

Diversity and Taxonomy of Methanogens 2

Zhe Lyu and Yuchen Liu

Contents

Z. Lyu

Y. Liu (\boxtimes)

© Springer Nature Switzerland AG 2019

Department of Microbiology, University of Georgia, Athens, GA, USA e-mail: zhelyu@uga.edu

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA e-mail: yuchenliu@lsu.edu

A. J. M. Stams, D. Z. Sousa (eds.), Biogenesis of Hydrocarbons, Handbook of Hydrocarbon and Lipid Microbiology, https://doi.org/10.1007/978-3-319-78108-2_5

Abstract

Methanogens are strictly anaerobic, methane-producing archaea. All characterized members belong to the phylum *Euryarchaeota*, but methanogenesis pathway is also predicted to be present in the newly proposed phyla Bathyarchaeota and Verstraetearchaeota. This indicates that the diversity of methanogens may be larger than previously excepted. Although methanogens share a set of physiological characteristics, they are phylogenetically very diverse. The current taxonomy classifies methanogens into seven well established orders: Methanobacteriales, Methanococcales, Methanomicrobiales, Methanosarcinales, Methanopyrales, Methanocellales, and Methanomassiliicoccales. This taxonomy is supported by 16S rRNA gene sequences as well as a number of physiological properties, e.g. substrates for methanogenesis, nutritional requirements, morphologies, and structures of cell envelopes. Methanogens are abundant in a wide variety of anaerobic environments where they catalyze the terminal step in the anaerobic food chain by converting methanogenic substrates to methane. The complexity of methanogenesis pathways suggests an ancient monophyletic origin of methanogens, a hypothesis that is supported by phylogenetic analyses based upon DNA sequences.

1 Introduction

Methanogens are microorganisms that produce methane as the end-product of their anaerobic respiration. All methanogens share three common features. (i) They are obligate methane producers, obtaining all or most of their energy for growth from producing large quantities of methane. (ii) They are archaea, belonging to the phylum Euryarchaeota and possibly other archaeal phyla too. (iii) They are obligate anaerobes, limiting their growth to anaerobic environments.

Then known methanogens can only utilize a restricted number of substrates for methane production or methanogenesis. The substrates are limited to three major types: $CO₂ + H₂$ or a few other electron donors such as formate, methyl-group containing compounds, and acetate. Methanogens using these three types of substrates are classified as hydrogenotrophs, methylotrophs, and acetotrophs, respectively. Most organic substances, for instance, carbohydrates, proteins, and long-chain fatty acids and alcohols, are not substrates for methanogenesis. Exceptions are that some hydrogenotrophs can also use secondary alcohols, such as 2-propanol, 2-butanol, and cyclopentanol, as electron donors. A small number can use ethanol (Widdel [1986;](#page-57-0) Widdel et al. [1988](#page-57-1); Bleicher et al. [1989](#page-48-0); Frimmer and Widdel [1989\)](#page-50-0). Athough these organic compounds can obviously be assimilated, they are only incompletely oxidized to ketones (secondary alcohols) and acetate (ethanol), and methane is derived from $CO₂$ reduction.

Methanogenesis is a complex process that requires a number of unique enzyme complexes and unusual coenzymes (reviewed in Hedderich and Whitman ([2006\)](#page-50-1)). Although the methanogenesis pathways of the three nutritional groups start differently, the final steps leading to methane are common in virtually all methanogens. The bioenergetics of methanogenesis employs both proton and sodium gradients generated by primary pumps for ATP synthesis. Due to the complexity of methanogenesis, all modern methanogens perhaps originate from a common ancient ancestor.

2 Taxonomy and Phylogeny of Methanogens

Although methanogens are united by a few common features, they are phylogenetically diverse. The taxonomy of methanogens that has been developed in the last three decades has aimed to reflect the phylogenetic diversity of methanogens and be consistent with the taxonomy of other prokaryotes (Balch et al. [1979](#page-47-0); Boone et al. [1993b;](#page-48-1) Whitman et al. [2001b](#page-57-2)). An overview of the current taxonomy of methanogens is given in Table [1](#page-3-0). Organisms from different orders have less than 82% 16S rRNA sequence similarity. Organisms with less than 88–93% and less than 93–95% 16S rRNA sequence similarity are separated into different families and genera, respectively. Organisms are distinguished as separate species if their DNA reassociation is less than 70%, the change in the melting temperature of their hybrid DNA is greater than 5° C, and substantial phenotypic differences exist (Wayne et al. [1987;](#page-57-3) Stackebrandt et al. [2002\)](#page-56-0). When 16S rRNA data are available, organisms with a similarity of less than 98% are considered as separate species. However, sequence similarity of greater than 98% is not considered as a sufficient evidence that two organisms belong to the same species.

All modern methanogens share the same set of homologous enzymes and cofactors required for methanogenesis, suggesting an ancient monophyletic origin of methanogens. In the phylogenetic tree based on 16S rRNA gene sequences, methanogens are separated into seven orders (Fig. [1\)](#page-6-0). Non-methanogenic lineages such as Archaeoglobales and Thermoplasmatales, are interspersed in the tree. Phylogenomic studies using more gene markers including ribosomal proteins and/ or methanogenesis proteins further classified methanogens collectively into three classes (Bapteste et al. [2005](#page-48-2); Anderson et al. [2009](#page-47-1)). The Class I methanogens include Methanobacteriales, Methanococcales, and Methanopyrales, the Class II methanogens include Methanomicrobiales, and the Class III methanogens include Methanosarcinales. However, when Methanocellales was included in phylogenomic analyses, the boundaries between the Classes II and III could not be fully resolved, suggesting that they could also belong to a single class (Lyu and Lu [2017](#page-53-0)). Although the seventh order *Methanomassiliicoccales* is distantly related to all three methanogen classes, its close affiliation to the Class Thermoplasmata could not warrant an immediate establishment of a fourth methanogen class.

Four hypotheses are proposed to explain the branching of methanogens. (1) Methanogens and these non-methanogen lineages shared a common ancestor, and genes required for methanogenesis were lost in these non-methanogens. This hypothesis is supported by the presence of a few genes encoding methanogenesis enzymes in the genome of *Archaeoglobus fulgidus* but is challenged by aerobic growth in both the Halobacteriales and Thermoplasmatales. This hypothesis also suggests that the common ancestor of *Euryarchaeota* was a methanogen (Gribaldo and Brochier-Armanet [2006](#page-50-2)). However, this view is now challenged by the possible

presence of methanogens outside Euryarchaeota as shown by metagenomic surveys (Evans et al. [2015](#page-50-3); Vanwonterghem et al. [2016\)](#page-57-4). (2) Methanogenesis in various branches was acquired by horizontal gene transfer (HGT). However, the core genes required for methanogenesis are not linked on the genomes of methanogens, thus the

Order	Family	Genus	Speciesb
Methanobacteriales	Methanobacteriaceae	Methanobacterium	M. aarhusense, M. alcaliphilum, M. beijingense, M. bryantii, M. congolense, M. espanolae, M. formicicum, M. ivanovii, M. oryzae, M. palustre, M. subterraneum, M. uliginosum, M. aggregans, M. arcticum, M. ferruginis, M. flexile, M. kanagiense, M. lacus, M. movens, M. movilense, M. paludis, M. petrolearium, M. veterum
		Methanobrevibacter	M. acididurans, M. arboriphilus, M. curvatus, M. cuticularis, M. filiformis, M. gottschalkii, M. millerae, M. olleyae, M. oralis, M. ruminantium, M. smithii, M. thaueri, M. woesei, M. wolinii, M. boviskoreani
		Methanosphaera	M. cuniculi, M. stadtmanae
		Methanothermobacter	M. defluvii, M. marburgensis, M. thermoautotrophicus, M. thermoflexus, M. thermophilus, M. wolfeii, M. crinale, M. tenebrarum
	Methanothermaceae	Methanothermus	M. fervidus, M. sociabilis
Methanococcales	Methanococcaceae	Methanococcus Methanothermococcus	M. aeolicus, M. maripaludis, M. vannielii, M. voltae M. okinawensis,
	Methanocaldococcaceae	Methanocaldococcus Methanotorris	M. thermolithotrophicus M. fervens, M. indicus, M. infernus, M. jannaschii, M. vulcanius, M. villosus, M. bathoardescens M. formicicus, M. igneus

Table 1 Taxonomy of methanogens (Modified from Liu [\(2010e](#page-53-1)))

(continued)

Table 1 (continued)

(continued)

Table 1 (continued)

a Placement in higher taxon is tentative

b Type species of the genera are in bold

simultaneous acquisition via lateral transfer is unlikely, and the transfer of single genes would not confer a selective advantage (Gribaldo and Brochier-Armanet [2006\)](#page-50-2). (3) The phylogeny based on 16S rRNA gene is misleading, and methanogens and Archaeoglobus shared a common ancestor exclusive of all other archaea. This hypothesis is supported by phylogenomics analyses showing that 10 proteins are exclusively shared in methanogens and A. fulgidus (Gao and Gupta 2007), while no proteins are exclusively shared in methanogens and any of the Halobacteriales or Thermoplasmatales (Gao and Gupta [2007](#page-50-4)). Therefore, methanogens and Archaeoglobus appear to have a closer relationship within the Euryarchaeota. However, the presence of methanogens in the Thermoplasmata suggests otherwise. (4) The last archaeal common ancestor was a methanogen, and the methanogenesis pathway was inherited, modified or lost in various lineages throughout evolution. This view is supported by (i) recent metagenomics surveys that indicate possible presence of methanogens in at least two other archaeal phyla besides the Euryarchaeota (Evans et al. [2015;](#page-50-3) Vanwonterghem et al. [2016\)](#page-57-4), and (ii) the root of the archaeal tree based on phylogenomic analyses was placed between Euryarchaeota and the rest of archaeal phyla (Petitjean et al. [2015\)](#page-55-0).

Methanogens are currently classified into seven orders: Methanobacteriales, Methanococcales, Methanomicrobiales, Methanosarcinales, Methanomassiliicoccales, Methanocellales and Methanopyrales (Whitman et al. [2001b,](#page-57-2) [2006;](#page-57-5) Sakai et al. [2008](#page-55-1); Iino et al. [2013\)](#page-51-0). This taxonomy is supported by comparative 16S rRNA gene sequence and phylogenomic analyses as well as distinctive phenotypic properties, such as different cell envelope structures, lipid compositions, and substrate ranges. Some representative characteristics are listed in Table [2](#page-7-0) and further described in following subsections.

Fig. 1 Maximum-likelihood tree based on nearly full length 16S rRNA gene sequences from type species of 34 methanogen genera. The tree was built by FastTree 2.1.5 using *Thermococcus celer* as an outgroup. Bootstrap values >0.77 are indicated at nodes and were based on 1000 replicates (Price [2010](#page-55-2)). There were a total of 1555 positions in the final dataset, which were aligned in the RDP 11 database. The scale bar represents substitutions per position. The GenBank accesion numbers are indicated following the species name

2.1 Methanobacteriales

Methanobacteriales are currently classified into two families and five genera based upon 16S rRNA sequences, DNA reassociation levels, and phenotypic characteristics. The two families Methanobacteriaceae and Methanothermaceae are distinguished by 16S rRNA sequence similarities below 89% and differences in cell wall structure and growth temperatures. The family *Methanobacteriaceae* contains three mesophilic genera – Methanobacterium, Methanobrevibacter, and Methanosphaera – and one thermophilic genus Methanothermobacter. Members of the Methanobacteriaceae possess pseudomurein as a major component of the cellular envelope. The family Methanothermaceae is represented by one hyperthermophilic genus, Methanothermus. Members of the Methanothermaceae possess a protein surface layer in addition to the pseudomurein layer.

Table 2 Some characteristics of the methanogen orders $(M_0$ dified from Liu $(2010e)$ Table 2 Some characteristics of the methanogen orders (Modified from Liu [\(2010e](#page-53-1)))

Abbreviation: nd not determined

^aMajor substrates utilized for methanogenesis. Parentheses means utilized sometimes ^bCompounds can be contained in cellular lipids, depending on the species Abbreviation: *nd* not determined
^aMajor substrates utilized for methanogenesis. Parentheses means utilized sometimes bCompounds can be contained in cellular lipids, depending on the species

'Except the genus Methanothermus cExcept the genus Methanothermus

The placement of the hyperthermophilic *Methanothermus* into a separate family from other Methanobacteriales genera is justified by the deep branching of the phylogeny of its 16S rRNA gene (Schuchmann and Muller [2014](#page-55-3)). The 16S rRNA gene sequence similarities within the Methanothermus species are much higher (98%) than the similarities between Methanothermus and other members of the Methanobacteriales (83–89%). This classification is further confirmed by DNA reassociation. For instance, the DNA relatedness between Methanothermus isolates and Methanothermobacter thermoautotrophicus strain IM is 2–8% (Lauerer et al. [1986\)](#page-52-0). Phenotypically, the genus Methanothermus is distinguished from other *Methanobacteriales* by their high temperature optima $(80-88 \degree C)$, double-layered cell wall, and motility by bipolar polytrichous flagellation.

