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Abstract
Methanogens are strictly anaerobic, methane-producing archaea. All characterized
members belong to the phylum Euryarchaeota, but methanogenesis pathway is also
predicted to be present in the newly proposed phyla Bathyarchaeota and Verstrae-
tearchaeota. This indicates that the diversity of methanogens may be larger than
previously excepted. Although methanogens share a set of physiological character-
istics, they are phylogenetically very diverse. The current taxonomy classifies
methanogens into seven well established orders: Methanobacteriales,
Methanococcales, Methanomicrobiales, Methanosarcinales, Methanopyrales,
Methanocellales, and Methanomassiliicoccales. This taxonomy is supported by
16S rRNA gene sequences as well as a number of physiological properties, e.g.
substrates for methanogenesis, nutritional requirements, morphologies, and struc-
tures of cell envelopes. Methanogens are abundant in a wide variety of anaerobic
environments where they catalyze the terminal step in the anaerobic food chain by
converting methanogenic substrates to methane. The complexity of methanogenesis
pathways suggests an ancient monophyletic origin of methanogens, a hypothesis that
is supported by phylogenetic analyses based upon DNA sequences.

1 Introduction

Methanogens are microorganisms that produce methane as the end-product of their
anaerobic respiration. All methanogens share three common features. (i) They are
obligate methane producers, obtaining all or most of their energy for growth from
producing large quantities of methane. (ii) They are archaea, belonging to the
phylum Euryarchaeota and possibly other archaeal phyla too. (iii) They are obligate
anaerobes, limiting their growth to anaerobic environments.

Then known methanogens can only utilize a restricted number of substrates for
methane production or methanogenesis. The substrates are limited to three major
types: CO2 þ H2 or a few other electron donors such as formate, methyl-group
containing compounds, and acetate. Methanogens using these three types of substrates
are classified as hydrogenotrophs, methylotrophs, and acetotrophs, respectively. Most
organic substances, for instance, carbohydrates, proteins, and long-chain fatty acids
and alcohols, are not substrates for methanogenesis. Exceptions are that some
hydrogenotrophs can also use secondary alcohols, such as 2-propanol, 2-butanol,
and cyclopentanol, as electron donors. A small number can use ethanol (Widdel
1986; Widdel et al. 1988; Bleicher et al. 1989; Frimmer and Widdel 1989). Athough
these organic compounds can obviously be assimilated, they are only incompletely
oxidized to ketones (secondary alcohols) and acetate (ethanol), and methane is
derived from CO2 reduction.

Methanogenesis is a complex process that requires a number of unique enzyme
complexes and unusual coenzymes (reviewed in Hedderich and Whitman (2006)).
Although the methanogenesis pathways of the three nutritional groups start differently,
the final steps leading to methane are common in virtually all methanogens. The
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bioenergetics of methanogenesis employs both proton and sodium gradients generated
by primary pumps for ATP synthesis. Due to the complexity of methanogenesis, all
modern methanogens perhaps originate from a common ancient ancestor.

2 Taxonomy and Phylogeny of Methanogens

Althoughmethanogens are united by a few common features, they are phylogenetically
diverse. The taxonomyofmethanogens that has been developed in the last three decades
has aimed to reflect the phylogenetic diversity of methanogens and be consistent with
the taxonomy of other prokaryotes (Balch et al. 1979; Boone et al. 1993b; Whitman
et al. 2001b). An overview of the current taxonomy of methanogens is given in Table 1.
Organisms from different orders have less than 82% 16S rRNA sequence similarity.
Organismswith less than 88–93%and less than 93–95%16S rRNA sequence similarity
are separated into different families and genera, respectively. Organisms are distin-
guished as separate species if their DNA reassociation is less than 70%, the change in the
melting temperature of their hybrid DNA is greater than 5 �C, and substantial pheno-
typic differences exist (Wayne et al. 1987; Stackebrandt et al. 2002). When 16S rRNA
data are available, organisms with a similarity of less than 98% are considered as
separate species. However, sequence similarity of greater than 98% is not considered
as a sufficient evidence that two organisms belong to the same species.

All modern methanogens share the same set of homologous enzymes and cofac-
tors required for methanogenesis, suggesting an ancient monophyletic origin of
methanogens. In the phylogenetic tree based on 16S rRNA gene sequences,
methanogens are separated into seven orders (Fig. 1). Non-methanogenic lineages
such as Archaeoglobales and Thermoplasmatales, are interspersed in the tree.
Phylogenomic studies using more gene markers including ribosomal proteins and/
or methanogenesis proteins further classified methanogens collectively into three
classes (Bapteste et al. 2005; Anderson et al. 2009). The Class I methanogens
include Methanobacteriales, Methanococcales, and Methanopyrales, the Class II
methanogens include Methanomicrobiales, and the Class III methanogens include
Methanosarcinales.However, whenMethanocellales was included in phylogenomic
analyses, the boundaries between the Classes II and III could not be fully resolved,
suggesting that they could also belong to a single class (Lyu and Lu 2017). Although
the seventh order Methanomassiliicoccales is distantly related to all three
methanogen classes, its close affiliation to the Class Thermoplasmata could not
warrant an immediate establishment of a fourth methanogen class.

Four hypotheses are proposed to explain the branching of methanogens. (1)
Methanogens and these non-methanogen lineages shared a common ancestor, and
genes required for methanogenesis were lost in these non-methanogens. This
hypothesis is supported by the presence of a few genes encoding methanogenesis
enzymes in the genome of Archaeoglobus fulgidus but is challenged by aerobic
growth in both the Halobacteriales and Thermoplasmatales. This hypothesis also
suggests that the common ancestor of Euryarchaeota was a methanogen (Gribaldo
and Brochier-Armanet 2006). However, this view is now challenged by the possible
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presence of methanogens outside Euryarchaeota as shown by metagenomic surveys
(Evans et al. 2015; Vanwonterghem et al. 2016). (2) Methanogenesis in various
branches was acquired by horizontal gene transfer (HGT). However, the core genes
required for methanogenesis are not linked on the genomes of methanogens, thus the

Table 1 Taxonomy of methanogens (Modified from Liu (2010e))

Order Family Genus Speciesb

Methanobacteriales Methanobacteriaceae Methanobacterium M. aarhusense,
M. alcaliphilum,
M. beijingense,M. bryantii,
M. congolense,
M. espanolae,
M. formicicum,
M. ivanovii, M. oryzae,
M. palustre,
M. subterraneum,
M. uliginosum,
M. aggregans,M. arcticum,
M. ferruginis, M. flexile,
M. kanagiense, M. lacus,
M. movens, M. movilense,
M. paludis,
M. petrolearium,
M. veterum

Methanobrevibacter M. acididurans,
M. arboriphilus,
M. curvatus,M. cuticularis,
M. filiformis,
M. gottschalkii,
M. millerae, M. olleyae,
M. oralis,
M. ruminantium,
M. smithii, M. thaueri,
M. woesei, M. wolinii,
M. boviskoreani

Methanosphaera M. cuniculi,M. stadtmanae

Methanothermobacter M. defluvii,
M. marburgensis,
M. thermoautotrophicus,
M. thermoflexus,
M. thermophilus,
M. wolfeii, M. crinale,
M. tenebrarum

Methanothermaceae Methanothermus M. fervidus, M. sociabilis

Methanococcales Methanococcaceae Methanococcus M. aeolicus,
M. maripaludis,
M. vannielii, M. voltae

Methanothermococcus M. okinawensis,
M. thermolithotrophicus

Methanocaldococcaceae Methanocaldococcus M. fervens, M. indicus,
M. infernus, M. jannaschii,
M. vulcanius, M. villosus,
M. bathoardescens

Methanotorris M. formicicus, M. igneus

(continued)
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Table 1 (continued)

Order Family Genus Speciesb

Methanomicrobiales Methanomicrobiaceae Methanoculleus M. bourgensis,
M. chikugoensis,
M. marisnigri,M. palmolei,
M. submarinus,
M. thermophiles,
M. horonobensis,
M. hydrogenitrophicus,
M. receptaculi,
M. sediminis,
M. taiwanensis

Methanofollis M. aquaemaris,
M. formosanus,
M. liminatans, M. tationis,
M. ethanolicus

Methanogenium M. cariaci, M. frigidum,
M. marinum,
M. organophilum

Methanolacinia M. paynteri,
M. petrolearius

Methanomicrobium M. mobile

Methanoplanus M. endosymbiosus,
M. limicola

Methanospirillaceae Methanospirillum M. hungatei, M. lacunae,
M. psychrodurum,
M. stamsii

Methanocorpusculaceae Methanocorpusculum M. bavaricum,
M. labreanum, M. parvum,
M. sinense

Methanoregulaceae Methanolinea M. tarda, M. mesophila

Methanoregula M. boonei

Methanosphaerula M. palustris

Unassigned Methanocalculusa M. chunghsingensis,
M. halotolerans,
M. pumilus,
M. taiwanensis,
M. natronophilus,
M. alkaliphilus

Methanosarcinales Methanosarcinaceae Methanosarcina M. acetivorans, M. baltica,
M. barkeri, M. lacustris,
M. mazei, M. semesiae,
M. siciliae,M. thermophila,
M. vacuolata,
M. horonobensis,
M. soligelidi, M. splelaei,
M. subterranea

Methanococcoides M. alaskense, M. burtonii,
M. methylutens,M. vulcani

Methanohalobium M. evestigatum

Methanohalophilus M. halophilus, M. mahii,
M. portucalensis,
M. levihalophilus

(continued)
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simultaneous acquisition via lateral transfer is unlikely, and the transfer of single
genes would not confer a selective advantage (Gribaldo and Brochier-Armanet
2006). (3) The phylogeny based on 16S rRNA gene is misleading, and methanogens
and Archaeoglobus shared a common ancestor exclusive of all other archaea. This
hypothesis is supported by phylogenomics analyses showing that 10 proteins are
exclusively shared in methanogens and A. fulgidus (Gao and Gupta 2007), while no
proteins are exclusively shared in methanogens and any of the Halobacteriales or
Thermoplasmatales (Gao and Gupta 2007). Therefore, methanogens and
Archaeoglobus appear to have a closer relationship within the Euryarchaeota.
However, the presence of methanogens in the Thermoplasmata suggests otherwise.
(4) The last archaeal common ancestor was a methanogen, and the methanogenesis
pathway was inherited, modified or lost in various lineages throughout evolution.
This view is supported by (i) recent metagenomics surveys that indicate possible
presence of methanogens in at least two other archaeal phyla besides the
Euryarchaeota (Evans et al. 2015; Vanwonterghem et al. 2016), and (ii) the root
of the archaeal tree based on phylogenomic analyses was placed between
Euryarchaeota and the rest of archaeal phyla (Petitjean et al. 2015).

