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Chapter 5
Mesenchymal Stem Cells as Endogenous 
Regulators of Inflammation

Hafsa Munir, Lewis S. C. Ward, and Helen M. McGettrick

Abstract  This chapter discusses the regulatory role of endogenous mesenchymal 
stem cells (MSC) during an inflammatory response. MSC are a heterogeneous popula-
tion of multipotent cells that normally contribute towards tissue maintenance and 
repair but have garnered significant scientific interest for their potent immunomodula-
tory potential. It is through these physicochemical interactions that MSC are able to 
exert an anti-inflammatory response on neighbouring stromal and haematopoietic 
cells. However, the impact of the chronic inflammatory environment on MSC function 
remains to be determined. Understanding the relationship of MSC between resolution 
of inflammation and autoimmunity will both offer new insights in the use of MSC as a 
therapeutic, and also their involvement in the pathogenesis of inflammatory disorders.

Keywords  Mesenchymal stem cells · Endothelial cells · Neutrophils · 
Lymphocytes

5.1  �Introduction

Mesenchymal stem cells (MSC) are non-haematopoietic, multipotent tissue-resident 
precursor cells with immunomodulatory capabilities [1]. They exist in small num-
bers in a variety of tissues including the bone marrow (BM), Wharton’s jelly (WJ), 
adipose tissue (AD), dental pulp, brain, and spleen [2]. Even within different tis-
sues, MSC are thought to exhibit heterogeneous phenotypes based on cellular size, 

Hafsa Munir and Lewis S. C. Ward have contributed equally to this work

H. Munir 
MRC Cancer Unit/Hutchison, University of Cambridge, Cambridge, UK 

L. S. C. Ward 
Discovery Sciences, AstraZeneca, Cambridge, UK 

H. M. McGettrick (*) 
Rheumatology Research Group, Institute of Inflammation and Ageing,  
University of Birmingham, Birmingham, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78127-3_5&domain=pdf
https://doi.org/10.1007/978-3-319-78127-3_5


74

surface marker expression, differentiation capacity, and function [3–6]. Thus, not all 
MSC are the same. Indeed, growing evidence suggests that the MSC niche is unique 
in distinct tissues and that variation in tissue microenvironments may lead to tissue-
specific differences in MSC functions [7–10]. As well as their reparative roles, MSC 
possess immunomodulatory capabilities and therefore have the potential to regulate 
inflammation and its resolution. MSC-mediated immunomodulation occurs through 
two mechanisms: release of soluble factors and cell-cell contact-dependent interac-
tions (Table 5.1). Here, we review the origins of tissue-resident MSC, their interac-
tion with the tissue microenvironment, and how this may influence inflammatory 
responses. A brief synopsis on MSC as a therapeutic strategy for the treatment of 
graft-versus-host disease is also discussed.

Table 5.1  Immunomodulatory effects of MSC on haematopoietic and stromal cells

Affected 
cell Effect Mediator(s) Species Passage References

Stem cells
HSC ↓ BM egress CXCL12 Mouse – [11–13]

↑ Proliferation and 
maintain HSC in an 
undifferentiated state

β-catenin Mouse – [14, 15]

Leukocytes
Neutrophils ↑ Phagocytosis Soluble factors Human 3–5 [16]

↓ Respiratory burst and 
apoptosis

Soluble factors Human 3–5 [16, 17]

NK cells ↓ IFN‖ secretion and 
cytotoxicity

PGE2, HLA-G5 Human 1–6 [18–20]

Monocytes ↓ IL-12 secretion PGE2 Human ≥2–4 [21, 22]
↑ BM egress CCL2 Mouse – [23]
↓ Differentiation into 
DC

IL-6, M-CSF, PGE2 Human ≤15 [21, 22]

↑ Polarisation to M2 
macrophage

IDO, PGE2 Human/
mouse

3–7 [24–26]

T-cells ↓ Proliferation TGFβ, HGF, PD-1-
PD-L1/2, NO, PGE2

Human/
mouse

1–6 [21, 
27–37]

↓ IFNγ secretion Cell contact, IL-10 Human ≤6 [38, 39]
↑ Expansion of Treg HLA-G Human 1 [30]

B-cells ↓ Antibody production Soluble factors Human – [40]
↓CXCR4, CXCR5, 
CCR7 expression 
inhibiting trafficking

Soluble factors Human – [40]

↓ Proliferation Cell contact Human/
mouse

– [32, 40]

DC ↓ TNFα secretion IL-10 Human ≤6 [38]
↓ Antigen-presenting 
functions

– Human/
mouse

– [22, 39, 
41]

↓ CCR7 expression ↓ 
trafficking

Soluble factors Human – [42]

(continued)
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Affected 
cell Effect Mediator(s) Species Passage References

Stromal cells
Endothelial 
cells

↑ Proliferation and 
migration

CCL2,CXCL12VEGF, 
PDGF

Human/
rodent

3–5 [43–45]

↑ Angiogenesis ROS Rat – [46]
↓ Vascular permeability S-1-P Human 3–7 [47–50]
↓ Leukocyte recruitmenta IL-6, TGFβ Human 3 [51–53]

All behaviours were analysed with BMMSC
aAlso analysed for WJ MSC
IDO indoleamine 2,3-dioxygenase, PD1 programmed cell death 1, PGE2 prostaglandin E2, ROS 
reactive oxygen species, S-1-P sphingosine-1-phosphate

5.2  �Origin of MSC

Our best definition of an MSC is defined in the International Society for Cell 
Therapy 2006 guidelines (Fig. 5.1) [54]. Additional surface proteins (e.g. CD146 
and CD271) are thought to identify highly potent (suppressive) MSC subpopula-
tions as assessed by T-cell proliferation assays [55]. Despite this, no specific MSC 
marker  – based on either surface expression or function  – has been identified. 
Moreover, “MSC” markers are also found on non-MSC stromal populations (e.g. 
fibroblasts) indicating that this criterion is too generic for defining a specific popula-
tion in tissue. Also of concern is that the morphology, differentiation capacity, and 
expression of “MSC” markers are modified to varying degrees by in vitro culture 
conditions [56]. Identification of a unique, functionally relevant marker is urgently 
required to truly elucidate the endogenous role of tissue-resident MSC in modulat-
ing inflammation and the effects of MSC therapy in vivo. Understanding the origin 
of MSC may identify early lineage-specific markers that are exclusively expressed 
on MSC and can be used to distinguish these cells from other stromal cells.

