q

Check for
updates

Parallel Online Learning
of Event Definitions

1(= 1

Nikos Katzouris!®) | Alexander Artikis!?, and Georgios Paliouras

! National Center for Scientific Research “Demokritos”, Athens, Greece
{nkatz,a.artikis,paliourg}@iit.demokritos.gr
2 Department of Maritime Studies, University of Piraeus, Piracus, Greece

Abstract. Logic-based event recognition systems infer occurrences of
events in time using a set of event definitions in the form of first-order
rules. The Event Calculus is a temporal logic that has been used as a basis
in event recognition applications, providing among others, direct connec-
tions to machine learning, via Inductive Logic Programming (ILP). OLED
is a recently proposed ILP system that learns event definitions in the form
of Event Calculus theories, in a single pass over a data stream. In this
work we present a version of OLED that allows for parallel, online learning.
We evaluate our approach on a benchmark activity recognition dataset
and show that we can reduce training times, while achieving super-linear
speed-ups on some occasions.

1 Introduction

Event recognition systems [9] process sequences of simple events, such as sen-
sor data, and recognize complex events, i.e. events that satisfy some pattern.
Logic-based systems for event recognition [6] typically use a knowledge base of
first-order rules to represent complex event patterns and a reasoning engine for
pattern matching in the incoming data stream. The Event Calculus (ec) [19]
has been used as the basis for event recognition systems [4,23], offering direct
connections to machine learning, via Inductive Logic Programming (ILP) [8].

Event recognition applications deal with noisy data streams [1]. Methods
that learn from such streams typically build a decision model by a single pass
over the input [13]. oLeD (Online Learning of Event Definitions) [18] is an ILP
system that learns event definitions in the form of EC theories in a single pass
over a relational data stream. oLED learns clauses in top-down manner, by grad-
ually specializing an over-general clause using literals from a bottom clause. Its
single-pass strategy is based on the Hoeffding bound [15], a statistical tool that
allows to build decision models by approximating their quality on the entire
input from a small subset of it. We present an extension of oLED, that allows for
learning a theory in an online and parallel fashion. Our approach is based on
a simple parallelization scheme of the core oLeD functionality. In the proposed
parallelization strategy, a clause is evaluated in parallel on sub-streams of the
input stream and its independent scores are combined whenever a specialization
© Springer International Publishing AG, part of Springer Nature 2018

N. Lachiche and C. Vrain (Eds.): ILP 2017, LNAI 10759, pp. 78-93, 2018.
https://doi.org/10.1007/978-3-319-78090-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78090-0_6&domain=pdf

Parallel Online Learning of Event Definitions 79

decision must be made. We present an evaluation of our approach on a bench-
mark activity recognition dataset and show that it can reduce training times,
while it is also capable of super-linear speed-ups on some occasions.

The rest of this paper is structured as follows: In Sect.2 we present some
background on the EC. In Sect.3 we present oLED and in Sect.4 we present its
parallel version. In Sect.5 we present our experimental results, while in Sect. 6
we discuss related work. Finally, in Sect. 7 we discuss some directions for future
work and conclude.

2 Background

The Event Calculus (EC) [19] is a temporal logic for reasoning about events and
their effects. Its ontology consists of time points (integer numbers); fluents, i.e.
properties that have different values in time; and events, i.e. occurrences in time
that may alter fluents’ values. The axioms of the EC incorporate the common
sense law of inertia, according to which fluents persist over time, unless they are
affected by an event. We use a simplified version of the ec that has been shown to
suffice for event recognition [4]. The basic predicates and its domain-independent
axioms are presented in Table 1. Axiom (1) states that a fluent F' holds at time
T if it has been initiated at the previous time point, while Axiom (2) states
that F' continues to hold unless it is terminated. Definitions for initiatedAt/2 and
terminatedAt/2 predicates are given in an application-specific manner by a set of
domain-specific axioms.

We illustrate our approach using the task of activity recognition, as defined
in the CAVIAR project!. The CAVIAR dataset consists of videos where actors
perform some activities. Manual annotation (performed by the CAVIAR team)
provides ground truth for two activity types. The first type corresponds to simple
events and consists of knowledge about the activities of a person at a certain
video frame/time point, such as walking, or standing still. The second activity
type corresponds to complex events and consists of activities that involve more

Table 1. The basic predicates and domain-independent axioms of EC.

