020 (Goudarzi and Zhu 2013).

A wind turbine converts the captured kinetic energy in the wind to electrical
energy. Rankine-Froude momentum or actuator disk model is known as the first
estimation for wind turbine efficiency (Mikkelsen 2003). Betz law shows the
maximum ideal captured power by a horizontal axis turbine cannot exceed 59.3% of
the kinetic energy in wind (Manwell et al. 2010). Current commercial wind turbines
work at 75–80% of the Betz limit (Mikkelsen 2003). While more wind turbines
are installed in large wind farms, reduced power production (8% for onshore
farms and 12% for offshore farms) due to wake velocity deficits and increased
dynamic loads on turbine blades due to higher turbulent flow levels should be
studied for determining wind turbines aerodynamic characteristics. Understanding
the aerodynamic performance of wind turbines and in particular turbine blades
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Fig. 2.1 World’s cumulative installed wind power capacity during 1995–2015

at different wind speeds can help to improve the accuracy in the prediction of
wind turbine performance and facilitate an optimized design of turbine blades for a
desired performance goal.

There has been a significant number of researchers studying aerodynamic
performance of turbine blades (Martinez Tossas and Leonardi 2013; Lee and Wu
2011). They have developed computational methods to analyze the global flow
field around the turbine blades. These methods got further improved to reduce
the numerical results uncertainties by comparing them with experimental tests.
This chapter provides a brief review on the developed numerical techniques with
emphasis on computational fluid dynamics (CFD) methods used for wind turbine
applications: airfoil design, blade design, and load calculations.

2.1.2 Aerodynamics Characteristics of Wind Turbines

The turbine blade efficiency, power coefficient CP, is an important factor in
determining the aerodynamic performance of a wind turbine:

Cp = Pm

Pw
= Tm ∗ ω

1/2ρArV 3
(2.1)

where Pm is the mechanical power, Pw is the wind power, Tm is the mechanical
torque, ω is the rotational speed, ρ is the air density, Ar is the rotor area, and V is
the wind speed. The fraction of the year the turbine generator is operating at rated
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maximum velocity deficit minimum velocity deficit

mixing

near wake far wake

Fig. 2.2 Velocity profile behind the wind turbine (Shakoor et al. 2016)

power is defined by the capacity factor (CF). It is based on both turbine and site
characteristics. Aerodynamic characteristics of wind turbines are directly related to
the airfoil designs used in turbine blades.

Airfoils such as NACA44xx, NACA230xx, and NACA63xxx with high max-
imum lift coefficient, low minimum drag, and low pitching moment are among
popular airfoils used for wind turbine blades. Flow separation and stall phenomenon
are among the main concerns in designing airfoils. Stall phenomenon occurs either
at high angles of attack (generally at angles more than 15◦) or at low tip-speed ratios
(TSR) at a given wind speed. During stall, the airfoil lift decreases significantly, and
the draft force increases.

The wake flow behind the wind turbine (near wake or far wake) can have a
significant impact on the turbine blade performance (Fig. 2.2). The near wake
is within 1–2 rotor diameters downstream behind the turbine rotor which is
affected directly by the turbine geometry, the presence of tip vortices, and mixing
flows. Hence, the wake analysis should include both axial- and tangential-induced
velocities from formed vortices and the blade shear layers. The far wake is affected
indirectly by the turbine geometry; it has a reduced axial velocity and an increased
turbulence intensity. The far wake analysis would be needed in the case of wind
farm design. Generally, three types of turbulence exist in the far wake: atmospheric
turbulence due to surface roughness and thermal effects, mechanical turbulences due
to the wind turbine, and wake turbulence from vortex breakdown. The wake flow
applies a swirl velocity component to the air in the opposite direction to the turning
of the blades. This wake behind the turbine slows down the airflow going through
the rotor and changes the local angle of attack of blades which directly impacts the
aerodynamic forces. Far downstream, a Gaussian and axisymmetric velocity field is
observed (Hu 2016).

The future trends for wind turbine technology developments include performance
improvements and cost reductions. Wind turbines with novel designs, higher towers,
larger blades, and an improved reliability and availability, at a reduced weight
and an expanded installation in offshore sites, can further reduce the cost of
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energy from wind and make it more competitive on the energy market. While
airfoil aerodynamics characteristics are well-known (Abbot and Doenhoff 1949),
understanding and accurate estimation of turbine blade interactions due to different
forces in a rotating frame such as centrifugal forces as well as the wake behind the
turbine and modifying the blade aerodynamic characteristics facilitate achieving the
future goals of this industry.

2.2 Numerical Techniques

Blade element momentum (BEM) theory and CFD methods are widely used to
predict wind turbine performance. BEM methods predict the aerodynamic perfor-
mance and obtain the optimal blade design by integrating linear and angular air mass
momentum changes with the toque and axial forces acting on blades. CFD methods
provide visualization capabilities of flow behavior on the blade surface and in the
wake region. Hence, BEM is used for designing the wind turbine rotor geometry,
and CFD is used for validating and evaluating the design and its performance.

2.2.1 Blade Element Method (BEM)

BEM predicts the turbine blade aerodynamic characteristics based on linear momen-
tum theory. It assumes that (1) the flow is steady state and incompressible, (2)
there are an infinite number of blades, (3) there is no rotating wake behind the
turbine blade, (4) there is a uniform thrust over the actuator disk, and (5) there is
no frictional drag. It only considers the 2D lift and drag forces on airfoils that do not
have aerodynamic interactions with each other. Basic BEM methods underpredict
torque, as they compute the aerodynamics of each airfoil section along the blades
independently of neighboring sections. It will result in neglecting spanwise flow and
other potential 3D effects. Such effects might be significantly important especially
near wind turbine blade roots. Correction equations such as the Prandtl tip loss factor
(Manwell et al. 2010), the stall delay model (Martinez Tossas and Leonardi 2013),
the Viterna-Corrigan stall model (Lee and Wu 2011), and the Spera’s correction
(Spera 2009) are used to improve the prediction accuracy and consider the 3D effects
in basic BEM methods.

2.2.2 Computational Fluid Dynamics (CFD)

CFD is a powerful tool to estimate the aerodynamic performance characteristics
and to visualize the flow behavior around wind turbine components. In recent
years, commercial CFD software products such as ANSYS Fluent, COMSOL, Star
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Fig. 2.3 Three main steps in CFD

CCM+, EllipSys3D, Open Foam, etc. are widely used by engineers. Figure 2.3
illustrates three common main steps in all of these tools: preprocessing, solver, and
post-processing. The geometry creation, mesh generation, and boundary conditions
definitions are conducted in the preprocessing step. A very important step in
solving the partial differential Navier-Stokes (NS) equations is to use and develop
stable, consistent, and accurate algebraic replacements for the NS equations, called
discretization, where the physics and inherent structure of the problem are retained.
Generally, three types of numerical discretization schemes including finite volume
method (FVM), finite element method (FEM), and finite difference method (FDM)
are currently in use. These schemes transform the infinite-dimensional NS equations
into finite-dimensional algebraic equations. The FVM methods are flux conserving
construction based on the approximation of conservation laws. Compared to the
FVM methods, FEMs have a more flexible discretization but with fewer quality
constraints. FDMs use a completely different approach compared to the preceding
two and are limited to structured grids. Within the solver step, the NS equations
are solved for a time-dependent velocity field, appropriate turbulence models are
selected, and the solver settings such as solution control and initialization are
performed. Finally, the post-processing will obtain the forces (such as normal force,
thrust, and torque) and visualization of flow using contour plots, vector plots, and
streamlines.

classified in four broad categories:

1. Actuator blade methods that provide physics-based characterization of wind
turbine wakes at a reduced computational cost

CFD techniques (turbulence models are more elaborated in Sect. 2.2.2.2) can be
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2. Hybrid Reynolds-averaged Navier-Stokes (RANS)/large eddy simulation (LES)
methods that provide an improved estimation of unsteady and separated flows

3. The overset methods (Chimera methods) to treat the relative motion between
rotor and its support structures

4. Combined CFD-computational structure dynamics (CSD) methods to model the
aeroelastic response of the rotor blades

A combination of level of understanding of the problem (flow physics), com-
putational cost, and ease of using a specific CFD technique, range of applicability,
and the level of required accuracy will determine the desired CFD technique for an
application.

2.2.2.1 Mesh and Boundary Conditions

Design and construction of a quality grid are crucial to the success of the CFD
analysis. There are three general approaches that can be used to simulate the turbine
blade rotation (Cabezon et al. 2009):

1. Moving reference frame (MRF): it simulates the aerodynamic performance of
a single turbine blade using a periodic boundary condition in steady-state flow
conditions.

2. Sliding mesh model: it simulates the aerodynamic performance of a full-scale
model in transient flow with two distinct domains that have a relative motion and
a nonmatching grid.

3. Dynamic mesh model: it has a high computational cost and is useful for modeling
relative motions between different components.

A trade-off between accuracy, computational time, and the objective of the
problem can determine the most appropriate discretization. The structured and
unstructured grid generation can be conducted in a number of mesh tools such
as Gambit, Pointwise, and ICEM CFD. The structured grids are widely used
along the blade boundary layer. Based on the geometry complexity, flow field, and
solver-supported cell types, other computational domains including upstream and
downstream of the boundary can be meshed with either structured or unstructured
grids. The grid quality can be determined based on three measures: skewness (zero is
the best, and one is the worst), smoothness (change in size), and aspect ratio (one is
the ideal value for an equilateral triangle or a square). Accurate and fast converging
solutions require a high grid quality: skewness does not exceed 0.85–0.90, local cell
size variations have to be gradual (the maximum change in grid spacing should be
less than 20%), and the aspect ratio has to be defined based on the pertinent flow
features. While more cells can offer higher accuracy, it significantly increases the
computational cost. Cell counts in the order of 104–107 are common for small- to
large-size problems. Higher cell counts should be avoided if possible; otherwise,
different techniques such as using multiple CPUs should be employed.
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In order to ensure adequate grid resolution on turbine blades, solution-based
grid adoptions can be employed based on gradients of flow, boundary cells, volume
changes, and adjacent to wall cells (nondimensional wall distant y+). The near-wall
region is generally modeled by either the wall function or the near-wall function
(viscous sub-layer and buffer layer). The wall function approach solves the attached
flow on turbine blade surface at a large initial y+ value with a low computational
cost. However, an accurate prediction of the stall point for separation flows requires
a fine mesh along the inboard blade section. In recent years, near-wall functions
use standard or modified turbulence models (based on the y+) to obtain accurate
solutions for the laminar sub-layer region.

One of the ongoing challenges in CFD simulation techniques is the boundary
condition definition, especially when comparing with experimental data and when
the model solves for the wind turbine wakes. While uniform and laminar inflow
profiles have been widely used in early CFD simulations, the LES simulations
showed the presence of both shear inflow profile and turbulence in the incom-
ing flow; these have significant impact on the flow field behind the rotor. To
address velocity components and turbulence quantities independent of time, Monin-
Obukhov similarity theory can be used for RANS simulations (Martinez Tossas and
Leonardi 2013).

2.2.2.2 Turbulence Model

Inherent turbulent characteristics of the atmospheric airflow make wind turbine
rotors’ operation impacted by the turbulent fluctuations. There are a number of
approaches such as RANS, LES, and detached eddy simulation (DES) for modeling
turbulent flows and determining the velocity fluctuations on turbine blades. The
focus of this section is on RANS models. Solving the RANS equations for the
flow field around a turbine blade requires a proper turbulent model. RANS models
provide a statistical description of the flow and describe the turbulent flow as a
random variation around a mean value. The RANS equations can be written as

ρ
∂Ui

∂t
+ ρUj ∂Ui

∂xj
= − ∂P

∂xj
+ ∂

∂xj

(
2μSij − ρu'

j u
'
i

)
(2.2)

with the time-averaged mass conservation to be as

∂Ui

∂xi
= 0 (2.3)

where Ui is the time-averaged velocity, ui’ is the fluctuating velocity, μ is the

molecular viscosity, and Sij is the deformation tensor. Note that theρu'
j u

'
i = ρτ ij is

known as the Reynolds stress tensor and two main approaches of either turbulent-
viscosity models or Reynolds stress models (RSM) are used to model it. The
turbulent-viscosity models are more suitable for simple turbulent shear flows such



54 N. Goudarzi

as boundary layers, channel flows, and mixing flows. The RMS models solve
transport equations for individual Reynolds stress terms and for the dissipation
rate ε or specific dissipation rate ω. They are advantageous to more complex
turbulent flows such as swirling flows and the effects of large streamlines curvature.
In RANS equations, there are 10 unknowns (pressure, 1; velocity components,
3; and Reynolds stress tensor components, 6) and four equations. Hence, more
equations should be introduced to solve for the unknowns. There are different
models introduced such as (Sanderse et al. 2011):

1. One-equation models (Spalart-Allmaras turbulence model): they solve transport
equations for the turbulent viscosity (μ = f (υ̃)). They are less sensitive in the
near wall and used mainly for aerodynamic applications with mild separation.

2. Two-equation models (k-ε and k-ω turbulence models): they solve transport
equations for two turbulence quantities, turbulent kinetic energy k, and turbulent
dissipation rate ε. Two-equation eddy k-ε models (μ = f (ρk2/ε)) are rarely used
in wind turbine studies, as they do not offer good results for flows with large pres-
sure gradients and strong separation. For such flows, the renormalization group
k-ε models and realizable k-ε models offer better and superior performance,
respectively (Jones and Launder 1972). Two-equation eddy viscosity k-ω models
(μ= f (ρk/ω) where ω = k/ε is the specific dissipation rate) are currently popular
for turbine blades aerodynamic forces simulation analysis (Wilcox 1988). The
transition k-ω SST turbulence models conduct 3D aerodynamic analysis of
turbine blades and show strong agreements with the experimental results (Menter
1994).

3. Hybrid turbulence models: these models address multiple different flow behav-
iors. For example, DES combines the accuracy of LES within separation region
(solving for smallest, subgrid-scale (SGS) eddies) and efficiency of RANS inside
a boundary layer to address high-level separation flows with high-level transient
properties and vortex shedding. There are a number of successful RANS-LES
hybrid models such as very large eddy simulation (VLES), detached eddy
simulation (DES), and partially averaged Navier-Stokes (PANS).

Note that there is literature on alternative numerical methods to solve complex
CFD problem. One example (Pasquali 2016) is the implication of lattice Boltzmann
method for computational domain discretization (grid generation) and near-wall
turbulent flow analysis (boundary treatment for turbulent flows).

2.3 Numerical Simulation of Wind Turbine Wakes

RANS and LES methods are largely used for studying the influences of atmospheric
and wake turbulence around wind turbines. The LES methods with abilities such as
handling unsteady, anisotropic turbulent flows have drawing more attention in recent
years. However, the LES computational cost is much higher than RANS models.
The actuator disk model (ADM) and actuator line model (ALM) predict blade forces
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Fig. 2.4 ADM/ALM for a real turbine wake flow visualization (Martinez Tossas et al. 2014). (a)
Commercial scale turbine. (b) Actuator line representation. (c) Flow visualization. (d) Commercial
scale turbine. (e) Actuator disk representation. (f) Flow visualization

(as body forces) based on the local fluid velocity at each actuator element, without
taking care of the full blade geometry (Fig. 2.4). The ADM simulates a wind turbine
as a distributed force (both axial and tangential forces) on the rotor disk. The ALM
simulates the turbine blade by a distributed force from the hub to the blade tip. It
can predict the vortex structures and instabilities formation for both near and far
wake. Several computational and experimental works have shown that both ADM
and ALM can successfully simulate the wind turbine aerodynamic characteristics as
well as the effects of local and regional turbulent fluxes of momentum and heat in
wind farms (Martinez Tossas and Leonardi 2013).

The CFD-BEM approach uses the flow simulation around a wind turbine to
estimate power curves, forces, and moments. There are a number of literature
comparing the use of either of those methods or a combined approach (Lynch 2011).
It is shown that this approach offers a lower computational cost at a high degree
of accuracy. The accuracy of numerical approaches requires a good understanding
about the physics of the problem. The BEM does not provide a reliable aerodynamic
load simulation on the turbine blade especially at stall flow conditions. Different
corrections such as hub loss correction, tip loss correction, Glauert, skewed wake
correction, buhl empirical corrections, and 3D corrections can improve the BEM
results. Most RANS methods have a stable and robust approach with using second-
order accurate finite volume schemes on structured grids, with upwind discretization
of convective terms and central discretization of diffusive terms. In LES methods,
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spatial convective terms require more careful discretization; central and spectral
schemes are preferred to upwind schemes as the latter one introduces numerical
dissipation in spatial discretization.

2.4 Conclusions and Future Recommendations

This chapter provided numerical approaches with focus on CFD methods used in
studying the aerodynamic performance of wind turbine blades. Some conclusions
include:

• BEM methods provide a rapid aerodynamic characteristics and performance of
a turbine blade, using 2D airfoil data. Correction methods should be used to
address the stall and 3D effects and improving the prediction accuracy.

• CFD methods provide flow visualization capabilities and accurate aerodynamic
characteristic estimations for turbine blades. Turbulence model selection and
discretization techniques play key roles in simulation accuracy. It showed that
the LES with ADM and ALM models provide reliable estimations in turbine
blades wake. However, more work should be done to study the impact of wind
turbine tower and nacelle on estimated turbine performance and wake profiles.

• The CFD-BEM approach offers an accurate prediction model at a low computa-
tional cost.

• Further research can focus on quantifying computational uncertainties from
discretization, from turbulence modeling, as well as from the inflow description,
terrain geometry, and rotor geometry. This improves CFD results for comparing
with experimental data that can further enhance the accuracy of wind turbine
aerodynamic characteristics estimations. In a bigger picture, a combination of
CFD analysis together with experimental methods such as field measurements,
wind tunnel measurements, and particle image velocimetry (PIV) techniques
improves the development and evaluation of wind harnessing machines. For
instance, the most comprehensive wake measurements are determined experi-
mentally, using PIV systems. Hence, the added value of combining experimental
methods in addressing the fundamental and practical gaps in wind energy
development should be further explored.
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Chapter 3
Gearbox of Wind Turbine

Huaxia Li

3.1 Introduction

3.1.1 Wind Turbine Gearbox Failure

An accurate prediction of the product life of drivetrains is crucial for safe and
reliable operation of wind turbines. It is reported that the failure rate of gearboxes
is higher than other wind turbine components (Aydin 2013; Sheng et al. 2011;
Errichello and Muller 2012a). Failures of gear components stop wind turbine oper-
ation and cause pecuniary loss due to turbine downtime and increased maintenance,
resulting in wind energy being less competitive when compared to existing fossil
fuels (Sheng et al. 2011). For this reason, developing a reliable and cost-effective
design procedure for wind turbine components is of crucial importance.

According to the National Renewable Energy Laboratory (NREL) report
(Errichello 2000), wind turbine drivetrain failure modes are classified as follows: (a)
bending fatigue, (b) contact fatigue, (c) wear, (d) scuffing, (e) grinding cracks, and
(f) case-core separation cracks. The main cause of bending fatigue is an inadequate
material cleanliness or incomplete hardening on the tooth root. Wear is due to
the tearing of asperities, and it can be alleviated by sufficient lubrication on tooth
surfaces. Scuffing also called as severe adhesion occurs when lubricant dries out
accidently. Grinding cracks and case-core separation cracks are caused by improper
heat treatment of gear materials. These failures can be prevented by the use of
appropriate materials and careful surface treatments. On the other hand, more
careful consideration needs to be given to rolling contact fatigue in gear design
(Tallian 1983). Since a gear tooth experiences severe cyclic rolling and sliding
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contact resulting from highly variable wind loads which are stochastic in nature,
prediction of fatigue failure is not straightforward, thus contact fatigue becomes one
of the major causes of unintended gearbox failure that would prevent wind turbines
from achieving the expected service life (Errichello and Muller 2012b; Milburn
2011).

The gear tooth contact fatigue is caused by either surface-initiated cracking or
subsurface-initiated cracking (Choi and Liu 2006a). Overheating of tooth surfaces
due to insufficient lubrication leads to the surface-initiated failure, but for properly
lubricated gears, the subsurface crack happens in most cases. Furthermore, it is
widely agreed that the contact fatigue failure process due to the subsurface-initiated
crack can be divided into two stages (Keer and Bryant 1983; Glodez et al. 1997):
(1) crack initiation period and (2) crack propagation period. Contact fatigue life
is estimated by the sum of the total number of load cycles required for the crack
initiation and that required for the crack to propagate to the surface (Choi and
Liu 2006a). The crack initiation process can be modeled by the multiaxial high
cycle fatigue criteria (Crossland 1970; Liu and Zenner 2003; Dang 1973), which is
influenced by contact stress and material fatigue parameters. The crack propagation
process is modeled by the Paris equation using mode II stress intensity factor (Choi
and Liu 2006b; Osman and Velex 2011). For case-hardened materials, it is observed
that the crack propagation under rolling contact is influenced by the ratio of the
maximum shear stress to the material hardness (Choi and Liu 2006c; Jiang et al.
1993). In other words, to estimate the contact fatigue life of wind turbine gear teeth,
the maximum shear stress needs to be predicted accurately under various dynamic
load conditions. The use of a deterministic single domain simulation may, however,
lead to an unrealistic load prediction due to high variability of wind loads, thereby
resulting in underestimation or overestimation of the gear tooth fatigue life. The
dynamic wind load uncertainty model described in Chap. 1 is implemented for
wind turbine gearbox dynamics simulation to consider wide spatiotemporal wind
uncertainty (i.e., wind load uncertainty for different locations and in different years),
so that a wide range of probabilistic wind loads can be truly accounted in the gear
contact fatigue life prediction.

3.1.2 Multibody Dynamics Simulation of Geared Systems

Multibody dynamics simulation is widely used to predict the dynamic mesh force
variation as well as transmission error of complex gear trains. Lumped torsional
mass-spring models that account for the effect of variable stiffness associated with
the gear tooth contact are widely used in the vibration analysis of gear systems
(Ozguven and Houser 1988; Wang et al. 2003; Kahraman 1994). While the lumped
vibration models are computationally efficient and provide an important insight into
the dynamic response of gear trains, they are in general used for the analysis of
steady-state response in the frequency domain. In addition, the three-dimensional
gear tooth geometry is not fully considered in the models.

http://dx.doi.org/10.1007/978-3-319-78166-2_1
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To perform the time-domain transient analysis of gear systems, multibody
dynamics models have been used for various engineering applications (Haug 1989;
Shabana 2010; Cardona 1997; Palermo et al. 2013). The tangential and bending
deformation of the gear tooth can be considered by introducing discrete translational
and rotational springs defined between the rigid tooth and rigid gear body (Ebrahimi
and Eberhard 2006; Lee et al. 2012). The flexibility of the entire gear body can
be incorporated into multibody dynamics simulation using the floating frame of
reference formulation with modal reduction techniques, allowing for prediction of
accurate tooth impact force influenced by the tooth and gear wheel deformation
(Ziegler and Eberhard 2009). Since flexible multibody models, in general, lead
to large dimensionality to ensure accuracy, the computational cost is high, and
application to the gear train dynamics simulation would be impractical. To reduce
the computational cost for the full finite element gear model, the surface integral
solution for the tooth contact is integrated into the finite element model, thereby
allowing for the use of coarse finite element meshes while retaining the precise
gear tooth contact calculation (Vijayakar 1991; Parker et al. 2000). For wind turbine
applications, various gearbox models are developed using either rigid or flexible
multibody dynamics approaches (Peeters et al. 2005; Oyague 2009; Qin et al.
2009; Helsen et al. 2011), some of which are validated against test bench results
(Vanhollebeke et al. 2015). Furthermore, the probabilistic flexible multibody gear
dynamics simulation has been advocated for wind turbine gearboxes to account for
uncertainties associated with wind loads and manufacturing errors (Alemayehu and
Osire 2015).

In gear dynamics simulation, precise tooth surface geometry description and
accurate prediction of the location of the contact point are crucial to the mesh
force and transmission error evaluation of gear trains (Litvin and Fuentes 2004).
In particular, contact search for the tooth surface geometry obtained by computer-
aided design (CAD) and/or direct tooth measurement leads to extensive computation
efforts in the dynamic simulation. In the constraint contact formulation, the non-
conformal contact condition between tooth surfaces in contact is imposed on the
equations of motion as constraint equations, and the normal contact forces are
evaluated by Lagrange multipliers associated with the contact constraint. This
formulation leads to an accurate and efficient prediction of the contact point on
the continuous smooth surface (Shabana et al. 2008).

However, intermittent contact of multiple gear teeth is involved in the time-
domain dynamic analysis; thus, use of the constraint contact formulation necessi-
tates ad hoc numerical procedures for modeling the gear tooth impact as well as
loss of contact due to changes in the system degrees of freedom. Furthermore, a
rigid contact assumption used in the formulation prevents consideration of the effect
of variable mesh stiffness. For this reason, the elastic (penalty) contact approach has
been widely used in the analysis of multibody gear contact dynamics in which the
normal contact force is defined as a compliant force function of the penetration
between two surfaces in contact. The contact point can be determined during the
gear dynamics simulation by either solving nonlinear contact search equations
iteratively to ensure the tangency condition or searching a pair of nodes that have
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the maximum penetration on the discretized surfaces. The nodal search method,
however, is not recommended due to the discrete surface representation which
causes numerical noise in mesh forces. In the use of contact search equations, on
the other hand, nonlinear equations need to be solved iteratively at every time step,
leading to extensive computational time for the entire gear train model. Furthermore,
a special technique is required for treating a discontinuous contact event such
as impact, loss, or jump in contact point that can occur when gear geometry
imperfections are involved. To address these fundamental and essential issues in
the contact search algorithm for gear tooth surfaces with geometric imperfection, a
combined nodal and non-conformal contact search algorithm which can determine
contact before gear dynamics simulation is introduced and generalized to the gear
tooth contact problem in this study.

3.1.3 Gear Design Optimization

Gear design is a complicated iterative process, involving many design variables,
requirements, and constraints (Vanderplaats et al. 1988). Many gear design opti-
mizations have been carried out using deterministic design variables and loads. In
most literature, optimizations of the contact ratio, face width, and tooth tip and
root profiles are explored to meet the fatigue life constraint associated with gear
tooth bending and surface pitting failures (Spitas and Spitas 2007; Sansalvador
and Jauregui 1993; Kapelevich and Shekhtman 2009). Minimization of gear
transmission error, which is the main source of gearbox noise and vibration, is
also investigated by modifying the gear tooth profile through lead crowning and
tip/root relief (Barbieri et al. 2008; Maatar and Velex 1997; Velex et al. 2011).
Since tooth profile modification is on an order of microns and it is in the same order
of manufacturing variance, a robust design optimization using Taguchi Method is
adopted in the literature (Sundaresan et al. 1991; Yu 1998; Ghribi et al. 2012) to
make the gear profile design insensitive to the manufacturing variance.

It is suggested that a gear tooth profile optimization process consists of two
steps: (1) generation of a candidate design that meets design requirements (e.g.,
the center distance, gear ratio, etc.) and constraints (e.g., maximum bending and
contact stresses, etc.) and (2) tooth profile optimization (Sundaresan et al. 1991).
That is, the candidate design is found at the first stage, and then further refinement
is made by the profile modification at the second stage such that the transmission
error can be minimized and insensitive to the manufacturing variance.

It is also shown that the maximum contact pressure due to the cyclical contact
loading can be lowered by tooth profile modification (tip relief) (Osman and Velex
2011), therefore allowing for the lowering of the maximum shear stress beneath the
contact surface, which is a major driving force for the crack growth due to pitting
fatigue. It is important to notice here that, for the evaluation of the effect of profile
modification on the contact fatigue life, precise gear tooth contact geometry as well
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as the mesh stiffness variation needs to be incorporated into the multibody gear
dynamics simulation model to account for the contact pressure variation associated
with the gear tooth microgeometry.

Furthermore, to meet a target reliability for gear tooth contact failure, reliability-
based design optimization (RBDO) of an automobile gearbox is discussed in the
literature (Madhusekhar and Madhava Reddy 2014), in which gear face width is
selected as design variable.

3.2 Gear Dynamics Simulation

In this section, a numerical procedure for gear dynamics simulation of multibody
systems is developed using the tabular contact search method. Existing online
contact search algorithms, which are widely used in multibody dynamics simulation,
lead to a computational intensive procedure if detailed tooth surface geometry
described by CAD or measured data points are considered with geometric imper-
fections. In the numerical procedure developed in this section, the contact geometry
analysis based on the non-conformal contact condition is performed using the
detailed tooth surface description prior to the dynamic simulation, and then the
contact point and the tooth geometry at the contact point stored in the look-up
contact tables are used to determine mesh forces in the multibody gear dynamics
simulation. This allows for detecting multi-point contact without any iterative
procedures and the contact point on the backside of the tooth can also be considered
by switching look-up contact tables in a straightforward manner.

3.2.1 Parameterization of Gear Tooth Surface

As shown in Fig. 3.1, the global position vector of a contact point on the tooth k of
rigid gear body i can be expressed as

rik = Ri + Aiuik (3.1)

where Ri = [
RiX RiY RiZ

]T
is the global position vector of the origin of the body

coordinate system attached to the center of gear body, Ai is the orientation matrix

parameterized by the three Euler angles θi = [
ψi φi θ i

]T
(successive rotations

about the Zi-, Xi-, and Yi-axes of the body coordinate system), and uik defines the
location of the contact point defined with respect to the body coordinate system. The
gear tooth geometry is parameterized by two surface parameters sik1 and sik2 , and the
local position vector uik can be expressed as

uik
(
sik1 , s

ik
2

)
= uik0 + Aik0 uikp

(
sik1 , s

ik
2

)
(3.2)
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Fig. 3.1 Gear coordinate systems

In the preceding equation, uik0 and Aik0 define the location and orientation of
the tooth profile coordinate system with respect to the body coordinate system,
respectively. The location of the contact point on the tooth profile is defined
by uikp

(
sik1 , s

ik
2

)
with respect to the profile coordinate system using the surface

parameters in either analytical (Litvin and Fuentes 2004) or numerical form (Piegl
and Tiller 1996; Shikin and Plis 1995). In the B-spline computational surface
geometry representation, the tooth surface can be described with respect to the
profile coordinate system as follows (Piegl and Tiller 1996):

up (s1, s2) =
n∑

a=1

m∑

b=1

Na,p (s1)Mb,q (s2) Pa,b (3.3)

For simplicity, the superscripts ik that denote the body and contact numbers are
omitted. In the preceding equation; p and q are orders of polynomials, n and m
are the numbers of basis functions Na, p(s1) and Mb, q(s2), respectively; and Pa, b

(a = 1, · · · , n; b = 1, · · · , m) is a vector of control points. The surface parameters
in Eq. 3.3 are defined as knots in the entire parametric B-spline domain.

On the other hand, in the case of tooth surface obtained from the direct measure-
ment, smoothing of the original data points

(
up
)
ij

= [
xi yj zij

]T
(i = 1, . . . , nx;

j = 1, . . . , ny) needs to be performed to remove undesirable irregularities associated
with the measurement noise that causes numerical convergence problems in the
contact analysis. To this end, smoothing spline function f (x, y) is generated from
the data points such that the following function J can be minimized (Shikin and Plis
1995):
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J (f ) = ∫ yb
ya

∫ xa
xa

(
∂4f (x,y)

∂x2∂y2

)2
dxdy +

nx∑
i=1

1
ρi

∫ ya
ya

(
∂2f (xi ,y)

∂y2

)2
dy

+
ny∑
j=1

1
σj

∫ xb
xa

(
∂2f (x,yj )

∂x2

)2
dx +

nx∑
i=1

ny∑
j=1

1
ρiσj

(
f
(
xi, yj

)− zij
)2 (3.4)

where [xa, xb] and [ya, yb] are the data domain and ρi ≥ 0 and σ j ≥ 0 are weight
coefficients for smoothing. Furthermore, to ensure the continuity of the derivatives
of the generated surface, the three-layer smoothing spline technique is employed
(Shabana et al. 2008). If the tooth profile is assumed to be constant along the width,
the smoothing spline curve can be used instead to parameterize the tooth surface.

Using the local position vector defined by Eq. 3.3, a unit normal vector to the
tangent plane can be defined in the profile coordinate system as

nik = t
ik

1 × t
ik

2∣∣∣tik1 × t
ik

2

∣∣∣
(3.5)

where t
ik

1 = ∂uikp /∂s
ik
1 and t

ik

2 = ∂uikp /∂s
ik
2 are the tangent vectors. The principal

curvature κikl can then be obtained as the eigenvalues from the following generalized
eigenvalue problem (Litvin and Fuentes 2004):

(
Bik − κikl Aik

)
Xikl = 0 , l = 1, 2 (3.6)

where

Aik =
[
Eik F ik

F ik Gik

]
and Bik =

[
Lik Mik

Mik Nik

]
(3.7)

In the preceding matrices, Eik, Fik, and Gik are coefficients of the first fundamen-
tal form defined by

Eik = t
ik

1 · t
ik

1 , F ik = t
ik

1 · t
ik

2 , Gik = t
ik

2 · t
ik

2 (3.8)

and Lik, Mik, and Nik are coefficients of the second fundamental form defined as
follows:

Lik = −t
ik

1 ·
(
∂nik

∂sik1

)

Mik = − 1
2

(
t
ik

1 ·
(
∂nik

∂sik2

)
+ t

ik

2 ·
(
∂nik

∂sik1

))

Nik = −t
ik

2 ·
(
∂nik

∂sik2

)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.9)
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The principal directions of the principal curvatures κik1 and κik2 can be defined
by the eigenvectors associated with them, and they are used to evaluate the Hertzian
contact patch between the tooth surfaces in contact.

3.2.2 Gear Contact Formulation

3.2.2.1 Tabular Contact Search for Gear Tooth Contact

With the detailed tooth surface description discussed in the previous section, the
contact search is performed in the multibody dynamics simulation. Use of online
contact search algorithms, which are widely used in general multibody dynamics
computer formulations, leads to extensive computational time if general CAD or
measured tooth profiles (Kin 1994; Zhang et al. 1994) are considered together with
various gear geometry imperfections. For this reason, a contact search algorithm
based on look-up contact tables is generalized in this study to the gear dynamics
simulation of multibody systems.

Since the gear tooth contact is periodic, solution to the contact geometry problem
of a one-tooth contact model can be repeatedly used for detecting the contact of all
the teeth in the gear body. In other words, the contact geometry analysis for a one-
tooth model is performed a priori for various rotation angles and the contact point
as well as the tooth geometry at the contact point, which includes tangents, normal,
and principal curvatures, is stored at various configurations in the look-up table. The
look-up table obtained for the one-tooth model is then interpolated as a function of
rotation of gear bodies to determine the location of the contact point online. One can
also include the in-plane and out-of-plane relative displacement between centers of
the gear bodies as an input to the look-up contact tables to consider the effect of
the shaft deflection and the bearing compliance on the change in the contact point
on the tooth surfaces. Furthermore, use of look-up contact tables allows for the
detection of a jump in contact point in a straightforward manner for measured tooth
profiles with tooth surface imperfections (Li et al. 2015). While look-up contact
tables of all pairs of gears in the gear train under consideration need to be prepared
in advance, the gear tooth contact search can be performed efficiently without any
iterative solution procedures in the dynamic simulation while retaining the detailed
gear contact geometry in calculation of the mesh forces.

3.2.2.2 Contact Geometry Analysis Using Non-conformal Contact
Constraints

In order to generate the look-up contact tables, the contact geometry analysis of a
one-tooth model is carried out. The method is based on the non-conformal contact
condition imposed on gear teeth in contact. That is, two points on the two surfaces
must coincide, and the two surfaces must have the same tangent planes at the contact
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point. These two conditions are described by the following five constraint equations
for contact k between surface i and j (Shabana et al. 2008):

Cijk
(

qi ,qj , sik, sjk
)

=

⎡

⎢⎢⎢⎢⎢⎣

tjk1 · (rik − rjk
)

tjk2 · (rik − rjk
)

njk · (rik − rjk
)

tik1 · njk

tik2 · njk

⎤

⎥⎥⎥⎥⎥⎦
= 0 (3.10)

The preceding equations are defined for 16 unknowns (i.e., 6 generalized

coordinates qi =
[ (

Ri
)T (

θi
)T ]T and 2 surface parameters sik = [

sik1 sik2

]T

for each body). To determine all the sixteen unknowns, the three translational
coordinates and two rotations about the axes perpendicular to the gear rotation axis
of gear j are constrained first. This leads to the following five constraint equations:

Rj − Rj0 = 0, ψj − ψj0 = 0, φj − φj0 = 0 (3.11)

where the gear spin axis is defined by the Yj-axis of the body coordinate system
as shown in Figs. 3.1 and 3.2; ψ j and φj are Euler angles about the Zj- and Xj-
axes of the body coordinate system, respectively. The subscript 0 in the preceding
equations denotes coordinates at the initial configuration. By imposing the non-
conformal contact constraint equations given by Eq. 3.10, the location of the contact
point (i.e., surface parameters si and sj) and the spin angle θ j of gear j are determined
for prescribed position and orientation of gear i. In the simplest case, only spin
rotation angle θ i is selected as a variable, and it leads to the following six equations:

Ri − Ri0 = 0, ψi − ψi0 = 0, φi − φi0 = 0, θ i − δi(n)θ = 0 (3.12)

where δi(n)θ defines the prescribed spin angle at incremental step n and the spin angle
is defined in the range that the two teeth are in contact. The effect of the axial, radial,
and angular misalignments of gear shaft can also be considered by prescribing the
relative deviations between gear body i and j. A total of 16 equations given by Eqs.
3.10, 3.11, and 3.12 are solved iteratively using Newton-Raphson method for 16
unknowns at every step n, and the results are stored in the look-up contact table. The
look-up table contains not only the generalized coordinates and surface parameters

of both bodies at each configuration but also the tangent vectors (t
ik

1 and t
ik

2 ), unit
normal (nik), and principal curvatures (κik1 and κik2 ) at the contact point evaluated
by Eqs. 3.5 and 3.6.

3.2.2.3 Combined Nodal and Non-conformal Contact Search

For ideal involute profiles, use of the non-conformal equations leads to efficient
solutions in the contact geometry analysis of gear teeth. On the other hand, in
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Fig. 3.2 Combined nodal and non-conformal contact search for gear tooth contact

the case of measured tooth profiles with tooth surface imperfections (Kin 1994;
Zhang et al. 1994), undesirable jumps in the contact point occur on the surface,
and the use of the non-conformal contact search leads to a difficulty in finding
the correct contact point. Since the solution of the iterative solution procedure is
obtained around the initial estimate provided, it fails to detect the discontinuous
jump in contact point if the initial estimate is far from the solution sought. For
this reason, in this study, the nodal search is employed as a global search to
provide a rough estimate of the contact point (i.e., surface parameters), and then
the contact point obtained is used as the initial estimate for the non-conformal
contact search equations as shown in Fig. 3.2. Such a two-stage procedure leads
to a robust algorithm, which allows for detecting an appropriate initial estimate for
non-conformal contact search for tooth surfaces with tooth surface imperfections.

To determine the contact point between two arbitrary surfaces in the three-
dimensional space using the nodal search method, each tooth surface is discretized
into nodal points first, and the nodal coordinates, defined with respect to its profile
coordinate system, are stored in a tabular form together with the surface parameters
associated with them. For a given configuration of two gear teeth, the global position
of the discretized nodal points is evaluated using Eq. 3.1. The gear surfaces in the
three-dimensional space are then sliced into a number of two-dimensional plane
along the Z-axis as shown in Fig. 3.2.

The cut planes that contain both tooth profile curves are extracted for further
consideration. Having obtained the multiple two-dimensional profile curves dis-
cretized by a number of nodal points in the XY cut planes, the relative distances
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between the two curves along the X-axis are calculated, and the minimum distance
is identified for each plane. If the distance is negative, the two surfaces at the nodal
points are penetrated. If none of the minimum distances is negative, the pitch angle
θ j of gear j is incremented until the contact nodes with penetration are detected.
Recall here that the pitch angle θ i of gear i is prescribed by Eq. 3.12 at every step.
Having determined the contact point (i.e., a pair of nodes in contact on body i and j),
the surface parameters associated with these nodes are obtained and used as initial
estimates for the interactive solution procedure for the non-conformal contact search
equations given by Eqs. 3.10, 3.11, and 3.12. The accuracy of the contact point and
the computational effort in the nodal search stage depend on the resolution of the
nodal surface discretization. However, the contact point obtained by the nodal search
is not used as the final solution but rather used as the initial estimates for the iterative
solution procedure; thus, one can use relatively coarse mesh.

3.2.3 Numerical Procedure in Dynamic Simulation

3.2.3.1 Tabular Contact Search in Dynamic Simulation

In the contact geometry analysis discussed in the previous section, the global
coordinate system is defined such that: (1) the origin of the coordinate system is
attached to the center of the gear body i; (2) the global Y-axis is parallel to the axis
of spin rotation of gear body i; and (3) the global Z-axis passes through the center
of gear body j as shown in Fig. 3.2. In other words, the generalized coordinates
stored in the look-up contact tables are defined with respect to this coordinate
system introduced in the contact geometry analysis. For this reason, the generalized
coordinates of gear bodies defined in the dynamic simulation need to be transformed
to those consistent with the contact geometry analysis, and then the look-up contact
table needs to be utilized with the transformed generalized coordinates. Hereinafter,
this coordinate system is called the look-up table coordinate system. The orientation

of the look-up table coordinate system AijT =
[

iijT jijT kijT

]
for gear body i and j is

defined by the following three unit vectors:

iijT = jijT × kijT , jijT = ji , kijT = Rj − Ri∣∣Rj − Ri
∣∣ (3.13)

where ji is the unit vector along the Y-axis (spin axis) of the body coordinate system
of gear body i. The orientation matrices of gear i and j defined with respect to the
look-up table coordinate system are defined as

Âi =
(

AijT
)T

Ai and Âj =
(

AijT
)T

Aj (3.14)
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Fig. 3.3 Contact scenario (a) Multi-point contact (b) Backside contact

from which, one can extract Euler angels θ̂
i = [

ψ̂ i φ̂i θ̂ i
]T

and θ̂
j =

[
ψ̂j φ̂j θ̂ j

]T
defined with respect to the table coordinate system used for the

tabular interpolation. The three translational coordinates that defines the origin of
the body coordinate system can also be defined in the look-up table coordinate
system as follows:

R̂i = 0 and R̂j = Rj − Ri (3.15)

from which, the six coordinates of gear body i and j used for the tabular contact
search in the dynamic simulation are defined as follows:

q̂ i =
[
(
R̂ i
)T (

θ̂
i
)T ]T

and q̂j =
[
(
R̂j
)T (

θ̂
j
)T ]T

(3.16)

The preceding sets of coordinates are consistent with the generalized coordinates
stored in the look-up contact tables. The tabular contact search is then carried out
for all the gear teeth positioned in the searching range given in the look-up table
tooth by tooth. This allows for detecting multi-point contact as shown in Fig. 3.3a
without ad hoc procedures. The contact point on the backside of the tooth as shown
in Fig. 3.3b can also be considered by switching the look-up table with that of the
backside contact in a straightforward manner.

3.2.3.2 Numerical Procedure for Planetary Gear System

To demonstrate the use of the tabular contact search method for complex geared
systems, the numerical procedure for a planetary gear model that consists of three
planet gears (bodies 1 through 3), one ring gear (body 4), one sun gear (body 5),
and one carrier (body 6) shown in Fig. 2.4 is discussed in this subsection. The ring
gear is fixed to the ground, and the carrier is connected to the centers of the three
planet gears by revolute joints. The carrier is assumed to rotate at a constant speed
by imposing a driving constraint.

In this planetary gear model, look-up tables for (1) the ring and planet gear teeth;
and (2) the planet and sun gear teeth are prepared prior to the dynamic simulation.

http://dx.doi.org/10.1007/978-3-319-78166-2_2
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Fig. 3.4 Look-up table coordinate systems of planetary gear contact

For each gear tooth contact, a contact table for the backside tooth surface contact
is also prepared if the backlash effect is considered in the dynamic simulation. To
determine contact points using look-up contact tables at every time step, the look-up
table coordinate system is defined as shown in Fig. 3.4 for each pair of gears in a
way described in Sect. 3.2.3.1. As shown in Fig. 3.4, the look-up table coordinate
systems defined for the planet and ring gears and the planet and sun gears coincide
since centers of the ring and sun gears coincide. The look-up table coordinate system
rotates about its Y-axis as the planet gear rotates around the sun gear.

In what follows, the numerical procedure in the dynamic simulation is summa-
rized.

Step 1: For each pair of gears, the look-up table coordinate system is defined at
the current configuration, and the generalized coordinates of gear bodies defined
with respect to the look-up table coordinate system q̂ are calculated.

Step 2: Using the rotational coordinates defined with respect to the look-up table
coordinate system, the angular position of the gear tooth profile coordinate
system positioned in the tabular search range is determined with respect to the
look-up table coordinate system at the current configuration. In Fig. 3.5, the three
teeth, k, k + 1, and k + 2 are positioned in the tabular search range, and the
rotation angles θ14,k

p , θ14,k+1
p , and θ14,k+2

p of the tooth profile coordinate systems
are defined, where the superscript 1 indicates the body number of the planet gear,
while superscript 4 indicates that of the ring gear.

Step 3: Using the rotation angle of the tooth profile coordinate system k defined
with respect to the look-up table coordinate system, the tabular contact search is
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Fig. 3.5 Tooth profile
coordinate system of planet
and ring gears

performed to determine the location of the contact point (i.e., surface parameters)
and the geometric properties at the contact point. The same procedure is repeated
for all the teeth in the tabular search range (i.e., tooth k + 1 and k + 2 in the model
shown in Fig. 3.5).

Step 4: If the tooth under consideration has a tooth geometry imperfection, the look-
up table is switched to that accounts for the tooth geometry imperfection.

Step 5: If the backside tooth surface contact is considered, the angular position of the
backside tooth profile coordinate systems positioned in the tabular search range
is determined (i.e., θ14,k

pb , θ14,k+1
pb , and θ14,k+2

pb in the model shown in Fig. 3.6).
These rotation angles are used to determine whether the backside tooth surface
contact occurs or not. The look-up contact tables for the backside contact are
used to determine the location of the contact point and the geometric properties
at the contact point. That is, the backlash effect can be considered by simply
switching the look-up contact tables.

Step 6: The normal and tangential contact forces are calculated using the procedure
presented in Sect. 3.2.4 with the variable mesh stiffness model, and then the
generalized mesh force vectors are evaluated.

Step 7: The same procedure from Step 1–6 is repeated for all the other pairs of gears
in the system.

Step 8: The generalized mesh force vectors of all of the gear bodies under
consideration are added to the generalized external force vector Qe in the
equations of motion of the multibody gear system defined as
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Fig. 3.6 Backside tooth
profile coordinate system of
planet and ring gears

Mq̈ + CTq λ = Qv + Qe

C (q, t) = 0

}
(3.17)

where C is the vector of the system constraint equations that describe mechanical
joints and/or specified motion trajectories, q is the vector of the system generalized
coordinates, M is the system mass matrix, Qv is the vector of inertia forces that
are quadratic in velocity, Qe is the vector of the generalized external forces, Cq is
the Jacobian matrix of the constraint equations, and λ is the vector of Lagrange
multipliers that are used to define the generalized constraint forces.
Step 9: The system equations of motion are integrated forward in time to determine

the generalized coordinates and velocities using a time integration scheme for
differential algebraic equations. Steps 1–9 are repeated until the simulation time
is exceeded.

3.2.4 Gear Mesh Stiffness and Contact Force

The normal contact force between two tooth surfaces is defined as

F
ijk
N = −kijkN δijk − cijkN δ̇ijk

∣∣∣δijk
∣∣∣ (3.18)



74 H. Li

where k
ijk
N is the mesh stiffness; cijkN is the damping coefficient; δijk is the

penetration defined by δijk = (rik − rjk) · njk; δ̇ijk is its velocity; and njk is the
unit normal at the contact point defined in the global coordinate system. For an
accurate prediction of the transmission error, which is the main source of noise
and vibration of gear trains, the mesh stiffness needs to account for the effect of
the contact stiffness, tooth bending stiffness, and gear body (foundation) stiffness
(Cornell 1981). Due to the nonuniform gear tooth thickness, tooth bending stiffness
varies as the contact point move along its length. The compliance of gear tooth i can
be modeled with the following series spring model:

1

kikN

= 1

kikN1

+ 1

kikN2

+ 1

kikN3

(3.19)

In the preceding equation, the contact compliance is defined based on the
semiempirical Hertz contact model as (Hu et al. 2016b).

1

kN1
= 1.37
(
Eeff

)0.9 (
beff
)0.8
(FN)

0.1
(3.20)

For simplicity, the superscripts ik that denote the body and contact numbers are
omitted. In the preceding equation, beff is the effective face width; FN is the normal
load acting on the tooth face, Eeff is the effective Young’s modulus determined by
Young’s modulus and the tooth width to thickness ratio (Tavakoli 1986).

The tooth bending stiffness is approximated by the nonuniform cantilevered
beam of an effective length Le discretized by transverse segments of rectangular
cross section as shown in Fig. 3.7. The tooth bending compliance is expressed as
(Tavakoli 1986).

1

kN2
=

Ns∑

i=1

(Qti +Qsi +Qmi) cosβ (3.21)

where Ns is the number of the discretized segments and β is the pressure angle at the
contact point. The tooth stiffness associated with the transverse normal, transverse
shear, and bending deformations is considered in the preceding expression by the
compliance Qti, Qsi, and Qmi for segment i, respectively. These compliances are
defined as (Tavakoli 1986)

Qti = cosβ

6Eeff I i

(
2(Li)

3 + 3(Li)
2Si

)
(3.22)

Qsi = 1.2Li cosβ

GAi
(3.23)
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Fig. 3.7 Tooth compliance
model

Le

Li Si

bqf

W

Root circle
Base circle

Y

Qmi = (Si cosβ − Y sinβ)

2Eeff I i

(
(Li)

2 + 2LiSi
)

(3.24)

where Li, I i , and Ai are the thickness, the mean second moment of area, and the
mean cross-sectional area of segment i, respectively, Si is the distance between the
segment i and the contact point, and G is the shear modulus of rigidity.

The third factor that contributes to the mesh stiffness is the foundation stiffness
of the gear tooth. The foundation compliance is defined as follows (Cornell 1981):

1

kN3
= cos2 β

b E

(
L

(
Lf

Hf

)2

+M
(
Lf

Hf

)
+ P

(
1 +Qtan2β

))
(3.25)

where b is the tooth face width, E is Young’s modulus, Lf is the effective tooth
length, and Hf is the effective tooth thickness. The coefficients L, M, P, and Q in the
preceding equation, based on the semi-infinite elastic plane assumption, are given in
Table 3.1 (Cornell 1981). The semi-analytical formula for the gear body rotational
stiffness for an elastic ring model, on the other hand, is derived in the literature
(Sainsot and Velex 2004). In this case, the four coefficients L, M, P, and Q in Eq.
3.25 are defined by the following polynomial in terms of angle θ f as shown in Fig.
3.7:

X
(
θf , hf

) = a1
1

(
θf
)2 + a2

(
hf
)2 + a3

hf

θf
+ a4

1

θf
+ a5hf + a6 (3.26)

where the polynomial coefficients ai (i = 1, · · · , 6) defined for L, M, P, and Q are
given in Table 3.2 (Sainsot and Velex 2004) and hf is the ratio of the radius of the
root circle to the inside radius of the gear body.

Using Eqs. 3.20, 3.21, and 3.25, one can define the tooth compliance, and then
the total mesh stiffness at contact k between tooth i and j is defined as

k
ijk
N = kikN k

jk
N

kikN + kjkN
(3.27)
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Table 3.1 Coefficients L, M,
P, and Q for semi-infinite
elastic plane assumption
model (Cornell 1981)

Narrow tooth (R > 5) Wide tooth (R < 5)

L 5.306 5.306(1−ν2)
M 2(1−ν) 2(1−ν−2ν2)
P 1.534 1.534(1−ν2)
Q 0.4167/(1 + ν) 0.4167/(1 + ν)

R = b/Hp (b tooth width, Hp tooth thickness at the
pitch point)

Table 3.2 Polynomial coefficients L, M, P, and Q for an elastic ring model (Sainsot and Velex
2004)

a1 a2 a3 a4 a5 a6

L −5.574 × 10−5 −1.9986 × 10−3 −2.3015 ×10−4 4.7702 × 10−3 0.0271 6.8045
M 60.111 × 10−5 28.100 × 10−3 −83.431 ×10−4 −9.9256 × 10−3 0.1624 0.9086
P −50.952 × 10−5 185.50 × 10−3 0.0538 ×10−4 53.300 × 10−3 0.2895 0.9236
Q −6.2042 × 10−5 9.0889 × 10−3 −4.0964 ×10−4 7.829 × 10−3 −0.1472 0.6904

from which, the normal contact force vector defined by Eq. 3.18 is expressed in the
global coordinate system as follows:

Fijk
N = F

ijk
N njk (3.28)

In order to account for the effect of friction, the unit relative velocity vector along
the tangent plane of contact can be determined as

vijkT = ṙijk − (
ṙijk · njk

)
njk∣∣ṙijk − (

ṙijk · njk
)

njk
∣∣ (3.29)

where ṙijk is the relative velocity vector at the contact point. Using an assumption
of Coulomb friction, the friction force vector at the contact point can be defined as

FijkF = − sign
(

vijkT
)
μijk F

ijk
N vijkT (3.30)

where μijk is a coefficient of friction. For a more accurate prediction of tangential
contact forces on lubricated tooth surfaces, one can use models based on elasto-
hydrodynamic lubrication theory (Mohammadpour et al. 2014; Karagiannis et al.
2012).

