
Madalina Croitoru · Pierre Marquis
Sebastian Rudolph · Gem Stapleton (Eds.)

 123

LN
AI

 1
07

75

5th International Workshop, GKR 2017
Melbourne, VIC, Australia, August 21, 2017
Revised Selected Papers

Graph Structures
for Knowledge Representation
and Reasoning

Lecture Notes in Artificial Intelligence 10775

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

Madalina Croitoru • Pierre Marquis
Sebastian Rudolph • Gem Stapleton (Eds.)

Graph Structures
for Knowledge Representation
and Reasoning
5th International Workshop, GKR 2017
Melbourne, VIC, Australia, August 21, 2017
Revised Selected Papers

123

Editors
Madalina Croitoru
LIRMM
Montpellier Cedex 5
France

Pierre Marquis
CRIL-CNRS and Université d’Artois
Lens
France

Sebastian Rudolph
Technische Universität Dresden
Dresden
Germany

Gem Stapleton
University of Brighton
Brighton
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-78101-3 ISBN 978-3-319-78102-0 (eBook)
https://doi.org/10.1007/978-3-319-78102-0

Library of Congress Control Number: 2018937369

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Versatile and effective techniques for knowledge representation and reasoning
(KRR) are essential for the development of successful intelligent systems. Many rep-
resentatives of next-generation KRR systems are based on graph-based knowledge
representation formalisms and leverage graph-theoretical notions and results. The goal
of the workshop series on Graph Structures for Knowledge Representation and Rea-
soning (GKR) is to bring together the researchers involved in the development and
application of graph-based knowledge representation formalisms and reasoning
techniques.

This volume contains extended and revised selected papers of the fifth edition of
GKR, which took place in Melbourne, Australia, on August 21, 2017. Like the pre-
vious editions, held in Pasadena, USA (2009), Barcelona, Spain (2011), Beijing, China
(2013), and Buenos Aires, Argentina (2015), the workshop was associated with IJCAI
(the International Joint Conference on Artificial Intelligence), thus providing the perfect
venue for a rich and valuable exchange. Beside the extended workshop papers, this
volume also contains two invited contributions of core GKR community members.

The scientific program of this workshop included many topics related to
graph-based knowledge representation and reasoning such as argumentation, concep-
tual graphs, formal concept analysis, graphical models, Bayesian networks, concept
diagrams, and many more. All in all, the fifth edition of the GKR workshop was very
successful. The papers coming from diverse fields all addressed various issues in
knowledge representation and reasoning and the common graph-theoretic background
allowed us to bridge the gap between the different communities. This made it possible
for the participants to gain new insights and inspiration.

We are grateful for the support of IJCAI and we would also like to thank the
Program Committee of the workshop for their hard work in reviewing papers and
providing valuable guidance to the contributors. But, of course, GKR 2017 would not
have been possible without the dedicated involvement of the contributing authors and
participants.

February 2018 Madalina Croitoru
Pierre Marquis

Sebastian Rudolph
Gem Stapleton

Organization

Workshop Chairs

Madalina Croitoru LIRMM, Université Montpellier II, France
Pierre Marquis CRIL-CNRS and Université d’Artois, France
Sebastian Rudolph Technische Universität Dresden, Germany
Gem Stapleton University of Brighton, UK

Program Committee

Simon Andrews Sheffield Hallam University, UK
Abdallah Arioua INRA, LIRMM, Université Montpellier II, France
Zied Bouraoui Cardiff University, UK
Dan Corbett Optimodal Technologies, USA
Olivier Corby Inria, France
Cornelius Croitoru University Al.I.Cuza Iaşi, Romania
Frithjof Dau SAP, Germany
Juliette Dibie-Barthélemy AgroParisTech, France
Peter Eklund IT University of Copenhagen, Denmark
Catherine Faron Zucker Université Nice Sophia Antipolis, France
Sebastien Ferre Université de Rennes 1, France
Christophe Gonzales LIP6, Université Paris 6, France
Ollivier Haemmerlé IRIT, Université Toulouse le Mirail, France
John Howse University of Brighton, UK
Bernard Moulin Université Laval, Canada
Laura Papaleo Université Paris-Sud, France
Simon Polovina Sheffield Hallam University, UK
Uta Priss Ostfalia University, Germany
Karim Tabia Université d’Artois, France
Srdjan Vesic CRIL, CNRS – Université d’Artois, France
Nic Wilson Insight UCC, Cork, Ireland
Stefan Woltran Vienna University of Technology, Austria
Bruno Yun Université Montpellier II, France

Additional Reviewers

Jan Maly Vienna University of Technology, Austria
Axel Polleres Vienna University of Economics and Business, Austria

Contents

Extended Workshop Papers

Exploring, Reasoning with and Validating Directed Graphs
by Applying Formal Concept Analysis to Conceptual Graphs 3

Simon Andrews and Simon Polovina

Subjective Bayesian Networks and Human-in-the-Loop
Situational Understanding. 29

Dave Braines, Anna Thomas, Lance Kaplan, Murat Şensoy,
Jonathan Z. Bakdash, Magdalena Ivanovska, Alun Preece,
and Federico Cerutti

Counting and Conjunctive Queries in the Lifted Junction
Tree Algorithm . 54

Tanya Braun and Ralf Möller

Representing and Reasoning About Logical Network Topologies 73
Shaun Voigt, Catherine Howard, Dean Philp, and Christopher Penny

From Enterprise Concepts to Formal Concepts: A University Case Study. . . . 84
Jamie Caine and Simon Polovina

Invited Contributions

Visualizing ALC Using Concept Diagrams. 99
Gem Stapleton, Aidan Delaney, Michael Compton, and Peter Chapman

Graph Theoretical Properties of Logic Based Argumentation Frameworks:
Proofs and General Results. 118

Bruno Yun, Madalina Croitoru, Srdjan Vesic, and Pierre Bisquert

Author Index . 139

Extended Workshop Papers

Exploring, Reasoning with and Validating
Directed Graphs by Applying Formal

Concept Analysis to Conceptual Graphs

Simon Andrews and Simon Polovina(B)

Conceptual Structures Research Group, Department of Computing, Communication
and Computing Research Centre, Sheffield Hallam University, Sheffield, UK

{s.andrews,s.polovina}@shu.ac.uk

Abstract. Although tools exist to aid practitioners in the construction
of directed graphs typified by Conceptual Graphs (CGs), it is still quite
possible for them to draw the wrong model, mistakenly or otherwise.
In larger or more complex CGs it is furthermore often difficult–without
close inspection–to see clearly the key features of the model. This paper
thereby presents a formal method, based on the exploitation of CGs as
directed graphs and the application of Formal Concept Analysis (FCA).
FCA elucidates key features of CGs such as pathways and dependencies,
inputs and outputs, cycles, and joins. The practitioner is consequently
empowered in exploring, reasoning with and validating their real-world
models.

1 Introduction

A directed graph–or “digraph”–is a graph whose edges have direction and are
called arcs [9,11]. Arrows on the arcs are used to encode the directional infor-
mation: an arc from vertex A to vertex B indicates that one may move from A
to B but not from B to A. Such graphs for example are used in computer science
as a representation of the paths that might be traversed through a program, or
in higher-level conceptual models where concepts are related to each other by
relations that gain additional semantics (i.e. meaning) by defining the direction
between the source and target concepts. A classic illustration is a cat that sits
on a mat [18]. In this simple example ‘sits-on’ is the semantic relation where the
direction goes from cat to mat and not vice versa.

CGs (Conceptual Graphs) are digraphs that enable modellers to express
meaning in a form that is logically precise whilst being humanly readable, and
serve as an intermediate language for translating between computer-oriented
formalisms and natural languages [14,19]. CGs graphical representation thereby
serve as a readable, but formal specification language for systems design or other
practitioners using this approach [10]. CGs are however drawn by hand. Tools
such as CoGui and CharGer already exist to assist the practitioner in creating
a well-formed CG (Conceptual Graph) that adheres to the prescribed grammar
and syntax [1,2]. However there is no guarantee that a model created using CGs
c© Springer International Publishing AG, part of Springer Nature 2018
M. Croitoru et al. (Eds.): GKR 2017, LNAI 10775, pp. 3–28, 2018.
https://doi.org/10.1007/978-3-319-78102-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_1&domain=pdf
http://orcid.org/0000-0003-2094-7456
http://orcid.org/0000-0003-2961-6207

4 S. Andrews and S. Polovina

is correct in terms of its validity. The modeller may have a misconception of the
system being modelled or may simply make mistakes in its construction–things
that still conform to the syntax and grammar but result in an invalid model.

It can be difficult to explore and validate a large and complex CG by inspec-
tion. It is this problem that this paper addresses by providing an automated
method whereby key features of CGs are captured, reported and visualised. The
modeller would thus be assisted in exploring and validating their CGs. The
method makes use of the inherent direction of Concept-relation-Concept triples
in CGs to transform these triples into binary relations and thus expose them to
Formal Concept Analysis (FCA) [8]. The process is automated in a tool called
CGFCA and has two stages; firstly parsing a CG file (in the ISO common logic
cgif format [19]) to extract the CG triples and secondly, converting these triples
into corresponding binary relations that accentuate the directed pathways in the
original CG, as described next in Sect. 2. The triples-to-binaries function is car-
ried out using an implementation of the Triples2Binaries algorithm, specifically
described in Subsect. 2.2.

2 Transforming CG Digraphs: Triples into Binary
Relations

If triples are extracted from a CG in the form Source Concept → relation →
Target Concept, each such triple can easily be represented as a corresponding
binary relation i.e. Source Concept-relation, Target Concept. Where the Tar-
get Concept then becomes a Source Concept for a following relation, this can
be captured in additional binary relations, where the original Source Concept-
relation is paired with subsequent Target Concepts. To illustrate the source-
target structure, Fig. 1 shows a simple CG with the CG Concepts, [Cat], [Mat]
and [Colour: Grey]. [Cat] and [Mat] are linked by the CG relation (sits-on)
and [Mat], [Colour: Grey] are linked by (has-attribute). (In simple English,
the CG describes a cat that sits on a grey mat.) We can say that the

Fig. 1. Simple CG Fig. 2. FCL for simple CG

Exploring, Reasoning with and Validating Directed Graphs 5

target Concept [Mat] is dependent on the source Concept-relation pair [Cat] →
(sits-on) and the target Concept [Colour:Grey] is dependent on its source
Concept-relation pair [Mat] → (has-attribute) (or alternatively, the source
Concept-relation pair [Cat] → (sits-on) results in the target Concept [Mat]
and the source Concept-relation pair [Mat] → (hasattribute) results in the tar-
get Concept [Colour: Grey]). The CG triple ([Cat], (sits-on), [Mat]) can
be converted into the binary relation ([Cat]-(sits-on), [Mat]). Likewise the
CG triple ([Mat], (hasattribute), [Colour: Grey]) can be converted into the
binary relation ([Mat](has-attribute), [Colour: Grey]).

There is also a binary relation between [Cat] and [Colour: Grey] indirectly
through [Cat]-(sits-on). Hence [Colour: Grey] also depends (indirectly) on
[Cat], which is of course sitting on that mat.

Simple CG Cat sits-on Mat has-attribute
Cat
Mat ×
Colour : Grey × ×

Fig. 3. The simple CG as a cross-table

The set of binary relations can be simply represented in a cross-table and
Fig. 3 shows the corresponding cross-table for this simple example, with rows
representing CG Concepts and columns CG Source Concept-relations. The cross-
table is known as a Formal Context in FCA, so by converting CGs into these
binary relations, FCA can then be applied. Figure 2 displays the resulting Formal
Concept Lattice (FCL). This approach was derived after we compared it with
Wille’s mapping of CGs to FCA (‘Concept Graphs’) in an earlier study [5,20].
Figures 4, 5, and 6 show the CG, FCL and cross-table (Formal Context) for a
larger CG using the same Cat on Mat example. Figures 7, 8, and 9 show the CG,
FCL and cross-table for a further extended version of this example. This time it
has two input CG Concepts, [Cat: Gwyn] and [Cat: Bumbles] thus depicting
the specific cats Gwyn and Bumbles as the respective CG referent for each CG
Concept as shown.

2.1 Obtaining Triples from a Conceptual Graph: A Parser for cgif

To automate this process, a parser was created that operates on the standard
CG file format, cgif. To illustrate the format, below is the cgif for the ‘Cats on
the Mat’ CG in Fig. 7:

[Material: Fleece] [Cat: Gwyn] [Mat: *x1] [Cat: Bumbles] [Colour: Grey]
(sits-on Bumbles Gwyn ?x1)(has-attribute Fleece Grey)(made-from ?x1 Fleece)

The first line in the cgif defines the CG Concepts and the second line defines
the CG relations. In line with CGs theory where the referent is unknown, cgif

6 S. Andrews and S. Polovina

Fig. 4. CG with 4 concepts Fig. 5. FCL for CG with 4 concepts

With 4 Concepts Cat sits-on Mat made-from Material: Fleece has-attribute
Cat
Mat ×
Material : Fleece × ×
Colour : Grey × × ×

Fig. 6. The 4 concept CG as a cross-table

Fig. 7. CG with 2 input concepts Fig. 8. FCL for 2 input concepts

Exploring, Reasoning with and Validating Directed Graphs 7

2 Input Concepts

C
at
:
B
um

bl
es

si
ts
-o
n

C
at
:
G
w
yn

si
ts
-o
n

M
at

m
ad

e-
fr
om

M
at
er
ia
l:
F
le
ec
e
ha

s-
at
tr
ib
ut
e

Cat : Bumbles
Cat : Gwyn
Mat × ×
Material : Fleece × × ×
Colour : Grey × × × ×

Fig. 9. The 2 input CG as a cross-table

uses generic referents such as x1 and x2, with a preceding * (in CG Concepts)
or ? (in CG relations). Each relation is defined in the cgif with a list of referents
comprising one or more source CG Concept referents and a target CG Concept
referent. The final referent in the list is always the target referent. Thus, in the
relation made-from, x1 is the source and Fleece is the target, and in the relation
sits-on, Bumbles and Gywn are sources and x1 is the target.

The parser first extracts the CG Concepts from the cgif, creating an integer
index for each CG Concept and separating the type labels and referents (see
Table 1a). The parser then extracts the CG relations from the cgif, creating an
integer index for each CG relation and separating the type labels and lists of
referents (see Table 1b).

Table 1. Information extracted by parser from Cats on the Mat cgif

No. Label Referent
1 Material Fleece
2 Cat Gwyn
3 Mat x1
4 Cat Bumbles
5 Colour Grey

(a) CG Concepts

No. Label Referents
1 sits-on Bumbles Gwyn x1
2 has-attribute Fleece Grey
3 made-from x1 Fleece

(b) CG relations

If there are co-referent CG Concepts or relations, the parser will form the
corresponding joins. For CG Concepts, as each Concept label and referent is
extracted from the cgif, the referent is compared to the list of Concept referents

8 S. Andrews and S. Polovina

already extracted. If a match is found, instead of adding a new Concept, the
parser compares the two Concept labels. If they are different, it concatenates
the new label with the existing label in the list, if not the parser simply moves
on to the next Concept in the cgif. A similar process is carried when parsing the
CG relations in the cgif, but here it is the list of referents associated with the
relation that is compared: for two CG relations to be co-referent they must have
the same sources and target. For examples of joining co-referents see Sect. 4.8.

Once the CG Concepts and relations have been extracted (and any co-referent
joins made), the parser then uses the referents for each relation to create cor-
responding triples by looking up the index number of the relation’s source and
target CG Concepts corresponding to the relation’s referents. Table 2 contains
the triples created from Table 1. The triples thus created are now ready for the
process of converting them to corresponding binary relations.

Table 2. Cats on the Mat triples

Source Relation Target

4 1 3

2 1 3

1 2 5

3 3 1

2.2 A Triples-to-Binaries Algorithm

Figure 10 is an algorithm, Triples2Binaries, that along with its subroutine
AddBinary (Fig. 11), converts a set of triples, T , into a corresponding set of bina-
ries, B , exploiting the direction in the triples as explained above. It is a gener-
alised form of the CGtoFCA algorithm previously presented [5]. Whilst its appli-
cation to CGs is the focus of this paper, the more general form makes it applicable
to directed triples obtained from any source, including UML, RDF, OWL, the
Entity-Relation Diagram and linked data. Triples2Binaries also includes some
refinements not present in CGtoFCA, namely; the ability to detect ‘direct path-
ways’ and cycles in a CG. A direct pathway through a CG is a path from an
input CG Concept to an output CG Concept, where an input CG Concept is one
with no edges entering it and an output CG Concept is one with no edges leaving
it. Features such as direct pathways and cycles often have significant meaning in
a CG but are not always easily apparent (particularly in large CGs). The main
algorithm, Triples2Binaries, simply iterates through the set of triples, T , send-
ing each triple, (s, r , t) to the subroutine AddBinary. In (s, r , t), s denotes the
source, r denotes the relation and t denotes the target. Each triple enumerated
in Triples2Binaries will be the start of a new pathway. A pathway is recorded
by AddBinary as a set of (source, relation) pairs in path.

AddBinary takes each triple (s, r , t), adds (s, r) to the current path (line
2) and then adds the corresponding binary ((s, r), t) to the set of binaries, B
(line 3).

Exploring, Reasoning with and Validating Directed Graphs 9

Line 4 is a test for detecting a direct pathway in the CG: if the current source,
s, is an input CG Concept and the current target, t , is an output CG Concept,
then there is a direct pathway from s to t . In which case, the current path along
with t is recorded as a direct pathway.

Line 6 is the condition for detecting a cycle in the CG: if the current source,
s, is the same as the current target, t , there is a cycle, recorded in line 7 as the
current path along with the current target.

Line 8 defines the terminating condition for recursion (thus preventing infinite
loops around cycles): if the current target, t , is already in the current path then
AddBinary terminates. Otherwise, line 9 iterates through the set of triples, T ,
to test for links (line 10): if the current target, t , also appears as a source, i , in
the set of triples, AddBinary is called recursively (line 11), passing the current
source, s, the current relation, r , and the new target, k .

Note that the condition for a cycle (line 6) cannot be used as the terminating
condition for recursion. This is because the starting point for a cycle can occur at
any point in a pathway. A pathway begins with the source, s, and if the starting
point of a cycle begins later than s, then s will never equal t and we would have
an infinite loop around that cycle.

begin1

path ← ∅2

foreach (s, r , t) ∈ T do3

AddBinary(s, r , t , path)4

end5

Fig. 10. Triples2Binaries(T)

3 The CGFCA Tool

The cgif parser and Triples2Binaries algorithm were implemented together to
form a software tool called CGFCA. The architecture of CGFCA is shown in
Fig. 12. The cgif parser inputs a CG in the form of a cgif file and creates a
corresponding set of CG (source Concept, relation, target Concept) triples as
described in Sect. 2.1. The triples are then passed to Triples to Binaries which
converts them into ((source Concept, relation), target Concept) binaries, includ-
ing the computation of all binaries with indirect target Concepts, as described in
Sect. 2.2. Triples to Binaries also carries out an analysis of the CG and reports
the following features: input Concepts, output Concepts, direct pathways (from
an input Concept to an output Concept), cycles and pathways with multiple
routes (these are multiple pathways from the same input Concept-relation to the
same output Concept). These multiple routes were considered worth detecting
and reporting as they may indicate redundant pathways in a CG. The ((source
Concept, relation), target Concept) binaries computed by Triples to Binaries

10 S. Andrews and S. Polovina

begin1

path ← path ∪ {(s, r)}2

B ← B ∪ {((s, r), t)}3

if IsInput(s) and IsOutput(t) then4

RecordDirectPathway(path, t)5

if s = t then6

RecordCycle(path, t)7

if ¬ ∃(x , y) ∈ path | t = x then8

foreach (i , j , k) ∈ T do9

if t = i then10

AddBinary(s, r , k , path)11

end12

Fig. 11. AddBinary(s, r , t , path)

are then passed to a simple Formal Context Creator where the (source Concept,
relation) in each binary is treated as a formal attribute and each target Concept
is treated as a formal object. The formal context is output in the standard cxt
format for FCA.

Fig. 12. CGFCA architecture

The formal context output by CGFCA can then be visualised as a Formal
Concept Lattice (FCL) using an appropriate tool, such as ConceptExplorer (Con-
Exp)1 or as a Formal Concept Tree using In-Close [3,4]. Such visualisations
clearly highlight further CG features such as cycles and co-referent joins.

1 http://conexp.sourceforge.net/.

http://conexp.sourceforge.net/

Exploring, Reasoning with and Validating Directed Graphs 11

4 Highlighting Key Features of a CG Using CGFCA

This Section uses simple CG examples to illustrate the use of the GCFCA tool
in detecting and highlighting features of CGs and how corresponding FCLs allow
a GC to be explored in a formal, hierarchical, visualisation.

4.1 Paths and Dependencies

Figures 13 and 14 respectively illustrate the CG and FCL for the dependen-
cies described earlier in a larger example–as well as two paths–between the
source Concept [Person: Simon] and the target Concept [City: London]. As
well as the intermediate target Concepts that in turn become source Concepts
(i.e. [Coach: #564] and [Hotel: OpenSky]), this example shows CG referents,
namely Simon, #564, OpenSky and London. ([Colour: Grey] from Fig. 2 was
also a CG Concept with a referent.) The referents are instances of their respec-
tive type label in the CG Concept e.g. London is a referent of the type label
City, and #564 the numeric identifier for a Coach that in the context of Fig. 13
could be read as the number of the coach that goes to London. In addition to the
direct dependencies such as [Hotel: OpenSky]) on [Person: Simon]-(books)
there are indirect dependencies detected in accordance with AddBinary line 4
described earlier in Subsect. 2.2. These are: (a) [City: London]) on [Person:
Simon]-(books), and (b) [Person: Simon]-(travels-to) through the other
path that has the intermediate Concept [Coach: #564]. The starting (or input)
Concepts and ending (or output) Concepts are usefully reported by the CGFCA
software i.e. Inputs: “Person: Simon”. Outputs: “City: London”. The output also
states: Direct Pathway: Person: Simon - books - Hotel: OpenSky - location - City:
London and Direct Pathway: Person: Simon - travels-by - Coach: #564 - destina-
tion - City: London.

Fig. 13. Paths and dependencies CG Fig. 14. Paths and dependencies FCL

12 S. Andrews and S. Polovina

In simple terms, Simon’s trip to London depends on travelling there by coach
and booking into the OpenSky hotel. Of course in this still-simple example this
knowledge can be gleaned from the CG alone thereby obviating the need for
CGFCA. However it is more likely that these patterns will appear in larger CGs
where it is not so evident, perhaps unknowingly as they are drawn by hand
and obfuscated by the size of the larger model. CGFCA and the consequent
computer-generated FCL will highlight within such digraphs the ‘diamond’ look-
ing patterns that represent multiple pathways thus alerting their existence–hence
validity–to the modeller.

4.2 Cycles

It is natural that digraphs may contain one or more cycles. Figures 15 and 16
respectively illustrate an example of a CG and FCL that is a cycle. Note that this
example is similar to the previous paths and dependencies example in Figs. 13
and 14. This time the direction of the hotel booking path goes in the opposite
direction, thus creating the cycle. The renaming of the relations i.e. location
to location-of and books to booked-by correctly reflect the new direction. It
is common however to name or use relations that cause cycles to occur inad-
vertently such as possibly in this example. A cycle may of course be desired,
but the modeller will in any event be alerted to its validity by the FCL (here
Fig. 16) in accordance with AddBinary line 7 described earlier in Subsect. 2.2.
The CGFCA output highlights why the Fig. 16 lattice looks as it does: There are
no inputs. There are no outputs. Cycle: City: London - location-of - Hotel: OpenSky -
booked-by - Person: Simon - travels-by - Coach: #564 - destination - City: London.
Every Concept is dependent on all the other Concepts with no hierarchy, thus
they become grouped together in the FCL.

Fig. 15. CG that is a cycle Fig. 16. FCL of cycle

Exploring, Reasoning with and Validating Directed Graphs 13

4.3 Joins

Figures 17 and 18 respectively illustrate the CG and FCL for Concepts that are
co-referent. Co-referents occur when Concepts have the same referent, which
in this case is Gywn in Pet and Cat. Where a source and target Concept are
directly linked by more than one relation, the associated relations are in effect
co-referent. This behaviour is highlighted by Figs. 19 and 20.

Fig. 17. CG with co-referent concept Fig. 18. FCL with co-referent concept

Fig. 19. CG with co-referent relations Fig. 20. FCL with co-referent relations

Before the Triples2Binaries algorithm in CGFCA is called, the CGFCA cgif
parser detects co-referent CG Concepts and co-referent CG relations and because
they refer to the same object or instance it joins the Concepts and relations
automatically (see Sect. 2.1). Furthermore it concatenates the Concept type or
relation labels, using ‘;’ as the delimiter.

The outcome is evident in the FCL for Figs. 18 (i.e. Pet;Cat) and 20 (i.e.
sleeps-on;sits-on;prefers). This approach is akin to the maximal common
subtype in CGs (or intersection); thus Gywn is (a) a Pet Cat, and (b) sleeps,
sits on, and likes the Mat2.

A common error (particularly in larger or more complex models) is to give
different types the same referent by mistake. Take for example the CG Fig. 19.
2 Note Mat here has a latent referent, in accordance with CGs theory; hence we can

simply refer to it through the definite article ‘the’.

14 S. Andrews and S. Polovina

In that Figure let’s change [Mat: Gwyn’s] to [Mat: Gwyn], assuming that it
was mistyped by the modeller in the first place. As a result, [Mat: Gwyn] will
inadvertently join with the [Cat: Gwyn] and [Pet: Gwyn] CGs from Fig. 17.
Figure 21 shows the CGs for this scenario including the mistake, and Fig. 22
demonstrates the result. Now Gwyn is not only a Pet Cat but a Mat too! And
Bumbles sleeps-on, sits-on and prefers Gwyn as a Mat (rather than Gwyn’s Mat)
while Gwyn sits on another Mat, all of which is nonsensical as the FCL reveals.
Like the previous pathways and cycles examples, the practitioner is immediately
presented with a need to reason with and validate their models.

Fig. 21. CG with co-referents Fig. 22. Mistakenly joined CGs FCL

4.4 n-adic

Apart from Fig. 7 earlier, the CG relations so far have been 2-adic i.e. only one
source CG Concept pointing to the relation. 2-adic CG relations are also known
as dyadic CG relations. A CG relation may however have more than one source
CG Concept; hence an n-adic CG relation has n source CG Concepts. The CG
relation sits-on in Fig. 7 is 3-adic, or triadic.

Figures 23 and 25 highlights the relation sits-on being stated as being
dyadic or triadic respectively. CG relations may any number of source CG

Fig. 23. CG with 2-adic relation Fig. 24. FCL with 2-adic relation

Exploring, Reasoning with and Validating Directed Graphs 15

Fig. 25. CG with 3-adic relation Fig. 26. FCL with 3-adic relation

Concepts pointing to them3. Figures 24 and 26 reveal that the FCL for Figs. 23
and 25 turn out to be identical, thus two representations of the same meaning.
Unsurprisingly, the CGFCA output is identical for both the 2-adic and the 3-
adic: Inputs:“Cat: Gwyn” “Cat: Bumbles” Outputs: “Mat: Gwyn’s” Direct Pathway:
Cat: Gwyn - sits-on - Mat: Gwyn’s Direct Pathway: Cat: Bumbles - sits-on - Mat:
Gwyn’s.

Certain CG relations such as ‘(share)’ inherently can only have certain n-
adic values. For the share case, there need to be two or more things to have
something shared between them, hence share has to be at least triadic i.e. ≥
3-adic. As CGFCA would provide the same outcome even if the share CG rela-
tion was modelled as dyadic accidentally by the modeller, it would still be cor-
rectly depicted in the FCL. For completeness, Figs. 27, 28, 29 and 30 respectively
demonstrate this outcome.

Fig. 27. CG, ‘wrong’ 2-adic share Fig. 28. FCL, ‘corrected’ share

Fig. 29. CG, ‘correct’ 3-adic share Fig. 30. FCL, ‘correct’ 3-adic share

3 CG relations may however have only one target CG Concept [17].

16 S. Andrews and S. Polovina

4.5 Formal Concepts Without Their Own Attributes or Objects

Unlike the examples shown thus far where it has only occurred at the bottommost
(or infimum) Formal Concept in an FCL, CGs may generate an FCL that has
Formal Concepts without their own attributes (i.e. Source Concept-relation) or
objects (i.e. Target Concept) in the middle of the FCL. Figure 31 has generated
such a formal concept as evident in Fig. 32.

Essentially this is because [Cat: Bumbles] and [Cat: Gywn] both sit-on
the [Mat: Gwyn’s] and have the heritage of [Pedigree: British Blue].
This pattern can be gleaned from the corresponding CGFCA output for Figs. 31
and 32:
Inputs: “Cat: Bessie” Outputs: “Mat” “Pedigree: British Blue”
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - heritage - Pedigree:
British Blue
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - sits-on - Mat
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - sits-on - Mat
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - heritage - Pedigree:
British Blue

Fig. 31. CG leading to unlabelled FC Fig. 32. FCL with unlabelled FC

Fig. 33. Larger CG, unlabelled FC Fig. 34. Larger FCL, unlabelled FC

Exploring, Reasoning with and Validating Directed Graphs 17

The only way to traverse the FCL to capture these relations is through the
unlabelled Formal Concept in between.

Figures 33 and 34 evidence the pattern in a larger example where, essen-
tially, [Cat: Bumbles] and [Cat: Gywn] both sit-on the [Mat: Gwyn’s] and
have the heritage of [Pedigree: British Blue], and have as their owner the
[Person: Simon]. The CGFCA output underpins the pattern:
Inputs: “Cat: Bessie” Outputs: “Person: Simon” “Mat: Gwyn’s” “Pedigree:
British Blue”
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - owner - Person: Simon
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - heritage - Pedigree:
British Blue
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - sits-on - Mat: Gwyn’s
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - heritage - Pedigree:
British Blue
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - owner - Person: Simon
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - sits-on - Mat: Gwyn’s.

4.6 Further Exploring n-adity

For Fig. 33 we can also identify the presence of 3-adic (triadic) relations, as CG
Fig. 35 reveals. Note once more that the FCL Fig. 36 is identical to Fig. 34.

Figure 37 has a CG with heritage as a 4 -adic relation, essentially adding
that [Cat: Bessie] has the heritage of [Pedigree: British Blue] too,
along with [Cat: Bumbles] and [Cat: Gywn]. Through the unlabelled Formal
Concept the 4th adic is highlighted by Fig. 38.

4.7 Further Exploring Co-Referent Links

Figure 37’s CG can be restated using a co-referent link as shown by Fig. 39. In
this Figure, the CG Concept [Pedigree: British Blue] appears twice. Note
also that the 4-adic heritage relation has disappeared, or so it would appear?

Fig. 35. Same CG, 3-adic Fig. 36. Resulting same FCL

18 S. Andrews and S. Polovina

Fig. 37. CG, with 4-adic Fig. 38. FCL, with 4-adic

Fig. 39. Same CG, but co-referent Fig. 40. Resulting same FCL

Note that Fig. 40, which is the FCL for Fig. 39 is identical to the FCL Fig. 38.
The CGFCA parser applies the CG join operation as before thus causing the
co-referents–as they are the same CG referent–to be joined [14,17,19]. The sig-
nificance of this example is that it reminds us that CGs may be hand-drawn
in different ways (e.g. different adity, or using co-referents advertently–or inad-
vertently as we saw with [Mat: Gwyn] in CG Fig. 21 and the corresponding
FCL Fig. 22). However the FCL will represent them in one way, thus potentially
removing multiple, and potentially confusing ways of stating the same thing
differently.

4.8 Larger Joins

Lastly to illustrate the wider behaviour of digraphs through CGs the above-
discussed examples are essentially joined into one CG. Figure 41 shows the result
of joining the other CGs (except Fig. 15) with Fig. 13, which showed the depen-
dency from [Person: Simon] to [City: London] without the cycle, whereas
Fig. 42 shows the result of joining the other CGs (except Fig. 13) to Fig. 15,
which showed [Person: Simon] to (and from) [City: London] with the cycle.

Exploring, Reasoning with and Validating Directed Graphs 19

Fig. 41. Joined FCL no cycle Fig. 42. Joined FCL with cycle

5 A Realistic Example

The simple but expressive examples presented thus far demonstrate how digraphs
can be explored and validated through Triples2Binaries as exemplified by
CGFCA. Previous work has indicated CGFCA’s value in the business infor-
mation systems modelling domain [15]. Based on an example from that work,
a more comprehensive example is now presented from that real-world domain.
Whilst the example uses the terminology of that domain, this example will be
explained such that it can be more widely understood.

Fig. 43. Application module CG

20 S. Andrews and S. Polovina

Fig. 44. Application module FCL

5.1 The Current Situation

As explained from the outset, human modellers draw diagrams to elicit the
dimensions of some problem that becomes too difficult to understand through
discursive narrative alone. We have seen that through CGs, the directed graph
(digraph) offers the significant advantage of capturing the directional informa-
tion i.e. an arc from vertex A to vertex B indicates that one may move from A
to B but not from B to A. As well as their use in computer science as a repre-
sentation of the paths that might be traversed through a program, the examples
demonstrate digraphs’ applicability in higher-level conceptual models where con-
cepts are related to each other by relations that gain additional semantics (i.e.
meaning) by defining the direction between the source and target concepts.

CGs (Conceptual Graphs) are an expressive form of digraphs that enable
modellers to express meaning in a form that is logically precise whilst being
humanly readable. As such, they provide a conceptual structure that can for-
mally describe the given problem being modelled. CGs, in common with many
other forms of diagraphs are however drawn by hand, even with the assistance

Exploring, Reasoning with and Validating Directed Graphs 21

of software tools such as CoGui suggested earlier [2]. Currently, the modeller
enters the digraphs–in this case CGs–into the tool manually and relies on the
tool to work with the potentially erroneous CGs entered into it. In effect the
tool is as only as good as the fool that uses it, so “a fool with a tool is still a
fool”–a common criticism from industry [12]. While a business (or other) mod-
eller may be no fool, there is no guarantee that a model created using CGs is
correct in terms of its validity. In their exploration of the given problem using
CGs, the modeller may have a misconception of the system being modelled or
may simply make mistakes in its construction–things that still conform to the
syntax and grammar but result in an invalid model. The current situation is too
complicated, and presents an unwarranted burden on the modeller.

Formal Concept Analysis (FCA) claims to add mathematical rigour to the
logical rigour captured in CGs [10]. CGFCA reveals FCA’s effectiveness in this
respect, thereby moving away from the current situation with its unnecessary
complications as described above. We now further test this effectiveness using
business modelling as the more comprehensive illustration.

5.2 Understanding the Complications

The CG Fig. 43 describes the components of a software application module that
is part of an information system in an organisation. Applying CGFCA as above,
Fig. 44 is the corresponding FCL for this CG Figure. The human business mod-
eller draws this CG to capture the entities as CG Concepts and the CG relations
between them. The detailed meaning of each entity and relation is discussed else-
where [15], but for the purposes of our understanding the application module
is denoted by the CG Concept: [Application Module: am1A]. The referent
‘am1A’ uniquely identifies the application module. The remaining CG Concepts
and relations flow down from [Application Module: am1A]. This is validated
by Application Module: am1A being at the supremum (topmost) Formal Con-
cept of the lattice, Fig. 44. The modeller requires each referent throughout this
CG to be unique and have no cycles in it. Figure 44 evidences that the Applica-
tion Module as a CG is accurately captured. In practice this is unlikely to be the
case. What are the complications in drawing the model that can undermine its
validity, and how are these complications revealed by CGFCA and the lattice?

