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Abstract. In this study, we improve our parallel inductive logic pro-
gramming (ILP) system to enable superlinear speedup. This improve-
ment redesigns several features of our ILP learning system and parallel
mechanism. The redesigned ILP learning system searches and gathers
all rules that have the same evaluation. The redesigned parallel mech-
anism adds a communication protocol for sharing the evaluation of the
identified rules, thereby realizing superlinear speedup.

1 Introduction

Inductive logic programming (ILP) is a superior supervised learning tool. How-
ever, learning for large problems usually requires a considerable amount of time.
In addition, to generate good rules, continuous learning must be performed while
changing the parameters of ILP learning. It is thus necessary to shorten the ILP
learning time. To solve this problem, various studies have focused on speeding up
ILP using parallel methods [1–3,7,8,12]. Although the problems were partially
solved, the process speed was not sufficiently increased based on the number
of processors provided, and the quality of the generated rules was not optimal,
resulting in difficulty in using it as a practical tool. Skillicorn and Wang [10]
succeeded in achieving superlinear speedup, but their method used only four or
six CPUs, which performed poorly when the dataset was large.

In this study, we improved our parallel ILP system [7,8] to enable superlinear
speedup. We redesigned several features of our ILP learning system [5] and par-
allel mechanism [7]. The redesigned ILP learning system searches and gathers
all rules that have the same evaluation. The redesigned parallel mechanism adds
a communication protocol for sharing the evaluation of the identified rules. To
estimate the speedup, we used dairy cattle data (e.g. hormones, feed, and activ-
ity) to determine successful conditions for artificial insemination [4]. When 30
CPUs were used to solve a large problem (147,992 s for one CPU), we achieved a
speedup of 46.85 times (3,159 s). In addition, we applied the parallel ILP system
to a very large problem (162,768 s for 10 CPUs). However, the problem could
not be solved using one CPU, because it was too large. When 30 and 174 CPUs
were used to solve this problem, we achieved a speedup of 3.13 times (51,968 s)
and 17.73 times (9,183 s) respectively, based on 10 CPUs. Using our parallel ILP
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system, we thus succeeded in superlinear speedup and demonstrated it to be
more useful for large problems. In addition, we obtained identical rules using
one CPU, 10 CPUs, 30 CPUs, and 174 CPUs.

2 Improved ILP System

An ILP system finds a hypothesis from a bounded hypothesis space. The ideal
hypothesis covers as many positive examples and as few negative examples as
possible. Let p(h) and n(h) be the numbers of positive and negative examples
covered by hypothesis h. The number of literals in h is denoted by c(h). We
express this as follows, where g(h) indicates the generality of h and f(h) indicates
the compression.

g(h) = p(h) − c(h),

f(h) = g(h) − n(h)

In the ILP system [5], the compression measure f(h) is used to evaluate
hypothesis h. If an evaluation (a value of f(h)) is the best in a bounded hypoth-
esis space, hypothesis h is the best hypothesis in the space. To avoid noise, the
ILP uses two thresholds: pLimit and nLimit.

minimize f(h) subject to p(h) >= pLimit

maximize f(h) subject to n(h) <= nLimit

In addition, the ILP system used a simple set-covering algorithm like that of
the typical ILP algorithm [6]:

Step 1: Find a hypothesis using the method mentioned above.
Step 2: Remove the positive examples covered by the hypothesis from the entire

set of positive examples.
Step 3: Add the hypothesis found to the set of hypotheses being built (also

known as rules), which is initially empty.
Step 4: Repeat step 1 to step 3 until the entire set of positive examples are

covered by the rules.
Step 5: Return the rules.

There is a possibility that some hypotheses have the same evaluation, that is,
the best value in a bounded hypothesis space in step 1. For example, a hypothesis
h1 was found and f(h1) was 20; that is, the best value in a bounded hypothesis
space (p(h1) >= pLimit and n(h1) <= nLimit). In this situation, if another
hypothesis h2 is found and f(h2) is 20, then the same evaluation is the best
value. In addition, h2 is not identical to h1. In this case, the ILP system usually
keeps the hypothesis (h1) that is found first (hypotheses after the second (h2) are
dropped). However, the hypotheses after the second (h2) are potentially good
hypotheses, because the evaluation is identical to the first (h1). If the order
of finding hypotheses is changed, the identified rules may be changed in the
same problem, because we used a simple set-covering algorithm. This algorithm
removes positive examples covered by a hypothesis, identified from the entire set
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of positive examples (in step 2). Therefore, there is a possibility that covered
positive examples may be different between when hypothesis h1 is identified first
and when hypothesis h2 is identified first in the same hypothesis space.

