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Abstract. One key component of stochastic local search algorithms is
the acceptance criterion that determines whether a solution is accepted
as the new current solution or it is discarded. One of the most studied
local search algorithms is simulated annealing. It often uses the Metropo-
lis condition as acceptance criterion, which always accepts equal or bet-
ter quality solutions and worse ones with a probability that depends
on the amount of worsening and a parameter called temperature. After
the introduction of simulated annealing several other acceptance criteria
have been introduced to replace the Metropolis condition, some being
claimed to be simpler and better performing. In this article, we evaluate
various such acceptance criteria from an experimental perspective. We
first tune the numerical parameters of the algorithms using automatic
algorithm configuration techniques for two test problems, the quadratic
assignment problem and a permutation flowshop problem. Our exper-
imental results show that, while results may differ depending on the
specific problem, the Metropolis condition and the late acceptance hill
climbing rule are among the choices that obtain the best results.

1 Introduction

Stochastic local search (SLS) methods are generic procedures commonly used to
tackle hard optimization problems [9]. They are composed of a set of general rules
of how to design effective heuristics for specific optimization problems; hence,
an alternative name for these methods is meta-heuristics. Often, the sometimes
rather problem-specific heuristic algorithms derived from these rules are very
effective in finding high quality solutions in short computation time, and for
many problems such algorithms define the state of the art.

To achieve good solutions, SLS methods balance the intensification of the
search in narrow regions, often needed to find the best solutions in promising
search space areas, with the exploration of different areas of the search space.
One mechanism that many trajectory-based SLS methods use to promote diver-
sification is the acceptance of solutions that are worse than the current incum-
bent solution. In this article, we call acceptance criterion the function devoted
to determining whether a newly proposed candidate solution should replace the
current one. A first metaheuristic that proposed a probabilistic acceptance crite-
rion for accepting a worse candidate solution is simulated annealing (SA) [10,23].
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It uses the so called Metropolis condition from statistical mechanics, which relies
on a parameter called temperature, as acceptance criterion [14]. The name of
the parameter mimics the temperature of a physical system, which was used in
a Monte-Carlo simulation of physical systems proposed by Metropolis et al. [14].
According to the Metropolis condition, an improving or equal quality candidate
solution is always accepted, while a worsening candidate solution is accepted
with a probability that depends both on the quality difference between the cur-
rent solution and the newly proposed one and the temperature parameter. To
create a transition from search diversification to intensification of the search,
in a typical SA algorithm the temperature is initially set to some high value
(corresponding to a rather likely acceptance of worsening candidate solutions)
and then subsequently lowered to make the acceptance of worsening candidate
solutions less likely.

Over the years, various new ideas have been conceived with the motivation to
improve over this usual acceptance criterion of SA algorithms. These new accep-
tance criteria have been compared in individual papers often directly to basic
SA algorithms and in various such papers potential improvements have been
reported. These new ideas include refinements of the Metropolis condition, such
as generalized SA [2] and the bounded Metropolis condition [6]; a criterion where
the acceptance probability of worsening solutions decreases geometrically [17];
and deterministic criteria such as threshold acceptance [8,15], the great deluge
and record-to-record travel algorithms [7], and the late acceptance hill climbing
[5]. The latter four methods all accept a solution with probability one when it
meets the specific, deterministic acceptance conditions. In our experiments, we
also include a basic hill climbing acceptance criterion [1], which accepts a solu-
tion if and only if it improves over the incumbent, as a baseline the other criteria
need to outperform.

The original articles proposing these acceptance criteria often report experi-
mental results on few problem instances or on very small instance sizes. One rea-
son is that many of these acceptance criteria were introduced when experimental
conditions available were quite different from today. Hence, there is limited indi-
cation in the original works on how to apply the various methods to different
problems. To just cite one example, in the original paper on threshold accep-
tance, the authors present a sequence of values for the “threshold” parameter,
stating that “We have the feeling (really only the feeling, not, for instance, the
impression) that the sequence above is somewhat better [than another sequence
mentioned]” [8]. The comparisons in these papers are also usually performed
against the Metropolis condition and a limited set of the other criteria.