Little is known about the developmental origin of MSC, with recent evidence 
suggesting at least two distinct lineages: neural crest and mesoderm. MSC can dif-
ferentiate into cells of the neural lineages, and subsets of murine BM-derived MSC 
have been reported to express neural crest stem cell-specific genes [57], leading 
several groups to postulate this as their origin [57, 58]. Additionally, murine neural 
crest-derived cells can migrate through the bloodstream to populate numerous tis-
sues, including the bone marrow, where they exhibit a differentiation capacity indic-
ative of stem cells [58]. In contrast, lineage tracing studies showed that cells from 
the primary vascular plexus give rise to perivascular cells that exhibit MSC-like 
properties [59–61]. Whilst the origin of MSC is still being debated, it is clear that 
the cells described in these studies exhibit the same phenotypic features of MSC 
in vitro. Identifying the origin of MSC and their organ distribution (i.e. differences 
between MSC populations) may explain functional variations observed in MSC iso-
lated from different anatomical sites.

Table 5.1  (continued)
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5.3  �MSC in the Bone Marrow Niche

BMMSC can contribute to the haematopoietic stem cell (HSC) niche by regulating 
haematopoiesis [11, 14, 15] and trafficking of BM-derived cells into the circulation 
[11–13]. Depletion of MSC or MSC-like progenitors caused an increase in HSC 
mobilisation [11] and augmented the expression of early myeloid selector genes by 
HSC, reducing their overall number in the bone marrow [15]. This indicates that the 
presence of MSC in the HSC niche is essential for inducing their proliferation and 
maintaining HSC in an undifferentiated state [15]. Indeed, stimulation of β-catenin 
in MSC has been shown to promote HSC self-renewal in vivo suggesting that this 
signalling pathway is involved [14]. MSC can also “hold” HSC in the perivascular 
niche through CXCL12-CXCR4-dependent interactions, preventing them from 
exiting the bone marrow into the bloodstream, akin to the mechanism reported for 
mature leukocytes [11, 12]. Importantly, the expression of CXCL12 by MSC can be 
regulated by CD169+ macrophages within the BM niche [13]. Depleting these BM 
macrophages reduced CXCL12 expression on MSC and in turn enhanced HSC 
egress [13]. Thus, MSC play an integral role in maintaining HSC within the BM 
niche through soluble mediators but also complex multicellular cross-talk with HSC 
and mature leukocytes.

Evidence suggests that MSC may also regulate the trafficking of monocytes and 
B cells from the bone marrow [13, 23]. During systemic infection, BMMSC up-
regulated CCL2 in response to toll-like receptor (TLR) activation, promoting the 

Fig. 5.1  Definition for mesenchymal stem cells. MSC can be isolated from a variety of sources 
(bone marrow, placenta/umbilical cord, and adipose tissue) primarily based on plastic adherence. 
Due to the heterogeneity of these cells, further characterisation is required. The International 
Society for Cell Therapy described the minimum criteria necessary to define MSC [54]. The cells 
must express the stromal markers, CD73, CD90, and CD105, and lack expression of haematopoi-
etic and endothelial markers, CD14, CD19, CD34, CD45, and HLA-DR. They must also be able 
to differentiate into other mesodermal lineages (adipogenic, osteogenic, and chondrogenic). Lastly, 
MSC must be able to undergo clonal expansion during in vitro culture
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egress of CCR2+ monocytes into the bloodstream [23]. This mobilisation of 
monocytes also promotes HSC egress away from the stem cell niche [13, 23] 
encouraging their maturation into leukocytes. This tightly regulated process requires 
cross-talk between MSC, monocytes, and HSC to coordinate an appropriate immune 
response. BMMSC also down-regulated expression of CXCR4 by B cells, which 
may promote their exit from the bone marrow [40]. Whether MSC influence matu-
ration of other leukocyte populations remains to be determined (reviewed by [62]). 
The main function of BM-resident MSC is to endogenously regulate the prolifera-
tion and maturation of HSC and may therefore indirectly influence leukocyte gen-
eration. Additionally, MSC may also regulate leukocyte egress in response to 
infection and/or inflammatory cues. This indicates a novel and potentially tissue-
specific role of BM-resident MSC.

5.4  �MSC Regulation of Immune Cells

5.4.1  �Effects on Innate Immunity

Within the tissue, resident MSC are thought to modulate the movement, effector 
functions, and survival of recruited neutrophils. Several studies have reported 
enhanced neutrophil chemotaxis across blank filters towards conditioned media 
from resting MSC, lipopolysaccharide (LPS)-primed MSC, or MSC isolated from 
diseased tissue (e.g. gastric cancer) [16, 63, 64]. However, direct coculture of MSC 
with neutrophils for 1 h, in contrast, had no effect on the ability of neutrophils to 
migrate along a gradient of C5a, IL-8, or fMLP [17]. In conflicting studies, BMMSC 
have been shown to dampen the fMLP-induced respiratory burst of neutrophils [17], 
whilst supernatants from BMMSC enhanced oxidative release in LPS-primed neu-
trophils [16]. Indeed, these supernatants were also demonstrated to augment neutro-
phil phagocytosis [16]. Furthermore, coculture with BMMSC or WJMSC or 
supernatants from parotid gland MSC reduced neutrophil apoptosis in  vitro at 
18–24 h [16, 17, 65]. Certain contexts require cell-cell contact in conjunction with 
soluble mediators to elicit the effects of MSC; however the reasons for this remain 
unknown. One possibility is that these rely on similar mechanisms to those observed 
with ICAM1-mediated suppression in lymphocytes [18, 19], but further investiga-
tions are required.