Predicate Meaning
happensAt(E, T) Event E occurs at time T'
initiatedAt(F, T) At time T a period of time for which fluent F' holds is initiated
terminatedAt(F, T) At time T a period of time for which fluent F' holds is terminated
holdsAt(F, T) Fluent F holds at time T
Axioms
holdsAt(F, T + 1) « holdsAt(F, T + 1) «—

initiatedAt(F, T) holdsAt(F, T),

not terminatedAt(F, T)

! http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

80 N. Katzouris et al.

than one person, e.g. two people meeting each other, or moving together. The goal
is to recognize complex events as combinations of simple events and additional
contextual knowledge, such as a person’s direction and position.

Table 2(a) presents some example CAVIAR data, consisting of a narrative
of simple events in terms of happensAt/2, expressing people’s short-term activi-
ties, and context properties in terms of holdsAt/2, denoting people’ coordinates
and direction. Table2(a) also shows the annotation of complex events (long-
term activities) for each time-point in the narrative. Negated complex events’
annotation is obtained via the closed world assumption (although both posi-
tive and negated annotation atoms are presented in Table 2, to avoid confusion).
Table 2(b) presents two domain-specific axioms in the Ec.

Our goal is to learn definitions of complex events in terms of initiation and
termination conditions, as in Table 2(b). In the learning setting that we assume
the training data consist of Herbrand interpretations, i.e. sets of true ground
atoms, as in Table2(a). Positive examples are annotation atoms contained in
such interpretations, while negative examples are false annotation atom instances
generated via the closed world assumption. Given a set of training interpreta-
tions Z, some background theory B, which in our case consists of the domain-
independent axioms of the Ec, and some language bias M, the goal is to learn
a theory H that fits the training data well, i.e. it accounts for as many positive
examples and as few negative examples as possible. Formally, given a theory H
and an interpretation I, let MIH denote a model of BUH UT and annotation(I)
denote the annotation atoms of I. Although different semantics are possible,
in this work by “model” we mean a stable model. Also, let positives(H,I)

Table 2. (a) Example data from activity recognition. For example, at time point 1
person with id; is walking, her (z,y) coordinates are (201,454) and her direction is
270°. The annotation for the same time point states that persons with id; and ids are
not moving together, in contrast to the annotation for time point 2. (b) An example of
two domain-specific axioms in the EC. E.g. the first clause dictates that mowving together
between two persons X and Y is initiated at time T if both X and Y are walking at
time T, their euclidean distance is less than 25 pixel positions and their difference in
direction is less than 45°. The second clause dictates that moving together between X
and Y is terminated at time T if one of them is standing still at time T (exhibits an
inactive behavior) and their euclidean distance at 7" is greater that 30.

(a) (b)

Narrative for time 1: Narrative for time 2: Two Domain-specific axioms:
happensAt(walk(id;), 1). happensAt(walk(id;), 2). initiatedAt(move(X,Y),T) «
happensAt(walk(idz), 1). happensAt(walk(idz), 2). happensAt(walk(X), T),
holdsAt(coords(id;, 201, 454), 1). holdsAt(coords(id;, 201, 454), 2). happensAt(walk(Y), T'),
holdsAt(coords(ids, 230, 440), 1). holdsAt(coords(ids, 227, 440), 2). distLessThan(X, Y, 25, T),
holdsAt(direction(id;, 270),1). holdsAt(direction(id;, 275), 2). dirLessThan(X, Y, 45, T).
holdsAt(direction(ids, 270),1). holdsAt(direction(ids, 278), 2).

Annotation for time 1: Annotation for time 2: terminatedAt(move(X,Y), T) +
not holdsAt(mowve(idy, id2), 1) holdsAt(move(idy, ids), 2) happensAt(inactive(X), T),

distMoreThan(X, Y, 30, T).

Parallel Online Learning of Event Definitions 81

(resp. negatives(H, I)) be the set of complex event instances a with the property
a € M N annotation(I) (resp. a € M1 . annotation(I)). The goal then is to
learn a theory H with the property

argmax(z |positives(H, I)| — |negatives(H, I)|)
HeL(M) 77

where £(M) denotes the hypothesis language defined by the language bias M.
The language bias that we assume is mode declarations [20].