Methanogens are currently classified into seven orders: Methanobacteriales,
Methanococcales, Methanomicrobiales, Methanosarcinales, Methanomassilii-
coccales, Methanocellales and Methanopyrales (Whitman et al. 2001b, 2006;
Sakai et al. 2008; Iino et al. 2013). This taxonomy is supported by comparative
16S rRNA gene sequence and phylogenomic analyses as well as distinctive pheno-
typic properties, such as different cell envelope structures, lipid compositions, and
substrate ranges. Some representative characteristics are listed in Table 2 and further
described in following subsections.

Table 1 (continued)

Order Family Genus Speciesb

Methanolobus M. bombayensis,
M. oregonensis,M. taylorii,
M. tindarius, M. vulcani,
M. chelungpuianus,
M. profundi, M. zinderi

Methanomethylovorans M. hollandica,
M. thermophile,
M. uponensis

Methanimicrococcusa M. blatticola

Methanosalsum M. zhilinae,
M. natronophilum

Methanosaetaceae Methanosaeta M. concilii,
M. harundinacea,
M. thermophila

Methermicoccaceae Methermicoccus M. shengliensis

Methanopyrales Methanopyraceae Methanopyrus M. kandleri

Methanocellales Methanocellaceae Methanocella M. paludicola,
M. avoryzae, M. conradii

Methanomassiliicoccales Methanomassiliicoccaceae Methanomassiliicoccus M. luminyensis
aPlacement in higher taxon is tentative
bType species of the genera are in bold
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2.1 Methanobacteriales

Methanobacteriales are currently classified into two families and five genera based
upon 16S rRNA sequences, DNA reassociation levels, and phenotypic characteris-
tics. The two families Methanobacteriaceae and Methanothermaceae are distin-
guished by 16S rRNA sequence similarities below 89% and differences in cell
wall structure and growth temperatures. The family Methanobacteriaceae contains
three mesophilic genera – Methanobacterium, Methanobrevibacter, and
Methanosphaera – and one thermophilic genus Methanothermobacter. Members
of the Methanobacteriaceae possess pseudomurein as a major component of the
cellular envelope. The family Methanothermaceae is represented by one hyperther-
mophilic genus, Methanothermus. Members of the Methanothermaceae possess a
protein surface layer in addition to the pseudomurein layer.

Fig. 1 Maximum-likelihood tree based on nearly full length 16S rRNA gene sequences from type
species of 34 methanogen genera. The tree was built by FastTree 2.1.5 using Thermococcus celer as
an outgroup. Bootstrap values >0.77 are indicated at nodes and were based on 1000 replicates
(Price 2010). There were a total of 1555 positions in the final dataset, which were aligned in the
RDP 11 database. The scale bar represents substitutions per position. The GenBank accesion
numbers are indicated following the species name

2 Diversity and Taxonomy of Methanogens 25
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The placement of the hyperthermophilic Methanothermus into a separate family
from other Methanobacteriales genera is justified by the deep branching of the
phylogeny of its 16S rRNA gene (Schuchmann and Muller 2014). The 16S rRNA
gene sequence similarities within the Methanothermus species are much higher
(98%) than the similarities between Methanothermus and other members of the
Methanobacteriales (83–89%). This classification is further confirmed by DNA
reassociation. For instance, the DNA relatedness between Methanothermus isolates
and Methanothermobacter thermoautotrophicus strain IM is 2–8% (Lauerer et al.
1986). Phenotypically, the genus Methanothermus is distinguished from other
Methanobacteriales by their high temperature optima (80–88 �C), double-layered
cell wall, and motility by bipolar polytrichous flagellation.

Methanobacteriaceae is a diverse family, including mesophilic and thermophilic
species. The phylogeny of the 16S rRNA gene indicates that the thermophilic species
are divergent from mesophilic members at the genus level. The 16S rRNA sequence
similarities within the thermophilic genus Methanothermobacter are above 98%,
while the similarities between thermophilic and mesophilic members ofMethanobac-
teriaceae are generally below 93% (Wasserfallen et al. 2000). The DNA relatedness
between Methanothermobacter species are 22–47%, confirming that they are genet-
ically distant and should be assigned to separate species (Boone et al. 2001a).

The separation of mesophilic members ofMethanobacteriales into three genera is
supported by both genetic and phenotypic analyses. Species of Methanobacterium
are usually autotrophs, while species of Methanobrevibacter and Methanosphaera
are commonly mixotrophic or heterotrophic. Species of Methanosphaera use only
H2 and methanol as substrates for methanogenesis, while all species ofMethanobre-
vibacter and Methanobacterium can use H2 and CO2.

Members of the order Methanobacteriales use a limited range of substrates for
methanogenesis. Most of them reduce CO2 to CH4 with H2. Some Methanobacterium
species can also reduce methanol with H2, which are the exclusive substrates for the
genusMethanosphaera. There is oneMethanobacterium species that can also reduce
methylamine with H2. Some Methanobacteriales members can also use formate,
CO, or secondary alcohols as electron donors. Some species can grow autotrophi-
cally using CO2 as the sole carbon source, and some species are mixotrophs or
heterotrophs, which may require acetate, amino acids, peptones, yeast extract,
vitamins, and/or rumen fluid for growth. Ammonium is a major nitrogen source.
Sulfide can serve as the sole sulfur source, and some species can reduce elemental
sulfur to sulfide. Cells are generally rod-shaped with a length of 0.6–25 μm, often
forming chains or filaments up to 40 μm in length. Cells typically stain Gram
positive, but the wall does not contain muramic acid. Pesudomurein is the predom-
inant polymer in the cell wall. Members of the genusMethanothermus have double-
layered cell wall, consisting of an inner pseudomurein layer and an outer S-layer
composed of protein. The cellular lipids contain caldarchaeol, archaeol, and, in some
species, hydoxyarchaeol as core lipids. The polar lipids can contain glucose, N-
acetylglucosamine, myo-inositol, ethanolamine, and serine, depending on the spe-
cies. Most species are nonmotile. However, Methanobacterium movens and
members of the genus Methanothermus are motile via one or two polar flagella
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and peritrichous flagella, respectively. The optimum growth temperatures of members of
the Methanobacteriales vary from 20 �C to 88 �C. The genus Methanothermus can
grow at temperatures up to 97 �C, while multipleMethanobacterium species can grow at
as low as 10 �C and one species can even grow at 0 �C. The pH optima ofMethanobac-
teriales members vary from 5.5 to 9.

Descriptive properties of the Methanobacteriales are summarized in Tables 3, 4,
5, 6, and 7. Further information can be found in Bonin and Boone (2006) and Boone
et al. (2001a). Our current knowledge on the diversity of the Methanobacteriales is
largely incomplete. As an example, investigations of 16S rRNA gene from clone
libraries recognized a large number of uncultured Methanobrevibacter, especially
from the rumen and termite gut (Dighe et al. 2004; Wright et al. 2004). Moreover, the
cloned sequences from termite gut formed separate lineages from cultured
Methanobrevibacter (Dighe et al. 2004). The correlation between ecological habitat
and 16S rRNA based phylogeny need more ecological surveys to unravel.

2.2 Methanococcales

The order Methanococcales is composed of two families, Methanocaldococcaceae
andMethanococcaceae, which are distinguished by 16S rRNA sequence similarities
below 93% and differences in growth temperatures. The Methanocaldococcaceae
are all hyperthermophilic, while the Methanococcaceae are extremely thermophilic
and mesophilic. Members of this order are all capable of forming methane by CO2

reduction with H2. Many species can use formate as an alternative electron donor.
Most species can grow autotrophically.

Phylogenetic analyses with DNA sequences reveal a high diversity of the
Methanococcales. The sequence similarities of the 16S rRNA genes between hyper-
thermophilic and mesophilic methanococci are generally below 90%. For instance,
the 16S rRNA gene sequence similarity between the mesophile Methanococcus
voltae and the hyperthermophile Methanocaldococcus infernus is about 85%,
which is comparable to the similarity between Escherichia and Pseudomonas. In
addition, the mesophilic methanococci possess 91–96% (average 94%) 16S rRNA
gene sequence similarities and 5–30% DNA reassociation values, suggesting that
they are related only at the genus level (Keswani et al. 1996).

The Methanococcales are currently divided into two families and four genera,
according to their growth temperatures. The family Methanocaldococcaceae
includes two hyperthermophilic genera, Methanocaldococcus and Methanotorris.
The family Methanococcaceae includes the mesophilic genus Methanococcus and
the extremely thermophilic genus Methanothermococcus. This taxonomy generally
agrees with the phylogeny of the 16S rRNA genes (Liu 2010b), in which the lineages
formed by the deepest bifurcation represent the two methanococcal families. How-
ever, some ambiguity remains. For instance, 16S rRNA gene sequences indicate that
Methanococcus aeolicus forms a deep branch of the mesophilic methanococci and is
more closely related to the thermophile Methanothermococcus okinawensis (95%
sequence similarity) than to the otherMethanococcus (91–93% sequence similarity).
In addition, Methanothermococcus okinawensis also has low sequence similarity to
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the other thermophile Methanothermococcus thermolithotrophicus (95% sequence
similarity). Therefore, the phylogenetic analysis implies that Methanococcus
aeolicus and Methanothermococcus okinawensis could be classified into two novel
genera. Nevertheless, phylogeny of additional genes and phenotypic differences
other than growth temperature should be examined to justify reclassification.

DNA relatedness and cellular protein patterns are often determined for the
phylogenetic and taxonomic analyses of methanococci. They are especially useful
to distinguish relationships at the species and subspecies levels, at which levels the
16S rRNA gene sequence analysis is frequently incongruent. For instance, two
heterotrophic Methanococcus voltae strains A2 and A3 exhibit 37% DNA related-
ness to the type train PS (Keswani et al. 1996). Similarly, four autotrophic
Methanococcus maripaludis strains C5, C6, C7, and C8 exhibit 54–69% DNA
relatedness to the type strain JJ (Keswani et al. 1996). Moreover, differences in
cellular protein patterns between these strains are also readily recognized. Therefore,
classification of these strains into separate species is suggested based on their genetic
diversities. However, because distinguishable phenotypic properties are few, these
strains are not currently considered as novel species.

Autotrophy and thermophily are represented in both methanococcal families,
suggesting that the mesophilic methanococci may have evolved from an autotrophic
thermophile (Keswani et al. 1996). The heterotrophy ofMethanococcus voltae is possibly
a recently acquired characteristic. This hypothesis is consistent with the presence of
enzymes required for autotrophic CO2 fixation in M. voltae (Shieh et al. 1988).