MSC have also been reported to dampen innate immune responses by suppress-
ing the effector functions of natural killer (NK) cells and skewing the differentiation 
of monocytes towards a more anti-inflammatory M2 phenotype [20]. Human 
BMMSC suppressed IFNγ secretion by IL-2 [21, 38] or IL-15 [66] activated NK 
cells. In the case of the latter study, this was partially mediated through prostaglan-
din E2 [PGE2] and to a lesser extent TGFβ [66]. Cytotoxic effector functions of 
activated NK cells are also suppressed by BMMSC in vitro [21, 66] via indolamine-
2,3-dioxygenase [IDO] and PGE2 acting synergistically [21]. Similarly, contact 
with BMMSC also promoted monocyte polarisation to IL-10 producing M2 
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macrophages, once again in a soluble mediator (IDO and PGE2)-dependent manner 
[24–26]. Indeed, IL-10 produced from M2 macrophages reduced neutrophil infiltra-
tion and lethality of sepsis in vivo following infusion of BMMSC [67]. In contrast, 
human BMMSC can suppress allogeneic CD14+ monocyte differentiation into den-
dritic cells in vitro (driven by GM-CSF, IL-4, and LPS) when cells were cultured in 
close proximity, but not direct contact, on opposite sides of a porous filter [22]. 
MSC appear to have the ability to “turn off” inflammatory responses promoting 
resolution. Indeed preconditioning U937 cells (monocytic cell line) with BMMSC 
for 16 h reduced their adhesion to inflamed pulmonary endothelial cells in vitro 
[68]. Thus, tissue-resident MSC may act as endogenous sensors of inflammation, 
influencing the activity of recruited leukocytes. Moreover, they may also coordinate 
the switch from innate to adaptive immunity during protective inflammation.

5.4.2  �Effects on Adaptive Immunity

MSC modulation of T-cell behaviour has been extensively studied (reviewed by 
[27]). MSC from a variety of tissues promote the survival of T-cells whilst maintain-
ing them in a quiescent state by suppressing proliferation [28–30] and the produc-
tion of pro-inflammatory cytokines (e.g. IFNγ) [38]. Indeed, these represent the 
standard assays used to test the potency of MSC. As with other cell types, MSC 
mediate their effects through soluble factors (e.g. TGF-β, IDO, and PGE2) and cell 
contact (e.g. programmed cell death 1 [PD-1]) (reviewed by [69]). These factors can 
synergistically induce maximal suppression of T-cell proliferation when MSC are in 
direct contact with the T-cells [31]. Cell-cell contact between MSC and T-cells leads 
to bidirectional cross-talk affecting both cell types. For example, ICAM-1 is up-
regulated by human ADMSC following interaction with T-cells and is necessary for 
the suppression of proliferation, where blocking ICAM-1 on ADMSC releases 
T-cells from IDO-induced inhibition [70]. BMMSC can also enhance the expansion 
of the Treg population in peripheral blood mononuclear cells in a HLA-G-dependent 
manner, which may be further enhanced by IL-10 [30]. Moreover, human ADMSC 
have been shown to redirect B-cell plasmablast formation into a regulatory B-cell 
subset (Breg), although the mechanism remains unknown [71, 72]. Consequently, 
MSC could potentially amplify their effects on T-cells indirectly, by promoting the 
proliferation of local Treg and Breg populations.

How MSC regulate other cells of the adaptive immune system is poorly under-
stood. Human BMMSC have been reported to preserve naive B-cells in a resting 
state suppressing their proliferation and antibody production [19, 40]. Similar obser-
vations have been made in mice where BMMSC inhibited the expansion of follicular 
and marginal zone B-cells in vitro [73]. Coculture in contact with MSC reduced the 
expression of chemokine receptors on B-cells (CXCR5 and CCR7) and dendritic 
cells (CCR7; [42]) required for trafficking through lymphoid organs [40]. 
Additionally MSC are capable of promoting tolerance in vitro: coculture on oppo-
site sides of a porous filter impaired NF-κB signalling in dendritic cells resulting in 
reduced CD80/CD86 and HLA expression and impaired stimulation of T-cell clonal 
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expansion [22, 39, 41, 74]. In contrast data from phase I to phase II clinical trials in 
patients undergoing liver transplants has observed no tolerogenic effect of BMMSC 
infusion [75]. In most cases MSC-derived agents are sufficient to drive their effects 
on adaptive immune cells. However in a few cases, direct cell contact appeared nec-
essary to produce a maximal response possibly involving the PD-1 pathway [32, 73].

5.5  �MSC Interactions with Platelets

MSC are also capable of interacting with circulating platelets. Whilst we know 
much less about these interactions, they are likely to be critically important in the 
context of MSC cell-based therapy and vascular damage where perivascular MSC 
become exposed to blood [59, 60]. Human MSC bind circulating platelets in a β1-
integrin-dependent manner [76], where such interactions enhanced MSC adhesion 
to arterial endothelium in vitro [77] and facilitated BMMSC recruitment to lung 
vasculature in a rat model of pulmonary arterial hypertension [78]. Similarly 
platelet-MSC interactions also impact the ability of the MSC therapy to bind to 
extracellular matrix proteins such as collagen and fibronectin [76]. Furthermore, 
depleting platelets have been shown to impair MSC homing, a murine model of 
LPS-induced dermal inflammation [79]. Collectively these studies indicate that 
platelet-MSC interactions may aid their “homing” to damaged sites following thera-
peutic administration. However, caution is required as recent evidence indicates that 
such interactions have the potential to induce platelet activation and cause thrombus 
formation. The glycoprotein podoplanin, which is expressed by human WJMSC, 
can bind to CLEC-2 on platelets and induce platelet activation and their subsequent 
aggregation [76]. When administered systemically, podoplanin-expressing WJMSC 
cause a significant reduction in platelet numbers in the blood, with the platelets 
forming higher-order aggregates of activated cells [76]. Thus, platelet-MSC interac-
tions have the potential to be beneficial in facilitating MSC homing to inflammatory 
sites but also detrimental associated with increased the risk of thrombotic events. 
Further investigations are required to resolve the functional impact of MSC on 
platelets and vice versa.