Our new ILP system searches and gathers all hypotheses that have the same
(best) evaluation. During the search, if our system finds a hypothesis with the
same evaluation that is the best value, the system does not drop the hypothesis,
but stores it. The system then finds some hypotheses in a bounded hypothesis
space. Using this method, the identified rules are never changed in the same
problem, even if the order of finding hypotheses is changed. In addition, there is
a possibility that the system can reduce the learning time, because the system
may remove more positive examples covered by hypotheses from the entire set
of positive examples (in step 2), when some hypotheses are found in a bounded
hypothesis space (in step 1). For example, we succeeded in reducing the learning
time by approximately 10% using dairy cattle data (using a CPU).

3 Improvement of Parallel ILP System

3.1 Previous Parallel ILP System

Our previous research [7] designed and implemented a parallel-processing sys-
tem for ILP. Figure 1 presents the system, which consists of a master module
and worker modules (refer to [7] for details). In our system, the master module
does not work for learning, but requests the first task to a worker module using
the contract net negotiation protocol [11] and monitors all worker modules. The
worker module itself has an autonomous function (unlike MapReduce). When
a worker module has no task (e.g. immediately after starting up or completing
a task), the worker module accepts a divided task from another worker mod-
ule using the contract net negotiation protocol and starts the task. When the
workload (the number of relationships in the information that the worker must
search for) reaches a fixed quantity (divideNum), the worker module requests
other worker modules to process the divided task (using the contract net nego-
tiation protocol). After the request for the first task issued by a master module
is implemented for one worker module, autonomous process distribution begins
among worker modules, and all existing worker modules are engaged (saturation
of the task). Because the divided task continues to be repeated among worker
modules, all worker modules finally complete all processing at approximately
the same time. Depending on the size of the fixed quantity (divideNum), it will
take approximately several seconds. For example, when divideNum is defined
as 200 in our implementation, the deviation was less than 1 s, and the master
module monitors and finds that all worker’s tasks are finished, and receives the
processing result (generated rules).

The flow of dividing a space among workers is as follows (step 2© in Fig. 1).

– Workers use a branch-and-bound search and increase search nodes.
– If the nodes > divideNum, a worker requests a subtask (i.e., a part of the

nodes: a part of the space) from others (divideNum is a threshold for dividing
a task).
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Fig. 1. System configuration of the ILP parallel-computation system and flow of dis-
tributed processing.

– A worker accepts the requested subtask if free (i.e., has no task).
– The requesting worker chooses and commits to the accepting worker that

first sent the accepting message, and sends the subtask data. If the accepting
worker does not have data or the background knowledge, then the requesting
worker sends it with the subtask data.

This parallel-processing system has the following merits.

– 1. The master does not need to consider the division of the process in advance.
– 2. All workers work until the end (i.e. no free time) and finish at the same

time.

The first merit indicates that the proposed system does not require the master
to perform pre-division processing. The second merit means that the process
speed can be increased by increasing the number of computers.

3.2 Improvement of the Parallel ILP System Communication
Protocol

In the previous parallel ILP system, each worker module has the best evaluation
of an identified hypothesis in its own module. Figure 2 illustrates one learning
situation of the previous parallel ILP system. The value of the evaluation of the
identified interim hypothesis (interim rule) of Worker Module 3 is 20. However,
other worker modules have smaller values (i.e. the interim hypothesis is the best
hypothesis that satisfies pLimit and nLimit in the searching process). In the
branch-and-bound search, the other worker modules search for useless areas in
the bounded hypothesis space. This system speed thus could not be sufficiently
increased, even if all worker modules finished at the same time.

Our new parallel ILP system included a new communication protocol for
sharing the best evaluation of the identified interim hypotheses (for only sharing
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Fig. 2. One learning situation of the previous parallel ILP system. Each worker module
has the best evaluation of an identified interim hypothesis.