In this work, we compare well-known acceptance criteria on common bench-
mark sets, derived from two classical, NP-hard problems, namely the quadratic
assignment problem (QAP) and the permutation flow-shop problem with the
total completion time objective (PFSP-TCT). To obtain unbiased results we
tune the numerical parameters of the algorithms, using the automatic algorithm
configuration tool irace [11]. We evaluate the impact of the nine different cri-
teria we study in terms of the quality of the final solutions and the robustness
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of the criterion. Our experiments show that the results may change according
to different problems, instance classes, or experimental condition. Overall, the
Metropolis condition, its generalized version and, in particular, the rather recent
late acceptance hill climbing are the criteria that gave the best results.

2 Literature Review

We first introduce the notation used in the remainder of this work. We consider
NP-hard combinatorial optimization problems, in which for a given problem
instance π a globally optimal solution s∗ ∈ S, where S is the search space of
candidate solutions, is to be found. The quality of solutions is evaluated accord-
ing to an objective function f : S �→ R and f(s) is the objective function value for
a generic solution s. Without loss of generality, we consider minimization prob-
lems, that is, for a globally optimal solution it holds that f(s∗) ≤ f(s),∀s ∈ S.
Each algorithm we consider uses an iteration counter of the search process, which
is denoted by i, and si is the new candidate solution evaluated in that iteration.
The difference in terms of objective function value between two solutions si and
sj is denoted with Δ(i, j), or simply Δ when no confusion may arise. With ŝ we
indicate the incumbent solution. The neighbourhood of ŝ is denoted by N (ŝ) and
comprises all candidate solutions that can be reached from s by one application
of the neighborhood operator.

Algorithm 1. Outline of a generic randomized search algorithm.
Input: problem instance Π, N , initial solution s0, control parameters
Output: best solution s∗

1 best solution s∗ = incumbent solution ŝ = s0;
2 parameter initialization, i := 0;
3 while stopping criterion is not met do
4 while parameters settings fixed do
5 i := i + 1;
6 generate a random solution si ∈ N (ŝ);
7 ŝ := accept (ŝ, si);
8 s∗ := best (s∗, ŝ);
9 end

10 update parameters;
11 end
12 return s∗;

All SLS methods that we consider can be interpreted as instantiations of the
generic algorithm outlined in Algorithm 1. It starts from a given initial solution
as incumbent (line 1), and iteratively generates one new candidate solution in
the neighbourhood of the incumbent uniformly at random (line 6); at iteration i
the new candidate solution si can be chosen to replace the current incumbent ŝ
if it meets some criteria (e.g. it is an improving solution, line 7), otherwise it is
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discarded. Periodically, the parameter(s) that control the search may get updated
(line 10). All the algorithms we examine here fit in this generic template. They
only differ in the acceptance criterion. However, some of these algorithms may
not use all the components of the algorithm; for example, the late acceptance
hill climbing relies only on one parameter that is held constant during the run of
the algorithm and, hence, does not need to be updated in the outer loop (lines
3 to 11). In the following, the counter k refers to the number of times the outer
loop has been invoked. Conversely, SA and others evaluate solutions using the
same parameter values in the inner loop (controlled by the temperature length,
lines 4 to 9), and update the parameters in the outer loop.

SA, proposed independently in [10,23], is inspired by work in statistical
physics [14]. In the usual, basic variants, SA iteratively generates and evalu-
ates one random solution s ∈ N (ŝ); if the new solution is better or equal to
the incumbent in terms of objective function value, it replaces the incumbent
one; otherwise it gets accepted with a probability that depends on the relative
difference in terms of objective function values, Δ(s, ŝ), and on the temperature
parameter, denoted as T . The acceptance criterion of SA can be written as

p =

{
1 if Δ(s, ŝ) ≤ 0
exp (−Δ(s, ŝ)/T ) otherwise.

