
Evelyne Lutton
Pierrick Legrand
Pierre Parrend
Nicolas Monmarché
Marc Schoenauer (Eds.)

 123

LN
CS

 1
07

64

13th International Conference, Évolution Artificielle, EA 2017
Paris, France, October 25–27, 2017
Revised Selected Papers

Artificial Evolution

Lecture Notes in Computer Science 10764

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Evelyne Lutton • Pierrick Legrand
Pierre Parrend • Nicolas Monmarché
Marc Schoenauer (Eds.)

Artificial Evolution
13th International Conference, Évolution Artificielle, EA 2017
Paris, France, October 25–27, 2017
Revised Selected Papers

123

Editors
Evelyne Lutton
Inria
Thiverval-Grignon
France

Pierrick Legrand
Inria Bordeaux
University of Bordeaux
Talence
France

Pierre Parrend
ECAM Strasbourg-Europe
Schiltigheim
France

Nicolas Monmarché
University of Tours
Tours
France

Marc Schoenauer
Université Paris-Sud
Orsay
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-78132-7 ISBN 978-3-319-78133-4 (eBook)
https://doi.org/10.1007/978-3-319-78133-4

Library of Congress Control Number: 2018937371

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This LNCS volume comprises the best papers presented at the 13th Biennial Interna-
tional Conference on Artificial Evolution, EA1 2017, held in Paris (France). This
conference proceeds a long series of previous issues, that took place in Lyon (2015),
Bordeaux (2013), Angers (2011), Strasbourg (2009), Tours (2007), Lille (2005),
Marseille (2003), Le Creusot (2001), Dunkerque (1999), Nimes (1997), Brest (1995),
and Toulouse (1994).

We sought original contributions relevant to artificial evolution, including, but not
limited to: evolutionary computation, evolutionary optimization, co-evolution, artificial
life, population dynamics, theory, algorithmics and modelling, implementations,
application of evolutionary paradigms to the real world (industry, biosciences, etc.),
other biologically inspired paradigms (swarm, artificial ants, artificial immune systems,
cultural algorithms), memetic algorithms, multi-objective optimization, constraint
handling, parallel algorithms, dynamic optimization, machine learning and hybridiza-
tion with other soft computing techniques.

Each submitted paper was reviewed by four members of the international Program
Committee. Among the 33 submissions received, 17 papers were selected for oral
presentation and seven other papers for poster presentation. As for the previous edi-
tions, a selection of the best papers which were presented at the conference and further
revised are published (see LNCS volumes 1063, 1363, 1829, 2310, 2936, 3871, 4926,
5975, 7401, 8752, and 9554). For this edition, the high quality of the papers selected
for the oral presentation led us to include a revised version of 16 papers in this volume
of Springer’s LNCS series.

As usual, the success of EA 2017 is due to dedicated team work, for which I would
like to express my gratitude:

– Gabriela Ochoa and Jean-Daniel Fekete, who accepted to be our keynote speakers.
– The Program Committee for their careful work: the high quality of the selected

papers is a proof of their strong commitment.
– The Organizing Committee for their efficient work and kind availability, in par-

ticular the local team, Nadia Boukhelifa, Alberto Tonda, and our student volunteers,
Marc Barnabé, Thomas Chabin, and Benoît Génot.

– ISC-PIF who hosted the EA2017 event: David Chavalarias, the director, and the
local ISC organization team, Margaux Calon and Franck Leclerc, for their kind,
efficient, and daily help.

– The members of the Steering Committee for their valuable assistance.
– Aurélien Dumez and Pierrick Legrand for the administration of the conference

website.

1 As for previous editions of the conference, the EA acronym is based on the original French name
“Évolution Artificielle.”

– Marc Schoenauer and Anne Jeannin-Girardon for their support and management
of the MyReview system.

– Laetitia Jourdan for publicity.
– Pierrick Legrand and Pierre Parrend for editing the proceedings.
– Lhassane Idoumghar for registrations.
– Emmanuel Cayla and Nicolas Monmarché for the organization of the Twin Event

“Art and Artificial Evolution” at Galerie Louchard.

I take this opportunity to thank the different partners whose financial and material
support were precious: the MIA department of INRA, the Inria Saclay research unit,
AgroParisTech, ISC-PIF, Polytech-Tours, the Local Solver company, the RO and
MACS research groups (GDR) of CNRS.

We are as always deeply grateful to all authors who submitted their research work to
the conference, to all artists who contributed to the art exhibition, and to all attendees
who made the conference so lively. The scientific quality as well as the warm and
friendly atmosphere of this series of conferences is the result of a rare alchemy that is
still maintained. Thank you for all these years of fidelity, thank you for EA 2017.

February 2018 Evelyne Lutton

VI Preface

Évolution Artificielle 2017 — EA 2017

October 25–27, 2017
Paris, France

13th International Conference on Artificial Evolution

Chair

Evelyne Lutton INRA Versailles-Grignon, France

Steering Committee

Nicolas Monmarché University of Tours, France
Marc Schoenauer Inria Saclay, France

Organizing Committee

Marc Barnabé INRA Versailles-Grignon, France
Nadia Boukhelifa INRA Versailles-Grignon, France
Emmanuel Cayla Galerie Louchard, Paris, France
Thomas Chabin INRA Versailles-Grignon, France
Pierre Collet University of Strasbourg, France
Aurélien Dumez Inria Bordeaux, France
Benoît Génot INRA Versailles-Grignon, France
Lhassane Idhoumgar University of Mulhouse, France
Anne Jeannin-Girardon University of Strasbourg, France
Laetitia Jourdan University of Lille 1, France
Pierrick Legrand University of Bordeaux, France
Pierre Parrend University of Strasbourg, France
Alberto Tonda INRA Versailles-Grignon, France

Program Committee

Hernan Aguirre University of Shinshu, Japan
Anne Auger Inria Saclay, France
Sebastien Aupetit University of Tours, France
Stefan Balev University of Le Havre, France
Sana Ben Hamida University of Paris Ouest, France
Christian Blum IIIA-CSIC, Spain
Stéphane Bonnevay University of Lyon 1, France
Nadia Boukhelifa INRA Versailles-Grignon, France
Amine Boumaza University of Lorraine, France
Nicolas Bredeche University Pierre and Marie Curie, France
Stefano Cagnoni University of Parma, Italy

Maurice Clerc Independent Scholar, France
Manuel Clergue U.A.G., France
Pierre Collet University of Strasbourg, France
Fabio Daolio University of Shinshu, Japan
Fatima Debbat University of Mascara, Algeria
Laurent Deroussi University of Clermont-Ferrand, France
Carola Doerr Sorbonne University, France
Nicolas Durand ENAC, Toulouse, France
Marc Ebner University of Greifswald, Germany
Francisco Fernández de Vega Extremadura University, Spain
Cyril Fonlupt University of Littoral, France
Edgar Galvan Trinity College, Dublin, Ireland
Mario Giacobini University of Turin, Italy
Jin-Kao Hao University of Angers, France
Lhassane Idoumghar University of Mulhouse, France
Thomas Jansen University of Aberystwyth, UK
Anne Jeannin-Girardon University of Strasbourg, France
Laetitia Jourdan University of Lille 1, France
Bill Langdon University College London, UK
Pierrick Legrand University of Bordeaux, France
Julien Lepagnot University of Haute-Alsace, France
Arnaud Liefooghe University of Lille 1, France
Manuel López-Ibáñez Free University of Brussels, Belgium
Jean Louchet Inria Saclay, France
Evelyne Lutton INRA Versailles-Grignon, France
Virginie Marion-Poty University of Littoral, France
Eric Medvet University of Trieste, Italy
Juan Julián Merelo Guervós University of Granada, Spain
Nicolas Monmarché University of Tours, France
Amir Nakib University of Paris, France
Gabriela Ochoa University of Stirling, Scotland, UK
Damien Olivier LITIS, University of Le Havre, France
Luis Paquete University of Coimbra, Portugal
Andrew Parkes University of Nottingham, UK
Pierre Parrend University of Strasbourg, France
Francisco Pereira University of Coimbra, Portugal
Nathalie Perrot INRA Versailles-Grignon, France
Alain Petrovsky Telecom Sud Paris, France
Denis Robilliard University of Littoral, France
Eduardo Rodriguez-Tello CINVESTAV, Mexico
Frédéric Saubion University of Angers, France
Marc Schoenauer Inria Saclay, France
Ines Sghir University of Manouba, Tunisia
Patrick Siarry University of Paris-Est Creteil, France
Sara Silva University of Coimbra, Portugal
Dan Simon University of Cleveland State, USA

VIII Évolution Artificielle 2017 — EA 2017

Christine Solnon INSA Lyon, France
Giovanni Squillero Royal Turin Polytechnic, Italy
Thomas Stützle IRIDIA, Brussels, Belgium
El-Ghazali Talbi Inria Lille, France
Fabien Teytaud University of Littoral, France
Alberto Tonda INRA Versailles-Grignon, France
Leonardo Trujillo Tijuana Institute of Technology, Mexico
Paulo Urbano University of Lisbon, Portugal
Sébastien Verel University of Littoral, France
Nicolas Zufferey University of Geneva, Switzerland

Évolution Artificielle 2017 — EA 2017 IX

Abstracts of Invited Talks

The Cartography of Computational
Search Spaces

Gabriela Ochoa

Abstract. Recent findings and visual (static and animated) maps characterizing
combinatorial and program search spaces were presented in this talk. The
foundations for a new perspective to understand problem structure and improve
heuristic search algorithms are established: search space cartography.

A multitude of heuristic and bio-inspired search algorithms have been
proposed, each trying to be more powerful and innovative. However, little
attention has been devoted to understanding the structure of the problems and
what makes them hard to solve for a given algorithm. Formal theoretical results
are difficult to obtain, and they may only apply to problem classes and algo-
rithms chosen more for their amenability to analysis than for their relevance and
difficulty.

Heuristic methods operate by searching a large space of candidate solutions.
The search space can be regarded as a spatial structure where each point
(candidate solution) has a height (objective or fitness function value) forming a
fitness landscape surface. The performance of optimization algorithms crucially
depends on the fitness landscape structure, and the study of landscapes offers an
alternative to problem understanding where realistic formulations and algo-
rithms can be analyzed.

Most fitness landscapes analysis techniques study the local structure of
search spaces. There is currently a lack of tools to study instead their global
structure, which is known to impact the performance of algorithms. Our recently
proposed model, local optima networks, fills this gap by bringing tools from
complex networks to study optimization. This model provides fundamental new
insight into the structural organization and the connectivity pattern of a search
space with given move operators. Most importantly, it allows us to visualize
realistic search spaces in ways not previously possible and offers a whole new
set of quantitative network metrics for characterizing them.

Progressive Data Analysis:
A New Computation Paradigm for Scalability

in Exploratory Data Analysis

Jean-Daniel Fekete

Abstract. Exploring data requires a short feedback loop, with a latency of at
most 10 s because of human cognitive capabilities and limitations. When data
become large or analyses become complex, sequential computations can no
longer be completed in a few seconds and interactive exploration is severely
hampered. This talk described a novel computation paradigm called “progres-
sive data analysis” that brings low-latency guarantee at the programming lan-
guage level the by performing computations in a progressive fashion. Moving
this progressive computation at the language level relieves the programmer of
exploratory data analysis systems from implementing the whole analytics
pipeline in a progressive way from scratch, streamlining the implementation of
scalable exploratory analytics systems. The new paradigm was described, novel
experiments showing that humans can cope effectively with progressive systems
were reported, and demos using a prototype implementation called ProgressiVis
were shown. The requirements it implies through exemplar applications were
explained, and opportunities and challenges ahead were presented, in the
domains of visualization and machine-learning.

Contents

On the Design of a Master-Worker Adaptive Algorithm
Selection Framework . 1

Christopher Jankee, Sébastien Verel, Bilel Derbel,
and Cyril Fonlupt

Comparison of Acceptance Criteria in Randomized Local Searches 16
Alberto Franzin and Thomas Stützle

A Fitness Landscape View on the Tuning of an Asynchronous
Master-Worker EA for Nuclear Reactor Design. 30

Mathieu Muniglia, Sébastien Verel, Jean-Charles Le Pallec,
and Jean-Michel Do

Sampled Walk and Binary Fitness Landscapes Exploration. 47
Sara Tari, Matthieu Basseur, and Adrien Goëffon

Semantics-Based Crossover for Program Synthesis
in Genetic Programming . 58

Stefan Forstenlechner, David Fagan, Miguel Nicolau,
and Michael O’Neill

On the Use of Dynamic GP Fitness Cases in Static and Dynamic
Optimisation Problems. 72

Edgar Galván-López, Lucia Vázquez-Mendoza, Marc Schoenauer,
and Leonardo Trujillo

MEMSA: A Robust Parisian EA for Multidimensional Multiple
Sequence Alignment . 88

Julie D. Thompson, Renaud Vanhoutrève, and Pierre Collet

Basic, Dual, Adaptive, and Directed Mutation Operators
in the Fly Algorithm . 100

Zainab Ali Abbood and Franck P. Vidal

A New High-Level Relay Hybrid Metaheuristic for Black-Box
Optimization Problems. 115

Julien Lepagnot, Lhassane Idoumghar, Mathieu Brévilliers,
and Maha Idrissi-Aouad

Improved Hybrid Iterative Tabu Search for QAP
Using Distance Cooperation . 129

Omar Abdelkafi, Lhassane Idoumghar, and Julien Lepagnot

H-ACO: A Heterogeneous Ant Colony Optimisation Approach
with Application to the Travelling Salesman Problem 144

Ahamed Fayeez Tuani, Edward Keedwell, and Matthew Collett

Evolutionary Learning of Fire Fighting Strategies . 162
Martin Kretschmer and Elmar Langetepe

Evolutionary Optimization of Tone Mapped Image Quality Index 176
Xihe Gao, Jeremy Porter, Stephen Brooks, and Dirk V. Arnold

LIDeOGraM: An Interactive Evolutionary Modelling Tool 189
Thomas Chabin, Marc Barnabé, Nadia Boukhelifa,
Fernanda Fonseca, Alberto Tonda, Hélène Velly,
Benjamin Lemaitre, Nathalie Perrot, and Evelyne Lutton

Automatic Configuration of GCC Using Irace . 202
Leslie Pérez Cáceres, Federico Pagnozzi, Alberto Franzin,
and Thomas Stützle

Offline Learning for Selection Hyper-heuristics with Elman Networks 217
William B. Yates and Edward C. Keedwell

Author Index . 231

XVI Contents

On the Design of a Master-Worker
Adaptive Algorithm Selection Framework

Christopher Jankee1(B), Sébastien Verel1, Bilel Derbel2, and Cyril Fonlupt1

1 Université du Littoral Côte d’Opale, LISIC, Calais, France
jankee@univ-littoral.fr

2 Université Lille 1, LIFL, CNRS, INRIA Lille, Villeneuve-d’Ascq, France

Abstract. We investigate the design of a master-worker schemes for
adaptive algorithm selection with the following two-fold goal: (i) choose
accurately from a given portfolio a set of operators to be executed in
parallel, and consequently (ii) take full advantage of the compute power
offered by the underlying distributed environment. In fact, it is still an
open issue to design online distributed strategies that are able to opti-
mally assign operators to parallel compute resources when distributively
solving a given optimization problem. In our proposed framework, we
adopt a reward-based perspective and investigate at what extent the
average or maximum rewards collected at the master from the workers are
appropriate. Moreover, we investigate the design of both homogeneous
and heterogeneous scheme. Our comprehensive experimental study, con-
ducted through a simulation-based methodology and using a recently
proposed benchmark family for adaptive algorithm selection, reveals the
accuracy of the proposed framework while providing new insights on the
performance of distributed adaptive optimization algorithms.

1 Introduction

The selection of an accurate algorithm from a given portfolio, as well as the effec-
tive choice of the relevant algorithmic components of a general-purpose search
heuristic, are among the major issues that one has to face in practice when
tackling an optimization problem; in particular, in a black-box optimization sce-
nario when no problem-specific properties can be known beforehand [3]. In fact,
from a theoretical point of view, several parallel compute resources, possibly dis-
tributed over a large scale environment, are provided, it is even more challeng-
ing to design an efficient distributed cooperative strategy, since the algorithmic
design space gets huge and we still lack knowledge on the optimal mapping of the
implied search computational flows to the available resources. The motivation of
this paper is precisely to investigate these issues by proposing a master-worker
algorithm selection framework and precisely analyzing the impact of its different
possible design components. On the one hand, algorithm selection (or the related
topic of parameter setting), although being one of the oldest research topic in
evolutionary computation [14], is attracting more and more attention [17] due to
its crucial importance and the difficult, and yet unsolved, challenges it implies in

c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-319-78133-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_1&domain=pdf

2 C. Jankee et al.

practice. In this work, we are interested in adaptive algorithm selection. Indeed,
there are two main and tightly related methodologies that are commonly adopted
to select an algorithm [9]. In the offline setting, usually called tuning, an algo-
rithm is first selected, and only then it is executed from scratch on the target
and unseen problem instance. In the online setting, called control, an algorithm
is selected all along the optimization process (see for example [3,11]). An online
selection scheme is typically and continuously getting feedback from the opti-
mization algorithm being executed, and deciding accordingly on the next choice.
Hence, online algorithm selection can be viewed as an adaptive optimization
algorithm which follows the multi-armed bandit framework where the arms are
the algorithms of the portfolio [5]. The adaptive algorithm selection is then per-
formed as follows. A reward is computed according to the performance observed
when previously executing an algorithm. Then, in every iteration, a reinforce-
ment machine learning is applied in order to select from the portfolio the next
algorithm to execute, typically according to some exploration-exploitation rules.

On the other hand, numerous real wold optimization problems, such as engi-
neering design which are often based on numerical simulation, are computation-
ally expensive, e.g., one fitness function evaluation can take several minutes [19].
Besides, the advent of new compute facilities and the establishment of robust
and large scale massively parallel platforms, such as grids and pay-as-you-go
clouds, open tremendous research opportunities for pushing forward the devel-
opment and uptake of parallel and distributed evolutionary optimization algo-
rithms. In this context, a number of evolutionary optimization models have been
investigated [20], e.g., from centralized to fully decentralized, from fined-grained
(cellular model) to coarse grained (island model). In this work, we adopt the
centralized Master-Worker (M/W) architecture, where each worker process is
basically responsible of executing locally in parallel the actions scheduled for
him by the master (e.g., evaluate a candidate solution), whereas the master
process is responsible of collecting the local results from the workers (e.g., the
fitness values) and deciding on the next actions to send them (e.g., next can-
didate solutions to evaluate). It is worth-noticing that this framework is often
adopted in practice, not only due to the simplicity of deploying it over a real
test-bed, but also due to its high accuracy when dealing with computationally
expensive optimization problems [6].

In this context, we argue that a master-worker approach to adaptive algo-
rithm selection requires specific coordination mechanisms in order to achieve
optimal performances. In a sequential setting, the observed rewards are in fact
updated according to the performance of the algorithm executed previously in
the last round by one single process. In a M/W approach, one can benefit from
the set of performances observed by several parallel processes, i.e., the workers.
However, switching to such a scenario requires to carefully define the aggregated
reward with respect to a selected algorithm given a set of observed performance
values instead of just a single one. Additionally, one can adopt either a homoge-
nous strategy in which all workers execute the same algorithm at each iteration
(e.g., the best rewarded one so-far) or instead a heterogeneous strategy where

On the Design of a Master-Worker Adaptive Algorithm Selection Framework 3

the workers can execute different algorithms. Several existing machine learning
technics have previously been used and studied in the sequential setting [11], as
well as in the decentralized island model [7,15]. However, to our best knowledge,
the design and analysis of online selection strategies have not been investigated
within a M/W framework. We argue that the M/W scheme make it more con-
venient, as a first step, to reason about the optimal distributed decisions to
make since the master has the ability of acquiring a global view of the whole
distributed system before selecting the most accurate algorithms to execute in
parallel by the workers. This allows us to focus on the critically important selec-
tion strategy at the master level. To summarize, we propose a M/W algorithm
selection framework contributing to the solving of the following questions:

– How to define a reward function on the master based on the performance of
the algorithm(s) executed by the workers?

– How the master can decide on the set of algorithms to be executed next by
the workers based on the reward function?

– What is the relative quality that can be achieved by different algorithm selec-
tion strategies?

Our M/W framework is evaluated using a tunable benchmark family and a
simulation-based experimental procedure in order to abstract away the techni-
cal implementation issues, and instead provide a fundamental and comprehensive
analysis of the expected empirical parallel performance of the underlying adap-
tive algorithm selection. The rest of the paper is organized as follows. In Sect. 2,
we review some related works. In Sect. 3, the design components of our M/W
adaptive framework is described in details. In Sect. 4, we report our main exper-
imental findings. In Sect. 5, we conclude the paper and discuss future research
directions.

2 Related Works

In the following, we provide an overview of related studies on the algorithm
selection problem in the sequential and distributed setting, as well as a brief
summary of exiting optimization benchmark problems designed at the aim of
evaluating their dynamics and behavior.

2.1 Sequential Adaptive Algorithm Selection

In the sequential setting, a number of reinforcement machine learning technics
have been proposed for the online and adaptive selection of algorithms from
a given portfolio. Back to the early works of Grefenstette [14], one standard
technique consists in predicting the performance of a set of operators using
a simple linear regression and the current average fitness of the population,
which then allows to select the best operator to be chosen according to the
prediction given by the regression. However, recent works embeds this selection

4 C. Jankee et al.

problem into a multi-armed bandit framework dealing more explicitly with the
tradeoff between the exploitation of the best so far identified algorithm, and the
exploration of the remaining potentially under-estimated algorithms.

A simple strategy is the so-called ε-greedy (ε-G) strategy which consists in
selecting the algorithm with the best estimated performance at rate (1 − ε),
and a random one at rate ε. In that case, the performance of an operator i is
estimated with the empirical mean μ̂i of rewards on a sliding window where
only the W previous reward observations are considered. The Upper Confidence
Bound (UCB) strategy [2] is a state-of-the-art framework in machine-learning
which consists in estimating the upper confidence bound of the expected reward
of each arm by μ̂i + C · ei; where μ̂i is the estimated (empirical) mean reward,
and ei is the standard error of the prediction. It then selects the algorithms with
the higher bound (for maximization problem). The parameter C allows to tune
the exploitation/exploration trade-off. In the context of algorithm selection [11]
where the arms could be neither independent nor stationary, the estimation of
the expected reward is refined using a sliding window of size W . The Adaptive
Pursuit (AP) strategy [22] is another technique using an exponential recency
weighted average to estimate the expected reward with a parameter α to tune
the adaptation rate of the estimation. This is used to define the probability pi of
selecting every algorithm from the portfolio. At each iteration, these probability
values are updated according to a learning rate β, which basically allows to
increase the selection probability for the best algorithm, and to decrease it for
the other ones.

One key aspect to design a successful adaptive selection strategy is the esti-
mation of the quality of an algorithm based on the observed rewards. Some
authors showed that the maximum reward over a sliding window improves the
performance compared to the mean on some combinatorial problems [4,11]; but
no fundamental analysis of this result was given. In genetic algorithms, the
reward can be computed not only based on the quality but also on the diversity
of the population [18]. In the context of parallel adaptive algorithm selection, the
estimation of quality of each available algorithm is also a difficult question since
not only one but many algorithms instances could be executed in each iteration.

2.2 Parallel Adaptive Algorithm Selection

The Master-Worker (M/W) architecture has been extensively studied in evolu-
tionary computation (e.g., see [8]). It is in fact simple to implement, and does not
require sophisticated parallel operations. Two communication modes are usually
considered. In the synchronous mode, the distributed entities operate in rounds,
where in each round the master communicates actions to the workers and then
waits until receiving a response from every worker before starting a new round,
and so on. In the asynchronous mode, the master does not need to wait for
all workers; but instead can initiate a new communication with a worker, typi-
cally when that worker has terminated executing the previous action and is idle.
When the evaluation time of the fitness function can vary substantially during
the course of execution, the asynchronous mode is generally preferred [24] since

On the Design of a Master-Worker Adaptive Algorithm Selection Framework 5

it can substantially improve parallel efficiency. However, the synchronous mode
can allow to have a more global view of the distributed system which can be
crucially important to better coordinate the workers [23].

Adaptive selection approaches designed to operate in a distributed setting are
not new. The island model, which is considered as inherently distributed, has
been investigated in the past. To cite a few, in [12,21], it is also demonstrated
that a randomly setting the parameters at each iteration in a heterogeneous
manner can outperforms static homogeneous parameter settings. Nonetheless,
embedding a reinforcement machine learning technique instead of random selec-
tion can improve the performance of the adaptive distributed system. In [4],
a dynamic island model is proposed to select online the relevant algorithm.
Each island is associated to one algorithm, and the migration rates of solutions
between islands are controlled by the operators performance of each island. As
commented by the authors, this technique is not designed to fit directly in a
scalable distributed system and requires some further adaptations. In [7,15], a
distributed adaptive metaheuristic selection framework is proposed which can be
viewed as a natural extension of the island model that was specifically designed
to fit the distributed nature of the target compute platforms. The adaptive selec-
tion is performed locally by selecting the best rewarded metaheuristic from the
neighboring nodes (islands) or a random one with small probability like in ε-
greedy strategy. Notice however that we are not aware of any in-depth analysis
addressing the design principles underlying a M/W adaptive algorithm selection
approach. In this work, we propose and empirically analyze the behavior of such
an approach in an attempt to fill the gap between the existing sequential algo-
rithm selection methods and the possibility to deploy them in a parallel compute
environment using a simple, yet effective, parallel scheme like the M/W one.

2.3 Benchmarks: The Fitness Cloud Model

The understanding of the dynamics of a selection strategy according to the
problem at hand is a difficult issue. A number of artificial combinatorial problems
have been designed and used in the literature. We can distinguish between two
main benchmark classes. In the first one, a well-known combinatorial problem in
evolutionary algorithm is used, such as oneMax or long-path problems, with basic
operators, such as bit-flip, embedded in a (1 + λ)-EA [5]. This however can only
highlight the search behavior according to few and problem-specific properties.
In the second class of benchmarks, the problem and the stochastic operators are
abstracted. The performance of each available operator is then defined according
to the state of the search [11,13,16,22]. This allows to study important black-box
(problem independent) features such as the number of operators, the frequency
of change of the best operators, the quality difference between operators, etc.

In this work, we use a tunable benchmark, called the Fitness Cloud Model
(FCM), introduced recently in [16]. The FCM is a benchmark from the second
class where the state of the search is given by the fitness of the solution. The
fitness of a solution after applying a search operator is modeled by a random
variable for which the probability distribution depends on the fitness of the

6 C. Jankee et al.

current solution. A normal distribution with tunable parameters is typically
used. More specifically, given the fitness z = f(x) of the current solution x, the
probability distribution of the fitness f(y) of one solution obtained by a specific
operator is defined by: Pr(f(y) = z′ | f(x) = z) ∼ N (μ(z), σ2(z)) where μ(z)
and σ2(z) are respectively the mean and the variance of the normal distribution.
In [16], a simple scenario with two operators is studied. The mean and variance
of the conditional normal distribution are defined as follows: μi(z) = z+Kμi

and
σ2

i (z) = Kσi
for each operator i ∈ {1, 2}. Parameters Kμi

and Kσi
are different

constant numbers. An adaptive algorithm is assumed to start with a search state
where the fitness value is 0, and stops when a fitness value of 1 is reached. Notice
that in the FCM, on the contrary of benchmark of the first class (oneMax, etc.),
one can control the average quality and the variance of each operator as well
the relative difference between the considered operators which are two of the
main features to analyze from the perspective of adaptive selection of operators.
Please refer to [16] for more details on the design and motivation of the FMC
benchmark.

3 M/W Framework Description

First, a portfolio of k (local search) operators is assumed to be given, and no a
priori knowledge is assumed on the behavior of the operators with respect to the
black-box problem under consideration. Naturally, k is an integer value greater or
equal than 2. The global architecture of the proposed adaptive M/W framework
is summarized in Algorithm 1 depicting the high level code executed by the
master and in Algorithm 2 depicting the high level code executed in parallel
by each worker. The overall algorithm operates in different parallel rounds. At
each round, the master sends the best solution x� and the operator identifier θi

assigned to each worker node i. Based on x� and θi, the role of each worker is
to compute a new candidate solution to be send back to master. Although one
could consider and study different alternatives, in this work, a standard (1 + 1)-
EA is simply executed by each worker. In addition, the worker computes a local
reward in order to render the quality of its assigned operator θi. Different kinds
of local rewards can be considered at this stage [10]. In our work, and since an
elitist selection is applied locally by each worker, the local reward of an operator
is the positive improvement observed when applying the (1+1)-EA. The master
waits for all local solutions computed in parallel by the workers, and updates
the global best solution x� to be considered in the next round, and so on. More
importantly, the local rewards collected by the master are used in order to select
a new set of operators to be assigned to the workers in the subsequent rounds,
which actually constitutes the adaptive and core part of our framework. Two
tightly coupled issues are to be handled by the master in order to set up an
effective adaptive mechanism: (i) how to aggregate the local rewards sent by
the workers and (ii) how to select the new set of operators accordingly. This is
described next.

On the Design of a Master-Worker Adaptive Algorithm Selection Framework 7

Algorithm 1. Adaptive M/W algorithm for the master node
1: (θ1, θ2, ..., θn) ←Selection Strategy Initialization()
2: x� ← Solution Initialization() ; f� ← f(x�)
3: repeat
4: for each worker i do
5: Send Msg(θi, x�, f�) to worker i
6: end for
7: Wait until all messages are received from all workers
8: for each worker i do
9: (ri, xi, f i) ← Receive Msg() from worker i

10: end for
11: x� ← xi; f� ← f i s.t. f i = max{f�, f1, f2, . . . , fn}
12: (R1, R2, ..., Rk) ← Reward Aggregation((θ1, r1), ..., (θn, rn))
13: (θ1, θ2, ..., θn) ← Decision Strategy(R1, R2, ..., Rk)
14: until stopping criterion is true

Algorithm 2. Adaptive M/W algorithm for each worker node
1: (θ, x�, f�) ← Receive Msg() from master
2: x′ ← Apply operator θ on x� ; f ′ ← Evaluate fitness of x′

3: δb ← max(0, f ′ − f�)
4: if f(x�) < f(x′) then

5: x� ← x′ ; f� ← f
′

6: end if
7: Send Msg(δb, x

�, f�) to master

3.1 Aggregation of Local Reward Values

On one hand, all adaptive operator selection strategies such as ε-greedy, Adap-
tive Pursuit, Upper Confidence Bound, etc. (see Sect. 2.1) need to get one single
reward value as a feedback when one operator is executed. On the other hand, in
our framework, a set of local rewards are computed by the workers and provides
us with a feedback on the quality of an operator when executed in parallel by
several workers. Unlike sequential algorithms, the set of local rewards observed
in parallel cannot be viewed simply as a sequence of independent rewards that
would be given iteratively to a sequential strategy. Hence, one specific design
component of an adaptive M/W algorithm is the way to aggregate the local
reward values into one global reward value. Consequently, we distinguish two
main aggregation strategies: (i) the mean or the (ii) maximum of the local
rewards. In other words, at each round, the (global) reward computed by the
master, with respect to one operator executed by at least one worker, is either the
average or the maximum of the local values sent by the corresponding workers.

Despite their simplicity, the two previous local reward aggregation strategies
are fundamentally different. In fact, assuming that the fitness improvement after
applying a stochastic operator is given by a probability distribution, the mean of
the reward values computed by the n workers allows to estimate the expectation
of this distribution with a high accuracy, whereas the maximum gives information

8 C. Jankee et al.

on its extremes [10]. Additionally, we consider a sliding window of size W to
estimate the expected reward μ̂i in ε-greedy, and UCB as considered in previous
works.

3.2 Homogeneous vs. Heterogeneous Adaptive Selection

As mentioned previously, the master needs to select one operator for each worker.
We consider both (i) a Homogeneous (Ho) adaptive strategy, in which the same
operator is selected by the master and assigned to all worker, and (ii) a Hetero-
geneous (He) adaptive strategy, in which the master selects, possibly different,
operators to be assigned to the workers. The rationale behind a homogeneous
strategy is that in each round there exists one relevant operator providing an
optimal performance, and hence should be executed simultaneously in parallel
by all workers. This a rather exploitation-guided strategy which aims at avoid-
ing to loose function evaluations, and to post-pone the exploration component
to act in-between two consecutive rounds. In contrast, the rationale behind a
heterogeneous strategy is that a set containing a mixture of different operators
is expected to perform better than a set containing the same operator, in the
sense that: (i) the probability of obtaining a better solution when executing dif-
ferent operators in each round is larger, and/or (ii) a relatively small number of
evaluations spent exploring non-necessarily optimal operator(s) at each round
allows to better predict the best operator(s) to select next.

In the homogeneous setting, we consider the three standard selection strate-
gies (cf. Sect. 2.1), namely, ε-greedy, AP, and UCB. The same operator computed
by any of these strategies is assigned by the master to the workers. Notice that
the difference with a sequential selection is the way the reward is computed
by the workers and maintained by the master, which is crucially important for
those methods to operate accurately. In the heterogeneous setting, we consider
to execute either the ε-greedy strategy or the AP strategy iteratively for each
worker. Notice in fact that these two strategies are randomized, i.e., for ε-greedy,
the best operator is selected with rate 1 − ε and the other ones with rate ε, and
for AP, each operator is selected proportionally to a rate pi. Hence, by running
iteratively those strategies, the selected operators is likely to be different in each
execution and the master is then able to assign different operators to the workers.
In contrast, running iteratively an UCB selection does not give an heterogenous
strategy due to its deterministic nature (same operator is given at each selection
step). Designing an heterogeneous UCB-based strategy is actually a challenging
open question which is left for future investigations.

4 Experimental Analysis

We consider the Fitness Cloud Model as an abstract benchmark. We have three
competing adaptative selection mechanisms (ε-G, UCB, and AP) which com-
bined accordingly with the two considered reward aggregation strategies (mean

On the Design of a Master-Worker Adaptive Algorithm Selection Framework 9

and max), and the two homogeneity scenarios (Ho and He), provide us 10 vari-
ants. Moreover, we consider two baseline random strategies, which consist in
selecting the next operator randomly, both in a homogeneous or in a hetero-
geneous setting. In the following, we first start discussing the overall relative
performance, then provide a more focused analysis to better understand the
behavior and the dynamics of the different variants.

4.1 Overall Relative Performance

We adopt a simulation-based approach where we count the number of rounds
performed by the master until reaching the optimal fitness value. This allows us
to abstract away the communication issues and to evaluate the accuracy of the
considered algorithms in adapting the search process to operate optimally. We
consider a portfolio with k = 2 operators. Following the Fitness Cloud Model,
each operator impacts differently the fitness of solution: the first one follows the
normal distribution N (−10−4, 10−4), and the second one N (−10−3, 5 × 10−4).
These distributions are fixed and do not change in the course of the optimization
which is a simple, yet challenging, scenario in order to elicit the behavior of
adaptive algorithms in a black-box scenario. For the sake of presentation, the
choice of the benchmark parameters will be discussed later. The parameter set
of the different selection strategies is given in Table 1. This setting can be shown
to be robust and is in accordance with previous studies [15,16]. Each variant is
executed 100 times and an overview of the performance in terms of number of
distributed rounds is given in Fig. 1. Three main observations can be made.

Firstly, using the mean reward aggregation function is clearly outperformed
by the maximum reward function. Secondly, the difference between a homoge-
neous and heterogeneous setting is mitigated and depends on the selection it-self.
Thirdly, according to a Mann-Whitney statistical test at confidence level of 5%,
and when comparing the best setting of given selection variant, the UCB strat-
egy appears to be the best one, followed by ε-greedy strategy and are better
than the AP strategy. These first results can be explained by the ability of the
UCB machine-learning inspired strategy to efficiently learn the best operator
to apply in a given round when using the maximum reward. The other strate-
gies, although being competitive, spend some rounds to explore non-relevant
operators. More importantly, all adaptive strategies are found to share a rela-
tively good performance when the other design components, that is the choice

Table 1. Parameters setting of the selection strategies

Selection strategy Parameters value Selection strategy Parameters value

ε-G He. Max. ε = 0.5 W = 400 UCB Max. C = 0.005 W = 700

ε-G He. Mean ε = 0.5 W = 400 UCB Mean C = 0.05 W = 5000

ε-G Ho. Max. ε = 0.05 W = 4500 AP α = 0.2 β = 0.2

ε-G Ho. Mean ε = 0.05 W = 4500

10 C. Jankee et al.

Fig. 1. Number of rounds to the optimal fitness using operator 1 ∼ N (−10−4, 10−4),
operator 2 ∼ N (−10−3, 5 × 10−4) and n = 256 workers.

of the reward, and the heterogeneity, are well tuned. To better understand such
a behavior, we provide next a more throughout analysis.

4.2 Analysis of the Reward Aggregation Functions

To understand the fundamental difference between using the maximum or the
mean as a reward function, as well as its crucial importance when designing
an adaptive strategy, we consider to study the property of the considered fitness
cloud benchmark in an extended setting. More precisely, let us fix the parameters
of the normal distribution corresponding to the first operator in the portfolio to
μ1 = −10−4 and σ2

1 = 10−4. Let us also fix the mean of the normal distribution
of the second operator to μ1 = −10−3. Since both means are negative, the
fitness value is decreased in expectation by both operators. For the fixed number
of workers, and since the parameters of the normal law does not change in
the course of optimization, operator 1 would always provide the same expected
improvement, i.e., 8.33×10−2 [15], which corresponds to the local reward. Let us
now study how the relative reward value would be for operator 2 if its variance
was set to take different values than in our initial setting. This is summarized
in Fig. 2 showing the expected rewards of both operators when using a mean
aggregation function (top) and a maximum aggregation function (bottom), for
n = 256 workers as a function of a range of variance values σ2 for operator 2.

For both reward aggregation functions, the reward value of operator 2
increases with the variance σ2. Below the value of a = 4.17×10−4, the reward of
operator 1 is higher than the reward of operator 2 for both mean and maximum
functions. Hence, an (elitist) operator selection strategy which selects the oper-
ator according to the highest reward value would select the same operator 1, no
matter which aggregation function is used, i.e., there is no difference between
the two aggregation function in the case the difference between the fitness vari-
ances of both operators is relatively large, given that their mean fitness is same.

On the Design of a Master-Worker Adaptive Algorithm Selection Framework 11

Fig. 2. Mean (top) and maximum (bottom) reward values with operator 1 ∼
N (−10−4, 10−4), operator 2 ∼ N (−10−3, σ2) and n = 256 workers as a function of
the variance σ2.

Fig. 3. Maximum reward value as function of the number of workers n for operator
1 ∼ N (−10−4, 10−4) and different variance values of operator 2 ∼ N (−10−3, σ2):
σ2 = 10−4 (left), σ2 = 5 × 10−4 (middle), and σ2 = 7 × 10−4 (right).

Similarly, when the variance σ2 of operator is much larger than the variance of
operator 1 (σ2 > b = 5.6 × 10−4), the reward value for operator 2 is larger com-
pared to operator 1 no matter the reward aggregation used. Hence, a selection
strategy based on one or the other reward function would likely take the same
decision, i.e., select operator 2. However, the challenging situation is when the
variance σ2 is in the interval [a, b]; since, according to the mean reward func-
tion, operator 1 (resp. 2) is better (resp. worst), but according to the maximum
reward function, operator 1 (resp. 2) is worst (resp. better). In this case, it is not
clear that two selection strategies following the mean and the maximum reward
function would select the same operator.

Additionally, the mean reward value does not depend on the number of work-
ers. In fact, increasing the number of local rewards computed by the workers
simply reduces the confidence interval around the global mean reward value. In
contrast, the maximum reward value increases logarithmically with the number
of workers. This is shown in Fig. 3 where three representative examples are con-
sidered (σ2 = 3×10−4 < a, σ2 = 5×10−4 ∈ [a, b], and σ2 = 7×10−4 > b). When
the variance is small or large, the number of workers does not change the rank
of each operator with respect to the maximum reward value. However, when the
variance σ2 is between a and b, the best operator according to the maximum
reward changes: for low number of workers, operator 1 has a highest maximum
reward, whereas operator 2 is preferred when n ≥ 30.

These empirical observations explain why the maximum reward was found
to clearly outperform the mean reward (Sect. 4.1, Fig. 1), since the variance of
the second operator was set to a the value 5×10−4 ∈ [a, b] which corresponds to

12 C. Jankee et al.

a challenging scenario for adaptive selection. In fact, the mean reward can only
measure the expected quality of an operator when executed locally and indepen-
dently by each individual worker, whereas the maximum reward measures the
expected quality of the next solution that would be obtained more globally by
the cooperative master-worker system in one round. In this sense, an accurate
distributed selection strategy has to acquire information about the quality of an
operator when executed cooperatively by all the entities of the system, and not
only on the quality of one operator taken independently of the distributed and
cooperative environment where it can be executed. Hence, the maximum reward
aggregation has to be preferred when the goal of the adaptive master-worker
algorithm is to increase as much as possible the fitness value in each round of
computation which is typically the case of a (1+λ)-EA. More generally, it should
be possible to extend this kind of results for others adaptive M/W algorithms
which are less explorative, i.e., the global reward should then take explicitly into
account an additional diversity measure.

4.3 Analysis of the Heterogeneity Scenarios

The impact of selecting and assigning workers different operators can also be
studied as a function of the relative variance of the portfolio operators. In the
following, we only consider the maximum reward strategy since it was proved
to perform better. For the sake of analysis, let us consider the fitness cloud
benchmark where operator 1 follows N (−10−4, 10−4), and operator 2 follows
N (−10−3, σ2). By varying σ, we compute the maximum global reward, i.e. the
expected improvement of one round of the M/W algorithm when using n = 256
workers, in a heterogeneous setting that would split the workers into those that
execute operator 1 and those that execute operator 2. By varying the proportion
of heterogeneous workers we are then able to compute the optimal number n1 of
workers which should executes operator 1 (the n − n1 executing operator 2) as
a function of operator 2 variance σ2. More precisely, for each value n1 ∈ [0, n],
the average of the maximum reward on 1000 independent rounds is computed,
and the value n1 with the highest maximum reward is selected and reported
in Fig. 4. Clearly, for a wide range of σ values, the optimal value n1 is either
256, or n1 = 0 for large variance. This indicates that a homogenous setting
(with only operator 1 or 2) is optimal except for a small range of variance
(between 3.4 × 10−4 and 4.4 × 10−4). Moreover when an heterogenous strategy
is optimal, the gain of maximum reward with an homogeneous strategy is very
small (cf. Fig. 4 right). Given these observations we can know understand better
the relative performance observed for the different strategies in Fig. 1 for which
σ = 5 × 10−4.

For the baseline random strategy, the heterogeneous setting is clearly better;
since because of the elitism of a (1 + λ)-EA, it is better to select the wrong
operator for half of the workers than one over two rounds. Notice that the base-
line heterogeneous random strategy is never better than any others adaptive
strategies when using the maximum reward. The homogeneous version of the
ε-greedy strategy based on the maximum reward significantly outperforms the

On the Design of a Master-Worker Adaptive Algorithm Selection Framework 13

Fig. 4. Optimal number of workers n1 with operator 1 which maximizes the maxi-
mum reward value for an heterogeneous strategy as a function of variance parameter
σ2. The operator 1 and 2 follow respectively the normal law N (−10−4, 10−4), and
N (−10−3, σ2) for n = 256 workers. Left: optimal number n1. Right: Maximum reward
values for homogeneous strategies with operator 1 and operator 2, and for the optimal
heterogeneous strategy.

heterogenous version according to the Mann-Whitney test at level 5%. In con-
trast, the heterogenous AP outperforms the homogeneous one. Nevertheless, the
best strategy is UCB which is homogeneous. According to the exploration power
of the strategy, the heterogeneity could help to select the relevant operator; but,
when the selection strategy is able to detect the best operator, and when the
relative expected gain in fitness improvement is small, a homogeneous setting is
to be preferred.

5 Conclusions

We conducted an in-depth analysis of the design components of a synchronous
M/W adaptive algorithm selection framework. Our main findings can be sum-
marized as follows. The reward associated to each algorithm, which gives the
feedback measure for the adaptive selection method, must take into account the
performance of the global system, and not only the local performance of each
worker. Except when all algorithms have very close performance, an optimal set
of algorithms is homogeneous. However, with respect to a particular adaptive
strategy, a heterogeneous set could be helpful to continuously enhance its corre-
sponding exploration level. At last, adaptive algorithm selection strategies can
be highly effective when their design components in a master-worker architecture
are well tuned.

Besides, this first work shall allow us to extend our results for expensive real-
world problems, where the evaluation of the fitness function is typically based
on computing intensive simulations, e.g., [1]. Another interesting question is the
design of reward functions for the asynchronous M/W communication mode.
Since a global snapshot of the distributed system is difficult to acquire by the
master in such a setting, the reward function is expected to be critically impor-
tant depending on the different communication to computation trade-offs faced

14 C. Jankee et al.

by the master. It is our hope that the new insights provided by our fundamental
analysis in the synchronous setting will help addressing such challenging issues.

References

1. Armas, R., Aguirre, H., Zapotecas-Mart́ınez, S., Tanaka, K.: Traffic signal opti-
mization: minimizing travel time and fuel consumption. In: Bonnevay, S., Legrand,
P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554,
pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31471-6 3

2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2–3), 235–256 (2002)

3. Baudǐs, P., Poš́ık, P.: Online black-box algorithm portfolios for continuous opti-
mization. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN
2014. LNCS, vol. 8672, pp. 40–49. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10762-2 4

4. Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: Non stationary operator selec-
tion with island models. In: GECCO, pp. 1509–1516 (2013)

5. DaCosta, L., Fialho, A., Schoenauer, M., Sebag, M.: Adaptive operator selection
with dynamic multi-armed bandits. In: GECCO, p. 913. ACM Press (2008)

6. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applica-
tions. Springer, Heidelberg (2013)

7. Derbel, B., Verel, S.: DAMS: distributed adaptive metaheuristic selection. In:
GECCO, pp. 1955–1962. ACM Press (2011)

8. Dubreuil, M., Gagne, C., Parizeau, M.: Analysis of a master-slave architecture for
distributed evolutionary computations. IEEE Trans. Syst. Man Cybern. Part B
36, 229–235 (2006)

9. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in
evolutionary algorithms. In: Parameter Setting in Evolutionary Algorithms, pp.
19–46. Springer, Heidelberg (2007)

10. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed Ban-
dits and Extreme value-based rewards for adaptive operator selection in evolution-
ary algorithms. In: Stützle, T. (ed.) LION 2009. LNCS, vol. 5851, pp. 176–190.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11169-3 13

11. Fialho, A., Da Costa, L., Schoenauer, M., Sebag, M.: Analyzing bandit-based adap-
tive operator selection mechanisms. AMAI 60, 25–64 (2010)

12. Garćıa-Valdez, M., Trujillo, L., Merelo-Guérvos, J.J., Fernández-de-Vega, F.: Ran-
domized parameter settings for heterogeneous workers in a pool-based evolutionary
algorithm. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN
2014. LNCS, vol. 8672, pp. 702–710. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10762-2 69

13. Goëffon, A., Lardeux, F., Saubion, F.: Simulating non-stationary operators in
search algorithms. Appl. Soft Comput. 38, 257–268 (2016)

14. Grefenstette, J.J.: Optimization of control parameters for genetic algorithms. IEEE
Trans. Syst. Man Cybern. 16(1), 122–128 (1986)

15. Jankee, C., Verel, S., Derbel, B., Fonlupt, C.: Distributed adaptive metaheuristic
selection: comparisons of selection strategies. In: EA 2015, pp. 83–96 (2015)

16. Jankee, C., Verel, S., Derbel, B., Fonlupt, C.: A fitness cloud model for adap-
tive metaheuristic selection methods. In: Handl, J., Hart, E., Lewis, P.R.,
López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921,
pp. 80–90. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 8

https://doi.org/10.1007/978-3-319-31471-6_3
https://doi.org/10.1007/978-3-319-10762-2_4
https://doi.org/10.1007/978-3-319-10762-2_4
https://doi.org/10.1007/978-3-642-11169-3_13
https://doi.org/10.1007/978-3-319-10762-2_69
https://doi.org/10.1007/978-3-319-10762-2_69
https://doi.org/10.1007/978-3-319-45823-6_8

On the Design of a Master-Worker Adaptive Algorithm Selection Framework 15

17. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI
Mag. 48–60 (2012)

18. Maturana, J., Fialho, Á., Saubion, F., Schoenauer, M., Sebag, M.: Extreme com-
pass and dynamic multi-armed bandits for adaptive operator selection. In: CEC
2009, pp. 365–372. IEEE (2009)

19. Muniglia, M., Do, J.-M., Jean-Charles, L.P., Grard, H., Verel, S., David, S.: A
multi-physics PWR model for the load following. In: ICAPP, April 2016

20. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.)
Springer Handbook of Computational Intelligence, pp. 929–959. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-43505-2 46

21. Tanabe, R., Fukunaga, A.: Evaluation of a randomized parameter setting strategy
for island-model evolutionary algorithms. In: CEC, pp. 1263–1270 (2013)

22. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: GECCO 2005, pp. 1539–1546 (2005)

23. Wessing, S., Rudolph, G., Menges, D.A.: Comparing asynchronous and syn-
chronous parallelization of the SMS-EMOA. In: Handl, J., Hart, E., Lewis, P.R.,
López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp.
558–567. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 52

24. Yagoubi, M., Schoenauer, M.: Asynchronous master/slave MOEAs and heteroge-
neous evaluation costs. In: GECCO, pp. 1007–1014 (2012)

https://doi.org/10.1007/978-3-662-43505-2_46
https://doi.org/10.1007/978-3-319-45823-6_52

Comparison of Acceptance Criteria
in Randomized Local Searches

Alberto Franzin(B) and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
{alberto.franzin,stuetzle}@ulb.ac.be

Abstract. One key component of stochastic local search algorithms is
the acceptance criterion that determines whether a solution is accepted
as the new current solution or it is discarded. One of the most studied
local search algorithms is simulated annealing. It often uses the Metropo-
lis condition as acceptance criterion, which always accepts equal or bet-
ter quality solutions and worse ones with a probability that depends
on the amount of worsening and a parameter called temperature. After
the introduction of simulated annealing several other acceptance criteria
have been introduced to replace the Metropolis condition, some being
claimed to be simpler and better performing. In this article, we evaluate
various such acceptance criteria from an experimental perspective. We
first tune the numerical parameters of the algorithms using automatic
algorithm configuration techniques for two test problems, the quadratic
assignment problem and a permutation flowshop problem. Our exper-
imental results show that, while results may differ depending on the
specific problem, the Metropolis condition and the late acceptance hill
climbing rule are among the choices that obtain the best results.

1 Introduction

Stochastic local search (SLS) methods are generic procedures commonly used to
tackle hard optimization problems [9]. They are composed of a set of general rules
of how to design effective heuristics for specific optimization problems; hence,
an alternative name for these methods is meta-heuristics. Often, the sometimes
rather problem-specific heuristic algorithms derived from these rules are very
effective in finding high quality solutions in short computation time, and for
many problems such algorithms define the state of the art.

To achieve good solutions, SLS methods balance the intensification of the
search in narrow regions, often needed to find the best solutions in promising
search space areas, with the exploration of different areas of the search space.
One mechanism that many trajectory-based SLS methods use to promote diver-
sification is the acceptance of solutions that are worse than the current incum-
bent solution. In this article, we call acceptance criterion the function devoted
to determining whether a newly proposed candidate solution should replace the
current one. A first metaheuristic that proposed a probabilistic acceptance crite-
rion for accepting a worse candidate solution is simulated annealing (SA) [10,23].
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 16–29, 2018.
https://doi.org/10.1007/978-3-319-78133-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_2&domain=pdf
http://orcid.org/0000-0002-4066-0375

Comparison of Acceptance Criteria in Randomized Local Searches 17

It uses the so called Metropolis condition from statistical mechanics, which relies
on a parameter called temperature, as acceptance criterion [14]. The name of
the parameter mimics the temperature of a physical system, which was used in
a Monte-Carlo simulation of physical systems proposed by Metropolis et al. [14].
According to the Metropolis condition, an improving or equal quality candidate
solution is always accepted, while a worsening candidate solution is accepted
with a probability that depends both on the quality difference between the cur-
rent solution and the newly proposed one and the temperature parameter. To
create a transition from search diversification to intensification of the search,
in a typical SA algorithm the temperature is initially set to some high value
(corresponding to a rather likely acceptance of worsening candidate solutions)
and then subsequently lowered to make the acceptance of worsening candidate
solutions less likely.

Over the years, various new ideas have been conceived with the motivation to
improve over this usual acceptance criterion of SA algorithms. These new accep-
tance criteria have been compared in individual papers often directly to basic
SA algorithms and in various such papers potential improvements have been
reported. These new ideas include refinements of the Metropolis condition, such
as generalized SA [2] and the bounded Metropolis condition [6]; a criterion where
the acceptance probability of worsening solutions decreases geometrically [17];
and deterministic criteria such as threshold acceptance [8,15], the great deluge
and record-to-record travel algorithms [7], and the late acceptance hill climbing
[5]. The latter four methods all accept a solution with probability one when it
meets the specific, deterministic acceptance conditions. In our experiments, we
also include a basic hill climbing acceptance criterion [1], which accepts a solu-
tion if and only if it improves over the incumbent, as a baseline the other criteria
need to outperform.

The original articles proposing these acceptance criteria often report experi-
mental results on few problem instances or on very small instance sizes. One rea-
son is that many of these acceptance criteria were introduced when experimental
conditions available were quite different from today. Hence, there is limited indi-
cation in the original works on how to apply the various methods to different
problems. To just cite one example, in the original paper on threshold accep-
tance, the authors present a sequence of values for the “threshold” parameter,
stating that “We have the feeling (really only the feeling, not, for instance, the
impression) that the sequence above is somewhat better [than another sequence
mentioned]” [8]. The comparisons in these papers are also usually performed
against the Metropolis condition and a limited set of the other criteria.

In this work, we compare well-known acceptance criteria on common bench-
mark sets, derived from two classical, NP-hard problems, namely the quadratic
assignment problem (QAP) and the permutation flow-shop problem with the
total completion time objective (PFSP-TCT). To obtain unbiased results we
tune the numerical parameters of the algorithms, using the automatic algorithm
configuration tool irace [11]. We evaluate the impact of the nine different cri-
teria we study in terms of the quality of the final solutions and the robustness

18 A. Franzin and T. Stützle

of the criterion. Our experiments show that the results may change according
to different problems, instance classes, or experimental condition. Overall, the
Metropolis condition, its generalized version and, in particular, the rather recent
late acceptance hill climbing are the criteria that gave the best results.

2 Literature Review

We first introduce the notation used in the remainder of this work. We consider
NP-hard combinatorial optimization problems, in which for a given problem
instance π a globally optimal solution s∗ ∈ S, where S is the search space of
candidate solutions, is to be found. The quality of solutions is evaluated accord-
ing to an objective function f : S �→ R and f(s) is the objective function value for
a generic solution s. Without loss of generality, we consider minimization prob-
lems, that is, for a globally optimal solution it holds that f(s∗) ≤ f(s),∀s ∈ S.
Each algorithm we consider uses an iteration counter of the search process, which
is denoted by i, and si is the new candidate solution evaluated in that iteration.
The difference in terms of objective function value between two solutions si and
sj is denoted with Δ(i, j), or simply Δ when no confusion may arise. With ŝ we
indicate the incumbent solution. The neighbourhood of ŝ is denoted by N (ŝ) and
comprises all candidate solutions that can be reached from s by one application
of the neighborhood operator.

Algorithm 1. Outline of a generic randomized search algorithm.
Input: problem instance Π, N , initial solution s0, control parameters
Output: best solution s∗

1 best solution s∗ = incumbent solution ŝ = s0;
2 parameter initialization, i := 0;
3 while stopping criterion is not met do
4 while parameters settings fixed do
5 i := i + 1;
6 generate a random solution si ∈ N (ŝ);
7 ŝ := accept (ŝ, si);
8 s∗ := best (s∗, ŝ);
9 end

10 update parameters;
11 end
12 return s∗;

All SLS methods that we consider can be interpreted as instantiations of the
generic algorithm outlined in Algorithm 1. It starts from a given initial solution
as incumbent (line 1), and iteratively generates one new candidate solution in
the neighbourhood of the incumbent uniformly at random (line 6); at iteration i
the new candidate solution si can be chosen to replace the current incumbent ŝ
if it meets some criteria (e.g. it is an improving solution, line 7), otherwise it is

Comparison of Acceptance Criteria in Randomized Local Searches 19

discarded. Periodically, the parameter(s) that control the search may get updated
(line 10). All the algorithms we examine here fit in this generic template. They
only differ in the acceptance criterion. However, some of these algorithms may
not use all the components of the algorithm; for example, the late acceptance
hill climbing relies only on one parameter that is held constant during the run of
the algorithm and, hence, does not need to be updated in the outer loop (lines
3 to 11). In the following, the counter k refers to the number of times the outer
loop has been invoked. Conversely, SA and others evaluate solutions using the
same parameter values in the inner loop (controlled by the temperature length,
lines 4 to 9), and update the parameters in the outer loop.

SA, proposed independently in [10,23], is inspired by work in statistical
physics [14]. In the usual, basic variants, SA iteratively generates and evalu-
ates one random solution s ∈ N (ŝ); if the new solution is better or equal to
the incumbent in terms of objective function value, it replaces the incumbent
one; otherwise it gets accepted with a probability that depends on the relative
difference in terms of objective function values, Δ(s, ŝ), and on the temperature
parameter, denoted as T . The acceptance criterion of SA can be written as

p =

{
1 if Δ(s, ŝ) ≤ 0
exp (−Δ(s, ŝ)/T) otherwise.

(1)

This probabilistic criterion is known as Metropolis acceptance criterion or
Metropolis condition, and it is the distinctive feature of SA. We refer to this
criterion simply as SA in the rest of this paper.

More recently, in [6] the authors argue that solutions that are worse with
respect to the incumbent by a quantity that exceeds a certain threshold φBM

are not worth considering at all. This bounded Metropolis criterion (BSA) accepts
a solution s with a probability

p =

⎧⎪⎨
⎪⎩

1 if Δ(s, ŝ) ≤ 0
exp (−Δ(s, ŝ)/T) if 0 < Δ(s, ŝ) ≤ φBM

0 if Δ(s, ŝ) > φBM ,

(2)

where φBM is a parameter.
Soon after the introduction of SA, the Metropolis acceptance criterion has

been generalized in [2], where a variant of SA called generalized simulated anneal-
ing (GSA) was introduced. The GSA acceptance criterion is defined as

p =

{
1 if Δ(s, ŝ) ≤ 0
exp (−βf(ŝ)γΔ(s, ŝ)) otherwise,

(3)

where β and γ are control parameters. Even if the temperature parameter is not
explicitly considered in GSA, it is possible to recreate the original Metropolis
condition by defining β = 1/T .

In [17], the authors propose a criterion in what is the first occurrence of a
SA variant that does not consider the temperature value in the acceptance of

20 A. Franzin and T. Stützle

solutions. They propose to accept a solution with probability

pk =

{
1 if Δ(s, ŝ) ≤ 0
p0 × ρk−1 otherwise.

(4)

where p0 is the initial acceptance probability, 0 < ρ < 1 is a reducing factor, and
k is the number of times the probability has been updated. In this geometric
acceptance criterion, the temperature value is (possibly) related only to the
initial acceptance probability; during the search, the updating process of the
probability matters, rather than the actual value of a temperature.

The actual need of stochasticity in the Metropolis acceptance criterion is
questioned independently in [8,15]. In both works, the authors propose a crite-
rion that accepts any move that is either improving or worsening by at most a
given threshold φk > 0:

p =

{
1 if Δ(s, ŝ) ≤ φk

0 otherwise,
(5)

where φk is the value at step k of the threshold, which gets updated periodically.
In [8], the authors consider a sequence of thresholds, without giving any indi-
cation on how to set its initial value or how to update it. Our implementation
follows [15], maintaining the SA terminology: the initial value of φ is the initial
temperature of SA, and the updating process of the threshold is called cooling.
This threshold acceptance (TA) is a deterministic version of SA. At the time
of its introduction, it was argued that using TA is faster than evaluating the
Metropolis condition as it does not require the generation of a random num-
ber and the computation of an exponential. This advantage may be important
when the computation of the objective function value of a neighboring candidate
solution is very fast. However, for problems that benefit little from incremen-
tal update schemes or where the computation of the objective function value
of neighboring candidate solutions is expensive (as is the case in the problems
we study here), the advantage of a faster computation of the acceptance test
diminishes.

Two acceptance criteria have been derived from TA and proposed in [7] as
new algorithms. The first algorithm and criterion proposed in [7] is called record-
to-record travel (RTR), and accepts solutions that do not deviate from the best
solution found so far plus a given threshold φ:

pRTR =

{
1 if f(s) ≤ f(s∗) + φ

0 otherwise,
(6)

RTR is therefore a stricter version of TA, which compares the newly proposed
candidate solution with the current incumbent; moreover, in the RTR algorithm
φ does not get updated.

The second algorithm proposed in [7] is called great deluge algorithm (GDA)
and is a radical change in terms of solution evaluation, as it moves away from

Comparison of Acceptance Criteria in Randomized Local Searches 21

the idea of comparing solutions. The acceptance criterion of GDA accepts every
move whose objective function value is lower than a certain threshold that gets
progressively lowered during the search

pk =

{
1 if f(s) ≤ φk

0 otherwise,
(7)

with φ̄k+1 = φk − λ, λ being a fixed parameter. The consequence of a lowering
bound is that GDA becomes increasingly strict for accepting solutions.

A more recent work proposes another simple deterministic acceptance crite-
rion, called late acceptance hill climbing (LAHC) [4,5]. This algorithm makes no
use of a temperature-like parameter, but maintains limited knowledge about the
history of the search. It accepts every solution s that is improving either with
respect to the current incumbent ŝ or with respect to the incumbent solution of
κ iterations before, for a fixed κ:

p =

{
1 if f(s) ≤ max{f(ŝ), f(ŝi−κ)}
0 otherwise.

(8)

Finally, we consider as baseline for the comparison a simple hill climbing
(HC) algorithm [1] that accepts a solution if and only if it improves over the
incumbent. Obviously, we expect the other criteria to obtain better results with
respect to HC. While in practice one would implement HC using a systematic
enumeration of the neighbourhood, we implemented it inside the framework of
Algorithm 1 for convenience.

3 Experimental Setup

The nine acceptance criteria presented in Sect. 2 are evaluated as candidate
acceptance criteria for a generic algorithm outlined in Algorithm 1. The common
components of the nine implementations are: (i) a random exploration of the
neighbourhood, (ii) no parameter restarting rule (e.g. temperature restart in
SA), and (iii) a termination condition based on runtime. The runtime differs for
each problem, so the actual value is given below.

For the criteria that need initial values for their parameters (such as the
temperature for the SA family of algorithms, or the threshold φ in TA), we use
a value proportional by a coefficient ε to the maximum gap between consecutive
solutions observed during an initial random walk of length 10000 in the solution
space. The parameters that need to be modified during the algorithm run time
(e.g. temperature in SA or threshold in TA) are updated using a geometric
decreasing; e.g., the temperature T in SA is updated according to the formula
Tk+1 = α×Tk, where α is a parameter. The inner loop of Algorithm 1 evaluates
a number of solutions that is given by τ · |N (s)|, where τ is a parameter and
|N (s)| is the size of the neighbourhood of a solution s.

22 A. Franzin and T. Stützle

We choose to not use parameter restart schemes to better observe the impact
of the main algorithm component that is studied, the acceptance criterion. The
periodic reset or increase of parameters such as the temperature or the threshold
is often beneficial to obtain better results, as it facilitates search space explo-
ration, but it also has the side effect of smoothening the difference in terms of
impact of the other components.

The parameter values, and their presence for each algorithm, are given in
Table 1. Parameters equivalent in scope and values are grouped together. The
only algorithm that does not use the components described above is GDA. Dur-
ing the experimental phase, we have observed very poor results when using the
GDA acceptance criterion with the choices above, indicating a lack of flexibility
of the method. We thus consider the GDA algorithm in its original settings,
which are anyway valid components that fit in the template of Algorithm 1. The
initial threshold value φ is computed proportional to the objective function value
of the initial solution, using a coefficient ε ∈ [0, 10]; φ is updated according to
the formula φk+1 = φk − α, where α is an integer in the interval [1, 100]; we
bound this decrease to 0. The other components are as described above.

