
Offline Learning for Selection
Hyper-heuristics with Elman Networks

William B. Yates(B) and Edward C. Keedwell

Computer Science, College of Engineering, Mathematics and Physical Sciences,
University of Exeter, Exeter EX4 4QF, UK

{wy254,E.C.Keedwell}@exeter.ac.uk

Abstract. Offline selection hyper-heuristics are machine learning meth-
ods that are trained on heuristic selections to create an algorithm that is
tuned for a particular problem domain. In this work, a simple selection
hyper-heuristic is executed on a number of computationally hard bench-
mark optimisation problems, and the resulting sequences of low level
heuristic selections and objective function values are used to construct
an offline learning database. An Elman network is trained on sequences
of heuristic selections chosen from the offline database and the network’s
ability to learn and generalise from these sequences is evaluated. The net-
works are trained using a leave-one-out cross validation methodology and
the sequences of heuristic selections they produce are tested on bench-
mark problems drawn from the HyFlex set. The results demonstrate that
the Elman network is capable of intra-domain learning and generalisa-
tion with 99% confidence and produces better results than the training
sequences in many cases. When the network was trained using an inter-
domain training set, the Elman network did not exhibit generalisation
indicating that inter-domain generalisation is a harder problem and that
strategies learned on one domain cannot necessarily be transferred to
another.

Keywords: Hyper-heuristics · Elman networks · Offline learning

1 Introduction

Hyper-heuristics are heuristic methods that are employed to solve computa-
tionally hard problems for which no known effective algorithmic solution exists.
Typically such problems are presented as optimisation problems where the goal
is to minimise an objective function defined on a space of solutions. Such methods
have proved effective on a number of real world problems (see [1]).

A selection hyper-heuristic selects heuristics from a given set of low level
heuristics and applies them sequentially to optimise a particular problem. Many
hyper-heuristics employ learning algorithms in order to improve optimisation
performance, and this learning may be classified as either online or offline. Online
learning is based on the low level heuristic selections and resulting objective
function values computed during the execution of a hyper-heuristic. In contrast,
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 217–230, 2018.
https://doi.org/10.1007/978-3-319-78133-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_16&domain=pdf

218 W. B. Yates and E. C. Keedwell

offline learning is performed on a database of low level heuristic selections and
objective function values computed by a hyper-heuristic on a fixed number of
benchmark problems. This paper is concerned with offline learning for selection
hyper-heuristics.

A variety of machine learning algorithms have been proposed for offline learn-
ing (see for example [2–4]). In [2] classifier systems are applied to the 1D bin
packing problem. Here the system learns a set of rules which associate char-
acteristics of the current problem state with specific heuristics. Heuristics are
selected and applied sequentially, thus gradually altering the characteristics of
the problem. The system when trained on several problems, generalises by also
performing well on unseen problems. In [3] case based reasoning (CBR) is applied
successfully to exam timetabling problems. The assumption underlying CBR
is that “similar problems will have similar solutions”. Previous problems and
their “good” solutions (called source cases) are collected and stored. A similar-
ity based retrieval process compares the source cases with the problem at hand,
and selects heuristics that were employed successfully in similar situations. Here
the authors employ a two-stage learning process, one for the case representation
(or feature selection) and another for source case selection. In [4], messy genetic
algorithms are used to evolve combinations of condition-action rules which rep-
resent problem states and associated heuristics. Each chromosomes represents
a hyper-heuristic and contains the set of rules that determine which heuristic
should be applied to which problem state. When tested, these hyper-heuristics
generalised well and solved many of the test problems efficiently.

In each case, learning is used to improve optimisation performance by improv-
ing the selection of individual heuristics at particular points in the search process
across a number of training problems. In contrast, recent research (see [5,6]) has
argued that heuristic selections should be understood as part of a sequence of
selections. The concept of heuristic sequences is intuitive, certain heuristic order-
ings make sense (e.g. an explorative mutation followed by an exploitative local
search) whereas others (e.g. the reverse of the previous example) do not.