Arrow Direction. A common mistake or misconception that a modeller can
make is to draw the arrows the wrong way round. This is a complication that
may seem obvious on close inspection of the CG but nonetheless easily occurs
even in introductory CGs despite proof-checking [14]. The syntax of the CG is
correct–i.e. it is still a digraph (directed graph)–but this act results a semantic
error. Figure 46, which is an extract of the lattice for the CG Fig. 45 shows
that Application Module: am1A is not at the supremum; its place is taken
by Organizational Unit: ou1A. This change of input is also shown by the
CGFCA report: Inputs:“Organizational Unit: ou1A”. The modeller is alerted to
this deficiency because the arrows between [Application Module: am1A] and

22 S. Andrews and S. Polovina

Fig. 45. Application module CG, wrong arrow direction

Fig. 46. Application module FCL extract, wrong arrow direction

[Organizational Unit: ou1A] in CG Fig. 45 were accidentally drawn the other
way, unlike in the correctly-drawn previous CG Fig. 43. The modeller can then
correct the model. The modeller may want to manually record the mistake for
future reference, by shading the ‘offending’ (assigned to) CG relation as shown
in Fig. 45.

Mispointed Arrows. The CG Fig. 47 highlights another common mistake (or
misconception) where a CG relation is pointed to the wrong CG Concept. In this
case it’s [Transaction Code: tc3A] → (assigned to) → [IT Governance:
itg4A]. It should be [Transaction Code: tc3A] → (assigned to) → [Data
Entity: de3A]. For convenience the offending relation is highlighted in Fig. 47.
In practice the modeller would run CGFCA then generate the FCL (of
which Fig. 48 is an extract) before highlighting the incorrect CG. From
FCL Fig. 47 the modeller notices that assigned to;measured by is incor-
rectly concatenated in Transaction Code: tc3A assigned to;measured by.

Exploring, Reasoning with and Validating Directed Graphs 23

Fig. 47. Application module CG extract, assigned to mispointed

Fig. 48. Application module FCL extract, assigned to mispointed

Such concatenations were demonstrated earlier by the FCL Fig. 20 (i.e. Cat:
Bumbles sleeps-on;sits-on;prefers), which was correct in CG Fig. 19 but
incorrect in CG Fig. 47. Again a close inspection of CG Fig. 47 would reveal this
complication, but it can easily happen in practice.

Unwanted Cycles. While cycles may be deliberate, in many cases including
this business modelling scenario they point to a mistake or misconception. That
is the case of the CG Fig. 49 that emerges in the FCL of which Fig. 50 is an
extract. The cycle is still rather subtle however as the FCA attributes Business
Object: bo3A assigned to, Event: e3A assigned to and Application Task:
at3A assigned to are spread across two Formal Concepts before the FCA objects

24 S. Andrews and S. Polovina

Fig. 49. Application module CG, cycle

Fig. 50. Application module FCL extract, cycle

Business Object: bo3A, Event: e3A assigned to and Application Task: at3A
are reached showing that the CG Concepts in the attributes (eventually) point to
themselves as the CG Concept denoted by the FCA object. The CGFCA report
brings it most easily to light:

Exploring, Reasoning with and Validating Directed Graphs 25

Cycle: Application Task: at3A - assigned to - Event: e3A -
assigned to - Business Object: bo3A - assigned to - Application
Task: at3A.

The FCL is nonetheless of value as the Formal Concept that has the three
attributes listed above (i.e. Business Object: bo3A assigned to, Event:
e3A assigned to and Application Task: at3A assigned to) doesn’t have
its own object (i.e. target CG Concept). This is highlighted by the bottom half
of this Formal Concept’s circle being transparent due to the other dependencies
in the FCL. The modeller sets those other dependencies aside, as (s)he has iden-
tified that the unwanted cycle is the issue and its correction may also resolve any
other suspect dependencies (which it does). The cause? That common error of
a relation with the arrows pointing the wrong way i.e. the (assigned to) CG
relation that points to [Application Task: at3A] from [Business Object:
bo3A] when the CG relation should be the other way round. This time it causes
a cycle as a revisit to the CG Fig. 49 and following this CG relation–using the
CGFCA report as our guide–brings the cycle to light. For the record, the offend-
ing (assigned to) is shaded in the CG Fig. 49. The cycle in the FCL Fig. 50 is
also highlighted by the rectangles with thick black borders.

Invalid CG Referents. Remember in Fig. 22 i.e. Cat;Mat;Pet: Gwyn, Gwyn
became not only a Pet Cat but a Mat too! This common error appears in the
CG Fig. 51 and becomes evident in FCL Fig. 52, where [Application Roles:
ar3A] and [Application Rules: ar3A] accidentally share the same referent
(ar3A); an easy error to make especially as the CG Type Labels Application

Fig. 51. Application module CG, ar3A referent

26 S. Andrews and S. Polovina

Fig. 52. Application module FCL, ar3A referent

Rules and Application Roles look so similar too! In the FCL Fig. 52 they
are shown as Application Rules;Application Roles and, for emphasis, high-
lighted in thick black border rectangles. Likewise, and as before, the modeller in
CG Fig. 51 shades these offending CG Concepts.

5.3 Resolving the Complications

While the above complications are not exhaustive, and not accounting for com-
binations of complications that could be further highlighted by the approach
described, we have evidenced through the real-world scenario of business mod-
elling how the human modeller as a practitioner (business or otherwise) is
empowered by CGFCA and the FCL. In the course of this approach the mod-
eller was able to explore the CG models, apply his/her reasoning from identifying
issues in the models, thus leading to their correction. Through resolving the com-
plications, the modeller acts as a human co-creator with the computer-generated
CGFCA reports and FCLs (Formal Concept Lattices) thereby being empowered
to produce useful, validated models.

Exploring, Reasoning with and Validating Directed Graphs 27

6 Related Work

CGFCA originated with a comparative study to Wille’s Concept Graphs as
stated earlier, revealing the comparative advantages of CGFCA [5,20]. CGFCA–
hence Triples2Binaries–is however now at a level of maturity that it can play a
useful role whilst recognising the existence of other FCA approaches to triple-
based structures, such as Relational Concept Analysis (RCA), EL-Implications
and Graph-FCA [6,7,16]. Extensive comparative studies in this arena already
exist, pre-CGFCA [13]. While CGFCA fulfills the scope of our study, there is
value in an up-to-date comparative study that includes CGFCA. Such work
may help to identify how all the approaches may best work together for directed
graphs and FCA.

7 Concluding Remarks and Further Work

As well as providing the capability to explore, reason with and validate directed
graphs (digraphs), the FCL representation of CGs are arguably more readable.
As we have seen, the arcs (the arrows) in a CG can lead in any direction. In a
large, complex CG it can be difficult to trace and compare pathways through it,
even more so where there are co-referent links. All FCL pathways are aligned in
a top-to-bottom (inputs to outputs), hierarchical manner and co-referents can
be automatically joined to make more apparent their connections and place in
the graph.

Future work will continue to develop representative exemplars; a worthwhile
endeavour given the value demonstrated by this paper. Furthermore since we
have set the context as exploring and validating digraphs through triples to
binaries rather than just CGs, the further work intends to include directed triples
modelled by practitioners in UML, RDF, OWL, the Entity-Relation Diagram
and linked data as alluded to earlier.

Meanwhile we have demonstrated that CGFCA–hence Triples2Binaries–
presents a formal method that exploits CGs as digraphs through the application
of Formal Concept Analysis (FCA). FCA elucidates key features of CGs such
as pathways and dependencies, inputs and outputs, cycles, and joins. Given the
prevalence of digraphs, the practitioner is consequently empowered in explor-
ing, reasoning with and validating their models in understanding real-world
phenomena.

References

1. Charger - a conceptual graph editor. http://charger.sourceforge.net/. Accessed 02
Jan 2018

2. Cogui. http://www.lirmm.fr/cogui/. Accessed 02 Jan 2018
3. Andrews, S.: In-Close2, a high performance formal concept miner. In: Andrews, S.,

Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp.
50–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22688-5 4

http://charger.sourceforge.net/
http://www.lirmm.fr/cogui/
https://doi.org/10.1007/978-3-642-22688-5_4

28 S. Andrews and S. Polovina

4. Andrews, S., Hirsch, L.: A tool for creating and visualising formal concept trees.
In: CEUR Workshop Proceedings, vol. 1637, pp. 1–9 (2016)

5. Andrews, S., Polovina, S.: A mapping from conceptual graphs to formal concept
analysis. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011.
LNCS (LNAI), vol. 6828, pp. 63–76. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22688-5 5

6. Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a
finite model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol.
4933, pp. 46–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78137-0 4

7. Ferré, S., Cellier, P.: Graph-FCA in practice. In: Haemmerlé, O., Stapleton, G.,
Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 107–121. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40985-6 9

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-59830-2

9. Harary, F.: Structural Models: An Introduction to the Theory of Directed Graphs.
Wiley, New York (1965)

10. Hitzler, P., Scharfe, H.: Conceptual Structures in Practice. CRC Press, Boca Raton
(2009)

11. Koehler, K.R.: Directed graphs (2012). http://kias.dyndns.org/comath/33.html
12. Parker, L., HP OpenView Business Unit: A fool with a tool is still a fool! HP Open

View (2001)
13. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Review: formal concept

analysis in knowledge processing: a survey on applications. Expert Syst. Appl.
40(16), 6538–6560 (2013)

14. Polovina, S.: An introduction to conceptual graphs. In: Priss, U., Polovina, S., Hill,
R. (eds.) ICCS-ConceptStruct 2007. LNCS (LNAI), vol. 4604, pp. 1–14. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73681-3 1

15. Polovina, S., Scheruhn, H.-J., von Rosing, M.: Modularising the complex meta-
models in enterprise systems using conceptual structures. In: Developments and
Trends in Intelligent Technologies and Smart Systems, pp. 261–283. IGI Global,
Hershey (2018). ID: 189437

16. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept
analysis: mining concept lattices from multi-relational data. Ann. Math. Artif.
Intell. 67(1), 81–108 (2013)

17. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley Publishing, Reading (1983)

18. Sowa, J.F.: Conceptual graph examples. http://www.jfsowa.com/cg/cgexampw.
htm

19. Sowa, J.F.: Conceptual graphs. In: Handbook of Knowledge Representation, Foun-
dations of Artificial Intelligence, vol. 3, pp. 213–237. Elsevier, Amsterdam (2008)

20. Wille, R.: Conceptual graphs and formal concept analysis. In: Lukose, D., Del-
ugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS-ConceptStruct 1997.
LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0027878

https://doi.org/10.1007/978-3-642-22688-5_5
https://doi.org/10.1007/978-3-642-22688-5_5
https://doi.org/10.1007/978-3-540-78137-0_4
https://doi.org/10.1007/978-3-540-78137-0_4
https://doi.org/10.1007/978-3-319-40985-6_9
https://doi.org/10.1007/978-3-642-59830-2
http://kias.dyndns.org/comath/33.html
https://doi.org/10.1007/978-3-540-73681-3_1
http://www.jfsowa.com/cg/cgexampw.htm
http://www.jfsowa.com/cg/cgexampw.htm
https://doi.org/10.1007/BFb0027878
https://doi.org/10.1007/BFb0027878

Subjective Bayesian Networks
and Human-in-the-Loop Situational

Understanding

Dave Braines1,2, Anna Thomas1, Lance Kaplan3, Murat Şensoy2,6,
Jonathan Z. Bakdash4,5, Magdalena Ivanovska7, Alun Preece2,

and Federico Cerutti2(B)

1 IBM Hursley Park, Winchester, UK
2 Cardiff University, Cardiff, UK

CeruttiF@cardiff.ac.uk
3 U.S. Army Research Laboratory, Adelphi, USA

4 U.S. Army Research Laboratory South Field Element,
The University of Texas, Dallas, USA

5 Texas A&M Commerce, Commerce, USA
6 Ozyegin University, Istanbul, Turkey

7 University of Oslo, Oslo, Norway

Abstract. In this paper we present a methodology to exploit human-
machine coalitions for situational understanding. Situational understand-
ing refers to the ability to relate relevant information and form logi-
cal conclusions, as well as identify gaps in information. This process
for comprehension of the meaning information requires the ability to
reason inductively, for which we will exploit the machines’ ability to
‘learn’ from data. However, important phenomena are often rare in
occurrence with high degrees of uncertainty, thus severely limiting the
availability of instance data for training, and hence the applicability of
many machine learning approaches. Therefore, we present the benefits
of Subjective Bayesian Networks—i.e., Bayesian Networks with impre-
cise probabilities—for situational understanding, and the role of con-
versational interfaces for supporting decision makers in the evolution of
situational understanding.

1 Introduction

Human situational understanding is filled with inductive reasoning. Say you just
landed at Heathrow Airport in London, UK: the sun is blazing in the sky and

This research was sponsored by the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-16-3-0001. The views and
conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of
the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments are authorized
to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Croitoru et al. (Eds.): GKR 2017, LNAI 10775, pp. 29–53, 2018.
https://doi.org/10.1007/978-3-319-78102-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_2&domain=pdf

30 D. Braines et al.

a glorious warm temperature of 23 Celsius (74 Fahrenheit) welcomes you in the
South of Britain. On the basis of this observation, it is rational to conclude that
usually the South of Britain enjoys lovely weather, especially if the same happens
the second day, the third day, and the fourth day of your visit. From a human
perspective, general rules and thus understanding are, therefore, often derived
on the basis of scarce data/information. Consequently, human decision making
frequently exhibits heuristics and biases rather than following rationality [11].

Sometimes limited data is not a problem, especially in those cases where we
can have access to an oracle, mostly an expert in the domain. You might receive
a useful piece of information from a friend who lived in the South of Britain for
years, or you can access historical data and statistics showing that the South
of Britain does not usually enjoy lovely weather, and therefore this apparent
normality is in fact an exception. Oracles can help in overcoming scarcity of
actual data through access to other information or rules that are relevant to the
domain.

As humans we, therefore, apply analyses and judgements to relevant infor-
mation “to determine the relationships of the factors present and form logical
conclusions concerning threats, opportunities, and gaps in information” [7]. This
is situational understanding.

Machine learning approaches are potentially powerful allies in situational
understanding [3]. This is because machine learning algorithms are able to effi-
ciently handle large quantities of information, which is extremely useful to sup-
port inductive reasoning in situational understanding, as well as deriving logical
conclusions. However, they are generally useless for identifying gaps in infor-
mation as well as in providing insights, such as those that could be provided by
oracles. Moreover, many of the best algorithms for machine learning often assume
the existence of a large training set with independent and identically distributed
(IID) data. Algorithms for data with limited instances (class imbalanced) is a
specific research area [5], as are algorithms for non-IID data [24]. Unfortunately,
the assumption of large amounts of balanced and IID data tends to unrealistic
in the real–world. Rare events often arise from multiple dependent factors: for
example, the risk of political instability is a combination of corruption, illicit
activities, and organised crime [8].

The need for less training data and modeling of underlying dependencies
is particularly important in situational understanding problems where many
important phenomena will be rare in occurrence, severely limiting the avail-
ability of instance data and, hence, the applicability of many machine learning
approaches, including Bayesian and Deep Learning [16] approaches. Coupled
with this, supporting human analysts in terms of more effective communica-
tion of uncertain information is also a key issue in situational understanding
problems [6].

In this paper—that is an extended version of [2]—we propose a human-
machine coalition partnership for real-world situational understanding by
exploiting the strengths of each member in the coalition. Machines’ strengths
are linked to data analysis, and we explicitly address the unrealistic assumption

Subjective Bayesian Networks 31

of large training sets that could undermine the role of machine agents in such a
human-machine coalition. Moreover, human experts are usually considered use-
ful oracles, and we need to provide useful human-machine interfaces in order to
support co-design and co-evolution of the coalition for situational understanding.
Specifically, we consider a system within which the human agents can contribute
to or correct the machine agent parts of the system.

To exemplify our proposal, we discuss a running example about the German
stock market in Sect. 2, and in Sect. 3 we exploit one of the machines’ strengths:
performing inductive reasoning with quantitative measures such as probabilities.
We discuss a robust approach to handling uncertain information from a rather
scarce dataset, namely Subjective Bayesian Networks, an extension of Bayesian
Networks using uncertain probabilities. This helps us towards overcoming one
of the main issues related to Bayesian networks: the lack of information about
the certainty of the trained model.

We then show, in Sect. 4, that Subjective Bayesian Networks are well suited
for situational understanding. Our tests show that they provide more accurate
results compared to other approaches to Bayesian networks with uncertain prob-
abilities, such as Credal networks [23] and belief networks [20].

Finally, in Sect. 5 we summarise an evaluation we performed with a focus
group on the usage of conversational interfaces for co-designing a Subjective
Bayesian Network and using it for situational understanding.

2 Human-Machine Coalitions for Situational
Understanding

Let us suppose you are an advisor for investors who want to enter the German
stock market. For brevity, let us suppose that a colleague has provided the two
high-level dependency networks depicted in Fig. 1, showing on the one hand
dependencies between Daimler, BMW, Continental, Porsche, and Volkswagen
(automotive companies); and on the other hand dependencies between Bayer,
Henkel, and Beiersdorf (cosmetic companies). These dependencies suggest that
the stock prices of those companies are linked such that a significant variation of
the stock price of Daimler will influence a variation in the stock price of BMW.

DAI BMW PAH3

CON

VOW3

(a)

BAYN HEN3 BEI3

(b)

Fig. 1. German automotive (a) and cosmetic (b) company dependency networks pro-
vided as input

32 D. Braines et al.

Table 1. Companies considered from the German stock market in Figs. 1 and 2

Company Comment

BAYN Bayer Pharmaceutical company
BEI3 Beiersdorf Cosmetic company
BMW BMW Automotive manufacturer
CON Continental Tyre manufacturer
DAI Daimler Automotive manufacturer
HEN3 Henkel Cosmetic company
PAH3 Porsche Automotive manufacturer
VOW3 Volkswagen Automotive manufacturer

Let us suppose you have the privilege of using our conversational interface for
interacting with such dependencies networks, see Fig. 2. Among other activities,
such as explaining the dependencies and exploring what-if scenarios such a con-
versational interface would allow you also to express additional information, in
particular that there is a dependency between Bayer and Daimler thus de facto
providing a machine with domain knowledge unavailable before. This enables
the human user to, therefore, act as an oracle, contributing relevant information
to the machine agent based on their wider knowledge of the domain in question.

Fig. 2. Mockup depicting the action of updating a dependency network through our
proposed conversational interface. Other speech acts envisaged for such an interface
include “Explain dependencies. . . ” and “What happens if . . . ”

Subjective Bayesian Networks 33

Indeed, Daimler and Bayer are regularly traded by over-the-counter (OTC) list
shares1 such as INTL FCStone Financial.2

3 Reasoning Under Uncertainty with Limited Data

3.1 Dealing with Uncertainty: Subjective Logic

Subjective logic is a formalism for reasoning under uncertain probabilistic infor-
mation [10]. It expands the notion of a probability value to a distribution of
possible probabilities. This paper considers binary variables such as X that can
take on the value of true or false, i.e., X = x or X = x̄. The value of X does
change over different instantiations, and there is an underlying ground truth
value for the probability pX(x) of taking on the value in the domain X = {x, x̄}.
In general, the variable can take on one of K mutually exclusive values.

A subjective opinion can be formed by directly observing Nins independent
instantiations of X. If over these instantiations, nx times X = x, nx̄ = Nins −nx

times X = x̄ and assuming an uninformative uniform prior, then the posterior
knowledge of the ground truth outcome probability of X is known to follow the
beta distribution

fβ (px|ωX) =
1

β(αx, αx̄)
pαx−1

x (1 − px)αx̄−1 (1)

for 0 ≤ px ≤ 1, where β(·) is the beta function and the beta parameters α =
[αx, αx̄] = [nx+1, nx̄+1] are one particular representation of the opinion ωX . The
opinion ωX in belief space is a tuple of belief bX = nx

sX
, disbelief dX = nx̄

sX
and

uncertainty uX = 2
sX

, where sX = αx + αx̄ is the Dirichlet strength. Therefore,
a tuple 〈bX , dX , uX〉 identifies a point in a 3D space. However, since the belief
masses are positive and sum up to one, such a 3D space can be flattened into a
2D triangle, as depicted in Fig. 3. Following [10, p. 49] we can partition the 2D
space of subjective logic opinions for (lossy) representation using fuzzy natural
language terms such as “High Confidence” and “Very Likely”. Such terms can
be made even more consumable for human users when embedded within larger
natural language sentences such as: “When BAYN stock price changes, there
is high confidence that HEN3 stock price is very likely to change” that can
summarise the subjective opinion 〈0.8, 0.1, 0.1〉.

In this paper, it will be convenient to represent the subjective opinion ωX

by the mean and Dirichlet strength of the corresponding beta distribution. The
mean represents the projected probability that converts the opinion into the
pignistic probabilities, and is given by

PX(x) =
αx

sX
and PX(x̄) =

αx̄

sX
. (2)

1 OTC trades refers to stock trades via a dealer network.
2 https://goo.gl/lTruuv (on 4th May 2017).

https://goo.gl/lTruuv

34 D. Braines et al.

Fig. 3. Subjective logic 2D triangle and areas for fuzzy labels, adapted from [10, p. 49].

The variance of the corresponding beta distribution,

σ2
X =

PX(x)PX(x̄)
sX + 1

, (3)

is a function of the projected probabilities and Dirichlet strength of the sub-
jective opinion. This expression is used in the experiments to predict the root
mean squared error between the projected probability PX(x) and the actual
ground truth ρX(x). Subjective opinions naturally extend to subjective condi-
tional opinions, where for example, the opinion for X conditioned on Y and Z is
interpreted as the set {ωX|y,z : y ∈ Y, z ∈ Z}, and ωX|y,z represents the effective
number of times that X = x or X = x̄ when Y = y and Z = z while jointly
observing X, Y , and Z.

3.2 Dealing with Limited Data: Subjective Bayesian Network

The Subjective Bayesian network (SBN) was first proposed in [9], and it is
an uncertain Bayesian network where the conditionals are subjective opinions
instead of dogmatic probabilities. In other words, the conditional probabilities

Subjective Bayesian Networks 35

are known within a beta distribution. A SBN reflects the knowledge about a
Bayesian network when limited historical data is used to learn the conditionals.
The inference in SBN leads to an opinion about the marginal probability of all
the unobserved variables conditioned on the values of the observed variables.
While different types of SBNs were discussed in [9], this paper focuses on the
type that uses the beta distribution interpretation of the subjective opinion to
compute uncertainty. This section reviews subjective belief propagation (SBP),
which was introduced for trees in [12] and extended for singly-connected networks
in [13] for this class of SBNs.

SBP extends the Belief Propagation (BP) inference method of Pearl [19]. In
BP, π- and λ-messages are passed from parents and children, respectively, to
a node, i.e., variable. The node uses these messages to formulate the inferred
marginal probability of the corresponding variable. The node also uses these
messages to determine the π- and λ-messages to send to its children and parents,
respectively. In SBP, the π- and λ-messages are subjective opinions characterized
by a projected probability and Dirichlet strength.

The SBP formulation approximates output messages as beta-distributed ran-
dom variables using the methods of moments and a first-order Taylor series
approximation to determine the mean and variance of the output messages in
light of the beta-distributed input messages. The details of the derivations are
provided in [12,13]. Given a node X with m parents Ui for i = 1, . . . ,m, the
subjective opinions of the π-messages sent to X are characterized by the pro-
jected probabilities πUi,X(x) and Dirichlet strengths sπUi,X

. Likewise, given that
X has k children Yj for j = 1, . . . , k, the subjective opinions of the λ-messages
sent to X are characterised by the projected probabilities λUi,X(x) and Dirichlet
strengths sλUi,X

. Node X processes these opinions to form the fused π opinion

πX(x) =
∑

u1,...,um

P (x|u1, . . . , um)
m∏

i=1

πUi,X(ui), (4)

sπX
=

πX(x)(1 − πX(x))
σ2

πX

− 1, (5)

where the variance σ2
πX

= VπX
− π2

X(x),

VπX
=

∑

u1,...,um

∑

u′
1,...,u′

m

g(x, x;u1, . . ., um;u′
1, . . . , u

′
m) ·

m∏

i=1

h(ui, u
′
i), (6)

g(x, x′;u1, . . . , um;u′
1, . . . , u

′
m) = px|u1...um

px|u′
1...u′

m

+ (−1)x�=x′
δu,u′

px|u1...um
(1 − px|u1...um

)
sX|u1...um

+ 1
,

(7)

where u is an arbitrary joint assignment of the variables U1, . . . , Um,

δu,u′ =
{
1, if uj = u′

j , for j = 1, . . . , m
0, otherwise

36 D. Braines et al.

is the Kronecker delta function, and

hπ(ui, u
′
i) = πUi,X(ui)πUi,X(u′

i) + (−1)ui �=u′
i
πUi,X(ui)(1 − πUi,X(ui))

sπUi,X
+ 1

. (8)

The fused λ-message is

λX(x) = αλ

k∏

j=1

λYj ,X(x), (9)

sλX
=

⎛

⎝
k∑

j=1

λX(x)λX(x̄)
λYj ,X(x)λYj ,X(x̄)

1
sλYj,X

+ 1

⎞

⎠
−1

− 1,

where αλ is a normalizing constant so that λX(x) sums to one over its domain X.
The π and λ-opinions are fused to determine the marginal opinion for node

X:
PX(x|o) = αfπX(x)λX(x) , (10)

sX =
(

PX(x)PX(x̄)
πX(x)πX(x̄)

1
sπX

+ 1
+

PX(x)PX(x̄)
λX(x)λX(x̄)

1
sλX

+ 1

)−1

− 1,

where αf is also a normalizing constant.
The opinion for the message that node X sends to parent Ui is

λX,Ui
(ui) = αb

∑

x

λX(x)
∑

{u1,...,um}\{ui}
P (x|u1, . . . , ui, . . . , um) ·

∏

j �=i

πUj ,X(uj), (11)

sλX,Ui
=

λX,Ui
(ui)(1 − λX,Ui

(ui))
σ2

λX,Ui

− 1, (12)

where

σ2
λX,Ui

= α2
b

(
λ2

X,Ui
(x̄)σ2

uu + λ2
X,Ui

(x)σ2
ūū − 2λX,Ui

(x)λX,Ui
(x̄)σ2

uū

)
, (13)

σ2
zv =

∑

x

∑

x′
hλ(x, x′)

∑

{u1,...,um}\{z}

∑

{u′
1,...u′

m}\{v}

g(x, x′;u1, . . . , z, . . . , um;u′
1, . . . , v, . . . , u′

m)
∏

j �=i

hπ(uj , u
′
j),

(14)

and
hλ(x, x′) = λX(x)λX(x′) + (−1)x�=x′ λX(x)(1 − λX(x))

sλX
+ 1

, (15)

and αb is a normalizing constant.

Subjective Bayesian Networks 37

Finally, the opinion message sent to the children of X are

πX,Yj
(x) = απ

∏

i�=j

λYi,X(x)πX(x), (16)

sπX,Yj
=

⎛

⎝πX,Yj
(x)πX,Yj

(x̄)
πX(x)πx(x̄)

1
sπX

+ 1
+

∑

i�=j

πX,Yj
(x)πX,Yj

(x̄)
λYi,X(x)λYi,X(x̄)

1
sλYi,X

+ 1

⎞

⎠
−1

− 1,

where απ is a normalizing constant.
The equations for the projected probability updates in SBP mirror the

updated equations in standard belief propagation due to the first-order Taylor
approximation. Actually, the normalizing constants αλ and αβ are superfluous
in standard belief propagation, but necessary in SBP so that the λ message are
proper subjective opinions. In short, SBP provides the same answer as belief
propagation in the mean value. The difference is that SBP also provides a quan-
tification of the uncertainty through the Dirichlet strength. On a technical note,
SBP will actually increase the Dirichlet strength as computed in the update
equations to ensure that all belief values are non-negative. We refer the inter-
ested reader to [12,13] for more details. Finally, the information flow in SBP is
exactly the same as in belief propagation. For the sake of comparison, a node
can send a message to one particular neighbor once it receives messages from all
of its other neighbors.

4 Experimentation

4.1 Methodology

SBNs can learn a model of the domain with a very limited number of observa-
tions; however, the inferred opinions through such a network will become more
certain as the number of observations increases. To measure how well these mod-
els can be learned with limited data and measure the uncertainty associated with
the inferences, we build gold standard models, which are Bayesian networks that
are generated using a much larger number of observations. The gold standard
models are Bayesian networks with completely certain conditional probabilities
that we treat as the ground truth.

For structure learning of the gold standard models, we used the well-known
K2 algorithm [17]. The K2 algorithm is used to learn the best structure of a
singly connected Bayesian network to represent the interactions between the ran-
dom variables. The resulting network serves as a surrogate for a subject matter
expert who would use their background knowledge to create the network struc-
ture, for example, via the conversational interface (see Fig. 2). Further discussion
on this topic is provided in the conclusion of the paper. Then, the conditional
and marginal probabilities at each node of the network are calculated in the
traditional manner using the entire available data.

We use real data to evaluate the quality of the uncertainty (or Dirichlet
strength) in the subjective opinions inferred by SBP to represent the actual

38 D. Braines et al.

spread between the corresponding ‘projected’ and ‘ground truth’ probabilities
that are well captured by the gold standard models. The full data is then divided
into non-overlapping segments of Nins instantiations (i.e., observations). Each
segment represents the sparse data that would actually be available to train a
SBN. A SBN is trained for each segment, and the set of exterior nodes, i.e.,
nodes with one single neighbour (either a parent or child), are considered to
be observed. For each combination of possible values for these exterior nodes,
the marginal opinions for the interior nodes are inferred by SBP. Likewise, to
establish the ground truth, the marginal probabilities are inferred by standard
belief propagation using the underlying gold standard Bayesian network for the
same values of the observed exterior nodes. Then, the marginal opinions and
ground truths for all interior nodes are determined over all combinations of
observed values and non-overlapping segments. Finally, the uncertainty of the
marginal opinions is evaluated.

To evaluate the quality of the derived uncertainty, the actual root mean
squared error (RMSE) between the projected and ground truth probabilities is
calculated. Next, the predicted RMSE is computed without knowledge of the
ground truth, as the square root of the average variance predicted from the
opinions via (3). The similarity between the actual and predicted RMSE is one
way to establish the quality of the uncertainty in the subjective opinions that
are to characterise the spread between the projected and actual probabilities.

An even more precise method to determine the quality of the uncertainty
characterisation is to establish γ-confidence intervals from the opinions to cap-
ture the fraction of γ ground truths within these intervals. One then tabulates
the fraction of times that the actual ground truth falls within the confidence
interval. This is done for various values of γ ∈ [0, 1], and the plot of the actual
γ̂ and the desired γ should follow a straight line as it should be the case that
γ̂ ≈ γ. A more detailed discussion can be found in [14]. The quality of the
inferred subjective opinion ωX should be judged on how well its expression of
uncertainty captures the spread between its projected probability and the actual
ground truth probability.

We compare the performance of SBP against previous methods for reasoning
over uncertain probabilistic networks. Namely, we consider credal networks and
belief networks, which are summarized below:

Credal Networks: A credal network over binary random variables extends a BN by
replacing single probability values with closed intervals representing the possible
range of probability values. The extension of Pearl’s message-passing algorithm
by the 2U algorithm for credal networks is described in [23]. This algorithm
works by determining the maximum and minimum value (an interval) for each
of the target probabilities based on the given input intervals. It turns out that
these extreme values lie at the vertices of the polytope dictated by the extreme
values of the input intervals. As a result, the computational complexity grows
exponentially with respect to the number of parents nodes. For the sake of com-
parison, we assume that our subjective network elicited from the given data
corresponds to a credal network in the following way: if ωx = [bx, bx̄, uX] is a

Subjective Bayesian Networks 39

subjective opinion on the probability px, then we have [bx, bx+uX] as an interval
corresponding to this probability in the credal network. It should be noted that
this mapping from the Beta distribution to an interval is consistent with past
studies of credal networks [15].

Fig. 4. Comparing SBN against Belief Networks and Credal with Ntrain = 10 (over
365) (a) and Ntrain = 30 (over 365) (b) for the German stock exchange data. Best
closest to the diagonal.

Belief Networks: In [20], Smets introduced a computationally efficient method
to reason over networks via Dempster-Shafer theory. It is an approximation
of a valuation-based system. Namely, a (conditional) subjective opinion ωX =
[bx, bx̄, uX] from our SBN obtained from data is converted to the following belief
mass assignment: m(x) = bx, m(x̄) = bx̄ and m(x ∪ x̄) = uX . (Note that in the
binary case, the belief function overlaps with the belief mass assignment). The
method exploits the disjunctive rule of combination (DRC) to compose beliefs
conditioned on the Cartesian product space of the binary power sets. This enables
both forward propagation and backward propagation after inverting the belief
conditionals via the generalized Bayes’ theorem (GBT). By operating in the
Cartesian product space of the binary power sets, the computational complexity
grows exponentially with respect to the number of parents, similar to the 2U
algorithm for credal sets and our SBP method.

4.2 German Stock Exchange Predictions

Let us consider the case where a machine learning system is used to mine data
from the German Stock Market, Börse Frankfurt. To simplify the scenario, let us
consider a binary variable per each company listed in Börse, where such a vari-
able is true if there is a significant increase (i.e. +0.5%) in the company’s stock
value over a day, and false otherwise. Let us then suppose that a well-known
off-the-shelf algorithm for structure learning of dependencies among selected
variables, such as K2 [17], has been used. Using such an algorithm, the depen-
dency networks highlighted in Figs. 1(a) and (b) are derived. Table 1 explains
the variables used in the dependency networks.

40 D. Braines et al.

Figure 1(a) shows how there is a dependency between Daimler stock varia-
tions and BMW; between BMW and Porsche; between Porsche and Volkswagen
(all automotive manufacturers); and between BMW and Continental, a tyre man-
ufacturer. Similarly, Fig. 1(b) depicts the dependencies between Bayer—a phar-
maceutical company—and Henkel—a company producing a variety of chemical
products including cosmetics ingredients; and between Henkel and Beiersdorf,
cosmetic companies. Those dependencies are far from being a surprise, given
that they are companies working in similar, or related, segments of the market.
These two networks have then been merged to produce the single network given
in Fig. 2.

Table 2. Error for the German stock exchange dataset. Gold standard trained with
Ntrain = 365. Best results in bold.

Ntrain = 10 (over 365) Ntrain = 30 (over 365)
SBN Credal Belief Net SBN Credal Belief Net

Actual RMSE 0.124 0.198 0.176 0.047 0.062 0.075
Predicted RMSE 0.101 0.187 0.132 0.049 0.089 0.061

The gold standard Bayesian Network is obtained by using all available data
for (365 days) to determine the conditional probabilities. Then Ntrain days were
used to generate floor(365/Ntrain) SBNs. Binary values were generated for the
three nodes that have one edge, and the marginal probabilities (ground truth)
and marginal opinions were generated via belief propagation and subjective belief
propagation over the Bayesian and SBNs, respectively. Table 2 lists actual and
predicted RMSE for the different approaches using different amounts of observa-
tions. It indicates that SBN achieves pretty good error rate even with 10 days of
observations (sample size 2.74%) and the error decreases to 0.05 when 30 days of
data is used (sample size 8.21%). Figure 4 shows the ratio of the times the ground
truth falls within the bounds—set at various significance levels—when building
SBNs over 10 and 30 days. Our results indicate that SBN can capture the uncer-
tainty more accurately than Credal networks and Belief Networks. Especially,
when Ntrain = 30, confidence level of the SBN is around the desired one, i.e.,
diagonal on the figures. Moreover, Table 2 lists actual and predicted RMSE for
our approach and the benchmark approaches when different amounts of obser-
vations are used. SBN is consistently able to predict an accurate RMSE.