Methanobacteriaceae is a diverse family, including mesophilic and thermophilic species. The phylogeny of the 16S rRNA gene indicates that the thermophilic species are divergent from mesophilic members at the genus level. The 16S rRNA sequence similarities within the thermophilic genus *Methanothermobacter* are above 98%, while the similarities between thermophilic and mesophilic members of *Methanobac*teriaceae are generally below 93% (Wasserfallen et al. [2000\)](#page-57-6). The DNA relatedness between Methanothermobacter species are 22–47%, confirming that they are genetically distant and should be assigned to separate species (Boone et al. [2001a\)](#page-48-3).

The separation of mesophilic members of *Methanobacteriales* into three genera is supported by both genetic and phenotypic analyses. Species of *Methanobacterium* are usually autotrophs, while species of *Methanobrevibacter* and *Methanosphaera* are commonly mixotrophic or heterotrophic. Species of Methanosphaera use only $H₂$ and methanol as substrates for methanogenesis, while all species of *Methanobre*vibacter and Methanobacterium can use H_2 and CO_2 .

Members of the order Methanobacteriales use a limited range of substrates for methanogenesis. Most of them reduce $CO₂$ to $CH₄$ with $H₂$. Some *Methanobacterium* species can also reduce methanol with H_2 , which are the exclusive substrates for the genus Methanosphaera. There is one Methanobacterium species that can also reduce methylamine with H_2 . Some *Methanobacteriales* members can also use formate, CO, or secondary alcohols as electron donors. Some species can grow autotrophically using $CO₂$ as the sole carbon source, and some species are mixotrophs or heterotrophs, which may require acetate, amino acids, peptones, yeast extract, vitamins, and/or rumen fluid for growth. Ammonium is a major nitrogen source. Sulfide can serve as the sole sulfur source, and some species can reduce elemental sulfur to sulfide. Cells are generally rod-shaped with a length of $0.6-25 \mu m$, often forming chains or filaments up to 40 μm in length. Cells typically stain Gram positive, but the wall does not contain muramic acid. Pesudomurein is the predominant polymer in the cell wall. Members of the genus *Methanothermus* have doublelayered cell wall, consisting of an inner pseudomurein layer and an outer S-layer composed of protein. The cellular lipids contain caldarchaeol, archaeol, and, in some species, hydoxyarchaeol as core lipids. The polar lipids can contain glucose, Nacetylglucosamine, $m\nu$ -inositol, ethanolamine, and serine, depending on the species. Most species are nonmotile. However, Methanobacterium movens and members of the genus *Methanothermus* are motile via one or two polar flagella and peritrichous flagella, respectively. The optimum growth temperatures of members of the *Methanobacteriales* vary from 20 $^{\circ}$ C to 88 $^{\circ}$ C. The genus *Methanothermus* can grow at temperatures up to 97 °C, while multiple *Methanobacterium* species can grow at as low as 10 °C and one species can even grow at 0 °C. The pH optima of *Methanobac*teriales members vary from 5.5 to 9.

Descriptive properties of the *Methanobacteriales* are summarized in Tables [3,](#page-10-0) [4](#page-13-0), [5,](#page-15-0) [6,](#page-16-0) and [7.](#page-17-0) Further information can be found in Bonin and Boone [\(2006](#page-48-4)) and Boone et al. [\(2001a](#page-48-3)). Our current knowledge on the diversity of the Methanobacteriales is largely incomplete. As an example, investigations of 16S rRNA gene from clone libraries recognized a large number of uncultured Methanobrevibacter, especially from the rumen and termite gut (Dighe et al. [2004](#page-49-0); Wright et al. [2004\)](#page-58-0). Moreover, the cloned sequences from termite gut formed separate lineages from cultured Methanobrevibacter (Dighe et al. [2004\)](#page-49-0). The correlation between ecological habitat and 16S rRNA based phylogeny need more ecological surveys to unravel.

2.2 Methanococcales

The order Methanococcales is composed of two families, Methanocaldococcaceae and Methanococcaceae, which are distinguished by 16S rRNA sequence similarities below 93% and differences in growth temperatures. The Methanocaldococcaceae are all hyperthermophilic, while the *Methanococcaceae* are extremely thermophilic and mesophilic. Members of this order are all capable of forming methane by $CO₂$ reduction with $H₂$. Many species can use formate as an alternative electron donor. Most species can grow autotrophically.

Phylogenetic analyses with DNA sequences reveal a high diversity of the Methanococcales. The sequence similarities of the 16S rRNA genes between hyperthermophilic and mesophilic methanococci are generally below 90%. For instance, the 16S rRNA gene sequence similarity between the mesophile Methanococcus voltae and the hyperthermophile Methanocaldococcus infernus is about 85%, which is comparable to the similarity between *Escherichia* and *Pseudomonas*. In addition, the mesophilic methanococci possess 91–96% (average 94%) 16S rRNA gene sequence similarities and 5–30% DNA reassociation values, suggesting that they are related only at the genus level (Keswani et al. [1996\)](#page-51-1).

The *Methanococcales* are currently divided into two families and four genera, according to their growth temperatures. The family Methanocaldococcaceae includes two hyperthermophilic genera, Methanocaldococcus and Methanotorris. The family Methanococcaceae includes the mesophilic genus Methanococcus and the extremely thermophilic genus *Methanothermococcus*. This taxonomy generally agrees with the phylogeny of the 16S rRNA genes (Liu [2010b](#page-52-1)), in which the lineages formed by the deepest bifurcation represent the two methanococcal families. However, some ambiguity remains. For instance, 16S rRNA gene sequences indicate that Methanococcus aeolicus forms a deep branch of the mesophilic methanococci and is more closely related to the thermophile Methanothermococcus okinawensis (95% sequence similarity) than to the other *Methanococcus* (91–93% sequence similarity). In addition, Methanothermococcus okinawensis also has low sequence similarity to

Table 3 (continued) Table 3 (continued)

30 Z. Lyu and Y. Liu

Abbreviations: na not determined, TP trypicase peptones, YE yeast extract, ac acetate, LC liquid chromatography, BD buoyant density method, T_n melting point method, G_s genome Abbreviations: nd not determined, TP trypticase peptones, YE yeast extract, ac acetate, LC liquid chromatography, BD buoyant density method, T_m melting point method, sequencing method sequencing method

^aEnvironment from which the type strain was isolated aEnvironment from which the type strain was isolated

Substrates in parentheses are oxidized, but do not result in growth bSubstrates in parentheses are oxidized, but do not result in growth

"Doubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl 4 Cells grew in vitamin-free medium containing acetate cDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl

dCells grew in vitamin-free medium containing acetate

Abbreviations: nd not determined, RF rumen fluid, ac acetate, AAs amino acids, B-vit B vitamins, TP trypticase peptones, YE yeast extract, CoM 2-mercaptoethanesulfonic acid ξ Abbreviations: *nd* not determined, RF numen fluid, *ac* acetate, AAs amino acids, B-vit B vitamins, TP trypticase peptones, YE yeast extr
(conenzyme M), FA fatty acids, 2-*MBA* 2-methylbutyric acid, BD buoyant density met (conenzyme M), *FA* fatty acids, 2-MBA 2-methylbutyric acid, BD buoyant density method, T_m melting point method
^aEnvironment from which the type strain was isolated

⁸Environment from which the type strain was isolated
⁸Doubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl bDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl

Formate is used by some, but not all strains cFormate is used by some, but not all strains ^dGrowth on formate is poor dGrowth on formate is poor

Table 5 "Descriptive characteristics of the species of the genus *Methanosphaera*" (Originally published in Liu ([2010a](#page-52-2)), published with kind permission of

Abbreviations: *nd* not determined, *ac* acetate, *Ile* isoleucine, *Leu* leucine, T_m melting point method ^aEnvironment from which the type strain was isolated $T_{\rm m}$ melting point method Abbreviations: nd not determined, ac acetate, Ile isoleucine, Leu leucine, aEnvironment from which the type strain was isolated

34 Z. Lyu and Y. Liu

Table 6 Descriptive characteristics of the species of the genus *Methanothormobacter* (Modified from 1 in (2010a) **Table 6** Descriptive characteristics of the species of the genus Methanothermobacter (Modified from Liu ([2010a\)](#page-52-2)) Abbreviations: nd not determined, CoM 2-mercaptoethanesulfonic acid (conenzyme M), ac acetate, CA casamino acids, TP tryptone, YE yeast extract, vit vitamins, T_m melting point Abbreviations: nd not determined, CoM 2-mercaptoethanesulfonic acid (conenzyme M), ac acetate, CA casamino acids, TP tryptone, YE yeast extract, vit vitamins, T_m melting point method
"Environment from which the type strain was isolated
"Doubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl
"Formate is used by some, but not all strains

aEnvironment from which the type strain was isolated

bDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl

cFormate is used by some, but not all strains

Table 7 "Descriptive characteristics of the species of the genus *Methanothermus*" (Originally published in Liu ([2010a](#page-52-2)), published with kind permission of

Abbreviations: *nd* not determined, T_m melting point method ${}^{\text{4}}$ Environment from which the type strain was isolated

Abbreviations: *nd* not determined, T_{in} melting point method
"Environment from which the type strain was isolated
"Doubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl bDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl

the other thermophile Methanothermococcus thermolithotrophicus (95% sequence similarity). Therefore, the phylogenetic analysis implies that *Methanococcus* aeolicus and Methanothermococcus okinawensis could be classified into two novel genera. Nevertheless, phylogeny of additional genes and phenotypic differences other than growth temperature should be examined to justify reclassification.

DNA relatedness and cellular protein patterns are often determined for the phylogenetic and taxonomic analyses of methanococci. They are especially useful to distinguish relationships at the species and subspecies levels, at which levels the 16S rRNA gene sequence analysis is frequently incongruent. For instance, two heterotrophic Methanococcus voltae strains A2 and A3 exhibit 37% DNA relatedness to the type train PS (Keswani et al. [1996\)](#page-51-1). Similarly, four autotrophic Methanococcus maripaludis strains C5, C6, C7, and C8 exhibit 54–69% DNA relatedness to the type strain JJ (Keswani et al. [1996](#page-51-1)). Moreover, differences in cellular protein patterns between these strains are also readily recognized. Therefore, classification of these strains into separate species is suggested based on their genetic diversities. However, because distinguishable phenotypic properties are few, these strains are not currently considered as novel species.

Autotrophy and thermophily are represented in both methanococcal families, suggesting that the mesophilic methanococci may have evolved from an autotrophic thermophile (Keswani et al. [1996](#page-51-1)). The heterotrophy of Methanococcus voltae is possibly a recently acquired characteristic. This hypothesis is consistent with the presence of enzymes required for autotrophic $CO₂$ fixation in *M. voltae* (Shieh et al. [1988](#page-56-5)).

Members of the Methanococcales or the methanococci are coccoid methanogens isolated from marine environments. They share a set of phenotypic characteristics. They all use H_2 or formate to reduce CO_2 for methanogenesis. Acetate, methylcontaining compounds, and alcohols are not used as substrates for methanogenesis. Most of them can grow autotrophically with $CO₂$ as the sole carbon source. Sulfide is a sufficient sulfur source for all methanococci, and elemental sulfur is reduced to sulfide with slight inhibition of growth in most strains. Ammonium is a sufficient nitrogen source for all methanococci, and nitrogen gas, nitrate, and alanine are used as a nitrogen source by some species. They all require sea salts for optimal growth. Cells are irregular cocci, 1–3 μm in diameter during balanced growth. Most of them are motile by means of polar tuft(s) of flagella. Cells strain Gram negative. They are susceptible to lysis by 0.01% (w/v) SDS and hypotonic solutions. Cell envelopes are composed of a protein cell wall or S-layer. Glycoproteins and cell wall carbohydrates are not abundant. The cellular lipids contain archaeol, caldarchaeol, hydroxyarchaeol, and macrocyclic archaeol, depending upon the species. The polar lipids can contain glucose, N-acetylglucosamine, serine, and ethanolamine. The optimal growth temperatures of methanococci are diverse, ranging from 35 $^{\circ}$ C to 88 $^{\circ}$ C. They are among the fastest growing methanogens at either mesophilic or thermophilic temperatures, with generation times of about 2 h at 37 $^{\circ}$ C and less than 30 min at 85 $^{\circ}$ C.