3.3 Numerical Examples of Gear Dynamics Simulation

In this section, several numerical examples are presented in order to evaluate the
accuracy and validity of the numerical procedure proposed for the gear dynamics
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Table 3.3 Specification of
the spur gear model

Gear Pinion

Number of teeth 82 23
Module (mm) 8.5
Tooth width (mm) 170 186
Inside diameter (mm) 240 100
Root diameter (mm) 675.75 174.25
Applied torque (Nm) 3500

simulation of multibody systems. In particular, an accuracy of mesh stiffness model
and transmission error of a gear tooth with tip relief is discussed first. A planetary
gear model is then introduced to discuss the effect of tooth surface irregularity on
mesh force variation. A wind turbine gearbox model is presented in the last example
and is validated against test data provided in the literature.

3.3.1 Mesh Stiffness Model

In the first numerical example, the accuracy of the mesh stiffness model presented
in Sect. 3.2.4 is discussed. The specification of the spur gear and pinion models
considered in this example is summarized in Table 3.3 (Sheng 2012). The tooth and
mesh stiffness evaluated using Eqs. 3.18 and 3.26 are presented in Fig. 3.8 as a
function of the pinion rotation angle. In this figure, the rotational gear body stiffness
based on the semi-infinite elastic plane assumption, defined as Model 1 (see Table
3.1), and the elastic ring model, defined as Model 2 (see Table 3.2), are used for
comparison. The tooth and mesh stiffness obtained using the finite element model
created by ANSYS™ are also presented in this figure. The eight-node hexahedral
and six-node pentahedron elements are used with the augmented Lagrangian method
for modeling gear tooth contact. The element is carefully refined around the contact
region to ensure the accuracy as shown in Fig. 3.9. The external torque of 3500 Nm
is assumed.

It is observed from Fig. 3.8 that the use of the elastic ring rotational stiffness
model (Model 2) leads to good agreement with the finite element solution while
Model 1 with the semi-infinite elastic plane assumption overestimates the tooth
stiffness. In particular, error in the gear tooth is larger than that of the pinion gear
due to the larger ratio of the root circle to the inside radii of the gear body.

3.3.2 Transmission Error of Spur Gear Teeth with Tip Relief

In this example, the transmission error of the gear tooth with tip relief is evaluated
using the procedure developed in this study. The transmission error is defined by the
deviation of the theoretical angular position of a pair of gears from its actual position
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Fig. 3.8 Tooth and mesh stiffness

Fig. 3.9 Finite element tooth contact model (a) Gear tooth mesh (b) Mesh around contact region

at a constant steady rotation and is the main source of gear noise and vibration. To
reduce the transmission error at an operating torque, the tip relief is introduced. The
linear tip relief, as shown in Fig. 3.10, is defined by the following equation:

δ(r) = δa
r − rs
ra − rs (3.31)

where rs is the point that the tip relief starts and its end point is defined by ra. The
amount of tip relief at the end point is defined by δa.
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Fig. 3.10 Tooth tip relief

Table 3.4 Specification of
the spur gear model with tip
relief

Number of teeth 50 Outside diameter 156 mm
Gear ratio 1:1 Root diameter 141 mm
Center distance 150 mm Pitch diameter 150 mm
Module 3 mm Pinion tip reliefa 12.7 μm
Pressure angle 20 deg Gear tip reliefa 10.16 μm

aThe tip relief starts at the tooth pitch point (r = 75 mm)

To evaluate the transmission error with the linear tip relief, the specification of
the spur gear and pinion in Houser et al. (1996) is used in this study and summarized
in Table 3.4, where the linear tip reliefs of the pinion and gear are assumed to be
12.7 μm and 10.16 μm, starting at the pitch point (Houser et al. 1996). The peak
to peak transmission errors (PPTEs) with and without the tip relief are compared in
the Fig. 3.11. It is observed from this figure that V-pattern of the transmission error
versus torque curve is predicted as presented in Houser et al. (1996). If the tip relief
is not considered, the PPTE increases as the torque increases. In Fig. 3.11, the lowest
PPTE of 36.07 μin (0.9163 μm) is obtained for the external torque of 1550 lbs-in
(175 Nm), which are in good agreement with that of Houser et al. (1996).

3.3.3 Dynamic Simulation for Planetary Gear with Tooth
Surface Imperfection

In this example, a planetary gear model, which consists of three planet gears, is
considered as shown in Fig. 3.12, and the specification is given in Table 3.5. In this
model, a small tooth surface imperfection is considered in one of the planet gear
teeth with H = 0.288 mm and W = 1.492 mm. All the look-up contact tables for
the planet/ring gear teeth contact and planet/sun gear teeth contact are generated
first using the procedure discussed in Sect. 3.2.3, and these contact tables are used
to predict the contact points in the planetary gear in the dynamic simulation. The
change in the location of contact point between the planet gear tooth with the
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Fig. 3.11 Peak to peak transmission error with and without tip relief

Tooth surface
imperfection

Sun gear

Ring gear

Carrier

Planet gear

H

W

Fig. 3.12 Planetary gear model with tooth surface imperfection

imperfection and the internal ring gear tooth is shown in Figs. 3.13 and 3.14. It
is observed from these figures that the contact point moves along the line of action,
and then it deviates from the line of action after the contact point reaches the edge
of the groove. A jump in contact point occurs from one edge to the other (see points
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Table 3.5 Specification of the planetary gear model

Component # of teeth
Pressure
angle(deg)

Pitch diameter
(mm) Tooth width (mm)

Circular crowning
(mm)

Sun 21 20 214.2 220 0.5
Planet 39 20 397.8 227.5 0.5
Ring 99 20 1009.8 230 0.5

Fig. 3.13 Location of contact point

A and B). This behavior is clearly observed in the surface parameter presented in
Fig. 3.15 as a function of the planet gear rotation.

In order to discuss the performance of different contact search methods used
in the contact geometry analysis, the accuracy and CPU time are compared and
summarized in Table 3.6. The accuracy is measured by the norm of the non-
conformal contact constraint violation for solutions obtained by each method and
is defined by the following equation:

e =
∣∣∣Cijk

(
qi ,qj , sik, sjk

)∣∣∣ (3.32)

It is observed from this table that the use of the nodal search method leads
to extensive computational burden, and violation of the non-conformal contact
condition is noticeable, despite the fact that a very fine nodal discretization (10 μm)
is used. Furthermore, the use of the nodal search method leads to discontinuous
change in the contact point on the entire surface as shown in Fig. 3.15 and is
not suited for an accurate prediction of mesh forces. On the other hand, the non-
conformal contact search method failed to reach the convergent solution in the
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Fig. 3.14 Jump in contact point around the surface imperfection

Fig. 3.15 Location of contact point (s1) as a function of rotation angle

vicinity of the groove on the gear tooth surface, where a jump in contact point is
supposed to occur.

The combined nodal and non-conformal contact search proposed in this study
leads to accurate solutions with significantly less CPU time. This is attributed to the
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Table 3.6 Comparison of contact search methods

Contact search method Nodal search
Non-conformal
contact search

Combined nodal and
non-conformal contact search
(proposed)

Distance between nodes (m) 1.00 × 10−5 – 1.00 × 10−5 2.50 × 10−4

Maximum error (m) 5.85 × 10−4 Not converged 4.36 × 10−12 5.65 × 10−12

CPU time (s) 20,520 Not converged 2222 97

fact that the nodal search used in the vicinity of the groove allows for detecting
the discontinuous change in the contact point, while the non-conformal contact
search used in the region where the tooth surface is smooth and continuous leads
to fast and accurate solutions. The contact point estimated by the nodal search
method is refined using the non-conformal contact equation, thereby enforcing the
non-conformal contact condition strictly at every configuration considered in the
simulation scenario. It is important to notice here that the use of relatively coarse
nodal discretization (250 μm) leads to less CPU time while keeping the same order
of accuracy, leading to a robust contact detection algorithm which allows for not
only detecting the discontinuous change in the contact point but also the smooth
change in the contact point before/after the jump in contact point as shown in Fig.
3.15.

Using the multiple look-up contact tables prepared prior to the dynamic sim-
ulation that includes the one considering the planet/ring teeth contact with the
imperfection, the dynamic simulation is performed. The look-up table needs to be
switched when the nonideal planet tooth enters into the contact search region to
consider the effect of the tooth surface imperfection in the mesh force calculation.
It is important to notice here that the nonideal planet gear tooth surface shown in
Fig. 3.12 does not come into contact with the sun gear since the other side of the
ideal tooth surface comes into contact with the sun gear. The carrier is rotated at
a constant angular speed of 25 deg./s, and the mesh forces of all the planet/ring
teeth contact as well as the planet/sun teeth contact are shown in Figs. 3.16, 3.17,
and 3.18. The results in Fig. 3.16 involve the tooth with the imperfection in one
of the planet gear teeth. It is observed from Fig. 3.16 that the impulsive change in
the mesh force occurs in the planet/ring gear teeth contact when the tooth with the
surface imperfection comes into contact.

In particular, a loss of the contact force is observed when the jump in contact
point occurs, and it leads to an increase in the mesh force of the tooth next to the
one with imperfection. The similar result is observed in the dynamic transmission
error (DTE) presented in Fig. 3.19. In this figure, the dynamic transmission errors
between the ring and planet gears with and without the tooth surface imperfection
are compared. It is observed from this figure that the transmission error increases,
and its magnitude becomes same as that of the single point contact when the loss
of contact due to the imperfection occurs. This is attributed to the fact that the
double tooth contact is changed to the single tooth contact while the contact is
lost. Furthermore, the change in the transmission error due to the mesh stiffness
variation is also captured in both results. It is also important to notice here that the



84 H. Li

Fig. 3.16 Mesh forces of planet-1/ring and planet-1/sun teeth contact with surface imperfection

Fig. 3.17 Mesh forces of planet-2/ring and planet-2/sun teeth contact

abrupt change in mesh force caused by the tooth surface imperfection influences the
mesh force with the sun gear, and a change in the mesh force is transmitted to the
other two planet gears without tooth surface imperfections through the contact with
sun gear as observed in Figs. 3.17 and 3.18.
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Fig. 3.18 Mesh forces of planet-3/ring and planet-3/sun teeth contact

Fig. 3.19 Dynamic transmission error of planet-1/ring teeth contact
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Fig. 3.20 Sliced helical gear
tooth

3.3.4 Helical Gear Modeling and Verification

To model helical gear tooth contact in the gear dynamics simulation, the gear tooth
is cut into a number of slices across the face width to describe the helix curve
as shown in Fig. 3.20, and a point contact is defined on each sliced surface of a
helical gear. By doing so, the load distribution across the face width of helical gears
can be described as a collection of forces acting on the sliced tooth surfaces in a
straightforward manner using a look-up contact table. The transverse module and
transverse pressure angle for a helical gear are considered. Since the tooth surface
is cut into a number of slices, tabular contact search is repeated for all the slices for
one tooth surface in a way described in Sect. 3.2.3.2. It is important to notice here
that the look-up coordinate system defined on sliced tooth needs to be rotated by
θ from the one side to the other incrementally to account for the helix curve, and
θ is given by

θ = B · cosαt · tanβh
ns · rb (3.33)

where B is the face width, αt is the transverse pressure angle, βh is the helix angle,
rb is the base radius, and ns is the number of slices. The helical gear mesh force
distribution obtained using 21 slices is shown in Fig. 3.21.

To verify the helical gear mesh model in the gear dynamics simulation, the
mesh forces obtained using the present approach and the finite element model using
ABAQUS are compared. The gear geometry parameters and material properties of
the model under consideration are shown in Tables 3.7 and 3.8, respectively. The
CAD model of four-tooth gear and pinion is generated and imported into ABAQUS
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Fig. 3.21 Example of helical gear tooth mesh force distribution with 21 slices

Table 3.7 Basic gear geometry parameters

No. of teeth
Normal
module Root diameter

Pressure
angle Helix angle Face width

Center
distance

Gear 39 10 372 mm 20◦ 7.5◦ L 220 mm 308 mm
Pinion 21 10 186 mm 20◦ 7.5◦ R 220 mm

Table 3.8 Gear material
properties

Young’s modulus 210 GPa
Poisson ratio 0.3
Density 7850 kg/m3

for the quasi-static contact analysis between the gear and pinon for various angular
positions. The center of the pinion is rigidly fixed to the ground for a given pinion
angle in each analysis, while the gear is allowed to rotate about the spin axis, about
which a constant torque of 5122 Nm is applied to evaluate the mesh forces on
the gear and pinion tooth surfaces. The mesh size of the finite element model is
approximately 2.6 mm. The pinion rotational angle is incrementally changed from
−16 deg. to 16 deg. with 2 deg. increment as shown in Fig. 3.22. The resultant
mesh force of one of the teeth in the pinion at each configuration is presented
in Fig. 3.23 and compared with the result obtained using the sliced helical gear
model implemented in the gear dynamics simulation code. In the gear dynamics
simulation, the pinion is rotated very slowly with the same driving torque as the
finite element model. The gear and pinion teeth are cut into 21 slices.
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Fig. 3.22 ABAQUS FE model in different configurations

Fig. 3.23 Total contact force variation on pinion second tooth

It is observed from Fig. 3.23 that the gear dynamics simulation results agree well
with those of the ABAQUS model for various pinion angles. In order to compare
the contact force distribution for different pinion angels, the mesh force distribution
at −16, 0, and +14 degrees is compared with ABAQUS results in Figs. 3.24, 3.25,
and 3.26, respectively. While only a single tooth is in contact at the pinion angle of
0 degree, two teeth are in contact at the pinion angle of −16 and +14 degrees. The
similar mesh force distributions are obtained in both models for the three pinion
angels.
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Fig. 3.24 Contact force distribution at pinion configuration: −16 deg. (a) ABAQUS FE model
result (b) FORTRAN Geardyn model result
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Fig. 3.25 Contact force distribution at pinion configuration: 0 deg. (a) ABAQUS FE model result
(b) FORTRAN Geardyn model result
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Fig. 3.26 Contact force distribution at pinion configuration: 14 deg. (a) ABAQUS FE model result
(b) FORTRAN Geardyn model resul
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Table 3.9 General
description of the wind
turbine (Sheng 2012)

Type Three blade up wind

Power rating 750 KW
Rotor diameter 48.2 m
Rated rotor speed 22 rpm
Nominal hub height 55 m
Blade length 23.5 m
Gearbox ratio 1:81.491
Rated wind speed 16 m/s
Design life 20 years

3.3.5 Wind Turbine Gearbox Model and Dynamic Simulation

3.3.5.1 Gearbox Model and Specification

In the 750 kW GRC wind turbine as summarized in Table 3.9 (Sheng 2012), the
gearbox consists of one planetary gear at the low-speed stage and two parallel axis
gears at the intermediate and high-speed stages as shown in Fig. 3.27. Planetary gear
systems are commonly used in wind turbine to provide high power density that can
be achieved by sharing the large input torque by multiple planet-ring and planet-sun
gear contact loads. In the low-speed stage of the GRC gearbox, there are three planet
gears framed on the carrier, which carries the input load from wind turbine rotor. The
ring gear is fixed to the gear train housing. The sun gear is connected to the input
shaft of the intermediate-speed stage parallel axis gear. Considering a lubricated
gear toot surface condition, the coefficient of friction is assumed to be 0.04. Gear
geometry parameters, mass and inertia properties, and the bearing stiffness can be
found in literature (Sheng 2012; Guo et al. 2012a).

NREL conducted field and dynamometer tests for the GRC wind turbine
drivetrain (Guo et al. 2012b), and the test data was used to evaluate the accuracy
and computation efficiency of the gear train numerical models with different levels
of fidelity. In the experimental test setup, the proximity and strain measurement
sensors are placed on the planet rim and planet bearings to measure the planet gear
motion and its bearing loads, respectively. More details on the test instrumentation
can be found in the literature (Guo et al. 2012b). The test data was compared
with simulation results obtained using gearbox models with different fidelity. Those
computational models include P1 and P2 models created by NREL’s partners in
industry and academia as well as M1A, M1B, and M3B models created by NREL.
The P1 model is a planetary stage multibody model, and the gear face width is
divided into nine force elements. The planet carrier and pins are modeled as flexible
bodies. The P2 model is a quasi-static fully flexible model created using a software
called RomaxWIND. The M1A and M1B models are rigid gear train models created
by SIMPACK, where bearing clearance is considered in M1B model. The M3B
model is a fully flexible multibody gearbox model, and the housing and carrier
deformations are modeled using finite element software ABAQUS, and then the
reduced order modal models are imported into SIMPACK. Further details on the
model description can be found in literature (Guo et al. 2012b).
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Fig. 3.27 GRC wind turbine drivetrain (a) Drivetrain components (b) Drivetrain for dynamometer
testing (Guo et al. 2012b)

3.3.5.2 Numerical Result and Validation Against Test Data

To demonstrate the capability of the gear dynamics simulation program developed
in this study using the tabular contact search method for complex geared systems,
two numerical examples are presented. To describe contact geometry of gear teeth in
contact in the GRC gearbox model, the following four look-up tables are generated
prior to the gear dynamics simulation using the contact geometry analysis described
in Sect. 3.2.2:
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Fig. 3.28 Helical gear mesh force distribution

1. Ring-planet gear tooth contact
2. Planet-sun gear tooth contact
3. Pinion-gear tooth contact at the intermediate-speed stage
4. Pinion-gear tooth contact at the high-speed stage

In the first numerical example for the GRC gearbox, a rated constant angular
velocity of 22 rpm is applied to the carrier of planetary gear at the low-speed
stage, and the rotational resistance of the output shaft connected to the generator
is modeled by a torsional damping (16.92 Nm/rad) at the high-speed stage. There is
no gear tooth profile modification (i.e., tip relief). A 2-second simulation is carried
out to discuss the mesh force variation. The contact forces between the planet and
sun gears at time 0.99 s are shown in Fig. 3.28, where the length and direction of
the arrow indicate the magnitude and direction of each contact force on the sliced
tooth surface, respectively. The gear tooth is cut into 21 slices in this example. It
is observed from this figure that the contact forces are distributed along the straight
contact line across the face width and the angle between the contact line and spin
axis corresponds to the helix angle.

Since the tooth surface is sliced to model gradual engagement between helical
gears, the number of contact points on a tooth surface increases gradually from zero
to the maximum number of slices, and then gradually decreases to zero for one mesh
cycle. The total contact forces on the planet and sun gear tooth contact are shown in
Fig. 3.29. Since the sun-planet gear contact ratio is 2.15, two or three pairs of teeth
are always in contact as demonstrated in Fig. 3.29.
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Fig. 3.29 Total contact force
on planet and sun gear teeth

To validate the drivetrain model developed in this study against test data, the
planet gear bearing loads calculated in the multibody gearbox dynamic simulation
are compared with test data of NREL dynamometer test (Guo et al. 2012b). The
sinusoidal torque as shown in Fig. 3.30a is applied to the carrier of the drivetrain
simulation model to describe the input torque data of NREL dynamometer test.
There are two bearings mounted on each side of the planet gear shaft. The one
on the front side is called upwind bearing while that on the rear side is called
downwind bearing. The bearing stiffness listed in Guo et al. (2012b) is used for the
spring/damper force element. The gravitational force is applied to the geometrical
center of each drivetrain component. The upwind bearing forces are compared with
NREL test results in Fig. 3.30b, c, showing good agreement in magnitude and
frequency with the NREL test results. Furthermore, it is also observed that the
simulation results are close to the NREL M1A simulation model results (Guo et
al. 2012b), which is a rigid multibody drivetrain model developed using SIMPACK.

It is important to notice there that the non-torque loads caused by the wind turbine
rotor overhang weight and aerodynamic forces are not considered in the bench test.
In the original GRC wind turbine design, as shown in Fig. 3.27b, the widely used
three-point suspension (one main bearing on the rotor shaft and two mounts for
the gearbox trunnion) can transfer significant bending loads of the main shaft to
the drivetrain, which is approximately 60% of wind turbine rated torque. This main
shaft deflection can cause the carrier angular misalignment in the planetary stage
of the drivetrain. Despite the micron level deflection of the main shaft, the contact
stress distribution, the planetary gear load sharing factor, and the gear teeth mesh
phasing can be altered. The resulting unequal loads have an adverse impact on the
drivetrain contact fatigue life. The non-torque loads are the combination of rotor
weight and complex aerodynamic loads which have uncertainty. Thus, the non-
torque loads raise a reliability issue for the three-point suspension drivetrains.
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Fig. 3.30 Planetary gear bearing load comparison between simulation results and NREL test
results (Guo et al. 2012b)

To address this issue, Alstom designed a new hub support configuration (Guo et
al. 2015). In this design, the non-torque loads are transferred directly to the tower
rather than through gearbox in original design. It’s called Alstom’s Pure Torque
drivetrain. A significant reduction of carrier misalignment as well as main shaft
bending load is demonstrated using the newly designed drivetrain (Guo et al. 2015).

3.4 Contact Fatigue Prediction Using Multibody Gear
Dynamics Simulation

3.4.1 Pitting Contact Fatigue Model

Using the dynamic wind load uncertainty model introduced in Chap. 1, a numerical
procedure for predicting the pitting fatigue life is discussed in this section. The
pitting fatigue is a typical failure mode exhibited in lubricated gears and is classified
as the subsurface-initiated failure (Choi and Liu 2006a). That is, the total fatigue life
is defined by the sum of the number of load cycles required to initiate the subsurface
crack Ni and that required for the crack to propagate to the surface Np as (Osman
and Velex 2011)

http://dx.doi.org/10.1007/978-3-319-78166-2_1
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N = Ni +Np (3.34)

Using the Dang Van’s assumption that the fatigue micro-crack appears when the
monocrystal reaches the elastic shakedown due to shearing, the number of cycles
for crack initiation is defined by (Osman and Velex 2011)\vspace*{-4pt}

Ni = 1

2

⎛

⎝
τmax + 3

(
τ ′
f /σ

′
f − 0.5

)
pH

τ ′
f

⎞

⎠
1/c

(3.35)

where τmax and pH are, respectively, the maximum shear stress and hydrostatic
stress in the subsurface; σ ′

f and τ ′
f are fatigue strength coefficients for ten-

sion/compression and shearing, respectively; and c is a fatigue strength exponent.
It is assumed that the crack is initiated at a point where the ratio of the maximum
shear contact stress to the hardness is maximal and the initial crack is parallel to the
surface (Choi and Liu 2006a).

Assuming the Hertzian contact between two cylinders has the radius of curvature
of R1 and R2, the maximum contact pressure is obtained by pmax = 2F/πb0 as
shown in Fig. 3.31a (Budynas and Nisbett 2008), where F is the contact force per
unit length along the cylinder axis and b0 is the half width of the contact patch

defined by b0 = 2
√
FR/πE. Note that E is an equivalent Young’s modulus of two

materials in contact defined by 1/E = (
1 − ν2

1

)
/E1 + (

1 − ν2
2

)
/E2; and R is an

equivalent radius evaluated by the principal radii of curvature at the contact point on
surfaces in contact and is defined by 1/R = 1/R1 + 1/R2. The greatest value of the
maximum shear stress occurs at z0 = 0.786 b0 measured from the contact surface
with a value of τmax = 0.3pmax (Budynas and Nisbett 2008), and it is assumed that
the subsurface crack parallel to the surface is initiated at this point when the number
of load cycles reaches Ni as illustrated in Fig. 3.31a.

After the subsurface crack is initiated, the crack propagates under cyclical contact
loads to the surface. Using the Paris equation, the crack propagation is modeled by
(Liu and Zenner 2003)

dap

dN
= Cp

(
(K)m − (K0)

m
)

(3.36)

where ap is the half length of the crack; N is the number of load cycles; Cp and m are
constants; andK is the model II stress intensity factor range.K0 is the threshold
for the crack growth given by the empirical formulaK0 = 2.45 + 3.41 × 10−3HV
for the Vickers hardness HV (Kato et al. 1993). That is, the crack grows only if
K is greater than K0. The stress intensity factor K is defined by Choi and Liu
(2006a) and Osman and Velex (2011).

K = s
√
πap U

(
ap
)

(3.37)

where U(ap) is a factor considering the crack closure given by the empirical formula
of Newman U(ap) = 0.89(1 + 0.11 exp (−0.1ap)) (1992), while s is the crack
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Fig. 3.31 Contact stresses and crack and subsurface-initiated crack (a) Contact stresses (b)
Subsurface-initiated crack

growth driving force. It is shown in the literature (Jiang et al. 1993) that the growth
of the subsurface crack under rolling contact loads is driven by the value defined by
a ratio of the maximum shear stress to the hardness, and the following expression
for s is suggested by considering the effect of porosity and notch effects (Osman
and Velex 2011; Jiang et al. 1993):

s =
(
τmaxδK

ψ

)2 1

HV
(3.38)

where δK = (Kt − 1)η + 1 and ψ = e−4.3ε for empirically identified parameters Kt,
η, and ε (Straffelini et al. 2000). Using Eq. 3.36, the number of cycles that causes
the initial crack, parallel to the surface, to reach the surface is calculated as

Np =
∫ ac

a0

1

Cp
(
(K)m − (K0)

m
)dap (3.39)

where a0 is the half length of the initial crack assumed by (Osman and Velex 2011)

a0 = 1

8π

(
K0

0.475Su

)2

(3.40)

and Su is the ultimate tensile strength. ac in Eq. 3.39 is a half of the critical crack
length and is defined by ac = z0/ sin α as shown in Fig. 3.31b, where α defines
the direction that the subsurface crack grows and z0 is the depth from the surface
at which the crack is initiated, i.e., a point where the maximum shear stress occurs.
Accordingly, the total number of load cycles to pitting failure can be predicted by a
sum of Eqs. 3.35 and 3.39 as a function of the maximum shear stress under a cyclic
rolling contact load.
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3.4.2 Use of Gear Dynamics Simulation for Prediction
of Maximum Contact Pressure

As shown in the previous subsection, the crack growth is driven by the maximum
shear contact stress τmax due to the contact load, and, therefore, an accurate
prediction of the maximum contact pressure pmax during gear meshing is of crucial
importance in predicting the pitting fatigue life. Furthermore, to account for the
wind load uncertainty characterized by the averaged joint PDF of the 10-minute
mean wind speed (v10) and turbulence intensity (i10) introduced in Chap. 1, multiple
10-minute gearbox dynamics simulations need to be performed for various choices
of v10 and i10; thus, use of general multibody dynamics simulation becomes
a computational burden in the entire design optimization process. In addition,
since the tooth contact pressure is sensitive to the gear tooth profile, an accurate
description of the tooth profile geometry and precise contact geometry calculation
are required, and use of a simplified gear contact dynamics model is not suited.
For example, profile modification called tip relief is widely used to lower the
transmission error that is a cause of gear noise and vibration (Litvin and Fuentes
2004; Tavakoli 1986) and a slight modification of the tooth profile geometry on
the order of microns alters the contact pressure on the profile surface, thereby
influencing the pitting fatigue damage (i.e., crack growth). For this reason, the
amount of tip relief is one of the important design parameters, together with the
tooth face width (Sundaresan et al. 1991), and the effect of microgeometry needs to
be precisely evaluated using the gear dynamics simulation.

For this reason, a numerical procedure for the multibody gear dynamics sim-
ulation based on the tabular contact search algorithm presented in Sect. 3.2 is
introduced and integrated into the gear design optimization procedure considering
the wind load uncertainty. This procedure allows for the detection of the gear
tooth contact in an efficient manner by introducing the look-up contact tables
while retaining the precise contact geometry and mesh stiffness variation in the
evaluation of mesh forces, thereby leading to a computationally efficient gear
dynamics simulation suited for the design optimization procedure considering wind
load uncertainty.

3.4.3 Probabilistic Contact Fatigue Damage

For evaluation of fatigue life of wind turbine systems, 10-minute wind data is
widely used to characterize the short-term wind load variability at a specific location
(Veers and Winterstein 1998; Li et al. 2016). As described in Chap. 1, the joint
probability density function (PDF) of 10-minute mean wind speed (v10) and 10-
minute turbulence intensity (i10) fVI(v10, i10) is introduced to characterize the wind
load uncertainty. For gear deterministic design optimization, the averaged wind load
probability model is developed using Monte Carlo simulation of the joint PDFs for

http://dx.doi.org/10.1007/978-3-319-78166-2_1
http://dx.doi.org/10.1007/978-3-319-78166-2_1
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v10 and i10considering the spatiotemporal wind load variability. To this end, one

million joint PDFs defined by one million sets of yl = [
Cl kl al bl τ l

]T
(l = 1,

· · · , NVI) are described as (Hu et al. 2016a)
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where NVI = 1 × 106 and the PDF are evaluated for vi10 and ij10. Using the
resulting one million joint PDFs, the mean of the PDF evaluated for each vi10 and

i
j

10 is calculated to develop the averaged wind load PDF model used for the design
optimization as
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10; yl
)
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(3.42)

where the lower bound of the mean wind speed is selected as the cut-in wind
speed, while the upper bound is the cut-out wind speed for the wind turbine under
consideration.

In this chapter, the speed range is defined from 5 m/s to 25 m/s with an increment
of 2 m/s (i.e., i = 1, · · · , 12), while the turbulence intensity range is assumed from
0.02 (2%) to 1 (100%) with 0.02 (2%) increment (i.e., j = 1, · · · , 50). The averaged
joint PDF obtained for the measured wind data is presented in Fig. 3.32. The volume
of each bar gives an averaged probability for one scenario defined for v10 and i10
considering the wind load variation in a wide spatiotemporal range.

Then the 10-minute fatigue damage can be defined as follows:

D10 min (d) =
∫ IU

IL

∫ VU

VL

f V I (v10, i10)D10 min (d, v10, i10) dv10di10 (3.43)

where D10min(d, v10, i10) is the 10-minute fatigue damage evaluated for v10 and i10;
VL and VU indicate the lower and upper bounds of the mean wind speed under
consideration, and IL and IU are those of the turbulence intensity. By numerically
integrating Eq. 3.43 using Riemann integral, 1-year fatigue damage can be obtained
as

D1year = 6 × 3000
nv∑

i=1

ni∑

j=1

f
ij
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)
v10i10 (3.44)

where Dij10 min

(
d, vi10, i

j

10

)
is evaluated for i = 1, · · · , nv and j = 1, · · · , ni. It

is assumed that a wind turbine is operated for 3000 h per year (Lesmerises and
Crowley 2013), and the gear teeth do not experience cyclical loading during the
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Fig. 3.32 Averaged joint probability density function for v10 and i10

maintenance period and when the wind speed is lower than the cut-in wind speed
or higher than the cut-out speed. To evaluate the 1-year fatigue damage for given

design variable d, the 10-minute damageDij10 min

(
d, vi10, i

j

10

)
needs to be calculated

at nv × ni sampling points for vi10 (i = 1, · · · , nv) and ij10 (j = 1, · · · , ni) using the
10-minute gearbox dynamics simulation. It is important to notice here that the input
rotational speed varies as a function of time; thus, the maximum contact pressure
used for the pitting fatigue life calculation varies at each load cycle.

To account for the contact load variation, the pitting fatigue damage is evaluated
by Miner’s rule as (Melchers 1999)

D
ij
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d, vi10, i

j

10

)
=

n
ij
10∑

k=1

1

Nijk
(
p
ijk
max

) (3.45)

where Nijk is the number of load cycles to failure for each meshing cycle k and nij10
is the number of load cycles of the gear tooth under consideration in the 10-minute
simulation. That is, Nijk is defined using the maximum contact pressure pijkmax at load
cycle k for the wind scenario defined by vi10 and ij10. As an alternative to Miner’s
rule, one can determine the 10-minute damage as
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where pijmax is the equivalent maximum contact pressure for the 10-minute wind
load scenario as (Dong et al. 2013)
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where f ijpmax

(
p
ij
max

)
is a probability density function of the maximum contact

pressure for the 10-minute simulation for vi10 and ij10. The exponent n is selected
to be the exponent of the Paris equation given in Eq. 3.36, i.e., n = m (Dong et al.
2013), while n = 1 leads to a mean value of the maximum contact pressures in the
10-minute simulation.

The 10-minute fatigue damage D10min(d, v10, i10) at the recess point on the most
critical tooth of the wind turbine sun gear is calculated for each wind load scenario
defined by v10 and i10 as shown in Fig. 3.33. Each length of the bar in this figure
indicates the magnitude of 10-minute fatigue damage. It is observed from this figure
that the fatigue damage increases with an increase of the mean wind speed since
the number of load cycles and contact loads increase as the rotor speed increases.
However, the fatigue damage plateaus when the wind speed gets higher than the
rated speed of 16 m/s. This is attributed to the fact that the blade pitch control is
activated at the rated speed (16 m/s) to maintain constant power generation at a
constant rotor speed (Muljadi and Butterfield 2000).

In general, the fatigue damage increases as the turbulence intensity increases
for the same mean wind speed. However, the opposite trend is observed when
the blade pitch control is active. This is explained by change in rotor angular
velocity of the wind turbine shown in Fig. 3.34. In this figure, mean wind speed
of 11 m/s is assumed as an example, and time histories of rotor angular velocity for
different turbulence intensities from 0.06 to 1 are compared. As observed from this
figure, the rotor velocity amplitude increases as the turbulence intensity increases.
However, since the pitch control is activated when the wind speed exceed rated
speed, maximum rotor speed is bounded, whereas minimum rotor speed is not
bounded. For this reason, a larger turbulence intensity wind scenario has smaller
minimum rotor speed value, resulting in smaller damage evaluated by the contact
fatigue model. If pitch control is off, the maximum rotor speed is not bounded; larger
turbulence intensity leads to larger damage value.

The integrand of Eq. 3.43 is calculated as a product of averaged joint PDF

of random wind load f
ij

V I

(
vi10, i

j

10

)
and 10-minute fatigue damage distribution

D10min(d, v10, i10)as shown in Fig. 3.35. The volume of each bar gives a probabilistic
10-minute fatigue damage with certain design d for one wind load range defined
for v10 and i10. It is observed that probabilistic damage value for wind condition
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Fig. 3.33 10-minute fatigue damage at recess point of sun gear

Fig. 3.34 10-minute rotor angular velocity under 11 m/s mean wind speed and different turbulence
intensity

in the range of 10 m/s < v10 < 15 m/s and 0.05 < i10 < 0.2 is relatively high,
while the probabilistic damage value of the extreme wind condition given in the
range of 20 m/s < v10 < 25 m/s and 0.4 < i10 < 1 is low. Furthermore, the highest
probability density of 3.69 × 10−6 occurs at v10 = 11 m/s and i10 = 0.1, which
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Fig. 3.35 The product of averaged joint PDF of wind load and 10-minute fatigue damage
distribution

is different from those of averaged wind load (v10 = 7 m/s and=0.1) as shown in
Fig. 3.32. It means that the v10 and i10 giving the highest probability density depend

on not only the distribution of averaged wind load joint PDF f
ij

V I

(
vi10, i

j

10

)
but

also the 10-minute fatigue damage distribution D10min(d, v10, i10). Furthermore, the
wind load distribution changes at different years, and contact fatigue damages will
differ significantly. Thus, other than repeatedly using the averaged joint PDF of
wind load for different years, consideration of different wind load distributions for
different years is crucial to realistic prediction of the gear tooth contact fatigue life
for RBDO of wind turbine gearbox.

3.5 Wind Turbine Gearbox Design Optimization

For gear design optimization to ensure the expected service life under the wind load
uncertainty, an integrated numerical procedure (Li et al. 2016) is developed using
the wind uncertainty model, the pitting fatigue prediction model, and multibody
gear dynamics simulation procedure discussed in the previous sections.
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Fig. 3.36 Effect of face width on maximum contact pressure

3.5.1 Selection of Design Variables

To improve the pitting fatigue life under the wind load uncertainty, the face width
and the amount of the tip relief are defined as design variables for the sun gear. For
example, in the initial (reference) design, the face width is 220 mm, and no tip relief
(i.e., involute profile) is used (Sheng 2012). To demonstrate the effect of those two
design variables on the pitting fatigue life, the maximum contact pressure evaluated
at various points on the gear tooth for one mesh cycle is shown in Fig. 3.36 for four
different face widths without tip relief. In this figure, the rated mean wind speed of
16 m/s and turbulence intensity of 0.14 categorized in the medium range based on
ISO standard (International Organization for Standardization 2005) are assumed as
a wind load. It is observed from this figure that the maximum pressure at the recess
point P3 is largest regardless the face width selected, and it is clear that larger face
width leads to smaller maximum contact pressure over the tooth surface, resulting
in smaller damage as shown in Fig. 3.37.

However, the increase in face width makes the weight of the gear larger, and it
also has an impact on the increase of cost. The other way of altering the contact
pressure on the tooth surface is the profile modification. The linear tip relief defined
by Eq. 3.31 is considered, and the maximum contact pressure for different tip relief
amount is shown in Fig. 3.38. In this figure, the face width of 220 mm is assumed,
and the tip relief start point is the pitch point. It is observed from this figure that the
maximum contact pressure over the tooth surface changes in a different way as the
tip relief increases and the greatest maximum contact pressure is shifted to the pitch
point as the tip relief amount increases.
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Fig. 3.37 Effect of face width on 10-minute fatigue damage

Fig. 3.38 Effect of tip relief on maximum contact pressure

It is also observed that the greatest maximum contact pressure can be minimized
at a tip relief amount of 55 μm. That is, there exists an optimum tip relief amount
that can minimize the greatest maximum contact pressure over the tooth profile as
shown in Fig. 3.39 summarizing the 10-minute fatigue damage for different tip relief
amount. It is important to emphasize at this point that the optimum value depends
on the wind condition defined by the mean wind speed and turbulence intensity.
Furthermore, the material removed is in the order of microns; thus, the tip relief has
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Fig. 3.39 Effect of tip relief on 10-minute fatigue damage

almost no effect on the gear weight but has major impact on the fatigue life defined
as a constraint.

For this reason, in what follows, design optimization is discussed to find an
optimum face width and tip relief that leads to minimization of the total weight
of the gear train under the wind load uncertainty while ensuring the 20-year fatigue
life.

3.5.2 Wind Turbine Gearbox Deterministic Design
Optimization

The expected service life of wind turbines is 20 years, thus the constraint for the
optimization problem is defined by G(d) = 20D1year − 1 < 0 for dL < d < dU , where
dL and dU are lower and upper bounds of the design variable d. Accordingly, the
following optimization problem is posed (Li et al. 2016):

Minimize J (B)
Subject to G(B, δa) = 20D1year − 1 ≤ 0

for BL ≤ B ≤ BU and δLa ≤ δa ≤ δUa

(3.48)

where design variables include the face width B and the tip relief amount δa of the

sun gear defined by d = [
B δa

]T
; the cost function J(B) is defined as the total mass
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of the planetary stage gears consisting of a ring gear, a sun gear, and three planet
gears. The constraint is imposed to ensure that the pitting fatigue life is longer than
20 years (i.e., the 20-year fatigue damage is less than 1).

In what follows, the entire numerical procedure is summarized as shown in Fig.
3.40.

Step 1: For given measured wind data at different locations (i.e., wind farms)
in different years, the joint probability density functions for v10 and i10 are

identified as fVI(v10, i10; y), and then PDFs of y = [
C k a b τ

]T
are identified

to account for the wide spatiotemporal wind load uncertainty (Hu et al. 2016b).

The averaged joint PDF f
ij

V I
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vi10, i

j
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)
is generated using the 106 samples for

nv × ni points of vi10 (i = 1, · · · , nv) and ij10 (j = 1, · · · , ni).

Step 2: For nv × ni points of vi10 and i
j

10 in the range of the averaged

joint PDF, the time-domain 10-minute random wind data Uij
(
vi10, i

j

10

)
=

[
uij (t) vij (t) wij (t)

]T
is generated using the wind field simulation software

TurbSim (Jonkman 2009).
Step 3: Using the 10-minute wind data obtained at Step 2, the time-domain coupled

nonlinear aero-hydro-servo-elastic simulation of a wind turbine is performed
using FAST software (Jonkman and Buhl 2005) to predict rotor angular velocity
variation for each wind scenario vi10 and ij10. The elastic deformation of rotor
blades and its interaction with aerodynamics are considered with a simplified
pitch control algorithm.

Step 4: For all the pairs of gears in the gearbox under consideration for design
variables d, the contact geometry analysis for a one-tooth model considering
profile modification is performed using the combined non-conformal and nodal
contact search method for various rotation angles, and then the contact point as
well as the tooth geometry at each contact point including the tangents, normal,
and principal curvatures is stored in the look-up contact tables.

Step 5: Using the multiple look-up contact tables generated for design variable d,
multibody gearbox dynamics simulation is performed for the 10-minute input
rotor angular velocity data obtained at Step 3 for each wind scenario vi10 and ij10.
The tabular contact search is performed to determine the contact point for all the
pair of gears using multiple look-up contact tables, and the contact forces are
calculated using the variable mesh stiffness model that accounts for the effect
of the contact stiffness, tooth bending stiffness, and gear body (foundation)
stiffness. The mesh force time-history data for each tooth are stored as output
for contact fatigue prediction. Notice that the 10-minute multibody gearbox
simulation is performed for all the nv × ni wind scenarios, and the simulation
for each scenario runs in parallel using parallel computing technique.

Step 6: Using the mesh force time-history data obtained at Step 5, the 10-minute

damage Dij10 min

(
d, vi10, i

j

10

)
is calculated, and then the critical tooth with the

largest damage is selected. The Dij10 min is evaluated by either Miner’s rule
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Fig. 3.40 Flowchart of DDO process
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(Eq. 3.45) or the equivalent maximum contact pressure method (Eq. 3.46) for
all the nv × ni wind scenarios, and then the 1-year fatigue damage D1year for the
current design d is evaluated by Riemann integral as Eq. 3.44.

Step 7: Using the 1-year fatigue damage evaluated, the constraint is defined such
that contact fatigue life is longer than 20 years as given by Eq. 3.48, and the cost
function is evaluated for the current design d.

Step 8: Step 4 through 7 are repeated by updating the design variables d until the
cost function is minimized while meeting the fatigue failure constraint using the
deterministic design optimization solver.

3.5.3 Wind Turbine Gearbox Reliability Based Design
Optimization

RBDO of the wind turbine gearbox is formulated as follows (Li et al. 2017):

Minimize J (μB)

Subject to P
[
D20year (B, δa; Y) > 1

] ≤ PT arF

for μLB ≤ μB ≤ μUB and μLδa ≤ μδa ≤ μUδa

(3.49)

where μB and μδa are means of the random face width B and the random tip relief
amount δa of the sun gear, respectively; the lower and upper bounds of the design
variables are the same as the deterministic design optimization; the cost function
J(μB) is defined as the total mass of the planetary stage gears consisting of a ring
gear, a sun gear, and three planet gears; Y is the random wind load vector including
20 sets of (C, k, a, b, τ ) (Hu et al. 2016b); and D20year(B, δa; Y) is the 20-year
contact fatigue damage of the sun gear. For each of the MCS design point, D20yearis
evaluated as follows:
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(3.50)

(for h = 1, . . . , NMCS) where B̂h and δ̂ha are realizations of random face
width B and tip relief amount δa, respectively; and ŷh is the realization vector of
random wind load parameters. The probabilistic constraint P[D20year(B, δa; Y) > 1]
is imposed to ensure that the probability of contact fatigue life being shorter than
20 years is smaller than the target probability of failurePT arF .

A numerical procedure of wind turbine gearbox RBDO using the surrogate model
is summarized as follows:
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Step 1: As shown in Fig. 3.41, using the DDO optimum design obtained in above
section, 50 DOE points are randomly generated using the truncated Gaussian
sampling (TGS) method with hypercube window in the twelve sigma range. The
intermediate surrogate models of the sun gear 10-minute contact fatigue damages
are generated using the dynamic kriging method. For each DOE point, the 10-
minute fatigue damages for all the wind load conditions (35 scenarios) under
consideration are calculated, and the obtained 10-minute fatigue damages are
used to generate 35 surrogate models associated with 35 wind load conditions
using the dynamic kriging method.

Step 2: The RBDO process starts from the DDO optimum design. At every
RBDO design, NMCS realizations of designs are created considering the design
variable manufacturing variability. The NMCS realizations are inputted to the
35 surrogate models to obtain the NMCS 10-minute fatigue damage tables
containing 35 10-minute fatigue damages under 35 wind load conditions.

Step 3: The NMCS realizations of 20 sets of (C, k, a, b, τ) are defined using the
PDFs, and NMCS × 20 wind load probability tables are created. Each table
contains the probabilities of 35 wind load conditions.

Step 4: The NMCS 20-year fatigue damages are calculated using Eq. 3.50, and then
the probabilistic constraint is evaluated at the current design. If the convergence
criteria are met, the RBDO iteration stops, and an optimum design is obtained.
Otherwise, the design is updated and then continues the RBDO process by
repeating steps 2–4 until the RBDO optimum design is achieved.

3.5.4 Case Study of Wind Turbine Gearbox Design
Optimization

In this Section, the 750 KW GRC wind turbine (Sheng 2012), as shown in Fig. 3.27,
is used to conduct gearbox design optimization considering wind load uncertainty
and manufacturing uncertainties. The wind turbine properties are shown in Table
3.9. The gearbox consists of planetary helical gears (a ring gear, a sun gear, and
three planetary gears) at the low-speed stage and two parallel axis helical gears at
the intermediate and high-speed stages as shown in Fig. 3.27. The detail gearbox
properties can be found in literature (Sheng 2012; Guo et al. 2012a). The face width
and tip relief of sun gear are selected as design variables. Face width of 220 mm and
tip relief of 0 μm are set as baseline design.

First, the deterministic design optimization (DDO) of the gearbox is conducted
using the procedure described in Sect. 3.5.2. The design optimization results
are shown in Table 3.10. In this table, the optimum solution obtained without
considering the tip relief as design variable is also included. As it can be seen
from this table, face width of the sun gear is increased to 231 mm from 220 mm
in the initial design to satisfy 20-year fatigue life when only face width is included
in the design variable. This leads to 4.7% increase in the normalized mass. On
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Fig. 3.41 Flowchart of the RBDO process
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Table 3.10 Deterministic design optimization results

Baseline design Optimum design w/o tip relief Optimum design w/ tip relief

Face width (mm) 220 231 202
Tip relief (μm) 0 0 41
Pitting fatigue life 15 years 20 years 20 years
Normalized mass 1.000 1.047 0.916

Table 3.11 Standard
deviations and tolerances of
the design variables

Standard deviation Tolerance

Face width (mm) 1.2 3.6
Tip relief (μm) 1.5 4.5

other hand, if the tip relief is introduced to the design variables, the optimum
face width becomes 202 mm with a tip relief amount of 41 μm. This optimum
tip relief allows for minimization of the greatest maximum shear stress on the
gear tooth surface without relying heavily on face width widening to meet the 20-
year fatigue life constraint, and it leads to mass reduction by 8.4%, leading to a
more cost-effective design. For this DDO optimum design, the probability of failure
under the spatiotemporal wind load uncertainty as well as the gear design variable
uncertainties turned out to be approximately 50% (Li et al. 2017).

Then, based on the DDO optimum design (face with 202 mm, tip relief
41 μm), reliability-based design optimization (RBDO) of the 750 KW GRC wind
turbine gearbox, under large spatiotemporal wind load and gear design variable
uncertainties, is carried out to achieve an optimum gear design that meets 20-year
service life with a target reliability (2.275%) while minimizing the cost (weight).
The standard deviation and manufacturing tolerance of the design variables are
shown in Table 3.11. The RBDO procedure described in Sect. 3.5.3 is conducted,
and the Monte Carlo simulation size for this RBDO is set as 50,000 (Li et al. 2017).
And the RBDO optimum design is presented in Table 3.12 and compared with
the baseline design as well as the DDO optimum design. It is observed from this
table that the face width and tip relief amount increase from the DDO design to
meet the target probability of failure. This leads to an increase in weight. However,
as compared to the baseline design exhibiting 91.7% probability of failure (8.3%
reliability), the weight is increased by only 1.4%, while the probability of failure is
improved significantly from 91.7% to 2.275% (i.e., 97.725% reliability) in the case
of PT arF = 2.275 % (two sigma quality level). These results clearly indicate the
importance of incorporating the tip relief as a design variable and justify needs for
the gear dynamics simulation capability that accounts for microgeometry of gear
tooth contact for wind turbine gearbox RBDO. This, however, does not mean that a
larger tip relief is always preferred since an optimum tip relief amount depends on
stochastic wind loads, and an optimum tip relief cannot be found deterministically,
which indicates the needs of RBDO for wind turbine gearbox design.
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Table 3.12 Reliability-based design optimization results

Baseline design DDO design RBDO design

Face width (mm) 220 202 223
Tip relief (μm) 0 41 54
Fatigue life 15 years 20 years 20 years
Probability of failure 91.7% 47.7% 2.275%
Normalized mass 1.000 0.916 1.014

3.6 Summary

Gears in wind turbine are subjected to severe cyclical loading due to variable wind
loads that are stochastic in nature, and the failure rate of drivetrain systems is
reported to be relatively higher than the other wind turbine components. For this
reason, improving reliability of gearbox design is one of the key issues to make wind
energy more competitive to fossil fuels. However, limited studies have been carried
out regarding deterministic and reliability-based design optimization (DDO and
RBDO) of wind turbine gearbox considering wind load as well as manufacturing
uncertainties. It requires an extensive numerical procedure involving uncertainty
quantification of wind loads as well as manufacturing errors of gears, the contact
dynamics of multibody geared systems, probabilistic contact fatigue prediction of
gear teeth, and design optimization procedures to meet 20-year service life with
high reliability while minimizing the cost (weight) of drivetrains.

To this end, a numerical procedure for gear dynamics simulation of multibody
geared systems is developed first using the tabular contact search method. Since
10-minute wind data is widely used to characterize the short-term wind speed vari-
ability in wind energy industry, 10-minute wind turbine gear dynamics simulations
under different wind load conditions are required to evaluate probabilistic contact
fatigue life under random wind load. Furthermore, since the tooth contact pressure
is sensitive to the gear tooth profile, an accurate description of the tooth profile
geometry and precise contact geometry calculation are required, and the use of a
simplified gear contact dynamics model is not suited.

To improve computational efficiency associated with the gear contact dynamics
simulation considering precise contact geometry as well as mesh stiffness variations,
a tabular contact search algorithm using the combined nodal and non-conformal
contact search approach is generalized to gear tooth contact in this chapter. By doing
so, a robust contact search algorithm which allows for detecting an appropriate
initial estimate for non-conformal contact search for tooth surfaces with gear
geometry imperfections can be achieved.

In the dynamics simulation, the tabular contact search is performed for all the
gear teeth positioned in the searching range defined in the look-up table tooth by
tooth. This allows for detecting multi-point contact without any iterative procedures.
Furthermore, the coordinate transformation between the generalized coordinates
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and those defined in the look-up table coordinate system introduced in the contact
geometry analysis are established. With this transformation, the look-up contact
table can be directly applied to any pair of gears in the dynamic simulation. Several
numerical examples are presented in Sect. 3.3 in order to demonstrate the use of
this developed numerical procedure. In particular, an accuracy of the mesh stiffness
model introduced in this study and the transmission error of gear tooth with tip relief
are discussed. A planetary gear model is then introduced to discuss the effect of
tooth surface irregularity on mesh force variation. A wind turbine drivetrain model
is presented in the last example and is validated against test data.

The pitting fatigue model based on the Paris equation is then used to predict
the contact fatigue life of gear tooth using the maximum contact pressure obtained
using the multibody gearbox dynamics simulation under various 10-minute wind
scenarios. Numerical results indicate that the wind load variation plays an important
role to realistic estimation of contact fatigue life of wind turbine gearbox.

An integrated numerical procedure for design optimization of wind turbine
drivetrains is described in Sect. 3.5 using the gear dynamics simulation procedure
based on the multivariable tabular contact search algorithm considering wind
load uncertainty. The joint probability density function (PDF) of the 10-minute
mean wind speed (v10) and 10-minute turbulence intensity (i10) is introduced to
characterize the short-term wind speed variability at a specific location and time.
Since the wind load distribution varies at different locations in different years, a
wide spatiotemporal variability is considered by identifying PDF of all the joint
PDF parameters (C, k, a, b, τ), and these PDFs are used in the reliability-based
design optimization (RBDO). The averaged joint PDF obtained using Monte Carlo
simulation (MCS) is used in the deterministic design optimization (DDO). The
random time-domain wind speed data is generated using NREL TurbSim and then
inputted into NREL FAST to perform the aero-hydro-servo-elastic simulation of
rotor blades under pitch control to predict the transmitted torque and speed of
the main shaft of the drivetrain, which are sent to the multibody gear dynamics
simulation for contact fatigue prediction.