4.3 Istanbul Stock Market Predictions

We also considered the dataset first derived in [1],3 which considers stock
exchange returns for several indexes, including those listed in Table 3. It is quite
straightforward to derive a dependency network such as the one given in Fig. 6
between those indexes.

3 https://goo.gl/XzAZUX (on 4th May 2017).

https://goo.gl/XzAZUX

Subjective Bayesian Networks 41

Standard & Poor’s 500 index includes leading US companies and captures
approximately 80% of available US market capitalisation. Those companies are
trading heavily with the rest of the world, including Asia, and notably Japan;
and with South America, notably Brazil. Moreover, Brazil’s economy heavily
affects the MSCI Emerging Markets Index. According to the Foreign Trade fig-
ures from the United States Census Bureau, within Europe, the US has a strong
commercial partnership with Germany,4 much stronger than with the second
strongest commercial ally, namely the UK.5 Therefore, it is straightforward to
see how the return for Standard & Poor’s has a significant statistical dependence
with the German Stock Market. Moreover, with 15% of the imports coming from
Germany, the UK economy is also significantly dependent on the German mar-
ket6 (instead Germany imports mostly from the Netherlands and exports mostly
to the US).7 Finally, the MSCI European Index return is heavily affected by Ger-
many, the first economy in the European Union.

We also used this dataset of 536 entries to evaluate our approach using differ-
ent amounts of observed data. Table 4 lists actual and predicted RMSE for our
approach and the benchmark approaches when different amount of observations
are used. It shows that SBN consistently predicts the error when trained either
over 10 or 30 days, unlike the two other methods.

Figure 5 demonstrates our results in terms of γ-confidence intervals. Even for
data of 10 days, the confidence for inferences with SBN only slightly diverges
from the desired confidence levels. When training data is increased to 30 days,
the confidence interval for SBN approximate the desired one very closely. Again,
in this dataset, the best performance belongs to SBN in terms of γ-confidence
intervals.

Fig. 5. Comparing SBN against Belief Networks and Credal with Ntrain = 10 (over
536) (a) and Ntrain = 30 (over 536) (b) for the Istanbul stock market data. Best closest
to the diagonal.

4 https://goo.gl/8PdBll (on 4th May 2017).
5 https://goo.gl/n2V89z (on 4th May 2017).
6 https://goo.gl/v1tXD4 (on 4th May 2017).
7 https://goo.gl/ZPJLdR (on 4th May 2017).

https://goo.gl/8PdBll
https://goo.gl/n2V89z
https://goo.gl/v1tXD4
https://goo.gl/ZPJLdR

42 D. Braines et al.

SP NIK

DAX

BVSP EM

EU

FTSE

Fig. 6. Istanbul stock exchange data set [1] dependency network.

Table 3. Indexes considered from the Istanbul stock exchange data set [1] in Fig. 6.

Comment

SP Standard & Poor’s 500 Index Return
DAX Germany Stock Market Return
FTSE UK Stock Market Return
NIK Japan Stock Market Return
BVSP Brazil Stock Market Return
EU MSCI European Index Return
EM MSCI Emerging Markets Index Return

Table 4. Error for the Istanbul stock exchange dataset. Gold standard trained with
Ntrain = 536. Best results in bold.

Ntrain = 10 (over 536) Ntrain = 30 (over 536)
SBN Credal Belief Net SBN Credal Belief Net

Actual RMSE 0.131 0.170 0.172 0.088 0.089 0.104
Predicted RMSE 0.146 0.223 0.124 0.093 0.140 0.068

5 Empirical Evaluation of User Co-design of Subjective
Bayesian Networks

We selected three people among staff members and students at Cardiff University
on the basis of their expertise with computational models of uncertainty. The
first person should be considered an expert in probabilistic methods of inference;
the second is a mature PhD student who spent many years in software companies
and with a basic understanding of probabilistic methods of inference; the third is
a sociologist with little or no experience with probabilistic methods of inference.

Subjective Bayesian Networks 43

We prepared then a written briefing—see Appendix A—and an example of the
mockup—analogous to Fig. 2. We then asked them to consider six cases, each of
which refers to a specific command for an hypothetical conversational interface,
namely:

1. explain, i.e. summarise the results;
2. explain ‹ company ›, i.e. describe the dependencies for a specific company, e.g.

Henkel;
3. explain in detail ‹ company ›, i.e. describe in detail , i.e. with information on

the probabilistic model—thus oriented to a more specialist audience—the
dependencies for a specific company;

4. what happens if both ‹ company1 › and ‹ company2 › stock prices change?,
i.e. exploring what-if scenarios;

5. what happens in detail if both ‹ company1 › and ‹ company2 › stock prices
change?, i.e. exploring what-if scenarios for a more specialist audience;

6. ‹ company1 › depends on ‹ company2 ›, i.e. add a new dependency between
two companies (cf. Fig. 2).

For each of those cases, we ask the participants to answer the following ques-
tions from the Subjective Usability Scale (SUS) questionnaire [4]. The numeric
responses ranged between 1: Strongly Disagree, and 5: Strongly Agree. We asked
the following questions:

Q1: I think that I would like to use this command frequently
Q2: I found the answer unnecessarily complex
Q3: I thought that the interaction was quite natural
Q4: I think that I would need the support of a technical person to be able to

understand this interaction

At the end of the experiment, using the same numeric scale, participants
were asked to answer additional questions from the SUS questionnaire:

SQ1: I think that I would like to use the conversational interface frequently
SQ2: I found the application unnecessarily complex
SQ3: I thought that overall the interaction was quite natural
SQ4: I think that overall I would need the support of a technical person to be

able to understand this interaction
SQ5: I found the various commands well integrated
SQ6: I thought there was too much inconsistency in the application
SQ7: I would imagine that motivated users would learn to use the application

very quickly
SQ8: I found the commands very cumbersome
SQ9: I think I would need to learn a lot of things before I could get going with

the application

At any time, participants could write notes and comments in natural language
to share with us. Moreover, the participants were reminded that their participa-
tion was entirely voluntary and that they were free to abandon the evaluation at
any time with no need for explanations. This project received ethical approval
from the School of Computer Science & Informatics Research Ethics Group.

44 D. Braines et al.

5.1 Results

Explain. Figure 7 shows the mockup of interaction for the explain command
and Fig. 12 depicts the results of the evaluation using error bars.

Fig. 7. Mockup for the explain command.

Strongly Disagree

Strongly Agree

Q1 Q2 Q3 Q4

Fig. 8. Results of the evaluation for the explain command: average and standard devi-
ation of the aggregated received answers. Collected data are not normally distributed.
Q1: I think that I would like to use this command frequently. Q2: I found the answer
unnecessarily complex. Q3: I thought that the interaction was quite natural. Q4: I
think that I would need the support of a technical person to be able to understand this
interaction

Subjective Bayesian Networks 45

Explain ‹ Company ›. Figure 9 shows the mockup of interaction for the
explain ‹ company › command and Fig. 10 depicts the results of the evaluation
using error bars.

Fig. 9. Mockup for the explain ‹ company › command.

Strongly Disagree

Strongly Agree

Q1 Q2 Q3 Q4

Fig. 10. Results of the evaluation for the explain ‹ company › command: average and
standard deviation of the aggregated received answers. Collected data are not normally
distributed. Q1: I think that I would like to use this command frequently. Q2: I found
the answer unnecessarily complex. Q3: I thought that the interaction was quite natural.
Q4: I think that I would need the support of a technical person to be able to understand
this interaction

46 D. Braines et al.

Explain in detail ‹ Company ›. Figure 11 shows the mockup of interaction
for the explain in detail ‹ company › command and Fig. 12 depicts the results of
the evaluation using error bars.

Fig. 11. Mockup for the explain in detail ‹ company › command.

Strongly Disagree

Strongly Agree

Q1 Q2 Q3 Q4

Fig. 12. Results of the evaluation for the explain in detail ‹ company › command: aver-
age and standard deviation of the aggregated received answers. Collected data are not
normally distributed. Q1: I think that I would like to use this command frequently.
Q2: I found the answer unnecessarily complex. Q3: I thought that the interaction was
quite natural. Q4: I think that I would need the support of a technical person to be
able to understand this interaction

Subjective Bayesian Networks 47

What happens if . . . Figure 13 shows the mockup of interaction for the what
happens if . . . command and Fig. 14 depicts the results of the evaluation using
error bars.

Fig. 13. Mockup for the what happens if . . . command.

Strongly Disagree

Strongly Agree

Q1 Q2 Q3 Q4

Fig. 14. Results of the evaluation for the what happens if . . . command: average and
standard deviation of the aggregated received answers. Collected data are not normally
distributed. Q1: I think that I would like to use this command frequently. Q2: I found
the answer unnecessarily complex. Q3: I thought that the interaction was quite natural.
Q4: I think that I would need the support of a technical person to be able to understand
this interaction

48 D. Braines et al.

What happens in detail if . . . Figure 15 shows the mockup of interaction
for the what happens in detail if . . . command and Fig. 16 depicts the results of
the evaluation using error bars.

Fig. 15. Mockup for the what happens in detail if . . . command.

Strongly Disagree

Strongly Agree

Q1 Q2 Q3 Q4

Fig. 16. Results of the evaluation for the what happens in detail if . . . command: average
and standard deviation of the aggregated received answers. Collected data are not
normally distributed. Q1: I think that I would like to use this command frequently.
Q2: I found the answer unnecessarily complex. Q3: I thought that the interaction was
quite natural. Q4: I think that I would need the support of a technical person to be
able to understand this interaction

Subjective Bayesian Networks 49

‹ company1 › depends on ‹ company2 ›. Figure 2 shows the mockup of
interaction for the ‹ company1 › depends on ‹ company2 › and Fig. 17 depicts
the results of the evaluation using error bars.

Strongly Disagree

Strongly Agree

Q1 Q2 Q3 Q4

Fig. 17. Results of the evaluation for the ‹ company1 › depends on ‹ company2 › com-
mand: average and standard deviation of the aggregated received answers. Collected
data are not normally distributed. Q1: I think that I would like to use this command
frequently. Q2: I found the answer unnecessarily complex. Q3: I thought that the inter-
action was quite natural. Q4: I think that I would need the support of a technical
person to be able to understand this interaction.

Overall Evaluation. Figure 18 depicts the results of the overall evaluation
using error bars.

5.2 Summary of Evaluation

Considering the results summarised in Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
and 18, we can conclude that in general our participants appreciated the idea of
having a conversational interface for situational understanding. Indeed, the three
participants mostly agreed with the positive statements and mostly disagreed
with the negative statements in the questionnaire. There are, however, avenues
for improvement.

As per the explain command, it is likely that users will use it only once, as
their continuous interaction with the interface will lead them to familiarise with
the graph-based interface. On this note, it would be useful to have multi-modal
interaction, with also conditional probabilities tables associated with the graph
with natural language labels or also subjective logic opinions. Also, looking at
the collected data, it seems that providing the participants with additional infor-
mation in textual format lead to a less “natural” interaction with the application.
This might be correlated to the chosen scenario, or also to possible difficulties to
understand SBNs: we will continue our investigation in the future taking these
options into due consideration.

50 D. Braines et al.

Strongly Disagree

Strongly Agree

SQ1 SQ2 SQ3 SQ4 SQ5 SQ6 SQ7 SQ8 SQ9

Fig. 18. Results of the evaluation for the what happens in detail if . . . command: average
and standard deviation of the aggregated received answers. Collected data are not
normally distributed. SQ1: I think that I would like to use the conversational interface
frequently. SQ2: I found the application unnecessarily complex. SQ3: I thought that
overall the interaction was quite natural. SQ4: I think that overall I would need the
support of a technical person to be able to understand this interaction. SQ5: I found the
various commands well integrated. SQ6: I thought there was too much inconsistency
in the application. SQ7: I would imagine that motivated users would learn to use the
application very quickly. SQ8: I found the commands very cumbersome. SQ9: I think
I would need to learn a lot of things before I could get going with the application.

Moreover, there is a missing command in the list, namely a help, which is
probably the first command a fresh user will ask. Finally, it is unclear whether
the supplied commands are sufficient for supporting all the tasks of an analyst:
this specific point will require further analysis with realistic scenarios.

6 Conclusion

In this paper we presented a methodology to exploit human-machine coalitions
for situational understanding, i.e., the ability to relate relevant information with
dependencies and form logical conclusions as well as identifying gaps in informa-
tion. This process requires the ability to reason inductively, for which one must
exploit the machines’ ability to learn from data, although important phenomena
are often rare in occurrence, severely limiting the availability of instance data
and hence the applicability of many machine learning approaches.

To this end, we discussed at length the benefits of SBNs, especially when
training with sparse data, and in Sect. 4 we showed that they are superior to
previous methods to reason over uncertain probabilistic networks, Credal net-
works and Belief Networks. In the future, we plan to compare SBN to other
probabilistic models for dependencies such as Maximum Likelihood Estimation
of an Alternating Renewal Process [18,21]. We considered two different datasets
both related to the financial domain, but clearly SBNs can directly be applied to
other datasets. We are working towards inference over general directed acyclic
graphs as they characterise any joint probability distribution.

Subjective Bayesian Networks 51

We also discussed the role that would be played by humans in situational
understanding. Differently from other approaches aimed at explaining high-
dimensional, multivariate feature spaces and dependencies to humans, e.g. [22],
we believe a conversational interface like the one depicted in Fig. 2 can provide
the right level of interactivity in the coalition of humans and machines for sit-
uational understanding. We are currently developing the first prototype of this
conversational interface, and we are focusing on three major capabilities: (1)
the ability to explain the dependencies (e.g., “When Bayer stock price changes,
it is likely that. . . ”); (2) the ability of what-if reasoning (e.g., “If Bayer stock
price changes, then. . . ”); and (3) as shown in Fig. 2, the ability to modify the
dependency network. The preliminary evaluation we discussed in Sect. 5 sug-
gests that conversational interfaces are a positive way to interact with complex
decision making systems such as drawing inferences using Bayesian Networks.
However, additional interfaces, including extending the graphical representation
with conditional probabilities tables and enable their manipulation, need to be
studied as they might suit some of the potential users. Moreover, evaluating the
conversational interface in different case-studies might show which commands
are mostly used, and eventually which ones need to implemented.

This opens a large spectrum of future work, including the ability to evaluate
the human expertise and the quality of data. If a human user adds a depen-
dency that is not supported by available data, it might suggest that the user
has knowledge that is “out of scope” in the data and/or model. However, such
an assertion may simply be erroneous or could indicate data quality issues such
as data that are incomplete, biased, or corrupted.

A Briefing Received by the Participants

A computer analysed the data of the German Stock Market Börse Frankfurt
related to nine companies:

– Bayer, a pharmaceutical company
– Beiersdorf, a cosmetic company
– Henkel, a cosmetic company
– BMW, an automotive manufacturer
– Daimler, an automotive manufacturer
– Porsche, an automotive manufacturer
– Volkswagen, an automotive manufacturer
– Continental, a tyre manufacturer

In particular, the computer was programmed only to consider whether the
closing value of a stock price was significantly different from same stock price at
the closing time of the day before (±0.5%). And then the computer automatically
derived possible dependencies between stocks.

Example. The Bayer stock value at the closing time on 7th December 2016
was 90.10; at the closing time on 8th December 2017 it was 93.17, thus with a
significant change of 3.4%.

52 D. Braines et al.

Similarly, the computer also analyses the changes of all the other companies
considered in this study, thus producing a large table like the following:

Company 07/12/16 08/12/16 09/12/16 . . .

Bayer Stable Changed Changed . . .
Beiersdorf Stable Changed Stable . . .
Henkel Stable Stable Stable . . .
.

On the basis of such a large table, and by employing Machine Learning pro-
cedures, the computer identifies dependencies between companies’ stock values.
An example of such a dependencies can be:

When Bayer stock price changes, there is low confidence that Henkel stock
price is unlikely to change.

References

1. Akbilgic, O., Bozdogan, H., Balaban, M.E.: A novel hybrid RBF neural networks
model as a forecaster. Stat. Comput. 24(3), 365–375 (2014)

2. Braines, D., Thomas, A., Kaplan, L., Sensoy, M., Ivanovska, M., Preece, A.D.,
Cerutti, F.: Human-in-the-loop situational understanding via subjective Bayesian
networks. In: The 5th International Workshop on Graph Structures for Knowledge
Representation and Reasoning (GKR 2017) (2017)

3. Brannon, N.G., Seiffertt, J.E., Draelos, T.J., Wunsch II, D.C.: Coordinated
machine learning and decision support for situation awareness. Neural Netw. 22(3),
316–325 (2009)

4. Brooke, J., et al.: SUS-A quick and dirty usability scale. In: Usability Evaluation
in Industry, vol. 189(194), pp. 4–7 (1996)

5. Chawla, N.V., Japkowicz, N., Kotcz, A.: Editorial: special issue on learning from
imbalanced data sets. ACM SIGKDD Explor. Newsl. 6(1), 1–6 (2004)

6. Dhami, M.K., Mandel, D.R., Mellers, B.A., Tetlock, P.E.: Improving intelligence
analysis with decision science. Perspect. Psychol. Sci. 10(6), 753–757 (2015)

7. Dostal, B.C.: Enhancing situational understanding through employment of
unmanned aerial vehicle. Army Transformation Taking Shape: Interim Brigade
Combat Team Newsletter 01-18 (2007)

8. Helbing, D.: Globally networked risks and how to respond. Nature 497(7447),
51–59 (2013)

9. Ivanovska, M., Jøsang, A., Kaplan, L., Sambo, F.: Subjective networks: perspec-
tives and challenges. In: Croitoru, M., Marquis, P., Rudolph, S., Stapleton, G.
(eds.) GKR 2015. LNCS (LNAI), vol. 9501, pp. 107–124. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28702-7_7

10. Jøsang, A.: Subjective Logic: A Formalism for Reasoning Under Uncertainty.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42337-1

11. Kahneman, D.: Thinking, Fast and Slow. Macmillan, Basingstoke (2011)

https://doi.org/10.1007/978-3-319-28702-7_7
https://doi.org/10.1007/978-3-319-42337-1

Subjective Bayesian Networks 53

12. Kaplan, L., Ivanovska, M.: Efficient subjective Bayesian network belief propagation
for trees. In: International Conference on Information Fusion (FUSION), pp. 1300–
1307 (2016)

13. Kaplan, L., Ivanovska, M.: Efficient subjective Bayesian network belief propagation
for singly-connected graphs. Int. J. Approx. Reason. (2017, submitted)

14. Kaplan, L., Şensoy, M., Chakraborty, S., de Mel, G.: Partial observable update
for subjective logic and its application for trust estimation. Inf. Fusion 26, 66–83
(2015)

15. Karlsson, A., Johansson, R., Andler, S.F.: An empirical comparison of Bayesian
and credal networks for dependable high-level information fusion. In: International
Conference on Information Fusion (FUSION), pp. 1–8 (2008)

16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

17. Lerner, B., Malka, R.: Investigation of the K2 algorithm in learning Bayesian net-
work classifiers. Appl. Artif. Intell. 25(1), 74–96 (2011)

18. Lin, X., Moussawi, A., Korniss, G., Bakdash, J.Z., Szymanski, B.K.: Limits of risk
predictability in a cascading alternating renewal process model. Sci. Rep. 7(1),
6699 (2017)

19. Pearl, J.: Fusion, propagation, and structuring in belief networks. Artif. Intell.
29(3), 241–288 (1986)

20. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized
Bayesian theorem. Int. J. Approx. Reason. 9, 1–35 (1993)

21. Szymanski, B.K., Lin, X., Asztalos, A., Sreenivasan, S.: Failure dynamics of the
global risk network. Sci. Rep. 5, 10998 (2015)

22. Timmer, S.T., Meyer, J.J.C., Prakken, H., Renooij, S., Verheij, B.: A two-phase
method for extracting explanatory arguments from Bayesian networks. Int. J.
Approx. Reason. 80(C), 475–494 (2017)

23. Zaffalon, M., Fagiuoli, E.: 2U: an exact interval propagation algorithm for polytrees
with binary variables. Artif. Intell. 106(1), 77–107 (1998)

24. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as
Non-IID samples. In: Proceedings of the 26th Annual International Conference on
Machine Learning, pp. 1249–1256. ACM (2009)

Counting and Conjunctive Queries
in the Lifted Junction Tree Algorithm

Tanya Braun(B) and Ralf Möller

Institute of Information Systems, Universität zu Lübeck, Lübeck, Germany
{braun,moeller}@ifis.uni-luebeck.de

Abstract. Standard approaches for inference in probabilistic for-
malisms with first-order constructs include lifted variable elimination
(LVE) for single queries. To handle multiple queries efficiently, the lifted
junction tree algorithm (LJT) uses a first-order cluster representation of
a knowledge base and LVE in its computations. We extend LJT with a
full formal specification of its algorithm steps incorporating (i) the lifting
tool of counting and (ii) answering of conjunctive queries. Given multiple
queries, e.g., in machine learning applications, our approach enables us
to compute answers faster than the current LJT and existing approaches
tailored for single queries.

1 Introduction

AI research and application areas such as natural language understanding and
machine learning (ML) need efficient inference algorithms. Modeling realistic sce-
narios results in large probabilistic models that require reasoning about sets of
individuals. Lifting uses symmetries in a model to speed up reasoning with known
domain objects. We study the problem of reasoning in large models that exhibit
symmetries. Our inputs are a model and queries for probabilities or probabil-
ity distributions of random variables (randvars) given evidence. Inference tasks
reduce to computing marginal distributions. We aim to enhance the efficiency
of these computations when answering multiple queries, a common scenario in
ML. We exploit that a model remains constant under multiple queries.

We have introduced a lifted junction tree algorithm (LJT) for multiple queries
on models with first-order constructs [3]. LJT is based on the junction tree algo-
rithm [17] and lifted variable elimination (LVE) as specified in [26]. LJT uses a
first-order junction tree (FO jtree) to represent clusters of randvars in a model.
This paper extends LJT and contributes the following: We give a formal spec-
ification of the LJT steps construction, message passing, and query answering.
We incorporate counting as defined in [26] to lift more computations and allow a
wider variety of model specifications. We adapt the LVE heuristic for elimination
order for message passing and extend query answering for conjunctive queries
that may cover multiple clusters based on [16].

LJT imposes some static overhead for building an FO jtree and message
passing. Counting allows accelerating computations during message passing and
c© Springer International Publishing AG, part of Springer Nature 2018
M. Croitoru et al. (Eds.): GKR 2017, LNAI 10775, pp. 54–72, 2018.
https://doi.org/10.1007/978-3-319-78102-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_3&domain=pdf

Counting and Conjunctive Queries in LJT 55

query answering. Handling conjunctive queries allows for more complex queries.
We significantly speed up runtime compared to LVE and LJT. Overall, we handle
multiple queries more efficiently than approaches tailored for single queries.

The remainder of this paper has the following structure: First, we look at
related work on exact lifted inference and the junction tree algorithm. Then,
we introduce basic notations and data structures and recap LVE and LJT. We
present our extension incorporating counting and conjunctive queries, followed
by a brief empirical evaluation. Last, we present a conclusion and upcoming
work.

2 Related Work

In the last two decades, researchers have sped up runtimes for inference signifi-
cantly. Propositional formalisms benefit from variable elimination (VE) [28]. VE
decomposes a model into subproblems to evaluate them in an efficient order.
A decomposition tree (dtree) represents such a decomposition [9]. LVE, first
introduced in [19] and expanded in [20], exploits symmetries at a global level.
LVE saves computations by reusing intermediate results for isomorphic subprob-
lems. Milch et al. introduce counting to lift certain computations where lifted
summing out is not applicable [18]. Taghipour et al. extend the formalism to its
current standard by generalising counting [26]. He formalises lifting by defining
lifting operators. The operators appear in internal calculations of LJT.

For multiple queries in a propositional setting, Lauritzen and Spiegelhalter
introduce junction trees (jtrees), a representation of clusters in a propositional
model, along with a reasoning algorithm [17]. The algorithm distributes knowl-
edge in a jtree with a message passing scheme, also known as probability prop-
agation (PP), and answers queries on the smaller clusters. Shafer and Shenoy
as well as Jensen et al. propose well known PP schemes [14,21]. They trade
off runtime and storage differently, making them suitable for certain uses. Dar-
wiche demonstrates a connection between jtrees and VE, namely, the clusters
of a dtree form a jtree [10]. Taghipour et al. transfer the idea of dtrees to the
first-order setting, introducing FO dtrees, allowing for a complexity analysis of
lifted inference [25].

Lifted belief propagation (LBP) combines PP and lifting, often using lifted
representations, e.g., with hyper-cubes [12,23]. Kersting and Ahmadi et al.
present a counting LBP that runs a colouring algorithm with additional mech-
anisms for dynamic models [1,15]. To the best of our knowledge, none of them
use jtrees to focus on multiple queries.

Lifted inference sparks progress in various fields. Van den Broeck applies lift-
ing to weighted model counting [5] and first-order knowledge compilation, with
newer work on asymmetrical models [6]. To scale lifting, Das et al. use graph data
bases storing compiled models to count faster [11]. Both works are interesting
avenues for future work. Chavira and Darwiche focus on knowledge compilation
as well also addressing the setting of multiple queries and using local symmetries
[7]. Other areas incorporate lifting to enhance efficiency, including continuous or
dynamic models [8,27], logic programming [2], and theorem proving [13].

56 T. Braun and R. Möller

We apply lifting to jtrees, introducing FO jtrees and provide LJT as a rea-
soning algorithm using LVE as a subroutine [3]. Currently, LJT does not include
counting and handling of conjunctive queries. We widen the scope of the algo-
rithm with our extension and speed up inference time.

3 Preliminaries

This section introduces basic notations, the FO dtree and FO jtree data struc-
tures, and recaps LVE and LJT based on [3,26]. We assume familiarity with
common notions such as jtrees and dtrees (for an introduction, see, e.g., [10]).

3.1 Parameterised Models

Parameterised models compactly represent models with first-order constructs
using logical variables (logvars) as parameters. We begin with denoting basic
blocks on our way to build a full model.

Definition 1. Let L be a set of logvar names, Φ a set of factor names, and R a
set of randvar names. A parameterised randvar (PRV) R(L1, . . . , Ln), n ≥ 0, is
a syntactical construct of a randvar R ∈ R combined with logvars L1, . . . , Ln ∈
L to represent a set of randvars that behave identically. Each logvar L has a
domain, denoted by D(L). The term range(A) denotes the possible values of
some PRV A. A constraint (X, CX) is a tuple with a sequence of logvars X =
(X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi). C allows for restricting logvars to
certain domain values. The symbol � marks that no restrictions apply and may
be omitted.

The terms lv(P) and rv(P) refer to the logvars and PRVs with constraints,
respectively, in some P . The term gr(P) denotes the set of instances of P with all
logvars in P grounded w.r.t. constraints or domains. Let us look at an example.

Example 1. We model that people attend conferences and do research on some
topic depending on whether this topic is considered hot. Later, we want to encode
that, e.g., the potential increases that a person does research on some topic if
this topic is hot. The potential should be identical for different people. So, we
use PRVs to represent a set of people, e.g., alice, eve, and bob, that have the
same behaviour for some randvar.
Given randvar names HoTpc, AttCnf , and Res and logvar name X, we
build PRVs HoTpc, AttCnf(X), and Res(X). The domain of X is given by
D(X) = {alice, eve, bob}. Each PRV has the range {true, false}. HoTpc is not
parameterised and represents a propositional randvar, while AttCnf(X) and
Res(X) represent sets of randvars. A constraint can modify which randvars
AttCnf(X) and Res(X) represent. A constraint C = � for X does not restrict
X. A constraint C ′ = (X, {alice, eve}) restricts X to not take the value bob.
gr(Res(X)|C ′) contains Res(alice) and Res(eve) while gr(Res(X)|C) also con-
tains Res(bob).

Counting and Conjunctive Queries in LJT 57

We use the basic blocks of logvars, PRVs, and constraints to form more
complex structures that make up a model.

Definition 2. A parametric factor (parfactor) g consists of a function mapping
argument values to real values. We denote a parfactor by ∀X : φ(A) | C where
X ∈ L is a set of logvars that the factor generalises over. A = (A1, . . . , An) is a
sequence of PRVs. Each PRV is built from R and possibly X. We omit (∀X :) if
X = lv(A). φ : ×n

i=1range(Ai) �→ R
+ is a function with name φ ∈ Φ, identical

for all instances of A. A full specification of φ requires listing all input-output
values. C is a constraint on L. A set of parfactors forms a model G := {gi}n

i=1.
G represents the probability distribution PG = 1

Z

∏
f∈gr(G) φf (Af) with Z as the

normalisation constant.

For our above example of alice, eve, and bob doing research and attending
conferences influenced by a topic considered hot, we can build a parfactor that
encodes this identical behaviour.

Example 2. With the above PRVs and a factor name φ, we build a parfactor
g = φ(HoTpc,AttCnf(X), Res(X))|�. The mappings with randomly chosen
potentials are (with true = 1 and false = 0):

(0, 0, 0) → 10, (0, 0, 1) → 3, (0, 1, 0) → 3, (0, 1, 1) → 7,

(1, 0, 0) → 6, (1, 0, 1) → 6, (1, 1, 0) → 5, (1, 1, 1) → 9

The � constraint means φ holds for alice, eve, and bob. gr(g) contains three
factors with identical potential functions.

Hot
g1

App(A)

Biz(M)
Conf(X)

Res(X)

Pub(X,P)

g2

g3

Fig. 1. Parfactor graph for Gex

We compile a model Gex building on Example 2: The topic allows for business
markets and application areas and for a person to publish in publications. Log-
vars encode that there are several markets (M), areas (A), and publications (P).

Example 3. Let L = {A,M,P,X}, Φ = {φ1, φ2, φ3}, and R = {HoTpc,Biz,
App,AttCnf,Res, Pub}. The domains for the logvars are D(A) = {ml, nlp},
D(M) = {itsec, ehealth}, D(P) = {p1, p2}, and D(X) = {alice, eve, bob}.
In addition to HoTpc, AttCnf(X), and Res(X), we build the binary PRVs
Biz(M), App(A), and Pub(X,P). The model reads Gex = {g1, g2, g3},

– g1 = φ1(HoTpc,App(A), Biz(M))|C1,
– g2 = φ2(HoTpc,AttCnf(X), Res(X))|C2, and
– g3 = φ3(HoTpc,AttCnf(X), Pub(X,P))|C3.

58 T. Braun and R. Möller

We omit concrete functions for φ1, φ2, and φ3 at this point. C1, C2, and C3

are � constraints, meaning φ1, φ2, and φ3 apply for all possible tuples. Figure 1
depicts Gex as a graph with six variable nodes for the PRVs and three factor
nodes for g1, g2, and g3 with edges to the PRVs involved.

The semantics of a model is given by grounding and building a full joint dis-
tribution. The query answering (QA) problem asks for a probability distribution
of a randvar w.r.t. a model’s joint distribution and fixed events (evidence). For-
mally, P (Q|E) denotes a query where Q is a grounded PRV (a normal randvar)
and E is a set of events (grounded PRVs with fixed range values). A query for
Gex is P (Pub(eve, p1)|AttCnf(eve) = true), with AttCnf(eve) = true a fixed
event of eve attending conferences and asking for the probability distribution of
eve publishing in p1. Next, we look at algorithms for QA. They seek to avoid
grounding as well as building a full joint distribution.

3.2 Lifted Variable Elimination

LVE employs two main techniques for QA, namely (i) decomposition into iso-
morphic subproblems and (ii) counting of domain values leading to a certain
range value of PRV given the remaining PRVs in a parfactor. The first tech-
nique refers to lifted summing out. The idea is to compute VE for one case and
then exponentiate the result with the number of isomorphic instances.

The second technique, counting, exploits that all instances of a PRV A eval-
uate to range(A). A counting randvar (CRV) encodes for n interchangeable
randvars, i.e., instances of A, how many have a certain value.

Example 4. Consider φ(R1, R2, R3) with mappings as follow:

(0, 0, 0) → 1, (0, 0, 1) → 2, (0, 1, 0) → 2, (0, 1, 1) → 3,

(1, 0, 0) → 2, (1, 0, 1) → 3, (1, 1, 0) → 3, (1, 1, 1) → 4

The potentials for (0, 0, 1), (0, 1, 0), and (1, 0, 0) are identical, namely 2, and
the argument values exhibit that two of them are false and one is true. The
same observation holds for two arguments being true and one false, all mapping
to the potential of 3. So, instead of using eight mappings, we use a histogram
to encode how many of the R randvars have a specific value that maps to the
corresponding potential (first position R = 1, second R = 0):

[0, 3] → 1, [1, 2] → 2, [2, 1] → 3, [3, 0] → 4

To refer to a set of randvars in this counted version, we use a CRV.

Definition 3. We denote a CRV by #X∈C [P (X)] for a PRV P (X) and con-
straint C, where lv(X) = {X} (meaning all other inputs are constant). The
range of a CRV is the space of possible histograms. Since counting binds logvar
X, lv(#X∈C [P (X)]) = X \ {X}. A histogram h is a set of tuples {(vi, ni)}m

i=1,

Counting and Conjunctive Queries in LJT 59

m = |range(P (X))|, ni ∈ N, and
∑

i ni = |gr(P (X)|C)|. A shorthand notation
is [n1, . . . , nm]. h(vi) returns ni. If {X} ⊂ lv(X), the CRV is a parameterised
CRV (PCRV) and represents a set of CRVs. We count-convert a logvar X in
a PRV Ai ∈ A in a parfactor L : φ(A)|C leading to a CRV A′

i. In the new
parfactor, φ′ has a histogram h as input for A′

i. φ′(. . . , ai−1, h, ai+1, . . .) maps
to

∏
ai∈range(Ai)

φ(. . . , ai−1, ai, ai+1, . . .)h(ai).

The techniques have preconditions [26], e.g., to sum out PRV A in parfactor
g, lv(A) = lv(g). To count-convert logvar X in g, only one input in g contains
X. Counting binds X, i.e., lv(#X∈C [P (X)]) = X \ {X}, possibly allowing sum-
ming out another PRV that we otherwise need to ground. LVE includes further
techniques to enable lifted summing out. Grounding is its last resort where it
replaces a logvar with each value in a constraint, duplicating the affected parfac-
tors. To eliminate a next PRV, LVE chooses from operations applicable to the
model based on the size of the intermediate result after applying an operation.
Let us apply LVE to g1 ∈ Gex.

Example 5. In φ1(HoTpc,App(A), Biz(M)), we cannot sum out any PRV as
neither includes both logvars. One may ground M , leading to |gr(M)| parfactors
of the form φ(HoTpc,App(A), Biz(m)) for all m ∈ gr(M). To eliminate App(A),
one multiplies all new parfactors into one with HoTpc, App(A), and all instances
of Biz(M) as arguments. All randvars represented by Biz(M) lead to true or
false and we can count them as in Example 4. We count convert to avoid the
grounding step. We can rewrite Biz(M) into #M [Biz(M)] and g1 into g′

1 =
φ′(HoTpc,App(A),#M [Biz(M)])|C1. The CRV refers to histograms that specify
for each value v ∈ range(Biz(M)) how many grounded PRVs evaluate to v.
Given the previous mappings (hot, app, true) �→ x and (hot, app, false) �→ y in
φ, φ′ maps (hot, app, [n1, n2]) to xn1yn2 . Since M is no longer a regular logvar, we
sum out App(A) using standard VE and exponentiate the result with |gr(A)| = 2.