Our setup considers as test problems the quadratic assignment problem
(QAP) [3] and the permutation flow-shop problem with the total completion
time objective (PFSP-TCT) [18,19]. The QAP models the location of a set
of facilities, with the goal of minimizing the overall distance between facilities
taking into account also the flow between them. PFSP instead is a schedul-
ing problem where a set of jobs have to be ordered to be executed on a set of
machines.

For the QAP we use a randomly generated initial candidate solution and the
exchange neighbourhood, which is defined as

N (s) = {s′ | s′(j) = s(h) ∧ s′(h) = s(j) ∧ ∀ : l /∈ {j, h} s′(l) = s(l)}, (9)

where s(j) is the solution vector at position j. The neighbourhood size is
n(n − 1)/2, where n is the instance size. The running time considered for ter-
mination is 10 s. We consider two different instance sets of size 100, one where

Table 1. Parameter values for the algorithms.

Metro BMetro GSA Geom TA GDA RTR LAHC

ε [0, 10] [0, 10] [0, 10] [0, 10] [0, 10] [0, 10] – –

α [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [1, 100] – –

τ [1, 100] [1, 100] [1, 100] [1, 100] [1, 100] [1, 100] – –

φ, φBM – [0, 1] – – – – [0, 1] –

β – – [10−4, 10] – – – – –

γ – – [0, 10] – – – – –

ρ – – – [0, 1] – – – –

κ – – – – – – – [1, 104]

Comparison of Acceptance Criteria in Randomized Local Searches 23

all QAP instance data are generated uniformly at random, and one randomly
generated in analogy to structured real-world like QAP instances. Each instance
set is divided into a training set of 25 instances and a test set of 25 instances.
From here onwards, we refer to these two scenarios as random instances and
structured instances, respectively. The two scenarios are not mixed, that is, the
configurations obtained for the random instances are evaluated on the random
instances and not on the structured ones, and viceversa.

For the PFSP-TCT we use the NEH heuristic [16] for the initial solution gen-
eration. For an instance of size n × m, where n is the number of jobs and m the
number of machines, the neighbourhood is the insert neighbourhood that ran-
domly picks one element s(j) in position j of the permutation s = [s(1), . . . , s(n)]
and inserts it in position k �= j, obtaining

s′ = [s(1), . . . , s(j − 1), s(j + 1), . . . , s(k), s(j), s(k + 1), . . . , s(n)] (10)

if j < k and

s′ = [s(1), . . . , s(k − 1), s(j), s(k), s(k + 1), . . . , s(j − 1), s(j + 1), . . . , s(n)] (11)

if j > k. The neighbourhood size is n(n − 1). In this case, we use an instance-
based maximum runtime of n × m × 0.015 s. The training set consists of 40
randomly generated instances of size ranging from 50 jobs and 20 machines to
250 jobs and 50 machines [13] and the test set is composed by the instances
Tai31-110 of the Taillard benchmark [21]. We will, however, discuss separately
the instances whose size is smaller than those covered by the training set (those
with n = 20), covered by the training set (Tai31-110), and larger (n = 500).

We tune the numerical parameters using irace [11] with a budget of 2000
experiments per tuning on an Intel Xeon E5-2680 v3 CPU, with a speed of
2.5 GHz, 16 MB cache and 2.4 GB of RAM available for each job. For each algo-
rithm we run nine tunings, evaluate the best configuration obtained from each
tuning on the test set, and average the final solution quality obtained on each
instance by the nine configurations. The real valued parameters have a precision
of 4 decimal digits.

4 Experiments on the Quadratic Assignment Problem

In Fig. 1 we show the results obtained by the nine algorithms after the tuning on
the random instances and on the structured instances respectively. Each boxplot
reports the results obtained on the test instances in terms of the average relative
percentage deviation (ARPD) from the best known solutions. In Table 2, we
report the results of the Friedman rank sum test, obtained for the nine algorithms
on the two QAP instance classes. The algorithms are ordered according to the
sum of their ranks, and the difference in terms of rank sum with the best ranked
algorithm is computed along with a statistical significance threshold. Algorithms
whose rank sum differs from the best ranked one by a value larger than the
significance threshold are statistically significantly worse than the best one.

24 A. Franzin and T. Stützle

0

1

2

3

4

5
S

A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

0

1

2

3

4

5

S
A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

Fig. 1. Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained on random (left plot) and structured instances (right plot).

Table 2. Results of the Friedman rank sum test for the nine algorithms on the QAP
instances. Algorithms are ranked according to their results. ΔR is the minimum rank-
sum difference that indicates significant difference from the best one. Algorithms in
boldface are significantly better than the following ones.

Instance class ΔR Acceptance criteria ranking

Random 13.15 RTR (0), BSA (33), SA (70), LAHC (80), GSA (88),
GDA (115), TA (140), Geom (174), HC (200)

Structured 16.08 TA (0), LAHC (0), SA (11), BSA (16), GSA (21),
Geom (81), RTR (109), GDA (135), HC (158)

On the random instances, RTR obtains the best results, with a mean ARPD
slightly lower than 1%. The criteria based on the Metropolis condition (SA,
BSA, GSA) and the LAHC algorithm obtain similar results, with mean ARPDs
around 1.2 to 1.3%. Though the results are similar, BSA is consistently slightly
better than the other ones. TA, GDA and the geometric criteria are worse, but
still within the 2% average deviation, while HC stands around 3%. On the struc-
tured instances it is instead TA, LAHC and the family of the Metropolis criteria
that obtain the best results, with average ARPDs all around 0.3%. The ARPDs
among these five criteria are not statistically significantly different. The geomet-
ric criterion also obtains reasonably good results when considering the ARPD
values, though from the rank-based analysis it is already clearly worse than the
top-ranking group of acceptance criteria. RTR and GDA obtain solutions around
1% and 2% worse than the best known ones and, thus perform clearly worse than
the other acceptance criteria. HC, as expected, is overall the worst, with ARPDs
around 3 to 4%.

The difference of the results on the two scenarios can be explained by the
different landscape of the instances [20,22]. The random instances present a rela-
tively flat landscape, where it is easy to discover local optima and move through
them, but difficult to converge to very good solutions. On the other hand, the

Comparison of Acceptance Criteria in Randomized Local Searches 25

landscape of the structured instances is less flat, with “deeper” local optima than
in the random instances. The criteria that strengthen the intensification along
the search process are the ones that apparently benefit from this landscape.
RTR compares candidate solutions to the global best, making it therefore more
difficult to accept a worsening solution; additionally, using a same parameter
settings across all instances may make it less robust.

5 Experiments on the Permutation Flow-Shop Problem

In Fig. 2 we report the results obtained on the PFSP-TCT on the 80 instances
of the Taillard benchmark with 50 to 200 jobs. The results of the Friedman
rank sum test for the nine algorithms are reported in Table 3, separated for the
three sets of instance subclasses considered (smaller than in the training set, size
covered by the training set, and larger).

The results in Fig. 2 for the PFSP-TCT exhibit higher variance than on the
QAP, because they report results obtained on 8 subclasses of instances, with a

0

1

2

3

4

5

6

7

S
A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

Fig. 2. Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained on the instances Ta031-110 of the Taillard benchmark.

Table 3. Results of the Friedman rank sum test for the nine algorithms on the Taillard
Benchmark. Algorithms are ranked according to their results. ΔR is the minimum
rank-sum difference that indicates significant difference from the best one. Algorithms
in boldface are significantly better than the following ones.

Instance class ΔR Acceptance criteria ranking

Ta001-030 13.57 LAHC (0), GSA (30), TA (74), SA (82), BSA (87),
Geom (142), RTR (193), GDA (206), HC (212)

Ta031-110 27.58 LAHC (0), GSA (94), SA (229), TA (267), BSA (279),
GDA (412), Geom (455), RTR (490), HC (636)

Ta111-120 2.93 LAHC (0), GSA (11), RTR (19), GDA (31), HC (39),
Geom (50), TA (63), SA (67), BSA (80)

26 A. Franzin and T. Stützle

0

1

2

3

4

5

6

7
S

A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

0

1

2

3

4

5

6

7

S
A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

Fig. 3. Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained on the Ta001-030 (left plot) and on the Tai111-120 instances of the Taillard
benchmark set (right plot, SA, BSA, and in part TA results are not shown as they
were very poor).

different number of jobs and machines. Inside each instance subclass, the variance
is much lower, indicating consistent results for each instance size.

Late acceptance hill climbing is the criterion that obtains clearly the best
results, with an average ARPD of 1.2%. It is also more robust than the others: its
worst results are below 2% of ARPD. GSA comes second best, with an average
deviation of 1.5%, followed by SA and BSA (respectively 1.7% and 1.8% on
average; a Wilcoxon test shows no statistically significant difference between
them). TA obtains results comparable to BSA. The other criteria obtain results
between 2% and 3% of ARDP, still significantly better than HC.

The different instance sizes in both the training and test sets favour the more
robust solutions. GSA appears to be more robust than the original SA, thanks
to the increased flexibility given by the additional parameters. Looking at the
different instance subclasses, however, LAHC consistently outperforms all other
acceptance criteria.

We focus now on the instance subclasses not covered by the training set,
either because they are too small (Ta001-030) or because they are too big
Tai111-120. We can observe in Fig. 3 and in Table 3 that LAHC is consistently
the best performing one, followed by GSA. Overall, on the small instances all
algorithms obtain results that are according to the ARPD values at least as good
as on medium size instances of Ta031-110, with GDA and RTR being the only
ones for which this is not true.

On the large instances, LAHC and GSA remain the top-performing algorithms
with an average ARPD of 0.59% and 1.57%, respectively. SA and BSA instead
obtain good results on the small instances, but perform very poorly on the larger
ones, with ARPDs ranging around 9–10%, much worse than even HC. This effect
is due to the parameters selected by the tuning phase, which are calibrated for
instance sizes occurring in the training set and the given running time. The conver-
gence behaviour of SA and BSA does not scale to large instance sizes for which the
evaluation per solution is much more costly (the evaluation scales quadratically

Comparison of Acceptance Criteria in Randomized Local Searches 27

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

10
50

00
0

11
50

00
0

12
50

00
0

Ta100
SA
LAHC
HC
GSA

ITERATIONS

S
O

LU
T

IO
N

 Q
U

A
LI

T
Y

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

68
00

00
0

72
00

00
0

76
00

00
0

Ta120

SA
LAHC
HC
GSA

ITERATIONS

S
O

LU
T

IO
N

 Q
U

A
LI

T
Y

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

68
00

00
0

72
00

00
0

76
00

00
0

Ta120 − extended runtime
SA
LAHC
GSA

ITERATIONS

S
O

LU
T

IO
N

 Q
U

A
LI

T
Y

Fig. 4. Convergence behaviour of the SA, GSA, LAHC and HC algorithms for the
Ta100 (top left plot) and Ta120 (top right plot) instances; in the bottom plot, the
results for SA, GSA and LAHC on Ta120 with 10× the original running time.

with instance size while the computation time only increases linearly). This is illus-
trated in Fig. 4, where we compare the development of the solution quality over
the number of iterations for SA, GSA, LAHC and HC on two instances: Ta100,
whose size is 200 × 10 and is covered by the training set, and Ta120, whose size
is 500 × 20. On Ta100, the four algorithms quickly discover good solutions; still,
the convergence of SA is slower with respect to the other three. On Ta120, SA
is clearly unable to converge within the originally allocated computation time.
In the right plot of Fig. 4 we observe the convergence of SA, GSA and LAHC on
Ta120 with a runtime ten times higher (1500s instead of 150s on that instance –
HC not included in the plot): the convergence is more similar to the one observed
for Ta100, with also SA discovering high quality solutions. In particular, GSA finds
a solution very close to the best known one (6756860 vs 6755722), while SA and
LAHC both find a solution of better quality than the currently best known one
(6746818 and 6748131, respectively). It is interesting to note that SA has now
found the best solution, while LAHC has continued improving until more than
half the time available.

6 Conclusions

We have observed how a careful tuning of the numerical parameters is crucial to
obtain good results, in terms of both solution quality and convergence. Across our
two benchmark problems, the algorithm that obtained the best results is LAHC.

28 A. Franzin and T. Stützle

It exhibits a good convergence behaviour, quickly discovering good solutions in
the beginning of the search, and continuously improving afterwards. It is also
very robust, as it is the best performing algorithm across the whole Taillard
benchmark for the PFSP-TCT, and it scales well also to instances of different
sizes, unseen in the training set. Despite its simplicity (only one parameter to
be tuned), LAHC makes a good use of the history of the search, as any solution
it accepts is never worse than at least another one it has accepted in the past.

SA obtains overall good results, but it requires a proper tuning, as we have
observed, in particular, for the large PFSP instances. It is able to obtain good
results, but it might do so slowly; it is therefore advisable to tune SA for anytime
behaviour [12] to obtain good results in a shorter time. BSA performs similarly
to the standard SA. GSA, instead, has been shown to be flexible, outperforming
SA also in terms of scalability and anytime behaviour. The geometric acceptance
criterion is overall inferior to those derived from the original SA.

TA has obtained results overall not very different from SA. RTR has obtained
good results on the random QAP instances, but was among the worse performers
in the other scenarios, probably because of the fixed value of its threshold. GDA
also showed a lack of flexibility, requiring a different setup and thus making its
use within other algorithms more problematic.

As future work, we plan to extend the analysis to different conditions that
might improve the performance of the various criteria. For example, a tempera-
ture restart, which is a common option in various SA algorithms, may change the
conclusions of especially those criteria that rely on the temperature parameter.
In addition, we plan to extend the set of acceptance criteria that are considered
in this work and also extend the set of test problems to increase the experimental
basis on which our conclusions rely. Finally, we intend to test the various accep-
tance criteria considering other aspects such as anytime behavior or robustness
to other scenarios that differ in instance size and termination condition.

Acknowledgments. We acknowledge support from the COMEX project (P7/36)
within the IAP Programme of the BelSPO. Thomas Stützle acknowledges support
from the Belgian F.R.S.-FNRS, of which he is a senior research associate.

References

1. Appleby, J., Blake, D., Newman, E.: Techniques for producing school timetables on
a computer and their application to other scheduling problems. Comput. J. 3(4),
237–245 (1961)

2. Bohachevsky, I.O., Johnson, M.E., Stein, M.L.: Generalized simulated annealing
for function optimization. Technometrics 28(3), 209–217 (1986)

3. Burkard, R.E., Çela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment
problem. In: Handbook of Combinatorial Optimization, vol. 2, pp. 241–338. Kluwer
Academic Publishers (1998)

4. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Technical
report CSM-192, University of Stirling (2012)

5. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Eur. J. Oper.
Res. 258(1), 70–78 (2017)

Comparison of Acceptance Criteria in Randomized Local Searches 29

6. Chen, R.M., Hsieh, F.R.: An exchange local search heuristic based scheme for
permutation flow shop problems. Appl. Math. Inf. Sci. 8(1), 209–215 (2014)

7. Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-
to-record travel. J. Comput. Phys. 104(1), 86–92 (1993)

8. Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algo-
rithm appearing superior to simulated annealing. J. Comput. Phys. 90(1), 161–175
(1990)

9. Hoos, H.H., Stützle, T.: Stochastic Local Search-Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco (2005)

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

11. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

12. López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of
optimisation algorithms. Eur. J. Oper. Res. 235(3), 569–582 (2014)

13. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars
to parameters: automatic iterated greedy design for the permutation flow-shop
problem with weighted tardiness. In: Nicosia, G., Pardalos, P. (eds.) LION 2013.
LNCS, vol. 7997, pp. 321–334. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-44973-4 36

14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21,
1087–1092 (1953)

15. Moscato, P., Fontanari, J.F.: Stochastic versus deterministic update in simulated
annealing. Phys. Lett. A 146(4), 204–208 (1990)

16. Nawaz, M., Enscore Jr., E., Ham, I.: A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)

17. Ogbu, F.A., Smith, D.K.: The application of the simulated annealing algorithm
to the solution of the n/m/C max flowshop problem. Comput. Oper. Res. 17(3),
243–253 (1990)

18. Pan, Q.K., Ruiz, R.: Local search methods for the flowshop scheduling problem
with flowtime minimization. Eur. J. Oper. Res. 222(1), 31–43 (2012)

19. Pan, Q.K., Ruiz, R.: A comprehensive review and evaluation of permutation flow-
shop heuristics to minimize flowtime. Comput. Oper. Res. 40(1), 117–128 (2013)

20. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J.
Oper. Res. 174(3), 1519–1539 (2006)

21. Taillard, É.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

22. Taillard, É.D.: Comparison of iterative searches for the quadratic assignment prob-
lem. Location Sci. 3(2), 87–105 (1995)

23. Černý, V.: A thermodynamical approach to the traveling salesman problem: an
efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

https://doi.org/10.1007/978-3-642-44973-4_36
https://doi.org/10.1007/978-3-642-44973-4_36

A Fitness Landscape View on the Tuning
of an Asynchronous Master-Worker EA

for Nuclear Reactor Design

Mathieu Muniglia1, Sébastien Verel2(B), Jean-Charles Le Pallec1,
and Jean-Michel Do1

1 CEA (french Commissariat à l’Energie Atomique), Gif-sur-Yvette, France
2 Université du Littoral Côte d’Opale, LISIC, Calais, France

verel@univ-littoral.fr

Abstract. In the context of the introduction of intermittent renewable
energies, we propose to optimize the main variables of the control rods
of a nuclear power plant to improve its capability to load-follow. The
design problem is a black-box combinatorial optimization problem with
expensive evaluation based on a multi-physics simulator. Therefore, we
use a parallel asynchronous master-worker Evolutionary Algorithm scal-
ing up to thousand computing units. One main issue is the tuning of
the algorithm parameters. A fitness landscape analysis is conducted on
this expensive real-world problem to show that it would be possible to
tune the mutation parameters according to the low-cost estimation of
the fitness landscape features.

1 Introduction

In the actual context of energetic transition, the increase of the intermittent
renewable energies contribution (as wind farms or solar energy) is a major issue.
On the one hand, the French government aims at increasing their part up to
30% [6] by 2030, against 6% today. On the other hand, their intermittent pro-
duction may lead to an important imbalance between production and consump-
tion. Consequently, the other ways of production must adapt to those variations,
especially nuclear energy which is the most important in France. The power vari-
ations occur at different time scales (hour, day, or even week) and in order to
counterbalance their effects on the electric grid, the nuclear power plants (NPP)
are able to adjust their production. NPPs which take part in the response of the
power variations operate in the so-called load-following mode. In this operating
mode, the power plant is mainly controlled using control rods (neutron absorber)
that may introduce unacceptable spatial perturbations in the core, especially in
case of huge power variations. The purpose of this work is to optimize the man-
ageability of the power plants to cope with a large introduction of intermittent
renewable energies. Its final goal is to tune the control parameters (called vari-
ables) in order to be able to make the load following at a shorter time scale and
larger power amplitude scale, meeting the safety constraints.
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 30–46, 2018.
https://doi.org/10.1007/978-3-319-78133-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_3&domain=pdf

A Fitness Landscape View on the Tuning 31

Such a real-world optimization problem is a challenge, considering the size
of the search domain, the computation cost and the unknown properties of the
fitness function. Due to the design of the nuclear power plants, and in a goal to
propose only simple modifications of the current management, 11 integer vari-
ables are used to describe the control rods such as speed, overlaps between rods,
etc. (details are given in Sect. 3). Therefore, the optimization is a large size combi-
natorial problem where no full enumeration is possible. Moreover, a multi-physic
simulator is used which is able to compute several criteria such as the evolution
of the axial power offset, the rejected volume of effluent, etc. according to the
variables of the problem. So, the computation of the fitness function is computa-
tionally expensive, and one evaluation typically takes on average about 40 min.
This optimization problem is considered for the first time, and no property on
the search space is a priori known. Hence, in this work, the Nuclear Reactor
Operation Optimization problem (NROO problem) is an original combinatorial
black-box problem with expensive fitness function evaluation for which only few
candidate solutions and their corresponding fitness value can be computed.

The ability of Evolutionary Algorithm (EA) to find high quality solutions is
likely to depend strongly on its parameters settings. In this work, we propose
a parallel master-worker EA for large scale computing environment to solve
the NROO problem. Despite the expensive cost, an analysis of the mutation
parameters is then proposed. Such a study is not always possible for expen-
sive optimization problems. Hence, we achieve a fitness landscape analysis of
the NROO problem using low-cost features to argue that it helps to select the
relevant parameters of the mutation operator.

The main goals of the paper are then: (i) perform for the first time an offline
optimization of the control rods using an evolutionary algorithm (ii) analyze the
fitness landscape structure using a random walk (details are given in Sect. 5.3)
to tune the algorithm parameters, especially the ones of the mutation, in order
to (iii) propose an efficient mono-objective master-worker that will be used in
the next step of the work, consisting in a multi-objective optimization using a
decomposition approach.

The rest of this paper is organized as follows. The next section introduces
previous works on nuclear energy problems, and main definitions used in this
work. The NROO problem and the proposed algorithm are described respectively
in Sects. 3 and 4. The experimental analysis of the algorithm and of the fitness
landscape is conducted in Sect. 5. At last, the paper concludes on the main
results, and future works.

2 Preliminaries

2.1 Evolutionary Optimization for Nuclear Energy Problems

The use of Evolutionary Algorithms (EA) in order to optimize some variables
of a nuclear power plant as regards performance or safety is not new. Offline
optimizations can already be found, and studies such as [2] or [4] deal with the

32 M. Muniglia et al.

In-Core Fuel Management Optimization (ICFMO) and loading pattern optimiza-
tion which is a well-known problem of Nuclear Engineering and aims for instance
at maximizing the use of the fuel (increase the cycle length for example) while
keeping the core safe (minimize the power peak). Pereira and Lapa consider in
[16] an optimization problem that consists in adjusting several reactor cell vari-
ables, such as dimensions, enrichment and materials, in order to minimize the
average peak-factor in a reactor core, considering some safety restrictions. This
is extended in [18] to stochastic optimization algorithms conceptually similar to
Simulated Annealing. Sacco et al. even perform in [19] an optimization of the
surveillance tests policy on a part of the secondary system of a Nuclear Power
Plant, using a metaheuristic algorithm, which goal is to maximize the system
average availability for a given period of time.

To our best knowledge, the only optimizations of the plant operation are
made online, like in [15], where Na et al. develop a fuzzy model predictive control
(MPC) method to design an automatic controller for thermal power control in
pressurized water reactors. The objectives are to minimize both the difference
between the predicted reactor power and the desired one, and the variation of
the control rod positions. A genetic algorithm is then used to optimize the fuzzy
MPC. Kim et al. propose in [10] another MPC by applying a genetic algorithm,
to optimize this time the discrete control rod speeds. This paper proposes a new
approach to do so, by optimizing offline the main characteristics of the control
mechanisms, using an EA.

2.2 Parallel Evolutionary Algorithms

With the increasing number of computing units (cores, etc.), parallel EA become
more and more popular to solve complex optimization problems. Usually, two
main classes of types of parallel EA [1] can be distinguished: the coarse-grained
model (island model) in which several EA share solutions within the migration
process, and the fine-grained model (cellular model) where the population is
spread into a grid and evolutionary operators are locally executed. Besides, a
Master-Worker (M/W) architecture with the fitness evaluation on workers have
been extensively used and studied [5]. It is simple to implement, and does not
require sophisticated parallel techniques. Two communication modes are usu-
ally considered. In the synchronous mode, the parallel algorithm is organized by
round. The master sends candidate solutions on each worker for evaluation, and
waits until receiving a response from all workers before the next round. In the
asynchronous mode, the master does not need to wait, and communicates with
each worker individually on-the-fly. The asynchronous mode could improve the
parallel efficiency when the evaluation time of the fitness function vary substan-
tially [24]. We also propose an asynchronous parallel EA in this work.

2.3 Landscape Aware Parameter Tuning

The performance of EA strongly depends on the value of their parameters (muta-
tion rate, population size, etc.). Parameters setting is then one of the major

A Fitness Landscape View on the Tuning 33

issues in practice for EA, and two methodologies are commonly used [7]. In the
online setting, called control, the parameters are selected all along the optimiza-
tion process. In the offline setting, called tuning, the parameter values are set
before the execution of the algorithm. In offline setting, most of the methods,
such as the irace framework [13], are based on a smart trial and error technic
of parameter values on a set of problem instances. Those methods may require
a large number of tests/executions on representative problem instances which
can be difficult to afford in a black-box scenario with expensive costs on large
scale computing environment. Alternatively, following Rice’s framework [17], one
can use a fitness landscape aware methodology to first extract features from the
given problem instance, then select the relevant parameters according to those
fitness landscape features.

Fitness landscapes are a powerful metaphor to describe the structure of
the search space for a local search algorithm, and peaks, valley or plateaus for
instance are used to depict the shape of the search space in this picture. For-
mally, a fitness landscape [21] is defined by a triplet (X ,N , f) where X is the
set of candidate solutions, N : X → 2X is the neighborhood relation between
solutions, and f : X → IR is the fitness function (here assumed to be minimized)
which associates to each candidate solution the scalar value to minimize. The
neighborhood relation can be defined by a distance between solutions or by a
local search operator.

Two main geometries are commonly used in fitness landscape. A multi-
modal fitness landscape is a search space with a lot of local optima (solution
with no improving solution in the neighborhood). This geometry is also asso-
ciated with the ruggedness which is the local regularity of the landscape. The
more rugged the more multimodal the landscape is. The ruggedness can be
measured by the autocorrelation of fitness [23] during a random walk over the
landscape. A random walk is a sequence (x1, . . . , x�) of solutions such that for
all t ∈ {2, �}, xt is a neighboring solution selected uniformly at random from
N (xt−1), or according to the local search operator. The autocorrelation func-
tion ρ̂ is defined by the correlation of fitness between solutions of the walk:
ρ̂(k) =

∑�−k
t=1 (f(xt)−f̄)·(f(xt+k)−f̄)

∑�
t=1(f(xt)−f̄)2

with f̄ the average value of f(xt). The main
feature of ruggedness is then the autocorrelation length [9] which is the length τ
such that there is no more significative fitness correlation at level ε between solu-
tions of the walk: τ = min{k : |ρ̂(k)| < ε}. Usually, a smooth fitness landscape
with long autocorrelation length is supposed to be easier to solve.

A neutral fitness landscape is another main geometry where the search space
is dominated by large flat plateaus with many equivalent solutions. The dynamics
of EA on such landscape is characterized by punctuated equilibrium dynamics
where long neutral moves on plateaus are interrupted by rapid improving moves
toward better solutions. One of the main features of this landscape is the neutral
rate which is the proportion of neighboring solutions with the same fitness value
[22]: EX [�{y : f(y) = f(x) and y ∈ N (x)}/�N (x)]. To avoid the computation
of large neighborhood, the neutral rate can be estimated with a random walk
[11] by: nr = �{(xt, xt+1) : f(xt) = f(xt+1), t ∈ {1, � − 1}}/(� − 1).

34 M. Muniglia et al.

According to the local search operator, which could be the mutation operator
for EA, the features of fitness landscape can characterize the shape of the land-
scape. First fundamental works have demonstrated the relevance of fitness land-
scape analysis for the parameters tuning [3]. However, to our best knowledge, no
work has used such methodology for a real-world problem with expensive fitness
function.

3 Problem Definition

The optimization process is based on the current load-following transient [12]
and this analysis focuses on a single Pressurized Water Reactor (PWR) type
(1300 MW) of the French nuclear fleet. When an electrical power variation occurs
(demand of the grid) a chain of feedback is setting up in the whole reactor, lead-
ing to a new steady state. It is usual to take advantage of this self-regulation in
the case of small variations, but the regulated variables such as the temperature
or the pressure in the primary or secondary circuits may reach unacceptable val-
ues in case of load-following, possibly leading to damages of the whole system.
The control rods are then used in order to cope with this variation, and maintain
the primary coolant temperature close to the target. However, those control rods
have to be handled carefully as they could cause axial or radial heterogeneity in
the core, inducing high power peaks or Xenon oscillations.

3.1 Description of the System

The reactor core is a grid of square assemblies (21 cm length) in a cylindrical
vessel. There are 193 assemblies, split into two kinds: 120 assemblies made of
Uranium oxide (UOX) and 73 ones made of Uranium plus Gadolinium oxides
(UGd). Each control rod is made of pins of a neutron absorber that are inserted
together from the top of the core in some assemblies. The positions of the assem-
blies where they are inserted and the materials of which they are made corre-
spond to the French “G” mode [12]. The rods are organized in two families: (i)
the power shimming rods (PS) and (ii) the regulation rods (TR). The first ones
are used to shim the power effects during the power transient, and are split in
four groups (4 rods G1, 8 rods G2, 8 rods N1 and 8 rods N2). All the rods of a
same group move together, and the groups are inserted successively in this order:
G1, G2, N1, N2, as it is shown in Fig. 1. An overlap is also defined between all the
groups, so that they follow an insertion program as illustrated from frames (a) to
(d). The position of those rods is linked to the electrical power by a calibration
function. The second family enable a control of the average coolant temperature
of the core (the targeted temperature, called reference temperature, is a linear
function of the thermal power) and is made of 9 rods gathered in a single group.
This group moves independently and automatically, following a speed program
depending on the difference between the reference temperature (Tref) and the
mean temperature (Tm) as shown in Fig. 2. One can see a dead band of ±0.8 ◦C
in which the rods do not move, avoiding continuous displacement and corre-
sponding to the self-regulation of the core. Finally, as they are very efficient and

A Fitness Landscape View on the Tuning 35

Fig. 1. Insertion sequence of the Power Shimming rods (PS). The totalizer value (T)
is given on each frame, and the last moving group is in purple. (Color figure online)

Fig. 2. Speed program of the Temperature Regulation rods (TR). The dead band
corresponds to the null speed and the maximal and minimal speeds (±72 steps/min)
are for an absolute temperature difference larger than 2.8 ◦C.

for safety reasons, they are shut into a maneuvering band of about 50 cm in the
upper part of the core. For more details, please refer to [8].

The variables to be tuned for the optimization are then the 4 nominal speeds
and the 3 overlaps for the PS rods, the maximal and minimal speeds, the dead
band width and the maneuvering band height for the TR rods. 11 variables are

36 M. Muniglia et al.

Table 1. Integer variables of the design: lower bound (l.), upper bound (u.), and value
of the current reference (r.). The dead band (db) variable is expressed in tenth of
degree, and all the other variables are expressed in steps.

PSR overlaps PSR velocities TRR V.

o1 o2 o3 v1 v2 v3 v4 V v mb db

l. 0 0 0 10 10 10 10 3 3 7 8

u. 255 255 255 110 110 110 110 13 13 117 16

r. 185 175 160 60 60 60 60 72 8 27 8

then considered, and they are coded as integer values corresponding to a dis-
crete number of steps or of temperature (the dead band is discretized by steps of
0.1 ◦C). Table 1 summarizes the variables, their initial values (current manage-
ment) and ranges. The values take into account some technological and logical
constraints. For example, the overlaps cannot be greater than the total height of
the rods, the velocity ranges are bounded by the mechanisms, etc. A number of
other variables could have been studied, like swaps between groups, or splitting
groups, but the study is confined to the variables listed for two reasons: simplify
the problem for a first optimization, and be able to propose a solution without
major technological breakthroughs and similar to the current one. Nevertheless,
the search domain is huge (at least 3 × 1020 possible configurations).

3.2 Criterion of Interest

This seek of simplification is even more understandable when it is known that
the black-box evaluation function is very costly. Each unitarian calculation cor-
responds to a given management configuration running on a complete typical
load-following transient, corresponding to about 11 h. The value of interest is
then determined thanks to a model of the whole reactor described in [14], and
developed within the APOLLO3 R© [20] calculation code. The optimization aims
at minimizing this value of interest, which represents a global operating crite-
rion, based on the control diagram. This control diagram is used by the operator
to manage the power plant and represents the evolution of the relative thermal
power (Pr) as a function of the power axial imbalance given by: ΔI = Pr × AO
where AO is the axial offset defined as AO = PT −PB

PT +PB
and standing for the unbal-

ance between the lower and upper half parts of the core as regards the power.
PT (resp. PB) is the power in the upper (resp. lower) part of the core.

An example of such a diagram is to be found on Fig. 3, which draws the path
of the state of the core during a power variation (blue line) and the bounds for
this path. On the right side, the forbidden region (red line) is based on many
studies and ensures the safety of the core in case of accidental situations. The
impossible working region just comes from the definition (AO ∈ [−1, 1]). Finally,
the green line starting at the same point as the path corresponds to a constant
axial offset, and is called reference line in the following. The criterion derived

A Fitness Landscape View on the Tuning 37

Fig. 3. Control diagram and criteria calculation principle. (Color figure online)

from the control diagram to be minimized is defined by:

f(x) =
1
4

∑

i

|P 2
r,i+1 − P 2

r,i| ·
(
D(ΔIi+1) + D(ΔIi)

)
(1)

where D(ΔIi) = |ΔIi − ΔIref
i |. The pair (Pr,i, ΔIi) represents the state of

the core at the time step i, and ΔIref
i the power axial imbalance given by the

reference line at the power Pr,i. The criterion corresponds to the sum of all the
areas as illustrated on Fig. 3, weighted by the relative power to take into account
the fact that an important axial offset at high power is worse than at low power.
Minimizing this criterion enables to reduce the area of the path and avoids being
close to the forbidden region while staying close to the reference line.

4 Asynchronous Parallel EA

The design of the EA is guided both by the expensive cost of fitness evaluation
of the problem computed by a numerical simulation, and by the computing
environment available to solve this problem.

4.1 Algorithm Definition

On the one hand, the fitness evaluation duration is about 40 min on average
with a large variance. On the other hand, a large number of computing units
(w = 3072) are available to run the optimization algorithm, but they are only
free for few hours (around 15 h per experiment). Hence, we propose a master-
worker (M/W) framework for the EA. On average one fitness evaluation is com-
pleted every 0.78 s, meaning that the master node is not to be overflowed by

38 M. Muniglia et al.

the request of the workers, and with respect to the fitness evaluation time, an
idle working time of few seconds will not reduce the performance. In addition,
some simulations crash before the end of the calculation, increasing even more
the discrepancies in calculation times. All considered, the model of the M/W
has been made asynchronous: the workers are updated on the fly without a syn-
chronization barrier, and each worker only computes the fitness value using the
multi-physic simulator.

A lot of efficient EA can be considered in an asynchronous M/W framework
with fitness evaluation on workers. The number of evaluations per worker is
small, on average 23 fitness function evaluations is possible on each worker within
15 h of computation. As a consequence, the EA should converge quickly. We
propose then an asynchronous (1+λ)-EA where λ is the number of computation
units minus one. The Algorithm1 show the details of the algorithm.

Algorithm 1. Asynchronous M/W (1 + λ)-EA on master
1 for i in Workers do
2 xi ← Initialization using quasi-random numbers

3 Send (non-blocking) Msg(xi) to worker i

4 end
5 f� ← maximal value
6 while pending message and time is not over do
7 Receive Msg from worker i

8 f i ← Msg[0]

9 if f i � f∗ then
10 x� ← xi ; f� ← f i

11 end

12 xi ← Mutate(x�)

13 Send (non-blocking) Msg(xi) to worker i

14 end
15 return x�

First, the algorithm on master node produces λ = w − 1 quasi-random solu-
tions (integer vectors of dimension n = 11) using a Design of Experiments (DoE)
based on Sobol of quasi-random numbers. This initialization is used to improve
the spreading of the initial solutions in the search space. Every initial solution is
then sent asynchronously to a worker who receives the solution from the master,
computes the fitness value by running the multi-physic simulator, and send back
the result to the master node. In the meantime, the main loop of the Algorithm 1
is executed on the master node: wait for a message from a worker i, and when the
fitness value is received, the best so far solution is updated if necessary. Notice
that the best solution is replaced by the new solution evaluated by the worker
even when the fitness values are equals. In that way, the algorithm is able to drift
on plateaus of the search space. A new candidate solution is then computed by
the mutation (detailed in the next section) of the best-known solution and sent

A Fitness Landscape View on the Tuning 39

in non-blocking mode to the same worker i. The master is then able to man-
age the requests of the other worker nodes by the asynchronous communication
mode. The algorithm stops after an arbitrary time limit is reached.

4.2 Mutation Operator

The mutation operator is based on the classical mutation for vectors of numbers.
The mutation rate p defines the parameter of the Bernoulli distribution to modify
each number of the vector. Therefore, the number of modified variables follows a
binomial distribution of parameters n and p, and the expectation of the number
of modified variables is np. When an integer variable is modified according to the
mutation rate, a random integer number is drawn using a uniform distribution
centered on the current value. Let xj be the current value of the variable j, and
δj the gap defined by �r.(ubj − lbj)� where lbj and ubj are respectively the lower
bound and the upper bound of the variable j defined in the Table 1, and r ∈ [0, 1]
is a mutation parameter. The new value of variable j after mutation is selected
uniformly in the interval [xj − δj , xj + δj] ∩ [lbj , ubj] \ {xj}. The parameter r
tunes the range width for the new value of variable after the mutation, and is
expressed relatively to the total range width of the variables (r ≤ 0.5).

In addition, to avoid multiple costly evaluations of the same candidate solu-
tion, a hash-map is used on the master node to save all evaluated solutions. The
mutation is applied on the solution until a new candidate solution which is not
in the hash-map is produced by the mutation random process.

5 Experimental Analysis

First, the performance of the algorithm with a baseline parameters setting is
studied with 3072 computing units during 24 h (approx. 73,728 h of CPU time).
Then, the mutation parameters are analyzed with the algorithm launched on
3072 computing units during 5 h (approx. 15, 360 h of CPU time per run). At
last, a fitness landscape analysis is conducted.

5.1 Baseline Parameters Setting

Following the value of the mutation rate parameter of 1/n commonly used in
EA, the mutation rate has been set roughly to the inverse of the number of
variables (p0 = 0.1), so that the mutation operator modify on average one vari-
able. The width of the random variation range has been arbitrarily set to about
r0 = 0.05 (5% of the total variation range of the variable). Those parameters
have been chosen for the first optimization process and are called in the following
the baseline settings. The use of an asynchronous algorithm to avoid idle time is
justified by the discrepancies of the computation costs from a candidate solution
to another one. The mean computation time is 2426 s, and the faster computa-
tion is done in 1629 s whereas the longer is performed in 6169 s. Figure 4 shows
the dynamic of the run. The normalized best fitness is drawn as a function of

40 M. Muniglia et al.

0.3

0.4

0.5

0.6
0.7
0.8
0.9
1.0

1e+01 1e+02 1e+03 1e+04 1e+05
Evaluation #

N
or

m
al

iz
ed

 F
itn

es
s

baseline settings
best settings

Fig. 4. Dynamic of the asynchronous M/W algorithm for the baseline and optimal
mutation parameters settings

the number of evaluations received by the master node. A point is plotted when
the best solution so far is updated (included for equal fitness values). The fit-
ness values are normalized by the fitness value of the current management (see
Table 1). The solutions for which the number of evaluations is lower than 3072
are from the initial quasi-random population. Even if the best solution obtained
with baseline settings enable to reduce the fitness of about 40% compared to
the current management, it can be seen that the number of strictly improving
solutions is low (about 10 improving steps). The dynamic is a punctuated equi-
librium dynamic with a lot of neutral moves on plateaus, and few improving
solutions. For instance, the process is stuck on a plateau at the end of the run:
almost 50, 000 fitness evaluations are necessary to find a strictly better solution.
Subsequently, one can say that the neutrality is really important in the NROO
problem. This first experiment shows the relevance of the algorithm to found
better solutions than the current management, but it suggests that the setting
of mutation parameters could also be improved.

5.2 Impact of the Mutation Parameters

This section deeply analyzes the influence of the mutation parameters on the
performance of the M/W algorithm. Four values of mutation rates p and muta-
tion ranges r are investigated: p ∈ {0.1, 0.2, 0.3, 0.4} and r ∈ {0.05, 0.1, 0.2, 0.5}.
All the combinations are considered, given 16 possible mutation settings of the
mutation operator. To reduce the intrinsic random effect of the algorithm, each
couple of mutation parameters values (p, r) have been launched five times with
different initial populations generated by the Sobol sequence of quasi-random
numbers. However, the 5 initial populations are the same for each couple of
parameters settings. The total computation cost is more than 1, 2 × 106 h of
computation times, and we were not able to execute more than five runs.

A Fitness Landscape View on the Tuning 41

0.450

0.475

0.500

0.525

0.550

0.575

0.1 0.2 0.3 0.4 0.5
Mutation range r

Av
g.

 n
or

m
. f

itn
es

s Mutation rate p
0.1
0.2
0.3
0.4

Fig. 5. Average normalized best fitness as a function of the mutation range width r
and mutation rate p.

The Fig. 5 shows the average normalized best fitness found for each parameter
setting. The standard deviation of the best fitness found is also computed to
measure the robustness of the parameters settings (not shown here to save space).
In addition, for each initial population, the rank of each parameter setting is
computed, and the average of the ranks gives another performance measure of
the settings. However, statistical tests will not give exploitable results because
of the very low number of runs, and are then not considered. The variation of
average fitness is larger according to the mutation range width parameter r than
according to the mutation rate parameter p. The average fitness decreases with
the parameter r whereas there is no clear trend as a function of the mutation
rate p. The best sets as regards this criterion are then the ones for which the
mutation range r is maximal. Inversely, the worse are the one for which the
mutation range is minimal. Given the huge discrepancies of the average fitness
as a function of the mutation range, the impact of the mutation rate cannot
clearly be seen in this figure, and it is then difficult to choose the best mutation
rate.

The performance according to the rank instead of best fitness value share
the same result. Indeed, the Spearman correlation between the average fitness
and the mean rank appears to be really high (ρ = 0.91), meaning that the
best parameters as regards the first one is likely to be good also as regards the
second. For example, the first five parameters settings with respect to the best
average fitness are (0.5, 0.2), (0.5, 0.3), (0.5, 0.4), (0.2, 0.3), (0.2, 0.2), and they
are respectively third, first, sixth, second and fourth with respect to the average
rank. However, the correlation between the average and the standard deviation
of best fitness is low (ρ = 0.48) and thus, the five previous parameters settings
are now in first, ninth, second, fifth and thirteenth position with respect to the
standard deviation. It was decided to prefer the mutation parameters leading to
low fitness value and rank rather than to low standard deviation. Future works
will investigate ways to improve the robustness of the algorithm with respect to
the initial population and thus to reduce the standard deviation.

42 M. Muniglia et al.

The selected parameters setting is then r = 0.5, and p = 0.3 which is the
first (resp. second) with respect to the rank (resp. best average fitness) because
(r, p) = (0.5, 0.2) is the first one as regards the best average fitness is only third
as regards the rank, and also because the very best fitness so far is obtained
with (0.5, 0.3). In the framework of the greedy (1+λ)-EA with large λ value and
low numbers of iterations, very large mutation parameters with large exploration
seem to be suggested. The dynamic of the optimal parameters setting is shown on
Fig. 4. On the contrary of the common value of mutation parameters, the search
is not stuck on plateaus, and the number of improving steps is high. Besides,
those parameters setting found an optimal solution which reduces almost 65%
of the reference fitness of current management, with only the quarter of the
computation cost of the baseline settings.

5.3 Fitness Landscape Analysis

In this section, we investigate the fitness landscape of the NROO problem. For
each parameters setting of the mutation operator, a random walk of length
� = 1024 starting from a random candidate solution is computed. The cost of
the walk is about 5% of the computation cost of the EA, and the length is smaller
than the initial population size. Notice that by construction, all the solutions
of the walk are strictly different. From the random walks, the autocorrelation
length and the neutral rate are both estimated (see Sect. 2.3). The significant
level ε used to estimate the autocorrelation length is set to 4/

√
�.

The Fig. 6 shows the features of the fitness landscape according to the muta-
tion parameters. The mutation range width r does not impact the neutral rate.
On the contrary, the neutral rate decreases with the mutation rate p: from 25%
for the baseline setting with p = 0.1 to 3% for a high mutation rate value
p = 0.4. The neutrality of NROO fitness landscape is high, and is dominated by
large plateaus for common value of the mutation rate p. The neutral geometry
explains the punctured equilibrium dynamics of the EA. As expected, a stronger
mutation implies a more rugged fitness landscape. However, the ruggedness of
the landscape is more impacted by the mutation range width r than by the
mutation rate p. The autocorrelation length decreases with the mutation range
width r from approximately 120 for r = 0.05 to 6 for the largest value r = 0.5
which picks a random new value. However, the landscape can be considered as a
smooth landscape. For instance, when the mutation range is r = 0.2, more than
50 steps are required to reach a correlation of fitness between solutions smaller
than ε = 0.125. This feature should explain the good performances of the EA.

The Fig. 7 shows the correlation between the performance of the EA in terms
of average normalized best fitness found and the feature values of the fitness
landscape. Each point corresponds to a mutation parameters setting and the
regression line of the linear model is also drawn. Surprisingly, although the neu-
tral rate could be high, it is not linearly correlated to the performance of the EA.
Only r2 = 5.3% of the performance variance is explained by the linear regression
model, and the Pearson correlation coefficient is below 0.23. On the contrary,

A Fitness Landscape View on the Tuning 43

●

●

●
●

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5
Mutation range r

N
eu

tra
l d

eg
re

e
ra

te
 (n

r)

Mutation rate p ● 0.1 0.2 0.3 0.4

●

●

●

●
0

50

100

150

0.1 0.2 0.3 0.4 0.5
Mutation range r

Au
to

co
rre

la
tio

n
le

ng
th Mutation rate p

● 0.1
0.2
0.3
0.4

Fig. 6. Features of the fitness landscape as a function of mutation parameters r and
p. neutral rate (left) and autocorrelation length (right).

Fig. 7. Scatter plots and regression linear models between the average best normalized
fitness and the features of fitness landscapes. Neutral rate (left) and autocorrelation
length (right).

44 M. Muniglia et al.

the autocorrelation length is highly correlated with EA performance. The Pear-
son correlation coefficient is 0.82, and r2 = 67.9% of variance is explained by
the simple linear regression. The result of the real-world NROO problem with
costly fitness function is in accordance with fundamental works in EA such as on
the well-known NK-landscapes: the problem difficulty and the performances are
correlated to the ruggedness of the fitness landscapes. In contrast to the classical
result obtained on the previous fundamental works however, the more rugged
the landscape, the better the performance of the parallel EA. Our first result
shows that a fitness landscape approach could be used to tune the parameters,
but for highly selective parallel (1 + λ)-EA with a large number of computing
units, rugged landscapes should be preferred.

6 Conclusions

In this paper, a real-world black-box combinatorial optimization problem with
an expensive fitness function has been studied, and to solve it, an asynchronous
master-worker (1+λ)-EA running on a massively parallel architecture was used.
The tough point of this exercise was the design of the algorithm, and mainly
the mutation parameters. To do so, a parametric study was launched, giving
satisfactory results, but requiring a lot of resources. In a second time, a fitness
landscape analysis on this expensive problem showed that it is possible to tune
the mutation parameters, and surprisingly, in the case of a large scale computing
environment, with a limited user computation time, the mutation parameters
associated to the most rugged landscape are relevant. It has then been possible
to improve the considered criterion of almost 65%, meaning that on a given
load-following transient, the operation of the core keep the axial power offset
almost constant. This is encouraging for the following as some margins have
been generated so that more heckled transients can now be considered.

The next step of this work is the minimization of the rejected effluent by
the nuclear power plant. While there are many steps to be taken, our method-
ology opens the opportunity to tune the evolutionary algorithm from fitness
landscape features, and pushes to design an efficient bi-objective algorithm for
combinatorial black-box problems with expensive fitness functions.

References

1. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002)

2. Arnaud, G., Do, J.-M., Lautard, J.-J., Baudron, A.-M., Douce, S.: Selection com-
binatory algorithm for loading pattern design of light water reactor with two levels
of heterogeneity. In: Proceedings of ICAPP (2011)

3. Daolio, F., Liefooghe, A., Verel, S., Aguirre, H., Tanaka, K.: Problem features vs.
algorithm performance on rugged multi-objective combinatorial fitness landscapes.
Evolutionary Computation (2016)

A Fitness Landscape View on the Tuning 45

4. de Moura Meneses, A.A., Gambardella, L.M., Schirru, R.: A new approach for
heuristics-guided search in the in-core fuel management optimization. Prog. Nucl.
Energy 52, 339–351 (2010)

5. Dubreuil, M., Gagne, C., Parizeau, M.: Analysis of a master-slave architecture for
distributed evolutionary computations. IEEE Trans. Syst. Man Cybern. Part B
36, 229–235 (2006)

6. Dumont, O.: Ademe energie 2030: production d’énergies renouvelables. Technical
report, Ademe (2012)

7. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control
in evolutionary algorithms. In: Lobo, F.G., Lima, C.F., Michalewicz, Z. (eds.)
Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 19–46. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-69432-8 2

8. Grard, H.: Physique, fonctionnement et sûreté des REP. EDP Sciences (2014)
9. Hordijk, W.: A measure of landscapes. Evol. Comput. 4(4), 335–360 (1996)

10. Kim, J.H., Park, S.H., Na, M.G.: Design of a model predictive load-following con-
troller by discrete optimization of control rod speed for PWRs. Ann. Nucl. Energy
71, 343–351 (2014)

11. Liefooghe, A., Derbel, B., Verel, S., Aguirre, H., Tanaka, K.: Towards landscape-
aware automatic algorithm configuration: preliminary experiments on neutral and
rugged landscapes. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol.
10197, pp. 215–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
55453-2 15

12. Lokhov, A.: Technical and economic aspect of load following with nuclear power
plants. In: Nuclear Energy Agency. OECD, June 2011

13. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The Rpackageirace
package, iterated race for automatic algorithm configuration. Technical Report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles (2011)

14. Muniglia, M., Do, J.-M., Le Pallec, J.-C., Grard, H., Verel, S.V., David, S.: A
multi-physics PWR model for the load following. In: ICAPP (2016)

15. Na, M.G., Hwang, I.J., Lee, Y.J.: Design of a fuzzy model predictive power con-
troller for pressurized water reactors. IEEE Trans. Nucl. Sci. 53(3), 1504–1514
(2006)

16. Pereira, C.M., Lapa, C.M.: Coarse-grained parallel genetic algorithm applied to a
nuclear reactor core design optimization problem. Ann. Nucl. Energy 30, 555–565
(2003)

17. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
18. Sacco, W.F., De Oliveira, C.R., Pereira, C.M.: Two stochastic optimization algo-

rithms applied to nuclear reactor core design. Prog. Nucl. Energy 48, 525–539
(2006)

19. Sacco, W.F., Lapa, C.M., Pereira, C.M., Filho, H.A.: A metropolis algorithm
applied to a nuclear power plant auxiliary feedwater system surveillance tests pol-
icy optimization. Prog. Nucl. Energy 50, 15–21 (2008)

20. Schneider, D., Dolci, F., Gabriel, F., Palau, J.-M.: Apollo3 R©: CEA/DEN deter-
ministic multi-purpose code for reactor physics analysis. In: PHYSOR (2016)

21. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological
Evolution and Statistical Physics. LNP, vol. 585, pp. 183–204. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45692-9 10

https://doi.org/10.1007/978-3-540-69432-8_2
https://doi.org/10.1007/978-3-319-55453-2_15
https://doi.org/10.1007/978-3-319-55453-2_15
https://doi.org/10.1007/3-540-45692-9_10

46 M. Muniglia et al.

22. Vanneschi, L., Tomassini, M., Collard, P., Vérel, S., Pirola, Y., Mauri, G.: A com-
prehensive view of fitness landscapes with neutrality and fitness clouds. In: Ebner,
M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP
2007. LNCS, vol. 4445, pp. 241–250. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71605-1 22

23. Weinberger, E.D.: Local properties of Kauffman’s NK model, a tuneably rugged
energy landscape. Phys. Rev. A 44, 6399–6413 (1991)

24. Wessing, S., Rudolph, G., Menges, D.A.: Comparing asynchronous and syn-
chronous parallelization of the SMS-EMOA. In: Handl, J., Hart, E., Lewis, P.R.,
López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp.
558–567. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6 52

https://doi.org/10.1007/978-3-540-71605-1_22
https://doi.org/10.1007/978-3-540-71605-1_22
https://doi.org/10.1007/978-3-319-45823-6_52

Sampled Walk and Binary Fitness
Landscapes Exploration

Sara Tari(B), Matthieu Basseur, and Adrien Goëffon

Laboratoire d’Etude et de Recherche en Informatique d’Angers, UFR sciences,
2 boulevard Lavoisier, 49045 Angers Cedex 01, France

{sara.tari,matthieu.basseur,adrien.goeffon}@univ-angers.fr

Abstract. In this paper we present and investigate partial neighbor-
hood local searches, which only explore a sample of the neighborhood
at each step of the search. We particularly focus on establishing links
between the structure of optimization problems and the efficiency of
such local search algorithms. In our experiments we compare partial
neighborhood local searches to state-of-the-art tabu search and iterated
local search and perform a parameter sensitivity analysis by observing
the efficiency of partial neighborhood local searches with different size
of neighborhood sample. In order to facilitate the extraction of links
between instances structure and search algorithm behavior we restrain
the scope to binary fitness landscapes, such as NK landscapes and land-
scapes derived from UBQP.

1 Introduction

Fitness landscapes are nowadays used in various fields to better apprehend the
behavior of complex systems. In particular, in evolutionary computation, the
study of combinatorial and continuous search spaces through fitness landscapes
analysis helps to understand and predict the behavior of evolutionary algorithms.
The concept of fitness landscape was first introduced by Wright [16] in the field
of theoretical biology. Originally, landscapes represent an abstract space of geno-
types where each individual is surrounded by all individuals differing by a muta-
tion on a single gene. Once an adaptation value (fitness) is assigned to each
genotype, such a model illustrates the repartition of peaks, valleys, and plateaus
which are helpful to highlight the effect of mutations on genotypes. In evolu-
tionary computation, such a model can help to observe difficulties induced by a
given problem when tackled with an optimization method. Some studies using
the concept of fitness landscapes focus on basic methods in order to better iso-
late and study some mechanisms used among search algorithms. In particular
many studies have investigated hill-climbing algorithms [2,13,15] which are basic
methods often incorporated within more sophisticated metaheuristics.

The aim of this work is to obtain insights to conceive local search algorithms.
We focus on establishing links between optimization problem structure and effi-
ciency of local searches; the purpose here is not to tackle and optimize specifically
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 47–57, 2018.
https://doi.org/10.1007/978-3-319-78133-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_4&domain=pdf

48 S. Tari et al.

a particular problem. More precisely, we present and focus on partial neighbor-
hood local search algorithms, simple solution-based local searches which explore
a sample of the neighborhood at each step of the search. In our experiments we
perform a parameter sensitivity analysis on partial neighborhood local searches
and compare them to state-of-the-art local searches (iterated local search and
tabu search) on two binary fitness landscapes: NK landscapes and the Uncon-
strained Binary Quadratic Programming problem (UBQP). Focusing on such
landscapes facilitates the extraction of links between landscapes properties and
search algorithms behavior. Here our experimental analysis highlights some links
between ruggedness and both overall efficiency of considered methods as well as
parameter sensitivity of partial neighborhood local searches.

The paper is organized as follows. Section 2 is dedicated to the concept of
fitness landscapes and related features. In Sect. 3 we introduce the sampled walk
local search algorithm as well as a similar partial neighborhood search algorithm
called ID walk, previously introduced by Neveu et al. [11]. In Sect. 4, experiments
are presented and analyzed. In the concluding section, we provide possible ways
forward.

2 Fitness Landscapes

A fitness landscape is a triplet (X ,N , f) where X denotes the search space, N
the neighborhood relation which assigns a set of neighbors to each solution, and
f the fitness value which assigns a score to each solution. The search space and
fitness function are directly derived from the instance of the considered problem
whereas the method used to tackle the instance often induces a particular neigh-
borhood function. One of the main interests of fitness landscapes in evolution-
ary computation is to study the behavior of neighborhood-based optimization
methods in function of landscapes properties (typically their size, neutrality and
ruggedness). These properties and associated indicators are discussed in [9]. Yet,
main landscape characterization features cannot be calculated exactly since it
induces an exhaustive enumeration of the search space on landscapes that are
usually derived from large-scale NP-hard problems. They are generally estimated
through indicators which sample the search spaces.

The neutrality rate of a fitness landscape corresponds to the proportion of
neighboring solutions which have the same fitness value. While some landscapes
contain no neutrality, the presence of such a feature can have a non-negligible
effect on the number and distribution of local optima. In fact, landscapes with
high neutrality are in general harder to solve and induce questions about the
acceptance of neutral moves within local searches [1,10].

The ruggedness of a landscape is a major property that determines the
difficulty to optimize the underlying problem using the considered neighbor-
hood relation. It mainly refers to the number of local optima, their distribution
through the search space, and the size of their basins of attraction [12].

The autocorrelation function [14] is generally used to estimate the ruggedness
of a fitness landscape. Such a measure requires the execution of several random

Sampled Walk and Binary Fitness Landscapes Exploration 49

walks through the considered landscape. It calculates the correlation between
fitness and distances of solutions encountered during the random walk. The
result is a plot of autocorrelation where correlations usually decrease from 1 to
0 with respect to increasing distances between solutions.

The definition of ruggedness is not clearly established and ruggedness can
also refer to the epistasis phenomenon, related to the degree of variable interde-
pendency between genes [4]. When the interdependence between genes is high,
knowing if the presence of a given gene positively affects the individual is dif-
ficult, if not impossible. Such landscapes have high epistasis since the effect of
a mutation depends on the presence of other mutations. The sign-epistasis phe-
nomenon between two genes A and B is depicted in Fig. 1 (in lower case when
the gene is not present). Considering two solutions and a given mutation (or
neighborhood operator application), there exists a sign epistasis when the sign
of the fitness variation resulting from the application of the mutation on both
solutions differs. The 1-ruggedness of a landscape corresponds to the rate of sign
epistasis between neighboring solutions, whereas the k-ruggedness of a landscape
corresponds to the rate of sign epistasis between k-distant solutions [2].

ab Ab

aB AB

ab Ab

aB AB

Fig. 1. Epistasis occurs when the presence of a mutation a → A affects the effect of
another mutation (ab → aB, Ab → AB). We observe sign epistasis once a deteriorating
mutation becomes beneficial when occurring after another mutation (left-hand side).
Right-hand side: no sign epistasis.

In the following, we mainly focus on the relation between ruggedness and
behavior of partial neighborhood local searches.

3 Partial Neighborhood Local Searches

This work follows previous studies related to the links between neutrality and
ruggedness of combinatorial landscapes and the efficiency of hill-climbing algo-
rithms. In particular, we investigated the ability of different neutral move policies
within climbers to find good local optima.

50 S. Tari et al.

First, it is obvious that accepting neutral solutions can potentially drive
toward better local optima since it often helps not to be stuck in low-quality local
optima. During the climbing process, most intensification mechanisms focus as
a priority on improving the current solution rather than on considering neutral
moves. In such cases, the selection of a neutral solution is only considered once a
strict local optimum is reached. Yet a stochastic hill-climbing which indifferently
selects the first improving or neutral neighbor encountered clearly outperforms
climbers which select improving neighbors as a priority [1].

Since accepting both improving and neutral neighbors during the search pro-
cess helps to reach higher pikes, the effect of adding artificial neutrality in land-
scapes (by discretizing the fitness function) in order to reduce the ruggedness
was studied in [3]. With an appropriate neutrality rate, stochastic climbers can
efficiently tackle harder landscapes. Artificial neutrality-based climbers tend to
favor better solutions without exclusively focusing on the improvement or dete-
rioration of the real fitness values.

Here, we aim to simplify as far as possible the idea of favoring better neigh-
bors. The key concept is to ignore if a move improves or not the current fitness
value while maintaining a selection pressure. We then propose the sampled walk
algorithm (SW), a local search which is based on randomly sampled neighbor-
hoods (see Algorithm 1). At each step of the search, SW evaluates λSW random
neighbors of the current solution and selects the one with the highest fitness
value. Except λSW , the only choice to make concerns the stopping criterion.
Yet, the stopping criterion is not necessarily fully considered as a parameter
since in practice to be compared runs have to stop for any algorithm. Moreover
such a parameter is irrelevant in an any-time optimization context.

λSW = 1 corresponds to a random walk whereas λSW = N (with N is the
neighborhood size) corresponds to a tabu search mechanism with an empty tabu
list.

Due to the extreme simplicity of SW, its implementation is easy and does not
require heavy design choices which depend upon the considered neighborhood
function. Moreover, the SW simplicity greatly facilitates its analysis and allows
many specific advanced variants. Note that SW, which is defined in a local search
context, can also be viewed as an (1, λ) evolution strategy (with λ = λSW).

ID Walk (Intensification/Diversification Walk) [11] is based upon a similar
concept. Like SW, ID Walk can be considered as a partial neighborhood search
since it consists of evaluating (at most) λID solutions at each step of the search.
However, ID Walk selects the first encountered improving neighbor and there-
fore considers the fitness of the current solution to select the move to apply.
When no improving solution is found among the λID neighbors, the selected one
depends upon the considered variant. IDbest selects the best one among the λID

deteriorating neighbors, whereas IDany randomly selects one of them.
It is obvious that these partial neighborhood local searches (SW, IDbest,

IDany), which use randomly generated subneighborhoods, leads to similar behav-
iors. As stated by Neveu et al. [11], ID walk was proposed with the aim to com-
bine intensification and diversification during the search process. Although SW

Sampled Walk and Binary Fitness Landscapes Exploration 51

follows the same principle, it emphasizes that the diversification aspect (brought
by the partial neighborhood) is not explicitly determined by the sign of the fit-
ness variation. The next section experiments show that such approach is efficient
even if its selection strategy does not consider the fitness of the current solution.

Algorithm 1. Sampled Walk algorithm (maximization)
1: Choose x0 ∈ X (initialization)
2: x ← x0

3: x∗ ← x
4: while stop criterion not reached do
5: P ← λSW random neighbors in N (x)
6: x ← argmaxx′∈P (f(x′))
7: if f(x) > f(x∗) then
8: x∗ ← x
9: end if

10: end while
11: return x∗

4 Analysis on Binary Fitness Landscapes

4.1 Experimental Protocol

In order to properly assess the capacity of partial neighborhood local searches to
lead toward good quality solutions, we compared the three variants SW, IDbest

and IDany to two widely-used local searches: tabu search (TS) [6] and iterated
local search (ILS) [8]. Like SW, the classic tabu search does not use the current
fitness for the selection process, but the whole neighborhood is considered. The
tabu list prevents cycles which naturally occur by selecting iteratively the best
neighbor among the complete neighborhood. ILS separates intensification and
diversification phases. We choose here to use a first-improvement strategy dur-
ing hill-climbing (intensification) phases, as first-improvement regularly reaches
better local optima than best-improvement on landscapes difficult to climb [1].
Moreover, this leads to use for comparison two metaheuristics (ILS and TS)
sufficiently different.

ILS and TS can be implemented with some variants which affect their behav-
ior. Here we designed them as classical as possible. ILS performs M random
moves when a local optimum is reached. At each step of the algorithm, TS selects
the best move using a tabu list of forbidden bit-flips of size L, that ensures a
minimal distance between following solutions.

ILS, TS, IDbest, IDany and SW require to set two parameters: a stopping
criterion and the aforementioned structuring parameter. In this study, the stop-
ping criterion is a maximum number of evaluations to permit a fair comparison
between methods. The maximum number of evaluations is fixed to 108 for all

52 S. Tari et al.

runs regardless to the landscape size. Such a value allows a sufficient convergence
which ensures methods to almost never improve the best encountered solution
after a significant number of evaluations. For each method we perform runs using
several parameter values in order to establish appropriate settings.

For each triplet (landscape, method, parameter value) 100 runs are performed
from the same initial set of 100 randomly generated solutions in order to reduce
the stochastic bias. For each triplet, we retain the average of the 100 best encoun-
tered solutions (one per run). Since several values are tested, for each couple
(landscape, method) only the best average is reported, i.e. the average obtained
with the best considered parameter value. We also indicate if the method having
the best average statistically dominates the other ones with respect to a binomial
test (with a confidence level of 99%) for each considered couple.