5.6  �MSC Regulation of Vascular Endothelial Cells 
and Tissue-Resident Stroma

MSC reside in the perivascular niche in close proximity with endothelial cells (EC) 
lining the vasculature (blood and lymphatic) and other tissue-resident (stromal) 
cells [59, 60]. Comparatively speaking we understand very little about the interac-
tions of MSC with these populations and their functional consequences. Indeed the 
effects of MSC on the behaviour of endothelial cells have been analysed in three 
contexts (see below), whilst their interactions with stromal cells have solely focused 
on the reparative properties of both cell types.

5  Mesenchymal Stem Cells as Endogenous Regulators of Inflammation
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5.6.1  �Regulation of Angiogenesis

Under resting conditions, human and rodent BMMSC have been reported to release 
factors (e.g. VEGFα and PDGF-BB) known to enhance the proliferation and migra-
tion of endothelial cells [43–45]. The production of these agents indicates that MSC 
have the potential to promote angiogenesis. In a murine model of wound repair, 
BMMSC (injected intradermally) and BMMSC-derived conditioned media 
(injected subcutaneously at the site of injury) increased endothelial cell and macro-
phage numbers at the site of the wound [44, 80]. These studies suggest that MSC 
promote wound healing by inducing angiogenesis. In vitro, proliferation and migra-
tion of both human and murine endothelial cells was induced in the presence of 
conditioned media from BMMSC but not dermal fibroblasts [44]. For further infor-
mation on the effects MSC have on in vitro tube-forming assays, see review [81]. 
Of note, the main stimulators of angiogenesis, like shear stress and oxygen tension, 
were not modelled in these studies. Furthermore, co-injection of MSC with B16 
melanoma cells increased tumour size and vessel area in vivo, indicating that they 
are pro-angiogenic [82]. In contrast, MSC suppressed angiogenesis in a Matrigel 
model through production of reactive oxygen species when in direct contact with 
rat lung microvascular EC [46]. Whether these factors are the key drivers of MSC-
induced angiogenesis has not been explored. Numerous putative angiogenic pro-
teins have recently been identified in exosomes derived from MSC cultured under 
serum-starved hypoxic conditions [83]. MSC-derived factors may well communi-
cate with endothelial cells to control angiogenesis during development and wound 
repair. Endogenous MSC regulation of angiogenesis in adult pathologies remains 
unclear.

5.6.2  �Regulation of Blood Vascular Permeability

Evidence suggests that perivascular MSC can communicate with endothelial cells 
to regulate vascular permeability and maintain vessel integrity in resting and acute 
inflammatory conditions [47–50, 84]. Coculture with MSC increased the stability of 
junctional molecules (e.g. VE-cadherin and β-catenin) by inhibiting their turnover 
at the plasma membrane of endothelial cells, reducing endothelial permeability to 
FITC-dextran [50]. This effect was reproduced when endothelial cells were treated 
with conditioned media from the coculture, implicating soluble mediators as the 
main drivers [50]. In LPS-driven infection, infusion of BMMSC reduced pulmonary 
microvessel permeability and increased endothelial barrier function in vivo, reduc-
ing murine lung vascular permeability [49]. Similar observations were made using 
both mouse and rat models of haemorrhagic shock [47, 84]. Nevertheless, therapeu-
tic administration of MSC may have beneficial effects for individuals with severe 
vascular damage.

H. Munir et al.
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5.6.3  �Regulation of Leukocyte Recruitment

In terms of regulating inflammatory responses, perivascular MSC communicate 
directly with neighbouring endothelium to indirectly regulate leukocyte recruitment 
during inflammation [47, 51, 68]. However, very few studies have examined this, 
and none have questioned whether MSC from different tissues have the same capac-
ity to regulate this process (i.e. tissue-specific effects).

Therapeutic administration of murine BMMSC increased the number of circulat-
ing neutrophils whilst simultaneously decreasing circulating monocytes in a murine 
model of sepsis, suggesting MSC can actively influence leukocyte recruitment [67]. 
Moreover, pretreating pulmonary endothelial cells with conditioned media from 
human endothelial-BMMSC cocultures reduced their ability to support monocytic 
leukaemia cell line (U937) adhesion in response to TNFα in vitro, by tightening 
endothelial adherens junctions (VE-cadherin and β-catenin) and reducing adhesion 
molecule expression, ICAM-1 and VCAM-1 [47]. Thus, MSC can reduce leukocyte 
adhesion when they interact directly with target cells. However, these studies anal-
ysed adhesion under static conditions, which do not mimic physiological recruit-
ment of leukocytes from flowing blood. Moreover, they focus on soluble 
mediator-induced effects on naive endothelium, rather than the direct bidirectional 
cross-talk between MSC and endothelial cells.

To address this, we developed an in vitro multicellular flow-based adhesion assay 
that mimicked intravenous BMMSC and WJMSC infusion and subsequent integra-
tion into the endothelial monolayer [51, 52]. We reported that MSC communicate 
with neighbouring vascular endothelial cells to limit leukocyte recruitment induced 
by inflammatory cytokines [51, 53]. Specifically, BMMSC potently down-regulated 
the recruitment of both neutrophils and lymphocytes by inflamed endothelium [51, 
53]. Whilst WJMSC and TBMSC elicited similar effects, these MSC populations 
showed greater suppressive effects compared to BMMSC, which could be attributed 
to tissue-specific differences [51, 53]. A two-way conversation between MSC and 
endothelial cells was essential for these effects, with activation of TGFβ and release 
of IL-6 being critical factors [51, 53]. Coculture with MSC also inhibited the secre-
tion of chemokines (CXCL8 and CXCL10) responsible for stabilising leukocyte 
adhesion and driving onward migration [51].