3.3 FO Dtrees

VE recursively decomposes a model into partitions that include randvars not part
of any other partition. A dtree represents these decompositions. With lifting, a
dtree needs to represent isomorphic instances as well. We do so by grounding
a subset of the model logvars with representative objects, called decomposition
into partial groundings (DPG; requires a normal form, see [26]). In an FO dtree,
DPG nodes represent such DPGs.

Definition 4. A DPG node TX is given by a 3-tuple (X,x, C) where X =
{X1, . . . Xk} is a set of logvars of the same domain DX, x = {x1, . . . xk} is a
set of representative objects from DX, and C is a constraint on x such that
∀i, j : xi
= xj. We label TX by (∀x : C) in the FO dtree. TX has a child
Tx. The decomposed model at Tx is a representative of TX using a substitution
θ = {Xi → xi}k

i=1 mapping X to x.

With a means to represent isomorphic instances and as such, lifted summing out
in a dtree, we define FO dtrees for decompositions of a model during LVE.

60 T. Braun and R. Möller

Definition 5. An FO dtree for a model G is a tree in which (i) non-leaf nodes
can be DPG nodes, (ii) each leaf contains a factor (parfactor with representative
objects), (iii) each leaf with representative object x descends from exactly one
DPG node TX such that x ∈ x, (iv) each leaf descending from DPG node TX has
all representative objects x in its factor, and (v) for each DPG node TX, X =
{X1, . . . Xk}, Tx has k! children {Ti}k!

i=1, which are isomorphic up to permutation
of x. All leaf factors combined correspond to G.

The clusters of an FO dtree form an FO jtree. We compute clusters analo-
gously to ground dtrees. A cluster of a node T is the union of its cutset and
context. A cutset is the set of randvars shared between any two children minus
the randvars in any ancestor cutset. A context is the intersection of its randvars
and those in any ancestor cutset. We can count-convert logvars X if, at DPG
node TX, X appear in the cluster at TX. Next, we inspect an FO dtree for Gex.

Example 6. Figure 2 depicts an FO dtree without set braces and � constraints.
The root partitions Gex based on logvars with children TA = (A, a,�) and
TX = (X,x,�). The models of both children share randvar HoTpc while the
other PRVs appear in only one of them. TA has a child Ta with model {g′

1 =
φ′
1(HoTpc,App(a), Biz(M))}, representative object a replacing A. Child node

TM = (M,m,�) has a child Tm with model {g′′
1 = φ′′

1(HoTpc,App(a), Biz(m))}.
g′′
1 is ground so we have a leaf node. TX has a child Tx with the model {g′

2 =
φ′
2(HoTpc,AttCnf(x), Res(x)), g′

3 = φ′
3(HoTpc,AttCnf(x), Pub(x, P))}. The

children are a leaf node for g′
2 and a node TP = (P, p,�) with child Tp and model

{g′′
3 = φ′′

3(HoTpc,AttCnf(x), Pub(x, p))}. g′
2 includes randvar Res(x) not part

of the model under TP , which in return contains Pub(x, P). Tp has a leaf child
for g′′

3 . The PRVs pinned to inner nodes are clusters. Leaf clusters consist of
factor arguments. As M appears in the cluster of TM , it is count-convertible.

HoTpc

∀a TAHoTpc,Biz(M)

Ta
HoTpc,Biz(M),

App(a)

∀m TM
HoTpc,Biz(M),

App(a)

Tm
HoTpc,Biz(m),

App(a)

g′′
1

∀xTX HoTpc

Tx HoTpc,AttCnf(x)

g′
2 ∀pTP HoTpc,AttCnf(x)

Tp
HoTpc,AttCnf(x),

Pub(x, p)

g′′
3

Fig. 2. FO dtree for Gex (clusters for inner nodes in gray)

Counting and Conjunctive Queries in LJT 61

3.4 FO Jtrees

LJT runs on FO jtrees using logvars to encode symmetries in FO dtree clusters.
We define a parameterised cluster (parcluster), i.e., a set of PRVs.

Definition 6. A parcluster C is denoted by ∀L : A | C where L is a set of
logvars and A is a set of PRVs with lv(A) ⊆ L. We omit (∀L :) if L = lv(A).
Constraint C puts limitations on logvars and representative objects. LJT assigns
the parfactors of the input model to parclusters. A parfactor φ(Aφ)|Cφ assigned
to Ci at node i must fulfil (i) Aφ ⊆ A, (ii) lv(Aφ) ⊆ L, and (iii) Cφ ⊆ C. We
call the set of assigned parfactors a local model Gi.

Next, we define FO jtrees, analogous to propositional jtrees, with parclusters
replacing clusters and parfactors replacing factors.

Definition 7. An FO jtree for a model G is a pair (J , fC) where J is a cycle-
free graph and fC is a function mapping each node i in J to a label Ci called
a parcluster. An FO jtree must satisfy three properties: (i) A parcluster Ci is a
set of PRVs from G. (ii) For every parfactor g = φ(A)|C in G, A appears in
some Ci. (iii) If a PRV from G appears in Ci and Cj, it must appear in every
parcluster on the path between nodes i and j in J . Parameterised set Sij, called
separator of edge i—j in J , contains the shared randvars of Ci and Cj.

An FO jtree is minimal if it ceases to be one if removing a PRV from any par-
cluster. The clusters of an FO dtree form a non-minimal FO jtree. To minimise,
we merge neighbouring nodes if one parcluster is a subset of the other.

3.5 Lifted Junction Tree Algorithm

LJT provides an efficient way for answering a set of queries {Qi}m
i=1 given a model

G. The main workflow is: (i) Construct an FO jtree for G. (ii) Pass messages.
(iii) Compute answers for {Qi}m

i=1. For details regarding evidence, see [4].
FO jtree construction uses the clusters of an FO dtree for G. Message passing

distributes local information at nodes to the other nodes. Two passes propagating
information from the periphery to the inner nodes and back suffice [17]. LJT
uses LVE to calculate the content of a message based on separators. If a node
has received messages from all neighbours but one, it sends a message to the
remaining neighbour (inbound pass). In the outbound pass, messages flow in
the opposite direction. A query asks for the probability distribution (or the
probability of a value) of a single grounded PRV, the query term. For each
query, LJT finds a node whose parcluster contains the query term and sums out
all non-query terms in its parfactors and received messages.

Since we extend LJT, we provide more details on the individual steps and
an example in the next section.

4 Extended Lifted Junction Tree Algorithm

We extend LJT formally specifying its steps, incorporating counting and con-
junctive queries. Algorithm1 provides an outline of LJT.

62 T. Braun and R. Möller

Algorithm 1. Lifted Junction Tree Algorithm
function FOJT(Model G, Queries {Qi}m

i=1)
FO jtree J = FO-jtree(G)
passMessages(J)
getAnswers(J ,{Qi}m

i=1)

4.1 Construction

LJT constructs an FO jtree using FO dtree clusters. The FO dtree is constructed
using a naive algorithm proposed in [24] that splits a model based on logvars if no
DPG is possible. [24] also provides how to calculate clusters. We formalise how
we convert the clusters into parclusters and when and how merging proceeds.

A cluster Ai of an FO dtree node i forms a parcluster ∀L : A|C with

– A = Ai,
– L = lv(Ai), if i is a DPG node (X,x, CX), then L = lv(AT) ∪ X,
– C = ∅, if i is a DPG node (X,x, CX), then C = CX, and
– Gi = ∅, if i is a leaf node with factor g, then Gi = {g}.

For merging, we need set relations and operations. A parcluster Ci is a subset
of parcluster Cj , denoted by Ci ⊆ Cj , iff gr(Ci) ⊆ gr(Cj). Exploiting that par-
clusters have certain properties by way of construction (e.g., domains are either
distinct or identical), we need not ground but check parclusters component-wise.
Other relations and operations are defined analogously.

Parclusters Ci and Cj with local models Gi and Gj are mergeable if
Ci ⊆ Cj ∨ Cj ⊆ Ci. The merged parcluster Ck and its local model Gk are
given by Ck = Ci ∪ Cj and Gk = Gi ∪ Gj . The new node k takes over all
neighbours of i and j. If we merge two parcluster, one with logvars X and
one with representative objects x, we first perform the inverse of substitution
θ = {Xi → xi}k

i=1, performed at DPG node TX in the underlying FO dtree,
mapping x back onto X.

Example 7. After converting the clusters in Fig. 2 into parclusters, we look at
the leaf node with local model {g′′

3}. As the neighbouring parcluster is identical,
we merge them. Keeping them separate would mean sending a message with g′′

3

leading to two nodes with identical information. We merge the next neighbour
as well but replacing p with P again. Merging continues until we reach the
node corresponding to the root in the FO dtree. The node with g′

2 in its local
model does not merge since its parcluster includes PRV Res(x) (but applies x �→
X). The same procedure iteratively merges the nodes containing PRVs HoTpc,
App(A), and Biz(M). Figure 3 shows the final result with three parclusters,

– C1 = ∀A,M : {HoTpc,App(A), Biz(M)}|�,
– C2 = ∀X : {HoTpc,AttCnf(X), Res(X)}|�, and
– C3 = ∀X,P : {HoTpc,AttCnf(X), Pub(X,P)}|�.

S12 = S21 = {HoTpc} and S23 = S32 = {HoTpc,AttCnf(X)} are the separa-
tors. Each local model consists of one parfactor, which is not a common scenario.

Counting and Conjunctive Queries in LJT 63

HoTpc
App(A) Biz(M)

{g1}

C1

HoTpc AttCnf(X)
Res(X)

{g2}

C2

HoTpc AttCnf(X)
Pub(X,P)

{g3}

C3

HoTpc HoTpc,AttCnf(X)

Fig. 3. FO jtree for Gex (parcluster models in gray)

Regarding the extensions, conjunctive queries do not have any influence on
construction. Counting affects construction w.r.t. PCRVs. We allow PCRVs in
the input model, increasing its expressivity. PCRVs facilitate specifying counting
behaviour explicitly in the model description. Construction handles PCRVs along
with PRVs, becoming part of parclusters and possibly separators. Though we
can identify logvars for count conversion in the FO dtree, we do not use this
feature as explained in the next subsection.

Given an FO jtree for an input model, the next step in LJT is message
passing, which we discuss next.

4.2 Message Passing

Message passing starts at the periphery, moves inwards, and then in the opposite
direction to distribute all local information through the whole FO jtree. We
define a message, discuss the effects of the extensions on messages, and as a
consequence of counting, adapt the LVE heuristic selecting the next operation
for calculating a message.

For a message from node i to node j, LJT encodes information present at i
in parfactors over separator Sij since j can process the PRVs in Sij . Formally, a
message mij from i with parcluster Ci and local model Gi to j is a set of parfac-
tors, each with a subset of Sij as arguments. To calculate mij , LJT eliminates
all PRVs not in Sij from Gi and the messages from all other neighbours using
LVE, as described by

mij =
∑

E∈Ei

∏

g∈G′
g, Ei = Ci \ Sij , G′ = Gi ∪ {mik}k �=j .

mij can be a set of parfactors as LVE only multiplies parfactors if necessary. Let
us look at messages in the FO jtree for Gex.

Example 8. In the FO jtree for Gex as depicted in Fig. 3, messages flow from
nodes 1 and 3 to node 2 and back. Messages between nodes 1 and 2 have the
argument HoTpc, messages between nodes 2 and 3 the arguments HoTpc and
AttCnf(X). Inbound, the messages are m12 and m32. For m12, LJT eliminates
E1 = {App(A), Biz(M)} from G′ = G1 as in Example 5. For m32, LJT eliminates
E3 = {Pub(X,P)} from G′ = G3 using lifted summing out on Pub(X,P). At this
point, node 2 has all information in the model in its local model and received

64 T. Braun and R. Möller

Algorithm 2. Conjunctive Query Answering
function getAnswers(FO Jtree J , Queries {Qi}m

i=1)
for Q ∈ {Qi}m

i=1 do
Subtree JQ ← getSubtree(J , Q)
Model GQ ← getModel(JQ)
LVE(GQ,Q)

messages, encoded in its parcluster PRVs. Outbound, node 2 propagates this
information to node 1 with message m21 and to node 3 with message m23. For
m21, LJT sums out E2 = {AttCnf(X), Res(X)} from G′ = F2 ∪ {m32} and for
m23, E2 = {Res(X)} from G′ = F2 ∪ {m12}.

The extensions again only influence LJT on behalf of counting since conjunc-
tive queries do not affect message passing which is independent of any queries.
As mentioned above, counting appears in the form of PCRVs in an input model.
As part of a model, PCRVs appear during message passing in a separator or in
the set of PRVs to eliminate and are handled accordingly.

We do not count-convert logvars identified for count conversion in the FO
dtree. Consider a scenario where PRVs App(A) and Biz(M) are in a parcluster
and App(A) in one separator. Assume given an FO dtree, we converted Biz(M)
into a CRV. Then, we still need to count-convert App(A) to sum out Biz(M),
making the count conversion of logvar M superfluous. Since we cannot always
determine from the clusters in the FO dtree if count conversion is reasonable for
message passing, we do not count-convert in the FO dtree.

Example 8 references another use of counting, namely, as a means to enable a
sum-out operation after count conversion when calculating a message. Without
counting, the algorithm would need to ground a logvar. After count conversion,
the new PCRV becomes part of the model that is used for further calculating the
message. Then, the scenario plays out as described above when PCRVs are part
of the model itself. The new PCRV either needs to be eliminated or becomes
part of the message if the original PRV is part of the separator. If the new PCRV
is part of the message, it becomes part of message calculations at the receiver.

The heuristic LVE uses no longer works for LJT in all cases. Consider the
scenario from before with PRVs App(A) and Biz(M) in a parcluster and App(A)
in a separator. Using counting conversion on A, we can sum out Biz(M). Assume
that A has 50 domain values while M has 10. LVE would count-convert M as it
leads to a smaller parfactor than count-converting A. After the count conversion,
it still cannot sum out #M [Biz(M)]. So, it count-converts A to finally sum
out #M [Biz(M)], making the first count conversion unnecessary. For LJT, we
require the heuristic to consider the PRVs in a separator.

We adapt the heuristic by dividing applicable counting operations into one
part with operations for PRVs to eliminate and another part with operations for
separator PRVs. If the operation with the lowest cost comes from the first part,
we select the cheapest operation from the second part if not empty. With the
adapted heuristic, we save superfluous applications of LVE operators.

Counting and Conjunctive Queries in LJT 65

After receiving messages from each neighbour, the parclusters hold in their
local models all information to answer queries on its PRVs.

4.3 Query Answering

While conjunctive queries so far do not change LJT, query answering changes
as we allow for multiple grounded PRVs Q in a query. Since we do not discuss
evidence, a query has the form P (Q) with a set of grounded PRVs Q. LJT has
as input a set of queries that now can each be a set of grounded PRVs Qi instead
of a single grounded PRV Qi.

Query answering so far has meant to find a parcluster that contains the query
randvar Qi and eliminate all non-query PRVs from its local model using LVE.
With a set of grounded PRVs in a query, we may have query randvars that are
not part of one parcluster. We could force LJT to build an FO jtree with all
query randvars in one parcluster but the forced construction inhibits fast query
answering for other queries. Additionally, it assumes that we know a query in
advance. Hence, we adapt the idea of so called out-of-clique inference [16], which
extracts necessary information per query from a standard jtree.

Algorithm 2 shows a pseudo code description of our approach. We find a
subtree of the FO jtree that covers all query randvars Q. From the parclusters
in the subtree, we extract a model to answer Q with LVE handling multiple
query randvars. A more detailed description of each step follows, starting with
identifying a subtree.

Subtree Identification. The goal is to find a subtree of the FO jtree where the
subtree parclusters cover all query randvars Q. Since the subtree is the basis
for model extraction, the subtree should result in the smallest model possible in
terms of number of PRVs. In a straight forward way, LJT finds a first node that
covers at least part of Q and uses it as the first node in the subtree JQ. Then, it
adds further nodes that cover still missing query randvars closest to the current
JQ. Future work includes ways of finding a reasonably small subtree efficiently.

From the subtree covering all query randvars, LJT needs to extract a model
to actually answer the query.

Model Extraction. We build a model GQ from subtree JQ. The extracted model
may not contain any duplicate information, meaning we cannot simply use all
local models and messages within JQ. Instead, we use the local models at the
nodes in JQ and the messages that the nodes at the borders of JQ received from
outside JQ. Since LJT assigns each parfactor in G to exactly one parcluster,
the local models hold no duplicate information. The border messages store all
information from outside the subtree. Ignoring the messages within the subtree,
we do not duplicate information through a message.

The remaining step in answering a query is to let LVE answer the query
using the extracted model.

66 T. Braun and R. Möller

Query Answering. Using the model GQ built during model extraction, LJT
performs LVE to answer a query over the randvars QQ. Though LVE as described
by [26] does not explicitly mention conjunctive queries, the formalism allows for
multiple query randvars.

Query answering needs an operation called shattering that splits the par-
factors in a model based on query randvars. For one query randvar Q, a split
means we add a duplicate of each parfactor that covers Q and use the con-
straint to restrict the PRV in one parfactor to Q and the other to the remaining
instances of the PRV. Multiple query randvars mean a finer granularity in the
model after shattering, leading to more operations during LVE.

To compute an answer to a conjunctive query Q, we shatter GQ on Q. We
use LVE to compute a joint probability for Q and normalise. LJT still works for
a singleton query of one randvar Q as we find a node k that covers Q, extract a
model, namely the local model Gk and all messages to k, and perform LVE.

Example 9. After passingmessages, LJT can answer, e.g., the queriesP (Res(eve),
Pub(eve, p1)) and P (AttCnf(eve)). For Q1 = {Res(eve), Pub(eve, p1)}, nodes 2
and 3 cover the query randvars. The extracted model GQ1 consists of G2, G3, and
m12. Shattering GQ1 w.r.t. Q1 leads to five parfactors. LJT sums out Pub(X,P),
X
= eve and P
= p1 from the g3 duplicate where X and P are not equal to eve
and article, resulting in a parfactor g′ with arguments HoTpc and AttCnf(X),
X
= eve. Next, it sums out Res(X), X
= eve, from the g2 duplicate without
eve, resulting in a parfactor g′′ with arguments HoTpc and AttCnf(X), X
= eve.
Summing out AttCnf(X), X
= eve, from the product of g′ and g′′ yields a par-
factor g′′′ with argument HoTpc. Summing out AttCnf(eve) from the product of
g2 and g3 where X = eve and P = p1 yields a parfactor ĝ with arguments HoTpc,
Res(eve), and Pub(eve, p1). Last, LJT multiplies m12, g′′′, and ĝ, sums out HoTpc,
and normalises, leading to the queried distribution.

For Q2 = {AttCnf(eve)}, LJT can use node 2. It sums out Res(X), HoTpc,
and AttCnf(X) where X
= eve from G2 ∪ {m12,m32} after shattering.

Regarding the extensions to LJT, query answering changes substantially with
conjunctive queries since the models for answering a query first need to be
compiled as just described. Counting affects query answering in the sense that
extracted models may contain PCRVs. LVE for query answering in LJT uses
count conversion as well and can sum out PCRVs. Prior to a short empirical
evaluation, we look at the extended LJT from a more theoretical viewpoint.

5 Theoretical Analysis

We look at soundness and best and worst case scenarios of LJT extended with
counting and conjunctive queries.

Soundness. For the soundness of our LJT version, we assume that the original
LJT and PCRVs and their handling in LVE and FO dtrees are sound. We first
look at LJT with counting and then at LJT for conjunctive queries.

Counting and Conjunctive Queries in LJT 67

Theorem 1. LJT with counting is sound, i.e., is equivalent to inference using
a ground inference algorithm.

Proof sketch. To compute answers to queries at a node with information present
through a PP scheme, Shenoy and Shafer present three axioms for the opera-
tions marginalisation and combination on potential functions in a jtree [22]. Our
definition of potential functions and PP scheme coincide with [22] with lifted
summing out and lifted multiplication in the roles of marginalisation and combi-
nation fulfilling the axioms for local computations. The original LJT constructs
a valid jtree in the form of an FO jtree with nodes containing randvars and jtree
properties fulfilled.

The extended LJT still constructs a valid FO jtree as FO jtree construction
is unchanged. PCRVs are handled during FO dtree construction and appear
in parclusters accordingly. Since we assume a sound LVE with sound handling
of count conversions and PCRVs, lifted summing out and lifted multiplication
remain sound. Thus, message passing is still allowed and produces sound results:
With sound LVE operations and a valid FO jtree, the algorithm carries out sound
computations at the local models, sending sound information from one node to
another. The same holds for query answering: With sound information at the
nodes, LJT computes a correct answer for a query.

Next, we look at LJT with counting and conjunctive queries.

Theorem 2. LJT with conjunctive queries is sound, i.e., is equivalent to infer-
ence using a ground inference algorithm.

Proof sketch. Given that LJT with counting is sound, we have sound information
at the nodes in the FO jtree. By way of constructing the model for the query
randvars in a query, we combine all necessary information without duplicates as
argued above. Given that LVE is sound, LJT computes a correct answer for a
query on the extracted submodel.

Next, we look at best and worst case scenarios for LJT including what char-
acteristics influence LJT runtimes.

Best and Worst Case Scenario. The extended LJT allows for efficient query
answering given multiple queries. It imposes some static overhead due to FO
jtree construction and message passing. After these steps, it answers queries
based on typically smaller models compared to the input model G. If G changes,
LJT ha to construct a new FO jtree.

Characteristics that influence runtimes include (i) during construction, the
number of logvars and parfactors in G, (ii) during message passing, the number
of nodes in the FO jtree, the size of the parclusters, and the degree of each
node, and (iii) during query answering, the size of the model used for a query
and the effort spent on building the model. The goal is to have efficient query
answering with smallest models possible and spend effort on construction and
message passing only once per input model.

68 T. Braun and R. Möller

In a worst case scenario (the same holds for LVE), LJT needs to ground all
logvars in the model and perform inference at a propositional level to calculate
correct results. In such a case, it cannot avoid groundings. Unfortunately, LJT
may induce unnecessary groundings during message passing because calculating
a message over PRVs with logvars may inhibit a reasonable elimination order.
Simplified, the logvars of a PRV to eliminate need to be a superset of the log-
vars in affected separator PRVs. A separator PRV with the most logvars of all
PRVs in a parcluster automatically results in at least a counting conversion and,
in the worst case, groundings. Since messages are part of further calculations,
groundings might carry forward. The results are still correct, but the LJT run
degrades to a propositional algorithm run. For a detailed discussion, see [4].

For singleton queries, we gain the most if the model permits an FO jtree with
few PRVs per parcluster. With a clever access function, LJT quickly identifies a
parcluster for the query and sum out the few non-query PRVs. For conjunctive
queries, the best case is if the nodes that cover all query PRVs are adjacent and
form a submodel with few PRVs to eliminate. Needing the whole tree represents
the worst case as LJT builds a submodel equal to the original model and do
standard LVE, adding overhead without payoff. Over many queries, LJT offsets
queries requiring a large model with queries using a small model.

After these theoretical considerations, we look at an empirical evaluation for
our running example Gex.

6 Empirical Evaluation

We have implemented a prototype of LJT with our extensions, named exfojt in
this section. Taghipour provides a baseline implementation of GC-FOVE includ-
ing its operators (available at https://dtai.cs.kuleuven.be/software/gcfove),
named gcfove, which we use to test our implementation against. We use the
gcfove operators in exfojt. We also implemented a propositional junction tree
algorithm, named jt, as a reference point.

Standard lifting examples such as the smokers model are too simple, leading
to an FO jtree with one node. Runtimes of exfojt on the standard examples
compared to gcfove are slightly higher due to the static overhead for construct-
ing an FO jtree (FO dtree construction, cluster calculation, parcluster conver-
sion, merging). The resulting node carries the original model as a local model.
Message passing does not apply with one node. Query answering takes the same
time for each query as both carry out the same operations on the original model.

We use Gex as input. We vary the domain sizes, yielding grounded model sizes
|gr(Gex)| between 3 and 241,000. We query each PRV once with one grounding,
resulting in 6 queries,

– HoTpc,
– Biz(m1),
– App(a1),
– Res(x1),
– AttCnf(x1), and
– Pub(x1, p1).

https://dtai.cs.kuleuven.be/software/gcfove

Counting and Conjunctive Queries in LJT 69

Which grounding we use is irrelevant for the calculations and the answer for the
algorithms given a current model size, since the instances are interchangeable.

We compare runtimes for inference accumulated over the given queries, aver-
aged over several runs. exfojt constructs an FO jtree comparable to the FO
jtree in Fig. 3 with three nodes and passes messages (four messages). Then, it
answers the given queries based on the local models and messages. jt follows
the same protocol with propositional data structures and VE operations. The
propositional jtrees have an increasing number of nodes with the largest cluster
containing four randvars. While message passing takes longer in jtrees, QA is
faster than QA in FO jtrees since only up to three randvars need to be eliminated
without any accounting for logvars necessary. gcfove eliminates all non-query
randvars from Gex for each query. We do not compare against the original LJT
version since our example model leads to groundings without counting. Its run-
times come close to the runtimes of jt.

Figure 4 shows runtimes for inference in milliseconds with |gr(Gex)| on the
x-axis, ranging from 3 to 241,000, both on log scale. The squares mark the
runtimes for gcfove, the circles the runtimes for exfojt, and the filled triangles
the runtimes for jt. With small models, jt outperforms both lifted approaches.
With an increase of |gr(Gex)|, memory and time requirements of jt surge.

exfojt outperforms gcfove on all grounded model sizes, needing 43% to 51%
of the time gcfove requires. The savings in runtime are mirrored in the number
of LVE operations performed, with a maximum of 63 by gcfove versus 46 by
exfojt. exfojt trades off runtime with storage, needing slightly more memory
to store its FO jtree and messages at each node.

Since exfojt has some static overhead, we look at what point exfojt out-
performs gcfove. Figure 5 shows runtimes on log scale accumulated over the
six queries for |gr(Gex)| = 102,050. The shape of the curves is identical over
the different groundings with higher or lower runtimes. We ordered the given
queries by increasing runtimes for gcfove. With the second query, gcfove needs
marginally more time. With each passing query, exfojt saves more time com-
pared to gcfove as it is able to answer queries based on one node.

101

102

103

101 102 103 104 105 106

gcfove
exfojt
jt

Fig. 4. Runtimes [ms] with |gr(Gex)| rang-
ing from 3 to 241,000 on log scales accu-
mulated over 6 queries

101

102

103

Cstr. Msgs. Q1 Q2 Q3 Q4 Q5 Q6

gcfove
exfojt

Fig. 5. Runtimes [ms] on log scale with
|gr(Gex)| = 102,050 accumulating over 6
queries

70 T. Braun and R. Möller

Conjunctive queries that exfojt answers using one parcluster have similar
runtimes compared to the singleton queries from above. With more complex
queries that require more than one parcluster, runtimes increase since subtree
identification takes longer and the models become larger. We do not compare
runtimes for conjunctive queries as gcfove only supports singleton queries.

In summary, even in our small example model and only a prototype imple-
mentation, spending effort on an FO jtree pays off. LJT has even more potential
when considering scenarios where the FO jtree structure remains the same and
only parts of a model or other prior information changes.

7 Conclusion

We present extensions to LJT to answer multiple queries efficiently in the pres-
ence of symmetries in a model. We formally specify the different steps of LJT
and incorporate the lifting tool of counting to lift computations where LJT pre-
viously needed to ground. We extend the scope of LJT by allowing conjunctive
queries and handling them efficiently. These extensions provide us with a deeper
understanding of how LVE and FO jtrees interact. If a model allows for a lifted
run, i.e., without groundings, we speed up runtimes significantly for answering
multiple queries compared to the original LJT and GC-FOVE.

We currently work on adapting LJT to incrementally changing models. Other
interesting algorithm features include parallelisation, construction using hyper-
graph partitioning, and different message passing strategies as well as using local
symmetries. Additionally, we look into areas of application to see its performance
on real-life scenarios.

References

1. Ahmadi, B., Kersting, K., Mladenov, M., Natarajan, S.: Exploiting symmetries
for scaling loopy belief propagation and relational training. Mach. Learn. 92(1),
91–132 (2013)

2. Bellodi, E., Lamma, E., Riguzzi, F., Costa, V.S., Zese, R.: Lifted variable elimi-
nation for probabilistic logic programming. Theory Pract. Log. Program. 14(4–5),
681–695 (2014)

3. Braun, T., Möller, R.: Lifted junction tree algorithm. In: Friedrich, G., Helmert, M.,
Wotawa, F. (eds.) KI 2016. LNCS (LNAI), vol. 9904, pp. 30–42. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46073-4 3

4. Braun, T., Möller, R.: Preventing groundings and handling evidence in the lifted
junction tree algorithm. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.)
KI 2017. LNCS (LNAI), vol. 10505, pp. 85–98. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67190-1 7

5. van den Broeck, G.: Lifted inference and learning in statistical relational models.
Ph.D. thesis, KU Leuven (2013)

https://doi.org/10.1007/978-3-319-46073-4_3
https://doi.org/10.1007/978-3-319-67190-1_7
https://doi.org/10.1007/978-3-319-67190-1_7

Counting and Conjunctive Queries in LJT 71

6. van den Broeck, G., Niepert, M.: Lifted probabilistic inference for asymmetric
graphical models. In: AAAI 2015 Proceedings of the 29th Conference on Artificial
Intelligence, pp. 3599–3605 (2015)

7. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimina-
tion. In: IJCAI 2007 Proceedings of the 20th International Joint Conference on
Artificial Intelligence, pp. 2443–2449 (2007)

8. Choi, J., Amir, E., Hill, D.J.: Lifted inference for relational continuous models. In:
UAI 2010 Proceedings of the 26th Conference on Uncertainty in Artificial Intelli-
gence, pp. 13–18 (2010)

9. Darwiche, A.: Recursive conditioning. Artif. Intell. 2(1–2), 4–51 (2001)
10. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge

University Press, Cambridge (2009)
11. Das, M., Wu, Y., Khot, T., Kersting, K., Natarajan, S.: Scaling lifted probabilistic

inference and learning via graph databases. In: Proceedings of the SIAM Interna-
tional Conference on Data Mining, pp. 738–746 (2016)

12. Gogate, V., Domingos, P.: Exploiting logical structure in lifted probabilistic infer-
ence. In: Working Note of the Workshop on Statistical Relational Artificial Intel-
ligence at the 24th Conference on Artificial Intelligence, pp. 19–25 (2010)

13. Gogate, V., Domingos, P.: Probabilistic theorem proving. In: UAI 2011 Proceedings
of the 27th Conference on Uncertainty in Artificial Intelligence, pp. 256–265 (2011)

14. Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in recursive graph-
ical models by local computations. Comput. Stat. Q. 4, 269–282 (1990)

15. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: UAI
2009 Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence,
pp. 277–284 (2009)

16. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. The MIT Press, Cambridge (2009)

17. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on
graphical structures and their application to expert systems. J. Royal Stat. Soc.
Ser. B Methodol. 50, 157–224 (1988)

18. Milch, B., Zettelmeyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
probabilistic inference with counting formulas. In: AAAI 2008 Proceedings of the
23rd Conference on Artificial Intelligence, pp. 1062–1068 (2008)

19. Poole, D., Zhang, N.L.: Exploiting contextual independence in probabilistic infer-
ence. J. Artif. Intell. 18, 263–313 (2003)

20. de Salvo Braz, R., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In:
IJCAI 2005 Proceedings of the 19th International Joint Conference on Artificial
Intelligence (2005)

21. Shafer, G.R., Shenoy, P.P.: Probability propagation. Ann. Math. Artif. Intell. 2(1),
327–351 (1990)

22. Shenoy, P.P., Shafer, G.R.: Axioms for probability and belief-function propagation.
Uncertain. Artif. Intell. 4(9), 169–198 (1990)

23. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: AAAI 2008 Pro-
ceedings of the 23rd Conference on Artificial Intelligence, pp. 1094–1099 (2008)

24. Taghipour, N.: Lifted probabilistic inference by variable elimination. Ph.D. thesis,
KU Leuven (2013)

25. Taghipour, N., Davis, J., Blockeel, H.: First-order decomposition trees. In:
Advances in Neural Information Processing Systems 26, pp. 1052–1060. Curran
Associates, Inc. (2013)

72 T. Braun and R. Möller

26. Taghipour, N., Fierens, D., Davis, J., Blockeel, H.: Lifted variable elimination:
decoupling the operators from the constraint language. J. Artif. Intell. Res. 47(1),
393–439 (2013)

27. Vlasselaer, J., Meert, W., van den Broeck, G., Raedt, L.D.: Exploiting local and
repeated structure in dynamic Baysian networks. Artif. Intell. 232, 43–53 (2016)

28. Zhang, N.L., Poole, D.: A simple approach to Bayesian network computations. In:
Proceedings of the 10th Canadian Conference on Artificial Intelligence, pp. 171–178
(1994)

Representing and Reasoning About Logical
Network Topologies

Shaun Voigt, Catherine Howard(&), Dean Philp,
and Christopher Penny

Defence Science and Technology Group, Edinburgh, Adelaide, Australia
{shaun.voigt,catherine.howard,

dean.philp}@dst.defence.gov.au

Abstract. For network analysts, constructing a representation, and developing
an understanding, of logical network topologies is crucial for a wide range of
cyber security applications. However, constructing a representation of logical
network topologies is difficult. This paper presents three novel ontologies; the
Internet Protocol (IP) Ontology, the Open Shortest Path First (OSPF) Ontology
and the Border Gateway Protocol (BGP) Ontology. These ontologies provide a
common, technology independent syntax and semantics for complex commu-
nication network concepts. The semantic and syntactic interoperability provided
by these ontologies enables data from disparate, heterogeneous sources, such as
network diagrams, router configuration files and routing protocol messages, to
be consistently represented, which facilitates information fusion. The approach
presented in this paper allows domain knowledge to be encoded in an intuitive
manner, facilitates knowledge discovery by automated reasoning, and facilitates
the process of making specialist knowledge and tradecraft accessible to
non-expert network analysts.

Keywords: Ontologies � Network data � Network topologies

1 Introduction

For network analysts, constructing a representation, and developing an understanding,
of logical network topologies1 is crucial for a wide range of cyber security applications
such as traffic path estimation, network monitoring and management [1], network
vulnerability assessment and defence [2], identifying network boundaries and under-
standing the propagation of BGP hijacks. However, constructing a representation of
logical network topologies is difficult, especially at Internet scale. The Internet is the
largest, most complex artificially deployed system in existence [3] and there are many
disparate, heterogeneous sources of data which could potentially be used. The appli-
cation of automated information fusion techniques, and the associated underlying

1 The topology of a network is the arrangement of the various network elements, such as routers,
computers and links, within the network. The topology of a network may be depicted physically or
logically. The physical topology of a network is the arrangement of the physical components of the
network, including the location of devices and cables. While the logical topology illustrates how
information flows through the network.

© Crown 2018
M. Croitoru et al. (Eds.): GKR 2017, LNAI 10775, pp. 73–83, 2018.
https://doi.org/10.1007/978-3-319-78102-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_4&domain=pdf

knowledge representation and automated reasoning techniques, could assist in
addressing these scale and complexity issues. The fusion of data from multiple sources
can provide a more detailed representation of the logical network topology than the
representation provided by any individual data source in isolation. However, the
automated fusion of data from disparate, heterogeneous sources requires semantic and
syntactic interoperability. To provide this interoperability, this research adopted an
ontological approach to knowledge representation.