The objective of this study is to test the thesis that subsequences of heuristics
can be found in the offline learning database that are effective across a number
of problems and (it is hoped) problem domains. A selection hyper-heuristic is
executed on the well known HyFlex set of benchmark problems (see [7]) and
the resulting sequences of low level heuristic selections and objective function
values are used to construct an offline learning database. An Elman network
(see [8]) is used to extract effective subsequences of heuristics automatically by
learning from suitable sets of sequences chosen from the offline database. Elman
networks are recurrent neural networks which naturally learn from, process and
produce sequences of data. After training, the Elman network is used to com-
pute new sequences of heuristics which are then evaluated on unseen HyFlex
example problems. The aim is to determine if the network has generalised from
the training sequences. In this context, generalisation means that the network is
able to produce a sequence of heuristic selections which, when evaluated on the
unseen examples, outperform the training sequences.

Offline Learning for Selection Hyper-heuristics with Elman Networks 219

The benchmark problems are drawn from 4 distinct problem domains. Offline
learning can be classified as either intra-domain or inter-domain. In intra-domain
learning, the training sequences and the test optimisation problem are drawn
from the same problem domain. In inter-domain learning, the training sequences
and test problem can be drawn from different domains.

The results presented here demonstrate that an Elman network is capable of
intra-domain learning and generalisation with 99% confidence when trained on
suitable sequences of heuristic selections. When trained using an inter-domain
training set, the Elman network did not exhibit generalisation indicating that
inter-domain generalisation is harder, and the methodology used to choose the
training sets is unsuitable in this case.

This paper is structured as follows. Section 2 details the methodology and
describes the construction of the offline learning database, the structure of the
Elman networks and their training sets, and the hyper-heuristic used to evaluate
the sequences produced by the trained Elman networks. Section 3 contains the
results of two experiments designed to test the suitability of Elman networks
for offline intra-domain and inter-domain learning. Finally, Sect. 4 presents the
conclusions of this study.

2 Methodology

Section 2.1 contains a description of the HyFlex benchmark problems and the
DBGen hyper-heuristic used to generate the offline learning database. In Sect. 2.2
the mathematical concept of a logarithmic return is introduced and used to
quantify hyper-heuristic performance, and to select training sequences from the
database. Section 2.3 details the architecture of the Elman network used in this
study, while Sect. 2.4 describes the construction of the intra-domain and inter-
domain training sets. Finally, in Sect. 2.5, the BLIND hyper-heuristic that is used
to evaluate the sequences produced by the trained Elman networks is presented.

2.1 HyFlex and the Offline Learning Database

The Hyper-heuristics Flexible framework (or HyFlex1, see [7]) is a set of bench-
mark problems that has been used in a number of studies. See for example
[5,9–13]. HyFlex contains an implementation of four computationally hard prob-
lem domains:

1. 1D bin packing (BP),
2. permutation flow shop (PFS),
3. boolean satisfiability (SAT), and
4. personnel scheduling (PS).

1 HyFlex, Cross-domain Heuristic Search Challenge (CHeSC 2011) is used in this
study (see http://www.asap.cs.nott.ac.uk/chesc2011/).

http://www.asap.cs.nott.ac.uk/chesc2011/

220 W. B. Yates and E. C. Keedwell

Each problem domain contains 10 distinct problems of varying complexity.
HyFlex hides all problem specific information such as the solution representa-
tions, the solution constructions, and the low level heuristic implementations.
Each HyFlex problem has four general heuristic classes:

1. parameterised mutation (M) which perturbs a solution randomly,
2. crossover (C) which constructs a new solution from two or more existing

solutions,
3. parameterised ruin and recreate (R) which destroys a given solution partially

and then rebuilds the deleted parts, and
4. parameterised hill climbing or local search (L) that incorporates an iterative

improvement process and returns a non-worsening solution.

The actual number and implementation of the low level heuristics in each class
differs between problem domains. As a result, it is not possible to directly com-
pare sequences of low level heuristics from different domains. Instead, sequences
of heuristic classes are compared.

Algorithm 1. The DBGen hyper-heuristic in pseudocode.
1. ITERATIONS ← 150;
2. new-sol ← initialiseSolution();
3. new-obj ← f(new-sol);
4. cross-sol ← initialiseSolution();
5. cross-obj ← f(new-sol);
6. while (ITERATIONS−− > 0) do
7. cur-sol ← new-sol;
8. cur-obj ← new-obj;
9. Heuristic h ← selectHeuristic();
10. new-sol ← apply(h, new-sol, cross-sol);
11. new-obj ← f(new-sol);
12. double r ← ran();
13. if (new-obj < cross-obj or r < 0.5) then
14. cross-sol ← new-sol;
15. cross-obj ← new-obj;
16. end if
17. if (new-obj ≥ cur-obj and r ≥ 0.5) then
18. new-sol ← cur-sol;
19. new-obj ← cur-obj;
20. end if
21. end while