Alternatively, MSC and endothelial cells were cocultured together on opposite 
sides of a porous insert. This construct more accurately models the cross-talk that 
occurs within the tissue but can also be used to examine the effects of site-specific 
infusion of MSC [52, 53]. Like the therapeutic model, we observed that BMMSC 
and WJMSC suppressed neutrophil recruitment. Once again, coculture conditioned 
media mimicked the effects of coculture, indicating a soluble mediator-dependent 
mechanism. Indeed, IL-6 and TGFβ were identified as the main mediators. 
Interestingly, production of the soluble mediator by WJMSC, but not BMMSC, 
was dependent upon close proximity between the MSC and EC [53]. This suggests 
that BMMSC can communicate with endothelial cells in a contact-independent 
manner [53]. We have shown that MSC communicate directly with neighbouring 
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endothelium to modulate the inflammatory response. Whilst MSC from different 
anatomical sites have the same functional effects, they appear to utilise different 
mechanisms which may ultimately affect their regulatory capacity. These func-
tional differences may be due to differences in developmental origin of different 
MSC populations, a phenomenon previously observed in different smooth muscle 
cell populations [85]. This has important implications for therapy, as it suggests 
that MSC from different sources may only suppress recruitment when administered 
in close proximity to the endothelium.

These observations are not restricted to tissue-resident MSC. We and others have 
shown that healthy stromal cells from a variety of tissues (e.g. fibroblasts, podo-
cytes, and secretory smooth muscle cells) exhibit immunosuppressive capabilities, 
limiting leukocyte recruitment induced by inflammatory cytokines [[51, 86–88]; 
also see Chap. 3]. Moreover, stromal populations, including endothelial cells and 
fibroblasts, display distinct spatial identities [89] that govern their behaviour. This 
allows them to establish tissue-specific “address codes” that actively regulate the 
recruitment of leukocytes to inflamed sites (reviewed by [90]). Whether MSC 
exhibit such tissue-specific differences requires further investigation. Collectively 
these studies suggest that healthy mesenchymal tissue-resident cells use the same 
mechanism to act as endogenous regulators of the inflammatory infiltrate, with IL-6 
and TGFβ acting as master regulators [51, 53]. Given these agents are present in 
endothelial-MSC conditioned media, infusion of culture supernatant or MSC-
derived agents may be more efficacious than infusion of cells. Ultimately this would 
eliminate the need for MSC infusions where the long-term effects (safety and effi-
cacy) of therapy are unknown.

5.6.4  �Regulation of Tissue Repair: Interactions  
with Stromal Cells

Limited evidence suggests MSC may interact with other tissue-resident mesenchy-
mal stromal cells to facilitate their reparative functions during tissue repair and bone 
remodelling [91–95]. BMMSC have been reported to migrate towards damaged 
bone in response to TGFβ1 released by osteoclastic bone at resorptive sites, where 
they differentiate into osteoblasts promoting bone remodelling [91]. Moreover, 
rheumatoid synovial fibroblasts secrete placental growth factor, promoting BMMSC 
chemotaxis [96]. In rodent models of tissue damage (surgically or chemically 
induced), injection of BMMSC or BMMSC conditioned media reduced tissue fibro-
sis in the affected organ (kidney, heart, liver, and skin; [92–95]). One interpretation 
is that MSC migrate into the damaged tissue to communicate with resident fibro-
blasts and influence their production and/or deposition of extracellular matrix com-
ponents, reducing fibrosis. Indeed, Yates et al. have recently demonstrated that MSC 
and fibroblasts can synergistically reduce extracellular matrix production and thus 
scarring when transplanted into a CXCR3-deficient mouse model [97]. New lines of 
research are necessary to determine whether MSC manipulate stroma responses to 
regulate the tissue microenvironment during inflammation.

H. Munir et al.
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5.7  �Regulation by the Physical Microenvironment

MSC respond to nanoscale features altering their growth and differentiation poten-
tials according to the patterns of nanotopography they experience [98]. For exam-
ple, soft (0.5 kPa) hydrogels promoted MSC differentiation towards neural cells, 
whilst stiff (40 kPa) gels drive osteogenesis in the absence of additional growth 
factors [99]. Moreover, MSC pluripotency can be maintained using a highly ordered 
distribution of nanopits on the culture surface [100]. Introducing a relatively small 
amount of disorder to such features was sufficient to stimulate osteogenesis [101]. 
Sensing topographical features smaller than adhesion molecules (~10 nm) indicates 
that MSC observe fine details (physical and chemical) within their environment and 
are able to mount potent responses in an effort to maintain tissue homeostasis. Such 
insights could enable the ex vivo expansion of MSC for therapeutic use on specially 
designed surfaces that can topographically maintain, e.g. “stemness”.

5.8  �MSC Response to Acute Inflammation

The inflammatory microenvironment is complex with a context-specific medley of 
agents that can shape the behaviour of leukocytes, endothelial cells, and stromal 
cells. Do tissue-resident MSC also respond to their local environment and does this 
impact their effector functions?