There is a dearth of literature on the use of ontologies for constructing represen-
tations of logical communication network topologies; ontologies have been developed
for network planning and design (e.g., [4]), network measurement and monitoring (e.g.,
[5]) and the provisioning, configuration and management of virtual or physical network
resources (e.g., [6–13]). However, none of these ontologies provided a formal speci-
fication of the IP, OSPF and BGP concepts required by this research, at the required
level of detail. Hence this research developed three novel ontologies which can be used
to represent complex communication network concepts; the Internet Protocol
(IP) Ontology, the Open Shortest Path First (OSPF) Ontology and the Border Gateway
Protocol (BGP) Ontology. This paper presents these three novel ontologies.

The rest of this paper is structured as follows. Section 2 describes the data sources
utilised by this research. Section 3 presents the three novel ontologies, justifies the
selection of the Web Ontology Language (OWL) as the implementation language and
describes the knowledge representation and reasoning processes. Section 4 provides an
example of producing a representation of a logical network topology using some of the
data sources described in Sect. 2 and the ontologies and processes outlined in Sect. 3.
Section 5 presents a brief discussion while Sect. 6 presents the conclusions.

2 The Data Sources

There are many disparate, heterogeneous sources of network data which could
potentially be used to construct representations of logical network topologies. This
research focused on being able to represent, fuse and reason about six such sources;
network diagrams, router configuration files, routing tables, Open Shortest Path First
(OSPF) Link State Advertisements (LSAs), Border Gateway Protocol (BGP) update
messages and open source data.

A network diagram is a visual representation of the physical or logical topology of
a network. It depicts the nodes (including routers, switches, servers, printers and hosts)
in the network and the connections between them.

A router’s configuration file contains all the commands required to configure the
router. It contains information such as the IP addresses of the router’s interfaces, the
routing protocols used on each interface and the metrics used by link state routing
protocols2.

For each reachable destination, a routing table lists the network element which is
next along the path to the destination. When an IP packet arrives, a router uses this

2 In a link state routing protocol, each router constructs a map of the connectivity of the network in
which it resides.

74 S. Voigt et al.

table to determine the interface on which to forward the packet based on its destination
IP address.

OSPF [14] is the most widely used interior gateway protocol3 (IGP) on the Internet
[15]. Link State Advertisements (LSAs) are the basic communication mechanism of
OSPF. There are eleven different types of LSAs. This research utilises Router (also
referred to as Type 1) and Network (also referred to as Type 2) LSAs. A Router LSA
contains information about all routers and networks which are directly connected to the
originating router. A Network LSA includes the network identifier, subnet mask and a
list of routers which are joined together by the broadcast domain4.

BGP [16] is an exterior gateway protocol; it is used to facilitate inter Autonomous
System5 (AS) relationships by exchanging routing and reachability information among
ASes on the Internet. When a BGP session is initialised between routers, update
messages are sent to exchange routing information until the complete BGP routing
table has been exchanged. A router advertises the networks which are reachable via
each of its neighbours and how many hops away each network is.

There is a myriad of open source information which could potentially be useful.
This research focused on utilising some of the data available from the Center for
Applied Internet Data Analysis (CAIDA)6 [17], including the:

• AS name, number and owner;
• Networks that an AS is the registered owner of;
• Networks advertised by an AS; and
• Inter-AS relationships that an AS participates in (i.e., peering and customer-

provider relationships).

From the above descriptions, it can be seen that the six data types are disparate and
heterogeneous. The data itself is complex, relational data, which is not easily understood
by analysts without specialist communication network knowledge and experience.

3 The Ontologies and the Knowledge Representation
and Reasoning Process

The Web Ontology Language (OWL) [18] was selected to implement the three
ontologies because, among other reasons:

• OWL is explicitly designed to support the integration of data from multiple sources
[19].

3 Interior gateway protocols manage the routing of traffic within individual ASes.
4 A broadcast domain is a logical division of a network, in which all devices can reach each other by
broadcast at the data link layer. For example, a multi-access network is a single broadcast domain.
Ethernet is also an example of a broadcast domain.

5 An Autonomous System is a network, or collection of networks, which are managed or supervised
by a single administrative entity or organisation.

6 CAIDA is a collaboration of government, research and commercial entities aimed at promoting
greater cooperation in the engineering and maintenance of the global Internet infrastructure.

Representing and Reasoning About Logical Network Topologies 75

• OWL and RDF are well suited to the representation of complex, relational data [19].
• RDF triples can be represented as semantic networks [20], which are a natural

representational match for logical network topologies (which can be represented as
undirected graphs [19]).

• OWL provides an explicit separation between syntax and semantics.
• OWL can be coupled with semantic reasoners and rule-based languages, such as the

Semantic Web Rule Language (SWRL) [18], to support automated reasoning.
• OWL allows ontologies to reuse classes and properties from existing, published

ontologies [12, 19].

In this research, OWL and RDF were used during the knowledge representation
process and SWRL and the SPARQL Protocol and RDF Query Language (SPARQL)
[18] were used during the reasoning process.

Figure 1 shows the hierarchy of the IP, OSPF and BGP ontologies, with the OSPF
and BGP ontologies inheriting classes, data properties and object properties from the IP
ontology. Because there is insufficient room to present the full OWL functional syntax,
the ontologies will be presented using relational diagrams. Relational diagrams depict
the set of classes, data properties and object properties in an ontology. In relational
diagrams, classes are represented by large rectangles, with the name of the class in bold
print, and object properties are underlined and linked to their range types by directed
lines.

The IP Ontology, shown in Fig. 2, represents concepts at the IP layer (i.e., Layer 3
of the OSI model [21]). As the IP ontology focuses on the IP layer, Layer 2 devices
(such as switches) and physical connections (such as cables) are not included. The set
of classes in the IP ontology is C = {Network Element, Network, Router, Computer,
Interface, Route Entry, Default Route Entry, Directly Connected Route Entry}.

The OSPF ontology, shown in Fig. 3, extends the IP Ontology by introducing
OSPF specific concepts such as OSPF areas7 and Area Border Routers (ABRs)8. The
set of classes in the ontology is C = {Network Element, Network, Router, Computer,
Interface, Area, Route Entry, Default Route Entry, Directly Connected Route Entry,
OSPF Summary Route Entry}. From Fig. 3 it can be seen that the OSPF Ontology
inherits classes from the IP ontology (e.g., the Network Element, Network and Router
classes), specialises some of the object properties of these classes (e.g., the
hasNeighbour object property of the Router class has a new hasOSPFRouterNeighbour

Fig. 1. The inheritance hierarchy of the ontologies.

7 An OSPF network can be subdivided into multiple routing areas in order to simplify administration
or optimise traffic flow or resource utilisation.

8 ABRs are routers which have interfaces in multiple areas.

76 S. Voigt et al.

Fig. 2. The relational diagram of the IP ontology.

Fig. 3. The relational diagram of the OSPF ontology. (Color figure online)

Representing and Reasoning About Logical Network Topologies 77

specialisation), adds new data properties (e.g., the isABR, isASBR and isBDR properties
of the Router class) and adds new classes such as the Area and OSPF Summary Route
Entry classes.

The BGP ontology, shown in Fig. 4, extends the IP Ontology by introducing BGP
specific concepts, such as update messages, ASes and AS paths. The set of classes in
the ontology is C = {Network Element, Network, Router, Interface, Route Entry,
Autonomous System, Update Message, AS Path}. From Fig. 4 it can be seen that the
BGP Ontology inherits the classes from the IP ontology (e.g., the Network Element,
Network and Router classes), adds new object properties (e.g., the eBGPNeighbour and
iBGPNeighbour properties of the Interface class) and adds new classes such as the
Update Message, Autonomous System and AS Path classes. In Figs. 3 and 4, the classes
and properties inherited from the IP Ontology are shown in black, while the new or
specialised classes and properties are shown in green.

During the knowledge representation process, the IP, OSPF and BGP ontologies
provide a common, technology independent9 syntax and semantics for complex
communication network concepts, so that heterogeneous data can be encoded into a

Fig. 4. The relational diagram of the BGP ontology. (Color figure online)

9 For example, as a result of slight differences in their interpretation of the Internet Engineering Task
Force (IETF) OSPF standards, Cisco and Juniper routers implement OSPF in different ways.
The OSPF ontology presented in this section, however, provides a generic representation of OSPF
which is not dependant on the specific implementation technology.

78 S. Voigt et al.

consistent representation. Once encoded, the data is in RDF triple format and is referred
to as instance data. The instance data are stored in a triple store in the knowledge base.

Context specific rules enable subject matter experts (SMEs) to encode specialist
knowledge or tradecraft using SWRL. Examples of context specific rules are provided
in Sect. 4. Context specific rules can be used to perform data cleaning and information
fusion. During the reasoning process, using the ontologies and context specific rules,
the rule-based inference engine performs reasoning over the instance data in the
knowledge base. The reasoning process is a forward-chaining, data-driven process,
whereby new information can trigger the execution of additional context specific rules.

4 Fusion Example

Consider the scenario shown in Fig. 5. In this scenario, there are two ASes, AS10143
and AS1221, which are connected by a single inter-AS relationship. AS10143 has two
routers AS10143R1 and AS10143R2. AS1221 has one router AS1221R1. AS1221R1 has
an external BGP relationship with AS10143R1. AS10143 is using OSPF as its
IGP. Suppose that the available information sources include:

• Open source CAIDA data pertaining to AS10143 and AS1221;
• A BGP update message sent from AS10143R1 to AS1221R1;
• Router configuration files for AS10143R1 and AS10143R2; and
• OSPF Router LSAs issued by AS10143R1 and AS10143R2.

However, for this example, it is assumed that no router configuration files, OSPF
Router LSAs or BGP update messages are available for AS1221.

Using context specific rules such as:

If twoNetwork objects have the same ipv4subnet value;

then the twoNetworks objects are the same object ;
ð1Þ

If two Interface objects have the same ipv4 value;

then the two Interface objects are the same object;
ð2Þ

Fig. 5. The scenario under consideration.

Representing and Reasoning About Logical Network Topologies 79

If two Router objects have the same routerID value;

then the two Router objects are the same object; and
ð3Þ

If two AS objects have the same asNum; and it is a public asNum;

then it is the same AS;
ð4Þ

the data from the aforementioned sources can be fused to produce the representation of
the logical network topology shown in Fig. 6. This semantic network contains

Fig. 6. The semantic network resulting from the fusion of all the available data. Blue represents
open source CAIDA data, red represents the data obtained from the BGP update message sent
from AS10143R1 to AS1221R1, black represents the data obtained from AS10143R1’s and
AS10143R2’s configuration files and green represents the data obtained from AS10143R1’s and
AS10143R2’s LSAs. (Color figure online)

80 S. Voigt et al.

information about interfaces, routers, networks, areas and ASes and the relationships
between these concepts. It combines intra-AS connectivity information provided by
OSPF with inter-AS connectivity information provided by BGP and CAIDA, allowing
an analyst to see the connection between Internet level routing and the private network
infrastructure of EXETEL-AS-AP10. It can be seen that the enriched representation of
the network’s logical topology provided by Fig. 6 is more detailed and accurate than
the representation provided by any individual data source in isolation.

5 Discussion

The IP, OSPF and BGP ontologies provide a consistent way to represent complex
communication network concepts. The ontologies are easily extensible. They support
communication and information sharing, automated reasoning and the reuse of domain
knowledge. They also limit ambiguity and make domain assumptions explicit. Making
the domain assumptions explicit makes it possible to change these assumptions if the
knowledge about the domain changes. Being able to represent the resulting network
topologies as semantic networks facilitates human understanding.

The three ontologies all contain concepts at a range of abstractions; from high level
concepts such as ASes and networks through to low level concepts such as router
interfaces. This allows:

• Information at different levels of abstraction to be represented and fused. For
example, Fig. 6 depicts EXETEL-AS-AP in a high level of detail while
ASN-TELSTRA, where less information is available, is represented at a more
abstract level.

• Networks to be represented at different levels of abstraction. For example, using the
same ontologies and same data sources, the same network could be represented by a
semantic network containing:
– Networks, routers, interfaces, IP addresses, subnets, interface names, host names

and the hasInterface and connectedTo relationships; or
– Routers, host names and the hasRouterNeighbour relationships.

• The same concepts to be used in different ways.

Being able to represent information at different levels of abstraction is important
because abstraction allows:

• Complex data to be simplified. This simplification can reduce the complexity of
both data analysis and visualisation and can enable complex data to be hidden from
non-expert analysts.

• The application of graph theoretic techniques at an abstracted level, rather than the
lowest level of detail, where the size and complexity of the semantic network may
preclude their use.

10 Synthetic data has been used for the private network infrastructure in order to demonstrate the
fusion techniques.

Representing and Reasoning About Logical Network Topologies 81

The context specific rules discussed in Sect. 3 can provide a natural way for SMEs
to encode their specialist knowledge or tradecraft, potentially making this knowledge
more accessible to non-experts analysts. Because OWL is a declarative language, rules
can be developed which work for a large number of instances. Rules can be generic,
and hence applicable to all types of networks, or they can be specific for specific types
of networks (for example, content distribution networks). The ability to use different
context specific rule sets, based on the situation, provides a level of flexibility. However
rules can have a number of limitations. For example, the quality of the rule base
developed for a particular domain will be dependent on the experience and point of
view of the SMEs who construct it, so there may be gaps, overlaps and inconsistencies.
Encoding rules can also be difficult; knowledge elicitation is manual and can be error
prone. It can be easy, for example, to create contradictory rules. A large rule set can be
difficult to maintain and update.

6 Conclusions

This paper presented three novel ontologies; the IP Ontology, the OSPF Ontology and
the BGP Ontology. These ontologies provide a common, technology independent
syntax and semantics for complex communication network concepts. The semantic and
syntactic interoperability provided by the three ontologies allows data from disparate,
heterogeneous sources to be consistently represented, which facilitates information
fusion.

The approach presented in this document allows domain knowledge to be encoded
in an intuitive manner, facilitates knowledge discovery by automated reasoning, and
facilitates the process of making specialist knowledge and tradecraft accessible to
non-expert network analysts.

While ontological approaches to knowledge representation have many strengths,
the quality of an ontology developed for a particular domain will always be dependent
on the experience and point of view of the SMEs who build it, so there are always gaps,
overlaps and inconsistencies. However, this is true of any knowledge representation
technique.

Acknowledgements. Part of this work was conducted using the Protégé resource [22], which is
supported by grant GM10331601 from the National Institute of General Medical Sciences of the
United States National Institutes of Health.

References

1. van der Ham, J., Ghijsen, M., Grosso, P., de Laat, C.: Trends in Computer Network
Modeling Towards the Future Internet. https://arxiv.org/pdf/1402.3951v2.pdf. Accessed Oct
2016

2. Motamedi, R., Rejaie, R., Willinger, W.: A survey of techniques for internet topology
discovery. IEEE Commun. Surv. Tutor. 17(2), 1044–1065 (2013)

3. Ioannou, P.A., Pitsillides, A.: Modeling and Control of Complex Systems. CRC Press, Boca
Raton (2008)

82 S. Voigt et al.

https://arxiv.org/pdf/1402.3951v2.pdf

4. Rahman, M., Pakstas, A., Wang, F.Z.: Towards communications network modelling
ontology for designers and researchers. In: Proceedings of the International Conference on
Intelligent Engineering Systems, London, England (2006)

5. MOMENT - Monitoring and Measurement in the Next Generation Technologies. http://
www.salzburgresearch.at/en/projekt/moment_en/. Accessed Oct 2016

6. Yeung, D., Qu, Y., Zhang, J., Chen, I., Lindem, A.: Yang Data Model for OSPF Protocol.
https://tools.ietf.org/html/draft-ietf-ospf-yang-01. Accessed Oct 2016

7. Zhdankin, A., Patel, K., Clemm, A., Hares, S., Jethanandani, M., Liu, X.: Yang Data Model
for BGP Protocol. https://tools.ietf.org/html/draft-zhdankin-idr-bgp-cfg-00. Accessed Oct
2016

8. Common Information Model. http://www.dmtf.org/standards/cim. Accessed Aug 2015
9. Strassner, J.: DEN-ng: achieving business-driven network management. In: Proceedings of

the IEEE/IFIP Network Operations and Management Symposium (2002)
10. van der Ham, J., Dijkstra, F., Lapacz, R., Brown, A.: The network markup language; a

standardized network topology abstraction for inter-domain and cross-layer network
applications. In: Proceedings of the TERENA Networking Conference, Maastricht,
Netherlands (2013)

11. van der Ham, J., Dijkstra, F., Travostino, F., Andree, H., de Laat, C.: Using RDF to describe
networks. Future Gener. Comput. Syst. 22(8), 862–867 (2006)

12. Ghijsen, M., van der Ham, J., Grosso, P., Dumitru, C., Zhu, H., Zhao, Z., de Laat, C.:
A semantic-web approach for modelling computing infrastructures. J. Comput. Electr. Eng.
39, 2553–2565 (2013)

13. Network Innovation over Virtualized Infrastructures. http://www.fp7-novi.eu/index.php.
Accessed Oct 2016

14. Moy, J.: RFC 2328 - OSPF Version 2. https://www.ietf.org/rfc/rfc2328.txt. Accessed Oct
2016

15. Nakibly, G., Gonikman, D., Kirshon, A., Boneh, D.: Persistent OSPF attacks. In:
Proceedings of the Nineteenth Annual Network and Distributed System Security Conference
(2012)

16. Rekhter, Y., Li, T., Hares, S.: RFC 4271 - A Border Gateway Protocol 4 (BGP-4). https://
www.ietf.org/rfc/rfc4271.txt. Accessed Oct 2016

17. Center for Applied Internet Data Analysis. www.caida.org. Accessed Oct 2016
18. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. MIT Press, Cambridge (2004)
19. Reynolds, D., Thompson, C., Mukerji, J., Coleman, D.: An Assessment of RDF/OWL

Modelling. Digital Media Systems Laboratory, HP Laboratories Bristol, HPL-2005-189
(2005)

20. Sowa, J.: Semantic networks. In: The Encyclopedia of Artificial Intelligence, 2nd edn.
(1987)

21. OSI Model. https://en.wikipedia.org/wiki/OSI_model. Accessed Oct 2016
22. Protege. http://protege.standford.edu/. Accessed Oct 2016

Representing and Reasoning About Logical Network Topologies 83

http://www.salzburgresearch.at/en/projekt/moment_en/
http://www.salzburgresearch.at/en/projekt/moment_en/
https://tools.ietf.org/html/draft-ietf-ospf-yang-01
https://tools.ietf.org/html/draft-zhdankin-idr-bgp-cfg-00
http://www.dmtf.org/standards/cim
http://www.fp7-novi.eu/index.php
https://www.ietf.org/rfc/rfc2328.txt
https://www.ietf.org/rfc/rfc4271.txt
https://www.ietf.org/rfc/rfc4271.txt
http://www.caida.org
https://en.wikipedia.org/wiki/OSI_model
http://protege.standford.edu/

From Enterprise Concepts to Formal
Concepts: A University Case Study

Jamie Caine and Simon Polovina(B)

Conceptual Structures Research Group, Department of Computing,
Communication and Computing Research Centre,

Sheffield Hallam University, Sheffield, UK
{j.caine,s.polovina}@shu.ac.uk

Abstract. A business enterprise is more than its buildings, equipment
or financial statements. Enterprise Architecture frameworks thus include
a metamodel that attempts to bring together all the enterprise concepts
including the visible entities into a unified conceptual structure. Using
a case study based upon the institution of the authors, the effective-
ness of this conceptual structure is explored in two fold. Firstly, a sim-
ple example using familiar concepts such as the physical location of the
authors’ institution. Secondly, a more detailed example that includes
the key enterprise concepts that currently exist within that institution.
The metamodel is stated in Conceptual Graphs then mapped from these
graphs’ triples into transitive Formal Concept binaries using the CGFCA
software. Misalignments within the enterprise concepts discovered from
the derived formal concepts are highlighted in both case examples, hence
pointing towards the wider applicability of this approach.

1 Introduction

A business enterprise is more than just the sum of its buildings, equipment
or financial statements. Such visible entities are simply the structures that fol-
low from its strategy, which is just as real. Strategy is moreover the driving
entity, without which the enterprise falters. Like many other disciplines, business
modelling practitioners (such as enterprise architects) rely on useful conceptual
models that underpin enterprise activity. The underlying enterprise concepts in
these models capture the purpose of the enterprise (why it exists) and articu-
lated through its strategy. To achieve its strategic goals, the enterprise concepts
extend into the enterprise’s lower level tactical and operational goals that include
its locations, finance, assets (e.g. buildings, trading stock, information technol-
ogy), staff and an organisational structure. History however continues to show
these entities becoming the drivers resulting in the emergence of bureaucratic
structures, inter-departmental conflicts, inadequate computer systems and other
experiences where we have ‘The tail wagging the dog’ i.e. strategy is lost and
ends up following structure [3]. Put another way, the operational enterprise con-
cepts overtake the strategic enterprise concepts when it should be the other
way round.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Croitoru et al. (Eds.): GKR 2017, LNAI 10775, pp. 84–96, 2018.
https://doi.org/10.1007/978-3-319-78102-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_5&domain=pdf
http://orcid.org/0000-0001-8353-6529
http://orcid.org/0000-0003-2961-6207

From Enterprise Concepts to Formal Concepts: A University Case Study 85

To address this phenomenon the paper is structured as follows. Enterprise
concepts are introduced and discussed through the notion of enterprise archi-
tecture and the formal depiction of the enterprise concepts through ontology,
semantics and metamodels. The relevance and use of Conceptual Structures is
then addressed by illustrating two examples of the same case study, Sheffield
Hallam University (SHU) being the institution of the authors. The first example
is a simplified example with reference to a simple structured metamodel. The
second example reflects a more accurate depiction of the concepts and transitive
aspects that embody SHU’s strategy [16]. This entails a decomposition of the
SHU strategy by starting with an uppermost concept ‘Forces and Trends’ that
influence strategy and ends in Process Performance Indicator (PPI). This section
also explicates Conceptual Graphs (CGs), Formal Concept Analysis (FCA) and
the CGFCA software and how they are used. For both examples, FCA Lat-
tices generated from the CGs are iterated to correct the model (and metamodel
in the simplified SHU example). It is through the corrections that we further
understand the value that formal concepts bring to enterprise concepts. This is
followed by a discussion of the further significance of this work, culminating in
the paper’s conclusions.

2 Enterprise Architecture

Enterprise Architecture (EA) recognises that enterprises are best understood by
a holistic approach that explicitly refers to every important issue from every
important perspective [20]. Hence all the enterprise concepts need to relate to
each other.

2.1 Ontology, Semantics and Metamodels

EA arose from Zachman’s original Information Systems Architecture Framework
[12,20]. Zachman’s EA framework places the enterprise concepts in cells that are
interrelated through a simple two-dimensional matrix, consequently referred as an
enterprise ontology [14,19]. The Open Group Architecture Framework (TOGAF)
articulates the semantics in such an ontology by formally defining the relations
between the enterprise concepts (entities) in a content metamodel rather than
simply relying on their position in a matrix (or table) like Zachman [4,5]. A meta-
model is the model about the model. The TOGAF metamodel formally describes
the model to which every enterprise conforms, thereby embodying enterprise con-
cepts. The EA metamodels have been comprehensively enhanced by the enter-
prise standards body LEADing Practice in association with the Global University
Alliance [1,11].

3 Conceptual Structures

In his seminal text, Sowa describes Conceptual Structures (CS) as “Information
Processing in Mind and Machine” [15]. Enterprises essentially arise as acts of

86 J. Caine and S. Polovina

human creativity in identifying business opportunities or other organisational
solutions to social needs (e.g. government bodies, charities, schools or universities
to name a few). Formal depictions of the metamodels (and the models that they
in turn represent) enable them to be computable. Software tools potentially bring
the productivity of computers to bear on interpreting the enterprise concepts,
offering more expressive knowledge-bases leading to better decision-making. CS
brings human creativity and computer productivity into the same mindset; CS
thus offers an attractive proposition for capturing, interrelating and reasoning
with enterprise concepts.

3.1 A Simplified Case Study of SHU

To clarify the approach, and explore the value of CS to enterprise concepts, a
simple case study is now presented. For ease of understanding a much-simplified
metamodel is used as well as a simplified description of the case study, which is
Sheffield Hallam University (SHU) where the author of this paper is employed.
SHU is a large public university located in Sheffield in the UK. Remembering
that the term enterprise does not only apply to profit-making businesses, SHU’s
strategy is epitomised by the term ‘Transforming Lives’. SHU meets this strategy
through its location in Sheffield and the staff it employs (noting that these
aspects are chosen from all its visible entities for simplicity.) The success of its
strategy as realised through its staff and location (in this simplified example) is
measured by Key Performance Indicators (KPIs). One such KPI in the UK is
the National Student Survey (‘the NSS’, www.thestudentsurvey.com).

3.2 Conceptual Graphs

To demonstrate CS, Sowa devised Conceptual Graphs (CGs). CGs are essen-
tially a system of logic that express meaning in a form that is logically precise,
humanly readable, and computationally tractable. CGs serve as an intermedi-
ate language for translating between computer-oriented formalisms and natural
languages. CGs graphical representation serve as a readable, but formal design
and specification language [7,13].

Figure 1 reveals that CGs follow an elementary concept→relation→concept
structure, which describes the ontology and semantics of the enterprise concepts
as explained earlier. The CGs are thus directed graphs that capture the meta-
model at the logical level including its direction of flow. Figure 1’s left-hand
side CG is the metamodel for our simple example, and the right-hand side is
the specialised model for SHU that conforms to the metamodel. The type label
Vision & Mission, Enterprise, Place, and KPI are each specialised by gain-
ing a defined referent, which is an instantiation of the type label. The referent
is 2020-Strategy.docx (a written document), Sheffield Hallam University
(the enterprise), Sheffield (SHU’s location) and {NSS-data...} (a structured

www.thestudentsurvey.com

From Enterprise Concepts to Formal Concepts: A University Case Study 87

Fig. 1. Metamodel and SHU, in CGs

data source) for each type label respectively1. The type label Experience was
specialised to Student Experience, which is Experience’s subtype.

3.3 An Expanded Example of the SHU Case Study

The expanded example depicts SHU’s ‘Transforming Lives’ strategy and the
distinctive four strategic pillars that it encompasses [16]. Due to becoming too
large by being represented as one large CG (Conceptual Graph), the CGs for
this example are shown by four modularised CGs i.e. Figs. 2, 3, 4 and 5.

These modified CGs have duplicate referents that are hence co-referent. The
CGs can thereby be rejoined through the CGs join operation from their co-
referent links [13]. These CGs draw upon the LEADing Practice Strategy Meta-
model reference content [11,17].

Traditional strategy formulation accommodates the impact that forces and
trends can have on organisational strategy [10]. Given this more accurately
describes SHU’s Enterprise Architecture, the concept of forces and trends are
included within this model. Each strategic pillar is realised through goals and
objectives that are each then measured by a Key Performance Indicator (KPI)
that is current to SHU’s strategy. Each KPI then measures a function followed
by the role performing the function that in turn delivers a service. The model
culminates in the Process Performance Indicator (PPI) concept that addresses
each process deriving out of each strategic pillar in one PPI concept.

1 { } denote ‘plural’ referents, meaning they hold more than one referent. Here NSS-
data may be one of many datasets that collectively provide KPIs of SHU’s strategy
and shown simply to illustrate multiple cardinality of concepts. The Staff type label
would also have a plural referent to depict the many staff that SHU employs. Plural
referents are however not elaborated further for this simple case study’s purposes.

88 J. Caine and S. Polovina

Fig. 2. Modified SHU part 1 of 4, in CGs

Fig. 3. Modified SHU part 2 of 4, in CGs

Fig. 4. Modified SHU part 3 of 4, in CGs

From Enterprise Concepts to Formal Concepts: A University Case Study 89

Fig. 5. Modified SHU part 4 of 4, in CGs

3.4 Formal Concept Analysis

Formal Concept Analysis (FCA) adds a mathematical level to the logi-
cal level captured in CGs [6]. The FCA formal context is generated from
the CGs by the CGFCA software2 [2]. Essentially, this software trans-
forms CGs’ underlying concept→relation→concept triples structure into source-
concept�relation→target-concept binaries thereby making them suitable for
FCA. Figure 6 shows the corresponding FCA lattice (i.e. Formal Concept Lat-
tice) that results from this transformation of the corresponding CGs in Fig. 1
from the simple SHU case study. The lattice for the four joined CGs for the
expanded example are given by Fig. 7.

(a) Metamodel (b) SHU

Fig. 6. Metamodel and SHU, Formal Concept Lattice (FCL) for each

2 https://sourceforge.net/projects/cgfca/.

https://sourceforge.net/projects/cgfca/

90 J. Caine and S. Polovina

Fig. 7. Modified SHU combined, FCL

4 Iterating Enterprise Concepts from Formal Concepts

We can see that the infimum (bottommost) formal concept in Fig. 6 doesn’t have
its own labels. We will now explore why this is significant.

4.1 An Architectural Principle

As stated earlier, EA takes a holistic perspective. To draw from a building archi-
tect’s analogy, architecture ranges “From the blank piece of paper to the last nail
in the wall.” Likewise EA (Enterprise Architecture) follows the same principle;
indeed an enterprise is set by its vision and mission (articulated in its strategy)
and–taking the analogy to the same extent–applies it to every asset it owns.

4.2 Transitivity of Enterprise Concepts

In reality we would not evaluate every asset to such an extreme, but it demon-
strates that enterprise concepts follow a transitive path from the highest level
purpose of the enterprise, percolating through its strategic, tactical and oper-
ational enterprise concepts as interconnected by their semantic relations to its
most specific assets that determine its success. There should be an overall flow

From Enterprise Concepts to Formal Concepts: A University Case Study 91

from the very top to the very bottom with every concept and relation thus inter-
linked along the way. In the simple SHU case study, the ‘culprit’ is the fulfils
relation in Fig. 1, evident by the upward direction that the arrows point up to
Vision & Mission from Enterprise. All the other arrows point downwards. A
formal concept lattice has a supremum (topmost) concept and an infimum (bot-
tommost) concept. Notably though, the infimum has no labels, so what is it’s
“...to...” enterprise concept? The CGs suggest it’s KPI, But it’s one of the formal
concepts above in the lattice. The answer is that the enterprise concepts in Fig. 1
are not all transitive thereby do not concur with the architectural principle. In
the expanded SHU case study in Fig. 5 Process delivers a Service, highlighted by
the arrow pointing upwards. In fact it should be pointing downwards as Service
is delivered by a Process. It is the Service that needs to be changed before
the process to ensure that the Process’ outcome reflects the intended goal [18].
Remember that the metamodel would needed to be validated first, in order to
verify any model that is populated from it (as illustrated by the simplified SHU
example).

4.3 Correcting the Transitivity

SHU Simple Case Study. Referring to the simple case study (but remember-
ing that SHU is in fact a much more sophisticated enterprise as the more detailed
case study identifies), the direction of the arrows around the fulfils relation
simply need to change direction as stated. This correction is given by Fig. 8,
which also shows the fulfils relation has become fulfilled-by. Although it’s
a simple renaming in this case, the metamodel (and the SHU model) is fully
transitive i.e. architectural. FCA, through CGFCA identified this architectural
gap. The CGs are conventionally generated by hand, akin to how metamodels
and models are developed in many EA software tool environments3. As indicated

Fig. 8. Corrected metamodel and SHU, in CGs

3 The tools tend to depict the models and metamodels in other notations such as UML
(www.uml.org), but this underlying remark still holds true.

www.uml.org

92 J. Caine and S. Polovina

(a) Metamodel (b) SHU

Fig. 9. Lattices, after correction

earlier, CGs graphical representation serve as a readable, formal design and spec-
ification language at a logical level but FCA adds rigour at a mathematical level
that allows the formal concepts to be computer generated. The productivity of
computers has been applied to the creativity of human thinking—the rationale
for conceptual structures (CS).

SHU Extended Case Study. For the expanded SHU example, Fig. 10 shows
that two aspects were changed in one of the original four CGs (i.e. part 4) to

Fig. 10. Corrected SHU 4, in CGs

From Enterprise Concepts to Formal Concepts: A University Case Study 93

correct the CG in order to generate a lattice that displays the pathways from the
uppermost concept ‘Forces and Trends’ down to the bottommost concept, PPI.

The first change was the direction of the arrow to represent the correct direc-
tional flow between service and process. Then semantic relationship (the sec-
ond change) is: [Service]→ (delivered-by)→ [Process] for all the respec-
tive referents i.e. S1 to S4, and P1 to P4. This correctly describes the semantic
relationship between the concepts and through this the formal concept lattice
(Fig. 11) reflects the correct transitivity from supremum (topmost) to infimum
(bottommost) like the simple example, Fig. 9.

Fig. 11. Corrected SHU combined, FCL

94 J. Caine and S. Polovina

5 Discussion

The significance of the change of arrow direction and relation renaming described
above has demonstrated the correct transitivity in relation to the enterprise
(SHU) and its strategy. The expanded case example demonstrates a transitive
flow that reflects concepts that all connect to the forces and trends which ulti-
mately influence the enterprise strategy. The “...last nail in the wall” infimum
formal concept PPI brings together all the enterprise concepts to show how they
are all (ultimately) measured, hence evaluated and managed for achieving SHU’s
purpose.

Of course, a straightforward visual inspection of the CGs would reveal that
the arrows would all need to be in a fully transitive direction as described. But the
two SHU case studies (one simple the other expanded) demonstrate the principle.
In reality, and as even the simplified SHU case indicates, the metamodels and
models can run to many hundreds and even thousands of interlinked enterprise
concepts and their semantic relations. An examination of metamodel libraries for
example reveals their possible extent [4,11]. There are also other comprehensive
examples that support the CGFCA approach [2,8,9]. Therefore trying simply
to inspect the hand-drawn models for misalignments in the enterprise concepts
with the human eye would become an arduous if not impossible task, whereas
the mathematically, computer generated formal concepts from FCA and CGFCA
would find them in an instant. Although we have increased the total concepts
to forty and made a change between process and service, the expanded case
example demonstrates the principle in the likelihood of greater-sized CGs and
the changes made to them. Meanwhile we can easily sense how the transitivity
of all enterprise concepts can be identified by restating them as formal concepts.
It is hence our intention to further explore the enterprise concepts for SHU as
formal concepts using CGFCA.

6 Conclusions

Enterprise concepts benefit from FCA through CGFCA. Following the archi-
tectural principle of “The blank piece of paper to the last nail in the wall”,
CGFCA discovers the transitivity in the enterprise concepts, highlighting where
that transitivity is deficient. For enterprise concepts articulated through enter-
prise architecture, the transitivity extends throughout including the infimum
formal concept. By aligning enterprise concepts with formal concepts, an enter-
prise’s visible entities such as its buildings, equipment or financial statements
can thus be directed to support rather than hinder the enterprise. It also serves
to remind business enterprises that structure follows strategy; the enterprise’s
organisational form is the outcome of its purpose (‘vision and mission’).

CGFCA is actually triples to binaries through FCA. This opens its potential
to be generalised to other, more widely-used notations that enterprise modellers
take advantage of such as UML Class Diagrams that use directed graphs (which
are commonly found in EA metamodels). Going even wider, RDFS and OWL

From Enterprise Concepts to Formal Concepts: A University Case Study 95

from the Semantic Web or any other notation that uses directed triples could
benefit too. The experiences from applying CGFCA to enterprise metamodels
has also raised these additional avenues. Aligning computer productivity with
human creativity is a tenet of conceptual structures, and we have shown that
FCA in this sense can be brought to bear to make it so.