In our experiments, we consider two types of fitness landscapes: NK land-
scapes and UBQP landscapes (i.e. landscapes derivated from UBQP instances),
the neighborhood operator under consideration being the one-flip operator.

NK landscapes are a model of binary fitness landscapes introduced by Kauf-
mann [7]. They are widely used when it comes to study the link between rugged-
ness and methods since their specificity is to have a tunable ruggedness. Such
landscapes are defined by means of two parameters N and K. N specifies the
number of variables and then the search space size (2N). K determines the
degree of variable interdependency (the fitness contribution of each variable
being affected by K other variables) and greatly influences the ruggedness rate.
Setting K to zero leads to a completely smooth landscape with no variable inter-
dependency whereas setting K to N − 1 leads to an extremely rugged (random)
landscape. We used landscapes of various sizes N ∈ {128, 256, 512, 1024} and
ruggedness parameter K ∈ {1, 2, 4, 6, 8, 10, 12}.

The Unconstrained Binary Quadratic Programming problem (UBQP) is a
NP-hard problem [5] which can reformulate a large scope of real-life problems
in various fields. An instance of UBQP is composed of a matrix Q of size n × n
of constants qij which can be positive or negative. A solution is a binary vector
x of size n where xi ∈ {0, 1} corresponds to the i-th element of x. The UBQP
objective function f(x) =

∑n
i=1

∑n
j=1 qijxixj has to be maximized.

We used an instance generator (proposed and provided by Gintaras
Palubeckis on www.personalas.ktu.lt/∼ginpalu/ubqop its.html) to generate
some instances of different sizes and density. The density d affects the rate of
values equal to zero in the matrix Q, d = 0 leads to a matrix full of zero except
on the diagonal whereas a d = 100 leads to matrix with no zero.

4.2 Results

Results (see Table 1) show in most cases that on the considered NK landscapes
the sampled walk SW leads toward best solutions in average. SW efficiency does
not seem to be affected by the ruggedness, which is mostly tuned by means of the
parameter K. On smooth and small landscapes (K ≤ 4 and N = 128) almost all
methods lead toward the same solution which seems to be the global optimum.
The explanation behind these results is that regardless the size and ruggedness

http://www.personalas.ktu.lt/~ginpalu/ubqop_its.html

Sampled Walk and Binary Fitness Landscapes Exploration 53

Table 1. Results on NK landscapes. Left-hand side: average fitness obtained with the
best parameter value for each couple (landscape, method). For each landscape, the best
average fitness obtained appears in bold, whereas non statistically dominated methods
appear in shaded. Right-hand side: best parameter value(s).

Land. Average fitness Best parameter value
N K SW IDbest IDany ILS TS λSW λIDb λIDa M L
128 1 .7245 .7245 .7245 .7245 .7165 8, 12 8, 12 16 → 128 5 → 20 20
128 2 .7424 .7424 .7420 .7423 .7369 12, 16, 20 16 40 10 20
128 4 .7959 .7959 .7959 .7958 .7952 16, 20 16, 20 40 → 128 5 20
128 6 .8004 .8003 .8000 .7994 .7976 16 16 56 5 15
128 8 .8021 .8015 .7980 .7949 .7923 20 20 72 5 15
128 10 .7937 .7930 .7893 .7847 .7828 24 32 120 5 10
128 12 .7819 .7817 .7785 .7724 .7729 28 36 96 5 10
256 1 .7220 .7220 .7199 .7200 .7118 16 16 96 15 20
256 2 .7444 .7444 .7426 .7424 .7249 24 24 96 5, 10, 20 20
256 4 .7934 .7933 .7921 .7916 .7823 20 20 192 5 20
256 6 .8048 .8045 .8017 .8007 .8020 24 24 184 5 20
256 8 .7964 .7960 .7915 .7892 .7894 32 32 112 5 15
256 10 .7869 .7860 .7822 .7782 .7779 36 40 184 5 15
256 12 .7756 .7756 .7718 .7663 .7657 44 52 184 5 15
512 1 .7079 .7077 .7038 .7040 .7007 16 16 256 20 50
512 2 .7509 .7509 .7451 .7453 .7316 16 24 128 5 50
512 4 .7860 .7857 .7802 .7806 .7845 24 24 128 → 512 5 50
512 6 .7989 .7984 .7944 .7940 .7965 24 32 256 5 30
512 8 .7939 .7935 .7894 .7886 .7849 40 40 256 5 30
512 10 .7829 .7825 .7790 .7781 .7760 56 48 256 5 20
512 12 .7720 .7719 .7682 .7671 .7618 64 64 256 5 15
1024 1 .7163 .7160 .7083 .7087 .7051 16 16, 24 256 15 50
1024 2 .7522 .7521 .7427 .7428 .7274 24 24 256 5, 10, 20 50
1024 4 .7878 .7872 .7800 .7797 .7654 24 24 256 5 50
1024 6 .7949 .7943 .7893 .7890 .7899 32 32 256 5 50
1024 8 .7901 .7888 .7859 .7850 .7850 40 48 256 5 40
1024 10 .7793 .7786 .7758 .7753 .7740 56 64 256 10 30
1024 12 .7694 .7689 .7664 .7656 .7653 72 80 256 5 20

of landscapes, runs are always performed with a credit of 100 million of evalu-
ations. Since smaller and smoother landscapes tend to be easier to tackle, they
require less computational effort to attain good solutions. On every considered
landscapes, results obtained by ID walk are very close to those obtained by SW,
but SW often statistically dominates on large landscapes.

Ruggedness does not seem to affect the overall comparative efficiency of the
considered methods. Yet, best parameter values (among the considered ones)
for each method evolve in function of the value of K. SW and IDbest require
very similar parameter values in order to reach good solutions. One can observe
that the most appropriate parameter values increase when K increases. IDany

parameters requirement does not evolve the same way as IDbest and SW. For ILS

54 S. Tari et al.

Table 2. Results on UBQP landscapes. Average fitness obtained with the best param-
eter value for each couple (landscape, method). For each landscape, the best average
fitness obtained appears in bold, whereas non statistically dominated methods appears
in shaded.

UBQP SW IDbest IDany ILS TS
2048 10 1004035.71 1004052.02 1003773.58 1004293.54 1004254.14
2048 25 1640792.90 1640823.45 1640432.32 1641183.63 1641192.63
2048 50 2397652.20 2397695.08 2397215.93 2398106.97 2398443.35
2048 100 3097976.50 3098266.91 3097122.46 3098566.65 3099318.75
4096 10 2807921.35 2807955.71 2806968.13 2807632.68 2808263.77
4096 25 4594746.56 4595136.29 4593264.07 4593665.15 4595741.73
4096 50 6526291.28 6526692.46 6524326.94 6525133.66 6527995.10
4096 100 9090355.70 9090761.04 9086936.83 9087492.74 9093039.30

and TS, the number of perturbations and the length of the tabu list also evolve
in function of K. On very smooth landscapes, ILS requires more perturbations
and TS a longer tabu list than on more rugged landscapes.

Such results, in addition to those observed on SW, seem indicate that the
search process needs more diversification on smooth landscapes than on rugged
ones. Actually smooth landscapes contain few local optima and then have large
basins of attraction. On such a configuration, a more important diversification
helps to get out of some basins and to attain different local optima.

All methods were also tested on several landscapes derived from UBQP
instances and results differ from those obtained on NK landscapes. In Table 2, we
only report large landscapes results (N = 2048 and N = 4096) since on smaller
ones the considered methods with various parameters value almost always lead
toward the same solution (which is expected to be the global optimum). Such
a fact indicates that for a given N , N -dimensional UBQP landscapes are easier
to tackle than N -dimensional NK landscapes.

On large landscapes, the tabu search almost always leads toward the best
average. ILS is rarely dominated when N = 2048, but always outperformed by
TS when N = 4096.

4.3 Landscapes Ruggedness and Partial Neighborhood LS Efficiency

Experiments show that the sampled walk is particularly efficient on NK land-
scapes, regardless of the ruggedness level. Yet SW and other partial neighbor-
hood local searches (ID walk) is less efficient on UBQP landscapes, which seem
to be easier to tackle than NK landscapes. In order to determine if there is
a link between those results and the structure of landscapes, we analyzed the
ruggedness of landscapes by means of two indicators: autocorrelation and the
k-ruggedness.

The plot of autocorrelation (Fig. 2) on NK landscapes shows that its evolution
is affected by K. Indeed, the more rugged a landscape is, the faster the corre-
lation fitness-distance decreases. The plot of autocorrelation (Fig. 3) on UBQP

Sampled Walk and Binary Fitness Landscapes Exploration 55

Fig. 2. Autocorrelation evolution on NK landscapes of size 128 (similar outputs can
be observed for higher size of landscapes).

Fig. 3. Autocorrelation evolution on landscapes derived from UBQP of size 128 (similar
outputs can be observed for higher size of landscapes).

Fig. 4. K-ruggedness evolution on NK landscapes of size 128 (similar outputs can be
observed for higher size of landscapes).

landscapes shows that its evolution is globally identical on all considered land-
scapes and evolves similarly as very smooth NK landscapes (K = 1).

The evolution of k-ruggedness (Fig. 4) on NK landscapes follows the same
scheme as the evolution of autocorrelation. Yet, the k-ruggedness indicator
evolves quite differently on UBQP landscapes (Fig. 5) than on smooth NK land-
scapes, especially on the first steps with a faster evolution. Such observation
evokes locally-rugged landscapes.

56 S. Tari et al.

Fig. 5. K-ruggedness evolution on landscapes derived from UBQP of size 128 (similar
outputs can be observed for higher size of landscapes).

Considering NK landscapes, analogies between the evolution of autocorre-
lation and k-ruggedness seem to indicate that such landscapes have a uniform
ruggedness repartition. On the contrary, it appears that UBQP landscapes have a
less uniform ruggedness repartition, which we can describe as a local ruggedness
and a global smoothness. This could also explain why smaller UBQP instances
are easy to solve by local search as long as some diversification is applied. An
hypothesis which could possibly explain the lower efficiency of partial neighbor-
hood local searches on such landscapes is that such methods tends to explore
solutions scattered through the entire landscape, whereas tabu search natu-
rally intensifies around promising areas. In this type of landscapes, the cor-
relation between fitness and distance of solutions decreases progressively. When
the decorrelation fitness-distance is fast, the use of a sampled walk seems more
appropriate to efficiently explore the search space.

5 Conclusion

In this paper we investigate partial neighborhood local searches and, more par-
ticularly, the sampled walk algorithm which can be viewed as a local search
transposition of an (1, λ)-ES. We show that the sampled walk is efficient to
tackle common binary landscapes. Conducted experiments on NK landscapes
highlighted the fact that the sampled walk behavioral parameter can be princi-
pally set according to the landscape ruggedness. Experiments also show that such
a method is globally competitive in comparison to metaheuristic searches like
tabu search and iterated local search. Even if the sampled walk is outperformed
by a tabu search on UBQP, we are able to establish links between respective
efficiency of methods and ruggedness repartition thanks to the k-ruggedness
indicator.

Future works include the consideration of permutation-based landscapes. The
use of other solution representation brings some difficulties such as the criterion
on which the tabu list is based, as well as the way to evaluate the k-ruggedness
since this indicator is related to the concept of sign epistasis. It would provide
useful information to analyze the behavior of the considered methods all along
the search process (any-time optimization). Finally, this family of local searches

Sampled Walk and Binary Fitness Landscapes Exploration 57

like ID walk, based on a random sampling of the neighborhood, constitutes very
simple search algorithms and have not been deeply investigated in the meta-
heuristics literature. There are thus many ways to differently use the sampled
walk principle and to improve its efficiency, for instance by adapting its param-
eter during the search according to landscapes features.

References

1. Basseur, M., Goëffon, A.: Hill-climbing strategies on various landscapes: an empiri-
cal comparison. In: Genetic and Evolutionary Computation Conference (GECCO),
pp. 479–486. ACM (2013)

2. Basseur, M., Goëffon, A.: Climbing combinatorial fitness landscapes. Appl. Soft
Comput. 30, 688–704 (2015)

3. Basseur, M., Goëffon, A., Traverson, H.: Exploring non-neutral landscapes with
neutrality-based local search. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.)
LION 2015. LNCS, vol. 8994, pp. 165–169. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19084-6 15

4. Bateson, W., Waunders, E.R., Punnett, R.C.: Experimental studies in the physi-
ology of heredity. Mol. Gen. Genet. MGG 2(1), 17–19 (1909)

5. Gary, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

6. Glover, F., Laguna, M.: Tabu Search. Springer, New York (2013). https://doi.org/
10.1007/978-1-4615-6089-0

7. Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes
and its application to maturation of the immune response. J. Theor. Biol. 141(2),
211–245 (1989)

8. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics, pp. 320–353. Springer,
Boston (2003). https://doi.org/10.1007/0-306-48056-5 11

9. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

10. Marmion, M.É., Jourdan, L., Dhaenens, C.: Fitness landscape analysis and meta-
heuristics efficiency. J. Math. Model. Algorithms 12, 3–26 (2013)

11. Neveu, B., Trombettoni, G., Glover, F.: ID walk: a candidate list strategy with a
simple diversification device. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp.
423–437. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-
8 32

12. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’
basins and local optima networks. In: Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, pp. 555–562. ACM (2008)

13. Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local
optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15844-5 11

14. Weinberger, E.: Correlated and uncorrelated fitness landscapes and how to tell the
difference. Biol. Cybern. 63(5), 325–336 (1990)

15. Whitley, D., Howe, A.E., Hains, D.: Greedy or not? Best improving versus first
improving stochastic local search for MAXSAT. In: AAAI (2013)

16. Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evo-
lution, vol. 1 (1932)

https://doi.org/10.1007/978-3-319-19084-6_15
https://doi.org/10.1007/978-3-319-19084-6_15
https://doi.org/10.1007/978-1-4615-6089-0
https://doi.org/10.1007/978-1-4615-6089-0
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/978-3-540-30201-8_32
https://doi.org/10.1007/978-3-540-30201-8_32
https://doi.org/10.1007/978-3-642-15844-5_11

Semantics-Based Crossover for Program
Synthesis in Genetic Programming

Stefan Forstenlechner(B), David Fagan, Miguel Nicolau, and Michael O’Neill

Natural Computing Research and Applications Group, School of Business,
University College Dublin, Dublin, Ireland
stefan.forstenlechner@ucdconnect.ie,

{david.fagan,miguel.nicolau,m.oneill}@ucd.ie

Abstract. Semantic information has been used to create operators
that improve performance in genetic programming. As different problem
domains have different semantics, extracting semantics and calculating
semantic similarity is of tantamount importance to use semantic opera-
tors for each domain. To date researchers have struggled to effectively do
this beyond the boolean and regression problem domain. In this paper,
a semantic similarity-based crossover is tested in the problem domain
of program synthesis. For this purpose, a similarity measure based on
the execution trace of a program is introduced. Subtree crossover as well
as semantic similarity-based crossover are analysed on performance and
semantic aspects. The goal is to introduce the Semantic Similarity-based
Crossover in the program synthesis domain and to study the effects of
using semantic locality. The results show that semantic crossover pro-
duces more semantically different children as well as more children that
are better than their parents compared to subtree crossover.

Keywords: Genetic programming · Program synthesis · Crossover

1 Introduction

Semantic information has helped improve operators to achieve better perfor-
mance in Genetic Programming (GP) compared to syntactical operators [13,15].
The properties semantic diversity (keeping a semantically diverse population)
and semantic locality (small change in the genotype results in a small change in
the phenotype) are of major importance to this process. One such operator that
makes use of semantic information, especially of semantic locality, is the Seman-
tic Similarity-based Crossover (SSC) introduced by Nguyen et al. [12], which was
able to achieve performance improvements over several other crossover operators.

Although semantic information can be a key aspect to improve performance
in GP, it is also problem dependent. Therefore, operators have to be adapted to
the problem domain. In this paper, SSC is introduced to the domain of program
synthesis to be able to benefit from semantic information in this area. For this
purpose, a semantic similarity measure for code snippets of programs is proposed.
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 58–71, 2018.
https://doi.org/10.1007/978-3-319-78133-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_5&domain=pdf

Semantics-Based Crossover for Program Synthesis in Genetic Programming 59

The paper proceeds as follows. More information on SSC as well as semantics
itself is given in Sect. 2. A semantic crossover for program synthesis as well as a
semantic similarity measure are described in Sect. 3. The semantic crossover is
tested on a set of benchmark problems. The experimental setup is explained in
Sect. 4 and the results are analysed in Sect. 5. The conclusion and future work
of the study are discussed in Sect. 6.

2 Related Work

This section explains certain terms that are related to this study and Semantic
Similarity-based Crossover is described, which the proposed crossover operator
in Sect. 3 is based on.

2.1 Semantics

A standard genetic programming system relies upon syntactical genetic oper-
ators. The benefits of these operators are that they are problem independent,
but they can be outperformed by more specialised operators. Semantics, which
defines “the behavior of a program, once it is executed on a set of data” [15], can
be used to gain additional information about a program to improve performance.
Performance improvements are often gained by making use of semantic diversity
and semantic locality [13,15]. These properties are important as a high semantic
diversity helps exploring the search space and semantic locality improves the
efficiency of the search algorithm [15]. A direct approach to using semantics
instead of relying on diversity and locality that should be mentioned is Geo-
metric Semantic GP [10], which uses tailored genetic operators that produce
solutions which cannot be worse than the solutions they are derived from. But
this approach is limited to certain problem domains and increases the size of the
possible solutions rapidly.

As semantic information is dependent on input and output of a program,
it is also problem dependent. A measure for semantic similarity or difference
can only be applied in a certain problem domain, therefore semantic operators
cannot be applied to all problem domains without adaptation. In this paper, a
semantic crossover operator is introduced in the domain of program synthesis.
Although this study focuses on crossover, semantic information has also been
used for mutation operators [1] and selection [4,5]. A more detailed overview of
semantics and how it has been used so far can be found in this survey [15].

2.2 Semantic Crossover

Using semantics in crossover operators has been mainly studied in the domain
of boolean problems [2,8] and regression problems [11–13]. The main idea is to
promote semantic locality by exchanging semantically similar subtrees to make
an overall small change to the output of the whole GP tree.

60 S. Forstenlechner et al.

The proposed semantic crossover in this study is mainly inspired by Nguyen
semantic similarity-based crossover [11], which was improved multiple times [12,
13]. The crossover selects one subtree of each parent and compares their semantic
output with each other. The semantic output is produced by using random values
as input for the subtrees. Then, the semantic similarity is measured as the sum
of the absolute differences of the outputs. Initially, an upper bound was used to
decide if the subtrees were similar enough for crossover [11]. This was improved
by using an upper bound and a lower bound to avoid equivalent and too similar
subtrees [12]. In both cases, multiple tries can be used to find similar subtrees.
After that, the crossover was adapted to calculating the semantic similarity of
multiple subtrees at once and using the most similar ones for crossover, which
are not equivalent according to a lower bound [13].

3 Semantics in Program Synthesis

In contrast to other problems tackled with GP, in program synthesis, nodes are
usually typed to be able to produce syntactically correct programs, like using
grammars or abstract syntax trees as representations. It should be noted that
experiments carried out in this paper, see Sect. 4, are executed with a grammar-
based GP system, but the proposed approach is generally applicable. Therefore,
nodes are implicitly typed, because crossover and mutation are only allowed to
create individuals which apply to the specifications of the grammar. Section 3.1
describes the semantic similarity measure proposed in this study and Sect. 3.2
explains the details of the adapted semantic crossover for program synthesis.

3.1 Semantic Similarity Measure with Traces

The semantic crossover proposed by Nguyen et al. [13], which the crossover
proposed in this paper is based upon, uses a semantic distance measure. As
mentioned, semantics are problem specific and the existing semantic distance
measures were designed for regression problems. To apply semantic crossovers in
the program synthesis domain a distance measure for code snippets of a program
are required, which is the main contribution of this paper.

Semantics is defined as the output or the behaviour of a program. For a
regression problem, the output is a vector of real values. In the case of program
synthesis, the output can be multiple vectors of different data types. A semantic
similarity can be calculated on the difference of the variables of two programs.
Similar to semantics in regression, it is not only possible to get the semantics of
the final output, but also of intermediate steps. In the case of program synthesis,
intermediate steps can be one or more executable statements. After every state-
ment the change of variables can be checked. Therefore, the semantic of every
statement can be saved and used in a genetic operator. To measure the semantics
of a subtree which only represents part of a program statement (e.g. a binary
comparison), the first parent node representing an actual program statement is
used instead.

Semantics-Based Crossover for Program Synthesis in Genetic Programming 61

Fig. 1. Example trace of a tree which has an initial variable setting 1* for three dif-
ferent inputs. The state of the variables after executing the tree/code is shown in the
variable setting 3*. 2* is an intermediate variable setting produced by executing the
first statement. The numbers 1*-3* denote the variable settings or semantics before
and after executing that node and are the trace of this tree. (Color figure online)

The process of logging variable changes in a program is called tracing and
produces a trace. These traces are used to check the semantics of every state-
ment in the program and to measure semantic similarity. An example of a trace
of a short program is shown in Fig. 1. A short code snippet and a possible cor-
responding tree representation are shown, as well as the trace of the variable
settings. Every statement that can be executed on its own has a corresponding
variable setting before and after the execution of the code. The variable setting
of 1* is the initial input setting for three different inputs. 2* displays the variable
settings after executing the first statement and 3* after the second statement.
Variable changes are marked in red and bold.

The trace of a variable produces a vector of that type, as the trace is produced
with multiple different inputs. Therefore, the trace of a boolean variable produces
a vector of boolean values. A variable of the type list of integers produces a vector
of lists of integers. The similarity measures used are listed in Table 1. These
measures are only suggestions as this is an initial study on using semantics in
program synthesis. The similarity measures should be self-explanatory, except
the “List of any type”. As list elements cannot only be changed, but also removed
or additional ones can be inserted, Levenshtein distance gives an approximation
of how much of the list has changed, similar to a string.

62 S. Forstenlechner et al.

Table 1. Similarity measures per variable

Variable type Similarity measure

Boolean Hamming distance

Integer Sum of absolute differences

Float Sum of absolute differences

String Sum of Levenshtein distances

List of any type Sum of Levenshtein distances

These similarity measures only calculate the difference between two variables
of the same type. Two programs might have more variables of the same type.
The similarity of two variables that mainly contain large values might be by
far bigger than the similarity of two variables that contain only small values.
Therefore, the influence on the overall similarity of two programs of variables
containing small values will always be proportionally smaller. To counteract that
problem, all similarities are normalized to be between 0 and 1. Nevertheless, due
to the different similarity measures used and to check which data types show
a difference, only one data type is used per crossover for measuring semantic
similarity. The tree in Fig. 1 shows a difference in the integer variable a and
boolean variable x. One of the data types, integer or boolean, will then be chosen
for the similarity measure. If integer is chosen, then a and b will be used and x
will be ignored, otherwise x will be used and the other two will be ignored.

3.2 Semantic Crossover for Program Synthesis

The semantic crossover for program synthesis proposed in this study is based
on the Most Semantic Similarity-based Crossover (MSSC) by Nguyen et al. [13],
which is explained in Sect. 2.2. The pseudocode in Algorithm 1 describes the
proposed crossover algorithm. As with subtree crossover, a crossover point from
the first parent is selected. Then, instead of selecting one random subtree from
the second parent, which is of the same type as the selected node from the first
parent, up to a maximum value of subtrees (Max Tries) are selected at random
without repetition. Max Tries is a parameter that can be set. If the second
parent does not contain a subtree of the same node type as the selected one
from parent one, no crossover is executed.

In the next step, the semantic differences between the subtree of the first
parent and all the selected subtrees from the second parent are calculated. This
is done in the following way. During the evaluation, the semantic information of
every individual is saved in form of an execution trace as explained in Sect. 3.1.
The variables setting before and after the execution of each statement and there-
fore the corresponding subtree is saved as well. The variable setting before the
execution of a subtree can be viewed as the input and the setting afterwards as
the output of that code snippet. For each selected subtree from the second par-
ent, the variables are set to input of the subtree of the first parent, followed by

Semantics-Based Crossover for Program Synthesis in Genetic Programming 63

Algorithm 1. Semantic similarity-based crossover for program synthesis
select crossover point from first parent
select Max Tries possible subtrees from second parent
if no subtrees of same type as crossover point available then

return do nothing
end if
get semantics of every selected subtree from second parent
calculate semantic differences for every selected subtree per type
if differences then

select random type
select most semantically similar subtree based on selected type

else
select random subtree for crossover from second parent

end if
crossover with selected subtree

Algorithm 2. Semantic similarity calculation for two subtrees
input1, output1 ← semantics of subtree from first parent
set variables to input1
output2 ← execute one subtree from second parent
calculate semantic distance between output1 and output2

executing the subtree of the second parent and comparing the variable outputs
to the output variable setting of the subtree from the first parent. A more con-
cise description of this process as pseudocode is given in Algorithm 2. It should
be noted that this is not a fitness evaluation, but a necessary process to find
the semantic differences. If there is no difference for any subtree, one subtree is
chosen randomly. If there is a semantic difference, a random data type is chosen,
which shows a semantic difference. For all variables of that data type, the sum
of semantic similarities is calculated with the corresponding similarity measure,
shown in Table 1. The most semantic similar subtree that is not equal, is chosen
for crossover.

The reason why only one data type is chosen, is because different data
types use different distance measures and mixing them might result in unwanted
behaviour. Investigating combining these measures and choosing different mea-
sures is left for future work.

4 Experimental Setup

A tree-based grammar guided genetic programming system is used for the experi-
ments. The used grammars produce executable Python programs and have been
automatically generated. Multiple small Python grammars exist, where each
grammar only defines rules for one specific data type. The automatic gener-
ation process combines these grammars according to the data types required
by a specific problem. The design of the grammars has been taken from [3].
Five benchmark problems are used and are explained in more detail in the next

64 S. Forstenlechner et al.

Table 2. Experimental parameter settings

Parameter Setting

Runs 50

Generations 100

Population size 500

Selection Lexicase

Crossover probability 0.9

Mutation probability 0.05

Elite size 1

Node limit 250

Variables per type 3

Max execution time 1 s

Max Tries 10

Section. The parameter settings are displayed in Table 2, which are the same as
in [3], except the number of generations has been reduced. Three variables of
each data type required by a problem are available in the grammars. An exe-
cution timeout has been set to one second to avoid non-halting programs. An
execution on the problem should usually only take a few milliseconds. Lexicase
selection [6] was used as it has shown better performance on program synthe-
sis problems than tournament selection [7]. All experiments are run with the
semantic similarity-based crossover for program synthesis proposed in the pre-
vious section and subtree crossover. Subtree crossover was modified to operate
only on nodes with the same type, similar to Strongly Typed Genetic Program-
ming [9], as grammars have implicit typing due to grammar rules. The maximum
number of selected subtrees from the second parent (Max Tries) has been set to
10, which has been established in preliminary experiments.

The experiments have been executed with HeuristicLab [16].

4.1 Benchmark Problems

The problems chosen are of various difficulties, namely Collatz Number, Com-
pare String Lengths, Grade, Number IO and Super Anagrams. These problems
have been introduced with others as a general program synthesis benchmark
suite by Helmuth et al. [7] and are introductory computer science programming
problems. The benchmark suite has been tackled before with PushGP [14] and
the system used in this paper. Collatz Number has neither been solved by the
system used, nor by the PushGP. Compare String Lengths, Grade and Super
Anagrams have been solved before, but the success ratio was rather small, from
3 times out of 100 runs to 28 times out of 100 runs. Number IO is a rather easy
problem, solved nearly every time and is only used as a sanity check to see if
everything works correctly.

Semantics-Based Crossover for Program Synthesis in Genetic Programming 65

5 Results

In this section, the results of the experiments described in Sect. 4 are analysed.
Subtree crossover is referred to as “Default”, while the semantic similarity-based
crossover is called “Semantic”. As mentioned, the overall goal of the experiments
is to analyse and draw conclusions from the behaviour of a semantic crossover.
Due to the additional computation that is required for the semantic crossover
for program synthesis, an increased runtime is expected, but it has not been
analysed, because computational cost was added to collect the measurements
which will be discussed in this Section. Additionally the current implementation
of semantic crossover has in no form be optimised.

5.1 Successful Runs and Fitness

Table 3 shows the number of times a run was able to find a correct solution to a
problem and Table 4 shows the average test fitness of the best training solution
found over 50 runs. When comparing subtree crossover to semantic crossover
(SC), Table 3 shows that the correct solutions found on 50 runs is quite similar,
but Table 4 shows that on all problems except Super Anagrams the semantic
approach improved the average best fitness on the test dataset.

Additionally, Fig. 2 depicts the average best training fitness over 50 runs.
The plots show that on average with SC better solutions are found in earlier
generations. Due to the simplicity of Number IO and to make better use of the
space available, plots of Number IO have been omitted. Statistical tests with
Wilcoxon rank sum test on the best test fitness of the last generation does not
show a significant difference on any of the problems.

Table 3. Number of times correct solutions were found within 50 runs.

Default Semantic Diff

Collatz numbers 0 0 0

Compare string lengths 5 2 −3

Grade 1 4 3

Number IO 48 48 0

Super anagrams 9 11 2

Table 4. Average test fitness of the best training individual found over 50 runs

Default Semantic Diff

Collatz numbers 79852.54 79404.52 0.56%

Compare string lengths 158.10 135.78 14.12%

Grade 1434.42 1012.14 29.44%

Number IO 14.59 0.06 99.61%

Super anagrams 26.48 28.16 −6.34%

66 S. Forstenlechner et al.

Fig. 2. Average best training fitness over 50 runs

5.2 Parent Comparison

The goal of SC is to promote semantic locality and exchange similar subtrees, but
not equivalent ones. Therefore, this change should be visible in the child by hav-
ing a different semantics than its parent. McPhee et al. noticed in the boolean
domain that more than 50% of subtree crossover operations were not able to
change the semantics [8] and Nguyen et al. reported that even though subtree
crossover was able to change semantics in the regression domain in 60%–0% of
the operation, semantic crossover was often 20% higher [13]. Figure 3 shows the
percentage of individuals that are different from their rooted parent. The rooted
parent is the parent which removes a subtree to add the subtree from the sec-
ond parent, therefore the child and the parent have the same root node. The
plots in Fig. 3 confirm that SC is more suited to create children whose semantics
differ from their rooted parent. Additionally, Wilcoxon rank sum tests were con-
ducted on each problem to confirm that the difference of the average percentage
of semantically different children produced by SC is statistically significant to
subtree crossover.

More interesting than just if a child is different than a parent, is if a child
is better than its parents. Figure 4 shows the percentage of children that have a
better fitness than their rooted parent and a better fitness than both parents.
For Collatz Numbers, SC is able to continually produce more children which
are better than either the rooted parent or both parents compared to subtree
crossover, although no correct solution was found for Collatz Numbers. In the
case of Grade, SC is also able to produce more children which are better than
their parents over all generations. SC and subtree crossover achieve similar per-
centages on Compare String Lengths and Super Anagram. Although SC initially

Semantics-Based Crossover for Program Synthesis in Genetic Programming 67

Fig. 3. Percentage of children semantically different from their rooted parent

Fig. 4. Percentage of children that are better than rooted or better than both parents

does better than subtree crossover, it only achieves similar or slightly worse per-
centages later on. Again Wilcoxon rank sum tests was used for the statistical
test, which shows that for Collatz Numbers, Grade and Super Anagrams the
average percentage of children that are better than their rooted parent and both
parents is significantly higher with SC than with subtree crossover. For Compare
String Lengths the statistical test did not show a statistical significant difference.

68 S. Forstenlechner et al.

5.3 Types Selected for Similarity Measurement

As described in Sect. 3.2, one data type of all available data types that shows a
semantic difference is randomly chosen to measure semantic similarity. Figure 5
shows the percentages of the likelihood of selecting a certain type for the seman-
tic similarity measure or if random crossover or no crossover was executed. As
mentioned before, no crossover can happen, if the second parent does not con-
tain a subtree of the same type as the selected node from the first parent or no
subtree applies the node limits set. Random crossover happens if no semantic
difference can be found with any data type on the specified number of subtrees
selected.

As can be seen in all cases, the data type that has been most often chosen for
calculating the semantic similarity is the data type that is used as return value
and therefore has the most influence on the fitness. Although even for Grade
the output data type is selected more often, the percentage does not increase as
drastically as in the other cases, which might occur because GP is not able to
improve the population as fast as on the other problems, as shown in Fig. 2.

Another observation that can be made with the plots in Fig. 5 is that the
amount of random crossover is high on all problems, which happens because
no semantic difference can be found with any data type. Super Anagrams is
the problem with the highest amount of random crossover, which keeps random
crossover around 50% over all generations, which might be due to the fast conver-
gence on that problem. The high percentage of random crossover indicates two
things. First, that many crossover operations are not able to produce individuals
that are different from their parents, which correlates with the plots displayed in
Fig. 3. Second, that such a detailed semantic similarity measure as has been used

Fig. 5. Percentage of crossover of a specific type with semantic similarity-based
crossover

Semantics-Based Crossover for Program Synthesis in Genetic Programming 69

in this study might not be required. A relatively high number of subtrees that
have been checked during the semantic crossover for program synthesis seem not
to be able to create a semantically different individual. Adapting the crossover
to using the first subtree that is semantically different instead of using the most
semantically similar one might be sufficient and improve run time, which will be
more similar to the original semantic similarity-based crossover proposed in [12].
This has been noted for future work, see Sect. 6. Obviously increasing the num-
ber of Max Tries could also increase the number of times the semantic crossover
finding a semantic difference, but that would increase run time.

Another interesting observation that can be made when looking at Figs. 2
and 5 is that around the same generation as semantic crossover is using a specific
type instead of falling back to random crossover, is around the same generation as
fitness improves more with the semantic operator compared to subtree crossover.

6 Conclusion and Future Work

In this study, a semantic similarity-based crossover was adapted to be able to use
in the program synthesis domain. To this end, methods for semantic distance
measure were proposed, which use the execution trace of a program, and the
semantic crossover was applied to a suite of benchmark problems.

Semantic similarity crossover for program synthesis was able to produce more
children that are semantically different from their parents as well as more chil-
dren that are better than their rooted parent and both parents. Nevertheless,
that did not lead to better overall performance. A reason might be that a high
percentage of times the semantic crossover was still falling back to random
crossover, if it does not find any semantic difference on any selected subtree.

As mentioned before, a simpler check for semantic similarity, like checking for
any semantic difference, might be sufficient to improve performance and might
reduce run time over the semantic similarity measure proposed in this study,
which is part of future work. Additionally, adapting the crossover to consider
multiple different crossover points in the first parent instead of a single one
might also lead to finding semantic differences more often.

Acknowledgments. This research is based upon works supported by the Science
Foundation Ireland, under Grant No. 13/IA/1850.

References

1. Beadle, L., Johnson, C.: Semantically driven mutation in genetic programming.
In: 2009 IEEE Congress on Evolutionary Computation, CEC 2009, pp. 1336–1342,
May 2009

2. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming.
In: Wang, J. (ed.) Proceedings of the IEEE World Congress on Computational
Intelligence, pp. 111–116. IEEE Computational Intelligence Society, IEEE Press,
Hong Kong, 1–6 Jun 2008. http://results.ref.ac.uk/Submissions/Output/1423275

http://results.ref.ac.uk/Submissions/Output/1423275

70 S. Forstenlechner et al.

3. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A grammar design pattern
for arbitrary program synthesis problems in genetic programming. In: McDermott,
J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.) EuroGP 2017.
LNCS, vol. 10196, pp. 262–277. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55696-3 17

4. Forstenlechner, S., Nicolau, M., Fagan, D., O’Neill, M.: Introducing semantic-
clustering selection in grammatical evolution. In: Johnson, C., Krawiec, K.,
Moraglio, A., O’Neill, M. (eds.) GECCO 2015 Semantic Methods in Genetic Pro-
gramming (SMGP 2015) Workshop, pp. 1277–1284. ACM, Madrid, Spain, 11–15
July 2015. https://doi.org/10.1145/2739482.2768502

5. Galván-López, E., Cody-Kenny, B., Trujillo, L., Kattan, A.: Using semantics in
the selection mechanism in genetic programming: a simple method for promoting
semantic diversity. In: 2013 IEEE Congress on Evolutionary Computation (CEC),
pp. 2972–2979, June 2013

6. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Trans. Evol. Comput. 19(5), 630–643 (2015)

7. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In: Proceed-
ings of the 2015 on Genetic and Evolutionary Computation Conference, GECCO
2015, pp. 1039–1046. ACM, Madrid, Spain, 11–15 July 2015. https://doi.org/10.
1145/2739480.2754769

8. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I.,
De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol.
4971, pp. 134–145. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78671-9 12

9. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230
(1995). https://doi.org/10.1162/evco.1995.3.2.199

10. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32937-1 3

11. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic
programming: the case for real-valued function regression. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 292–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01181-8 25

12. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Galvan-Lopez, E.:
Semantically-based crossover in genetic programming: application to real-valued
symbolic regression. Genet. Program. Evolvable Mach. 12(2), 91–119 (2011)

13. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Phong, D.N.: On the roles
of semantic locality of crossover in genetic programming. Inf. Sci. 235, 195–213
(2013). http://www.sciencedirect.com/science/article/pii/S0020025513001175

14. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. Genet. Program. Evolvable Mach. 3(1), 7–40
(2002). https://doi.org/10.1023/A:1014538503543

15. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic
programming. Genet. Program. Evolvable Mach. 15(2), 195–214 (2014). https://
doi.org/10.1007/s10710-013-9210-0

https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1007/978-3-319-55696-3_17
https://doi.org/10.1145/2739482.2768502
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1145/2739480.2754769
https://doi.org/10.1007/978-3-540-78671-9_12
https://doi.org/10.1007/978-3-540-78671-9_12
https://doi.org/10.1162/evco.1995.3.2.199
https://doi.org/10.1007/978-3-642-32937-1_3
https://doi.org/10.1007/978-3-642-01181-8_25
https://doi.org/10.1007/978-3-642-01181-8_25
http://www.sciencedirect.com/science/article/pii/S0020025513001175
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1007/s10710-013-9210-0
https://doi.org/10.1007/s10710-013-9210-0

Semantics-Based Crossover for Program Synthesis in Genetic Programming 71

16. Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer,
E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.: Architec-
ture and design of the heuristiclab optimization environment. In: Klempous, R.,
Nikodem, J., Jacak, W., Chaczko, Z. (eds.) Advanced Methods and Applications
in Computational Intelligence. Topics in Intelligent Engineering and Informatics,
vol. 6, pp. 197–261. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
319-01436-4 10

https://doi.org/10.1007/978-3-319-01436-4_10
https://doi.org/10.1007/978-3-319-01436-4_10

On the Use of Dynamic GP Fitness
Cases in Static and Dynamic

Optimisation Problems

Edgar Galván-López1(B), Lucia Vázquez-Mendoza2, Marc Schoenauer3,
and Leonardo Trujillo4

1 Department of Computer Science, National University of Ireland Maynooth,
Maynooth, Ireland

edgar.galvan@mu.ie
2 School of Social Sciences and Philosophy, Trinity College Dublin, Dublin, Ireland

lucyvaz@gmail.com
3 TAU, INRIA and LRI, CNRS & U. Paris-Sud, Université Paris-Saclay,

Paris, France
marc.schoenauer@inria.fr

4 Posgrado en Ciencias de la Ingenieŕıa, Instituto Tecnológico de Tijuana,
Tijuana, Mexico

leonardo.trujillo@tectijuana.edu.mx

Abstract. In Genetic Programming (GP), the fitness of individuals is
normally computed by using a set of fitness cases (FCs). Research on
the use of FCs in GP has primarily focused on how to reduce the size of
these sets. However, often, only a small set of FCs is available and there
is no need to reduce it. In this work, we are interested in using the whole
FCs set, but rather than adopting the commonly used GP approach of
presenting the entire set of FCs to the system from the beginning of the
search, referred as static FCs, we allow the GP system to build it by
aggregation over time, named as dynamic FCs, with the hope to make
the search more amenable. Moreover, there is no study on the use of FCs
in Dynamic Optimisation Problems (DOPs). To this end, we also use
the Kendall Tau Distance (KTD) approach, which quantifies pairwise
dissimilarities among two lists of fitness values. KTD aims to capture
the degree of a change in DOPs and we use this to promote structural
diversity. Results on eight symbolic regression functions indicate that
both approaches are highly beneficial in GP.

1 Introduction

Normally, the fitness of Genetic Programming (GP) [13] programs is obtained
by using a set of fitness cases: a fitness case is an input/output pair and the
fitness of an individual is measured on how well it matches the output(s) from
input(s).

E. Galván-López—Research conducted during Galván’s stay at TAU, INRIA and
LRI, CNRS & U. Paris-Sud, Université Paris-Saclay, France.

c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 72–87, 2018.
https://doi.org/10.1007/978-3-319-78133-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_6&domain=pdf

On the Use of Dynamic GP Fitness Cases 73

Research on the use of fitness cases has primarily focused on how to reduce
the number of these cases when running a GP system given that this is a major
element that affects speed [10,15,18,23].

There are, however, some problems where only a few fitness cases are available
for the GP system to work with. For instance, when dealing with highly binary
unbalanced data for a classification task, the positive (minority) class has only
a few cases and the use of all the available fitness cases is necessary [5,8]. Other
times, it may be the case that the dataset is highly contaminated by outliers
and sampling is required to detect true examples of the system [16].

In this work, rather than using only a subset of fitness cases from the entire
set [10,15,23], we are interested in using them all in a way to make the search
more robust. To do so, we propose an approach called dynamic fitness cases,
wherein cases are built by aggregation over generations instead of using the
commonly adopted approach of using them all from the beginning of the search.

Moreover, there is no study that has focused its attention on the study of
fitness cases on dynamic optimisation problems (DOPs). These are problems
that are solved online by an optimisation algorithm as time progresses [20]. This
work uses both static problems and DOPs to test the proposed approach.

Multiple elements have been reported to be beneficial in DOPs (see [20] for a
detailed analysis on the area). One key element is diversity. This is a key element
of the biological theory of natural selection and it is used in EAs to describe, for
instance, structural variety, and it is expected that an EA with a mechanism to
promote diversity will greatly improve its performance [20].

Diverse approaches have been proposed to promote diversity in EAs. One
commonly adopted approach is the replacement of individuals in a population
by newly generated genetic material. However, a common element observed when
doing so is that frequently researchers use an arbitrary approach to decide the
number of individuals that need to be replaced [17,21,25]. However, this process
is purely intuitive and often expensive due to its trial-and-error nature.

To address this issue, we also use a mechanism to make a more informed
decision to determine the proportion of individuals that need to be replaced
in DOPs. To this end, we use the fitness values of individuals as indicators to
determine how big/small a change is, and consequently, use this information to
determine, for instance, the number of individuals in a population that need
to be replaced by new individuals. Any population-based EA can adopt our
proposed approach and in this work, as stated previously, we use a GP system.

Thus, the main contributions of this work are: (a) the use of dynamic fitness
cases, wherein cases are built gradually over time to make the GP search more
amenable, (b) to study for the first time the impact that fitness cases have in
DOPs, and to this end, we also use the use of pair-wise fitness disagreements,
based on the Kendall Tau distance, as a metric to promote diversity, which has
constantly been reported beneficial in DOPs [20].

74 E. Galván-López et al.

2 Related Work

2.1 Fitness Cases in Genetic Programming

As discussed previously, the fitness of a GP individual is normally computed by
using a set of fitness cases and the way it is used is highly important in GP. The
size of the fitness cases vary e.g., in [19] the authors reported problems that use
a small size of fitness cases up to dozens of thousands of fitness cases.

To decide on the number of fitness cases that a GP system may need to use,
the rational allocation of trials algorithm can be a good alternative [23]: before
a new generation takes place, individuals are evaluated using only a fraction of
all the fitness cases available to the system. GP programs are further evaluated
on new fitness cases when e.g., there is a possibility of winning some selection
mechanism (e.g., tournament selection) that they are losing.

Another approach to determine the necessary number of fitness cases to solve
a given problem in GP is that based on well-known statistical and information-
theoretic considerations e.g., Central Limit Theorem and entropy of random
variables [10]. The authors tested their theoretical framework on discrete fitness-
valued cases and showed that their estimations agree with experimental results.
Specifically, they showed that when the GP system uses at least the estimated
number of fitness cases yield by their approach, the system achieves reliable
results and the opposite is true when a lower number of fitness cases is used.

When having a large number of fitness cases, it may be necessary to adopt a
mechanism to determine how many and which cases to use. Multiple works have
been proposed. For instance, a topology-based mechanism [15] promotes the use
of certain fitness cases based on how well or bad these are solved by individuals;
historical subset selection [9] uses part of the set of all fitness cases based on
how well the elitist individual is able to solve them; active data selection [26]
uses small training case sizes and during search, these subsets are recombined
and enlarged by a few fitness cases taken from the entire set.

Other sampling methods have been proposed that use a single fitness case in
some generations and the entire training set is used in others. Such is the case
for Interleaved Sampling and Random Interleaved Sampling [11]. More recently,
the Lexicase selection algorithm has been proposed [22], wherein fitness cases are
randomly shuffled at each parent selection event, and the best performing indi-
vidual on the first fitness cases is kept. The method was extended to real-valued
problems [14], with performance improving in almost all cases. An evaluation of
some of these techniques, as well as others, is reported in [18].

In this work, we take a different approach: rather than determining how
many FC the GP system should use, we use them all. The rationale for doing
so it is because often there are a few fitness cases available to the system. The
novelty of our approach is that instead of presenting all the cases to the system
as traditionally done in GP, we build by aggregation these fitness cases over time
with the hope to make the search more amenable. Moreover, as indicated before,
there are no studies on the impact of fitness cases in DOPs and this works also
considers this scenario. It is well-known that diversity plays an important role

On the Use of Dynamic GP Fitness Cases 75

in evolutionary search, in general, and in DOPs in particular [20]. We present
some works on this area next.

2.2 Promoting and Maintaining Diversity

Multiple works have been proposed to promote and maintain diversity in EAs.
In this section, we focus only on DOPs tackled by GP (see [20] for a more
general discussion on the subject). Among those approaches proposed to promote
diversity in the face of DOPs using GP are: (a) adaptable genetic operators, (b)
behavioural diversity, and (c) injection of new genetic structural material. In
this work, we only focus on the latter and briefly discuss some approaches that
have been proposed to promote diversity via the injection of new individuals.

One of the easiest forms of promoting diversity is adopting the injection of
new genetic material into the GP population. The generation of GP individuals
is done by using common techniques, like the adoption of the ramped half-and-
half method [13]. This can take place when, for instance, detecting a change [17]
or when bloat (dramatic increase of tree sizes as evolution proceeds) reaches a
limit and there is a need to substitute individuals contained in the population
by new GP programs [25]. Injecting new GP individuals into the population has
also been promoted via culling [21]. That is, removing the worst individuals and
replacing them by randomly generated programs. Variable population size [24]
also promotes diversity by adding new GP individuals into the population.

A common element in all these works that promote structural diversity is
that the number of individuals to be replaced by the same number of newly
created individuals is chosen rather arbitrarily. Next, we present an approach
that aims to overcome this limitation.

3 Proposed Approaches

As discussed previously, we are interested in making the GP search more
amenable and to do so we propose a dynamic fitness cases approach, wherein
cases are built by aggregation over time. We test this approach in both static
and DOPs, and for the latter, we also use the adoption of the Kendall Tau Dis-
tance (KTD) that quantifies pairwise dissimilarities among two lists of fitness
values with the hope to make a better informed decision in terms of the number
of individuals that need to be replaced in a population by new individuals to
promote diversity.

3.1 Dynamic Fitness Cases

To make the GP search more amenable, we build the fitness cases over time.
More specifically, at the beginning of an evolutionary run or just after a change
has occurred (for the dynamic setting), we use in order a subset of fitness cases,
Cg=0 which is chosen from all the fitness cases CN of size N ,

Cg=0 ⊂ CN , |Cg=0| = k (1)

76 E. Galván-López et al.

where k is a constant and k < N . After a few i generations another k fitness
cases of the CN fitness cases are added to Cg=0,

Cg=0 ∪ Cg=i, Cg=0 ∩ Cg=i = {} (2)

We continue this process until all the fitness cases have been used. Thus, the
complete sequence of fitness cases is build as follows,

Cg=0 ∪ Cg=i ∪ · · · ∪ Cg=M = CN (3)

where M is a constant and M < K, where K is either the maximum number
of generations or the number of generations that are necessary for a change to
take place (for the dynamic scenario). By defining the latter, we guarantee that
the GP system accounts for all the fitness cases before a change takes place and
it has all the necessary elements to, potentially, find the solution. The values of
the variables are defined in Table 2 and discussed in Sect. 5.

3.2 Kendall Tau Distance

As indicated before, there is no study that has focused its attention on the study
of fitness cases in a dynamic setting and this work also considers such scenario.

As seen in Sect. 2, we know that there is strong evidence indicating that the
adoption and/or encouragement of diversity in GP search on DOPs is highly ben-
eficial. Normally, when adopting this type of diversity, researchers have focused
their attention on setting arbitrarily a number of individuals to be generated
and then used them to e.g., replace the worst GP individuals in a population.
The major drawback with this approach is that often this process is based on
trial and error and can be computationally expensive.

We believe that it is possible to adopt a more informed way of determining
the number of individuals that should be replaced from a population by using
fitness values. The use of these values as indicators to perform a specific task
(e.g., prediction of problem hardness) is common in EAs. The most well-known
example of this is the fitness-distance correlation [12], where these values are used
in conjunction with a metric that informs us how distant two individuals are in
the search space to determine problem difficulty. Another well-known example
is the use of fitness values and genotypes for difficulty prediction in GP [2–4,6].

In this work, we use a distance, studied in the first author’s works [1,7], that
accounts for pairwise disagreements between two lists of ranked fitness values. We
hope that these disagreements can inform us on whether an evolved population
is useful in the face of a change. Our proposed approach works in three phases:

1. Firstly, it is necessary to account for a method that can indicate when a
change is about to take place. We do this in a non-expensive manner: before
a new generation is about to take place, we use one individual (the elitist
individual), whose fitness (fg

e) is assessed again in the next generation (g+1).
2. Secondly, if fg

e and fg+1
e are different, then we regard this as a change in the

environment and we then proceed to compute the KTD (defined in Eq. 4)

On the Use of Dynamic GP Fitness Cases 77

between the ranking of the fitness values of all individuals at generation g
and the next generation (g + 1). This distance counts the number of pairwise
disagreements between two ranked lists and it is normalised by the maximum
number of possible disagreements. This distance gives a discrete value k =
[0, 1] and this is used to generate a percentage of T new individuals with
respect to the population size.

3. Thirdly, the worst (less fit) individuals at g+1 are replaced by the newly gen-
erated individuals (using ramped half-and-half initialisation method, details
are discussed in Sect. 4) keeping the size of the population constant.

The KTD between two ranked lists is defined as,

k(τ1, τ2) =
∑

(i,j)∈P

k̄i,j(τ1, τ2) (4)

where, P is the set of pairs of elements in τ1 and τ2, k̄i,j(τ1, τ2) = 0 if i and j
are in the same order in both τ1 and τ2; and 1 if i and j are in opposite order.

It is worth mentioning that when the change to the objective function is
monotonically increasing (order preserving), the computed KTD will be 0. This
is a good property because in this case the evolved individuals are expected to
behave well in the changed objective function, so there is no need to replace
individuals. A mirror image is seen in the presence of a monotonically decreas-
ing change of the objective function, which will yield the maximal normalised
distance of 1, meaning that the order of both fitness lists is completely different.
The latter will indicate that our approach based on the KTD will replace the
entire population by newly generated genetic material.

4 Experimental Setup

To test our approach, we use eight symbolic regression functions of various diffi-
culties, shown in Table 1. The fitness function is computed as one over one plus
the sum of absolute errors of the Euclidean distance to the output vector of the
target uni-variate function queried on 20 inputs in the equally drawn range [1,
1]. Our system maximises it. A solution is regarded as correct when its fitness is
greater or equal than 1 − 0.01. The function set is F = {+,−, ∗, /}, where / is
protected division.

To test separately and in conjunction our two approaches, we use a static
and a dynamic setting. We define three different type of changes for the latter:
we use α as a variable (see Table 1) that can be tuned to achieve this along with
a constant L, set at 50, that denotes when α changes to simulate a change (in
this work, the maximum number of generations is set at 200, hence only three
values for α are required for a dynamic setting, as defined next). For the static
scenario, α = 1. For the dynamic setting, we define a smooth, an ‘abrupt’ and
a random change, where α = {0.9, 0.8, 0.7}, α = {0.1, 0.9, 0.1}, and finally, α is
set with a random value between 0 and 1 every L generations, respectively.

78 E. Galván-López et al.

Table 1. Symbolic regression bench-
marks problems used in our work.

Function Objective function

f1 x3 + x2 + αx

f2 x4 + x3 + x2 + αx

f3 x5 + x4 + x3 + x2 + αx

f4 x6 + x5 + x4 + x3 + x2 + αx

f5 sin(x2) cos(α) − 1

f6 sin(αx) + sin(x + x2)

f7 log(αx + 1) + log(x2 + 1)

f8 sqrt(αx)

Table 2. Summary of parameters.

Parameter Value

Population size 800

Generations 200

Type of crossover Any node

Crossover rate 0.80

Type of mutation Subtree

Mutation rate 0.20

Selection Tournament (size = 7)

Initialisation method Ramped half-and-half

Initialisation depths:

Initial depth

Final depth

2

5

Maximum length 1200 nodes

Maximum final depth 8

Independent runs 50

Changes Every 50 generations

Dynamic fitness cases k = 1, i = 2, M = 39

For comparative purposes, we use a static fitness case-scenario and our pro-
posed dynamic fitness case-approach, where all the cases are presented to the
system at the beginning of the search as commonly adopted in the GP commu-
nity and where the cases are built over time, respectively.

Moreover, for the DOPs defined in this work, we use an arbitrary approach,
wherein the number of individuals to be replaced in a population is generated
randomly and compared it against the results yield by our proposed Kendall Tau
distance. We generate the individuals in these two approaches using the ramped
half-and-half method, where the initial and final depths used are the same as
when generating the population (see Table 2).

The experiments were conducted using a generational approach. The param-
eters used are shown in Table 2. To obtain meaningful results, we performed an
extensive empirical experimentation (50 * 2 * 3 * 8 runs, plus 50 runs for each
fitness case scenario: static and dynamic; 2,500 independent runs in total)1.

5 Results and Discussion

5.1 Performance on a Static Setting

Let us analyse the results when using our proposed dynamic fitness cases (DFC),
wherein cases are built over time, where one fitness case is added every two
generations until all of them have been used, as defined at the bottom of Table 2,
(see Sect. 3 for details on how this works) and compared the results obtained by
DFC against the widely adopted mechanism of using all the fitness cases at the
beginning of the search, denominated in this work as static fitness cases (SFC).
1 50 independent runs, 2 types of replacement of individuals (arbitrary, Kendall tau

distance-based), 3 types of changes, 8 problems.

On the Use of Dynamic GP Fitness Cases 79

Table 3. Success rate (%) and avg. of best fitness using either static (SFC) or dynamic
fitness cases (DFC). No changes take place during evolution. All the results on the avg.
of best fitness are statistical significant (Wilcoxon Test at 95% level of significance).
Higher is better.

Function Success rate Avg. best fitness

SFC DFC SFC DFC

f1 92.0% 100.0% 0.9371 1.0000

f2 54.0% 88.0% 0.6656 0.9969

f3 18.0% 70.0% 0.4501 0.9915

f4 4.0% 72.0% 0.3280 0.9895

f5 0.0% 60.0% 0.4580 0.9896

f6 0.0% 64.0% 0.3438 0.9893

f7 0.0% 36.0% 0.4988 0.9739

f8 0.0% 16.0% 0.3068 0.9665

Table 3 shows the success rate (shown in the 2nd and 3rd column, from left
to right), defined as the number of times that the GP system was able to find
the solution and the average of the best fitness at the end of each independent
run (shown in the last two columns).

It is clear to see that the proposed DFC achieves good results in terms of
finding the solution, as indicated in Table 3. The traditional SFC has a good
performance only on the relatively easy f1 and its performance decreases signif-
icantly with the rest of the functions used in this work, where SFC is not able
to find a single solution for functions f5, f6, f7 and f8 in any of the independent
runs. Our proposed DFC, on the other hand, achieves better results e.g., 60%,
64%, 36% and 16% for functions f5, f6, f7 and f8, respectively.

The results shown in the last two columns of Table 3, which are the average
of the best individuals’ fitness values at the end of each run, are aligned to
the performance achieved by SFC and FDC. These results are all statistically
significant, Wilcoxon Test set at 95% level of significance.

5.2 Performance on a Dynamic Setting

Let us first focus our attention on the performance achieved by the static and
the dynamic function case-based approach, when these two are now used in
conjunction with our proposed Kendall Tau Distance (KTD) approach to pro-
mote diversity in three type of changes: smooth, random and ‘abrupt’ change,
as defined in Sect. 4.

These results, shown in Table 4, are similar to those discussed above: the SFC
approach has a poor performance: less than 3.0%, for functions f5 – f8, defined
in Table 1, regardless of the type of change used. These results are significantly
better when using the proposed DFC in conjunction with the KTD approach.
For example, the proposed approach achieves more than 48%, 67%, 59% and
52% for the same referred functions, respectively, regardless of the change used.

80 E. Galván-López et al.

Table 4. Percentage of success rate using both static and dynamic fitness cases on
eight different regression functions in the presence of three different types of changes.
Replacement type used: Kendall approach.

Function Smooth change Random change Abrupt change

Static cases Dynamic cases Static cases Dynamic cases Static cases Dynamic cases

f1 21.5% 25.0% 24.5% 33.5% 21.5% 29.0%

f2 10.0% 92.5% 11.0% 90.0% 10.5% 91.5%

f3 2.5% 79.0% 4.5% 89.0% 2.5% 82.0%

f4 0.5% 87.0% 1.5% 86.0% 0.5% 90.5%

f5 0.0% 49.0% 0.0% 60.5% 0.0% 57.0%

f6 0.0% 68.0% 0.5% 80.5% 0.0% 77.5%

f7 0.0% 76.0% 0.0% 80.0% 2.5% 60.0%

f8 0.0% 53.0% 0.5% 64.0% 1.0% 61.0%

Table 5. Avg. of best fitness values at every 50th generation (just before a change
takes place) using both static and dynamic fitness cases on eight symbolic regression
functions in the presence of three different types of changes. Replacement type used:
Kendall approach. All the results are statistical significant (Wilcoxon Test at 95% level
of significance). Higher is better.

Function Smooth change Random change Abrupt change

Static cases Dynamic cases Static cases Dynamic cases Static cases Dynamic cases

f1 0.482 0.7594 0.5444 0.8115 0.5574 0.7583

f2 0.4245 0.9572 0.4913 0.9566 0.5088 0.9648

f3 0.3372 0.9457 0.3886 0.9547 0.4420 0.9508

f4 0.3332 0.9435 0.3862 0.9512 0.4218 0.9589

f5 0.3326 0.8901 0.4153 0.9129 0.4122 0.9156

f6 0.3099 0.9218 0.3939 0.9397 0.4470 0.9401

f7 0.4639 0.9249 0.5006 0.9312 0.5092 0.9042

f8 0.3288 0.8831 0.4113 0.9010 0.4453 0.8968

The average of best fitness values just before a change takes place, defined
at every 50 generations, is shown in Table 5. These results (all statistically sig-
nificant, Wilcoxon Test set at 95% level of significance) are aligned to the per-
formance discussed above: the average fitness values is poor when using SFC
compared to those results achieved by DFC. For example, for f3 the average
fitness values achieved by our proposed DFC is around 0.93 (almost three times
better compared to the results yield by SFC), regardless of the change used.

Now, let us discuss the results when using the commonly adopted approach
of replacing a random number of individuals from a population to promote diver-
sity, referred in this work as the arbitrary approach. These results are shown in
Tables 6 and 7 for the percentage of success rate and the average of the best
fitness values just before a change occurs, respectively. In these tables, we can
observe a similar scenario compared to what we discussed when using the KTD

On the Use of Dynamic GP Fitness Cases 81

Table 6. Percentage of success rate using both static and dynamic fitness cases on
eight different regression functions in the presence of three different types of changes.
Replacement type used: Arbitrary approach.

Function Smooth change Random change Abrupt change

Static cases Dynamic cases Static cases Dynamic cases Static cases Dynamic cases

f1 21.5% 25.0% 24.5% 35.0% 21.5% 33.5%

f2 10.0% 90.0% 11.0% 92.5% 10.5% 95.0%

f3 2.5% 84.0% 3.5% 85.0% 2.5% 85.0%

f4 0.5% 89.5% 1.5% 87.5% 0.5% 90.0%

f5 0.0% 47.0% 0.5% 61.0% 0.5% 56.0%

f6 0.0% 73.5% 0.5% 80.5% 0.5% 85.5%

f7 0.0% 75.0% 0.5% 74.5% 6.5% 71.0%

f8 0.0% 55.5% 0.0% 67.5% 1.0% 66.5%

Table 7. Avg. of best fitness values at every 50th generation (just before a change
takes place) using both static and dynamic fitness cases on eight symbolic regression
functions in the presence of three different types of changes. Replacement type used:
Arbitrary approach. All the results are statistical significant (Wilcoxon Test at 95%
level of significance). Higher is better.

Function Smooth change Random change Abrupt change

Static cases Dynamic cases Static cases Dynamic cases Static cases Dynamic cases

f1 0.4793 0.7714 0.567 0.8099 0.5889 0.8337

f2 0.4288 0.9561 0.5089 0.9638 0.5160 0.9701

f3 0.3337 0.9477 0.4059 0.9521 0.4705 0.9563

f4 0.3439 0.9514 0.3887 0.9538 0.4394 0.9628

f5 0.3444 0.8927 0.4228 0.9098 0.4257 0.9202

f6 0.3478 0.9342 0.4108 0.9424 0.4747 0.9514

f7 0.4675 0.9285 0.5137 0.9296 0.5397 0.9214

f8 0.3282 0.8863 0.4149 0.9121 0.4622 0.9072

for an informed way to replace a number of individuals. That is, the SFC app-
roach yields significantly worse results compared to DFC.

If we now compare, for instance, the performance achieved by the KTD
and the arbitrary approach focusing on either using static fitness cases or using
dynamic fitness cases, we do not see much difference. For example, the per-
formance for the function f5 is 49.0% (Table 4) and 47.0% (Table 6), using the
KTD approach and the arbitrary approach in the presence of a smooth change,
respectively. The same trend is observed for the rest of the functions regardless
of the type of change used. However, the benefit of using the KTD in DOPs
instead of using an arbitrary approach (random number of individuals replaced
in a population), as normally adopted in EAs DOPs when promoting diversity
via the replacement of individuals, can be observed when analysing the number
of individuals created by either approach. We discuss this next.

82 E. Galván-López et al.

5.3 Analysis of the Number of Created Individuals

To see the benefit of using the proposed KTD approach in DOPs compared to
the arbitrary approach to promote diversity via the replacement of individuals
in the population by new genetic material, it is necessary to see the number of
individuals created by each of these two approaches. This is shown in the second
and fourth rows, from top to bottom, of Fig. 1, for functions f5 – f8, where the
vertical line denotes the standard deviation. Due to space constraints, we only
show the results when using the DFC approach on these functions and in the
presence of a smooth and an ‘abrupt’ change that yield better results compared

Fig. 1. Average number of generations to solve a problem (odd rows) and average num-
ber of created individuals (even rows) along with standard deviation using either the
arbitrary approach (black-filled rectangle) or our proposed Kendall approach (white-
filled rectangle) for functions f5 – f8 when using dynamic fitness cases. Notice that for
the avg. number of individuals created, the first generations [0, 50), show nothing given
that a change occurs after this.

On the Use of Dynamic GP Fitness Cases 83

to the SFC approach. However, a similar trend was observed for the rest of the
functions and type of change.

Let us discuss a particular example: when a smooth change takes place for
functions f5 – f8, shown in the second row of Fig. 1. It is clear to see that the
number of individuals created by the KTD, shown by a white-filled bar is sig-
nificantly lower compared the number of GP programs created by the arbitrary
approach, shown by a black-filled bar. This is to be expected since a smooth
change took place and our proposed approach was able to capture this by cre-
ating a few individuals in the presence of this type of change. The same trend
is observed for the rest of the functions (not shown due to space constraints).