The random, unbiased, single selection hyper-heuristic DBGen used to gen-
erate the offline learning database is shown in Algorithm1. The function select()
(line 9) selects a single low level heuristic class at random from the set {C, L, R, M}.
The function apply() (line 10) takes the heuristic class and chooses, again at ran-
dom, an actual low level heuristic and its parameters from the available heuristics
of that class. The actual heuristic is then applied to the current solution cur-sol,
and if the class is C, to the current crossover solution cross-sol. An objective
function evaluation (line 11) and an acceptance check (lines 12–20) are then
performed. The function ran() (line 12) returns a uniformly distributed pseu-
dorandom number in the interval (0, 1). If a new solution’s objective value is

Offline Learning for Selection Hyper-heuristics with Elman Networks 221

less than the current solution’s objective value cur-obj or ran() < 0.5 then it is
accepted. Otherwise the new solution is rejected. The random term allows new
solutions to be accepted regardless of their objective function approximately
50% of the time. Accepting states that may lead to a large increase in objective
function value forces the DBGen hyper-heuristic to explore the space of low level
heuristic selections instead of optimising the problem efficiently.

The DBGen hyper-heuristic is executed 40 times, for 150 selections, on the 10
problems in each of the 4 HyFlex domains. The resulting 1600 sequences of low
level heuristic selections and associated objective function values are used to con-
struct an offline learning database. The number of 40 trials was chosen because
for a sufficiently large number (say n > 30) the central limit theorem ensures
that the arithmetic mean of any observed values will be approximately nor-
mally distributed, regardless of the underlying distribution. This allows robust
statistics to be calculated for each problem. The number of 150 selections was
chosen after experimental observations indicated that no major improvements
in objective function occurred beyond this point.

2.2 Final Log Returns and the BEST Sequences

In this study, logarithmic returns are used to measure the performance of a
hyper-heuristic. The final log return αf of a hyper-heuristic run or sequence s is
the log return between the initial solution of a run x0, which has an objective
function value o0, and the best final solution xmin found during the run, which
has an objective function value of omin. In symbols

αf (s) = log10

(
omin

o0

)
.

Logarithmic returns allows us to easily compare the objective function values
produced by a hyper-heuristic executing on a number of distinct problems or
problem domains.

The mean final log return of a set of N sequences is

αf ({s1, . . . , sN}) =
1
N

N∑
i=1

αf (si).

The function αf is the mean of log values. The anti-log of the mean of the logs
is equivalent to the geometric mean. In symbols

log−1

(
1
N

N∑
i=1

log(xi)
)

= N
√

x1 · x2 · · · xN

assuming the values xi all have the same sign. The geometric mean is always
less than or equal to the arithmetic mean, and is employed to average values
which have very different ranges. The geometric mean normalises the ranges, so
that no range dominates the average. Although the use of log returns normalises

222 W. B. Yates and E. C. Keedwell

the ranges of different objective functions, the log return values can still differ
significantly, as some problems are harder to optimise than others. For this
reason, in this study, the arithmetic mean of the final log returns αf is used
in preference to the arithmetic mean of the decimal returns.

The final unit log return βf is the final log return αf divided by the sequence’s
length up to (and including) the minimum objective function value. That is

βf (s) =
αf (s)
min

.

The length of a sequence is important because for many real world optimisation
applications the execution times of the low level heuristics and objective function
evaluations can be non-trivial.

The HyFlex benchmark problems set consists of 4 problem domains, each
one containing 10 problems. The set of the 40 “best” sequences in the offline
database, denoted BEST, consists of the sequences with the lowest final unit
log return βf for each problem. These sequences are the shortest sequences that
produce the largest decrease in the objective function value for each problem. As
the offline database was generated by executing the DBGen hyper-heuristic 40
times on each of the 40 HyFlex problems, the “best” sequence for each problem
is selected from a pool of 40 sequences.

2.3 Elman Networks

Elman networks are examples of simple recursive neural networks. They are
typically applied to problems which express themselves naturally as temporal
sequences such as natural language processing applications (see [8,14]). Such
networks learn from, process, and produce sequences of data.