References

1. Global University Alliance: Industry standards research: the value of apply-
ing standards to increase the level of reusability, replication and standardiza-
tion (2018). http://www.globaluniversityalliance.org/wp-content/uploads/2017/
10/Global-University-Alliance-Research-Industry-Standard.pdf

2. Andrews, S., Polovina, S.: A mapping from conceptual graphs to formal concept
analysis. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011.
LNCS (LNAI), vol. 6828, pp. 63–76. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22688-5 5

3. Chandler Jr., A.D.: Strategy and Structure: Chapters in the History of the Amer-
ican Industrial Enterprise. MIT Press, Cambridge (1962)

4. The Open Group: 34. Content metamodel (2011). http://pubs.opengroup.org/
architecture/togaf9-doc/arch/chap34.html

5. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5, 199–220 (1993)

6. Hitzler, P., Scharfe, H.: Conceptual Structures in Practice. CRC Press, Boca Raton
(2009)

7. Polovina, S.: An introduction to conceptual graphs. In: Priss, U., Polovina, S.,
Hill, R. (eds.) ICCS-ConceptStruct 2007. LNCS (LNAI), vol. 4604, pp. 1–14.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73681-3 1

8. Polovina, S., Andrews, S.: CGs to FCA including Peirce’s Cuts. Int. J. Concept.
Struct. Smart Appl. (IJCSSA) 1(1), 90–103 (2013)

9. Polovina, S., Scheruhn, H.-J., von Rosing, M.: Modularising the complex meta-
models in enterprise systems using conceptual structures. In: Sugumaran, V. (ed.)
Developments and Trends in Intelligent Technologies and Smart Systems, pp. 261–
283. IGI Global, Hershey (2018). ID: 189437

10. Porter, M.E.: How competitive forces shape strategy. Harv. Bus. Rev. 57(2), 137–
145 (1979). Article on the Positioning School of Strategy

11. LEADing Practice: Meta model reference content #LEAD-ES20021ALL (2018).
http://www.leadingpractice.com

12. Roger Sessions: A comparison of the top four enterprise-architecture methodologies
(2007). http://msdn.microsoft.com/en-us/library/bb466232.aspx

13. Sowa, J.F.: Conceptual graphs. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.)
Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol.
3, pp. 213–237. Elsevier, Amsterdam (2008)

14. Sowa, J.F., Zachman, J.A.: Extending and formalizing the framework for informa-
tion systems architecture. IBM Syst. J. 31(3), 590–616 (1992)

15. Sowa, J.F.: Conceptual Structures - Information Processing in Mind and Machine.
The Systems Programming series. Addison-Wesley, Reading (1984)

16. Sheffield Hallam University: Transforming lives (2017). http://www.shu.ac.uk/
strategy

http://www.globaluniversityalliance.org/wp-content/uploads/2017/10/Global-University-Alliance-Research-Industry-Standard.pdf
http://www.globaluniversityalliance.org/wp-content/uploads/2017/10/Global-University-Alliance-Research-Industry-Standard.pdf
https://doi.org/10.1007/978-3-642-22688-5_5
https://doi.org/10.1007/978-3-642-22688-5_5
http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap34.html
http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap34.html
https://doi.org/10.1007/978-3-540-73681-3_1
http://www.leadingpractice.com
http://msdn.microsoft.com/en-us/library/bb466232.aspx
http://www.shu.ac.uk/strategy
http://www.shu.ac.uk/strategy

96 J. Caine and S. Polovina

17. von Rosing, M., Fullington, N., Walker, J.: Using the business ontology and enter-
prise standards to transform three leading organizations. Int. J. Concept. Struct.
Smart Appl. (IJCSSA) 4(1), 71–99 (2016). ID: 171392

18. von Rosing, M., Kirchmer, M.: Focusing business processes on superior value cre-
ation: value-oriented process modeling. In: von Rosing, M., Scheer, A.-W., von
Scheel, H. (eds.) The Complete Business Process Handbook, pp. 479–496. Morgan
Kaufmann, Boston (2015)

19. Zachman, J.A.: John Zachman’s concise definition of the Zachman framework.
https://www.zachman.com/about-the-zachman-framework

20. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J.
26(3), 276–292 (1987)

https://www.zachman.com/about-the-zachman-framework

Invited Contributions

Visualizing ALC Using Concept Diagrams

Gem Stapleton1(B), Aidan Delaney1,2, Michael Compton3,
and Peter Chapman4

1 Centre for Secure, Intelligent and Usable Systems,
University of Brighton, Brighton, UK

g.e.stapleton@brighton.ac.uk, aidan@ontologyengineering.org
2 University of the South Pacific, Suva, Fiji

3 Hobart, Australia
4 Edinburgh Napier University, Edinburgh, UK

p.chapman@napier.ac.uk

Abstract. This paper addresses the problem of how to visualize axioms
from ALC using concept diagrams. We establish that 66.4% of OWL
axioms defined for ontologies in the Manchester corpus are formulated
over ALC, demonstrating the significance of considering how to visual-
ize this relatively simple description logic. Our solution to the problem
involves providing a general translation from ALC axioms into concept
diagrams, which is sufficient to establish that all of ALC can be expressed.
However, the translation itself is not designed to give optimally readable
diagrams, which is particularly challenging to achieve in the general case.
As such, we also improve the translations for a selected category of ALC
axioms, to illustrate that more effective diagrams can be produced.

1 Introduction

Ontology engineering requires a significant skill set as it involves domain mod-
elling and defining axioms using a formal notation, alongside refining and debug-
ging ontologies until the model is seen as accurate and fit-for-purpose. This engi-
neering task can involve many stakeholders, including domain experts who need
not be fluent in or, even, familiar with formal notations such as DL or OWL
which are typically used by ontology engineers. Communication problems arise
as a result. Thus, the use of symbolic notations is a particular obstacle, with
this mode of communication potentially leading to inaccurate ontologies being
developed or increased time and effort. This is a shortfall because accurate com-
munication of knowledge is necessary for the production of ontologies.

Visualization techniques have been recognized as possible approaches to
addressing accessibility problems associated with symbolic notations. Of the
various ontology visualization techniques, the majority exploit node-link dia-
grams (graphs), with OWLViz [13], OntoGraf [2] and CMap [12] being notable
examples, but often they are not formalized. These graph-based visualizations
exploit the same syntactic element (arrows) to represent both class subsumption
and property restrictions. Consequently, the saliency of these two different types
c© Springer International Publishing AG, part of Springer Nature 2018
M. Croitoru et al. (Eds.): GKR 2017, LNAI 10775, pp. 99–117, 2018.
https://doi.org/10.1007/978-3-319-78102-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_6&domain=pdf

100 G. Stapleton et al.

of information is significantly reduced. Similarity theory tells us saliency is an
important factor and, in particular, that different syntactic devices should rep-
resent different types of information [8]. This is because when visually searching
for particular types of information, increasing degrees of similarity between the
target syntax (which represents the required information) and distracter syntax
(which represents other information) leads to a corresponding increase in the
time taken to perform tasks. Another visualization technique is an adaptation of
existential graphs, which represent individuals, conjunction and negation using
line segments, juxtaposition and closed curves respectively [7]. The resulting
notation is essentially a stylized form of first-order logic that uses only ∃, ∧ and
¬ to make statements and we are of the opinion that usability suffers as a result.

Concept diagrams were introduced for ontology engineering [14] and aid infor-
mation saliency by avoiding the use of identical (or, even, similar) syntactic
types for different informational types: concepts (sometimes called classes) are
represented by closed curves and roles (sometimes called properties) by arrows.
Figure 1 shows a set of DL axioms, all from ALC, visualized using a single con-
cept diagram; these axioms correspond to a fragment of the SNN ontology [6].
The concept subsumption, concept disjointness and AllValuesFrom-style axioms
are represented by curve inclusion, curve disjointness and arrows respectively.

ALC is an important DL: ALC axioms form 64.4% of the Manchester corpus
[1], which contains over 4500 ontologies comprising nearly 3 million OWL axioms.
Whilst the example just given shows how to visualize 25 DL axioms using one

Fig. 1. Description logic axioms converted to a concept diagram.

Visualizing ALC Using Concept Diagrams 101

concept diagram, this paper demonstrates how to translate single DL axioms
into diagrams. Our first contribution is to establish concept diagrams equivalent
to ALC concepts. We then go on to establish how to visualize ABox and TBox
axioms. Thus, concept diagrams can be used to visualize a significant proportion
of the axioms from a large number of ontologies. We also show how to simplify
the resulting diagrams into arguably more readable forms.

2 The Description Logic ALC
Readers familiar with the formalization of ALC may choose to omit this section.
In ALC, as with all description logics, axioms are written over a vocabulary com-
prising a set of individuals, a set of atomic concepts and a set of roles, drawn
from the pairwise disjoint sets O, C, and R, respectively. There are two spe-
cial atomic concepts in C: � and ⊥. Individuals, concepts and roles represent
elements, sets and binary relations respectively; � represent Thing (the set con-
taining everything) and ⊥ represents Nothing (the empty set). The vocabulary
is used to form axioms in ALC. Firstly, we define concepts, which are built using
atomic concepts and roles along with logical operators and quantifiers.

Definition 1. The following are concepts in ALC:

1. Any atomic concept is a concept.
2. If C and D are a concepts and R is a role then the following are also (complex)

concepts: (C � D), (C � D), ¬C, ∃R.C, and ∀R.C.

In more expressive description logics, other types of concepts can be formed,
such as = nR.C, which is taken to be the set of things that are related to exactly
n things in the ‘set’ C under the ‘relation’ R. Moreover, roles can be made more
complex, too, such as by forming their composition, R1 ◦ R2, and by taking
inverses, R−. As we are focusing on visualizing axioms drawn from ALC, these
more complex constructions are not permitted.

Definition 2. Given individuals a and b, concepts C and D, and role R the
following are axioms in ALC: C(a), R(a, b), and C
 D. Axioms that involve
individuals are ABox axioms whereas those which do not are TBox axioms.

We note here that C ≡ D is also sometimes considered an axiom. For the
purposes of this paper, we consider C ≡ D to be a pair of subsumption axioms:
C
 D and D
 C.

Our attention now turns to semantics. Individuals are interpreted as ele-
ments, concepts as sets and roles as binary relations.

Definition 3. An interpretation is a pair, I = (�I , ·I), where

1. �I is a non-empty set, and
2. the function ·I maps

(a) each individual, a, in O to an element of �I , that is aI ∈ �I ,

102 G. Stapleton et al.

(b) each concept, C, in C to a subset of �I , that is CI ⊆ �I , such that
�I = �I and ⊥I = ∅, and

(c) each role, R, in R to a binary relation on �I , that is RI ⊆ �I × �I .

The function ·I can then be extended to interpret all concepts as follows:

1. (C � D)I = CI ∩ DI ,
2. (C � D)I = CI ∪ DI ,
3. ¬CI = �I\CI ,
4. ∃R.CI = {x ∈ �I : ∃y (y ∈ CI ∧ (x, y) ∈ RI)}, and
5. ∀R.CI = {x ∈ �I : ∀y ((y ∈ �I ∧ (x, y) ∈ RI) ⇒ y ∈ CI)}.
Definition 4. For each axiom, A, an interpretation, I, models A under the
following conditions:

1. If A = C(a) for some concept C and individual a, I models C(a) whenever
aI ∈ CI .

2. If A = C
 D for some concepts C and D then I models C
 D whenever
CI ⊆ DI .

3. If A = R(a, b) for some role R and individuals a and b then I models R(a, b)
whenever (aI , bI) ∈ RI .

3 Concept Diagrams

Here we present the formalization of a first-order fragment of the concept dia-
gram logic that is able to express all of ALC. We adapt the formalization given
in [23], removing unnecessary second-order, and some first-order, syntax. Firstly,
we note that concept diagrams allow the use of inverse roles. So, for every role,
R, in R, R− is a role and we define R−I = {(y, x) : (x, y) ∈ RI}. Whilst inverse
roles are not permitted in ALC, we make use of them in our translation.

An example of a concept diagram is given in Fig. 2. It comprises two unitary
diagrams, β1 and β2; unitary diagrams are extended with additional syntax
and are called class and object property diagrams in [18]. Each of β1 and β2 is
enclosed by a boundary rectangle which represents the universal set, �I . Each
of β1 and β2 contain a single spider ; in β1 the spider is the graph with two
nodes joined by an edge whereas in β2 the spider comprises just a single node.

Fig. 2. A concept diagram.

Visualizing ALC Using Concept Diagrams 103

The first spider represents the existence of an anonymous individual whereas the
second spider represent the individual a. The labelled (resp. unlabelled) curves
represent atomic (resp. anonymous) concepts and shading is used to place upper
bounds on set cardinality: in shaded regions, all elements must be represented
by spiders. So, in β2, the only element in the anonymous set is a. Within each
unitary diagram, the spatial relationships between the curves and the spiders
convey meaning. In β1, for instance, we can see that C2
 C1, through curve
inclusion, and the anonymous individual represented by the spider is in C1. The
shading and spider labelled a in β2 tell us that the only element in the anonymous
set is the individual a.

The arrow joining the two unitary diagrams, thus forming a concept diagram,
asserts that the elements in C2 (the arrow’s source) are, between them, related to
all and only the elements in the anonymous set represented by the arrow’s target
which, in turn, is subsumed by C3. More informally, the arrow tells us that ele-
ments in C2 can only be related to elements in C3; in ALC, the arrow expresses
C2
 ∀R.C3. In general, arrows can be sourced and targeted on boundary rectan-
gles, curves and spiders. In addition, arrows can also be dashed to express partial
information. In Fig. 2, if the arrow was dashed then the diagram would instead
assert that the elements in C2 are, between them, related to at least all of the ele-
ments in the anonymous set represented by the arrow’s target.

Our formalization of concept diagrams is at an abstract syntax level. Spiders
and closed curves are chosen from countably infinite sets S and K respectively;
note that these are not closed curves in the mathematical sense. Lastly, arrows
represent roles – or, rather, role restriction – are of the form (s,R, t, ◦). Here, s
is the arrow’s source, R is the arrow’s label which is a role or inverse role, t is the
target and ◦ is either → or ���. As the boundary rectangle in unitary diagrams
can be the source or target of an arrow, but is not in S or C, it will be denoted
by �, formally written as (�, β) to identify the diagram, β, in question. Thus,
an arrow of the form ((�, β), R, t,→) indicates that a solid arrow is sourced on
the diagram β’s boundary rectangle, labelled R with target t.

Definition 5. A unitary diagram, β = (Σ,K, λ, Z, Z∗, η, A) has components
that are defined as follows.

1. Σ = Σ(β) ⊂ S is a finite set of spiders.
2. K = K(β) ⊂ K is a finite set of curves.
3. λ = λβ = λΣ ∪ λK is a partial function such that

(a) λΣ : Σ → O is a partial function that labels spiders with elements O and
(b) λK : K → C is a partial function that labels curves with elements of C.

4. Z = Z(β) is a set of zones such that Z ⊆ {(in,K\in) : in ⊆ K}.
5. Z∗ = Z∗(β) ⊆ Z is a set of shaded zones.
6. η = ηβ : Σ → PZ\{∅} is a function that returns the location of each spider.
7. A = A(β) is a finite set of arrows such that for all (s,R, t, ◦) in A, s and t

are in Σ ∪ K ∪ {(�, β)}.
A spider or curve that does not map to a label under λ is called unlabelled. A
set of zones is called a region.

104 G. Stapleton et al.

Briefly, β1 in Fig. 2 has Σ = {σ}, K = {κ1, κ2}, λ(κ1) = C1, and λ(κ2) = C2.
There are three zones (the regions in the plane to which the drawn curves give
rise), so Z = {(∅, {κ1, κ2}), ({κ1}, {κ2}), ({κ1, κ2}, ∅)} and none of them are
shaded. The function η maps σ to the region η(σ) = {({κ1}, {κ2}), ({κ1, κ2}, ∅)}.
As β1 does not contain any arrows (but does contains an arrow source), A = ∅.

Definition 6. A concept diagram is a tuple, B = (D, A), where

1. D is a finite set of unitary diagrams such that for any pair of distinct unitary
diagrams, β1 and β2, in D we have Σ(β1) ∩ Σ(β2) = ∅, and K(β1) ∩ K(β2) = ∅.

2. A = A(B) is a finite set of arrows such that for all (s,R, t, ◦) in A, s, t ∈
Σ(B) ∪ K(B) ∪ ({�} × D) where

Σ(B) =
⋃

β∈D
Σ(β), and K(B) =

⋃

β∈D
K(β)

and for all unitary diagrams, β, in D it is not the case that s ∈ Σ(β) ∪
K(β) ∪ {(�, β)} and t ∈ Σ(β) ∪ K(β) ∪ {(�, β)}.

The last condition above ensures that arrows in the set A(B) go between different
unitary diagrams. This condition can be removed without causing any theoretical
problems. It might, however, be counterintuitive if arrows in A(B) simply placed
an arrow into one of the unitary parts of the concept diagram. Concept diagrams
make use of standard logical connectives to build more complex expressions [23]
but these are not needed when focusing on ALC.

Turning our attention to the semantics, the meaning of a unitary diagram
is determined by how its individual pieces of syntax are related to each other.
We start by translating a unitary diagram into a set of semantic conditions.
These conditions capture the constraints, provided by the diagram, on the rela-
tionships between the represented individuals, concepts, and roles. We start by
identifying the elements and sets represented by the labelled spiders and labelled
curves. This identification allows us to treat labelled and unlabelled spiders and,
respectively, curves, in the same way in our semantic conditions.

Definition 7. Let β be a unitary diagram and let I be an interpretation. Let s
be a labelled spider and c be a labelled curve in β. We define sI = λ(s)I and
cI = λ(c)I .

Definition 8. Let B = (D, A) be a concept diagram and let I = (�I , ·I) be an
interpretation, extended so that (�, β)I = �I , for any β. Then I is a model for
B, and I satisfies B, provided there exists an extension of I to the unlabelled
spiders and unlabelled curves in the unitary parts of B, mapping spiders to ele-
ments and curves to sets, ensuring the conjunction of the following conditions,
called the semantic conditions, hold:

Visualizing ALC Using Concept Diagrams 105

1. For each unitary diagram, β, in B the following are true.
(a) The Curves Condition. The union of the sets represented by the zones

is equal to �I :
⋃

(in,out)∈Z(β)

(in, out)I = �I

where
(in, out)I =

⋂

κ∈in

κI ∩
⋂

κ∈out

(�I\κI).

(b) The Shading Condition. Every shaded zone contains only elements
represented by spiders:

∧

(in,out)∈Z∗(β)

(in, out)I ⊆ {σI : σ ∈ Σ}.

(c) The Spiders’ Location Condition. Each spider, σ, represents an ele-
ment that lies in one of the sets represented by the zones in its location:

∧

σ∈Σ(β)

σI ∈
⋃

(in,out)∈ηβ(σ)

(in, out)I .

(d) The Spiders’ Distinctness Condition. Any two distinct spiders, σ1

and σ2, represent distinct elements:
∧

σ1,σ2∈Σ(β)

(σ1 �= σ2 ⇒ σI
1 �= σI

2).

(e) The Arrows Condition. For each arrow with source s, label R and
target t:

∧

(s,R,t,→)∈A(β)

{y ∈ �I : ∃x (x ∈ sI ∧ (x, y) ∈ RI)} = tI and

∧

(s,R,t,���)∈A(β)

{y ∈ �I : ∃x (x ∈ sI ∧ (x, y) ∈ RI)} ⊇ tI .

where we are treating sI and tI as singleton sets, rather than elements,
in the cases when s and t, respectively, are spiders.

2. For each arrow, with source s, label R and target t, in A(B), the arrows
condition as just given above holds.

An extension of I that makes the above conditions true is called appropriate.
Moreover, given a region, r, we define rI =

⋃
z∈r

zI .

106 G. Stapleton et al.

4 Building Diagrams for Concepts

Here we provide an inductive construction of concept diagrams for ALC concepts.
The general construction relies on merging unitary diagrams. For this operation,
as well as other parts of the construction, we rely on diagrams having disjoint
curve sets. This reliance is not significant since we can always perform curve
substitution, akin to variable substitution in symbolic logics, ensuring that the
diagram’s components, such as arrow sources and targets and the zones, are
updated in the appropriate way; for zones, when substituting κ1 with κ2, the zone
(in, out) becomes ((in\{κ1}) ∪ {κ2}, out) when κ1 is in in, with the substitution
operating similarly when κ1 is in out . We point out that the construction we
give is intended to establish that ALC axioms can all be visualized using concept
diagrams. It does not necessarily yield the most effective diagrams, a point to
which we return in Sect. 6.

4.1 Merging Diagrams

In order to build diagrams to represent concepts, we need to be able to merge
two unitary diagrams that do not contain spiders. An example can be seen in
Fig. 3, where β1 and β2 are merged into the single diagram β1 + β2.

In order to identify the zones of the merged diagram we use the notion of an
expansion of a region. To illustrate the idea, in Fig. 3, suppose that the curves in
β1 are κ1 and κ2 and in β2 the curves are κ′

1 and κ. The region {({κ1}, {κ2})} in
β1 can be expanded, without changing the set represented, to a four-zone region:

{({κ1}, {κ2, κ
′
1, κ}), ({κ1, κ

′
1}, {κ2, κ}), ({κ1, κ}, {κ2, κ

′
1}), ({κ1, κ

′
1, κ}, {κ2})}.

Definition 9. Let r be a region and let K be a set of fresh curves (that is no
zone in r includes any curve in K). The expansion of r given K is the region

EXP(r,K) = {(in ∪ K ′, out ∪ (K\K ′)) : (in, out) ∈ r ∧ K ′ ⊆ K}.

Lemma 1. Let r be a region and let K be a set of fresh curves. In any inter-
pretation, I, rI = EXP(r,K)I , under any extension of I mapping curves to
sets.

Fig. 3. Merging two diagrams.

Visualizing ALC Using Concept Diagrams 107

When merging two diagrams, we can start the process by expanding their
zone sets using the curves in the other diagram. The zones in the merged dia-
gram will be the intersection of these two expansions, thus not including zones
that represent empty sets. For instance, considering the four-zone expansion of
({κ1}, {κ2}) given above, the zone ({κ1, κ}, {κ2, κ

′
1}) represents the empty set

and is not included in β1 + β2. We are now in a position to define how to merge
two unitary diagrams that do not contain any spiders.

Definition 10. Given unitary diagrams β1 = (Σ1,K1, λ1, Z1, Z
∗
1 , η1, A1) and

β2 = (Σ2,K2, λ2, Z2, Z
∗
2 , η2, A2), containing no spiders and with disjoint curve

sets, their merger is a unitary diagram, β = β1+β2, whose (possibly) non-empty
components are: K(β) = K1 ∪ K2, λβ = λ1 ∪ λ2,

Z(β) = EXP(Z1,K2) ∩ EXP(Z2,K1),
Z∗(β) = Z(β) ∩ (EXP(Z∗

1 ,K2) ∪ EXP(Z∗
2 ,K1)),

and A(β) = A1 ∪ A2.

Lemma 2. Let β1 and β2 be unitary diagrams with no spiders and disjoint curve
sets. Interpretation I models β1 and β2 iff I models β1 + β2.

Proof (Sketch). Follows readily from Lemma 1.

4.2 Translating Concepts into Diagrams

The diagrams we build for concepts express no information, just as the left-
hand side and righthand side of an ALC axiom contain no information when
considered in isolation; complex concepts merely describe sets, but do not place
any constraints on them (which is done through the use of
 in an axiom, for
example). The important feature of diagrams for concepts is that they contain a
region that represents the same set as the concept. In what follows, this region
is identified diagrammatically by the inclusion of × as an annotation. The con-
struction is inductive and we begin by defining diagrams for atomic concepts,
together with regions that represents the same set as the concept.

Definition 11. Let C be an atomic concept. The concept diagram for C,
denoted DIAG(C), and the region for C, denoted REG(C), are as follows:

where κ is the curve labelled C. Moreover, the unitary part of DIAG(C) is called
the merging diagram for C, denoted MER(C).

Strictly speaking, the translation of an atomic concept to a diagram returns
the abstract syntax of the concept diagram but our definition presents a drawing
of DIAG(C) for readability.

108 G. Stapleton et al.

Fig. 4. Translating ∃R.(C1 � C2).

Lemma 3. Let C be an atomic concept. In any interpretation, I, CI =
REG(C)I .

Using this simple base case, we can now build diagrams for complex con-
cepts. In these diagrams, we need to build anonymous concepts using arrows
for concepts that involve quantifiers. To facilitate this, we need to add curves
inside regions, since arrows cannot be sourced or targeted on the regions which
represent concepts. To illustrate, Fig. 4 shows a diagram for ∃R.(C1 �C2). Here,
the unlabelled curve in β1 represents the same set as C1�C2. The arrow labelled
R− constructs the set of elements that are related to by some element in C1�C2

and, thus, the unlabelled curve in β2 represents ∃R.(C1 � C2).

Definition 12. Let β be a unitary diagram containing no spiders and let r be
a region in β. Let κ be a fresh curve. The diagram obtained by adding κ inside
r, denoted β + (r, κ) has the same components as β except that the curves are
K(β) ∪ {κ}, the zones are

Z(β + (r, κ)) = {(in, out ∪ {κ}) : (in, out) ∈ Z(β)\r} ∪ EXP(r, {κ})

and the shaded zones are

Z∗(β + (r, κ)) = {(in, out) ∈ Z(β + (r, κ)) : (in\{κ}, out\{κ}) ∈ Z∗(β)} ∪
{(in, out ∪ {κ}) : (in, out) ∈ r}.

Lemma 4. Let β be a unitary diagram containing no spiders and let r be a
region in β. Let κ be a fresh curve. Let I be an interpretation. Then

1. rI = κI under any appropriate extension of I for β + (r, κ), and
2. I models β iff I models β + (r, κ).

Before we present a definition of the concept diagram for an arbitrary non-
atomic concept, we illustrate the key features of the translation by considering
∃R1.¬C1�∀R2.(C2�C3). The construction, being inductive, starts by translating
the atomic concepts C1, C2 and C3 as in Definition 11. The next stage is to form
diagrams for ¬C1 and C2 � C3. In fact, the diagram for ¬C1 is the same as that
for C1, but the region for ¬C1 differs: it is the complement of the region for
C1. The diagram for C2 � C3 is the merger of the diagrams for C2 and C3 with,

Visualizing ALC Using Concept Diagrams 109

Fig. 5. Translating ¬C1, C2�C3, ∃R1.¬C1, ∀R2.(C2�C3) and ∃R1.¬C1	∀R2.(C2�C3).

roughly speaking, the associated region being the ‘union’ of the regions for C2

and C3. The diagrams for ¬C1 and C2 � C3 are β1 and β2 respectively, Fig. 5,
with their associated regions indicated by ×.

We can now build diagrams for ∃R1.¬C1 and ∀R2.(C2 � C3). Considering
∃R1.¬C1, we obtain the concept diagram ({β3, β4}, {(κ3, R

−
1 , κ4,→)}), where

κ3 and κ4 are the unlabelled curves in β3 and β4 respectively. Here, the
diagram which contains the region representing the concept ∃R1.¬C1 is β4;
this is the merging diagram. For ∀R2.(C2 � C3), we obtain the concept dia-
gram ({β5, β6}, {(κ5, R

−
2 , κ6,→)}), where β6 is the merging diagram. Here,

the arrow, together with its source, is used to construct the set of things
related to by something not in C1 � C2. Thus, the complement of this set
– represented by region outside the curve in β6 – contains exactly the ele-
ments that are in ∀R2.(C1 � C3). The last step is to form a diagram for
the entire concept of interest: ∃R1.¬C1 � ∀R2.(C2 � C3). We merge β4 and
β6, leaving β3 and β5 unchanged, with the result being the concept diagram
({β3, β5, β7}, {(κ3, R

−
1 , κ4,→), (κ5, R

−
2 , κ6,→)}), again with the region repre-

senting the entire concept indicated with the inclusion of ×.

Definition 13. Let C be a non-atomic concept. The concept diagram for
C, denoted DIAG(C), the region for C, denoted REG(C), and the merging
diagram for C, denoted MER(C), are defined as follows:

1. If C = C1 � C2 then
(a) MER(C1 � C2) = MER(C1) + MER(C2),
(b) DIAG(C1 � C2) = (D, A1 ∪ A2) where

D = (D1\{MER(C1)}) ∪ (D2\{MER(C2)}) ∪ {MER(C1 � C2)},

and
(c) REG(C1 � C2) = EXP(REG(C1),K2) ∩ EXP(REG(C2),K1).

2. If C = C1 � C2 then
(a) MER(C1 � C2) = MER(C1) + MER(C2),

110 G. Stapleton et al.

(b) DIAG(C1 � C2) = (D, A1 ∪ A2) where

D = (D1\{MER(C1)}) ∪ (D2\{MER(C2)}) ∪ {MER(C1 � C2)},

and
(c) REG(C1 � C2) = Z(MER(C1 � C2)) ∩ (EXP(REG(C1),K2) ∪ EXP

(REG(C2),K1)).
3. If C = ¬C1 then

(a) MER(¬C1) = MER(C1),
(b) DIAG(¬C1) = DIAG(C1) and
(c) REG(¬C1) = Z(MER(C1))\REG(C1).

4. If C = ∃R.C1 then
(a) MER(∃R.C1) is a unitary diagram containing a fresh curve, κt:

(b) DIAG(∃R.C1) = (D, A1 ∪ {(κs, R
−, κt,→)}) where

D = (D1\{MER(C1)}) ∪ {MER(C1) + (REG(C1), κs),MER(∃R.C1)}
and κs is a fresh curve, and

(c) REG(∃R.C1) = {({κt}, ∅)}.
5. If C = ∀R.C1 then

(a) MER(∀R.C1) is a unitary diagram containing a fresh curve, κt:

(b) DIAG(∀R.C1) = (D, A1 ∪ {(κs, R
−, κt,→)}) where

D = (D1\{MER(C1)}) ∪
{MER(C1) + (Z(MER(C1))\REG(C1), κs),MER(∀R.C1)}

and κs is a fresh curve, and
(c) REG(∀R.C1) = {(∅, {κt})}.

where DIAG(C1) = (D1, A1), DIAG(C2) = (D2, A2), and K1 and K2 are the
sets of curves in MER(C1) and MER(C2) respectively.

An important property of diagrams for concepts is that they are satisfied
in every interpretation. This allows us to readily use them when constructing
diagrams for ALC axioms.

Lemma 5. Let C be a concept. Then DIAG(C) is satisfied by all interpreta-
tions, that is DIAG(C) is valid.

Corollary 1. Let C be a concept. Then all unitary parts of DIAG(C) are valid.

We now establish the crucial result that REG(C) represents the same set as C.

Theorem 1. Let C be a concept. For all interpretations, I, CI = REG(C)I

under any appropriate extension of I for DIAG(C).

Visualizing ALC Using Concept Diagrams 111

Proof (Sketch). The proof proceeds by induction with the base case provided
by Lemma 3. We include the remainder of the proof for the ∃R.C1 and ∀R.C1

cases. In the first of these two cases the curve, κt, in DIAG(∃R.C1) that is the
target of the arrow represents the image of R− when its domain is restricted to
C1. Formally, we have

κI
t = {x ∈ �I : ∃y (y ∈ CI

1 ∧ (y, x) ∈ R−I
)},by Definition 8

= {x ∈ �I : ∃y (y ∈ CI
1 ∧ (x, y) ∈ RI)} = ∃R.CI

1 .

It is straightforward to verify that REG(∃R.C1)I = {({κt}, ∅)}I = κI
t and we

are done.
For the ∀R.C1 case, we must show that REG(∀R.C1) = {(∅, {κt})} represents

the same set as ∀R.C1. Consider MER(C1)+(Z(MER(C1), κs)\REG(C1)). We
can show that κs, which is the source of the arrow labelled R−, represents the set
�I\CI

1 , using the inductive assumption. Therefore in MER(∀R.C1) the curve,
κt, which is the target of the arrow labelled R−, represents the set

κI
t = {x ∈ �I : ∃y (y ∈ �I\CI

1 ∧ (x, y) ∈ RI)} = ∃R.¬C1.

Thus, �I\κI
t contains precisely the elements in �I that are related only to

things in the set CI
1 under RI . More formally,

�I\κI
t =

{
x ∈ �I : ∀y

(
(y ∈ �I ∧ (x, y) ∈ RI) ⇒ y ∈ CI

1

)}
= ∀R.CI

1 .

Since REG(∀R.C1) = {(∅, {κt})}, we readily see that REG(∀R.C1)I = �I\κI
t ,

by definition, and we are done. Hence, in all cases, CI = REG(C)I , as required.

5 Visualizing Axioms

In this section we show how to visualize ALC axioms using concept diagrams.

5.1 ABox Axioms

The Manchester OWL corpus [1] contains over 1.5 million ABox axioms of
which 64.3% are in ALC1. Using the diagrams constructed for concepts, we
are now readily able to establish that all A-box axioms in ALC can be visualized
using concept diagrams. The basic principle for ABox axioms of the form C(a)
is to place a spider labelled a in REG(C). To illustrate, the ABox axiom for
(∃R1.¬C1 � ∀R2.(C2 � C3))(a) is visualized in Fig. 6.
1 To count axioms, we used OWL API’s DL expressiveness checker. Each axiom is

extracted and provided to the OWL API which determines whether the axiom is
syntactically in ALC. This approach is somewhat crude, in that some OWL non-
ALC axioms can be reduced to a set of axioms including some in ALC; we count
such OWL axioms as not being in ALC. Of the ontologies in the corpus, we could
parse 4019. Our counting software is an extension of an existing ontology statistics
processing package [11] and can be found at https://github.com/hammar/OntoStats.

https://github.com/hammar/OntoStats

112 G. Stapleton et al.

Fig. 6. (∃R1.¬C1 	 ∀R2.(C2 � C3))(a).

Definition 14. The ABox diagram for ALC axiom C(a), denoted DIAG
(C(a)), is obtained from DIAG(C) by adding a spider labelled a to REG(C)
in MER(C).

Theorem 2. Let C(a) be an ABox axiom in ALC and let I be an interpretation.
I satisfies C(a) iff I satisfies DIAG(C(a)).

Proof. Suppose I satisfies C(a). Lemma 5 tells us that I satisfies DIAG(C).
Moreover, Corollary 1 tells us that I satisfies MER(C), the unitary part of
DIAG(C) into which the spider, σ say, labelled a has been placed. The only
difference between the semantic conditions for DIAG(C) and DIAG(C(a)) arise
from the inclusion of this spider, whereby DIAG(C(a)) asserts:

σI ∈
⋃

(in,out)∈REG(C)

(in, out)I = REG(C)I (*).

By Theorem 1, REG(C)I = CI . Since I satisfies C, we know that aI ∈ CI . By
definition, σI = aI , so (*) is true and we conclude that I satisfies DIAG(C(a)).
The proof for the converse, if I satisfies DIAG(C(a)) then I satisfies C(a), is
similar. Hence I satisfies C(a) if and only if I satisfies DIAG(C(a)).

The remaining ABox case is for axioms of the form R(a, b). These are trivially
expressed using concept diagrams:

Hence, concept diagrams can express all of ALC’s ABox axioms.

Theorem 3. All ABox axioms in ALC can be visualized by a semantically equiv-
alent concept diagram.