(1)

This probabilistic criterion is known as Metropolis acceptance criterion or
Metropolis condition, and it is the distinctive feature of SA. We refer to this
criterion simply as SA in the rest of this paper.

More recently, in [6] the authors argue that solutions that are worse with
respect to the incumbent by a quantity that exceeds a certain threshold φBM

are not worth considering at all. This bounded Metropolis criterion (BSA) accepts
a solution s with a probability

p =

⎧⎪⎨
⎪⎩

1 if Δ(s, ŝ) ≤ 0
exp (−Δ(s, ŝ)/T ) if 0 < Δ(s, ŝ) ≤ φBM

0 if Δ(s, ŝ) > φBM ,

(2)

where φBM is a parameter.
Soon after the introduction of SA, the Metropolis acceptance criterion has

been generalized in [2], where a variant of SA called generalized simulated anneal-
ing (GSA) was introduced. The GSA acceptance criterion is defined as

p =

{
1 if Δ(s, ŝ) ≤ 0
exp (−βf(ŝ)γΔ(s, ŝ)) otherwise,

(3)

where β and γ are control parameters. Even if the temperature parameter is not
explicitly considered in GSA, it is possible to recreate the original Metropolis
condition by defining β = 1/T .

In [17], the authors propose a criterion in what is the first occurrence of a
SA variant that does not consider the temperature value in the acceptance of
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solutions. They propose to accept a solution with probability

pk =

{
1 if Δ(s, ŝ) ≤ 0
p0 × ρk−1 otherwise.

(4)

where p0 is the initial acceptance probability, 0 < ρ < 1 is a reducing factor, and
k is the number of times the probability has been updated. In this geometric
acceptance criterion, the temperature value is (possibly) related only to the
initial acceptance probability; during the search, the updating process of the
probability matters, rather than the actual value of a temperature.

The actual need of stochasticity in the Metropolis acceptance criterion is
questioned independently in [8,15]. In both works, the authors propose a crite-
rion that accepts any move that is either improving or worsening by at most a
given threshold φk > 0:

p =

{
1 if Δ(s, ŝ) ≤ φk

0 otherwise,
(5)

where φk is the value at step k of the threshold, which gets updated periodically.
In [8], the authors consider a sequence of thresholds, without giving any indi-
cation on how to set its initial value or how to update it. Our implementation
follows [15], maintaining the SA terminology: the initial value of φ is the initial
temperature of SA, and the updating process of the threshold is called cooling.
This threshold acceptance (TA) is a deterministic version of SA. At the time
of its introduction, it was argued that using TA is faster than evaluating the
Metropolis condition as it does not require the generation of a random num-
ber and the computation of an exponential. This advantage may be important
when the computation of the objective function value of a neighboring candidate
solution is very fast. However, for problems that benefit little from incremen-
tal update schemes or where the computation of the objective function value
of neighboring candidate solutions is expensive (as is the case in the problems
we study here), the advantage of a faster computation of the acceptance test
diminishes.

Two acceptance criteria have been derived from TA and proposed in [7] as
new algorithms. The first algorithm and criterion proposed in [7] is called record-
to-record travel (RTR), and accepts solutions that do not deviate from the best
solution found so far plus a given threshold φ:

pRTR =

{
1 if f(s) ≤ f(s∗) + φ

0 otherwise,
(6)

RTR is therefore a stricter version of TA, which compares the newly proposed
candidate solution with the current incumbent; moreover, in the RTR algorithm
φ does not get updated.

The second algorithm proposed in [7] is called great deluge algorithm (GDA)
and is a radical change in terms of solution evaluation, as it moves away from
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the idea of comparing solutions. The acceptance criterion of GDA accepts every
move whose objective function value is lower than a certain threshold that gets
progressively lowered during the search

pk =

{
1 if f(s) ≤ φk

0 otherwise,
(7)

with φ̄k+1 = φk − λ, λ being a fixed parameter. The consequence of a lowering
bound is that GDA becomes increasingly strict for accepting solutions.