Using the optimization procedure developed in this chapter, DDO and RBDO
of a 750 kW GRC wind turbine gearbox have been successfully carried out. The
obtained optimum tip relief allows for lowering the greatest maximum shear stresses
on the tooth surface without relying heavily on face width widening to meet the 20-
year fatigue life constraint, and it leads to weight reduction, which means a more
cost-effective and reliable design.
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Chapter 4
A New Multiscale Modeling and
Simulation of Rolling Contact Fatigue
for Wind Turbine Bearings

Mir Ali Ghaffari and Shaoping Xiao

4.1 Introduction

Gearbox failure is one of the largest sources of unplanned maintenance costs in
wind industries because repairing or replacing a failed gearbox in wind turbine in
particular is an extremely expensive undertaking. Therefore, when a failure occurs,
it is important to correctly identify the failure mode so that the appropriate actions
can be taken to reduce the likelihood of a reoccurrence of the same type of failure.

Gearbox failures can be caused by fundamental design issues, manufacturing
defects, deficiencies in the lubricant or lubrication system, excessive time at
standstill, large loading, and many other reasons. A correct failure mode diagnosis is
the first step in identifying the actions that can be taken to prevent additional failures.
As one of the key elementary mechanical components, ball and roller bearings are
used to allow rotary motion and support significant loads. The rotational motion and
dynamics of rollers, i.e., rolling elements, in a bearing give rise to alternate contact
between the bearing inner race and the rolling elements. High pressures caused by
these contacts are developed between the load-carrying elements. Due to alternate
contact, the contacting elements are subjected to cyclic stressing. This cyclic nature
of stress makes the contacting elements susceptible to failure due to fatigue. It is
one of the leading causes of failure in bearings, and this phenomenon is known
as rolling contact fatigue (RCF). RCF is also commonly observed in gears, cam-
follower mechanisms, and rail-wheel contacts. Therefore, it is crucial to understand
the mechanisms of RCF and predict fatigue life during machinery design.
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There have been several numerical approaches to study RCF of bearings or
other mechanical components (Sadeghi et al. 2009). These models can be classified
into either probabilistic engineering models or deterministic research models. The
probabilistic engineering models include the formulas to predict RCF life, and the
formula parameters were obtained from extensive experimental testing. Lundberg
and Palmgren (1947, 1952) proposed the first engineering model, the L-P model, to
predict the bearing life based on the assumption of crack initiating at a subsurface
weak point in the material. The Weibull statistical strength theory was applied in
their model. In order to overcome the limitations of the L-P model, Ioannides and
Harris (1985) modified the principles of crack initiation and proposed another new
model, the I-H model, to predict the bearing lives. Based on the given defect’s
severity distribution, Tallian (1992) proposed a statistical model to compute fatigue
crack propagation life. Then, Kudish and Burris (2000) modified Tallian’s theory
by considering more material and loading parameters. However, this model didn’t
include the fatigue crack initiation life.

The deterministic research models were developed to estimate the fatigue crack
initiation life or the crack fatigue propagation life based on mechanics of the
failure process. Keer and Bryant (1983) developed the first deterministic research
model to calculate the fatigue lives for rolling Hertzian contacts. They used two-
dimensional fracture mechanics and only considered the fatigue crack propagation
life. Considering both the crack initiation life and the crack propagation life, Zhou
and coworkers (Zhou et al. 1989; Zhou 1993) proposed a new life prediction model
taking into account the accumulated damage. Another fatigue life prediction model
was presented by Bhargava et al. Bhargava et al. (1990) based on plastic strain
accumulation under the cyclic contact stress. Other similar prediction models can
be found in Vincent et al. (1998), Xu and Sadeghi (1996), and Lormand et al.
(1998). However, the assumption of homogeneous materials in the contact region
was employed in most deterministic research models. To overcome this limitation,
a few models, including finite element models, were developed to take into account
the micromechanical material behavior in the contact region. A so-called Voronoi
finite element method (VFEM) was proposed by Jalalahmadi and Sadeghi (2009).
With the implementation of a fatigue life criterion (Raje et al. 2008), VFEM can
be used to study the effect of material micromechanical behavior on rolling contact
fatigue. When using the above models to study RCF, the mechanical components,
i.e., rolling elements in bearings, were assumed to be well lubricated. On the other
hand, the friction force was prescribed on the contact surface to calculate the RCF
lives. Consequently, the lubrication effect was neglected. It has been known that
partially lubricated mechanical components and the debris in the lubrication would
dramatically reduce the mechanical component’s RCF lives because of the large
friction force on the contact surface. Therefore, it is necessary to consider the
lubrication effects when predicting the RCF lives of bearings or other lubricated
mechanical elements.
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Lubricant is used to reduce wear, to lower friction, and to release heat. The
behavior of sliding surfaces is affected and modified by the lubrication between
them. The scientific study of lubrication, in tribology community, started when
Reynolds in 1886 discussed the feasibility of a theoretical treatment of film
lubrication. A recapitulative friction diagram was first proposed by Stribeck in
1902 after extensive experiments have been conducted on lubricated bearings to
distinguish different lubrication regimes. The diagram indicates how the friction
force or the coefficient of friction is changed due to various pressures.

Although the lubrication approximation originated from thin film studies, there
is a limitation due to its continuum mechanics assumptions. When two separating
surfaces are sliding under the contacting load, the lubricant between surfaces
has the thickness comparable to the molecular scale. Therefore, the continuum
assumption becomes invalid. For example, one of the common assumptions in the
fluid mechanics is the no-slip boundary condition which has been proved to be
invalid in thin film lubrication at nanoscale. In addition, surface roughness may be
considered when the length scale is down to the nanoscale. In the case of boundary
lubrication, some surface regions are separated by lubricant, while the others are
under direct contact due to the existing asperities. Generally, the surface roughness,
lubricant, and adhesion force together determine the contact mechanism between
two surfaces. Therefore, a fully understanding of the fundamental mechanism
of friction and lubrication between contact surfaces at nanoscale becomes very
important to predict RCF lives.

Among many powerful numerical methods to elucidate nanoscale phenomena,
molecular dynamics (MD) has outstanding advantages to provide the steady state of
a system as well as simulate the nonequilibrium process under various conditions.
It can help to investigate the unobservable tribological aspects, including the
lubricant behavior between contact surfaces at nanoscale. A review of the molecular
mechanisms of tribology in thin films and at surfaces was brought forward in
Bhushan et al. (1995). Zhang (Zhang and Tanaka 1998) employed MD to conduct
friction analyses and wearability evaluation. In addition, MD was adopted to
simulate heat transfer at the interface of contacting solids (Chantrenne et al. 2000)
and to examine the effects of surface roughness on friction (Harrison et al. 1993;
Zheng et al. 2013a,b, 2014; Zheng 2014).

With the development in nano-engineering and nano-material science, nanopar-
ticles have been introduced into lubricants. The nanoscale additives were reported
to be capable of improving the friction performance of lubricants in anti-wear
and friction-reduction properties (Tao et al. 1996; Tarasova et al. 2002; Ghaednia
et al. 2015). Some nanoparticles were shown to play a favorable role as solid
lubricants under severe conditions (Chhowalla and Amaratunga 2000; Rapoport
et al. 2005). Ghaednia and coworkers (Ghaednia et al. 2013) conducted MD
simulations to explore the interactions between the nanoparticles and the lubricant
or the contact surfaces. They found that the presence of nanoparticles reduced
friction. The friction-reduction mechanism indicated that nanoparticles in the thin
film elastohydrodynamic lubricant regime restrict only a few layers of lubricant
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molecules to slide (shearing) on each other. It should be noted that nanotubes also
showed promising properties for the lubrication (Rosentsveig et al. 2009; Maharaj
and Bhushan 2013).

A new multiscale model for studying rolling contact systems is proposed in this
study. The molecular model of lubricants is carried to study the friction phenomenon
between rolling contact surfaces. The calculated friction coefficient is then passed
to a continuum FEM model to predict rolling contact fatigue life. The outline of this
chapter is as below. The molecular model of lubricant between the contact surfaces
is described in Sect. 4.2. In Sect. 4.3, MD simulations are conducted to calculate
the friction coefficient. Then, a continuum FEM model is discussed in Sect. 4.4, to
predict the rolling contact fatigue life. Results and discussions are given in Sect. 4.5
followed by the conclusion.

4.2 Molecular Modeling of Lubricant

4.2.1 Molecular Dynamics

MD simulation, which is a numerical technique used to calculate the equilibrium
and transport properties of a classical many-body system, is adopted to study
hydrodynamic lubrication in this chapter. In the MD simulation, the atoms or
molecules in the simulated system follow the laws of classical mechanics. The
motion of an atom, e.g., atom i, with mass mi , is due to its interaction with other
atoms in the system according to Newton’s second law:

mi �ai = �fi = −u(�ri) (4.1)

where �ai is the acceleration of atom i and the interatomic force, �fi , applied on atom
i , is derived from the total potential energy due to its interaction with other atoms

u(�ri) =
∑

j

uij (�ri, �rj ) (4.2)

where �ri and �rj are the atomic positions of atoms i and j , respectively. uij is the
potential function to describe the interaction between atoms i and j .

MD simulation requires solving the equations of motion, i.e., Eq. (4.1), to obtain
the atomic trajectories. In this study, the velocity Verlet algorithm is employed as
the time integration algorithm since it achieves a considerable accuracy (Omelyan
et al. 2002).

The atomic position, �ri(t); velocity, �vi(t); and acceleration, �ai(t), at the time
t + δt (here δt is the time step) can be obtained from the equivalents at the time t as
below:
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�ri(t + δt) = �ri(t)+ �vi(t).δt + 1

2
�ai(t) · (δt)2 (4.3)

�vi(t + 1

2
δt) = �vi(t)+ 1

2
�ai(t) · δt (4.4)

�ai(t + δt) = −∂u(�ri)
∂�ri · 1

mi
(4.5)

�vi(t + δt) = �vi(t + 1

2
δt)+ 1

2
�ai(t + δt) · δt (4.6)

At each iteration, the atomic position for the next time step is updated first, and
then the velocity at the half time step is obtained through the acceleration at the
previous time step. Afterward, the acceleration at the next time step is calculated
from Newton’s second law. At last, the velocity at the next time step is updated by
adding the velocity increment with the consideration of the updated acceleration.
The choice of time step δt is essential. Its value should be at least an order of
magnitude less than the typical time of the system that is defined by the phonon
frequencies or the ratio of velocity to acceleration.

One of key issues in MD simulation of tribological phenomena is the temperature
regulation because the work done during two walls sliding from each other is ulti-
mately converted into a random thermal motion at the nanoscale. The temperature
of the simulated system would increase infinitely if only modeling the simulated
system as an isolated one. To model the heat dissipation from the simulated
system to the surrounding media, a numerical heat bath is implemented in MD
simulations. A classic approach to adding or subtracting kinetic energy to the system
is multiplying the velocities of all particles with the same global factor. In this
simplest version of velocity rescaling, the factor is chosen to keep the kinetic energy
constant at each time step, so that the temperature can be maintained. However,
there might be fluctuations in the kinetic energy in a true constant temperature
ensemble. Alternatively, the equations of motion can be modified to gradually scale
the velocities so that the average kinetic energy can be maintained over a longer time
scale. The Nose-Hoover method (Nose 1984; Hoover 1985) is one of these methods,
and it is used in this study to conduct MD simulations of hydrodynamic lubricants
at a constant temperature.

The Nose-Hoover method couples the simulated system with a heat bath, and the
heat will be transferred back and forth between the system and heat bath in order to
keep the system temperature relatively constant. In this method, Newton’s second
law of motion is modified with an additional term related to the heat bath:

�ai(t) = �fi(t)
mi

− ζ(t)�vi(t) (4.7)
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The coefficient ζ is defined as

d

dt
ζ(t) = NF

Q
(kBT (t)− kBT0) (4.8)

in which NF is the degrees of freedom and equals to 3N + 1, with N as the number
of particles in the simulated system, T (t) is the instantaneous temperature, T0 is the
heat bath temperature or the desired temperature, and kB is the Boltzmann constant.
The heat transfer rate is determined by the fictitious mass parameter Q.

4.2.2 Molecular Model of Lubricant System

The MD simulations in this study are carried out with the Larger-Scale Atomic
Molecular Massively Parallel Simulator (LAMMPS) code Plimpton (1995). The
schematic view of the simulated system is depicted in Fig. 4.1. The MD model
of lubricant system includes the lubricant chains that are confined between upper
and lower Fe walls. The solid walls are divided into six layers, including upper
and lower rigid layers, thermostat layers, and free layers. Linear alkanes with the
chain length of C8 are considered as the fluid film of lubrication, as shown in
Fig. 4.2, in this chapter. There are a total of 1950 chains in the simulated model.
Most industrial applications indicate a thin lubricant thickness of only several
nanometers (Berro et al. 2010; Savio et al. 2012) under a high normal pressure. In
this study, the initial film thickness of about 5 nm is used to model the rheological
and frictional behavior of the lubricant. Periodic boundary conditions are used in
other two directions.

The whole MD simulation process includes three main stages named relaxing,
compressing, and shearing. In the relaxing stage, the upper and lower walls are
fixed to keep the system height constant, and the randomly distributed lubricant
alkane chains can move freely. It is essential to have lubricant chains becoming fully
relax. In other words, the system will be at thermodynamic equilibrium state. In the
compressing stage, a uniformly distributed external load is applied onto the upper
rigid layer, while the lower rigid layer remains fixed. To investigate tribological
phenomena of the system subject to external loadings, it is generally desirable to
keep the interface as undisturbed by the external force as possible. Therefore, it is
crucial to apply any external forces and constraints to the outmost layers, i.e., rigid
layers shown in Fig. 4.1. The temperature regulation is usually applied on the middle
region of the upper or lower solid layer, named the thermostat layers. Therefore, the
contacting solids are undisturbed by regulating the thermostat regions. The lubricant
is compressed in the second stage until the system reaches to the thermodynamic
equilibrium state again. At the last stage, shearing, a constant velocity of 10 m/s
is applied onto the upper and lower rigid layers along the longitudinal direction,
as indicated in Fig. 4.1a, so that the lubricant is sheared. This sliding velocity
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Fig. 4.1 The molecular model of thin film lubrication between two contact surfaces: (a) schematic
view and (b) three-dimensional view

CH2

CH2

CH2

CH2

CH2

CH2CH3

CH3

Fig. 4.2 Schematic view of an alkane with eight chains used as the lubricant. The red atom is the
united atom of CH3 and the blue atom stands for that of CH2

conduction has been widely used in MD simulations of thin film lubrication as
it enables the simulation to obtain a required sliding distance within a reasonable
calculation time (Zheng et al. 2013a,b; Spijker et al. 2011; Berro et al. 2010). In
addition, the constant velocity mode makes it easy to record the friction forces.
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4.2.3 Potential Functions

In the MD simulation, the selection of proper potential functions is important to
describe interaction between molecules. In the molecular model of lubricant system,
the alkane molecules are represented via an optimized united-atom (UA) potential
TraPPE-UA, and the Fe atoms in solid walls are modeled by the embedded atom
method (EAM) potential. The non-bonded interactions among alkane molecules as
well as the liquid-solid interaction are modeled through the Lennard-Jones (L-J)
potential with the Lorentz-Berthelot combination rules.

4.2.3.1 Bonded Interaction in a Single Alkane Chain

A liquid lubricant, such as n-alkanes, has two unique properties compared to solids
such as Fe, Al, Au, etc. At first, unlike a solid with a well-ordered crystalline
structure, the liquid by nature has no ordered internal structure. The lubricant can
flow, and the lubricant molecules can pass one another during the motion. Secondly,
the lubricant molecules are typically made of flexible chains and branches which
include bonded, angular, and torsional interactions.

Linear alkane chains are used in this chapter to model the lubricant, and the
molecular architecture includes bond stretching, angle bending, and torsion. The
TraPPE-UA potential has been well developed to simulate both linear and branched
alkanes (Martin and Siepmann 1998; Wick et al. 2000). It was extended to simulate
molecules in short chains (Stubbs et al. 2004; Ketko et al. 2008) which has been
widely used to model surfactants and lubricants. Generally, the UA potential is a
sum of the covalent bond stretching, angle bending, and torsion presented as

Ebond = Kb

2
(r − r0)2 (4.9)

Ebend = Kθ

2
(θ − θ0)

2 (4.10)

Etorsion = c0 + c1 [1 + cos(α)] + c2 [1 − cos(2α)] + c3 [1 + cos(3α)] (4.11)

The potential parameters for the alkane chains are listed in Table 4.1.

4.2.3.2 Liquid-Solid Interactions and Other Non-bonded Interactions

The interfacial interaction between surfaces and lubricant determines how surfaces
influence the structure of confined lubricants and interfacial sliding (Thompson
and Robbins 1990a,b). A wide range of potentials have been adopted in MD
simulations in tribology community. For example, the simple ideal springs
(Zheng 2014; Berro et al. 2010) and sine-wave potentials are often used. Another
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Table 4.1 Potential parameters for alkanes

Bond Kb(eV/Å2) r0(Å)

C − C 39.0279464 1.54

Angle Kθ(eV/rad2) θ0(deg)

C − C − C 5.3858393 114

Dihedral c0(eV) c1(eV) c2(eV) c3(eV)

C − C − C − C 0 0.030594 −0.005876 0.068190

Table 4.2 Potential
parameters for interatomic
interactions

L-J 12-6 potentials σ(Å) ε(eV) Mass (g/mol)

CH3 3.75 0.008444 15.0351

CH2 3.95 0.003963 14.0272

CH 4.68 0.000861 13.0191

Fe 2.321 0.04097 55.8450

potential function, the L-J potential (Spijker et al. 2011, 2012), gives a realistic
representation of typical interatomic interactions. The L-J potential is a two-body
potential commonly used for non-bonded interactions between atoms or molecules.
In a molecular model of lubricant, an L-J particle may present a single atom on
the chain (explicit atom model), a CH3 segment (united-atom model), or even
a segment consisting of several CH2 units in a coarse-grained model. Here, the
L-J potential is used to describe the interactions between a pair of CH3 and CH2
segments, which are on two different alkane chains or separated by more than four
segments along a single alkane chain. In addition, the liquid-solid interaction, i.e.,
the interaction between a CH3 or CH2 segment and an Fe atom, is also modeled
via the L-J potential.

The commonly used 12-6 L-J potential has the following form:

U(rij ) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(4.12)

where rij is the distance between particles i and j , ε is the L-J interaction energy,
and σ is the L-J interaction diameter. The parameters of dissimilar interactions can
be computed by the Lorentz-Berthelot combining rules:

{
σij = 1

2

(
σii + σjj

)

εij = √
εiiεjj

(4.13)

The potential parameters for the alkanes are listed in Table 4.2. As Eq. (4.12) shows,
the well-depth determines the strength of the interaction between the surface and the
lubricant. The L-J parameters for liquid-solid interaction are guided by the mixing
rule in Eq. (4.13), so the liquid-solid interaction can be controlled by using a range
of well-depth parameters of the L-J potential of the surface (Fe).
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It shall be noted that the selection of potential functions depends on the studied
physical phenomenon. A simple spring model can be used for thin film lubrication,
and the wall atoms are attached to their lattice position with a spring in the molecular
model. However, it is more common to use the L-J potential in modeling thin film
lubrication or surface sliding. In studying thin film lubrication, the main interest is to
investigate the behavior of the lubricant between two sliding walls. The L-J potential
for the interaction between the wall atoms and the lubricant molecules is acceptable
as long as the parameters are chosen properly. Moreover, reasonable results can be
gained by using the L-J potential for the atoms of surfaces when two surfaces are
sliding against each other (Spijker et al. 2011). Another significant advantage of
using this potential is the computational efficiency.

4.2.3.3 Solid (Fe)

In the embedded atom method (EAM) (Daw and Baskes 1984) for Fe, the total
potential energy has a pairwise part and a local density part:

E =
N−1∑

i=1

N∑

j=i+1

ϕ(rij )+
N∑

i=1

(�(ρi)) (4.14)

where the subscripts i and j label distinct atoms, N is the number of atoms in the
system, rij is the distance between atoms i and j

ρi =
∑

j

�(rij ) (4.15)

All functions above are represented as sums of basis functions:

ϕ(r) =
nϕ∑

k=1

a
ϕ
k ϕk(r) (4.16)

�(r) =
n�∑

k=1

a�k �k(ρ) (4.17)

�(r) =
n�∑

k=1

a�k �k(ρ) (4.18)

where ϕk , �k , and �k are the basis functions and ak are coefficients to be fitted to
material properties. Those coefficients in the EAM for Fe can be found in Daw and
Baskes (1984).



4 A New Multiscale Modeling and Simulation of Rolling Contact Fatigue for. . . 129

4.3 MD Simulation Results

In the MD simulations, the normal pressure is applied onto the upper wall atoms.
The tribological phenomena of the system subject to different normal loads are
investigated first. Figure 4.3 indicates the variation in the system height, i.e., the
film thickness, due to different normal loads. The system has a transient response
at the beginning of compression, and the film thickness oscillates and tends to be
stable as the system reaches a state of equilibrium. As the normal load increases,
the film thickness gets thinner. It can be seen that the film thickness gets stable after
0.6 ns.

The film density profiles are shown in Fig. 4.4, which give a clear layering
structure. The lubricant in the middle seems to remain in its bulk state. It suggests
that the confining effect decays toward the inner layers. In addition, the density
profile exhibits an asymmetry. This is due to the normal motion of the upper
boundary layer, while the lower boundary layer is fixed in the vertical direction.
As it is mentioned before, the united atoms include CH3 and CH2 which have
corresponding atom mass and the volume confined between the walls to calculate
the average density. Figure 4.4 also shows that the density profile structure becomes
larger near the walls and its thickness shrinks. It is predictable that the film thickness
is smaller under a larger normal load, and the density profile has to be denser in some
areas.
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Fig. 4.3 System height, i.e., the film thickness, under various normal loads
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Fig. 4.4 Density profile of the linear alkane confined by surfaces

The friction force under each normal load can be obtained in the MD simulation
by summing the forces exerted on the atoms of the rigid and thermostat layers in the
longitudinal direction. The friction forces under different normal loads are shown in
Fig. 4.5.

Generally, the friction coefficient can be calculated by

μ = F

P
(4.19)

where F is the friction force and P is the externally applied load.
A linear function is used to fit the data in Fig. 4.5 to determine the coefficient of

friction. The slope of the linear function indicates that the coefficient of friction
equals to 0.0483. The calculated coefficient of friction is similar to the typical
friction coefficients for many hydrodynamic lubricant applications. The friction
coefficient calculated from the molecular model will then be passed to the fatigue
life prediction model at the continuum level in next section.
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Fig. 4.5 Friction forces vs. normal loads

4.4 Continuum Modeling of Rolling Contact Fatigue

In this study, the fatigue life at crack initiation is predicted via the continuum
mechanics approach. The contact pair, e.g., bearing, in the rolling contact model
includes the rolling element and the bearing inner race. The rolling element is
modeled as a rigid body, while the material of bearing inner race is assumed to
be homogeneous and isotropic. The stress analysis of the rolling contact model
is conducted in the FEM framework through ANSYS parametric design language
with the default contact algorithm, as shown in Fig. 4.6. The application of rolling
element as the rigid body in our model is identical to applying Hertzian contact
load (Ghaffari et al. 2015). The boundary conditions are shown in Fig. 4.6 as well.
In addition, the bearing is assumed to be free of imperfections. Since the curvature
of the bearing inner race is much smaller than the one of the rolling element, the
bearing inner race is considered having flat surface in our model. The stress analysis
of the rolling contact model is conducted in the FEM framework through ANSYS
parametric language for moving Hertzian contact load (Ghaffari et al. 2015), as
shown in Fig. 4.6. Two-dimensional model is used here, and the simulation includes
two steps. Firstly, the normal load is applied to achieve the contact between the
roller and the surface. Then, the roller moves in X-direction while the contact load
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Fig. 4.6 Schematic finite element model and cyclic Hertzian contact load through analytical rigid
body on the surface

is applied. It shall be noted that the prescribed friction coefficient of 0.0483 was
obtained via MD modeling and simulation discussed in previous section. During
the simulation, the stress state at each node is calculated per step of the moving
Hertzian contact loading. Then, the stress history, i.e., the stress loading cycle, for
each node in one Hertzian contact loading cycle is obtained. The stress loading cycle
is calculated using the critical plane damage method (Ghaffari et al. 2015) based
upon the analysis of stresses or strains as they experienced at a particular plane of
the material. The critical plane approach was widely used for fatigue analysis (Socie
1993; Fatemi and Socie 1988), and it is the plane with the most predicted fatigue
failure and fracture. Critical plane approach was used to identify the location where
the fatigue failure starts and it gradually developed from considering how cracks
initiate and propagate. Socie’s research (Socie 1993) supports the idea that cracks
initiate and propagate on critical planes and based on the material, critical planes
may be either tensile strain planes or shear strain.

The extreme damage occurs at the critical plane where the fatigue crack initiates.
Therefore, it is essential to calculate the stress loading cycle at the critical plane
during the rolling contact fatigue life analyses (Podrug et al. 2008). The emergence
of different fracture modes generally depends on the material type, strain amplitude,
and state of stresses. If the shear stress is the dominant stress in the material,
the following shear-based damage model will be used to predict the fatigue crack
initiation life of the material (Podrug et al. 2008):

ds = γa

(
1 + k σmax

σys

)
= τ ′

f

S
(2Ni)

b0i + γ ′
f (2Ni)

c0i (4.20)
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Table 4.3 Material
properties (Boardman 1982)

Description Symbol

Yield strength (MPa) Y 447

Ultimate tensile strength (MPa) U 836

Elastic modulus (MPa) E 2.07×105

Fatigue strength coeff. (MPa) σmax 1278

Fatigue strength exponent bi −0.11

Fatigue ductility exponent ci −0.54

Fatigue ductility coeff. εa 0.53

Cyclic strain hardening exponent n′ 0.19

Cyclic strength coeff. K ′ 1448

where ds is shear damage parameter, γa is the largest shear strain amplitude for
any plane, S was the shear modulus, and τ ′

f is shear fatigue strength coefficient.
Yield stress and maximum normal stress on the same plane as largest normal strain
amplitude are demonstrated by σys and σmax , respectively. Material parameters of
b0i , c0i , and k are shear fatigue strength exponent, shear fatigue ductility exponent,
and empirical material constant, respectively. The shear damage parameter is
calculated for both the plane strain and plane stress conditions as follows:

ds = γa

(
1 + k σmax

σys

)
= 1 + υ

2E
σn

(
1 + k σn

σys

)
(4.21)

where σn is the normal stress at the plane normal to the surface.

4.5 Results and Discussions

A quasi-static simulation is conducted to model moving Hertzian contact (Ghaffari
et al. 2015). C-Mn Steel SAE1561 is used as the material of the bearing inner race.
The material properties are shown in Table 4.3. The fatigue-related parameters are
obtained from the E-N fatigue data of this material shown in Fig. 4.7.

Based on the above material fatigue data and the E-N fatigue calculation
approach, fatigue life cycles for the different load cases are analyzed via Eq. 4.20,
and the results are shown in Fig. 4.8. For the Hertzian load lower than 3000 MPa,
there is no fatigue observed. In other words, fatigue only occurs under the loads
equal to and larger than 3000 MPa. It is also shown in Fig. 4.8 that the fatigue life
decreases as the normal load increases and the behavior is almost logarithmic.

In the continuum model, the stress histories at various points during one contact
loading cycle are calculated first. Then, the fatigue lives are evaluated at those points
to find the critical location where fatigue occurs. Since the stress is only various
along the vertical direction in the two-dimensional model, the locations at x=0 are
considered to calculate the stress histories. One point on the contact surface and
other six points under the surface are chosen. The distances between those points
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Fig. 4.7 Strain-life data for C-Mn Steel SAE1561

and the contact surface are 0.000, 0.027, 0.055, 0.083, 0.111, 0139, and 0.167 mm.
The shear and von Mises stress profiles at those seven points during one contact
loading cycle are shown in Fig. 4.9. It shall be noted that the stress profiles under
various contact loads are pretty similar and only the stress magnitudes are different.
Therefore, a single load case of Hertzian contact load with Pmax = 6000 MPa is
considered first. Figure 4.9 shows that as it goes deeper from the contact surface,
the shear stress increases until to the point at y = −0.139 mm and then decreases.
However, the von Mises stress keeps decreasing.

Using the relationship between the deformation and the number of loading cycles
for the fatigue crack initiation, i.e., Eq. (4.20), the position of initial fatigue fracture
and the corresponding number of stress cycles can be determined, as shown in
Fig. 4.10. The number of loading cycles required for initial fatigue crack occurring
is 6.01E4 cycles. In addition, the initial fatigue crack occurs at y = 0.08 mm under
the contact surface.

Various normal loads are also considered here as 3000, 4000, and 5000 Mpa.
The fatigue lives at the points below the contact surface are shown in Fig. 4.11.
It indicates that the fatigue life scatters are almost the same at all the loads, and
the difference is only in its value. The locations of the initial crack are the same
under all the normal loads. Figure 4.11 also demonstrates that as the normal load
increases, the fatigue life decreases and the crack initiation occurs after 5.2 × 106,
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Fig. 4.8 Fatigue life versus different Hertzian normal pressures

6.7×105, and 1.6×105 cycles when the normal loads are 3000, 4000, and 5000 MPa,
respectively. It shall be noted that the crack initiates below the surface and it will
start to propagate in different angles and then to reach the surface eventually. This
phenomenon is so-called spallation.

In the application of wind turbine, the wind turbine blades rotate due to wind’s
forces, including two primary aerodynamic forces: lift and drag. Mostly, the wind
flow is not steady so that the wind turbine blades exhibit vibrations during rotation.
Consequently, the torque and the bending moment transferred to the wind turbine
gearbox through the speed shaft have some fluctuations, i.e., noises, as well as
the resulted normal load on the bearings in the gearbox. Therefore, it is crucial
to consider the load fluctuation when predicting bearing fatigue life in wind turbine
gear box. To study rolling contact fatigue life under fluctuating loads, the continuum
model, described in the above, is implemented in the software of nCode Designlife.
The nCode Designlife utilizes the frequency domain fatigue analysis in which the
random loading and response are categorized using power spectral density (PSD)
functions (Halfpenny and Bishop 1997).

Three fluctuating normal loads, shown in Fig. 4.12, due to random vibrations
are considered here to calculate rolling contact fatigue lives. Although those three
fluctuating loads have the same mean value of 3000 MPa, they have different
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Fig. 4.9 Stress histories under the contact surface when Hertzian contact load of Pmax =
6000 MPa; (a) shear stress; (b) von Mises stress
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Fig. 4.10 The number of loading cycles till the initial crack occurs at the observed material points
when Pmax = 6000 Mpa

amplitudes. The minimum and maximum loads of those three fluctuating loads are
[0.7, 1.3], [0.8, 1.2], and [0.9, 1.1] of the mean load which is represented as the
dot line in Fig. 4.12. The prescribed friction with the friction coefficient of 0.0483
is applied here. It shall be noted that the friction coefficient under fluctuating loads
can be calculated via the same molecular model as described in Sect. 4.2.

The time histories of the von Mises stress at a node on the contact surface are
shown in Fig. 4.13. It shows that for the fluctuating load with larger amplitude, the
resulted von Mises stress has larger fluctuation. It shall be noted that the difference
of noise levels between various random loads is significant, especially the noise
peaks.

The predicted rolling contact fatigue lives under various fluctuating normal loads
are shown in Table 4.4, compared with the result due to a constant normal load
of 3000 MPa. As shown in this table, the fatigue life for the case under a constant
normal load is much higher than the others. This demonstrates that if the system was
subject to a fluctuating cyclic load, the fatigue life would be dramatically reduced.
In addition, as the amplitude of the fluctuating load becomes smaller, the fatigue life
increases.
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4.6 Conclusion

In this study, a new multiscale modeling is proposed to study rolling contact fatigue
with the consideration of lubricant effects. Since the thickness of the lubricant is
very small, molecular model is a proper method to simulate the lubricant so that
the friction phenomena can be studied between two contact surfaces. The calculated
friction coefficient is then passed to the continuum model of the rolling contact
component to calculate its fatigue life. The fluctuating load is also considered, and
the fatigue life is significantly reduced. The proposed multiscale method belongs
to the family of hierarchical or sequential multiscale methods due to its one-way
message passing from the molecular model to the continuum model. Although only
smooth contact surfaces were considered in this study, rough contact surfaces and
the lubricant with nanoparticles can be easily modeled and studied via the molecular
model in the framework of the proposed multiscale model.
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Fig. 4.12 Three different normalized fluctuating normal loads during one Hertzian contact cycle
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Fig. 4.13 Von Mises time history for different random loads at a node on the contact surface

Table 4.4 Rolling contact
fatigue lives under a constant
load of Pmax = 3000 MPa
and various fluctuating loads
with the mean value of
3000 MPa

Case study Fatigue life

Constant pressure of Pmax 5.2 × 106

Random load [0.9, 1.1] 2.4 × 106

Random load [0.8, 1.2] 1.3 × 106

Random load [0.7, 1.3] 0.8 × 106
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Chapter 5
Lightning Analysis of Wind Turbines

Yeqing Wang

5.1 Introduction

5.1.1 Basic Physics of Lightning Strikes

Lightning discharge is essentially the dielectric breakdown of the air. It occurs when
the strength of the electric field between the cloud and the earth or between two
clouds exceeds the dielectric breakdown strength of the air (i.e., 3 MV/m). Due to
the large intensity of the electric field, the air molecules are ripped apart, leaving
free electrons and positive ions. Meanwhile, the electric field between the cloud and
the earth or between two clouds accelerates these charges causing a rapid motion of
the electric charge, which heats the surrounding air molecules up to 50,000 ◦F (i.e.,
almost five times the temperature of the Sun’s surface) (Oard 2015). The extreme
heat leads to a rapid volume expansion of the air and, thus, emanates sound waves
(i.e., the thunder). In addition to the sound waves, the lightning plasma channel also
emits light, radio waves, x-rays, and even gamma rays (Rupke 2002).

The luminous lightning flash (i.e., can be visually observed in the air) is not
instantly formed after the dielectric breakdown of the air. Instead, a few steps
with durations of several milliseconds are completed prior to the formation of the
luminous lightning flash. Taking the negative polarity downward initiated cloud-
to-ground (CG) lightning flash for example, in the beginning of the lightning
flash, the positive charge in the cloud travels in the speed of light through the air
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propagating toward the ground. The propagating channel, known as the lightning
stepped leader, is a weakly luminous channel that can be visually observed in
the air and only lasts for several milliseconds. As the lightning stepped leader
approaches the ground, the intensified electric field between the tip of the lightning
stepped leader and the ground structures triggers the ground structures to emit
answering leaders. Once the lightning stepped leader connects with the answering
leader, the first luminous lightning channel, known as the lightning return stroke
(i.e., the channel with negative charge that travels from the ground to the cloud),
is then formed. Common structures that can emit answering leaders are normally
electrically conductive such as transmission towers and TV towers. Moreover, the
electrically non-conductive structures (e.g., glass fiber-reinforced polymer-matrix
(GFRP) composite wind turbine blades) are also able to emit answering leaders
if conductive components (receptors and down conductors, etc.) or conductive
contamination (salt, dirt, moisture, etc.) is included (Madsen 2006).

Furthermore, a typical lightning discharge includes one or more intermittent
partial discharges; each component discharge is called a stroke. Figure 5.1 shows
a standard waveform of the lightning strike electric current used for common
lightning strike analysis, where the waveform components A, B, C, and D denote
the initial return stroke, intermediate stroke, continuing stroke, and restrike stroke,
respectively. The initial return stroke current has a pulsed profile with a peak
reaching up to hundreds kiloamperes. The electric current return stroke wave heats
and pressurizes the lightning plasma channel which leads to the rapid channel
expansion, optical radiation, and shock wave propagation in the outward direction.
The initial return stroke with high-intensity short-duration pulsed current is typically
followed by a continuing stroke with almost constant current, which is about two
orders of magnitude lower and three orders of magnitude longer than that of the
pulsed current of the initial return stroke.
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Peak Amplitude = 200 kA ± 10% 

Fig. 5.1 Standard lightning current waveform suggested by MIL-464-A (1997)
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5.1.2 Direct Effects of Lightning Strikes on Wind Turbines

5.1.2.1 Dielectric Breakdown

Lightning strikes cause frequent structure damage to the wind turbines, especially
to the wind turbine blades which are typically made of the sandwiched composite
laminated panels. The most widely used type of composite materials on the wind
turbine blades are the electrically non-conductive glass fiber-reinforced polymer-
matrix (GFRP) composite laminates. During a lightning strike event, the electric
field strength in the vicinity of the composite wind turbine blades significantly
intensifies. If it exceeds the dielectric breakdown strength of the composite wind
turbine blade, the dielectric breakdown occurs and, thus, may result in pin holes or
punctures in the blades. Typically, the electrical field required to puncture a given
thickness of glass fiber or aramid fiber composite is greater than that required to
ionize a similar thickness of air due to the high porosity and inhomogeneity of the
composite structure (Rupke 2002). The dielectric breakdown strength of the solid
composite material is highly dependent on the thickness, temperature, humidity,
and pressure. A detailed discussion of the dielectric breakdown strength of the
composite wind turbine blade is provided in Sect. 5.2.4.

5.1.2.2 Surface Flashover

In the case when the electric field strength on the composite wind turbine blade
is lower than its dielectric breakdown strength, the lightning arc automatically
searches for the weakest spots (i.e., least resistant) to conduct the lightning electric
current once it attaches to the surface of the non-conductive composite wind turbine
blade. If the electric field strength exceeds the surface flashover field strength
(i.e., lower than the dielectric breakdown strength), the conduction of the lightning
current on the surface can be visually observed in a form of surface flashover
(also known as streamers). Figure 5.2 shows an example of a surface flashover on
a composite wind turbine blade surface caused by the lightning arc. The surface
flashover produces extensive heat along the conducting path and, thus, may lead to
appreciable thermal damage, such as skin peeling, burning, melting, and material
vaporization.

5.1.2.3 Lightning Strike-Induced Localized Damage on Composite Wind
Turbine Blades

The direct injection of the lightning arc channel onto the surface of the composite
wind turbine blade produces extensive localized damage, such as melting or burning
on the lightning attachment points, and mechanical damage due to magnetic force
and acoustic shock wave. If the blade is made of electrically conductive material
(e.g., carbon fiber polymer-matrix composite laminates), the conduction of the
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Fig. 5.2 Example of the evolution of the surface flashover on a wind turbine blade at 1 (a), 2
(b), 3 (c), and 4 milliseconds (d) (where the gray denotes room temperature and red denotes high
temperatures)

lightning current through the interior of the conductive blade also produces extreme
high Joule heating, which may lead to more extensive thermal damage. Generally,
if a lightning arc attaches to the surface of the solid material, the direct heat
flux injection leads to a rapid temperature rise on the surface of the composite
wind turbine blade. With the increasing temperature, the resin component (i.e., the
polymer matrix) of the composite material starts to decompose at around 300 ◦C
and is fully consumed as the temperature reaches 800 ◦C. The decomposition of the
resin leads to the fluctuations in the overall density and material properties of the
material, the degradations in the material strength, and the liberation of the pyrolysis
gases. The decomposition of the interlaminar resin will also lead to the delamination
of the composite laminates. At temperatures around 1100 ◦C (or higher), the glass
fiber quickly melts and vaporizes (or experiences rapid melt expulsion).

In addition, the pyrolysis gases may be trapped in between the laminate layers as
the interlaminar resin decomposes. With the accumulation of the trapped pyrolysis
gases, the volume of the pyrolysis gases expands, and if the stress caused by
the internal pressure of the pyrolysis gases exceeds the rupture strength of the
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Fig. 5.4 Lightning strike direct effects on polymer-matrix composite laminated structures

fibers, fiber breakage develops and results in surface cracks (see Fig. 5.3). Inoue
et al. (2004) studied the relationship between the pressure rise inside a laminated
composite panel and the energy of a spark arc that is enforced on the composite
blade surface. It was reported that the internal pressure between the laminate layers
is proportional to the arc energy. Furthermore, the induced magnetic force and
acoustic shock wave as the lightning arc attaches to the surface of the composite
wind turbine blade may also result in minor mechanical impact damage (Chemartin
et al. 2012; Muñoz et al. 2014). An overview of the lightning strike direct effects on
polymer-matrix composite laminates is provided in Fig. 5.4.

5.1.3 Common Lightning Strike Protections (LSP) for Wind
Turbines

As described in Sect. 5.1.1, the approaching of the lightning stepped leader toward
the ground intensifies the electric field between the tip of the lightning stepped
leader and the ground structures. When the tip of the lightning stepped leader arrives
within a certain distance (i.e., the lightning striking distance) to a ground structure,
answering leaders will be emitted from the structure and attempt to arrest the
lightning stepped leader. Once they are connected, the first lightning return stroke is
formed. Normally, structures such as metallic conductors are able to emit answering
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leaders (as conductors allow electric charges to move freely under lightning electric
field). As described earlier, non-conductive structures such as the GFRP composite
wind turbine blades are also able to emit answering leaders due to the presence
of internal down conductors, receptors, and surface contaminations (e.g., moisture,
dirt, and rain drops).

To intercept the lightning stepped leader and conduct the high-intensity lightning
current safely to the ground, the wind turbine blades are normally designed with
lightning strike protections (LSP). The most commonly used LSP system is to
embed conductive (e.g., special tungsten alloy) receptors on the surfaces of wind
turbine blades (IEC-61400-24 2002). These receptors are connected to down
conductors (e.g., unshielded high-voltage cables) which are installed inside the
blade shell extending from the root to the tip of the blade. The receptors are designed
to intercept the lightning strokes and safely conduct the lightning current through
the down conductors to the earth. The efficiency of LSP is expressed as a product of
interception efficiency and sizing efficiency, where the interception efficiency refers
to the ability of the receptors to intercept a lightning stroke, and the sizing efficiency
refers to the ability of the LSP system to conduct the lightning current (IEC-61400-
24 2002). The sizing efficiency can be increased by increasing the diameter of
the down conductors, while the interception efficiency may be increased by using
multiple receptors. The receptors often undergo partial evaporation with repeated
lightning strikes. They need to be replaced after every several lightning strikes.
Figure 5.5 shows an example of embedding multiple receptors on the surface of a
100-meter long wind turbine blade. Recently, Wang and Hu investigated the effects
of five different configurations of receptors on the lightning strike protection of wind
turbine blades (Wang and Hu 2017).

Receptors
Down conductors

Answering 
leaders

Leading edge

Trailing edge

Lightning 
leaders

Fig. 5.5 A schematic of the formation of lightning leaders and answering leaders emitting from
the receptors of a wind turbine blade
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5.1.4 Lightning Current Conduction on Electrically
Non-conductive Composite Wind Turbine Blades

Although LSP is widely used on wind turbines, lightning strike damage is still not
completely avoidable. It has been reported that many electrically non-conductive
wind turbine blades with the receptor and down conductor system are still subjected
to lightning strike damage (Madsen 2006 and Madsen et al. 2006). This is because
the answering leaders will not be only emitted from the receptors but will also be
emitted from the non-conductive regions other than the receptors. If the emitted
answering leaders from those non-conductive regions arrest the lightning stepped
leader, appreciable thermal damage can occur due to the direct injection of the
lightning arc. One prevalent hypothesis that explains the possible reason for the non-
conductive regions on the blade surface to emit answering leaders is illustrated in
the schematic diagram (see Fig. 5.6). It can be seen from Fig. 5.6, the large electric
field due to the approaching of lightning stepped leader ionizes the molecules on
the down conductor. Then, the ionized positive charges flow upward and deposit on
the interior surface of the blade, which also induces negative charges on the exterior
surface (see Fig. 5.6a). At the same time, the positive charges flow to the surface
of the receptors and search for and neutralize those negative charges. The searching
path through the electrically non-conductive blade regions can also emit multiple
answering leaders (see Fig. 5.6b). If one of them arrests the approaching lightning
stepped leader, the lightning arc channel is directly attached to the surface of the
non-conductive blade region (see Fig. 5.6c), leading to a significant temperature
increase and appreciable thermal damage on the attached spot. Moreover, severe
damage, such as puncture through, can develop if the induced electric field strength
at the attached spot exceeds the dielectric breakdown strength of the composite wind
turbine blade (see Fig. 5.6d) (Madsen et al. 2006).

In general, if the lightning strike-induced electric field strength is lower than
the dielectric breakdown strength of the GFRP composite wind turbine blade, the
damage is predominately attributed to the direct heat conduction due to the lightning
channel attachment on the surface of the structure. In contrast, if the electric
field strength exceeds the dielectric breakdown strength of the GFRP composite
wind turbine blade, the non-conductive blade becomes instantly conductive in the
through-the-thickness direction, and a considerable amount of Joule heating will
be produced along the conducting path. Once dielectric breakdown occurs, the
Joule heating must be considered in the damage predictive models in addition to
the direct heat conduction (i.e., radiative heat exchange between the lightning arc
and the wind turbine blade). Therefore, an estimation of dielectric breakdown of
the GFRP composite wind turbine blade subjected to a lightning stepped leader is
essential and inevitable prior to any predictive lightning strike damage models of
the non-conductive GFRP wind turbine blades. Section 5.2 introduces methods to
predict the lightning strike-induced electric field strength and, hence, to estimate
the dielectric breakdown of the GFRP composite wind turbine blade subjected to a
lightning stepped leader.
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Fig. 5.6 Lightning attachment on a non-conductive surface: (a) free positive charges flow upward
and deposit on the interior blade surface, inducing negative charges on the exterior blade surface;
(b) positive charges on the receptor surface search for and neutralize negative charges on the
exterior blade surface. Searching path and receptor emit answering leaders; (c) one of the
answering leader emitted from the searching path captures the lightning stepped leader; (d)
dielectric breakdown occurs when the electric field exceeds the dielectric breakdown strength of
the blade

5.2 Analysis of Lightning Strike-Induced Electric Field
at Wind Turbines

5.2.1 Lightning Striking Distance

As described in Sect. 5.1.1, the distance between the tip of the lightning stepped
leader (i.e., the weakly luminous leader which propagates from the cloud to the
ground) and the ground structure at the particular moment when the answering
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Fig. 5.7 Lightning striking
distance from stepped leader
tip to a ground structure
characterized using the
rolling sphere method
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leaders are triggered from the ground structure is called the lightning striking
distance. According to the IEC 61400–24 standard (IEC-61400-24 2002), for the
wind turbine blades longer than 20 m, the lightning striking distance can be defined
using the rolling sphere method, where the radius of the rolling sphere attached to
the ground structure can be considered equal to the lightning striking distance (see
Fig. 5.7).

The rolling sphere radius is a function of the peak current of the lightning return
stroke. A traditional expression to calculate the sphere radius (and, therefore, the
lightning striking distance) is given by Uman (2001):

R = 10 · I 0.65
peak, (5.1)

where Ipeak is the peak current of the lightning return stroke (in kA), and R is the
rolling sphere radius (in m).

Recently, Cooray et al. (2007) suggested another expression for the radius of the
rolling sphere, which agrees better with the recorded physical measurement data on
the lightning striking distances:

R = 1.9 · I 0.90
peak, (5.2)

where the rolling sphere radius R is in m and the unit of peak current Ipeak is
in kA. However, it should be noted that the above equation yields the lightning
striking distance to a flat ground and not to an object protruding above the ground.
Therefore, Eq. (5.2) may not be appropriate to be used to calculate the lightning
striking distance to a wind turbine.

Another widely used equation for calculating the lightning striking distance is
proposed by Eriksson (1979):

R = 0.6 · I 1.46
peak, (5.3)

Here, Eq. (5.3) is applicable for calculating the lightning striking distance to a
wind turbine (Eriksson 1979).
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Table 5.1 Lightning striking distance for the lightning stepped leader

Lightning striking distance (m)
LPL Peak current, Ipeak (kA) From Eq. (5.1) From Eq. (5.3)

I 200 313.09 1372.95
II 150 259.69 902.08
III 100 199.53 499.06

Table 5.1 shows the lightning striking distance calculated using Eqs. (5.1 and
5.3) for three lightning protection levels (LPLs). The LPLs represent three different
lightning severity levels as identified by the IEC-61400-24 (2002). The peak current
of the initial return strokes (see Fig. 5.1) is 200, 150, and 100 kA for LPL I, LPL II,
and LPL III, respectively.

Table 5.1 shows that the lightning striking distances calculated by Eq. (5.3) are
around 2.5 to 4 times larger than those calculated by Eq. (5.1). Therefore, using Eq.
(5.3) may result in lower predictions of electric field strength at a ground structure,
when compared to the predictions using Eq. (5.1).

As a side note, below we discuss the difference between the lightning striking
distance and the lightning attractive radius, which are both widely used in the
modeling of lightning attachment to structures.

The attractive radius can be calculated as (D’Alessandro and Petrov 2006):

Ra = 0.84 · I 0.74
peakh

0.6
a , (5.4)

where Ra is the attractive radius (in m), Ipeak is the peak current (in kA), and ha is the
structure height (in m). There is a significant difference between lightning striking
distance, R, as defined by Eqs. (5.1, 5.2 and 5.3), and the lightning attractive radius,
Ra, as defined by Eq. (5.4). It can be noticed that the lightning striking distance
depends on the charge transfer only, whereas the lightning attractive radius takes
into account the size of the structure. Figure 5.8 shows the ratio R/Ra as a function
of the structure height ha for Ipeak = 100 kA. For tall structures (i.e., ha > 35 m), the
lightning striking distance is smaller than the lightning attractive radius. Therefore,
one needs to be cautious when choosing between the lightning striking distance and
the lightning attractive radius for a conservative prediction of the lightning strike-
induced electric field, since the results could be quite sensitive to the choice between
the two.

5.2.2 Lightning Electric Charge Transfer

5.2.2.1 Charge Transfer of a Lightning Return Stroke

According to Cooray et al. (2007), as the lightning stepped leader approaches the
ground, the charge density of the lightning stepped leader is determined by both
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Fig. 5.8 Ratio of striking
distance to the attractive
radius as a function of the
structure height (Ipeak = 100
kA)
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the electric field due to the cloud charge and the electric field enhancement due
to the presence of the ground. Figure 5.9 shows a simple lightning stepped leader
model: a cloud is represented by a conductive plane at potential V, the ground is
represented by a perfect conductor, and the lightning stepped leader is assumed to
be a vertical line charge (where, in real situations, branched leaders may develop,
and the weakly luminous paths of those leaders often form an inverted tree shape).
Figure 5.9a shows a real lightning stepped leader approaching the ground with
branched channels; Fig. 5.9b shows an idealized vertical lightning stepped leader;
Fig. 5.9c shows a negative charge Ql along the lightning stepped leader prior to
the formation of the return stroke; Fig. 5.9d shows a positive charge Qi flowing
upward along the lightning channel that is induced by the cloud voltage after the
initial return stroke is formed. The total positive charge, Qt, 100μs, entering from the
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ground to the fully developed return stroke channel during the first 100 μs equals
the sum of the positive charges that neutralize the negative charges Ql stored along
the lightning stepped leader and the positive charges Qi due to the cloud voltage:

Qt,100 μs = |Ql | +Qi = 0.61 · Ipeak, (5.5)

where Qt,100 μs is in C, and Ipeak is the peak current, in kA.

5.2.2.2 Charge Density of a Lightning Stepped Leader

Typically, the charge density of the lightning stepped leader is nonuniform (Becerra
2008; Cooray et al. 2007; Golde 1945, 1977; Lewke et al. 2007). Golde (1945, 1977)
assumed that the charge density decreased exponentially along the lightning stepped
leader from the tip to the origin of the leader in the cloud:

λ (η) = λ0e
−η/ξ , 0 ≤ η ≤ L, (5.6)

where λ is the charge density distribution (in C/m) along the leader; λ0 is the charge
density at the leader tip; ξ is the decay height constant, ξ = 1000 m; and L is the
length of the leader (in m). In addition, η = z-z0 (in m), where z is the vertical
distance from the ground (z = 0 at the ground) and z0 is the distance from the
ground to the leader tip.