5.2 TBox Axioms

The Manchester OWL corpus [1] contains over 1.3 million TBox axioms of which
66.3% are in ALC. Using the diagrams constructed for concepts, we can estab-
lish that all TBox axioms in ALC can be visualized, although the process is
not as straightforward as for ABox axioms. To illustrate, the TBox axiom for
∃R1.¬C1
 ∀R2.(C2 � C3) can be seen in Fig. 7 (the diagrams for ∃R1.¬C1 and
∀R2.(C2 � C3) are in Fig. 5). The first step in the construction process is to
merge the two merging diagrams for the two sides of the subsumption relation-
ship. This is followed by shading the appropriate zones in order to obtain the

Visualizing ALC Using Concept Diagrams 113

Fig. 7. ∃R1.¬C1
 ∀R2.(C2 � C3).

correct subsumption relationship. In this example, there is one zone inside the
region for ∃R1.¬C1 but not in the region for ∀R2.(C2 � C3); this zone is shaded
to assert that no elements can be in the corresponding set. Formally, the zones
which require shading are captured by considering expansions of the regions for
REG(∃R1.¬C1) and REG(∀R2.(C2 � C3)).

Definition 15. Let C1
 C2 be a TBox axiom in ALC where DIAG(C1) =
(D1, A1) and DIAG(C2) = (D2, A2). The TBox diagram for C1
 C2, denoted
DIAG(C1
 C2), is obtained from the concept diagram
(
(D1\{MER(C1)}) ∪ (D2\{MER(C1)}) ∪ {MER(C1)+MER(C2)}, A1 ∪ A2

)

by shading the zones in

EXP(REG(C1),K(MER(C2)))\EXP(REG(C2),K(MER(C1)))

in MER(C1) + MER(C2).

Lemma 6. Let C1 and C2 be ALC concepts. Let I be an interpretation. The
following statements are equivalent.

(1) CI
1 ⊆ CI

2

(2) REG(C1)I ⊆ REG(C2)I .
(3) EXP(REG(C1),K(MER(C2)))I ⊆ EXP(REG(C2),K(MER(C1)))I .

Theorem 4. Let C1
 C2 be a TBox axiom in ALC and let I be an interpre-
tation. I satisfies C1
 C2 iff I satisfies DIAG(C1
 C2).

Proof. Suppose that I satisfies C1
 C2. Since DIAG(C1) and DIAG(C1) are
valid, by Lemma5, we only need to show that I satisfies the merged unitary
diagram MER(C1)+MER(C2) with the shading added to it as in Definition 15;
call this diagram β. First, by Corollary 1, MER(C1) and MER(C2) are both
valid. By Lemma 2, MER(C1)+MER(C2) is also valid. Therefore, we only need
to consider the shading condition for β. This condition reduces to

Z∗(β)I =
(
EXP(REG(C1), K(MER(C2)))\EXP(REG(C2), K(MER(C1)))

)I
= ∅ (*)

since there are no spiders. Now, since C1
 C2 is satisfied by I, we know that
CI

1 ⊆ CI
2 . Lemma 6 tells us, therefore, that

EXP(REG(C1),K(MER(C2)))I ⊆ EXP(REG(C2),K(MER(C1)))I

from which (*) follows, as required. Thus, I satisfies DIAG(C1
 C2). The
converse, omitted for space reasons, is similar. Hence I satisfies C1
 C2 iff I
satisfies DIAG(C1
 C2).

114 G. Stapleton et al.

Theorem 5. All TBox axioms in ALC can be visualized by a semantically equiv-
alent concept diagram.

Theorems 3 and 5 establish that ALC can be visualized using concept dia-
grams.

6 Improving the General Translations

The translations just defined sometimes return diagrams involving shaded zones.
It is possible to simplify these diagrams by removing the shaded zones. An
example is given in Fig. 8, where removing shaded zones reduces clutter. John
et al. [15] defined a clutter score for Euler diagrams (which are concept diagrams
that do not include any spiders or arrows): the clutter score for Euler diagram,
β, denoted CS(β) is

CS(β) =
∑

(in,out)∈Z(β)

|in|.

In Fig. 8, the clutter score reduces from 31 to 16 when removing the shaded zones.
All diagrams arising from TBox axioms involve shading and can be simplified in
this way. Moreover, axioms involving quantifiers also give rise to diagrams that
include shading.

Lemma 7. Let A be an ALC axiom. Removing shaded zones from DIAG(A)
reduces the clutter score.

It is known that diagrams with a higher clutter score are harder for people
to interpret [4] and it has further been shown that Euler diagrams without
shading are easier to interpret [5]. Indeed, removing shaded zones makes the
resulting diagram exploit spatial relations to assert information, making them
well-matched to their semantics [10].

We can also simplify the translation of axioms of the form C1
 ∀R.C2, where
C1 and C2 are arbitrary concepts. For instance, in Fig. 7 the diagram unnaturally
uses R−

2 in order to produce a region in β6 that represents ∀R2.(C2 � C3). In
fact, whilst helpful for a general translation mechanism, this construction step
can be eliminated, instead making direct use of β2. An alternative diagram can
be seen in Fig. 9. Here, we have added a curve to β2, Fig. 5, representing a subset
of C2 � C3. This curve represents the set of all elements that things in ∃R1.¬C1

are related to under R2, though the use of the arrow targeting it. Thus, the
diagram expresses ∃R1.¬C1
 ∀R2.(C2 � C3). This process readily generalizes

Fig. 8. C1
 C2 	 C3 	 C4. Fig. 9. ∃R1¬C1
 ∀R2.(C2 � C3).

Visualizing ALC Using Concept Diagrams 115

to axioms of the form C1
 C2 where C2 involves top-level universal quantifiers.
We note here that the use of inverse roles for existentially quantified concepts
can also be avoided, see [14,21] for examples.

7 Conclusion

This paper shows how to use concept diagrams to visualize ALC axioms. Our
approach was to build diagrams for concepts and then use these diagrams to
express ABox and TBox axioms. A substantial proportion of axioms from OWL
ontologies are drawn from ALC, establishing that concept diagrams can visualize
a significant proportion of ontology axioms that have been developed. We view
the contribution in this paper to be an important foundational step towards
producing usable visualizations of description logic. Whilst our general transla-
tion from ALC may not produce ideal diagrams from a usability perspective, we
have demonstrated some improvements can be readily achieved. Further improv-
ing the resulting diagrams is a key future ambition. For this, it is likely that
extensive empirical studies will be required, to establish how to choose between
semantically equivalent, yet syntactically different, concept diagrams. This was
started in [3], where diagrams for common styles of axioms where empirically
compared to ascertain their relative usability.

There are a number of other exciting avenues for future work. We plan to
extend the translations to richer description logics, establishing that most, if not
all, ontologies can be visualized using concept diagrams. It will be a particular
challenge to produce improved versions of these visualizations, to ensure that
the results of translations are most usable. Indeed, we envisage a much more
general translation from DL axioms to concept diagrams, which identifies sets
of DL axioms that can be translated to single diagrams, as in Fig. 1. We plan
to automate the translation process, allowing the results to be readily used in
practice. This brings with it substantial diagram drawing and layout problems,
building on the body of work on Euler diagram generation [9,16,20,22]. Work
towards a theorem prover for concept diagrams has already begun [17], where it
has been designed using empirical insights into what constitutes understandable
inference rules [19]. Our ultimate vision is to devise a framework that allows con-
cept diagrams to be used for ontology engineering, not merely as a visualization
aid, either as a stand-alone notation or fully integrated with existing symbolic
approaches.

Acknowledgement. Gem Stapleton was partially funded by a Leverhulme Trust
Research Project Grant (RPG-2016-082) for the project entitled Accessible Reason-
ing with Diagrams.

116 G. Stapleton et al.

References

1. Manchester owl corpus. http://owl.cs.manchester.ac.uk/publications/supporting-
material/owlcorpus/. Accessed Feb 2014

2. OntoGraf. http://protegewiki.stanford.edu/wiki/OntoGraf. Accessed July 2013
3. Shams, Z., Jamnik, M., Stapleton, G., Sato, Y.: Reasoning with concept diagrams

about antipatterns in ontologies. In: Geuvers, H., England, M., Hasan, O., Rabe, F.,
Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 255–271. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62075-6 18

4. Alqadah, M., Stapleton, G., Howse, J., Chapman, P.: Evaluating the impact of
clutter in Euler diagrams. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrams
2014. LNCS (LNAI), vol. 8578, pp. 108–122. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44043-8 15

5. Chapman, P., Stapleton, G., Rodgers, P., Micallef, L., Blake, A.: Visualizing sets:
an empirical comparison of diagram types. In: Dwyer, T., Purchase, H., Delaney, A.
(eds.) Diagrams 2014. LNCS (LNAI), vol. 8578, pp. 146–160. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44043-8 18

6. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox,
S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz,
K., Kelsey, W.D., Le Phuoc, D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov,
A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C
semantic sensor network incubator group. Web Semant. Sci. Serv. Agents World
Wide Web 17, 25–32 (2012)

7. Dau, F., Ekland, P.: A diagrammatic reasoning system for the description logic
ALC. J. Vis. Lang. Comput. 19(5), 539–573 (2008)

8. Duncan, J., Humphreys, G.: Visual search and stimulus similarity. Psychol. Rev.
96, 433–458 (1989)

9. Flower, J., Howse, J.: Generating Euler diagrams. In: Hegarty, M., Meyer, B.,
Narayanan, N.H. (eds.) Diagrams 2002. LNCS (LNAI), vol. 2317, pp. 61–75.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46037-3 6

10. Gurr, C.: Effective diagrammatic communication: syntactic, semantic and prag-
matic issues. J. Vis. Lang. Comput. 10(4), 317–342 (1999)

11. Hammar, K.: Reasoning performance indicators for ontology design patterns. In:
4th Workshop on Ontology and Semantic Web Patterns (2013)

12. Hayes, P., Eskridge, T., Mehrotra, M., Bobrovnikoff, D., Reichherzer, T., Saavedra,
R.: COE: tools for collaborative ontology development and reuse. In: Knowledge
Capture Conference (2005)

13. Horridge, M.: Owlviz. www.co-ode.org/downloads/owlviz/. Accessed June 2009
14. Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing ontologies: a case

study. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 257–272. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25073-6 17

15. John, C., Fish, A., Howse, J., Taylor, J.: Exploring the notion of ‘Clutter’ in Euler
diagrams. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006.
LNCS (LNAI), vol. 4045, pp. 267–282. Springer, Heidelberg (2006). https://doi.
org/10.1007/11783183 36

16. Riche, N., Dwyer, T.: Untangling Euler diagrams. IEEE Trans. Visual Comput.
Graphics 16(6), 1090–1099 (2010)

http://owl.cs.manchester.ac.uk/publications/supporting-material/owlcorpus/
http://owl.cs.manchester.ac.uk/publications/supporting-material/owlcorpus/
http://protegewiki.stanford.edu/wiki/OntoGraf
https://doi.org/10.1007/978-3-319-62075-6_18
https://doi.org/10.1007/978-3-662-44043-8_15
https://doi.org/10.1007/978-3-662-44043-8_15
https://doi.org/10.1007/978-3-662-44043-8_18
https://doi.org/10.1007/3-540-46037-3_6
www.co-ode.org/downloads/owlviz/
https://doi.org/10.1007/978-3-642-25073-6_17
https://doi.org/10.1007/11783183_36
https://doi.org/10.1007/11783183_36

Visualizing ALC Using Concept Diagrams 117

17. Shams, Z., Jamnik, M., Stapleton, G., Sato, Y.: Reasoning with concept diagrams
about antipatterns. In: 21st International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning. pp. 27–42. Kapla Publications in Computing
(2017)

18. Shams, Z., Jamnik, M., Stapleton, G., Sato, Y.: Reasoning with concept diagrams
about antipatterns in ontologies. In: Geuvers, H., England, M., Hasan, O., Rabe, F.,
Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 255–271. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-62075-6 18

19. Shams, Z., Sato, Y., Jamnik, M., Stapleton, G.: Accessible reasoning with dia-
grams: from cognition to automation. In: 10th International Conference on the
Theory and Application of Diagrams. LNCS, vol. 10871. Springer (2018)

20. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of over-
lapping sets. Comput. Graphics Forum 28(3), 967–974 (2009)

21. Stapleton, G., Compton, M., Howse, J.: Visualizing OWL 2 using diagrams. In:
IEEE Symposium on Visual Languages and Human-Centric Computing, pp. 245–
253. IEEE (2017)

22. Stapleton, G., Flower, J., Rodgers, P., Howse, J.: Automatically drawing Euler
diagrams with circles. J. Vis. Lang. Comput. 23, 163–193 (2012)

23. Stapleton, G., Howse, J., Chapman, P., Delaney, A., Burton, J., Oliver, I.: Formaliz-
ing concept diagrams. In: 19th International Conference on Distributed Multimedia
Systems, pp. 182–187. KSI (2013)

https://doi.org/10.1007/978-3-319-62075-6_18

Graph Theoretical Properties of Logic
Based Argumentation Frameworks:

Proofs and General Results

Bruno Yun1, Madalina Croitoru1(B), Srdjan Vesic2, and Pierre Bisquert3

1 LIRMM, University of Montpellier, Montpellier, France
croitoru@lirmm.fr

2 CRIL, University of Artois, Arras, France
3 INRA, Montpellier, France

Abstract. In this paper we extend our first results concerning the char-
acterisation of the graph structure of logic based argumentation graphs
with two main classes of findings. First we provide full proofs for the
structural results of argumentation graphs built over Datalog± knowl-
edge base composed of facts and negative constraints solely. Second, we
also provide some structural properties for the general case of knowledge
bases composed of facts, rules and negative constraints.

1 Introduction

We consider existential rules (Cal̀ı et al. 2009) as the underlying logical language
for the argumentation framework. Starting from an inconsistent existential rule
knowledge base (composed of a set of factual knowledge and an ontology stating
positive and negative rules about the factual knowledge), using the instantiation
of Croitoru and Vesic (2013) we generate the arguments and the attacks corre-
sponding to the knowledge base. The instantiation has been proven to respect
rationality desiderata (Amgoud 2014; Caminada and Amgoud 2007) from the
argumentation literature and outputs a set of extensions equivalent to the repairs
(Lembo et al. 2010; Bienvenu 2012) of the knowledge base (i.e. the maximum
w.r.t. inclusion consistent set of factual knowledge).

In Yun et al. (2018) we have given on overview of structural results for
simple knowledge bases composed over facts and negative rules only (without
any positive rules). In this paper we extend this first study by detailing the
results on simple knowledge bases and providing some results that also hold in
the general case. More precisely:

– We first consider the case of the knowledge base solely consisting of factual
knowledge and negative constraints (expressing fact incompatibility). We fully
prove the following structural properties of the argumentation graphs con-
structed from such knowledge bases: the existence of several duplicates of the
same sub-graph, graph-automorphism induced graph symmetries and specific
strongly connected component behaviour. We demonstrate how this serves as

c© Springer International Publishing AG, part of Springer Nature 2018
M. Croitoru et al. (Eds.): GKR 2017, LNAI 10775, pp. 118–138, 2018.
https://doi.org/10.1007/978-3-319-78102-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_7&domain=pdf

Graph Theoretical Properties of Logic Based Argumentation Frameworks 119

a complete characterisation of argumentation frameworks obtained from such
knowledge bases. We also show that the cf2 semantics (Baroni et al. 2005;
Gaggl and Woltran 2013) coincides with the preferred and naive semantics in
the case of argumentation frameworks generated from such knowledge bases
(without positive rules) that only contain binary negative constraints. Fur-
thermore, we give an example showing that if ternary negative constraints
are added, this equivalence no longer holds.

– Second, for the general case of knowledge bases with any number of facts,
rules or negative constraints we unveil the following structural properties: the
presence of a complete directed sub-graph, the presence of at least one cycle
in the graph and, intriguingly, the fact that the cf2 semantics (Baroni et al.
2005; Gaggl and Woltran 2013) is yielding, in this instantiation, potentially
inconsistent bases of arguments.

The significance of our results lies in the graph theoretical structural analysis
of a whole family of potentially real world argumentation graphs. Such results are
important to know for software engineers when designing argumentation solvers.
For example, when designing SAT inspired solvers (Cerutti et al. 2013), graph
symmetries induce as choice the solvers that better perform in the presence of
symmetries (Lagniez et al. 2015). Another practical interest lies in benchmark
generation (Yun et al. 2017a). Recently argumentation competitions (Thimm
et al. 2016) have been held where the benchmarks are generated based on graph
theoretical structures known to be difficult for solvers but not confirmed to
appear in practice. Revealing real world behaviour could fill this gap and com-
plete the benchmark spectra of instances. Last, it is important to be aware of
logic based argumentation graph behaviour in order to keep a realistic expecta-
tion of the added value of argumentation in such domains. It is known (Yun et al.
2017b) that even for a modest knowledge base of 7 facts, 2 rules and 1 binary
negative constraints, the generated argumentation graph can take gargantuan
proportions reaching 383 arguments and 32768 attacks. This paper will help
explain, at least partially, these results. For example, the sub-graph duplicate
result directly shows the exponential growth of the argumentation graph when
facts are added to the knowledge base. Please note that even if the paper of Yun
et al. (2017b) deals with benchmark generation of existential rule knowledge
bases it is fundamentally different from this work in at least two ways. First,
no graph theoretical properties are demonstrated in Yun et al. (2017b). Second,
regarding practical added value of Yun et al. (2017b), the authors provide a
benchmark generation tool but given the size of the generated graphs it would
be difficult to generate the graphs in order to test for their structure. This paper
fills this gap and directly provides a variety of graph theoretical properties such
graphs enjoy.

In Sect. 2, we recall the basic notions of existential rules and argumen-
tation. In Sect. 3, we show a complete set of structural properties for argu-
mentation frameworks generated from knowledge bases without rules w.r.t.
symmetry, strongly connected components and k-copy graphs. Then, the rest
of the section deals with structural results for argumentation frameworks

120 B. Yun et al.

generated from general knowledge bases. We show general structural proper-
ties such as the absence of self-attacking arguments but also the presence of
complete directed sub-graphs. We conclude with a concrete example showing
that the cf2 semantics is not suitable for existentially rule instantiated logical
argumentation frameworks as it can output sets with inconsistent bases.

2 Background Notions

The existential rules language (Cal̀ı et al. 2009) has attracted much interest
recently in the Semantic Web and Knowledge Representation community for its
suitability for representing knowledge in a distributed context (such as Ontology
Based Data Access (OBDA) applications) (Thomazo and Rudolph 2014; Zhang
et al. 2016). It is composed of formulae built with the usual quantifiers (∃,∀)
and only two connectors: implication (→) and conjunction (∧) and is composed
of the following elements:

– A fact is a ground atom of the form p(t1, . . . , tk) where p is a predicate of
arity k and ti, i ∈ [1, . . . , k] constants.

– An existential rule is of the form ∀−→
X,

−→
Y H[

−→
X,

−→
Y] → ∃−→

Z C[
−→
Z ,

−→
X] where H

(called the hypothesis) and C (called the conclusion) are existentially closed
atoms or conjunctions of existentially closed atoms and

−→
X,

−→
Y ,

−→
Z their respec-

tive vectors of variables. A rule is applicable on a set of facts F iff there exists
a homomorphism from the hypothesis of the rule to F . Applying a rule to a
set of facts (also called chase) consists of adding the set of atoms of the con-
clusion of the rule to the facts according to the application homomorphism.
Different chase mechanisms use different simplifications that prevent infinite
redundancies (Baget et al. 2011). We use recognisable classes of existential
rules where the chase is guaranteed to stop (Baget et al. 2011).

– A negative constraint is a particular kind of rule where C is ⊥ (absurdum).
Negative constraints can be of any arity (i.e. the number of atoms in C is
not bounded). Negative constraints implement weak negation. Please note
that negative constraints generalise simple binary conflicts that can easily be
translated between the two representations: ¬p(X) is transformed into np(X)
and the negative constraint p(X) ∧ np(X) → ⊥ is added to the rules set.

– A knowledge base K = (F ,R,N) is composed of a finite set of facts F , a set
of rules R and a set of negative constraints N . We denote by C�∗

R(F) the
closure of F by R (computed by all possible rule R applications over F until
a fixed point). C�∗

R(F) is said to be R-consistent if no negative constraint
hypothesis can be deduced. Otherwise, C�∗

R(F) is R-inconsistent.
– Given a knowledge base K = (F ,R,N), a set of facts C ⊆ F is called a

minimal conflict iff C is R-inconsistent and any strict subset C ′ ⊂ C of it is
R-consistent. The set of all minimal conflict of K is denoted conflicts(K). If
there are no minimal conflicts there are no attacks.

In the OBDA setting rules and constraints act as an ontology used to “access”
different data sources. These sources are prone to inconsistencies. As per liter-
ature principles, we suppose that the set of rules is compatible with the set of

Graph Theoretical Properties of Logic Based Argumentation Frameworks 121

negative constraints, i.e. the union of those two sets is satisfiable (Lembo et al.
2010). This assumption is made because in OBDA we assume that the ontology
is believed to be reliable as it is the result of a robust construction by domain
experts. However, as data can be large and heterogeneous due to merging and
fusion, in the OBDA setting the data is assumed to be the source of inconsis-
tency. This means that by applying the rules on the set of facts, we might violate
a constraint. To handle inconsistency, in this paper we use the existential rule
instantiation of argumentation frameworks of Croitoru and Vesic (2013):

– An argument (Croitoru and Vesic 2013) in Datalog± is composed of a minimal
(w.r.t. set inclusion) set of facts called support and a conclusion entailed from
the support. The Skolem chase coupled with the use of decidable classes of
Datalog± ensures the finiteness of the argumentation framework proposed
(following from Baget et al. (2011)). Formally, an argument a is a tuple (H,C)
with H a non-empty R-consistent subset of F and C a set of facts:

• H ⊆ F and C�∗
R(H)
|= ⊥ (consistency)

• C ⊆ C�∗
R(H) (entailment)

• �H ′ ⊂ H s.t. C ⊆ C�∗
R(H ′) (minimality)

The support H of an argument a is denoted by Supp(a) and the conclusion
C by Conc(a).

– The attack considered is the undermine (Croitoru and Vesic 2013): a attacks
b iff the union of the conclusion of a and an element of the support of b are
R-inconsistent. Formally, an argument a attacks an argument b denoted by
(a, b) ∈ C (or aCb) iff ∃φ ∈ Supp(b) s.t. Conc(a) ∪ {φ} is R-inconsistent. The
set of attackers of an argument a is denoted Att−(a) = {a′ | a′Ca} and the
set of arguments attacked by a, Att+(a) = {a′ | aCa′}.

– An argumentation framework ASK = (A, C) is the corresponding AF of K
where A is the set of arguments and C is the corresponding attack relation
defined above.

– If X is a set of arguments, Base(X) is the union of the supports of the
arguments of X: Base(X) =

⋃
x∈X Supp(x).

Example 1. Let us consider the knowledge base K = (F ,R,N) with:
F = {a(m), b(m), c(m), d(m)}, R = ∅ and N = {∀x(a(x)∧b(x)∧c(x) → ⊥)}.
The corresponding argumentation framework ASK is composed of 36 attacks

and the following 13 arguments:

– a0 0 : ({a(m)}, {a(m)})
– a1 0 : ({b(m)}, {b(m)})
– a2 2 : ({a(m), b(m)}, {a(m), b(m)})
– a3 0 : ({c(m)}, {c(m)})
– a4 2 : ({a(m), c(m)}, {a(m), c(m)})
– a5 2 : ({b(m), c(m)}, {b(m), c(m)})
– a6 0 : ({d(m)}, {d(m)})
– a7 2 : ({a(m), d(m)}, {a(m), d(m)})
– a8 2 : ({b(m), d(m)}, {b(m), d(m)})
– a9 6 : ({a(m), b(m), d(m)}, {a(m), b(m), d(m)})

122 B. Yun et al.

– a10 2 : ({c(m), d(m)}, {c(m), d(m)})
– a11 6 : ({a(m), c(m), d(m)}, {a(m), c(m), d(m)})
– a12 6 : ({b(m), c(m), d(m)}, {b(m), c(m), d(m)})

Please note that the attack is not symmetric, for instance, the argument a5 2
attacks the argument a0 0 but not conversely.

Let us now recall basic argumentation notions (Dung 1995). Let AS be an
argumentation framework, S ⊆ A and a ∈ A. We say that:

– S is conflict-free iff there exists no arguments a, b ∈ S such that (a, b) ∈ C.
– S defends a iff for every argument b ∈ A, if we have (b, a) ∈ C then there

exists c ∈ S such that (c, b) ∈ C.
– S is admissible iff it is conflict-free and defends all its arguments.
– S is a preferred extension iff it is a maximal (with respect to set inclusion)

admissible set.
– S is a stable extension iff it is conflict-free and for all a ∈ A \ S, there exists

an argument b ∈ S such that (b, a) ∈ C.

Example 2 (cont.). There are 3 stable (resp. preferred) extensions in ASK:

– ε1 = {a0 0, a1 0, a2 2, a6 0, a7 2, a8 2, a9 6}
– ε2 = {a1 0, a3 0, a5 2, a6 0, a8 2, a10 2, a12 6}
– ε3 = {a0 0, a3 0, a4 2, a6 0, a7 2, a10 2, a11 6}

It was shown in Croitoru and Vesic (2013) that, for existential rules argu-
mentation frameworks, the set of preferred and stable extensions coincide and
correspond to the set of maximally consistent sets of facts (repairs).

Example 3 (cont.). The preferred extension ε1 corresponds to the repair:
r1 = {a(m), b(m), d(m)}.
Indeed, we have that Base(ε1) = r1.

3 Structural Results

This section is organised as follows. In Sect. 3.1 we first investigate the graph
theoretical results of knowledge bases composed solely of facts and negative
constraints. Then, in Sect. 3.2 we investigate the general case where rules are
also considered in the argumentation framework.

3.1 Results for Simple Knowledge Bases

The graph theoretical results of this subsection are solely looking at the case
where the knowledge base is composed of a set of facts and a set of negative
constraints defined on these facts. Therefore, at the basis of the results lies the
notion of knowledge base minimal conflict. We exhibit three main results:

Graph Theoretical Properties of Logic Based Argumentation Frameworks 123

– The first result deals with conflict induced structural properties. Namely, we
characterise dummy arguments, arguments that are un-attacked and that do
not attack other arguments, and show the repetitious nature of the argumen-
tation graph by introducing the notion of k-copy graph.

– The second result deepens these results and looks into the symmetries of the
argumentation graph based on graph auto-morphisms.

– Last, we look into the connectivity of the graph and demonstrate strongly
connected components related results.

Please note that these three points will enable us to completely characterise
the structural properties of argumentation graphs generated from knowledge
bases without positive rules. We begin by introducing the scope of a negative
constraint which is the set of all sets of facts on which the negative constraint
is applicable.

Definition 1. Let K = (F ,R,N) be a knowledge base with R = ∅ and N ∈ N
be a negative constraint. We define the scope of the negative constraint N as the
set FN = {X ⊆ F | X is minimal with respect to set inclusion such that there
is an homomorphism from the body of N to X}.
Example 4 (cont.). The scope of the negative constraint N = ∀x(a(x) ∧ b(x) ∧
c(x) → ⊥ is FN = {{a(m), b(m), c(m)}}.

We show that the number of un-attacked arguments that do not attack other
arguments, called “dummy arguments”, depends on the number of facts and the
scope of all negative constraints.

Proposition 1. Let K = (F ,R,N) be an inconsistent knowledge base such
that R = ∅ and |F| = n. If ASK = (A, C) is the corresponding argumenta-
tion framework, there are exactly 2n−k − 1 dummy arguments a in ASK such
k = |⋃N∈N

⋃
X∈FN

X|.
Proof. Denote J =

⋃
N∈N

⋃
X∈FN

X.
Denote Unn = {a ∈ A | Att−(a) = Att+(a) = ∅}.

1. Let us prove that |Unn| ≥ 2n−k − 1 with |J | = k and |F| = n. The set
J =

⋃
N∈N

⋃
X∈FN

X corresponds to the set of facts that trigger at least
one negative constraint. Thus, every fact that belongs to E = F \ J is not
in any conflict. Since |E| = n − k and R = ∅, we conclude that there are
at least 2n−k − 1 arguments that have a non empty subset of E as support.
These arguments are not attacked and do not attack other arguments as the
elements of their supports and conclusions are not in any conflict.

2. Let us prove that |Unn| ≤ 2n−k − 1 with |J | = k and |F| = n. By means of
contradiction, suppose that there is an argument a that do not attack other
arguments and that is not attacked but Supp(a)
⊆ E. It means there exists
a negative constraint N such that (

⋃
X∈FN

X) ∩ Supp(a)
= ∅ and there is
X ∈ FN such that X ∩ Supp(a)
= ∅. Now, let us consider Y = X \ Supp(a).
We know that Y is not empty otherwise there is a contradiction with the

124 B. Yun et al.

consistency of the support of a. Furthermore, Y is R-consistent since |Y | is
strictly inferior to the arity of the negative constraint N . Thus, there is an
argument b = (Y, Y) such that (b, a) ∈ C, contradiction.

Example 5 (cont.). We have that n = 4 and since we know that⋃
N∈N

⋃
X∈FN

X = {a(m), b(m), c(m)}, we conclude that there is 24−3 − 1 = 1
dummy argument. This argument corresponds to a6 0 = ({d(m)}, {d(m)}).

We now analyse the related behaviour of atoms in the scope of a negative
constraint. To do so we introduce the notion of k-copy graph.

A k-copy graph of a graph is another graph that has k times more arguments
and each copy a′ of a attacks the same arguments as a and possesses the same
attackers. Formally:

Definition 2. Let AS = (A, C) be an argumentation framework. We say that
the graph of AS is a k-copy graph of AS ′ = (A′, C′) iff:

– |A| = k ∗ |A′| and there is a surjective function f from A to A′ such that for
every argument a′ ∈ A′, we have |Wa′ | = k, where Wa′ = {a ∈ A | f(a) = a′}.

– For all a, b ∈ A, (a, b) ∈ C iff (f(a), f(b)) ∈ C′.

Example 6. In Fig. 1, the graph G′ (on the right) is a 2-copy graph of the graph
G (on the left). We have that Wa = {a′

1, a
′
2},Wb = {b′

1, b
′
2},Wc = {c′

1, c
′
2}.

c

a b a′
1

c′
1

a′
2

b′
1

b′
2

c′
2

Fig. 1. Representation of a 2-copy graph.

If two arguments are the copies of the same argument, then they attack the
same arguments and are attacked by the same arguments.

The following proposition shows that if there is a knowledge base K with no
rule and containing k facts that are not in the scope of any negative constraints,
then there exists a subgraph of ASK that is a 2k-copy graph of ASK′ where K′

is the knowledge base with no rules, the same negative constraints as K and that
contains only the facts that are in the scope of at least one negative constraint
of K.

This property is important as it shows the behaviour of the instantiation in
the case of addition of facts not appearing in any conflict. It shows the structure
of the graph and exhibits the exponential growth of the number of arguments
w.r.t. these facts.

Graph Theoretical Properties of Logic Based Argumentation Frameworks 125

Proposition 2. Let K = (F ,R,N) be a knowledge base with R = ∅.
If J =

⋃
N∈N

⋃
X∈FN

X
= ∅ and |F \ J | = k then there is a subgraph of
ASK = (A, C) that is a (2k)-copy graph of ASK′ = (A′, C′) where K′ = (J,R,N)
and |A| = (|A′| + 1) ∗ 2k − 1.

Proof. If |F \ J | = 0, then it is obvious that ASK is a 1-copy graph of itself.
Suppose now that |F \J | > 0. We denote by ASK′ = (A′, C′) the argumentation
framework from the knowledge base K′ = (J,R,N). Moreover, since R = ∅, the
arguments can only be of the form (X,X) where X is an R-consistent subset of
J . Hence, |A′| = |{X | X is an R-consistent subset of J}|.

Now, let us consider ASK = (A, C), the argumentation framework corre-
sponding to the knowledge base K = (F ,R,N). We show that the subgraph
AS ′′

K = (A′′, C′′) of ASK where A′′ = {a ∈ A | Supp(a) ∩ J
= ∅} and C′′ = C|A′′

is a (2|F\J|)-copy graph of ASK′ :

– We know that for any set X that is an R-consistent subset of J , X ∪ X ′,
where X ′ is a subset of F \ J , is an R-consistent set. Thus |A′′| = |{X ∪ X ′

| X ′ ⊆ F \ J and X is an R-consistent subset of J}|. Since the number of
subsets of F \ J is 2|F\J|, then |A′′| = |A′| ∗ 2|F\J|.

– We denote by f the function from A′′ to A′ such that f(a′′) = a′ iff Supp(a′) =
Supp(a′′) ∩ J . We now show that this function is surjective. Let a′ be an
argument of A′ and c an arbitrary element of F \J (it exists since |F \J | > 0).
As mentioned before, we know that E = Supp(a′) ∪ {c} is R-consistent.
Therefore a′′ = (E,E) is an argument of A′′ and f(a′′) = a′.

– Let a′ ∈ A′ and Wa′ = {a′′ ∈ A′′ | f(a′′) = a′}. For every subset X of F \ J ,
L = X∪Supp(a′), (L,L) ∈ Wa′ . Since the number of different subsets of F \J
is 2|F\J|, we have |Wa′ | ≥ 2|F\J|. Since for every a′

1, a
′
2 ∈ A′, Wa′

1
∩ Wa′

2
= ∅,

then for every a′ ∈ A′, |Wa′ | = 2|F\J| because |A′′| = |A′| ∗ 2|F\J|.
– Let (a′′

1 , a′′
2) ∈ C′′, by definition, we have that there exists φ ∈ Supp(a′′

2)
s.t. Conc(a′′

1) ∪ {φ} is R-inconsistent. Since there are no rules, it is true
that Supp(a′′

1) ∪ {φ} is also R-inconsistent. However, it is clear that this
inconsistency cannot come from elements of F \ J . Thus, there exists φ ∈
Supp(a′′

2) ∩ J such that (Supp(a′′
1) ∩ J) ∪ {φ} is R-inconsistent. Therefore

(f(a′′
1), f(a′′

2)) ∈ C′ since Supp(f(a′′
1)) = Supp(a′′

1) ∩ J and Supp(f(a′′
2)) =

Supp(a′′
2) ∩ J .

– Let a′′
1 , a′′

2 ∈ A′′ such that (f(a′′
1), f(a′′

2)) ∈ C′. It means that there exists
φ ∈ Supp(f(a′′

2)) s.t. Conc(f(a′′
1)) ∪ {φ} is R-inconsistent. By definition, we

have that Supp(f(a′′
2)) = Supp(a′′

2) ∩ J , thus φ ∈ Supp(a′′
2). Likewise, we

have that Conc(f(a′′
1)) = Supp(f(a′′

1)) = Supp(a′′
1) ∩ J = Conc(a′′

1) ∩ J . We
conclude that (Conc(a′′

1)∩J)∪{φ} is R-inconsistent. Therefore Conc(a′′
1)∪{φ}

is R-inconsistent and (a′′
1 , a′′

2) ∈ C′′.

Finally, we have that |A| = |{X | X is an R-consistent subset of F}| = |{X |
X ∩ J
= ∅ and X is an R-consistent subset of F} ∪ {X | X ⊆ F \ J and X is an
R-consistent subset of F}|−1 = |A′|∗2|F\J| +2|F\J| −1 = (|A′|+1)∗2|F\J| −1.
This concludes the proof.

126 B. Yun et al.

We want to emphasise the result of Proposition 2 as it shows that the addition
of “superfluous” facts will increase the size of the argumentation graph by an
exponential factor.

Example 7 (cont.). The argumentation framework ASK has a subgraph that is
a 2-copy graph of ASK′ , where K′ = ({a(m), b(m), c(m)}, ∅,N). Indeed, the
argumentation framework ASK′ is composed of the following arguments:

– a1 : ({a(m)}, {a(m)})
– a2 : ({b(m)}, {b(m)})
– a3 : ({a(m), b(m)}, {a(m), b(m)})
– a4 : ({c(m)}, {c(m)})
– a5 : ({a(m), c(m)}, {a(m), c(m)})
– a6 : ({b(m), c(m)}, {b(m), c(m)})

We have that Wa1 = {a0 0, a7 2}.