Descriptive properties of the methanococci are summarized in Tables [8](#page-19-0) and [9](#page-21-0). Further information can be found in Whitman et al. ([2001a\)](#page-57-7), and Whitman and Jeanthon [\(2006](#page-57-8)). Creation of new families and genera may be necessary with addition of new isolates and identification of new phenotypic and genetic markers. The Methanotorris may represent a new family because they have only 92–93% 16S

Table 8 Descriptive characteristics of the species of the genera *Methanocaldococcus* and *Methanotorris* (Modified from Liu (2010b)) **Table 8** Descriptive characteristics of the species of the genera Methanocaldococcus and Methanotorris (Modified from Liu ([2010b](#page-52-1)))

Abbrevations: *nd* not determined, *bd* buoyant density method, I'_m melting point method, LC liquid chromatography, G_s genc
"Number of flagellar tufts. ±, non-motile, but flagella-like structures are observed by electr Abbreviations: nd not determined, Bd buoyant density method, T_m melting point method, LC liquid chromatography, , non-motile, but flagella-like structures are observed by electron microscopy aNumber of flagellar tufts.

^bDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl bDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl

cEnvironment from which the type strain was isolated

^cEnvironment from which the type strain was isolated
⁴uaft is only formed in some cases, which may mediate cell-cell contact. Otherwise, 50 polarly inserted flagella are observed dtuft is only formed in some cases, which may mediate cell-cell contact. Otherwise, 50 polarly inserted flagella are observed

Table 9 "Descriptive characteristics of the species of the genera *Methanococcus* and *Methanothermococcus*" (Originally published in Liu (2010b), published
with kind nermission of © Springer Science+Business Media New Yor **Table 9** "Descriptive characteristics of the species of the genera *Methanococcus* and *Methanothermococcus*" (Originally published in Liu ([2010b](#page-52-1)), published þBusiness Media New York, 2003. All rights reserved) with kind permission of © Springer Science

Abbreviations: nd not determined Abbreviations: *nd* not determined $a_{\text{The G+C}}$ content of the DNA d

þC content of the DNA determined by liquid chromatography bDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl

 8 The G+C content of the DNA determined by liquid chromatography
^bDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl

cEnvironment from which the type strain was isolated

Environment from which the type strain was isolated
^dAcetate and the amino acids leucine and isoleucine are required for growth
"Thiosulfate is used by some strains ^dAcetate and the amino acids leucine and isoleucine are required for growth

eThiosulfate is used by some strains

rRNA similarities with the Methanocaldococcus. These two groups are also distinguished by the presence of hydroxyarchaeol and the absence of caldarchaeol in the Methanotorris. Methanococcus aeolicus and Methanothermococcus okinawensis may represent two new genera because they form a lineage separate from other Methanococcaceae in the 16S rRNA phylogenetic tree.

2.3 Methanomicrobiales

The order Methanomicrobiales is composed of four families, Methanomicrobiaceae, Methanocorpusculaceae, Methanospirillaceae, and Methanoregulaceae, which are distinguished by 16S rRNA sequence similarities below 89%. The Methanospirillaceae is further distinguished from the other two families by its unique morphology of curved rod-shape and exterior sheath. All members of this order are capable to produce methane by $CO₂$ reduction with $H₂$. Formate and secondary alcohols are used as alternative electron donors in many species.

Because the members of *Methanomicrobiales* share many phenotypic characteristics, it is difficult to divide them based solely on their physiological properties. Both of the families Methanomicrobiaceae and Methanocorpusculaceae contain coccoid organisms, and nearly all members require organic carbon sources for growth (except *Methanofollis aquaemaris*). Therefore, they are difficult to distinguish except by molecular phylogenetic analyses. The family *Methanospirillaceae* is distinguished from the other three families by its unique morphology of curved rodshape and capability of autotrophic growth. The family *Methanoregulaceae* is unique by having members that grow in acidic conditions.

The family Methanomicrobiaceae is divided into six genera. The 16S rRNA gene sequence similarities between different genera are 87–95%, suggesting that they are sufficiently distinctive at genus level. The 16S rRNA gene sequence similarities between different species within a genus are above 95.4%. Both Methanomicrobium and *Methanolacinia* are represented by a single species. Cells of both genera are rodshaped, but they can be differentiated by some other physiological characters. In addition to H_2 , *Methanolacinia paynteri* can use secondary alcohols to reduce CO_2 . In contrast, *Methanomicrobium mobile* can only use $H₂$ or formate as electron donors for methanogenesis. Methanolacinia paynteri is a marine organism, while Methanomicrobium mobile was isolated from bovine rumen. Cells of Methanoculleus, Methanofollis, and Methanogenium are irregular cocci. These three genera are difficult to differentiate by phenotypic characteristics. Methanoplanus differs from the other genera by its plate or disc cell shape.

The family Methanospirillaceae is represented by a single species, Methanospirillum hungatei. Cells have a unique spiral shape that is not found in other methanogens. Cell walls consist of an inner protein S-layer and a rigid paracrystalline outer sheath conferring the α -helical spiral shape of the cells (Sprott and McKellar [1980](#page-56-7); Sprott et al. [1983\)](#page-56-8). Cells usually grow as single cells or short filaments within their sheath. The cellular lipid of M . *hungatei* contains two unusual phosphoglycolipids, which are derivatives of the dibiphytanyl diglycerol tetraether. One of the free hydroxyls of this tetraether is esterified with glycerophosphoric acid, and the other is linked to a disaccharide (Kushwaha et al. [1981\)](#page-52-13).

The family Methanocorpusculaceae is represented by the genus Methanocorpusculum. Cells are irregular cocci with diameters generally $\langle 1 \mu m$. All species can use formate in addition to H_2 as electron donor for methanogenesis. For some species, secondary alcohols are alternative electron donors. Acetate and either yeast extract, peptones, or rumen fluid are required as carbon sources. The habitats of Methanocorpusculum are usually anaerobic digesters or freshwater sediments. They have not been found in marine environments.

The family Methanoregulaceae is divided into three genera (Sakai et al. [2012\)](#page-55-9). The 16S rRNA gene sequence similarities between different genera are 93–96%, suggesting that they are sufficiently distinctive at genus level. Both *Methanolinea* (Imachi et al. [2008](#page-51-10); Sakai et al. [2012\)](#page-55-9) and Methanoregula (Brauer et al. [2006;](#page-48-10) Wang et al. [2009\)](#page-57-14) are represented by two species, while Methanosphaerula is represented by one (Cadillo-Quiroz et al. [2009](#page-49-5)). Methanolinea is morphologically distinct from other Methanomicrobiales by forming rod-shaped, multicellular filaments within a sheath-like structure. Methanoregula and Methanosphaerula are distinguished from others by their acidophilic growth.

The assignment of *Methanocalculus* into a novel family is tentative. The 16S rRNA sequence similarities between all known Methanocalculus species are $>98\%$, but those between *Methanocalculus* and other methanogens are $\leq 91\%$. Different species of *Methanocalculus* exhibited <10–51% DNA relatedness. The closest neighbor of Methanocalculus in the phylogenic tree based on 16S rRNA gene is Methanocorpusculum. All members of Methanocalculus are irregular cocci, can only use H_2 and CO_2 or formate for methanogenesis, and require acetate for growth.

All members of the order *Methanomicrobiales* produce methane using $CO₂$ as the electron acceptor and H_2 as the electron donor. Most species use formate and many species also use secondary alcohols as alternative electron donors, while two unique species can also grow on primary alcohols. They cannot use acetate and methyl-group containing compounds for methanogenesis. Most species are mixotrophic and require acetate as a carbon source; some species also require additional organic growth factors. Their morphologies are diverse, including cocci, rods, and sheathed rods. Most cells have single-layered protein cell walls, but cells of *Methanospirillum hungatei* are surrounded by an external sheath. Peptidoglycan and pseudomurein are absent. The cellular lipids contain archaeol and caldarchaeol as core lipids. Hydroxyarchaeol is absent. Glucose, galactose, aminopentanetetrols, and glycerol are common polar lipids; and aminopentanetetrols are unique to this order of organisms. Motility varies between species. Most species are mesophilic, with the exceptions of two psychrophilic species (Methanogenium marinum and Methanogenium frigidum) and one thermophilic species (Methanoculleus thermophilicus). Most species grow best near neutral pH. Exceptions are Methanoregula boonei and Methanosphaerula palustris, which have an optimal pH of $5.1 \sim 5.7$ and were isolated from acidic peat bog; and *Methanocalculus* alkaliphilus and Methanocalculus natronophilus, which grow best at pH of 9.5 and were isolated from soda lake sediments. Many species are marine organisms and grow optimally with 0.1–1 M of NaCl. Descriptive properties of the Methanomicrobiales are summarized in Table [10](#page-26-0). Further information can be found in Boone et al. ([2001b\)](#page-48-11) and Garcia et al. [\(2006\)](#page-50-6).

Table 10 Descriptive characteristics of the species of the order Methanomicrobiales (Modified from Liu $(2010c)$

(continued)

Table 10 (continued)

(continued)

Table 10 (continued)

Abbreviations: nd not determined, RF rumen fluid, ac acetate, (ac) acetate required or stimulatory depending on the strain, $PABA$ p-aminobenzoate, *vit* vitamins, *tung* tungsten, TP trypticase peptones, YE yeast extract, CoM 2-mercaptoethanesulfonic acid (conenzyme M), Bd buoyant density method, T_{m} melting point method, LC liquid chromatography, G_s genome sequencing

Environment from which the type strain was isolated

^dNonmotile, although flagella are detected by electron microscopy

Present in some strains

f Some strains are non-motile

^gAcetate is not required for growth on ethanol

^hThe minimum growth temperature is predicted by applying the Ratkowsky model to temperature growth data

ⁱCalculated from cultures that grow on ethanol

^bParentheses mean utilized by some strains, but not all strains; brackets indicate very poor growth and methane production

c Doubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl

2.4 Methanosarcinales

The order Methanosarcinales is divided into three families, Methanosarcinaceae, Methanosaetaceae and Methermicoccus based on phenotypic properties and 16S rRNA gene sequence analysis (Cheng et al. [2007](#page-49-11)). The three families are distinguished by 16S rRNA sequence similarities below 91% and differences in substrates for methanogenesis, lipid components, and cell wall structures. The Methanosarcinaceae are all capable of producing methane from methyl group containing compounds, and some can use acetate or $H_2/CO₂$. The cells can form aggregates within an outer layer composed of heteropolysaccharide. The Methanosaetaceae can only produce methane by splitting acetate. The cells can form chains within a proteinaceous sheath. The family Methermicoccus is represented by only one species, which is a thermophilic, methylotrophic methanogen isolated from an oilfield (Cheng et al. [2007](#page-49-11)).

The family Methanosarcinaceae currently comprises eight genera, Methanococcoides, Methanohalobium, Methanohalophilus, Methanolobus, Methanomethylovorans, Methanosalsum, Methanimicrococcus and Methanosarcina. The genus Methanosarcina can be differentiated from other genera by the unique morphology of pseudosarcinae or large cysts, which are formed by aggregation of cells within a common outer layer. The outer layer is composed of heteropolysaccharide, consisting mainly of galactosamine, glucose, mannose, and galacturonic acid. Some Methanosarcina species can also be distinguished from other genera of Methanosarcinaceae by their ability to split acetate for methanogenesis. The genus Methanohalobium is represented by a single species, M. evestigatum, which is an extreme halophile that requires 4 M of NaCl for optimal growth. The genus Methanosalsum is represented by M. zhilinae and M. natronophilum, which are moderate halophiles and alkaliphiles. The genus *Methanohalophilus* comprises moderate halophilic and halotolerant species, which grow best with $1-2$ M of NaCl. The genera Methanococcoides and Methanolobus are difficult to differentiate by phenotypic properties, as they all use methylated compounds for methanogenesis; they require phylogenetic analysis for taxonomy. The genus Methanimicrococcus is represented by a single spcies *Methanimicrococcus blatticola*, which is a dominant methylotrophic methanogen in the cockroach hindgut (Sprenger et al. [2000\)](#page-56-11). It has 83.4–89.8% 16S rRNA gene sequence similarities with other species of Methanosarcinales, suggesting that it could potentially represent a new family. This is further supported by the fact that it cannot disproportionate methyl-group containing compounds, a feature shared by all other Methanosarcinaceae spp. Instead, methanol and methylated amines must be reduced with H₂ for methanogenesis. This obligately hydrogenotrophic and methylotrophic mode of growth is shared with Methanosphaera and Methanomassiliicoccus, which belongs to the Methanobacteriales and Methanomassiliicoccales, respectively.

Members of the family *Methanosaetaceae* use acetate as the sole energy source. Acetate and $CO₂$ serve as carbon sources. Cells form filament-like structures within the sheath, which is composed predominantly with proteins and contains carbohydrates.

Methanogens from only two genera, Methanosarcina and Methanosaeta, can use acetate as a substrate for methanogenesis. However, they metabolize acetate differently. *Methanosarcina* is a relative generalist that prefers methanol and methylamine to acetate, and many species also utilize $H₂$. Methanosaeta is a specialist that uses only acetate. *Methanosaeta* is a superior acetate utilizer in that it can use acetate at concentrations as low as $5-20 \mu M$, while *Methanosarcina* requires a minimum concentration of about 1 mM (Jetten et al. [1992\)](#page-51-13). The difference of acetate affinity is probably due to different systems for acetate activation. Moreover, based upon their genome sequences, these two genera probably have different modes of electron transfer and energy conservation, even though the methanogenesis pathways are likely to be similar (Smith and Ingram-Smith [2007](#page-56-12)).