Members of the Methanococcales or the methanococci are coccoid methanogens
isolated from marine environments. They share a set of phenotypic characteristics.
They all use H2 or formate to reduce CO2 for methanogenesis. Acetate, methyl-
containing compounds, and alcohols are not used as substrates for methanogenesis.
Most of them can grow autotrophically with CO2 as the sole carbon source. Sulfide is a
sufficient sulfur source for all methanococci, and elemental sulfur is reduced to sulfide
with slight inhibition of growth in most strains. Ammonium is a sufficient nitrogen
source for all methanococci, and nitrogen gas, nitrate, and alanine are used as a
nitrogen source by some species. They all require sea salts for optimal growth. Cells
are irregular cocci, 1–3 μm in diameter during balanced growth. Most of them are
motile by means of polar tuft(s) of flagella. Cells strain Gram negative. They are
susceptible to lysis by 0.01% (w/v) SDS and hypotonic solutions. Cell envelopes are
composed of a protein cell wall or S-layer. Glycoproteins and cell wall carbohydrates
are not abundant. The cellular lipids contain archaeol, caldarchaeol, hydroxyarchaeol,
and macrocyclic archaeol, depending upon the species. The polar lipids can contain
glucose, N-acetylglucosamine, serine, and ethanolamine. The optimal growth temper-
atures of methanococci are diverse, ranging from 35 �C to 88 �C. They are among the
fastest growing methanogens at either mesophilic or thermophilic temperatures, with
generation times of about 2 h at 37 �C and less than 30 min at 85 �C.

Descriptive properties of the methanococci are summarized in Tables 8 and 9.
Further information can be found in Whitman et al. (2001a), and Whitman and
Jeanthon (2006). Creation of new families and genera may be necessary with
addition of new isolates and identification of new phenotypic and genetic markers.
TheMethanotorrismay represent a new family because they have only 92–93% 16S
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rRNA similarities with the Methanocaldococcus. These two groups are also distin-
guished by the presence of hydroxyarchaeol and the absence of caldarchaeol in the
Methanotorris. Methanococcus aeolicus and Methanothermococcus okinawensis
may represent two new genera because they form a lineage separate from other
Methanococcaceae in the 16S rRNA phylogenetic tree.

2.3 Methanomicrobiales

The orderMethanomicrobiales is composed of four families,Methanomicrobiaceae,
Methanocorpusculaceae, Methanospirillaceae, and Methanoregulaceae, which are
distinguished by 16S rRNA sequence similarities below 89%. The Methanospir-
illaceae is further distinguished from the other two families by its unique morphol-
ogy of curved rod-shape and exterior sheath. All members of this order are capable to
produce methane by CO2 reduction with H2. Formate and secondary alcohols are
used as alternative electron donors in many species.

Because the members of Methanomicrobiales share many phenotypic character-
istics, it is difficult to divide them based solely on their physiological properties.
Both of the families Methanomicrobiaceae and Methanocorpusculaceae contain
coccoid organisms, and nearly all members require organic carbon sources for
growth (except Methanofollis aquaemaris). Therefore, they are difficult to distin-
guish except by molecular phylogenetic analyses. The familyMethanospirillaceae is
distinguished from the other three families by its unique morphology of curved rod-
shape and capability of autotrophic growth. The family Methanoregulaceae is
unique by having members that grow in acidic conditions.

The family Methanomicrobiaceae is divided into six genera. The 16S rRNA gene
sequence similarities between different genera are 87–95%, suggesting that they are
sufficiently distinctive at genus level. The 16S rRNA gene sequence similarities
between different species within a genus are above 95.4%. Both Methanomicrobium
and Methanolacinia are represented by a single species. Cells of both genera are rod-
shaped, but they can be differentiated by some other physiological characters. In
addition to H2, Methanolacinia paynteri can use secondary alcohols to reduce CO2.
In contrast, Methanomicrobium mobile can only use H2 or formate as electron donors
for methanogenesis. Methanolacinia paynteri is a marine organism, while
Methanomicrobium mobile was isolated from bovine rumen. Cells ofMethanoculleus,
Methanofollis, andMethanogenium are irregular cocci. These three genera are difficult
to differentiate by phenotypic characteristics. Methanoplanus differs from the other
genera by its plate or disc cell shape.

The family Methanospirillaceae is represented by a single species, Methanos-
pirillum hungatei. Cells have a unique spiral shape that is not found in other
methanogens. Cell walls consist of an inner protein S-layer and a rigid para-
crystalline outer sheath conferring the α-helical spiral shape of the cells (Sprott
and McKellar 1980; Sprott et al. 1983). Cells usually grow as single cells or short
filaments within their sheath. The cellular lipid of M. hungatei contains two unusual
phosphoglycolipids, which are derivatives of the dibiphytanyl diglycerol tetraether.
One of the free hydroxyls of this tetraether is esterified with glycerophosphoric acid,
and the other is linked to a disaccharide (Kushwaha et al. 1981).
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The family Methanocorpusculaceae is represented by the genus Methanocor-
pusculum. Cells are irregular cocci with diameters generally <1 μm. All species can
use formate in addition to H2 as electron donor for methanogenesis. For some
species, secondary alcohols are alternative electron donors. Acetate and either
yeast extract, peptones, or rumen fluid are required as carbon sources. The habitats
of Methanocorpusculum are usually anaerobic digesters or freshwater sediments.
They have not been found in marine environments.

The family Methanoregulaceae is divided into three genera (Sakai et al. 2012).
The 16S rRNA gene sequence similarities between different genera are 93–96%,
suggesting that they are sufficiently distinctive at genus level. Both Methanolinea
(Imachi et al. 2008; Sakai et al. 2012) andMethanoregula (Brauer et al. 2006; Wang
et al. 2009) are represented by two species, while Methanosphaerula is represented
by one (Cadillo-Quiroz et al. 2009). Methanolinea is morphologically distinct from
other Methanomicrobiales by forming rod-shaped, multicellular filaments within a
sheath-like structure. Methanoregula and Methanosphaerula are distinguished from
others by their acidophilic growth.

The assignment of Methanocalculus into a novel family is tentative. The 16S
rRNA sequence similarities between all known Methanocalculus species are
>98%, but those between Methanocalculus and other methanogens are <91%.
Different species of Methanocalculus exhibited <10–51% DNA relatedness. The
closest neighbor of Methanocalculus in the phylogenic tree based on 16S rRNA
gene is Methanocorpusculum. All members of Methanocalculus are irregular
cocci, can only use H2 and CO2 or formate for methanogenesis, and require
acetate for growth.

All members of the order Methanomicrobiales produce methane using CO2 as the
electron acceptor and H2 as the electron donor. Most species use formate and many
species also use secondary alcohols as alternative electron donors, while two unique
species can also grow on primary alcohols. They cannot use acetate and methyl-group
containing compounds for methanogenesis. Most species are mixotrophic and require
acetate as a carbon source; some species also require additional organic growth factors.
Their morphologies are diverse, including cocci, rods, and sheathed rods. Most cells
have single-layered protein cell walls, but cells of Methanospirillum hungatei are
surrounded by an external sheath. Peptidoglycan and pseudomurein are absent. The
cellular lipids contain archaeol and caldarchaeol as core lipids. Hydroxyarchaeol is
absent. Glucose, galactose, aminopentanetetrols, and glycerol are common polar lipids;
and aminopentanetetrols are unique to this order of organisms. Motility varies between
species. Most species are mesophilic, with the exceptions of two psychrophilic species
(Methanogenium marinum and Methanogenium frigidum) and one thermophilic spe-
cies (Methanoculleus thermophilicus). Most species grow best near neutral pH. Excep-
tions are Methanoregula boonei and Methanosphaerula palustris, which have an
optimal pH of 5.1~5.7 and were isolated from acidic peat bog; and Methanocalculus
alkaliphilus and Methanocalculus natronophilus, which grow best at pH of 9.5 and
were isolated from soda lake sediments. Many species are marine organisms and grow
optimally with 0.1–1 M of NaCl. Descriptive properties of theMethanomicrobiales are
summarized in Table 10. Further information can be found in Boone et al. (2001b) and
Garcia et al. (2006).
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Table 10 Descriptive characteristics of the species of the order Methanomicrobiales (Modified
from Liu (2010c))

Organism
Type
strain Sourcea

Dimensions
(μm) Flagella

Methano-
genesis
substratesb

Methanoculleus

bourgensis MS2 Anaerobic
digestor

Ø 1–2 None H2 þ CO2,
formate,
(2-propanol,
2-butanol)

chikugoensis MG62 Paddy field
soil

Ø 1–2 Flagellatedd H2 þ CO2,
formate,
2-propanol,
2-butanol,
cyclopentanol

horonobensis T10 Deep
subsurface
groundwater

Ø 0.7–1.6 Flagellatedd H2 þ CO2,
formate

hydrogenitrophicus
HC Wetland soil Ø 0.8–2 None H2 þ CO2

marisnigri JR1 Black sea
sediments

Ø <1.3 Peritrichousd H2 þ CO2,
formate,
2-propanol,
2-butanol

palmolei INSLUZ Anaerobic
digestor

Ø1.25–2 Flagellatedd H2 þ CO2,
formate,
2-propanol,
2-butanol,
cyclopentanol

receptaculi ZC-2 Oil field Ø 0.8–1.7 None H2 þ CO2,
formate

sediminis S3Fa Deep marine
sediments

Ø 0.5–1.0 None H2 þ CO2,
formate

submarinus Nankai-1 Deep marine
sediments

Ø 0.8–2.0 Flagellatedd H2 þ CO2,
formate

taiwanensis CYW4 Deep marine
sediments

Ø 0.6–1.5 None H2 þ CO2,
formate

thermophilus CR-1 Nuclear power
plant sediment

Ø 0.6–1.8 Singlee H2 þ CO2,
formate

Methanofollis

aquaemaris N2F9704 Marine–water
fish pond

Ø 1.2–2.0 None H2 þ CO2,
formate

ethanolicus HASU Lotus field Ø 2.0–3.0 nd H2 þ CO2,
formate,
ethanol,
1-propanol,
1-butanol

formosanus ML15 Marine–water
fish pond

Ø 1.5–2.0 None H2 þ CO2,
formate

liminatans GKZPZ Wastewater
reactor

Ø 1.25–2.0 Flagellatedf H2 þ CO2,
formate,
2-propanol,
2-butanol,
cyclopentanol



Required
organic
compounds

Temperature
range
(optimum) (�C)

pH range
(optimum)

NaCl
optimum
(%, w/v)

Doubling
timec (h)

GC
content
(mol%) References

ac 37–45 (35–40) 5.5–8.0
(6.7)

0.2–1 18 59 (Bd) (Ollivier
et al. 1986)

ac, YE/TP 15–40 (25–30) 6.7–8.0
(6.7–7.2)

0.6 46 62.2 (LC) (Dianou et al.
2001)

None 25–45 (37–42) 5.8–8.2
(6.7–6.8)

0.6–1.2 6.3–6.9 62.9 (LC) (Shimizu
et al. 2013)

None 18–45 (37) 5.0–8.5
(6.6)

1.2 22.4 60.2 (Tm) (Tian et al.
2010)