Fig. 3. Worker Module 3 finds an interim hypothesis, and the evaluation is 20, the
best evaluation of the module and others. Worker Module 3 then sends the value to all
modules to share the best value.

the best evaluation value). In this protocol, when a worker module found an
interim hypothesis with a better evaluation, then the worker sent the value to
all other workers. Next, when another worker module received a value better
than its own, then the worker updates its own value to the better one and drops
its identified interim hypotheses. For example, Figs. 3 and 4 depict one learning
situation of our new parallel ILP system. Worker Module 3 identifies an interim
hypothesis and the evaluation is 20, the best evaluation of the module and others.
Worker Module 3 then sends the value to all modules to share the best value
(Fig. 3). Then, Worker Module 1, 2 and n receive the value that is better than
their own, they update their own value to the better one and drops their own
identified interim hypotheses (Fig. 4). This means that the new ILP system can
avoid searching useless areas in the bounded hypothesis space. The new system
can therefore speed up sufficiently, by increasing the number of computers used.
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Fig. 4. When a worker module receives a value that is better than its own, its value is
updated to the better value. Each worker module then shares the best evaluation, and
all worker modules therefore have the same value.

4 Experiment and Results

We implemented the improved parallel ILP system using Java. A total of 30 com-
puters (CPU Core i7 5820 K 6core/12thread 3.3 GHz 64 GBRAM) were used, as
seen in Fig. 5, in an experiment to measure speedup using the implemented sys-
tem. To estimate the speedup, we used data (e.g. hormone, feed, and activity) of
dairy cattle to determine the successful conditions for artificial insemination [4].

4.1 Experiment Problems

We used two problems concerning dairy cattle to determine the successful condi-
tions for artificial insemination [4] while estimating the speedup. The first was a
large-scale problem that required approximately two days using one CPU. The sec-
ond was a very large problem that required approximately two days using 10 CPUs.
This problem could not be completed using one CPU, because it was too large.

Fig. 5. Experiment environment for the parallel ILP system. The Bio-oriented Tech-
nology Research Advancement Institution typically uses this environment for a daily
cow project.
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Problem 1-Large Problem. The first problem is a large one, consisting of
the following learning data:

– Positive examples: 105
– Negative examples: 279
– Kinds of predicates: 6
– Background knowledge size: 49,757 lines

Table 1 lists the predicates and their mode declarations in the background
knowledge of this problem. We also define several parameters. pLimit is 5,
nLimit is 0, and max literals in learning is 8. After learning, we obtained 68
rules from this problem.

Problem 2-Very-Large-Scale Problem. The second problem is a very-large-
scale one, consisting of the following learning data:

– Positive examples: 101
– Negative examples: 101

Table 1. Predicates and their mode declarations in the background knowledge of the
large problem. Mode + indicates an input variable, - an output variable, and # a
constant.

Predicates

progesterone(+cowID, +-preg datetime, #val),

progesterone diff(+cowID, +-preg datetime, +-prog datetime, #time, #val),

feed(+cowID, +-feed datetime, #val),

feed diff(+cowID, +-feed datetime, +-feed datetime, #time, #val),

sametime(+cowID, +-prog datetime, +-feed datetime),

birth num(+cowID, #birth number)

Table 2. Predicates and their mode declarations in the background knowledge of the
very-large-scale problem. Mode + indicates an input variable, - an output variable, and
# a constant.

Predicates

progesterone(+cowID, +-preg datetime, #val),

progesterone diff(+cowID, +-preg datetime, +-prog datetime, #time, #val),

preg datetime definition(+cowID, +-preg datetime, #val),

feed(+cowID, +-feed datetime, #val),

feed diff(+cowID, +-feed datetime, +-feed datetime, #time, #val),

feed datetime definition(+cowID, +-feed datetime, #val),

birth num(+cowID, #birth number),

activity(+cowID, +-activity datetime, #val),

activity diff(+cowID,+-activity datetime,+-activity datetime,#time,#val),

activity datetime definition(+cowID, +-activity datetime, #val)



Parallel Inductive Logic Programming System for Superlinear Speedup 119

– Kinds of predicates: 10
– Background knowledge size: 48,049 lines

Table 2 lists the predicates and their mode declarations in the background
knowledge of this problem. In addition, we define several parameters. pLimit is
10, nLimit is 5, and max literals in learning is 8. After learning, we obtained
168 rules from this problem.

4.2 Experiment Results

Results of Problem 1. Table 3 and Fig. 6 present the results of problem 1,
demonstrating that the parallel ILP system accomplished superlinear speedup.
In addition, we obtained identical rules using 1 to 30 CPUs.

Table 3. Results of parallel experiments of problem 1.