The family Methermicoccus is represented by Methermicoccus shengliensis. Its closest neighbor in the 16S rRNA phylogenetic tree is *Methanosaeta* ($\leq 90.7\%$) sequence similarities). It is morphologically differentiated from Methanosaeta by its coccoid-shape and formation of large cysts. Moreover, M. shengliensis uses methanol and methylated amines, but not acetate, for methanogenesis.

Members of the order *Methanosarcinales* have the widest substrate range among methanogens. All members can produce methane by disproportionating methyl-group containing compounds (methanol, methylamines, methylethanolamines, betaine, or methyl sulfides) or by splitting acetate. Some mesophilic *Methanosarcia* species can reduce $CO₂$ with $H₂$, but formate, secondary alcohols, and ethanol are not used as electron donors. Recently, it has been shown that Methermicoccus spp. are surprisingly capable of growth and methane production using methoxylated aromatic compounds (MACs) such as methoxy-benzoate (Mayumi et al. [2016\)](#page-54-10). Ammonium and sulfide serve as the major nitrogen and sulfur sources, respectively. Their cellular morphologies are diverse, including cocci, pseudosarcinae, and sheathed rods. Most cells have protein cell walls, and some cells are surrounded by a sheath or acidic heteropolysaccharide. Most strains are nonmotile. The cellular lipids contain archaeol, hydroxyarchaeol, and caldarchaeol. Polar lipids can contain glucose, galactose, mannose, myo-inositol, ethanolamine, serine, and glycerol, depending upon the species. Most species of Methanosarcinales are mesophilic. Four species are moderately thermophilic (Methanosarcina thermophila, Methanomethylovorans thermophila, Methanosaeta thermophila, and Methermicoccus shengliensis), and six species are psychrotolerant (Methanococcoides alaskense, Methanococcoides burtonii, Methanosarcina lacustris, Methanosarcina soligelidi, Methanosarcina splelaei, and Methanosarcina baltica). Most species grow best at near neutral pH, except for three species that are alkaliphilic (Methanolobus oregonensis, Methanolobus taylorii, Methanosalsum natronophilum, and Methanosalsum zhilinae). Many species were isolated from marine environments and require a salinity near that of seawater for optimal growth. Some species are halophilic or halotolerant. Descriptive properties of members of the Methanosarcinales are summarized in Table [11](#page-34-0). Further information can be found in Boone et al. ([2001c](#page-48-14)) and Kendall and Boone [\(2006\)](#page-51-14).

					Methano- genesis
Organism	Type strain	Source ^a	Dimensions (μm)	Flagella	substrates ^b
Methanococcoides					
alaskense	$AK-5$	Marine sediments	$1.5 - 2.0$	Flagellated ^d	(Methanol), TMA
<i>burtonii</i>	DSM 6242	Hypolimnion of ice lake	$0.8 - 1.8$	Monotrichous	Methanol, MeNH ₂
methylutens	$TMA-10$	Submarine canyon sediments	1.0	None	Methanol, MeNH ₂
vulcani	SLH33	Marine sediments	$0.6 - 1.7$	Single to four	Methanol, MeNH ₂ , TMA, DMA, betaine, choline, DMEA
Methanohalobium					
evestigatum	Z-7303	Saline lagoon sediments	$0.2 - 2$	None	MeNH ₂
Methanohalophilus					
euhalobius	283	Mineralized stratal waters of oil deposits	$1.0 - 2.5$	None	Methanol. MeNH ₂
halophilus	Z-7982	Salinarium sediments	$0.5 - 2.0$	None	(Methanol), MeNH ₂
levihalophilus	GTA ₁₃	Palaeo-seawater	$0.7 - 1.0$	None	TMA, DMA
mahii	SLP	Salt lake sediments	1.0	None	Methanol, MeNH ₂
portucalensis	$FDF-1$	Salinarium sediments	$0.6 - 2.0$	None	Methanol, MeNH ₂
Methanolobus					
bombayensis	$B-1$	Marine sediments	$1.0 - 1.5$	None	Methanol. $MeNH2$, DMS
chelungpuianus	$St54.5$ Mb	Deep fault sandstone	$0.5 - 0.7$	None	Methanol. TMA
oregonensis	WAL1	Alkaline, saline aquifer	$1.0 - 1.5$	None	Methanol. MeNH ₂ , DMS
profundi	MobM	Deep sediments of a natural gas field	$0.9 - 1.2$	Multiple	methanol. MeNH ₂ , DMA, TMA
taylorii	$GS-16$	Estuarine sediments	$0.5 - 1.0$	None	Methanol. MeNH ₂ , DMS
tindarius	Tindari3	Marine sediments	$0.8 - 1.25$	Monotrichous	Methanol, MeNH ₂
vulcani	$PL-12/M$	Marine sediments	$0.8 - 1.25$	None	Methanol. MeNH ₂
zinderi	SD1	Saline coal seam	$1.0 - 2.0$	None	Methanol, MeNH ₂ , DMA, TMA

Table 11 Descriptive characteristics of the species of the order Methanosarcinales (Modified from Liu $(2010d)$ $(2010d)$

(continued)

Table 11 (continued)

(continued)

Table 11 (continued)

Abbreviations: nd not determined, ac acetate, MeNH2 methylamines, DMS dimethylsulfide, MT methanethiol, TMA trimethylamine, DMA dimethylamine, DMEA N,N-dimethylethanolamine, MACs methoxylated aromatic compounds, vit vitamins, TP trypticase peptone, YE yeast extract, CoM 2-mercaptoethanesulfonic acid (conenzyme M), PAPA p-aminobenzoate, Bd buoyant density method, T_m melting point method, LC liquid chromatography

a Environment from which the type strain was isolated

b Parentheses means utilized by some strains, but not all strains

c Doubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl

d Flagellated in some strains, but not all strains

e Irregular aggregates composed of coccoid cells

^fThe minimum growth temperature is predicted by applying the Ratkowsky model to temperature growth data

2.5 Methanopyrales

The order of Methanopyrales is represented by only one species, Methanopyrus *kandleri*. It is hyperthermophilic and produces methane by $CO₂$ reduction with $H₂$. Genomic sequence analysis of M. kandleri suggests that it is closely related to Methanobacteriales and Methanococcales but possesses unusual features.

The phylogenetic position of M. kandleri is ambiguous. The phylogenic analyses based on 16S rRNA gene (Burggraf et al. [1991](#page-49-16)), elongation factor 1α (Rivera and Lake [1996](#page-55-15)), and transcription factors (Brochier et al. [2004](#page-48-15)) suggested that M. kandleri is distantly related to other methanogens and represent a separate lineage emerging at the base of the euryarchaeal phylum. On the other hand, phylogenetic analyses based on methyl coenzyme M reductase (MCR) operons (Nolling et al. [1996\)](#page-54-14), translation factors (Brochier et al. [2004\)](#page-48-15), and whole genome sequences (Slesarev et al. [2002](#page-56-19); Gao and Gupta [2007](#page-50-4)) suggested that M. kandleri is more closely related to other methanogens and grouped with *Methanobacteriales* and Methanococcales. Indeed, M. kandleri encodes the core of proteins shared uniquely by methanogens such as proteins evolved in the methanogenesis pathway, and it closely resembles other methanogens in terms of local gene order. Therefore, M. kandleri very likely belongs to the monophyletic methanogen group and not a deep-branch close to the root of archaea. The deep branching in 16S rRNA phylogenetic tree is probably due to a very high GC content of M . *kandleri*, a characteristic shared by hyperthermophiles outside the methanogen group.

The genome of *M. kandleri* displays several unusual features (Slesarev et al. [2002;](#page-56-19) Brochier et al. [2004\)](#page-48-15). The RNA polymerase subunit H is replaced by a homologous protein from a distantly related archael lineage. The transcription factor S (TFS) is missing. The diversity of predicted signal transduction systems and DNAbinding proteins are underrepresented. The histone protein is formed by a fusion of two monomers into a single peptide with two tandemly repeated histone folds. M. kandleri possesses a unique topoisomerase, Topo V, which is related to eukaryotic topoisomerase I (Slesarev et al. [1994](#page-56-20)). These unusual features suggest a high level of gene loss, gene capture, and gene fusion in this archaeon.

Methanopyrus kandleri is the only methanogen known so far that catalyzes methanogenesis at temperatures higher than 100 $^{\circ}$ C. It reduces CO₂ with H₂ for methanogenesis. It is an obligate chemolithoautotroph that uses $CO₂$ as the sole carbon source. Ammonium and sulfide are the nitrogen and sulfur sources, respectively. The cells are rod-shaped and stain Gram positive. The cell wall is double layered. The inner layer is composed of a new type of pseudomurein, containing ornithine and lysine. The outer layer is detergent-sensitive, indicating a protein composition. The core lipid is composed of an unsaturated terpenoid lipid, which is considered the most primitive lipid in the evolution of membranes (Hafenbradl et al. [1993\)](#page-50-13). The cells are motile via flagella arranged as polar tufts. They grow at temperatures ranging from 84 °C to 110 °C, with an optimum of 98 °C. The range of pH for growth is 5.5–7, with an optimum of 6.5. The optimal NaCl concentration for growth is 2.0% (w/v). The GC content of its DNA is 60 mol%. *M. kandleri* was

isolated from hydrothermally heated deep-sea sediments and from a shallow marine hydrothermal system (Kurr et al. [1991\)](#page-52-20).

2.6 Methanocellales

The order Methanocellales is represented by one family and genus, Methanocellaceae and Methanocella, respectively. Three species have been described, and they are distinguished by 16S rRNA sequence similarities below 92% and differences in growth temperatures, substrates for methanogenesis, possession of a flagellum, doubling time and NaCl range. The low 16S rRNA sequence similarities suggest potential separation into more genera, which is supported by comparative genomic studies (Sakai et al. [2011;](#page-55-16) Lyu and Lu [2015\)](#page-53-9). The Methanocella are all capable of producing methane from H_2/CO_2 , but acetate is required for growth. Formate can also be used as an alternative substrate by two species.

Members of Methanocellales are isolated from rice soils. They do not appear to grow autotrophically due to the requirement of acetate for growth. Sulfide and ammonium is a sufficient sulfur and nitrogen source, respectively. Cells are typically rods, but coccoid cells are also seen during late stage of growth. Cells can form a unique lens-shaped colony. Cell envelopes are composed of an S-layer as determined in Methanocella avoryzae. Cell envelopes have not been determined in Methanocella paludicola and Methanocella conradii, but they are resistant to lysis by 2.0% and 0.1% of SDS, respectively. A flagellum is also present in both M. avoryzae and M. conradii, but not in M. paludicola. Cellular lipids have not been determined. They all grow optimally in the absence of NaCl and at neutral pH. The optimal growth temperatures range from 37 \degree C to 55 \degree C. Descriptive properties of the Methanocellales are summarized in Table [12.](#page-41-0) Further information can be found in Sakai et al. [\(2008](#page-55-1), [2010\)](#page-55-17), and Lü and Lu [\(2012b](#page-53-10)).

2.7 Methanomassiliicoccales

The order Methanomassiliicoccales is represented by one family and genus, Methanomassiliicoccaceae and Methanomassiliicoccus, respectively (Dridi et al. [2012;](#page-50-14) Iino et al. [2013](#page-51-0)). Although a few enrichment cultures are available, only one species Methanomassiliicoccus luminyensis has been described (Borrel et al. [2012a](#page-48-16), [2013;](#page-48-17) Dridi et al. [2012;](#page-50-14) Iino et al. [2013](#page-51-0)). This species was isolated from human faeces, and it reduces methanol with $H₂$ to produce methane. However, genomic, transcriptomic and in vivo studies suggest that members of Methanomassiliicoccales also reduce tri-, di- and monomethylamine with H_2 (Poulsen et al. [2013](#page-55-18); Borrel et al. [2014;](#page-48-18) Brugere et al. [2014](#page-48-19)). Cells are non-motile cocci and lysed in 0.1% (w/v) SDS. It grows optimally at 1% of NaCl, 37 \degree C and at pH 7.6. Descriptive properties of the Methanomassiliicoccales are summarized in Table [13.](#page-42-0) Further information can be found in Dridi et al. [\(2012](#page-50-14)) and Brugere et al. [\(2014](#page-48-19)).