TP 10–45 (20–25) 5.8–7.6
(6.2–6.6)

0.6–1.1 10 61 (Bd) (Romesser
et al. 1979)

ac 22–50 (40) 6.5–8.0
(6.9–7.5)

nd 13.5 59.5 (LC) (Zellner et al.
1998)

ac <30–65
(50–55)

6.5–8.5
(7.5–7.8)

1.2 8.3 55.2 (Tm) (Cheng et al.
2008)

ac 20–50 (37) 5.6–7.5
(7.1)

1.0 15.1 62.3 (Gs) (Chen et al.
2015)

ac >10–<55 (45) 5.0–8.7
(6.0–7.5)

0.6–2.3 ~6.8 nd (Mikucki
et al. 2003)

None 20–42 (37) 6.5–8.1
(8.1)

0.5 6.7 61.0 (LC) (Weng et al.
2015)

ac, TP, vit 37–65 (55–60) 6.2–7.8
(6.5–7.2)

1.2 2.5 55–60
(Tm)

(Rivard and
Smith 1982)

None 20–43 (37) 6.3–8.0
(6.5)

0.5 13 59.1 (Tm) (Lai and
Chen 2001)

acg 15–40 (37) 6.5–7.5
(7.0)

0 72i 60.9 (LC) (Imachi et al.
2009)

YE, TP 20–42 (40) 5.6–7.3
(6.6–7.0)

3 36 58.4 (Tm) (Wu et al.
2005)

ac �15–44 (40) nd (7) 0–3.5 7.5 60 (Tm) (Zellner et al.
1990)

(continued)
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Table 10 (continued)

Organism
Type
strain Sourcea

Dimensions
(μm) Flagella

Methano-
genesis
substratesb

tationis Chile 9 Solfataric pool
mud

Ø 1.5–3 Peritrichousf H2 þ CO2,
formate

Methanogenium

cariaci JR1 Marine
sediments

Ø <2.6 Pertrichous H2 þ CO2,
formate

frigidum Ace-2 Anoxic Ace
Lake water

Ø 1.5–2.5 None H2 þ CO2,
formate

marinum AK-1 Marine
sediments

Ø 1–1.2 Flagellatedd H2 þ CO2,
formate

organophilum CV Marine mud Ø 0.5–1.5 None H2 þ CO2,
formate,
ethanol,
1-propanol,
[1-butanool],
2-propanol,
2-butanol,

Methanolacinia

paynteri G2000 Marine
sediment

0.6 � 1.5–2.5 Flagellatedd H2 þ CO2,
2-propanol,
2-butanol

petrolearius SEBR4847 Offshore oil
field

Ø 1–3 None H2 þ CO2,
formate,
2-propanol

Methanomicrobium

mobile BP Bovine rumen 0.7 � 1.5–2.0 Single H2 þ CO2,
formate

Methanoplanus

endosymbiosus MC1 Marine ciliate 0.5–1 � 1.6–3.4 peritrichous H2 þ CO2,
formate

limicola M3 Swamp 0.1–0.3 � 1.5–2.8 Polar tuft H2 þ CO2,
formate

Methanospirillum

hungatei JF-1 Sewage sludge 0.4–0.5 � 7.4–10
(often 15– > 100)

Polar tufts H2 þ CO2,
formate

lacunae Ki8-1 Puddly soil 0.5–0.6 � 11–25
(often 8–26)

Single or
tufted

H2 þ CO2,
formate

psychrodurum X-18 Wetland soil 0.4–0.5 � 11–62 None H2 þ CO2,
formate

stamsii Pt1 Anaerobic
digestor

04–0.5 � 7–25
(sometimes
15– > 100)

tufted5 H2 þ CO2,
[formate]

Methanocorpusculum

bavaricum SZSXXZ Sediment of
wastewater
treatment pond

Ø <1 Flagellated H2 þ CO2,
formate,
2-propanol,
2-butanol



Required
organic
compounds

Temperature
range
(optimum) (�C)

pH range
(optimum)

NaCl
optimum
(%, w/v)

Doubling
timec (h)

GC
content
(mol%) References

ac, YE, TP,
tung

�15–44
(40–44)

6.3–8.8
(7)

0.8–1.2 12 54 (Tm) (Zabel et al.
1984)

ac, YE 10–32 (20–25) nd
(6.8–7.3)

2.7 11 52 (Bd) (Romesser
et al. 1979)

ac �12h–18 (15) 6.5–7.9
(7.5–7.9)

2–3.5 69.6 nd (Franzmann
et al. 1997)

ac 5–25 (25) 5.5–7.5
(6.0)

1.5–7.3 42 nd (Chong et al.
2002)

ac, PABA,
biotin,
tung,
vit-B12

nd-39 (30–35) nd
(6.4–7.3)

2.0 6 46.7 (Tm) (Widdel et al.
1988)

ac 20–45 (40) 6.6–7.3
(7.0)

0.88 4.8 44.9 (Bd) (Rivard et al.
1983)

ac 28–43 (35–40) 5.3–8.2
(7.0)

1–3 10 50 (LC) (Ollivier et al.
1997, Göker
et al. 2014)

Complex 35–45 (40) 5.9–7.7
(6.1–6.9)

nd nd 48.8 (Bd) (Paynter and
Hungate
1968)

p-Cresol,
tung

16–36 (32) 6.1–8.0
(6.8–7.3)

1.5 7 38.7 (Tm) (Bruggen
et al. 1986)

ac 17–41 (40) nd
(6.5–7.5)

1 7 47.5 (Tm) (Wildgruber
et al. 1982)

(ac) 45 (15–50) 6.5–10.0
(7.5–8.5)

0 20.7 45 (Bd) (Ferry et al.
1974, Iino
et al. 2010)

ac/YE 15–37 (30) 6.0–9.5
(7.2–7.5)

0 32.3 45.3 (LC) (Iino et al.
2010)

YE 15–35 (30) 6.5–8.0
(7.0)

0–0.6 10.7 44.4 (LC) (Iino et al.
2010)

None 5–37 (20–30) 6.0–10
(7.0–7.5)

0 39.8 40.0 (Tm) (Parshina
et al. 2014)

RF 15–45 (37) nd (7.0) nd ~5 51 (LC) (Zellner et al.
1989)

(continued)
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Table 10 (continued)

Organism
Type
strain Sourcea

Dimensions
(μm) Flagella

Methano-
genesis
substratesb

labreanum Z Lake
sediments

Ø 0.4–2.0 None H2 þ CO2,
formate

parvum XII Anaerobic
digestor

Ø <1 Single H2 þ CO2,
formate, 2-
propanol, 2-
butanol

sinense China Z Ø <1 Flagellated H2 þ CO2,
formate

Methanocalculus

alkaliphilus AMF2 Hypersaline
soda lake
sediments

Ø 1.5–2.5 Peritrichous H2 þ CO2,
formate

chunghsingensis K1F9705b Marine water
fishpond

Ø 0.7–1.8 Flagellatede H2 þ CO2,
formate

halotolerans SEBR
4845

Oilfield Ø 0.8–1.0 Peritrichous H2 þ CO2,
formate

natronophilus Z-7105 Soda lake
sediments

Ø 0.2–1.2 Peritrichous H2 þ CO2,
formate

pumilus MHT-1 Waste disposal
site

Ø 0.8–1.0 None H2 þ CO2,
formate

taiwanensis P2F9704a Estuary Ø 0.9–1.4 None H2 þ CO2,
formate

Methanolinea

mesophila TNR Rice field soil 0.3 � 2.0–6.5 nd H2 þ CO2,
formate

tarda NOBI-1 Sewage sludge 0.7–1.0 � 2.0 None H2 þ CO2,
formate

Methanoregula

boonei 6A8 Acid peat bog 0.2–0.3 � 0.8–3.0 Flagella-like
filaments

H2 þ CO2

Methanosphaerula

palustris E1-9c Minerotrophic
fen peatland

Ø 0.5–0.8 Multiple H2 þ CO2,
formate

Abbreviations: nd not determined, RF rumen fluid, ac acetate, (ac) acetate required or stimulatory
depending on the strain, PABA p-aminobenzoate, vit vitamins, tung tungsten, TP trypticase peptones,
YE yeast extract, CoM 2-mercaptoethanesulfonic acid (conenzyme M), Bd buoyant density method, Tm
melting point method, LC liquid chromatography, Gs genome sequencing
aEnvironment from which the type strain was isolated
bParentheses mean utilized by some strains, but not all strains; brackets indicate very poor growth and
methane production
cDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl
dNonmotile, although flagella are detected by electron microscopy
ePresent in some strains
fSome strains are non-motile
gAcetate is not required for growth on ethanol
hThe minimum growth temperature is predicted by applying the Ratkowsky model to temperature growth
data
iCalculated from cultures that grow on ethanol



Required
organic
compounds

Temperature
range
(optimum) (�C)

pH range
(optimum)

NaCl
optimum
(%, w/v)

Doubling
timec (h)

GC
content
(mol%) References

YE/TP <45 (37) 6.5–7.5
(7.0)

0–1.5 ~10 50 (Bd) (Zhao et al.
1989)

ac, YE,
tung

15–45 (37) nd
(6.8–7.5)

0–4.7 8 48.5 (Tm) (Zellner et al.
1987, 1989)

RF 15–45 (30) nd (7.0) 0 ~20 50.0 (LC) (Zellner et al.
1989)

ac nd–41 (35) 8–10.2
(9.5)

3.5 nd 51.1 (Tm) (Sorokin
et al. 2015)

ac 20–45 (37) 5.8–7.7
(7.2)

0.5–1.0 7 50.3–50.8
(Tm)

(Lai et al.
2004)

ac 25–45 (38) 7.0–8.4
(7.6)

5 12 55 (LC) (Ollivier
et al. 1998)

ac 15–45 (35) 8.0–10.2
(9.0–9.5)

8.0–11.1 nd 50.2 (Tm) (Zhilina et al.
2013)

ac 24–45 (35) 5.5–9.0
(6.5–7.5)

1 12 51.9 (LC) (Mori et al.
2000)

ac 25–42 (37) 5.6–8.3
(6.7)

0.5 7.1 nd (Lai et al.
2002)

ac 20–40 (37) 6.5–7.4
(7.0)

0 28.8 56.4 (LC) (Sakai et al.
2012)

ac, YE 35–55 (50) 6.7–8.0
(7.0)

0 98 nd (Imachi et al.
2008)

ac, YE,
coM, vit

10–40 (35–37) 4.5–5.5
(5.1)

<0.1 40.8 54.5 (Gs) (Brauer et al.
2006, 2011)

ac, CoM,
vit

14–35 (30) 4.8–6.4
(5.7)

<0.2 30 58.9 (Gs) (Cadillo-
Quiroz et al.
2008, 2009)
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2.4 Methanosarcinales

The order Methanosarcinales is divided into three families, Methanosarcinaceae,
Methanosaetaceae and Methermicoccus based on phenotypic properties and 16S
rRNA gene sequence analysis (Cheng et al. 2007). The three families are distin-
guished by 16S rRNA sequence similarities below 91% and differences in substrates
for methanogenesis, lipid components, and cell wall structures. The Methanosar-
cinaceae are all capable of producing methane from methyl group containing
compounds, and some can use acetate or H2/CO2. The cells can form aggregates
within an outer layer composed of heteropolysaccharide. TheMethanosaetaceae can
only produce methane by splitting acetate. The cells can form chains within a
proteinaceous sheath. The family Methermicoccus is represented by only one spe-
cies, which is a thermophilic, methylotrophic methanogen isolated from an oilfield
(Cheng et al. 2007).