The Number of CPUs Execution time (sec.) Speedup

1 147, 992 1.000

2 52, 123 2.839

3 32, 849 4.505

5 18, 859 7.848

10 9, 183 16.116

15 6, 157 24.036

30 3, 159 46.848

Fig. 6. Graph of parallel experiments of problem 1. The solid line is the result of our
parallel ILP system, and the dashed line shows a linear speedup. This graph thus
demonstrates that our system accomplished superlinear speedup.
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Results of Problem 2. Table 4 and Fig. 7 present the results of problem 2.
Our parallel ILP system accomplished a slight superlinear speedup based on 10
CPUs. This means we can apply our system to larger-scale problems by using
more CPUs. In addition, we obtained identical rules using 10 to 174 CPUs. The
174 CPUs represent 29 computers with six CPUs each. One computer serves as
the master module.

Table 4. Results of parallel experiments of problem 2. The 174 CPUs represent 29
computers six CPUs each. One computer is the master module.

The Number of CPUs Execution time (sec.) Speedup (base: 10 CPUs)

10 162, 768 1.000

15 105, 107 1.549

30 51, 968 3.132

174 9, 183 17.725

Fig. 7.Graph of parallel experiments of problem 2. The results indicate that our system
can be applied to very large problems by using more CPUs.

5 Discussion

5.1 Discussion of Speedup

Our original purpose was to attain linear speedup. However, we succeeded in
attaining superlinear speedup and demonstrated it to be more useful in large
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problems using our parallel ILP system. This demonstrates that all worker mod-
ules can divide a learning task and work ideally without searching useless areas
in the bounded hypothesis space. In addition, we succeeded in obtaining identi-
cal rules by using one to 174 CPUs. This indicates that the rules identified are
unchanged in a given problem, even if the order of finding hypotheses is changed.

Figure 8 provides the reason for the speedup of our parallel ILP system. The
left side of Fig. 8 depicts the usual parallel method for ILP. This method only
divides a space as subtasks among workers. Each worker searches its space only
as in Fig. 8. Here, worker C worked much more than other workers. Thus, it is
not effective. The right side of Fig. 8 depicts our parallel method, where each
worker helps other workers when it completes searching its own space. Using
our method, the workers communicate with each other and request or accept a
portion of the subtasks. Finally, each worker simultaneously completes all tasks.
In addition, our parallel mechanism adds a communication protocol for sharing
the evaluation of rules identified. This means that our system can avoid searching
useless areas in the bounded hypothesis space. Our system can therefore be speed
up sufficiently by increasing the number of computers used.

5.2 Discussion of Speedup Stability

We checked the stability and robustness of our parallel ILP system in another
experimental environment, using 48 computers (2vCPU:2.4 GH, 8 GBRAM) on
an ATLUS Cloud with 95 CPUs for workers and 1 CPU for the master module.
In this experiment, we repeatedly (16 times) executed parallel learning using our
system on problem 2. Table 5 presents the results of this experiment. The average
time is 20,741.69 s, but the standard deviation is only 29.16 s. This means that
our system is very stable for parallel ILP execution.

Fig. 8. Comparison between the usual method and our method. The left side depicts
the usual method, and the right side depicts our method. Using our method, each
worker completes all tasks at the same time.
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Table 5. Result of repeated application of the parallel ILP system to problem 2. The
result indicates that the speedup is stable.

Number of times Execution time (sec.)

1 20773

2 20734

3 20747

4 20695

5 20758

6 20774

7 20787

8 20711

9 20755

10 20733

11 20705

12 20736

13 20715

14 20717

15 20738

16 20789

Average 20741.69

Standard deviation 29.16

6 Conclusions

In this study, we improved our parallel ILP system to enable superlinear speedup.
This improvement redesigned several features of our ILP learning system and
parallel mechanism. The redesigned ILP learning system searches and gathers all
rules that have the same evaluation. The redesigned parallel mechanism included
a communication protocol for sharing the evaluations of identified rules. To esti-
mate the speedup, we used data from dairy cattle indicating the successful condi-
tions for artificial insemination. Finally, we succeeded in superlinear speedup and
demonstrated that it was more useful in large problems. We succeeded in obtain-
ing identical rules using one to 174 CPUs. In addition, we applied our system
to the problem of anomaly detection based on the log analysis of a company’s
server, and succeeded in obtaining valid rules in a realistic time [9]. Currently, we
are designing an intelligent grid-search system using this parallel ILP to acquire
better rules for dairy-cattle problems.
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