Moreover, we can see that the KTD approach is able to capture the level of a
change. For instance, see the number of created individuals in the presence of an
smooth change vs. an ‘abrupt’ change, as denoted in the second and fourth row
of Fig. 1: the KTD approach creates less number of individuals in the presence
of a smooth change compared to the ‘abrupt’ change. Although the difference

Fig. 2. Average number of created individuals along with standard deviation using
either the arbitrary approach (black-filled rectangle) or our proposed Kendall approach
(white-filled rectangle) for function f1 when using static fitness cases. Notice that for
the average of created individuals, the first generations [0, 50) show nothing, given that
a change occurs after this.

84 E. Galván-López et al.

of created individuals in the presence of either these two changes is small. This
is due to the type of changes proposed in this work (see Sect. 4) rather than the
KTD approach failing at capturing a change. To illustrate this, we adopted a
more radical change where the last sign in f1 changes every 50 generations (from
‘+’ to ‘−’ and vice versa) to simulate a DOP and compare this result against
those yield by the other three types of changes. This is shown in Fig. 2, where we
can clearly see that the KTD yields values accordingly: the number of created
individuals is increased as the change is more severe.

In addition to this, we also analyse the average number of generations
required to solve a problem. This is shown in the first and third row in Fig. 1.
Interestingly, we can see that the majority of problems, regardless of the change
used, are solved once all the fitness cases are presented to the system: observe
how they finish before generation 40 (recall that all fitness cases are presented to
the GP system at generation M = 39 as indicated in Table 2), with a few runs
finding the solution just after generation 40 as denoted by the small standard
deviation (see, for example f5, in the presence of an abrupt change, third row
first column of Fig. 1).

5.4 Size of GP Programs

We have learnt that DFC behaves better than the widely-adopted SFC in GP.
We believe that the reason is due to the fact that GP system gradually solves
the problem in accordance to the proposed DFC, wherein fitness cases are built
by aggregation over time (see Sect. 3). This in consequence could mean that
the GP program gradually starts growing as more cases are presented to the
system. Indeed, this is what can be observed in Fig. 3, where we report the
average length of individuals, along with the standard deviation, on f3 and f4

Fig. 3. Average (along with a standard deviation) length of programs using both static
and dynamic fitness cases, shown in black and grey lines, respectively, on f3 and f4,
using the arbitrary replacement approach. Vertical lines at every 50th generations
indicate an (abrupt) change.

On the Use of Dynamic GP Fitness Cases 85

using the arbitrary replacement approach and an abrupt change (the same trend
is observed for the other two type of changes and replacement mechanisms not
shown due to space constraints). It is evident that the size of programs created
by the DFC approach, denoted by grey lines, is significantly lower compared to
the traditional SFC approach, indicated by black lines.

6 Conclusions

Traditionally, the fitness value of a GP program is computed by using a set of
fitness cases. It is common that all the fitness cases are presented to GP from
the beginning of the search, an approach we call static fitness cases. In this
work, we propose a dynamic fitness cases approach, wherein the cases are built
by aggregation over time, making it an incremental search. We showed that the
proposed approach achieves better performance, in some problems achieving a
60% success rate compared to 0% achieved by the standard approach.

Furthermore, we tested these two approaches in the presence of dynamic
changes, where the results achieved by the DFC are consistently better compared
to the SFC. Moreover, we also showed how the DFC approach encourages a
smooth increase of GP trees compared to SFC where the size of trees are bigger.

Finally, we also studied the impact/use of fitness cases in DOPs, where the
adoption of diversity has consistently been reported as beneficial. To this end, we
proposed an approach based on the Kendall Tau Distance that aims to capture
the degree of a change in a dynamic setting and we use this consequently to
determine the proportion of individuals that need to be replaced to promote
structural diversity. We compared this against the commonly adopted arbitrary
approach where the number of individuals is set randomly. We showed that the
performance of both replacement mechanisms is similar, with the added benefit
that the proposed KTD approach creates only the necessary individuals with
regards to the amount of change.

Acknowledgments. EGL would like to thank the TAU group at INRIA Saclay for
hosting him during the outgoing phase of his Marie Curie fellowship and for finan-
cially supporting him to present this work at the conference. LT would like to thank
CONACYT (project FC-2015-2:944) for providing partial funding.

References

1. Galván-López, E., Ait ElHara, O.: Using fitness comparison disagreements as a
metric for promoting diversity in dynamic optimisation problems. In: IEEE Sym-
posium Series on Computational Intelligence. Springer (2016)

2. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality in
genetic programming to predict performance. In: IEEE Congress on Evolutionary
Computation, pp. 1–8 (2010)

3. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Towards an under-
standing of locality in genetic programming. In: Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 901–908.
ACM, New York (2010)

86 E. Galván-López et al.

4. Galván-López, E., McDermott, J., O’Neill, M., Brabazon, A.: Defining locality as
a problem difficulty measure in genetic programming. Genet. Program. Evolvable
Mach. 12(4), 365–401 (2011)

5. Galván-López, E., Mezura-Montes, E., Ait ElHara, O., Schoenauer, M.: On the
use of semantics in multi-objective genetic programming. In: Handl, J., Hart, E.,
Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS,
vol. 9921, pp. 353–363. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45823-6 33

6. Galván-López, E., Trujillo, L., McDermott, J., Kattan, A.: Locality in contin-
uous fitness-valued cases and genetic programming difficulty. In: Schütze, O.,
Coello, C.A.C., Tantar, A., Tantar, E., Bouvry, P., Moral, P.D., Legrand, P. (eds.)
EVOLVE 2012. AISC, vol. 175, pp. 41–56. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31519-0 3

7. Galván-López, E., Vázquez-Mendoza, L., Schoenauer, M., Trujillo, L.: Dynamic
GP fitness cases in static and dynamic optimisation problems. In: Bosman, P.A.N.
(ed.) Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19
July 2017, Companion Material Proceedings, pp. 227–228. ACM (2017)

8. Galván-López, E., Vázquez-Mendoza, L., Trujillo, L.: Stochastic semantic-based
multi-objective genetic programming optimisation for classification of imbalanced
data. In: Pichardo-Lagunas, O., Miranda-Jiménez, S. (eds.) MICAI 2016. LNCS
(LNAI), vol. 10062, pp. 261–272. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-62428-0 22

9. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning
in genetic programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN
1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-58484-6 275

10. Giacobini, M., Tomassini, M., Vanneschi, L.: Limiting the number of fitness cases
in genetic programming using statistics. In: Guervós, J.J.M., Adamidis, P., Beyer,
H.-G., Schwefel, H.-P., Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol.
2439, pp. 371–380. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45712-7 36

11. Gonçalves, I., Silva, S.: Balancing learning and overfitting in genetic programming
with interleaved sampling of training data. In: Krawiec, K., Moraglio, A., Hu,
T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 73–84.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0 7

12. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty
for genetic algorithms. In: Proceedings of the Sixth International Conference on
Genetic Algorithms, pp. 184–192. Morgan Kaufmann (1995)

13. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

14. La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression.
In: Proceedings of the Genetic and Evolutionary Computation Conference 2016,
GECCO 2016, pp. 741–748. ACM, New York (2016)

15. Lasarczyk, C.W.G., Dittrich, P.W.G., Banzhaf, W.W.G.: Dynamic subset selection
based on a fitness case topology. Evol. Comput. 12(2), 223–242 (2004)

16. López, U., Trujillo, L., Martinez, Y., Legrand, P., Naredo, E., Silva, S.: RANSAC-
GP: dealing with outliers in symbolic regression with genetic programming. In:
McDermott, J., Castelli, M., Sekanina, L., Haasdijk, E., Garćıa-Sánchez, P. (eds.)
EuroGP 2017. LNCS, vol. 10196, pp. 114–130. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-55696-3 8

https://doi.org/10.1007/978-3-319-45823-6_33
https://doi.org/10.1007/978-3-319-45823-6_33
https://doi.org/10.1007/978-3-642-31519-0_3
https://doi.org/10.1007/978-3-642-31519-0_3
https://doi.org/10.1007/978-3-319-62428-0_22
https://doi.org/10.1007/978-3-319-62428-0_22
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-58484-6_275
https://doi.org/10.1007/3-540-45712-7_36
https://doi.org/10.1007/3-540-45712-7_36
https://doi.org/10.1007/978-3-642-37207-0_7
https://doi.org/10.1007/978-3-319-55696-3_8
https://doi.org/10.1007/978-3-319-55696-3_8

On the Use of Dynamic GP Fitness Cases 87

17. Macedo, J., Costa, E., Marques, L.: Genetic programming algorithms for dynamic
environments. In: Squillero, G., Burelli, P. (eds.) EvoApplications 2016. LNCS,
vol. 9598, pp. 280–295. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31153-1 19

18. Mart́ınez, Y., Naredo, E., Trujillo, L., Legrand, P., López, U.: A comparison of
fitness-case sampling methods for genetic programming. J. Exp. Theor. Artif. Intell.
1–22 (2017)

19. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceed-
ings of the 14th Annual Conference on Genetic and Evolutionary Computation,
GECCO 2012, pp. 791–798. ACM, New York (2012)

20. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey
of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

21. Riekert, M., Malan, K.M., Engelbrect, A.P.: Adaptive genetic programming for
dynamic classification problems. In: Proceedings of the Eleventh Conference on
Congress on Evolutionary Computation, CEC 2009, pp. 674–681. IEEE Press,
Piscataway (2009)

22. Spector, L.: Assessment of problem modality by differential performance of lexicase
selection in genetic programming: a preliminary report. In: Proceedings of the
Fourteenth International Conference on Genetic and Evolutionary Computation
Conference Companion, GECCO Companion 2012, pp. 401–408. ACM (2012)

23. Teller, A., Andre, D.: Automatically choosing the number of fitness cases: the
rational allocation of trials. In: Koza, J.R., et al. (eds.) Genetic Programming 1997:
Proceedings of the Second Annual Conference, Stanford University, CA, USA,
13–16 July 1997, pp. 321–328. Morgan Kaufmann (1997)

24. Vanneschi, L., Cuccu, G.: A study of genetic programming variable population size
for dynamic optimization problems. In: IJCCI, pp. 119–126 (2009)

25. Wagner, N., Michalewicz, Z., Khouja, M., McGregor, R.R.: Time series forecasting
for dynamic environments: the DyFor genetic program model. IEEE Trans. Evol.
Comput. 11(4), 433–452 (2007)

26. Zhang, B.-T., Cho, D.-Y.: Genetic programming with active data selection. In:
McKay, B., Yao, X., Newton, C.S., Kim, J.-H., Furuhashi, T. (eds.) SEAL 1998.
LNCS (LNAI), vol. 1585, pp. 146–153. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48873-1 20

https://doi.org/10.1007/978-3-319-31153-1_19
https://doi.org/10.1007/978-3-319-31153-1_19
https://doi.org/10.1007/3-540-48873-1_20
https://doi.org/10.1007/3-540-48873-1_20

MEMSA: A Robust Parisian EA
for Multidimensional Multiple Sequence

Alignment

Julie D. Thompson1,2, Renaud Vanhoutrève1,2, and Pierre Collet1,2(B)

1 ICube laboratory, UMR CNRS 7357, Strasbourg University, Strasbourg, France
{thompson,collet}@unistra.fr, vanhoutreve.renaud@gmail.com

2 Fédération de Médecine Translationnelle de Strasbourg, CS-DC UNESCO
UniTwin, Strasbourg, France

http://cs-dc.org

Abstract. This paper describes a new approach for the multiple align-
ment of biological sequences (DNA or proteins) using a Parisian Evolu-
tion approach called MEMSA, for Multidimensional Evolutionary Mul-
tiple Sequence Alignment, coded using the EASEA platform. This app-
roach evolves individual sub-alignments called “patches” that are used
to create a new kind of Multiple Sequence Alignment where alternative
solutions are computed simultaneously using different fitness functions.
Solutions are generated by combining coherent sets of high-scoring indi-
viduals that are used to reconstruct multi-dimensional multiple sequence
alignments. The alignments of this prototype version show a quality com-
parable to ClustalW (one of the most widely used existing methods) on
the 218 samples of the BAliBASE benchmark in reasonable time.

1 Introduction

The incredible increase in the output of Next generation Genome Sequenc-
ing (NGS) technologies in the recent years is making sequence data analysis
a major bottleneck for the biologist. New bioinformatics solutions are needed
to allow end-users to fully exploit the progress of these technologies in various
applications, including genome annotation, analysis of genetic mutations, evo-
lutionary studies, or the characterization of gene products (e.g. proteins). Pro-
teins are large macromolecules, consisting of one or more long chains of amino
acid residues. They perform a wide variety of biological functions in organisms,
from catalysis of biochemical reactions, transport of nutrients or recognition and
transmission of signals to structural and mechanical roles within the cell. As a
consequence, one of the most important applications of bioinformatics has been
the study of the relationships between the sequence of a protein and its 3D
structure, cellular function and evolution.

In this context, protein multiple sequence alignments (MSA) play a central
role in comparative analyses of the data produced by NGS. Recently, new meth-
ods for the construction of MSA (such as MAFFT [10], MUSCLE [5], KALIGN
[14], PROBCONS [4]) have been developed that use heuristic approaches that are
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 88–99, 2018.
https://doi.org/10.1007/978-3-319-78133-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_7&domain=pdf
http://orcid.org/0000-0002-5284-4702

MEMSA: A Robust Parisian EA 89

fast enough to handle this “big data” and that allow comparison of sequences
from hundreds of diverse organisms. However, the current flood of data also
poses other challenges, in addition to the obvious scalability issues. For exam-
ple, large protein families are often complex, with multidomain architectures,
long unstructured (natively disordered) regions, splicing variants, etc. In addi-
tion, the new sequences are mostly predicted by automatic methods and con-
tain many sequence errors. A recent comparative study of MSA algorithms [19]
showed that the current methods can identify most of the shared sequence fea-
tures that determine the broad molecular functions of a protein family, such as
the 3D structure or catalytic sites, that have been conserved throughout evolu-
tion. However, the locally conserved regions, that reflect functional specificities
or that modulate a protein’s function in a given cellular context, are less well
aligned. The complexity of the problem means that new MSA representations
are now crucial. This motivated us to develop MEMSA, a Multidimensional Evo-
lutionary Multiple Sequence Alignment tool, a new MSA approach that exploits
an alternative genetic algorithm called Parisian Evolution [2], in order to pro-
duce multi-dimensional multiple alignments depending on “patches” of interest
for the biologist.

1.1 Multiple Sequence Alignment (MSA)

In the most general terms, a protein multiple sequence alignment represents a
set of sequences using a single-letter code for each amino acid. Each horizontal
row in the alignment represents a single sequence and structurally, functionally
or evolutionarily equivalent amino acids are aligned vertically. During evolution,
mutation events occur. They include point mutations (single amino acid changes)
that appear as differing characters in an alignment column and indels (INser-
tions or DELetions) or gaps, generally represented by a “–” character in one or
more of the sequences. Most MSA methods represent these events via two sets
of parameters: an “amino acid substitution matrix” (e.g. BLOSUM62 [8]) that
assigns scores to the alignment of each possible pair of amino acids and a “gap
penalty” for the introduction of gaps in a sequence. However, one of the main
challenges for MSA algorithms is that there is no such thing as a single opti-
mal alignment. Indeed, many distance matrices have been proposed, that offer
different metrics to evaluate the quality of an alignment [1].

1.2 Evolutionary Algorithms for MSA

One of the first genetic algorithms (GA) for multiple sequence alignment was
SAGA (Sequence Alignment by Genetic Algorithm) [17]. SAGA tries to find an
optimal MSA by creating a population of MSAs and allowing them to evolve based
on a natural selection process that mimics biological evolution (with crossover and
mutation operators). In this case, an individual in the population represents one

90 J. D. Thompson et al.

complete solution to the problem, i.e. an individual is a multiple alignment of all
sequenceswith gaps at given positions.Unfortunately, the results are not very good
on today’s complex problems, probably because it tries to tackle an unsolvable
problem as a whole.

Since then, other multiple sequence alignment strategies based on GAs have
been introduced that use better mutation operators to improve the efficiency
and the accuracy of the algorithms, e.g. [12] or [22]. Other attempts such as
MSAGMOGA [11] have used multi-objective algorithms to take into account
the multi-dimensionality of the problem. These methods show promising results
in some specific cases, but they are generally too slow for large-scale alignment
applications. An alternative approach involves the use of GAs to improve an
initial population of alignments constructed with a heuristic algorithm, such as
PHGA [16], or MOMSA [6].

In this paper, we propose a new evolutionary algorithm for MSA that does
not attempt to provide the user with a single MSA option, but rather finds as
many good “patches” as possible in the studied sequences, possibly using differ-
ent metrics, which will be subsequently used to propose alternative alignments
compatible with a chosen patch. The result could evoke paintings by Piet Mon-
drian, with patches of different colours that could correspond to patches com-
puted with different metrics, cf. Fig. 1. Interestingly enough, Piet Mondrian’s
latest painting Broadway Boogie-Woogie contains multi-level patches (patches

Fig. 1. Broadway Boogie-Woogie, by Piet Mondrian (1942)

MEMSA: A Robust Parisian EA 91

containing sup-patches of other colours) that correspond really well to the new
approach for Multiple Sequence Alignment that is proposed in this paper.

1.3 Parisian Evolution Approach

The problem with all existing MSA approaches (evolutionary or not) is that they
try to evolve individuals that represent a complete MSA, which is a conceptually
impossible task, because it is acknowledged that there are several valid ways to
align sequences. Therefore, using a global approach implies making a choice on
the fitness function. Similarly to the Michigan Approach of Learning Classifier
Systems [7,9,21], the Parisian approach [2] has been designed to: (i) decompose
a large problem into smaller sub-problems that would be several orders of mag-
nitude simpler to solve than the global one and (ii) reassemble the sub-problems
into a global solution.

In the Parisian approach, an individual represents only a part of the solution
and in the final stage of the algorithm, the global solution is reconstructed from
the individual parts. This has two advantages: (i) it reduces the computational
requirements of the MSA algorithm, since an alignment is divided into smaller
sub-problems, meaning that smaller individuals can be constructed and evalu-
ated quickly. (ii) It also makes it possible to address the fact that there is no
unique global fitness function for MSA. Indeed, different fitness functions exist,
designed specifically for different protein regions.

Therefore, an evolutionary algorithm based on the Parisian Approach can
evolve many good partial MSAs using different fitness functions that can be
reassembled differently, depending on what the biologist wants to study. MEMSA
evolves individuals that represent good “patches”, rather than complete solu-
tions, that can be reassembled differently for different global evaluations.

2 Genetic Algorithm with Parisian Approach for MSA

In this section we explain the evolutionary operators implemented in MEMSA.

2.1 Individuals/Patches

In MEMSA, individuals represent local alignments called “patches”, containing
a small number of “segments” of identical length (at least 2 amino acids) from
different sequences, as depicted in Fig. 2.

2.2 Initialisation

As is usual in artificial evolution, initialisation is done using random values
(within constraints) so as to avoid biases. Each individual in the initial popula-
tion consists of short segments of 2 amino acids taken from 2–5 sequences.

92 J. D. Thompson et al.

Fig. 2. Individual representation in MEMSA

2.3 Crossover

When running the algorithm, we observed that good individuals having more
than 2 segments are very rare. Therefore, the crossover operator is used to favour
the creation of larger individuals containing 3 or more segments. To this effect,
the crossover associates segments coming from two parents that use the same
metrics to generate a child that has more than two segments.

If both parents have an identical sequence in common then the child takes
the segment of one of the parents for this sequence.

As seen in Sect. 2.5 below, evaluation is very fast, as it is made up of very
simple additions and multiplications. This means that evaluation is not the most
time-consuming part of the algorithm. Therefore, it is a great advantage that
this crossover is very simple, because it makes it also very quick, resulting in the
possibility of testing more possibilities than if an “intelligent” crossover were
used.

2.4 Mutator

Mutating an individual (a patch) may:

– add a segment to the individual (if < max number of segments),
– remove a segment from the individual (if the number of segments is >3)
– shift the whole patch 0 to 10 amino acids to the right or to the left,
– shift one segment 0 to 10 amino-acid to right or to the left

An alignment is a succession of conserved and unconserved groups of columns.
Shifting a good patch in any direction has a good chance of generating another
good patch.

MEMSA: A Robust Parisian EA 93

2.5 Evaluation

The evaluator must evaluate the quality of each individual (the quality of each
patch). Because it is the evaluation function that drives the algorithm, it is the
most important function of the algorithm. First of all, a fitness F is computed as
the norMD [20] (mean distance score representing the similarity of the sequence
segments) of the patch defined as follows:

S =
1

NA
∗ 2

(NS − 1) ∗ NS
∗

NA∑

a=0

NS∑

i=0

NS∑

j=i+1

dM (AAa,i, AAa,j) (1)

where NS is the number of segments in the individual, NA the number of amino
acids in each segment, AAx,y is the x-th amino acid in y-th segment, and d
is the distance between two amino acids in Euclidean space using a particular
aminoacid substitution matrix M that can be different for different individuals.

In addition to the similarity of the segments, other information about the
fitness of a patch is calculated. In order to determine the size of the patch, we
define two variables: NS is the number of segments in the individual (height)
and NA is the number of amino acids in each segment (length). Then, because
we are interested in patches that have a height >5, we favour such individuals
by computing:

H = min
(

1,
NS + 5

10

)
(2)

and because we are interested in patches that have 10 or more amino acids, we
favour such individuals by computing:

L = min
(

1,
NA + 10

20

)
(3)

The number of conserved columns is also an important factor. We calculate:

I =
caa + 1
NA + 1

(4)

where caa is the number of conserved amino-acid columns. 1 has been added to
the numerator so that I > 0 and to the denominator in the case where caa = NA.

Another factor to also take into account is cm, the maximum number of
consecutive columns that are not conserved, which is normalised through:

C =
NA − cm + 1

NA + 1
(5)

where cm is the maximum number of consecutive columns that are not conserved
(i.e. columns that contain more than one type of amino acid).

94 J. D. Thompson et al.

Finally, the fitness calculation is the following:

F = S ∗ C ∗ I ∗ (1 + H + L ∗ H + L) + (2 ∗ H + L ∗ H + 2 ∗ L) (6)

The first part of the equation favours well formed individuals where the second
part favours larger individuals.

2.6 Diversity Preservation

MEMSA uses an operator to preserve diversity in the population. Loss of diver-
sity appears because MSAs are mostly constructed by an alternation of conserved
and non-conserved blocks. Without a diversity preservation operator, individu-
als end up being concentrated on well-conserved blocks (high fitness value) and
other interesting blocks are less explored. Therefore, in MEMSA, all unique indi-
viduals obtain an arbitrarily fixed bonus (larger than the best possible fitness)
so as to preserve them during the reduction step that selects the individuals to
create the next generation of parents.

2.7 Selection of Individuals for the New Generation

After many tests, a 4-tournament is used to select the best individuals to create
the new generation.

2.8 Patchwork to Create an MSA

After each generation, a MSA is created out of several individuals. This is done
thanks to the following algorithm:

– During the evolution, an archive is created that contains the best individuals
of each generation, sorted depending on their fitness.

– Then, the individuals of the last generation are sorted and added after the
archive population.

– For each of the individuals of (archive + last generation), if the individual is
“compatible” with the current patchwork, add the individual to the patch-
work.

Testing whether an individual is compatible with a patchwork under con-
struction is a complicated task because the individual must not only be compat-
ible with all the other individuals of the patchwork, but also with all combina-
tions of individuals created from the patchwork, taking into account the different
fitness functions.

Several refined algorithms have been tested to perform this task, but the
brute force one is currently the most efficient. It involves adding the individual
to the patchwork and attempting to align all the patches to create a complete
alignment, within a limited number of iterations. If a stable alignment is not
found in the predetermined number of iterations, the individual is discarded.

MEMSA: A Robust Parisian EA 95

2.9 Run Parameters and Behaviour of the Algorithm

The EASEA [3,15] platform has been used for the implementation. Its parame-
ters are the following:

Number of generations : 200

Population size : 800000

Offspring size : 800000

Mutation probability : 1 // Probability to call the mutation function

Crossover probability : .3 // Cloning parent 1 if no crossover

Evaluator goal : maximise

Parents selection operator : Tournament 2

Next generation selection operator : Tournament 4

Elitism : Weak

Elite : 1

Evaluation is very fast, making it possible to use a very large population.
This is a huge advantage as it means that no complex diversity preservation
scheme needs to be used. A huge population means that the algorithm can be
both very exploratory and at the same time, tuned to converge fast on good indi-
viduals (0.3 crossover probability). This is comparable to fast converging Genetic
Programming algorithms that evolve huge populations for a reduced number of
generations. During the very first generations, we observe that individuals in
the population have relatively few segments (mostly two) and their segment size
is mostly close to three. After a few generations, the size of the segments of
the individuals increases considerably (the best individuals can have more than
15–20 amino acids). Then after tens of generations, more complex individuals
appear, which have more than two segments. Individuals that have more than
two segments are very interesting because they make it possible to create links
between sequences more easily.

3 Experiments and Validation

In order to objectively evaluate the quality of the multiple sequence alignments
constructed by MEMSA, we use a large scale benchmark specifically designed
for MSA algorithms, called BAliBASE [18]. BAliBASE contains 218 reference
multiple alignments based on 3D structural superpositions that are manually
refined to ensure the correct alignment of conserved residues. The alignments
are organised into reference sets that are designed to represent real multiple
alignment problems. Reference 1 contains alignments of equidistant sequences
and is divided into 2 subsets: R1-1 (10–30% amino acid identity) and R1-2 (30–
50% amino acid identity). R2 contains families aligned with one or more highly
divergent “orphan” sequences. R3 contains divergent subfamilies, R4 contains
sequences with large N/C-terminal extensions and R5 contains sequences with
large internal insertions.

We aligned each of the test cases in BAliBASE with MEMSA and compared
the resulting MSAs with the hand-made reference alignments in BAliBASE.

96 J. D. Thompson et al.

Fig. 3. Normalised SP scores for MSA constructed by MEMSA, using the 218 BAl-
iBASE alignments in reference sets R1-1 to R5.

Fig. 4. Normalised SP scores for the best MSA constructed by MEMSA and ClustalW,
using the 218 BAliBASE alignments in reference sets R1-1 to R5.

MEMSA: A Robust Parisian EA 97

We calculated the SP score, defined as the number of amino acid pairs aligned
correctly by MEMSA, using the baliscore program provided with the BAliBASE
benchmark. Figure 3 shows the average SP score for 10 repeated applications of
MEMSA, as well as the minimum and maximum SP scores for each test case.
The results are quite stable over the 10 runs.

We also compared the accuracy of the MEMSA alignments with one of the
most widely-used heuristic MSA methods: ClustalW [13]. We used ClustalW
because it remains a reference among MSA methods due to its versatility, and
in this work which focuses on exploiting different aligning methods, versatility
is what is valued. Figure 4 shows the best SP scores obtained by MEMSA com-
pared to ClustalW for each of the reference sets in BAliBASE. We observe lower
quality alignments in R1-1, probably due to the small number of sequences in
this reference set. However, R1-1 is no longer relevant in the context of NGS “big
data”. In all the other reference sets, MEMSA achieves comparable accuracy to
ClustalW with higher homogeneity (less dispersion).

4 Discussion and Conclusion

To our knowledge, this is the first time a genetic algorithm is capable of aligning
all the test cases of the large-scale BAliBASE benchmark within a reasonable
time. Nevertheless, MEMSA still requires significant computational resources,
compared to heuristic methods like MAFFT, MUSCLE, K-ALIGN or ProbCons
but it must be noted that the Parisian approach proposed in this paper aims not
at providing the user with a single MSA knowing that no single optimal MSA
exists.

However, the objective of MEMSA is different from what usual MSA algo-
rithms are doing: it is working as a complex system, that can be defined as a
large number of autonomous entities in interaction. We propose a paradigm shift
by acknowledging the multi-dimensionality of the problem and offering patch-
oriented MSAs centered on interesting patches.

In MEMSA, the entities are patches, that are in interaction through com-
mon fitness measurements. Complete MSAs can be built by assembling matching
patches taken from the population of individuals. The spatial visualisation inter-
face (called Mondrian) allowing the user to explore the different MSAs according
to different fitness functions (that will depend on the specific interests of the user)
is currently under development.

Acknowledgement. We would like to thank the members of the BISTRO Bioin-
formatics Platform in Strasbourg for their support. This work was supported by the
Agence Nationale de la Recherche (BIPBIP: ANR-10-BINF-03-02), the Région Alsace
and Institute funds from the CNRS, the Université de Strasbourg and the Faculté de
Médecine de Strasbourg.

98 J. D. Thompson et al.

References

1. Blackburne, B.P., Whelan, S.: Measuring the distance between multiple sequence
alignments. Bioinformatics 28(4), 495–502 (2012)

2. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar IFS+Parisian genetic
programming=efficient IFS inverse problem solving. Genetic Program. Evolvable
Mach. 1(4), 339–361 (2000). http://dx.doi.org/10.1023/A:1010065123132

3. Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Take it EASEA. In: Schoenauer,
M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.-P. (eds.)
PPSN 2000. LNCS, vol. 1917, pp. 891–901. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45356-3 87

4. Do, C.B., Mahabhashyam, M.S., Brudno, M., Batzoglou, S.: Probcons: probabilis-
tic consistency-based multiple sequence alignment. Genome Res. 15(2), 330–340
(2005)

5. Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res. 32(5), 1792–1797 (2004)

6. Zhu, H., He, Z., Jia, Y.: A novel approach to multiple sequence alignment using
multiobjective evolutionary algorithm based on decomposition. IEEE J. Biomed.
Health Inform. 20, 717–727 (2016)

7. Hayes-Roth, F.: Review of “adaptation in natural and artificial systems by John H.
Holland”. The University of Michigan Press (1975). SIGART Bull. 53, 15 (1975).
http://doi.acm.org/10.1145/1216504.1216510

8. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proc. Nat. Acad. Sci. 89(22), 10915–10919 (1992). http://www.pnas.org/content/
89/22/10915.abstract

9. Holland, J.H.: Escaping brittleness: the possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. In: Computation & Intelligence,
pp. 275–304. American Association for Artificial Intelligence, Menlo Park (1995).
http://dl.acm.org/citation.cfm?id=216000.216016

10. Katoh, K., Standley, D.M.: MAFFT: iterative refinement and additional methods.
In: Multiple Sequence Alignment Methods, pp. 131–146. Humana Press, Totowa
(2014)

11. Kaya, M., Sarhan, A., Alhajj, R.: Multiple sequence alignment with affine gap
by using multi-objective genetic algorithm. Comput. Methods Prog. Biomed. 114,
38–49 (2014)

12. Cai, L., Juedes, D., Liaknovitch, E.: Evolutionary computation techniques for mul-
tiple sequence alignment. In: Proceedings of the IEEE Congress on Evolutionary
Computation (2000)

13. Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam,
H., Valentin, F., Wallace, I., Wilm, A., Lopez, R., Thompson, J., Gibson, T.,
Higgins, D.: Clustal w and clustal x version 2.0. Bioinformatics 23, 2947–2948
(2007)

14. Lassmann, T., Sonnhammer, E.L.: Kalign - an accurate and fast multiple sequence
alignment algorithm. BMC Bioinf. 6(1), 298 (2005)

15. Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: EASEA: specification
and execution of evolutionary algorithms on GPGPU. Soft Comput. 16(2), 261–
279 (2011)

16. Nguyen, H.D., Yoshihara, I., Yamamori, K., Yasunaga, M.: Aligning multiple pro-
tein sequences by parallel hybrid genetic algorithm. Genome Inform. 13, 123–132
(2002)

http://dx.doi.org/10.1023/A:1010065123132
https://doi.org/10.1007/3-540-45356-3_87
https://doi.org/10.1007/3-540-45356-3_87
http://doi.acm.org/10.1145/1216504.1216510
http://www.pnas.org/content/89/22/10915.abstract
http://www.pnas.org/content/89/22/10915.abstract
http://dl.acm.org/citation.cfm?id=216000.216016

MEMSA: A Robust Parisian EA 99

17. Notredame, C., Higgins, D.G.: Saga: sequence alignment by genetic algorithm.
Nucleic Acids Res. 24(8), 1515–1524 (1996)

18. Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: BAliBASE 3.0: latest developments
of the multiple sequence alignment benchmark. Proteins 61(1), 127–136 (2005).
Structure, Function and BioInformatics

19. Thompson, J.D., Linard, B., Lecompte, O., Poch, O.: A comprehensive bench-
mark study of multiple sequence alignment methods: current challenges and future
perspectives. PLoS One 6(3), e18093 (2011)

20. Thompson, J.D., Plewniak, F., Ripp, R., Thierry, J.C., Poch, O.: Towards a reliable
objective function for multiple sequence alignments. J. Mol. Biol. 314(4), 937–951
(2001). http://www.sciencedirect.com/science/article/pii/S0022283601951873

21. Wilson, S.W., Goldberg, D.E.: A critical review of classifier systems. In: Proceed-
ings of the 3rd International Conference on Genetic Algorithms, pp. 244–255. Mor-
gan Kaufmann Publishers Inc., San Francisco (1989). http://dl.acm.org/citation.
cfm?id=645512.657260

22. Zhang, C., Wong, A.: A genetic algorithm for multiple molecular sequence align-
ment. Comput. Appl. Biosci. 13, 565–581 (1997)

http://www.sciencedirect.com/science/article/pii/S0022283601951873
http://dl.acm.org/citation.cfm?id=645512.657260
http://dl.acm.org/citation.cfm?id=645512.657260

Basic, Dual, Adaptive, and Directed
Mutation Operators in the Fly Algorithm

Zainab Ali Abbood and Franck P. Vidal(B)

School of Computer Science, Bangor University,
Dean Street, Bangor LL57 1UT, UK

f.vidal@bangor.ac.uk

Abstract. Our work is based on a Cooperative Co-evolution Algorithm
– the Fly algorithm – in which individuals correspond to 3-D points.
The Fly algorithm uses two levels of fitness function: (i) a local fitness
computed to evaluate a given individual (usually during the selection
process) and (ii) a global fitness to assess the performance of the pop-
ulation as a whole. This global fitness is the metrics that is minimised
(or maximised depending on the problem) by the optimiser. Here the
solution of the optimisation problem corresponds to a set of individuals
instead of a single individual (the best individual) as in classical evolu-
tionary algorithms (EAs). The Fly algorithm heavily relies on mutation
operators and a new blood operator to insure diversity in the population.
To lead to accurate results, a large mutation variance is often initially
used to avoid local minima (or maxima). It is then progressively reduced
to refine the results. Another approach is the use of adaptive operators.
However, very little research on adaptive operators in Fly algorithm has
been conducted. We address this deficiency and propose 4 different fully
adaptive mutation operators in the Fly algorithm: Basic Mutation, Adap-
tive Mutation Variance, Dual Mutation, and Directed Mutation. Due to
the complex nature of the search space, (kN -dimensions, with k the
number of genes per individuals and N the number of individuals in the
population), we favour operators with a low maintenance cost in terms
of computations. Their impact on the algorithm efficiency is analysed
and validated on positron emission tomography (PET) reconstruction.

Keywords: Evolutionary algorithms · Parisian approach
Reconstruction algorithms · Positron emission tomography
Mutation operator

1 Introduction

This paper focuses on the application of a particular Cooperative Co-evolution
Algorithm (CCEA), the Fly algorithm [12], to reconstruct 3-D tomographic
data in nuclear medicine. The general public is more familiar with computed
tomography (CT) when considering 3-D medical imaging. It offers a high spatial

c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 100–114, 2018.
https://doi.org/10.1007/978-3-319-78133-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_8&domain=pdf
http://orcid.org/0000-0002-2768-4524

Basic, Dual, Adaptive, and Directed Mutation Operators 101

resolution and signal-to-noise ratio (SNR), which is suitable for anatomic exam-
inations. Tomography in nuclear medicine is called emission tomography (ET).
It has a much lower resolution and SNR (see Fig. 1). There are two types of
3-D imaging modalities in nuclear medicine: single-photon emission computed
tomography (SPECT) and positron emission tomography (PET). They both
use radioactive substances for the labelling of a physiological process (e.g. bone
fracture, growth of cancer cells, or areas of low blood pressure). The radioactive
concentration in the body is proportional to the physiological process of interest.
The radioactive emission is detected by the imaging system. Tomography recon-
struction “translates” it into a stack of 2-D cross-sections, which corresponds
to an estimation of the 3-D radioactive concentration. Evolutionary computing
has been successfully used in tomography reconstruction in both SPECT and
PET [4,19]. This method heavily relies on the selection process, mutation opera-
tors and a diversity mechanism. We focus here on PET as it is now the main 3-D
imaging modality in nuclear imaging. The focus of this article is on the choice
and combination of mutation operators.

(a) CT (b) PET (c) PET-CT (d) 3-D view

Fig. 1. PET-CT of a cancer patient (data available on The Cancer Imaging Archive
(TCIA) [6] at https://public.cancerimagingarchive.net/).

The problem definition and the motivations for this research are given in
Sect. 2. The general principles of the evolutionary reconstruction for PET recon-
struction are given in Sect. 3. It is followed by the definition of the mutation
operators, which are used in our implementation. The results of these operators
are analysed in Sect. 5. The article ends with a conclusion in Sect. 6.

2 Problem Definition and Motivations

Tomography reconstruction is an inverse problem: Projection data (Y) acquired
by a medical scanner (Y is the known data) has to be inverted by a computer
program to generate an estimate (f̂) of an unknown image (f). The nature of

https://public.cancerimagingarchive.net/

102 Z. A. Abbood and F. P. Vidal

f and Y is problem-dependant (see Fig. 2 for an example in ET) and it is often
modelled as:

Y = P [f] (1)

with P a projection operator that is also problem-dependant. The reconstruction
corresponds to solving:

f̂ = P−1 [Y] (2)

(a) Ground-truth (f). (b) Measured projec-
tions (Y = P [f]).

Fig. 2. Test case using the Jaszczak phantom with hot rods.

The problem is also ill-posed due to missing data and photonic noise (Poisson
noise) in Y . Noise is actually a major concern in ET. The reconstruction can be
considered as an optimisation problem:

f̂ = arg min
f∈R2

∥
∥
∥Y − P

[

f̂
]∥
∥
∥
1

(3)

Maximum-Likelihood Expectation-Maximization (MLEM) and its derivative
Ordered Subset Expectation-Maximization (OSEM) are the main algorithms
used in nuclear medicine [11,18].

An alternative approach would be the use of artificial evolution. Most peo-
ple are familiar with black-box optimisation using simple genetic algorithms
(binary encoding of individuals) and real-valued genetic algorithms. Using this
traditional approach is not suitable for tomography reconstruction. Consider an
optimisation problem that consists in finding the best possible 3-D position of
N points. The search space has 3N -dimensions. When a black-box evolutionary
algorithm (EA) is considered, including CMA-ES, there will be k individuals in
the population, with 3N genes per individual. When N is large, this approach
is likely to fail due to its computing time. A more recent class of algorithms is
the Parisian approach. Using this framework, it is possible to only require N
individuals with 3 genes per individual. Each individual is a partial solution.
The individuals collaborate to build the overall solution.

In [4,19], the Fly algorithm is deployed to minimise the error between the
simulated image Ŷ and an input image Y (global evaluation) by optimising

Basic, Dual, Adaptive, and Directed Mutation Operators 103

the individual position of radioactive emission points (local evaluation of the
points). As the goal includes both a local and a global evaluation, the optimi-
sation problem is perfectly suited for the Parisian approach [7], which includes
the Fly algorithm. It heavily relies on the selection process, mutation operators
and a diversity mechanism. Ideally, the amount of random change needs first
to be set to a large value to better explore the search space. However, a con-
stant large mutation variance will lead to blurred reconstructed volumes. As a
consequence, the mutation variance has to be gradually reduced. The usefulness
of adaptive mutations in EAs is a well established [2,5,9,14]. Such techniques
have been proven effective in various cases, depending on the fitness function
and the genetic engine used. However, complex schemes for the adaptivity of
the mutation operator have a computational cost that may not be negligible.
More simplistic schemes can actually perform better due to lower computational
needs [8]. Our main motivation is to investigate the use of such operators in the
Fly algorithm. The aim is to determine which sets of operators are the best in
terms of accuracy of the results, and amongst them which one is the best in
terms of computational cost. Destroying a bad fly and creating new and better
ones has to be a fast process because it is performed at a much higher rate in
the Parisian approach than in classical EAs. This is because the solution to the
optimisation problem in our case is the whole population [1] rather than the best
individual as in classical EAs. Using the best set of mutation operators to create
new flies is therefore important.

3 Overview of the Fly Algorithm for PET Reconstruction

The Fly algorithm was initially developed as a fast EA in stereovision for robotic
applications such as obstacle detection [12]. The Fly algorithm is based on the
Parisian approach. In conventional artificial evolution (AE), the solution is repre-
sented by the best individual. In the Parisian approach, the solution corresponds
to the whole population (or a subgroup of the population).

The individuals, called Flies, are 3-D points. In its original implementation,
a fly is projected onto the image planes corresponding to the pair of stereo
images. Its fitness is proportional to the difference of pixel values between the
neighbourhoods of the projected point on both images. The flies are evolved
using the typical steps of EAs. The flies eventually gather on the surfaces of
obstacles (e.g. walls). The final population can be used by autonomous robots
to avoid collision when moving.

Following its success in robotics, the Fly algorithm has been adapted to
ET in nuclear medicine, first in SPECT [4], then PET [19]. The population
of individuals is randomly generated within the search space contained in the
scanner. Each individual corresponds to a 3-D point that simulates radioactive
emissions. The emitted photons are projected. Each fly keeps track of its own
simulated photons. The estimated projections (Ŷ) is the amalgamation of the
projected photons of all the flies of the population. After optimisation, Ŷ matches
the projection data Y measured by the scanner, and the population f̂ is an
estimate of the unknown f .

104 Z. A. Abbood and F. P. Vidal

The global fitness is used to evaluate the performance of the population as a
whole toward an optimal global solution. It is a specific feature of the Parisian
approach. In our case, it is an error metrics corresponding to the L1-norm (also
known as sum of absolute errors (SAE)) between Y and Ŷ :

SAE(Y, Ŷ) =
∥
∥
∥Y − Ŷ

∥
∥
∥
1

=
∑

i

∑

j

∣
∣
∣Y (i, j) − Ŷ (i, j)

∣
∣
∣

SAE is measured using all the individuals and it minimised by the algorithm.
Note that Y and Ŷ have to be normalised between 0 and 1 before computing
the L1-norm as the lowest and highest pixel values in Y and Ŷ may be signif-
icantly different. To evaluate the performance of a single individual (i), we use
the marginal fitness (Fm(i)). It is based on the leave-one-out cross-validation
principle:

Fm(i) = SAE(Y, Ŷ \ {i}) − SAE(Y, Ŷ)

with Ŷ \ {i} the estimated projections without the photons simulated by fly i.
If Fm is positive, the error is smaller when the fly is included: The fly has a
positive impact on the population’s performance. It is a good fly, i.e. a good
candidate for reproduction. If Fm is negative, the error is larger when the fly is
included: The fly has a negative impact on the population’s performance. It is
a bad fly, i.e. a good candidate for death. Fm is therefore a measure maximised
by the algorithm.

Repeated applications of the genetic operators are used to optimise the posi-
tion of all the flies to get to the state where the difference between the projections
(Ŷ) simulated by the population and the actual data (Y) is as small as possible.
Our implementation heavily relies on different mutation operators and on new
blood (also called immigration).

We use a steady state evolutionary strategy where, at each iteration, a bad
fly is selected for death and replaced using a genetic operator (mutation or new
blood). We demonstrated in [19] the usefulness of the Threshold Selection over
tournament selection. To select a bad fly, a random fly is repeatedly picked up
until one is found with a marginal fitness below or equal to a given threshold
(e.g. 0); to select a good fly, a random fly is repeatedly picked up until one is
found with a marginal fitness above the threshold.

When the number of flies with negative fitness decreases too much, the thresh-
old selection fails to select flies to kill in an acceptable time. It indicates that
the population has converged. A mitosis operator can be activated to increase
the population size, i.e. the population size is doubled: Each fly is split into two
new flies (one of the two is then mutated). The benefit of this strategy in terms
of computing time has been demonstrated in [19].

If there are enough flies in the population, the solution is extracted to create
volume data using voxels. Two voxelisation methods can be exploited [1]. In
the simpler one, flies are binned into voxels. The flies are considered as Dirac
functions and the voxel intensity corresponds to the number of flies within it.
However it may generate noisy images. In the most advanced method, implicit
modelling is used to produce smoother images. The principle is to treat the

Basic, Dual, Adaptive, and Directed Mutation Operators 105

fitness of a fly as a level of confidence in the fly’s position. Each fly corresponds
to a 3-D Gaussian kernel whose variance depends on the fly’s fitness. A fly is
spread over several voxels. The contribution to final volume dataset is the same
for each fly.

4 Varying Mutation Operators in the Fly Algorithm

Our implementation relies on mutation to create better flies. The aim of the
mutation operators is to create new flies in the neighbourhood of good flies.
Note that new blood is also used to preserve a minimum level of diversity in the
population. The following steps are necessary to use a mutation operator:

1. A bad fly is selected using the Threshold Selection.
2. Its projections are removed from Ŷ .
3. A good fly is selected using the Threshold Selection.
4. The bad fly is replaced by the good fly.
5. The position of the newly created fly is altered by random changes.
6. The projections of the mutated fly are computed.
7. These projections are added to Ŷ .

The only step which is different, depending on the mutation operator used,
is 5. Only the Dual mutation was used in our initial implementation [19]. We
added three other adaptive mutation operators that are automatically tuned
without any human intervention. An individual has 9 genes: x, y, and z for
the fly’s position; PbasicMut, the probability of the basic mutation operator,
PadaptiveMut, the probability of the adaptive mutation operator, PdualMut, the
probability of the dual mutation operator, PdirectedMut, the probability of the
directed mutation operator, PnewBlood, the probability of the immigration/new
blood operator; and σ, the mutation rate associated with the fly (it is used by the
basic and directed mutation operators). Algorithm1 shows how random changes
are applied for all our mutation operators, which are described below.

4.1 Basic Mutation

The mutation variance can be subject to an adaptive pressure itself and be
self-adapted [2]. In our implementation the probability of all the operators is
encoded in the genome of each individual. The mutation variance is too. The
probabilities and the variance are then subject to random mutations as well.
The major advantage of this scheme is to provide a fully automatic method to
adapt the mutation variance, whilst keeping the administration cost null.

4.2 Adaptive Mutation Variance

The mutation variance can be directly adapted to local measurements, such
as fitness [15] and local regularity [13]. For example, when the evolutionary
algorithm is used to minimise an error function, the variance can be bigger

106 Z. A. Abbood and F. P. Vidal

Algorithm 1. Procedure mutate
Input: μ+ # The good fly on which λ will be based
Input: σ # The mutation rate to use for small random alterations
Input: use dir mut # A boolean flag
Output: λ # The fly create by mutation of μ+

λ.parentFm = μ+.Fm # Record the parent’s fitness
λ.created by mutation ← TRUE

Mutate each gene
for each gene i do

Δ ← σ×rand(0, 1)× range[i]
2

Amount of random variation

Get the direction of change of gene i
if NOT use dir mut OR NOT μ+.created by mutation then

Not using directed mutation
λ.dir [i] ← sign(rand(−1, 1)) # Random direction

else if μ+.Fm > μ+.parentFm then
Parent better than grand-parent
λ.dir [i] ← μ+.dir [i] # Go in the same direction as parent

else # Grand-parent better than parent
λ.dir [i] ← −μ+.dir [i] # Go in the opposite direction as parent

end if

Apply the random change in the corresponding direction
λ.gene [i] ← μ+.gene [i] + λ.dir [i] × Δ
check(λ.gene [i]) # Apply constraints on value of gene if necessary

end for

when fitness is high and smaller when fitness is low [20]. The idea is to favour
large exploration around the weakest individuals, whilst performing fine tuning
in the vicinity of good individuals. In our case, we want to maximise the marginal
fitness of flies: The higher the marginal fitness (Fm), the lower the variance, and
vice versa. We define the mutation variance here as a piecewise-defined function
of Fm:

σ (Fm) =

⎧

⎪⎨

⎪⎩

σmax, Fm < fitmin

σmin, Fm > fitmax

σmin + (σmax − σmin) × cos
(

π×
(

Fm−fitmin
fitmax−fitmin

))
+1.0

2.0 , otherwise

with Fm the fitness of the individual who will undergo a mutation. Using the
cosine function, σ(Fm) smoothly varies between the smaller (fitmin) and the
larger (fitmax) fitness thresholds respectively. If Fm is smaller than fitmin, σ is
equal to σmax; if the individual’s fitness is greater than fitmax, σ is equal to σmin

(with σmin and σmax two constant values set by the user). The major advantage
of this scheme is similar to the previous one: It provides a fully automatic method
to adapt the mutation rate, whilst keeping its administration cost negligible.

Basic, Dual, Adaptive, and Directed Mutation Operators 107

4.3 Dual Mutation

Another approach, called Rechenberg’s rule, is to modulate the mutation vari-
ance based on the success/failure rate of the current mutation variance [3,16].
It relies on the notion of “evolution window”: Increase the mutation variance to
speed-up the search-space exploration, or decrease it to refine the results. For
this purpose, the algorithm must keep track of the success rate, which has an
obvious computational cost. This category includes the well-known 1/5th rule
proposed by Schewefel [3,17]. A single σ value is used. It is updated at regular
intervals. It records the number of successful and unsuccessful mutations over
a given number of mutations (M). If the rate of successful mutation is greater
than 1/5, then increase σ; if it is lower, decrease σ.

The Dual mutation operator in the Fly algorithm is based on the concur-
rent testing of two alternative variance values (σlow and σhigh, with σhigh =
kσlow) [19]. The update rule is multiplicative as for the 1/5th rule. If mutations
with σhigh provide the best results during the previous M iterations, then both
mutation variances are multiplied by a predefined factor (pf , with pf > 1). If
mutations with σlow provide the best results during the previous M iterations,
then both mutation variances are divided by pf . For every Dual mutation, we
check the global fitness before and after the mutation. Note that these num-
bers are always pre-computed during the selection of individuals. Therefore, we
cannot affect their computation to the administration cost of this mutation oper-
ator. Using two accumulators, we can assess which variance amongst σlow and
σhigh is the best. This scheme also requires a very limited number of user inputs.
The administration cost of the algorithm is sightly higher than the previous two
schemes but still relatively light. Also, the dual mutation does not need to make
any assumption on the ideal success rate of the mutation as in the 1/5th rule.

4.4 Directed Mutation

We introduce here a new operator, the Directed Mutation, which is related to the
evolution path in CMA-ES [10]. Its objective is to lead new individuals toward
areas of the search space that have been previously defined as “interesting”
by older flies. This principle follows well the fundamentals of CCEAs as new
individuals have to cooperate with older ones to benefit from their knowledge to
locate areas of interest.

To illustrate how our implementation works (see Algorithm 1 with
use dir mut = TRUE), let us consider the case as follows: A fly (Fly2) has
been created by mutation of another fly (Fly1). We are now going to create a
new fly (Fly3) by mutation of Fly2. The position of the new fly will be biased
toward the position of the best fly among Fly1 and Fly2. If Fly1 is better than
Fly2, we will look for a new Fly3 from the location of Fly2 in the direction
toward Fly1 (see Fig. 3a); if Fly2 is better than Fly1, we will look for Fly3
from the location of Fly2 in the direction away from Fly1 (see Fig. 3b). For any
fly created by any kind of mutation, we record its parent’s fitness and in which
direction the new fly has been moved with respect to its parent. This is the main
administration cost.

108 Z. A. Abbood and F. P. Vidal

(a) F ly1 better than F ly2. (b) F ly2 better than F ly1.

Fly1

Fly2

Fly3

Fly1

Fly3

Fly2

Fig. 3. Directed mutation principle.

5 Results

We consider the Jaszczak phantom with hot rods as a test case (see Fig. 2).
We assess the algorithm with all the possible combinations of mutation oper-
ators. There are 24 possible configurations (see Table 1). Due to the stochastic
nature of artificial evolution, 15 reconstructions per configuration are performed
to gather statistically meaningful results. For each reconstruction, we record (i)
the normalised cross-correlation (NCC) between the ground-truth (f) and the
reconstructed volume (f̂), and (ii) the reconstruction time:

NCC(f, f̂) =
1

w × h

i<w∑

i=0

j<h
∑

j=0

⎛

⎝

(

f(i, j) − f
) (

f̂(i, j) − f̂
)

σfσf̂

⎞

⎠

with w and h the number of pixel along the horizontal and vertical axis respec-
tively, f and f̂ the average pixel value in f and f̂ respectively, and σf and σf̂

the standard deviation in f and f̂ respectively. The NCC provides a measure of
similarity between two images. It is 100% if they are perfectly correlated. It is
0% is they are totally uncorrelated. It is −100% if there is a negative correlation
(also called anticorrelation or inverse correlation) between them.

Table 1. The combinations of mutation operators.

Type Operators Type Operators

0000 no mutation 1000 basic

0001 directed 1001 basic + directed

0010 adaptive 1010 basic + adaptive

0011 adaptive + directed 1011 basic + adaptive + directed

0100 dual 1100 basic + dual

0101 dual + directed 1101 basic + dual + directed

0110 dual + adaptive 1110 basic + dual + adaptive

0111 dual + adaptive + directed 1111 basic + dual + adaptive + directed

Basic, Dual, Adaptive, and Directed Mutation Operators 109

Type/mm
#rank

Dirac
#rank

Gaussian
#rank

Type/mm
#rank

Dirac
#rank

Gaussian
#rank

0000/14.53
#1

(68.77%)
#16

(84.38%)
#16

1000/15.40
#3

(85.29%)
#9

(92.14%)
#12

0001/15.67
#5

(86.25%)
#2

(92.56%)
#10

1001/15.67
#5

(86.06%)
#3

(92.17%)
#11

0010/14.53
#1

(74.28%)
#15

(88.67%)
#15

1010/16.00
#8

(85.59%)
#7

(92.81%)
#3

0011/18.93
#16

(84.56%)
#12

(92.65%)
#7

1011/17.80
#14

(86.01%)
#4

(92.99%)
#1

0100/15.67
#5

(77.42%)
#13

(90.05%)
#13

1100/16.73
#11

(85.76%)
#6

(92.60%)
#8

0101/16.40
#10

(86.28%)
#1

(92.96%)
#2

1101/16.73
#11

(85.77%)
#5

(92.73%)
#5

0110/15.40
#3

(74.41%)
#14

(88.71%)
#14

1110/16.13
#9

(84.68%)
#11

(92.57%)
#9

0111/16.87
#13

(84.79%)
#10

(92.68%)
#6

1111/17.87
#15

(85.42%)
#8

(92.80%)
#4

Fig. 4. Performance comparison of the different combinations of mutation operators.
The cells corresponding to combinations whose NCC is less than 1% smaller than the
best combination are highlighted.

Figure 4 shows the median results in term of performance for duration and
NCC for each mutation operator combination. The dual mutation combined with
the directed mutation (see Configuration 0101 in Table 1) looks effective. The
dual mutation only (0100) as in [19] is not as good. The combinations whose
NCC is less than 1% smaller than the best combination are highlighted in the

110 Z. A. Abbood and F. P. Vidal

figure. We can see that all of the combinations using the directed mutation
are performing relatively well. Only combinations that are highlighted for both
voxelisation methods should be considered (i.e. Configuration 0001, 0101, 1000,
1001, 1010, 1011, 1100, 1101 and 1111). Ideally, the ones with a short run-time
should be favoured.

Quantitative results for each configuration are presented using boxplots in
Fig. 5. The boxplots in grey and in white of Fig. 5a show the NCC between the
ground-truth and the reconstructions using all flies as a finite point (or Dirac)
and all flies using Gaussian kernel respectively [1]. The experiments with the
dual and directed mutation operator (0101) (see ellipses in Fig. 5a) seem to
provide best results (86.28 ± 0.71) and (92.96 ± 0.67) in terms of NCC in both
configurations. It is much better than with the Dual mutation only (0100) (see
dashed ellipses) when we use all flies as finite points (77.42% ± 2.41) as in [19]
and all flies as Gaussian kernels (90.05 ± 0.89). However it is still hard to assess
which configuration is the best in term of reconstruction speed (see Fig. 5b).

Our hypothesis is that 0101 is the best combination of operators. To validate
it, we apply a non-parametric statistical hypothesis test (Wilcoxon signed-rank
test, noted W). The size of the samples is 15. The aim is to identify all other
combinations that are statistically relatively similar in terms of NCC as 0101
(see Table 2). We only consider the voxelisation using Gaussian kernels as we
already know it provides the most accurate reconstructions [1]. We also apply
the Wilcoxon signed-rank test on duration (see Table 2). The idea is to identify
which possible good combination provides accurate results the quickest. W is
divided by the total rank sum S to account for the effect size. W/S is within the
range between −1 and +1. For the NCC, any combination whose correspond-
ing value is close to −1 performs much better than 0101; close to 0 performs
similarly well; and close to +1 performs much worse. In practice, any configu-
ration with WNCC/S < 0.5 should be considered as a possible good candidate.
It includes 0001, 0011, 0111, 1010, 1011, 1100, 1101, 1110 and 1111. Almost all
of them use a combination of at least two mutation operators. For this selection
of combinations, the directed mutation is used 6 times, the adaptive mutation
6 times, the dual mutation 5 times, and the basic mutation 6 times. It shows
the benefit of our new operators and the usefullness of combining several types
of mutation.

When the duration is considered, any combination whose corresponding value
is close to +1 performs much better than 0101; close to 0 performs similarly well;
and close to −1 performs much worse. It is because the NCC should be as high as
possible whereas the duration should be as small as possible. Any configuration
with Wduration/S > −0.5 could be considered as a possible candidate. It is
therefore impossible to objectively distinguish the possible good candidates in
terms of shortest time required.

Basic, Dual, Adaptive, and Directed Mutation Operators 111

 60

 65

 70

 75

 80

 85

 90

 95

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

(a) NCC for all flies as a finite point (boxplots in grey) and all flies as Gaussian
kernel (boxplots. in white) [1].

 10

 15

 20

 25

 30

 35

 40

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

(b) Time required.

Fig. 5. Performance of mutation operators. The performance of our initial implementa-
tion with dual mutation only (0100) as in [19] and the performance of the combination
of the dual and directed mutation operators (0101) are highlighted using ellipses.

112 Z. A. Abbood and F. P. Vidal

Table 2. Performance comparison in terms of NCC (Gaussian voxelisation only) and
duration of all the combinations of mutation operators. W is the Wilcoxon signed-rank
test between each entry with Combination 0101, and S is the total rank sum. Possible
good candidates against 0101 are highlighted in grey.

NCC WNCC/S Duration Wduration/S
type (in %) (in minute)

0000 84.38 ±1.07 1.00 14.53 ±1.88 0.64
0001 92.556 ±0.65 0.47 15.67 ±2.02 0.20
0010 88.67 ±0.64 1.00 14.53 ±1.19 0.54
0011 92.65 ±0.55 0.37 18.93 ±6.18 -0.28
0100 90.05 ±0.89 0.98 15.67 ±1.35 0.29
0101 92.96 ±0.67 N/A 16.4 ±2.29 N/A
0110 88.71 ±0.36 1.00 15.4 ±1.64 0.42
0111 92.68 ±0.7 0.40 16.87 ±3.14 -0.08
1000 92.14±0.54 0.78 15.4 ±1.76 0.33
1001 92.17 ±0.61 0.80 15.67 ±2.66 0.26
1010 92.81 ±0.32 0.27 16 ±2.42 0.22
1011 92.99 ±0.58 -0.03 17.8 ±2.91 -0.43
1100 92.6 ±0.5 0.43 16.73 ±3.03 -0.11
1101 92.73 ±0.53 0.35 16.73 ±1.79 -0.09
1110 92.5 ±0.71 0.40 16.13 ±2.64 0.08
1111 92.8 ±0.6 0.35 17.87 ±3.38 -0.33

6 Conclusion

We have presented a fully adaptive implementation of a CCEA based on the Fly
algorithm. The purpose of this algorithm is to optimise the location of 3-D points.
The final set of points corresponds to the solution of the optimisation problem.
The Fly algorithm heavily relies on the mutation operator to find the best posi-
tions. In our initial implementation, we proposed the Dual Mutation operator
to self-tune the mutation variance. In this paper we complete our implementa-
tion with three other adaptive mutation operators and assessed their behaviours
in tomographic reconstruction in PET. The probability of the genetic operators
are now part of the individuals’ genome. It includes a basic mutation operator
whose mutation variance is also encoded in the genome. There is also a mutation
operator whose variance is a function of the fitness of the individual to mutate.
Finally we introduced a new operator, the Directed Mutation, that looks at the
history of the individual that is going to be mutated to guide its mutations in
a direction that is likely to be worth exploring based on the experience of the
individual’s ancestors. We demonstrate using the Jaszczak phantom with hot
rods that this approach and this new operator lead to better results in terms
of accuracy (improvement of NCC by ∼10%) without sacrificing the reconstruc-
tion speed. The problem considered here is, however, relatively specific to claim
general results. Further research is needed to evaluate the effectiveness of our

Basic, Dual, Adaptive, and Directed Mutation Operators 113

operators (i) against state-of-the-art operators, (ii) in alternative EAs, and (iii)
with other reconstruction data.

Acknowledgement. This work has been funded by FP7-PEOPLE-2012-CIG project
Fly4PET (http://fly4pet.fpvidal.net). We thank HPC Wales for the use of its services.

References

1. Ali Abbood, Z., Lavauzelle, J., Lutton, E., Rocchisani, J.M., Louchet, J., Vidal,
F.P.: Voxelisation in the 3D Fly algorithm for PET. Swarm Evol. Comput. (2017)
(in press)

2. Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of the 1st European
Conference on Artificial Life, pp. 263–271. MIT Press (1992)

3. Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction.
Nat. Comput. 1(1), 3–52 (2002)

4. Bousquet, A., Louchet, J., Rocchisani, J.-M.: Fully three-dimensional tomographic
evolutionary reconstruction in nuclear medicine. In: Monmarché, N., Talbi, E.-G.,
Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 231–
242. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79305-2 20

5. Chellapilla, K.: Combining mutation operators in evolutionary programming. IEEE
Trans. Evol. Comput. 2(3), 91–96 (1998)

6. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating
a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

7. Collet, P., Louchet, J.: Artificial evolution and the Parisian approach. Applications
in the processing of signals and images, chap. 2, pp. 15–44. Wiley (2010)

8. Collet, P., Lutton, E., Louchet, J.: Issues on the optimisation of evolutionary algo-
rithm code. In: IEEE Congress on Evolutionary Computation (2002)

9. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

10. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comput. 11(1), 1–18 (2003)

11. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered sub-
sets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

12. Louchet, J.: Stereo analysis using individual evolution strategy. In: Proceedings of
the International Conference on Pattern Recognition, vol. 1, pp. 908–911 (2000)

13. Lutton, E., Lévy Véhel, J.: Pointwise regularity of fitness landscapes and the per-
formance of a simple ES. In: IEEE Congress on Evolutionary Computation, pp.
16–21 (2006)

14. Ochoa, G.: Setting the mutation rate: scope and limitations of the 1/L heuristic.
In: Proceedings of the GECCO 2002, pp. 495–502 (2002)

15. Orlowska-Kowalska, T., Lis, J.: Application of evolutionary algorithms with adap-
tive mutation to the identification of induction motor parameters at standstill.
COMPEL 28(6), 1647–1661 (2009)

16. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart
(1973)

17. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Chichester
(1981)

http://fly4pet.fpvidal.net
https://doi.org/10.1007/978-3-540-79305-2_20

114 Z. A. Abbood and F. P. Vidal

18. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomogra-
phy. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

19. Vidal, F.P., Lutton, E., Louchet, J., Rocchisani, J.-M.: Threshold selection, mitosis
and dual mutation in cooperative co-evolution: application to medical 3D tomog-
raphy. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN 2010.
LNCS, vol. 6238, pp. 414–423. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15844-5 42

20. Vidal, F.P., Villard, P., Lutton, E.: Tuning of patient specific deformable models
using an adaptive evolutionary optimization strategy. IEEE Trans. Bio-Med. Eng.
59(10), 2942–2949 (2012)

https://doi.org/10.1007/978-3-642-15844-5_42
https://doi.org/10.1007/978-3-642-15844-5_42

A New High-Level Relay Hybrid
Metaheuristic for Black-Box

Optimization Problems

Julien Lepagnot(B), Lhassane Idoumghar, Mathieu Brévilliers,
and Maha Idrissi-Aouad

Université de Haute-Alsace, LMIA (E.A. 3993),
12 rue des Frères Lumière, 68093 Mulhouse, France

{julien.lepagnot,lhassane.idoumghar,mathieu.brevilliers}@uha.fr,
idrissimaha@hotmail.com

Abstract. In this paper, a high-level relay hybridization of three meta-
heuristics with different properties is proposed. Our objective is to inves-
tigate the use of this kind of hybridization to tackle black-box optimiza-
tion problems. Indeed, without any knowledge about the nature of the
problem to optimize, combining the strengths of different algorithms,
belonging to different classes of metaheuristics, may increase the proba-
bility of success of the optimization process. The proposed hybrid algo-
rithm combines the multiple local search algorithm for dynamic opti-
mization, the success-history based adaptive differential evolution, and
the standard particle swarm optimization 2011 algorithm. An experi-
mental analysis using two well-known benchmarks is presented, i.e. the
Black-Box Optimization Benchmarking (BBOB) 2015 and the Black Box
optimization Competition (BBComp). The proposed algorithm obtains
promising results on both benchmarks. The ones obtained at BBComp
show the relevance of the proposed hybridization.