A more recent work proposes another simple deterministic acceptance crite-
rion, called late acceptance hill climbing (LAHC) [4,5]. This algorithm makes no
use of a temperature-like parameter, but maintains limited knowledge about the
history of the search. It accepts every solution s that is improving either with
respect to the current incumbent ŝ or with respect to the incumbent solution of
κ iterations before, for a fixed κ:

p =

{
1 if f(s) ≤ max{f(ŝ), f(ŝi−κ)}
0 otherwise.

(8)

Finally, we consider as baseline for the comparison a simple hill climbing
(HC) algorithm [1] that accepts a solution if and only if it improves over the
incumbent. Obviously, we expect the other criteria to obtain better results with
respect to HC. While in practice one would implement HC using a systematic
enumeration of the neighbourhood, we implemented it inside the framework of
Algorithm 1 for convenience.

3 Experimental Setup

The nine acceptance criteria presented in Sect. 2 are evaluated as candidate
acceptance criteria for a generic algorithm outlined in Algorithm 1. The common
components of the nine implementations are: (i) a random exploration of the
neighbourhood, (ii) no parameter restarting rule (e.g. temperature restart in
SA), and (iii) a termination condition based on runtime. The runtime differs for
each problem, so the actual value is given below.

For the criteria that need initial values for their parameters (such as the
temperature for the SA family of algorithms, or the threshold φ in TA), we use
a value proportional by a coefficient ε to the maximum gap between consecutive
solutions observed during an initial random walk of length 10000 in the solution
space. The parameters that need to be modified during the algorithm run time
(e.g. temperature in SA or threshold in TA) are updated using a geometric
decreasing; e.g., the temperature T in SA is updated according to the formula
Tk+1 = α×Tk, where α is a parameter. The inner loop of Algorithm 1 evaluates
a number of solutions that is given by τ · |N (s)|, where τ is a parameter and
|N (s)| is the size of the neighbourhood of a solution s.
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We choose to not use parameter restart schemes to better observe the impact
of the main algorithm component that is studied, the acceptance criterion. The
periodic reset or increase of parameters such as the temperature or the threshold
is often beneficial to obtain better results, as it facilitates search space explo-
ration, but it also has the side effect of smoothening the difference in terms of
impact of the other components.

The parameter values, and their presence for each algorithm, are given in
Table 1. Parameters equivalent in scope and values are grouped together. The
only algorithm that does not use the components described above is GDA. Dur-
ing the experimental phase, we have observed very poor results when using the
GDA acceptance criterion with the choices above, indicating a lack of flexibility
of the method. We thus consider the GDA algorithm in its original settings,
which are anyway valid components that fit in the template of Algorithm 1. The
initial threshold value φ is computed proportional to the objective function value
of the initial solution, using a coefficient ε ∈ [0, 10]; φ is updated according to
the formula φk+1 = φk − α, where α is an integer in the interval [1, 100]; we
bound this decrease to 0. The other components are as described above.

Our setup considers as test problems the quadratic assignment problem
(QAP) [3] and the permutation flow-shop problem with the total completion
time objective (PFSP-TCT) [18,19]. The QAP models the location of a set
of facilities, with the goal of minimizing the overall distance between facilities
taking into account also the flow between them. PFSP instead is a schedul-
ing problem where a set of jobs have to be ordered to be executed on a set of
machines.

For the QAP we use a randomly generated initial candidate solution and the
exchange neighbourhood, which is defined as

N (s) = {s′ | s′(j) = s(h) ∧ s′(h) = s(j) ∧ ∀ : l /∈ {j, h} s′(l) = s(l)}, (9)

where s(j) is the solution vector at position j. The neighbourhood size is
n(n − 1)/2, where n is the instance size. The running time considered for ter-
mination is 10 s. We consider two different instance sets of size 100, one where

Table 1. Parameter values for the algorithms.