The total charge deposited on the leader is obtained by taking the integral of the
charge density Eq. (5.6) over the leader length:

Ql =
∫ L

0
λ (η) dη = λ0ξ

[
1 − e−L/ξ

]
, (5.7)

where Ql is the total charge (in C) (Golde 1945, 1977).
Meanwhile, the relationship between the peak current of the lightning return

stroke and the charge density at the leader tip is

λ0 = 4.36 · 10−5Ipeak, (5.8)

where Ipeak is the peak current (in kA).
Using the charge simulation method, Cooray et al. (2007) derived a different

nonuniform distribution for the charge density along the lightning stepped leader:

λ (η) = a0 ·
(

1 − η
H−z0

)
·G(z0) · Ipeak + Ipeak·(a+b·η)

1+c·η+d·η2 · F (z0) ,

0 ≤ η ≤ L, z0 ≥ 10,
(5.9)

where η, in m, is the distance along the leader, η = 0 is at the leader tip, η = z-
z0, λ(η) is the line charge density (in C/m), H is the height of the cloud (typically



5 Lightning Analysis of Wind Turbines 155

Fig. 5.10 Charge density of
the lightning stepped leader
for the LPL III (i.e.,
Ipeak = 100 kA) (when
z0 = 250 m)

Table 5.2 Total charge entering from the ground to the lightning channel, Qt, 100 μs, and the total
charge deposited on the lightning stepped leader, Ql

Qt, 100 μs (C) Ql (C)
LPL From IEC-61400-24 From Eq. (5.5) From Eq. (5.6) Integral of Eq. (5.9)

I 300 183 8.51493 5.70252
II 225 91.5 6.38619 4.27689
III 150 61 4.25746 2.85126

H = 4000 m), z0 is the distance from the ground to the leader tip (in m), Ipeak is the
peak current of the return stroke (in kA), and G(z0) = 1-(z0/H), F(z0) = 0.3α+ 0.7β,
β = 1-(z0/H), a0 = 1.476 × 10−5, a = 4.857 × 10−5, b = 3.9097 × 10−6, c = 0.522,
and d = 3.73 × 10−3. It is assumed that z0 > 10 m. Cooray et al. (2007) found that
the distribution Eq. (5.9) was in a better agreement with the physical measurements
than the distribution Eq. (5.6) proposed by Golde (1945, 1977). The total charge
deposited on the leader is obtained by numerically taking the integral of the charge
density Eq. (5.9) over the length of the leader.

Figure 5.10 shows the charge density as a function of the height z (i.e., distance
from the ground). Calculations are performed using Eqs. (5.6 and 5.9) for the LPL
III (i.e., Ipeak = 100 kA). The distance from the stepped leader tip to the ground is
z0 = 250 m, and the length of the lightning stepped leader is L = 3750 m. As one can
see, at the leader tip and at the vicinity of the cloud, the charge densities calculated
by Eqs. (5.6 and 5.9) are similar, but they are quite different in between. Table 5.2
shows the total charge entering from the ground to the lightning channel, Qt,100 μs,
within the first 100 μs, calculated using Eq. (5.5) and provided by the IEC 61400–24
standard (IEC-61400-24 2002), and the total charge on the leader, Ql, in the case of
uniform (5.6) and nonuniform (5.9) charge density distributions. As one can see, the
total charge is larger if charge density is uniform. However, the charge density near
the lightning stepped leader tip (i.e., the distance from the ground is around 250 m,
see Fig. 5.10) is larger, if calculated using the charge density distribution (5.9).
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5.2.3 Prediction of Lightning Strike-Induced Electric Field
in the Vicinity of a Wind Turbine: Analytical and Finite
Element Methods

In this section, we present two methods, the analytical and finite element methods
(FEM), to predict the static electric field (i.e., the effects of the lightning stepped
leader propagation are not considered) in the vicinity of a wind turbine induced by
a lightning stepped leader. The first simple method provides a qualitative estimation
of the electric field by using an analytical approach, while the second method
incorporates the charge density (i.e., Eqs. (5.6 and 5.9)) into a finite element model
with COMSOL, which provides more accurate predictions of the electric field.

5.2.3.1 Analytical Model

In this section, we assume the charge density of a lightning stepped leader to be
uniform and calculate the induced electric field at the vertically positioned blade
(i.e., blade OA, see Fig. 5.11). To simplify the problem, here, we make a few
more assumptions: (i) the ground (i.e., zero electric potential) is at the infinity,
(ii) the electric potential between a cloud and the ground is ignored, and (iii) the
effects of the wind turbine receptors and down conductors on the electric fields are
disregarded. With these assumptions, the problem of calculating the electric field
due to a vertical lightning stepped leader becomes similar to calculations of the
electric field due to a charged lines and rods (Tipler and Mosca 2007; Uman 2001).

Fig. 5.11 Electric field
calculation at point p of the
blade OA due to a uniformly
charged lightning stepped
leader

Wind turbine

z

dz

dq=λdz

O

p

B C

d
x

r

θ2

θ1

θ

dE

A

r2

r1

Lightning stepped
leader



5 Lightning Analysis of Wind Turbines 157

As described in Sect. 5.2.2, the lightning stepped leader is assumed to be a
vertical line charge with uniform charge density:

λ = Ql

L
. (5.10)

where λ is the line charge density (in C/m), Ql is the total charge (in C) deposited
on the lightning stepped leader calculated by taking the integral of the nonuniform
charge density Eq. (5.9), and L is the length of the lightning stepped leader (in m).
The electric field due to a line charge can be calculated using the Coulomb’s law
based on the assumption that the field due to an infinitesimal line charge element
dq is the same as the field due to a point charge. Therefore, the electric field at an
arbitrary point p of the blade OA due to the charge dq within dz can be calculated as:

dE = kdq

r2 = kλdz

r2 = kλdθ

d
, (5.11)

where r is the distance from the element charge dq to the point p at the blade,
k = 9 × 109 N·m2·C−2 is Coulomb’s constant, and d = r · sinθ is the lightning
striking distance, which is equal to the rolling sphere radius (see discussions in
Sect. 5.2.1). The x and z components of the electric field E from all the charge in the
leader are

Ex = ∫ θ2
θ1

sin θ kλdθ
d

= − kλ
d
(cos θ2 − cos θ1) ,

Ez = ∫ θ2
θ1

cos θ kλdθ
d

= kλ
d
(sin θ2 − sin θ1) .

(5.12)

Finally, the magnitude (i.e., strength) of the electric field at a particular point p
along the blade OA due to the lightning stepped leader is

|E| =
√
E2
x + E2

z = 2kλ

d
sin
θ2 − θ1

2
. (5.13)

Here |E| denotes the magnitude of the electric field (in V/m).

5.2.3.2 Finite Element Model

In this section, we present a finite element model to predict the electric field in
the vicinity of a wind turbine due to a lightning stepped leader. The finite element
analysis (FEA) is performed using the COMSOL Multiphysics®. This finite element
model enables us to account for the effects of the nonuniform charge density
distribution Eq. (5.9), the effects of the receptors and down conductors, and the finite
ground that were not included in the analytical model considered in Sect. 5.2.3.1,
which, therefore, provides us more accurate predictions.



158 Y. Wang

Fig. 5.12 Interaction of a
lightning stepped leader and a
wind turbine: problem
formulation
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In particular, we consider a horizontal axis wind turbine blade (see Fig. 5.12), the
three blades of which are placed on top of a 150-m wind turbine tower, representing
the Sandia 100-meter all-glass baseline wind turbine blades (SNL 100–00) (Griffith
and Ashwill 2011). The length of each blade is 100 m, the overall structure height
(when one blade is resting at its top vertical position, see Fig. 5.12) is 250 m, and
the distance from the leader tip to the ground is z0 = 250 m. The length of the
lightning stepped leader is 3750 m. The distance from the ground to the cloud is
4000 m. Moreover, a typical 100 m non-conductive wind turbine blade is equipped
with multiple receptors, which are evenly embedded on each side of the blade
surface and are connected to the internal down conductor (e.g., unshielded high-
voltage cables that are installed inside the blade shell extending from the blade
tip to the root buildup, see Fig. 5.5). In this finite element model, the effects of
the receptors and the down conductors are taken into account through applying
ground potential boundary conditions to the surface of the wind turbine blades. In
addition, it is assumed that the lightning stepped leader is a vertical line charge that is
perpendicular to the turbine axis and is located in the same plane with the blades (see
Fig. 5.12). Moreover, since blades are 100-meter long, the rolling sphere method is
used to obtain the lightning strike distance (i.e., d in Fig. 5.12). It is assumed that
the rolling sphere is tangentially attached to the tip of the blade OA. The lightning
striking distance between the leader and blade OA is equal to the rolling sphere
radius Eq. (5.1). Here, the attachment to the tip is chosen because the tip region
of the blade has the highest probability (>98%) to emit answering leaders (Madsen
2006).
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Fig. 5.13 Problem setup in COMSOL

The computational domain is a 3D parallelepiped containing a cutout in the shape
of a wind turbine as shown in Fig. 5.13. The dimensions of the cutout are determined
by the dimensions of the wind turbine. To simplify the problem, the wind turbine
blades are assumed to be beams of square cross section, 2.5 m by 2.5 m. The
computational domain represents the air between a cloud and the ground. The length
and width of the parallelepiped are 4000 m. The depth is L + z0, where L = 3750 m
is the length of the lightning stepped leader and z0 = 250 m is the distance from
the tip of the leader to the ground. The lightning stepped leader is assumed to be
a vertical cylindrical channel of length L = 3750 m and radius Rl = 5 m. The
cylindrical leader channel is placed in the center of the 3D parallelepiped extending
from the top surface to the bottom surface (see Fig. 5.13). A volume charge density,
ρv = λ/πRl2, where λ is the line charge density Eq. (5.9), is applied to the leader
channel. The lightning striking distance, d, as shown in Fig. 5.12, is calculated using
the rolling sphere radius Eq. (5.1).

In addition, an electric potential, V = 40 MV (Becerra 2008), representing the
cloud voltage, is applied to the top surface of the parallelepiped. Ground potential
is applied to the bottom surface of the parallelepiped and to the exterior surface
of the wind turbine (i.e., hub, nacelle, and the tower) and the surface of the three
wind turbine blades (i.e., to account for the effects of multiple receptors and down
conductors). Open boundary conditions are assumed at all four vertical sides of the
parallelepiped. Moreover, the domain (including the leader) is assigned with an “air
material” defined in the COMSOL Material Library. The domain is meshed with
815,112 free tetrahedral elements. The average duration of each simulation is 128 s
on a four-core laptop PC.

Next, FEA was performed to predict the electric fields along the wind turbine
blades OA, OB, and OC (see Fig. 5.13). FEA results are shown in Table 5.3 and
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Table 5.3 The magnitude of the electric field at the wind turbine blade tips and the stepped leader
tip (nonuniform charged lightning stepped leader, z0 = 250 m)

Magnitude of the electric field (V/m)
Blade OA tip Blade OB tip Blade OC tip Lightning stepped leader tip

1.60·107 5.30·106 6.05·106 2.09·107
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Fig. 5.14 The magnitude of the electric field at blades OA, OB, OC, LPL I

Figs. 5.14 and 5.15. Figure 5.14 shows the electric field strength along the blades
OA, OB, and OC at LPL I (i.e., Ipeak = 200 kA). It can be seen that the electric field
at blade OA is larger than that at blades OB and OC. However, although the peak
current corresponding to LPL I is the highest comparing to the less severe conditions
(i.e., LPL II and LPL III), the electric field strength at the tip of blade OA could be
considerably lower than those obtained under LPL II and LPL III conditions (Wang
and Zhupanska 2014). Lastly, Fig. 5.15 shows a contour plot of the electric field
strength distribution in the vicinity of the wind turbine.

It is worth emphasizing again that the effect of the dynamic propagation of the
lightning stepped leader was not taken into account in the above calculations. In
other words, only the static electric field was predicted at the particular moment
when the lightning stepped leader arrived within the lightning striking distance.
Future simulations are suggested to incorporate the effect of dynamic propagation
of the lightning stepped leader for a more accurate prediction of electric field
and therefore a more accurate estimation of dielectric breakdown in the composite
structures (see discussion in Sect. 5.2.4).
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Fig. 5.15 Electric field magnitude distribution in the vicinity of the wind turbine at LPL I

5.2.4 Estimation of Dielectric Breakdown of Non-conductive
Composite Wind Turbine Blades

As described in Sect. 5.1.2, severe lightning strikes may cause the dielectric
breakdown of the non-conductive composite wind turbine blade, which could lead
to punctures through the thickness direction of the blade and even more extensive
structural damage. Therefore, it is quite crucial to evaluate the conservativeness
of the blade design against the lightning strike-induced dielectric breakdown. A
straightforward method for such evaluation is to compare the predicted electric field
strength (see Sect. 5.2.3) with the dielectric breakdown strength of the wind turbine
blade. If the dielectric breakdown strength of the blade is lower than the predicted
electric field strength on the blade induced by the lightning strike, the blade is
very likely to experience dielectric breakdown. The previous section (Sect. 5.2.3)
describes the methods to predict the electric field strength in the vicinity of the wind
turbines due to lightning strikes. In this section, we provide some discussions on the
dielectric breakdown strength of composite wind turbine blades.

Experimental investigations (Madsen et al. 2004, 2006) on the dielectric break-
down strength of the glass fiber polymer-matrix (GFRP) composite laminates used
on the wind turbine blades revealed that the dielectric breakdown strength is a
function of both the thickness and the surface tracking resistance of the composites
and is expressed by

Eb = a/t + b · T I, (5.14)

where Eb is the average dielectric breakdown strength (V/m), a and b are the
coefficients, t is the thickness of the composite laminate (m), and TI is the tracking



162 Y. Wang

Fig. 5.16 Dielectric
breakdown strength of the
GFRP composite laminate
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index, which is highly dependent on the fiber orientation, fiber and matrix properties,
surface defects, and wide erosions. Generally, the values of the tracking index are
stochastic due to uncertainties involved in manufacturing and handling (Madsen
2006; Madsen et al. 2004, 2006). Here, the product of the coefficient b and the
tracking index is assumed to be a constant, i.e., b·TI = 8.0·106. The coefficient a
is 5.3·104. These parameters were chosen by fitting the experimental data reported
by (Madsen 2006, Madsen et al. 2004, 2006). Figure 5.16 shows the comparison
between the dielectric breakdown strength that is predicted using Eq. (5.14) and
the dielectric breakdown strength obtained from experimental tests (Madsen 2006;
Madsen et al. 2004, 2006). It should be mentioned that the dielectric breakdown
strength of the GFRP composite laminate reported by Madsen (2006), Madsen
et al. (2004, 2006) is for laminates with thicknesses within 2∼6 mm. However, in
practical situations, the laminate thickness of the real blades can reach to ∼100 mm.
The applicability of Eq. (5.14) to describe the dependence of dielectric breakdown
on the thickness may be questioned and needs further investigation.

Meanwhile, according to the ASTM standard (ASTM 1994), the breakdown
strength for solid can be expressed by

Eb = 4.2/t + 63/εs, (5.15)

where εs is the permittivity of the solid. From Eq. (5.15), it can be seen that,
in cases of large thickness and low permittivity (∼4 for GFRP according to
(Madsen 2006; Madsen et al. 2004, 2006) specimens, the term containing t becomes
relatively insignificant, and the product of permittivity and the breakdown strength
are approximately a constant. In other words, the dielectric breakdown strength
approximately becomes a constant (∼15 MV/m) when the thickness increases. The
same can be captured by Eq. (5.14). Therefore, here, we assume that Eq. (5.14) can
be extrapolated to describe the thickness dependence on the dielectric breakdown
of the wind turbine blade along the entire spanwise, for which the thickness may



5 Lightning Analysis of Wind Turbines 163

Fig. 5.17 Planform of Sandia 100-m baseline blade with laminated designations (Blue, spar cap;
orange, trailing edge reinforcement; red, additional shear web) (Griffith and Ashwill 2011)

Fig. 5.18 Sandia 100-meter
all-glass baseline wind
turbine blade (SNL 100–00)
planform
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be larger than 6 mm. Note that this extrapolation may not be rigorous due to the
lack of experimental data. If more experimental data are available, a more accurate
expression to describe the thickness dependence on the dielectric breakdown can be
found.

Now we present an example to estimate the dielectric breakdown strength of a
wind turbine blade. This particular blade considered here is the Sandia 100-meter
all-glass baseline wind turbine blade (SNL 100–00) (Griffith and Ashwill 2011).
The planform of the blade is shown in Figs. 5.17 and 5.18.

The root buildup and spar cap of the blade are made of GFRP composites.
The other parts of the blade are made of sandwich panels with foam core and
GFRP composite facesheets. The experimental data on the dielectric breakdown
strength of the sandwich composites are not available, so only the root buildup and
spar cap sections are considered. Moreover, the blade is divided into 34 sections
along the spanwise direction. Thicknesses of the root buildup and spar cap at
various sections along the spanwise direction are shown in Table 5.4. The dielectric
breakdown strengths of the root buildup and spar cap along the spanwise direction
are calculated using Eq. (5.14) and shown in Fig. 5.19. Then, they are compared
to the magnitudes of the predicted electric fields along the blade OA obtained
using FEA (see Sect. 5.2.3). The ratios of the dielectric breakdown strength to the
magnitude of the predicted electric field (referred to “safety factor” hereinafter) are
shown in Fig. 5.20. As one can see, the root buildup design is generally conservative
against the dielectric breakdown, for which the safety factor is far above 1, whereas
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Table 5.4 Composite laminate thickness at various sections of the wind turbine blade (Griffith
and Ashwill 2011)

Overall thickness (mm)
Section number Blade span fraction Root buildup Spar cap

1 0.000 170
2 0.005 150 1
3 0.007 130 2
4 0.009 110 3
5 0.011 90 4
6 0.013 80 10
7 0.024 73 13
8 0.026 65 13
9 0.047 50 20
10 0.068 35 30
11 0.089 25 51
12 0.114 15 68
13 0.146 94
14 0.163 111
15 0.179 119
16 0.195 136
17 0.222 136
18 0.249 136
19 0.277 128
20 0.358 119
21 0.439 111
22 0.521 102
23 0.602 85
24 0.667 68
25 0.683 64
26 0.732 47
27 0.765 34
28 0.846 17
29 0.895 9
30 0.944 5
31 0.957 5
32 0.972 5
33 0.986 5
34 1.000

the tip region is comparatively less conservative, for which the safety factor is only
1.55. This low safety factor 1.55 indicates that the tip of blade OA has the highest
risk of experiencing dielectric breakdown. Recall that electric fields along blades
OB and OC are generally weaker than those along blade OA. Overall, blade OA is
the most vulnerable one to the dielectric breakdown.
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Fig. 5.19 Dielectric
breakdown strength of the
Sandia 100-meter all-glass
baseline wind turbine blade
(SNL 100–00) at both root
buildup region and spar cap
region. Distance at 0 denotes
the blade root and distance at
100 m denotes the blade tip
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Fig. 5.20 Safety factor (ratio
between estimated dielectric
breakdown strength and
electric field predicted) at
LPL I for wind turbine blade
OA root buildup region and
spar cap region
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It is worth mentioning that the dielectric breakdown strength of the composite
materials may deteriorate during the service lifetime of wind turbine blades due
to the presence of moisture, defect accumulation, etc. Although experimental data
specific to composite wind turbine blades are not available, laboratory studies of
glass-reinforced composites may be useful to assess the extent of deterioration
in properties. For instance, experimental results reported by Morgan et al. (2009)
indicate that cyanate ester/S2 glass composite retains 90% of its dielectric strength
after 6-month exposure to 99% humidity. Hong et al. (2009) observed that the
breakdown strength of the specimens underwent a 67% reduction when the dry
specimen was immersed in water until their weight was increased by 1.5%.
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5.3 Current Predictive Models of Lightning Strike-Induced
Thermal and Ablative Damage in Non-conductive
Composite Wind Turbine Blades

In the case when the dielectric breakdown does not occur in composite laminated
blades, lightning strike attachments will come as a direct heat injection into
the surface of the non-conductive blades. The direct heat injection can produce
a considerable damage that includes thermal ablation, internal explosion, and
delamination.

As a part of damage prediction due to lightning-induced heat injection, a heat
transfer problem needs to be solved (Wang and Zhupanska 2015). A heat transfer
problem formulation for non-conductive structures (e.g., GFRP composite wind
turbine blades) is different from the one for conductive structures (e.g., carbon
fiber-reinforced polymer-matrix (CFRP) composite wind turbine blades). For the
conductive structures, a heat transfer equation has to be solved simultaneously with
electrodynamics equations to determine the distribution of the electric current and
associated Joule heat densities. In the following sections, the formulation of such
heat transfer problem is provided, along with brief descriptions on the estimation
of different structural damage (i.e., delamination and thermal ablation) using the
obtained heat distributions.

5.3.1 Heat Transfer Due to Lightning Strike Current

The attachment of the lightning arc onto the surface of the wind turbine blade (i.e.,
laminated and sandwiched composite structures with possible coatings) produces
considerable heat. The heat conduction in the material is governed by the energy
balance equation. To account for the electric-thermal coupling effects (if the
composite material is electrically conductive, such as the CFRP composites), the
energy balance equation is written as (Abdelal and Murphy 2014; Muñoz et al.
2014; Ogasawara et al. 2010; Wang et al. 2014; Wang and Zhupanska 2014, 2016)

ρCp

(
∂T

∂t
− ṡ ∂T

∂z

)
= ∇ · (k∇T )+QJ +QL, (5.16)

where ρ, Cp, and k are, respectively, the instant density, specific heat, and directional
thermal conductivity of the composite material, all of which are temperature
dependent, ṡ is the surface recession rate due to progressive material removal (e.g.,
rapid vaporization), z is the coordinate normal to the material surface, QJ is internal
Joule heating generation, QJ = J·E (where J is the lightning current density and E
is the electric field), and QL is the energy loss due to the resin decomposition (i.e.,
liberation of pyrolysis gases).
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Meanwhile, the current density is governed by the Ohm’s law:

J = σ · E, (5.17)

where σ is the temperature-dependent electrical conductivity tensor.
The energy loss, QL, is mainly due to the liberation of the pyrolysis gases, for

which the induced pyrolysis gases percolate through the material to the surface and
bring part of the heat away. The energy loss is highly dependent on the density
variation of the material during the heating process, the enthalpy of the material, and
the enthalpy of the pyrolysis gases. Parameters such as the density variation of the
material during the heating process are usually determined using thermogravimetric
(TGA) tests. However, such tests are normally conducted under the laboratory
conditions for which the heating rates applied to the materials were normally lower
than 50 ◦C/min (Feih and Mouritz 2012; Negarestani et al. 2010; Ogasawara et al.
2002). Such low heating rate cannot represent the lightning strike conditions, since
the heating rate under lightning strike conditions can reach ∼1010 ◦C/min. Many
experimental evidences (Feih and Mouritz 2012; Negarestani et al. 2010; Ogasawara
et al. 2002) have shown that the mass loss under high heating rate is much lower
than that under low heating rate when temperature rises to the same magnitude.
Therefore, under lightning strike conditions, it is expected that the mass loss rate
is significantly lower than the mass loss rates obtained in those traditional TGA
tests. To the author’s knowledge, TGA experimental tests under lightning strike
conditions have not been reported. The author hereby suggests the experimentalists
to develop techniques to enable future TGA tests with the capability of applying
extreme high heating rates or to develop alternative experimental tests.

In addition to the difficulties in determining the density variations during
the lightning strike heating process, the accurate determination of the material
parameters (i.e., directional thermal/electric conductivity, specific heat) from room
temperature to the sublimation temperature of the glass/carbon fiber is still quite a
challenging task to date.

5.3.2 Thermal Ablation

The ablation mechanism of the fiber-reinforced polymer-matrix composite material
(i.e., the material used for wind turbine blades) due to lightning strike is extremely
complicated and is still not well understood to date. One should not confuse
lightning strike-induced ablation with pulsed laser ablations, although both of them
induce rapid heating in the solid materials. The particle composition of lightning
arc and the laser beam is quite different (i.e., photons for laser and electrons
for lightning arc). Furthermore, materials (e.g., copper, aluminum) are reported
to experience phase explosions if subjected to high fluence pulsed laser beam
injection (Bulgakova and Bulgakov 2001; Gragossian et al. 2009; Wang et al. 2017).
However, phase explosion has never been reported in the literature on lightning
strike damage investigations.
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The ablation mechanisms of the composite materials are strongly related to the
phase transition of the material. For non-conductive GFRP composite materials,
the mass loss comes from the decomposition of the resin (300 ◦C ∼ 800 ◦C) and
the rapid vaporization of the melted glass fiber (∼1100 ◦C) (Dec et al. 2012).
For electrically conductive CFRP composites, the ablation mechanism is more
complicated. Under elevated temperatures, resin decomposes; meanwhile, carbon
atoms in the carbon fibers react with gas species O, C, and H in the air which
leads to a rapid mass loss. These reactions include oxidation, nitridation, and
sublimation. It appears that the most significant mass loss of CFRP composites is
attributed to the sublimation reaction, since the mass loss rates due to oxidation and
nitridation reactions are normally much lower. Further experimental investigations
are needed to provide more insights into the effects of these reactions on the total
mass loss of the composite materials under lightning strike conditions. In addition to
these surface-gas reactions, the flow of electric current inside the CFRP composite
structure also leads to the generation of internal Joule heating and may lead to
additional volumetric mass loss.

5.3.3 Delamination

Delamination is also another commonly reported damage form of the wind tur-
bine blades after lightning strikes. Existing lightning strike experimental studies
(Feraboli and Kawakami 2010; Feraboli and Miller 2009; Hirano et al, 2010; Li
et al. 2015) examined the damage in the composite material specimens subjected
to the artificial pulsed lightning current (components A or D of the standard
lightning current waveform (MIL-464-A 1997), see Fig. 5.1) and have identified that
delamination (i.e., interlaminar damage) is the most significant damage. Ogasawara
et al. (2010) was the first to predict the lightning strike delamination in CFRP
composites with a coupled electric-thermal FEA. The material area where the
temperature is above the resin decomposition threshold temperature (∼300 ◦C) was
assumed to be the delamination area. However, no actual continuum delamination
modeling was accomplished. In addition, the lightning strike-induced shockwave
pressure (i.e., acoustic and magnetic), which is the primary cause of delamination,
was not taken into account in this model. Muñoz et al. (2014) predicted the stress-
induced damage of a CFRP composite panel under the action of the electromagnetic
and acoustic pressure. However, continuum delamination was also not captured.
Recently, a more sophisticated model was proposed by P. Naghipour et al. (2016),
which enabled us to capture the continuum lightning strike delamination using the
cohesive zone approach with FEA. In this section, the cohesive zone approach for
modeling delamination is briefly reviewed and discussed.

The cohesive zone approach lends itself naturally to the modeling of continuum
delamination in laminated composite structures. To use the approach, the laminated
composite structure is typically modeled at the ply level, which means the laminate
plies are modeled as individual elastic, homogenous transversely isotropic plies, and
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the interface of the plies (i.e., resin layers) is modeled with interface elements (i.e.,
cohesive elements in ABAQUS) with zero thickness.

The damage initiation criterion of the cohesive element used in Naghipour et al.
(2016) is the quadratic interfacial traction interaction criterion:

(
τn

τ 0
n (T )

)2

+
(

τs

τ 0
s (T )

)2

+
(

τt

τ 0
t (T )

)2

= 1, (5.18)

where τ is the interfacial traction, τ 0 is the temperature-dependent interfacial elastic
traction limits, and subscripts n, s, and t denote the normal direction and two
shear directions, respectively. The interfacial traction τ can be calculated using the
interfacial constitutive relationship:

τ = Dδ, (5.19)

where δ is the relative displacement between the upper and bottom nodes of each
cohesive element and D is the interfacial constitutive secant tensor (Naghipour et al.
2011).

At each time increment, the interfacial traction τ is calculated using Eq. (5.19)
and is plugged into Eq. (5.18) to check whether damage is initiated. If damage
is initiated (δ0

m is the relative displacement corresponding to damage initiation in
Fig. 5.21), the propagation of the damage follows the Benzeggagh and Kenane
(B-K) criterion:

GIC(T )+ (GIIC(T )−GIC(T ))
(

m2

1 +m2

)η
= GC(T ), (5.20)

where GIC(T) and GIIC(T) are the temperature-dependent fracture toughness values
for mode I and mode II, respectively; m is the mode mixty (Naghipour et al. 2011);
and η is a parameter related to the shape of the failure locus in the mixed mode
plane.

Fig. 5.21 Schematic of
mixed mode traction
separation law for cohesive
elements

τ

Traction

δn

δs

GC
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The implementation of the cohesive zone approach can be achieved in commer-
cial FEA software, such as ABAQUS using the build-in cohesive elements. The
parameters of the damage initiation Eq. (5.18) and propagation Eq. (5.20) criterions
of the cohesive elements can be defined in the ABAQUS input file. Meanwhile,
ABAQUS allows the cohesive elements to be progressively deleted when the final
separation point (δfm in Fig. 5.21) is reached; as such, the continuum delamination
of the laminated composite structure can be captured.

5.4 Conclusions and Future Recommendations

5.4.1 Conclusions

In this chapter, the basic physics of lightning strike and the interaction between
the lightning strike and the wind turbine are discussed. The key mechanisms
of the lightning strike damage on the wind turbine blades and the commonly
used lightning strike protections are introduced. In addition, the mechanisms of
lightning current conduction through the non-conductive GFRP composite wind
turbine blade are discussed. Furthermore, the analytical and finite element methods
of predicting the lightning strike-induced electric field in the vicinity of a wind
turbine are demonstrated. The predicted electric fields are used to compare with
the dielectric breakdown strength of the GFRP composite wind turbine blade to
estimate the conservativeness of the blade design against lightning strike dielectric
breakdown. Moreover, other forms of lightning damage for wind turbine blades
are introduced including the thermal ablation and delamination. The corresponding
damage mechanisms and their mathematical formulations have been presented.

5.4.2 Future Recommendations

For future study on the lightning strike analysis of wind turbines, there is a need
to incorporate the effects of dynamic propagation of the lightning stepped leader
into the analysis of the lightning strike-induced electric fields, such that a more
accurate estimation of dielectric breakdown in the composite wind turbine blades
can be achieved. In addition, there is a need to develop improved lightning thermal
and damage models that include the accurate determination of the temperature-
dependent thermophysical properties and the mass loss rate of the composite
materials under lightning strike conditions, as well as the proper treatment for
material phase transitions during the numerical implementation. Furthermore, it
should be mentioned that the current lightning damage models in the literature
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restrict their analyses to a single type of lightning damage. However, in practical
situations, the three lightning damage mechanisms (i.e., ablation, delamination, and
dielectric breakdown) may occur at the same time. Hence, the challenge for future
research is to develop a fully coupled damage model that concurrently performs all
of the three lightning damage analyses.
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Chapter 6
Advanced Wind Turbine Dynamics

Qi Wang

6.1 Efficient High-Fidelity Modeling of Wind Turbine Blade

Beam models are widely used to represent and analyze engineering structures that
have one dimension that is much larger than the other two. Many engineering
components can be idealized as beams: structural members of buildings and
bridges in civil engineering, joists and lever arms in heavy-machine industries, and
helicopter rotor blades. The blades, tower, and shaft in a wind turbine system can be
analyzed as beams. In the weight-critical applications of beam structures, like high-
aspect-ratio wings in aerospace and wind energy applications, composite materials
are attractive due to their superior strength-to-weight and stiffness-to-weight ratios.
However, analysis of composite-material structures is more difficult than their
isotropic counterparts due to elastic coupling effects. Furthermore, wind turbine
blades are further complicated by their high flexibility and initial twist/curvatures,
which must be treated in the underlying analysis. The geometrically exact beam
theory (GEBT) first proposed by Reissner (1973) is a method that has proven
powerful for analysis of highly flexible composite beams in the helicopter engi-
neering community. During the past several decades, much effort has been invested
in GEBT. Simo (1985) and Simo and Vu-Quoc (1986) extended Reissner’s work
to deal with 3-D dynamic problems. Jelenić and Crisfield (1999) implemented
GEBT using the finite-element method in which a new approach for interpolating
the rotation field was proposed that preserves the geometric exactness. Betsch
and Steinmann (2002) circumvented the interpolation of rotation by introducing
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a re-parameterization of the weak form corresponding to the equations of motion
of GEBT. Ibrahimbegović (1995) implemented GEBT for static analysis, and
Ibrahimbegović and Mikdad (1998) implemented GEBT for dynamic analysis. In
contrast to the displacement-based implementations, Hodges (1990) proposed a
discretization of the GEBT model with mixed finite elements in which both the
primary and dual fields are independently interpolated (Cook et al. 2001). In the
mixed formulation, all of the necessary ingredients, including Hamilton’s principle
and kinematic equations, are combined in a single variational formulation statement.
Lagrange multipliers, motion variables, generalized strains, forces and moments,
linear and angular momenta, and displacement and rotation variables are considered
as independent quantities. Yu and Blair (2012) and Wang et al. (2013) recently
presented the implementation of GEBT in a mixed formulation in which various
rotation parameters were investigated.

6.2 Geometrically Exact Beam Theory

Figure 6.1 Hodges (1990, 2006) shows a beam in its undeformed and deformed
states. A reference frame bi is introduced along the beam axis for the undeformed
state; a frame Bi is introduced along each point of the deformed beam axis.
Curvilinear coordinate x1 defines the intrinsic parameterization of the reference
line. In this section, we use matrix notation to denote vectorial or vectorial-like

B 1

B 2

B 3

Deformed State

Undeformed State

r

R

R

s

r
u

x1

b 1

b 2

b 3

R ˆ

r ˆ 

Fig. 6.1 Schematic of the beam in undeformed and deformed states with associated variables
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quantities. For example, we use an underline to denote a vector, e.g., u, a bar to
denote unit vector, e.g., n̄, and double underline to denote a tensor, e.g.,. Note that
sometimes the underlines only denote the dimension of the corresponding matrix.
The governing equations of motion for geometric exact beam theory can be written
as (Bauchau 2010)

ḣ− F ′ = f (6.1)

ġ + ˙̃uh−M ′ − (x̃′
0 + ũ′)F = m (6.2)

where h and g are the linear and angular momenta resolved in the inertial coordinate
system, respectively, F and M are the beam’s sectional forces and moments,
respectively, u is the one-dimensional displacement of the reference line, x0 is
the initial position vector of a point along the beam’s reference line, and f and
m are the distributed force and moment applied to the beam structure, respectively.
Notation (·)′ indicates a derivative with respect to the beam axis x1, and ˙(·) indicates
a derivative with respect to time. The tilde operator (̃·) defines a second-order, skew-
symmetric tensor corresponding to the given vector. In the literature, it is also termed
as “cross-product matrix.” For example,

ñ =
⎡

⎣
0 −n3 n2

n3 0 −n1

−n2 n1 0

⎤

⎦ (6.3)

The constitutive equations relate the velocities to the momenta and the one-
dimensional strain measures to the sectional resultants as

{
h

g

}
= M

{
u̇

ω

}
(6.4)

{
F

M

}
= C

{
ε

κ

}
(6.5)

where M and C are the 6 × 6 sectional mass and stiffness matrices, respectively
(note that they are not tensors), and ε and κ are the one-dimensional strains and
curvatures, respectively. ω is the angular velocity vector that is defined by the
rotation tensor R as ω = axial(Ṙ R). For a displacement-based finite-element
implementation, there are six degrees of freedom at each node: three displacement
components and three rotation components. Here we use q to denote the elemental

displacement array as q =
[
uT pT

]
, where u is the one-dimensional displacement

and p is the rotation parameter vector. The acceleration array can thus be defined as

a = [
üT ω̇T

]
. For nonlinear finite-element analysis, the discretized and incremental

forms of displacement, velocity, and acceleration are written as
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q(x1) = N q̂ qT =
[
uT pT

]
(6.6)

v(x1) = N v̂ vT =
[
u̇T ωT

]
(6.7)

a(x1) = N â aT =
[
üT ω̇T

]
(6.8)

where N is the shape function matrix and (·̂) denotes a column matrix of nodal val-
ues. The governing equations for beams are highly nonlinear so that a linearization
process is needed. According to Bauchau (2010), the linearized governing equations
in Eqs. (6.1) and (6.2) are in the form of

M̂â + Ĝv̂ + K̂q̂ = F̂
ext − F̂ (6.9)

where M̂ , Ĝ, and K̂ are the elemental mass, gyroscopic, and stiffness matrices,

respectively, and F̂ and F̂
ext

are the elemental forces and externally applied loads,
respectively. They are defined as follows

M̂ =
∫ l

0
NTM Ndx1 (6.10)

Ĝ =
∫ l

0
NT G I Ndx1 (6.11)

K̂ =
∫ l

0

[
NT (K I + Q) N +NTP N ′ +N ′TC N ′ +N ′TO N

]
dx1 (6.12)

F̂ =
∫ l

0
(NTF I +NTFD +N ′TFC)dx1 (6.13)

F̂
ext =

∫ l

0
NTF ext dx1 (6.14)

The new matrix notations in Eqs. (6.10), (6.11), (6.12), (6.13), and (6.14) are briefly
introduced here. M is the sectional mass matrix resolved in inertial system, FC

and FD are elastic forces obtained from Eqs. (6.1), and (6.2) as

FC =
{
F

M

}
= C

{
ε

κ

}
(6.15)

FD =
[

0 0

(x̃′
0 + ũ′)T 0

]
FC ≡ ϒ FC (6.16)

where 0 denotes a 3 × 3 null matrix. G I , K I , O , P , Q, and F I in Eqs. (6.11),
(6.12), and (6.13) are defined as
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G I =
[

0 (ω̃mη)T + ω̃mη̃T
0 ω̃! − !̃ω

]
(6.17)

K I =
[

0 ˙̃ωmη̃T + ω̃ω̃mη̃T
0 ¨̃umη̃ + ! ˙̃ω − !̃ω̇ + ω̃!ω̃ − ω̃!̃ω

]
(6.18)

O =
[

0 C
11
Ẽ1 − F̃

0 C
21
Ẽ1 − M̃

]
(6.19)

P =
[

0 0

F̃ + (C
11
Ẽ1)

T (C
21
Ẽ1)

T

]
(6.20)

Q = ϒ O (6.21)

F I =
{
mü+ ( ˙̃ω + ω̃ω̃)mη
mη̃ü+ !ω̇ + ω̃!ω

}
(6.22)

where m is the mass density per unit length, η is the location of the sectional center
of mass, ! is the moment of inertia tensor per unit length, and the following notations

were introduced to simplify the writing of the above expressions:

E1 = x′
0 + u′ (6.23)

C =
[
C

11
C

12
C

21
C

22

]
(6.24)

A viscous damping term is also implemented to account for the structural damping.
The damping force is defined as

f
d

= μ C

{
ε̇

κ̇

}
(6.25)

where μ is a user-provided damping-coefficient diagonal matrix. The damping force

can be recast in two separate parts, like FC and FD in the elastic force, as

FC
d =

{
Fd
Md

}
(6.26)

FD
d =

{
0

(x̃′
0 + ũ′)T F d

}
(6.27)

More details on the derivation and linearization of governing equations of geomet-
rically exact beam theory can be found in Bauchau (2010).
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6.3 Numerical Implementation

6.3.1 Wiener-Milenković Rotation Parameters

The 3-D rotations in BeamDyn are represented as Wiener-Milenković parameters
(Wang et al. 2013; Bauchau et al. 2008), which are defined as

p = 4 tan

(
φ

4

)
n̄ (6.28)

where φ is the rotation angle and n̄ is the unit vector of the rotation axis. It can
be observed that the valid range for this parameter is |φ| < 2π . The singularities
existing at integer multiples of ±2π can be removed by a rescaling operation at π ,
as given in Bauchau et al. (2008):

r =
{

4(q0p + p0q + p̃q)/(1 +2), if2 ≥ 0

−4(q0p + p0q + p̃q)/(1 −2), if2 < 0
(6.29)

where p, q, and r are the vectorial parameterization of three finite rotations such that

R(r) = R(p)R(q), p0 = 2−pT p/8, q0 = 2−qT q/8,1 = (4−p0)(4−q0), and

2 = p0q0−pT q. It is noted that the rescaling operation could cause a discontinuity
of the interpolated rotation field. Therefore, a more robust interpolation algorithm is
introduced where the rescaling-independent relative-rotation field is interpolated.

The displacement fields in an element are approximated as

u(ξ) =
p+1∑

k=1

hk(ξ)û
k (6.30)

u′(ξ) =
p+1∑

k=1

hk′(ξ)ûk (6.31)

where hk(ξ), a component of shape function matrix N , is the pth-order-polynomial

Lagrangian-interpolant shape function of node k, k = {1, 2, . . . , p + 1}, ûk is
the kth nodal value, and ξ ∈ [−1, 1] is the element natural coordinate. However,
as discussed in Bauchau et al. (2008), the 3-D rotation field cannot simply be
interpolated as the displacement field in the form of

c(ξ) =
p+1∑

k=1

hk(ξ)ĉ
k (6.32)

c′(ξ) =
p+1∑

k=1

hk′(ξ)ĉk (6.33)
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where c is the rotation field in an element and ĉk is the nodal value at the kth node,
for three reasons: (1) rotations do not form a linear space so that they must be
“composed” rather than added, (2) a rescaling operation is needed to eliminate the
singularity existing in the vectorial rotation parameters, and (3) the rotation field
lacks objectivity, which, as defined by Jelenić and Crisfield (1999), refers to the
invariance of strain measures computed through interpolation to the addition of
a rigid-body motion. Therefore, we adopt the more robust interpolation approach
proposed by Jelenić and Crisfield (1999) to deal with the finite rotations. Our
approach is described as follows.

Step 1: Compute the nodal relative rotations, r̂k , by removing the reference
rotation, ĉ1, from the finite rotation at each node, r̂k = (ĉ

1−
) ⊕ ĉ

k . Note that
the minus sign on ĉ1 denotes that the relative rotation is calculated by removing
the reference rotation from each node. The composition in that equation is an
equivalent of R(r̂k) = RT (ĉ

1
) R(ck).

Step 2: Interpolate the relative-rotation field: r(ξ) = hk(ξ)r̂
k and r ′(ξ) =

hk′(ξ)r̂k . Find the curvature field κ(ξ) = R(ĉ
1
)H(r)r ′, where H is the tangent

tensor that relates the curvature vector k and rotation vector p as

k = H p′ (6.34)

Step 3: Restore the rigid-body rotation removed in Step 1: c(ξ) = ĉ
1 ⊕ r(ξ).

Note that the relative-rotation field can be computed with respect to any of the nodes
of the element; we choose node 1 as the reference node for convenience. For the
Wiener-Milenković rotation parameter, the tangent vector H is defined as

H(c) = 2

(4 − c0)2

[
c0 + c̃ + 1

4
ccT

]
(6.35)

where

c0 = 2 − 1

8
cT c (6.36)

6.3.2 Legendre Spectral Finite Elements

In the LSFE approach, shape functions (i.e., those composing N ) are pth-order
Lagrangian interpolants, where nodes are located at the p + 1 GLL points in the
[−1, 1] element natural-coordinate domain. Figure 6.2 shows representative LSFE
basis functions for fourth- and eighth-order elements. Note that nodes are clustered
near element end points.
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Fig. 6.2 Representative p + 1 Lagrangian-interpolant shape functions in the element natural
coordinates for (a) fourth- and (b) eighth-order LSFEs, where nodes are located at the Gauss-
Lobatto-Legendre points

6.3.3 Numerical Integration

Numerical integration (quadrature) of the finite-element inner products over an
element domain is required in the FE formulation. Typically, the quadrature rule
employed in a finite-element implementation is Gauss-Legendre, for which the
number of quadrature points is chosen based on the polynomial order of the
underlying FE basis functions. In the case in which material properties or applied
loads vary significantly over an element domain, the accuracy of the quadrature is
degraded, which can affect the overall accuracy of the solution. If the number of
quadrature points is fixed to the FE basis-function order, accuracy is increased by
either increasing the number of elements (h-refinement) or the order of the elements
(p-refinement). However, if the quadrature order is chosen for accurate evaluation of
FE inner products, then the choice in FE resolution can be based on overall solution
accuracy.

For wind turbine blade analysis, material sectional properties are defined dis-
cretely at ns stations along the beam axis. BeamDyn is equipped with two
quadrature options: Gauss-Legendre quadrature and trapezoidal-rule quadrature,
where the latter is only enabled when the blade is represented as a single element.
For Gauss-Legendre quadrature, BeamDyn requires that nq = p + 1, where nq is
the number of quadrature points and p is the order of the LSFE. Material properties
are linearly interpolated to quadrature-point locations from the nearest stations. For
a modern wind turbine blade, the number of material stations can be large. Further,
the values of those material properties can vary dramatically from station to station.
As such, an increase in the element order p could instigate a dramatically different
solution, because the quadrature points may capture different material properties.

For trapezoidal-rule quadrature, BeamDyn requires that the number of quadra-
ture points be tied to the number of material stations and that, at a minimum, there
is a quadrature point associated with each station; additional quadrature points



6 Advanced Wind Turbine Dynamics 183

(if desired) are equally distributed between those stations. Under this structure,
nq = ns+ (ns −1)× (j −1) = (ns−1)×j +1, where j is a positive integer that is
user specified. Trapezoidal-rule quadrature enables a user to model a modern turbine
blade defined by many cross-sectional property stations with few node points (i.e.,
p � ns) while capturing all of the provided material properties. For example, the
widely used NREL 5-MW reference wind turbine (Jonkman et al. 2009) blade is
defined by 49 stations along the blade axis. If one were using first-order FEs with
a fixed quadrature scheme, at least 48 elements would be required to accurately
capture the material data in the FE inner products. BeamDyn, with the GEBT model
and LSFE p-type discretization, is equipped to model a wind turbine blade with a
single element. LSFE discretization with trapezoidal-rule quadrature is an effective
modeling approach when the beam deformation can be described accurately with
relatively few FE nodes, despite the large number of material-property stations.
However, for a given element order and nq � p, solutions will be more expensive
than if nq ≈ p because inner products are evaluated at least once per time step.

6.3.4 Time Integration and Nonlinear-Solution-Stopping
Criterion

BeamDyn time integration is performed using the generalized-α scheme, which
is an unconditionally stable (for linear systems), second-order accurate algorithm.
The scheme allows for users to choose integration parameters that introduce high-
frequency numerical dissipation. More details regarding the generalized-α method
can be found in Bauchau (2010) and Chung and Hulbert (1993). Generalized-α
time integration of the system defined by Eqs. (6.1) and (6.2) (with linearized form
in Eq. (6.9)) requires a nonlinear system solve at each time step.

The nonlinear system solve is accomplished with the Newton-Raphson method,
for which an energy-like stopping criterion has been chosen, which is calculated as

‖U(i)T
(

Rt+t − Ft+t (i−1)
)

‖ ≤ ‖εE
(
U(1)T

(
Rt+t − Ft

)) ‖ (6.37)

where ‖ · ‖ denotes the Euclidean norm, U is the incremental displacement
vector, R is the vector of externally applied nodal point loads, F is the vector of
nodal point forces corresponding to the internal element stresses, and εE is the
preset energy tolerance. The superscript on the left side of a variable denotes the
time value (in a dynamic analysis), whereas the one on the right side denotes the
Newton-Raphson iteration number. As pointed out by Bathe and Cimento (1980),
this criterion provides a measure of when the displacements and forces are near their
equilibrium values.
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6.4 Numerical Example: NREL 5-MW Wind Turbine

This example is an analysis of the NREL 5-MW reference wind turbine (Jonkman
et al. 2009), which has straight, 61.5 m blades. We examine simulation results
wherein the blades are modeled by BeamDyn or ElastoDyn. The blade structural-
dynamics model in the ElastoDyn module of FAST can well be applied to
straight isotropic blades dominated by bending. The ElastoDyn model includes
two flapwise-bending deformation modes and one edgewise-bending deformation
mode, coupled through a structural pre-twist, but neglects axial, shear, and torsional
degrees of freedom as well as mass and elastic offsets from the pitch axis.
Several geometric and kinematic nonlinearities are accounted for, including radial
shortening and centrifugal, Coriolis, and gyroscopic loading.

We examine here the numerical performance of two different BeamDyn quadra-
ture methods, Gauss-Legendre and trapezoidal rule, for this realistic-blade analysis.
As described above, the sectional properties for the NREL 5-MW reference turbine
blade are defined at 49 evenly spaced stations along its 61.5 m length. First, a
cantilevered blade under a uniformly distributed static force of magnitude 104 N/m
along the flap direction is analyzed. Figure 6.3 shows the tip displacement in the
flap direction as a function of the number of nodes. Monotonic convergence of
tip displacement is shown for the trapezoidal-quadrature results with an increasing
number of nodes. The convergence rate of tip displacements for Gauss-Legendre
quadrature, however, is non-monotonic. As described in sect. 6.3.3, the trapezoidal-
rule quadrature captures all 49 material-data stations regardless of the number
of element nodes, whereas the particular material data incorporated by Gauss-
Legendre quadrature varies with the number of element nodes. The advantage of
trapezoidal-rule quadrature is also demonstrated in the calculation of total blade
mass as shown in Fig. 6.4. The total blade mass as calculated with trapezoidal-rule
quadrature is independent of the number of nodes, whereas the mass calculated by
Gauss-Legendre quadrature depends on the number of nodes in the element, and a
large number of nodes are required for an accurate total-mass calculation. We note
that a small scaling factor has been applied to the calculation of blade mass with
ElastoDyn and BeamDyn to ensure each is consistent with the target total mass. In
all subsequent calculations with BeamDyn, trapezoidal-rule quadrature is employed.

Next, we studied the time step sizes required for stable simulation of BeamDyn
in stand-alone and coupled-to-FAST configurations. Figure 6.5 shows the maximum
time step size versus the number of nodes for a BeamDyn model composed of a
single element. In the stand-alone configuration, we used FAST as the driver but
with all coupling options disabled so that the blade rotated at a fixed speed loaded
only by gravity. For the coupled-to-FAST case, we conducted an aero-servo-elastic
wind turbine analysis under a mean wind speed of 12 m/s with turbulence, which
is certification test case #26 in the FAST archive (Jonkman and Jonkman 2016).
BeamDyn numerical damping was disabled, and there were no correction iterations
in the coupling algorithm. We see that the two-way coupling between BeamDyn and
FAST requires significantly smaller time increments for stable solutions.
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Fig. 6.3 Tip deflections of a cantilevered NREL 5-MW blade under a uniformly distributed load
as a function of the number of nodes in a single-element BeamDyn model where finite-element
inner products were calculated with Gauss-Legendre or trapezoidal-rule quadrature
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Fig. 6.4 Total blade mass of an NREL 5-MW reference blade as a function of the number of
nodes in a single-element BeamDyn model where finite-element inner products were calculated
with Gauss-Legendre or trapezoidal-rule quadrature
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Fig. 6.5 Maximum stable time increments vs. number of FE nodes for an NREL 5-MW blade,
wherein the blade is modeled with a single element

Finally, we studied the performance of BeamDyn in the coupled FAST analysis.
Figures 6.6 and 6.7 show the tip flap displacement histories under different time
and space discretizations. Note that all of the quantities studied here are defined
in the body-attached blade reference coordinate system following the International
Electrotechnical Commission standard, where the X direction is toward the suction
side of the airfoil, the Y direction is toward the trailing edge, and the Z direction is
toward the blade tip from the root. These results demonstrate that, for this system,
results that are grid independent (in space and time) can be obtained with t =
2 × 10−3 s and a single fifth-order element for each blade.

We compared the results obtained by BeamDyn with those obtained by Elas-
toDyn for the coupled analysis (as described earlier). The BeamDyn blades were
each modeled with a single fifth-order element (six nodes), and the FAST-BeamDyn
system was time integrated witht = 2×10−3 s, which was required for numerical
stability. The FAST-ElastoDyn system was time integrated witht = 1.25×10−2 s.
The tip displacements of blade 1 are shown in Fig. 6.8. Results for BeamDyn are
shown with and without off-diagonal terms in the sectional mass matrices (the latter
is for more direct comparison to ElastoDyn). Good agreement can be observed
between the ElastoDyn and BeamDyn results. We note that, because of the trapeze
effect and elastic stretching considered in BeamDyn, the mean value of the axial tip
displacement calculated by BeamDyn is different than that calculated by ElastoDyn.
Figures 6.9 and 6.10 show the root reaction forces and moments, respectively,
calculated by BeamDyn and ElastoDyn. Again, good agreement is shown. We note
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Fig. 6.6 Blade tip deflection histories along flap direction obtained using different time incre-
ments, wherein the blade is modeled with a single fifth-order element
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Fig. 6.7 Blade tip deflection histories along flap direction obtained using different BeamDyn
refinements, wherein models were time integrated with t = 2 × 10−3 s

the spurious spikes in the Mpitch histories, which will be addressed in a future
release of BeamDyn. Although we see noticeable differences in the tip displacement
histories, it is interesting to note the excellent agreement between ElastoDyn and
BeamDyn results for root reaction forces and moments. This is because the NREL
5-MW blade features are well modeled by the approximations behind the ElastoDyn
model. In particular, ElastoDyn is well suited for modeling the NREL 5-MW blade
because:

• the blade is naturally straight,
• the lowest modes excited by wind are dominated by bending,
• there are no cross-sectional couplings induced by anisotropic composite laminate

layups,
• torsion, extension, and shear effects are mostly negligible (the first torsional

mode natural frequency is well above rated rotor speed; the blade aspect ratio
is high; and so on),

• the deflections are small enough that they can be accurately captured by the
geometric nonlinear terms included in ElastoDyn, and

• the mass-center offsets are small and do not cause a large change in response.
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The benefits of moving from an efficient lower-fidelity model like ElastoDyn to a
more computationally expensive higher-fidelity model like BeamDyn will be best
seen for turbine blades that do not satisfy the above simplifying features, e.g., those
with aeroelastically tailored curved blades. For example, Guntur et al. (2016) exam-
ined the simulated and field-measured responses of a Siemens 2.3 MW turbine with
a 108 m rotor for 1,141 cases with various wind speeds and turbulence intensities.
The Siemens turbine had flexible aeroelastically tailored blades with bend-twist
coupling. Simulations were performed with the blades modeled in both BeamDyn
and ElastoDyn. The BeamDyn models gave results that agreed significantly better,
and in some cases dramatically better, with the field measurements for nearly all
quantities investigated.
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Chapter 7
Advanced Health Condition Monitoring
of Wind Turbines

Wenxian Yang, Kexiang Wei, Zhike Peng, and Weifei Hu

7.1 Introduction

Modern maintenance strategies can be broadly classified into corrective mainte-
nance, preventive maintenance, and condition-based maintenance (Dhillon 2002):

• Corrective maintenance, also known as run to failure maintenance, is performed
only when the machine has totally failed. It is recognized as the least effective
maintenance strategy as it is often associated with high maintenance cost due to
sudden failure, long downtime, and even catastrophic consequence in the worst
case.