Keywords: High-level relay · Hybrid metaheuristic
Black-box optimization · Local search · Differential evolution
Particle swarm optimization

1 Introduction

In High-level Relay Hybrid (HRH) metaheuristics, self-contained metaheuris-
tics are executed in sequence [8]. For instance, a local search can be applied
after an evolutionary algorithm (EA) in order to fine-tune the solution found
by the EA. The HRH hybridization may also use a greedy heuristic to generate
a good initial population for the EA. In this paper, we investigate the use of a
HRH metaheuristic for black-box optimization problems. The idea is to combine
the strengths of different kind of metaheuristics, in order to successfully tackle
a wider range of problems. The first metaheuristic executed in the proposed
HRH should especially focus on exploration, while the last one should focus on
exploitation.
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 115–128, 2018.
https://doi.org/10.1007/978-3-319-78133-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_9&domain=pdf

116 J. Lepagnot et al.

The Multiple Local Search algorithm for Dynamic Optimization (MLSDO) [6]
is a dynamic optimization algorithm that shows interesting properties for a HRH.
Indeed, it has been designed to widely explore the search space, in order to
quickly detect and keep track of the local optima in a problem that changes
over time. For a static optimization problem, it can be used to perform a first
exploration of the search space in order to quickly locate a promizing area, and
eventually different local optima of a multimodal objective function. These local
optima can then be used to create a good initial population of an EA. For this last
one, we have chosen the Success-History based Adaptive Differential Evolution
(SHADE) algorithm, which is one of the state-of-the-art differential evolution
(DE) algorithms [9]. As a last component of the proposed HRH, we investigate
using an algorithm based on particle swarm optimization (PSO). Compared
to EAs, that make use of a population of individuals, PSO uses a swarm of
particles that adjust their flying trajectories in the search space according to
their own flying experiences and the ones of all neighboring particles [5]. PSO
often suffers from premature convergence [1], but it can be used as a powerful
exploitation procedure. In the proposed HRH, we have chosen Standard PSO
2011 (SPSO2011) [2].

In order to validate the proposed hybrid metaheuristic, we have selected two
well-known benchmarks: the Black-Box Optimization Benchmarking (BBOB)
2015 [3], and the Black Box optimization Competition (BBComp) [7].

The rest of this paper is organized as follows: Sect. 2 presents an overview
of MLSDO, SHADE and SPSO2011. Then, the proposed HRH algorithm, called
MSS, is described in detail in Sect. 3. Experimental protocol and parameter
setting are presented in Sect. 4. Experimental results are discussed in Sect. 5.
Finally, a conclusion is given in Sect. 6.

2 Presentation of the Hybridized Components

2.1 Overview of MLSDO Algorithm

In dynamic optimization, it is important for a metaheuristic to continuously
and widely explore the search space, in order to quickly locate a promising
area, and to quickly detect and react to a change in the objective function. To
do so, MLSDO uses several local searches, each one performed in parallel with
the others, to explore the search space, and to track the found optima over the
changes in the objective function. These local searches consist of moving step-by-
step in the search space, from a current solution to its best neighbor one, until a
stopping criterion is satisfied, reaching thus a local optimum. Each local search
is performed by an agent, and all the agents are coordinated by a dedicated
module (the coordinator). Two types of agents exist in MLSDO: the exploring
agents (to explore the search space in order to discover the local optima), and
the tracking agents (to track the found local optima over the changes in the
objective function). The local searches performed by the exploring agents have a
greater initial step size than the one of the tracking agents, because the exploring
agents have to widely explore the search space. The strategies used to coordinate

A New High-Level Relay Hybrid Metaheuristic for Black-Box 117

these local search agents enable the fast convergence to well diversified optima,
in order to quickly react to a change and find the global optimum. Especially,
each agent performs its local search in an exclusive area of the search space: an
exclusion radius is attributed to each agent. This way, if several agents converge
to a same local optimum, then only one of them can continue to converge to
this local optimum: all the other conflicting agents are reinitialized elsewhere in
the search space. Another important strategy is the use of two levels of precision
in the stopping criterion of the local searches of the agents. In this way, we
prevent the fine-tuning of low quality solutions, which could lead to a waste
of fitness function evaluations; only the best solution found by MLSDO is fine-
tuned. Furthermore, the local optima found during the optimization process are
archived, to accelerate the detection of the global optimum after a change in the
objective function. More details about this algorithm are in [6].

In static optimization, there is no need for the tracking agents of MLSDO.
However, the exploring agents and their coordination can be useful to perform
an initial wide exploration of the search space. MLSDO makes indeed use of fast
converging local searches initialized in order to cover at best the search space.
The local optima found by these local searches can then be used to create the
initial population of a population-based metaheuristic.

2.2 Overview of SHADE Algorithm

SHADE maintains two historical archives of H entries for the CR and F control
parameters of DE, denoted by MCR and MF , respectively. It also maintains an
archive of CA inferior individuals, denoted by A. Its overall implementation is
shown in Fig. 1, where the population, denoted by P , is made of N individuals.
For each generation, in order to generate the control parameters CRi and Fi

of each individual xi, it is necessary to randomly select an index ri. It is the
index of an entry of MCR denoted by MCR,ri , and of an entry of MF denoted
by MF,ri . The functions randn and randc generate random values from normal
and Cauchy distributions, respectively. They take two parameters: the mean
followed by the variance of the distribution. The control parameters CRi and Fi

used by successful individuals are stored in two archives, denoted by SCR and SF ,
respectively. In line 11, a mutant vector ui is generated by applying the current-
to-pbest/1/bin mutation strategy: ui = xi + Fi(xpbest − xi) + Fi(xr1 − xr2).
Then, the binomial crossover between ui and xi generates the trial vector vi.
Individual xpbest is randomly selected from the best N × p (p ∈ [0, 1]) members
of the current generation. The individuals xr1 and xr2 are randomly selected
from P and P ∪ A such that they differ from each other as well as xi. More
details about this algorithm are in [9].

2.3 Overview of SPSO2011 Algorithm

In SPSO2011, each particle has a position and a velocity in the search space. For
the ith particle, they are denoted by Xi and Vi, respectively. The best-known
position of the ith particle (known as personal best) is denoted by Pi, whereas

118 J. Lepagnot et al.

Fig. 1. SHADE algorithm

the best-known position of its neighboring particles (known as local best) is
denoted by Gi. The position of the ith particle is updated according to (1),
where i = 1, 2, . . . , N and N is the size of the swarm.

Xi ← Xi + Vi (1)

SPSO2011 exploits the idea of rotational invariance. It starts by defining a
center of gravity (Gri) around three points: the current position (Xi), a point
a little “beyond” the best previous position (pi), and a point a little “beyond”
the best previous position in the neighborhood (li), as follows:

pi = Xi + c1(Pi − Xi) (2)

li = Xi + c2(Gi − Xi) (3)

Gri =
1
3
(Xi + pi + li) (4)

where c1 and c2 are two parameters of the algorithm. Then, a random point X ′
i

is generated in the hypersphere H(Gri, ‖Gri − Xi‖) according to the uniform

A New High-Level Relay Hybrid Metaheuristic for Black-Box 119

distribution, and the velocity is updated as follows:

Vi ← ωVi + X ′
i − Xi (5)

where ω is a parameter of the algorithm. The position of the particle is updated
according to (1). A parameter K is used to generate the particles neighborhood.
More details are in [2].

3 The Proposed Hybrid Algorithm

The proposed algorithm, called MSS, makes use of a HRH of the MLSDO,
SHADE and SPSO2011 algorithms. At first, MLSDO is used to explore the
search space using fast local searches starting from distant initial solutions. Since
the objective function is not dynamic for the problems at hand, only one explor-
ing agent and no tracking agent is used. A stagnation criterion is used to stop
MLSDO if it is not able to improve the fitness value of the best solution found for
a given number, denoted by stopMLSDO, of successive objective function evalu-
ations. Furthermore, a maximum number of evaluations is defined for MLSDO,
denoted by maxMLSDO. Hence, if the stagnation criterion is satisfied or if the
number of evaluations performed by MLSDO reaches maxMLSDO, then MLSDO
stops its execution and SHADE (the next algorithm in the proposed HRH) starts
its execution. The population of SHADE is initialized with the best local optima
found by the local searches performed by MLSDO. The number of local optima
used to create the initial population of SHADE is denoted by topMLSDO. The
other individuals of the population are randomly initialized uniformly in the
search space. As for MLSDO, a stagnation criterion is also defined for SHADE.
The maximum number of successive non improving evaluations that SHADE
can perform is denoted by stopSHADE . If this stagnation criterion is satisfied,
then SPSO2011 is executed (the last algorithm in the proposed HRH) for the
remaining evaluations that can be performed by MSS. In the proposed hybrid
algorithm, SPSO2011 is especially used for exploitation. Its initial population is
the same as the one of the last generation of SHADE.

4 Experimental Protocol and Parameter Setting

4.1 The BBOB 2015 Benchmark

The BBOB 2015 benchmark is made of 24 noise-free real-parameter single-
objective test functions categorized into five groups (see Table 1) [3]. These func-
tions have been proposed to reflect, at least to a certain extend and with a few
exceptions, a difficult portion of the problem distribution that will be seen in
practice. The search interval for each dimension of all functions is [−5, 5]. Each
function is randomly shifted to produce 15 instances with different positions
and values of the global optimum. A performance measure, called the expected
running time (ERT), is typically used to quantify and compare performance of

120 J. Lepagnot et al.

Table 1. BBOB 2015 test functions

Separable functions Multi-modal functions with adequate
global structure

f1 : Sphere f15 : Rastrigin
f2 : Ellipsoidal f16 : Weierstrass
f3 : Rastrigin f17 : Schaffers F7
f4 nigirtsaR-ehcüB: f18 : Schaffers F7, moderately ill-conditioned
f5 : Linear Slope f19 : Composite Griewank-Rosenbrock F8F2

Functions with low or moderate condi-
tioning

Multi-modal functions with weak global
structure

f6 : Attractive Sector f20 : Schwefel
f7 : Step Ellipsoidal f21 : Gallagher’s Gaussian 101-me Peaks
f8 : Rosenbrock, original f22 : Gallagher’s Gaussian 21-hi Peaks
f9 : Rosenbrock, rotated f23 : Katsuura

f24 : Lunacek bi-Rastrigin

Functions with high conditioning and
unimodal

f10 : Ellipsoidal f13 : Sharp Ridge
f11 : Discus f14 : Different Powers
f12 : Bent Cigar

numerical optimization algorithms on this benchmark. It depends on a given
target function value, ft = fopt + Δf , and is computed over all relevant trials
as the number of function evaluations executed during each trial while the best
function value did not reach ft, summed over all trials and divided by the num-
ber of trials that actually reached ft [4]. Statistical significance is tested with the
rank-sum test for a given target Δft using, for each trial, either the number of
needed function evaluations to reach Δft (inverted and multiplied by −1), or, if
the target was not reached, the best Δf -value achieved, measured only up to the
smallest number of overall function evaluations for any unsuccessful trial under
consideration.

In our empirical analysis, two experimental protocols are used to evaluate
the performance of MSS on the BBOB 2015 benchmark. In the first one, called
PROTOCOL1, we fixed the maximum number of evaluations allowed to solve a
function at the same value as in BBComp, i.e. 100D2, where D is the number
of dimensions. We chose to solve 5 times each instance of each test function
(5 independent trials), which makes a total of 75 runs of an algorithm per test
function. The goal of this first protocol is to be closer to the one of BBComp. In
the second protocol, called PROTOCOL2, we run the algorithms with a budget
of 105D evaluations on each instance of each test function. We follow the typical
methodology of BBOB 2015, i.e. each instance of each test function is solved
only one time, and ERT is used to present the results.

A New High-Level Relay Hybrid Metaheuristic for Black-Box 121

4.2 The Black Box Optimization Competition

BBComp is the first competition in continuous black-box optimization where test
problems are truly black boxes for participants. It is also the first web/online
optimization competition in the direct search domain. The nature of the test
functions used for the competition is unknown to the participants. Furthermore,
each participant can use only one algorithm to solve each test function only once.
His algorithm have to solve test functions in 2, 4, 5, 8, 10, 16, 20, 32, 40 and
64 dimensions. For each of these numbers of dimensions, 100 test functions have
to be solved, which makes a total of 1000 problems. The search bound for each
dimension of all functions is [0, 1]. The maximum number of evaluations allowed
to solve a function is 100D2, where D is the number of dimensions.

After the competition, all participants are ranked for each problem based on
their performance. Let k be the rank of a participant for a problem. Then, a
score can be computed for this problem according to k. The sum of these scores,
for all problems, gives the overall rank of a participant. This overall rank is used
to sort the participants and to determine the winner. A simple way to compute
the score of a participant for a problem is to set it to k. It leads to an overall
ranking system called “sum of ranks”. Another way to compute the score of a
participant for a problem is to set it to max{0, log((n+1)/2)− log(k)}, where n
is the number of participants. In effect, these scores amplify differences of good
(low) ranks and hide differences of bad (high) ranks k. It puts an emphasis on
the top ranks, and it leads to the official overall ranking system of BBComp.
More details about this competition can be found in [7].

4.3 Parameter Setting

In MSS, since MLSDO is especially used for exploration, it does not need to
precisely converge to a local optimum. Hence, the parameters that control the
precision of the convergence in MLSDO are set consequently, i.e. the parameters
denoted by δph and δpl, called the highest and the lowest precision parame-
ters of the stagnation criterion of the local searches, respectively, can be left
to high values. All the parameters of MSS, empirically fitted, are presented in
Table 2, where D is the number of dimensions of the problem and B is the budget

Table 2. MSS parameters

122 J. Lepagnot et al.

allowed for its optimization, i.e. the maximum number of allowed evaluations.
These parameters are used for all functions of BBOB 2015 and BBComp. They
are also fitted for the unmodified SHADE and SPSO2011 algorithms, i.e. not
as components of MSS. For the unmodified MLSDO algorithm, changing the
parameters in Table 2 can significantly improve its performance for 10 functions
of BBOB 2015 (using δph = 1.0E−11 and δpl = 1.0E−7). However, it also signif-
icantly worsen its performance for 11 functions. Hence, the parameters in Table 2
can be considered as fitted for MSS and for the unmodified MLSDO, SHADE
and SPSO2011 algorithms.

5 Experimental Results and Discussion

5.1 Results for the BBOB 2015 Benchmark

The results obtained by MSS, MLSDO, SHADE and SPSO2011 on the BBOB
2015 benchmark, following PROTOCOL1, are presented in Table 3, where the
columns “D” and “Pb” give the number of dimensions and the test function used,
respectively. For each test function, the best value of the objective function found
by an algorithm, averaged over 75 runs, is presented. The standard deviation,
denoted by SD, is also given. The Kruskal-Wallis statistical test has been used,
at 95% confidence level, to determine if a significant difference exists between the
results obtained by the algorithms for each test case. If this test indicates that
there is a significant difference between the performance of the algorithms, then
the Tukey-Kramer post hoc test is used to determine which algorithms perform
differently from MSS. If an algorithm performs significantly better than MSS,
then the letter B is written in the “C” column. If it performs significantly worse,
then the letter W is written. The best results obtained for each test case, along
with the results that are not significantly different from the best ones according
to the Tukey-Kramer post hoc test, are written in bold.

As we can see, in 32 and 64 dimensions, MSS performs significantly better
than MLSDO for 18 functions, similarly for 3 functions, and worse for 3 functions.
Compared to SPSO2011, MSS performs significantly better for 20 functions in
32 dimensions and for 21 functions in 64 dimensions. It performs similarly for
3 functions in 32 dimensions and for 2 functions in 64 dimensions. Finally, it
performs worse than SPSO2011 for only 1 function both in 32 and 64 dimensions.
Hence, compared to MLSDO and to SPSO2011, the performance of MSS is
significantly better for most test functions.

Compared to SHADE, MSS performs better for 6 functions in 32 dimensions
and for 7 functions in 64 dimensions. It performs similarly for 14 functions in
32 dimensions and for 13 functions in 64 dimensions. Finally, it performs worse
than SHADE for 4 functions both in 32 and 64 dimensions. Among the functions
for which SHADE performs better than MSS, only two are the same in 32 and in
64 dimensions, i.e. f11 (Discus function) which is unimodal but with a very high
conditioning, and f15 (Rastrigin function). This last one is actually a modified
version of the original well-know Rastrigin function, in order to make it a non-
separable less regular counterpart of f3. The functions for which MSS performs

A New High-Level Relay Hybrid Metaheuristic for Black-Box 123

Table 3. Results of the compared algorithms on the BBOB 2015 benchmark

significantly better than SHADE are the same in 32 and in 64 dimensions. Most
of these functions belong to the category of “multi-modal functions with weak
global structure”.

Table 4 presents the contribution of each component of MSS in the conver-
gence of the algorithm. In columns “Av.” and “SD”, the average number of
evaluations and its standard deviation, given for each test case, are expressed
in percentage of the total number of evaluations allowed for this test case. The
average fitness improvement (column “AFI”), given for SHADE (respectively
SPSO2011), is the percentage by which the fitness value of the best solution

124 J. Lepagnot et al.

Table 4. Contribution of MLSDO, SHADE and SPSO2011 in the convergence of MSS

MLSDO SHADE SPSO2011
Pb Av. SD AFI Av. SD AFI Av. SD
1 12.53 0.06 100.00 58.85 6.45 0.00 28.62 6.46
2 13.67 0.09 100.00 63.49 7.51 0.00 22.84 7.52
3 20.15 5.78 99.93 79.85 5.78 0.00 0.00 0.00
4 18.69 5.91 99.11 81.31 5.91 0.00 0.00 0.00
5 11.56 0.02 0.00 33.82 0.00 0.00 54.62 0.02
6 23.24 4.91 100.00 76.76 4.91 0.00 0.00 0.00
7 18.80 6.28 83.78 52.80 14.07 0.18 28.40 15.03
8 24.32 5.50 97.79 75.68 5.50 0.00 0.00 0.00
9 21.49 5.93 65.23 78.51 5.93 0.00 0.00 0.00
10 30.00 0.00 95.11 70.00 0.00 0.00 0.00 0.00
11 23.99 6.56 96.55 76.01 6.56 0.00 0.00 0.00
12 17.65 4.40 58.06 82.35 4.40 0.00 0.00 0.00
13 18.93 4.85 78.06 81.04 4.84 0.00 0.03 0.22
14 14.27 2.22 99.79 85.73 2.22 0.00 0.00 0.00
15 19.83 6.01 74.67 80.17 6.01 0.00 0.00 0.00
16 20.26 5.45 14.75 52.80 22.56 0.02 26.94 22.29
17 23.05 6.51 98.86 76.84 6.42 0.00 0.12 0.96
18 24.36 6.36 98.99 75.47 6.21 0.00 0.18 1.13
19 20.79 5.94 55.38 73.15 17.19 0.23 6.06 14.92
20 18.11 5.56 35.01 81.89 5.56 0.00 0.00 0.00
21 19.59 6.13 0.07 61.08 7.54 0.00 19.33 10.00
22 18.05 5.05 0.05 60.91 7.35 0.00 21.04 9.00
23 17.03 4.87 1.83 35.87 10.15 0.36 47.10 10.81
24 19.75 5.97 89.75 80.25 5.97 0.00 0.00 0.00

32-D

MLSDO SHADE SPSO2011
Pb Av. SD AFI Av. SD AFI Av. SD
1 11.92 0.01 100.00 56.02 11.48 0.00 32.06 11.48
2 12.51 0.04 100.00 62.48 13.28 0.00 25.00 13.28
3 18.73 5.89 100.00 81.27 5.89 0.00 0.00 0.00
4 18.26 6.17 99.83 81.74 6.17 0.00 0.00 0.00
5 11.40 0.01 0.00 33.77 0.00 0.00 54.82 0.01
6 20.47 3.62 100.00 79.53 3.62 0.00 0.00 0.00
7 19.77 6.08 83.39 61.60 19.03 0.08 18.63 18.97
8 23.75 6.25 99.33 76.25 6.25 0.00 0.00 0.00
9 19.19 5.38 38.56 80.81 5.38 0.00 0.00 0.00
10 30.00 0.00 93.55 70.00 0.00 0.00 0.00 0.00
11 21.60 6.56 99.99 78.40 6.56 0.00 0.00 0.00
12 16.42 4.40 22.91 83.58 4.40 0.00 0.00 0.00
13 16.04 3.99 81.54 81.10 4.40 0.00 2.86 3.81
14 13.07 1.55 99.86 86.93 1.55 0.00 0.00 0.00
15 21.10 6.22 84.49 78.90 6.22 0.00 0.00 0.00
16 19.88 6.00 2.81 47.25 20.56 0.004 32.86 20.11
17 21.92 5.92 98.44 74.24 7.65 0.00 3.83 7.23
18 23.70 5.89 98.02 71.44 6.60 0.00 4.86 6.77
19 18.72 5.28 57.17 81.28 5.28 0.00 0.00 0.00
20 18.48 5.65 37.52 81.52 5.65 0.00 0.00 0.00
21 20.40 6.38 0.12 59.90 10.15 0.00 19.70 11.46
22 17.96 5.11 0.07 57.79 11.80 0.00 24.25 13.60
23 15.35 3.99 1.36 39.10 14.07 0.05 45.55 13.83
24 15.89 3.79 91.74 84.11 3.79 0.00 0.00 0.00

64-D

found by MLSDO (respectively SHADE) is improved by SHADE (respectively
SPSO2011).

In this table, we can see that the test functions for which MLSDO contributes
the most in improving the solution found by MSS (the functions for which the
AFI of SHADE and SPSO2011 are close to 0) are f5, f21, f22 and f23 in 32
dimensions, and f5, f16, f21, f22 and f23 in 64 dimensions. For the other func-
tions, SHADE provides an important contribution in the convergence of MSS.
Besides, we can see that all AFI values of SPSO2011 are close to 0, which means
that SHADE is able to precisely converge to a local or global optimum. Yet,
SPSO2011 contributes to the exploitation process of MSS for the functions f7,
f16, f19 and f23 in 32 dimensions, and f7, f16 and f23 in 64 dimensions.

To further study the effect of the hybridization of SHADE with MLSDO
and SPSO2011, a comparison of the performance of MSS and SHADE following
PROTOCOL2 is presented in Table 5. Considering the lowest target Δf -value
for which at least one of the two compared algorithms has an ERT different
from ∞, MSS obtains a significantly better ERT than SHADE for 5 functions.
On the other hand, SHADE gets also a significantly better ERT than MSS for
5 functions. Hence, the results are mitigated in terms of ERT. However, as we
can see in the column “#succ”, MSS has a better success rate in reaching the
final target than SHADE for 4 functions, i.e. f3, f4, f8 and f21.

A New High-Level Relay Hybrid Metaheuristic for Black-Box 125

Table 5. Expected running time (ERT in number of function evaluations) divided by
the respective best ERT measured during BBOB-2009 in 40 dimensions. The different
target Δf -values are shown in the top row. #succ is the number of trials that reached
the (final) target fopt+10−8. Bold entries are statistically significantly better compared
to the other algorithm, with p = 0.05 or p = 10−k where k ∈ {2, 3, 4, . . . } is the number
following the � symbol, with Bonferroni correction of 48

5.2 Results at the Black Box Optimization Competition

BBComp occurs every year since 2015. The BBComp editions where we partici-
pated are called “BBComp2015CEC” and “BBComp2016-1OBJ” tracks. In the
following subsections, we present the results obtained at BBComp using MSS.

Results at the BBComp2015CEC Track. This edition of the competition
occurred in 2015, and the results obtained by the participants were presented
at the IEEE Congress on Evolutionary Computation (CEC’2015). There were
25 participants to this competition, and MSS is among the winners at the 3rd

place using the official ranking system. Using the “sum of ranks” ranking system,

126 J. Lepagnot et al.

Table 6. Ranking of algorithms competing on the BBComp2015CEC track in 10, 16,
20, 32, 40 and 64 dimensions (taken from [7])

MSS is ranked at the 2nd place. MSS obtained bad results on low dimensional
problems, i.e. in 2, 4, 5 and 8 dimensions. For these number of dimensions, MSS
is ranked at the 16th, 13th, 9th and 5th place, respectively. However, using a
higher number of dimensions, MSS shows a good performance compared to the
other algorithms. For these higher dimensions, i.e. in 10, 16, 20, 32, 40 and 64
dimensions, the ranking of all competing algorithms is presented in Table 6 [7].
As we can see, MSS is the 1st ranked algorithm in 10 dimensions, the 2nd ranked
algorithm in 32, 40 and 64 dimensions, and the 3rd ranked algorithm in 20
dimensions.

A New High-Level Relay Hybrid Metaheuristic for Black-Box 127

Results at the BBComp2016-1OBJ Track. This edition of the competition
occured in 2016, and the results obtained by the participants were presented at
the Genetic and Evolutionary Computation Conference (GECCO’2016). There
were 14 participants to this competition, and MSS is ranked at the 6th place
using the official ranking system. Using the “sum of ranks” ranking system,
MSS is ranked at the 4th place. The results obtained at this edition of BBComp
confirmed that MSS can be easily outperformed on low dimensional problems.
Indeed, MSS is ranked at the 8th place and below for problems with a number
of dimensions lower or equal to 5, but it is ranked at the 5th place and above for
problems with a number of dimensions higher or equal to 8.

6 Conclusion

In this paper, a high-level relay hybrid metaheuristic, called MSS, is proposed. It
combines three algorithms, i.e. MLSDO, SHADE and SPSO2011, that belong to
different classes of metaheuristics. This combination of different metaheuristics
leads to promising results on the BBOB 2015 benchmark, and at the BBComp
competition. At the 2015 edition of BBComp, MSS has notably got the 3rd prize
of the competition, among 25 competing algorithms. The experimental analysis
suggests that MSS still needs to be improved for low dimensional problems.

As a perspective, we can investigate the replacement of the local searches of
MLSDO by more adapted and efficient ones. SHADE and SPSO2011 can also
be replaced by improved variants. Finally, the integration of machine learning
techniques in the proposed hybrid metaheuristic can also be studied.

References

1. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization.
Part II: hybridisation, combinatorial, multicriteria and constrained optimization,
and indicative applications. Nat. Comput. 7(1), 109–124 (2008)

2. Clerc, M.: Standard Particle Swarm Optimisation (2012). 15 pages. https://hal.
archives-ouvertes.fr/hal-00764996

3. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2010: presentation of the noiseless functions (2015). 126 pages.
http://coco.lri.fr/downloads/download15.03/bbobdocfunctions.pdf

4. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimization
benchmarking: experimental setup. Tech. rep., INRIA (2014). 20 pages. http://coco.
lri.fr/downloads/download15.02/bbobdocexperiment.pdf

5. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks IV, Perth, Australia, pp. 1942–
1948, November 1995

6. Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: A multiple local search algorithm
for continuous dynamic optimization. J. Heuristics 19(1), 35–76 (2013)

https://hal.archives-ouvertes.fr/hal-00764996
https://hal.archives-ouvertes.fr/hal-00764996
http://coco.lri.fr/downloads/download15.03/bbobdocfunctions.pdf
http://coco.lri.fr/downloads/download15.02/bbobdocexperiment.pdf
http://coco.lri.fr/downloads/download15.02/bbobdocexperiment.pdf

128 J. Lepagnot et al.

7. Loshchilov, I., Glasmachers, T.: Black-box optimization competition (2017).
https://bbcomp.ini.rub.de

8. Talbi, E.G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)
9. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differen-

tial evolution. In: IEEE Congress on Evolutionary Computation, Cancun, Mexico,
pp. 71–78, June 2013

https://bbcomp.ini.rub.de

Improved Hybrid Iterative Tabu Search
for QAP Using Distance Cooperation

Omar Abdelkafi1(B), Lhassane Idoumghar2, and Julien Lepagnot2

1 Université Lille 1, CRIStAL/UMR CNRS 9189 - INRIA Lille Nord Europe,
59655 Villeneuve d’Ascq cedex, France

omar.abdelkafi@univ-lille1.fr
2 Université de Haute-Alsace, LMIA, EA 3993, 68093 Mulhouse, France

{lhassane.idoumghar,julien.lepagnot}@uha.fr

Abstract. The quadratic assignment problem can be considered as one
of the hardest and most studied combinatorial problems. In this paper,
we propose and analyze three distributed algorithms based on hybrid
iterative tabu search. These algorithms follow the design of the parallel
algorithmic level. A new mechanism to exchange information between
processes is introduced. Through 34 well-known instances from QAPLIB
benchmark, our algorithms produce competitive results. This experimen-
tation shows that our best propositions can exceed or equal several lead-
ing algorithms from the literature in almost all the hardest benchmark
instances.

Keywords: Metaheuristics · Iterative tabu search
Quadratic assignment problem
Cooperative and distributed algorithms

1 Introduction

The Quadratic Assignment Problem (QAP) is an NP-hard problem. It is an
important challenge for different areas. This problem is well known for its mul-
tiple applications in various fields such as: chemistry, transport, industry and
many others. Works on some significant applications of QAP can be found in
[6,18–20]. The QAP was first introduced by Koopmans and Beckmann [10] to
model a facility location problem. The objective is to find a minimum cost assign-
ment of facilities to locations considering the flow of materials between facilities
and the distance between locations. The problem can be formulated as follows:

min
p∈P

z(p) =
n∑

i=1

n∑

j=1

fijdp(i)p(j) (1)

where f and d are the flow and distance matrices respectively, p ∈ P represents
a solution where pi is the location assigned to facility i and P is the set of all n

c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 129–143, 2018.
https://doi.org/10.1007/978-3-319-78133-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_10&domain=pdf

130 O. Abdelkafi et al.

vector permutations. The objective is to minimize z(p), which is the total cost
assignment for the permutation p.

In this work, we propose and analyze three distributed Hybrid Iterative Tabu
Search (HITS) algorithms using cooperation strategies or running independently
in parallel machines. Our main objective is to compare the efficiency of informa-
tion exchange and the efficiency of some well-known diversification methods.

2 Background

One of the first efficient approaches to solve the QAP is the Robust Tabu search
(Ro-Ts) proposed by Taillard in 1991 [16]. Many other works are based on Ro-Ts
to solve the QAP like [1,8,9]. Merz et al. [12] propose a memetic algorithm to
solve QAP (MA-QAP). This approach is a genetic algorithm using the Uniform
Crossover (UX) combined with a 2-opt local search. In 2004, an Improved Hybrid
Genetic Algorithm (IHGA) was implemented in [13]. Then, Misevicius et al. [14]
propose an Iterative Tabu Search (ITS) which is a set of successive Tabu Search
(TS) using a random perturbation after each TS to give the algorithm a new
starting solution. A complete survey until 2007 can be found in [11].

Later, Drezner [4] experiments different hybrid genetic algorithms to solve
the QAP. The best variant of this work is the MRT60 which is a genetic algo-
rithm hybridized with a modified Ro-Ts [16]. Then, James et al. [9] propose five
TS variants extended from Ro-Ts and separated in two categories: the continu-
ous diversification TS process and the discontinuous diversification TS process.
Later, the work of Benlic et al. [1] proposes an Iterative Local Search with a
breakout strategy based on the history of the search (BLS). The local search
uses also the delta matrix. According to the evolution of the search, the BLS
chooses one from different degrees of perturbation to escape the local optima.
Recently, Benlic et al. [2] presented a memetic algorithm (BMA) for the well-
known QAP. They combine the previous BLS [1] with the standard UX. This
approach performs particularly well on unstructured instances from the QAP.

The parallel and distributed design for metaheuristics approaches has the
capacity to improve the solution quality and to reduce the execution time. The
computational cost of the QAP and its difficult search space make this problem
suitable for parallelization.

Talbi [17] classifies the parallel and distributed design of metaheuristics in 3
levels:

– Algorithmic level: This level allows the run of many algorithms in parallel.
The algorithms can run independently with different starting solutions and/or
different parameters and choose the best results of the run. In this case, the
result will be the same as if we execute all these algorithms sequentially, which
means that we reduce the execution time. The algorithms can also cooperate
with each other which means that the behavior of the metaheuristics will
change and, in this case, the parallelization can improve the quality of the
solutions.

Improved Hybrid Iterative Tabu Search for QAP 131

– Iteration level: This level allows a parallelization in each iteration. This is a
parallel evaluation and/or generation of neighborhood. Different parts of the
neighborhood are processed in parallel. The behavior of the metaheuristic is
not altered. The main objective is to speed up the algorithm by reducing the
search time.

– Solution level: This level allows a parallelization of a single solution such
as the evaluation of the objective functions or constraints for a generated
solution. The behavior of the metaheuristic is not altered. The objective is
mainly the speed up of the search.

3 Distributed and Cooperative Algorithms

In this work, the design used for all the versions is the algorithmic level. The
aim of these versions is exclusively the improvement of results thanks to the
distributed environment. The acceleration factor is untreated in this paper. We
propose three versions: Distributed Hybrid Iterative Tabu Search called D-HITS,
DIStance COoperation Hybrid Iterative Tabu Search using the Glover Diversi-
fication called DISCO-HITS-GD and DIStance COoperation Hybrid Iterative
Tabu Search using the Uniform Crossover called DISCO-HITS-UX.

3.1 Distributed Hybrid Iterative Tabu Search

The Distributed Hybrid Iterative Tabu Search (D-HITS) approach is the first
variant of our work. Different HITS are executed in a set of parallel machines
from different starting solutions. In this version, there is no exchange of infor-
mation between the distributed processes. Each HITS runs independently from
the others with a different starting solution and different parameters such as the
threshold values (L1, L2 in Algorithm 1).

The TS represents the intensification mechanism of our work. It produces
the best possible solution after a set of movements in the search space. After
each TS, an adaptive diversification is applied to the global best solution. The
aim is to discover a new promising region for the exploration of the next TS.
The use of the global best solution structure allows the algorithm to reach a
promising region of the search space. All these mechanisms constitute the HITS
of this variant.

In each machine the search history is used to apply a preventive measure
to escape from stagnancy. A counter w is initialized with 0 and after each TS
without improvement, the counter w is incremented. If there is an improvement,
w is reset to 0. The solution is perturbed after a set of TS executions without
improvement. This way, if the algorithm is trapped inside a region of the space,
then, additionally of the usual diversification, a part of the solution is perturbed
to unlock the search. If w continues to grow, a complete re-localization is needed
to explore other regions of the search space. Algorithm 1 is the pseudo-code of
the D-HITS. Algorithm 2 [16] contains the TS method used in this work.

132 O. Abdelkafi et al.

As shown in Algorithm 1 line 20, in every global iteration of the HITS (itera-
tion between two consecutive TS), there is a diversification applied to the global
best solution. For a set of successive global iterations, the global best solution
can stay the same. Hence, if the diversification used is constant, then it will
provide the same new starting solution over and over again. For this reason, the
diversification needs to change from a global iteration to another. It has to be
efficient and to use the structure of the global best solution. All these conditions
are satisfied for the diversification proposed by [7]. The diversification procedure
takes a solution (in our case, it takes the global best solution at every global
iteration) and executes a set of permutations following a step value. The step
value changes from a global iteration to another. This way, even if the global
best solution stays the same for many global iterations of the HITS, the new
starting solution generated by this diversification will be different. Algorithm3
presents the Glover Diversification (GD) pseudo-code.

Algorithm 1. D-HITS for each process
1: Input: perturb: % perturbation; n: size of solution; cost: cost of the current solution; Fcost:

best cost found; Scurrent: current solution; Sbest: best solution found; L1,L2 : thresholds for
preventive measures;

2: Initialization of the solution for the current process;
3: w = 0; /* is the counter to define the search history state */
4: Stagnancy = false;
5: repeat
6: TS algorithm /* see Algorithm 2 */
7: if cost < Fcost then
8: /* improvement */
9: Stagnancy = false; w = 0; Fcost = cost;
10: Update the Sbest with Scurrent;
11: else
12: w++;
13: end if
14: /* Condition of stagnancy */
15: if w == L2 then
16: Stagnancy = true;
17: end if
18: if Stagnancy == false then
19: /* no stagnancy */
20: Update Scurrent with the Diversification of Sbest; /* see Algorithm 3 */
21: else
22: /* Stagnancy */
23: Re-localization of Scurrent;
24: Stagnancy = false;
25: w = 0;
26: end if
27: if w == L1 then
28: Perturbation of Scurrent with the perturb parameter;
29: end if
30: until (Stop condition)

The preventive perturbation mechanism is based on the history of the search.
It is a smart way to explore the search space. The main idea is to find other
promising regions of the space for each process if the search stagnates. After
some global iterations without improvement, w reaches the first threshold L1
(Algorithm 1 line 27 to 29). The first measure to unlock the search process is

Improved Hybrid Iterative Tabu Search for QAP 133

Algorithm 2. The TS framework
1: Input: cost: cost of the current solution; Scurrent: current solution; Sbest: best solution found;

Tcost: best cost found inside the TS; Tsolution: best solution found inside the TS; TSiteration:
number of iteration executed by the TS;

2: for i = 0 to TSiteration do
3: if movement is tabu but meets all aspiration criteria or is not tabu and is a new Tcost then
4: Store the best permutation indexes that meet all conditions;
5: end if
6: Update tabu list;
7: Update Scurrent;
8: if the cost is better than the Tcost then
9: Update the Tsolution with Scurrent;
10: end if
11: Update the delta matrix of the move costs;
12: end for

Algorithm 3. Glover Diversification strategy
1: Input: Scurrent: current solution; Sbest: the best solution found; step: the step of the permu-

tation; n: the size of the problem
2: position = 0;
3: for i = step to 1 /* decrement i by 1 */ do
4: for j = (i − 1) to n /* increment j by step */ do
5: Scurrent[position] = Sbest[j];
6: position++;
7: end for
8: end for
9: if step == n − 1 then
10: reinitialization of step
11: else
12: step++;
13: end if

to apply the diversification and to perturb randomly a portion of the solution
provided by the diversification. This measure assumes that there is no possible
improvement with the current diversification. Hence, a perturbation is applied
in a small part of the solution to reuse the structure of the current best solution.
If this measure leads to an improvement of the global best solution, then the
D-HITS continues its execution until the global stopping criteria are satisfied,
otherwise, the counter w continues to grow independently for each process.

When w reaches the second threshold L2 (Algorithm 1 line 14 to 17), it is
assumed that a complete re-localization is required. In this case, the algorithm
ignores the diversification part and just perturbs all the current best solutions
(Algorithm 1 line 22 to 26). The goal of this second measure is to explore the
possibility that a better solution can exist in another region of the search space.

3.2 Distance Cooperation Hybrid Iterative Tabu Search

In this section, we propose two versions: The DIStance COoperation Hybrid
Iterative Tabu Search with the Glover diversification (DISCO-HITS-GD) and
with the UX diversification (DISCO-HITS-UX). Different HITS are executed
in a distributed environment from different starting solutions. For these two
variants, there is an exchange of information between a set of processes in parallel
following a ring topology.

134 O. Abdelkafi et al.

The classical exchange of information consists in sending the best solution
of the current process to the neighbor process. It allows the neighbor process
to improve the search if the best solution received is better than its own best
solution.

In our work, we introduce a new mechanism to exchange information for the
QAP. The process sends its current solution and receives the current solution
of the neighbor process. The idea is to compute the similarity between these
two solutions at each position to define the distance (Algorithm4 line 11–15).
According to this distance, each machine takes a decision and follows a specific
series of instructions to continue the search (diversification, perturbation or re-
localization). Each process executes one HITS and the evolution of each process
depends on the search history of its neighbor. The aim is to explore intelligently
different regions of the space.

Fig. 1. Movement of re-localization using the distance cooperation

Figure 1 shows the re-localization movement using our concept of distance
between neighbor solutions. If the two solutions (current and neighbor solu-
tions) are very close in the search space, the variable level will take the value
2 (Algorithm 4 line 22). This value indicates to the algorithm that the current
solution needs to execute a re-localization to discover a new region in the search
space (Algorithm 4 line 31).

The Algorithm 4 is duplicated for all the processes. It runs a succession of TS
(Algorithm 2) [16]. After each TS, the Algorithm4 saves the new best solution
if there is improvement. The next step of our proposition is to send the current
solution and to receive the same information from the neighbor process. This is
the information exchange step. The algorithm computes the difference between
the two solutions to determine the distance between them. According to the
distance, the algorithm takes one decision, to execute a diversification (Algo-
rithm3 for DISCO-HITS-GD or Algorithm5 for DISCO-HITS-UX), to perturb
the solution (line 29 Algorithm4) or to make a re-localization of this solution
(line 31 Algorithm 4).

For the DISCO-HITS-GD, our approach applies the diversification proposed
by [7] called the Glover Diversification (GD) in this work. The diversification

Improved Hybrid Iterative Tabu Search for QAP 135

Algorithm 4. Distance Cooperation Between Hybrid Iterative Tabu Search
1: Input: perturb: % perturbation; n: size of solution; cost: cost of the current solution; Fcost: best cost

found; Scurrent: current solution; Sbest: best solution found; SEX : solution exchanged;

2: Initialization of the solution for the current process;

3: repeat

4: TS algorithm /* see Algorithm 2 */

5: if cost < Fcost then

6: Fcost = cost;

7: Update the Sbest with Scurrent;

8: end if

9: level = 0; counter = 0;

10: Exchange Scurrent between processes (ring topology);

11: for i = 0 to n /* Compute distances */ do

12: if Scurrent[i] == SEX [i] then

13: counter ++;

14: end if

15: end for

16: if counter < n
4 then

17: level = 0; /* Big distance between the two processes */

18: else

19: if counter < 3×n
4 then

20: level = 1; /* Processes are relatively close */

21: else

22: level = 2; /* Processes are very close */

23: end if

24: end if

25: if level == 0 then

26: Update Scurrent with the diversification of Sbest (Algorithm 5 or Algorithm 3);

27: else

28: if level == 1 then

29: Perturbation of Scurrent with the perturb parameter;

30: else

31: Re-localization of Scurrent;

32: end if

33: end if

34: until (Stop condition)

procedure takes a solution (in our case, it takes the global best solution) and
executes a set of permutations following a step value. The step value changes
from a global iteration (Algorithm 4 from line 3 to line 34) to another. This
way, even if the global best solution stays the same for many global iterations
of the HITS, the new starting solution generated by this diversification will be
different. Algorithm 3 presents the diversification pseudo-code.

For the DISCO-HITS-UX, the diversification applied is the uniform crossover
(UX) presented by Algorithm 5. The diversification procedure takes a solution
(in our case, it takes the global best solution) and executes the UX following the
sequence given by the select vector. The select vector is perturbed before each
application of the UX. This way, even if the global best solution stays the same
for many global iterations of the HITS, the new starting solution generated by
this diversification will be different.

The UX Algorithm 5 is constituted with three separated loops. The first and
the second loops can fuse with each other but the behavior of the UX will be
altered. In this proposition, we design Algorithm5 to be easily implemented in
parallel at the solution level.

136 O. Abdelkafi et al.

Algorithm 5. Uniform Crossover UX:
1: Input: Scurrent: current solution; SEx: the best solution found exchanged between process; n:

the size of the problem; select: sequence to define the crossover with a mixing ratio of 0.5;
index: filter to give a feasible solution initialized to 0;

2: Perturbation of select;
3: for i = 0 to n /* First loop*/ do
4: if select[i] == 0 then
5: Scurrent[i] = Scurrent[i];
6: index[Scurrent[i]] = 1;
7: else
8: Scurrent[i] = −1;
9: end if
10: end for
11: for i = 0 to n /* Second loop*/ do
12: if select[i] == 1 and index[SEx[i]] == 0 then
13: Scurrent[i] = SEx[i];
14: index[Scurrent[i]] = 1;
15: end if
16: end for
17: for i = 0 to n /* Third loop*/ do
18: if Scurrent[i] == −1 then
19: for k = 0 to n do
20: if index[k] == 0 then
21: Scurrent[i] = k ;
22: index[k] = 1;
23: break;
24: end if
25: end for
26: end if
27: end for

The following example is an application of the UX (Algorithm5):
Initialization:

– select = (0, 1, 1, 0, 1, 0).
– index = (0, 0, 0, 0, 0, 0).
– Scurrent = (1, 2, 0, 3, 5, 4).
– Sbest = (3, 5, 1, 0, 4, 2).

First loop:

– Scurrent = (1,−1,−1, 3,−1, 4).
– index = (0, 1, 0, 1, 1, 0).

Second loop:

– Scurrent = (1, 5,−1, 3,−1, 4).
– index = (0, 1, 0, 1, 1, 1).

Third loop:

– Scurrent = (1, 5, 0, 3, 2, 4).
– index = (1, 1, 1, 1, 1, 1).

Improved Hybrid Iterative Tabu Search for QAP 137

4 Experimental Results

4.1 Platform and Tests

In our experimentation, the algorithm is written in C/C++ and runs on a clus-
ter of 10 machines Intel Core processor i5-3330 CPU (3.00 GHz) with 4 GB of
RAM. The proposed algorithms are experimented on benchmark instances from
the QAPLIB (http://www.seas.upenn.edu/qaplib/inst.html) [3]. The size of the
instances varies between 20 and 150. All the results are expressed as a percent-
age deviation from the best known solutions (BKS) (Eq. 2). All the BKS can be
found in the online benchmark library QAPLIB. Each instance is executed 10
times and the average results of these executions are given.

deviation =
(solution − BKS) × 100

BKS
(2)

The QAPLIB archive comprises 134 instances that can be classified into four
types:

– Real life instances (Type 1);
– Unstructured randomly generated instances based on a uniform distribution

(Type 2);
– Randomly generated instances similar to real life instances (Type 3);
– Instances in which distances are based on the Manhattan distance on a grid

(Type 4);

Only the type 2, 3 and 4 are considered in this work since type 1 is very easy
to solve.

4.2 Parameters

Our approaches contained a set of parameters. These parameters are fixed after
a set of experimentation to get the best compromise between intensification
and diversification. Table 1 shows the parameters used for D-HITS, DISCO-
HITS-GD and DISCO-HITS-UX. The TSiteration parameter is the number of
iterations executed by each TS inside the ITS (Algorithm 2 from line 3 to 13).
The global iteration parameter is between two successive TS (stop condition)
and n is the size of the problem. The rank value is the number of the current
machine going from 0 to 9 in our work.

4.3 Experimentation

The first experimentation (Table 2) is focused on the three variants of our work.
The same number of objective function evaluations and the same machines are
used (equivalent computing power). The time is expressed in minutes. The num-
ber within brackets is the number of times each algorithm gets the BKS among
the 10 trials. The results are presented for type 2, 3 and 4 respectively.

http://www.seas.upenn.edu/qaplib/inst.html

138 O. Abdelkafi et al.

Table 1. Parameters

Parameters Value

TSiteration 1000 × n

Global iteration 200

L1 20 + rank

L2 40 + rank

Aspiration criteria n× n× 5

Percentage of perturbation 25%

Table 2. Distributed and cooperative hybrid iterative tabu search variants

Instances(34) BKS D-HITS DISCO-HITS-GD DISCO-HITS-UX

Deviation Times Deviation Times Deviation Times

tai20a 703482 0.000(10) 0.41 0.000(10) 0.40 0.000(10) 0.4

tai25a 1167256 0.000(10) 0.81 0.000(10) 0.78 0.000(10) 0.79

tai30a 1818146 0.000(10) 1.40 0.000(10) 1.36 0.000(10) 1.37

tai35a 2422002 0.000(10) 2.18 0.000(10) 2.16 0.000(10) 2.15

tai40a 3139370 0.007(9) 3.25 0.030(6) 3.18 0.007(9) 3.22

tai50a 4938796 0.058(7) 6.34 0.062(8) 6.19 0.048(8) 6.29

tai60a 7205962 0.369(0) 11.10 0.303(0) 10.71 0.272(0) 10.77

tai80a 13515450 0.654(0) 26.58 0.573(0) 25.54 0.561(0) 25.62

tai100a 21052466 0.582(0) 54.30 0.552(0) 52.07 0.359(0) 52.36

tai20b 122455319 0.000(10) 0.31 0.000(10) 0.18 0.000(10) 0.18

tai25b 344355646 0.000(10) 0.75 0.000(10) 0.7 0.000(10) 0.69

tai30b 637117113 0.000(10) 1.36 0.000(10) 1.34 0.000(10) 1.36

tai35b 283315445 0.000(10) 2.14 0.000(10) 2.13 0.000(10) 2.11

tai40b 637250948 0.000(10) 3.18 0.000(10) 3.17 0.000(10) 3.16

tai50b 458821517 0.000(10) 6.19 0.000(10) 6.12 0.000(10) 6.09

tai60b 608215054 0.000(10) 10.64 0.000(10) 10.67 0.000(10) 10.6

tai80b 818415043 0.000(10) 25.36 0.000(10) 25.60 0.000(10) 25.35

tai100b 1185996137 0.000(6) 52.83 0.000(9) 51.26 0.000(10) 53.08

tai150b 498896643 0.076(0) 192.48 0.015(0) 214.26 0.027(3) 214.86

sko42 15812 0.000(10) 3.68 0.000(10) 3.67 0.000(10) 3.25

sko49 23386 0.000(10) 5.80 0.000(10) 5.76 0.000(10) 2.67

sko56 34458 0.000(10) 8.66 0.000(10) 8.63 0.000(10) 8.59

sko64 48498 0.000(10) 12.99 0.000(10) 12.94 0.000(10) 7

sko72 66256 0.000(10) 18.66 0.000(10) 18.53 0.000(10) 18.53

sko81 90998 0.001(9) 26.56 0.000(10) 26.48 0.000(10) 26.62

sko90 115534 0.000(10) 37.05 0.000(10) 37.17 0.000(10) 37.24

sko100a 152002 0.001(9) 51.37 0.000(10) 53.65 0.000(10) 52.41

(continued)

Improved Hybrid Iterative Tabu Search for QAP 139

Table 2. (continued)

Instances(34) BKS D-HITS DISCO-HITS-GD DISCO-HITS-UX

Deviation Times Deviation Times Deviation Times

sko100b 153890 0.000(10) 52.04 0.000(10) 51.50 0.000(10) 52.63

sko100c 147862 0.000(7) 52.76 0.000(10) 51.52 0.000(10) 52.04

sko100d 149576 0.001(6) 52.48 0.000(10) 54.09 0.000(8) 51.28

sko100e 149150 0.000(10) 53.27 0.001(9) 51.42 0.001(9) 51.30

sko100f 149036 0.001(9) 52.36 0.001(8) 51.48 0.001(9) 51.64

wil100 273038 0.002(0) 53.57 0.000(9) 51.60 0.000(8) 51.62

tho150 8133398 0.027(0) 217.34 0.010(0) 218.95 0.004(0) 199.36

Average 0.052(262) 32.36 0.046(279) 32.80 0.038(284) 31.96

Table 2 contains the results for the three variants proposed in this work. Our
first comparison is between D-HITS and DISCO-HITS-GD. These two variants
use exactly the same elements (TS, GD, re-localization and perturbation). The
difference is our mechanism to exchange information applied for the DISCO-
HITS-GD. This mechanism gives the DISCO-HITS-GD the capacity to explore
efficiently the search space. It uses the evolution of each process to explore the
largest possible search space. Through the 34 benchmark instances presented in
this work, the DISCO-HITS-GD gets better results than D-HITS on 9 instances
against 3 for D-HITS (tai40a, tai50a and sko100e). The variant with exchange
has the capacity to get better results on large size instances like tai150b and
tho150. It confirms that our cooperation method between processes is efficient
to explore large search spaces. The average results for type 2 are equivalent for
the two variants but DISCO-HITS-GD gets better results on type 3 and 4. With
a global average of 0.046% the DISCO-HITS-GD is better than D-HITS with a
global average of 0.052%.

The second comparison is between DISCO-HITS-GD and DISCO-HITS-UX.
The difference between these two variants is only the diversification operator
(Glover Diversification against Uniform Crossover). DISCO-HITS-UX gets the
best average of 0.038% for the 34 instances thanks to its good results on type 2
and 4. The second average is for DISCO-HITS-GD with 0.046% but this vari-
ant gets better results on type 3. DISCO-HITS-UX reaches the BKS 284 times
against 279 times for DISCO-HITS-GD which means that the DISCO-HITS-UX
variant is more robust. Moreover, it gets better results on 6 instances against
only one instances for DISCO-HITS-GD. This comparison reveals that the UX
is a more efficient diversification on QAP than the GD.

4.4 Literature Comparison

Table 3 presents several comparisons with leading algorithms from the literature.
The two best variants of our work (DISCO-HITS-GD and DISCO-HITS-UX) are
compared with four algorithms from the literature.

140 O. Abdelkafi et al.

T
a
b
le

3
.
C

o
m

p
a
ri

so
n

o
f
D

IS
C

O
-H

IT
S
-G

D
a
n
d

D
IS

C
O

-H
IT

S
-U

X
w

it
h

B
M

A
,
B

L
S
,
C

P
T

S
a
n
d

P
IL

S
(T

y
p
e

2
,
3

a
n
d

4
)

Improved Hybrid Iterative Tabu Search for QAP 141

– Population-based memetic algorithm (BMA) [2] (2015);
– The breakout local search (BLS) [1] (2013);
– Cooperative parallel tabu search (CPTS) [8] (2009);
– Population-based iterated local search (PILS) [15] (2006);

The algorithms of the literature use time as stopping criterion. For fair com-
parison the same stopping criterion of BLS, BMA and ITS (1 h for n <= 100
and 4 h for n > 100) is used. We can notice that our average of time is lower
than BLS, BMA and ITS.

This comparison is focused on the quality of solutions. We use 34 well-known
benchmark instances from the QAPLIB which are difficult to solve. The other
instances of QAPLIB are easy to solve for our algorithms and the algorithms of
the literature except for tai256c. Only the percentage deviation are considered
in the comparison. The time is given for information purposes only.

Table 3 presents the experiments of type 2 in the first part. The best average
is obtained by the BMA [2] algorithm with 0.1294%. It is followed by DISCO-
HITS-UX with a very close average results of 0.1386%. However, our DISCO-
HITS-UX outperforms BMA on three instances (tai40a, tai50a and tai100a)
against two (tai60a and tai80a). It outperforms the average of the other three
algorithms BLS [1], CPTS [8] and PILS [15]. DISCO-HITS-GD is ranked at the
fourth place after BMA, DISCO-HITS-UX and BLS.

Table 3 presents the experiments of type 3 in the second part. The best aver-
age is obtained by our DISCO-HITS-GD algorithm with 0.0015%. It is followed
by DISCO-HITS-UX with an average results of 0.0027% . The most important
instance in this type is the tai150b. Our two propositions solve this instance
efficiently thanks to the intelligent exploration of the search space.

Table 3 presents the experiments of type 4 in the last part. The best aver-
age is obtained by our DISCO-HITS-UX algorithm with 0.0004%. It is followed
by DISCO-HITS-GD with an average results of 0.0008%. The most important
instance in this type is tho150. Our two propositions are the two best algorithms
to solve this instance compared to the other works. Our propositions show high
efficiency to solve large size instances of 150.

5 Conclusion and Perspectives

In this work, we have presented and validated three variants of a distributed
HITS to solve the QAP. Each variant proposes different HITS based on an
iterative tabu search and implemented in parallel. The first variant is the D-HITS
which executes parallel HITS from different starting solutions and with different
parameters. The second variant is the DISCO-HITS-GD algorithm which is a
parallel distributed HITS using the distance between processes to select the
diversification technique to apply. The last variant is the DISCO-HITS-UX which
uses the same concept than the DISCO-HITS-GD variant but using the UX
instead of the Glover diversification. All these variants enable a balance between
intensification and diversification.

142 O. Abdelkafi et al.

The three approaches demonstrate high-quality results on the set of well-
known benchmark instances from QAPLIB. We evaluated our approaches on 34
benchmark instances from the QAPLIB. Indeed, our approaches are very com-
petitive and outperform in many instances the current best approaches solving
QAP. The comparison between the variants shows the potential of the exchange
of information in the distributed design and the power of this exchange to solve
big size instances.

In summary, three main contributions are proposed in this work. The first
one is the creation of three new distributed variants to solve the QAP. Each
variant is hybridized with a set of different adaptive diversification mechanisms
to improve the results in a distributed environment. The second contribution
is the creation of a new mechanism which allows the algorithm to compute
distance between solutions in order to explore the largest search space possible
through the exchange of information. The final contribution is the experimental
comparison of two well known diversification techniques (GD and UX).

As a future work, there are several possible ways to extend this work. One
possibility is to experiment other parameters to get better results. There is also
some instances which are rarely used in literature and they are difficult to solve
for metaheuristics, like the instances proposed by [5]. Another possibility is to
explore the two other parallel designs (the iteration level and the solution level).
For the iteration level we can reduce the execution time with a parallel evaluation
and generation of neighborhoods inside the delta matrix. For the solution level
we can reduce the execution time with a parallel UX or GD to generate the new
starting solution. The best platform to perform these two levels is probably the
GPU platform thanks to its single instruction multiple data architecture. We can
also use other topologies to exchange information instead of the ring topology.
Finally, this approach can be experimented for other combinatorial problems to
analyze the behavior of the proposed approach with other kinds of problems.

References

1. Benlic, U., Hao, J.K.: Breakout local search for the quadratic assignement problem.
Appl. Math. Comput. 219(9), 4800–4815 (2013)

2. Benlic, U., Hao, J.K.: Memetic search for the quadratic assignment problem.
Expert Syst. Appl. 42, 584–595 (2015)

3. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment problem
library. J. Glob. Optim. 10(4), 391–403 (1997)

4. Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution
of the quadratic assignment problem. Comput. Oper. Res. 35(3), 717–736 (2008)

5. Drezner, Z., Hahn, P.M., Taillard, E.: Recent advances for the quadratic assignment
problem with special emphasis on instances that are difficult for meta-heuristic
methods. Ann. Oper. Res. 139(1), 65–94 (2005)

6. Duman, E., Or, I.: The quadratic assignement problem in the context of the printed
circuit board assembly process. Comput. Oper. Res. 34(1), 163–179 (2007)

7. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K.,
Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol.
1363, pp. 1–51. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026589

https://doi.org/10.1007/BFb0026589

Improved Hybrid Iterative Tabu Search for QAP 143

8. James, T., Rego, C., Glover, F.: A cooperative parallel tabu search algorithm for
the quadratic assignment problem. Eur. J. Oper. Res. 195(3), 810–826 (2009)

9. James, T., Rego, C., Glover, F.: Multistart tabu search and diversification strate-
gies for the quadratic assignment problem. IEEE Trans. Syst. Man Cybern. Part
A Syst. Hum. 39(3), 579–596 (2009)

10. Koopmans, T., Beckmann, M.: Assignment problems and the location of economic
activities. Econometrica 25(1), 53–76 (1957)

11. Loiola, E.M., de Abreu, N.M.M., Netto, P.O.B., Hahn, P., Querido, T.: A survey
for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)

12. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the
quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000)

13. Misevicius, A.: An improved hybrid genetic algorithm: new results for the quadratic
assignment problem. Knowl. Based Syst. 17(2–4), 65–73 (2004)

14. Misevicius, A., Kilda, B.: Iterated tabu search: an improvement to standard tabu
search. Inf. Technol. Control 35(3), 187–197 (2006)

15. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J.
Oper. Res. 174(3), 1519–1539 (2006)

16. Taillard, E.: Robust taboo search for the quadratic assignement problem. Parallel
Comput. 17(4–5), 443–455 (1991)

17. Talbi, E.G.: Metaheuristics: from Design to Implementation. Wiley, University of
Lille - CNRS - INRIA, Hoboken (2009)

18. Ulutas, B.H., Konak, S.K.: An artificial immune system based algorithm to solve
unequal area facility layout problem. Expert Syst. Appl. 39(5), 5384–5395 (2012)

19. Wu, Q., Hao, J.K.: Solving the winner determination problem via a weighted max-
imum clique heuristic. Expert Syst. Appl. 42(1), 355–365 (2015)

20. Zhang, Q., Sun, J., Tsang, E.: An evolutionary algorithm with guided mutation for
the maximum clique problem. IEEE Trans. Evol. Comput. 9(2), 192–200 (2005)

H-ACO: A Heterogeneous Ant Colony
Optimisation Approach with Application

to the Travelling Salesman Problem

Ahamed Fayeez Tuani1(B), Edward Keedwell1, and Matthew Collett2

1 College of Engineering, Mathematics and Physical Sciences, University of Exeter,
Harrison Building, Exeter, England

{ab835,E.C.Keedwell}@exeter.ac.uk
2 Animal Behaviour Laboratory, College of Life and Environmental Sciences,

University of Exeter, Washington Singer Building, Exeter, England
M.Collett@exeter.ac.uk

https://www.exeter.ac.uk

Abstract. Ant Colony Optimization (ACO) is a field of study that mim-
ics the behaviour of ants to solve computationally hard problems. The
majority of research in ACO focuses on homogeneous ants although
animal behaviour research suggests that heterogeneity in behaviour
improves the overall efficiency of ant colonies. This paper introduces
and analyses the effects of heterogeneity of behavioural traits in ACO to
solve hard optimisation problems by introducing unique biases towards
the pheromone trail and local heuristics for each ant. The well-known Ant
System (AS) and Max-Min Ant System (MMAS) are used as the base
algorithms to implement heterogeneity and experiments show that this
method improves the performance when applied on Travelling Salesman
Problem (TSP) instances particularly for larger instances. The diver-
sity preservation introduced by this algorithm helps balance exploration-
exploitation, increases robustness with respect to parameter settings and
reduces the number of algorithm parameters that need to be set.

Keywords: Heterogeneity · Heterogeneous · ACO · TSP · Diversity

1 Introduction

Natural systems provide inspiration for tackling complex tasks by being able to
self-organize without the need of a central controller. These behaviours are due
to evolution, development and learning thus providing a platform for nature-
inspired algorithms to achieve good solutions to complex problems. Another
example of such inspiration is the swarm behaviour in which natural organisms
behave when they are in groups. As an example, ant collectives are capable
of achieving complex tasks such as nest construction and food foraging that
would not be possible for individual ants. A colony of ants is capable of finding
the shortest path from nest to food in a sophisticated way. Inspiration can be
taken from these behaviours and used to tackle optimization problems in the real
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 144–161, 2018.
https://doi.org/10.1007/978-3-319-78133-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_11&domain=pdf

H-ACO: A Heterogeneous ACO for TSP 145

world where their behaviours have been implemented in ant colony optimization
(ACO) research [1]. The main contribution of ants in this research is the foraging
behaviour where ants lay pheromone on the ground to mark their path from
the nest to food source. This is to guide the ant back to the nest and also
guide its colony members towards a food source during the recruitment process.
ACO implements similar concepts when optimising combinatorial optimization
problems such as the Travelling Salesmen Problem (TSP) [2]. TSP is one of
the most widely studied by researchers working on combinatorial optimization
problems, is an NP-hard problem and is an interpretation of a salesman requiring
to visit n cities via the shortest complete tour.