	Methanocella		
Character	paludicola	avoryzae	conradii
Type strain	SANAE	MRE50	HZ254
Cell width (μm)	$0.3 - 0.6$	$0.4 - 0.7$	$0.2 - 0.3$
Cell length (μm)	$1.8 - 2.4$	$1.3 - 2.8$	$1.4 - 2.8$
Flagellum	None	Single	Single
Substrates for methanogenesis	$H_2 + CO_2$, formate	$H_2 + CO_2$ formate	$H_2 + CO_2$
Acetate requirement	$+$	$+$	$^{+}$
Yeast extract stimulates growth	$+$	$+$	$+$
Nitrogen source	NH ₃	NH ₃ ^a	NH ₃ ^a
Sulfur source	S^{2-b}	$\overline{S^{2-}}$	$\frac{c}{S^{2-b}}$
Temperature range $(^{\circ}C)$	$25 - 40$	$37 - 55$	$37 - 60$
Temperature optimum $(^{\circ}C)$	$35 - 37$	45	55
pH range	$6.5 - 7.8$	$6.0 - 7.8$	$6.4 - 7.2$
pH optimum	7.0	7.0	6.8
NaCl range $(\% , w/v)$	$0 - 0.1$	$0 - 2$	$0 - 0.5$
NaCl optimum $(\% , w/v)$	θ	$0 - 0.2$	$0 - 0.1$
GC content $(mol\%)^c$	54.9 (G_s)	54.6 (G_s)	52.7 (G_s)
Doubling time (h)	100.8	8.0	$6.4 - 7.2$
Source	Rice soil	Rice soil	Rice soil
References	(Sakai et al. 2008)	(Sakai et al. 2010)	(Lü and Lu 2012 _b

Table 12 Descriptive characteristics of the species of the genus Methanocella

^aMay use N₂ according to genomic predictions (Lyu and Lu [2015](#page-53-9))^bMay use SO ²⁻ according to genomic predictions (Frkel et al. 20

 6 May use SO₄²⁻ according to genomic predictions (Erkel et al. [2006](#page-50-15); Sakai et al. [2011](#page-55-16))
^CG, genome sequencing ${}^{\circ}G_s$ genome sequencing

2.8 Potential Novel Taxa

Through metagenomics guided discovery, a few potential novel taxa of methanogens have been proposed recently. That includes a euryarchaeon, Candidatus 'Methanofastidiosa', and members of the archaeal phyla Bathyarchaeota (previously known as the Miscellaneous Crenarchaeota Group) and Verstraetearchaeota previously represented by the Terrestrial Miscellaneous Crenarchaeota Group or TMCG) (Evans et al. [2015;](#page-50-3) Nobu et al. [2016;](#page-54-15) Vanwonterghem et al. [2016\)](#page-57-4). They are all predicted to reduce different methylated compounds with $H₂$ for methanogenesis, but members of Bathyarchaeota and Verstraetearchaeota may also use complex substrates such as lactate. Pure cultures are still needed to further confirm these findings, which would likely not only lead to proposals of novel methanogen classes but establishment of methanogen taxa outside the Euryarchaeota.

Character	M. luminyensis		
Type strain	B10		
Cell diameter (μm)	$0.7 - 1.0$		
Flagellum	None		
Substrates for methanogenesis	$H_2 + \text{methanol/TMA}^a/\text{DMA}^b/\text{MeNH}_2^c$		
Acetate requirement			
Yeast extract requirement	$+$		
Temperature range $(^{\circ}C)$	$25 - 45$		
Temperature optimum $(^{\circ}C)$	37		
pH range	$7.2 - 8.4$		
pH optimum	7.6		
NaCl range $(\% , w/v)$	$0.1 - 1.5$		
NaCl optimum $(\% , w/v)$	1		
GC content (mol%)	59.9 $(G_s)^d$		
Doubling time	nd^e		
Source	Human faeces		
References	(Dridi et al. 2012 ; Brugere et al. 2014)		
^a TMA trimethylamine			

Table 13 Descriptive characteristics of Methanomassiliicoccus luminyensis

^aTMA trimethylamine
^bDMA dimethylamine $^{\circ}$ *DMA* dimethylamine ${}^{\rm c}$ *MeNH*₂ monomethylamine dG_s genome sequencing ^end not determined

3 Ecology of Methanogens

Methanogens are abundant in a wide variety of anaerobic habitats such as marine sediments, freshwater sediments, flooded soils, human and animal gastrointestinal tracts, anaerobic digestors, landfills, and geothermal systems (Liu and Whitman [2008\)](#page-53-11). This cosmopolitan distribution of methanogens could be associated with their growth largely relied on only simple substrates such as H_2/CO_2 , acetate, formate and other C1 compounds, which are widely available across ecosystems where complex substrates have to be degraded into simple substrates to drive the carbon cycle. A recent metagenomics survey has also predicted the presence of complex fermentation and β-oxidation pathways in the putative Bathyarchaeota methanogens, suggesting the ability of using complex substrates may be advantageous for methanogens that thrive in environments where degradation of complex substrates could be very slow (Evans et al. [2015](#page-50-3)). In addition, some methanogens as described in the taxonomy and phylogeny section can also survive extreme environmental conditions such as hyperthermophilic, psychrophilic, piezophilic, halophilic, alkaliphilic and acidophilic, which further expands their habitats.

In some natural habitats, methanogens are also present in microoxic environments. For example, members of *Methanobrevibacter* have been isolated from large dental caries and subgingival plaque in the human mouth and gut periphery in termites. They are also somewhat oxygen tolerant, probably due to the presence of catalase activity and the protection by O_2 -uptake aerobes (Brusa et al. [1987;](#page-48-20) Belay et al. [1988;](#page-48-21) Leadbetter and Breznak [1996](#page-52-8)). Methanocellales methanogens are prevalent in rice rhizosphere, which is transiently oxic, and their genomes encode a unique set of antioxidant enzymes, which may explain an aerotolerant life style (Erkel et al. [2006;](#page-50-15) Sakai et al. [2011;](#page-55-16) Lü and Lu [2012a](#page-53-12); Lyu and Lu [2015](#page-53-9), [2017](#page-53-0)).

In methanogenic habitats, electron acceptors such as O_2 , NO_3^- , Fe^{3+} , and SO_4^2 ⁻ are limiting. When electron acceptors other than CO_2 are present, methanogens are outcompeted by the bacteria that utilize them. This phenomenon occurs mainly because the reductions of these compounds are thermodynamically more favorable than $CO₂$ reduction to methane. However, because $CO₂$ is generated during fermentations, it is seldom limiting in anaerobic environments. Besides methanogens, homoacetogens are another group of anaerobes that can reduce $CO₂$ for energy production. However, acetogenesis with $H₂$ is thermodynamically less favorable than methanogenesis. Therefore, homoacetogens do not compete well with methanogens in many habitats. However, homoacetogens outcompete methanogens in some environments, such as the hindgut of certain termites and cockroaches. Possible explanations are their metabolic versatility as well as lower sensitivity to O_2 . The ecology of each methanogen order is discussed below.

3.1 Methanobacteriales

Members of the *Methanobacteriales* are widely distributed in anaerobic habitats such as marine and freshwater sediments, soils, animal gastrointestinal tracts, anaerobic sewage digestors, and geothermal habitats. *Methanobacterium* has been cultivated from marine and freshwater sediments, groundwaters, soils, anaerobic digestors, and animal gastrointestinal tracts and has also been detected as endo-symbionts in anaerobic ciliate (Embley et al. [1992\)](#page-50-16). Methanobrevibacter has been isolated from rumens, feces, termite hindguts, human subgingival plaque, anaerobic digestors, and decaying wood tissues. Methanosphaera has only been isolated from animal gastrointestinal tracts but has been detected in anaerobic digestors (Weiss et al. [2008\)](#page-57-20). *Methanothermobacter* has been cultivated from thermophilic anaerobic digestors and natural gas and oil fields (Nazina et al. [2006](#page-54-16); Mochimaru et al. [2007\)](#page-54-17). Methanothermus has only been isolated from solfarata hot springs.

3.2 Methanococcales

Members of the Methanococcales have all been isolated from marine environments. *Methanococcus* has been isolated from marine and salt marsh sediments. Methanothermococcus has been isolated from coastal geothermally heated sea sediments, deep sea hydrothermal vents, and reservoir water from marine oil fields (Nilsen and Torsvik [1996](#page-54-18)) and has been detected in continental high-temperature oil reservoirs (Orphan et al. [2000\)](#page-54-19) and tropical hypersaline coastal lagoons (Clementino et al. [2008\)](#page-49-17). Methanocaldococcus has only been isolated from deep sea hydrothermal vents. Methanotorris has been isolated from shallow and deep sea hydrothermal vents. Environmental 16S rRNA sequences closely related to Methanococcales have also been detected in anaerobic granular sludge (Liu et al. [2002;](#page-53-13) Diaz et al. [2003](#page-49-18)). Quantitative real-time PCR assays have also recently shown possible presence of *Methanococcales* in forest and grassland soils, but how specific the primers were remain unknown (Hofmann et al. [2016](#page-50-17)). Since this finding is very much unexpected, sequence data is also needed to make conclusive taxonomy inference.

3.3 Methanomicrobiales

Members of the Methanomicrobiales are widely distributed in anaerobic habitats, including marine and freshwater sediments, anaerobic sewage digestors, rice paddies, oil fields, groundwaters, and animal gastrointestinal tracts. Anaerobic digestors and sewage sludge are common habitats of Methanoculleus, Methanofollis, Methanocorpusculum, Methanospirillum, and Methanomicrobium. From marine sediments, species belonging to Methanoculleus, Methanogenium, and Methanolacinia have been isolated. From freshwater sediments, species belonging to Methanoculleus, Methanogenium, and Methanocorpusculum have been isolated. From rice roots and rice-field soils, species belonging to Methanoculleus have been isolated, and environmental clone sequences closely related to Methanoculleus and Methanogenium have been identified (Kudo et al. [1997\)](#page-52-21). Methanomicrobium mobile has been isolated from bovine rumen (Paynter and Hungate [1968](#page-55-13)). Methanoplanus endosymbiosus lives as endosymbiont of the marine ciliate Metopus contortus (Bruggen et al. [1986](#page-48-12)).

3.4 Methanosarcinales

Members of the Methanosarcinales are widely distributed in marine and freshwater sediments, anaerobic digestors, and animal gastrointestinal tracts. Methanosarcina has been isolated from marine and freshwater sediments, anaerobic digestors, and rumen and has been detected in rice paddies (Chin et al. [2004](#page-49-19); Krüger et al. [2005;](#page-52-22) Lu et al. [2005](#page-53-14)). Methanococcoides and Methanolobus have been isolated from aquatic environments with salinity near that of seawater. The habitats of Methanohalobium, Methanohalophilus, and Methanosalsum are restricted to hypersaline environments. *Methanomethylovorans* has been isolated from freshwater sediments and bioreactors. Methanosaeta has been isolated from freshwater sediments and anaerobic digestors and has been detected in rice paddies (Chin et al.

[2004;](#page-49-19) Krüger et al. [2005\)](#page-52-22) and marine sediments (Purdy et al. [2002](#page-55-19)). Methanimicrococcus has been isolated from cockroach hindgut and has been detected in anaerobic digestors (Weiss et al. [2008](#page-57-20)).

3.5 Methanocellales

All members of the *Methanocellales* have been isolated from rice soils, but they are also widely distributed in terrestrial ecosystems such as wetland soils and freshwater sediments based on environmental DNA sequence surveys (Conrad et al. [2006;](#page-49-20) Sakai et al. [2008,](#page-55-1) [2010](#page-55-17); Lü and Lu [2012b\)](#page-53-10). *Methanocellales* have been studied extensively in rice soils both *in situ* and in microcosms, revealing the following unique ecophysiological features. (i) They are closely associated with rice roots where they can actively convert plant-derived carbon into biomass and methane (Lu and Conrad [2005](#page-53-15)); (ii) they are able to tolerate the microaerophilic conditions around the rice roots, probably due to a robust antioxidant system encoded in their genomes (Erkel et al. [2006](#page-50-15); Conrad et al. [2008;](#page-49-21) Sakai et al. [2011](#page-55-16); Lü and Lu [2012a;](#page-53-12) Lyu and Lu 2017); (iii) they tend to become more active under low H₂ but high temperature conditions (Lu et al. [2005](#page-53-14); Wu et al. [2006](#page-58-20); Peng et al. [2008;](#page-55-20) Sakai et al. [2009\)](#page-55-21); and (iv) they frequently form syntrophic relationships with fatty acid degrading bacteria (Lueders et al. [2004](#page-53-16); Liu et al. [2011;](#page-53-17) Rui et al. [2011;](#page-55-22) Gan et al. [2012\)](#page-50-18). Additional ecophysiological features have also been revealed by studying Methanocellales in acidic peat soils, tank bromeliads and arid soils, suggesting that at least some members of *Methanocellales* could survive moderately acidic conditions, interact with plants other than rice such as Sphagnum in peat soil and tank bromeliads in neotropical forests, and tolerate desiccation (Sizova et al. [2003;](#page-56-21) Cadillo-Quiroz et al. [2010;](#page-49-22) Martinson et al. [2010;](#page-54-20) Angel et al. [2011](#page-47-2), [2012](#page-47-3)).