The family Methanosarcinaceae currently comprises eight genera, Methano-
coccoides, Methanohalobium, Methanohalophilus, Methanolobus, Methanomethy-
lovorans, Methanosalsum, Methanimicrococcus and Methanosarcina. The genus
Methanosarcina can be differentiated from other genera by the unique morphology of
pseudosarcinae or large cysts, which are formed by aggregation of cells within a
common outer layer. The outer layer is composed of heteropolysaccharide, consisting
mainly of galactosamine, glucose, mannose, and galacturonic acid. Some
Methanosarcina species can also be distinguished from other genera of Methanosar-
cinaceae by their ability to split acetate for methanogenesis. The genus
Methanohalobium is represented by a single species, M. evestigatum, which is an
extreme halophile that requires 4 M of NaCl for optimal growth. The genus
Methanosalsum is represented by M. zhilinae and M. natronophilum, which are mod-
erate halophiles and alkaliphiles. The genus Methanohalophilus comprises moderate
halophilic and halotolerant species, which grow best with 1–2 M of NaCl. The genera
Methanococcoides and Methanolobus are difficult to differentiate by phenotypic prop-
erties, as they all use methylated compounds for methanogenesis; they require phylo-
genetic analysis for taxonomy. The genus Methanimicrococcus is represented by a
single spcies Methanimicrococcus blatticola, which is a dominant methylotrophic
methanogen in the cockroach hindgut (Sprenger et al. 2000). It has 83.4–89.8% 16S
rRNA gene sequence similarities with other species of Methanosarcinales, suggesting
that it could potentially represent a new family. This is further supported by the fact that
it cannot disproportionate methyl-group containing compounds, a feature shared by all
other Methanosarcinaceae spp. Instead, methanol and methylated amines must be
reduced with H2 for methanogenesis. This obligately hydrogenotrophic and
methylotrophic mode of growth is shared with Methanosphaera and Methanomassi-
liicoccus, which belongs to the Methanobacteriales and Methanomassiliicoccales,
respectively.

Members of the family Methanosaetaceae use acetate as the sole energy source.
Acetate and CO2 serve as carbon sources. Cells form filament-like structures within
the sheath, which is composed predominantly with proteins and contains
carbohydrates.
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Methanogens from only two genera, Methanosarcina and Methanosaeta, can
use acetate as a substrate for methanogenesis. However, they metabolize acetate
differently. Methanosarcina is a relative generalist that prefers methanol and
methylamine to acetate, and many species also utilize H2. Methanosaeta is a
specialist that uses only acetate. Methanosaeta is a superior acetate utilizer in
that it can use acetate at concentrations as low as 5–20 μM, whileMethanosarcina
requires a minimum concentration of about 1 mM (Jetten et al. 1992). The
difference of acetate affinity is probably due to different systems for acetate
activation. Moreover, based upon their genome sequences, these two genera
probably have different modes of electron transfer and energy conservation,
even though the methanogenesis pathways are likely to be similar (Smith and
Ingram-Smith 2007).

The family Methermicoccus is represented by Methermicoccus shengliensis. Its
closest neighbor in the 16S rRNA phylogenetic tree is Methanosaeta (< 90.7%
sequence similarities). It is morphologically differentiated fromMethanosaeta by its
coccoid-shape and formation of large cysts. Moreover, M. shengliensis uses meth-
anol and methylated amines, but not acetate, for methanogenesis.

Members of the order Methanosarcinales have the widest substrate range
among methanogens. All members can produce methane by disproportionating
methyl-group containing compounds (methanol, methylamines, methyletha-
nolamines, betaine, or methyl sulfides) or by splitting acetate. Some mesophilic
Methanosarcia species can reduce CO2 with H2, but formate, secondary alcohols,
and ethanol are not used as electron donors. Recently, it has been shown that
Methermicoccus spp. are surprisingly capable of growth and methane production
using methoxylated aromatic compounds (MACs) such as methoxy-benzoate
(Mayumi et al. 2016). Ammonium and sulfide serve as the major nitrogen and
sulfur sources, respectively. Their cellular morphologies are diverse, including
cocci, pseudosarcinae, and sheathed rods. Most cells have protein cell walls, and
some cells are surrounded by a sheath or acidic heteropolysaccharide. Most strains
are nonmotile. The cellular lipids contain archaeol, hydroxyarchaeol, and
caldarchaeol. Polar lipids can contain glucose, galactose, mannose, myo-inositol,
ethanolamine, serine, and glycerol, depending upon the species. Most species of
Methanosarcinales are mesophilic. Four species are moderately thermophilic
(Methanosarcina thermophila, Methanomethylovorans thermophila,
Methanosaeta thermophila, and Methermicoccus shengliensis), and six species
are psychrotolerant (Methanococcoides alaskense, Methanococcoides burtonii,
Methanosarcina lacustris, Methanosarcina soligelidi, Methanosarcina splelaei,
and Methanosarcina baltica). Most species grow best at near neutral pH, except
for three species that are alkaliphilic (Methanolobus oregonensis, Methanolobus
taylorii, Methanosalsum natronophilum, and Methanosalsum zhilinae). Many
species were isolated from marine environments and require a salinity near that
of seawater for optimal growth. Some species are halophilic or halotolerant.
Descriptive properties of members of the Methanosarcinales are summarized in
Table 11. Further information can be found in Boone et al. (2001c) and Kendall
and Boone (2006).
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Table 11 Descriptive characteristics of the species of the order Methanosarcinales (Modified
from Liu (2010d))

Organism
Type
strain Sourcea Dimensions (μm) Flagella

Methano-
genesis
substratesb

Methanococcoides

alaskense AK-5 Marine
sediments

1.5–2.0 Flagellatedd (Methanol),
TMA

burtonii DSM
6242

Hypolimnion of
ice lake

0.8–1.8 Monotrichous Methanol,
MeNH2

methylutens TMA-10 Submarine
canyon
sediments

1.0 None Methanol,
MeNH2

vulcani SLH33 Marine
sediments

0.6–1.7 Single to four Methanol,
MeNH2, TMA,
DMA, betaine,
choline, DMEA

Methanohalobium

evestigatum Z-7303 Saline lagoon
sediments

0.2–2 None MeNH2

Methanohalophilus

euhalobius 283 Mineralized
stratal waters of
oil deposits

1.0–2.5 None Methanol,
MeNH2

halophilus Z-7982 Salinarium
sediments

0.5–2.0 None (Methanol),
MeNH2

levihalophilus GTA13 Palaeo-seawater 0.7–1.0 None TMA, DMA

mahii SLP Salt lake
sediments

1.0 None Methanol,
MeNH2

portucalensis FDF-1 Salinarium
sediments

0.6–2.0 None Methanol,
MeNH2

Methanolobus

bombayensis B-1 Marine
sediments

1.0–1.5 None Methanol,
MeNH2, DMS

chelungpuianus St54 5 Mb Deep fault
sandstone

0.5–0.7 None Methanol,
TMA

oregonensis WAL1 Alkaline, saline
aquifer

1.0–1.5 None Methanol,
MeNH2, DMS

profundi MobM Deep sediments
of a natural gas
field

0.9–1.2 Multiple methanol,
MeNH2, DMA,
TMA

taylorii GS-16 Estuarine
sediments

0.5–1.0 None Methanol,
MeNH2, DMS

tindarius Tindari3 Marine
sediments

0.8–1.25 Monotrichous Methanol,
MeNH2

vulcani PL-12/M Marine
sediments

0.8–1.25 None Methanol,
MeNH2

zinderi SD1 Saline coal seam 1.0–2.0 None Methanol,
MeNH2, DMA,
TMA



Organic
growth factors

Temperature
range
(optimum) (�C)

pH range
(optimum)

NaCl range
(optimum) (M)

Doubling
timec (h)

GC
content
(mol%) References

None �2.3–30.6
(23.6)

6.3–7.5 (7.5) 0.1–0.8
(0.3–0.4)

~85 39.5–41.9
(Tm)

(Singh et al. 2005)

None �2.54f–29.5
(23.4)

6.8–8.2 (7.7) 0.2–0.5 (0.2) 24 39.6 (Tm) (Franzmann et al.
1992)

Biotin 15–35 (30–35) 6.0–8.0
(7.0–7.5)

0.1–1.0 (0.4) 5.2 42 (Tm) (Sowers and Ferry
1983)

None nd–35 (30) 6–7.8 (7.0) 0.08–1.02
(0.5)

21 43.4 (LC) (L’Haridon et al.
2014)

Vit 25–60 (50) 6.0–8.3
(7.0–7.5)

1.7–5.1 (4.3) nd 37 (Tm) (Zhilina and
Zavarzin 1987a)

Biotin 15–50 (28–37) 5.8–8.0
(6.8–7.3)

0.16–2.3 (1.0) nd 43.0 (Davidova et al.
1997)

None 18–42 (26–36) 6.3–7.4
(6.5–7.4)

0.3–2.6
(1.2–1.5)

nd 41–44
(Tm)

(Wilharm et al.
1991)

Vit 20–40 (35) 6.2–8.3
(7.0–7.5)

0.2–1.3
(0.35–0.4)

18 43.7 (Katayama et al.
2014)

Biotin,
thiamine

10–45 (35) 6.8–8.2 (7.5) 0.4–3.5 (2.0) nd 48.5 (Bd) (Paterek and Smith
1988)

Biotin >25–45 (40) 6.2–8.2 (7.2) 0.5–3.5 (2) ~7 43–44
(Bd)

(Boone et al. 1993a)

None 20–42 (37) 6.2–8.2 (7.2) 0.3–2 (0.5) 4.4 39.2 (LC) (Kadam et al. 1994)

None 24–45 (37) 6.8–7.4 (7.0) 0–0.678
(0–0.08)

7.6 48.3 (LC) (Wu and Lai 2011)

Biotin,
thiamine

25–42 (35) 8.2–9.2 (8.6) 0.1–1.6 (0.35) 7 40.9 (LC) (Liu et al. 1990)