The training sequences are sequences of low level heuristics selections chosen
from the offline learning database. Each such sequence is encoded using a field
representation so that it can be processed by the Elman network. Specifically,
each low level heuristic selection {M, C, R, L} is encoded as a vector in {0, 1}4
where

M = (1, 0, 0, 0)
C = (0, 1, 0, 0)
R = (0, 0, 1, 0)
L = (0, 0, 0, 1),

and X = (0, 0, 0, 0) denotes a missing or unknown selection. These vectors are
then concatenated to form an input pattern. For example, given the sequence
MCRLR, an input pattern of 4 low level heuristic selections, corresponding to the
current selection L and the three past selections MCR is

(

M︷ ︸︸ ︷
1, 0, 0, 0,

C︷ ︸︸ ︷
0, 1, 0, 0,

R︷ ︸︸ ︷
0, 0, 1, 0,

L︷ ︸︸ ︷
0, 0, 0, 1)

Offline Learning for Selection Hyper-heuristics with Elman Networks 223

0

10

20

30

40

50

4 8 12 16 20

L
L
H

T
ra
in
in
g
E
rr
or
s
(P

er
ce
nt
)

Network Inputs

BP
PFS
SAT
PS

Fig. 1. The percentage of LLH training errors for an Elman network with 4, 8, 12, 16
and 20 inputs, 16 hidden units, and 4 output units, for each domain.

while the output pattern corresponding to the next selection in the sequence is

(

R︷ ︸︸ ︷
0, 0, 1, 0).

The number of selections to be used as an input is termed the memory length
of a selection strategy (see [15]). Using the current heuristic selection and those
prior to it as inputs provides context for the next selection.

Initial experiments with memory length show that Elman network learning
improves significantly as the number of past selections increases. Figure 1 shows
the results of training an Elman network with a memory length of 1, 2, 3, 4 and
5, on the INTRA training sequences for each domain (see Sect. 2.4). It should be
noted that increasing the number of past selections also increases the number of
weights which also improves learning.

In this study, a memory length of 4 is used because, with this number, the
Elman network learns 80% (or more) of each training set. Thus, the 3-layer
Elman network used in this experiment has 16 input units, 16 hidden units (and
therefore 16 context units), 4 output units, and 596 weights. The hidden and
output units employ the sigmoid activation function. The number of 16 hidden
units was chosen arbitrarily.

After training, given some initial input, an Elman network produces a
sequence of outputs. The output sequence may converge to a single point, a
limit cycle of repeating values, or produce a chaotic non-repeating sequence.

2.4 Training Sets

This study is concerned with offline intra-domain and inter-domain learning of
heuristic classes. In intra-domain learning, the training sequences and the test

224 W. B. Yates and E. C. Keedwell

−0.5

0

0.5

1

BP PFS SAT PS

Sc
al
ed

m
ea
n
lo
g
re
tu
rn

C

L

M

R

Fig. 2. The scaled mean log returns α of the heuristic classes C, L, M, and R for each
domain. In each domain the α values have been scaled by the largest absolute α value
into the interval [−1, 1].

optimisation problem are drawn from the same problem domain. This simplifies
the learning task considerably as the low level heuristics in each class are iden-
tical for each problem and so the heuristic classes will have similar statistical
characteristics across the problems of the domain. This is not generally the case
for inter-domain learning where the training sequences and test problem can
be drawn from different domains. These different domains will have different
low level heuristic implementations and so the heuristic classes can have differ-
ent statistical characteristics in each domain (see Fig. 2). However, the general
underlying principles of each heuristic class should remain similar, for example
a mutation operation should make small random changes, while a local search
operation will greedily search the surrounding space.

The training sets for intra-domain and inter-domain learning are constructed
from the BEST heuristic class sequences. As these sequences are the most
efficient optimisations of each problem available they contain the most “use-
ful information” regarding that problem and therefore they are prime candi-
dates for inputs to a machine learning algorithm. In this study, leave-one-out
cross-validation (see [16]) is employed to determine whether the Elman network
sequences are able to outperform the BEST training sequences.

For intra-domain learning, the BEST subsequences are divided by domain
into 4 sets of 10 sequences. For each problem in a domain, the sequence for
that problem is left out of the training set and the remaining 9 sequences are
used to train a network. The sequence produced by the trained network is then
evaluated on the problem that was left-out. Thus the sequence generated by the
network is always evaluated on a problem that the network has not been trained
on. Applying this methodology gives rise to 40 training sets of 9 sequences, one
for each problem, constructed from the 10 sequences selected for each domain.