3.6 Methanomassiliicoccales

Only one member of Methanomassiliicoccales has been isolated into pure culture from human feces (Dridi et al. [2012\)](#page-50-14). Metagenomic analysis with human feces enrichment samples also revealed two new candidate species Candidatus 'Methanomassiliicoccus intestinalis' and Candidatus 'Methanomethylophilus alvus' (Borrel et al. 2012, [2013](#page-48-17)). This apparent common association with human suggests that *Methanomassiliicoccales* may play a role in human health. Due to their ability to metabolize trimethylamine into methane, it has been proposed that Methanomassiliicoccales may prevent or limit human diseases that are induced by trimethylamine (Brugere et al. [2014](#page-48-19)). However, distribution of *Methanomassilii*coccales is not restricted to the human gut. An enrichment culture from anaerobic digester has led to the proposal of another candidate species *Candidatus* 'Methanogranum caenicola' (Iino et al. [2013\)](#page-51-0). Environmental DNA sequence survey has suggested that *Methanomassiliicoccales* could be grouped into two clades, a gastro-intestinal tract clade that is largely associated with animal samples, and an environmental clade which includes mainly aquatic and terrestrial samples.

3.7 Other Methanogen Candidates

Methanogenesis pathways have been predicted from a euryarchaeon, *Candidatus* 'Methanofastidiosa', members of the newly proposed archaeal phyla Verstraetearchaeota and Bathyarchaeota (Evans et al. [2015;](#page-50-3) Nobu et al. [2016;](#page-54-15) Vanwonterghem et al. [2016](#page-57-4)). Candidatus 'Methanofastidiosa' belongs to the uncultivated WSA2 or Arc I cluster, which has long been identified as a core euryarchaeal group in anaerobic digestion that was previously thought to use H_2/CO_2 or formate for methanogenesis (Hendrickson et al. [2004;](#page-50-19) Nakamura et al. [2013](#page-54-3)). However, genomic data has now proposed that WSA2 methanogens may conduct methylated thiol reduction with H_2 (Nobu et al. [2016\)](#page-54-15). This suggests that they may be able to bridge the carbon and sulfur cycles, which may enable competition with $CO₂$ reducing methanogens and sulfate reducers. Previously loosely classified as the Terrestrial Miscellaneous Crenarchaeota Group or TMCG, members of Verstraetearchaeota methanogens also had their first metagenomes reconstructed from anaerobic digesters, but environmental DNA sequence survey could extend their distribution to wetlands, freshwater sediments, and hydrocarbon-rich environments (Vanwonterghem et al. [2016\)](#page-57-4). Previously known as the MCG or Miscellaneous Crenarchaeotal Group, the recently proposed Bathyarchaeota have been found in deep ocean and freshwater sediments, and they are particularly present in high abundance within sulfate-methane transition zones (Vetriani et al. [1999](#page-57-21); Inagaki et al. [2003;](#page-51-20) Gagen et al. [2013](#page-50-20); Evans et al. [2015](#page-50-3)). Likewise, their first metagenomes were recovered from coal-bed methane wells in an ocean basin (Evans et al. [2015](#page-50-3)). Although those novel methanogen candidates suggest the diversity of methanogens would be much higher than previously anticipated, interpretation of their environmental distribution and ecophysiology should be cautious. This is because no pure cultures have been available so far, and it remains elusive if every member of the WSA2, Verstraetearchaeota and Bathyarchaeota could also be capable of methanogenesis as predicted from a limited number of metagenomes.

4 Research Needs

A few established methanogen orders are still underrepresented by cultivated members. Methanocellales is only represented by one genus, and both Methanomassiliicoccales and Methanopyrales are represented by just one species. Discovery and isolation of new strains will certainly add to our knowledge of the diversity of those orders. Isolations of new strains are also necessary to support the classification of Methanimicrococcus blatticola and Methermicoccus shengliensis as separate families within the order Methanosarcinales and expand our knowledge of the diversity of Methanosarcinales. On the other hand, since the Methanosarcinales can use a

relatively broad range of substrates for methanogenesis, isolation of new strains suitable for industrial purposes can be valuable.

Recent culture-independent studies have revealed the presence of novel phylogenetic groups of methanogens. Their isolation and characterization will also shed new insight into these organisms. For instance, investigations of rumen methanogens have found a novel lineage containing at least two families. The 16S rRNA gene sequences of this group have similarities closest to, but less than 80%, with those of Methanosarcinales (Nicholson et al. [2007](#page-54-21)). In addition, many novel methanogen candidates are still only represented by metagenomes, such as the Candidatus 'Methanofastidiosa' and members of the archaeal phyla Verstraetearchaeota and Bathyarchaeota (Evans et al. [2015;](#page-50-3) Nobu et al. [2016](#page-54-15); Vanwonterghem et al. [2016](#page-57-4)).

Methanogens have fewer easily determined physiological characteristics than most bacteria. Comparative 16S rRNA gene sequence analyses are indispensable for determination of taxonomic levels higher than species. However, it is frequently insufficient for taxonomy of methanogens at species and subspecies levels. For instance, some isolates of Methanobrevibacter have >98% 16S rRNA gene sequence similarities but exhibit less than 50% DNA relatedness, suggesting that they belong to different species (Lin and Miller [1998](#page-52-23); Keswani and Whitman [2001\)](#page-51-21). The discovery of novel molecular markers is desirable. The methyl-coenzyme M reductase alpha-subunit (*mcrA*) gene has been applied as a phylogenetic marker for methanogens in addition to 16S rRNA genes (Springer et al. [1995](#page-56-22)) and as a target for the detection of methanogens in a wide range of environments (Ohkuma et al. [1995;](#page-54-22) Lueders et al. [2001](#page-53-18); Luton et al. [2002;](#page-53-19) Earl et al. [2003;](#page-50-21) Kemnitz et al. [2004\)](#page-51-22). Phylogenomic analyses based upon whole-genome sequences may lead to improvement of the taxonomy and better view of phylogenetic relationships. For instance, the genome-wide pairwise average nucleotide identity or ANI has been increasingly used to delineate species (Goris et al. [2007](#page-50-22)). However, convenient tools and methods will still need to be developed to meet the needs for analyzing large genome dataset. The Joint Genome Institute or JGI has been a pioneer in this filed, which has developed an Integrated Microbial Genome online pipeline to tackle the big data challenge (Markowitz et al. [2007a,](#page-53-20) [b](#page-53-21), [2009](#page-53-22)). Another grand challenge is to associate the environmental meta-data with the sequence data, which can provide enormous ecophysiological context for not only interpreting the sequence data from a single project but uncovering new trends across different projects.

References

- Anderson I et al (2009) Genomic characterization of methanomicrobiales reveals three classes of methanogens. PLoS One 4(6):e5797
- Angel R et al (2011) Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS One 6(5):e20453
- Angel R et al (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6(4):847–862
- Balch WE et al (1979) Methanogens: reevaluation of a unique biological group. Microbiol Mol Biol Rev 43(2):260–296
- Bapteste E et al (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1(5):353–363
- Belay N et al (1988) Methanogenic bacteria from human dental plaque. Appl Environ Microbiol 54(2):600–603
- Bellack A et al (2011) *Methanocaldococcus villosus* sp. nov., a heavily flagellated archaeon that adheres to surfaces and forms cell–cell contacts. Int J Syst Evol Microbiol 61(6):1239–1245
- Belyaev SS et al (1983) Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl Environ Microbiol 45(2):691–697
- Biavati B et al (1988) Isolation and characterization of "Methanosphaera cuniculi" sp. nov. Appl Environ Microbiol 54(3):768–771
- Bleicher K et al (1989) Growth of methanogens on cyclopentanol/ $CO₂$ and specificity of alcohol dehydrogenase. FEMS Microbiol Lett 59(3):307–312
- Bonin A, Boone D (2006) The order *Methanobacteriales*. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 231–243
- Boone DR (1987) Request for an opinion: replacement of the type strain of Methanobacterium formicicum and reinstatement of Methanobacterium bryantii sp. nov. nom. rev. (ex Balch and Wolfe, 1981) with M.o.H. (DSM 863) as the type strain. Int J Syst Bacteriol 37(2):172–173
- Boone DR et al (1993a) Isolation and characterization of Methanohalophilus portucalensis sp. nov. and DNA reassociation study of the genus Methanohalophilus. Int J Syst Bacteriol 43(3): 430–437
- Boone DR et al (1993b) Diversity and taxonomy of methanogens. In: Ferry JG (ed) Methanogenesis: ecology, physiology, biochemistry and genetics. Chapman & Hall, New York, pp 35–80
- Boone DR et al (2001a) In: Boone DR, Castenholtz RW, Garrity GM (eds) Methanobacteriales Bergy's manual of systematic bacteriology, vol 1. Springer, New York, pp 213–235
- Boone DR et al (2001b) In: Boone DR, Castenholtz RW, Garrity GM (eds) Methanomicrobiales Bergy's manual of systematic bacteriology, vol 1. Springer, New York, pp 246–267
- Boone DR et al (2001c) In: Boone DR, Castenholtz RW, Garrity GM (eds) Methanosarcinales Bergy's manual of systematic bacteriology, vol 1. Springer, New York, pp 268–294
- Borrel G et al (2012a) Genome sequence of "Candidatus Methanomethylophilus alvus" Mx1201, a methanogenic archaeon from the human gut belonging to a seventh order of methanogens. J Bacteriol 194(24):6944–6945
- Borrel G et al (2012b) Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. Int J Syst Evol Microbiol 62(7):1625–1629
- Borrel G et al (2013) Genome sequence of "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1, a third Thermoplasmatales-related methanogenic archaeon from human feces. Genome Announc 1(4): e00453-13
- Borrel G et al (2014) Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genomics 15:679
- Brauer SL et al (2006) Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442(7099):192–194
- Bräuer SL et al (2011) Methanoregula boonei gen. nov., sp. nov., an acidiphilic methanogen isolated from an acidic peat bog. Int J Syst Evol Microbiol 61(1):45–52
- Brochier C et al (2004) Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the *Methanopyrus kandleri* paradox. Genome Biol 5(3):R17
- Brugere JF et al (2014) Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease. Gut Microbes 5(1):5–10
- Bruggen JJA et al (1986) Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus quennerstedt. Arch Microbiol 144(4):367–374
- Brusa T et al (1987) The presence of methanobacteria in human subgingival plaque. J Clin Periodontol 14(8):470–471
- Bryant MP, Boone DR (1987) Emended description of strain $MS^T(DSM 800^T)$, the type strain of Methanosarcina barkeri. Int J Syst Bacteriol 37(2):169–170
- Burggraf S et al (1990) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269
- Burggraf S et al (1991) *Methanopyrus kandleri*: an archaeal methanogen unrelated to all other known methanogens. Syst Appl Microbiol 14:346–351
- Cadillo-Quiroz H et al (2008) Characterization of the archaeal community in a minerotrophic fen and terminal restriction fragment length polymorphism-directed isolation of a novel hydrogenotrophic methanogen. Appl Environ Microbiol 74(7):2059–2068
- Cadillo-Quiroz H et al (2009) Methanosphaerula palustris gen. nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int J Syst Evol Microbiol 59(5): 928–935
- Cadillo-Quiroz H et al (2010) Diversity and community structure of archaea inhabiting the rhizoplane of two contrasting plants from an acidic bog. Microb Ecol 59(4):757–767
- Cadillo-Quiroz H et al (2014) Methanobacterium paludis sp. nov. and a novel strain of Methanobacterium lacus isolated from northern peatlands. Int J Syst Evol Microbiol 64(5): 1473–1480
- Cha I-T et al (2013) Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment. Antonie Van Leeuwenhoek 104(6):1005–1012
- Chen S-C et al (2015) Methanoculleus sediminis sp. nov., a methanogen from sediments near a submarine mud volcano. Int J Syst Evol Microbiol 65(7):2141–2147
- Cheng L et al (2007) Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. Int J Syst Evol Microbiol 57:2964–2969.
- Cheng L et al (2008) Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiol Lett 285(1):65–71
- Cheng L et al (2011) Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl Environ Microbiol 77(15): 5212–5219
- Chin KJ et al (2004) Archaeal community structure and pathway of methane formation on rice roots. Microb Ecol 47(1):59–67
- Chong S et al (2002) Methanogenium marinum sp. nov., a H_2 -using methanogen from Skan Bay, Alaska, and kinetics of H_2 utilization. Antonie Van Leeuwenhoek 81(1):263–270
- Clementino M et al (2008) Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world. Extremophiles 12(4):595–604
- Conrad R et al (2006) Rice Cluster I methanogens, an important group of Archaea producing greenhouse gas in soil. Curr Opin Biotechnol 17(3):262–267
- Conrad R et al (2008) Soil type links microbial colonization of rice roots to methane emission. Glob Chang Biol 14(3):657–669
- Cuzin N et al (2001) Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int J Syst Evol Microbiol 51(2):489–493
- Davidova IA et al (1997) Taxonomic description of *Methanococcoides euhalobius* and its transfer to the Methanohalophilus genus. Antonie Van Leeuwenhoek 71(4):313–318
- Dianou D et al (2001) Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA-DNA hybridization among Methanoculleus species. Int J Syst Evol Microbiol 51(5):1663–1669
- Diaz E et al (2003) Molecular ecology of anaerobic granular sludge grown at different conditions. Water Sci Technol 48(6):57–64
- Dighe A et al (2004) Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol 4(1):20
- Doerfert SN et al (2009) *Methanolobus zinderi* sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 59(5):1064–1069
- Dridi B et al (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62(8):1902–1907
- Earl J et al (2003) Analysis of methanogen diversity in a hypereutrophic lake using PCR-RFLP analysis of mcr sequences. Microb Ecol 46(2):270–278
- Elberson MA, Sowers KR (1997) Isolation of an aceticlastic strain of Methanosarcina siciliae from marine canyon sediments and emendation of the species description for Methanosarcina siciliae. Int J Syst Bacteriol 47(4):1258–1261
- Embley TM et al (1992) The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol 138(7):1479–1487
- Erkel C et al (2006) Genome of Rice Cluster I archaea – the key methane producers in the rice rhizosphere. Science 313(5785):370–372
- Evans PN et al (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350(6259):434–438
- Ferrari A et al (1994) Isolation and characterization of Methanobrevibacter oralis sp. nov. Curr Microbiol 29(1):7–12
- Ferry JG et al (1974) Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatii sp. nov. Int J Syst Bacteriol 24(4):465–469
- Franzmann PD et al (1992) A methanogenic archaeon from Ace Lake, Antarctica: Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15(4):573–581
- Franzmann PD et al (1997) Methanogenium frigidum sp. nov., a psychrophilic, H₂-using methanogen from Ace Lake, Antarctica. Int J Syst Bacteriol 47(4):1068–1072
- Frimmer U, Widdel F (1989) Oxidation of ethanol by methanogenic bacteria. Arch Microbiol 152(5):479–483
- Gagen EJ et al (2013) Novel Cultivation-Based Approach To Understanding the Miscellaneous Crenarchaeotic Group (MCG) Archaea from Sedimentary Ecosystems. Appl Environ Microbiol 79(20):6400–6406
- Gan Y et al (2012) Syntrophic oxidation of propionate in rice field soil at 15 and 30° C under methanogenic conditions. Appl Environ Microbiol 78(14):4923–4932
- Ganzert L et al (2014) Methanosarcina spelaei sp. nov., a methanogenic archaeon isolated from a floating biofilm of a subsurface sulphurous lake. Int J Syst Evol Microbiol 64(10):3478–3484
- Gao B, Gupta R (2007) Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 8(1):86
- Garcia JL et al (2006) The order Methanobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 208–230
- Göker M et al (2014) Genome sequence of the mud-dwelling archaeon Methanoplanus limicola type strain (DSM 2279T), reclassification of Methanoplanus petrolearius as Methanolacinia petrolearia and emended descriptions of the genera Methanoplanus and Methanolacinia. Stand Genomic Sci 9(3):1076–1088
- Goris J et al (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91
- Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Philos Trans R Soc B 361(1470):1007–1022
- Hafenbradl D et al (1993) A novel unsaturated archaeal ether core lipid from the hyperthermophile Methanopyrus kandleri. Syst Appl Microbiol 16(2):165–169
- Hedderich R, Whitman WB (2006) Physiology and biochemistry of the methane-producing Archaea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, p 2
- Hendrickson EL et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186(20):6956–6969
- Hofmann K et al (2016) Abundance and potential metabolic activity of methanogens in well-aerated forest and grassland soils of an alpine region. FEMS Microbiol Ecol 92(2): 1-11
- Huber H et al (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132(1):47–50
- Iino T et al (2010) Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int J Syst Evol Microbiol 60(11):2563–2566
- Iino T et al (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28(2):244–250
- Imachi H et al (2008) *Methanolinea tarda* gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58(1):294–301
- Imachi H et al (2009) Methanofollis ethanolicus sp. nov., an ethanol-utilizing methanogen isolated from a lotus field. Int J Syst Evol Microbiol 59(4):800–805
- Inagaki F et al (2003) Microbial Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk. Appl Environ Microbiol 69(12):7224–7235
- Jeanthon C et al (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48(3):913–919
- Jeanthon C et al (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of *Methanococcus* sp. DSM 4213^T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49(2):583–589