None 9–37 (30) 6.1–7.8 (6.5) 0.1–1.0 (0.35) 5 42.4 (LC) (Wu and Lai 2011)

Biotin 5–42 (37) 5.5–9.2 (8) 0.2–1.2 (0.5) nd 40.8 (LC) (Oremland and
Boone 1994)

None 10–45 (25) 5.5–8.0 (6.5) 0.06–1.27
(0.5)

nd 40 (Tm) (Konig and Stetter
1982)

Biotin 13–45 (40) 6.0–7.5 (7.2) 0.1–1.2 (0.5) 5.3 39 (Bd) (Kadam and Boone
1995)

None 25–50 (45–50) 6.0–9.0
(7.0–8.0)

0.05–1.8
(0.2–0.6)

~9.9 42 (Tm) (Doerfert et al.
2009)

(continued)
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Table 11 (continued)

Organism
Type
strain Sourcea Dimensions (μm) Flagella

Methano-
genesis
substratesb

Methanomethylovorans

hollandica DMS1 Freshwater
sediments

1–1.5 None Methanol,
MeNH2, MT,
DMS

thermophila L2FAW UASB reactor 0.7–1.5 None Methanol,
MeNH2

uponensis EK1 Wetland
sediment

0.9–1.1 nd Methanol,
MeNH2, DMA,
TMA, DMS,
MT

Methanosalsum

natronophilum AME2 Hypersaline soda
lake sediments

0.7–2 None Methanol,
TMA, DMS

zhilinae WeN5 Alkaline, saline
lake sediments

0.75–1.5 Mono/
ditrichous

Methanol,
MeNH2, DMS

Methanosarcina

acetivorans C2A Marine
sediments

1.7–2.1 None ac, methanol,
MeNH2, CO

baltica GS1-A Marine
sediments

1.5–3.0 Monotrichous ac, methanol,
MeNH2

barkeri MS Sewage sludge 1.5–2.0 None H2 þ CO2, ac,
methanol,
MeNH2, CO

horonobensis HB-1 Deep subsurface
groundwater

1.4–2.9 None Methanol,
DMA, TMA,
DMS, ac

lacustris ZS Lake sediments 1.5–3.5 None H2 þ CO2,
methanol,
MeNH2

mazei S-6 Sewage sludge 1.0–3.0 None (H2 þ CO2),
(ac), methanol,
MeNH2

semesiae MD1 Mangrove
sediment

0.8–2.1 nd Methanol,
MeNH2, MT,
DMS

siciliae T4/M Marine canyon
sedimetns

3.4 nd Methanol,
MeNH2, DMS

soligelidi SMA-21 Permafrost-
affected soil

1.3–2.5 nd H2 þ CO2,
methanol, ac

splelaei MC-15 Sulphurous
subsurface lake

2.0–4.0 nd H2 þ CO2,
methanol, ac,
methanol,
MeNH2, DMA,
TMA

subterranea HC-2 Subsurface
groundwater

0.9–1.4 None Methanol,
MeNH2, DMA,
TMA, DMS

thermophila TM-1 Anaerobic
digestor

100e None ac, methanol,
MeNH2, CO



Organic
growth factors

Temperature
range
(optimum) (�C)

pH range
(optimum)

NaCl range
(optimum) (M)

Doubling
timec (h)

GC
content
(mol%) References

Vit 12–40 (34–37) 6.0–8.0
(6.5–7.0)

0–0.3 (0–0.04) 11.6 34.4 (Tm) (Lomans et al.
1999)

None 42–58 (50) 5–7.5 (6.5) <0.3 (0–0.1) 14 37.6 (Tm) (Jiang et al. 2005)

None 25–40 (37) 5.5–7.5
(6.0–6.5)

0–0.1 (0) 11.6 39.2 (Tm) (Cha et al. 2013)

None nd–43 (37) 8.2–10.2
(9.5)

0.5–3.5 (1.5) nd 44.8 (Tm) (Sorokin et al.
2015)

None 20–50 (45) 8.0–10 (9.2) 0.2–2.1
(0.4–0.7)

6 39.5 (Tm) (Mathrani et al.
1988)

None 15–48 (35–40) 5.4–8.5
(6.5–7.0)

0.1–1.0 (0.2) 5.2 41 (Tm) (Sowers et al. 1984)

None 4–27 (25) 4–8.5
(6.5–7.5)

0.1–0.7
(0.3–0.4)

84 nd (von Klein et al.
2002)

None 25–50 (30–40) 5.5–7.5 (7.0) 0.1–0.7 (<0.2) nd 39–44
(Bd)

(Bryant and Boone
1987)

None 20–42 (37) 6.0–7.75
(7.0–7.25)

0–0.35 (0.1) 5.0 41.4 (LC) (Shimizu et al.
2011)

YE 1–35 (25) 4.5–8.5 (7.0) nd (nd) 49 43.4 (Tm) (Simankova et al.
2001)

None 25–45 (35–42) 5.5–8.0
(6.8–7.2)

0.1–0.7
(0.2–0.4)

7 42 (Bd) (Mah and Kuhn
1984)

nd 18–39 (30–35) 6.2–8.3
(6.5–7.5)

>0– < 1.5
(0.2–0.6)

3.9 nd (Lyimo et al. 2000)

None 15–42 (40) 5.0–7.8
(6.5–6.8)

0.2–0.8
(0.4–0.6)

7 41–43 (Elberson and
Sowers 1997)

None 0–54 (28) 4.8–9.9 (7.8) 0.02–0.6
(0.02)

122.4 40.9 (LC) (Wagner et al. 2013)

None 0–54 (33) 4.0–10.0
(6.5)

0.02–0.6
(0.05)

122.4 39.0 (LC) (Ganzert et al.
2014)

None 10–40 (35) 5.9–7.4
(6.6–6.8)

0–0.6
(0.1–0.2)

8.9 41.5 (LC) (Shimizu et al.
2015)

PABA <35–55 (50) 5.5–8.0
(6.0–7.0)

0–1.2 (0.6) 5.3 42 (Bd) (Zinder et al. 1985)

(continued)
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Table 11 (continued)

Organism
Type
strain Sourcea Dimensions (μm) Flagella

Methano-
genesis
substratesb

vacuolata Z-761 Methanogenic
digestor

1.0–2.0 None H2 þ CO2, ac,
methanol,
MeNH2

Methanosaeta

concilii GP6 Sewage sludge 0.8–1.3 � 2.0–7.0 None ac

harundinacea 8Ac UASB reactor 0.8–1.0 � 3.0–5.0 None ac

thermophila PT Thermophilic
anaerobic
digestor

0.8–1.3 � 2.0–6.0 None ac

Methanimicrococcus

blatticola PA Cockroach
hindgut

0.8 nd Methanol,
MeNH2, H2

Methermicoccus

shengliensis ZC-1 Oilfield 0.7–1.0 Flagellated Methanol,
MeNH2, MACs

Abbreviations: nd not determined, ac acetate, MeNH2 methylamines, DMS dimethylsulfide, MT methanethiol,
TMA trimethylamine, DMA dimethylamine, DMEA N,N-dimethylethanolamine, MACs methoxylated aromatic
compounds, vit vitamins, TP trypticase peptone, YE yeast extract, CoM 2-mercaptoethanesulfonic acid
(conenzyme M), PAPA p-aminobenzoate, Bd buoyant density method, Tm melting point method, LC liquid
chromatography
aEnvironment from which the type strain was isolated
bParentheses means utilized by some strains, but not all strains
cDoubling time of the type strain under optimal growth conditions of temperature, pH, and NaCl
dFlagellated in some strains, but not all strains
eIrregular aggregates composed of coccoid cells
fThe minimum growth temperature is predicted by applying the Ratkowsky model to temperature growth data



Organic
growth factors

Temperature
range
(optimum) (�C)

pH range
(optimum)

NaCl range
(optimum) (M)

Doubling
timec (h)

GC
content
(mol%) References

None 18–42 (37–40) 6.0–8.0 (7.5) 0.1–0.5 (0.1) nd 36.3 (Tm) (Zhilina and
Zavarzin 1987b)

Vit >10– � 45
(35–40)

�6.6– < 7.8
(7.1–7.5)

nd (nd) 65 49.0 (Tm) (Patel and Sprott
1990)

YE/TP 25–45 (34–37) 6.5–9.0
(7.2–7.6)

nd (nd) 28 55.7 (Tm) (Ma et al. 2006)

None >30– � 70
(55–60)

>5.5– � 8.4
(6.5–6.7)

nd (nd) 35.8 52.7–54.3
(LC)

(Kamagata and
Mikami 1991)

ac, CoM, YE,
tryptic soy
broth, vit

20–40 (39) 6.8–8.2
(7.2–7.7)

0–0.3 (<0.1) 3.1 nd (Sprenger et al.
2000)

YE/TP 50–70 (65) 5.5–8.0
(6.0–6.5)

0.2–1.1
(0.3–0.5)

5 56 (Tm) (Cheng et al. 2007;
Mayumi et al. 2016)
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2.5 Methanopyrales

The order of Methanopyrales is represented by only one species, Methanopyrus
kandleri. It is hyperthermophilic and produces methane by CO2 reduction with H2.
Genomic sequence analysis of M. kandleri suggests that it is closely related to
Methanobacteriales and Methanococcales but possesses unusual features.

The phylogenetic position ofM. kandleri is ambiguous. The phylogenic analyses
based on 16S rRNA gene (Burggraf et al. 1991), elongation factor 1α (Rivera and
Lake 1996), and transcription factors (Brochier et al. 2004) suggested that M.
kandleri is distantly related to other methanogens and represent a separate lineage
emerging at the base of the euryarchaeal phylum. On the other hand, phylogenetic
analyses based on methyl coenzyme M reductase (MCR) operons (Nolling et al.
1996), translation factors (Brochier et al. 2004), and whole genome sequences
(Slesarev et al. 2002; Gao and Gupta 2007) suggested that M. kandleri is more
closely related to other methanogens and grouped with Methanobacteriales and
Methanococcales. Indeed, M. kandleri encodes the core of proteins shared uniquely
by methanogens such as proteins evolved in the methanogenesis pathway, and it
closely resembles other methanogens in terms of local gene order. Therefore,
M. kandleri very likely belongs to the monophyletic methanogen group and not a
deep-branch close to the root of archaea. The deep branching in 16S rRNA phylo-
genetic tree is probably due to a very high GC content ofM. kandleri, a characteristic
shared by hyperthermophiles outside the methanogen group.

The genome of M. kandleri displays several unusual features (Slesarev et al.
2002; Brochier et al. 2004). The RNA polymerase subunit H is replaced by a
homologous protein from a distantly related archael lineage. The transcription factor
S (TFS) is missing. The diversity of predicted signal transduction systems and DNA-
binding proteins are underrepresented. The histone protein is formed by a fusion of
two monomers into a single peptide with two tandemly repeated histone folds.
M. kandleri possesses a unique topoisomerase, Topo V, which is related to eukary-
otic topoisomerase I (Slesarev et al. 1994). These unusual features suggest a high
level of gene loss, gene capture, and gene fusion in this archaeon.