One avenue that has been explored is the effects of exogenous cytokines on the 
phenotype of MSC (Table 5.2) and the functional consequences of these changes 
(Table 5.3). Pretreating MSC (BM, WJ, AD) with IFNγ in combination with TNFα 
for 18  h altered their phenotype: differentially modifying TLR expression (see 
Table 5.2) and increasing the release of cytokines (e.g. IL-6) and chemokines (e.g. 
CXCL8, CCL5) when compared to untreated MSC [104]. Murine BMMSC treated 
with IFNγ in combination with either TNFα, IL-1α, or IL-1β for 24 h up-regulated 
expression of adhesion molecules (e.g. ICAM1, VCAM1) and chemokine (e.g. 
CXCL9) compared to untreated MSC [18, 106]. Of note, single cytokine treatments 
had little effect on these parameters [18, 106]. In contrast, IFN‖, but not TNF‖, 
stimulation for 72 h induced IDO expression by BMMSC and WJMSC relative to 
resting MSC [102]. Many of these changes mirror the response of other stromal cell 
types to inflammation ([114, 115]; see Chap. 3) and support cell-cell interactions 
necessary for migration to the damaged tissue. In certain contexts, cytokines can 
further enhance the immunomodulatory effects of MSC when compared to naive 
MSC [102, 116, 117]. Indeed, pretreating MSC (BM or placental) with IFNγ for 
48 h suppressed T-cell proliferation to a greater extent than untreated MSC [113]. 
Cord-derived MSC had a greater suppressive effect than BMMSC when primed 
with IFNγ as assessed by T-cell proliferation assays and mixed lymphocyte reac-
tions in vitro [102]. Furthermore, IL-2 secretion by T cells was significantly reduced 
when BMMSC, but not WJMSC, were primed with TNFα for 72 h prior to coculture 
in the presence of PHA [102]. However, enhancing MSC functions can have detri-
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Table 5.2  Response of MSC to inflammatory environments

Effect on MSC
MSC 
source Species Passage References

Cytokine treatment
IFNγ ↑ PD-L1, HGF and PGE2 

expression and IDO activity
BM/AD Human/

mouse
2–10 [19, 102, 

103]
↓ TGFβ1 secretion BM Mouse 3–10 [103]

TNFα ↓ TGFβ1 and HGF secretion BM/WJ Human/
mouse

3–10 [102, 103]

↑ TGFβ1 mRNA WJ Human 5–10 [94]
↑ HGF, PGE2 secretion BM/WJ Human/

mouse
3–8 [102, 103]

Poly(I:C) ↑ IDO, PGE2, SMAD7 mRNA BM Human ≤4
↓ TGFβ1, IL-6, IL-8, CCL10, 
secretion

BM [33]

↑ Fibronectin deposition –
↓ Differentiation capacity –

LPS ↑ Jagged-1/2, SMAD3 mRNA BM Human ≤4 [33, 94]
↓ TGFβ1 and HGF expression BM/AD
↑ Osteogenesis and collagen 
deposition

– [33, 104]

↓ Adipogenesis –
↑ IL-1Ra, IL-6, IL-8, and IL-4 
secretion

AD

TGFβ1 ↑ Migration BM Mouse – [91]
IFNγ+TNFα ↑ ICAM-1, VCAM-1, HIF-1α, 

VEGF, iNOS, PD-L1 expression
BM Mouse 3–20 [18, 103, 

105]
↑ IL-6, IL-8, CXCL9, CXCL10 
secretion

BM Human/
mouse

– [34, 106]

IL-1β+IFNγ 
+TNFα+IFNα

↑ IL-1β mRNA and IL-6 and IL-8 
secretion

BM/WJ/
AD

Human <2 [104]

↑ TLR2, TLR3, ↓ TLR6 mRNA BM/WJ/
AD

↑ TLR1 mRNA WJ
↓ TLR5 mRNA WJ/AD
↑ IFN-γ and ↓ HGF secretion BM

Disease
RA ↓ MSC proliferation BM Human 1–6 [107, 108]

Impaired ability to support 
haematopoiesis
↓ Cyclin-D; ↑ cyclin-D inhibitor

SLE ↓ MSC proliferation BM/WJ Human/
mouse

>3 [109–112]
↓ Differentiation into osteoblasts

AD adipose, BM bone marrow, DC dendritic cell, WJ Wharton’s jelly
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Table 5.3  Effects of inflammatory cytokines on the immunomodulatory properties of MSC

Effect Mediator(s) MSC source Species Passage References

IFNγ ↓ Proliferation of 
T- and B-cells

IDO, PD-1 Placenta/
BM/AD

Human/
mouse

>2 [19, 73, 
113]

↓ B-cell 
differentiation into 
plasma cells

PD-1 BM Mouse 20–25 [73]

↓ Secretion of 
IFN-γ and TNFα 
by T-cell

– BM Human ≤10 [102]

↓ Expansion of 
Breg

IDO AD Human 2–5 [19]

TNFα ↓ DC maturation – BM Mouse 3–10 [42]
↓ CCR7 expression 
on DC
↓DC migration to 
CCL19
↓ Secretion of 
IFNγ and TNFα 
by T-cells

– BM Human ≤10 [113]

↓ Splenocyte 
proliferation

PGE2 BM Mouse 3–10 [103]

IL-10 ↓ T-cell 
proliferation

HLA-G5 BM Human 1 [30]

↓ NK cytotoxicity
↑ Expansion of Treg

IL-1β+IFNγ 
+TNFα+IFNα

↓ T-cell 
proliferation

– BM/WJ/AD Human <2 [104]

AD adipose, BM bone marrow, DC dendritic cell, IDO indoleamine 2,3-dioxygenase, PD1 pro-
grammed cell death 1, PGE2 prostaglandin E2, WJ Wharton’s jelly

mental effects. For example, IFNγ-stimulated MSC are better able to suppress 
B-cell proliferation but have a reduced capacity to induce Breg [19]. Co-injection of 
primed murine BMMSC (12 h TNFα and IFNγ) with a C26 colonic cancer cell line 
caused a significant increase in tumour growth when compared to untreated MSC 
[105]. That said, priming itself is not essential for the suppressive actions of MSC 
[17, 20, 21, 24–26, 38, 66]. But it does suggest that the MSC can respond to their 
local microenvironment, which in turn could affect their behaviour (reviewed by 
[118]). Whether priming of MSC in vitro is representative of the in vivo situation 
requires further research.