A significant issue with ACO, as in most other metaheuristic approaches is to
find a proper balance between exploitation and exploration. Exploitation is a pro-
cess of concentration of the algorithm in the areas of the search space where good
quality solutions have been previously been found while exploration of the search
space denotes action by the search agent in moving towards unexplored areas.
Several studies reviewed in [1] show that a proper balance between exploitation
and exploration is required in order for a metaheuristic algorithm to achieve
good to optimal results. In this paper, we investigate the influence of each ant
having different behavioural characteristics or traits in contrast to standard ACO
where all ants have the same behavioural traits. In the proposed heterogeneous
approach, each ant has individual pheromone (α) and heuristics coefficients (β)
where both α and β are parameters that control the relative importance of
the pheromone trail and local heuristics used in transition probability [3]. It is
known that too much emphasis on pheromone trail or local heuristics may hin-
der the performance of the algorithm through over exploration or exploitation.
Hence the proposed method can overcome the exploration-exploitation problem
thus improving the performance of ACO. The heterogeneous approach imple-
mented in this study stems from the actual behaviour of social insects which are
heterogeneous in nature, displaying different traits and in some circumstances
behavioural roles within a colony [4,5]. The paper is structured as follows. In
Sect. 2, ACO is discussed briefly while Sect. 3 discuss the previous work on het-
erogeneous approach in ACO. Section 4 describes the methodology of this study
and Sect. 5 explains the experimental setup. Section 6 present the results of the
study and the paper is concluded in Sect. 7 with discussion and conclusion.

2 Ant Colony Optimization

Ant Colony Optimization (ACO) is an optimisation algorithm that takes inspi-
ration from the foraging behaviours of real ants. Some of the most popular
conventional ACO are Ant System (AS) [3] and Max Min Ant System (MMAS)
[6] that use metaheuristics approach inspired by ant colonies behaviour to find
good solutions for an optimization problem. AS was the first ACO algorithm to
be developed and acts as proof of ACO concept while MMAS is one of the best
performing ACO algorithms in the literature. Both algorithms work through the
deposition of pheromone by virtual ants who traverse the set of cities creating

146 A. F. Tuani et al.

a tour, where the level of pheromone deposited on that tour is a function of
tour optimality and the pheromone on all paths is evaporated uniformly. Subse-
quent ants probabilistically choose paths with a preference for those paths with
greater pheromone with the goal of converging towards a near-optimal solution.
The algorithms differ in that ant system allows all ants to contribute to the
deposition of the pheromone, whereas the max-min ant system allows only the
best performing ant within a population to contribute and has a lower-bound
on pheromone levels. Both AS and MMAS have been applied to numerous TSP
instances, a combinatorial optimization problem that has attracted extensive
research [7]. This paper implements the heterogeneous approach on these two
ACO variants. Due to limited space, AS and MMAS will not be discussed in
detail here and can be referred to [3,6] respectively.

3 Heterogeneous ACO

Heterogeneity in swarm intelligence was firstly described in Particle Swarm Opti-
mization (PSO) by Engelbrecht in [8] who proposed that introduction of hetero-
geneity in a search algorithm can improve the performance. This concept can
also be adopted in ACO where artificial ants with different traits of behaviour
can help to improve the performance of the ACO algorithm. This mimics the
actual behaviour of real ants in a colony in terms of diversity and division of
labour [9]. Heterogeneity in ACO can be grouped into individual and colony
level. Artificial ants with different behaviours among them is said to be hetero-
geneous at the individual level while colonies of ants that differ in behaviour
between the colonies is said to be the latter. Heterogeneous individual ants in
ACO were first introduced by [10] where the authors used modified ACO with
heterogeneity for path planning in mobile robots in order to find obstacle-free
path in a certain environment. The author deployed ants with different sight,
speed and function behaviours and found that the performance of Heterogeneous
ACO (HACO) is better in terms of path planning when compared to conven-
tional ACO. Chira et al. discussed the different sensitivity of the artificial ants to
the pheromone trail level in [11]. Ants with higher pheromone sensitivity strongly
follow the pheromone trail while ants with lower pheromone sensitivity are more
inclined towards random search. In the meantime, Hara et al. [12] proposed the
use of classic and exploratory ants where each ant constructs a partial solution
which is then combined to produce one single solution. Yoshikawa et al. [13]
introduces a cranky ant approach to tackle the exploration-exploitation problem
which appears to prevent the algorithm from being stuck in local optima. The
cranky ants will explore paths with low pheromone level which is the opposite of
the behaviour of standard artificial ant. Meanwhile, Zhang et al. [14] proposed
colony level heterogeneity where ant colonies have different pheromone updat-
ing rules in order to balance exploration and exploitation in the search process.
The authors proposed two colonies where each exhibits behaviour of Elitist Ant
System (EAS) and Ant Colony System (ACS) characteristics respectively. They
discussed that the algorithm overcomes stagnation and the early suboptimal

H-ACO: A Heterogeneous ACO for TSP 147

path convergence problem. Melo et al. [15] proposed a multi-caste ant colony
in Ant Colony System (ACS) where ants with different preference towards q0,
parameter that controls the degree of exploration or exploitation in ACS. Many
more approaches implement heterogeneity at the colony level, but as this paper
study and implementation at individual level, thus colony level heterogeneity
will not be discussed in detail here. Each of these algorithms approach the prin-
ciple of heterogeneity from a different standpoint, either using different ant roles
or through the implementation of problem specific heterogeneity. The approach
taken in this paper is one of biological plausibility for ants with similar roles, but
differing behavioural traits, which would normally be expressed through genetic
differences, but here are drawn from a distribution.

4 Methodology

The main motivation of this research work is to study the ant colonies as hetero-
geneous, multi-behaviours agents that can further improve the performance of
the algorithm. The hypothesis is that with heterogeneity, a mixture of ants that
are more inclined towards exploration of the search space with other ants that
exploit the best path found creates a balance in the search process. This is due
to the behaviours of the ants of which are randomly initialized either to be more
inclined towards exploration or exploitation. The algorithm proposed a simple
heterogeneous method in this study by pre-assigning a random behavioural trait
for each of the ants in the population size during initialization that will not
change during the iterations, as would be the case with genetic variation in
real ants. Each behaviour has a pair of continuous traits that can be related
to pheromone trail intensity and visibility or the local heuristic information.
The heterogeneous approach in both AS and MMAS platform and comparison
were carried out and compared with the original versions of each algorithm.
Algorithm 1 depicts the pseudocode of our proposed algorithm and the major
difference between this and the base algorithm is that ants will have and values
that are initialized randomly between a set of pre-determined values rather than
identical parameters throughout the run. The range for and values were based
on experiments by Dorigo et al. in [3] and additional extensive experiments have
been conducted to determine the best range for α and β (discussed briefly in
Sect. 6.1).

4.1 Travelling Salesman Problem [2]

Travelling Salesman Problem (TSP) is a widely studied combinatorial optimiza-
tion problem in computer science. The main objective of solving a TSP is to
achieve the shortest tour visiting n cities and returning to the starting city when
there are no more cities left to be visited. TSP is visualized in a graphical format
where nodes act as the cities and edges as the link or path between the cities. The
edges will have weighting determining the cost of following that edge. TSP has
been a popular case study in ACO and other various optimization algorithms.

148 A. F. Tuani et al.

Algorithm 1. Heterogeneous ACO for TSP
Input: Distance Matrix of TSP;
Initialize parameters;
Initialize ants:
for i = 1 : number of ants do

a = 0; b=2;
Alpha(i) =rand (1) ∗ (b-a)+a;
c = 3; d=5;
Beta(i) =rand (1) ∗ (d-c)+c;

end for
Start Iteration:
for it = 1 : Max Iteration do

for k = 1 : number of ants do
Position each ant on starting node;
while TourSize < n + 1 do

Tour Construction;
end while

end for
Update Solution;
Update Pheromone;
Pheromone Evaporation;
Check if termination condition is met;

end for

5 Experimental Setup

The experiments were conducted on an Intel Core i7 CPU-based computer run-
ning Windows 7 equipped with 4 GB RAM. The base algorithms used are the
Ant System (AS) and Max Min Ant System (MMAS) approach developed using
the Matlab version R2015a. Each algorithm is tested using several TSP instances
taken from TSPLIB [2]. Firstly, the developed AS and MMAS was compared with
that of [3,6] to show a level of confidence that the developed algorithm is similar
to the original version. All the parameters were set according to the authors
recommendations where for AS the parameters were set as follows: α = 1,
β = 5, ρ = 0.5 and m = n where m is the number of ants and n is the number of
cities related to the TSP. Meanwhile the parameters for MMAS were set as fol-
lows: α = 1, β = 2, m = n, ρ = 0.98 and Pbest = 0.05. The function evaluations
for all the experiments were set as k.n.10000 where k = 1 for symmetrical TSPs
used, n=number of cities of the TSP instance and 10 000 is the maximum number
of iterations. Table 1 shows the comparison between the developed algorithms
against its original versions where the results for the developed algorithms are
the average of 15 trials. As can be seen, the best cost of the developed algorithm
and that of the original developers are very similar demonstrating that the base
algorithm formulations are working appropriately.

H-ACO: A Heterogeneous ACO for TSP 149

Table 1. Average of the best cost of developed AS and MMAS against Original AS
and MMAS. (Note: Average of 15 trials)

TSP Opt (Int Opt (Real Developed AS AS Developed MMAS [6]

length) length) MMAS

oliver30 420 [3] 423.74 [3] 423.7406 423.74 [3] N.A N.A

eil51 426 [2] 428.87 [2] 437.56 437.3 [6] 427.5 427.1

kroA100 21282 [2] 21285.44 [2] 22451.98 22471.4 [6] 21299.6 21291.6

d198 15780 [2] 15808.65 [2] 16692.24 16702.1 [6] 15960.2 15956.8

6 Heterogeneous ACO Results

6.1 Exploring the Ranges of Alpha and Beta

An extensive experiment based on AS was conducted to find the best range of α
and β for our heterogeneous approach where lower and upper bounds of α and
β were based on the recommendation of [3]. Both α and β values are varied to
create a heterogeneous approach as these parameters play an important role in
exploration and exploitation of the search space. Hence, varying both parameters
will introduce more variance in the agents. In addition, Stützle et al. [16] suggest
that both α and β are good candidates for parameter adaptation in ACO. As
can be seen, the recommended range for α is between 0.25 and 1.5 while β has
a range of 1 to 5. Therefore, extensive experiments were conducted where the
ants were set to have a uniform distribution of α between 0 and 1 and 0 to 2
while a uniformly distributed β was varied between 0 and 5, narrowed down
to 4 to 5. The other parameters were set according to [3]: 10 000 iterations,
m = n, ρ = 0.5, Q = 100, initial pheromone trail =m/Lnn where Lnn is the
tour length of the tsp instance using nearest neighbour heuristic. 3 tsp instances
were used to test the algorithm namely oliver30.tsp (integer length optimum =
420, real length optimum = 423.7406), eil51.tsp (integer length optimum = 426,
real length optimum = 428. 8716) and eil101.tsp (integer length optimum = 629).
Tables 2 and 3 summarizes the outcome of our extensive experiment. The results
are best tour length found in 15 trials. Both Tables 2 and 3 above show that
the best range is α: 0 to 2 and β: 3 to 5. The experiment did not include α
values greater than 2 because it is proven can lead to stagnation behaviour [3].
Therefore, the following experiments related to heterogeneous AS hereafter will
use this parameter range.

6.2 Comparison with Base Algorithms

Next, the Heterogeneous Ant System (HAS) was compared against AS developed
by [3] tested on several symmetrical tsp instances. The AS (and later MMAS [6])
systems have been subjected to extensive experiments to determine the optimal
α and β settings for these problems. The resulting comparisons are therefore
made between the heterogeneous system and well-tuned examples of the base

150 A. F. Tuani et al.

Table 2. Results from experimentation where α is uniformly distributed between 0 to 1
and the β distribution varies. Algorithm tested on oliver30.tsp, eil51.tsp and eil101.tsp.
Results represent average best cost out of 15 trials while values in bold represents the
best average.

α β oliver30 eil51 eil101

0–1 0–5 427.0934 445.3010 699.1238

0–1 1–5 425.3379 441.6734 685.7444

0–1 2–5 426.0892 439.5271 678.2238

0–1 3–5 423.7406 436.2947 661.9443

0–1 4–5 423.7406 436.3278 659.4744

Table 3. Results from experimentation where α is uniformly distributed between 0
and 2 and the β distribution varies. Algorithm tested on oliver30.tsp, eil51.tsp and
eil101.tsp for 10 000 iterations with values representing average best cost out of 15
trials while values in bold represents the best average.

α β oliver30 eil51 eil101

0–2 0–5 427.2749 437.1203 688.2972

0–2 1–5 424.6639 442.3749 672.3319

0–2 2–5 423.9117 438.0173 665.7093

0–2 3–5 423.7406 436.0904 645.5318

0–2 4–5 423.7406 436.6167 651.2821

Table 4. Best, average and worst cost comparison between AS and HAS for eil51.tsp,
10000 iterations over 25 trials. Results in bold represent best in each category.

Method Best Average Worst # Optimum 1% Opt 2% Opt

AS 433 437.56 441 0 0 1

HAS 428 436.00 442 0 1 5

ACO algorithms. HAS has the same parameter settings as AS (mentioned in the
previous section) expect that α is a uniform distribution between 0 and 2 while
β is varied from 3 and 5. The function evaluations for all experiments remain
the same as previous section.

426 < X < 430.26 = 1% deviation of optimum

430.26 < X < 434.52 = 2% deviation of optimum

Table 4 summarizes the comparison of AS and HAS on eil51.tsp for 25 trials. It
can be seen that HAS improves on the best cost found by AS where the average
is 436 compared to that of AS which is 437.56. Both AS and HAS was not able
to find the optimum but it is shown that HAS performs better than AS in terms

H-ACO: A Heterogeneous ACO for TSP 151

Fig. 1. Comparison of average best cost of AS and HAS (eil51.tsp). (Note: Average of
25 trials with 10 000 iterations per trial)

(a) Alpha (b) Beta

Fig. 2. Histograms representing Alpha and Beta of iteration-best ants for HAS
(eil51.tsp) (Note: 25 trials × 10 000 iterations each trial = 250 000 iterations).

of 1% deviation and 2% deviation of the optimum. A value is said to be 1%
deviation of optimum when it is within the range of 1% to the optimum. In
eil51.tsp case, 1% deviation is 1/100× 426 (optimum value from TSPLIB [2]) =
4.26 + 426 = 430.26.

Figure 1 shows that the Heterogeneous Ant System (HAS) has a better per-
formance in terms of average best cost compared to AS over the duration of the
optimisation. Figure 2a and b show the frequency of alpha and beta values of
ants that found the best cost in every iteration. It can be seen the alpha values
that mostly contribute are between 1.9 and 2, with a strong skew towards these
values whereas the beta distribution is much more uniform with a small skew
towards beta values of 4.6 and 4.75. This shows that heterogeneous approach
introduces diversity in the algorithm and suggests the mechanism behind the
improved performance over the algorithm with a single behavioural trait.

152 A. F. Tuani et al.

Table 5 shows the comparison between AS and HAS for kroA100.tsp. HAS
managed to improve on the fitness solution compared to AS where average best
cost for HAS is 22347.6 and that of AS is 22469.4. Although both AS and HAS
did not manage to find the optimum for 100-city TSP problem, HAS managed
to find a best cost that is within 5% of the optimum 22 times compared to none
by AS. In addition, HAS found a best cost of 22215 compared to 22384 of AS
out of 25 trials.

Figure 3 shows the improved performance of HAS over AS in terms of average
best cost while Fig. 4a and b show the frequency of alpha and beta values of
ants that managed to find best cost in all the 10 000 iterations for 25 trials. The
distributions are similar to those of the previous experiments with alpha values
peaking at 1.85 while beta has a peak at 4.45.

Table 6 summarizes the outcome of 25 trials of d198.tsp using both AS and
HAS. AS found a best cost of 16356 throughout the 25 trials while HAS found
a best cost of 16186. In addition HAS has a lower average compared to AS.
Although the optimum is not found by any of the algorithms, HAS managed
to find fitness solutions that are 3% within the optimum range 6 times and 19
times within 4% of the optimum compared to 0 and 3 times respectively by AS.

Figure 5 shows the major improvement in terms of average best cost perfor-
mance of HAS over AS while it can be seen clearly in Fig. 6 that even though
both α = 1 and β = 5 as per suggested in [3] were included in the initial range

Table 5. Best, average and worst cost comparison between AS and HAS for
kroA100.tsp (optimum: 21282). Results in bold represent best in each category.

Method Best Average Worst # Optimum 5% Opt 6% Opt

AS 22384 22469.4 22666 0 0 5

HAS 22215 22347.6 22487 0 22 25

Fig. 3. Comparison of average best cost of AS and HAS (kroA100.tsp). (Note: Average
of 25 trials with 10 000 iterations per trial)

H-ACO: A Heterogeneous ACO for TSP 153

(a) Alpha (b) Beta

Fig. 4. Histograms representing Alpha and Beta of iteration-best ants for HAS
(kroA100.tsp) (Note: 25 trials × 10 000 iterations each trial = 250 000 iterations).

Table 6. Best, average and worst cost comparison between AS and HAS for d198.tsp
(Optimum: 15780). Results in bold represent best in each category.

Method Best Average Worst # Optimum 3% Opt 4% Opt

AS 16356 16572.48 16724 0 0 3

HAS 16186 16359.04 16700 0 6 19

Fig. 5. Comparison of average best cost of AS and HAS (d198.tsp). (Note: Average of
25 trials with 10 000 iterations per trial)

of the heterogeneous approach, both α and β values that managed to find best
cost in every iteration increases rapidly from 0.5 to 2 and a steady increase from
3 to 5 respectively with α values having a peak at 1.9 while β values have a peak
of 4.9.

154 A. F. Tuani et al.

(a) Alpha (b) Beta

Fig. 6. Histogram representing Alpha and Beta of iteration-best ants for HAS
(d198.tsp) (Note: 25 trials × 10 000 iterations each trial = 250 000 iterations).

Table 7. Best, average and worst cost comparison between MMAS and HMMAS for
eil51.tsp (optimum: 426). Results in bold represents the best in each category.

Method Best Average Worst # Optimum 1% Opt 2% Opt

MMAS 426 427.4 430 4 25 25

HMMAS 426 427.6 431 10 23 25

The encouraging results of the heterogeneous approach on Ant System leads
to the approach to be implemented on to Max Min Ant System (MMAS) known
as Heterogeneous MMAS (HMMAS). All the parameters were set according to
[6] (discussed in experimental setup) except that of α which was set to vary from
0 to 2 while β is varied between 1 and 3. The same sets of TSP instances were
used to compare HMMAS against MMAS. Table 7 summarizes the comparison
for eil51.tsp which has an optimum of 426. Although overall average of HMMAS
is slightly higher compared to that of MMAS, HMMAS performed much better
in relation to the number of times the optimum was found where both HMMAS
and MMAS managed to find the optimum 10 times and 4 times respectively out
of 25 trials.

Figure 7 shows the comparison of the average best cost of both MMAS and
HMMAS for the 51-city TSP problem. Both MMAS and HMMAS have a similar
performance due to the small problem size. Figure 8 illustrates the alpha and
beta values of ants that managed to find the best cost in every iteration for
HMMAS with alpha has a peak value of 1.55 while beta has a peak of 2.05. The
overall distributions are somewhat similar to those from HAS. The diversity in
the algorithm helps too as it shows that various alpha and beta values contribute
towards finding the best cost.

H-ACO: A Heterogeneous ACO for TSP 155

Fig. 7. Comparison of average best cost of MMAS and HMMAS (eil51.tsp). (Note:
Average of 25 trials with 10 000 iterations per trial).

(a) Alpha (b) Beta

Fig. 8. Histogram representing Alpha and Beta of iteration-best ants for HMMAS
(eil51.tsp) (Note: 25 trials × 10 000 iterations each trial = 250 000 iterations).

Table 8. Best, average and worst cost comparison between MMAS and HMMAS for
kroA100.tsp (optimum: 21828). Results in bold represent the best value in the table.

Method Best Average Worst # Optimum 1% Opt 2% Opt

MMAS 21282 21299.6 21390 4 25 25

HMMAS 21282 21316.6 21379 11 21 25

156 A. F. Tuani et al.

Table 8 shows the outcome of experiment on kroA100.tsp where both MMAS
and HMMAS managed to find the optimum of 21282 while MMAS has an aver-
age of 21294.4 and HMMAS has an average of 21316.6. This can be due to several
trials producing fitness solutions out of the 1% and 2% range of optimum thus
causing the HMMAS to have a higher average. Although MMAS have a lower
average best and lower worst cost, HMMAS still outperforms MMAS by find-
ing the optimum 11 times compared to 4 times for MMAS. Figure 9 shows the
comparison of the average best cost between MMAS and HMMAS.

Figure 9 shows that the average best cost of MMAS is slightly better com-
pared to HMMAS for 100-city problem. Both Figs. 7 and 9 suggest that MMAS
performs considerably well for eil51.tsp and kroA100.tsp due to the small prob-
lem size. Figure 10 illustrates the alpha and beta values related to the best cost

Fig. 9. Comparison of average best cost of MMAS and HMMAS (kroA100.tsp). (Note:
Average of 25 trials with 10 000 iterations per trial).

(a) Alpha (b) Beta

Fig. 10. Histogram representing Alpha and Beta of iteration-best ants for HMMAS
(kroA100.tsp) (Note: 25 trials × 10 000 iterations each trial = 250 000 iterations).

H-ACO: A Heterogeneous ACO for TSP 157

Table 9. Best, average and worst cost comparison between MMAS and HMMAS for
d198.tsp (optimum: 15780). Results in bold represents the best value in the table.

Method Best Average Worst # Optimum 1% Opt 2% Opt

MMAS 15846 15961.12 16137 0 10 22

HMMAS 15795 15871.68 16006 0 21 25

Fig. 11. Comparison of average best cost of MMAS and HMMAS (d198.tsp). (Note:
Average of 25 trials with 10 000 iterations per trial).

in every iteration over 25 trials. Alpha values peak around 1.3 and beta has a
peak of 2.65 respectively.

Table 9 summarizes the comparison made between MMAS and HMMAS for
198-city TSP. HMMAS has a best cost of 15795 compared to 15846 of MMAS
and HMMAS also has a lower average and lower worst cost compared to MMAS.
Meanwhile, HMMAS also managed to find fitness solutions 21 times within the
1% range of optimum compared to that of MMAS of 10 times.

Figure 11 shows the comparison of the average best cost between MMAS and
HMMAS over 25 trials for d198.tsp. HMMAS have a better average best cost
compared to MMAS in a medium-sized tsp. Figure 12 shows the alpha and beta
values with a peak of 1.7 and 2.2 respectively.

Figure 13a shows that both HAS and HMMAS have a better performance
compared to its base algorithm in terms of best cost found in each of the 25
independent trials for eil51.tsp. HAS has a lower median and lower inter-quartile
(IQR) values compared to AS. Furthermore, HMMAS has a worst cost larger
than MMAS, but more of the best costs are at the optimum of 426 for eil51.tsp.
Figure 13b shows the boxplot for the best cost found by all 4 algorithms in test
in each of the 25 trials. It can be seen that HAS has a better performance com-
pared to AS in terms of best cost with a lower median as well. On the other
hand, HMMAS has a slightly higher median compared to MMAS. It can also
be observed from Fig. 14 that both HAS and HMMAS have a larger IQR and
this can be attributed to the variance in terms of best cost found caused by the

158 A. F. Tuani et al.

(a) Alpha (b) Beta

Fig. 12. Histogram representing Alpha and Beta of iteration-best ants for HMMAS
(d198.tsp) (Note: 25 trials × 10 000 iterations each trial = 250 000 iterations).

(a) Eil51.tsp (b) kroA100.tsp

(c) d198.tsp

Fig. 13. Boxplot of best cost for 25 independent trials of 4 different algorithms namely
AS, HAS, MMAS and HMMAS tested on eil51.tsp, kroA100.tsp and d198.tsp. Each
trial were conducted for 10 000 iterations.

H-ACO: A Heterogeneous ACO for TSP 159

Table 10. p-values of Wilcoxon rank sum test for best cost of HAS and HMMAS
against its respective base algorithm.

TSP HAS vs AS HMMAS vs MMAS

eil51 0.0143 0.8796

kroA100 2.03e-06 0.3078

d198 2.87e-08 1.27e-04

heterogeneous approach introduced. Figure 13c shows the improvement of HAS
and HMMAS over its base algorithms. Both heterogeneous algorithms have a
lower median compared to AS and MMAS. In both cases, the improvements are
statistically significant thus the algorithms clearly benefitting from the hetero-
geneous approach (Table 10).

A two-tailed Wilcoxon rank sum test with confidence level of 95% was con-
ducted for HAS against AS and HMMAS against MMAS with p < 0.05 as the
threshold level where the difference is significant. The table above shows that
the best cost found by HAS for the 25 trials are significantly better when com-
pared to AS for all the three instances. The test shows that the best cost of
HMMAS is not significant over its base algorithm for eil51 and kroA100. First
of all, these two tsp instances fall under the category of small instance prob-
lem where even the base algorithm performs moderately. Secondly, the effect
of individual variance or heterogeneity is limited in HMMAS due to algorithms
limitation of only a single agent to modify the pheromone limiting the overall
heterogeneity advantage. Furthermore the performance of the base algorithm
MMAS is clearly superior to that of AS meaning that it is also more difficult
to for heterogeneity to show an improvement. However, despite this, HMMAS
is statistically significant when compared to MMAS in terms of best cost found
for d198.tsp.

7 Discussion, Conclusion and Future Work

In summary, a heterogeneous ACO has been introduced which implements arti-
ficial ants that have different behavioural traits compared to the traditional
homogeneous approach. This computational work in ACO is in relation to the
biological aspect of real ants where ants are known to have diversity in their
population. The results clearly show that the heterogeneous approach in ACO
produce improved performance over the standard, parameter tuned algorithms
on which they are based. The performance difference was particularly marked
when implemented on Ant System. This is likely to be due to the greater con-
tribution of each ant to the pheromone trail, highlighting the effect of diversity.
The smaller gains made with HMMAS can be explained by the increased perfor-
mance of the base algorithm, locating solutions closer to the optimum and also
that only the best ant contributes to the pheromone update reducing the effect
of population diversity on algorithm progression.

160 A. F. Tuani et al.

The implemented approach, by varying the alpha and beta values shows
that even though prior work [3] suggests a range of optimal α and β values
to choose from, determining a certain value is not easy as the parameters are
problem-dependant. The results here show that the heterogeneous approach is
able to overcome this problem by being robust to parameter settings by effec-
tively exploring the parameter space in conjunction with optimising the problem.
Having a variety of behavioural traits rather than a single behaviour shows the
advantage in the performance of the algorithm. Recording the best performing
alpha and beta values provides some support for the parameter values suggested
by both Dorigo [3] and Stutzle [6], but also highlighted instances where these
parameter settings were not optimal. The discovery of distinct distributions
of parameter settings for alpha and beta is interesting and demonstrates the
algorithms sensitivity to these parameters. These distributions remained stable
despite being tested on multiple problem sizes. The work here has explored the
hypothesis that heterogeneity is able to improve the performance of an algorithm
and the results have gone some way to showing that heterogeneity applied to
ACO can improve performance on the TSP and robustness to parameter settings.
The next focus is on implementing Gaussian distribution towards heterogeneity
and greater biological plausibility.

Acknowledgments. We would like to thank the Faculty of Electronics and Computer
Engineering (FKEKK), Technical University of Malaysia Malacca (UTeM) and the
Ministry of Higher Education (MoHE) Malaysia for the financial support under the
SLAB/SlAI program.

References

1. Blum, C.: ACO applied to group shop scheduling: a case study on intensification
and diversification. In: Dorigo, M., Di Caro, G., Sampels, M. (eds.) ANTS 2002.
LNCS, vol. 2463, pp. 14–27. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45724-0 2

2. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applica-
tions. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48661-5

3. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 26(1), 29–41
(1996)

4. Modlmeier, A.P., Foitzik, S.: Productivity increases with variation in aggression
among group members in temnothorax ants. Behav. Ecol. 22(5), 1026–1032 (2011)

5. Collett, M., Collett, T.S.: Spatial aspects of foraging in Ants and Bees. Cold Spring
Harbor Monograph Series, vol. 49, pp. 467–502 (2007)

6. Stutzle, T., Hoos, H.: MAX MIN ant system and local search for the traveling sales-
man problem. In: IEEE International Conference on Evolutionary Computation,
pp. 309–314 (1997)

7. Gutin, G., Punnen, A.P. (eds.): The Traveling Salesman Problem and its Varia-
tions, vol. 12. Springer, Boston (2007). https://doi.org/10.1007/b101971

https://doi.org/10.1007/3-540-45724-0_2
https://doi.org/10.1007/3-540-45724-0_2
https://doi.org/10.1007/3-540-48661-5
https://doi.org/10.1007/b101971

H-ACO: A Heterogeneous ACO for TSP 161

8. Engelbrecht, A.P.: Heterogeneous particle swarm optimization. In: Dorigo, M.,
Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D.,
Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS
2010. LNCS, vol. 6234, pp. 191–202. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15461-4 17

9. Blight, O., Daz-Mariblanca, G.A., Cerd, X., Boulay, R.: A proactive reactive syn-
drome affects group success in an ant species. Behav. Ecol. 27(1), 118–125 (2016)

10. Lee, J.W., Lee, J.J.: Novel ant colony optimization algorithm with path crossover
and heterogeneous ants for path planning. In: Proceedings of the IEEE Interna-
tional Conference on Industrial Technology (2010)

11. Chira, C., Dumitrescu, D., Pintea, C.M.: Heterogeneous sensitive ant model for
combinatorial optimization. Genet. Evol. Comput., p. 163 (2008)

12. Hara, A., Matsushima, S., Ichimura, T., Takahama, T.: Ant colony optimization
using exploratory ants for constructing partial solutions. In: IEEE World Congress
on Computational Intelligence, WCCI 2010–2010, IEEE Congress on Evolutionary
Computation, CEC 2010 (2010)

13. Yoshikawa, M.: Adaptive ant colony optimization with cranky ants. In: Huang,
X., Ao, S.I., Castillo, O. (eds.) Intelligent Automation and Computer Engineering.
Lecture Notes in Electrical Engineering, vol. 52, pp. 41–52. Springer, Netherlands
(2009). https://doi.org/10.1007/978-90-481-3517-2 4

14. Zhang, P., Lin, J.: An adaptive heterogeneous multiple ant colonies system. In:
Proceedings - International Conference of Information Science and Management
Engineering, ISME 2010 (2010)

15. Melo, L., Pereira, F., Costa, E.: Extended experiments with ant colony optimiza-
tion with heterogeneous ants for large dynamic traveling salesperson problems. In:
Proceedings - 14th International Conference on Computing Science and its Appli-
cations, ICCSA 2014, pp. 171–175 (2014)

16. Stutzle, T., et al.: Parameter Adaptation in Ant Colony Optimization IRIDIA
Technical Report Series Parameter Adaptation in Ant Colony Optimization (2010)

https://doi.org/10.1007/978-3-642-15461-4_17
https://doi.org/10.1007/978-3-642-15461-4_17
https://doi.org/10.1007/978-90-481-3517-2_4

Evolutionary Learning of Fire
Fighting Strategies

Martin Kretschmer and Elmar Langetepe(B)

Department of Computer Science, University of Bonn, 53115 Bonn, Germany
elmar.langetepe@informatik.uni-bonn.de

Abstract. The dynamic problem of enclosing an expanding fire can be
modelledbya simple discrete variant in a grid graph.While thefire expands
to all neighbouring cells in any time step, the fire fighter is allowed to block c
cells in the average outside the fire in the same time interval. It was shown
that the success of the fire fighter is guaranteed for c > 1.5 but no strat-
egy can enclose the fire for c ≤ 1.5. For achieving such a critical thresh-
old the correctness (sometimes even optimality) of strategies and lower
bounds have been shown by integer programming or by direct but often
very sophisticated arguments. We investigate the problem whether it is
possible to find or to approach such a threshold and/or optimal strate-
gies by means of evolutionary algorithms, i.e., we just try to learn success-
ful strategies for different constants c and have a look at the outcome. We
investigate the variant of protecting a highway with still unknown thresh-
old and found interesting strategic paradigms.

Keywords: Dynamic environments · Fire fighting
Evolutionary strategies · Threshold approximation

1 Introduction

In the field of motion planning, online algorithms or Computational Geometry
(and of course in many other areas) there are many examples of (somewhat
annoying) gaps between upper and lower bounds of interesting and important
constants. For example in the field of online algorithms for the famous k-server
problem in almost all metric spaces the best known lower bound on the com-
petitive ratio is k whereas the best known upper bound is 2k − 1, which gives a
blind interval of [k, 2k − 1] for this value. The conjecture is that k is the tight
bound; see for example [2]. Similarly the VC-dimension of L2-visibility in simple
polygons currently lies in the interval [6, 14]; see for example [8]. The threshold
has to be somewhere in between.

A challenging approach might be to close or reduce such gaps (or only get
some more insight w.r.t. a tendency) by means of rather simple but efficient
evolutionary or genetic approaches. In this paper for a suitable scenario in the
context of motion planning in grid environments we would like to find out how
far this general idea might work. We make use of an Evolutionary Computation
approach and manipulate a population of solutions by natural selection and
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 162–175, 2018.
https://doi.org/10.1007/978-3-319-78133-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_12&domain=pdf

Evolutionary Learning of Fire Fighting Strategies 163

mutation such that a fitness gradually increases; see also [7,9,12,13]. Rather
than analysing evolutionary algorithms theoretically as for example given in
[1,3], we would like to analyse the power of such simple algorithms for getting
insight in well-defined theoretical questions.

In this paper we concentrate on the context of discrete fire fighting in differ-
ent theoretically motivated variants. An overview of theoretical results in this
context is given by Finbow and MacGillivary [5]. Assume that in a grid-cell
environment a cell that is on fire expands the fire from one cell to its four neigh-
bouring cells in one time step. On the other hand the fire fighter can block some
of the cells outside the fire in any time step. The number of cells that can be
blocked is given by an asymptotic budget c ≥ 1 such that at any time step t we
could have made use of �c × t� blocked cells in total.

We examine two questions. It is well-known that for c > 1.5 an expanding
fire in the above model can be enclosed; see [11]. The result is obtained by a
sophisticated recursive strategy idea. Optimality (minimum number of burned
cells) can be obtained for example for c = 2 by making use of ILP formulations;
see [14]. This does not work well for smaller c because of the running times. On
the other hand for c ≤ 1.5 no strategy can stop the fire, shown by a tricky proof
in [4]. Therefore c = 1.5 is the fixed threshold for this case.

For this well-understood scenario we make use of simple evolutionary rules
and show that for c = 2 we obtain the optimal strategy extremely fast. For
c ≥ 1.7 we still obtain enclosement results that seem to be close to the optimum.
For c less than 1.6 our approach fails. The results are presented in Sect. 2.

The above first results might be seen as a test scenario for a new question
considered in Sect. 3. For a protection budget c the task is rather than enclosing
the fire, we would like to prevent a highway from being reached by the fire soon.
Theoretical results and a fixed threshold for this setting are still unknown. We
try to get an impression how reasonable strategies look like for different values
of budget c < 1.5. It is more likely to make use of a single barrier close to the
fire or is it recommendable to build (multiple) barriers away from the fire close
to the highway? The focus here is that we get some ideas or insights by the use
of evolutionary methods. In contrary to the former enclosement problem we first
make experiments and an ongoing task is to find formal proofs. The results and
the corresponding conjectures are presented in Sect. 3.

The main conclusion of our work is that simple, goal oriented evolutionary
strategies could help to give insight into the solutions of dynamic motion plan-
ning problems. Especially, if such problems come along with a threshold question.
The hope is that such approaches can also be used for similar problems.

2 Fire Enclosement in a Discrete Grid Setting

Given an infinite grid graph with vertex set Z
2. Each vertex represents a cell

in a grid graph. In the following vertices and cells are handle as synonyms. The
set of edges is given by {((u, v) , (x, y)) | |u − x| + |v − y| = 1}, i.e., each cell is
neighbour to the cell directly above, below, left, and right. A fire starts at (0, 0)

164 M. Kretschmer and E. Langetepe

Fig. 1. An example for threshold c = 2.7. The fire starts at a single cell. At any time
step, the fighter blocks the remaining cells of its overall budget �t × 2.7� outside the
fire. Then the fire spreads. The protected (black) cells are labelled by time parameters.
After 4 time steps the fire is enclosed.

and spreads over time. After each time step, all cells with a burning neighbour
start burning as well.

In the first setting the goal is to enclose the fire, such that only a finite
(minimal) number of cells is lost. To achieve this, a certain number of non burning
cells can be protected at each time step, which will then never catch fire.

The number of cells that can be blocked is given by an asymptotic budget
c ≥ 1 such that at any time step t we could have made use of �c × t� blocked
cells. A simple example for c = 2.7 is shown in Fig. 1. In the first step the fire
fighter blocks �1 × 2.7� = 2 two cells outside the fire. After the fire spreads in
the next step the fire fighter blocks �2 × 2.7 − 2� = �3.4� = 3 non-burning cells.
Then the fire spreads again and in step 3 again �3 × 2.7 − 5� = �3.1� = 3 cells
can be blocked by the fire fighter outside the fire. The fire spreads for the last
time and by blocking �4 × 2.7 − 8� = �2.8� = 2 cells in the fourth step the fire
is enclosed.

It has been shown that a fire can always be enclosed protecting c = 2 cells
at each time step and it is impossible to do so with only one [6,14]. Finally, it
was proved that a fire can always be enclosed when the average number c of
protected cells exceeds 1.5 [11]. This bound is tight as shown by [4].

In the case of c = 2 even an optimal solution (i.e. minimal number of burning
cells) has been found by using Integer Linear Programming [14]. Compared to
that, in the following we want to investigate how good a simple evolutionary
inspired algorithm can solve this task and how close we can get to the thresholds.
The first experiments also can be seen as a test scenario for the question of
protecting a highway considered in Sect. 3.

2.1 A Goal Oriented Evolution Model

To use an evolutionary method, we require a formal description of a general
strategy, which can be modified (mutation) and recombined (inheritance) to

Evolutionary Learning of Fire Fighting Strategies 165

obtain a new strategy. Additionally, we have to define a fitness function for the
comparison of strategies. Intuitively (and also driven by the known theoretical
results) it seems to be a good idea for a strategy to

– start close to the fire
– build a (more or less) connected chain of protected cells, trying to surround

the fire

Remark. We further confirm these intuitions by having tried other variants as
well. Our evolutionary experiments showed, that strategies which start protect-
ing vertices further away from the origin perform worse than strategies that start
close to the origin, some results for this are presented in Table 1. Analogously,
the experiments showed that multiple disconnected barriers (that finally might
be connected) do not work well. We omit to show the corresponding experiments
due to space constraints. We refer to Sect. 3 where we have similar results for
the problem of protecting a highway. I.e., general disconnected genomes tend to
run in a connected barrier construction. The following definition is designed to
follow the above simple principles.

Definition 1. A strategy consists of

– a starting point (i, j)
– a sequence of directions {North,NorthEast, East, . . .} and each direction is

combined with the information whether to extend the front (F) or the back
(B) of the chain

For short the strategy is given by the starting point and a list of pairs (X,Y)
with X ∈ {N,NE,E, . . .} and Y ∈ {F,B}.

An example of a strategy (without a fire spread) is given in Fig. 2. For the fixed
starting cell (0,−1) the sequence ((N,F) , (NE,F) , (SE,B) , (SE,F) , (E,B)) is
applied as follows. By (N,F) we extend (0,−1) forward by the cell (0, 0) in the
north which now is the new front cell of the barrier. Then by (NE,F) relative to
the new front cell we block the cell in direction north-east, which is cell (1, 1). After
that we apply (SE,B) for the current back end of the barrier which still is (0,−1).
The new back end cell is (1,−2) which lies south-east from (0,−1) and so on.

Notice, that such a strategy does not contain the information of the time at
which the next vertex is protected. Instead, the next tuple of the sequence is
applied, whenever we are allowed to protect an additional vertex.

The number of vertices that are protected per step is based on a bank account
idea. We start with an initial budget and each time a vertex is protected, the
budget decreases by 1. The budget has to remain positive but is always fully
exhausted. After the fire has spread by one step, the budget increases by the
fixed amount c. E.g. c = 2 means we can protect exactly two vertices in any
step. For c = 1.5, the number of protected vertices alternates between 1 and 2.

Handling illegal genomes. The above genome design does not pay any atten-
tion to the restriction that we cannot protect already burning cells. To deal

166 M. Kretschmer and E. Langetepe

0 1 2 3-1

0

-1

-2

-3

1

2

(0,−1)

(N,F)

(NE,F)

(SE,B)

(SE,F)

(E,B)

Fig. 2. Example of a strategy starting at (0,−1) with sequence ((N,F), (NE,F),
(SE,B), (SE,F), (E,B)). Each protected vertex is labelled by the tuple that caused
its protection.

with that we decide to use the following behaviour: Whenever the sequence
tries to protect a cell that is already burning, we start a search for the next
non-burning cell in clockwise or counter clockwise order, depending whether we
want to extend the front or the back of the barrier, starting at the direction that
is given by the sequence. For example in Fig. 2, if (0, 0) is burning in the begin-
ning, the application of (N,F) from (0,−1) results in blocking the cell (−1, 1),
which gives the new front.

Fitness Evaluation. In order to determine the fitness of a strategy two values
seem to be important. The time needed to enclose the fire and the total number of
burning vertices. Since randomly initialized sequences will most likely not enclose
the fire, we use the total number of burning vertices after a fixed simulation
time t. This also gives rise to gradual improvements. For example in Fig. 1 for a
simulation time t = 3 the given strategy has fitness 5, since 5 cells are burning
at time t = 3. Note that we run arbitrary strategies with different simulation
times (or steps).

2.2 Evolutionary Algorithm

The following algorithm keeps improving a randomly initialized set of strategies
until it is manually stopped. Besides the budget c, it has several parameters
which determine its behaviour.

– Input:
• c budget income per time step
• n population size
• t number of simulation steps
• p mutation probability
• r ratio of parents kept after external selection

– Initialization: A population P of n randomly generated strategies (except the
start point which is fixed to (0, 1)), each strategy needs to have a sequence of
length at least t · c

Evolutionary Learning of Fire Fighting Strategies 167

– Repeat
• simulate any strategy of P for t time steps and determine its fitness
• order P by fitness in increasing order and keep only the best �r · n� strate-

gies as parents
• restock P again to size n by selecting two parent strategies and combining

their sequences via single-point crossover
• for each tuple in each sequence of P , change it with probability p to a

new random direction and extension side (mutation)

Note that for speeding up the results of our simulation as presented in the
next section for c < 2 we decided to start the algorithm with an initial bud-
get of 2. This allows us to protect two cell in the first step. Our experiments
showed that this allows our algorithm to find successful strategies much faster
and therefore also for smaller values of c. Asymptotically, there is no difference
for the threshold. This small artefact might also be interpreted as a goal oriented
approach.

2.3 Experimental Results

Figure 3 shows an optimal strategy that was found by evolution for the case
c = 2. It takes 8 steps to enclose the fire and in the end 18 vertices are on fire.
This is optimal for both time and number of burning vertices as shown in [6].
Surprisingly, it tooks only 84 generations in total until this strategy was found.

An example of a strategy that was found for c = 1.7 after 1002 generations
is depicted in Fig. 4. A video of the successful strategy is shown in

http://tizian.informatik.uni-bonn.de/Video/1.7Enclosing.mp4.
For even smaller values of c, our algorithm starts failing to find enclosing

strategies. An example for c = 1.6 is given in Fig. 5. It seems that the strategy
might be able to enclose the fire after a longer time, but even increasing the
simulation time t did not lead to success.

Figure 6 shows for which values of c we were able to find enclosing strategies.
For constructing the figure we choose a simulation time of t = 80. As mentioned
above increasing the simulation time did not help. One can see that for values
smaller than c ≈ 1.68 the building of the barrier continued until the simulation
ended. This means that the fire was not enclosed.

Fig. 3. Example of a strategy found when protecting exactly c = 2 vertices per step.
Enclosed after 8 steps with 18 burning vertices.

http://tizian.informatik.uni-bonn.de/Video/1.7Enclosing.mp4

168 M. Kretschmer and E. Langetepe

Fig. 4. Strategy found for c = 1.7. Enclosed after 46 steps with 371 burning vertices.
The shading indicates how the fire spreads over time.

Fig. 5. Extract of a failing strategy for c = 1.6. Note that the fire expands on both
sides of the barrier.

Fig. 6. An overview of the results. For convenience (results for different c were similar
for any number of simulation steps) we used simulation time t = 80. For a given
budget the lower curve shows the time required for enclosing the fire and the upper
curve shows the number of burning cells. We obtain positive (enclosement) results
up to budget c slightly larger than 1.68. After that the lower curve is just fixed to the
restricted simulation time which indicates that the fire was not enclosed.

So far, any strategy presented had a fixed start point neighbouring the origin
of the fire. As an example we compare the strategy for c = 2 mentioned above to
strategies whose start point is fixed to a vertex four steps away from the origin.
Up to symmetry there are three different coordinates for this. (0, 4), (1, 3) and

Evolutionary Learning of Fire Fighting Strategies 169

Table 1. Fitness of best strategies found for c = 2 and different starting points.

Start Enclosing time Burning vertices

(0, 1) 8 18

(0, 4) 23 156

(1, 3) 15 68

(2, 2) 24 161

(2, 2). Table 1 shows the times required to enclose the fire using these different
starting points, compared to the optimal strategy shown above. Starting further
away from the fire takes longer to enclose the fire. We have similar results for
other values of c.

2.4 Fire Enclosement Conclusion

At least for values of c a bit away from the overall tight threshold, the simple
evolutionary goal oriented algorithm was able to find successful (and in the case
of c ≥ 2 even optimal) strategies surprisingly fast. Successful strategies close
to the threshold c = 1.5 are not easy to find, even by the use of very general
genomes and many simulation steps. This seems to be clear for the following
reason. The corresponding successful connected barrier solution presented in [11]
for any c = 1.5+ ε makes use of four rounds. For any round the strategy behaves
analogously but the next round starts with a 90◦ rotation. It is unlikely that a
random approach will find the appropriate time for starting the next round and
rotation.

3 Protection of a Highway

Here we consider a different and new question. Conversely to the previous section
we did not have any idea for a reasonable strategy and/or a threshold. The
question is how long can we protect a highway (modeled by a line of cells) from
the fire, if some budget c < 1.5 is given. We would like to avoid that the fire
touches a line very early? What is a reasonable strategy? Should we start close
to the fire or close to the highway? Should we design a single connected barrier
or more barriers which are partly disconnected?

In Fig. 7 we give an example for a strategy for c = 1.2. This means that in the
first 4 time steps the fire fighter makes use of a single blocking cell. In step t = 5
the fire fighter can block two cells for the first time since �5×1.2−4� = 2 holds.
Similar to the previous section we can also assume that in the start situation
some constant cells are already blocked, this is indicated by the blocked cell of
label 0 in Fig. 7. Figure 7 has to be interpreted as follows. If ct−1 cells were used
from the budget of the fire fighter after step t − 1, at the next time step t, the
fighter first blocks �t × c − ct−1� cells outside the fire and then the fire spreads.
After 7 time steps and the corresponding spread the fire reaches the highway.
Note that the strategy stops in this moment.

170 M. Kretschmer and E. Langetepe

Fig. 7. A fire fighter strategy for protecting a highway with budget c = 1.2. The fire
starts at a single cell, one cell is initially protected. At any time step, the fighter first
blocks the remaining cells of its overall �t× c� budget outside the fire and then the fire
spreads. After 7 time steps the fire reaches the highway.

3.1 Evolution Models

Since the given problem was not theoretically analysed before, we first had to
test several ideas experimentally in order to achieve a more goal oriented model.
In contrary to the enclosement scenario discussed before we do not know whether
a connected strategy will lead to optimal or efficient solutions. So we first tried
to allow general strategies that could protect arbitrary cells. We made use of
a very simple coordinate based genome model, such that a strategy is simply
defined by a set of cell coordinates defining which cells should be protected.

For such a set of cells, the cells are protected in their L1−distance order
from the origin of the fire, i.e., cells closer to the fire origin will be protected
first. In the evolution process this behaviour forces that useless protections far
away from the origin will be cancelled out more quickly. In principle the above
principles allow us to define arbitrary strategies.

Altogether, we either make use of

– a connected genome (as in the previous section) or
– a coordinate genome described by a set of cell coordinates (as just mentioned)

3.2 Evolutionary Algorithm

We noticed that usually we do not get any improvements by the recombination of
strategies. Therefore we changed the framework used in Sect. 2.2 and restrict the
algorithm to mutation only. This also means that we do not need to have a large

Evolutionary Learning of Fire Fighting Strategies 171

population, instead we only initialize a single randomly generated strategy that
will keep mutating. If a mutation leads to an improvement, the strategy keeps
that mutation, otherwise it is undone. Altogether, this is a so-called (1+1)EA;
see [12].

This process of improving a single strategy can easily be parallelized such
that a larger set of single strategies keeps improving over time. This is very
beneficial, because the final result often depends on the initialization and not
every run leads to the best result. Another difference to the previous section is
the fitness evaluation, which obviously has to be adjusted with respect to the
problem definition.

Fintness evaluation. For the enclosement problem considered in Sect. 2.1 we
tried to minimize the total number of burning cells. In this case we have used
exactly this number for determining the fitness. Now we want to maximize the
time the fire requires to reach the highway. It turns out that increasing this
time value directly by a random mutation or recombination is very unlikely.
Therefore we require a fitness evaluation that also allows for smaller and gradual
improvements. To attain this we take into account how many vertices are burning
and also their corresponding distance to the highway. A formal definition is given
below.

For letting the algorithm run, actually we only need to be able to compare
strategies pairwise. Fortunately, this can also be realized by our fitness function.

Definition 2. Let S be a protection strategy for a given highway. By r(S) we
denote the first moment in time when the fire reaches the highway, if S is applied.
By d(S)i we denote the number of burning cells with distance i to the highway
after r(S) simulation steps.

Strategy S1 has a larger fitness than S2 if r(S1) > r(S2) holds or for r(S1) =
r(S2) if d(S1)i < d(S2)i holds for the smallest index i where d(S1)i �= d(S2)i.

For example in Fig. 7 the given strategy S has value r(S) = 7. We also have
d(S)0 = 1, d(S)1 = 9 and d(S, 9)2 = 12 and so on. So another strategy S′ would
have larger fitness, if r(S′) > 7 holds or for r(S′) = 7 = r(S), if we have for
example d(S′)0 = 1, d(S′)1 = 9 and d(S′)2 = 11 < 12 = d(S)2.

The main idea is that by trying to keep the fire farther away from the highway,
finally also the overall time where the fire reaches the highway can be increased.

3.3 Experimental Results

Similar to the enclosement problem our implementation allows us to set or
manipulate many different parameters and options for a goal oriented evolu-
tionary process, such as the budget c, the strategy design (general genome or
connected barriers), the population size (number of strategies optimized in par-
allel), the mutation rate, the fire source (distance to the highway), starting posi-
tions (for connected barriers), optional initial budget and so on.

Videos. Finally and interestingly we mainly found two different strategic
behaviours depending on the corresponding genomes, they will be explained

172 M. Kretschmer and E. Langetepe

precisely below. For convenience for c = 1.2 we prepared two animations that
show the finally attained best strategies for

1. General genomes Symmetric and alternating strategy:
http://tizian.informatik.uni-bonn.de/Video/1.2SymAlt.mp4

2. Connected barriers Asymmetric and diagonal strategy:
http://tizian.informatik.uni-bonn.de/Video/1.2AsymDiag.mp4

where in the second case of connected barriers sometimes also symmetric and
alternating strategies were attained under circumstances explained below. The
above strategies have been found after 156925 (1.) and 34226 (2.) generations.

1. General genomes. First, we found out that the use of general genomes
always (for different settings) mutate toward connected barriers; Fig. 8 shows
some of the finally attained strategies. All strategies show a similar behaviour.
They start somewhere between the origin of the fire and the highway, usually
a bit closer to the fire. Then any strategy continues to protect cells alternating
between left and right, trying to keep the fire as long and as far away from the
highway as possible. In the following we refer to such strategies as symmetric
and alternating.

Note that any of the given strategies can be reconstructed such that the
symmetric and alternating process is performed directly at the highway. The
time where the fire reaches the boundary will not change in this case. Our fitness
function simply prefers to shift the fire away from the highway.

2. Connected barriers. After that we again considered connected barriers with
different starting positions below the origin. Depending on the distance between
the start and the fire, we observed two different strategic behaviours which can
be categorized as follows.

If the starting position is somehow chosen too close to the fire origin or
too close to the highway we obtain strategies that behave in a symmetric and
alternating way as before. On the other hand if we somehow start at the right
distance, the attained strategies suddenly performed different and a lot better.
An example of such a strategy for c = 1.2 is given in Fig. 9, the behaviour of the

Fig. 8. Resulting strategies using the general coordinate genome for different values
of the budget: (A) c = 1.4, (B) c = 1.3, (C) c = 1.2 (D) c = 1.1. The fire starts 20
steps away from the highway. The highway was reached after 61, 54, 48 and 43 steps,
respectively.

http://tizian.informatik.uni-bonn.de/Video/1.2SymAlt.mp4
http://tizian.informatik.uni-bonn.de/Video/1.2AsymDiag.mp4

Evolutionary Learning of Fire Fighting Strategies 173

Fig. 9. Three phases of a connected strategy protecting the highway for c = 1.2.
I) Reach the level of the starting position of the fire diagonally from the center.
II) Extend this diagonal, but simultaneously also try to shift the fire away from the
highway on the other side until the fire reaches the highway there. III) Use the full
budget to keep the fire away at this side, the fire runs to the highway at the other
side. The strategy starts 5 steps above the origin. The fire reaches the highway after
92 steps.

strategy can be subdivided into three different phases which will be explained
below. In contrast to the symmetric and alternating strategy which only kept the
fire for 48 steps away from the highway with the same budget, the alternative
strategy increases this time to 92!

In general these strategies can be subdivided into three phases. Figure 9 shows
the end of each phase.

I) Protect a diagonal downwards until a cell at the same level as the origin
is reached. Starting n cells above the origin, this requires the protection of
n + 1 cells and this needs to be done before the n−th time step, because
otherwise the fire would reach that cell first. This in turn requires c to be
large enough. Or the other way round, given 1.0 < c < 1.5, n needs to
be large enough such that n + 1 cells can be protected after n steps ⇔
cn ≥ n + 1 ⇔ n ≥ 1

c−1 .
II) Continue the diagonal downwards by one cell in every second step. Use the

rest of the budget to keep the fire at the other end of the barrier as far
away from the highway as possible. This procedure ends when the fire gets
close to the highway.

III) In order to protect the highway, from now on we are forced to protect at
least one cell per step at the end close to the highway. Since protecting one
cell at every step at one end and one cell at every second step at the other
end would require a budget of c ≥ 1.5, the diagonal part of the barrier will
be overrun by the fire making it impossible to continue this end at all. So
the strategy will simply continue to hold the fire back at the upper part

174 M. Kretschmer and E. Langetepe

of the barrier until the fire reaches the highway on the other side. Again,
because the fitness evaluation prefers fewer burning vertices close to the
highway, the slope of the part built in this phase occurs.

We will refer to this behaviour as an asymmetric and diagonal strategy.
Notice that for c = 1.5 this leads immediately to a strategy that protects the
highway infinitely. Furthermore this strategy can only be applied if the fire starts
far enough away from the highway. The closer the budget c gets to 1.0, the more
distance is required. If this distance is not available, there seems to be no better
strategy than the symmetric and alternating one.

3.4 Highway Protection Conclusion

Using the evolutionary algorithm, we gained helpful insights into the highway
protection problem. Both the symmetric and alternating and the asymmetric
and diagonal strategy are promising candidates for optimal solutions. The choice
between the two alternatives seem to depend on the possibility of building the
diagonal of phase (I). We found out that with one additional initial budget,
the connected genome always run into the asymmetric and diagonal variant. By
protecting two cells in the beginning, we can immediately finish the first phase
by starting directly above and to the left of the fire. Without an initial budget
the strategy has to fight for reaching the starting level of the fire source from
the left. This can only happen if in comparison to the budget, the source lies
sufficiently far away from the highway.

Considering phase (III), there seems to be some room for a further recursive
improvement. When the fire has overcome the diagonal part of the barrier in
phase (II) it will take the direct way to the highway. For a while we shift the fire
away from the other side by using the full budget. The barrier is build with a
given slope; see Fig. 9(III). But this part could have been build also with budget 1
along the highway. Therefore the remaining budget can be used to protect the
highway at the left hand side. Therefore we can consider the situation with a
budget c′ = c − 1. We found out that in this case the best strategy builds a
symmetric and alternating barrier directly at the highway.

For values c ≈ 1.5 we never observed a strategy that was able to protect the
highway infinitely long. We think that 1.5 is the threshold.

Conjecture. For c < 1.5 there is no strategy that protects an arbitrary highway
from the fire. The best protection strategy either builds a single connected barrier
symmetrically and alternating close to the highway or first the asymmetric and
diagonal connected barrier strategy is applied. This depends on the relationship
between the distance of the fire source to the highway and the given budget.

4 Future Work on Theoretical Threshold Questions

Besides proving and analysing the above conjecture theoretically, we finally
would like to mention that there are other interesting upper and lower bounds

Evolutionary Learning of Fire Fighting Strategies 175

which we analogously would like to attack by a goal oriented evolutionary app-
roach. For example, similar to the subjects presented here there are other sce-
narios in discrete and continuous fire fighting settings that come along with a
threshold. An interesting overview for such gaps is given in the CG Column by
Klein and Langetepe [10]. Alternatively, one might also think of the protection
for different objects, also formalized by a set of cells. Additionally, among many
others, the two blind intervals (VC-dimension, k-server conjecture) mentioned
in the very beginning are also worth considering.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions.

References

1. Beyer, H.-G., Schwefel, H.-P., Wegener, I.: How to analyse evolutionary algorithms.
Theoret. Comput. Sci. 287(1), 101–130 (2002)

2. Chrobak, M., Larmore, L.L.: An optimal on-line algorithm for k-servers on trees.
SIAM J. Comput. 20(1), 144–148 (1991)

3. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary
algorithm. Theoret. Comput. Sci. 276(1), 51–81 (2002)

4. Feldheim, O.N., Hod, R.: 3/2 firefighters are not enough. Discret. Appl. Math.
161(1–2), 301–306 (2013)

5. Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions
and questions. Australas. J. Comb. 43(57–77), 6 (2009)

6. Fogarty, P.: Catching the fire on grids. Ph.D. thesis, The University of Vermont
(2003)

7. Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway (1995)

8. Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility
regions. Comput. Geom. 47(1), 61–74 (2014)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. Uni-
versity of Michigan Press, Ann Arbor (1975)

10. Klein, R., Langetepe, E.: Computational geometry column 63. SIGACT News
47(2), 34–39 (2016)

11. Ng, K., Raff, P.: Fractional firefighting in the two dimensional grid. Technical
report, DIMACS Technical Report 2005-23 (2005)

12. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Number 15 in Problemata. Frommann-
Holzboog, Stuttgart-Bad Cannstatt (1973)

13. Schwefel, H.-P.: Numerical Optimization of Computer Models. Wiley, New York
(1981)

14. Wang, P., Moeller, S.A.: Fire control on graphs. J. Comb. Math. Comb. Comput.
41, 19–34 (2002)

Evolutionary Optimization of Tone
Mapped Image Quality Index

Xihe Gao, Jeremy Porter, Stephen Brooks(B), and Dirk V. Arnold(B)

Faculty of Computer Science, Dalhousie University,
Halifax, Nova Scotia B3H 4R2, Canada

{xgao,jporter,sbrooks,dirk}@cs.dal.ca

Abstract. The development of reliable image quality measures for the
assessment of tone mapped images constitutes a significant advancement
in high dynamic range imaging. The ability to objectively assess the
quality of tone mapped images allows treating tone mapping as an opti-
mization problem that can be solved by automated algorithms, without
the need for human input. The most prominent quality measure for tone
mapped images is the Tone Mapped Image Quality Index. An optimiza-
tion approach has been proposed in connection with the introduction
of that measure that operates in a high-dimensional search space and
is computationally expensive. In this paper, we propose an evolution-
ary algorithm to solve the tone mapping problem using a generic tone
mapping operator and the Tone Mapped Image Quality Index as the
objective to be maximized in a much lower dimensional solution space.
We show that the evolutionary approach results in significantly reduced
computational effort.

Keywords: High dynamic range imaging · Tone mapping
Optimization · Evolution strategy · Image quality assessment

1 Introduction

High dynamic range (HDR) images provide the capacity to represent a greater
range of luminance values than standard image formats do. Sources of HDR
images include digital cameras as well as photorealistic rendering algorithms.
With advances in hardware, HDR is rapidly becoming more commonplace in
digital imaging. To display HDR images on contemporary display devices, the
dynamic range needs to be adapted to the much smaller range of the device.
This computational task is called tone mapping.

Numerous tone mapping operators (TMOs) have been proposed (see Banterle
et al. [2] for an overview), and many of those depend on parameters that signifi-
cantly impact the appearance of the tone mapped images. Choosing an appropri-
ate TMO and setting its parameters for a particular HDR image often requires
careful tuning. Chisholm et al. [4] have proposed an interactive approach to tone
mapping, where the quality of tone mapped images is optimized iteratively, using
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 176–188, 2018.
https://doi.org/10.1007/978-3-319-78133-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_13&domain=pdf

Evolutionary Optimization of Tone Mapped Image Quality Index 177

an evolutionary algorithm (EA) that relies on human input for selection. More
recently, significant progress has been made in the development of objective
quality measures for tone mapped images, potentially opening up the possibility
of generating optimized tone mapped images without the need for user input.
Algorithms for the automatic optimization of tone mapped images have been
proposed by Gao et al. [8,9], who employ saliency based image quality measures
in connection with simple EAs for optimization. Their work shows that visually
acceptable tone mapped images can often be obtained by automatically tuning
the parameters of various TMOs and blending their results.

A milestone in the development of objective quality assessment measures for
tone mapped images is the introduction of the Tone Mapped Image Quality Index
(TMQI) by Yeganeh and Wang [19]. TMQI combines measures of structural
fidelity and statistical naturalness in a single numerical score. Structural fidelity
is derived from structural similarity (SSIM) [18] and measures spatial dependen-
cies of pixels between test and reference images. Statistical naturalness measures
the overall brightness and contrast for “natural” appearance. Ma et al. [12] have
proposed TMQI-II as an improved variant of that quality measure that is suffi-
ciently robust to allow for the automatic optimization of tone mapped images.
They also present an optimization method that searches for images with opti-
mal TMQI-II scores. Their algorithm interleaves the optimization of structural
fidelity using gradient ascent with that of statistical naturalness. Experimental
results demonstrate that their method can significantly improve the TMQI-II
score and appearance of tone mapped images, albeit usually at a high computa-
tional cost.

The purpose of this paper is to compare the approach to the optimization of
TMQI-II used by Ma et al. [12] with an evolutionary approach similar to those
used by Chisholm et al. [4] and Gao et al. [8]. In contrast to the approach by
Ma et al. [12], we do not operate in the high-dimensional search space resulting
from considering all pixel intensities as variables, but instead we employ the
generic TMO by Mantiuk and Seidel [13]. The parameters of that operator span
a low-dimensional space in which the EA can find good solutions with relatively
little computational effort. Our algorithm differs from that of Gao et al. [8,9]
in the use of the generic TMO as opposed to a blend of results from multiple
operators, but also in that we use TMQI-II as the quality measure in order to
be able to compare different optimization approaches using a common platform.
The effectiveness of the proposed approach is validated using an HDR image
benchmark set. The remainder of the paper is organized as follows. In Sect. 2 we
briefly discuss related work. Section 3 describes our algorithm. An experimental
comparison of our algorithm with that by Ma et al. [12] is presented in Sect. 4.
Section 5 concludes with a brief summary and proposed future work.