Metro BMetro GSA Geom TA GDA RTR LAHC

ε [0, 10] [0, 10] [0, 10] [0, 10] [0, 10] [0, 10] – –

α [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [1, 100] – –

τ [1, 100] [1, 100] [1, 100] [1, 100] [1, 100] [1, 100] – –

φ, φBM – [0, 1] – – – – [0, 1] –

β – – [10−4, 10] – – – – –

γ – – [0, 10] – – – – –

ρ – – – [0, 1] – – – –

κ – – – – – – – [1, 104]
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all QAP instance data are generated uniformly at random, and one randomly
generated in analogy to structured real-world like QAP instances. Each instance
set is divided into a training set of 25 instances and a test set of 25 instances.
From here onwards, we refer to these two scenarios as random instances and
structured instances, respectively. The two scenarios are not mixed, that is, the
configurations obtained for the random instances are evaluated on the random
instances and not on the structured ones, and viceversa.

For the PFSP-TCT we use the NEH heuristic [16] for the initial solution gen-
eration. For an instance of size n × m, where n is the number of jobs and m the
number of machines, the neighbourhood is the insert neighbourhood that ran-
domly picks one element s(j) in position j of the permutation s = [s(1), . . . , s(n)]
and inserts it in position k �= j, obtaining

s′ = [s(1), . . . , s(j − 1), s(j + 1), . . . , s(k), s(j), s(k + 1), . . . , s(n)] (10)

if j < k and

s′ = [s(1), . . . , s(k − 1), s(j), s(k), s(k + 1), . . . , s(j − 1), s(j + 1), . . . , s(n)] (11)

if j > k. The neighbourhood size is n(n − 1). In this case, we use an instance-
based maximum runtime of n × m × 0.015 s. The training set consists of 40
randomly generated instances of size ranging from 50 jobs and 20 machines to
250 jobs and 50 machines [13] and the test set is composed by the instances
Tai31-110 of the Taillard benchmark [21]. We will, however, discuss separately
the instances whose size is smaller than those covered by the training set (those
with n = 20), covered by the training set (Tai31-110), and larger (n = 500).

We tune the numerical parameters using irace [11] with a budget of 2000
experiments per tuning on an Intel Xeon E5-2680 v3 CPU, with a speed of
2.5 GHz, 16 MB cache and 2.4 GB of RAM available for each job. For each algo-
rithm we run nine tunings, evaluate the best configuration obtained from each
tuning on the test set, and average the final solution quality obtained on each
instance by the nine configurations. The real valued parameters have a precision
of 4 decimal digits.

4 Experiments on the Quadratic Assignment Problem

In Fig. 1 we show the results obtained by the nine algorithms after the tuning on
the random instances and on the structured instances respectively. Each boxplot
reports the results obtained on the test instances in terms of the average relative
percentage deviation (ARPD) from the best known solutions. In Table 2, we
report the results of the Friedman rank sum test, obtained for the nine algorithms
on the two QAP instance classes. The algorithms are ordered according to the
sum of their ranks, and the difference in terms of rank sum with the best ranked
algorithm is computed along with a statistical significance threshold. Algorithms
whose rank sum differs from the best ranked one by a value larger than the
significance threshold are statistically significantly worse than the best one.
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Fig. 1. Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained on random (left plot) and structured instances (right plot).

Table 2. Results of the Friedman rank sum test for the nine algorithms on the QAP
instances. Algorithms are ranked according to their results. ΔR is the minimum rank-
sum difference that indicates significant difference from the best one. Algorithms in
boldface are significantly better than the following ones.