Offline Learning for Selection Hyper-heuristics with Elman Networks 225

For inter-domain learning, the BEST subsequences are again divided by
domain into 4 sets of 10 sequences. For each domain, 3 sequences are selected
from each of the 3 remaining domains. These sequences correspond to the prob-
lems with the lowest βf in those domains. Applying this methodology gives rise
to 4 training sets of 9 sequences, one for each domain, constructed from the 9
sequences selected from the other domains.

In each case, for each problem, the Elman network is trained with 9 sequences
drawn from the set BEST. It should be noted that for network training, only
the accepted selections of each sequence up to (and including) the minimum
objective function value are used. Rejected selections, and those selections that
occur after the minimum objective function value are not used.

2.5 The BLIND Hyper-heuristic

The BLIND hyper-heuristic is used to evaluate sets of heuristic sequences on
the HyFlex problems. It is intended to serve as a simple test bed and a “level
playing field”, in order to evaluate and compare the performance of sequences.
The sequence based hyper-heuristic BLIND used in these experiments blindly
applies a given sequence, one low level heuristic class after another to a HyFlex
problem, accepting every selection. The actual low level heuristics and their
parameters are chosen at random.

3 Results

Section 3.1 presents the results of training the Elman networks with the intra-
domain and inter-domain training sequences. In Sect. 3.2 the sequences that are
generated by the trained networks are evaluated on the HyFlex problems using
the BLIND hyper-heuristic.

3.1 Network Training

An Elman network is trained with the intra-domain and inter-domain training
sets using stochastic Backpropagation with early stopping over a maximum of
1000 epochs (see [16]) using the parameters shown in Table 1. The learning rate,
momentum term, and the number of training epochs have not been optimised.

The results of network training are summarised in Table 2 and Fig. 3. Table 2
shows the results of training the Elman network with the 40 intra-domain train-
ing sets. The results are averaged over the 10 training sets in each domain.
The columns show the average number of low level heuristics in each set, the

Table 1. The Elman network structure and training parameters.

Input Hidden Out Learn Momentum Epochs

16 16 4 0.1 0.25 1000

226 W. B. Yates and E. C. Keedwell

Table 2. The averaged training results of the Elman network on the intra-domain
training sets.

Dom. Num. Wrong (%) Error Epochs

BP 369.0 12.6407 4.2958 907.7

PFS 94.5 1.0260 1.0491 328.9

SAT 288.2 18.3158 4.1991 918.9

PS 121.5 3.0474 0.9290 947.3

(a) Intra-domain training results.

0

10

20

30

40

50

60

0 200 400 600 800 1000

L
L
H

E
rr
or
s
(P

er
ce
nt
)

Iteration

BP
PFS
SAT
PS

(b) Inter-domain training results.

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

L
L
H

E
rr
or
s
(P

er
ce
nt
)

Iteration

PFS SAT PS

BP SAT PS

BP PFS PS

BP PFS SAT

Fig. 3. The Elman network training results for the intra-domain and inter-domain sets.
In figure (a) the training sequences are drawn from the BP, PFS, SAT and PS domains.
In figure (b) the training sequences are drawn from the {PFS SAT PS}, {BP SAT PS},
{BP PFS PS}, and {BP PFS SAT} domains.

Table 3. The averaged training results of the Elman network on the inter-domain
training sets.

Dom. Num. Wrong (%) Error Epochs

BP 151 1.7391 1.0443 999

PFS 224 1.0638 1.3208 994

SAT 175 0.7194 0.8031 616

PS 221 1.0810 0.9290 739

average percentage of low level heuristics incorrect after training, the average
network root mean square error, and the average number of epochs. Low level
heuristic correctness is determined by applying a winner-take-all strategy to the
network’s output units and comparing the network’s choice of heuristic with
the target heuristic. Figure 3a shows the percentage of low level heuristic errors

Offline Learning for Selection Hyper-heuristics with Elman Networks 227

during intra-domain training for 4 representative problems (number 7, 19, 34,
and 14) chosen from the BP, PFS, SAT and PS domains. These results demon-
strate that the difficulty of learning intra-domain sequences of heuristic selections
varies by domain. For example, the SAT domain sequences are much harder to
learn than the training sequences of the other domains.

Similarly, Table 3 and Fig. 3b show the results of training the Elman network
with the 4 inter-domain training sets. These results demonstrate that intra-
domain learning is harder than inter-domain learning.