2 Related Work

With the increasingly widespread use of HDR images, tone mapping has
attracted much attention from researchers. During the past two decades, many

178 X. Gao et al.

TMOs have been developed. Many of the current operators are derived from
models of the human visual system and try to preserve perceptual factors, such as
brightness, contrast, and visibility during tone mapping. Operators can coarsely
be classified into global and local operators. The compression curve of global
operators is the same over the entire image, while local operators are adaptive
to each pixel. Local adaptation can better preserve image details, but it is also
computationally more expensive and not guaranteed to give better results. A
thorough review of existing TMOs can be found in books by Reinhard et al. [16]
and Banterle et al. [2].

The appearance of tone mapped images depends on the choice of TMOs and
the setting of their parameters. Notable progress has been made towards the
objective quality assessment of tone mapped images. Yeganeh and Wang [19]
have proposed TMQI, which combines measures of structural fidelity and sta-
tistical naturalness in a single numerical score. Ma et al. [12] have proposed an
improved variant of that measure. Nafchi et al. [15] have presented a feature
similarity index based on the local phase information of images. Gu et al. [10]
have proposed a no-reference quality measure that estimates the amount of local
detail in images. Gao et al. [8] have introduced an image quality measure that
calculates the visual saliency distortion caused by TMOs. Gao et al. [9] have
expanded on that work by developing a perceptual quality measure to capture
the reproduction of perceptual features including brightness, visual saliency,
and details during tone mapping. Of the proposed measures, TMQI and its
immediate successor, TMQI-II, are the most prominent. A systematic compar-
ison of existing image quality measures for tone mapped images remains to be
performed.

Progress in the objective quality assessment of tone mapped images has
opened up a new approach to tone mapping: using any of the proposed qual-
ity measures as the objective, tone mapping can be solved as an optimization
problem. Notably, Ma et al. [12] have proposed an optimization algorithm to
iteratively improve TMQI-II scores of tone mapped images. Structural fidelity is
improved using a gradient ascent method and statistical naturalness is enhanced
with a point-wise intensity transformation. The algorithm operates in a high-
dimensional solution space. In contrast, Chisholm et al. [4] and Gao et al. [8,9]
employ EAs to optimize the parameters of TMOs, allowing optimization to pro-
ceed in much lower dimensional spaces. As they have used different quality mea-
sures, no immediate comparison of the two approaches to the optimization of
tone mapped images has been performed.

3 Algorithm

The solution space available for our algorithm to search is that defined by the
generic tone mapping operator. The optimization algorithm we adopt is an evo-
lution strategy. Both are described in this section.

Evolutionary Optimization of Tone Mapped Image Quality Index 179

3.1 Tone Mapping

The generic tone mapping operator by Mantiuk and Seidel [13] aims to provide
the ability to emulate a wide range of tone mapping operators using computa-
tionally inexpensive image processing operations. We choose it for its low com-
putational cost as well as due to its capacity to generate a wide range of tone
mapped images using a relatively small set of parameters that can be used for
optimization. The operator maps intensity values as

CLDR = fMT(fTC(LHDR)) ·
(

CHDR

LHDR

)s

, (1)

where CHDR and CLDR are the colour channels of the HDR image and the tone
mapped image, respectively, LHDR is the luminance of the HDR image, fTC

denotes the tone curve, fMT represents the modulation transfer function, and s
is a parameter used for saturation adjustment. The tone curve is defined as a
sigmoidal function, with parameters b, dl, dh, and c provided for tuning the curve
shape as illustrated in Fig. 1. The modulation transfer function allows specify-
ing several parameters that determine a 1D function of spatial frequency and
allows the tuning of blurring and sharpening operations applied to an image.
The function involves band-pass filtering implemented with difference of Gaus-
sian operators, with parameters m1, m2, and m3 for the adjustment of different
frequency components; see [13] for details.

Since TMQI-II scores are computed on the basis of luminance values, without
taking colour information into account, we choose not to modify the value of
the saturation adjustment parameter s. Thus, a total of seven parameters are
available for tuning.

0

0

1

b

dh

dl

log luminance

in
te

ns
ity c

1

Fig. 1. Tone curve used in the generic TMO and its parameters (adapted from [13]).
Parameter b allows for brightness adjustment, dl and dh determine the lower and higher
midtone ranges, and c governs contrast.

180 X. Gao et al.

3.2 Evolutionary Optimization

For the optimization of TMQI-II scores in the seven-dimensional parameter space
thus defined, we use the (1 + λ)-ES1 employed by Chisholm et al. [4] for the
interactive evolutionary optimization of tone mapped images. The use of the
evolutionary approach to optimization is motivated by the lack of availability of
analytical gradients and the potential for ruggedness resulting from the choice
of quality criterion.

Table 1. Parameters of the generic TMO.

Parameter Range Description

b [−2.0, 2.0] Brightness factor

dl [0.0, 2.5] Lower midtone range factor

dh [0.0, 2.5] Higher midtone range factor

c [0.2, 1.5] Contrast factor

m1 [−2.0, 2.0] High frequency factor

m2 [−2.0, 2.0] Medium frequency factor

m3 [−2.0, 2.0] Low frequency factor

There are no restrictions regarding the setting of parameters of the generic
TMO. However, we find that allowing parameters to grow without bounds may
result in very marginal changes to TMQI-II scores and thus in ill-conditioning
that negatively impacts the ability of the simple evolution strategy to optimize
image quality. We thus impose boundary constraints that prevent the parame-
ters from moving past their useful ranges. In order to be able to define image-
independent ranges, we calibrate the logarithmic luminance values of the pixels
in an HDR image by subtracting the mean logarithmic luminance. Ranges and
short descriptions of the parameters are listed in Table 1.

Candidate solutions are seven-dimensional real vectors comprised of the
parameters of the generic TMO. In each iteration of the algorithm, λ > 1 off-
spring are generated from the parental candidate solution x ∈ R

7 as

yi = x + σzi i = 1, . . . , λ (2)

where σ ∈ R denotes the step size parameter and the zi ∈ R
7 are independent,

standard normally distributed mutation vectors. Out-of-range values of variables
are clamped to the boundaries. In light of potential issues with decreasing step
size as a result of constraint handling such as discussed by Arnold [1], we have
also experimented with an exterior penalty approach, but have not observed a
significant difference in performance. In each iteration, the candidate solution
that leads to the highest TMQI-II value among the union of the parent and the

1 See Hansen et al. [11] for an overview of evolution strategy related terminology.

Evolutionary Optimization of Tone Mapped Image Quality Index 181

set of all offspring is selected and adopted as the parent for the next iteration.
The offspring number λ is set to 10 throughout, and the step size parameter is
initialized to 0.5 at the start of a run. That parameter is decreased by multiplica-
tion with 0.8 in each iteration where the parental candidate solution is superior
to all of its offspring; it is unchanged in those iterations where an offspring can-
didate solution is successful. We terminate a run when the change in the best
TMQI-II value has been less than 10−4 for six consecutive iterations and return
the best candidate solution found as the result.

4 Experimental Results

To evaluate the performance of the evolutionary approach, we conduct a com-
parison with the algorithm by Ma et al. [12] for the optimization of TMQI-II
scores. We carry out the comparison on a set of sixteen HDR images. That set
is identical with that used by Ma et al. in the evaluation of their approach, with
the exception of one missing image that we do not have access to.

For each HDR image, we employ three starting points in the search for opti-
mal tone mapped images. Ma et al. use starting points generated by various
TMOs with default parameter settings, including the logarithmic operator, the

TMO by Durand and Dorsey Generic TMO (SSIM: 0.9419)

TMO by Mantiuk et al. Generic TMO (SSIM: 0.9918)

Fig. 2. Comparison between images tone mapped using the TMOs by Durand and
Dorsey (top left) and Mantiuk et al. (bottom left) using default parameter settings,
and corresponding images generated using the generic TMO (right) with parameters
chosen to maximize SSIM scores. The radiance map used to generate the images is
available in the Matlab Image Processing Toolbox.

182 X. Gao et al.

operator by Durand and Dorsey [6], and that by Mantiuk et al. [14]. In order to
ensure comparable starting points for both algorithms, we determine parameter
settings for the generic TMO such that the resulting tone mapped images closely
match those generated by the various TMOs. Figure 2 shows a typical example
of the generic TMO’s ability to emulate other TMOs and find matches that are
visually nearly indistinguishable.

We use the implementation by Ma et al. [12] for TMQI-II as well as of their
optimization algorithm. That implementation is in Matlab and, according to
the authors, not optimized for speed. However, as the same implementation of
TMQI-II is used for image quality assessment in both of the optimization algo-
rithms, the comparison is meaningful for establishing relative performance. The
EA as well as the generic TMO are implemented in Matlab and not optimized
for speed either. Running times reported are for a PC with an Intel Quad-Core
2.66 GHz CPU with 4 GB of RAM. As the optimization approach by Ma et al.
does not exploit parallelism, we have chosen not to make use of more than
one CPU core in the implementation of the EA. However, making use of paral-
lel computational resources by evaluating offspring simultaneously on multiple
cores would be straightforward. On our hardware, the computation of a single
TMQI-II score for images of the size considered here (approximately 360 × 500
pixels) takes about 0.3 s.

For each of the sixteen HDR images and three starting points, we have con-
ducted eleven independent runs of the EA for the optimization of TMQI-II, for
a total of 528 runs. All of the TMQI-II scores are calculated from tone mapped
images stored in PNG format (i.e., with lossless compression, but with only eight
bits per colour channel). Table 2 shows TMQI-II scores of the starting points as
well as median and standard deviation of the scores obtained after evolutionary
optimization. Also shown are median and standard deviation of the computation
times. We have then run the algorithm of Ma et al. [12] and recorded the time it
requires to reach the TMQI-II scores obtained by the EA. Median and standard
deviation of those times are shown in the last column of the table. Running time
data from all 528 runs are represented graphically in Fig. 3.

It can be seen from the table that compared with the starting points, the EA
can significantly improve TMQI-II scores. Final scores are within a narrow range,
both across test images and across starting points. Standard deviations are such
that the empirical coefficient of variation of TMQI-II scores rarely exceeds 0.01.
Running times for the EA range from well under a minute to no more than three
minutes in the longest of the 528 runs. In comparison, the algorithm of Ma et al.
requires significantly more time to generate tone mapped images with equivalent
TMQI-II scores, and in a number of instances remains unsuccessful even after
two hours (where runs are terminated).

It is worth noting that Ma et al. [12] report TMQI-II scores in excess of
most of the values attained by the EA that are reported in Table 2. The EA
operates in a low-dimensional search space that may implicitly limit the quality
of the tone mapped images that can be achieved by parameter optimization.
However, TMQI-II scores in excess of the values achieved by the EA are of little

Evolutionary Optimization of Tone Mapped Image Quality Index 183

Table 2. Comparison between evolutionary TMQI-II optimization and optimization
using the algorithm of Ma et al. [12]. The table lists TMQI-II scores of starting points,
scores after evolutionary optimization, the computation time (in seconds) required to
generate those results, and the computation time (in seconds) for the algorithm of
Ma et al. to reach equivalent TMQI-II scores. The computation time is omitted (—)
when an equivalent score could not be reached within 7200 s. Shown are median values
of eleven independent runs, with standard deviations given in parentheses.

HDR image Starting point Initial Optimized Running Running

TMQI-II TMQI-II time time

Score Score (EA) (Ma et al.)

Foggy Night Logarithmic 0.3807 0.9780 (0.0047) 58.5 (23.6) 756.0 (39.0)

340 × 512 Durand/Dorsey 0.3844 0.9766 (0.0020) 71.0 (40.4) 1263.7 (304.9)

Mantiuk et al. 0.9091 0.9779 (0.0011) 74.6 (26.3) 357.6 (39.2)

Clock Building Logarithmic 0.4409 0.9757 (0.0029) 80.6 (22.6) 1035.7 (288.3)

384 × 512 Durand/Dorsey 0.4415 0.9752 (0.0040) 68.4 (24.2) 5748.9 (2126.1)

Mantiuk et al. 0.9692 0.9769 (0.0031) 38.0 (16.2) 83.9 (22.8)

Dani Cathedral Logarithmic 0.3999 0.9704 (0.0099) 76.3 (27.8) 2835.3 (1079.6)

384 × 512 Durand/Dorsey 0.4186 0.9703 (0.0011) 62.9 (17.3) — (—)

Mantiuk et al. 0.4616 0.9700 (0.0100) 79.0 (24.4) 293.0 (46.9)

Kitchen Logarithmic 0.3651 0.9714 (0.0002) 52.1 (12.0) 1756.7 (51.6)

342 × 512 Durand/Dorsey 0.3804 0.9715 (0.0160) 73.3 (22.8) 6760.6 (2120.2)

Mantiuk et al. 0.8896 0.9712 (0.0033) 56.9 (20.9) 147.4 (19.1)

Memorial Church Logarithmic 0.4442 0.9795 (0.0041) 63.0 (20.5) 1716.9 (65.7)

340 × 512 Durand/Dorsey 0.4520 0.9804 (0.0046) 63.7 (24.6) — (—)

Mantiuk et al. 0.9086 0.9798 (0.0015) 43.5 (16.3) 116.0 (11.3)

Woman Logarithmic 0.4151 0.9806 (0.0074) 64.0 (26.1) 1015.0 (336.7)

342 × 512 Durand/Dorsey 0.4135 0.9809 (0.0077) 96.2 (27.1) 5283.8 (1771.6)

Mantiuk et al. 0.5189 0.9808 (0.0120) 67.4 (41.6) 299.6 (61.0)

Desk 1 Logarithmic 0.3881 0.9801 (0.0002) 83.9 (8.4) 857.7 (7.9)

512 × 384 Durand/Dorsey 0.4256 0.9800 (0.0028) 75.1 (18.0) 2079.3 (431.1)

Mantiuk et al. 0.7600 0.9800 (0.0067) 56.2 (25.0) 192.9 (31.4)

Desk 2 Logarithmic 0.3765 0.9654 (0.0045) 54.0 (17.8) 800.8 (29.9)

512 × 384 Durand/Dorsey 0.4031 0.9655 (0.0083) 76.4 (47.9) 1088.4 (236.4)

Mantiuk et al. 0.8178 0.9652 (0.0069) 51.5 (27.0) 102.6 (14.1)

Display1000 Logarithmic 0.4004 0.9649 (0.0038) 59.6 (31.0) 2810.3 (1033.1)

512 × 384 Durand/Dorsey 0.4220 0.9648 (0.0070) 99.3 (36.1) 6983.4 (—)

Mantiuk et al. 0.7236 0.9649 (0.0059) 63.2 (25.3) 985.1 (351.5)

Belgium House Logarithmic 0.4096 0.9778 (0.0005) 73.0 (14.3) 707.7 (19.4)

512 × 384 Durand/Dorsey 0.4186 0.9777 (0.0030) 91.8 (20.2) 5986.0 (1400.7)

Mantiuk et al. 0.8552 0.9774 (0.0052) 47.8 (18.8) 141.3 (25.9)

Woods Logarithmic 0.0708 0.9844 (0.0056) 75.3 (24.3) — (—)

512 × 340 Durand/Dorsey 0.3541 0.9845 (0.0069) 77.3 (30.3) — (—)

Mantiuk et al. 0.4957 0.9843 (0.0024) 54.7 (14.7) 1078.2 (356.3)

(continued)

184 X. Gao et al.

Table 2. (continued)

HDR image Starting point Initial Optimized Running Running

TMQI-II TMQI-II Time Time

Score Score (EA) (Ma et al.)

Lawn Logarithmic 0.4434 0.9864 (0.0069) 68.1 (17.8) 1318.3 (317.5)

512 × 381 Durand/Dorsey 0.4585 0.9861 (0.0043) 89.2 (35.9) 4276.2 (1558.4)

Mantiuk et al. 0.9689 0.9861 (0.0019) 39.3 (19.1) 278.4 (69.2)

Bristol Bridge Logarithmic 0.3968 0.9843 (0.0128) 52.0 (27.0) 746.5 (191.7)

512 × 384 Durand/Dorsey 0.3891 0.9845 (0.0001) 83.8 (23.0) — (—)

Mantiuk et al. 0.9520 0.9841 (0.0071) 54.3 (25.7) 887.5 (364.3)

Office Logarithmic 0.4477 0.9729 (0.0012) 54.3 (18.7) 368.2 (4.2)

512 × 340 Durand/Dorsey 0.4245 0.9738 (0.0020) 71.2 (24.5) — (—)

Mantiuk et al. 0.9503 0.9742 (0.0048) 44.1 (16.7) 158.2 (36.1)

Vine Sunset Logarithmic 0.4246 0.9636 (0.0051) 50.6 (21.3) 613.3 (123.6)

512 × 345 Durand/Dorsey 0.4440 0.9639 (0.0007) 89.7 (27.8) — (—)

Mantiuk et al. 0.4617 0.9641 (0.0003) 73.9 (12.6) 1498.9 (56.8)

Wreathbu Logarithmic 0.4910 0.9652 (0.0010) 58.8 (18.0) 1204.1 (354.4)

512 × 384 Durand/Dorsey 0.4365 0.9655 (0.0010) 88.6 (34.0) 3814.1 (716.4)

Mantiuk et al. 0.7982 0.9660 (0.0010) 49.0 (21.0) 406.1 (82.1)

10 1 10 2 10 3

running time of the algorithm of Ma et al. (s)

10 1

10 2

ru
nn

in
g

tim
e

of
 th

e
EA

 (s
)

Logarithmic
Durand
Mantiuk

Fig. 3. Running times (in seconds) of the EA plotted against running times required
by the algorithm of Ma et al. [12] to reach equivalent TMQI-II scores. Data are shown
for starting points matching those generated by the logarithmic operator, the operator
by Durand and Dorsey, and that of Mantiuk et al. The black line indicates the identity.

Evolutionary Optimization of Tone Mapped Image Quality Index 185

use as they require that intensity values be represented with more than eight
bits per pixel and colour channel. As the tone mapped images will almost always
be stored using image file formats with limited intensity resolution, any further
improvements in TMQI-II scores are likely to disappear due to quantization
errors.

Clearly, the running times of both the EA and the algorithm by Ma et al. are
impacted by the size of the images being processed. However, the approach rely-
ing on the generic TMO and the EA for optimization admits a simple technique
for reducing running time: rather than performing the optimization on poten-
tially sizable images, shrink the images before applying the EA to obtain param-
eter settings for the generic TMO. Then use the parameter settings obtained on
the small images to tone-map the full-sized images. Two examples of results
from this approach can are shown in Fig. 4. The images on the left have been
obtained through optimization using the full-sized images of size 1024 × 768.

TMQI-II: 0.9794 TMQI-II: 0.9759

TMQI-II: 0.9716 TMQI-II: 0.9660

Fig. 4. Comparison between images with parameters of the generic TMO obtained
through evolutionary optimization on smaller versions of the images. The images on
the left have been obtained from optimization on the full-sized images of size 1024×768.
The images on the right are the result of shrinking the images to size 256×192, solving
the optimization problem using the EA, and then using the TMO parameter settings
obtained on the full-sized images. The radiance maps used to generate the images are
due to G. Ward and D. Lischinski and available at www.cs.utah.edu/∼reinhard/cdrom/
hdr.html and www.cs.huji.ac.il/∼danix/hdr, respectively.

www.cs.utah.edu/~reinhard/cdrom/hdr.html
www.cs.utah.edu/~reinhard/cdrom/hdr.html
www.cs.huji.ac.il/~danix/hdr

186 X. Gao et al.

The optimization took 344 s for the “Bristol Bridge” image and 200 s for the
“Belgium House” image. The images on the right are the result of computing
parameter settings on images of size 256 × 192 and applying those settings to
the full-sized images. The TMQI-II scores somewhat decrease in both cases, but
the results are visually nearly indistinguishable, and optimization in the latter
case is accomplished in 11 and 9 s, respectively. A straightforward technique for
reducing running time while not having to contend with reduced TMQI-II scores
is to interleave increasing the size of the images being processed with the running
of the EA.

Finally, in addition to the reduced running time, we have found our method
to often be preferable to the algorithm by Ma et al. [12] in that it generates
images with more consistent appearance across starting points. Figure 5 shows
examples where the appearance of the images generated using the algorithm by
Ma et al. differs from starting point to starting point and suffers from artifacts,

St
ar
ti
ng

P
oi
nt

E
A

M
a
et

al
.

TMQI-II: 0.3765

TMQI-II: 0.9654

TMQI-II: 0.9654

TMQI-II: 0.4031

TMQI-II: 0.9656

TMQI-II: 0.9656

TMQI-II: 0.8178

TMQI-II: 0.9658

TMQI-II: 0.9658

Fig. 5. Comparison of results for different starting points. First row: starting points
for the search; second row: images optimized with the EA; third row: images optimized
with the algorithm of Ma et al. [12]. The radiance map used to generate the images is
due to M. Čad́ık and available at cadik.posvete.cz/tmo.

http://cadik.posvete.cz/tmo

Evolutionary Optimization of Tone Mapped Image Quality Index 187

such as over- and under-saturation, while the results generated using the EA
look comparatively uniform. Further examples can be found in the complete set
of experimental data, which is available at www.cs.dal.ca/∼xgao/EAdata.rar.
Figure 6 shows an example for a deliberately poorly chosen starting point for
the search. The starting point is encoded with eight bits per colour channel and
pixel, and the dark regions in it are solidly black. The algorithm by Ma et al. is
not able to restore the image content in those regions and thus converges to a
suboptimal solution while the EA generates a satisfactory solution.

Starting Point

TMQI-II: 0.4429

EA

TMQI-II: 0.9847
Time: 49.63 seconds

Ma et al.

TMQI-II: 0.93119
Time: 43203.33 seconds

Fig. 6. Comparison of results for a poorly chosen starting point. First image: starting
point for the search; second image: image optimized with the EA; third image: image
optimized with the algorithm of Ma et al. [12]. The radiance map used to generate the
images is due to P. Debevec and available at www.pauldebevec.com/Research/HDR.

5 Conclusion

To conclude, we have used an EA to solve the tone mapping problem based
on maximization of TMQI-II scores. Compared to TMQI-II optimization by
interleaving gradient based maximization of structural fidelity with optimization
of statistical naturalness, we observe significantly reduced running times. The
reduced amount of computational effort is due to performing the optimization in
a much lower dimensional parameter space. By distributing the computation of
the TMQI-II values of the offspring across multiple cores or obtaining parame-
ter settings for the generic tone mapping operator by (initially) optimizing using
reduced-size images, obtaining optimized tone mapped images with the simple
EA would require but a few seconds. In future work, we will consider the suit-
ability of other image quality assessment techniques for tone mapped images as
well as other image processing tasks that are commonly performed using gradi-
ent based techniques in high-dimensional spaces, but that may conceivably be
solved using much lower-dimensional parametric approaches.

Acknowledgement. This research was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). The radiance maps used to evaluate
the algorithms are due to J. Tumblin [17], G. Ward [16], D. Lischinski [7], M. Čad́ık [3],
P. Debevec [5], and MathWorks.

www.cs.dal.ca/~xgao/EAdata.rar
www.pauldebevec.com/Research/HDR

188 X. Gao et al.

References

1. Arnold, D.V.: Resampling versus repair in evolution strategies applied to a con-
strained linear problem. Evol. Comput. 21(3), 389–411 (2013)

2. Banterle, F., Artusi, A., Debattista, K., Chalmers, A.: Advanced High Dynamic
Range Imaging: Theory and Practice. AK Peters/CRC Press, Natick (2011)

3. Čad́ık, M., Wimmer, M., Neumann, L., Artusi, A.: Image attributes and qual-
ity for evaluation of tone mapping operators. In: Proceedings of the 14th Pacific
Conference on Computer Graphics and Applications, pp. 34–44 (2006)

4. Chisholm, S.B., Arnold, D.V., Brooks, S.: Tone mapping by interactive evolution.
In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Com-
putation, pp. 515–522 (2009)

5. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from pho-
tographs. In: Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques, pp. 369–378 (1997)

6. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range
images. ACM Trans. Graph. 21(3), 257–266 (2002)

7. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range com-
pression. ACM Trans. Graph. 21(3), 249–256 (2002)

8. Gao, X., Brooks, S., Arnold, D.V.: Automated parameter tuning for tone mapping
using visual saliency. Comput. Graph. 52, 171–180 (2015)

9. Gao, X., Brooks, S., Arnold, D.V.: Automatic blended tone mapping through evo-
lutionary optimization. In: Proceedings of the IEEE World Congress on Compu-
tational Intelligence, pp. 3855–3862 (2016)

10. Gu, K., Zhai, G., Liu, M., Yang, X., Zhang, W.: Details preservation inspired blind
quality metric of tone mapping methods. In: Proceedings of the IEEE International
Symposium on Circuits and Systems, pp. 518–521 (2014)

11. Hansen, N., Arnold, D.V., Auger, A.: Evolution strategies. In: Kacprzyk, J.,
Pedrycz, W. (eds.) Handbook of Computational Intelligence, pp. 871–898. Springer,
Heidelberg (2015)

12. Ma, K., Yeganeh, H., Zeng, K., Wang, Z.: High dynamic range image compres-
sion by optimizing tone mapped image quality index. IEEE Trans. Image Process.
24(10), 3086–3097 (2015)

13. Mantiuk, R., Seidel, H.-P.: Modeling a generic tone-mapping operator. Comput.
Graph. Forum 27(2), 699–708 (2008)

14. Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. ACM Trans.
Graph. 27(3), 68:1–68:10 (2008)

15. Nafchi, H.Z., Shahkolael, A., Moghaddam, R.F., Mohamed, C.: FSITM: a feature
similarity index for tone-mapped images. IEEE Sig. Process. Lett. 22(8), 1026–
1029 (2015)

16. Reinhard, E., Ward, G., Pattanaik, S., Debevec, P.: High Dynamic Range Imaging:
Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann Publishers,
San Francisco (2005)

17. Tumblin, J., Turk, G.: LCIS: a boundary hierarchy for detail-preserving contrast
reduction. In: Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, pp. 83–90 (1999)

18. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

19. Yeganeh, H., Wang, Z.: Objective quality assessment of tone-mapped images. IEEE
Trans. Image Process. 22(2), 657–667 (2013)

LIDeOGraM: An Interactive
Evolutionary Modelling Tool

Thomas Chabin(B), Marc Barnabé, Nadia Boukhelifa, Fernanda Fonseca,
Alberto Tonda, Hélène Velly, Benjamin Lemaitre, Nathalie Perrot,

and Evelyne Lutton

UMR 782 GMPA, Agroparistech, INRA, Université Paris-Saclay,
Thiverval-Grignon, France

{Thomas.Chabin,Marc.Barnabe,Nadia.Boukhelifa,Fernanda.Fonseca,
Alberto.Tonda,Helene.Velly,Benjamin.Lemaitre,Nathalie.Perrot,

Evelyne.Lutton}@inra.fr

Abstract. Building complex models from available data is a challenge
in many domains, and in particular in food science. Numerical data are
often not enough structured, or simply not enough to elucidate com-
plex structures: human choices have thus a major impact at various
levels. LIDeOGraM is an interactive modelling framework adapted to
cases where numerical data and expert knowledge have to be combined
for building an efficient model. Exploiting both stand-alone evolutionary
search and visual interaction with the user, the proposed methodology
aims at obtaining an accurate global model for the system, balancing
expert knowledge with information automatically extracted from avail-
able data. The presented framework is tested on a real-world case study
from food science: the production and stabilisation of lactic acid bac-
teria, which has several important practical applications, ranging from
assessing the efficacy of new industrial methods, to proposing alternative
sustainable systems of food production.

Keywords: Complex systems · Lactic acid bacteria
Interactive modelling · Symbolic regression · Living food system

1 Introduction

Agri-food processes can be regarded as complex systems, as they are charac-
terised by uncertain and intricate interaction effects between physical, chemical,
and biological components [13,14]. Building models of such processes is a mean
to gather the available knowledge about the process. Models allow exploring
various hypothesis through simulated experiments.

In this context, modelling techniques drawn from complexity science prove
especially advantageous for dealing with the co-existing multiscale inter-
dependencies, uncertainty, partial knowledge and sparse experimental data.
Models of complex systems are a powerful tool to better understand processes

c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 189–201, 2018.
https://doi.org/10.1007/978-3-319-78133-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_14&domain=pdf

190 T. Chabin et al.

such as the mass accumulation in ripening grape berries [6] and the cow’s milk
production [5].

Expert knowledge yields additional, precious information [1,17]. Indeed,
building a model in these conditions is a complex optimisation task: learning
from data sets, dealing with sparsity of data, possible overfitting issues, and
complexity of the models. At the same time expert knowledge can drastically
modify the shape of the search space, the relative impact of some data, or even
the optimisation aims.

In this paper, we propose an interactive modelling approach based on a two-
level evolutionary optimisation scheme, local and global. Local corresponds to
local possible dependencies between variables, while global corresponds to a
model that represents the system as a whole. The goal of the presented tech-
nique is to help users to interact with the constructed models via a graphical user
interface, run various optimisation steps, revisit optimisation results, restart the
process, add constraints, and take decisions.

The system and dataset considered in this study concern the full process of
bacteria production and stabilisation, with 49 variables measured at 4 differ-
ent steps (fermentation, concentration, freeze-drying and storage), at 4 different
fermentation conditions (22 ◦C and 30 ◦C, evaluated at the beginning of the sta-
tionary growth phase and 6 h later). The considered variables range from tran-
scriptomic data to fatty acid membrane composition, from acidification activity
to viability [18].

The paper is organised as follows: Sect. 2 provides background on complex
systems approaches in food science, on symbolic regression and on the mod-
elled process. LIDeoGraM is detailed in Sect. 3. Section 4 describes experimen-
tal results from a preliminary user evaluation, comments, conclusions and future
developments are given in Sects. 5 and 6.

2 Background

2.1 Food Complex Systems

A complex system1 is a collection of multiple processes, entities, or nested sub-
systems, where global properties emerge as the result of an imbrication of phe-
nomena occurring at different scales. For these systems, there is a need for appro-
priate descriptions for the underlying mechanisms with high expressiveness and
little uncertainty. Building complex system models is essential, but highly dif-
ficult; it is usually necessary to have a robust framework, with strong iterative
interaction combining computational intensive methods, formal reasoning and
experts from different fields. As shown in the rest of the paper, optimisation
plays an important part in this context [11].

The specifics of the food domain (uncertainty and variability, heterogeneity
of data, coexistence of qualitative and quantitative information, conjunction of

1 Complex Systems Society, see http://cssociety.org or http://www.mathinfo.inra.fr/
en/community/complexsystems/presentation for an introduction to the topic.

http://cssociety.org
http://www.mathinfo.inra.fr/en/community/complexsystems/presentation
http://www.mathinfo.inra.fr/en/community/complexsystems/presentation

LIDeOGraM: An Interactive Evolutionary Modelling Tool 191

different perspectives) raise the focus on another crucial issue, that can be called
the human factor. Human expertise and decision making are of major importance
for a better understanding of food systems, and should thus be integrated into
machine learning approaches [10].

2.2 Symbolic Regression

Symbolic regression, based on a genetic programming approach, is a technique
able to extract free-form equations that expose correlations in a given experi-
mental dataset. The original idea is presented in [9], and the technique has been
applied to a vast array of real-world problems [2,8,15]. Candidate solutions are
encoded as trees, with terminal nodes encoding constants and variables of the
problem, whereas intermediate nodes correspond to mathematical functions such
as {+,−, ∗, /, ...}. In most implementations, the fitness function is proportional
to the absolute or squared error between experimental data, with parsimony
corrections to reward simpler solutions. Eureqa Formulize2 is one of the most
notable symbolic regression tools. Eureqa deals with the issue of overfitting by
returning a Pareto front of candidate solutions, each one presenting a compro-
mise between fitting and complexity [16], leaving the final choice to the user.

2.3 Production and Stabilisation Process of Lactic Acid Bacteria

Concentrates of Lactic Acid Bacteria (LAB) are widely used in food applica-
tions, ranging from yoghurt and cheese to fermented meat, from vegetables to
fruit beverages. In industry, these bacterial starters are produced in large quan-
tities by fermentation and must therefore undergo a preservation procedure,
called stabilisation. Both production and stabilisation processes aim at protect-
ing the quality of bacterial starters, characterised by their cell viability and
their acidification activity. The full process involves numerous control parame-
ters across its different steps (Fermentation, Concentration, Freeze-Drying and
Storage) [3]. Moreover, the process is a multi-scale system. Indeed, the quality of
the starters can be explained by the cellular composition in fatty acid which is in
turn explained by the genomic expression in each cell. This latter only depends
on the parameters of fermentation and concentration.

3 Proposed Approach

Experts in the process of production and stabilisation of lactic acid bacteria
have numerous questions about how a given bacteria strain draws its resistance
to the process. Different mathematical tools, including mathematical formulas
are generally used to help them to answer these questions with more or less
success. Finding reliable formulas linking the different variables of such a system
is indeed challenging [12]. In biological data, a high level of variability is often

2 http://www.nutonian.com/.

http://www.nutonian.com/

192 T. Chabin et al.

encountered for repetitions of a given experimental condition. Moreover, exper-
iments are usually time-consuming and expensive – only a few experiments are
thus performed – which makes the task of characterising the existing variability
difficult. Contrary to well-established methods for biological network inference
[4], we are dealing here not only with microscale genomic data, but also with
macroscale data. In our case, we deal with datasets having very few data points,
which limits the utility of such method.

LIDeOGraM (Life-based Interactive Development Of Graphical M odels)
tries answering these challenges with an original approach of semi-automatic mod-
elling.

The goal of LIDeOGraM is to help experts build a global model of their
complex process by characterising each non-input variable by a mathematical
formula that depends on the other variables in the system. Finding the right
equation in a context with high variability in the dataset is an ambitious task.
Indeed, it is easy to come up with over-fitted equations that perfectly model a
dataset including its noise. However, over-fitted equations do not generalise well.

In order to rule out over-fitted equations, a solution is to involve experts in
the course of the modelling process. The expectation is that they will be able,
thanks to their knowledge of the process, to identify over-fitted or under-fitted
equations.

Symbolic regression using a Pareto-like approach such as the one imple-
mented in Eureqa, constitutes a compelling approach to take advantage of the
expert’s insight. Indeed, by providing a set of formulas according to different
compromises between fitness and complexity, the approach allows the experts to
filter out incoherent equations or even designate the most suitable one.

Therefore, as a first optimisation step, LIDeOGraM uses Eureqa runs on each
variable, in order to get a set of candidate equations. For automatic learning
purposes, the dataset is separated into training and test sets. Moreover, some
constraints in the search are defined beforehand by the user, using the interface
presented in Fig. 2. This tool allows attributing each variable to a given class,
and defining authorized links between them. This means that only the variables
from a parent class can be used in the equations for determining the variables
of the child class. This also means that dependencies will be searched only with
variables of other classes and that no intra-class dependencies will be considered.
This structure of classes can be used to distinguish between scales and steps in
the studied process. Variables measured at a macro-scale, like the viability of
the population of bacteria could, for example, be only explained with variables
from a micro-scale, such as the composition in fatty acids. Similarly variables
measured in a given step could only be explained by variables from previous
steps.

A qualitative view of these results is presented to the user in the form of a
graphical network (See Fig. 1).

The goal of this display is to help the user focus on the critical variables, i.e.
where expert feedback is most needed. In this prospect, variables are represented
as nodes in the graph. The colour of the nodes depends on its attributed class.

LIDeOGraM: An Interactive Evolutionary Modelling Tool 193

Fig. 1. Screenshot of LIDeOGraM. The left side shows a graphical model representing
the mean fitness of the local models obtained by symbolic regression. The top-right
part is the list of equations proposed by Eureqa for the selected node, and the bottom-
right part shows a plot of the measured versus predicted data associated to the selected
equation.

A link between two variables shows that the parent node is used at least once in
the set of equations attributed to the child node. The color of a link that joins a
parent node to a child node represents a numerical value calculated based on all
mathematical equations featuring the parent node in the child node. This value
can be optionally mapped by the user to the mean fitness or complexity of these
equations.

Additionally, since the displayed graphical network can have a considerable
amount of links, making the network difficult to read, a slider makes it possible
to filter the links based on their level of importance. The importance of a link is
defined by the number of equations in the child node that use the parent node,
divided by the total number of equations in the child node.

By clicking on a node, the equations found by Eureqa are displayed to the
user on the top-right side (See Fig. 1). Similarly, a click on an equation provides a
plot of the experimental measures versus what is predicted by the corresponding
equation. The user can then interact with the system by deleting an equation,
deleting a link between a parent node and a child node (i.e. all equations using
the parent node in the child node are deleted), or deleting a variable (i.e. all
equations using the deleted variable are deleted). After this, few or no equations
may remain for some nodes, the user can choose to restart a symbolic regression
on any node.

194 T. Chabin et al.

The user can iterate the process for as long as desired: add or suppress
constraints, restart symbolic regression on any node. Once the user is satisfied
with local models, a global model can be built.

For the global model, one equation only is kept for each node. However,
choosing the most reliable ones is a challenging task. Contrarily to the local
models, where the experimental measures are used to predict a variable, in a
global model the value predicted by an equation depends on the value predicted
for the variables used in that equation. For this reason, each choice of equation
for a given variable will influence the quality of the prediction of other equations
that use the variable. To tackle this challenge, evolutionary optimisation is used
to build a global model.

A (μ+λ)-evolutionary algorithm was taken from the Python DEAP package
[7] to optimise the global model. The genome of a candidate global model is
a string of integers, of size equal to the number of variables in the process.
Each gene is associated to a variable, and can assume a value between 1 and
the number of equations available to describe that variable, thus representing an
index for a candidate equation in that node. Its fitness function, to be minimised
for the global model, is the mean of the fitness calculated on each non-input
nodes. The fitness function of a single node computes a value based on the
Pearson correlation coefficient of the measured versus predicted data. Such a
fitness function does not take into account the complexity of the equations. The
reason behind this choice is that over-fitted equations will be naturally discarded
during the learning of the global model, as they will likely create noise for their
children variables.

After the evolutionary optimisation process, remaining incoherence in the
choice of equations for the global model can still be edited by the user. For this
purpose, a qualitative view of the global model is displayed as a new visualisation
(See Fig. 4). Contrarily to the graphical network displayed for the local models,
here only the variables used in the chosen equation of a child node are considered
as parents of the node. A link from a parent node to a child node in this graph
represents the fact that the chosen equation for the child node contain the parent
variable, its colour depends on the fitness of the child node in the global model.
Green represents a good fitting, and red a bad one. The goal of this view is to
help the user focus on the nodes with bad predictions. A user change on the
selected equation of a node impacts the predicted value of its children nodes.
The graphical model is therefore automatically updated, and the update shows
the consequence of the change in term of fitness on the other nodes of the graph.

After this step, the user has the possibility to go back to local view and
make changes before restarting a new global optimisation. A global model is
thus iteratively built via user interaction, local and global optimisation.

LIDeOGraM: An Interactive Evolutionary Modelling Tool 195

4 Experimental Results

4.1 The Dataset

The case study is based on the work of Velly et al. [18,19] about the resistance
of Lactococcus lactis subsp. lactis TOMSC161 to freeze-drying. This bacteria is
used in the production of Tomme de Savoie, a french cheese, for its interesting
texturing and acidification properties, but exhibits a high sensitivity to freeze-
drying. The resistance of the bacteria is studied for 4 different conditions of
fermentation: 22 ◦C and 30 ◦C, evaluated at the beginning of the stationary
growth phase and 6 h later.

The dataset featured 12 data points, with 3 biological repetitions of each
experimental condition. The dataset features 2 input variables, the temperature
of fermentation and the time at which the fermentation is stopped and 49 vari-
ables measured at 4 different steps (fermentation, concentration, freeze-drying
and storage) for 3 biological scales (Genomic, Cellular and Population).

4.2 Search with Eureqa

The 51 variables described above are first separated into 9 classes of variables:
Input variables, Genomic for overexpressed and underexpressed genes,
Cellular, Anisotropy, Population at the end of the Concentration step,
Population at the end of the Congelation, Population at the end of the
Drying step and the Population after 3 months of Storage. Each class of vari-
ables can only be explained by user specified classes. The possible links between
classes are shown in Fig. 2.

The dataset is also separated into a training dataset (66%) made of two out
of the three repetitions for each experimental condition, and into a test dataset
(33%) with the remaining repetition.

The authorised mathematical operators for the Symbolic regression using
Eureqa are: Constants, Input variables, Addition, Subtraction, Multiplication,
Division, Exponential, and the Natural logarithm. For each non-input variables,
3 min of computation were allowed on an Intel(R) Core(TM) i7-4790 CPU. A
total of 232 equations were obtained for the variables.

4.3 Optimisation of the Global Model

The parameters of the evolutionary optimization algorithm used for the global
model are reported in Table 1.

The mutation function takes complexity information into account. It has been
experimentally shown to be more efficient than a mutation which randomly picks
an equation in the list of candidate equations.

The graphical model associated to one of the optimisation runs is shown in
Fig. 4.

The creation of a global model does not involve only an automatic optimi-
sation, but also requires experts knowledge, obtained via interaction with the

196 T. Chabin et al.

Fig. 2. Screenshot of the interface allowing the users to choose the authorised links
between the defined classes. A link between two classes means that all variables asso-
ciated to the parent class can be used in the equations for all variables associated to
the child class. The displayed graph represents the selected constraints chosed for this
experiment.

Table 1. Parameters of the evolutionary algorithm used during the optimization pro-
cess for the global model.

μ 100

λ 80

Number of generations 100

Probability of crossover 0.8

Probability of mutation 0.2

Selection Tournament of size 2

Crossover function Uniform

Mutation function With a probability 0.05 for each gene, change the selected
equation to the previous or the next one by order of
complexity

software. An informal evaluation of the software was performed by a researcher
with 20 years of expertise in the bacteria freeze-drying process. For this purpose
the expert gave us feedback on the proposed local models, presented in Fig. 1,
during a 20 min exploration. The expert chose to remove 5 equations. Some
equations were removed for using both variables from the Cellular scale with the
Anisotropy variable. The reason is that the Anisotropy is an emergent property
of the fatty acid composition at the Cellular scale and it is not straightforward
to make sense of such an equation. Similarly, an equation using the viability at

LIDeOGraM: An Interactive Evolutionary Modelling Tool 197

Fig. 3. Comparison of the evolution of the minimum fitness across generations for 10
runs, with and without the expert’s contribution.

Fig. 4. Graphical model representing a global model. The Global fitness of the model
is indicated at the bottom-left. The fitness value of each node is indicated under them.
(Color figure online)

198 T. Chabin et al.

both the centrifugation step and the drying step was removed. The reason is
that the viability at the centrifugation step is used to predict the viability at the
drying step, therefore, it is hard to understand the necessity of using both steps
since the obtained data values are dependent. The expert also chose to remove
2 nodes, after observing that those nodes w ere used repeatedly in the equa-
tions of many nodes. Indeed, due to their insignificant measured quantities, they
were not expected to be important variables, rather, they were deemed useful
for refining some models. Therefore, they were considered as creators of overfit-
ted equations. The deletion of those two variables removed 14 more equations.
With such major deletions, some variables were left with only a few equations,
therefore, the expert chose to restart a symbolic regression on 3 nodes, obtain-
ing 12 new equations in total. To reveal the contribution of the expert, the
global model optimisation was performed 10 times using expertise, and 10 times
without. The fitness evolution of these runs are shown in Fig. 3. To obtain an
accurate comparison of the models, the fitness computed for optimisation with-
out the expertise did not take into account the two removed nodes. The global
models obtained using expertise have a median fitness of 0.787 with a standard
deviation of 0.010 whereas the global models obtained without expertise have
a median fitness of 0.801 with a standard deviation of 0.013. The expert was
asked to provide feedback for the last step of the modelling process in which
one of the global model obtained was submitted to his expertise. The results
were explored during 10 min, and the equations for three node were changed.
Two of the modified equations were indeed overfitted, and the last one was an
underfitted. For example, one of the equations selected by LIDeOGraM, at the
cellular scale, the variable C18:0 was defined as being equal to the duration of
fermentation, which seemed a rather drastic choice. The expert chose to select a
more reasonable equation presenting a linear dependency involving the duration
of fermentation. The obtained graphical model is presented in Fig. 4. The fitness
of the final global model was slightly degraded, changing from a fitness of 0.789
to a fitness of 0.801, but the produced model is able to better reflect the expert
understanding of the underlying reality of the process.

5 Discussion

We proposed a time-saving modelling tool for the experts, allowing them to
design a better global model of their process by a semi-interactive approach.
Figure 3 shows that the resulting models are “better”, not only according to the
expert requirements, but also with respect to the numerical data (faster and bet-
ter convergence). Above all, this method offers tools for domain experts to design
and test different hypothesis, using different datasets and class constraints. The
complexity of the modelled process and the scarcity of the dataset is taken into
account by allowing the expert to interact with the results all along the opti-
misation process. The domain expert who tested our tool mentioned that with
lideogram, it was easy to test existing hypotheses, and to explore new research
questions that she did not consider before.

LIDeOGraM: An Interactive Evolutionary Modelling Tool 199

Nevertheless, the approach has some drawbacks. Since the predictions of each
node are propagated, only the input variables are indeed used in a global model
to determine every other variables. Knowing this, a natural question should
be why all variables are not directly linked to the input variables, and why
intermediary variables exist. A reason behind this is that the goal is not only
to get the best prediction out of every variable, but also to help the expert
understand mathematically the existing dependencies between variables and the
multi-scale/multi-step organisation of the process.

Besides this, we should mention that the current results remain not fully
satisfying for the genomic scale. The hypothesis made by the expert was that the
genomic scale is only explained by the conditions of fermentation (temperature
and time at which the fermentation is stopped). This hypothesis needs additional
verifications, as the relation with genomic scale might not be so straightforward.
Other variables, not measured during the experiments, may be involved. A more
refined work on the expressed genes and their classification is necessary. A future
study will explore in more details different hypothesis about the possible links
between classes of variables.

Finally, some expert-defined variables used in the literature are the sum of
some measured variables. For example, the Saturated Fatty Acids variable, is
defined as the sum of 6 variables at the cellular scale. New tools could be designed
to incorporate this kind of knowledge and allow the user to create “hierarchic”
variables. Such variable would allow taking into account different levels of details
in the modeling process and would allow to easily test various hypotheses for
the computation of variables at the genomic scale.

6 Conclusions

In this paper, we proposed a new approach to semi-automatic modelling allow-
ing users to design complex models for multi-scale and multi-steps processes.
Using expert’s knowledge integrated during the optimisation process, the pro-
posed approach is able to tackle challenges such as scarcity in a dataset, high
dimensionality and high variability. According to experts guidelines, a set of
local models are proposed for each variable, using symbolic regression. The local
models form a Pareto front of candidate solutions to compromise between model
fitness and complexity. These local models are then used to automatically con-
struct a global model where each variable is defined by a given equation from
the local models. In a global model, the multi-scales multi-steps process is taken
into account by classifying the variables into different classes and by forwarding
the predicted value of a variable to equations that use this variable to predict
other ones. An expert is able to contribute to the automatic design of a global
model in many ways, by acting on the proposed local models and by correcting
the global model. The approach was applied to the production and stabilisation
process of lactic acid bacteria. The contribution of the expert was shown to be
useful to provide a more accurate global model. Future improvements will involve

200 T. Chabin et al.

new tools to create and manage hierarchic variables and associate a level of con-
fidence for each variable. These improvements will allow producing a full and
efficient study of the production and stabilisation process of lactic acid bacteria.

Aknowledgements. We would like to express our thanks to Jean-Daniel Fekete from
Inria Saclay, who provided great advice and insight on the graphical user interface of
LIDeOGraM.

References

1. Allais, I., Perrot, N., Curt, C., Trystram, G.: Modelling the operator know-how
to control sensory quality in traditional processes. J. Food Eng. 83(2), 156–166
(2007)

2. Babovic, V., Keijzer, M.: An evolutionary approach to knowledge induction: genetic
programming in hydraulic engineering. In: Proceedings of the World Water & Envi-
ronmental Resources Congress (2001)

3. Champagne, C., Gardner, N., Brochu, E., Beaulieu, Y.: freeze-drying of lactic acid
bacteria. A review. Can. Inst. Food Sci. Technol. J. (Journal de l’Institut canadien
de science et technologie alimentaire) 24(3–4), 118–128 (1991)

4. Chaouiya, C.: Petri net modelling of biological networks. Brief. Bioinform. 8(4),
210–219 (2007)

5. Cros, M.J., Duru, M., Garcia, F., Martin-Clouaire, R.: A biophysical dairy farm
model to evaluate rotational grazing management strategies. Agronomie 23(2),
105–122 (2003)

6. Dai, Z.W., Vivin, P., Génard, M.: Modelling the effects of leaf-to-fruit ratio on
dry and fresh mass accumulation in ripening grape berries. In: VIII International
Symposium on Modelling in Fruit Research and Orchard Management, vol. 803,
pp. 283–292 (2007)

7. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

8. Gaucel, S., Keijzer, M., Lutton, E., Tonda, A.: Learning dynamical systems
using standard symbolic regression. In: Nicolau, M., Krawiec, K., Heywood, M.I.,
Castelli, M., Garćıa-Sánchez, P., Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.)
EuroGP 2014. LNCS, vol. 8599, pp. 25–36. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44303-3 3

9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection, vol. 1. MIT press, Cambridge (1992)

10. Lutton, E., Perrot, N.: Complex systems in food science: human factor issues. In:
6th International Symposium on Delivery of Functionality in Complex Food Sys-
tems Physically-Inspired Approaches from the Nanoscale to the Microscale (2015)

11. Lutton, E., Perrot, N., Tonda, A.: Evolutionary Algorithms for Food Science and
Technology. Wiley, Hoboken (2016)

12. Passot, S., Fonseca, F., Cenard, S., Douania, I., Trelea, I.C.: Quality degradation
of lactic acid bacteria during the freeze drying process: experimental study and
mathematical modelling (2011)

13. Perrot, N., De Vries, H., Lutton, E., Van Mil, H.G., Donner, M., Tonda, A.,
Martin, S., Alvarez, I., Bourgine, P., Van Der Linden, E., et al.: Some remarks on
computational approaches towards sustainable complex agri-food systems. Trends
Food Sci. Technol. 48, 88–101 (2016)

https://doi.org/10.1007/978-3-662-44303-3_3
https://doi.org/10.1007/978-3-662-44303-3_3

LIDeOGraM: An Interactive Evolutionary Modelling Tool 201

14. Perrot, N., Trelea, I.C., Baudrit, C., Trystram, G., Bourgine, P.: Modelling and
analysis of complex food systems: state of the art and new trends. Trends Food
Sci. Technol. 22(6), 304–314 (2011)

15. Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolu-
tionary generation of dispatching rule sets for complex dynamic scheduling prob-
lems. Int. J. Prod. Econ. 145(1), 67–77 (2013)

16. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

17. Sicard, M., Baudrit, C., Leclerc-Perlat, M., Wuillemin, P.H., Perrot, N.: Expert
knowledge integration to model complex food processes. Application on the camem-
bert cheese ripening process. Expert Syst. Appl. 38(9), 11804–11812 (2011)

18. Velly, H., Bouix, M., Passot, S., Penicaud, C., Beinsteiner, H., Ghorbal, S., Lieben,
P., Fonseca, F.: Cyclopropanation of unsaturated fatty acids and membrane rigid-
ification improve the freeze-drying resistance of lactococcus lactis subsp. lactis
tomsc161. Appl. Microbiol. Biotechnol. 99(2), 907–918 (2015)

19. Velly, H., Fonseca, F., Passot, S., Delacroix-Buchet, A., Bouix, M.: Cell growth and
resistance of lactococcus lactis subsp. lactis tomsc161 following freezing, drying and
freeze-dried storage are differentially affected by fermentation conditions. J. Appl.
Microbiol. 117(3), 729–740 (2014)

Automatic Configuration
of GCC Using Irace

Leslie Pérez Cáceres(B), Federico Pagnozzi, Alberto Franzin,
and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
{leslie.perez.caceres,federico.pagnozzi,

alberto.franzin,stuetzle}@ulb.ac.be

Abstract. Automatic algorithm configuration techniques have proved
to be successful in finding performance-optimizing parameter settings of
many search-based decision and optimization algorithms. A recurrent,
important step in software development is the compilation of source
code written in some programming language into machine-executable
code. The generation of performance-optimized machine code itself is a
difficult task that can be parametrized in many different possible ways.
While modern compilers usually offer different levels of optimization as
possible defaults, they have a larger number of other flags and numerical
parameters that impact properties of the generated machine-code. While
the generation of performance-optimized machine code has received large
attention and is dealt with in the research area of auto-tuning, the usage
of standard automatic algorithm configuration software has not been
explored, even though, as we show in this article, the performance of the
compiled code has significant stochasticity, just as standard optimization
algorithms. As a practical case study, we consider the configuration of the
well-known GNU compiler collection (GCC) for minimizing the run-time
of machine code for various heuristic search methods. Our experimen-
tal results show that, depending on the specific code to be optimized,
improvements of up to 40% of execution time when compared to the -O2

and -O3 optimization flags is possible.

Keywords: Irace · Automatic configuration
Parameter tuning · GCC

1 Introduction

The performance of computational procedures such as optimisation algorithms
is commonly a major concern for both developers and users. Algorithm perfor-
mance depends on several elements related to the characteristics of the algorithm
itself, the particular problem being solved and the environment in which the exe-
cution will be performed. Normally, algorithms expose parameters that allow the
user to adjust their behaviour to the problem solved and the execution circum-
stances. Generally, parameter settings or configurations have a strong impact on
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 202–216, 2018.
https://doi.org/10.1007/978-3-319-78133-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_15&domain=pdf

Automatic Configuration of GCC Using Irace 203

the performance of algorithms and, consequently, finding high-performing config-
urations is essential to reach peak algorithm performance. The process of finding
good configurations can be challenging, requiring significant expertise, consum-
ing large amounts of time and be computationally expensive given the large
number of parameters that some algorithms have. To alleviate this situation,
a number of automatic algorithm configuration tools, also called configurators,
have been proposed in the literature. Examples include ParamILS [15], SMAC
[14], GGA [2] and irace [17]. These tools have shown to be able to obtain very
good parameter settings when configuring different types of algorithms, in some
cases strongly improving the performance obtained by expert-defined default
parameter settings [12,24]. Configurators aim at efficiently using the available
computational resources to search the parameter space for high-performance
parameter settings. The use of such tools can enable developers to test and make
available more design features, and provides a simple and general approach to
obtain the best performance of an algorithm.

Very often the configuration of optimisation algorithms is limited to their
parameter settings, overlooking the code compilation as an element that can
affect algorithm performance. On the contrary, in contexts where producing high-
performance and portable code is very important, this issue is widely acknowl-
edged. Several projects define application-specific “autotuners” that adjust the
program produced to the system on which it will be installed. Examples of such
work include ATLAS [25], Spiral [21], FFTW3 [6] and Patus [5]. On the other
side, compilers such as GCC [8], provide several optimisation options that aim at
improving the quality of the generated executable. Default levels of optimisation
that activate different sets of options are defined in GCC using the -Ox settings.
These optimisation levels are defined in a general fashion and further improve-
ments are possible depending on the operations performed by the compiled code
and the architecture in which the algorithm is executed. In this sense, GCC is
like any other computational procedure whose performance can be optimised by
setting its parameters. Selecting the optimisation options of GCC, or any other
compiler, to obtain the best executable performance is itself an algorithm config-
uration problem, which has been tackled by methods such as OpenTuner [1] and
COLE [13], or in more specific approaches [4,7,20]. Consequently, when config-
uring optimisation algorithms, it is possible to optimise the compilation of the
code as part of the algorithm configuration process.

The irace package [17] is an automatic algorithm configurator that provides
an implementation of iterated F-race [3] and other approaches to automatic con-
figuration. Irace is freely available as an R package, it provides several options to
adjust the configuration process (e.g. parallel execution) and it does not require
knowledge of R or about the inner workings of irace itself. Irace has been widely
applied in the literature and is a state-of-the-art algorithm configurator. In this
work, we exploit irace to configure the optimisation options of GCC for min-
imising the execution time on six different benchmarks that execute different
optimisation algorithms. This work shows that (i) the running time of optimisa-
tion algorithms can be further improved by configuring the compilation options,

204 L. Pérez Cáceres et al.

(ii) the best options depend on the benchmark and the machine used, and (iii)
irace is a suitable configurator to configure the compilation process. Beyond these
contributions, irace can be used to improve the execution time of any other com-
piled code and we will make our procedure, which is tested here on the most
recent stable version of GCC, version 7.1, available for other users.

The remainder of this article is organised as follows. First, Sect. 2 describes
the algorithm configuration problem, gives details of the configuration process
performed by irace and discusses related work. The details of the compilation con-
figuration benchmarks used are provided in Sect. 3 and Sect. 4 gives an analysis
of the base performance of the compilation of GCC for the different benchmarks.
In Sect. 5, we provide the experimental results obtained by irace when config-
uring the compilation options of GCC and we analyse them. Finally, we discuss
future work and conclude in Sect. 6.

2 Automatic Algorithm Configuration

The configuration of algorithms, is the task of finding a set of algorithm param-
eter values, also called algorithm configuration, that exhibit good empirical per-
formance for a particular class of problem instances. Algorithm configuration can
be defined as an optimization problem over a parameter search space, which has
the goal of identifying parameter settings that maximize algorithm performance.
In general, an algorithm configuration scenario defines: a parameter search space
consisting of the algorithm parameters defined as variables and their domains, a
set of training and test instance sets, and a total configuration budget. Broadly,
parameters can be classified in two types: (i) parameters that indicate the selec-
tion of algorithmic components (e.g. the crossover operator for an evolutionary
algorithm, or the branching strategy for an exact algorithm), and (ii) parameters
that control the behavior of algorithmic components (e.g. the length of a tabu
list, or the size of a perturbation) and whose domain commonly correspond to
numbers of a discrete or continuous domain. The type of parameters are com-
monly best represented by categorical or ordinal variables, while the former as
numerical ones. Additionally, parameters can have conditional relations that is,
their use depends on the value of other parameters (e.g. the use of the tabu list
length parameter is conditional to the selection of tabu search as local search).
The homogeneity of a scenario indicates the degree of consistency of the rela-
tive performance of configurations in the parameter space across the instance
set. Highly homogeneous scenarios, have configurations that are consistently
good (or bad) for all problem instances, while in heterogeneous scenarios cer-
tain configurations perform best in a subset of the instances and poorly in other
instances. An algorithm can be configured for optimizing different performance
measures e.g. solution quality, running time, SAT count, etc. The evaluation of
the performance of a configuration is commonly defined as the aggregation of
the selected performance measure over the instance set (commonly the mean
or median). Given that optimization algorithms are often stochastic, the real
performance of configurations can be only estimated and several repetitions are
required in order to have a precise estimation.

Automatic Configuration of GCC Using Irace 205

The irace package [17] is an algorithm configurator that implements config-
uration procedures based on iterated racing, e.g. iterated F-race [3]. Irace is a
general-purpose configurator and it only requires the definition of a configura-
tion scenario as described above. The supported parameter types are categorical,
integer, real and ordered (a categorical parameter that defines a precedence of
values in its domain). Irace iteratively applies a racing procedure in which sev-
eral configurations are incrementally evaluated on bigger subsets of the training
instance set. Statistical tests (the Friedman test by default) are performed to
identify configurations that obtain poor performance. These poor configurations
are eliminated from the race and the execution continues with the surviving
configurations until the termination criterion of the iteration is met. After each
iteration, new configurations are sampled from a probabilistic model that is
updated to be centered around the best configurations obtained in the previous
iteration (elites). This way, irace iteratively converges to high-performing areas
of the parameter search space, while increasing the precision of the performance
estimation by increasing the number of instances in which the elite configurations
are evaluated. For more details about irace we refer to [17].

As already mentioned, the configuration of algorithms is a main concern when
developing and applying algorithms. The use of automatic configuration tools
not only facilitates the algorithm configuration process but also allows develop-
ers and researchers to focus on proposing and improving techniques for a wide
scope of scenarios, while delegating the tedious configuration task to special-
ized tools. Several approaches can be found in the literature to automatically
generate code and optimize compilation options. These approaches optimize pro-
grams to obtain the best performance in particular architectures, multicore or
cluster environments, GPU, etc. Most of these methods are program-specific
techniques that apply expert knowledge to implement procedures designed for
particular scenarios. Examples of such techniques are ATLAS [25] for linear alge-
bra software, Spiral [21] for digital signal processing algorithms, FFTW3 [6] for
discrete Fourier transform computation and Patus [5] for stencil computations.
As most computational procedures, compilers have parameters that can be opti-
mised thus, a number of approaches have been developed to configure compiler
options. An example of such initiatives is ACOVEA [16], an open-source project
that currently is not in development. ACOVEA implemented a genetic algorithm
based approach to configure the GCC compiler options to obtain lower execution
times. Similarly, Milepost GCC [7] is an open-source project that aims at using
machine learning techniques to learn high-performing GCC settings, with the aim
of reusing this knowledge to improve the performance of programs in particular
architectures. The Tool for automatic compiler tuning (TACT) [20] is a genetic-
based compiler configurator. TACT supports the configuration for single and
multiple objectives by obtaining a pareto-optimal set of configurations.

A general autotuning framework, called OpenTuner, is proposed in [1] and
applied to configure the options of GCC. OpenTuner provides a framework
where domain-specific configuration procedures can be instantiated, while also
offering several general-purpose features to configure computational programs.

206 L. Pérez Cáceres et al.

OpenTuner was used to instantiate a specialized autotuner to configure the opti-
mization options of GCC, the approach obtained considerable speed ups of execu-
tion performance in several scenarios. A drawback of OpenTuner, from the per-
spective of the automatic configuration of optimization algorithms, is that it does
not provide an explicit method to handle the stochastic behavior of algorithms or
the evaluation of problem instances. The evaluation of the configurations is fully
delegated to the user and therefore, the use of problem instances and repetitions
in the evaluation must be handled by the user. COLE [13], is a compiler opti-
mizer that implements an evolutionary algorithm based on SPEA2 [27]. COLE
is able to optimize the compilation for multiple objectives (e.g. running time and
memory use) by searching pareto-optimal sets of compilation options. In [13],
COLE was used to configure the optimization flags of GCC (version 4.1.2), com-
piling the SPEC CPU2000 benchmarks [11]. The results showed that the default
optimization levels of GCC could be strongly improved. In this work, we evaluate
the use of irace to configure the optimization parameters of GCC for optimizing
the performance obtained by 6 optimization algorithms. We do not apply any
GCC-dependent processing mechanism to the evaluation of configurations; in this
regard, we apply irace like for any other configuration scenario. We argue that,
since the evaluation of the compilation with GCC is a stochastic procedure, irace
is an adequate method to perform the configuration of the GCC optimization
options. The experiments show that irace can significantly improve the perfor-
mance obtained by the tested optimization algorithms without requiring any
specific knowledge about the compilation process or the targeted algorithms.

3 Configuration Scenarios

The experiments presented in this paper configure the optimization options of
GCC [8] to compile a set of optimization algorithms benchmarks. We use GCC ver-
sion 7.1, the optimization options considered in the configuration were obtained
from the documentation of GCC1. The total number of GCC parameters selected
are 367 categorical and integer parameters. Enabling the optimization options
in GCC requires to select an optimization level, thus, the set of GCC parameters
includes a parameter to select the optimization level (-O1, -O2 or -O3). We define
two types of GCC configuration scenarios by making two sets of parameters:

– GCCflags: 171 categorical parameters consisting of only options that
enable/disable main optimization options.

– GCCflags+num: 366 parameters, 173 categorical and 193 integer.

The domains in the GCC parameter definition do not provide the upper bound
of some numerical parameter domains. In these cases we set as upper bound the
default value of the parameter multiplied by a constant (4 in this work). Con-
figurations that generate invalid executables or failed in the compilation were
1 The GCC optimization options are available at https://gcc.gnu.org/onlinedocs/gcc-

7.1.0/gcc/Optimize-Options.html and the parameter definition can be obtained in
the params.def file in the source code of GCC.

https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc-7.1.0/gcc/Optimize-Options.html

Automatic Configuration of GCC Using Irace 207

penalized returning a large numerical value to irace. Other types of specific error
handling were not implemented. The compilation performed by GCC is optimized
using the GCCflags and GCCflags+num parameter sets in 6 optimization algorithms
benchmarks, resulting in 12 different configuration scenarios. The optimization
algorithms were executed with fixed parameter settings and fixed evaluation
budgets (e.g. fixed number of iterations or solutions generated) and each bench-
mark defines a set of training and test instances. The goal of the configuration
process is to find GCC parameter settings that minimize the execution time of
the benchmark algorithms (using the defined fixed settings). The optimization
algorithm benchmarks are the following:

ACOTSP: framework of ant colony optimization algorithms [23] for solving
the traveling salesman problem (TSP). ACOTSP is implemented in C. The
compilation is configured on a training set of 20 TSP instances and evaluated
on 100 TSP instances of sizes 1000 and 1500. We configure two versions of
ACOTSP, one that applies 3-opt local search to each tour built (ACOTSP
ls3) and a version without local search (ACOTSP ls0).