Engagement of TLR-3 in vitro was initially reported to enhance the effects of 
BMMSC, inducing the release of anti-inflammatory factors (e.g. IDO) [33]. In con-
trast, TLR-4 activation of BMMSC abrogated their ability to suppress T-lymphocyte 
proliferation and induced the release of pro-inflammatory cytokines (e.g. TNFα) 
and deposition collagen [33]. In vivo, systemic administration of TLR3-primed 
MSC ameliorated symptoms of lung injury and diabetic neuropathy, whilst TLR4-
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primed MSC exacerbated disease compared to infusion of naive MSC [33]. Although 
MSC were defined as MSC2 and MSC1, respectively, it should be noted that these 
terms refer to the phenotype acquired following TLR activation, rather than the 
origin of the cells. Subsequent in vitro studies presented conflicting findings: IDO 
or PGE2 secretion and T-cell proliferation have been reported to be enhanced, 
reduced, or unchanged by TLR 3- and TLR 4-stimulated BMMSC [34, 104, 119]. 
Different experimental conditions (treatment concentrations and duration) and the 
number and source of MSC are the likely explanation for these contradictory out-
comes. Furthermore, MSC infusion has previously been shown to reduce lung 
oedema and inflammatory infiltrates in murine models of sepsis where high levels 
of LPS (TLR4 ligand) are present [49, 120]. As MSC dampened inflammation, 
rather than augment it, it is likely that the effects of TLR priming observed in vitro 
may not reflect MSC responses in vivo.

The behaviour of MSC is highly plastic, with the local inflammatory milieu 
(cytokines, danger signals, and bacterial components) having the potential to shape 
the immune regulatory effects of tissue-resident MSC [33]. Further work is essen-
tial to fully understand MSC biology during inflammatory responses and the impact 
of chronic inflammation. Such plasticity could have implications for MSC as a cell 
therapy – can we guarantee that the cells administered will maintain their immuno-
suppressive effects in a chronically inflamed site?

5.9  �The Dangers of Chronic Inflammatory Environments 
on MSC Behaviour

Mesenchymal stromal cells (see other chapters), including MSC, endogenously 
moderate inflammation, so why does it persist? Also, does chronic inflammation 
adversely and/or permanently affect MSC function? Ex vivo studies report that 
human BMMSC isolated from patients with RA have impaired ability to support 
haematopoiesis [107]. Furthermore, BMMSC from systemic lupus erythematosus 
(SLE) and RA patients have reduced proliferative capacity and reduced telomere 
length, indicative of a senescent phenotype when compared to healthy controls 
[108–110]. Likewise, reduced proliferation and osteogenesis were observed in 
BMMSC from patients with SLE and a murine preclinical model of SLE [111, 112]. 
In contrast, no such changes were observed in BMMSC isolated from patients with 
multiple sclerosis (MS; [121, 122]) or systemic sclerosis (SS; [35]). Importantly, 
MSC from patients with SLE, RA, and SS appear to maintain their immunomodula-
tory effector functions – as measured by T-cell proliferation assays [35, 108, 110]. 
Culturing healthy BMMSC in the presence of 20% synovial fluid from patients with 
osteoarthritis, but not post-mortem donors with no signs of joint inflammation, 
increased the gene expression of IL-6 and IDO [123]. Moreover, proteomic analysis 
of RA BMMSC revealed changes in molecules responsible for regulating cell cycle 
from G1 to S-phase when compared to healthy age and gender-matched controls, 
namely, an increase in cyclin-D inhibitors and decrease in cyclin-D [108]. The 

H. Munir et al.



87

chronic inflammatory milieu appears to be capable of driving the proliferation and 
premature senescence of BMMSC, possibly contributing to further pathogenesis. 
Unfortunately, all of these studies analysed BMMSC, leaving the effect of the 
chronic inflammatory milieu on local tissue-resident MSC to be elucidated.

Ectopic fat deposits and/or alterations in local adipose tissue are associated with 
a number of disorders including Duchenne muscular dystrophy [124], myocardial 
infarction [125], type II diabetes [126], and RA [127–129]. Similarly aberrant bone 
formation or calcification has been described in fibrodysplasia ossificans progres-
siva [130], the vasculature of chronic kidney disease [131], and the adipose tissue in 
intra-abdominal surgery [132]. These deposits could be the result of inappropriate 
differentiation of tissue-resident MSC induced by inflammatory mediators in the 
affected tissue. Thus, under certain conditions, MSC could change their phenotype, 
no longer acting as brakes on the inflammatory response and possibly taking on a 
stimulatory state. This might occur during “classic” differentiation, e.g. into adipo-
cytes, or conversion into a non-specific state in chronically insulted tissue. Indeed, 
MSC-derived adipocytes have lost the ability to suppress neutrophil capture to 
inflamed endothelium, as seen with undifferentiated MSC [133]. In a 3D multicellular 
migration assay, both MSC-derived adipocytes and osteoblasts were no longer able 
to suppress neutrophil adhesion to and migration through an inflamed endothelial 
monolayer, suggesting that transdifferentiation of MSC abrogates their immuno-
modulatory capacity [134]. In contrast, native stromal cells, adipocytes derived 
from them, and mature adipocytes from adipose tissue were all immuno-protective 
[133]. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic 
inflammatory diseases, might drive “abnormal” adipogenesis which adversely influ-
ences the behaviour of MSC and contributes to pathogenic recruitment of leuko-
cytes [133]. These novel findings parallel those we made when comparing stromal 
cells from healthy and diseased tissues, where stromal cells from chronically 
inflamed sites lost immunosuppressive properties and modified endothelial cells to 
inappropriately recruit leukocytes ([87, 88, 135–137]; see Chap. 3). Moreover, these 
effects were mediated by altering the bioactivity of IL-6 or TGFβ, making them act 
in a “pro-inflammatory” manner [138]. Whether a diseased environment (chronic 
inflammation or tumour) drives a similar pathogenic response in MSC remains to be 
addressed.