• Preventive maintenance, also known as periodic maintenance, is carried out on
a regular basis. This strategy can help the operator to avoid catastrophic failure
of machinery and reduce failure rate. But in the meantime, it also could lead to
unnecessary maintenance actions as it is performed regardless of the actual health
condition of the machine and thereby increase the overall operating cost;
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• Condition-based maintenance, as the name suggests, is performed based on the
actual health condition of machinery. It allows early detection of an impending
failure and facilitates the implementation of timely maintenance thus avoiding
total machinery breakdown and unnecessary maintenance actions. All these
merits can help the operator to reduce the overall O&M costs. However, such
kind of maintenance strategy involves high up-front cost, and, particularly, the
success of it highly depends on the application of appropriate CM techniques
and the accuracy of signal processing.

In contrast to the health monitoring of those machines that operate under constant
operational and loading conditions (e.g., steam turbines in coal fire and nuclear
power plants, compressors in chemical and oil refinery factories), the CM of WTs
is more challenging due to the following issues:

1. Non-stationary property of CM signals. Due to the inconsistent wind, WTs are
subjected to constantly varying loads over time. As a consequence, the CM
signals collected from WTs are usually non-stationary. As the energy of the WT
CM signals varies in a large dynamic range, it is difficult to achieve a reliable
assessment via simply performing comparison with those thresholds depicted in
the currently available international standards, e.g., ISO 10816 and ISO 2372.
(Yang and Court 2013);

2. Contradiction of the efficiency and accuracy of signal processing. Attributed
to the efficient computing algorithm, the fast Fourier transform (FFT) and its
extension forms (e.g., envelope analysis (Hatch 2004)) are being widely used
in present WT CM systems. However, it is difficult to observe the degradation
of WT condition as the tradition signal analysis in frequency domain does
not render the degradation trend in time domain. By contrast, time-frequency
analysis (e.g., wavelet transform (Torrence and Compo (1998)) is more ideal
for analyzing such kind of signals as it presents the information of the signals
in both time and frequency domains. However, the conventional time-frequency
analyses, for example, the continuous wavelet transform, often involve complex
calculations and therefore are not suited to online use (Ferguson and Catterson
2014).

3. Limited CM capability of vibration analysis. Currently, the majority of commer-
cial WT CM systems are vibration analysis systems. They are good at detecting
faults occurring in mechanical components, such as main shaft, bearing, and
gearbox. However, a WT comprises both mechanical and electrical components.
Moreover, recent research has shown that online or periodic monitoring of WT
electrical components is equally important because WT electrical components
are more prone to failure than their mechanical counterparts (Ribrant and
Bertling 2007; Tavner et al. 2007). But these electrical component faults can
hardly be detected by the approach of vibration analysis because the faulty
features of an electrical fault are significantly attenuated in vibration signals.

4. Limited applicability of commercially available WT CM systems. Commercially
available WT CM systems are originated from other industries and adapted later
on for monitoring geared WTs. Their capabilities have not been fully investigated
in monitoring gear-less WTs. A survey collected in Germany and Denmark
reveals that the gear-less direct-drive WTs show higher failure rate than geared
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Table 7.1 Fault-related characteristic frequencies of rolling-element bearings (Tavner et al. 2008)

Type of fault Characteristic frequency (Hz) Notes

Inner race fault 1
2
r

60n
(
1 + d

D
cosα

)
d−ball diameter

Outer race fault 1
2
r

60n
(
1 − d

D
cosα

)
D−pitch diameter

Cage fault 1
2
r

60

(
1 − d

D
cosα

)
n−number of balls

Rolling-element fault 1
2
r

60
D
d

(
1 − (

d
D

)2
cos2α

)
α−contact angle

r−revolution per minute

WTs do (Tavner et al. 2006; Qiao and Lu 2015). This requests a more advanced
CM technique that can be widely applicable to monitor both concepts of WTs.

In view of these issues, the wind industry requests more advanced strategies and
signal processing techniques, which are:

• Applicable to the CM of various concepts of WTs
• Efficient in calculation and thereby applicable to real-time or online WT CM
• Accurate in extracting fault feature from non-stationary WT CM signals
• Capable to detect both mechanical and electrical faults occurring in WTs

The purpose of this chapter is to introduce a newly developed WT CM strategy
and the associated signal processing method that can well meet the need of the
aforementioned requests. The long-term CM practice (Basak et al. 2006; Li et al.
2010) has shown that fault-related frequency components will appear in the CM
signal once an electrical or mechanical fault occurs in a machine. This suggests that
the health condition of a WT can be assessed by monitoring the tendencies of the
signal energy at these fault-related frequencies. For example, the health condition of
a rolling-element bearing and an induction generator can be evaluated by monitoring
the variation of the energy at the characteristic frequencies listed in Tables 7.1 and
7.2, respectively.

In order to extract the distinguished signatures at the fault-related frequencies, an
energy tracking technique based on wavelet analysis, namely, wavelet-transform-
based energy tracking technique (WETT), is proposed here. Before introducing the
energy tracking technique, the ideal signals for the energy tracking technique will
be discussed first because they are critical for developing a widely applicable WT
CM strategy.

7.2 Signals for Globally Monitoring Entire Wind
Turbine Drivetrain

In the current WT CM practice, the CM of WT drivetrain is accomplished via a
number of transducers that are installed on different drivetrain components, such as
main bearing, gearbox, and generator (Yang et al. 2014). However, it is recognized
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Table 7.2 Fault-related characteristic frequencies in the power signal of electrical machines
(Tavner et al. 2008)

Type of fault Root cause of fault
Angular frequency of
power signal (rad/s)

Mechanical faults Oil whirl and whip in sleeve bearings ωse

[
1 + 0.43∼0.48

p

]

Unbalanced mass on rotor of a synchronous
machine

ωse

[
1 + 1

p

]

Dynamic eccentricity in a synchronous
machine

ωse

[
1 + 2

p

]

Dynamic displacement of shaft in bearing
housing of a synchronous machine

ωse

[
1 + 1

p
+ 2

p
+ · · ·

]

Static misalignment of rotor shaft in a
synchronous machine

ωse

[
1 + 1

p
+ 2

p
+ · · ·

]

Static and dynamic eccentricity in induction
machine

ωse

[
1 + ke 1−s

p
± k

]

Electrical faults Broken rotor bar in induction machine 2nsωse
p

, 2n(1−s)ωse
p

Stator winding faults in a synchronous
machine

ωse, 3ωse

Note: ωse is stator side electrical angular frequency, s indicates asynchronous machine rotor
speed slip, p stands for integer pole pair number, n is a positive integer number, ke represents
eccentricity order (ke = 0 for static eccentricity and ke = 1, 2, 3, · · · for dynamic eccentricity);
and k = 1,3,5,7, . . . denotes integer stator winding magnetic motive force (MMF) space harmonic
number

that the CM signal collected from each individual drivetrain component cannot
provide a global view of the health condition of the entire WT drivetrain system.
This means that the realization of the overall assessment of the entire WT drivetrain
system has to rely on the processing and interpretation of CM signals collected
from various drivetrain components. Inevitably, this will make the WT CM system
complex in hardware configuration, expensive in capital cost, and inefficient in data
processing. Therefore, it is necessary to develop a new CM strategy to mitigate these
issues.

In essence, a WT is a device which converts wind energy to electrical power via
its drivetrain system. In the energy conversion process, part of energy is consumed
and exhibited in thermal and vibratory energy forms, i.e.,

Tshaft × r = Pelectrical + Evibratory + Ethermal (7.1)

where Tshaft and r indicate the mechanical torque and rotational speed of the main
shaft, respectively; Pelectrical is the electrical power output from the WT generator;
and Evibratory and Ethermal refer to the energy that is consumed by the drivetrain
system and present, respectively, in the form of vibratory and thermalenergy. Among
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them, the electrical power Pelectrical output from a three-phase WT generator can be
calculated by

Pelectrical =
3∑

i=1

Vi × Ii (7.2)

where Vi (i = 1, 2, 3) denote the three-phase voltage and Ii (i = 1, 2, 3) the line
current measured from the generator.

In Eq. (7.1), Evibratory and Ethermal distribute extensively in the drivetrain system.
It is unlikely to assess them accurately via a limited number of transducers installed
on drivetrain components. Moreover, different concepts of WTs have different
structures, which further increase the difficulty of the assessment. By contrast, Tshaft
and Pelectrical are two parameters that can be easily measured from the main shaft and
generator, i.e., the input and output sides of the WT drivetrain system. Moreover,
attributed to the mechanical-electrical coupling effect of the drivetrain, Tshaft and
Pelectrical carry the health condition information of both mechanical and electrical
drivetrain components. This implies that in contrast to vibration signals that are
being adopted by the commercially available WT CM systems, Tshaft and Pelectrical
would be more ideal for the application to WT CM as they provide a global view
of the health condition of the whole WT drivetrain system rather than individual
components (Tavner 2008).

In order to investigate the potential application of Tshaft and Pelectrical to overall
monitoring of WT drivetrain system, the mechanical unbalance fault and the
electrical phase asymmetry fault are emulated in a three-phase induction generator,
as shown in Fig. 7.1.

In the experiment, two 0.25 kg masses are attached on the input shaft of the
generator to simulate the mechanical unbalance fault, while the electrical phase
asymmetry is introduced into the rotor winding of the generator by changing the

Fig. 7.1 The generator for
testing Tshaft and Pelectrical
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phase resistances of the resistive load bank connected to the generator rotor. When
the generator rotated at 1750 rev/min, the shaft torque, vibration displacement,
generator stator line current, and electrical power signals are collected before and
after the faults are applied. As a demonstration, the time waveforms of the collected
signals are shown in Fig. 7.2.

From the time waveforms of the signals shown in Fig. 7.2, it is found that:

• Shaft torque and generator power respond correctly to both the mechanical
unbalance and the electrical phase asymmetry faults, although both signals are
better in indicating the electrical asymmetry.

• Shaft vibration displacement indicates the presence of the mechanical unbalance
fault. However, it fails to respond to the electrical phase asymmetry.

• The amplitude of line current signal is not a good indicator of both the mechanical
unbalance and the electrical phase asymmetry faults.

Therefore, Tshaft and Pelectrical are good indicators of the health condition of
the entire WT drivetrain system. However, the measurement of torque from WT
main shaft is costly, while the generator power signal is readily accessible from all
concepts of WTs. For this reason, Pelectrical is more ideal for the application to WT
CM. The advantages of applying the total three-phase power signal to WT CM are
summarized as follows:

• Sensitivity. Attributed to the absence of mains frequency component (either
50 Hz or 60 Hz depending on area) and their high-order harmonics, the total
three-phase power signal is more sensitive to WT failures.

• Effectiveness. Both mechanical and electrical faults occurring in the WT drive-
train are detectable from the total power signal. Thus, the total power signal is
superior to the vibration signals as the total power signal can provide a global
view of the health condition of the entire WT drivetrain system rather than the
condition of individual components.

• Cost. Since the total power signal is readily available from modern megawatt-
scale WTs while the measurement of vibration and torque signals requires
additional sensors, the CM based on the total power signal would be more cost-
effective than those using vibration and torque signals.

• Adaptability. As total power signal is ready to access in all concepts of
WTs either geared or direct-drive, the CM technique developed based on the
interpretation of power signals will be widely applicable to all concepts of WTs.

7.3 Wavelet-Transform-Based Energy Tracking Technique

Following the identification of the ideal signal for overall assessing the health
condition of the entire WT drivetrain system, an advanced signal processing
technique, namely, WETT, is introduced in this section in order to provide an
efficient tool to accurately process the online or real-time WT CM signals.
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Fig. 7.2 Experimental results of Tshaft and Pelectrical (a) Signals collected before and after the
mechanical unbalance fault is applied (b) Signals collected before and after the electrical phase
asymmetry is applied
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The continuous wavelet transform (CWT) of a signal x(t) is defined as (Addison
2002)

CWT x (a, b) = 1√|a|

∞∫

−∞
x(t)ψ∗

(
t − b
a

)
dt (7.3)

whereψ is a mother wavelet function, the asterisk “*” stands for complex conjugate,
and the daughter wavelet function ψa, b(t) is derived from the mother wavelet
function through scale parameter a and time-shift parameter b, i.e.,

ψa,b(t) = ψ

(
t − b
a

)
(7.4)

Through changing the value of scale parameter a, the mother wavelet ψ is dilated
or compressed. Correspondingly, all frequency components contained in the WT
CM signals ranging from frequency 0 to half of the signal sampling frequency (i.e.,
the Nyquist frequency) can be projected onto an appropriate time scale map (one
example is shown in Fig. 7.3) by conducting the convolution calculation of x(t) and
the daughter wavelet function ψa, b(t). In Fig. 7.3, the bottom plot shows the time
waveform of a sample CM signal with increasing frequency; and the top plot shows
the wavelet coefficients of this signal obtained at different wavelet scales and times.
A smaller value of scale parameter a corresponds to a higher frequency; and a larger
value of scale parameter a corresponds to a lower frequency. It has no doubt that the
CWT of a lengthy WT CM signal will involve complex calculations and take long
time. Thus, it is computationally challenging to directly apply the CWT to conduct
online CM tasks in spite of its merit in dealing with non-stationary signals.
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Fig. 7.3 Time scale map derived using the continuous wavelet transform



7 Advanced Health Condition Monitoring of Wind Turbines 201

In addition, Fig. 7.3 suggests that:

1. The time scale map obtained using the CWT cannot be directly used for WT CM
as it is hard to identify the fault-related frequencies from a time scale map.

2. Many of the calculations shown in Fig. 7.3 are unnecessary for WT CM because
the fault-related frequencies are few in number and the calculation of the wavelet
coefficients at non-fault-related frequencies is not helpful for assessing the health
condition of the WT.

In order to address the first issue, wavelet scalogram was developed (Auger and
Flandrin 1995; Wong and Chen 2001). It defines the relation between the scale
parameter a and the central frequency ωc of a daughter waveletψa, b(t). The wavelet
scalogram of a CM signal x(t) can be expressed as

SGx (ωc, b) = |CWT x (a, b)|2 (7.5)

where the central frequency ωc of the daughter wavelet ψa, b(t) is approximated by
using the following equation

ωc = ω0

a
(7.6)

where ω0 is the central frequency of the mother wavelet function ψ .
As the energy distribution in wavelet transform is usually asymmetric, SGx(ωc, b)

does not always represent the energy located in the true geometric center (ωc, b).
Therefore, energy reassignment is often conducted for further improving the accu-
racy of signal processing in practical scalogram calculations. Details of the energy
reassignment method are seen in Peng et al. (2002). However, in its application to
WT CM, the energy reassignment is not necessary because the fault-related feature
is extracted from a local frequency region rather than from a single frequency.
Therefore, the WETT can be implemented using the following steps.

Step 1: A time-frequency sliding window is first designed, as shown in Fig. 7.4.
Its central frequency ωc is the mean frequency during the time interval T of
the prescribed frequency band. The upper and lower cutoff frequencies ωupper
and ωlower are adapted to the fluctuation of the rotational speed ωr of the WT
component being investigated, i.e. (Yang et al. 2009),

{
ωupper = ωc + 1

2ηωr

ωupper = ωc − 1
2ηωr

(7.7)

where η indicates the fluctuation of the rotational speed ωr of the WT component.
In essence, it is a function of the turbulence of the wind. The fluctuation of the shaft
rotational speed is essentially due to the turbulence of the wind speed.
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Fig. 7.4 Time-frequency sliding window for performing energy tracking calculation

Correspondingly, the range of the wavelet scales for energy tracking calculation
can be determined using Eq. (7.6), i.e.,

a ∈ [amin amax] (7.8)

where amin = ω0
ωupper

and amax = ω0
ωlower

.

Step 2: Conduct the wavelet scalogram of the windowed signal x̂(t) locally at all
frequencies within the range of ω ∈ [ωlower ωupper], i.e.,

SGx̂ (ω, b) =
∣∣∣CWT x̂

(ω0

ω
, b
)∣∣∣

2
(7.9)

Step 3: Estimate the energy A of the CM signal at the fault-related frequency of
interest in time interval T by

A

(
t0 + T

2

)
= max (SGx̂ (ω, b)) (7.10)

where ω ∈ [ωlower ωupper] and b ∈ [t0 t0 + T]. The frequency of interest can be
readily calculated using the equations in Tables 7.1 and 7.2 as long as the rotational
speed is known.

Step 4: Move forward the time-frequency sliding window along the signal and
redefine the maximum and minimum wavelet scale parameters in Eq. (7.8)
according to the average value of ωr within each time interval T.

Step 5: Repeat the calculations of Eqs. (7.9 and 7.10) to obtain the energy A of the
CM signal at the fault-related frequency of interest in the new time interval T.
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Step 6: Move forward the time-frequency sliding window along the signal and
iterate the aforementioned calculations until the whole WT CM signal has been
processed.

The variation of the energy A of the CM signal at the fault-related frequency of
interest is finally obtained for assessing the health condition of the WT component
of interest.

7.4 Test Rig of Wind Turbine Drivetrain

Aiming to verify the WETT described above, a WT drivetrain test rig has been
developed (Yang et al. 2009, 2010), as shown in Fig. 7.5. The test rig is driven
by a 54 kW DC variable-speed motor first equipped with a 10 kW synchronous
permanent magnet generator and then a 20 kW induction generator. A two-stage
gearbox is installed on the test rig to decelerate the permanent magnet generator
and accelerate the induction generator. The gear ratio is 11.14:1 for driving the
permanent magnet generator and 1:5 for driving the induction generator. The three-
phase permanent magnet generator has 84 coils on the stator, 108 permanent
magnets on the rotor, and a three-phase rectified output. The 20 kW three-phase
induction generator has two pole pairs (i.e., Np = 2). The output of both generators
is fed to resistive load banks.

The system is instrumented using LabView so that a variety of wind speed inputs
can be applied and the relevant CM signals can be collected from the drivetrain and
the terminals of the generators. The rotational speed of the DC motor is controlled
by an external model incorporating the properties of natural wind at a variety of
speeds and turbulences and the mechanical behavior of a 2 MW WT operating under
closed-loop control conditions. As shown in Fig. 7.6, a number of transducers are
installed on the test rig for data acquisition.

Fig. 7.5 Wind turbine drivetrain test rig (a) With a permanent magnet generator (b) With an
induction generator
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7.5 Faults Simulated on Test Rig and Fault-Related
Characteristic Frequencies

A number of mechanical and electrical faults are emulated on the test rig depicted
in Sect. 7.4. As they are not necessarily precise replicas of real WT faults, they
have been called “fault-like perturbations” but contain similarities with faults on
real WTs. The emulated faults are described in the following.

A. Electrical fault emulated on rotor of synchronous permanent magnet generator

The stator winding fault is emulated on the synchronous generator by simulta-
neously shorting three coils installed on the stator of the generator with the aid of
remote relays. The three coils being shorted are shown in Fig. 7.7.

The characteristic frequency fc corresponding to this kind of fault is the slotting
frequency of the synchronous permanent magnet generator, i.e. (Yang et al. 2009),

fc = r ×M
60

(7.11)

where r is the rotational speed of the rotor of the synchronous generator, the unit
of which is revolution per minute (rpm) and M denotes the number of coils on the
stator of the generator.

B. Mechanical fault emulated on rotor of synchronous permanent magnet genera-
tor

Considering rotor imbalance fault often occurs in WTs due to the structural
damage or unequal icing/water penetration on the blades, the mechanical rotor
unbalance fault is simulated by attaching a 1 kg mass to the generator rotor with an
equivalent rotating mass of 290.7 kg, as shown in Fig. 7.8. This represents a balance
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Fig. 7.7 Stator coils being shorted via remote relays (Yang et al. 2009)

Fig. 7.8 Unbalance mass
attached on the rotor of
synchronous generator

quality grade of G 7.8 (7.8 mm/s), within the limit of G 16 (16 mm/s) prescribed
in ISO1940–1:2003 for a low-speed propeller shaft, applicable to a direct-drive WT
shaft. The details of this estimation are given below.

Based on BS ISO1940–1:2003, the balance quality grade G may be calculated by

G = 2πefrm (7.12)

where frm is the rotational frequency of the generator rotor and e is the specific
unbalance that can be estimated by

e = mR

Meq

(7.13)

where m refers to unbalance mass, R the effective radius of the equivalent unbal-
anced mass, and Meq the equivalent rotating mass of the test rig rotor.
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The mechanical unbalance Um on the generator rotor can be calculated by

Um = m

Meq

× 100% (7.14)

For the test rig shown in Fig. 7.5a, the unbalance mass m = 1kg, the effective
radius of the equivalent unbalanced mass R = 865mm, and the equivalent rotating
mass of the test rig rotor Meq = 290.7kg. Thus, when the average rotational speed of
the generator rotor is 25 rpm, the calculated balance quality grade and mechanical
unbalance is G = 7.8 mm/s and Um = 0.3%, respectively.

The characteristic frequency used to detect the mechanical unbalance fault is

fc = r

60
(7.15)

where r indicates the rotational speed of the rotor of synchronous generator (unit:
rpm).

C. Electrical fault emulated on rotor of induction generator

The electrical winding fault is simulated on the rotor of the induction generator
by adjusting the phase resistances in the load bank externally connected to the
generator rotor, as shown in Fig. 7.9.

In a healthy three-phase induction generator, the rotating field of the stator and
rotor interacts and develops uniform torque. When the rotor resistances in three
phases are unequal due to the presence of a winding fault, an opposite filed will
be created to the stator that will introduce a twice slip frequency component in the
power signal output from the generator. In reality, similar phenomenon can also
be observed when the three phases of the power supply to generator stator are not
perfectly balanced. But the effect created by an imperfect power supply is ignorable
in comparison with that created by a rotor/stator winding fault. Therefore, the

Fig. 7.9 Simulate the
electrical winding fault on the
rotor of the induction
generator
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characteristic frequency for detecting the electrical fault is the twice slip frequency
of the generator, which can be estimated by.

fc = 2fs (7.16)

where fs stands for the slip frequency of the induction generator. It can be calculated
by (Yang et al. 2010)

fs = Npr − ωs
60

(7.17)

where ωs is the synchronous rotational speed of the induction generator in the unit
of rpm, r indicates the rotational speed of the rotor of induction generator, and Np is
the number of pole pairs of the induction generator.

In the experiment, the severity of the electrical winding fault is estimated by
using an electrical asymmetry criterion Ue. In order to calculate the value of Ue, the
details of the generator rotor circuit are shown in Fig. 7.10.

The balanced circuit resistances are given by

⎧
⎨

⎩

RAB = RAV + RBV + RAS + RBS + (RA + RB) /2
RBC = RBV + RCV + RCS + RBS + (RB + RC) /2
RCA = RCV + RAV + RAS + RCS + (RC + RA) /2

(7.18)

where the circuits are balanced, giving RAB = RBC = RCA = R = 7.60 �, and

R = (RAB + RBC + RCA) /3 (7.19)

Fig. 7.10 Rotor circuit diagram including a resistive load bank
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Then the electrical imbalance can be estimated through calculating the residual
circuit resistance δR, i.e.,

δR =
∣∣∣RABeiθ1 + RBCeiθ2 + RCAeiθ3

∣∣∣ (7.20)

where i = √−1, θ1 = 0, θ2 = 2π /3, θ3 = 4π /3.
Accordingly, the electrical asymmetry criterion Ue can be obtained by

Ue = δR

R
× 100% (7.21)

The larger the value of Ue, the more serious the electrical winding fault tends
to be.

7.6 Verification Experiments

In this section, the WETT is applied to extracting the energy of total power signal at
fault-related frequencies in different fault simulation scenarios. Then, the resultant
variation tendency curve will be used to assess the health condition of the WT
drivetrain. It is worth noting that in the following calculations, the time interval
of the sliding window is T = 1s and the cutoff frequencies of the sliding window
are adaptive to the rotational speed of the WT generator and calculated by Eq. (7.7).

7.6.1 Detection of the Stator Winding Fault in the Permanent
Magnet Generator

When the test rig in Fig. 7.5a is running at variable speeds, the generator speed, shaft
torque, and total power signals are collected. During the period of data acquisition,
three stator coils indicated in Fig. 7.7 are simultaneously connected and shorted in
sequence. The collected signals and the corresponding energy tracking results are
shown in Fig. 7.11.

From Fig. 7.11a, it is seen that all collected signals are non-stationary over time
and the time waveforms of both shaft torque and total power signals do not give any
clear indication to the presence and absence of the fault. For this reason, the slotting
frequency fc is calculated using Eq. (7.11). The extracted energy of the total power
signal at the frequency fc is shown in Fig. 7.11b.

From Fig. 7.11b, it is clearly seen that although the slotting frequency fc varies
over time, the extracted energy curve of the power signal at this frequency gives
a correct response to the presence and absence of the fault. In other words, the
energy at this frequency increases immediately when the three coils are shorted
and decreases to normal level as soon as the coils are re-connected. Apparently, the
alteration of coil connection state in a WT can be correctly detected by using the
developed WETT.
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waveforms of the signals (b) Energy A of the power signal extracted at the characteristic
frequency fc
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7.6.2 Detection of the Mechanical Unbalance Fault
in the Permanent Magnet Generator

As shown in Fig. 7.8, the mechanical unbalance fault is emulated on the permanent
magnet generator by attaching an unbalance mass to the generator rotor. When the
generator is running at variable speeds, the rotational speed, shaft torque, and total
power signals are collected. The signals obtained before and after the unbalance
mass are applied, and the corresponding energy tracking results are shown in
Fig. 7.12.

From Fig. 7.12a, it is interestingly found that in the presence of the mechanical
unbalance fault, the energy of the torque signal measured from the generator shaft
fluctuates in a very large range. However, the time waveform of the total power
signal seems to not give any indication to the fault. This is because the rotor and
stator of the generator are both supported by steel spokes (Spooner et al. 2005).
Accordingly, the WETT is applied to extract the energy of the total power signal at
the shaft rotating frequency. The energy tracking results are shown in Fig. 7.12b.

As shown in Fig. 7.12b, the energy of the total power signal at shaft rotational
speed slightly increases in the presence of the mechanical unbalance fault. Further
investigation is necessary to amplify the frequency signatures with the unbalance
masses in the permanent magnet generator.

7.6.3 Detection of the Electrical Asymmetry in the Rotor
of the Induction Generator

As shown in Fig. 7.9, the electrical asymmetry is emulated on the induction
generator by changing the phase resistances of the resistive load bank that is
externally connected to the rotor of the induction generator. When the induction
generator rotates at constant speed and the phase resistance of the resistive load
bank changes periodically, the shaft rotational speed, shaft torque, and three-phase
total power signals are collected. The collected signals and the corresponding energy
tracking results are shown in Fig. 7.13.

From Fig. 7.13, it is clearly seen that both shaft torque and generator total power
signals respond as soon as the fault occurs in the generator at the constant speed.
In contrast to the shaft torque, the three-phase total power signal is relatively more
sensitive to the electrical asymmetry fault. As shown in Fig. 7.13b, the extracted
energy curve at the fault-related characteristic frequency based on the power signal
almost concurrently indicates the occurrence of the mechanical unbalance fault.

In order to further demonstrate the capability of the WETT for WT CM, the shaft
rotational speed, shaft torque, and three-phase total power signals are also collected
when the generator rotates at variable speeds. The signals collected before and after
the electrical asymmetry as well as the WETT results are shown in Fig. 7.14.
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From Fig. 7.14a, it is interestingly found that the time waveform of neither shaft
torque nor total power signal is able to respond correctly to the presence of electrical
asymmetry when the induction generator rotates at variable speeds. Thus, the WETT
is applied to extract the energy of the total power signal at the twice slip frequency
of the generator. The feature extraction results are shown in Fig. 7.14b.

From Fig. 7.14b, it is found that the extracted energy of the total power signal
at the twice slip frequency responds correctly to the presence and absence of the
electrical asymmetry in spite of the variation of generator speeds. This suggests that
the newly developed energy tracking technique is indeed effective in extracting the
fault-related features from non-stationary WT CM signals.

7.6.4 Detection of the Mechanical Unbalance Fault in the
Rotor of the Induction Generator

The mechanical unbalance fault in the rotor of the induction generator is simulated
by attaching two 0.25 kg unbalance masses on the input shaft of the induction
generator, as shown in Fig. 7.1. The collected signals and the corresponding energy
tracking results when the generator rotated at the constant and variable speeds are
shown in Figs. 7.15 and 7.16, respectively.

From Fig. 7.15a, it is found that both time waveforms of the shaft torque
and total power signals fail to indicate the presence of the shaft unbalance fault.
However, from Fig. 7.15b, it is seen that the energy of the total power signal at
shaft rotating frequency increases significantly as soon as the mechanical unbalance
fault is applied to the shaft of the generator. When the generator runs at variable
speeds, the fault detection becomes more challenging because the variable speeds
will more or less smear the fault features in the CM signals, as shown in Fig. 7.16a.
However, Fig. 7.16b shows that the fault-related feature of the total power signal
is still successfully detected by the WETT, i.e., the energy of the signal at shaft
rotational frequency increases significantly as soon as the mechanical unbalance is
present on the shaft.

7.7 Concluding Remarks

A newly developed WT CM technique, i.e., the WETT using generator power
signals, is introduced and experimentally verified in the above sections. From
the above description and discussion, the chapter is ended with the following
comments:

1. In contrast to the vibration signals collected from individual WT drivetrain
components, the shaft torque and total power signals carry the health condition
information of the entire drivetrain system. Both types of the signals allow
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to perform overall assessment of the health condition of the whole drivetrain.
However, in the WT CM practice the measurement of shaft torque is not easy.
Thus, the total power signal is more suited to the WT CM than the shaft torque
signal.

2. The wavelet scalogram provides an effective tool to precisely process non-
stationary CM signals. However, it involves complex calculations and cannot
be applied to online WT CM. To address this issue, an innovative WETT
is developed through introducing a two-dimensional time-frequency sliding
window into the conventional wavelet scalogram. The WETT is efficient in
calculation thus has a strong potential to be applied to either online or real-time
WT CM.

3. Experimental test results validate that the WETT using the generator power
signal is able to detect both the mechanical and electrical faults in the WT
drivetrain system in both constant-speed and variable-speed scenarios.
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Chapter 8
Advanced Repairing of Composite
Wind Turbine Blades and Advanced
Manufacturing of Metal Gearbox
Components

Ninggang Shen and Hongtao Ding

8.1 Introduction

8.1.1 Composite Wind Turbine Blades

In a wind turbine, composite materials are mainly used in the turbine blades and
nacelle as shown in Fig. 8.1. The blades, usually made of glass fiber reinforced
polymer (GFRP), represent the largest use of composite material (Tangler 2000).
In total, the components made of composite materials make up 25% of the total
cost of a wind turbine (Platzer 2012). Each wind turbine must withstand the force
of wind and all the debris it brings with it and, thus, must be regularly monitored,
maintained, and repaired to remain functional (Lantz 2013). The sources of blade
damage include mishandling during delivery and/or installation, lightning strikes,
ice, thermal cycling, leading and trailing edge erosion, fatigue, moisture intrusion,
and foreign object impact (Cairns et al. 1999, Cairns et al. 2011; Rumsey 2009).
Keeping blades in good condition is vital to the ability of the turbine to generate its
designed power for a targeted design life of 20 years. In addition, wind turbines
have grown larger, which led to large, multistage gearboxes and large bearings.
Many require replacement/overhaul at 5–7 years and significantly drive up the cost
of ownership.

The wind turbine blades are subject to material fatigue, bird strikes, lightning
strikes, and leading edge erosion, especially, toward the tips that can be moving
through the air at around 200 mph. In addition, the severe conditions in the
surroundings usually accelerate the damage propagation, e.g., ice, thermal cycling,
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Fig. 8.1 Major wind turbine components and cost (Shen et al. 2013)

moisture intrusion, sand and salt laden, surface erosion from rain, hail, ice and
insects. Even relatively small amounts of leading edge erosion can affect the
aerodynamic performance of the blade and lead to consequent loss of revenue. If
erosion of leading edges is left unrepaired, damage will accumulate and eventually
cause catastrophic failure such as the blade edge split or debonding of a section.
Figure 8.2a shows some commonly observed damages after only a few years of
service: surface cracking, cavity, erosion, near-surface delamination, and severe
debonding. Figure 8.2b shows the levels of impact damage observed in the
laminates. Even without actual damage, surface roughness caused by minor pitting
and particle accretion can spoil the aerodynamic efficiency of the blades, detracting
from turbine productivity. With a growing number of blades now in service, many
well outside their warranty periods, rotor blade maintenance is becoming a major
issue.

Cost-effective onsite repairing of wind turbine blades is very critical for building
up the wind energy industry for the next crucial years (Sheng 2013). Repairing the
blades is no trivial matter. An average blade repair can cost up to $30,000, while it
can be ramped up to $350,000 per week if crane is required (Stephenson 2011). In
comparison, a new blade costs only about $200,000 on average. Most rotor blades
carry post-installation warranties for only 1–2 years. For structures with an expected
service life of 15–20 years, this leaves much of the blade’s maintenance outside the
warranty window. In fact, as a result of the 2007–2009 wind energy boom, there
are now more turbines with expiring warranties than actual turbines being installed
(Stephenson 2011). This is putting immense pressure on wind farm managers as
they try to optimize turbine uptime.
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Fig. 8.2 Composite material damage in a wind turbine. (Courtesy of Rumsey (2009), Halliwell
(2010), Cairns et al. (2011), MISTRAS Group (2013)) (a) Typical damages, (b) Damage levels

8.1.2 Metal Gearbox Components

The metal components of wind turbines, e.g., gearboxes, are designed to operate
over a calculated service life. As shown in Fig. 8.1, the gearbox and bearing
components contributed 15% of the total cost of a wind turbine. Extraordinarily
high costs to manufacture and maintain is the main issue to confine the expansion
of the share of wind turbine in the energy consumption. For traditional wind
turbine, the critical components in the gearbox usually need to be replaced soon.
In recent years, size and capacity of wind turbines have increased significantly
to meet the ambitious worldwide renewable energy targets, resulting in the use
of larger multistage gearboxes (Ribrant and Bertling 2007; Jain and Hunt 2011).
Multi-megawatt wind turbine gearboxes usually fail after only a few years due to
the demanding environmental conditions, even though they are usually rated for a
life span of 20 years (Sroka and Benson 2011). The growing wind turbine size raises
the expense even higher.

According to data from the National Renewable Energy Laboratory (NREL) as
shown in Fig. 8.3, 70% of wind turbine gearbox failures were caused by bearing
failures, e.g., macro-pitting and axial cracks formed on the bearings during high-
and intermediate-speed stages (Department of Energy 2015). Gears were identified
as the second leading cause of gearbox failures (26%) followed by other components
that account for 4% of the failures. Among the other components, lubrication
and filtration system problems are dominant (Department of Energy 2015). These
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Fig. 8.3 Statistics of gearbox failures based on 750 confirmable wind turbine gearbox damage
records in the USA (Sheng 2014; Department of Energy 2015)

statistics are based on 750 confirmable wind turbine gearbox damage records
provided by wind plant owners and operators from 2009 through August 2015. The
owners and operators participating in this effort represent 34% of the wind capacity
in the USA. Figure 8.4 shows the typical failure of bearings and gears in the wind
turbine gearbox, which are usually considered as irreparable.

The failure of bearings and gears in typical bearing steels, e.g., AISI 51200 and
4320, is usually attributed to many reasons, such as inadequate lubrication, deficient
sealing, improper mounting, overloading, or other tribological issues (Harris 2001;
Errichello et al. 2013; Kang 2014; Šmeļova et al. 2017). Hence, numerous efforts
have been performed on tribology and metallurgy over the past decades to determine
mitigation strategies for gearbox failures. Moreover, the manufactured components
are expected to demonstrate superior quality and enhanced functional performance
with properly engineered manufacturing techniques.
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Fig. 8.4 Typical wind turbine gearbox failure: (a) Bearing failure; (b) Gear failure (Shen et al.
2013; Sheng 2014)

It has been widely acknowledged in the manufacturing community that the
functional performance of a manufactured component, especially for machining,
can be significantly affected by the quality and reliability of the machined surface,
i.e., surface integrity (M’Saoubi et al. 2008). The surface integrity of manufactured
components has a critical influence on their functional performance, including
corrosion resistance, wear resistance, fatigue life, etc. (Field et al. 1972). The surface
integrity attributes usually can be grouped as topography characteristics, mechanical
properties, and metallurgical state (Ulutan and Ozel 2011). The alternation of
metallurgical state, including microstructure, phase transformation, and grain size,
usually results in the change of mechanical properties, such as hardness and residual
stress (Field et al. 1989). In the past few decades, many researchers have investigated
the nature of the surface and subsurface alterations produced by machining of
various materials and their effects on the product’s functional performance (Jawahir
et al. 2011). The advancement of the knowledge in this field can continually improve
the performance, reliability, and durability of manufactured components/parts under
severe loading conditions and aggressive environment.

In this chapter, both conventional and state-of-the-art repairing techniques for
wind turbine blades (composites) are first introduced in Sect. 8.2. Section 8.3
summarizes current machining process of hardened steels for bearing and gearbox
components and current achievements in novel machining process of hardened steel
components, such as laser-assisted machining and cryogenic machining. Finally,
an overview is provided in Sect. 8.4 on the future applications of the advanced
repairing technologies for wind turbines, as well as associated challenges for the
future advanced manufacturing technologies for metal gearbox components.
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8.2 Wind Turbine Blade Repairing

8.2.1 Conventional Methods

The repair approaches can be broadly divided into non-patch, usually for minor
defects, and patch, usually for more major defects and damage. In this chapter,
the repair techniques for major defects and damages are mainly discussed. When
the damage has weakened the structure through fiber fracture, delamination, or
debonding, a structural repair is often needed, which involves replacement of the
damaged fiber reinforcement, and core in sandwich structures, to restore the original
mechanical properties. The typical structural repair procedures for a wind turbine
blade consist of four steps: (1) damage removal and preparation of the damaged site,
(2) hand lay-up, (3) post-cure, and (4) leading edge coating application. Figure 8.5
shows an example structural repair work for a lightning blast damage in a wind
turbine blade (Performance Composite Inc. 2015).

There are three typical laminate repair styles: (a) patch repair, (b) tapered-scarf
repair, and (c) stepped scarf repair. The schematic of these styles is shown in
Fig. 8.6. Patch repair is the most common structural repair carried out on wind
turbine blades, which is usually applied by wet lay-up techniques. The damage site

Fig. 8.5 An example of current structural repairing. (Courtesy of Performance Composite Inc.
(Performance Composite Inc. 2015))
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is not necessarily to be cut cleanly, but the contact surface should be flat, abraded,
and degreased (Composites UK 2015). This type of repair is relatively easy to
implement and needs the least preparation, which is an ideal option for a fast and
urgent “field repairs.” Due to its poor appearance and limitation on strength, the
repair patches are usually temporary (Halliwell 2010).

The scarf joint repair is favored for strength-critical applications and where it is
necessary to restore a surface’s aerodynamic or hydrodynamic profile. The scarf
joint repair is usually designed to achieve a stronger shear strength than tensile
strength of the original material by about 100% (Composites UK 2015). It has been
tested that about 90% of the original strength of the undamaged material can be
restored by the scarf joint repair for aircraft repair (Arnot-Perrett and Gibson 1998;
Smith et al. 1998). Preparation for the scarf repair is usually performed carefully
using power tools with routers or abrasive disks to achieve tapered or stepped
scarf. Either wet resin lay or prepreg materials can be used, usually based on those
with which the blades were originally built. Surroundings of vacuum and specific
elevated temperatures are usually required for the repair consolidation. Portable hot
bonder devices have been developed and currently available on the market for the
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Fig. 8.7 Current structural repair using wet laminating process. (Courtesy of TGM Wind Services
LLC; Hexcel Corporation (2015))

on-site repairs as shown in Fig. 8.7. For more complex and higher-quality repairs,
an autoclave should be used (Composites UK 2015).

Although scarf joint repair is favored for strength-critical applications, there are
significant limitations for this repair style. Scarf repairs often use a high taper ratio
(20:1–50:1) for best results, which often poses a great challenge for on-site repair
of wind turbines (Halliwell 2010). It is also very difficult avoid the fiber damage in
the remaining material around the scarf during routing/abrading, which could cause
the initiation of new damage in future. Wet resin systems are used in these repairs,
usually based on the ones with which the blades were originally built, so resins
must be accurately mixed on the ground just prior to use and hauled up. Hence,
the proficiency and attention to details of operators are highly demanded, which
make this technique the most expensive to undertake. Furthermore, there is a narrow
weather window for these wet resin systems to work (typically at temperatures
above 12–15 ◦C), and they need an elevated temperature post-cure (Cripps 2011).
The repair operations are usually performed on a maintenance platform or in a roped
position. These situations further increase the difficulty, downtime, and cost of the
wind turbine blade repair.

8.2.2 Advanced Methods

Advanced, cost-effective repairing of wind turbines blades is very critical for the
wind energy industry. Currently, heat activated curing prepreg has been widely
applied to repair wind turbine blades. The curing time can be significantly reduced to
about 3 h by using the heat activated curing prepreg, whereas it usually takes 24 h or
even days for curing under the ambient environment. However, this approach needs
heat and pressure for curing, which could cause a few issues for field-level curing.
First, the temperature must be precisely controlled to assure uniform curing, which
is challenging for field-level repairing. Second, pressurization of prepreg layers
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can be quite complicated when coupled with the heating requirements (Pang et al.
2004). Therefore, advanced repairing techniques should be developed to address
these issues.

A breakthrough occurred in polymers when ultraviolet (UV) curing resins were
developed in the 1980s. UV curing resins act through photopolymerization by
free radicals. Photoinitiators are added to the basic resin chemical constituents
of monomers, oligomers, thickeners, and adhesion promoters. Photoinitiators are
organic molecules that become excited when exposed to ultraviolet radiation. The
excited molecules degrade and produce free radicals, which initiate polymerization
of the monomers and oligomers. Curing time can be reduced to 1–30 min, depending
on the monomer, photoinitiator, and the light intensity. In general, higher light
intensity decreases the overall curing time and oxygen inhibition of polymerization
(Pang et al. 2004).

Recently, instead of heat and pressure, a new blade repair system, RENUVO™
multipurpose system (MPS), has been developed by Gurit UK, which uses strong
UV light to harden the UV-curable resin in minutes rather than hours (Marsh 2011).
The system can be used either as a stand-alone spot repair (small repairs) or in
combination with RENUVO™ Prepreg for a structural repair (replace or reinforce
the blade laminate) (Gruit UK 2017). For a structural repair, the damage is usually
removed by manual blade grinding or routing, and the edges are beveled for a
scarfed repair to increase the bonding area. Then, RENUVO™ Prepreg can cut into
the desired size to fit the repair site and be applied in single or multiple layers. This
prepreg is a biaxial or unidirectional fabric, which has been impregnated with the
RENUVO™ resin system already. It can remain uncured for several years if stored
in cool and dark conditions (Marsh 2011). Two MPS resin grades are available: a
summer grade for the use in temperatures of 15–30 ◦C and a winter grade for 5–
18 ◦C. The MPS resin acting as the interface to form the bonding to the remaining
blade laminates. Full cure can be obtained in about 180 s for repairs up to 3 mm
thick, using the large RENUVO™ LED 400F lamp. For large repairs, a specially
designed lamp mounting system can be applied to ensure that each part of the patch
receives the correct UV dose. Figure 8.8 demonstrates the standard procedure using
RENUVO™ system from applying the prepregs to UV curing. It is worth noting
that the necessity of a special mounting system, as well as a high requirement for
protective precautions, still confined the application of RENUVO™ system for an
even larger repair than as shown in Fig. 8.8.

8.2.3 Discussions

The conventional repair techniques have been developed for decades and extensively
applied throughout most sectors of industry, including wind energy, and numerous
efforts have been made on the improvement or invention of the existing or
novel techniques. The advanced technique, e.g., the UV curing repair system like
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Fig. 8.8 The standard procedure of RENUVO™ system (Marsh 2011)

RENUVO™, still adopts the conventional repair design as shown in Fig. 8.6.
However, there are a wide range of repair issues to be solved.

For these conventional repair designs, a bonded-on repair constitutes a discon-
tinuity of the original plies, and therefore a stress raiser, structural repair schemes
normally require extra plies to be provided in the repair area (Hexcel Corporation
2015). The repair with those extra plies can be unsightly and bulky with much
limited strength restoration (Composites UK 2015). The bonding strength of the
thermoset resins (or UV curing resin) is of critical importance for structural repairs.
However, due to the inherent weakness of the resin matrix, the current joining
technology cannot reliably restore the original strength of the composite structure
(Halliwell 2010). In fact, the resin-rich region is the major source of delamination
(Vizzini and Lee 1995; Sørensen et al. 2004; Giannis et al. 2008). Once initiated,
cracks are detrimental to the life of the composite structure, which has been found to
be a key failure mechanism of the composite wind turbine blades (Stig 2009; Lomov
et al. 2009). It is also well known that complex repairs (i.e., step-lap and tapered-
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scarf repairs) possess the higher bonded joint strength comparing with single-lap
joints (Soutis and Tong 2003). At the same time, these more complex repairs are
time-consuming and difficult to apply. Moreover, a large amount of the undamaged
material has to be removed in the process of forming the required taper angle
and deviation from the prescribed repair procedure could lead to undesirable stress
concentrations and premature structural failure (Baker et al. 2004; Duong and Wang
2010; Khashaba et al. 2010). Additionally, resins must be accurately mixed on the
ground just prior to use and hauled up, often subjected to a narrow weather window.
Hence, the proficiency and attention to details of operators are highly demanded,
which make these techniques expensive to undertake.

During the repair operation, technicians are normally roped up or stand on a
platform suspended from the rotor hub. The subject blade is stopped in the down
position. Anchor lines may be deployed to the tower or around the blade. Even with
a small working space during repair, a variety of tools are needed for the technicians
to take or have them hoisted up or lowered down to the working position to carry out
structural repair on-site. The essential tools include power router/sander, heater mat,
hot bond unit, air-powered tools, repair patches, wet resin systems, power supply,
etc. Safety requirement and the low mobility of these tools pose a great challenge for
the technicians in air. Therefore, there is still a great need for the development of the
next-generation joining method for fiber-reinforced polymers and on-site repairing
technology.

8.3 Advanced Manufacturing Technologies for Metal
Gearbox Components

8.3.1 Hard Turning

Hardened bearing steels components have been conventionally finished by grinding
and hard turning (Poulachon and Moisan 1998; Matsumoto et al. 1999; Klocke
and Kratz 2005; Hashimoto et al. 2006). Hard turning is typically defined as the
single point turning of post-heat-treated parts with surface hardness ranging from
45 in Rockwell scale (HRC) to 68 HRC or even higher. In comparison to grinding,
hard turning can introduce greater flexibility in manufacturing complex geometry
and significantly higher material removal rate, while a comparable surface finish
still can be achieved. In addition, hard turning process is usually more eco-friendly
than grinding, since it can be performed in a dry cutting condition (Bartarya and
Choudhury 2012).

Hard turning has been proven to be a worthy alternative to the more expensive
and time-consuming grinding process (Ramesh et al. 2005). Process-induced
residual stress and its effect on component performance such as fatigue life are
key criteria for process selection and optimization. As shown in Fig. 8.9, Guo
et al. (2010) summarized that the most significant differences in the characteristics
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Fig. 8.9 Residual tress profiles in (a) Feed direction and (b) Cutting direction for hard turned
fresh (HTF) surface, ground fresh (GF) surface, hard turned surface with white layer (HTWL),
and ground surface with white layer (GWL). “Heat treated” was the original residual stress profile
before hard turning or grinding (Guo et al. 2010)

of residual stress profiles by “gentle” hard turning and grinding are manifested
in two aspects: (i) hard turning with a sharp cutting-edge geometry (honed or
chamfered) generates a “hook”-shaped residual stress profile characterized by
compressive residual stress at the surface and maximum compressive residual stress
in the subsurface. While gentle grinding only generates maximum compressive
residual stress at the surface. (ii) The depth of compressive residual stress in the
subsurface by hard turning is much larger than that by grinding. But the magnitude
of compressive residual stress at a ground surface is usually higher than that at a
turned surface. Due to these residual stress characterizations for hard turned steel
surface, without the formation of white layer, a superfinished turned surface may
have a roll contact fatigue life twice as long as that of a superfinished ground surface
(Hashimoto et al. 2006).

However, there are several issues related to this process for hardened steels that
require further investigation, which can strongly affect the surface integrity and the
quality of machined products (Umbrello et al. 2012a). The major issues are due to
undesired microstructure changes in the machined surface for hardened steels (Chou
and Evans 1999; Akcan et al. 2002; Barry and Byrne 2002; Ramesh et al. 2005;
Todaka et al. 2005; Li et al. 2007; Han et al. 2008; Burns et al. 2011a, b; Jawahir et
al. 2011), which is mainly associated with the high temperatures at the tool-chip and
tool-workpiece interfaces in conjunction with the severe plastic deformation (SPD)
and dynamic phase transformation.

This undesirable microstructure is often termed as “white etching layer” (WEL)
or “white layer” because it appears to be featureless and white when it is viewed
under an optical microscope as shown in Fig. 8.10. The formation of WEL has
been a great interest in the past decades. Griffiths (1987) attributes white layer
formation to one or more of the following possible mechanisms: (1) rapid heating
and quenching, which results in dynamic phase transformation; (2) severe plastic
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Fig. 8.10 Optical
micrograph of a white layer
in a sectioned and etched
surface of BS 817 M40 steel
of 52 HRC. (Figure is
adopted from Barry and
Byrne (2002))

deformation, which produces a refined homogeneous structure; and (3) surface
reaction with the environment, e.g., nitriding. Jawahir et al. (2011) argued that
metallurgical transformation occurs in the chip or on the workpiece machined
surface due to intense, localized, and rapid thermomechanical working during hard
turning. Ramesh et al. (2005) suggested that white layers produced by hard turning
of bearing steel at low-to-moderate cutting speeds are largely due to the grain
refinement induced by SPD, whereas white layer formation at high cutting speeds
is mainly due to thermally driven phase transformation. Studies of the drilling of
a commercial bearing steel (type SUJ2) in a tempered martensitic structure by
Todaka et al. (2005) showed that the white layers formed on the machined surfaces
were composed of refined equiaxed nanocrystalline grains. They stipulated that the
ultrafine structure layer on the machined surface is produced by both thermally and
deformation-driven phase transformation, due to the large strain gradient and high
strain rates during the process. Li et al. (2007) showed that both cutting parameters
and initial workpiece hardness play vital roles in the white layer formation. Burns et
al. (2011a, b) have reported that for carbon steels, e.g., AISI 1045 and 1075 steels,
the phase transformation drastically changed the material constitutive behaviors
at high temperatures. Hence, the white layer formation in machining of steels
should be considered as a coupled effect of dynamic phase transformation and
grain refinement process, although there are still different understandings of the
mechanism of its formation.

Although the thickness of the white layer is usually only several micrometers, the
presence of it causes great concern in the machining industry and academia, which
is often very detrimental to component life in roll contact (Schwach and Guo 2006).
The white layer has a significantly increased hardness compared with the bulk
material, but tensile residual stress is usually associated with the presence of white
layer. Samples with white layer showed significantly more cracks in the subsurface
domain than those without white layer. As a result, the white layer induced by worn
tool in hard turning is very detrimental to the roll contact fatigue (RCF). The RCF
life can be decreased as much as eight times with the hard turning-induced white
layer as shown in Fig. 8.11. Even shorter RCF life can be caused by thicker white
layer.

The white layer formation can usually be facilitated using worn tools under
aggressive machining conditions, such as higher cutting speed and greater feed
rate. During hard turning, the generated heat mainly remains in the cutting zone
and builds up temperature to extreme values, causing softening of the cutting
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Fig. 8.11 Surface characterization and RCF life comparison for hard turned surface with different
surface integrity: (a) The subsurface microstructures; (b) microhardness profiles below surface;
(c) RCF life. *Fresh surface (FS), white layer (WL). (Original images and charts are adopt from
Schwach and Guo (2006))

tool material and engage aggressive wear mechanisms such as diffusion (Biček
et al. 2012). This usually leads to rapid tool wear, especially for flank wear, and
consequently shorter cutting tool life. It has been widely acknowledged that a thicker
white layer can usually be formed due the greater severe plastic deformation effect
induced by the worn tool. Residual stress is difficult to be predicted when white
layer is formed, but tensile residual stress is often associated with the presence of
white layer, which is detrimental to the surface integrity at the end. In addition, the
rapid tool wear rate will significantly increase the cost of manufacturing components
in hardened steels for wind turbine gearbox. Hence, novel alternative machining
processes, such as laser-assisted machining and cryogenic machining, have been
developed to avoid the excessive tool wear and the formation of white layer under
aggressive machining conditions, which can also further increase the productivity.