Jetten MSM et al (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Lett 88(3–4):181–197

- Jiang B et al (2005) Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol 55(6): 2465–2470
- Jones WJ et al (1983a) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136(4):254–261
- Jones WJ et al (1983b) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135(2):91–97
- Joulian C et al (2000) Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. Int J Syst Evol Microbiol 50(2):525–528
- Kadam PC, Boone DR (1995) Physiological characterization and emended description of Methanolobus vulcani. Int J Syst Bacteriol 45(2):400–402
- Kadam PC et al (1994) Isolation and characterization of Methanolobus bombayensis sp. nov., a methylotrophic methanogen that requires high concentrations of divalent cations. Int J Syst Bacteriol 44(4):603–607
- Kamagata Y, Mikami E (1991) Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41(2):191–196
- Katayama T et al (2014) *Methanohalophilus* levihalophilus sp. nov., a slightly halophilic, methylotrophic methanogen isolated from natural gas-bearing deep aquifers, and emended description of the genus Methanohalophilus. Int J Syst Evol Microbiol 64(6):2089–2093
- Kemnitz D et al (2004) Community analysis of methanogenic archaea within a riparian flooding gradient. Environ Microbiol 6(5):449–461
- Kendall MM, Boone DR (2006) The order *Methanosarcinales*. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 244–256
- Kendall MM et al (2006) Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56(7):1525–1529
- Kern T et al (2015) Methanobacterium aggregans sp. nov., a hydrogenotrophic methanogenic archaeon isolated from an anaerobic digester. Int J Syst Evol Microbiol 65(6):1975–1980
- Keswani J, Whitman W (2001) Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51(2):667–678
- Keswani J et al (1996) Phylogeny and taxonomy of mesophilic Methanococcus spp. and comparison of rRNA, DNA hybridization, and phenotypic methods. Int J Syst Bacteriol 46(3):727–735
- Kitamura K et al (2011) Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil. Int J Syst Evol Microbiol 61(6):1246–1252
- Koenig H (1984) Isolation and characterization of Methanobacterium uliginosum sp.nov. from a marshy soil. Can J Microbiol 30(12):1477–1481
- Konig K, Stetter KO (1982) Isolation and characterization of *Methanolobus tindarius*, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralblatt Bakteriol Parasitenkd Infekt Hyg Abt 1 Orig C3:478–490
- Kotelnikova SV et al (1993) Methanobacterium thermoflexum sp. nov. and Methanobacterium defluvii sp. nov.: thermophilic rod-shaped methanogens isolated from anaerobic digestor sludge. Syst Appl Microbiol 16(3):427–435
- Kotelnikova S et al (1998) Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48(2):357–367
- Krivushin KV et al (2010) *Methanobacterium* veterum sp. nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol 60(2):455–459
- Krüger M et al (2005) Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiol Ecol 51(3):323–331
- Kudo Y et al (1997) Methanogen flora of paddy soils in Japan. FEMS Microbiol Ecol 22(1):39–48
- Kurr M et al (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156(4):239–247
- Kushwaha SC et al (1981) Novel complex polar lipids from the methanogenic archaebacterium Methanospirillum hungatei. Science 211(4487):1163–1164
- L'Haridon S et al (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53(6):1931–1935
- L'Haridon S et al (2014) Methanococcoides vulcani sp. nov., a marine methylotrophic methanogen that uses betaine, choline and N,N-dimethylethanolamine for methanogenesis, isolated from a mud volcano, and emended description of the genus Methanococcoides. Int J Syst Evol Microbiol 64(6):1978–1983
- Lai MC, Chen SC (2001) Methanofollis aquaemaris sp. nov., a methanogen isolated from an aquaculture fish pond. Int J Syst Evol Microbiol 51(5):1873–1880
- Lai MC et al (2002) Methanocalculus taiwanensis sp. nov., isolated from an estuarine environment. Int J Syst Evol Microbiol 52(5):1799–1806
- Lai M-C et al (2004) *Methanocalculus chunghsingensis* sp. nov., isolated from an estuary and a marine fishpond in Taiwan. Int J Syst Evol Microbiol 54(1):183–189
- Lauerer G et al (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst Appl Microbiol 8(1-2):100-105
- Laurinavichyus KS et al (1988) New species of thermophilic methane-producing bacteria Methanobacterium thermophilum. Mikrobiologiya 57(6):1035–1041
- Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62(10):3620–3631
- Leadbetter JR et al (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169(4):287–292
- Lee J-H et al (2013) Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63(11):4196–4201
- Lin C, Miller TL (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Arch Microbiol 169(5):397–403
- Liu Y (2010a) Methanobacteriales. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 559–571
- Liu Y (2010b) Methanococcales. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 573–581
- Liu Y (2010c) Methanomicrobiales. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 583–593
- Liu Y (2010d) Methanosarcinales. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 595–604
- Liu Y (2010e) Taxonomy of methanogens. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 547–558
- Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125(Incredible Anaerobes From Physiology to Genomics to Fuels):171–189
- Liu Y et al (1990) *Methanohalophilus oregonense* sp. nov., a methylotrophic methanogen from an alkaline, saline aquifer. Int J Syst Bacteriol 40(2):111–116
- Liu W-T et al (2002) Characterization of microbial community in granular sludge treating brewery wastewater. Water Res 36(7):1767–1775
- Liu PF et al (2011) Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil. Appl Environ Microbiol 77(11):3884–3887
- Lomans BP et al (1999) Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl Environ Microbiol 65(8):3641–3650
- Lu YH, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309(5737):1088–1090
- Lü Z, Lu Y (2012a) Complete genome sequence of a thermophilic methanogen, Methanocella conradii HZ254, isolated from chinese rice field soil. J Bacteriol 194(9):2398–2399
- Lü Z, Lu Y (2012b) Methanocella conradii sp. nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from chinese rice field soil. PLoS One 7(4):e35279
- Lu Y et al (2005) Detecting active methanogenic populations on rice roots using stable isotope probing. Environ Microbiol 7(3):326–336
- Lueders T et al (2001) Molecular analyses of methyl-coenzyme M reductase alpha-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3(3):194–204
- Lueders T et al (2004) Stable-isotope probing of microorganisms thriving at thermodynamic limits: syntrophic propionate oxidation in flooded soil. Appl Environ Microbiol 70(10): 5778–5786
- Luton PE et al (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148(11):3521–3530
- Lyimo TJ et al (2000) Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Syst Evol Microbiol 50(1):171–178
- Lyu Z, Lu Y (2015) Comparative genomics of three Methanocellales strains reveal novel taxonomic and metabolic features. Environ Microbiol Rep 7(3):526–537
- Lyu Z, Lu Y (2017) Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J 12(2):411–423
- Ma K et al (2005) *Methanobacterium beijingense* sp. nov., a novel methanogen isolated from anaerobic digesters. Int J Syst Evol Microbiol 55(1):325–329
- Ma K et al (2006) Methanosaeta harundinacea sp. nov., a novel acetate-scavenging methanogen isolated from a UASB reactor. Int J Syst Evol Microbiol 56(1):127–131
- Mah RA, Kuhn DA (1984) Transfer of the type species of the genus *Methanococcus* to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend. and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species: request for an opinion. Int J Syst Bacteriol 34(2): 263–265
- Markowitz VM et al (2007a) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36(Database):D534–D538
- Markowitz VM et al (2007b) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acids Res 36(Database):D528–D533
- Markowitz VM et al (2009) IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25(17):2271–2278
- Martinson GO et al (2010) Methane emissions from tank bromeliads in neotropical forests. Nat Geosci 3(11):766–769
- Mathrani IM et al (1988) Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. Int J Syst Bacteriol 38(2):139–142
- Mayumi D et al (2016) Methane production from coal by a single methanogen. Science 354(6309):222–225
- Mikucki JA et al (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69(6):3311–3316
- Miller TL, Lin C (2002) Description of *Methanobrevibacter gottschalkii* sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52(3):819–822
- Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141(2):116–122
- Mochimaru H et al (2007) Microbial diversity and methanogenic potential in a high temperature natural gas field in Japan. Extremophiles 11(3):453–461
- Mori K, Harayama S (2011) Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments. Int J Syst Evol Microbiol 61(1):138–143
- Mori K et al (2000) Methanocalculus pumilus sp. nov., a heavy-metal-tolerant methanogen isolated from a waste-disposal site. Int J Syst Evol Microbiol 50(5):1723–1729
- Nakamura K et al (2013) *Methanothermobacter tenebrarum* sp. nov., a hydrogenotrophic, thermophilic methanogen isolated from gas-associated formation water of a natural gas field. Int J Syst Evol Microbiol 63(2):715–722
- Nazina T et al (2006) Phylogenetic diversity and activity of anaerobic microorganisms of hightemperature horizons of the Dagang oil field (P. R. China). Microbiology 75(1):55–65
- Nicholson M et al (2007) Analysis of methanogen diversity in the rumen using temporal temperature gradient gel electrophoresis:identification of uncultured methanogens. Microb Ecol 54 $(1):141-150$
- Nilsen R, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62(2):728–731
- Nobu MK et al (2016) Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 10(10):2478–2487
- Nolling J et al (1996) Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol 46(4):1170–1173
- Ohkuma M et al (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134(1):45–50
- Ollivier BM, Mah RA, Garcia JL, Boone DR (1986) Isolation and characterization of Methanogenium bourgense sp. nov. Int J Syst Bacteriol 36(2):297–301
- Ollivier B et al (1997) Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147(1):51–56
- Ollivier B et al (1998) Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oilproducing well. Int J Syst Bacteriol 48(3):821–828
- Oremland RS, Boone DR (1994) Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int J Syst Bacteriol 44(3):573–575
- Orphan VJ et al (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66 (2):700–711
- Parshina SN et al (2014) Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature. Int J Syst Evol Microbiol 64(1):180–186
- Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. ("Methanothrix concilii") and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40(1):79–82
- Patel GB et al (1990) Isolation and characterization of *Methanobacterium espanolae* sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40(1):12–18
- Paterek JR, Smith PH (1988) Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. Int J Syst Bacteriol 38(1):122–123
- Paynter MJB, Hungate RE (1968) Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95(5):1943–1951
- Peng J et al (2008) Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil. Appl Environ Microbiol 74(9):2894–2901
- Petitjean C et al (2015) Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom proteoarchaeota. Genome Biol Evol 7(1):191–204
- Poulsen M et al (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun 4:1428
- Price MN (2010) FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5(3):e9490.