5.10  �MSC in Therapeutics to Treat Inflammatory Disorders

The ability of MSC to modify immune responses has been the basis for clinical tri-
als in a range of conditions [139]. Of these graft vs. host disease (GvHD) has been 
the most extensively studied, with early studies showing good therapeutic potential. 
To date there are 12 recently completed and 25 trials ongoing in this area; in all 
cases the outcomes have yet to be announced [139]. Systemic infusion of matched 
or mismatched BMMSC into patients with or at risk of GvHD improved clinical 
scores [140–142], with a few patients reporting complete remission at the 12-month 
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follow-up [141, 143–145]. BMMSC therapy improved survival at 12–24 months in 
~50–60% of patients with steroid-refractory GvHD in phase II trials [142, 146]. 
Due to the nature of these studies, none included a placebo control arm necessary to 
assess the true clinical benefit of MSC infusion. Early trials report therapeutic effi-
cacy of MSC. However, randomised multicentre phase III trials of steroid-refractory 
GvHD showed no significant difference between treatment (“off-the-shelf” alloge-
neic MSC) and placebo groups [147]. The lack of efficacy may be due to differences 
in disease severity (degree of steroid resistance) between patients. Individuals with 
moderate disease severity may have a better response to MSC infusion compared to 
those with more severe disease, which could affect the outcome of trials. Recent 
follow-up studies have shown an increased incidence of haematological malignan-
cies [148] or risk of pneumonia [149] in GvHD patients treated with MSC. That 
said, there was no evidence of tumour formations following intravenous infusion of 
MSC in patients with neuromyelitis optica spectrum disorder at 2 years follow-up 
[150]. The long-term risks and potential side effects of MSC therapy will need fur-
ther investigation.

Based on promising data from preclinical models, trials are also examining the 
efficacy of MSC in autoimmune diseases, with a significant number involving 
patients with Crohn’s disease, SLE, and RA (reviewed by [151]). However, a con-
cern with these studies is the cyclical nature of patient’s symptoms, making it dif-
ficult to determine whether improvements in the condition are due to the MSC or the 
natural disease cycle. As mentioned for GvHD, many of these studies also lack the 
appropriate placebo controls. Nevertheless, preclinical and clinical studies have 
shown potential clinical benefits of MSC treatment [53, 141, 143–145].

5.10.1  �Limitations of Current Clinical Trials

Conflicting outcomes in clinical trials may arise from differences in trial design and 
lack of understanding of MSC biology. Variations in the clinical outcome of these 
trials may also be due to ex vivo expansion (passaging) of MSC which has a nega-
tive effect on their proliferation, differentiation, and immunosuppressive effects 
[152]. Due to the scarcity of MSC in tissues, large-scale culture ex vivo expansion 
is necessary to generate sufficient cell numbers for therapeutic administration, 
which may limit their clinical benefits. MSC are a heterogeneous population of cells 
with similar phenotypic features as other stromal populations such as fibroblasts. As 
such, MSC will need to be more stringently defined before becoming an “off-the-
shelf” therapeutic strategy for treatment of inflammatory disorders.

Key concerns regarding the optimum route of administration, dose of MSC, the 
best source of cells, and the fate of the cells after infusion also need to be addressed 
(reviewed by [151]). Systemically infused MSC have a low homing efficiency 
(<1%) and become mechanically trapped in the lungs (reviewed by [153]), suggest-
ing that the beneficial effects of MSC treatment are mostly likely due to soluble 
mediators [56]. However, a recent study reported that intravenously infused fluores-
cently labelled BMMSC initially lodged in the lungs but importantly were no longer 
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detected at 24  h [153]. They subsequently have suggested that previous studies 
showing MSC redistribution in other tissues were detecting cell debris or phagocy-
tosed MSC that are still labelled and postulated that any long-term immunosuppres-
sive effects observed after MSC infusion are mediated by other cell types and not 
the MSC themselves [153]. For example, infused MSC can be phagocytosed by 
monocytes, inducing the monocytes to acquire the non-classical anti-inflammatory 
phenotype through up-regulation of CD16 and therefore transferring their MSC 
immunomodulatory effects onto the monocytes [154]. Alternatively, human 
BMMSC-derived apoptotic bodies have been suggested to initiate MSC-induced 
immunosuppressive in a murine model of GvHD [155].

The long-term effects of MSC treatment (5–10 years follow-up) have not been 
carried out. Any long-term risks of MSC treatment are currently unknown, and 
issues such as MSC response to other therapeutic interventions, potential tumorige-
nicity, and tissue distribution upon administration will need to be addressed to elim-
inate possible risks of MSC treatment. Manipulating the functions of endogenous 
MSC for therapeutic use may therefore be an attractive alternative to current treat-
ment modalities for inflammatory conditions. However, without fully ascertaining 
the mode of actions of endogenous MSC, it will be difficult to elucidate their true 
therapeutic potential.

5.11  �Conclusions

Tissue-resident MSC are endogenous regulators of inflammation. They have an 
inherent capacity to sense even the subtlest of changes in their microenvironment 
and respond accordingly. MSC maintain tissue homeostasis: replacing damaged 
cells through their differentiation into the target stromal cell and also supporting the 
haematopoietic niche. During inflammation, MSC inhibit the archetypical inflam-
matory behaviours of their target cell whilst simultaneously promoting anti-
inflammatory, pro-resolution agents and/or the generation of regulatory cells. We, 
ourselves, have shown that MSC communicate with blood vascular endothelial cells 
to regulate the inflammatory infiltrate. MSC predominately mediate their effects 
through the release of soluble factors, but in certain context, direct cell-cell interac-
tions are thought to be required to enhance these further. Whilst MSC cell therapy 
is currently being explored for clinical benefit, many of the clinical trials are in the 
earliest phases with the outcomes yet to be announced or inconclusive. Such studies 
are confounded by differences in their design, source, and dose of MSC and the 
absence of placebo controls, making it difficult to ascertain the true clinical benefit 
of MSC treatment. Further research is needed to understand how MSC communi-
cate with cells, other than leukocytes, within tissues and whether these interactions 
change during an inflammatory response. Moreover, it is critical we understand the 
impact chronic inflammation has on the function of MSC. Can we guarantee that 
therapeutic MSC will maintain their immunosuppressive effects in a chronically 
inflamed site? Whether MSC-derived media or effector molecules (either from 
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MSC or cocultures with other cell types) would be a safer and more efficacious 
alternative intervention remains to be seen.
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