After training, the Elman network is then given the initial “blank” input
XXXX. As Elman networks are deterministic, the intra-domain trained networks
produces a set of 40 sequences, one for each problem, while the inter-domain
trained networks produce a set of 4 sequences, one for each domain.

3.2 Evaluating the Elman Network Sequences

The BLIND hyper-heuristic is parameterised with three sets of sequences
denoted BEST, INTRA, and INTER and then executed 40 times on each of the
HyFlex problems. The INTRA sequence set is generated by the intra-domain
trained Elman networks, while the INTER sequence set is generated by the
inter-domain trained Elman networks. It should be noted that the pseudorandom
number seeds and therefore the initial solutions used for the INTRA, INTER,
and BEST evaluation runs presented here are identical and distinct to the pseu-
dorandom number seeds used by DBGen to generate the offline database from
which the BEST sequences are selected.

When parameterised with the BEST sequences the BLIND hyper-heuristic
applies all the accepted selections including those after the minimum objective
function value. This is done because some sequences in BEST find a minimum
quickly, in some cases after only 9 selections. Using all accepted selections gives
the BLIND hyper-heuristic a larger number of iterations/selections to better
optimise a problem. The length of the BEST sequences also dictate the number
of selections used by the INTRA and INTER parameterisations. The results of
evaluating the INTRA and INTER sequence sets on the HyFlex problems are
compared to the BEST sequences (see Table 4). The intention of the comparison
is to determine whether the network has learned anything over and above the
information contained in the BEST sequences. The INTRA sequences outper-
form the BEST sequences overall and on each domain, while BEST outperforms
INTER overall, and on each domain except the PFS domain. The best general-
isation is observed between INTRA and BEST on the SAT domain (which was
the hardest to learn). The overall averages are calculated over 1600 sequences,
and the domain averages are calculated over 400 sequences.

A paired t-test is used to establish whether the difference observed in the
mean final log returns of BEST and INTRA is statistically significant. Formally,
the null hypothesis

αf (BEST) ≥ αf (INTRA)

228 W. B. Yates and E. C. Keedwell

Table 4. A domain by domain and overall comparison of the mean final log return αf

of BEST, INTRA and INTER.

Dom. BEST INTRA INTER

BP −0.2172 −0.2202 −0.0375

PFS −0.0043 −0.0049 −0.0051

SAT −0.4345 −0.6919 −0.2313

PS −1.7912 −1.8042 −1.5560

All −0.6118 −0.6803 −0.4575

Table 5. The domain, the sample mean difference, the standard deviation, the t-score,
and the interval within which the population mean difference falls with 99% confidence.

Dom. Diff. SD t-score Conf. int.

BP −0.0030 0.0821 −0.7214 [−0.0136, 0.0077]

PFS −0.0006 0.0024 −5.2796 [−0.0009,−0.0003]

SAT −0.2573 0.1085 −47.4485 [−0.2714,−0.2433]

PS −0.0130 0.1225 −2.1289 [−0.0289, 0.0028]

All −0.0685 0.1424 −19.2384 [−0.0777,−0.0593]

is rejected if t lies outside the interval [−2.3287,∞) and the alternative
hypothesis

αf (BEST) < αf (INTRA)

is accepted with 99% confidence. The results of the t-test are shown in Table 5.
The difference in mean is statistically significant overall, and for the PFS and
SAT domains with 99% confidence. For the BP and PS domains the difference
in mean is not statistically significant.

4 Conclusions

The sequence set BEST consists of the sequences with the lowest final unit log
return βf for each HyFlex problem. An intra-domain training set INTRA and
an inter-domain training set INTER are constructed from the BEST sequences
and used to train an Elman network. In order to estimate the Elman network’s
capacity for generalisation the network is evaluated using a leave-one-out cross-
validation methodology. The first result presented in this study demonstrates
that the Elman network is capable of intra-domain generalisation with 99% con-
fidence. This result is notable because the Elman network is able to significantly
outperform the sequences on which it was trained. The process of generalisa-
tion across the training problems within a domain has generated a network that

Offline Learning for Selection Hyper-heuristics with Elman Networks 229

is able to perform better on unseen test problems in that domain. This shows
that useful information can be learned about the problems in a domain from
the sequences of heuristic selections used to optimise them. The second result
shows that the Elman network is not capable of inter-domain generalisation
using the training set INTER in spite of the fact that the training sets are easier
to learn. This suggests that inter-domain generalisation is harder than intra-
domain generalisation, and that low training errors need not translate into good
generalisations. This was generally to be expected, the sequences of heuristics
learned on one domain are not expected to be applicable to another. However,
there are exceptions, for example the performance on PFS domain from the
INTER trained network performed well and indicates perhaps that a more gen-
eral strategy for solving the PFS domain would be successful.