- Purdy KJ et al (2002) Comparison of the molecular diversity of the methanogenic community at the brackish and marine ends of a UK estuary. FEMS Microbiol Ecol 39(1):17–21
- Rea S et al (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57(3):450–456
- Rivard CJ, Smith PH (1982) Isolation and characterization of a thermophilic marine methanogenic bacterium Methanogenium thermophilicum sp. nov. Int J Syst Bacteriol 32(4):430–436
- Rivard CJ et al (1983) Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl Environ Microbiol 46(2): 484–490
- Rivera MC, Lake JA (1996) The phylogeny of Methanopyrus kandleri. Int J Syst Bacteriol 46 (1):348–351
- Romesser JA et al (1979) Methanogenium, a new genus of marine methanogenic bacteria, and characterization of *Methanogenium cariaci* sp. nov. and *Methanogenium marisnigri* sp. nov. Arch Microbiol 121(2):147–153
- Rui J et al (2011) Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil. FEMS Microbiol Ecol 77(2):264–273
- Sakai S et al (2008) Methanocella paludicola gen. nov., sp nov., a methane-producing archaeon, the first isolate of the lineage 'Rice Cluster I', and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol 58:929–936
- Sakai S et al (2009) Cultivation of methanogens under low-hydrogen conditions by using the coculture method. Appl Environ Microbiol 75(14):4892–4896
- Sakai S et al (2010) Methanocella arvoryzae sp nov., a hydrogenotrophic methanogen isolated from rice field soil. Int J Syst Evol Microbiol 60:2918–2923
- Sakai S et al (2011) Genome sequence of a mesophilic hydrogenotrophic methanogen Methanocella paludicola, the first cultivated representative of the order Methanocellales. PLoS One 6(7): e22898
- Sakai S et al (2012) Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family *Methanoregulaceae* fam. nov. within the order Methanomicrobiales. Int J Syst Evol Microbiol 62(6):1389–1395
- Savant DV et al (2002) *Methanobrevibacter acididurans* sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52(4):1081–1087
- Schirmack J et al (2014) *Methanobacterium* movilense sp. nov., a hydrogenotrophic, secondaryalcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int J Syst Evol Microbiol 64(2):522–527
- Schönheit P et al (1980) Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. Arch Microbiol 127(1):59–65
- Schuchmann K, Muller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12(12):809–821
- Shcherbakova V et al (2011) Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol 61(1):144–147
- Shieh J et al (1988) Pseudoauxotrophy of Methanococcus voltae for acetate, leucine, and isoleucine. J Bacteriol 170(9):4091–4096
- Shimizu S et al (2011) Methanosarcina horonobensis sp. nov., a methanogenic archaeon isolated from a deep subsurface Miocene formation. Int J Syst Evol Microbiol 61(10):2503–2507
- Shimizu S et al (2013) Methanoculleus horonobensis sp. nov., a methanogenic archaeon isolated from a deep diatomaceous shale formation. Int J Syst Evol Microbiol 63(11):4320–4323
- Shimizu S et al (2015) Methanosarcina subterranea sp. nov., a methanogenic archaeon isolated from a deep subsurface diatomaceous shale formation. Int J Syst Evol Microbiol 65(4): 1167–1171
- Shlimon AG et al (2004) *Methanobacterium aarhusense* sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 54(3):759–763
- Simankova MV et al (2001) Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Syst Appl Microbiol 24(3):362–367
- Singh N et al (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp. nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55(6):2531–2538
- Sizova MV et al (2003) Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microbiol Ecol 45(3):301–315
- Slesarev AI et al (1994) Purification and characterization of DNA topoisomerase V. An enzyme from the hyperthermophilic prokaryote Methanopyrus kandleri that resembles eukaryotic topoisomerase I. J Biol Chem 269(5):3295–3303
- Slesarev AI et al (2002) The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci U S A 99(7):4644–4649
- Smith PH, Hungate RE (1958) Isolation and characterization of *Methanobacterium ruminantium* N. SP. J Bacteriol 75(6):713–718
- Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15(4):150–155
- Sorokin DY et al (2015) Methanosalsum natronophilum sp. nov., and Methanocalculus alkaliphilus sp. nov., haloalkaliphilic methanogens from hypersaline soda lakes. Int J Syst Evol Microbiol 65(10):3739–3745
- Sowers KR, Ferry JG (1983) Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl Environ Microbiol 45(2):684–690
- Sowers KR et al (1984) *Methanosarcina acetivorans* sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47(5):971–978
- Sprenger WW et al (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach *Periplaneta americana*. Int J Syst Evol Microbiol 50(6):1989–1999
- Springer E et al (1995) Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family *Methanosarcinaceae*. Int J Syst Bacteriol 45(3): 554–559
- Sprott GD, McKellar RC (1980) Composition and properties of the cell wall of Methanospirillum hungatii. Can J Microbiol 26(2):115–120
- Sprott GD et al (1983) Isolation and chemical composition of the cytoplasmic membrane of the archaebacterium Methanospirillum hungatei. J Biol Chem 258(6):4026–4031
- Stackebrandt E et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52(3):1043–1047
- Stadtman TC, Barker HA (1951) Studies on the methane fermentation X.: a new formatedecomposing bacterium, Methanococcus vannielii. J Bacteriol 62(3):269–280
- Stetter KO et al (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Mikrobiol HYG, I ABT C 2(2):166–178
- Stewart LC et al (2015) Methanocaldococcus bathoardescens sp. nov., a hyperthermophilic methanogen isolated from a volcanically active deep-sea hydrothermal vent. Int J Syst Evol Microbiol 65(4):1280–1283
- Takai K et al (2002) Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52(4):1089–1095
- Takai K et al (2004) Methanotorris formicicus sp. nov., a novel extremely thermophilic, methaneproducing archaeon isolated from a black smoker chimney in the Central Indian Ridge. Int J Syst Evol Microbiol 54(4):1095–1100
- Tian J et al (2010) Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil. Int J Syst Evol Microbiol 60(9):2165–2169
- Vanwonterghem I et al (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:16170
- Ver Eecke HC et al (2013) Growth kinetics and energetics of a deep-sea hyperthermophilic methanogen under varying environmental conditions. Environ Microbiol Rep 5(5):665–671
- Vetriani C et al (1999) Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 65(10):4375–4384
- von Klein D et al (2002) Methanosarcina baltica, sp. nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6(2):103–110
- Wagner D et al (2013) Methanosarcina soligelidi sp. nov., a desiccation- and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. Int J Syst Evol Microbiol 63(8):2986–2991
- Wang S et al (2009) A new positive/negative selection scheme for precise BAC recombineering. Mol Biotechnol 42(1):110–116
- Wasserfallen A et al (2000) Phylogenetic analysis of 18 thermophilic *Methanobacterium* isolates supports the proposals to create a new genus, *Methanothermobacter* gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50(1):43–53
- Wayne LG et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
- Weiss A et al (2008) Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81(1):163–173
- Weng C-Y et al (2015) Methanoculleus taiwanensis sp. nov., a methanogen isolated from deep marine sediment at the deformation front area near Taiwan. Int J Syst Evol Microbiol 65(3): 1044–1049
- Whitman WB, Jeanthon C (2006) Methanococcales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 257–273
- Whitman WB et al (1982) Nutrition and carbon metabolism of *Methanococcus voltae*. J Bacteriol 149(3):852–863
- Whitman WB et al (2001a) In: Boone DR, Castenholtz RW, Garrity GM (eds) Methanococcales. Bergy's manual of systematic bacteriology, vol 1. Springer, New York, pp 236–246
- Whitman WB et al (2001b) Taxonomy of methanogenic archaea. In: Boone DR, Castenholtz RW, Garrity GM (eds) Bergey's mannual of systematic bacteriology. Springer, New York, p 1
- Whitman WB et al (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 165–207
- Widdel F (1986) Growth of methanogenic bacteria in pure culture with 2-propanol and other alcohols as hydrogen donors. Appl Environ Microbiol 51(5):1056–1062
- Widdel F et al (1988) Classification of secondary alcohol-utilizing methanogens including a new thermophilic isolate. Arch Microbiol 150(5):477–481
- Wildgruber G et al (1982) Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132(1):31–36
- Wilharm T et al (1991) DNA-DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of *Methanococcus halophilus*^{vp} to the genus *Methanohalophilus* as Methanohalophilus halophilus comb. nov. Int J Syst Bacteriol 41(4):558–562
- Winter J et al (1984) *Methanobacterium wolfei*, sp.nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. Syst Appl Microbiol 5(4):457–466
- Worakit S et al (1986) Methanobacterium alcaliphilum sp. nov., an H₂-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 36(3):380–382
- Wright A-DG et al (2004) Molecular diversity of rumen methanogens from sheep in western Australia. Appl Environ Microbiol 70(3):1263–1270
- Wu S-Y, Lai M-C (2011) Methanogenic archaea isolated from Taiwan's Chelungpu fault. Appl Environ Microbiol 77(3):830–838
- Wu S-Y et al (2005) *Methanofollis formosanus* sp. nov., isolated from a fish pond. Int J Syst Evol Microbiol 55(2):837–842
- Wu XL et al (2006) Diversity and ubiquity of thermophilic methanogenic archaea in temperate anoxic soils. Environ Microbiol 8(3):394–404
- Zabel HP et al (1984) Isolation and characterization of a new coccoid methanogen, Methanogenium tatii spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137(4):308–315
- Zeikus JG, Henning DL (1975) Methanobacterium arbophilicum sp.nov. An obligate anaerobe isolated from wetwood of living trees. Antonie Van Leeuwenhoek 41(4):543–552
- Zeikus JG, Wolee RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109(2):707–713
- Zellner G et al (1987) Isolation and characterization of *Methanocorpusculum parvum*, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol 147(1):13–20
- Zellner G et al (1988) Characterization of a new mesophilic, secondary alcohol-utilizing methanogen, *Methanobacterium palustre* spec. nov. from a peat bog. Arch Microbiol 151(1): 1–9
- Zellner G et al (1989) Methanocorpusculaceae fam. nov., represented by Methanocorpusculum parvum, Methanocorpusculum sinense spec. nov. and Methanocorpusculum bavaricum spec. nov. Arch Microbiol 151(5):381–390
- Zellner G et al (1990) Methanogenium liminatans spec. nov., a new coccoid, mesophilic methanogen able to oxidize secondary alcohols. Arch Microbiol 153(3):287–293
- Zellner G et al (1998) Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int J Syst Bacteriol 48(4):1111–1117
- Zhao H et al (1988) An extremely thermophilic Methanococcus from a deep sea hydrothermal vent and its plasmid. Arch Microbiol 150(2):178–183
- Zhao Y et al (1989) Isolation and characterization of Methanocorpusculum labreanum sp. nov. from the LaBrea Tar Pits. Int J Syst Bacteriol 39(1):10–13
- Zhilina TN, Zavarzin GA (1987a) Methanohalobium evestigatus, n. gen., n. sp., the extremely halophilic methanogenic Archaebacterium. Dokl Akad Nauk SSSR 293:464–468
- Zhilina TN, Zavarzin GA (1987b) Methanosarcina vacuolata sp. nov., a vacuolated Methanosarcina. Int J Syst Bacteriol 37(3):281–283
- Zhilina TN et al (2013) Methanocalculus natronophilus sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae. Microbiology 82(6):698–706
- Zhu J et al (2011) Methanobacterium movens sp. nov. and Methanobacterium flexile sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 61(12):2974–2978
- Zinder SH et al (1985) Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int J Syst Bacteriol 35(4):522–523