ILS: iterated local search implementation for solving TSP. ILS is implemented
in C. The compilation is configured on a training set of 10 TSP instances and
evaluated on 50 TSP instances of size 1500.

LKH: state-of-the-art Lin-Kernighan heuristic implementation by Helsgaun [9,
10]. LKH is implemented in C. The compilation of this algorithm is configured
on a training set of 10 TSP instances and evaluated on 50 TSP instances of
size 1000.

TS: tabu search implementation for solving the quadratic assignment problem
(QAP). TS is implemented in C. The compilation is configured on a training
set and test set of 50 QAP instances.

EMILI: Iterated greedy algorithm instantiated with the EMILI framework for
solving the permutation flowshop problem (PFSP). EMILI is implemented in
C++. The compilation was configured on a training set of 30 PFSP instances
with 20 machines and 50 to 100 jobs and evaluated on 120 PFSP instances
with 5 to 20 machines and 20 to 500 jobs.

The execution of irace was given a configuration budget of 10 000 evaluations,
the statistical test used was the t-test and the performance of the candidate
configurations corresponds to the execution time of the optimization algorithm
benchmarks. We have chosen not to provide an initial GCC configuration to irace,
which is commonly done when good parameter settings are known (for GCC, the
-03 or -O2 options are possible initial settings). We omit the initial configurations
to evaluate the ability of irace to find high-performing configurations without
additional information of the parameter space. The main tests were run under
Cluster Rocks 6.2, which is based on CentOS 6.2. The machines used were:

– m1 : 2 AMD Opteron (2.4 GHz), 2 cores, 1 MB cache and 4 GB RAM.
– m2 : 2 Intel Xeon (2.33 GHz), 4 cores, 6 MB cache and 8 GB RAM.
– m4 : 2 AMD Opteron (2.1 GHz), 16 cores, 16 MB cache and 64 GB RAM.
– m5 : 2 Intel Xeon (2.5 GHz), 12 cores, 16 MB cache and 128 GB RAM.

208 L. Pérez Cáceres et al.

The m2 machine was used by default to perform the experiments unless specified
otherwise. More details about the configuration scenarios are available in the
supplementary material provided with this paper [19].

4 GCC Configuration Scenarios Analysis

Our premise is that the optimization options of GCC can improve greatly the
performance of the described benchmarks. In order to prove this, we perform
experiments to compare the performance of the benchmarks when compiled by
GCC with and without optimization options enabled. Table 1 gives the speed
up obtained by using the options -O3, -O2 and -O1 for GCC, respectively. We
can observe that the speed up obtained by the optimization options is strongly
influenced by the benchmark. Nevertheless, all benchmarks improve their perfor-
mance by using the optimization options. EMILI is the benchmark that shows
the biggest improvement in performance by reducing 10 times its running time
compared to the one obtained by the executable generated without optimization.
This could be related to the fact that the code of EMILI is written in C++, which
allows more optimization. All the benchmarks obtain their best performance
using -O3 or -O2, showing that those optimization levels, which are commonly
advised for compilation, already lead to significant improvements.

The homogeneity of configuration scenarios regarding the problem instances
is an important element for the algorithm configuration procedure. Very homo-
geneous scenarios allow to estimate the performance of a configuration based on
less problem instances, more budget can be then used to explore the parameter
search space. In terms of compilation, the homogeneity quantifies how consis-
tent is the relative performance of executables obtained by different settings
of optimization options across the different instances. In order to investigate
the homogeneity of the benchmarks, we sampled uniformly 1 000 random con-
figurations of GCC and we evaluate their performance over the training set. We
removed the data of the configurations that produced failed compilations or exe-
cutions. With this data, we calculate the Kendall concordance coefficient (W)
[22] considering problem instances as blocks and configurations as groups. W is
a normalization of the Friedman statistic and can be interpreted as a measure of
how consistent is the ranking of the performance of the configurations over the
instances. Table 2 gives the W coefficients for the different scenarios, the higher
the number obtained the more homogeneous is the scenario. In addition, we also

Table 1. Speed up of 10 executions of the benchmarks, by setting GCC to use -O3, -O2
and -O1, compared to GCC with no optimization options.

Speed up ACOTSP ls0 ACOTSP ls3 ILS LKH TS EMILI

-O3 1.52 1.66 1.72 1.57 3.19 10.31

-O2 1.47 1.67 1.68 1.59 2.98 10.54

-O1 1.35 1.54 1.66 1.57 2.88 7.20

Automatic Configuration of GCC Using Irace 209

Table 2. Kendall concordance coefficient W of uniformly sampled configurations of
the 12 different GCC configuration benchmarks. Numbers in parenthesis indicate the
number of configurations used (from the 1 000 uniformly generated) to compute W
and the number of those configurations that have a significantly better performance
compared with the mean performance of 10 executions with -O3 (comparison performed
by paired t-test with significance level 0.05).

W ACOTSP ls0 ACOTSP ls3 ILS

GCCflags 0.92 (747|387) 0.97 (747|564) 0.97 (426|418)

GCCflags+num 0.75 (466|91) 0.58 (466|32) 0.64 (318|224)

LKH TS EMILI

GCCflags 0.89 (472|0) 1.00 (534|8) 1.00 (332|0)

GCCflags+num 0.79 (352|0) 0.81 (350|0) 1.00 (304|1)

report the number of not failing configurations and the number of these con-
figurations that obtain significantly better performance compared with -O3. If
few configurations were used to calculate W , this indicates that the benchmark
has many GCC settings that produce invalid executables or failed compilations.
The number of configurations that are statistically better than -O3, gives an
indication of how difficult is to optimize the performance for each benchmark. If
many configurations showed better performance than -O3, good settings will be
easy to find in the parameter space. On the contrary, if only few configurations
are better than -O3, finding good configurations will be more challenging. The
values of W indicate that in general, the GCCflags scenario is more homogeneous
than the GCCflags+num. TS-GCCflags shows to be a perfectly homogeneous scenario,
indicating that the compilation could be optimized evaluating configurations in
only one or very few instances and the results could be generalized to the rest of
them. On the contrary, LKH has the lowest homogeneity evidencing that differ-
ent instances benefit of different compilation options. This is surprising giving
that the LKH scenario uses only one instance size, and therefore such variability
between instances was not expected. The GCCflags+num scenarios are less homo-
geneous (with the exception of EMILI) indicating that some parameter values
might be better for certain instances. This could be related to the instance size or
type. These results confirm the differences between the configuration scenarios
and therefore the potential benefits configuring their compilation.

Another important aspect of configuration scenarios is the stochastic behav-
ior of algorithms. Algorithms that are strongly affected by stochasticity make the
estimation of the performance of configurations more difficult. We explore the
stochasticity effects on the evaluation of the performance of the GCC compilation
using the -O3 option by calculating a confidence interval based on 20 executions
of the benchmarks. Figure 1 gives the confidence intervals of 20 evaluations over
the instance test set. The confidence intervals clearly show the different effect
of the stochasticity in the measured performance of these two benchmarks. ILS
presents high variability of the intra-instance execution times, showing that the

210 L. Pérez Cáceres et al.

60
80

11
0

ACOTSP ls3

12
16

20

ACOTSP ls0
27

29
31

ILS

5
10

20

LKH

20
.2

20
.8

TS

0 20 40 60 80 100 0 20 40 60 80 100

0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 20 40 60 80 100 120
0

40
0

80
0

EMILI

m
ea

n
ru

nn
in

g
tim

e

Fig. 1. Confidence intervals of the running time obtained by 20 executions of the
benchmarks compiled with GCC using -O3 over the instances test set.

1.
25

1.
35

1.
45

1.
55

ACOTSP ls0

m1 m2 m4 m5

1.
4

1.
5

1.
6

1.
7 ACOTSP ls3

m1 m2 m4 m5

1.
7

1.
8

1.
9

2.
0

2.
1

ILS

m1 m2 m4 m5

1.
50

1.
60

1.
70

LKH

m1 m2 m4 m5

3.
0

3.
5

4.
0

4.
5

TS

m1 m2 m4 m5

11
.0

12
.0

13
.0

EMILI

m1 m2 m4 m5

m
ea

n
sp

ee
d

up
 fr

om
 G

C
C

 w
ith

 n
o

op
tim

is
at

io
n

Fig. 2. Confidence intervals of the mean speed up of the running time of 20 executables
compiled with GCC using -O3 from GCC with no optimization on 4 different machines.

stochasticity has a great effect on this scenario. On the contrary, the LKH bench-
mark has a very low intra-instance variability but shows a high inter-instance
variability. This is, again, surprising and indicates that the execution time of
some components of this algorithm are affected by other instances features.

We presume that the best settings of the optimization options depend on
the characteristics of the operations performed by the code to be compiled, but
also of the machine in which the algorithm will be executed. To observe this, we
report in Fig. 2 the confidence intervals of the speed ups obtained by compiling
the benchmarks with -O3 on different machines, compared with GCC without

Automatic Configuration of GCC Using Irace 211

optimization. These results indicate that the improvements in the performance
depend on both the machine and the benchmark. For example, while ACOTSP
ls3 obtains the biggest improvement in performance on m2, ILS obtains the
biggest improvement on m5. This indicates that some of the optimization options
activated by using -O3 are very favorable for ILS when executed on m5, while
these same settings seem to be less favorable for ACOTSP ls3 on the same
machine. Moreover, different machines exhibit different variability of the results,
which can indicate that some machines could be more affected by the stochastic
behavior of the algorithms. We can derive from these results the strong impact
the system can have on the performance of a compilation process, even if it
has been adjusted to the particular scenario. Good configurations are then not
always portable between systems.

5 Experimental Results

We configure the benchmarks described in Sect. 3 using only the optimization
flags of GCC (GCCflags) and the flags with the numerical parameters (GCCflags+num).
Figure 3 gives the mean speed up of 10 GCC settings obtained by 10 executions
of irace compared to the execution times obtained by GCC using -O3.

In general, irace is able to obtain speed ups over -O3 for all the benchmarks.
While for some scenarios the improvements are greater than for others, the
executions of irace are on average better than -O3. When configuring only the
flags (GCCflags), all the benchmarks clearly improve their performance with the
exception of ACOTSP ls3, for which two executions of irace obtain slightly worse

1.00
1.02
1.04
1.06
1.08
1.10

ACOTSP ls0

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

1.00

1.05

1.10

1.15
ACOTSP ls3

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

1.1

1.2

1.3

1.4

ILS

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

1.06
1.08
1.10
1.12
1.14

LKH

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

1.01
1.02
1.03
1.04
1.05
1.06

TS

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

1.05

1.10

1.15

1.20

EMILI

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

Fig. 3. Mean execution time speed up of 10 GCC configurations found by 10 irace exe-
cutions from the mean running time of 10 compilations performed by GCC using -O3.

212 L. Pérez Cáceres et al.

performance than -O3 (0.98 and 0.99). Regardless of this, the mean speed up
obtained by irace in this benchmark is of 1.03. The benchmarks for which the
largest speed up is obtained on the GCCflags scenario are ILS and EMILI.

The configuration of the optimization flags together with the numerical
parameters (GCCflags+num) obtains mixed results across the different benchmarks.
The speed up obtained by irace on the ACOTSP ls3, ILS and LKH scenarios
is increased, while the speed up is reduced (compared to GCCflags) for ACOTSP
ls0, TS and EMILI. For EMILI, the speed up obtained for GCCflags+num is only
slightly smaller compared with the one obtained for GCCflags. For TS, the mean
speed up is reduced compared to the results obtained for GCCflags. Nevertheless,
all the configurations obtained by irace have better mean performance than -O3.
The results obtained for GCCflags+num on ACOTSP ls0, are worse than the results
obtained when configuring GCCflags; despite this, the mean speed up obtained over
-O3 is 1.03 and of the 10 executions the worst speed up is only 0.99.

The reduced performances when configuring GCCflags+num for ACOTSP ls0,
EMILI and TS can be explained by the size and difficulty of the configuration
space. The GCCflags+num scenarios have considerably more parameters (366) and,
as we maintained the same configuration budget as in the GCCflags scenarios,
the search may be too limited. Additionally, the GCCflags+num scenarios seem
to be (see Table 2) less homogeneous, and they also produce more failed exe-
cutions than the GCCflags scenarios. This might actually help the configuration
process, in some cases, by easily reducing the search space of interest. The pos-
sible approaches to tackle the configuration of such scenarios with irace are: (i)
increasing the configuration budget (if feasible), (ii) providing -O3 or -O2 as
initial configurations and/or (iii) increasing the number of instances required to
start the elimination of configurations. The last one would allow better estima-
tion of the performance of the configurations, which may account for the higher
variability of the intra- or inter-instance execution times as seen in Fig. 2 for
some of the benchmarks.

The performance data obtained from the executions of irace can be useful in
order to analyze the characteristics of the configuration scenarios. Such analysis
can provide guidelines to set up the compilation with GCC on scenarios with sim-
ilar characteristics. We trained random forest models with the performance data
obtained by the 10 executions of irace on each benchmark. The procedure and
the settings used to train the random forest model are described in [18]. For the
random forest implementation we use the ranger R package [26]. When building
the training data set, the configurations that produced failed compilations or
executions were removed and thus only valid execution data points are included
in the data set. As is common for these performance models, the instances are
included as a variable in the training data. Additionally, instance features could
be added to the data set to provide more information on the impact of the
instances on performance.

Table 3 gives the five most important parameters for each of the benchmarks.
Note that since the instances are included in the data set as a variable, for some
of the benchmarks the instances are the variable that explains most of the vari-
ability. This is the effect of the variability of the execution times required for

Automatic Configuration of GCC Using Irace 213

Table 3. Variable importance % obtained by random forest models trained using data
from 10 executions of irace.

GCCflags

ACOTSP ls0 ILS TS

instance 89.9 falign-labels 39.1 falign-labels 45.1

falign-labels 2.5 instance 15.3 fguess-branch-probability 6.2

fstrict-aliasing 1.1 fcaller-saves 4.4 fstrict-aliasing 5.4

ftree-ch 0.8 ftree-pre 3.2 ftree-loop-im 5.2

flto-partition 0.5 falign-functions 2.0 ftree-ter 5.0

ACOTSP ls3 LKH EMILI

instance 87.3 instance 95.4 finline 50.3

falign-labels 5.5 falign-labels 2.0 instance 40.0

fcaller-saves 0.6 flto-partition 0.2 fif-conversion 3.3

fstrict-aliasing 0.5 finline-limit 0.2 fcode-hoisting 2.4

falign-functions 0.4 fomit-frame-pointer 0.1 fipa-pure-const 1.3

GCCflags+num

ACOTSP ls0 ILS TS

instance 90.5 max-unswitch-insns 29.4 falign-labels 38.9

falign-labels 1.9 falign-labels 13.6 ftree-ter 7.0

ftree-ch 1.3 instance 10.1 ftree-loop-optimize 3.8

fstrict-aliasing 0.9 ftree-dominator-opts 5.3 ftree-loop-im 2.3

ftree-ter 0.5 ftree-loop-optimize 2.9 fomit-frame-pointer 2.2

ACOTSP ls3 LKH EMILI

instance 87.4 instance 93.8 finline 44.1

falign-labels 3.5 falign-labels 2.0 instance 40.2

fcaller-saves 1.0 flto-partition 0.5 fif-conversion 3.0

fstrict-aliasing 0.9 parloops-schedule 0.3 sccvn-max-scc-size 2.4

ftree-ch 0.5 finline-limit 0.3 fipa-pure-const 1.2

different instances, which can be observed in Fig. 1. The instances variable is
therefore more important in benchmarks that have greater inter-instance vari-
ability, such as LKH, and less important when the running time for all the
instances is similar, as for TS. Even if there are parameters that are impor-
tant for more than one algorithm, it is not possible to find a parameter that
consistently has the same impact on the execution time of all the algorithms.
For example, EMILI has a completely different set of important parameters
compared to the rest of the algorithms. This difference can be explained by
the fact that EMILI is the only program among the benchmarks written in
C++ with an Object Oriented philosophy, while the others are written in C. For
the benchmarks with algorithms written in C (ACOTSP, ILS, TS and LKH),
the most important options are the ones that attempt to optimize memory
allocation and the use of the registers (falign-labels, fstrict-aliasing,
fcaller-saves, falign-function, fomit-frame-pointer), the linking process
(flto-partition) and the optimization of the internal representation of the

214 L. Pérez Cáceres et al.

source code used by the compiler (the ftree flags). On the contrary, for EMILI,
the optimization seems to be more focused on inlining (finline), branching
optimization(fif-conversion, fcode-hoisting) and trying to avoid unneces-
sary function calls (fipa-pure-const), which is consistent with an object ori-
ented code where it is common to have a large number of very small functions.
Most of the parameters retain a similar importance when we extend the tuning
to the numerical parameters. In fact, the list of parameters does not change for
ACOTSP ls3 and for the others, with the exception of ILS, for which the changes
are minimal. In the case of ILS, the numerical parameter max-unswitch-insns
is the most important one according to our analysis. This parameter controls the
threshold used by the compiler to decide if to unswitch a loop, that is moving a
loop invariant condition outside of the loop.

Further optimization on the execution time could be then achieved using this
information by restricting the configuration process to the set of variables that
show to have great impact in the execution times.

6 Conclusion and Future Work

Reducing the execution time of optimization algorithms, even in cases in which
the main objective is not fast execution, is of great interest for developers and
users. We have shown that significant reductions of computation times can be
obtained by optimizing compilation options. The optimization of compilation
options may either be considered as an extra step to improve execution times
after an algorithm configuration process, but also as part of the full configuration
process to address interactions between algorithm components and compilation
options. In preliminary experiments with GCC, we showed that, for the opti-
mization algorithms used, the execution times are stochastic and depend on the
computational platform and the characteristics of the code itself. Here, we con-
figured the GCC compiler options, without including any particular knowledge of
the compilation process itself, using a general-purpose algorithm configuration
software, irace. The experimental results with irace are encouraging and show
that irace can find settings that significantly improve over the default optimiza-
tion flags available in GCC, the commonly recommended -O2 and -O3 settings.

In future work we will extend these experiments to new benchmarks with
algorithms that present different characteristics and also to standard compiler
benchmark sets used for autotuning methods. For optimization algorithms, it is
also of interest to study the effect of instance types and size and their relationship
with the GCC options. The information obtained in these experiments could be
then further analyzed to extract features from the benchmarks that cause certain
optimization flags to have greater effect over performance. Another direction for
future work is to specialize the settings of irace to configure compilation options
such as a set of initial promising configurations or additional pruning techniques
to improve the search. Additionally, we will investigate the use of other automatic
configuration tools such as SMAC and compare our approach to other methods
specifically designed for the optimization of compiler flags such as OpenTuner

Automatic Configuration of GCC Using Irace 215

and COLE. Finally, we plan to make available the configuration files used in
this work to configure the options of GCC, so that other researchers can attempt
to configure their own algorithms to obtain better performance.

Acknowledgments. We acknowledge support from the COMEX project (P7/36)
within the IAP Programme of the BelSPO. Thomas Stützle acknowledges support
from the Belgian F.R.S.-FNRS, of which he is a senior research associate. The authors
would like to thank Manuel López-Ibáñez for his many helpful remarks and assistance.

References

1. Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J., O’Reilly,
U.M., Amarasinghe, S.: OpenTuner: an extensible framework for program autotun-
ing. In: Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation, pp. 303–315. ACM, New York (2014)

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04244-7 14

3. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an
overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-9 13

4. Blackmore, C., Ray, O., Eder, K.: Automatically tuning the GCC compiler to opti-
mize the performance of applications running on the ARM cortex-M3. Technical
report, CoRR (2017). https://arxiv.org/abs/1703.08228

5. Christen, M., Schenk, O., Burkhart, H.: PATUS: a code generation and autotun-
ing framework for parallel iterative stencil computations on modern microarchi-
tectures. In: Proceedings of the 2011 IEEE International Parallel & Distributed
Processing Symposium, IPDPS 2011, pp. 676–687. IEEE Computer Society (2011)

6. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). Special Issue on “Program Generation, Optimization, and
Platform Adaptation”

7. Fursin, G., Kashnikov, Y., Memon, A.W., Chamski, Z., Temam, O., Namolaru,
M., Yom-Tov, E., Mendelson, B., Zaks, A., Courtois, E., Bodin, F., Barnard, P.,
Ashton, E., Bonilla, E., Thomson, J., Williams, C.K.I., O’Boyle, M.: Milepost
GCC: machine learning enabled self-tuning compiler. Int. J. Parallel Prog. 39(3),
296–327 (2011)

8. GNU Project, Free Software Foundation: GCC, the GNU compiler collection
(1987). https://www.gcc.gnu.org

9. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126, 106–130 (2000)

10. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math.
Program. Comput. 1(2–3), 119–163 (2009)

11. Henning, J.L.: SPEC CPU2000: measuring CPU performance in the new millen-
nium. Computer 33(7), 28–35 (2000)

12. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In:
Hamadi, Y., Monfroy, E., Saubion, F. (eds.) Autonomous Search, pp. 37–71.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21434-9 3

https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-04244-7_14
https://doi.org/10.1007/978-3-642-02538-9_13
https://arxiv.org/abs/1703.08228
https://www.gcc.gnu.org
https://doi.org/10.1007/978-3-642-21434-9_3

216 L. Pérez Cáceres et al.

13. Hoste, K., Eeckhout, L.: Cole: compiler optimization level exploration. In: Proceed-
ings of the 6th Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO 2008, pp. 165–174. ACM Press, New York (2008)

14. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

15. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

16. Ladd, S.R.: ACOVEA (Analysis of compiler options via evolutionary algorithm)
(2000). https://github.com/Acovea/libacovea

17. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Operat.
Res. Perspect. 3, 43–58 (2016)

18. Pérez Cáceres, L., Bischl, B., Stützle, T.: Evaluating random forest models for
irace. In: GECCO 2017 Companion. ACM Press (2017)

19. Pérez Cáceres, L., Pagnozzi, F., Franzin, A., Stützle, T.: Automatic configuration
of GCC using irace: supplementary material (2017). http://iridia.ulb.ac.be/supp/
IridiaSupp2017-009/

20. Plotnikov, D., Melnik, D., Vardanyan, M., Buchatskiy, R., Zhuykov, R., Lee,
J.H.: Automatic tuning of compiler optimizations and analysis of their impact.
In: Alexandrov, V., et al. (eds.) 2013 International Conference on Computational
Science. Procedia Computer Science, vol. 18, pp. 1312–1321. Elsevier, Amsterdam
(2013)

21. Püschel, M., Franchetti, F., Voronenko, Y.: Spiral. In: Padua, D. (ed.) Encyclopedia
of Parallel Computing, pp. 1920–1933. Springer, Boston (2011). https://doi.org/
10.1007/978-0-387-09766-4 244

22. Siegel, S., Castellan Jr., N.J.: Non Parametric Statistics for the Behavioral Sciences,
2nd edn. McGraw Hill, New York (1988)

23. Stützle, T.: ACOTSP: a software package of various ant colony optimization algo-
rithms applied to the symmetric traveling salesman problem (2002). http://www.
aco-metaheuristic.org/aco-code/

24. Stützle, T., López-Ibáñez, M.: Automatic (offline) configuration of algorithms. In:
Laredo, J.L.J., et al. (eds.) GECCO (Companion), pp. 681–702. ACM Press, New
York (2015)

25. Whaley, C.R.: Atlas (automatically tuned linear algebra software). In: Padua, D.
(ed.) Encyclopedia of Parallel Computing, pp. 95–101. Springer, Boston (2011).
https://doi.org/10.1007/978-0-387-09766-4

26. Wright, M.N., Ziegler, A.: ranger: a fast implementation of random forests for high
dimensional data in C++ and R. Arxiv preprint arXiv:1508.04409 [stat.ML] (2015)

27. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al.
(eds.) EUROGEN, pp. 95–100. CIMNE, Barcelona (2002)

https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://github.com/Acovea/libacovea
http://iridia.ulb.ac.be/supp/IridiaSupp2017-009/
http://iridia.ulb.ac.be/supp/IridiaSupp2017-009/
https://doi.org/10.1007/978-0-387-09766-4_244
https://doi.org/10.1007/978-0-387-09766-4_244
http://www.aco-metaheuristic.org/aco-code/
http://www.aco-metaheuristic.org/aco-code/
https://doi.org/10.1007/978-0-387-09766-4
http://arxiv.org/abs/1508.04409

Offline Learning for Selection
Hyper-heuristics with Elman Networks

William B. Yates(B) and Edward C. Keedwell

Computer Science, College of Engineering, Mathematics and Physical Sciences,
University of Exeter, Exeter EX4 4QF, UK

{wy254,E.C.Keedwell}@exeter.ac.uk

Abstract. Offline selection hyper-heuristics are machine learning meth-
ods that are trained on heuristic selections to create an algorithm that is
tuned for a particular problem domain. In this work, a simple selection
hyper-heuristic is executed on a number of computationally hard bench-
mark optimisation problems, and the resulting sequences of low level
heuristic selections and objective function values are used to construct
an offline learning database. An Elman network is trained on sequences
of heuristic selections chosen from the offline database and the network’s
ability to learn and generalise from these sequences is evaluated. The net-
works are trained using a leave-one-out cross validation methodology and
the sequences of heuristic selections they produce are tested on bench-
mark problems drawn from the HyFlex set. The results demonstrate that
the Elman network is capable of intra-domain learning and generalisa-
tion with 99% confidence and produces better results than the training
sequences in many cases. When the network was trained using an inter-
domain training set, the Elman network did not exhibit generalisation
indicating that inter-domain generalisation is a harder problem and that
strategies learned on one domain cannot necessarily be transferred to
another.

Keywords: Hyper-heuristics · Elman networks · Offline learning

1 Introduction

Hyper-heuristics are heuristic methods that are employed to solve computa-
tionally hard problems for which no known effective algorithmic solution exists.
Typically such problems are presented as optimisation problems where the goal
is to minimise an objective function defined on a space of solutions. Such methods
have proved effective on a number of real world problems (see [1]).

A selection hyper-heuristic selects heuristics from a given set of low level
heuristics and applies them sequentially to optimise a particular problem. Many
hyper-heuristics employ learning algorithms in order to improve optimisation
performance, and this learning may be classified as either online or offline. Online
learning is based on the low level heuristic selections and resulting objective
function values computed during the execution of a hyper-heuristic. In contrast,
c© Springer International Publishing AG, part of Springer Nature 2018
E. Lutton et al. (Eds.): EA 2017, LNCS 10764, pp. 217–230, 2018.
https://doi.org/10.1007/978-3-319-78133-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78133-4_16&domain=pdf

218 W. B. Yates and E. C. Keedwell

offline learning is performed on a database of low level heuristic selections and
objective function values computed by a hyper-heuristic on a fixed number of
benchmark problems. This paper is concerned with offline learning for selection
hyper-heuristics.

A variety of machine learning algorithms have been proposed for offline learn-
ing (see for example [2–4]). In [2] classifier systems are applied to the 1D bin
packing problem. Here the system learns a set of rules which associate char-
acteristics of the current problem state with specific heuristics. Heuristics are
selected and applied sequentially, thus gradually altering the characteristics of
the problem. The system when trained on several problems, generalises by also
performing well on unseen problems. In [3] case based reasoning (CBR) is applied
successfully to exam timetabling problems. The assumption underlying CBR
is that “similar problems will have similar solutions”. Previous problems and
their “good” solutions (called source cases) are collected and stored. A similar-
ity based retrieval process compares the source cases with the problem at hand,
and selects heuristics that were employed successfully in similar situations. Here
the authors employ a two-stage learning process, one for the case representation
(or feature selection) and another for source case selection. In [4], messy genetic
algorithms are used to evolve combinations of condition-action rules which rep-
resent problem states and associated heuristics. Each chromosomes represents
a hyper-heuristic and contains the set of rules that determine which heuristic
should be applied to which problem state. When tested, these hyper-heuristics
generalised well and solved many of the test problems efficiently.

In each case, learning is used to improve optimisation performance by improv-
ing the selection of individual heuristics at particular points in the search process
across a number of training problems. In contrast, recent research (see [5,6]) has
argued that heuristic selections should be understood as part of a sequence of
selections. The concept of heuristic sequences is intuitive, certain heuristic order-
ings make sense (e.g. an explorative mutation followed by an exploitative local
search) whereas others (e.g. the reverse of the previous example) do not.

The objective of this study is to test the thesis that subsequences of heuristics
can be found in the offline learning database that are effective across a number
of problems and (it is hoped) problem domains. A selection hyper-heuristic is
executed on the well known HyFlex set of benchmark problems (see [7]) and
the resulting sequences of low level heuristic selections and objective function
values are used to construct an offline learning database. An Elman network
(see [8]) is used to extract effective subsequences of heuristics automatically by
learning from suitable sets of sequences chosen from the offline database. Elman
networks are recurrent neural networks which naturally learn from, process and
produce sequences of data. After training, the Elman network is used to com-
pute new sequences of heuristics which are then evaluated on unseen HyFlex
example problems. The aim is to determine if the network has generalised from
the training sequences. In this context, generalisation means that the network is
able to produce a sequence of heuristic selections which, when evaluated on the
unseen examples, outperform the training sequences.

Offline Learning for Selection Hyper-heuristics with Elman Networks 219

The benchmark problems are drawn from 4 distinct problem domains. Offline
learning can be classified as either intra-domain or inter-domain. In intra-domain
learning, the training sequences and the test optimisation problem are drawn
from the same problem domain. In inter-domain learning, the training sequences
and test problem can be drawn from different domains.

The results presented here demonstrate that an Elman network is capable of
intra-domain learning and generalisation with 99% confidence when trained on
suitable sequences of heuristic selections. When trained using an inter-domain
training set, the Elman network did not exhibit generalisation indicating that
inter-domain generalisation is harder, and the methodology used to choose the
training sets is unsuitable in this case.

This paper is structured as follows. Section 2 details the methodology and
describes the construction of the offline learning database, the structure of the
Elman networks and their training sets, and the hyper-heuristic used to evaluate
the sequences produced by the trained Elman networks. Section 3 contains the
results of two experiments designed to test the suitability of Elman networks
for offline intra-domain and inter-domain learning. Finally, Sect. 4 presents the
conclusions of this study.

2 Methodology

Section 2.1 contains a description of the HyFlex benchmark problems and the
DBGen hyper-heuristic used to generate the offline learning database. In Sect. 2.2
the mathematical concept of a logarithmic return is introduced and used to
quantify hyper-heuristic performance, and to select training sequences from the
database. Section 2.3 details the architecture of the Elman network used in this
study, while Sect. 2.4 describes the construction of the intra-domain and inter-
domain training sets. Finally, in Sect. 2.5, the BLIND hyper-heuristic that is used
to evaluate the sequences produced by the trained Elman networks is presented.

2.1 HyFlex and the Offline Learning Database

The Hyper-heuristics Flexible framework (or HyFlex1, see [7]) is a set of bench-
mark problems that has been used in a number of studies. See for example
[5,9–13]. HyFlex contains an implementation of four computationally hard prob-
lem domains:

1. 1D bin packing (BP),
2. permutation flow shop (PFS),
3. boolean satisfiability (SAT), and
4. personnel scheduling (PS).

1 HyFlex, Cross-domain Heuristic Search Challenge (CHeSC 2011) is used in this
study (see http://www.asap.cs.nott.ac.uk/chesc2011/).

http://www.asap.cs.nott.ac.uk/chesc2011/

220 W. B. Yates and E. C. Keedwell

Each problem domain contains 10 distinct problems of varying complexity.
HyFlex hides all problem specific information such as the solution representa-
tions, the solution constructions, and the low level heuristic implementations.
Each HyFlex problem has four general heuristic classes:

1. parameterised mutation (M) which perturbs a solution randomly,
2. crossover (C) which constructs a new solution from two or more existing

solutions,
3. parameterised ruin and recreate (R) which destroys a given solution partially

and then rebuilds the deleted parts, and
4. parameterised hill climbing or local search (L) that incorporates an iterative

improvement process and returns a non-worsening solution.

The actual number and implementation of the low level heuristics in each class
differs between problem domains. As a result, it is not possible to directly com-
pare sequences of low level heuristics from different domains. Instead, sequences
of heuristic classes are compared.

Algorithm 1. The DBGen hyper-heuristic in pseudocode.
1. ITERATIONS ← 150;
2. new-sol ← initialiseSolution();
3. new-obj ← f(new-sol);
4. cross-sol ← initialiseSolution();
5. cross-obj ← f(new-sol);
6. while (ITERATIONS−− > 0) do
7. cur-sol ← new-sol;
8. cur-obj ← new-obj;
9. Heuristic h ← selectHeuristic();
10. new-sol ← apply(h, new-sol, cross-sol);
11. new-obj ← f(new-sol);
12. double r ← ran();
13. if (new-obj < cross-obj or r < 0.5) then
14. cross-sol ← new-sol;
15. cross-obj ← new-obj;
16. end if
17. if (new-obj ≥ cur-obj and r ≥ 0.5) then
18. new-sol ← cur-sol;
19. new-obj ← cur-obj;
20. end if
21. end while

The random, unbiased, single selection hyper-heuristic DBGen used to gen-
erate the offline learning database is shown in Algorithm1. The function select()
(line 9) selects a single low level heuristic class at random from the set {C, L, R, M}.
The function apply() (line 10) takes the heuristic class and chooses, again at ran-
dom, an actual low level heuristic and its parameters from the available heuristics
of that class. The actual heuristic is then applied to the current solution cur-sol,
and if the class is C, to the current crossover solution cross-sol. An objective
function evaluation (line 11) and an acceptance check (lines 12–20) are then
performed. The function ran() (line 12) returns a uniformly distributed pseu-
dorandom number in the interval (0, 1). If a new solution’s objective value is

Offline Learning for Selection Hyper-heuristics with Elman Networks 221

less than the current solution’s objective value cur-obj or ran() < 0.5 then it is
accepted. Otherwise the new solution is rejected. The random term allows new
solutions to be accepted regardless of their objective function approximately
50% of the time. Accepting states that may lead to a large increase in objective
function value forces the DBGen hyper-heuristic to explore the space of low level
heuristic selections instead of optimising the problem efficiently.

The DBGen hyper-heuristic is executed 40 times, for 150 selections, on the 10
problems in each of the 4 HyFlex domains. The resulting 1600 sequences of low
level heuristic selections and associated objective function values are used to con-
struct an offline learning database. The number of 40 trials was chosen because
for a sufficiently large number (say n > 30) the central limit theorem ensures
that the arithmetic mean of any observed values will be approximately nor-
mally distributed, regardless of the underlying distribution. This allows robust
statistics to be calculated for each problem. The number of 150 selections was
chosen after experimental observations indicated that no major improvements
in objective function occurred beyond this point.

2.2 Final Log Returns and the BEST Sequences

In this study, logarithmic returns are used to measure the performance of a
hyper-heuristic. The final log return αf of a hyper-heuristic run or sequence s is
the log return between the initial solution of a run x0, which has an objective
function value o0, and the best final solution xmin found during the run, which
has an objective function value of omin. In symbols

αf (s) = log10

(
omin

o0

)
.

Logarithmic returns allows us to easily compare the objective function values
produced by a hyper-heuristic executing on a number of distinct problems or
problem domains.

The mean final log return of a set of N sequences is

αf ({s1, . . . , sN}) =
1
N

N∑
i=1

αf (si).

The function αf is the mean of log values. The anti-log of the mean of the logs
is equivalent to the geometric mean. In symbols

log−1

(
1
N

N∑
i=1

log(xi)
)

= N
√

x1 · x2 · · · xN

assuming the values xi all have the same sign. The geometric mean is always
less than or equal to the arithmetic mean, and is employed to average values
which have very different ranges. The geometric mean normalises the ranges, so
that no range dominates the average. Although the use of log returns normalises

222 W. B. Yates and E. C. Keedwell

the ranges of different objective functions, the log return values can still differ
significantly, as some problems are harder to optimise than others. For this
reason, in this study, the arithmetic mean of the final log returns αf is used
in preference to the arithmetic mean of the decimal returns.

The final unit log return βf is the final log return αf divided by the sequence’s
length up to (and including) the minimum objective function value. That is

βf (s) =
αf (s)
min

.

The length of a sequence is important because for many real world optimisation
applications the execution times of the low level heuristics and objective function
evaluations can be non-trivial.

The HyFlex benchmark problems set consists of 4 problem domains, each
one containing 10 problems. The set of the 40 “best” sequences in the offline
database, denoted BEST, consists of the sequences with the lowest final unit
log return βf for each problem. These sequences are the shortest sequences that
produce the largest decrease in the objective function value for each problem. As
the offline database was generated by executing the DBGen hyper-heuristic 40
times on each of the 40 HyFlex problems, the “best” sequence for each problem
is selected from a pool of 40 sequences.

2.3 Elman Networks

Elman networks are examples of simple recursive neural networks. They are
typically applied to problems which express themselves naturally as temporal
sequences such as natural language processing applications (see [8,14]). Such
networks learn from, process, and produce sequences of data.

The training sequences are sequences of low level heuristics selections chosen
from the offline learning database. Each such sequence is encoded using a field
representation so that it can be processed by the Elman network. Specifically,
each low level heuristic selection {M, C, R, L} is encoded as a vector in {0, 1}4
where

M = (1, 0, 0, 0)
C = (0, 1, 0, 0)
R = (0, 0, 1, 0)
L = (0, 0, 0, 1),

and X = (0, 0, 0, 0) denotes a missing or unknown selection. These vectors are
then concatenated to form an input pattern. For example, given the sequence
MCRLR, an input pattern of 4 low level heuristic selections, corresponding to the
current selection L and the three past selections MCR is

(

M︷ ︸︸ ︷
1, 0, 0, 0,

C︷ ︸︸ ︷
0, 1, 0, 0,

R︷ ︸︸ ︷
0, 0, 1, 0,

L︷ ︸︸ ︷
0, 0, 0, 1)

Offline Learning for Selection Hyper-heuristics with Elman Networks 223

0

10

20

30

40

50

4 8 12 16 20

L
L
H

T
ra
in
in
g
E
rr
or
s
(P

er
ce
nt
)

Network Inputs

BP
PFS
SAT
PS

Fig. 1. The percentage of LLH training errors for an Elman network with 4, 8, 12, 16
and 20 inputs, 16 hidden units, and 4 output units, for each domain.

while the output pattern corresponding to the next selection in the sequence is

(

R︷ ︸︸ ︷
0, 0, 1, 0).

The number of selections to be used as an input is termed the memory length
of a selection strategy (see [15]). Using the current heuristic selection and those
prior to it as inputs provides context for the next selection.

Initial experiments with memory length show that Elman network learning
improves significantly as the number of past selections increases. Figure 1 shows
the results of training an Elman network with a memory length of 1, 2, 3, 4 and
5, on the INTRA training sequences for each domain (see Sect. 2.4). It should be
noted that increasing the number of past selections also increases the number of
weights which also improves learning.

In this study, a memory length of 4 is used because, with this number, the
Elman network learns 80% (or more) of each training set. Thus, the 3-layer
Elman network used in this experiment has 16 input units, 16 hidden units (and
therefore 16 context units), 4 output units, and 596 weights. The hidden and
output units employ the sigmoid activation function. The number of 16 hidden
units was chosen arbitrarily.

After training, given some initial input, an Elman network produces a
sequence of outputs. The output sequence may converge to a single point, a
limit cycle of repeating values, or produce a chaotic non-repeating sequence.

2.4 Training Sets

This study is concerned with offline intra-domain and inter-domain learning of
heuristic classes. In intra-domain learning, the training sequences and the test

224 W. B. Yates and E. C. Keedwell

−0.5

0

0.5

1

BP PFS SAT PS

Sc
al
ed

m
ea
n
lo
g
re
tu
rn

C

L

M

R

Fig. 2. The scaled mean log returns α of the heuristic classes C, L, M, and R for each
domain. In each domain the α values have been scaled by the largest absolute α value
into the interval [−1, 1].

optimisation problem are drawn from the same problem domain. This simplifies
the learning task considerably as the low level heuristics in each class are iden-
tical for each problem and so the heuristic classes will have similar statistical
characteristics across the problems of the domain. This is not generally the case
for inter-domain learning where the training sequences and test problem can
be drawn from different domains. These different domains will have different
low level heuristic implementations and so the heuristic classes can have differ-
ent statistical characteristics in each domain (see Fig. 2). However, the general
underlying principles of each heuristic class should remain similar, for example
a mutation operation should make small random changes, while a local search
operation will greedily search the surrounding space.

The training sets for intra-domain and inter-domain learning are constructed
from the BEST heuristic class sequences. As these sequences are the most
efficient optimisations of each problem available they contain the most “use-
ful information” regarding that problem and therefore they are prime candi-
dates for inputs to a machine learning algorithm. In this study, leave-one-out
cross-validation (see [16]) is employed to determine whether the Elman network
sequences are able to outperform the BEST training sequences.

For intra-domain learning, the BEST subsequences are divided by domain
into 4 sets of 10 sequences. For each problem in a domain, the sequence for
that problem is left out of the training set and the remaining 9 sequences are
used to train a network. The sequence produced by the trained network is then
evaluated on the problem that was left-out. Thus the sequence generated by the
network is always evaluated on a problem that the network has not been trained
on. Applying this methodology gives rise to 40 training sets of 9 sequences, one
for each problem, constructed from the 10 sequences selected for each domain.

Offline Learning for Selection Hyper-heuristics with Elman Networks 225

For inter-domain learning, the BEST subsequences are again divided by
domain into 4 sets of 10 sequences. For each domain, 3 sequences are selected
from each of the 3 remaining domains. These sequences correspond to the prob-
lems with the lowest βf in those domains. Applying this methodology gives rise
to 4 training sets of 9 sequences, one for each domain, constructed from the 9
sequences selected from the other domains.

In each case, for each problem, the Elman network is trained with 9 sequences
drawn from the set BEST. It should be noted that for network training, only
the accepted selections of each sequence up to (and including) the minimum
objective function value are used. Rejected selections, and those selections that
occur after the minimum objective function value are not used.

2.5 The BLIND Hyper-heuristic

The BLIND hyper-heuristic is used to evaluate sets of heuristic sequences on
the HyFlex problems. It is intended to serve as a simple test bed and a “level
playing field”, in order to evaluate and compare the performance of sequences.
The sequence based hyper-heuristic BLIND used in these experiments blindly
applies a given sequence, one low level heuristic class after another to a HyFlex
problem, accepting every selection. The actual low level heuristics and their
parameters are chosen at random.

3 Results

Section 3.1 presents the results of training the Elman networks with the intra-
domain and inter-domain training sequences. In Sect. 3.2 the sequences that are
generated by the trained networks are evaluated on the HyFlex problems using
the BLIND hyper-heuristic.

3.1 Network Training

An Elman network is trained with the intra-domain and inter-domain training
sets using stochastic Backpropagation with early stopping over a maximum of
1000 epochs (see [16]) using the parameters shown in Table 1. The learning rate,
momentum term, and the number of training epochs have not been optimised.

The results of network training are summarised in Table 2 and Fig. 3. Table 2
shows the results of training the Elman network with the 40 intra-domain train-
ing sets. The results are averaged over the 10 training sets in each domain.
The columns show the average number of low level heuristics in each set, the

Table 1. The Elman network structure and training parameters.

Input Hidden Out Learn Momentum Epochs

16 16 4 0.1 0.25 1000

226 W. B. Yates and E. C. Keedwell

Table 2. The averaged training results of the Elman network on the intra-domain
training sets.

Dom. Num. Wrong (%) Error Epochs

BP 369.0 12.6407 4.2958 907.7

PFS 94.5 1.0260 1.0491 328.9

SAT 288.2 18.3158 4.1991 918.9

PS 121.5 3.0474 0.9290 947.3

(a) Intra-domain training results.

0

10

20

30

40

50

60

0 200 400 600 800 1000

L
L
H

E
rr
or
s
(P

er
ce
nt
)

Iteration

BP
PFS
SAT
PS

(b) Inter-domain training results.

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

L
L
H

E
rr
or
s
(P

er
ce
nt
)

Iteration

PFS SAT PS

BP SAT PS

BP PFS PS

BP PFS SAT

Fig. 3. The Elman network training results for the intra-domain and inter-domain sets.
In figure (a) the training sequences are drawn from the BP, PFS, SAT and PS domains.
In figure (b) the training sequences are drawn from the {PFS SAT PS}, {BP SAT PS},
{BP PFS PS}, and {BP PFS SAT} domains.

Table 3. The averaged training results of the Elman network on the inter-domain
training sets.

Dom. Num. Wrong (%) Error Epochs

BP 151 1.7391 1.0443 999

PFS 224 1.0638 1.3208 994

SAT 175 0.7194 0.8031 616

PS 221 1.0810 0.9290 739

average percentage of low level heuristics incorrect after training, the average
network root mean square error, and the average number of epochs. Low level
heuristic correctness is determined by applying a winner-take-all strategy to the
network’s output units and comparing the network’s choice of heuristic with
the target heuristic. Figure 3a shows the percentage of low level heuristic errors

Offline Learning for Selection Hyper-heuristics with Elman Networks 227

during intra-domain training for 4 representative problems (number 7, 19, 34,
and 14) chosen from the BP, PFS, SAT and PS domains. These results demon-
strate that the difficulty of learning intra-domain sequences of heuristic selections
varies by domain. For example, the SAT domain sequences are much harder to
learn than the training sequences of the other domains.

Similarly, Table 3 and Fig. 3b show the results of training the Elman network
with the 4 inter-domain training sets. These results demonstrate that intra-
domain learning is harder than inter-domain learning.

After training, the Elman network is then given the initial “blank” input
XXXX. As Elman networks are deterministic, the intra-domain trained networks
produces a set of 40 sequences, one for each problem, while the inter-domain
trained networks produce a set of 4 sequences, one for each domain.

3.2 Evaluating the Elman Network Sequences

The BLIND hyper-heuristic is parameterised with three sets of sequences
denoted BEST, INTRA, and INTER and then executed 40 times on each of the
HyFlex problems. The INTRA sequence set is generated by the intra-domain
trained Elman networks, while the INTER sequence set is generated by the
inter-domain trained Elman networks. It should be noted that the pseudorandom
number seeds and therefore the initial solutions used for the INTRA, INTER,
and BEST evaluation runs presented here are identical and distinct to the pseu-
dorandom number seeds used by DBGen to generate the offline database from
which the BEST sequences are selected.

When parameterised with the BEST sequences the BLIND hyper-heuristic
applies all the accepted selections including those after the minimum objective
function value. This is done because some sequences in BEST find a minimum
quickly, in some cases after only 9 selections. Using all accepted selections gives
the BLIND hyper-heuristic a larger number of iterations/selections to better
optimise a problem. The length of the BEST sequences also dictate the number
of selections used by the INTRA and INTER parameterisations. The results of
evaluating the INTRA and INTER sequence sets on the HyFlex problems are
compared to the BEST sequences (see Table 4). The intention of the comparison
is to determine whether the network has learned anything over and above the
information contained in the BEST sequences. The INTRA sequences outper-
form the BEST sequences overall and on each domain, while BEST outperforms
INTER overall, and on each domain except the PFS domain. The best general-
isation is observed between INTRA and BEST on the SAT domain (which was
the hardest to learn). The overall averages are calculated over 1600 sequences,
and the domain averages are calculated over 400 sequences.

A paired t-test is used to establish whether the difference observed in the
mean final log returns of BEST and INTRA is statistically significant. Formally,
the null hypothesis

αf (BEST) ≥ αf (INTRA)

228 W. B. Yates and E. C. Keedwell

Table 4. A domain by domain and overall comparison of the mean final log return αf

of BEST, INTRA and INTER.

Dom. BEST INTRA INTER

BP −0.2172 −0.2202 −0.0375

PFS −0.0043 −0.0049 −0.0051

SAT −0.4345 −0.6919 −0.2313

PS −1.7912 −1.8042 −1.5560

All −0.6118 −0.6803 −0.4575

Table 5. The domain, the sample mean difference, the standard deviation, the t-score,
and the interval within which the population mean difference falls with 99% confidence.

Dom. Diff. SD t-score Conf. int.

BP −0.0030 0.0821 −0.7214 [−0.0136, 0.0077]

PFS −0.0006 0.0024 −5.2796 [−0.0009,−0.0003]

SAT −0.2573 0.1085 −47.4485 [−0.2714,−0.2433]

PS −0.0130 0.1225 −2.1289 [−0.0289, 0.0028]

All −0.0685 0.1424 −19.2384 [−0.0777,−0.0593]

is rejected if t lies outside the interval [−2.3287,∞) and the alternative
hypothesis

αf (BEST) < αf (INTRA)

is accepted with 99% confidence. The results of the t-test are shown in Table 5.
The difference in mean is statistically significant overall, and for the PFS and
SAT domains with 99% confidence. For the BP and PS domains the difference
in mean is not statistically significant.

4 Conclusions

The sequence set BEST consists of the sequences with the lowest final unit log
return βf for each HyFlex problem. An intra-domain training set INTRA and
an inter-domain training set INTER are constructed from the BEST sequences
and used to train an Elman network. In order to estimate the Elman network’s
capacity for generalisation the network is evaluated using a leave-one-out cross-
validation methodology. The first result presented in this study demonstrates
that the Elman network is capable of intra-domain generalisation with 99% con-
fidence. This result is notable because the Elman network is able to significantly
outperform the sequences on which it was trained. The process of generalisa-
tion across the training problems within a domain has generated a network that

Offline Learning for Selection Hyper-heuristics with Elman Networks 229

is able to perform better on unseen test problems in that domain. This shows
that useful information can be learned about the problems in a domain from
the sequences of heuristic selections used to optimise them. The second result
shows that the Elman network is not capable of inter-domain generalisation
using the training set INTER in spite of the fact that the training sets are easier
to learn. This suggests that inter-domain generalisation is harder than intra-
domain generalisation, and that low training errors need not translate into good
generalisations. This was generally to be expected, the sequences of heuristics
learned on one domain are not expected to be applicable to another. However,
there are exceptions, for example the performance on PFS domain from the
INTER trained network performed well and indicates perhaps that a more gen-
eral strategy for solving the PFS domain would be successful.

Overall, the Elman network proved to be able to generalise the training
sequences for intra-domain learning which opens up the possibility of the use of
bespoke learned algorithms for particular problems. Inter-domain generalisation
was more difficult, as expected, and more work would need to be conducted to
determine whether a different methodology would allow domains with similar
sequences to be identified.

References

1. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: A classi-
fication of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.Y. (eds.) Hand-
book of Metaheuristics. Springer, Boston (2010). https://doi.org/10.1007/978-1-
4419-1665-5 15

2. Ross, P., Schulenburg, S., Maŕın-Bläzquez, J.G., Hart, E.: Hyper-heuristics: learn-
ing to combine simple heuristics in bin-packing problems. In: Proceedings of the
4th Annual Conference on Genetic and Evolutionary Computation, GECCO 2002,
pp. 942–948. Morgan Kaufmann Publishers Inc., San Francisco (2002)

3. Burke, E.K., Petrovic, S., Qu, R.: Case-based heuristic selection for timetabling
problems. J. Sched. 9(2), 115–132 (2006)

4. Terashima-Maŕın, H., Ortiz-Bayliss, J.C., Ross, P., Valenzuela-Rendón, M.: Hyper-
heuristics for the dynamic variable ordering in constraint satisfaction problems. In:
Proceedings of the 10th Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO 2008, pp. 571–578. ACM, New York (2008)

5. Kheiri, A., Keedwell, E.: A sequence-based selection hyper-heuristic utilising a
hidden Markov model. In: Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO 2015, pp. 417–424. ACM (2015)

6. Yates, W.B., Keedwell, E.C.: Clustering of hyper-heuristic selections using the
Smith-Waterman algorithm for offline learning. In: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), Berlin, pp. 119–120. ACM
(2017)

7. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic
search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245, pp.
136–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29124-
1 12

8. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

https://doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-1-4419-1665-5_15
https://doi.org/10.1007/978-3-642-29124-1_12
https://doi.org/10.1007/978-3-642-29124-1_12

230 W. B. Yates and E. C. Keedwell

9. Walker, J.D., Ochoa, G., Gendreau, M., Burke, E.K.: Vehicle routing and adaptive
iterated local search within the HyFlex hyper-heuristic framework. In: Hamadi,
Y., Schoenauer, M. (eds.) LION 2012. LNCS, pp. 265–276. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34413-8 19

10. Drake, J.H., Özcan, E., Burke, E.K.: An improved choice function heuristic selec-
tion for cross domain heuristic search. In: Coello, C.A.C., Cutello, V., Deb, K.,
Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7492, pp. 307–
316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32964-7 31

11. Mısır, M., Verbeeck, K., Causmaecker, P.D., Berghe, G.V.: A new hyper-heuristic
as a general problem solver: an implementation in HyFlex. J. Sched. 16(3), 291–311
(2013)

12. Drake, J.H., Özcan, E., Burke, E.K.: A comparison of crossover control mechanisms
within single-point selection hyper-heuristics using HyFlex. In: IEEE Congress on
Evolutionary Computation (CEC), Sendai, Japan, pp. 3397–3403, May 2015

13. Dempster, P., Drake, J.H.: Two frameworks for cross-domain heuristic and param-
eter selection using harmony search. In: Kim, J.H., Geem, Z.W. (eds.) Harmony
Search Algorithm. AISC, vol. 382, pp. 83–94. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-47926-1 10

14. Elman, J.L.: Distributed representations, simple recurrent networks, and gram-
matical structure. Mach. Learn. 7, 195–224 (1991)

15. Bai, R., Burke, E.K., Gendreau, M., Kendall, G., McCollum, B.: Memory length in
hyper-heuristics: an empirical study. In: Proceedings of the 2007 IEEE Symposium
on Computational Intelligence in Scheduling, pp. 173–178 (2007)

16. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York
(2006)

https://doi.org/10.1007/978-3-642-34413-8_19
https://doi.org/10.1007/978-3-642-32964-7_31
https://doi.org/10.1007/978-3-662-47926-1_10
https://doi.org/10.1007/978-3-662-47926-1_10

Author Index

Abdelkafi, Omar 129
Ali Abbood, Zainab 100
Arnold, Dirk V. 176

Barnabé, Marc 189
Basseur, Matthieu 47
Boukhelifa, Nadia 189
Brévilliers, Mathieu 115
Brooks, Stephen 176

Chabin, Thomas 189
Collet, Pierre 88
Collett, Matthew 144

Derbel, Bilel 1
Do, Jean-Michel 30

Fagan, David 58
Fonlupt, Cyril 1
Fonseca, Fernanda 189
Forstenlechner, Stefan 58
Franzin, Alberto 16, 202

Galván-López, Edgar 72
Gao, Xihe 176
Goëffon, Adrien 47

Idoumghar, Lhassane 115, 129
Idrissi-Aouad, Maha 115

Jankee, Christopher 1

Keedwell, Edward C. 144, 217
Kretschmer, Martin 162

Langetepe, Elmar 162
Le Pallec, Jean-Charles 30
Lemaitre, Benjamin 189
Lepagnot, Julien 115, 129
Lutton, Evelyne 189

Muniglia, Mathieu 30

Nicolau, Miguel 58

O’Neill, Michael 58

Pagnozzi, Federico 202
Pérez Cáceres, Leslie 202
Perrot, Nathalie 189
Porter, Jeremy 176

Schoenauer, Marc 72
Stützle, Thomas 16, 202

Tari, Sara 47
Thompson, Julie D. 88
Tonda, Alberto 189
Trujillo, Leonardo 72
Tuani, Ahamed Fayeez 144

Vanhoutrève, Renaud 88
Vázquez-Mendoza, Lucia 72
Velly, Hélène 189
Verel, Sébastien 1, 30
Vidal, Franck P. 100

Yates, William B. 217

	Preface
	Évolution Artificielle 2017 — EA 2017
	Abstracts of Invited Talks
	The Cartography of Computational Search Spaces
	Progressive Data Analysis: A New Computation Paradigm for Scalability in Exploratory Data Analysis
	Contents
	On the Design of a Master-Worker Adaptive Algorithm Selection Framework
	1 Introduction
	2 Related Works
	2.1 Sequential Adaptive Algorithm Selection
	2.2 Parallel Adaptive Algorithm Selection
	2.3 Benchmarks: The Fitness Cloud Model

	3 M/W Framework Description
	3.1 Aggregation of Local Reward Values
	3.2 Homogeneous vs. Heterogeneous Adaptive Selection

	4 Experimental Analysis
	4.1 Overall Relative Performance
	4.2 Analysis of the Reward Aggregation Functions
	4.3 Analysis of the Heterogeneity Scenarios

	5 Conclusions
	References

	Comparison of Acceptance Criteria in Randomized Local Searches
	1 Introduction
	2 Literature Review
	3 Experimental Setup
	4 Experiments on the Quadratic Assignment Problem
	5 Experiments on the Permutation Flow-Shop Problem
	6 Conclusions
	References

	A Fitness Landscape View on the Tuning of an Asynchronous Master-Worker EA for Nuclear Reactor Design
	1 Introduction
	2 Preliminaries
	2.1 Evolutionary Optimization for Nuclear Energy Problems
	2.2 Parallel Evolutionary Algorithms
	2.3 Landscape Aware Parameter Tuning

	3 Problem Definition
	3.1 Description of the System
	3.2 Criterion of Interest

	4 Asynchronous Parallel EA
	4.1 Algorithm Definition
	4.2 Mutation Operator

	5 Experimental Analysis
	5.1 Baseline Parameters Setting
	5.2 Impact of the Mutation Parameters
	5.3 Fitness Landscape Analysis

	6 Conclusions
	References

	Sampled Walk and Binary Fitness Landscapes Exploration
	1 Introduction
	2 Fitness Landscapes
	3 Partial Neighborhood Local Searches
	4 Analysis on Binary Fitness Landscapes
	4.1 Experimental Protocol
	4.2 Results
	4.3 Landscapes Ruggedness and Partial Neighborhood LS Efficiency

	5 Conclusion
	References

	Semantics-Based Crossover for Program Synthesis in Genetic Programming
	1 Introduction
	2 Related Work
	2.1 Semantics
	2.2 Semantic Crossover

	3 Semantics in Program Synthesis
	3.1 Semantic Similarity Measure with Traces
	3.2 Semantic Crossover for Program Synthesis

	4 Experimental Setup
	4.1 Benchmark Problems

	5 Results
	5.1 Successful Runs and Fitness
	5.2 Parent Comparison
	5.3 Types Selected for Similarity Measurement

	6 Conclusion and Future Work
	References

	On the Use of Dynamic GP Fitness Cases in Static and Dynamic Optimisation Problems
	1 Introduction
	2 Related Work
	2.1 Fitness Cases in Genetic Programming
	2.2 Promoting and Maintaining Diversity

	3 Proposed Approaches
	3.1 Dynamic Fitness Cases
	3.2 Kendall Tau Distance

	4 Experimental Setup
	5 Results and Discussion
	5.1 Performance on a Static Setting
	5.2 Performance on a Dynamic Setting
	5.3 Analysis of the Number of Created Individuals
	5.4 Size of GP Programs

	6 Conclusions
	References

	MEMSA: A Robust Parisian EA for Multidimensional Multiple Sequence Alignment
	1 Introduction
	1.1 Multiple Sequence Alignment (MSA)
	1.2 Evolutionary Algorithms for MSA
	1.3 Parisian Evolution Approach

	2 Genetic Algorithm with Parisian Approach for MSA
	2.1 Individuals/Patches
	2.2 Initialisation
	2.3 Crossover
	2.4 Mutator
	2.5 Evaluation
	2.6 Diversity Preservation
	2.7 Selection of Individuals for the New Generation
	2.8 Patchwork to Create an MSA
	2.9 Run Parameters and Behaviour of the Algorithm

	3 Experiments and Validation
	4 Discussion and Conclusion
	References

	Basic, Dual, Adaptive, and Directed Mutation Operators in the Fly Algorithm
	1 Introduction
	2 Problem Definition and Motivations
	3 Overview of the Fly Algorithm for PET Reconstruction
	4 Varying Mutation Operators in the Fly Algorithm
	4.1 Basic Mutation
	4.2 Adaptive Mutation Variance
	4.3 Dual Mutation
	4.4 Directed Mutation

	5 Results
	6 Conclusion
	References

	A New High-Level Relay Hybrid Metaheuristic for Black-Box Optimization Problems
	1 Introduction
	2 Presentation of the Hybridized Components
	2.1 Overview of MLSDO Algorithm
	2.2 Overview of SHADE Algorithm
	2.3 Overview of SPSO2011 Algorithm

	3 The Proposed Hybrid Algorithm
	4 Experimental Protocol and Parameter Setting
	4.1 The BBOB 2015 Benchmark
	4.2 The Black Box Optimization Competition
	4.3 Parameter Setting

	5 Experimental Results and Discussion
	5.1 Results for the BBOB 2015 Benchmark
	5.2 Results at the Black Box Optimization Competition

	6 Conclusion
	References

	Improved Hybrid Iterative Tabu Search for QAP Using Distance Cooperation
	1 Introduction
	2 Background
	3 Distributed and Cooperative Algorithms
	3.1 Distributed Hybrid Iterative Tabu Search
	3.2 Distance Cooperation Hybrid Iterative Tabu Search

	4 Experimental Results
	4.1 Platform and Tests
	4.2 Parameters
	4.3 Experimentation
	4.4 Literature Comparison

	5 Conclusion and Perspectives
	References

	H-ACO: A Heterogeneous Ant Colony Optimisation Approach with Application to the Travelling Salesman Problem
	1 Introduction
	2 Ant Colony Optimization
	3 Heterogeneous ACO
	4 Methodology
	4.1 Travelling Salesman Problem bib2

	5 Experimental Setup
	6 Heterogeneous ACO Results
	6.1 Exploring the Ranges of Alpha and Beta
	6.2 Comparison with Base Algorithms

	7 Discussion, Conclusion and Future Work
	References

	Evolutionary Learning of Fire Fighting Strategies
	1 Introduction
	2 Fire Enclosement in a Discrete Grid Setting
	2.1 A Goal Oriented Evolution Model
	2.2 Evolutionary Algorithm
	2.3 Experimental Results
	2.4 Fire Enclosement Conclusion

	3 Protection of a Highway
	3.1 Evolution Models
	3.2 Evolutionary Algorithm
	3.3 Experimental Results
	3.4 Highway Protection Conclusion

	4 Future Work on Theoretical Threshold Questions
	References

	Evolutionary Optimization of Tone Mapped Image Quality Index
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Tone Mapping
	3.2 Evolutionary Optimization

	4 Experimental Results
	5 Conclusion
	References

	LIDeOGraM: An Interactive Evolutionary Modelling Tool
	1 Introduction
	2 Background
	2.1 Food Complex Systems
	2.2 Symbolic Regression
	2.3 Production and Stabilisation Process of Lactic Acid Bacteria

	3 Proposed Approach
	4 Experimental Results
	4.1 The Dataset
	4.2 Search with Eureqa
	4.3 Optimisation of the Global Model

	5 Discussion
	6 Conclusions
	References

	Automatic Configuration of GCC Using Irace
	1 Introduction
	2 Automatic Algorithm Configuration
	3 Configuration Scenarios
	4 GCC Configuration Scenarios Analysis
	5 Experimental Results
	6 Conclusion and Future Work
	References

	Offline Learning for Selection Hyper-heuristics with Elman Networks
	1 Introduction
	2 Methodology
	2.1 HyFlex and the Offline Learning Database
	2.2 Final Log Returns and the BEST Sequences
	2.3 Elman Networks
	2.4 Training Sets
	2.5 The BLIND Hyper-heuristic

	3 Results
	3.1 Network Training
	3.2 Evaluating the Elman Network Sequences

	4 Conclusions
	References

	Author Index