We now focus on detecting symmetries in the graph. Please first note that we
have the presence of symmetric arcs in the argumentation framework without
rules. It obviously holds that if all negative constraints are binary, then the
graph has only symmetric arcs (since the undermining will rely on binary sets).
However, if the set of rules is not empty the symmetry no longer holds.

We now explore the link between the instantiation and symmetries in graphs.
The next definitions introduce the notions needed to comprehend symmetries,
namely, permutations of arguments, orbit of an argument and the cycle notation
of a permutation.

Definition 3. A permutation on a set of elements X is a bijection σ from
X to X. Given a permutation σ, the orbit of element x ∈ X is the set
Ox = {x, σ(x), σ2(x), . . . , σn(x)}, with n ∈ {0, 1, . . . } the minimal integer s.t.
σn+1(x) = x.

Definition 4. Given a permutation σ on X, an orbit O and an element x ∈
O, a cycle is a sequence (x, σ(x), σ2(x) . . . , σn(x)), where n ∈ {0, 1, . . . } is the
minimal integer such that σn+1(x) = x.

A permutation can be compactly expressed as a product of cycles correspond-
ing to the orbits of the permutation1.

Definition 5. Let G = (V,E) be a graph. A permutation σ on set V is an
automorphism of G iff for every two nodes v1, v2 ∈ V , we have that (v1, v2) ∈ E
iff (σ(v1), σ(v2)) ∈ E.

The set of automorphisms of a graph, together with the function composi-
tion operator, form a group called the automorphism group. The automorphism
groups of a graph characterise its symmetries, and are therefore very useful in
determining certain of its properties. A subset of a group is called a generating set
of a group iff every group’s element can be expressed as the combination (under
group operation) of finitely many elements of the subset and their inverses.
1 In the rest of the paper, and in order to simplify the notation, we omit cycles
corresponding to singleton orbits.

Graph Theoretical Properties of Logic Based Argumentation Frameworks 127

Proposition 3. Let AS = (A, C) be a k-copy graph of AS ′ = (A′, C′). For every
a′ ∈ A′, for every a1, a2 in Wa′ , we have that (a1, a2) is an automorphism of AS.

The next proposition shows that if we add nodes (and no arc) to a graph
with automorphisms, then the obtained graph also has automorphisms. It is used
for showing, in Proposition 5, that a graph constructed on a KB with no rules
possesses non trivial automorphisms derived from its subgraph.

Proposition 4. Let G = (V,E) be a graph such that σ is an automorphism of
G. The graph G′ = (V ∪X,E), where X ∩V = ∅, has the automorphism σ′ from
V ∪ X to V ∪ X:

∀v ∈ V ∪ X,σ′(v) =

{
σ(v) if v ∈ V

v if v ∈ X

Proposition 5. Let K = (F ,R,N) with R = ∅, J =
⋃

N∈N
⋃

X∈FN
X
= ∅, |F \

J | = k,K′ = (J,R,N) and AS ′′ be a (2k)-copy graph of ASK′ = (A′, C′). If
AS ′′ has k′ automorphisms, then ASK has at least k′ automorphisms.

Proof. From Proposition 2, we know that ASK has a subgraph AS ′′
K = (A′′, C′′)

that is a 2k-copy graph of ASK′ . We first show that every argument a that is in
A \ A′′ is such that Att−(a) = Att+(a) = ∅. Then we use Proposition 4.

1. We showed in the proof of Proposition 2 that A′′ = {a ∈ A | Supp(a)∩J
= ∅}.
Thus, A \ A′′ = {a ∈ A | Supp(a) ⊆ F \ J}. Since we have no rules, the
arguments in A \ A′′ cannot attack other arguments.

2. From Proposition 4, we conclude that there is an automorphism of ASK for
every automorphism of AS ′′

K.

Proposition 5 is important as it shows that the graph inherit all of the auto-
morphisms of its subgraph. This will be useful when designing new solvers relying
on symmetries.

Example 8 (cont.). Using Propositions 4 and 5, we have that (a0 0, a7 2) is an
automorphism of ASK.

We now characterise the connectivity of the graph by showing the structure of
the strongly connected components. We first define the impossible set associated
to a minimal conflict C as the set containing all the possible subsets of F that
are supersets of at least one subset of C of size |C − 1|.
Definition 6. Let K be a knowledge base and C a minimal conflict of
conflicts(K). The impossible set of C denoted by Imp(C) is {X ⊆ F | X ′ ⊆ X
and X ′ ⊆ C with |X ′| = |C − 1|}.

An argumentation framework is strongly connected if and only if there is a
path from any argument a to any argument a′.

128 B. Yun et al.

Definition 7. Let AS = (A, C) be an AF. We say that AS is strongly connected
iff for every a, a′ ∈ A′ such that a
= a′, there is a path from argument a to
argument a′.

Please note that the set of nodes of any arbitrary directed graph can be
partitioned such that the subgraphs, induced by each set of nodes, is strongly
connected that are called the strongly connected components of this graph. In
the rest of this paper, we will denote by SCC(AS), this particular partition of
the set of arguments of AS.

In the following proposition, we characterise the structure of the strongly con-
nected components of an argumentation framework obtained from a knowledge
base without rules.

Proposition 6. Let KB be a knowledge base such that R = ∅ and ASK =
(A, C) the corresponding AF. We have that:

1. {(Xi,Xi)} ∈ SCC(ASK) where Xi ∈ 2F\ ⋃
C∈conflicts(K) Imp(C)

2. (A \ ⋃
i si) ∈ SCC(ASK)

Proof. We split the proof in two parts:

1. Suppose that si is not a strongly connected component by itself, it means that
there is another argument a such that there is a path from xi = {Xi,Xi} to
a and inversely. Let us denote by a1, the first argument attacked by xi on a
path from xi to a. By definition, it means that there exists φ ∈ Supp(a1)
such that Xi ∪ {φ} is R-inconsistent. Since Xi is R-consistent, it means
that Xi ∪ {φ} is a minimal conflict and that Xi ∈ Imp(Xi ∪ {φ}). Then,
Xi /∈ 2F \ ⋃

C∈conflicts(K) Imp(C), contradiction.
2. Let a, b be two arguments in (A \ ⋃

i si), we show here that there is a path
from a to b. From the definitions, we know that a (resp. b) is of the form
(X,X) (resp. (X ′,X ′)) such that there exists a minimal conflict C (resp. C ′)
and W ⊆ C (resp. W ′ ⊆ C ′) with |W | = |C − 1| (resp. |W ′| = |C ′ − 1|) and
W ⊆ X (resp. W ′ ⊆ X ′).
Let H = C \ X, X ′′ = X ′ \ H, W ′′ ⊆ X ′′ with |W ′′| = |X ′′ − 1| and
J = H ∪ W ′′ ∪ (C ′ \ X ′).

– If J is R-consistent, we denote by u, the argument (J, J). We have that
u belongs to (A \ ⋃

i si) because J = |C ′ − 1| and J ⊆ C ′. We have that
a attacks u and u attacks b.

– If J is R-inconsistent, it means that there is a minimal conflict C ′′ ⊆ J
such that C ′′
⊆ C ′ and C ′′
⊆ C. Let us consider K,L ⊆ J such that
|K| = |L| = |J − 1|, H ⊆ K and H
⊆ L. By definition, K and L are
R-consistent, thus the arguments c = (K,K) and d = (L,L) exist. We
have that a attacks c, c attacks d and d attacks b.

Corollary 1. Let KB be a knowledge base such that R = ∅.
There are |2F \ ⋃

C∈conflicts(K) Imp(C)| + 1 strongly connected components
in ASK.

Graph Theoretical Properties of Logic Based Argumentation Frameworks 129

Example 9 (cont.). The only minimal conflicts is C1 = {a(m), b(m), c(m)}.
We conclude that 2F \ ⋃

C∈conflicts(K) Imp(C) = {{a(m)}, {b(m)}, {c(m)},

{d(m)}, {a(m), d(m)}, {b(m), d(m)}, {c(m), d(m)}} and that there are 7+1 = 8
strongly connected components in ASK.

We now summarise all the structural properties of the AFs generated from
simple knowledge bases using Fig. 2 as an example:

– There is one k-copy graph (encircled in the dashed-line zone).
– The arguments that are not inside the k-copy graph are “dummy arguments”

(arguments that are outside the dashed-line zone) and their number can be
computed using Proposition 1.

– There is one dense strongly connected component composed of the majority
of the arguments (encircled in the grey circle).

– The other strongly connected components are composed of only one argument
each (arguments that are outside of the grey circle). The number of strongly
connected components can be computed using Corollary 1.

Fig. 2. Structural properties of AFs from simple KBs

Since we deal with strongly connected components, one of the research ques-
tions that naturally arise from this is whether or not the cf2 semantics (Baroni
et al. 2011; Gaggl and Woltran 2013) is equivalent to the preferred semantics in
argumentation graphs generated from knowledge bases without positive rules.

On one hand, it appears that if the set of negative constraints is only com-
posed of binary negative constraints, then the graph only has symmetric arcs.
We conclude that since all SCCs are isolated, the cf2 semantics coincides with
the naive and preferred semantics.

130 B. Yun et al.

Proposition 7. Let KB be a knowledge base such that R = ∅, then the cf2
semantics coincides with the preferred and the naive semantics in ASK.

On the other hand, if we add ternary negative constraints, the cf2 semantics
will no longer coincide with the preferred semantics as shown in Example 10.

Example 10. Let K = (F ,R,N) be a knowledge base such that F =
{a(m), b(m), c(m), d(m), e(m)}, R = ∅ and N = {∀x(a(x) ∧ b(x) ∧ c(x) →
⊥),∀x(e(x) ∧ d(x) → ⊥)}. The corresponding argumentation framework is com-
posed of 161 attacks and the 20 following arguments:

– a0 0 : ({a(m)}, {a(m)})
– a1 0 : ({b(m)}, {b(m)})
– a2 2 : ({a(m), b(m)}, {a(m), b(m)})
– a3 0 : ({c(m)}, {c(m)})
– a4 2 : ({a(m), c(m)}, {a(m), c(m)})
– a5 2 : ({b(m), c(m)}, {b(m), c(m)})
– a6 0 : ({d(m)}, {d(m)})
– a7 2 : ({a(m), d(m)}, {a(m), d(m)})
– a8 2 : ({b(m), d(m)}, {b(m), d(m)})), d(m)})
– a9 6 : ({a(m), b(m), d(m)}, {a(m), b(m), d(m)})
– a10 2 : ({c(m), d(m)}, {c(m), d(m)})
– a11 6 : ({a(m), c(m), d(m)}, {a(m), c(m), d(m)})
– a12 6 : ({b(m), c(m), d(m)}, {b(m), c(m), d(m)})
– a13 0 : ({e(m)}, {e(m)})
– a14 2 : ({a(m), e(m)}, {a(m), e(m)})
– a15 2 : ({b(m), e(m)}, {b(m), e(m)})
– a16 6 : ({a(m), b(m), e(m)}, {a(m), b(m), e(m)})
– a17 2 : ({c(m), e(m)}, {c(m), e(m)})
– a18 6 : ({a(m), c(m), e(m)}, {a(m), c(m), e(m)})
– a19 6 : ({b(m), c(m), e(m)}, {b(m), c(m), e(m)})

The preferred extensions will be composed of the following sets:

– ε1 = {a0 0, a1 0, a2 2, a6 0, a7 2, a8 2, a9 6}
– ε2 = {a0 0, a3 0, a4 2, a6 0, a7 2, a10 2, a11 6}
– ε3 = {a1 0, a3 0, a5 2, a6 0, a8 2, a10 2, a12 6}
– ε4 = {a0 0, a1 0, a2 2, a13 0, a14 2, a15 2, a16 6}
– ε5 = {a0 0, a3 0, a4 2, a13 0, a14 2, a17 2, a18 6}
– ε6 = {a1 0, a3 0, a5 2, a13 0, a15 2, a17 2, a19 6}

The set of cf2 extensions is the set {ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8} with:

– ε7 = {a0 0, a1 0, a3 0, a6 0, a7 2, a8 2, a10 2}
– ε8 = {a0 0, a1 0, a3 0, a13 0, a14 2, a15 2, a17 2}

Graph Theoretical Properties of Logic Based Argumentation Frameworks 131

3.2 Results for General Knowledge Bases

In this subsection we consider the general case of knowledge bases composed of
a set of facts, a set of rules and a set of negative constraints. Unfortunately, as
the set of rules can completely change the argumentation framework, general
results are much harder to obtain. It is easy to show that the link between
the conflict graph (the hyper-graph generated by the negative constraints on the
facts, potentially enriched with rules) bares no obvious link to the argumentation
graph generated by the corresponding knowledge base. In the Appendix we show
that there can be several argumentation frameworks associated with the same
minimal conflict graph.

Despite the generality of the problem, we however present three graph theo-
retical structural results of argumentation graphs:

– First we show general structural properties of the graph: no self-attacking
arguments, every argument is defended, having at least one cycle, etc.

– Second we demonstrate the presence of a complete directed sub-graph.
– Third, we show that preferred extensions are included into cf2 extensions but

not the other way. Contrary to expectations, we show that the cf2 semantics
(originally designed to better handle cycles in graphs) is producing a set of
arguments with an inconsistent base.

Let us start by making a few observations on the structure of the argumen-
tation graph. Indeed, it is clear that not any graph can be obtained when con-
structing arguments from an existential rule knowledge base. First, we remark
that an AF generated from a knowledge base K is always finite. Second, given
the definition of an argument, we can also note that there are no self-attacking
arguments in our framework:

Proposition 8. Let AS = (A, C) be an argumentation framework s.t. there is
an argument a ∈ A with (a, a) ∈ C. There is no Datalog± knowledge base K s.t.
ASK = AS.

For every argument in the instantiated argumentation framework, there is a
stable (resp. preferred and semi-stable) extension that contains it. Please note
that the fact that there are no rejected arguments does not mean that the frame-
work is not expressive as ranking-based semantics may be used to attach more
fine-graded acceptability degrees to arguments.

Proposition 9. Let ASK = (A, C) be the corresponding AF of K. Then, for
every argument a ∈ A, there exists a preferred extension ε ∈ Extp(ASK) (resp.
semi-stable extension ε ∈ Extss(ASK) and stable extension ε ∈ Exts(ASK)) s.t.
a ∈ ε.

We now focus on basic observations regarding attacks. First, no knowledge
base can generate a framework where an argument a is attacked by an unattacked
argument b:

132 B. Yun et al.

Proposition 10. Let AS = (A, C) be an argumentation framework. If there are
two arguments a, b s.t. (b, a) ∈ C and there does not exist c ∈ A s.t. (c, b) ∈ C
then there is no Datalog± knowledge base K s.t. ASK = AS.

In the next proposition, we prove the existence of particular arguments asso-
ciated with a minimal conflict.

Proposition 11. Let K be a Datalog± knowledge base and ASK = (A, C) the
corresponding instantiated AF with C a minimal conflict of K of size at least 2.
If E,E′ ⊂ C such that |E| = |E′| = |C − 1| and E
= E′ then the arguments
(E,E) and (E′, E′) are in A.

Proof. By definition, we have that E and E′ are R-consistent. Suppose that
the argument (E,E) /∈ A, it means that there is H ⊂ E and E ⊆ C�∗

R(H)
(minimality). It means that (C \E)∪H is R-inconsistent and ((C \E)∪H) ⊂ C,
contradiction.

If there is at least one minimal conflict C of size at least 2, then there is a
cycle2 in the graph of the instantiated AF:

Proposition 12. If K is a Datalog± knowledge base and ASK = (A, C) the
corresponding instantiated AF with C a minimal conflict of K of size at least 2
then ASK has a cycle.

Proof. Since there is a minimal conflict of at least size 2 then we know from
Proposition 11 that there are two arguments (E,E) and (E′, E′) in A such that
E,E′ ⊂ C, E
= E′ and |E| = |E′| = |C − 1|. We have that (E,E) attacks
(E′, E′) and conversely.

Minimal conflicts create a particular structure in the graph of the AF. For
every minimal conflict of size n, there is a complete directed subgraph on n
nodes (i.e. a subgraph containing n arguments where every argument attacks
every argument except itself).

Proposition 13. Let K be a knowledge base and ASK = (A, C) the correspond-
ing instantiated AF. For every minimal conflict C of K s.t. C ⊆ F , there exists
a complete directed subgraph of ASK with |C| arguments.

Proof. We consider the case where |C| > 1, otherwise it is obvious. Let us
consider the set of arguments AC = {a ∈ A|a = (S, S), S ⊂ C, |S| = |C| − 1}.
We know that |AC | = |C| and for all a, b ∈ AC s.t. a
= b, we have that (a, b) ∈ C.

Let us now investigate the behaviour of the cf2 semantics on general
Datalog± argumentation graphs. First, we show that the set of preferred exten-
sions is included in the set of cf2 extensions. We know that in the general case,
we have that a stable extension is also a cf2 extension (Gaggl and Woltran 2013;
Baroni et al. 2005).
2 We say that a tuple of arguments (a1, . . . , an) is a cycle if and only if a1Ca2, . . .,
an−1Can and anCa1.

Graph Theoretical Properties of Logic Based Argumentation Frameworks 133

Proposition 14. Let AS be a random AF, we have that Extst(AS) ⊆
Extcf2(AS).

Furthermore, since we are working in the setting of Datalog± argumentation
frameworks described in Croitoru and Vesic (2013), a basics result is that the
set of preferred extension is equal to the set of stable semantics.

Proposition 15. Let AS be a Datalog± AF, we have that Extst(AS) =
Extpr(AS).

We thus conclude that the set of preferred extensions is included the set of
cf2 extensions for the case of Datalog± AFs.

Proposition 16. Let AS be a Datalog± AF, we have that Extpr(AS) ⊆
Extcf2(AS).

Note that this result is not true in general (for graphs not generated from
Datalog± KBs). Moreover, we highlight here that Extcf2(AS)
⊆ Extpr(AS) in
the Datalog± setting by providing the following counter-example.

Example 11. Let us consider the knowledge base K = (F ,R,N):
F = {b(m), c(m), d(m), e(m)}, R = {∀x(f(x) → b(x))} and N = {∀x(d(x) ∧

b(x) ∧ c(x) → ⊥),∀x(e(x), f(x) → ⊥)}.
The argumentation graph corresponding to this knowledge base is ASK =

(A, C) such that A is composed of:

– a0 0 : ({d(m)}, {d(m)})
– a1 0 : ({b(m)}, {b(m)})
– a1 1 : ({b(m)}, {f(m)})
– a1 2 : ({b(m)}, {b(m), f(m)})
– a2 2 : ({d(m), b(m)}, {d(m), b(m)})
– a2 4 : ({d(m), b(m)}, {d(m), f(m)})
– a2 6 : ({d(m), b(m)}, {d(m), b(m), f(m)})
– a3 0 : ({c(m)}, {c(m)})
– a4 2 : ({d(m), c(m)}, {d(m), c(m)})
– a5 2 : ({b(m), c(m)}, {b(m), c(m)})
– a5 5 : ({b(m), c(m)}, {c(m), f(m)})
– a5 6 : ({b(m), c(m)}, {b(m), c(m), f(m)})
– a6 0 : ({e(m)}, {e(m)})
– a7 2 : ({d(m), e(m)}, {d(m), e(m)})
– a8 2 : ({c(m), e(m)}, {c(m), e(m)})
– a9 6 : ({d(m), c(m), e(m)}, {d(m), c(m), e(m)})

We have 3 preferred extensions Extpr = {ε1, ε2, ε3} and 4 cf2 extensions
Extcf2 = Extpr ∪ {ε4} with:

– ε1 = {a0 0, a1 0, a1 1, a1 2, a2 2, a2 4, a2 6}
– ε2 = {a0 0, a3 0, a4 2, a6 0, a7 2, a8 2, a9 6}

134 B. Yun et al.

– ε3 = {a1 0, a1 1, a1 2, a3 0, a5 2, a5 5, a5 6}
– ε4 = {a0 0, a1 0, a1 1, a1 2, a2 4, a3 0, a5 5}

We showed with Example 11 that the set of cf2 extensions are not included
in the set of preferred extensions and thus not equal. Furthermore, contrary to
expectations, the cf2 semantics (originally designed to better handle cycles in
graphs) is producing a set of arguments with an inconsistent base. Indeed, the set
ε4 contains the arguments a0 0 and a5 5 which together form an inconsistent base.

4 Discussion

In this paper we investigated the formal structural properties of argumentation
graphs generated from Datalog± knowledge bases.

We showed that for the case of argumentation frameworks originated from
knowledge bases without rules, the dummy arguments are the result of facts
that are not in the scope of any negative constraints and that their numbers are
exponential w.r.t. these facts. Then, we proved that these frameworks possess
a particular subgraph called k-copy graph which have symmetries in the form
of automorphisms. Moreover, these symmetries can be transferred to the full
argumentation framework without loss of generality. Next, we characterised the
strong connectivity of the argumentation framework by explaining their struc-
ture. Lastly, we showed that the cf2 semantics coincides with the preferred and
naive semantics in the case of argumentation frameworks generated from knowl-
edge bases without rules and containing only binary negative constraints.

We then dealt with the case of argumentation frameworks generated from
general knowledge bases with rules. We first showed general structural properties
of the graph such as the absence of self-attacking arguments, the fact that every
argument is defended and the presence of at least one cycle. Second we proved the
presence of a complete directed sub-graph associated to each minimal conflict of
the knowledge base. Third, we showed that preferred extensions are included into
cf2 extensions in this particular instantiation. Last, contrary to expectations,
we proved by providing a counter-example that the cf2 semantics (originally
designed to better handle cycles in graphs) is producing a set of arguments with
an inconsistent base.

The significance of our results lies in the fact that this is the first paper
highlighting the graph theoretical structural analysis of real world argumentation
graphs. We believe that our thorough analysis will enable modellers to under-
stand why and how the changes in the knowledge base can impact the structure
of the argumentation framework. What’s more, we feel that this paper could be
useful for designing faster and better suited solvers for realistic argumentation
graphs relying on their inherent structure.

Let us also make a note about the logical language used for instantiating the
knowledge bases. Existential rules have been recently intensively investigated
for their generalisation with respect to Description Logic fragments. Please note
that certain structural results have also been shown to hold in the work of

Graph Theoretical Properties of Logic Based Argumentation Frameworks 135

Arioua et al. (2017b). However, their definition of argument is different from the
one used in this paper (as our definition prevents unnecessary repeated argu-
ments). We also note that using argumentation over existential rules has been
shown to be of practical interest over existing approaches (Hecham et al. 2017a).
Argumentation for handling inconsistency tolerant semantics enhance the human
interaction (Arioua and Croitoru 2016), can be used for practical applications
in food science (Arioua et al. 2016, 2017a) or allow for alternative computation
methods (Yun and Croitoru 2016). Such techniques have been shown to have fur-
ther implications with respect to human reasoning and bias detection (Bisquert
et al. 2016). While the OBDA inspired restriction of inconsistency only coming
from the facts could be too strong for certain applications, recently, argumenta-
tion inspired approaches that consider defeasible reasoning have been proposed
(Hecham et al. 2017b).

Future work will investigate the case of symmetries and strongly connec-
tivity for argumentation graphs from general knowledge bases. Our goal is to
obtain a complete characterisation of the argumentation graphs generated from
a Datalog± knowledge base.

5 Appendices

We first give the definition of a minimal conflict graph and show that there can
be several argumentation frameworks associated with the same minimal conflict
graph. This observation is highlighted with an example. We then characterise
the arguments and attacks shared by every argumentation frameworks associated
with the same minimal conflict graph.

Definition 8. The minimal conflict graph of an inconsistent knowledge K =
(F ,R,N) is a tuple (F ,J ′), where J ′ = conflicts(K). It can be represented
with by an hypergraph where elements of F and elements of J ′ represent nodes
and hyper-edges respectively.

Please note that it is possible that two distinct argumentation frameworks
have the same minimal conflict graph.

Example 12. Let K = (F ,R,N) and K′ = (F ,R′,N) be two knowledge bases
with F = {a(m), b(m)}, R = ∅, R′ = {∀x(b(x) → c(x)} and N = {∀x(a(x) ∧
b(x) → ⊥)}.

The argumentation framework ASK = (A, C) is composed of two arguments:

– a1 : ({a(m)}, a(m))
– a2 : ({b(m)}, b(m))

There are two attacks (a1, a2) and (a2, a1). However, the argumentation frame-
work ASK′ = (A ∪ {a3, a4}, C′) is composed of two more arguments:

– a3 : ({b(m)}, c(m))
– a4 : ({b(m)}, c(m) ∧ b(m))

136 B. Yun et al.

We have that C′ = C ∪ {(a1, a3), (a1, a4), (a4, a1)}. We remind the reader that
these two KBs have the same conflict graph.

Since different argumentation frameworks can have the same conflict graph, it
gives us the intuition that there are similarities shared by all these argumentation
frameworks.

Definition 9. The set of consistent subsets of a knowledge base K is defined as
consistent(K) = {X ⊆ F |
 ∃E ∈ conflicts(K) and E ⊆ X}.

Proposition 17. For every X,X ′ ∈ consistent(K) such that there exists C ∈
conflicts(K) with C ⊆ X∪X ′, we have that (a1, a2) ∈ C and (a2, a1) ∈ C, where:

– a1 : (X,X)
– a2 : (X ′,X ′)

These arguments and attacks are shared by all the argumentation frameworks
sharing the same minimal conflict graph.

References

Amgoud, L.: Postulates for logic-based argumentation systems. Int. J. Approx. Rea-
soning 55(9), 2028–2048 (2014)

Arioua, A., Croitoru, M.: A dialectical proof theory for universal acceptance in coherent
logic-based argumentation frameworks. In: 22nd European Conference on Artificial
Intelligence, ECAI 2016, 29 August–2 September 2016, The Hague, The Netherlands
- Including Prestigious Applications of Artificial Intelligence, PAIS 2016, pp. 55–63
(2016)

Arioua, A., Croitoru, M., Buche, P.: DALEK: a tool for dialectical explanations in
inconsistent knowledge bases. In: Computational Models of Argument - Proceedings
of COMMA 2016, Potsdam, Germany, 12–16 September, 2016, pp. 461–462 (2016)

Arioua, A., Buche, P., Croitoru, M.: Explanatory dialogues with argumentative facul-
ties over inconsistent knowledge bases. Expert Syst. Appl. 80, 244–262 (2017)

Arioua, A., Croitoru, M., Vesic, S.: Logic-based argumentation with existential rules.
Int. J. Approx. Reasoning 90, 76–106 (2017)

Baget, J.-F., Leclère, M., Mugnier, M.-L., Salvat, E.: On rules with existential variables:
walking the decidability line. Artif. Intell. 175(9–10), 1620–1654 (2011)

Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argu-
mentation semantics. Artif. Intell. 168(1–2), 162–210 (2005)

Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics.
Knowl. Eng. Rev. 26(4), 365–410 (2011)

Bienvenu, M.: On the complexity of consistent query answering in the presence of sim-
ple ontologies. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial
Intelligence, 22–26 July 2012, Toronto, Ontario, Canada (2012)

Bisquert, P., Croitoru, M., de Saint-Cyr, F.D., Hecham, A.: Substantive irrational-
ity in cognitive systems. In: 22nd European Conference on Artificial Intelligence,
ECAI 2016, 29 August–2 September 2016, The Hague, The Netherlands - Including
Prestigious Applications of Artificial Intelligence (PAIS 2016), pp. 1642–1643 (2016)

Graph Theoretical Properties of Logic Based Argumentation Frameworks 137

Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable
query answering over ontologies. In: Proceedings of the Twenty-Eighth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS
2009, 19 June–1 July 2009, Providence, Rhode Island, USA, pp. 77–86 (2009)

Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif.
Intell. 171(5–6), 286–310 (2007)

Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: Computing preferred extensions
in abstract argumentation: a SAT-Based approach. In: Theory and Applications
of Formal Argumentation - Second International Workshop, TAFA 2013, Beijing,
China, 3–5 August 2013, Revised Selected papers, pp. 176–193 (2013)

Croitoru, M., Vesic, S.: What can argumentation do for inconsistent ontology query
answering? In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS
(LNAI), vol. 8078, pp. 15–29. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40381-1 2

Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-Person games. Artif. Intell. 77(2), 321–358
(1995)

Gaggl, S.A., Woltran, S.: The cf2 argumentation semantics revisited. J. Log. Comput.
23(5), 925–949 (2013)

Hecham, A., Arioua, A., Stapleton, G., Croitoru, M.: An empirical evaluation of argu-
mentation in explaining inconsistency tolerant query answering. In: 30th Interna-
tional Workshop on Description Logics, DL 2017, Montpellier, France (2017)

Hecham, A., Croitoru, M., Bisquert, P.: Argumentation-based defeasible reasoning for
existential rules. In: Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, 8–12 May 2017, pp. 1568–
1569 (2017)

Lagniez, J.-M., Lonca, E., Mailly, J.-G.: CoQuiAAS: a constraint-based quick abstract
argumentation solver. In: 2015 IEEE 27th International Conference on Tools with
Artificial Intelligence (ICTAI), pp. 928–935. IEEE (2015)

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010.
LNCS, vol. 6333, pp. 103–117. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15918-3 9

Thimm, M., Villata, S., Cerutti, F., Oren, N., Strass, H., Vallati, M.: Summary report
of the first international competition on computational models of argumentation. AI
Mag. 37(1), 102 (2016)

Thomazo, M., Rudolph, S.: Mixing materialization and query rewriting for existential
rules. In: 21st European Conference on Artificial Intelligence, ECAI 2014, 18–22
August 2014, Prague, Czech Republic - Including Prestigious Applications of Intel-
ligent Systems, PAIS 2014, pp. 897–902 (2014)

Yun, B., Croitoru, M.: An argumentation workflow for reasoning in ontology based
data access. In: Computational Models of Argument - Proceedings of COMMA 2016,
Potsdam, Germany, 12–16 September 2016, pp. 61–68 (2016)

Yun, B., Croitoru, M., Bisquert, P.: Are ranking semantics sensitive to the notion of
core? In: Autonomous Agents and Multiagent Systems - Proceedings of AAMAS
2017, Sao Paulo, Bresil, 8–12 May 2017

Yun, B., Vesic, S., Croitoru, M., Bisquert, P., Thomopoulos, R.: A structural bench-
mark for logical argumentation frameworks. In: Proceedings of the 20th International
Symposium on Intelligent Data Analysis (2017)

https://doi.org/10.1007/978-3-642-40381-1_2
https://doi.org/10.1007/978-3-642-40381-1_2
https://doi.org/10.1007/978-3-642-15918-3_9
https://doi.org/10.1007/978-3-642-15918-3_9

138 B. Yun et al.

Yun, B., Croitoru, M., Vesic, S., Bisquert, P.: A structural benchmark for logical
argumentation frameworks. In: Proceedings of the 17th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS (2018)

Zhang, H., Zhang, Y., You, J.-H.: Expressive completeness of existential rule languages
for ontology-based query answering. In: Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA,
9–15 July 2016, pp. 1330–1337 (2016)

Author Index

Andrews, Simon 3

Bakdash, Jonathan Z. 29
Bisquert, Pierre 118
Braines, Dave 29
Braun, Tanya 54

Caine, Jamie 84
Cerutti, Federico 29
Chapman, Peter 99
Compton, Michael 99
Croitoru, Madalina 118

Delaney, Aidan 99

Howard, Catherine 73

Ivanovska, Magdalena 29

Kaplan, Lance 29

Möller, Ralf 54

Penny, Christopher 73
Philp, Dean 73
Polovina, Simon 3, 84
Preece, Alun 29

Şensoy, Murat 29
Stapleton, Gem 99

Thomas, Anna 29

Vesic, Srdjan 118
Voigt, Shaun 73

Yun, Bruno 118

	Preface
	Organization
	Contents
	Extended Workshop Papers
	Exploring, Reasoning with and Validating Directed Graphs by Applying Formal Concept Analysis to Conceptual Graphs
	1 Introduction
	2 Transforming CG Digraphs: Triples into Binary Relations
	2.1 Obtaining Triples from a Conceptual Graph: A Parser for cgif
	2.2 A Triples-to-Binaries Algorithm

	3 The CGFCA Tool
	4 Highlighting Key Features of a CG Using CGFCA
	4.1 Paths and Dependencies
	4.2 Cycles
	4.3 Joins
	4.4 n-adic
	4.5 Formal Concepts Without Their Own Attributes or Objects
	4.6 Further Exploring n-adity
	4.7 Further Exploring Co-Referent Links
	4.8 Larger Joins

	5 A Realistic Example
	5.1 The Current Situation
	5.2 Understanding the Complications
	5.3 Resolving the Complications

	6 Related Work
	7 Concluding Remarks and Further Work
	References

	Subjective Bayesian Networks and Human-in-the-Loop Situational Understanding
	1 Introduction
	2 Human-Machine Coalitions for Situational Understanding
	3 Reasoning Under Uncertainty with Limited Data
	3.1 Dealing with Uncertainty: Subjective Logic
	3.2 Dealing with Limited Data: Subjective Bayesian Network

	4 Experimentation
	4.1 Methodology
	4.2 German Stock Exchange Predictions
	4.3 Istanbul Stock Market Predictions

	5 Empirical Evaluation of User Co-design of Subjective Bayesian Networks
	5.1 Results
	5.2 Summary of Evaluation

	6 Conclusion
	A Briefing Received by the Participants
	References

	Counting and Conjunctive Queries in the Lifted Junction Tree Algorithm
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Parameterised Models
	3.2 Lifted Variable Elimination
	3.3 FO Dtrees
	3.4 FO Jtrees
	3.5 Lifted Junction Tree Algorithm

	4 Extended Lifted Junction Tree Algorithm
	4.1 Construction
	4.2 Message Passing
	4.3 Query Answering

	5 Theoretical Analysis
	6 Empirical Evaluation
	7 Conclusion
	References

	Representing and Reasoning About Logical Network Topologies
	Abstract
	1 Introduction
	2 The Data Sources
	3 The Ontologies and the Knowledge Representation and Reasoning Process
	4 Fusion Example
	5 Discussion
	6 Conclusions
	Acknowledgements
	References

	From Enterprise Concepts to Formal Concepts: A University Case Study
	1 Introduction
	2 Enterprise Architecture
	2.1 Ontology, Semantics and Metamodels

	3 Conceptual Structures
	3.1 A Simplified Case Study of SHU
	3.2 Conceptual Graphs
	3.3 An Expanded Example of the SHU Case Study
	3.4 Formal Concept Analysis

	4 Iterating Enterprise Concepts from Formal Concepts
	4.1 An Architectural Principle
	4.2 Transitivity of Enterprise Concepts
	4.3 Correcting the Transitivity

	5 Discussion
	6 Conclusions
	References

	Invited Contributions
	Visualizing ALC Using Concept Diagrams
	1 Introduction
	2 The Description Logic ALC
	3 Concept Diagrams
	4 Building Diagrams for Concepts
	4.1 Merging Diagrams
	4.2 Translating Concepts into Diagrams

	5 Visualizing Axioms
	5.1 ABox Axioms
	5.2 TBox Axioms

	6 Improving the General Translations
	7 Conclusion
	References

	Graph Theoretical Properties of Logic Based Argumentation Frameworks: Proofs and General Results
	1 Introduction
	2 Background Notions
	3 Structural Results
	3.1 Results for Simple Knowledge Bases
	3.2 Results for General Knowledge Bases

	4 Discussion
	5 Appendices
	References

	Author Index