8.3.2 Laser-Assisted Machining (LAM)

LAM implements the concepts of thermally assisted machining using a laser as
the heating source. As shown in Fig. 8.12, LAM involves localized, selective
laser heating of the workpiece just ahead of the cutting tool in order to reduce
the shear strength of the work material in the vicinity of the shear zone. During
LAM, the workpiece material is locally heated and softened by a focused laser
beam and then removed by a conventional cutting tool. Recently, LAM has been
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Fig. 8.12 Laser-assisted machining configuration: (a) Schematic of LAM; (b) Laser-assisted
turning operation

considered as an alternative process for machining of high-strength materials like
ceramics (Anderson et al. 2006; Dandekar et al. 2010; Sun et al. 2010), metal matrix
composites (Skvarenina and Shin 2006), high-temperature alloys (Masood et al.
2011), hardened steels (Lei et al. 2000; Wang et al. 2002; Chang and Kuo 2007;
Bejjani et al. 2011), stainless steel (Rebro et al. 2004), and compacted graphite
iron (Germain et al. 2005). Extensive experimental investigations conducted so far
have shown the feasibility of LAM and its advantages over conventional machining
methods in terms of surface finish, tool wear, specific cutting energy, and subsurface
integrity (Rebro et al. 2004; Germain et al. 2005; Anderson et al. 2006; Masood
et al. 2011).

Focusing on LAM of hardened steels, Germain et al. (2007) showed that the
surface roughness of Ra (arithmetic average of the roughness profile) remained
stable regardless of the laser power for LAM of AISI 52100 steel, which ranged
from 0.6 to 0.75 μm with a small feed rate of 0.1 mm/rev. Dumitrescu et al. (2006)
found that machining chatter and saw-tooth chip formation were suppressed in LAM
of AISI D2 tool steel with high-power diode laser, and tool life was improved by
as much as 100%. Ding and Shin (2010) investigated LAM parameters combination
to optimize the relationship between surface integrity of hardened steel parts and
process parameters. Currently, as shown in Fig. 8.13, a three-step process is used
to produce an automotive transmission shaft after full heat treatment: hard turning,
grinding, and polishing. Due to the aforementioned benefit, Ding and Shin (2010)
found that LAM process can replace the hard turning and grinding operations and
then proposed a one-step LAM process. Without compromising the surface integrity,
LAM allows at least a four-time faster material removal rate than the two-step
hard turning and grinding operations, and can produce a good surface finish of
Ra less than 0.3 μm. The feasibility of precise size control in LAM of hardened
steel components has also been demonstrated, which is usually a great concern
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Fig. 8.13 Conventional method and LAM for machining a transmission shaft. *, material removal
rate in radius during polishing (Ding and Shin 2010)

for the industrial applications. Compared to conventional hard turning, the specific
cutting energy during LAM drops by about 20% as the material removal temperature
increased to above 200 ◦C. The 20% cutting force reduction reduced the workpiece
deflection and impeded tool wear progression. The significantly reduced tool wear
rate makes the tool wear test difficult to be performed due to the need of a very
large number of parts and the associated time and cost. LAM can also achieve a
more concentrated surface hardness profile without any softening in the machined
subsurface, less variation in the surface hoop residual stress, and more compressive
surface axial residual stress. In addition, no detrimental white layer was formed in
LAM as shown in Fig. 8.14.

The impact of LAM on the part performance and fatigue life of wind turbine
gearbox and bearing components in hardened steels is of great interest for the future
study. Compared to hard turning and grinding, more concentration of the martensite
near the machined surface will supposedly improve the performance of the hardened
steel components under a high-stress state. More compressive residual stresses with
less variation over the outer surface are beneficial to improve the fatigue life of these
components.
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Fig. 8.14 Optical microscopy of microstructures of the subsurface after LAM at speed of
180 m/min and feed of 0.075 mm/rev; various material removal temperature, Tmr

8.3.3 Cryogenic Machining

Cryogenic machining firstly has been considered as an eco-friendly and pollution-
free machining technology of difficult-to-machine materials, in order to significantly
increase the tool life and reduce tool wear due to the reduction of tool-tip temper-
ature (Wang and Rajurkar 2000; Paul et al. 2001). The emergence of cryogenic
machining is a result of the sustainability concerns in manufacturing on the use of
cutting fluids. During the process, liquid gases, such as nitrogen, carbon dioxide, and
helium, are used as alternative coolants to traditional oil- and water-based coolants
and lubricants (Jawahir et al. 2016) (Fig. 8.15).

In conventional metal cutting operations, cutting fluids lubricate the cutting
zone to control abrasion and improve heat dissipation during the metal cutting
process and then reduce the thermal and chemical wear mechanism (El Baradie
1996). However, in the recent two decades, recent studies indicated that exposure to
cutting fluids is related to the development of various types of cancers, dermatitis,
and respiratory diseases (Brinksmeier et al. 2015). Minimum quantity lubrication
(MQL), a near-dry machining technology, has been emerged since the 1990s as
a progress and more sustainable solution to significantly reduce the amount of
coolants and lubricants in machining operations.

Compared with MQL, cryogenic machining has been shown to be a sustainable
alternative to MQL and can generate engineered machined surface with improve
surface integrity. The improved surface integrity has been found in the machined
surface of Inconel 718, AISI 4140 and 52,100 steels, and Mg alloys (Pusavec et al.
2011; Pu et al. 2012; Umbrello et al. 2012b; Ambrosy et al. 2014). In these studies,
an ultrafine-grained (UFG) surface layer is often formed in the machined surface
with the increase of surface hardness and compressive residual stresses due to the
severe plastic deformation (SPD).
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Fig. 8.15 Orthogonal cutting with cryogenic cooling: (a) Experimental configuration and process
schematic and comparison of IR camera captured temperature distribution during (b) IR image for
dry cutting and (c) IR image for cryogenic cutting. (Original images are adopted from Pu (2012))

Umbrello and his colleagues (Rotella et al. 2012; Umbrello 2013) have per-
formed experimental analysis on the cryogenic machining performance of AISI
52100 steel, focusing on machined surface alterations. Their results show that
white layer is either partially reduced or even eliminated under certain cryogenic
machining conditions as shown in Fig. 8.16. The formation of white layer was
suppressed due to the attenuated martensitic phase transformation induced by the
strongly suppressed machining temperature as the cryogenic cooling.

Biček et al. (2012) experimentally compared the surface integrity and tool life for
turning of normalized ( 16 HRC) and hardened ( 72 HRC) AISI 52100 steel using
conventional cutting fluids and cryogenic coolant. Figure 8.17 shows the capability
of the machining process to be performed under different cooling and lubrication
conditions for both normalized and hardened AISI 52100 steel. Cryogenic turning
results show drastic improvements in tool lifetime (up to 370%) for normalized AISI
52100 steel. By comparing both conventional and cryogenic machining, it shows
that cutting parameter ranges are expanded toward higher cutting speeds and depths
of cut when using cryogenic cooling for both alloy types. Hence, cryogenic machin-
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Fig. 8.16 Significantly reduced white layer thickness by cryogenic cutting for 61 HRC AISI
52100 steel with machining speed of 75 m/min and feed rate of 0.125 mm/rev: (a) Dry cutting,
(b) Cryogenic cutting. (Original images are adopted from Umbrello (2013))

ing allows higher productivity and flexibility with maintaining desired machined
surface quality. As shown in Fig. 8.18, metallographic analysis showed no white
layer was formed in the machined surface after cryogenic turning. Figure 8.19 shows
cryogenic machining drastically reduces thermal stress inducements compared to
conventional dry machining and has therefore higher compressive stress in the
machined surface. Therefore, cryogenic machining improves the machined surface
integrity, while it is known that large compressive residual stresses prolong the
fatigue life of the final product and are therefore desired.

It can be concluded that cryogenic machining, a novel sustainable process,
can offer new opportunities for producing functionally superior products for wind
turbine industry.

8.3.4 Discussion

During the machining processes of hardened steels and other difficult-to-machine
alloys, machine tools often induce large plastic strains (e.g., a shear strain of 5–10)
inside the chip as well as along the machined surface. The chip forms at a high
strain rate, characteristically on the order of 105 s−1, for typical cutting speeds
of 100–300 m/min. A high-temperature gradient also exists in the cutting zone,
characterized by a rapid heating rate of 105–106 ◦C/s and a fast cooling rate of 103–
104 ◦C/s. In these processes, mechanical deformation, heat transfer, and metallurgy
all inherently couple together, leading to different states of microstructural alter-
ations, which significantly affect the functionality and performance of manufactured
products (Field et al. 1972, 1989; Ezugwu 2005; Grzesik and Wanat 2005; Sun
et al. 2010; Jawahir et al. 2016). This strong coupling effect is often termed as
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Fig. 8.17 Capability of the machining process to be performed under different cooling and
lubrication conditions for (a) Normalized AISI 52100 steel and (b) Hardened AISI 52100 steel.
(Original charts are adopted from Biček et al. (2012))

metallo-thermomechanical (MTM) coupling for manufacturing processes (Inoue
2002; Denis et al. 2002; Bailey et al. 2009), as illustrated in Fig. 8.20 for a hardened
steel machining example.

A more comprehensive understanding of the MTM coupling effect will enable
the process optimization to maintain a desired microstructure and ensure the
requisite functionality of the component (Arrazola et al. 2013). However, the MTM
coupling effect is not well understood for hard machining of hardened steels, as
well as laser-assisted machining and cryogenic machining. During these processes,
complex thermomechanical process loading usually arises at a localized domain
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Fig. 8.18 The microstructure below the machined surface for (a) Normalized AISI 52100 steel
and (b) Hardened AISI 52100 steel after cryogenic machining. (Original images are adopted from
Biček et al. (2012))

Fig. 8.19 The residual stress for hardened AISI 52100 steel after cryogenic machining: (a) Along
feed direction; (b) Along cutting direction. (Original charts are adopted from Biček et al. (2012))

during a short-time duration. Hence, it remains very difficult to experimentally study
the MTM coupling effect for these manufacturing processes.

Future research should aim to eliminate these deficiencies by tightly coupling
high-fidelity sub-grid simulations within continuum process simulations to deter-
mine the microstructure at each process step using local conditions. Multiple
microstructure evolution mechanisms, including mechanical deformation-induced
grain refinement, discontinuous dynamic recrystallization, surface nanocrystalliza-
tion, and white etching layer formation, should be investigated for different metal
alloys under various process conditions. Then, numerical models can be developed
to simulate the complex coupling of thermomechanical loadings and microstructure
evolution during these machining operations. Predictive relationship development
between processing parameters, material composition, and resulting microstructure
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Fig. 8.20 Metallo-thermomechanical coupling in cutting of steels (Ding and Shin 2012)

will greatly reduce experimental iterations and facilitate the design of experiments
for optimal microstructure control. The new knowledge will contribute to a better
fundamental understanding of manufacturing science, improved knowledge-driven
manufacturing process planning, and more accurate prediction of a component’s
lifetime.

8.4 Outlooks and Conclusions

The conventional composite repair techniques have been developed for decades and
extensively applied throughout most sectors of industry, including wind energy, and
numerous efforts have been made on the improvement or invention of the existing or
novel techniques. Advanced techniques have also been achieved by using UV curing
resin, which can significantly reduce the curing time from hours to minutes. There
is still a great need for the development of the next generation joining method for
FRP and on-site repairing technology to overcome the wide range of repair issues
for wind turbine repair.

Current machining process of hardened steels for bearing and gearbox compo-
nents is summarized. Current achievements in novel machining process of hardened
steel components are discussed for laser-assisted machining and cryogenic machin-
ing. The relationship between the desired surface integrity and manufacturing
process conditions is explained through numerous experimental results in literature.
Both laser-assisted machining and cryogenic machining have been demonstrated as
ideal alternatives to conventional hard turning, allowing significant improvement
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on surface integrity and productivity. More research efforts should be performed in
the future to capture the complex metallo-thermomechanical coupling effect during
these machining operations for wind turbine bearing and gearbox components.
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Chapter 9
Modeling and Analysis of Offshore
Floating Wind Turbines

Zhiyu Jiang, Xiangqian Zhu, and Weifei Hu

9.1 Introduction

9.1.1 Floating Platform

As of 2016, more than 80 offshore wind farms across 11 European countries
have been installed (Wikipedia: Offshore wind power 2016); monopile, gravity, or
jacket structures are the main foundation types. Compared to bottom-fixed turbines,
floating wind turbine technologies are less mature, and most of the development is
still limited by the costs. The Hywind pilot park, the world’s first floating wind farm,
is expected to produce power in late 2017 (Statoil 2017). This wind farm consists of
spar-type floating wind turbines with a total capacity of 30 MW.

Various concepts have been proposed and studied in (Butterfield et al. 2007;
Luan et al. 2016; Myhr et al. 2011; Roddier et al. 2010; Sclavounos et al. 2010;
Skaare et al. 2015). Figure 9.1 shows four floating wind turbine concepts with
different support structures, which have been widely applied by the offshore oil
and gas industry. The passive mooring systems are utilized for station-keeping
purposes, when wind and wave loads are present. All platforms can be divided into

W. Hu
Sibley School of Mechanical and Aerospace Engineering and Department of Earth and
Atmospheric Sciences, Cornell University, Ithaca, NY, USA
e-mail: wh348@cornell.edu

© Springer International Publishing AG, part of Springer Nature 2018
W. Hu (ed.), Advanced Wind Turbine Technology,
https://doi.org/10.1007/978-3-319-78166-2_9

247

Z. Jiang
Department of Marine Technology, Norwegian University of Science and Technology,
Trondheim, Norway
e-mail: zhiyu.jiang@ntnu.no

X. Zhu (�)
School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
e-mail: zhuxiangqian@pusan.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78166-2_9&domain=pdf
mailto:zhiyu.jiang@ntnu.no
mailto:wh348@cornell.edu
https://doi.org/10.1007/978-3-319-78166-2_9
mailto:zhuxiangqian@pusan.ac.kr


248 Z. Jiang et al.

Fig. 9.1 Illustrations of horizontal-axis floating wind turbines supported by a spar buoy, a tension
leg platform, a semisubmersible platform, and a barge

three general categories based on the physical principle to achieve static stability:
ballast stabilized, buoyancy stabilized, or mooring stabilized. Spar-type wind
turbines are intended for deep water and are ballast stabilized with deep draughts.
Semisubmersible wind turbines have lower draughts and are under consideration for
both immediate water and deep water. Those platforms achieve stability primarily
by water plane stiffness; some have active ballast system in addition (Roddier et al.
2010). Compared with spar and semisubmersible turbines, tension leg platform wind
turbines are “stiffer” in that the natural periods of the vertical platform motions
(heave, roll, and pitch) are placed below the wave period of 4 s rather than above.
The tension leg platforms achieve stabilities by mooring line tension. The barge-
type turbines have large water plane areas and hydrostatic stiffness, but no attempt
has been made to bring the concept to real life, probably because of the large wave-
induced motions. In practice, all floating wind turbine concepts are hybrid designs
that gain static stability from all three categories.

9.1.2 Mooring System

The marine cables can be classified into three groups: the taut cable, the towed cable,
and the mooring cable, respectively, as shown in Fig. 9.2. The floating structure
moves within a small range if it was positioned by taut cables (Jonkman and Matha
2010). The TLP (tension leg platform) is a classical facility tethered by the taut
cables. The cables are highly tensioned so that the restoring moments are generated
when the platform is unbalanced. The towed cables are used to connect two marine
vehicles and may transmit the electrical signal. The towed cable moves with the
marine vehicles and has obvious motions compared with the surrounding fluid,
so the dynamics of the cables are considered in analyses, as done by (Buckham
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Fig. 9.2 Examples of cables in marine engineering (Engineering 2017), (Nexans 2017), (Offshore
2017)

et al. 2000, 2003; Buckham 2003; Milinazzo et al. 1987). Some towed cables are
armored as in (Kim et al. 2012), so the torsion and bending effects are included in the
governing equations. Floating structures move with a large range when positioned
by mooring cables. Generally, mooring cables are made of heavy chains and move
slowly in the fluid, so the inertial effects and the stretching of the cable and the
hydrodynamic loads on cables are neglected (Agarwal and Jain 2003; Gobat and
Grosenbaugh 2001; Umar and Datta 2003). The system motions are analyzed based
on static analysis of the cables.

However, the stretching of the cables dissipates the transient tension (Tahar and
Kim 2008; Xu and Chen 2014), and the hydrodynamic loads acting on cables
have significant effects on the global motions of the floating facilities (Kim et al.
2013). Additionally, many mooring cables are made up of composite materials, and
the inertial effect cannot be ignored. The National Renewable Energy Laboratory
(NREL) planned to extend the MAP (Mooring Analysis Program) from the quasi-
static analysis to the dynamic analysis (Masciola et al. 2013, 2014) to obtain
more accurate results during simulations of floating wind turbines. An established
cable model, based on the lumped-mass method, is shown in Fig. 9.3. This model
considers the axial stiffness and damping force of the cables, the hydrodynamic
drag forces, the apparent weight, and dynamical inertia. These loads are expressed
based on the lumped-mass model in which the element reference frame (ERF) is a
critical medium to express both the loads acting on cable and motions of cable easily
with respect to the inertial reference frame (IRF). A new ERF is generated based on
the vectors of the element orientation vector and the relative velocity of the cable
(Zhu and Yoo 2017). The advantages of the new ERF are (1) the cable modeling
deals with singularity problems that are generated by the Frenet frame and the Euler
angle, (2) the hydrodynamic loads are expressed efficiently, and (3) the nonlinear
breakup of the drag between the normal and tangential directions are solved, which
correctly express the hydrodynamic drag force even for straightly taut cables.
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Fig. 9.3 A marine cable
modeled by the lumped-mass
method

9.1.3 Analysis Tools

The dynamic analysis of the offshore floating wind turbine relates to flexible
multibody dynamics, hydrodynamics, aerodynamics, control, mooring loads, and
so on. There exist a few commercial software, among which the GH bladed is
used to simulate land-based wind turbines (Bossanyi 2009), but it has not been
recognized on the simulation of the floating wind turbines. In recent years, NREL
has been sponsoring the development, verification, and validation of comprehensive
aero-servo-elastic simulators through the national wind technology center. Among
the developed simulators, FAST can predict the coupled dynamic response of land-
and offshore-based horizontal-axis wind turbines (HAWTs) well. In the following,
FAST, together with another state-of-the-art aeroelastic code, HAWC2, will be
discussed.

9.1.3.1 FAST

FAST stands for Fatigue, Aerodynamics, Structures, and Turbulence. Developed
by NREL, FAST is a nonlinear time-domain simulator that employs a combined
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Fig. 9.4 Workflow of the FAST system (Jonkman 2007)

modal and multibody dynamics formulation, considering limited numbers of DOFs.
It provides a central platform that combines AeroDyn, HydroDyn, MAP, and other
simulation tools, as shown in Fig. 9.4 (Jonkman 2007). AeroDyn uses the blade
element momentum (BEM) theory with empirical corrections to calculate the rotor
aerodynamics. A more advanced approach, the generalized dynamic wakes (GDW)
method, is also available. The tip loss and the turbulent wake state and stall delay
are considered by the AeroDyn. HydroDyn is used to analyzed the wave loads, such
as the linear hydrostatic restoring, the added mass and damping contributions, the
free-surface memory effects, and the nonlinear viscous drag (Jonkman 2007; Matha
2009). Mooring Analysis Program (MAP) is a tool to analyze the multi-segmented
quasi-static cable system (Masciola et al. 2013) in which the hydrodynamic loads
are ignored. The mooring loads are functions of the six DOFs of the floating
platform and act on the center of mass (CM) of the platform for simplicity. However,
the quasi-static type is not able to satisfy the accuracy requirement currently due
to the application of the new materials in the mooring system. The simulator,
MoorDyn, is developed to consider the dynamics of mooring cables (Hall 2015;
Wendt et al. 2016). MoorDyn is an open-source dynamic mooring line model. It
uses a lumped-mass formulation for modeling axial elasticity, hydrodynamics, and
bottom contact.
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9.1.3.2 HAWC2

HAWC2 is an aeroelastic code intended for wind turbine calculations in the time
domain (Larsen 2009). The structural model of HAWC2 is based on the multibody
formulation. The structure is divided into a number of independent bodies with
coupling interconnected between them. While large translation and rotation is
allowed for the coupling point, small deflections are assumed within each body.

The aerodynamics based on the BEM theory in HAWC2. The BEM model is a
steady-state model and should be extended to handle unsteady aeroelastic features
such as the dynamic inflow, the dynamic stall, the skew inflow, and the shear effects.
The transient aerodynamic loads are generated by time-varying blade loads due
to turbulent wind and control actions. They are treated at two levels, unsteady
airfoil aerodynamics and the dynamic inflow models. The former deals with the
unsteady non-separated effects from shed vorticity and dynamic stall models. The
latter accounts for the variations in the inflow velocity, structural vibrations, and tip
pitch changes. The MHH Beddoes-Leishman dynamic stall model is employed to
calculate the unsteady aerodynamic lift, drag, and pitching moment on an airfoil
section undergoing motion in heave, lead-lag, and pitch. The model considers the
effects of shed vorticity from the trailing edge and the effects of stall separation
caused by an instationary trailing edge separation point (Hansen et al. 2004). The
dynamic inflow model in HAWC2 is handled by two first order filters: one for the
near wake contribution and one for the far wake. This enables to account for the
time lag in update of wake due to load changes. Besides these, other corrections that
include the Prandtl tip loss and the skew inflow are also implemented.

Figure 9.5 shows the modularized flowchart procedure. All of the controlled
actions, subsystem dynamics, and the hydrodynamic and mooring forces are
handled by external dynamic-link libraries (DLL) compiled to a programming
language. By doing so, the actual algorithm can be compiled separately from
the program. Additional scenarios such as the initiation of fault and subsequent
supervisory control behavior are specified here. If the turbine has a subsystem that
cannot be modeled directly by the main program, users may also implement the
system in a DLL as well. At each time step, the main program feeds the sensor
information including the position and velocity of the bodies to the DLL and
receives the control actions in return.

9.2 Geometric Configuration and Environmental Conditions

9.2.1 Geometric Configuration

The geometry of the 5 MW offshore floating wind turbine refers to the “OC3-
Hywind” system by NERL (Jonkman et al. 2009, 2010). The property of the wind
turbine and of the floating spar platform is shown in Table 9.1 and Table 9.2,
respectively.

The profile of the blade and wind tower can be found in (Jonkman et al. 2009,
2010).
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Fig. 9.5 Modularized computational flowchart for floating wind turbines in HAWC2

Table 9.1 Structural properties of the NREL 5 MW wind turbine

Rating 5 MW
Rotor orientation, configuration Upwind, 3 blades
Control Variable speed, collective pitch
Drivetrain High-speed multiple-stage gearbox
Rotor, hub diameter 126 m, 3
Hub height 90 m
Cut-in, rated, cutout wind speed 3 m/s, 11.4 m/s, 25 m/s
Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm
Rated tip speed 80 m/s
Overhang, shaft tilt, precone 5 m, 5◦, 2.5◦
Rotor mass 110,000 kg
Nacelle mass 240,000 kg
Tower mass 347,460 kg
Coordinate location of overall CM (−0.2 m, 0.0, 64.0 m)
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Table 9.2 Structural properties of the spar platform

Depth of platform base below SWL 120 m
Elevation to platform top above SWL 10 m
Depth to top of taper below SWL 4 m
Depth to bottom of taper below SWL 12 m
Platform diameter above taper 6.5 m
Platform diameter below taper 9.4 m
Cut-in, rated, cutout wind speed 7,466,330 kg
CM location below SWL along platform centerline 89.9155 m
Platform roll inertia about CM 4,229,230,000 kg.m2

Platform pitch inertia about CM 4,229,230,000 kg.m2

Platform yaw inertia about platform centerline 164,230,000 kg.m2

9.2.2 Wind Speed

According to the rated power of the NREL 5 MW offshore wind turbine, the wind
speed is around 11.4 m/s. A real-time monitoring data of the wind speed is adopted
from a meteorological observation station that is 10 m above the still water level.
The wind speed of every height can be obtained through (Journèe and Massie 2001),
as shown in Eq. (9.1).

Vj = Vr
(
Zj/Zr

)0.11 (9.1)

where Zj represents the height of measuring points, which are the time- and position-
dependent values, Zr represents the height of the standard measuring point that is
10 meters above the SWL, Vj represents wind speeds of each measure point, and Vr

represents the standard wind speed, which is measured at standard measuring point.

9.2.3 Waves

A surface wave is generated according to the linear wave theory (Journèe and Massie
2001). The elevation of surface wave ζ corresponds with the superposition of waves
propagating independently in the X- and Y-directions, as shown in the following
equation:

ζ = ζ xa cos
(
kxXg − ωxt)+ ζ ya cos

(
kyYg − ωyt) (9.2)

The superscripts ()x and ()y indicate the evaluation of () with respect to waves
propagating in the X- and Y-directions, respectively. Therefore, ζ xa and ζ ya denote
wave amplitudes, ωx and ωydenote circular wave frequencies, kx and ky denote
wave numbers in the X- and Y-directions, respectively. Xg and Yg are the position
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coordinates in the inertial reference frame. Assuming an infinite water depth, the
wave lengths, wave numbers, and circular wave frequencies are given by

λx = | g | (T xa
)2

2π
, λy = | g | (T ya

)2

2π
(9.3)

kx = 2π

λx
, ky = 2π

λy
(9.4)

(
ωx
)2 = kx | g |, (ωy)2 = ky | g | (9.5)

where g denotes the vector of gravitational acceleration and T xa and T ya denote wave

periods in the X- and Y-directions, respectively. uig , vig , and wig are the velocity
components of the water particles at the ith node in the X-, Y-, and Z-directions,
respectively, where Ni,1g , Ni,2g , and Ni,3g represent the position components of ith

node in the X-, Y-, and Z-directions, respectively.

uig = ζ xa · ωx · ekxNi,3g cos
(
kxN

i,1
g − ωxt

)

vig = ζ
y
a · ωy · ekyNi,3g cos

(
kyN

i,2
g − ωyt

)

wig = ζ xa · ωx · ekxNi,3g sin
(
kxN

i,1
g − ωxt

)

+ ζ ya · ωy · ekyNi,3g sin
(
kyN

i,2
g − ωyt

)

(9.6)

Meanwhile, u̇ig , v̇ig , and ẇig are the acceleration components of water particles.

u̇ig = ζ xa · (ωx) · ekxNi,3g sin
(
kxN

i,1
g − ωxt

)

v̇ig = ζ
y
a · (ωy) · ekyNi,3g sin

(
kyN

i,2
g − ωyt

)

ẇig = −ζ xa · (ωx) · ekxNi,3g cos
(
kxN

i,1
g − ωxt

)

−ζ ya · (ωy) · ekyNi,3g cos
(
kyN

i,2
g − ωyt

)

(9.7)

Finally, the velocity of the fluid V if is the sum of the wave velocity V iw and the
current velocity V cg , which is given by

V if = V iw + V cg (9.8)

where V iw =
[
uig, v

i
g, w

i
g

]T
and the current is simplified as a constant velocity in

this study.
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9.3 Numerical Modeling

The numerical modeling of floating wind turbine based on the spar platform is
created with respect to the geometric configuration as shown in Sect. 9.2. The loads
acting on the floating wind turbine are composed of the aerodynamic loads acting
on the blades and tower, the hydrostatic and hydrodynamics loads acting on the
spar platform, the inertia characteristics of the system, and the mooring loads acting
on the fairlead of the platform. The loads generated by wave and winds are spatial
and temporal functions and are distributed on the whole surface of the structural. In
here, the modeling of blades, the tower, and spar platform is divided into numbers of
small sections, and distributed loads on a section are expressed with a concentrated
force acting on the geometry center of the section (Zhu and Yoo 2016a). Finally, all
the concentrated forces are summed up according to the strip theory to express the
whole loads.

9.3.1 Blade

A blade rotates within a fully enclosed wind, and the aerodynamic loads acting on
the blade are divided into the lift forces, L, and the drag forces, D, with respect to
the local coordinate, as shown in Eq. (9.9):

L = 1
2ρW

2cCL (α)

D = 1
2ρW

2cCD (α)

(9.9)

where ρ is the air density, W is the relative velocity on the blade, c is the cord length
of a blade section, α is the angle of attack, is the CL and CD are the nondimensional
lift and drag coefficients, respectively. An illustration of the lift and drag forces and
the attack angle is shown in Fig. 9.6. W includes the effect of induced velocity.
BEM is often used to discretize the rotor into many elements and obtain the induced
velocity on each annular segment.

9.3.2 Spar

The modeling of spar is divided into several axial elements as shown in Fig. 9.7
(Zhu and Yoo 2015). The origin of the spar frame is located at the geometric center.
Initially, the directions of the axes coincide with those of the IRF condition. Initially,
the spar is at equilibrium in still water. Because both the acceleration and speed of
the water particles vary with the water depth, the total wave loads are the summation
of the wave loads acting on all the axial elements.
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Fig. 9.6 Schematic of the
lift, drag, and angle of attack
of a blade airfoil

W
c/4 s

c

R

D

L

α

Fig. 9.7 Numerical
modeling of a spar platform

The floating spar survives in a complex environmental condition that can be
expressed using several external forces. The external forces acting on the spar
platform are denoted by Fb, which can be found in Eq. (9.10). It is composed of
the buoyancy FbB , the effects of the added mass and Froude-Krylov force FbA, the
hydrodynamic drag forces FbD , and the associated momentsMb

A generated when the
forces acting on the spar elements are translated to the origin of the spar frame.

Fb = FbB + FbA + FbD +Mb
A (9.10)

The buoyancy is equal to the weight of the displaced fluid and directs the inverse
direction of the gravity. The restoring moments are generated when the buoyancy is
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misaligned with the gravity. Therefore, the buoyancy, the gravity, and the restoring
moments are expressed together, as shown in.

FbB = ρgV 0δi3 −Mbg + Cbq
b

(9.11)

The first term on the right-hand side of the above equation represents the
buoyancy when the spar is in its unmoved position. V0 is the displaced volume of
fluid at that case. The vector δi3 indicates the buoyancy is toward the Z-direction.
The second term is the weight of the spar platform. The last term represents the
change of the buoyancy and restoring moments as the spar is displaced. In view of
the cylinder shape of the platform, matrix Cb is shown as Eq. (9.12), where A0 is
the cross area of the spar and zCB is the Z-component of the center of buoyancy with
respect to the spar frame.

Cb =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 ρf gA0 0 0 0
0 0 0 ρf gV 0zCB 0 0
0 0 0 0 ρf gV 0zCB 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(9.12)

The Froude-Krylov force is introduced by the unsteady pressure generated by
the propagating waves in the horizontal directions. The added mass effects come
from the relative acceleration between the wave particles and the spar platform. The
added mass and Froude-Krylov effects are expressed as.

jF
b

A = (1 + CA) Vsρf · V̇ jf − CAVsρf q̈jb (9.13)

where Vs denotes the volume of the spar element,V̇
j

f is the acceleration of the water

particles at the jth element, and q̈jbrepresents the acceleration of the jth element of
the spar. Because the spar and cable are cylinder shaped, the added mass coefficient
CA is set to be 1 in here (Det Norske Veritas 2010a, b).

According to the Morison equation, the hydrodynamic drag force is a quadratic
function of the relative velocity of the fluid. The hydrodynamic drag force is
expressed as Eq. (9.14), where Cd is the drag coefficient and Ab is the cross area
of the element in the vertical direction. The vector V jf is the relative velocity of the

jth element with respect to the fluid.

jF
b

D = −1

2
CdρfAb | V jf | V jf (9.14)

The velocity of the jth element, q̇jb , is defined as Eq. (9.15). q
b

is the origin of
the spar frame with respect to the IRF, and q̇

b
is the first time derivative of q

b
. A

b
is



9 Modeling and Analysis of Offshore Floating Wind Turbines 259

the rotational transformation matrix (RTM) of the spar. The vector s′jb denotes the

position of the spar element with respect to the spar frame, where s̃′j
b

represents the

skew symmetric of the position vector s′jb .

q̇j
b

= q̇
b

− A
b
s̃′j
b
ω′ (9.15)

The strip theory is used to sum up the hydrodynamic loads, the effect of the added
mass, and the Froude-Krylov force acting on the submerged spar elements. These
forces are expressed with respect to the local frame of the spar and concentrated at
the center of each element. The associated moments, as shown by Eq. (9.16), are
added while translating the forces acting on the elements to the origin of the spar
frame.

Mb
A =

M∑

j=1

(
j,1F

b

A · s′j,3b + j,1F
b

D · s′j,3b
)

(9.16)

where j,1F
b

A is the first value of the jth vector FbA and s′j,3b is the Z-directional

component of s′jb , which is the position vector of the jth element of the spar with
respect to the spar frame. The added momentMb

A is valid only when the jth element
is submerged in the fluid.

9.3.3 Mooring Cable

The mooring cable is modeled by the lumped-mass model consisting of nodes and
elements. The nodes are the embodiment of the cable modeling and have inertial
properties, whereas the cable element is massless and acts as a carrier for both
the internal and external loads that are finally carried by cable nodes. Based on
researches (Zhu and Yoo 2016a, 2017), the cable is simplified using the lumped-
mass-and-spring modeling scheme, wherein the cable is divided into N elements
ordered from top to bottom, as shown in Fig. 9.3. The previous paper developed a
new ERF by which the formulations of both the rotational transformation matrix
and the external forces are effectively expressed. Element position vector Eig is
expressed by the positions of the terminal nodes, as given by Eq. (9.17). Relative
velocity V Rg is the mean value of the relative velocities acting on the terminal nodes,

as given by Eq. (9.18). Ṅ
i

g is the velocity of the ith node:

Eig = Ni+1
g −Nig, (9.17)
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Fig. 9.8 Element-fixed
reference frame

V Rg = V i+1
g +V ig

2 ,

V ig = V
f
g − Ṅ ig,

(9.18)

zi = Eig∥∥∥Eig
∥∥∥
,

xi = z̃iV Rg∥∥∥z̃iV Rg
∥∥∥
,

yi = z̃ixi .

(9.19)

Unit axis zi directs the orientation of the ith element and is obtained by unitizing
the element position vector Eig , as illustrated in Fig. 9.8 (Zhu and Yoo 2016a). Unit

axis xi is perpendicular to plane P1, which is composed of unit axis zi and relative
velocity, V Rg . According to the right-hand principle, unit axis yi is perpendicular to

plane P2, which is composed of unit axes zi and xi . The unit axes of the ith element
are given specifically by Eq. (9.19).

The forces acting on the cable include the stiffness of the cable T ib, damping of
the cableDib, hydrodynamic drag forces F iz and F iy , and apparent weight F iW . These
forces are expressed in detail in references (Buckham et al. 2003; Milinazzo et al.
1987; Huang 1994) and are briefly listed in Eq. (9.20):
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T ib = πd2
c

4 Eε
i
bz,

Dib = CdA
iT
(
Ṅ i+1
g − Ṅ ig

)
z,

F iz = π
2Cfρfd

ili
∥∥∥V Rg

∥∥∥ zT V Rg ,

F iy = − 1
2Cnρfd

ili
∥∥∥V Rg

∥∥∥ xT
(
z̃V Rg

)
,

F iW = (
mic −mif

)
g,

(9.20)

where εib is the axial strain, li represents the length of the ith cable element, and
the masses of the cable and the displaced fluid for the ith element mic and mif are
given by.

εib = li−li0
li0

li =
√
EiTg E

i
g

mic = πd2
c

4 l
i
0ρc

mif = πd2
c

4 l
i
0ρf

(9.21)

The mass matrix of the ith element with respect to the ERF is given by Eq.
(9.22). The added mass effect along the cable axial is ignored; CA is the added
mass coefficient.

Mi =
⎛

⎝
mic + CAmif 0 0

0 mic + CAmif 0
0 0 mic

⎞

⎠ . (9.22)

Mass matrices of the nodes with respect to the IRF are expressed by mass
matrices of the elements with respect to local reference frame. Here, the mass matrix
of the ith node Mi

I is composed of the element-mass matrices Mi−1
b and Mi

b and is
given by

Mi
I = 1

2
Ai−1Mi−1

b Ai−1T + 1

2
AiMi

bA
iT. (9.23)
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Fig. 9.9 Impact of seabed on mooring cable

Finally, the forces acting on each cable element are shared equally by the element
terminal nodes. The governing equation for the ith node is defined by the forces
acting on the (i − 1)th and the ith element, as given by Eq. (9.24).

MiN̈ig = Ai
(
T ib +Dib + 1

2F
i
D

)

−Ai−1
(
T i−1
b +Di−1

b − 1
2F

i−1
D

)
+ 1

2

(
F iW + F i−1

W

) (9.24)

The impact of the seabed on the cable is divided into three components with
respect to the IRF, as shown in Fig. 9.9. The vertical component, F i3SB , is a function
of the relative displacement and velocity of the grounded nodes with respect to
the seabed; the X- and Y-components, F i1SB and F i2SB , are functions of the relative
velocities and the vertical component of the impact, as shown in Eq. (9.25) where
Ksb, Csb, and μ denote the stiffness, the damping coefficients, and the friction
coefficient of the seabed, respectively:

F i3SB = Ksb

(
Dsb −Ni3g

)
− CsbṄ i3g

F i1SB = μ F i3SB Ṅ
i1
g

F i2SB = μ F i3SB Ṅ
i2
g

(9.25)

9.3.4 Governing Equations

The constraints define the relationship between two independent bodies. A rigid
body has six DOFs in three dimensions, while a mass point only has three
translational DOFs. Three-dimensional spherical joint modeling was well developed
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in references (Nikravesh 1988; Bauchau 2010), but an applicable modification is
needed for connecting the spar and cable, because the cable node only has three
translational DOFs. The constraint equation �sph is expressed by.

�sph = q
b

+ A
b
s′jb −N1

g (9.26)

Because the first node of the cable connects to the floating spar, the positon vector
of the first node, N1

g , is used to express the constraint. The Jacobian matrix of the
constraint equation is shown in Eq. (9.27).

�sph
q

=
[
I − A

b
s̃′j
b
G′ − I

]
(9.27)

ω′ = G′θ̇ b (9.28)

The rotation angles of the Euler angle set are chosen as the general coordinates.
The relationship between the angular velocities of the body and the rotation angles
is expressed usingG′, as shown in Eq. (9.28). The Euler angle set, X-Y-Z, expresses
the rotation of the spar with respect to the IRF in here. The G′ for the Z-X-Z
set is given by Shabana (Shabana 2013), the G′ for the X-Y-Z set can be derived
according to Greenwood (Greenwood 1988). γ is rest components of the constraint
equations and composes of the general coordinates and the first derivation of the
general coordinates with respect to the time as given in

γ =
(
A
b
ω̃′s̃′j

b
G′ + A

b
s̃′j
b
Ġ

′)
θ̇
b

(9.29)

Finally, the equation of motion for the system of floating spar with mooring
cables is expressed in Eq. (9.30). M is the mass matrix of the system, and Q is
the external forces modified according to the relationship between the orientation of

the structure and the rotation angles. The matrix
(
�
sph
q

) T
denotes the transposed

Jacobian matrix.
⎡

⎣ M
(
�
sph
q

) T

�
sph
q 0

⎤

⎦
[
q̈

λ

]
=
[
Q

γ

]
(9.30)

9.3.5 Numerical Results

The accuracy of the cable modeling has been verified by both commercial software
and experiments (Zhu and Yoo 2016d). A simple numerical model is created to
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illustrate the dynamic behavior of the cables of a floating spar platform. The bottom
of the spar platform is tethered by one cable, and the bottom of the cable is fixed
to the seabed. The properties of the spar and the cable are shown in Table 9.3 and
Table 9.4, respectively. This model is subjected to the X-directional waves, the Y-
directional waves, and the X-directional current. The sea state parameters are shown
in Table 9.5.

The tension in the cable, the three-directional reaction forces of the cable acting
on the fairlead of the spar platform, and the apparent weight of the cable in the sea
are shown in Fig. 9.10. The results indicate that the Z-directional reaction force is
much close to the tension force in the cable. Since the bottom of the cable is fixed
to the seabed, both the gravity force and the hydrodynamic force of the cable sink it
to the bottom of the sea, but the buoyancy of the spar drags the cable to a dynamic
equilibrium position. Because the cable is fully submerged, the apparent weight is
constant and is much smaller than the tension in the cable. This indicates that the
hydrodynamic force on the cable has a great impact on the fairlead position of the
spar. Due to the X-directional current, the X-directional force is larger than the Y-
directional force. The relationship of the cable tension with the frequencies of the
propagating waves can be found in references (Zhu and Yoo 2016a, b).

Table 9.3 Properties of the
spar

Diameter of spar 0.5 m
Mass of spar 500 kg
Length of spar 6 m
Center of mass above bottom 1 m
Drag coefficient 1
Added mass coefficient 1
No. of elements 100

Table 9.4 Properties of the
cable

Diameter of cable 0.03 m
Density of cable 3570 kg/m3

Elastic modulus 2.38 Gpa
Damping coefficient 1000 Ns/m
Transversal drag coefficient 1
Longitudinal drag coefficient 0.01
Added mass coefficient 1
Position of the top node (0,0,-2.98) m
Position of the bottom node (0,0,-30) m
No. of elements 20

Table 9.5 Sea state
parameters

X-directional wave amplitude 0.6 m
X-directional wave period 6 s
Y-directional wave amplitude 0.6 m
Y-directional wave period 6 s
Current (0.5,0,0) m/s
Water density 1025 kg/m3,
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Fig. 9.10 The tension force within the cable, the three-directional reaction forces of the cable
acting on the fairlead of spar platform, and the apparent weight of the cable in the sea

9.4 Dynamic Behavior of Floating Wind Turbines

Floating wind turbines are subjected to the combined load effects of wind, waves,
control actions, and rarer events such as earthquakes and ship collisions. When it
comes to the dynamic behavior of floating wind turbines, there exist disparities
among the aforementioned concepts because of their inherent characteristics. We
illuminate this point by an example. Figure 9.11 shows a typical relation between
rotor thrust characteristics for a pitch-regulated wind turbine with a control fre-
quency of 0.1 Hz. Above the rated wind speed, negative thrust gradient is observed
because of the changed blade pitch, which changes the direction of the effective
force. This controller, if applied to a spar-type floating wind turbine, will result
in instabilities in the platform surge motion, because the traditional controller is
faster than the pitch natural frequency of the Hywind Demo (0.035 Hz) (Larsen and
Hanson 2007). However, if the same controller is used for a tension leg platform
wind turbine with a pitch natural frequency of 0.3 Hz, the instability issue will not
appear.

In this section, we direct the readers’ attention to the dynamic behavior of spar-
type floating wind turbines. The response characteristics of a spar-type turbine are
highlighted under fault conditions.
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Fig. 9.11 Relation between rotor thrust and wind speed for a typical pitch-regulated wind turbine

Table 9.6 Occurrence evaluation criteria from Ireson et al. (1996)

Probability of faults Rank Likely fault rate

Remote: Unlikely fault 1 <0.1% of faults
Low: Rare fault 2 0.1–1% of faults

3 1–2% of faults
Moderate: Occasional fault 4 2–3% of faults

5 3–4% of faults
6 4–5% of faults

High: Repeated fault 7 5–10% of faults
8 10–15% of faults

Very high: Almost inevitable faults 9 15–20% of faults
10 >20% of faults

9.4.1 Wind Turbine Faults and Control Remedies

During wind turbines’ lifespan, many turbine components are exposed to faults and
failures. A fault refers to unpermitted deviation of characteristic properties of the
system from the acceptable condition, and failure refers to a permanent interruption
of a system’s ability to perform a required function under the specified operating
conditions. Although faults and failures are different, they are often interchangeably
used. Faults can be classified based on their occurrence and the severity of their end-
effects. Table 9.6 quantifies the occurrence on a scale from 1 to 10, and these values
have only a relative meaning. Table 9.7 provides the severity scale that is applied in
the failure mode and effect analysis during product development processes. Severity
refers to the harm inflicted on wind turbines or other products.
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Table 9.7 Severity evaluation criteria from Stamatis (2003)

Effect Rank Criteria

No effect 1 No effect on product or subsequent processes
Very slight effect 2 Very slight effect on product/service performance. Non-vital

faults noticed sometimes
Slight effect 3 Slight effect on product/service performance
Minor effect 4 Minor effect on product/service performance. Fault does not

require attention. Non-vital faults always noticed
Moderate effect 5 Moderate effect on product/service performance. Fault in

non-vital part requires repair
Significant effect 6 Product/process performance degraded, but operable and safe.

Non-vital service incomplete
Major effect 7 Major effect on service; rework on service necessary.

Product/process performance severely affected but functioning
and safe. Subsystem incomplete

Extreme effect 8 Extreme effect on process/service; equipment damaged.
Product/service incomplete but safe. System incomplete

Serious effect 9 Potential hazardous effect. Able to stop product/service without
mishap. Safety-related. Time-dependent failure. Disruption to
subsequent process operations. Compliance with government
regulation is in jeopardy

Hazardous effect 10 Hazardous effect. Safety-related sudden failure.
Non-compliance with government regulation

Table 9.8 Evaluation of selected wind turbine faults from Mohammed and Aboelyazied (2007),
Esbensen and Sloth (2009), Johnson and Fleming (2011)

Fault specification Component Effect Occurrence Severity

Dirt on blades Blade surface Decreased efficiency 10 3
Biased sensor output Pitch sensor Unbalanced rotation 3 6
Pump leakage Pitch actuator Changed dynamics 3 8
Valve blockage Pitch actuator Out of control 3 8
Bearing wear Drivetrain Decreased efficiency 3 3

Table 9.8 lists selected wind turbine faults from various sources in the public
domain. Sensor faults and actuator faults are the two primary fault types. Many
modern wind turbines contain a supervisory control and data acquisition (SCADA)
system and a condition monitoring system. The SCADA system handles input and
output signals and alarms; this system usually samples signals at 10-min intervals
and provides low-resolution monitoring to supervise the operation of wind turbines.
Compared with the SCADA system, the condition monitoring system is more costly,
but it provides high-resolution monitoring of high-risk subassemblies for diagnosis
and prognosis of faults (Tavner 2012). A vast number of sensors are installed on a
modern wind turbine, e.g., rotor speed sensors and pitch position sensors. Because
of the physical redundancy of the sensors, sensor faults can be harmless if they are
detected quickly and the sensor system is reconfigured. Actuator faults can cause
severe consequences if not handled in a timely manner.
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Fig. 9.12 Hierarchy of a wind turbine control system

Figure 9.12 shows a typical hierarchy of the wind turbine control system.
For a pitch-regulated wind turbine and under normal conditions, the operational
controller regulates the power production of the turbine through control of the
blade pitch, generator torque, and yaw. The occurrence of faults changes the system
characteristics and alters the signal output from the sensors. The online condition
monitoring of all wind turbine components enables the control system to detect,
isolate, and accommodate the type, size, and location of the fault at an early
stage. A suite of techniques exist for fault detection and isolation, e.g., observer-
based schemes (Chen et al. 2011), support vector-based schemes (Laouti et al.
2011), and data-driven approaches (Dong and Verhaegen 2011). These techniques
exhibit varying performance in terms of detection time and accuracy. Upon detection
of a fault, the supervisory controller selects a remedial action based on existing
protection strategies. If the fault is controllable, it will be accommodated using
techniques like signal correction and fault-tolerant control. If the situation is severe
and the turbine is not in a safe state, the supervisory controller brings the turbine to
a halt. Note that the hardware safety system is also capable of performing shutdown
independently. In the worst case, if the main control system fails to stop the turbine
safely, the safety system takes over. The safety system normally consists of a hard-
wired fail-safe circuit linking a number of open relay contacts (Burton et al. 2011).
A human operator can override the safety system and execute shutdown under
emergency situations.
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9.4.2 Response of a Spar-Type Floating Wind Turbine Under
Fault Conditions

In the previous section, we have named a few faults, among which the pitch mech-
anism faults are of particular interest to us, as this fault changes the aerodynamic
loading on a turbine.

Since the 1980s, full-span pitching of the blade has been widely employed for
wind turbines. Active pitch control was primarily applied for power regulation but
offers other advantages. The pitch mechanism can be either electric or hydraulic.
There is no clear winner, yet, but maintenance and diagnostics of hydraulic systems
are generally easier because fewer components are used. We focus on the hydraulic
pitch mechanism, which normally consists of the following subsystems:

• Hydraulic cylinders
• Distributed block with filter
• Leak oil container
• Accumulators
• Hydraulic circuit
• Pitch system brackets
• Rotation unions

A simplified sketch of a hydraulic pitch actuator is provided in Fig. 9.13.
Each individual blade can be pitched independently in such a configuration. Pitch
maneuverability is dictated by the internal controller, valve characteristics, and
capacity of the accumulator. Based on the fail-safe design philosophy, the pitch
system of a collective pitch turbine should be able to achieve higher pitch speed
(10–15 deg./s) in an emergency situation.

Fig. 9.13 Configuration of a hydraulic pitch actuator for wind turbine
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Fig. 9.14 Sequence of the
normal operation, fault
development, detection, and
shutdown

Figure 9.14 shows the operation of a wind turbine which experiences a fault
condition. The option of fault-tolerant control applies to less severe faults such as
sensor faults. The pitch system fault is deemed severe by the supervisory controller
and calls for an immediate shutdown. In the numerical simulations, the time length
can be divided into the following four stages:

• Normal operation: Turbine is operational without fault (Time < tf ).
• Fault occurrence: Fault is initiated, but no remedy measures are applied yet

(tf < Time < tf + td).
• Shutdown: The normal blades are pitching to feather (tf + td < Time < ti) with a

rotor speed above 3 RPM.
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• Idling: The rotor speed drops below 3 RPM (Time > ti).

Here, shutdown refers to the pitch-to-feather activity of the pitch-regulated wind
turbines. A mechanical brake may be engaged if necessary. For many utility-scale
wind turbines, the mechanical brakes are mainly used during maintenance. The
numerical simulations were conducted by implementing the control logic in the
DLL, which communicates with the HAWC2 core in discrete time steps. After the
occurrence of faults, the user-defined logic supersedes the operational controller and
performs desired activities on the turbine.

For floating wind turbines, the change in aerodynamic loads is a key driver
of the dynamic responses under the pitch fault and shutdown conditions. Figures
9.15 and 9.16 illustrate the aerodynamic loads on a cross section of a seized and a

Fig. 9.15 Illustration of the aerodynamic loading on a pitching blade during shutdown

Fig. 9.16 Illustration of the aerodynamic loading on a seized blade during shutdown
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Fig. 9.17 Front view of a
rotor during shutdown, with
two pitching blades and one
seized blade

pitching blade at two time instants during the shutdown process. In the figures, α
is the aerodynamic angle of attack (AOA), θp is the pitch angle, V0 is the inflow
wind velocity, ωr is the velocity at radius r induced by the rotation of the rotor,
and W is the relative velocity. As illustrated by Fig. 9.16 during shutdown, a
normal blade experiences a drop in AOA due to blade pitching. The rotor slows
because of the reversal of direction of the lift force and torque, which is the
mechanism of aerodynamic braking. Compared with the pitching blades, a seized
blade experiences a rise in AOA during shutdown. Therefore, the directions of
the aerodynamic forces do not reverse quickly. The pitching blades create a large
aerodynamic force into the wind whereas the seized blade against the wind; see
Fig. 9.17. This leads to imbalanced loads on the rotor plane, and other interesting
motions and global response phenomena on floating wind turbines.

The layout of a 5 MW floating wind turbine is presented in Fig. 9.18. The floating
wind turbine comprises the NREL 5 MW turbine (Jonkman et al. 2009b), a spar
platform, and three sets of mooring lines. The delta-line segments form a bridle
and provide high yaw stiffness for the platform motion. Details of this turbine can
be found in (Jiang et al. 2013a). Note that HAWC2 was used in the following
analysis, and a quasi-static mooring line model was considered. The quasi-static
model ignores the mooing dynamics, which is discussed in Sect. 9.3.3.

Figure 9.19 illustrates the effect of emergency shutdown on the tower-bottom
bending moment. Although one blade is seized and hindered from pitching,
the shutdown process with two pitching blades still triggers great aerodynamic
excitation that pulls the rotor into the wind. Consequently, negative fore-aft bending
moment arises at the interface between the tower structure and the spat platform.
Compared with bottom-fixed wind turbines, the spar-type floating system is more
compliant, and the induced negative moment is not so prominent.
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Fig. 9.18 Schematic layout of a spar-type floating wind turbine

Excessive transient responses are observed for the main-shaft equivalent bending
moment during shutdown, as shown in Fig. 9.20. Such responses are due to the loads
from rotor imbalance and can cause damages on the drivetrain components, e.g.,
main bearing. This phenomenon has been reported on bottom-fixed wind turbines
(Jiang et al. 2013a, b) and is expected for other types of floating wind turbines.
For an investigation on the drivetrain, interested readers are referred to (Nejad et al.
2016).