Instance class ΔR Acceptance criteria ranking

Random 13.15 RTR (0), BSA (33), SA (70), LAHC (80), GSA (88),
GDA (115), TA (140), Geom (174), HC (200)

Structured 16.08 TA (0), LAHC (0), SA (11), BSA (16), GSA (21),
Geom (81), RTR (109), GDA (135), HC (158)

On the random instances, RTR obtains the best results, with a mean ARPD
slightly lower than 1%. The criteria based on the Metropolis condition (SA,
BSA, GSA) and the LAHC algorithm obtain similar results, with mean ARPDs
around 1.2 to 1.3%. Though the results are similar, BSA is consistently slightly
better than the other ones. TA, GDA and the geometric criteria are worse, but
still within the 2% average deviation, while HC stands around 3%. On the struc-
tured instances it is instead TA, LAHC and the family of the Metropolis criteria
that obtain the best results, with average ARPDs all around 0.3%. The ARPDs
among these five criteria are not statistically significantly different. The geomet-
ric criterion also obtains reasonably good results when considering the ARPD
values, though from the rank-based analysis it is already clearly worse than the
top-ranking group of acceptance criteria. RTR and GDA obtain solutions around
1% and 2% worse than the best known ones and, thus perform clearly worse than
the other acceptance criteria. HC, as expected, is overall the worst, with ARPDs
around 3 to 4%.

The difference of the results on the two scenarios can be explained by the
different landscape of the instances [20,22]. The random instances present a rela-
tively flat landscape, where it is easy to discover local optima and move through
them, but difficult to converge to very good solutions. On the other hand, the
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landscape of the structured instances is less flat, with “deeper” local optima than
in the random instances. The criteria that strengthen the intensification along
the search process are the ones that apparently benefit from this landscape.
RTR compares candidate solutions to the global best, making it therefore more
difficult to accept a worsening solution; additionally, using a same parameter
settings across all instances may make it less robust.

5 Experiments on the Permutation Flow-Shop Problem

In Fig. 2 we report the results obtained on the PFSP-TCT on the 80 instances
of the Taillard benchmark with 50 to 200 jobs. The results of the Friedman
rank sum test for the nine algorithms are reported in Table 3, separated for the
three sets of instance subclasses considered (smaller than in the training set, size
covered by the training set, and larger).

The results in Fig. 2 for the PFSP-TCT exhibit higher variance than on the
QAP, because they report results obtained on 8 subclasses of instances, with a
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Fig. 2. Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained on the instances Ta031-110 of the Taillard benchmark.

Table 3. Results of the Friedman rank sum test for the nine algorithms on the Taillard
Benchmark. Algorithms are ranked according to their results. ΔR is the minimum
rank-sum difference that indicates significant difference from the best one. Algorithms
in boldface are significantly better than the following ones.

Instance class ΔR Acceptance criteria ranking

Ta001-030 13.57 LAHC (0), GSA (30), TA (74), SA (82), BSA (87),
Geom (142), RTR (193), GDA (206), HC (212)

Ta031-110 27.58 LAHC (0), GSA (94), SA (229), TA (267), BSA (279),
GDA (412), Geom (455), RTR (490), HC (636)

Ta111-120 2.93 LAHC (0), GSA (11), RTR (19), GDA (31), HC (39),
Geom (50), TA (63), SA (67), BSA (80)
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Fig. 3. Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained on the Ta001-030 (left plot) and on the Tai111-120 instances of the Taillard
benchmark set (right plot, SA, BSA, and in part TA results are not shown as they
were very poor).

different number of jobs and machines. Inside each instance subclass, the variance
is much lower, indicating consistent results for each instance size.

Late acceptance hill climbing is the criterion that obtains clearly the best
results, with an average ARPD of 1.2%. It is also more robust than the others: its
worst results are below 2% of ARPD. GSA comes second best, with an average
deviation of 1.5%, followed by SA and BSA (respectively 1.7% and 1.8% on
average; a Wilcoxon test shows no statistically significant difference between
them). TA obtains results comparable to BSA. The other criteria obtain results
between 2% and 3% of ARDP, still significantly better than HC.

The different instance sizes in both the training and test sets favour the more
robust solutions. GSA appears to be more robust than the original SA, thanks
to the increased flexibility given by the additional parameters. Looking at the
different instance subclasses, however, LAHC consistently outperforms all other
acceptance criteria.