Overall, the Elman network proved to be able to generalise the training
sequences for intra-domain learning which opens up the possibility of the use of
bespoke learned algorithms for particular problems. Inter-domain generalisation
was more difficult, as expected, and more work would need to be conducted to
determine whether a different methodology would allow domains with similar
sequences to be identified.

References

1. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A classi-
fication of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Hand-
book of Metaheuristics. Springer, Boston (2010). https://doi.org/10.1007/978-1-
4419-1665-5 15

2. Ross, P., Schulenburg, S., Maŕın-Bläzquez, J.G., Hart, E.: Hyper-heuristics: learn-
ing to combine simple heuristics in bin-packing problems. In: Proceedings of the
4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002,
pp. 942–948. Morgan Kaufmann Publishers Inc., San Francisco (2002)

3. Burke, E.K., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling
problems. J. Sched. 9(2), 115–132 (2006)

4. Terashima-Maŕın, H., Ortiz-Bayliss, J.C., Ross, P., Valenzuela-Rendón, M.: Hyper-
heuristics for the dynamic variable ordering in constraint satisfaction problems. In:
Proceedings of the 10th Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO 2008, pp. 571–578. ACM, New York (2008)

5. Kheiri, A., Keedwell, E.: A sequence-based selection hyper-heuristic utilising a
hidden Markov model. In: Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO 2015, pp. 417–424. ACM (2015)

6. Yates, W.B., Keedwell, E.C.: Clustering of hyper-heuristic selections using the
Smith-Waterman algorithm for offline learning. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), Berlin, pp. 119–120. ACM
(2017)

7. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic
search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp.
136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-
1 12

8. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

https://doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-3-642-29124-1_12
https://doi.org/10.1007/978-3-642-29124-1_12

230 W. B. Yates and E. C. Keedwell

9. Walker, J.D., Ochoa, G., Gendreau, M., Burke, E.K.: Vehicle routing and adaptive
iterated local search within the HyFlex hyper-heuristic framework. In: Hamadi,
Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 265–276. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34413-8 19

10. Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selec-
tion for cross domain heuristic search. In: Coello, C.A.C., Cutello, V., Deb, K.,
Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 307–
316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32964-7 31

11. Mısır, M., Verbeeck, K., Causmaecker, P.D., Berghe, G.V.: A new hyper-heuristic
as a general problem solver: an implementation in HyFlex. J. Sched. 16(3), 291–311
(2013)

12. Drake, J.H., Özcan, E., Burke, E.K.: A comparison of crossover control mechanisms
within single-point selection hyper-heuristics using HyFlex. In: IEEE Congress on
Evolutionary Computation (CEC), Sendai, Japan, pp. 3397–3403, May 2015

13. Dempster, P., Drake, J.H.: Two frameworks for cross-domain heuristic and param-
eter selection using harmony search. In: Kim, J.H., Geem, Z.W. (eds.) Harmony
Search Algorithm. AISC, vol. 382, pp. 83–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-47926-1 10

14. Elman, J.L.: Distributed representations, simple recurrent networks, and gram-
matical structure. Mach. Learn. 7, 195–224 (1991)

15. Bai, R., Burke, E.K., Gendreau, M., Kendall, G., McCollum, B.: Memory length in
hyper-heuristics: an empirical study. In: Proceedings of the 2007 IEEE Symposium
on Computational Intelligence in Scheduling, pp. 173–178 (2007)

16. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

https://doi.org/10.1007/978-3-642-34413-8_19
https://doi.org/10.1007/978-3-642-32964-7_31
https://doi.org/10.1007/978-3-662-47926-1_10
https://doi.org/10.1007/978-3-662-47926-1_10

	Offline Learning for Selection Hyper-heuristics with Elman Networks
	1 Introduction
	2 Methodology
	2.1 HyFlex and the Offline Learning Database
	2.2 Final Log Returns and the BEST Sequences
	2.3 Elman Networks
	2.4 Training Sets
	2.5 The BLIND Hyper-heuristic

	3 Results
	3.1 Network Training
	3.2 Evaluating the Elman Network Sequences

	4 Conclusions
	References