When one blade is seized during shutdown, because of the uneven aerodynamic
loads across the rotor plane, large platform motions may occur. For spar-type
wind turbines, the yaw motion experiences a significant increase in magnitude, as
illustrated by Fig. 9.21. Compared to normal operational conditions, this increase
can exceed 400%, which indicates an increase in the mooring line tension (Jiang
et al. 2015). During the shutdown phase, strong yaw resonant motion is excited,
with a period close to 8 s. For the tension leg platform and semisubmersible wind
turbines, there are either greater platform stiffness or larger inertia, and the effects
of fault on the platform-yaw motion may not be that severe (Bachynski et al. 2013).
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Fig. 9.19 Time series of the tower responses of the spar-type floating wind turbine (mean wind
speed, 25 m/s; turbulence intensity, 0.15; significant wave height, 5.9 m; peak period, 11.3 s)

Fig. 9.20 Time series of the main-shaft responses of the spar-type floating wind turbine (mean
wind speed, 25 m/s; turbulence intensity, 0.15; significant wave height, 5.9 m; peak period, 11.3 s)
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Fig. 9.21 Time series of the platform-yaw motion of the spar-type floating wind turbine (mean
wind speed, 25 m/s; turbulence intensity, 0.15; significant wave height, 5.9 m; peak period, 11.3 s)

At the design stage of a floating wind turbine, a number of load cases need to
be assessed to ensure that the turbine can survive the worst case during its lifespan.
To have an idea of the importance of the fault cases, we will compare them with
other extreme load cases recommended by the design standards. Among the load
cases (LCs) listed in Table 9.9, LCs 1–3 are fault cases. In LC 1, the grid loss and
shutdown case, the generator torque is lost at a specific time, followed by the pitch-
to-feather shutdown of the three blades. In LC 2, only blade 2 is assumed to be
seized, and its pitch angle is fixed from that specific time. The emergency shutdown
ensues by pitching the remaining two blades. In LC 3, the blade runaway and
shutdown case, one blade is assumed to be uncontrollably moving to the minimum
pitch set (0 deg). A similar shutdown activity follows. In LCs 1–3, a short time
delay, td, exists between the time of fault occurrence and the initiation of shutdown.
The pitch rate of 8 deg./s is used in the emergency shutdown. LCs 4–5 are reference
cases. In LC4 the wind turbines are under normal operation. LC 5 corresponds to the
50-year extreme environmental condition, where significant responses are expected.
The acronym “NTM” stands for normal turbulence wind, and “EWM” stands for
extreme wind speed model. Only collinear wind and wave conditions are addressed
here.

The wind and wave conditions used in the time-domain simulations are listed
in Table 9.10. Here, Uw is the 10-min mean wind speed at the hub height, Hs is
the significant wave height, Tp is the wave peak period, and TI is the turbulence
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Table 9.9 Selected design load cases for ultimate load analysis from International Electrotechni-
cal Commission (2007, 2009)

Load case Category Condition Wind model

1 DLC 2.2 Grid loss and emergency shutdown NTM
2 DLC 2.2 Blade pitch fault (1-blade seize), grid loss, and

emergency shutdown
NTM

3 DLC 2.1 Control system fault (1-blade runaway), grid loss,
and emergency shutdown

NTM

4 DLC 1.1 Power production NTM
5 DLC 6.1 Parked (standstill) EWM

Table 9.10 Wind and wave
conditions for the load cases

LC Uw (m/s) Hs (m) Tp (s) TI

1, 2, 3, 4 8 2.5 9.9 0.15
11.2 3.2 10.0 0.15
14 3.6 10.3 0.15
17 4.2 10.5 0.15
20 4.8 10.8 0.15

5 49.4 15.6 15.4 0.10

intensity. For the floating wind turbine, the environmental conditions are selected
using the joint probability density distribution of the characteristic parameters of
the Statfjord site, located in the northern North Sea (Johannessen et al. 2001).

Figure 9.22 compares the fault cases with the extreme load case in the parked
condition. For the floating wind turbine, the studied grid loss case, pitch fault
case, and controller fault case are not as critical as the case with extreme wind
speed for dimensioning tower structures. For the ultimate load analysis of blades,
the controller fault case produces 50% greater flapwise bending moments than the
extreme case. The large yaw motion in fault cases indicates the need to perform a
design check on the mooring line extreme loads. Most important, the main-shaft
bending moment under the fault conditions can more than double the reference case
and should catch attention for drivetrain design.

9.5 Conclusions and Future Recommendations

9.5.1 Conclusions

Continuous research activities have contributed to more accurate modeling and
analysis of floating wind turbines. Compared to land-based wind turbines, floating
platforms have more complicated dynamics, because of the station-keeping system
and the platform motions, which affect the aerodynamics and control actions. It is
important to consider advanced modeling methods to capture the dynamic perfor-
mances of the floating systems. The mooring cable modeling method introduced in
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Fig. 9.22 Normalized extreme responses in load cases 1–4 against the reference case (LC5), spar-
type wind turbine

this chapter can be applied to various mooring systems of floating wind turbines.
For a floating wind turbine in operation, the mechanism of pitch fault and shutdown
and the effect on dynamic responses are presented in this chapter. The fault can
excite strong dynamic response of the system. The platform-pitch and platform-
yaw resonant responses of the spar-type wind turbine are observed. Significant
responses, sometimes more than twice those of the extreme wind speed case, can
be found in the main-shaft bending moment and tower-top bending moment. For
the blade-root flapwise bending moment, the pitch controller fault and shutdown
should raise concern at the design stage.

9.5.2 Future Recommendations

Because of the terrestrial constraints on the seabed, the layout of the mooring system
may not be symmetrical, and the impact between the cable and the seabed generate
unbalanced loads on the fairlead. Future study should focus on the dynamic behavior
of the wind turbines considering unbalanced loads from the mooring system.

Faults should be immediately diagnosed and detected upon occurrence for the
safety of wind turbines. Therefore, machine learning models, such as the support
vector machines, may be applied in the condition monitoring of wind turbine
systems. For minor faults such as biased pitch sensor output, it is not economically
viable to shut down the wind turbine after detection, and advanced control strategies
are needed to continue power production. These interesting research topics can be
pursued in the future.
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Chapter 10
Advanced Wind Turbine Control

Na Wang

10.1 Introduction

Wind energy is one of the fastest growing sources of electrical energy in the world,
with an average increase in installed capacity of nearly 25% per year from 23.9 GW
in 2001 to 486.79 GW in 2016 (GWEC 2017). In the USA, the cumulative installed
wind power capacity reached 82.184 GW by the end of 2016 (GWEC 2017), and the
electricity produced from wind power amounted to 6% of all electrical energy (U.
S. D. of Energy 2017). By 2016, in the European Union (EU), a total of 163.33 GW
was installed and supplied 10.4% of the EU’s electricity consumption (European
2017). With global climate changing, people have become much more interested in
renewable energy, and wind energy is one of the most cost-competitive of renewable
electricity systems. Therefore, it is reasonable to assume that the wind energy
industry will continue to grow in the next few decades. In Europe, 230 GW of wind
capacity are expected to be installed by 2020, which will produce up to 17% of
the EU’s electricity (Taylor 2010). The US Department of Energy (DOE) has also
published a report outlining the steps required to achieve 20% wind energy in the
USA by 2030; one of the factors in the report is advanced turbine control (U. S. D.
of Energy 2012).

Advanced control, which is one of many disciplines that can contribute to a
decrease in wind’s cost of energy, is becoming more critical due to the increased
flexibility of and coupling between structural modes in the wind turbines (Laks et al.
2009). Wind turbines have grown in size significantly over the past decades for many
reasons, including advances in research and development and economies of scale.
The diameter of the rotor of a commercial wind turbine with rated power of 5 MW
is about 126 m (Jonkman et al. 2009). Compared to their smaller counterparts, large
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modern wind turbines are exposed to higher and more complex loads. The alleviated
structural and fatigue loads will significantly decrease the turbine cost by lessening
the maintenance requirements and improving overall turbine reliability. In addition,
the power capture efficiency is another concern in the wind industry. The improved
power capture efficiency will help the turbine to produce more electrical energy
throughout its lifetime.

Implementing sophisticated load and rotor power control techniques could assure
safe and optimal operation in terms of load mitigation and power enhancement
under a range of atmospheric conditions. Therefore, compared with upgrading the
mechanical system to extend the lifetime of turbines, modern control systems are
more attractive and cheaper cost-reducing strategies (Wright 2004). Using advanced
control strategies to make more reliable turbines and upgrade their performance
could increase the efficiency of the power generation and reduce the downtime and
the operation and maintenance costs (Johnson et al. 2008).

In recent years, LIDAR systems able to provide wind speed measurements
upstream of the turbine have been studied for incorporation into wind energy. This
technology opens new control concepts such as feedforward control to increase wind
energy production and to reduce wind turbine fatigue loads. Advanced feedback
controllers can also be combined with feedforward control strategies to further
improve turbine performances. This chapter first provides the basics of wind turbine
control, then offers a comprehensive literature survey on wind turbine control, and
finally focuses on LIDAR-assisted combined feedforward and feedback controllers
that use the knowledge of incoming wind speed to reduce the fatigue loads of wind
turbines and to increase the energy production.

10.2 Wind Turbine Control Basics

The power available in the wind with velocity u is given by

Pwind = 1

2
ρπR2

au
3, (10.1)

where ρ is the air density and Ra is the rotor radius. According to the Betz Limit,
no turbine can extract more than 59.3% of the kinetic energy from the wind. Cp is
the power coefficient and is given by the ratio of the power captured by the rotor to
the power available in the wind, or

Cp = Protor

Pwind
. (10.2)

Cp is shown as a function of the tip-speed ratio (TSR) λ and blade pitch angle β in
Fig. 10.1. TSR is defined as
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Fig. 10.1 Cp versus TSR and blade pitch angle for the CART3. CART3’s Cp-TSR-Pitch surface
is fairly flat close to its peak at a TSR of 5.8. The marked points indicate its peak and a sub-optimal
design point with TSR of 7.1

λ = �

u
Ra, (10.3)

where � is the rotor speed.
The aerodynamic torque τaero exerted on a turbine’s rotor is given by

τaero = 1

2
ρπR3

a

Cp

λ
u2. (10.4)

For a turbine to operate at a constant rotor speed �, the generator torque τc must be
equal to the aerodynamic torque τaero. When τaero > τc, the turbine will accelerate
and vice versa according to

JT �̇ = τaero − τc, (10.5)

where JT is the equivalent combined moment inertia of the rotor, the gear box, the
low-speed shaft (LSS), and the high-speed shaft (HSS).

Three operating regions are defined in Fig. 10.2 (Pao and Johnson 2009). In
Region 1, the wind speed is so low that starting up the turbine is not worthwhile.
Once the wind speed reaches a turbine-specific minimum, which is often between 3–
5 m/s, the machine will start up. In Region 2, the wind speed is below rated, which is
the value at which the turbine first reaches its maximum power output and is usually
in the vicinity of 12 m/s. In this region, the wind turbine is designed to capture
as much power as possible by adjusting the generator torque to optimize power
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Fig. 10.2 Power curve and
generator torque curve for the
CART3

coefficient. Since rotor power is given by the product of available power (10.1) and
power coefficient (10.2), the generated power increases according to a cubic law
with wind speed assuming no energy loss in neither the gearbox nor generator.
In Region 2, pitch angle is often controlled to the constant value that gives
maximum Cp.

In Region 3, as shown in Fig. 10.2, the wind speed is above rated. The rotor speed
and generator power should be limited to their rated values to avoid mechanical and
electrical component damage. Generator torque is often held at rated, and blade
pitch angle is used to limit aerodynamic power by regulating turbine speed to the
rated speed. Load mitigation on the blades and tower should be considered in this
region.

A control system consists of sensors, actuators, and compensators. The control
objectives are defined according to the turbine’s operating regions. The basic
structure of the wind turbine control loops is shown in Fig. 10.3.

Current commercial wind turbine pitch control algorithms are typically feedback
only. Though the details of modern utility-scale turbine control algorithms are pro-
prietary and closely protected by industry, until recently most feedback controllers
have been fairly straightforward proportional-integral (PI)-based collective blade
pitch controllers. These controllers typically operate on an input signal such as the
error in rotor speed (or power) in Region 3 wind conditions. In this research, a
PI collective blade pitch controller shown in Fig. 10.4 was selected as the baseline
controller.

Based on (10.5), a generator torque control algorithm can be defined by

τc = k�2, (10.6)

where k is the torque coefficient, which is derived to make τc = τaero at the optimal
TSR λ∗ and is given by
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Fig. 10.4 A PI collective blade pitch control configuration in above rate wind speed condition

k = 1

2
ρπR5

a

Cpmax

λ3∗
. (10.7)

The torque controller (10.6) and (10.7) is designed to maximize Cp (Johnson et al.
2006) and λ∗ and β∗ are the optimal TSR and blade pitch angle, respectively, at
which the maximum Cp (Cpmax = Cp(λ∗, β∗)) occurs. Generally, the pitch angle
is kept constant at β∗, which is also known as the fine pitch angle, below rated wind.
The generator torque algorithm (10.6) and (10.7) was taken as the baseline torque
controller for CART3 in this research.

Yaw control is used to adjust the wind turbine to be aligned with the wind
direction (Ragheb 2009). In this research, yaw is assumed to operate acceptably,
and the novel turbine control methods developed are focused on advanced blade
pitch and torque controllers.
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10.3 Literature Review

Numerous advanced control techniques for wind turbine fatigue load alleviation
have been developed over the past few years.

10.3.1 Speed Control

Classical PI control is typically used in the industry for blade pitch controllers to
regulate turbine speed with varying wind conditions. Desired closed-loop char-
acteristics can be achieved by selecting proper PI gains. A PI pitch controller
designed using the root locus method for a fixed speed wind turbine is described
in Jaucha et al. (2007). Optimal algorithms formulated to design the PI parameters
are presented in Ghadimi (2011). Further discussions on methods of choosing the PI
gains are summarized in Hand (1999). Generally, in the absence of knowledge of the
wind disturbance, PI pitch control strategies are the easiest-to-implement methods
for regulating turbine speed in Region 3.

In addition to the PI control strategies, other linear feedback control tech-
niques that have been investigated include full-state feedback control, disturbance-
accommodating control (DAC), and linear quadratic regulators (LQRs). Full-state
feedback and DAC methods have been applied to reduce blade loads by rejecting
the wind disturbances modeled as a step or sinusoids (Wright 2004; Stol and Balas
2003; Hand et al. 2004). Time-varying LQR techniques for a two-bladed teetering
hub turbine operating in Region 3 are discussed in Stol (2003).

Most of these linear time-invariant (LTI) controllers are designed for one specific
operating point, so performance may degrade when the wind turbine operates away
from that operating point and may be limited by the highly nonlinear characteristics
of the wind turbine. Gain-scheduling techniques such as those described in Stergaar
et al. (2007) and Bianchi et al. (2005) can improve operation over a range of
operating points. A gain-scheduled linear quadratic controller with a state and
disturbance estimation algorithm is designed in Stergaar et al. (2007) by linearizing
the nonlinear plant model along a trajectory of operating points scheduled on the
effective wind speed. The controller gains are interpolated linearly to get a control
law for the entire operating region. Improved performance in terms of fatigue
damage is addressed at the cost of slow variations in the active power. In Bianchi
et al. (2005), a linear parameter-varying (LPV) gain-scheduling strategy formulated
as a convex optimization problem with linear matrix inequities (LMIs) is proposed
for maximizing conversion efficiency, safe operation, resonant mode damping, and
robust stability. The LPV controller has better tracking and more damping of
resonant modes, but the robust stability performance is hard to achieve.

An adaptive pitch controller designed using an extension of the direct model
reference adaptive control approach to regulate turbine rotational speed and to
accommodate step disturbances is proposed in Frost et al. (2009), where robustness
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to modeling errors and changes in system parameters are demonstrated. A fuzzy
logic pitch angle controller is developed to reduce fatigue loads in Sedighizadeh and
Rezazadeh (2008). The fuzzy logic controller can compensate for the nonlinearities
and reduce fatigue loads, even without knowledge of the system and the mean
wind speed. These nonlinear pitch controllers are robust to the nonlinearities and
uncertainties of the system model, resulting in improved performance for turbine
speed regulation. The downsides in the nonlinear control schemes are that, due to
the nature of online learning, computational requirements may be unacceptably high
for the wind energy application.

Wind turbines with larger rotor size tend to experience asymmetric loading
of the rotor blades due to wind speed variations across the rotor disc (Bossanyi
and Hassan 2003). Modern commercial turbines have individual pitch actuators
for each rotor blade for implementation of individual pitch control (IPC). The
work presented in Bossanyi and Hassan (2003) presents a IPC design based
on linear quadratic Gaussian (LQG) control design methods, which reduces the
operational load significantly, but the design process is not straightforward, and the
resulting algorithm is somewhat cumbersome. Another LQG-based multivariable
control technique with feedforward disturbance rejection for reducing the once-per-
revolution (1P) loading of the rotor blades due to wind shear, tower shadow, and
skew inflow is demonstrated in Selvam (2007).

Sophisticated control strategies for wind turbine extreme load alleviation have
been addressed as well. For example, an extreme event recognition and extreme
event control (EEC) algorithm for extreme wind gusts with direction change in wind
turbines have been proposed in Kanev and Engelen (2008). The EEC algorithm is
used to prevent the rotor speed from exceeding the overspeed limit by fast collective
blade pitching and to reduce 1P blade loads by means of an individual pitch control
algorithm, designed in an H∞ optimal control setting. An extreme event controller
designed to prevent rotor overspeed in response to incoming wind gusts can be found
in Pace and Johnson (2013), where LIDAR is used in conjunction with a cumulative
summation (CUSUM) test to detect an oncoming gust.

10.3.2 Power Control

Using advanced controllers to maximize power capture for variable-speed wind
turbines in Region 2 where the wind speed is below rated has been well addressed
by researchers in the past decades as well. Different control methodologies using
generator torque control, blade pitch control, or a combination of both are proposed
and applied. Most of the control strategies use generator torque to maximize the
power capture, while the blades are kept at constant values giving the maximum
aerodynamic efficiency. The advanced control strategies for increasing power can
be classified into linear and nonlinear control methods.

The linear control methods as presented in Balas et al. (1998) and Malinga
et al. (2003) assume a priori knowledge of the optimal operating point, which is
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usually not practical because of large uncertainties in the system. Also, the optimal
operating point is difficult to determine and varies from turbine to turbine. Balas
et al. proposed disturbance tracking control (DTC) to control rotor speed via wind
speed estimation with the goal of maintaining a constant optimal TSR (Balas et al.
1998). DTC assumes the optimal TSR is known.

Nonlinear control strategies have the potential to overcome some of the draw-
backs of linear strategies. The optimally tracking rotor (OTR) control scheme
proposed by Fingersh and Carlin in (1998) and further described in Johnson et al.
(2006) can assist the turbine in regaining its optimal TSR using the generator torque
to assist acceleration and deceleration. Johnson et al. proposed an adaptive controller
that seeks the gain that maximizes power capture despite aerodynamic uncertainty
and turbulent effects (Johnson et al. 2006). A nonlinear feedback controller with
wind speed estimator for maximizing the energy extracted from the wind while
reducing mechanical loads is described in Boukhezzar and Siguerdidjane (2005).
Good performance can be achieved because dynamic aspects of the wind and the
turbine are taken into account. Additionally, combining pitch control techniques
with torque control methodologies is a promising research area. In Hawkins and
White (2010), a robust control scheme to optimize the power capture of a wind
turbine is proposed. The set points, consisting of the rotor speed and the turbine
blade pitch, are adapted by a Lyapunov-based approach to account for unknown
aerodynamic properties. Other power optimization and control strategies for grid-
coupled wind energy conversion systems have been studied in Aho et al. (2012),
Pozo et al. (2013) and Ghaffari et al. (2013).

10.3.3 LIDAR-Assisted Speed and Power Control

Recent advances in LIDAR systems have shown promise for providing real-
time measurements of wind speed or direction inputs local to individual wind
turbines (Harris et al. 2006; Mikkelsen et al. 2010), opening a new area of research
in feedforward wind turbine control.

As presented in Schlipf and Kühn (2008), nacelle- or hub-based LIDAR systems
can provide preview information about the wind inflow in front of wind turbines,
which can be used to improve speed regulation via a look-ahead update to the
collective pitch control. A detailed analysis of the LIDAR-assisted collective pitch
control is presented in Schlipf et al. (2010a,b), where, compared to an advanced
feedback controller, the best load reduction can be observed for high turbulence
and high wind speed. The proposed look-ahead controller uses a realistic LIDAR
simulator. In Laks et al. (2010), assuming both a highly idealized wind measurement
obtained from a rotating LIDAR and also a stationary measurement with a more
realistic LIDAR model, preview-based disturbance feedforward control both with
and without the use of multiblade coordinate-based controllers shows excellent
performance in load mitigation. However, using the realistic wind measurement
could cancel the advantage obtained from preview-based feedforward techniques
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unless further optimization is performed. In Laks et al. (2011), a model predictive
controller (MPC) is developed in order to recover some of the performance loss due
to the measurement error in the LIDAR system. Another LIDAR plus MPC strategy
is applied to wind turbine control (Schlipf et al. 2011) for both fatigue and extreme
load reduction over the full turbine operational region. Optimal filters derived in
both time domain and frequency domain for reducing the mean square rotor speed
error have been investigated in Simley and Pao (2013).

In other LIDAR-enabled control research, baseline feedback controllers have
been augmented with various collective and individual pitch feedforward controllers
using gain-scheduled model-inverse or gain-scheduled shaped compensators, show-
ing promising results in turbine fatigue load alleviation (Dunne et al. 2010, 2011).
LIDAR-assisted optimal Cp tracking control is investigated in Wang et al. (2012),
but the benefits over conventional methods are less clear. In Kragh et al. (2011),
a method for yaw error estimation based on measurements from a spinner-based
LIDAR is developed for improved yaw control of horizontal axis wind turbines
operating in turbulent flow. A further field test study shown in Kragh and Fleming
(2012) indicates that applying a correction scheme to improve yaw alignment
increases the power capture by 1–5% in the below-rated domain.

10.4 LIDAR-Assisted Controller Design for Load Mitigation
for CART3

In this section, a nonadaptive feedforward controller based on a zero-phase-error-
tracking-control (ZPETC) technique and an adaptive feedforward controller based
on a filtered-x recursive least square (FX-RLS) algorithm have been investigated
for the CART3. Both of the feedforward controllers augment the same collective
pitch PI feedback controller, which regulates rotor speed above rated wind speed.
The feedforward controllers provide further speed regulation capability in addition
to load reduction. The research presented in this section has appeared in Wang et al.
(2011).

10.4.1 Model-Inverse-Based Feedforward Control Strategy

ZPETC Masayoshi (1987) is a model-inverse-based strategy for designing feedfor-
ward controllers. ZPETC results in a zero phase shift over the whole frequency
spectrum and an attenuated gain at high frequencies.

The first step for the ZPETC-based feedforward controller design was to obtain
a linear model of CART3 around a specific operating point, which was selected at a
wind speed u0 = 18 m/s, rotor speed �0 = 41.7 rpm, and pitch angle β0 = 12.8◦.
The wind turbine was linearized with five DOFs enabled, including the first flapwise
blade mode for all three blades, the drive train mode, and the generator mode.
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Fig. 10.5 Combined collective feedback and model-inverse-based feedforward control with
linearized wind turbine model. P�β maps blade pitch angle β to rotor speed �. P�u maps wind
disturbance u to rotor speed �. u, β and � are the deviations from the selected operating
point. e denotes the rotor speed error and � = e in Region 3

Transfer functions were obtained to represent the linearized relationships between
the pitch angle β and rotor speed � (P�β ) and between the wind speed u and �
(P�u), as shown in Fig. 10.5. The signalsu,β, and� are the deviations of each
signal from its value at the operating point. Note that the ZPETC-based feedforward
controller designed in this section did not include pitch actuator dynamics, that is,
β = βc.

In Fig. 10.5, a discrete-time PI feedback controller FB is used to regulate the
rotor speed � at its rated value and is given by

βFB(n) = kpe(n)+ kiδ
n−1∑

j=0

e(j), (10.8)

where n is the discrete-time step, kp and ki are the proportional and integral gains,
and δ is the sampling time, which is selected at 0.01 in this research. The linear
model-inverse feedforward controller FF in Fig. 10.5 is used to cancel the effect
from the turbulence in wind speed u on the rotor speed error e. According to
Fig. 10.5, the error is given by

Z{e(n)} = P�β · FF · Z{u} + P�u · Z{u}
1 − P�β · FB , (10.9)

where Z{·} is the expression for z-transformation. Since the desired rotor speed
error is

edesired = 0,
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the feedforward controller FF can be solved for by setting the numerator of (10.9)
equal to zero, or

P�β · FF · Z{u} + P�u · Z{u} = 0,

which gives

FF = −P−1
�β · P�u. (10.10)

If P�β contains non-minimum phase zeros, the resulting FF is unstable. To avoid
this situation, a stable model-inverse approximation is used instead. In this research,
the ZPETC model-inverse technique was applied to get a stable substitute for the
true inverse that was used in the feedforward controller. According to Masayoshi
(1987) and Ko et al. (1999), the ZPETC can be expressed as

P(z) = U−(z)U+(z)
V (z)

,

FFZPETC(z) = U−(z−1)V (z)

U−(1)2U+(z)
, (10.11)

where P(z) is the discrete transfer function containing non-minimum phase zeros
that need to be inverted, and FFZPETC(z) is the ZPETC-based stable inverse of
P(z). U−(z) and U+(z) represent the un-cancelable and cancelable portions of
P(z), respectively.

The two transfer functions P�β and P�u can be obtained from FAST’s lin-
earization routine, and the ZPETC-based model-inverse nonadaptive feedforward
controller FF for the research can then be found using (10.10) and (10.11). The
Bode plots of P�β , P�u, and FFZPETC are shown in Fig. 10.6, where a 100 Hz
sample rate was used.

Making the ZPETC controller FFZPETC causal required an additional delay of
z−1 or one sample period. Thus, the LIDAR code must provide one sample period
preview to cancel this delay, making the phase of this controller match the ideal case
exactly.

10.4.2 Adaptive Feedforward Control Strategy

Both the FX-RLS and the filtered-x least mean squares (FX-LMS) feedforward
algorithms have proven useful in achieving disturbance rejection for vibration
(Kashani and Sutherland 1996; Na and Park 1997; Tan and Jiang 2009). The FX-
LMS algorithm is used frequently by the vibration and noise control community,
in part because it has less computational complexity than the FX-RLS algorithm.
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However, the FX-RLS algorithm can provide faster convergence and smaller steady-
state error than the FX-LMS algorithm (Beerer et al. 2009; Eweda and Macchi
1987), which makes the FX-RLS algorithm more appealing for the adaptive
controller design. The LIDAR sensor enables online adjustments to the control law
at every time step, and the FX-RLS algorithm has been selected as the structure for
a controller to provide load alleviation and rotor speed regulation when the wind
turbine is operating above rated wind speed.

In Fig. 10.7, assume that a perfect wind speed measurement x can be obtained
via the LIDAR beam sensor, andx denotes the deviation from the operating point;
that is, x = u. The rotor speed error e(n, �θ) is a function of the discrete-time
step n and adaptive feedforward controller parameters �θ and can be expressed by

e(n, �θ) = g(n)+ d(n, �θ), (10.12)

where d(n, �θ) can be obtained from

Z{d(n, �θ)} = P�eβ · [FF(n, �θ) · Z{x(n)} + FB · Z{e(n, �θ)}],
= FF(n, �θ) · P�eβ · Z{x(n)} + P�eβ · FB · Z{e(n, �θ)},

where FB is the PI feedback collective controller given in (10.8).
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P�β ( ˜P�β ) in the feedforward path to provide the signal x′(n)

As with the ZPETC feedforward controller design, the FX-RLS feedforward
controller design did not consider pitch actuator dynamics, either. Following the
procedure in Zeng and Moulin (2010), let

Z{x′(n)} := ˜P�β · Z{x(n)},

where ˜P�β is an approximation of P�β . Thus, the error (10.12) can be approximated
by

Z{e(n, �θ)} ≈ Z{g(n)} + FF(n, �θ) · Z{x′(n)}
1 − P�β · FB . (10.13)

The primary control goal is to minimize the rotor speed error signal e(n, �θ) when
the wind turbine operating above rated wind speed, that is to find the minimized
rotor speed error by adapting the parameters �θ of the feedforward controller, which
is accomplished using

J = min
�θ

1

N

N∑

n=1

e2(n, �θ). (10.14)

The denominator of the error (10.13) is not a function of �θ or n, so the feedback
control loop does not affect the optimization problem (10.14) that determines the
adaptive feedforward controller FF(n, �θ). Let

Z{e′(n, �θ)} := Z{g(n)} + FF(n, �θ) · Z{x′(n)}.
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Thus, (10.14) becomes

J = min
�θ

1

N

N∑

n=1

e′2(n, �θ).

A finite impulse response (FIR) filter was selected for FF(n, �θ) because of
its inherent stability, which is particularly useful for an adaptive control approach
(Vipperman and Burdisso 1995). The RLS algorithm, based on Zeng and Moulin
(2010), was used to compute the coefficients �θ(n) of the FIR adaptive feedforward
controller at each time step n, as given by

�θ(n) = �θ(n− 1)+K(n)e′(n, �θ), (10.15)

K(n) = PRLS(n− 1)x′(n)
λRLS(n)+x′(n)T PRLS(n− 1)x′(n)

, (10.16)

P(n) = PRLS(n− 1)−K(n)x′(n)PRLS(n− 1)

λRLS(n)
. (10.17)

10.5 Future Work

Although a LIDAR system that can provide the required preview wind information
in front of the turbine enables these novel controllers, further research should be
conducted to assess the sensitivity of the controllers to measurement uncertainty.

Future work might also include gain scheduling the various linear control
strategies. The gain-scheduled controllers can be obtained from interpolating or
switching local LTI controllers. LPV control, which is a methodology that resembles
classical gain scheduling, enables a systematic way of designing the gain-scheduled
controller.

Finally, H2 (Scherer and Weiland 1999) performance criterion or a mixed
H2/H∞ (Øtergaard 2008) should be considered to develop the controllers, since
the wind speed as the main disturbance is most accurately described by a stochastic
process, which indicates that the energy-like H2 methodology is best suited for the
tracking problem of generator speed and power references across a wider frequency
range.
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Chapter 11
Wind Power and Ramp Forecasting
for Grid Integration

Cong Feng and Jie Zhang

11.1 Introduction

Wind energy is a sustainable alternative to the conventional energy in relieving
global warming and fuel energy shortage. Notable progress has been made in
increasing the wind energy capacity. However, the uncertain and variable charac-
teristics of the wind resource present challenges to wind integration, especially
at large penetrations. Accurately forecasting the wind power generation and the
extreme wind power changes would greatly help power system operators make
better operation schedules, thereby improving the system economic and reliability
performance.

Wind forecasting consists of wind speed forecasting and wind power forecasting
(Ren et al. 2015). Significant improvements of the wind forecasting have been
achieved by developing various forecasting models in the past decades. The wind
forecasting models can be classified by different criteria. Based on the algorithm
principles, they are generally divided into physical models, statistical models,
and hybrid physical and statistical models (Feng et al. 2017a). Based on the
forecasting horizons, wind forecasting models are grouped into very short-term
models (intra-hour), short-term models (1-h to 6-h-ahead), midterm models (6-h
to 1-week-ahead), and long-term models (over 1 week) (Chang 2014).

Different types of statistical models have been applied in the wind forecasting,
including conventional time series models, machine learning models, and deep
learning models. Conventional time series models include the autoregressive (AR)
model (Poggi et al. 2003), the autoregressive moving average (ARMA) model
(Erdem and Shi 2011), and the autoregressive integrated moving average (ARIMA)
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model (Liu et al. 2015). The most popular machine learning algorithms are artificial
neural networks (ANNs) (Li and Shi 2010), support vector machine (SVM) (Chen
and Yu 2014), random forest (RF) (Feng et al. 2017a), and gradient boosting
machine (GBM) (Nagy et al. 2016). Compared with shallow machine learning
models, deep learning models are able to capture the hidden invariant structures in
the wind speed. The deep belief network algorithm (Wang et al. 2016) and the deep
convolutional neural network (Wang et al. 2017) are also employed in the short-term
wind forecasting.

Among many wind integration challenges, severe fluctuation incidents with large
magnitudes and short durations, so-called ramping events, are a major concern
of power system operators. Wind power ramping events (WPREs) are usually
caused by complicated physical processes and atmospheric phenomena, such as
thunderstorms, wind gusts, cyclones, and low-level jets (Freedman et al. 2008).
The research on WPREs can be generally classified into three directions: WPRE
detection, WPRE forecasting, and WPRE application. The WPRE detection uses
a mathematical algorithm and wind power ramping definitions to extract all the
wind power ramps from actual or forecasted wind power data. The WPRE detection
method can be directly applied to historical measured wind power data to extract
all historical ramping events. Statistical and machine learning methods can then be
developed based on the historical ramping events to directly forecast WPREs. The
accuracy of WPRE forecasting highly depends on the accuracy of WPRE detection.

This chapter reviews and discusses different types of models for short-term wind
forecasting and ramp forecasting, including both individual and ensemble machine
learning models and a recently developed optimized swinging door algorithm.

11.2 Wind Forecasting

The most popular short-term wind forecasting models include ANN, SVM, GBM,
and RF machine learning models, which provide accurate forecasts with relatively
low computational cost. The ensemble of individual machine learning models is
another efficient way to improve the wind forecasting accuracy. Both individual and
hybrid machine learning models are reviewed and discussed in this section.

11.2.1 Single Machine Learning Algorithm Models

ANN is a popular algorithm in speech recognition, target tracking, signal analysis,
and nonlinear regression problems (such as time series forecasting). ANN mimics
the structure of the human brain that consists interconnected neurons. Each neuron
is a weighted sum of its inputs and is connected to the neurons in the next layer. The
ANN architecture contains one input layer, one or more hidden layer(s), and one
output layer. The configuration of the ANN model needs to be well designed to avoid



11 Wind Power and Ramp Forecasting for Grid Integration 301

over-fitting issues. ANN can be classified into different types based on different
activation functions and learning algorithms. Deep learning is also a configuration
of ANN. The mathematical description of the ANN is expressed as:

y(n)i = f

⎛

⎝
N∑

j=1

w(n,n−1)
ij y(n−1)

j + θn
i

⎞

⎠ (11.1)

where i is a neuron of the nth layer, wij is the weight from the neuron j in the layer
(n − 1) to the neuron i in layer n, and θn

i is the threshold of the neuron i in layer n.
SVM is originally a supervised linear classifier proposed by Vapnik (1995).

As one of the most popular classification methods, SVM has been applied
in text categorization, image classification, and other recognition tasks. When
dealing with linearly inseparable data, nonlinear mapping-based kernel methods,
K (x) : Rn −→ R

nh , are used to map the nonlinear data into the high-dimensional
feature space. Then, a linear hyperplane is found by maximizing the distance
between support vectors and the hyperplane. The SVM algorithm can also be
applied in regression problems, which is called support vector regression (SVR).
The performance of the SVR was reported to be better than other algorithms (e.g.,
ANN) in the literature. However, the compute and storage requirements increase
significantly with the data dimension. The hyperplane function, also called the SVR
function, is described as (Feng et al. 2017b):

f (x) = ωTK (x)+ b (11.2)

where ω and b are variables solved by minimizing the empirical risk, which is given
by:

R (f) = 1

n

n∑

i=1

"(yi, f (x)) (11.3)

where "ε(yi, f) is the ε-insensitive loss function, expressed as:

"ε (yi, f) =
{ ‖f − y‖ − ε, if ‖f − y‖ ≥ ε

0, otherwise
(11.4)

Then the optimal hyperplane is found by solving the inequality-constrained
quadratic optimization problem.

GBM is a highly customizable learning algorithm widely used in the regression
and classification fields. A GBM model relies on the combination of “weak learners”
to create an accurate learner therefore, is able to generate both deterministic and
probabilistic results in the time series forecasting. The combination is achieved by
adding the weighted base learner to the previous model iteratively (Kaur et al. 2014).
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The principle of GBM is illustrated by the pseudo-code in Algorithm 11.1. In each
iteration, the negative gradient of the chosen loss function is calculated and used
to estimate the split variables a by Eqs. (11.5) and (11.6). Then the multiplier β is
optimized by Eq. (11.7). The weak learner βh(x; a) is added to the previous model,
where h(x; a) is a learning function.

Algorithm 11.1 Gradient boosting machine (GBM)

1 Initialize f0(x) to be a constant, f0 (x) = arg minρ

∑n
i=1� (yi, ρ)

2 for i = 1 to M do
3 Compute the negative gradient of the loss function:

yi = −
[
∂�(yi, F(xi))

∂F(xi)

]

f(x)
= fi−1 (x) , i = {1, 2, . . . , n} (11.5)

4 Fit a model to y by least-squares to get at:

at = arg min
α,β

∑n
i=1

[
yi − βh (xi, a)

]2 (11.6)

5 Calculate βt by:
βt = arg min

β

∑n
i=1� (yi, ft−1 (xi)+ βh (xi, at)) (11.7)

6 Update the model by:
ft(x) = ft − 1(x) + βth(x; at) (11.8)

7 end for
8 Output f̂ (x) = fT (x)

RF is another supervised ensemble learning method that consists of many single
classification and regression trees (CARTs):

T = {
t
(
X, s#1

)
, t
(
X, s#2

)
, . . . , t

(
X, s#n

)}
(11.9)

where T is a set of CARTs, t is a single CART, X is the input to the RF model, and
s#i is a random vector to extract bootstrap samples which are determined by the
bagging algorithm. The robustness of RF models is enhanced by randomness of the
bagging algorithm and the best split search process. Since RF is a combination of
various different regressions, the model is generally free from over-fitting (Ibarra-
Berastegi et al. 2015).

11.2.2 Hybrid Machine Learning Models

Due to the nonlinear and nonstationary characteristics of wind speed, it is challeng-
ing to develop a generic model based on a single machine learning algorithm that
can produce the best forecasts at different spatial and temporal scales. Hybriding
several single machine learning models can make the forecasting more robust. A
hybrid example is described in this section as shown in Fig. 11.1. This hybrid model
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Fig. 11.1 Overall framework of the ensemble forecasting model

has a two-layer forecasting structure (Feng et al. 2017a). The first layer machine
learning models are built based on the inputs, such as historical data. These models
forecast wind speed or wind power as the output. A blending model is developed
in the second layer to combine the forecasts produced by different algorithms from
the first layer and to generate both deterministic and probabilistic forecasts. This
blending model is expected to integrate the advantages of different algorithms by
canceling or smoothing the local forecasting errors. The mathematical description
is shown as:

yi = fi
(
x1, x2, . . . , xp

)
(11.10)

ŷ = �(y1, y2, . . . , ym) (11.11)

where fi(∗) is the ith algorithm and yi is the wind speed forecasted by fi(∗). �(∗) is
the second-layer blending algorithm.

11.2.3 Deterministic Results of the Multi-model Forecasting

The performance of the single-algorithm and hybrid machine learning models
is evaluated in this section. Two evaluation metrics are utilized to evaluate the
forecasting accuracy (Feng et al. 2017a): the normalized mean absolute error
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Fig. 11.2 The GBM forecasting nMAE across the United States

Fig. 11.3 The GBM forecasting nRMSE across the United States

(nMAE) and the normalized root mean square error (nRMSE). The wind forecasting
results provided by the GBM models (selected for the robustness and free of
preprocessing) of more than 126,000 wind farms over the entire United States
are shown in Figs. 11.2 and 11.3. The Wind Integration National Dataset (WIND)
Toolkit. Toolkit (Draxl et al. 2015) data was used for the wind forecasting. It is seen
from Figs. 11.2 and 11.3 that, the offshore locations, such as the Gulf of Mexico and
the East Coast, present relatively high forecasting accuracy; the mountain areas,
such as Colorado and New Mexico, have relatively low forecasting accuracy. By
comparing Figs. 11.2 and 11.3, regions such as Washington and Oregon present
small nMAE but large nRMSE. The variation in the forecasting accuracy across the
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Table 11.1 SURFRAD locations

Name State Lat. Long. Elev. (m)

Bondville (BND) IL 40.05 −88.37 230
Boulder (TBL) CO 40.12 −105.24 1689
Desert Rock (DRA) NV 36.62 −116.02 1007
Fort Peck (FPK) MT 48.31 −105.24 634
Goodwin Creek (GCM) MS 34.25 −89.87 98
Penn. State Univ. (PSU) PA 40.72 −77.93 375
Sioux Falls (SXF) SD 43.73 −96.62 473

Table 11.2 The nMAE of 1-h-ahead forecasts

Models BND TBL DRA FPK GCM PSU SXF

SAM P 4.05 4.27 5.25 4.28 4.13 5.78 3.91
SVR_li 5.26 5.04 6.65 5.18 5.42 7.13 4.93
SVR_poly 5.04 4.90 6.17 4.93 5.06 6.86 4.86
ANN 5.35 5.96 6.23 5.29 5.65 6.90 4.73
GBM_g 4.95 4.82 6.02 4.80 4.82 6.68 4.78
GBM_l 5.01 4.80 6.23 4.94 4.96 6.67 4.93
RF 5.32 4.93 6.51 5.31 5.58 7.51 5.25

MMF SVR_li 4.32 5.28 5.44 4.45 6.04 6.03 4.05
SVR_poly 4.20 4.54 5.36 4.31 5.14 5.84 4.01
GBM 4.26 4.58 5.49 4.37 5.81 6.11 4.19
RF 4.26 4.60 5.66 4.33 5.34 6.09 4.22

United States is affected by a number of factors. For example, the terrain roughness
and the climatic characteristics of the states like Washington and Oregon make wind
series more chaotic and less forecastable.

Both the single-algorithm models (SAM) and hybrid multi-model framework
(MMF) are applied to the data collected from the Surface Radiation Network
(SURFRAD), which includes seven stations (as shown in Table 11.1) with diverse
climates. Tables 11.2 and 11.3 list the nMAE and nRMSE, respectively. The multi-
model framework includes multiple individual models in the first layer and also
several models in the second layer. Different algorithms are tested in both layers,
which include SVR with the linear (SVR_li) and polynomial (SVR_poly) kernels,
ANN with feed-forward back-propagation learning function and the sigmoid acti-
vation function, the GBM models with Gaussian (GBM_g) and Laplacian (GBM_l)
loss functions, and the random forest (RF).

As shown in Tables 11.2 and 11.3, none of the SAM models performs better than
the persistence method (which assumes that the conditions at the time of the forecast
will not change). Without considering the persistence model, no SAM model is
always most accurate at all seven locations. Comparing SAM models and MMF
models, the MMF with different blending algorithms outperforms the SAM models.
The two-layer models have improved the accuracy of the component models by up
to 23.8% based on nMAE and 25.6% based on nRMSE. For the blending algorithms,
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Table 11.3 The nRMSE of 1-h-ahead forecasts

Models BND TBL DRA FPK GCM PSU SXF

SAM P 5.65 6.60 7.36 5.91 5.68 8.27 5.42
SVR_li 7.76 8.37 9.88 7.92 8.09 9.90 6.95
SVR_poly 7.05 7.62 8.58 6.81 6.72 9.33 6.51
ANN 7.27 8.09 8.47 6.94 7.05 9.37 6.30
GBM_g 6.78 7.77 8.06 6.59 7.01 9.24 6.37
GBM_l 6.79 7.71 8.86 6.68 6.67 9.42 6.52
RF 7.36 7.21 9.10 7.35 7.46 10.04 7.11

MMF SVR_li 6.20 8.96 7.51 6.29 9.21 8.52 5.61
SVR_poly 5.77 7.22 7.36 6.05 7.08 8.16 5.49
GBM 5.95 7.29 7.58 6.00 8.23 8.48 5.72
RF 5.85 7.52 7.63 5.92 7.53 8.46 5.74

the models with nonlinear blending algorithms have better performance than the
models with linear blending algorithms. This shows that the forecasts produced from
the first-layer models exhibit a nonlinear relationship with the actual wind speed.
The model with the polynomial-kernel SVM algorithm is the most accurate model
among all the MMF models.

11.2.4 Probabilistic Results of the Multi-model Forecasting

In addition to deterministic forecasts, the multi-model methodology can also pro-
duce probabilistic forecasts. Figure 11.4 provides an example of the deterministic
forecasts along with the confidence intervals in the form of fan chart, at BND. The
confidence bands are calculated based on the component models. The colors of the
intervals fade with the increasing confidence level, ranging from 10% to 90% in a
10% increment. The intervals are symmetric around the deterministic forecasting
curves with a changing width. When the wind speed fluctuates within a small
range, the confidence bands are narrow, as shown by hours 0–10. When there is
a significant ramp, the uncertainty of the forecasts is increased and the bands tend
to be broader, as shown by hours 150–170. This further proves the necessity of
probabilistic forecasting.

11.2.5 The Value of Wind Forecasting

The accurate deterministic and probabilistic wind forecasting could benefit power
system operators, energy traders, and wind plant owners by (i) assisting utilities to
reduce the backup, therefore achieving savings; (ii) minimizing the production costs
by optimizing the slow- and quick-start unit capacity; (iii) providing schedules for
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Fig. 11.4 Deterministic forecasting from the MMF_FS with confidence intervals at BND

wind turbine starting up/shutting down in the response to fluctuations; (iv) helping
wind farm operators, especially offshore wind farm operators, to better schedule
wind turbine maintenance; and (v) reducing curtailment of the wind generation.
Overall, the improved wind forecasts could be helpful in reducing the operation
costs and increasing the system reliability. The forecasts can also be used to
determine the charge and discharge schedule of energy storage in a micro-grid
system with distributed wind generators and energy storage.

11.3 Wind Power Ramp Event Detection

Wind power ramps significantly affect the regulation of traditional generators for
better managing and dispatching the wind power. Therefore, better detecting and
forecasting ramp events are very helpful for power system operators to make
operational decisions. Regarding wind power ramp detection, Sevlian and Rajagopal
(2012, 2013) proposed an optimal detection technique to identify all WPREs by
defining a family of scoring functions associated with any ramping rules and using
recursive dynamic programming. Zhang et al. (2014) adopted the swinging door
algorithm (SDA) to extract ramp events from actual and forecasted wind power time
series. Cui et al. (2016) developed an optimized swinging door algorithm (OpSDA)
to improve ramp detection performance, by segregating wind power time series with
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the SDA and merging all ramps with a dynamic programming algorithm. Kamath
(2010, 2011) used feature selection techniques from data mining to determine ramps
in wind power generation.

A number of statistical and machine learning methods have been developed in
the literature to forecast wind power ramps at multiple forecasting horizons. For
example, Cui et al. (2016, 2017) modeled the wind power generation as a stochastic
process by using a neural network and a genetic algorithm and then forecasted the
probability distributions of three WPRE properties. Cutler et al. (2007) compared
the efficiency of the Wind Power Prediction Tool (WPPT) and the Mesoscale
Limited Area Prediction System (MesoLAPS) for WPRE forecasting. Zareipour
et al. (2011) mined historical data and predicted the class of WPREs using support
vector machines. Greaves et al. (2009) calculated temporal uncertainty to provide
an indication of the likely timing of WPREs.

This chapter reviews and discusses a recently developed wind power ramp
detection method, the optimized swinging door algorithm (OpSDA). The OpSDA
(Cui et al. 2015) is a two-stage process method. The first stage is a data segregation
process based on SDA. SDA is used to segregate wind power signals according to
the user-specified definition of a ramp. The second stage is an optimization process
based on a dynamic programming algorithm. Dynamic programming is used to
merge adjacent segments that are segregated with the same ramp changing direction
in the first stage.

11.3.1 Swinging Door Algorithm (SDA)

The SDA algorithm (Bristol 1990; Barr 1994) is based on the concept of a “swinging
door” with a “hinge” or “pivot point” whenever the next point in the time series
causes any intermediate point to fall outside the area partitioned by the up and down
segment bounds. The segment bounds are defined by the door width, ±ε, which
is the only tunable parameter in the SDA. More detailed descriptions of the SDA
can be found in Florita et al. (2013) and Makarov et al. (2009). After segregating
the wind power signal by SDA, wind power ramping events (WPREs) are extracted
according to the user-specified definition of a significant ramp.

11.3.2 Optimized Swinging Door Algorithm (OpSDA)

The objective of the optimization in the SDA is to minimize the number of individual
ramps whereas still approximating the wind power signal as a ramp. Therefore,
adjacent segments that have the same slope (e.g., up-ramps) can be merged into
one segment. Toward this end, an optimization process is applied to the original
segments (from the SDA) using a dynamic programming algorithm. Dynamic
programming is a method for solving a complex problem by breaking it down into
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a collection of simpler subproblems. Every subinterval (subproblem) of the ramp
detection problem complies with the same ramp rules. First, the subintervals that
satisfy the ramp rules are rewarded by a score function; otherwise, their score is set
to zero. Next, the current subinterval is retested as above after being combined with
the next subinterval. This process is performed recursively to the end of the dataset.
Finally, the significant ramp with the maximum score is extracted. More detailed
formulations of the dynamic programming algorithm used in this work are shown
in Eqs. (11.12), (11.13), and (11.14).

In this chapter, an increasing length score function, S, is designed based on the
length of the interval segregated by the SDA. The optimization problem seeks to
maximize the length score function, which corresponds to a ramp event. Given a
time interval, (i, j), of all discrete time points and an objective function, J, of the
dynamic programming algorithm, a WPRE is detected by maximizing the objective
function:

J (i, j) = max
i<k≤j [S (i, k)+ J (k, j)] , i < j (11.12)

subject to:

S (i, j) > S (i, k)+ S (k + 1, j) , ∀i < k < j (11.13)

S (i, j) = (j − i)2 × R (i, j) (11.14)

where J(i, j) can be computed as the maximum over (j−i) subproblems. The term of
S(i, k) is a positive score value corresponding to the interval, (i, k), which conforms
to a super-additivity property in Eq. (11.13). There is a family of score functions
satisfying Eq. (11.13), and the score function presented in (Sevlian and Rajagopal
2013) is adopted in this research, expressed as Eq. (11.14). R(i, j) represents a ramp
within the time interval (i, j). Significant wind power ramps can be defined based on
the power change magnitude, direction, and duration. Three definitions proposed in
(Zhang et al. 2014) are investigated in this research:

(i) Significant ramp definition 1—the change in wind power output is greater than
20% of the installed wind capacity without constraining the ramping duration.

(ii) Significant ramp definition 2—the change in wind power output is greater than
20% of the installed wind capacity within a time span of 4 h or less.

(iii) Significant ramp definition 3—a significant up-ramp is defined as the change
in wind power output greater than 20% of wind capacity within a time span
of 4 h or less; a significant down-ramp is defined as the change in wind power
output greater than 15% of the installed wind power capacity within a time
span of 4 h or less.

If R(i, j) conforms to the threshold of ramp definitions, R(i, j) is 1; otherwise,
R(i, j) is 0. Since the process of detecting down-ramps is the opposite process of
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detecting up-ramps, note that up-ramp detection is taken as an example to illustrate
the specific detecting process.

When optimizing ramps, one of the more interesting findings was the presence
of small ramps (non-WPREs), which are termed “bumps” in this paper and set as
B(i, j) in the formulations below. The key characteristic of a bump is the changing
direction (e.g., a down-bump between two up-ramps or an up-bump between two
down-ramps), which makes the iteration of the dynamic programming to break
abruptly due to the strict super-additivity property in Eq. (11.13). When a bump
occurs, it breaks one integrated WPRE into two discrete ramps, which affects the
performance of WPRE detection. To address this issue, the dynamic programming
process is improved so that it can also merge ramps and bumps with different
changing directions. If B(i, j) conforms to the threshold of bump definitions, B(i,
j) is assigned to be 1; otherwise, B(i, j) is assigned to be 0. During the recursion,
bumps are also considered and merged into the WPRE.

11.3.3 Experimental Results

In this section, the OpSDA is applied to two case studies. We present various
statistics to analyze the detected WPREs and parameterize the WPRE process. The
total wind power generation is taken from a balancing area in the northwestern
region of the United States. The dataset contains 7,884,012 samples sampled every
4 s spanning from October 1, 2012, to September 30, 2013. In this case, we use
the maximum power output, 123 MW, as the base benchmark capacity. The 4-s
dataset is averaged to obtain wind power data at different timescales: 1-min, 5-
min, 15-min, 30-min, 1-h, and 2-h. A total of 2,089 ramps within 1-min timescale
(1,941 ramps within 5-min timescale, 1,701 ramps within 15-min timescale, 1,340
ramps within 30-min timescale, 1,009 ramps within 1-h timescale, and 705 ramps
within 2-h timescale) are detected and utilized to generate the probability density
distributions. Figure 11.5 shows the ramp feature statistics and seasonal ramp counts
of each timescale over the course of a whole year.