Methanopyrus kandleri is the only methanogen known so far that catalyzes
methanogenesis at temperatures higher than 100 �C. It reduces CO2 with H2 for
methanogenesis. It is an obligate chemolithoautotroph that uses CO2 as the sole
carbon source. Ammonium and sulfide are the nitrogen and sulfur sources, respec-
tively. The cells are rod-shaped and stain Gram positive. The cell wall is double
layered. The inner layer is composed of a new type of pseudomurein, containing
ornithine and lysine. The outer layer is detergent-sensitive, indicating a protein
composition. The core lipid is composed of an unsaturated terpenoid lipid, which
is considered the most primitive lipid in the evolution of membranes (Hafenbradl
et al. 1993). The cells are motile via flagella arranged as polar tufts. They grow at
temperatures ranging from 84 �C to 110 �C, with an optimum of 98 �C. The range of
pH for growth is 5.5–7, with an optimum of 6.5. The optimal NaCl concentration for
growth is 2.0% (w/v). The GC content of its DNA is 60 mol%. M. kandleri was
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isolated from hydrothermally heated deep-sea sediments and from a shallow marine
hydrothermal system (Kurr et al. 1991).

2.6 Methanocellales

The orderMethanocellales is represented by one family and genus,Methanocellaceae
and Methanocella, respectively. Three species have been described, and they are
distinguished by 16S rRNA sequence similarities below 92% and differences in
growth temperatures, substrates for methanogenesis, possession of a flagellum, dou-
bling time and NaCl range. The low 16S rRNA sequence similarities suggest potential
separation into more genera, which is supported by comparative genomic studies
(Sakai et al. 2011; Lyu and Lu 2015). The Methanocella are all capable of producing
methane from H2/CO2, but acetate is required for growth. Formate can also be used as
an alternative substrate by two species.

Members of Methanocellales are isolated from rice soils. They do not appear to
grow autotrophically due to the requirement of acetate for growth. Sulfide and
ammonium is a sufficient sulfur and nitrogen source, respectively. Cells are typically
rods, but coccoid cells are also seen during late stage of growth. Cells can form a
unique lens-shaped colony. Cell envelopes are composed of an S-layer as determined
in Methanocella avoryzae. Cell envelopes have not been determined in
Methanocella paludicola and Methanocella conradii, but they are resistant to lysis
by 2.0% and 0.1% of SDS, respectively. A flagellum is also present in both
M. avoryzae and M. conradii, but not in M. paludicola. Cellular lipids have not
been determined. They all grow optimally in the absence of NaCl and at neutral pH.
The optimal growth temperatures range from 37 �C to 55 �C. Descriptive properties
of the Methanocellales are summarized in Table 12. Further information can be
found in Sakai et al. (2008, 2010), and Lü and Lu (2012b).

2.7 Methanomassiliicoccales

The order Methanomassiliicoccales is represented by one family and genus,
Methanomassiliicoccaceae and Methanomassiliicoccus, respectively (Dridi et al.
2012; Iino et al. 2013). Although a few enrichment cultures are available, only one
species Methanomassiliicoccus luminyensis has been described (Borrel et al. 2012a,
2013; Dridi et al. 2012; Iino et al. 2013). This species was isolated from human
faeces, and it reduces methanol with H2 to produce methane. However, genomic,
transcriptomic and in vivo studies suggest that members ofMethanomassiliicoccales
also reduce tri-, di- and monomethylamine with H2 (Poulsen et al. 2013; Borrel et al.
2014; Brugere et al. 2014). Cells are non-motile cocci and lysed in 0.1% (w/v) SDS.
It grows optimally at 1% of NaCl, 37 �C and at pH 7.6. Descriptive properties of the
Methanomassiliicoccales are summarized in Table 13. Further information can be
found in Dridi et al. (2012) and Brugere et al. (2014).
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2.8 Potential Novel Taxa

Through metagenomics guided discovery, a few potential novel taxa of
methanogens have been proposed recently. That includes a euryarchaeon,
Candidatus ‘Methanofastidiosa’, and members of the archaeal phyla Bathyarchaeota
(previously known as the Miscellaneous Crenarchaeota Group) and Verstrae-
tearchaeota previously represented by the Terrestrial Miscellaneous Crenarchaeota
Group or TMCG) (Evans et al. 2015; Nobu et al. 2016; Vanwonterghem et al. 2016).
They are all predicted to reduce different methylated compounds with H2 for
methanogenesis, but members of Bathyarchaeota and Verstraetearchaeota may also
use complex substrates such as lactate. Pure cultures are still needed to further
confirm these findings, which would likely not only lead to proposals of novel
methanogen classes but establishment of methanogen taxa outside the
Euryarchaeota.

Table 12 Descriptive characteristics of the species of the genus Methanocella

Character

Methanocella

paludicola avoryzae conradii

Type strain SANAE MRE50 HZ254

Cell width (μm) 0.3–0.6 0.4–0.7 0.2–0.3

Cell length (μm) 1.8–2.4 1.3–2.8 1.4–2.8

Flagellum None Single Single

Substrates for methanogenesis H2 þ CO2,
formate

H2 þ CO2,
formate

H2 þ CO2

Acetate requirement + + +

Yeast extract stimulates
growth

+ + +

Nitrogen source NH3 NH3
a NH3

a

Sulfur source S2�b S2� S2�b

Temperature range (�C) 25–40 37–55 37–60

Temperature optimum (�C) 35–37 45 55

pH range 6.5–7.8 6.0–7.8 6.4–7.2

pH optimum 7.0 7.0 6.8

NaCl range (%, w/v) 0–0.1 0–2 0–0.5

NaCl optimum (%, w/v) 0 0–0.2 0–0.1

GC content (mol%)c 54.9 (Gs) 54.6 (Gs) 52.7 (Gs)

Doubling time (h) 100.8 8.0 6.4–7.2

Source Rice soil Rice soil Rice soil

References (Sakai et al. 2008) (Sakai et al. 2010) (Lü and Lu
2012b)

aMay use N2 according to genomic predictions (Lyu and Lu 2015)
bMay use SO4

2� according to genomic predictions (Erkel et al. 2006; Sakai et al. 2011)
cGs genome sequencing
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3 Ecology of Methanogens

Methanogens are abundant in a wide variety of anaerobic habitats such as marine
sediments, freshwater sediments, flooded soils, human and animal gastrointestinal
tracts, anaerobic digestors, landfills, and geothermal systems (Liu and Whitman
2008). This cosmopolitan distribution of methanogens could be associated with
their growth largely relied on only simple substrates such as H2/CO2, acetate,
formate and other C1 compounds, which are widely available across ecosystems
where complex substrates have to be degraded into simple substrates to drive the
carbon cycle. A recent metagenomics survey has also predicted the presence of
complex fermentation and β-oxidation pathways in the putative Bathyarchaeota
methanogens, suggesting the ability of using complex substrates may be advanta-
geous for methanogens that thrive in environments where degradation of complex
substrates could be very slow (Evans et al. 2015). In addition, some methanogens as
described in the taxonomy and phylogeny section can also survive extreme envi-
ronmental conditions such as hyperthermophilic, psychrophilic, piezophilic, halo-
philic, alkaliphilic and acidophilic, which further expands their habitats.

In some natural habitats, methanogens are also present in microoxic environ-
ments. For example, members of Methanobrevibacter have been isolated from

Table 13 Descriptive characteristics of Methanomassiliicoccus luminyensis

Character M. luminyensis

Type strain B10

Cell diameter (μm) 0.7–1.0

Flagellum None

Substrates for methanogenesis H2 þ methanol/TMAa/DMAb/MeNH2
c

Acetate requirement �
Yeast extract requirement +

Temperature range (�C) 25–45

Temperature optimum (�C) 37

pH range 7.2–8.4

pH optimum 7.6

NaCl range (%, w/v) 0.1–1.5

NaCl optimum (%, w/v) 1

GC content (mol%) 59.9 (Gs)
d

Doubling time nde

Source Human faeces

References (Dridi et al. 2012; Brugere et al. 2014)
aTMA trimethylamine
bDMA dimethylamine
cMeNH2 monomethylamine
dGs genome sequencing
end not determined
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large dental caries and subgingival plaque in the human mouth and gut periphery
in termites. They are also somewhat oxygen tolerant, probably due to the presence
of catalase activity and the protection by O2-uptake aerobes (Brusa et al. 1987;
Belay et al. 1988; Leadbetter and Breznak 1996). Methanocellales methanogens
are prevalent in rice rhizosphere, which is transiently oxic, and their genomes
encode a unique set of antioxidant enzymes, which may explain an aerotolerant
life style (Erkel et al. 2006; Sakai et al. 2011; Lü and Lu 2012a; Lyu and Lu 2015,
2017).

In methanogenic habitats, electron acceptors such as O2, NO3
�, Fe3+, and

SO4
2� are limiting. When electron acceptors other than CO2 are present,

methanogens are outcompeted by the bacteria that utilize them. This phenomenon
occurs mainly because the reductions of these compounds are thermodynamically
more favorable than CO2 reduction to methane. However, because CO2 is gener-
ated during fermentations, it is seldom limiting in anaerobic environments.
Besides methanogens, homoacetogens are another group of anaerobes that can
reduce CO2 for energy production. However, acetogenesis with H2 is thermody-
namically less favorable than methanogenesis. Therefore, homoacetogens do not
compete well with methanogens in many habitats. However, homoacetogens
outcompete methanogens in some environments, such as the hindgut of certain
termites and cockroaches. Possible explanations are their metabolic versatility as
well as lower sensitivity to O2. The ecology of each methanogen order is
discussed below.

3.1 Methanobacteriales

Members of the Methanobacteriales are widely distributed in anaerobic habitats
such as marine and freshwater sediments, soils, animal gastrointestinal tracts,
anaerobic sewage digestors, and geothermal habitats.Methanobacterium has been
cultivated from marine and freshwater sediments, groundwaters, soils, anaerobic
digestors, and animal gastrointestinal tracts and has also been detected as endo-
symbionts in anaerobic ciliate (Embley et al. 1992).Methanobrevibacter has been
isolated from rumens, feces, termite hindguts, human subgingival plaque, anaer-
obic digestors, and decaying wood tissues. Methanosphaera has only been iso-
lated from animal gastrointestinal tracts but has been detected in anaerobic
digestors (Weiss et al. 2008). Methanothermobacter has been cultivated from
thermophilic anaerobic digestors and natural gas and oil fields (Nazina et al.
2006; Mochimaru et al. 2007). Methanothermus has only been isolated from
solfarata hot springs.