We focus now on the instance subclasses not covered by the training set,
either because they are too small (Ta001-030) or because they are too big
Tai111-120. We can observe in Fig. 3 and in Table 3 that LAHC is consistently
the best performing one, followed by GSA. Overall, on the small instances all
algorithms obtain results that are according to the ARPD values at least as good
as on medium size instances of Ta031-110, with GDA and RTR being the only
ones for which this is not true.

On the large instances, LAHC and GSA remain the top-performing algorithms
with an average ARPD of 0.59% and 1.57%, respectively. SA and BSA instead
obtain good results on the small instances, but perform very poorly on the larger
ones, with ARPDs ranging around 9–10%, much worse than even HC. This effect
is due to the parameters selected by the tuning phase, which are calibrated for
instance sizes occurring in the training set and the given running time. The conver-
gence behaviour of SA and BSA does not scale to large instance sizes for which the
evaluation per solution is much more costly (the evaluation scales quadratically
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Fig. 4. Convergence behaviour of the SA, GSA, LAHC and HC algorithms for the
Ta100 (top left plot) and Ta120 (top right plot) instances; in the bottom plot, the
results for SA, GSA and LAHC on Ta120 with 10× the original running time.

with instance size while the computation time only increases linearly). This is illus-
trated in Fig. 4, where we compare the development of the solution quality over
the number of iterations for SA, GSA, LAHC and HC on two instances: Ta100,
whose size is 200 × 10 and is covered by the training set, and Ta120, whose size
is 500 × 20. On Ta100, the four algorithms quickly discover good solutions; still,
the convergence of SA is slower with respect to the other three. On Ta120, SA
is clearly unable to converge within the originally allocated computation time.
In the right plot of Fig. 4 we observe the convergence of SA, GSA and LAHC on
Ta120 with a runtime ten times higher (1500s instead of 150s on that instance –
HC not included in the plot): the convergence is more similar to the one observed
for Ta100, with also SA discovering high quality solutions. In particular, GSA finds
a solution very close to the best known one (6756860 vs 6755722), while SA and
LAHC both find a solution of better quality than the currently best known one
(6746818 and 6748131, respectively). It is interesting to note that SA has now
found the best solution, while LAHC has continued improving until more than
half the time available.

6 Conclusions

We have observed how a careful tuning of the numerical parameters is crucial to
obtain good results, in terms of both solution quality and convergence. Across our
two benchmark problems, the algorithm that obtained the best results is LAHC.
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It exhibits a good convergence behaviour, quickly discovering good solutions in
the beginning of the search, and continuously improving afterwards. It is also
very robust, as it is the best performing algorithm across the whole Taillard
benchmark for the PFSP-TCT, and it scales well also to instances of different
sizes, unseen in the training set. Despite its simplicity (only one parameter to
be tuned), LAHC makes a good use of the history of the search, as any solution
it accepts is never worse than at least another one it has accepted in the past.

SA obtains overall good results, but it requires a proper tuning, as we have
observed, in particular, for the large PFSP instances. It is able to obtain good
results, but it might do so slowly; it is therefore advisable to tune SA for anytime
behaviour [12] to obtain good results in a shorter time. BSA performs similarly
to the standard SA. GSA, instead, has been shown to be flexible, outperforming
SA also in terms of scalability and anytime behaviour. The geometric acceptance
criterion is overall inferior to those derived from the original SA.

TA has obtained results overall not very different from SA. RTR has obtained
good results on the random QAP instances, but was among the worse performers
in the other scenarios, probably because of the fixed value of its threshold. GDA
also showed a lack of flexibility, requiring a different setup and thus making its
use within other algorithms more problematic.

As future work, we plan to extend the analysis to different conditions that
might improve the performance of the various criteria. For example, a tempera-
ture restart, which is a common option in various SA algorithms, may change the
conclusions of especially those criteria that rely on the temperature parameter.
In addition, we plan to extend the set of acceptance criteria that are considered
in this work and also extend the set of test problems to increase the experimental
basis on which our conclusions rely. Finally, we intend to test the various accep-
tance criteria considering other aspects such as anytime behavior or robustness
to other scenarios that differ in instance size and termination condition.
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