Figure 11.5a indicates that along with the increasing timescale (from 1-min to 2-
h), for ramp durations, the peak duration value and probability density rise from
50 min with 0.03–400 min with 0.17. For the distribution of ramp change rate
in Fig. 11.5b, the peak change rate value decreases from 0.004 p.u./min to 0.001
p.u./min, whereas the corresponding probability density rises from 80 to 820. For
the distribution of ramp magnitude in Fig. 11.5c, the peak magnitude value rises
from 0.21 p.u. to 0.33 p.u., whereas the corresponding probability density decreases
from 9 to 2. Figure 11.5d illustrates that the seasonal ramp counts also decrease
along with the increasing timescale in each season. There are relatively fewer ramp
events occurring in winter and spring, whereas there are relatively more ramp events
occurring in summer and fall. This can be partially attributed to the higher wind
generation in summer and fall as shown in Fig. 11.5e. It is seen from Figs. 11.5d and
11.5e that seasonal ramp counts increase along with the increasing wind generation.
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(a) (b)

(c) (d)

(e) 

Fig. 11.5 Probability density distributions of ramp features of six timescales (1-min, 5-min, 15-
min, 30-min, 1-h, and 2-h) and seasonal ramp counts over a whole year for Case II. (a) Ramp
duration. (b) Ramp change rate. (c) Ramp magnitude. (d) Seasonal ramp counts. (e) Seasonal
wind generation



312 C. Feng and J. Zhang

11.4 Multi-timescale Power System Operations with Variable
Wind Generation

11.4.1 Multi-timescale Scheduling Models

Wind power ramps usually show different characteristics in the multi-timescale
power system operations, including ramping starts, ramping magnitudes, and ramp-
ing durations. To study the impact of wind power ramps on power system operations,
multi-timescale scheduling models as illustrated in Fig. 11.6 could be used. A
multi-timescale steady-state power system operation simulation tool consists of
different sub-models, such as day-ahead security-constrained unit commitment
(DASCUC), real-time security-constrained unit commitment (RTSCUC), real-time
security-constrained economic dispatch (RTSCED), and automatic generation con-
trol (AGC).
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Fig. 11.6 Timeframes of multi-timescale scheduling models

Fig. 11.7 WPRP performance in the multi-timescale operations using the stairstep graph
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Figure 11.7 exhibits an example of multi-timescale wind power ramping product
(WPRP) detection. The rectangle represents the ramping product that can be
provided by wind power at the current time. The first three blue rectangles consist
of one up-WPRP with the ramping start time t1 and ramping end time t4 in the
1-h timescale. The up-WPRP in the 15-minute-timescale model starts at time t2
(=t1 + 15 min) and terminates at time t3 (=t4-15 min). Moreover, the ramping
capacity in the 15-min-timescale model is much less than that in the 1-h-timescale
model, according to the areas of blue and yellow rectangles. The same phenomenon
can also be found in the down-WPRP (time t5 t7 and time t6 t7). Under this
circumstance, it is essential to characterize and consider WPRP features in a multi-
timescale fashion.

11.5 Conclusions

In this chapter, several widely used models for the short-term wind forecasting and
ramp forecasting were reviewed and discussed. The 1-h-ahead wind power forecasts
at over 126,000 wind sites in the United States were generated using a gradient
boosting machine model. We also found that the ensemble machine learning models
have improved the wind forecasting accuracy, compared with the single-algorithm
models. A recently developed wind power ramp detection method was introduced in
this chapter. The results showed that the OpSDA successfully identified wind power
ramps and performed significantly better than the SDA. The accurate wind power
forecasts and ramp detection could benefit power system operators, energy traders,
and wind plant owners.
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Chapter 12
Emerging Technologies
for Next-Generation Wind Turbines

Weifei Hu

12.1 Wind Turbines with Permanent Magnetic Direct Drive

12.1.1 Comparison of Different Wind Turbine Concepts

During the last two decades, various horizontal-axis wind turbine (HAWT) concepts
have been developed to harvest wind energy. When considering different generator
systems, HAWTs can be categorized into two major groups, gearbox-operated wind
turbines and direct-drive wind turbines. The former type uses rotor blades to drive
the main shaft that is connected through a gearbox to the generator. The gearbox
converts the low rotational speed of the rotor system (e.g., 15–20 rotations per
minute (rpm) for a megawatt (MW)-scale turbine) into high rotational speed (e.g.,
1800 rpm) that the generator needs to generate electricity. This large rotational speed
transition requires multiple gears and bearings and causes tremendous stress and
fatigue issues in the gearbox due to wind turbulence, which makes the gearbox one
of the highest-maintenance components of a wind turbine (Faulstich et al. 2011).
A direct-drive wind turbine directly drives the generator without using a gearbox,
one of the most complicated part of the first type machine, therefore improving the
performance and reliability. The absence of a gearbox also reduces the noise level.
However, direct-drive wind turbines with synchronous generators can be expected
to have a low-speed, high-torque, and large-diameter generators and fully rated
converters which could cause heavy weight and high cost of the machines. Recently
developed wind turbines with permanent magnet direct drive (PMDD) are more
superior in terms of reliability, operation and maintenance cost, energy yield, and
manufacturing cost than the aforementioned wind turbine concepts (Semken et al.
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2012). These advantages have attracted a number of wind turbine manufacturers
toward this technology which represents 20% of the sold wind turbine worldwide
(Mueller and Zavvos 2013). As a demonstration, Fig. 12.1 provides a photo of a
Goldwind 1.5 MW PMDD wind turbine deployed in a wind farm and a schematic
of subassemblies of the wind turbine in which the generator is directly connected to
the hub. As the rotational speed ω of wind turbine rotor is low, the torque T applied
on the PMDD generator must be increased in order to scale up the power P of the
wind turbines, as expressed in Eq. (12.1):

P = T · ω (12.1)

The generator power P can be also defined as a function of the tangential force
density Fd, the air gap diameter Dg, the axial length ls, and the rotational speed ω
as expressed in Eq. (12.2):

P = π

2
Fd ·D2

g · ls · ω (12.2)

Equation (12.2) shows that the power is proportional to the square of the air gap
diameter. Thus, the PMDD generator often has a large diameter to produce high
torque and power. The high torque also demands high tangential force applied on
the generator. Both the large diameter and high torque result in the mass increase to
ensure the air gap in a proper deflection against static and dynamic loads between
the rotor and stator, eventually increasing the cost. Thus, the direct-drive wind
turbines are usually designed with a large diameter and small pole pitch to increase
the efficiency, reduce the active material, and keep the end winding losses small
(Bang et al. 2008a). Different configurations of commercial PMDD wind turbines
are produced or proposed (Friedrich and Lukas 2017). The following subsections
12.1.2–12.1.4 provide concise introductions of different permanent magnet (PM)
generators used in modern wind turbines.

12.1.2 Stator-PM Generator

Traditional PM generators often have magnets on the rotor, which may rise
temperature in the magnets due to poor thermal dissipation and cause irreversible
demagnetization ultimately limiting the power density of the generator. In contrast,
the stator-PM generators have magnets on the stator, which makes the temperature
control easier and reduces the magnet protection sleeves in the rotor-PM machines
(Cheng et al. 2011). There are three types of stator-PM generators: double salient
PM generator, flux-reversal PM generator, and flux-switching PM generator as
shown in Fig. 12.2. It can be seen that both the PMs and windings are placed on
the stator, which results in easy temperature control of the magnets. Low copper
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Fig. 12.1 (a) Goldwind 1.5 MW PMDD wind turbine (Photo taken by Weifei Hu); (b) a schematic
of subassemblies of the wind turbine. (Origin: Goldwind brochure (Goldwind 2017))
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Fig. 12.2 Schematic of three types of stator-PM generators: (a) double salient PM generator, (b)
flux-reversal PM generator, and (c) flux-switching PM generator (Cheng et al. 2011)

consumption and winding resistance are produced by employing concentrated
windings with shorter end parts, and the rotor made of iron without windings or
magnets becomes mechanically robust comparing with the counterparts in rotor-PM
generators. The distinguished operation principle and electromagnetic performance
of these three types of PM generators are explained in detail by (Cheng et al. 2011).

12.1.3 Magnetic-Geared PM Generator

The basic principle of a magnetic-geared PM generator is that the magnetic fields
produced by the PMs on a rotor are modulated by a flux modulator, which generates
a harmonic magnetic field with the same number of poles as the magnetic rotor.
A typical design of magnetic-geared PM generator includes a stator, a rotor,
a stationary ring between the stator and the rotor, and permanent magnets as
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Fig. 12.3 Schematic of a
magnetic-geared permanent
magnet generator (Cheng and
Zhu 2014)

shown in Fig. 12.3. The stationary ring is used to modulate the rotor magnetic
field from low speed in the rotor to high speed in the stator in which the armature
windings are designed based on high speed magnetic field (Cheng and Zhu 2014).
The outer rotor can be coupled with wind turbine rotor which directly provides
the torque to the generator. The significant advantages of the magnetic-geared PM
generator include reduced acoustic noise, vibration, and maintenance, improved
reliability, inherent overload protection, and physical isolation between the input
and output shafts.

12.1.4 PM Generators Classified by Magnetic Flux Path

The PM generators can also be classified into three categories by the flux path:
radial flux PM generators, axial flux PM generators, and transverse flux PM
generators, which produce the magnetic flux in the radial direction, axial direction,
and perpendicular to the direction of the rotor rotation. A detailed survey of these
three types of PM generators has been carried out by Bang et al. (2008b).

12.2 3D Printing for Wind Turbines

12.2.1 Additive Manufacturing

Additive manufacturing, also known as 3D printing, is a manufacturing technology
which creates a three-dimensional object through the buildup of layers of a base
material under computer control. Early development of additive manufacturing
technology began in the later 1970s when Wyn Kelly Swainson was granted a
patent for a process where a three-dimensional object was created through the
buildup of photopolymer material (Bassett et al. 2015; Swainson 1977). The
term additive manufacturing started to gain its wide popularity in the 2000s
(Google Ngram Viewer 2017). Traditional subtractive manufacturing processes,
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e.g., computer-controlled single and multiaxes CNC machines, lathes, laser, and
water jet cutting tables, remove material from a stock piece of base substrate to
create a component. While a variety of three-dimensional shapes can be created
through subtractive process, these traditional technologies suffer from three main
drawbacks: (1) additional effort is needed to recycle the removed materials which,
otherwise, may be wasted; (2) it is difficult and expensive to create certain complex
hollow and shell components by subtractive approaches; and (3) conventional
subtractive machining methods (e.g., mechanical cutting and drilling) have other
disadvantages such as high tool wear due to mechanical or thermal loads and high
costs for tool and processing. In contrast to the subtractive manufacturing, additive
manufacturing can cost-effectively utilize the base material, easily create complex
hollows and shells by designing a proper deposition path such that the extruder does
not pass through the same point in space more than once (Bassett et al. 2015), and
avoid high costs for tool replacement.

12.2.2 Applications for Wind Turbine Design
and Manufacturing

The primary application of 3D printing for wind turbines has been started from rapid
prototyping which promptly creates a part model for engineers and designers to test
the component properties before the massive production. 3D rapid prototyping has
been successfully applied in areas such as rapid prototyping aerodynamic research
models (Shun and Ahmed 2012) and a hydroturbine model (Anagnostopoulos et al.
2012). In wind energy field, this technology is typically used for design of small-
scaled wind turbines. For example, Howey et al. utilized the rapid prototyping to
form a centimeter-scale shrouded wind turbine rotor assembled from a central hub,
an annular rim, and a variable number of blades (Howey et al. 2011). A small-
scale vertical axis wind turbine is printed in parts and assembled together without
any adhesives or external fasteners, even though the model is just an aesthetic
demonstration produced by a commercial company (Ultimaker 2017). The 3D
printing can contribute in small-scale wind turbine manufacturing instantly available
without requirement of a large investment, create complex and precise shapes of
wind turbine components, and print a fully hollow wind turbine that is as light as
possible while ensuring the structural reliability.

With the emergence of affordable large-scale 3D printing technology for large
wind turbine design, this technology presents new opportunities for decreasing cost
when designing new industrial-level wind turbines. A team of US government and
industry partners is using 3D printing to make wind turbine blade molds to demon-
strate the utility of large-scale additive manufacturing as a platform technology for
renewable energy systems (Zayas and Johnson 2016). This technology will speed
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Fig. 12.4 3D printing of wind turbine blade molds using the Big Area Additive Manufacturing
machine (US Department of Energy 2016)

up the designing process of novel wind turbine blades and reduce costs and time
associated with creating blade molds. The blade mold is created using the Big Area
Additive Manufacturing (BAAM) machine, which is located at the Manufacturing
Demonstration Facility at Oak Ridge National Laboratory (Fig. 12.4). The BAAM
is 500–1000 times faster and capable of printing polymer components more than
10 times larger than traditional industrial additive machines (Zayas and Johnson
2016). The basic steps of 3D printing for the wind turbine mold are summarized as
follows:

1. The BAAM melts carbon fiber composite pellets, which are used to print the
blade mold, and squeezes the molten material through the printing nozzle.

2. The material is layered into the mold shape based on the computer-aided design.
The mold is printed in segments 1.8 m long, and each mold segment takes about
8 h to print.

3. The mold segment is then laminated with a layer of fiberglass. Excess is trimmed
off to achieve an exact shape and smoothness.

4. Finally, the mold segments are joined together with fiberglass to ensure a smooth,
vacuum-tight surface.

Applying 3D printing to create the blade mold, which in turn is used to fabricate
the carbon/glass fiber wind turbine blades, can significantly reduce the labor cost,
decrease the manufacturing time, and provide researchers additional time and
freedom to design new blades thus improving the design flexibility. Although the
current 3D printing focuses on small-scale wind turbine manufacturing and large-
scale blade mold prototyping, it could also potentially benefit the rapid design and
production of other wind turbine components, e.g., hub and tower, which brings the
wind energy cost further lower.
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12.3 Wind Turbine Icing and Anti-icing and Deicing
Techniques

12.3.1 Wind Turbine Icing Effects

Wind turbines installed in cold-climate areas, e.g., high altitude and latitude areas,
often face icing conditions over their lifetime, especially during winter periods.
Despite of many icing effects as explained below, there exists increasing interest
in installing wind turbines in the cold-climate areas. One of the reasons is that
wind power is proportional to air density which is larger at lower temperature. For
instance, air at −30 ◦C is 26.7% denser than at 35 ◦C based on the equation of
state for an ideal gas (Dalili et al. 2009). Ice accretion on wind turbine blades, as
illustrated in Fig. 12.5, can not only be detrimental to the performance and reliability
of wind turbines themselves but also cause safety issues of people and animals (e.g.,
livestock) nearby operating iced wind turbines. These detrimental icing effects are
further described as follows:

• Performance degradation. Ice accretion could introduce measurement errors
from sensors deployed on wind turbines. For example, wind speed errors mea-
sured in icing conditions can be as high as 30–40% for an ice-free anemometer
and 60% for a standard anemometer (Laakso et al. 2003; Fortin et al. 2005). More
importantly, ice accretion changes the shape and roughness of the blade surface,
which consequently affects the aerodynamic performance. Small amounts of ice
on the leading edge of airfoils significantly reduce aerodynamic properties of the
blade, and the resulting power loss may vary from 0.005% to 50% of the annual
production depending on icing intensity and its duration on the site, wind turbine
models, and the evaluation methodology (Botta et al. 1998; Laakso et al. 2005;
Tammelin et al. 2005; Parent and Ilinca 2011).

Fig. 12.5 Illustration of icing
blades (Muñoz et al. 2016)
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• Reliability reduction. This detrimental consequence due to the ice accretion could
be further divided into mechanical failure and electrical failure. The former
is caused by the increased load due to the ice accretion on blades and tower,
which may produce high vibrations and/or resonance as well as mass imbalance
between blades, while the latter is likely due to ice/snow infiltration in nacelle
leading to condensation in the electronics (Parent and Ilinca 2011; Laakso et al.
2003).

• Safety risks. Threat of ice thrown from rotating blades has been a serious safety
issue, particularly when the wind power plant is closed to roads, housing, power
lines, and shipping routes. Research shows that large icing accumulation on
blades can be thrown at a distance of up to 1.5 times the combined height of
the turbine and the rotor diameter (Tammelin et al. 2000).

12.3.2 Ice Accretion on Wind Turbines

Before addressing the icing issues, it is important to first understand basic physics
of three types of atmospheric icing related to wind turbines, i.e., in-cloud icing,
precipitation icing, and frost icing (Parent and Ilinca 2011; Boluk 1996; Fikke et al.
2006; ISO-12494 2001; Richert 1996).

In-cloud icing happens when supercooled water droplets hit a surface below 0 ◦C
and freeze upon impact. Ice accretions of this type have different sizes, shapes, and
properties depending on the number of droplets in the air (i.e., liquid water content
(LWC)) and their size (i.e., median volume diameter (MVD)), the temperature, the
wind speed, the duration, the chord length of the blade, and the collection efficiency.
The in-cloud icing can be further divided into three subcategories, soft rime, hard
rime, and glaze. The soft rime is a white ice deposition with needles and flakes. It
often appears when temperature is well below 0 ◦C and the MVD and LWC are
small. The resulting accretion has low density and little adhesion. The higher MVD
and LWC will cause hard rime with higher accretion density, which is more difficult
to remove. Glaze happens when a portion of the droplet does not freeze upon impact,
but runs back on the surface and freezes later, resulting in strong ice density and
adhesion. Precipitation icing can be caused by freezing rain and wet snow and have
the accretion rate much higher than that of in-cloud icing. Freezing rain is a type of
rain precipitation that freezes on contact on surfaces with temperature below 0 ◦C.
Ice density and adhesion are high when freezing rain occurs. Wet snow happens
when snow is slightly liquid at air temperature between 0 and −3 ◦C and sticks
to the surface. It is easy to remove at first but can be difficult if it freezes on the
surface. Frost icing appears when water vapor solidifies directly on a cool surface
often occurring during low winds.
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12.3.3 Anti-icing and Deicing Techniques for Wind Turbines

Anti-icing prevents ice to accrete on the object, while deicing removes the ice layer
from the surface. Both approaches can be divided into two subcategories: passive
and active. Passive methods take advantage of the physical properties of the blade
surface to eliminate or prevent ice, while active methods use external systems and
require an energy supply that is either thermal, chemical, or pneumatic (Dalili et al.
2009; Parent and Ilinca 2011). Anti-icing and deicing approaches from aerospace
industry are often transferred to the wind energy after scaling adjustment has to be
done in the new application field (Richert 1996). A comprehensive survey of anti-
icing and deicing strategies has been carried out by Parent and Ilinca (Parent and
Ilinca 2011). These strategies are concisely summarized in the Table 12.1.

12.4 Data-Mining Techniques for Wind Energy

12.4.1 Overview of Data-Mining Techniques for Wind Energy

As the big data are collected by wind turbine manufacturers, wind farm operators,
and other sectors from the wind energy industry, the data-mining techniques have
been dramatically developed/adopted from other industrial fields over the past
decade and become more applicable and beneficial in a wide range of wind energy
systems (e.g., prediction and diagnosis of wind turbine faults (Kusiak and Li 2011),
wind power optimization (Park and Law 2016), wind power prediction (Negnevitsky
et al. 2009), placement of wind turbines (Grady et al. 2005), wind energy storage
management (Blonbou et al. 2011), just to name a few) than ever before. The
core of data-based techniques is to take full advantage of the huge amounts of
available data, acquire useful information within, and eventually lower the wind
energy cost. Without recourse to complex physical models, the interested wind
energy performance (e.g., wind farm power and wind turbine responses) could be
revealed via available historical measurements or forecasted values from numerical
models. Through the deep insights of the data-mining techniques, wind energy
system characteristics and regularity can be dug out for optimal modeling and
decision making. Many approaches, methods, and algorithms have been developed
in the field of data mining which could be classified into the following categories
based on the functionalities (Colak et al. 2012):

• Characterization used for summarizing the general characteristics of any dataset.
• Discrimination utilized for determining the diversities among different datasets.
• Classification used for determining the class of a new observation utilizing

available classes of the observations in training set. Examples of the classification
techniques include decision trees, regression analysis, artificial neural network,
support vector machines, naïve Bayes algorithm, k-nearest algorithm, and genetic
algorithm (Liao and Triantaphyllou 2008).
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Table 12.1 Anti-icing and deicing techniques for wind turbines

Type Name Description Advantage Disadvantage

Passive
anti-icing

Special
coating

Create ice-phobic
coatings that prevent
ice from sticking to
the surface or
super-hydrophobic
coatings that do not
allow water to
remain on the
surface, e.g.,
nanocomposite
coatings

Low cost, no
special lightning
protection needed,
easy blade
maintenance

Icing occurred on
coated surfaces, not
truly ice-phobic, ice
throw, and becomes
porous and loses its
ability to repel ice

Black
paint

Allow blade heating
during daylight

Show immediate
and noticeable
improvement; be
sufficient in sites
where icing is
slight, infrequent
and winter solar
intensity is high

Not sufficient to
prevent icing; blade
surface temperature
may affect the
properties of
composite materials

Chemicals Lower the water’s
freezing by applying
on blade surface

Well used in
aerospace industry,
e.g., use chemicals
during aircraft
take-off

It is a pollutant and
needs special
application and
maintenance; cannot
remain on the blade
surface for a long
period

Passive
deicing

Flexible
blades

Loose the ice by
flexing blade

Without external
deicing equipment

Limited test and
validation

Active
pitching

Use start/stop cycles
to orient iced blades
into the sun

It may work in
slight icing
environments

Limited test and
validation

Active
anti-icing

Thermal Use heating
resistance and warm
air for anti-icing

No ice accumulates
on blades; save
power production

Need addition energy
to warm air; may
damage blade
epoxies and resins at
high temperature

Air layer Consist of an air flow
originating inside the
blade and pushed
through rows of
small holes near the
blade leading and
trailing edges to
generate the air layer

Would deflect the
majority of water
droplets in the air
and melt the few
droplets that
managed to hit the
surface

Limited test and
validation

Microwave Heat the blade
material with
microwaves to
prevent ice formation

It has been tested
by LM Glasfiber on
a LM19.1 blade
with a 6 kW power

Has yet to be
successfully
implemented in the
field

(continued)
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Table 12.1 (continued)

Type Name Description Advantage Disadvantage

Active
deicing

Heating
resistance

Consist of electrical
heating element
embedded inside the
membrane or
laminated on the
surface

Simple method in
both aerospace and
wind industry;
require small
heating energy

The technology is
still at the prototype
level due to limited
market; may cause
rotor imbalance if
one heater fails;
heating elements can
attract lightning

Warm air
and
radiator

Consist of blowing
warm air into the
rotor blade

Allow low
temperature of the
blade surface; no
effects on blade
aerodynamics and
lightning protection
system

Consume a lot of
power at high wind
speed and low
temperature; low
thermal efficiency

Flexible
pneumatic
boots

Inflate to break ice
after the ice is built
up of generally
6–13 mm on the
blade surface

Have equivalent ice
shedding and
residual ice
performance as
conventional
aircraft deicers; low
energy
consumption

It has yet to be
field-tested and may
disturb the
aerodynamics by
increasing draft and
cause more noise.
Require intensive
maintenance

Electro
impulsive/
expulsive

Consist of very rapid
electromagnetically
induced vibration
pulses in cycles that
flex a metal abrasion
shield and crack the
ice

It has been certified
in aerospace
industry. The
system is efficient
and
environmentally
friendly and has
low energy
consumption

It has not yet been
tested on wind
turbines

Summarized based on Parent and Ilinca (2011)

• Cluster analysis used for clustering similar data structures, e.g., hierarchical
methods, partitioning methods, density-based methods, grid-based methods, and
heuristic methods (Tan et al. 2006).

• Association analysis used to discover relationships among observations and
determine which observations can be realized together.

• Outlier analysis used in the stage of analyzing the observations that differ from
the data distribution model of available dataset.

• Evolution analysis to reveal time-varying tendencies of the observations within
the dataset.

Although data-mining techniques have been implemented in various wind energy
applications, this section aims to provide an overview of two most widely investi-
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gated wind energy areas using data-mining techniques: (1) wind power prediction
and (2) wind turbine condition monitoring.

12.4.2 Wind Power Predication

The balance of different power systems is maintained by continuously adjusting
generation capacity and by controlling demand. Among various power systems,
wind power has larger intermittent structure and variability than traditional thermal
power systems do, due to the inherent large uncertainty of wind. A traditional
generator is often described as “dispatchable,” whereas wind generation is usually
referred to as “non-dispatchable.” Reducing the error in wind power prediction
can benefit the electricity markets trade with more certainty. Research shows that
contract errors as a function of time in electricity markets can be as high as 39%
for a forecasting lead time of 4 h (Bathurst and Strbac 2003). Accurate wind power
prediction is therefore of critical importance for dispatching, scheduling, and unit
commitment of thermal generators, hydro plant, and energy storage plant, as well
as more competitive market trading as wind power ramps up and down (Foley et al.
2012). According to the predicted time horizons, data-mining techniques for wind
power prediction could be categorized into very short-term (few seconds – 30 min),
short-term (30 min – 6 h), medium-term (6 h – 1 day), and long-term time scales
(1 day – 1 week). A comprehensive literature survey of data-mining techniques
for each time scale has been carried out by Colak et al. (2012) and is concisely
summarized in Table 12.2.

12.4.3 Wind Turbine Condition Monitoring

Wind turbine condition monitoring (WTCM) is key to reduce the wind turbine
operation and maintenance (O&M) costs, which may account for 10–20% of the
total cost of energy for a wind project and reach 35% for a wind turbine at the end
of life (Tchakoua et al. 2014). Comparing with traditional condition monitoring
techniques, data-mining techniques provide attractive advantages to WTCM, as
listed below:

• Do not require massive deployment of additional sensors for wind turbine
subassemblies.

• Reduce the costs and hardware complexity for WTCM.
• Can be used online and offline with nonintrusive, low-cost, and reliable features.

According to different types of data collected from wind turbines, data-mining
techniques could be used for (1) wind turbine performance monitoring, (2) power
signal analysis, (3) signature analysis, and (4) supervisory control and data acquisi-
tion (SCADA) data analysis (Tchakoua et al. 2014).
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• In wind turbine performance monitoring, time series of various measured data,
e.g., plant capacity factors, power, turbine rotor speed, and blade angle, are
compared with the values in operator manuals or manufacturer performance
specifications to determine whether the system is performing at optimum effi-
ciency.

• In power signal analysis, significant variations in the wind turbine drivetrain
torque are generally signs of abnormalities. A torsional oscillation or shift in
the ratio between shaft torque and rotational speed could be caused by faults in
the drivetrain. By monitoring the online/offline time series of this ratio, certain
fault conditions can be detected. For example, blade or rotor imbalance condition
can be detected by monitoring the torque oscillations (Gong 2012; Wilkinson et
al. 2007).

• Signature analysis uses different signals, i.e., voltages, power, and currents, to
detect various faults, i.e., broken rotor bars, bearing failures, air gap eccentricity,
and unbalanced rotors and blades (Popa et al. 2003; Yazidi et al. 2005).

• SCADA data analysis is a cost-effective and reliable way for wind turbine
condition monitoring because sensors and data collection networks have already
been installed in modern wind turbines. Traditional time series analysis and
fast Fourier transform (FFT) can be readily used to analyze SCADA data for
monitoring turbine health. Neural network and fuzzy logic methods are also
widely used for SCADA data analysis.

Existing data-mining techniques for WTCM can also be classified into tech-
niques that are already used by commercial WTCM and those that are still in
research (Yang et al. 2014). The former type can be further grouped into time
domain analysis and frequency domain analysis. The time domain analysis sets a
warning threshold and plots the data trends against time, load, or rotational speed.
When a trend reaches a predefined threshold, the system triggers an alarm. The
frequency domain analysis methods, e.g., envelope analysis (Hatch 2004; Hatch et
al. 2010), cepstrum analysis (Caselitz et al. 1997), and spectral Kurtosis(Antoni and
Randall 2006), are based on FFT and used to extract faulty features from time series
of specific wind turbine components, e.g., gearbox and bearing vibration signals.
Due to the varying speeds and loads and the negative influences of the environment
on wind turbine control, the FFT may not be an idea tool for processing WTCM
signals that are nonlinear and nonstationary (Yang et al. 2014). Hence, a number of
advanced data-mining techniques have been researched to overcome the drawbacks
of conventional time and frequency domain analyses for WTCM. Considering
four aspects (advantages, disadvantages, online condition monitoring capability,
fault diagnosis capability), Yang et al. reviewed some typical advanced data-
mining techniques including high spectrum, continuous wavelet transform, discrete
wavelet transform, empirical mode decomposition, energy tracking, Wigner-Ville
distribution, neural network, and genetic programming (Yang et al. 2014).
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12.4.4 Future Work

Future work on the data-mining techniques for wind energy is still needed to the
following aspects:

• Improve the data sharing. Although tremendous amount of data are collected by
manufacturers, operators, and utility companies in wind energy industry, many
of the big data are archived quietly and have not been fully utilized due to
confidentiality. Improving the data sharing among various sectors in wind energy
will definitely further promote the development of wind energy.

• Validate current data-mining techniques in research and provide industry-proven
data-mining techniques for wind energy.

• Create reliable and flexible data-mining techniques that can be readily applied to
existing data collection systems, e.g., SCADA, and facilitate wind turbine power
prediction, control, and performance and condition monitoring.

• Combine existing data-mining techniques with other physical-based models, e.g.,
finite element analysis of wind turbines, to create accurate and efficient data-
mining- and physical-based hybrid approaches.

• Develop advanced data-mining techniques that can accurately and rapidly handle
nonlinear and nonstationary data from wind turbines and wind farms.

References

An X, Jiang D, Liu C, Zhao M (2011) Wind farm power prediction based on wavelet decomposition
and chaotic time series. Expert Syst Appl 38(9):11280–11285

Anagnostopoulos JS, Koukouvinis PK, Stamatelos FG (2012) Papantonis DE optimal design
and experimental validation of a Turgo model hydro turbine. In: ASME 2012 11th biennial
conference on engineering systems design and analysis, ASME paper no. ESDA2012–82565,
Nantes, France, 2–4 July 2012

Antoni J, Randall R (2006) The spectral kurtosis: application to the vibratory surveillance and
diagnostics of rotating machines. Mech Syst Signal Process 20(2):308–331

Bang D-j, Polinder H, Shrestha G, Abraham Ferreira J (2008a) Promising direct-drive generator
system for large wind turbines. EPE J 18(3):7–13

Bang D, Polinder H, Shrestha G, Ferreira JA (2008b) Review of generator systems for direct-drive
wind turbines. In: European wind energy conference & exhibition, Belgium

Barbounis TG, Theocharis JB, Alexiadis MC, Dokopoulos PS (2006) Long-term wind speed and
power forecasting using local recurrent neural network models. IEEE Trans Energy Convers
21(1):273–284

Bassett K, Carriveau R, Ting D-K (2015) 3D printed wind turbines part 1: design considerations
and rapid manufacture potential. Sustainable Energy Technol Assess 11:186–193

Bathurst G, Strbac G (2003) Value of combining energy storage and wind in short-term energy and
balancing markets. Electr Power Syst Res 67(1):1–8

Blonbou R (2011) Very short-term wind power forecasting with neural networks and adaptive
Bayesian learning. Renew Energy 36(3):1118–1124

Blonbou R, Monjoly S, Dorville J-F (2011) An adaptive short-term prediction scheme for wind
energy storage management. Energy Convers Manag 52(6):2412–2416



336 W. Hu

Boluk Y (1996) Adhesion of freezing precipitates to aircraft surfaces, Optima Speciality Chemicals
& Technology Inc., Montreal, Quebec

Botta G, Cavaliere M, Holttinen H (1998) Ice accretion at acqua spruzza and its effects on wind
turbine operation and loss of energy production. BOREAS IV FMI, Hetta, pp 77–86

Carpinone A, Langella R, Testa A, Giorgio M (2010) Very short-term probabilistic wind power
forecasting based on Markov chain models. In: 2010 IEEE 11th International Conference on
Probabilistic Methods Applied to Power Systems (PMAPS), Singapore. IEEE, pp 107–112,
14–17 June 2010

Caselitz P, Giebhardt J, Mevenkamp M, Reichardt M (1997) Application of condition monitoring
systems in wind energy converters. In: EWEC-conference. Bookshop for Scientific Publica-
tions, Dublin, Ireland, pp 579–582, October, 1997

Catalão JPdS, Pousinho HMI, Mendes VMF (2009) An artificial neural network approach for
short-term wind power forecasting in Portugal. In: Intelligent system applications to power
systems, 2009. ISAP’09. 15th international conference on, 2009. IEEE, pp 1–5

Catalão JPS, Pousinho HMI, Mendes VMF (2011) Short-term wind power forecasting in Portugal
by neural networks and wavelet transform. Renew Energy 36(4):1245–1251

Cheng M, Hua W, Zhang J, Zhao W (2011) Overview of stator-permanent magnet brushless
machines. IEEE Trans Ind Electron 58(11):5087–5101

Cheng M, Zhu Y (2014) The state of the art of wind energy conversion systems and technologies:
a review. Energy Convers Manag 88:332–347

Colak I, Sagiroglu S, Yesilbudak M (2012) Data mining and wind power prediction: a literature
review. Renew Energy 46:241–247

Dalili N, Edrisy A, Carriveau R (2009) A review of surface engineering issues critical to wind
turbine performance. Renew Sust Energ Rev 13(2):428–438

De Giorgi MG, Ficarella A, Tarantino M (2011) Error analysis of short term wind power prediction
models. Appl Energy 88(4):1298–1311

Faulstich S, Hahn B, Tavner PJ (2011) Wind turbine downtime and its importance for offshore
deployment. Wind Energy 14(3):327–337

Fikke SM, Ronsten G, Heimo A, Kunz S, Ostrozlik M, Persson P, Sabata J,Wareing B,Wichura B,
Chum J (2006) COST 727: atmospheric icing on structures: measurements and data collection
on icing: state of the art. Meteo Schweiz, Zurich, Switzerland

Foley AM, Leahy PG, Marvuglia A, McKeogh EJ (2012) Current methods and advances in
forecasting of wind power generation. Renew Energy 37(1):1–8

Fortin G, Perron J, Ilinca A (2005) Behaviour and modeling of cup anemometers under Icing
conditions. IWAIS XI, Montréal, p 6

Friedrich K, Lukas M (2017) State-of-the-art and new technologies of direct drive wind turbines.
In: Uyar TS (ed) Towards 100% renewable energy techniques, costs and regional case-studies.
Springer International Publishing, Cham, pp 33–50

Goldwind (2017) 1.5 MW PMDD wind turbine. http://www.goldwindamericas.com/sites/default/
files/Goldwind-Brochure-1.5-Web.pdf. Accessed 28 Aug 2017

Gong X (2012) Online nonintrusive condition monitoring and fault detection for wind turbines.
The University of Nebraska-Lincoln, Lincoln

Google Ngram Viewer 2017 (2017) Additive manufacturing. Google. https://books.google.com/
ngrams/. Accessed 12 Nov 2017

Grady S, Hussaini M, Abdullah MM (2005) Placement of wind turbines using genetic algorithms.
Renew Energy 30(2):259–270

Hatch C (2004) Improved wind turbine condition monitoring using acceleration enveloping. Orbit
61:58–61

Hatch C, Weiss A, Kalb M (2010) Cracked bearing race detection in wind turbine gearboxes. Orbit
30(1):40–47

Hong Y-Y, Chang H-L, Chiu C-S (2010) Hour-ahead wind power and speed forecasting using
simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with
fuzzy inputs. Energy 35(9):3870–3876

http://www.goldwindamericas.com/sites/default/files/Goldwind-Brochure-1.5-Web.pdf
https://books.google.com/ngrams/


12 Emerging Technologies for Next-Generation Wind Turbines 337

Howey DA, Bansal A, Holmes AS (2011) Design and performance of a centimetre-scale shrouded
wind turbine for energy harvesting. Smart Mater Struct 20(8):085021

ISO-12494 (2001) Atmospheric icing of structures. ISO Copyright Office, Geneva
Johnson PL, Negnevitsky M, Muttaqi KM (2007) Short term wind power forecasting using

adaptive neuro-fuzzy inference systems. In: Power engineering conference, 2007. AUPEC
2007. Australasian Universities. Perth, Australia. IEEE pp 1–6, 9–12 Dec 2007

Jursa R, Rohrig K (2008) Short-term wind power forecasting using evolutionary algorithms for the
automated specification of artificial intelligence models. Int J Forecast 24(4):694–709

Katsigiannis Y, Tsikalakis A, Georgilakis P, Hatziargyriou N (2006) Improved wind power
forecasting using a combined neuro-fuzzy and artificial neural network model. Advances in
Artificial Intelligence, Proceedings of 4th Helenic Conference on AI, SETN 2006, Heraklion,
Crete, Greece, pp. 105–115, 18–21 May 2006

Kusiak A, Li W (2011) The prediction and diagnosis of wind turbine faults. Renew Energy
36(1):16–23

Kusiak A, Zhang Z (2010) Short-horizon prediction of wind power: a data-driven approach. IEEE
Trans Energy Convers 25(4):1112–1122

Kusiak A, Zheng H, Song Z (2009a) Models for monitoring wind farm power. Renew Energy
34(3):583–590

Kusiak A, Zheng H, Song Z (2009b) Short-term prediction of wind farm power: a data mining
approach. IEEE Trans Energy Convers 24(1):125–136

Kusiak A, Zheng H, Song Z (2009c) Wind farm power prediction: a data-mining approach. Wind
Energy 12(3):275–293

Laakso T, Holttinen H, Ronsten G, Tallhaug L, Horbaty R, Baring-Gould I, Lacroix A, Peltola E,
Tammelin B (2003) State-of-the-art of wind energy in cold climates. IEA Annex XIX 24:53

Laakso T, Talhaug L, Ronsten G, Horbaty R, Baring-Gould I, Lacroix A, Peltola E (2005) Wind
energy projects in cold climates. Int Energy Agency 36:21–24

Li S, Wunsch DC, O’Hair E, Giesselmann MG (2001) Comparative analysis of regression and
artificial neural network models for wind turbine power curve estimation. J Sol Energy Eng
123(4):327–332

Liao TW, Triantaphyllou E (2008) Recent advances in data mining of enterprise data: algorithms
and applications, vol 6. World Scientific, Singapore

Liu H, Tian H-Q, Chen C, Li Y-f (2010) A hybrid statistical method to predict wind speed and
wind power. Renew Energy 35(8):1857–1861

Mueller M, Zavvos A (2013) Electrical generators for direct drive systems: a technology over.
In: Mueller M, Polinder H (eds) Electrical drives for direct drive renewable energy systems.
Woodhead Publishing, Oxford

Muñoz CQG, Márquez FPG, Tomás JMS (2016) Ice detection using thermal infrared radiometry
on wind turbine blades. Measurement 93:157–163

Negnevitsky M, Johnson P (2008) Very short term wind power prediction: a data mining approach.
In: Power and energy society general meeting-conversion and delivery of electrical energy in
the 21st century, 2008 IEEE, 2008. IEEE, pp 1–3

Negnevitsky M, Mandal P, Srivastava AK (2009) Machine learning applications for load, price and
wind power prediction in power systems. In: 2009 15th International Conference on Intelligent
System Applications to Power Systems (ISAP), Curitiba, Brazil. IEEE pp 1–6, 8–12 Nov 2009

Parent O, Ilinca A (2011) Anti-icing and de-icing techniques for wind turbines: critical review.
Cold Reg Sci Technol 65(1):88–96

Park J, Law KH (2016) A data-driven, cooperative wind farm control to maximize the total power
production. Appl Energy 165:151–165

Pinson P, Madsen H (2008) Probabilistic forecasting of wind power at the minute time-scale with
markov-switching autoregressive models. In: Proceedings of the 10th International Conference
on Probablistic Methods Applied to Power Systems, 2008, Rincon, PR, USA . IEEE, pp 1–8,
25–29 May 2008



338 W. Hu

Popa LM, Jensen B-B, Ritchie E, Boldea I (2003) Condition monitoring of wind generators. In:
38th IAS Annual Meeting on Conference Record of the Industry Applications Conference,
2003, Salt Lake City, UT, USA. IEEE pp 1839–1846, 12–16 October 2003

Richert F (1996) Is rotorcraft icing knowledge transferable to wind turbines. BOREAS III FMI,
Saariselkä, pp 366–380

Semken RS, Polikarpova M, Röyttä P, Alexandrova J, Pyrhönen J, Nerg J, Mikkola A, Backman
J (2012) Direct-drive permanent magnet generators for high-power wind turbines: benefits and
limiting factors. IET Renewable Power Generation 6(1):1–8

Senjyu T, Yona A, Urasaki N, Funabashi T (2006) Application of recurrent neural network to
long-term-ahead generating power forecasting for wind power generator. In: Power systems
conference and exposition, 2006. PSCE’06. 2006 IEEE PES, 2006, Atlanta, GA, USA. IEEE
pp 1260–1265, 29 Oct–1 Nov 2006

Shi J, Yang Y, Wang P, Liu Y, Han S (2010) Genetic algorithm-piecewise support vector machine
model for short term wind power prediction. In: Intelligent control and automation (WCICA),
2010 8th world congress on, 2010. IEEE, pp 2254–2258

Shun S, Ahmed NA (2012) Rapid prototyping of aerodynamics research models. In: Applied
mechanics and materials. Trans Tech Publications, Switzerland, pp 2016–2025

Swainson WK (1977) Method, medium and apparatus for producing three-dimensional figure
product. Google Patents

Tammelin B, Holttinen H, Morgan C, Richert F, Seifert H, Säntti K, Vølund P (2000) Wind energy
production in cold climate. Finnish Meteorological Institute, Helsinki

Tammelin B, Säntti K, Dobech H, Durstewich M, Ganander H, Kury G, Laakso T, Peltola
E, Ronsten R (2005) Wind turbines in icing environment: improvement of tools for siting,
certification and operation-NEW ICETOOLS. Finnish Meteorological Institute, Finland

Tan PN, Steinbach M, Kumar V (2006) Introduction to data mining. Addison-Wesley, Boston
Tchakoua P, Wamkeue R, Ouhrouche M, Slaoui-Hasnaoui F, Tameghe TA, Ekemb G (2014)

Wind turbine condition monitoring: state-of-the-art review, new trends, and future challenges.
Energies 7(4):2595–2630

U.S. Department of Energy (2016) Transforming wind turbine blade mold manufacturing with 3D
printing. https://www.youtube.com/watch?time_continue=241&v=tRiULaXzRNo. Accessed
24 Nov 2017

Ultimaker (2017) Vertical axis wind turbine model. https://ultimaker.com/en/resources/19639-
vertical-axis-wind-turbine. Accessed 12 Nov 2017

Vargas L, Paredes G, Bustos G (2010) Data mining techniques for very short term prediction of
wind power. In: Bulk power system dynamics and control (iREP)-VIII (iREP), 2010 iREP
symposium, 2010. IEEE, pp 1–7

Wang L, Dong L, Hao Y, Liao X (2009) Wind power prediction using wavelet transform and
chaotic characteristics. In: World non-grid-connected wind power and energy conference, 2009.
WNWEC 2009, Nanjing, China, IEEE, pp 1–5, 24–26 Sept 2009

Wilkinson MR, Spinato F, Tavner PJ (2007) Condition monitoring of generators & other subassem-
blies in wind turbine drive trains. In: 2007 IEEE International Symposium on Diagnostics for
Electric Machines, Power Electronics and Drives, Cracow, Poland. IEEE pp 388–392, 6–8 Sept
2007

Wu Y-K, Lee C-Y, Tsai S-H, Yu S-N (2010) Actual experience on the short-term wind power fore-
casting at Penghu—from an island perspective. In: 2010 International Conference on Power
System Technology, Hangzhou, China. IEEE, pp 1–8, 24–28 Oct 2010

Xia J, Zhao P, Dai Y (2010) Neuro-fuzzy networks for short-term wind power forecasting. In:
2010 International Conference on Power System Technology, Hangzhou, China. IEEE pp 1–5,
24–28 Oct 2010

Xin W, Liu Y, Li X (2010) Short-term forecasting of wind turbine power generation based on
genetic neural network. In: Intelligent control and automation (WCICA), 2010 8th world
congress on, 2010. IEEE, pp 5943–5946

Yang W, Tavner PJ, Crabtree CJ, Feng Y, Qiu Y (2014) Wind turbine condition monitoring:
technical and commercial challenges. Wind Energy 17(5):673–693

https://www.youtube.com/watch?time_continue=241&v=tRiULaXzRNo
https://ultimaker.com/en/resources/19639-vertical-axis-wind-turbine


12 Emerging Technologies for Next-Generation Wind Turbines 339

Yazidi A, Henao H, Capolino G, Artioli M, Filippetti F, Casadei D (2005) Flux signature analysis:
an alternative method for the fault diagnosis of induction machines. In: Power tech, 2005 IEEE
Russia. IEEE, pp 1–6

Zayas J, Johnson M (2016) Transforming wind turbine blade mold manufacturing with 3D printing.
U.S. DOE’s Office of Energy Efficiency and Renewable Energy (EERE), USA



Index

A
ABAQUS model, 86–91, 170
Acceleration array, 177
Actuator disk model (ADM), 54, 55
Actuator line model (ALM), 54, 55
Advanced wind turbine control

adaptive pitch controller, 286
aerodynamic torque, 283
block diagram, 284, 285
EEC algorithm, 287
fuzzy logic controller, 287
gain-scheduled linear quadratic controller,

286
IPC, 287
LIDAR-assisted speed and power control

adaptive feedforward control strategy,
291–294

gain-scheduled controllers, 294
LIDAR plus MPC strategy, 289
model-inverse-based strategy, 289–291
nacelle-or hub-based LIDAR systems,

288
load and rotor power control techniques,

282
LPV controller, 285
LQG control, 287
LTI controllers, 286
PI collective blade pitch control, 284–286
power control, 287–288
power curve and generator torque curve,

283–284
speed control, 286–287
time-varying LQR techniques, 286
torque controller, 285
TSR, 282, 283

utility-scale turbine control algorithms,
284

yaw control, 285
AeroDyn, 251
Aerodynamic angle of attack (AOA), 272
Aerodynamic characteristics, 48–50
Airfoil designs, 49
Angular velocity vector, 177
Anti-icing and deicing techniques for wind

turbines, 326–328
Artificial neural networks (ANNs), 300–301
Atmospheric turbulence, 49

B
Barge-type turbines, 248
BeamDyn model

energy-like stopping criterion, 183
LSFE approach, 181–182
NREL 5-MW reference blade (see NREL

5-MW reference wind turbine)
numerical integration, 182–183
time integration, 183
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energy tracking results, 210–211
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time waveform, 210–211
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252
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schematic diagram, 86
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turbine)
tension leg platform wind turbines, 248
waves, 254–255
wind speed, 254

Optimized swinging door algorithm (OpSDA),
308–311

P
Periodic maintenance, 193
Permanent magnet direct drive (PMDD) wind

turbine
advantages, 317
flux path, 321
magnetic-geared PM generator, 320–321
schematic diagram, 318, 319



Index 347

stator-PM generator, 318, 320
Pitch-regulated wind turbine, 265–266
Pitting contact fatigue model, 96–98
Planetary gear model

contact point location, 80–82
contact search methods, 81–83
dynamic transmission error, 83, 85
mesh forces of planet/ring teeth contact,

83–85
numerical procedure, 70–73
specification, 79, 81
with tooth surface imperfection, 79, 80

PMDD wind turbine, see Permanent magnet
direct drive wind turbine

Power capture efficiency, 282
Preventive maintenance, 193

R
Rankine-Froude momentum/actuator disk

model, 47
RANS models, 53, 54
RCF, see Rolling contact fatigue
Reliability-based design optimization (RBDO)

advantages, 1
of composite wind turbine blades (see

Composite wind turbine blades)
DRM, 1, 2
to fatigue-sensitive structures, 1
FORM, 1
gearbox design optimization

flowchart, 112
Monte Carlo simulation size, 113
numerical procedure, 111
standard deviation and manufacturing

tolerance, 113
in offshore wind turbine system, 4
realistic wind load uncertainty, 4
sampling-based methods

design sensitivity, 25–26
first-order score function, 26
general formulation, 24
MCS method, 25
percentage error, 24
score function, 25

SORM, 1–2
Reliability-based safety factor calibration,

4
RENUVO™ system, 227–228
Reynolds stress models (RSM), 53–54
Rolling contact fatigue (RCF)

C-Mn Steel SAE1561, strain-life data, 133,
134

continuum modeling, 131–133

deformation and number of loading cycles,
134, 137, 138

fatigue life prediction model, 120
fatigue life vs. Hertzian normal pressures,
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for fluctuating normal loads, 135, 137, 139,

140
hard turning, 231–232
I-H model, 120
L-P model, 120
lubrication effects, 121
molecular dynamics

advantages, 121
friction-reduction mechanism, 121
laws of classical mechanics, 122
liquid-solid interactions, 126–128
of lubricant system, 124–125
Nose-Hoover method, 123–124
numerical heat bath, 123
simulation results, 129–131
single alkane chain, bonded interaction,

126, 127
solid (Fe), 128
temperature regulation, 123
velocity Verlet algorithm, 122

nCode Designlife, 135
shear and von Mises stress profiles, 134,

136, 140
VFEM, 120

S
Sandia 100-m baseline blade, 163, 165
Second-order reliability method (SORM), 1
Semisubmersible wind turbines, 248
Severe plastic deformation (SPD), 230–231,

235
Single-algorithm models (SAM) models, 305
Spalart-Allmaras turbulence model, 54
Spallation phenomenon, 135
Spar-type wind turbine, 272, 273

fault conditions
active pitch control, 269
aerodynamic loading on pitching blade,

271
aerodynamic loading on seized blade,

271
AOA, 272
fault occurrence, 270
hydraulic pitch mechanism, 269
idling, 271
main-shaft responses, time series, 273,

274
normal operation, 270
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vs. other extreme load cases, 275–277
platform-yaw motion, time series, 273,

275
shutdown, 270–272
tower responses, time series, 272, 274
user-defined logic, 271
wind and wave conditions, 275, 276

numerical modeling
axial elements, 256, 257
dynamic behavior, 264–265
Froude-Krylov force, 257–259
hydrodynamic drag force, 258
rotational transformation matrix, 259
schematic diagram, 257
strip theory, 259

Spur gear model
finite element tooth contact model, 77, 78
specification of, 77
tooth and mesh stiffness, 77, 78
transmission error, 77–80

Stator-PM generator, 318, 320
Swinging door algorithm (SDA) algorithm,
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T
Tension leg platform wind turbines, 248
Thermal ablation, 167–168
3D printing technology, 321–323
Three-dimensional spherical joint modeling,

262–263
Tilde operator, 177
Tip-speed ratio (TSR), 282, 283
Trapezoidal-rule quadrature, 182–183
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Ultrafine-grained (UFG) surface layer, 235
Ultraviolet (UV) curing resins, 227
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Voronoi finite element method (VFEM), 120
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Wavelet-transform-based energy tracking

technique (WETT)
assessment, 196
CWT, 200–201
experimental results, 198–199
fault-related frequencies, 204–208
induction generator

electrical asymmetry, 206–208, 210,
212–214

mechanical unbalance fault, 197,
214–216

test rig, 203–204
online/real-time signals, 198
parameters, 197
permanent magnet generator

mechanical unbalance fault, 204–206,
210–211

stator winding fault, 204–205, 208–209
test rig, 203–204

thermal and vibratory energy, 196–197
transducers, 195
wavelet scalogram, 201–203

Weibull distribution, 3, 7
WETT, see Wavelet-transform-based energy

tracking technique
White etching layer (WEL), 230–231
Wiener-Milenković parameters, 180–181
Wind forecasting

classification, 299
hybrid machine learning models,

302–303
multi-model forecasting

GBM models, 304, 305
nMAE, 303–305
nRMSE, 304, 306
probabilistic results, 306, 307
SAM models, 305
SURFRAD locations, 305

multi-timescale scheduling models,
312–313

single machine learning algorithm models,
300–302

statistical models, 299–300
value of, 306–307
WPRE

forecasting, 300, 308
OpSDA, 308–311
SDA algorithm, 307–308

Wind Integration National Dataset (WIND),
304

Wind load probability table
cut-in wind speed, 14
cut-out wind speed, 14
MCS method, 17
1-year fatigue damage, 13
real damage calculation, 14
10-min fatigue damage, 14–17
3-D bar chart, 15–18

Wind load uncertainty, 2–3
Wind power ramping events (WPREs)

forecasting, 300, 308
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OpSDA, 308–311
SDA algorithm, 307–308

Wind turbine condition monitoring (WTCM)
advantages, 329, 334
data-mining techniques, 334
drivetrain system

condition-based maintenance,
193–194

issues, 194
preventive maintenance, 193
run to failure maintenance, 193

WETT (see Wavelet-transform-based
energy tracking technique)

Wind turbine icing effects, 324–325
World’s cumulative installed wind power

capacity, 47, 48
WPREs, see Wind power ramping events
WTCM, see Wind turbine condition monitoring
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ZPETC model-inverse technique, 289–291
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