3.2 Methanococcales

Members of the Methanococcales have all been isolated from marine environ-
ments. Methanococcus has been isolated from marine and salt marsh sediments.
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Methanothermococcus has been isolated from coastal geothermally heated sea
sediments, deep sea hydrothermal vents, and reservoir water from marine oil fields
(Nilsen and Torsvik 1996) and has been detected in continental high-temperature
oil reservoirs (Orphan et al. 2000) and tropical hypersaline coastal lagoons
(Clementino et al. 2008). Methanocaldococcus has only been isolated from
deep sea hydrothermal vents. Methanotorris has been isolated from shallow and
deep sea hydrothermal vents. Environmental 16S rRNA sequences closely related
to Methanococcales have also been detected in anaerobic granular sludge (Liu
et al. 2002; Diaz et al. 2003). Quantitative real-time PCR assays have also recently
shown possible presence of Methanococcales in forest and grassland soils, but
how specific the primers were remain unknown (Hofmann et al. 2016). Since this
finding is very much unexpected, sequence data is also needed to make conclusive
taxonomy inference.

3.3 Methanomicrobiales

Members of the Methanomicrobiales are widely distributed in anaerobic habitats,
including marine and freshwater sediments, anaerobic sewage digestors, rice
paddies, oil fields, groundwaters, and animal gastrointestinal tracts. Anaerobic
digestors and sewage sludge are common habitats ofMethanoculleus,Methanofollis,
Methanocorpusculum, Methanospirillum, and Methanomicrobium. From marine
sediments, species belonging to Methanoculleus, Methanogenium, and
Methanolacinia have been isolated. From freshwater sediments, species belonging
to Methanoculleus, Methanogenium, and Methanocorpusculum have been isolated.
From rice roots and rice-field soils, species belonging to Methanoculleus have been
isolated, and environmental clone sequences closely related to Methanoculleus and
Methanogenium have been identified (Kudo et al. 1997).Methanomicrobium mobile
has been isolated from bovine rumen (Paynter and Hungate 1968). Methanoplanus
endosymbiosus lives as endosymbiont of the marine ciliate Metopus contortus
(Bruggen et al. 1986).

3.4 Methanosarcinales

Members of the Methanosarcinales are widely distributed in marine and freshwater
sediments, anaerobic digestors, and animal gastrointestinal tracts. Methanosarcina
has been isolated from marine and freshwater sediments, anaerobic digestors, and
rumen and has been detected in rice paddies (Chin et al. 2004; Krüger et al. 2005;
Lu et al. 2005). Methanococcoides and Methanolobus have been isolated from
aquatic environments with salinity near that of seawater. The habitats of
Methanohalobium, Methanohalophilus, and Methanosalsum are restricted to hyper-
saline environments. Methanomethylovorans has been isolated from freshwater
sediments and bioreactors. Methanosaeta has been isolated from freshwater sedi-
ments and anaerobic digestors and has been detected in rice paddies (Chin et al.
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2004; Krüger et al. 2005) and marine sediments (Purdy et al. 2002). Methanimi-
crococcus has been isolated from cockroach hindgut and has been detected in
anaerobic digestors (Weiss et al. 2008).

3.5 Methanocellales

All members of the Methanocellales have been isolated from rice soils, but they are
also widely distributed in terrestrial ecosystems such as wetland soils and freshwater
sediments based on environmental DNA sequence surveys (Conrad et al. 2006;
Sakai et al. 2008, 2010; Lü and Lu 2012b). Methanocellales have been studied
extensively in rice soils both in situ and in microcosms, revealing the following
unique ecophysiological features. (i) They are closely associated with rice roots
where they can actively convert plant-derived carbon into biomass and methane
(Lu and Conrad 2005); (ii) they are able to tolerate the microaerophilic conditions
around the rice roots, probably due to a robust antioxidant system encoded in their
genomes (Erkel et al. 2006; Conrad et al. 2008; Sakai et al. 2011; Lü and Lu 2012a;
Lyu and Lu 2017); (iii) they tend to become more active under low H2 but high
temperature conditions (Lu et al. 2005; Wu et al. 2006; Peng et al. 2008; Sakai et al.
2009); and (iv) they frequently form syntrophic relationships with fatty acid
degrading bacteria (Lueders et al. 2004; Liu et al. 2011; Rui et al. 2011; Gan et al.
2012). Additional ecophysiological features have also been revealed by studying
Methanocellales in acidic peat soils, tank bromeliads and arid soils, suggesting that
at least some members of Methanocellales could survive moderately acidic condi-
tions, interact with plants other than rice such as Sphagnum in peat soil and tank
bromeliads in neotropical forests, and tolerate desiccation (Sizova et al. 2003;
Cadillo-Quiroz et al. 2010; Martinson et al. 2010; Angel et al. 2011, 2012).

3.6 Methanomassiliicoccales

Only one member of Methanomassiliicoccales has been isolated into pure culture
from human feces (Dridi et al. 2012). Metagenomic analysis with human feces
enrichment samples also revealed two new candidate species Candidatus
‘Methanomassiliicoccus intestinalis’ and Candidatus ‘Methanomethylophilus
alvus’ (Borrel et al. 2012, 2013). This apparent common association with human
suggests thatMethanomassiliicoccalesmay play a role in human health. Due to their
ability to metabolize trimethylamine into methane, it has been proposed that
Methanomassiliicoccales may prevent or limit human diseases that are induced by
trimethylamine (Brugere et al. 2014). However, distribution of Methanomassilii-
coccales is not restricted to the human gut. An enrichment culture from anaerobic
digester has led to the proposal of another candidate species Candidatus
‘Methanogranum caenicola’ (Iino et al. 2013). Environmental DNA sequence survey
has suggested that Methanomassiliicoccales could be grouped into two clades, a
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gastro-intestinal tract clade that is largely associated with animal samples, and an
environmental clade which includes mainly aquatic and terrestrial samples.

3.7 Other Methanogen Candidates

Methanogenesis pathways have been predicted from a euryarchaeon, Candidatus
‘Methanofastidiosa’, members of the newly proposed archaeal phyla Verstraetearchaeota
and Bathyarchaeota (Evans et al. 2015; Nobu et al. 2016; Vanwonterghem et al. 2016).
Candidatus ‘Methanofastidiosa’ belongs to the uncultivated WSA2 or Arc I cluster,
which has long been identified as a core euryarchaeal group in anaerobic digestion that
was previously thought to use H2/CO2 or formate for methanogenesis (Hendrickson
et al. 2004; Nakamura et al. 2013). However, genomic data has now proposed that
WSA2 methanogens may conduct methylated thiol reduction with H2 (Nobu et al.
2016). This suggests that they may be able to bridge the carbon and sulfur cycles,
which may enable competition with CO2 reducing methanogens and sulfate reducers.
Previously loosely classified as the Terrestrial Miscellaneous Crenarchaeota Group or
TMCG, members of Verstraetearchaeota methanogens also had their first metagenomes
reconstructed from anaerobic digesters, but environmental DNA sequence survey could
extend their distribution to wetlands, freshwater sediments, and hydrocarbon-rich envi-
ronments (Vanwonterghem et al. 2016). Previously known as the MCG or Miscella-
neous Crenarchaeotal Group, the recently proposed Bathyarchaeota have been found in
deep ocean and freshwater sediments, and they are particularly present in high abun-
dance within sulfate-methane transition zones (Vetriani et al. 1999; Inagaki et al. 2003;
Gagen et al. 2013; Evans et al. 2015). Likewise, their first metagenomes were recovered
from coal-bedmethane wells in an ocean basin (Evans et al. 2015). Although those novel
methanogen candidates suggest the diversity of methanogens would be much higher
than previously anticipated, interpretation of their environmental distribution and eco-
physiology should be cautious. This is because no pure cultures have been available so
far, and it remains elusive if every member of the WSA2, Verstraetearchaeota and
Bathyarchaeota could also be capable of methanogenesis as predicted from a limited
number of metagenomes.

4 Research Needs

A few established methanogen orders are still underrepresented by cultivated mem-
bers. Methanocellales is only represented by one genus, and both Methanomassilii-
coccales and Methanopyrales are represented by just one species. Discovery and
isolation of new strains will certainly add to our knowledge of the diversity of those
orders. Isolations of new strains are also necessary to support the classification of
Methanimicrococcus blatticola and Methermicoccus shengliensis as separate fami-
lies within the order Methanosarcinales and expand our knowledge of the diversity
of Methanosarcinales. On the other hand, since the Methanosarcinales can use a
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relatively broad range of substrates for methanogenesis, isolation of new strains
suitable for industrial purposes can be valuable.

Recent culture-independent studies have revealed the presence of novel phylo-
genetic groups of methanogens. Their isolation and characterization will also shed
new insight into these organisms. For instance, investigations of rumen methanogens
have found a novel lineage containing at least two families. The 16S rRNA gene
sequences of this group have similarities closest to, but less than 80%, with those of
Methanosarcinales (Nicholson et al. 2007). In addition, many novel methanogen
candidates are still only represented by metagenomes, such as the Candidatus
‘Methanofastidiosa’ and members of the archaeal phyla Verstraetearchaeota and
Bathyarchaeota (Evans et al. 2015; Nobu et al. 2016; Vanwonterghem et al. 2016).

Methanogens have fewer easily determined physiological characteristics than
most bacteria. Comparative 16S rRNA gene sequence analyses are indispensable
for determination of taxonomic levels higher than species. However, it is frequently
insufficient for taxonomy of methanogens at species and subspecies levels. For
instance, some isolates of Methanobrevibacter have >98% 16S rRNA gene
sequence similarities but exhibit less than 50% DNA relatedness, suggesting that
they belong to different species (Lin and Miller 1998; Keswani and Whitman 2001).
The discovery of novel molecular markers is desirable. The methyl-coenzyme M
reductase alpha-subunit (mcrA) gene has been applied as a phylogenetic marker for
methanogens in addition to 16S rRNA genes (Springer et al. 1995) and as a target for
the detection of methanogens in a wide range of environments (Ohkuma et al. 1995;
Lueders et al. 2001; Luton et al. 2002; Earl et al. 2003; Kemnitz et al. 2004).
Phylogenomic analyses based upon whole-genome sequences may lead to improve-
ment of the taxonomy and better view of phylogenetic relationships. For instance,
the genome-wide pairwise average nucleotide identity or ANI has been increasingly
used to delineate species (Goris et al. 2007). However, convenient tools and methods
will still need to be developed to meet the needs for analyzing large genome dataset.
The Joint Genome Institute or JGI has been a pioneer in this filed, which has
developed an Integrated Microbial Genome online pipeline to tackle the big data
challenge (Markowitz et al. 2007a, b, 2009). Another grand challenge is to associate
the environmental meta-data with the sequence data, which can provide enormous
ecophysiological context for not only interpreting the sequence data from a single
project but uncovering new trends across different projects.
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