3 The OLED System

OLED [18] learns a theory by joining together independently-constructed clauses,
each of which is learnt in an online fashion. It relies on the Hoeffding bound [15]
to approximate the quality of a clause on the entire input using only a subset of
the data. Given a random variable X with range in [0, 1] and an observed mean
X of its values after n independent observations, the Hoeffding Bound states
that, with probability 1 — J, the true mean X of the variable lies in an interval
(X —€6,X +¢€), where ¢ = w. In other words, the true average can be
approximated by the observed one with probability 1 —§, given an error margin
€ that becomes smaller as the number of observations n increases.

OLED learns a clause in a top-down fashion, by specializing it using literals
from a bottom clause [8]. The Hoeffding bound is utilized in the specialization
process as follows. Given a clause evaluation function G and some clause r, OLED
evaluates r and all of its candidate specializations on training interpretations
that stream-in, counting positive and negative examples in these interpreta-
tions that are covered by each of these clauses. Assume that after n examples,
r1 is r’s specialization with the highest observed mean G-score G and 7y is
the second-best ome, i.e. AG = G(r1) — G(rz) > 0. Then by the Hoeffding
bound we have that for the true mean of the scores’ difference AG it holds that

AG > AG — ¢, with probability 1 — &, where € = A/ %. Hence, if AG > ¢

then AG > 0, implying that r; is indeed the best specialization, with proba-
bility 1 — 4. In order to decide which specialization to select, it thus suffices to
accumulate example counts from the incoming interpretations until AG > e.
These interpretations need not be stored or reprocessed. Each interpretation is
processed once to extract the necessary statistics for calculating G-scores and
is subsequently discarded, thus giving rise to an online (single-pass) clause con-
struction strategy. To ensure that no clause r is replaced by a specialization of
lower quality, r itself is also considered as a potential candidate along with its
specializations, ensuring that specializing r is a better decision, with probability
1 — 6, than not specializing it at all.

The default specialization process follows a FoiL-like, hill-climbing strategy,
where a single literal is added to a clause at each specialization step. However,
oLED supports different specialization strategies as well, e.g. by allowing to simul-
taneously try all specializations up to a given clause length, or by supporting
user-defined, TiLDE-like look-ahead specifications [7].

82 N. Katzouris et al.
To calculate G-scores, each clause r is equipped with a true positive (TP), a
false positive (FP) and a false negative (FN) counter, whose values are updated
accordingly as r gets evaluated on training interpretations that stream-in. True
negative counts are not taken into account, since the annotation for complex
events is acquired via the closed world assumption. Although different scor-
ing functions may be plugged into oLED, in this work we use precision to score
initiation clauses and recall to score termination clauses, as in [18]. Moreover,
OLED supports a clause pruning mechanism, that allows to remove low-quality
clauses (e.g. clauses that have been generated from noisy interpretations) and
a tie-breaking mechanism, that allows to randomly select between equally good
specializations. We refer to [18] for more details on these features.

In the general case, a theory learnt by oLED is a collection of clauses con-
structed with the online mechanism described above. A clause is generated from a
positive example in an incoming interpretation, by constructing a bottom clause

" Annotation Inferred |
FP not holds holds

o Annotation Inferred |
holds not holds |

"~ Annotation Inferred
holds holds :

Incorrectly
treminated
by clause rterm

Incorrectly
initiated
by clause rinr

No actions necessary

clause “fires” clause “fires”

OR [No termmatlon] [No |n|t|at|onj OR

Generate new
initiation clause

Generate new
termination clause

Specialize ripjt Specialize reerm

(B)

InitiationLearner

TerminationLearner

TP instance occurs

Reward all clauses that
correctly initiate the
complex event.

Reward all clauses that
correctly allow the com-
plex event to persist.

FP instance occurs

Penalize all clauses that
incorrectly initiate the
complex event.

Generate new termina-
tion clause.

FN instance occurs

Generate new initiation
clause.

Penalize all clauses that
incorrectly terminate
the complex event.

Fig. 1. (A) Different behaviors of initiation and termination clauses w.r.t. to occur-
rences of TP, FP and FFN complex event instances. Dash-lined boxes explain what it
means to encounter a TP, FP, FN complex event instance, in terms of (dis)agreement
between the actual label of the instance and the one inferred by the theory. Round-
cornered boxes describe the causes of FP, FN occurrences w.r.t. the different types
of clause (initiation or termination). Regular boxes at the “leaves” of the tree-like
structures indicate proper courses of action in order to eliminate FP/FN instances.
(B) Actions taken by the two different processes that learn initiation and termination
clauses in parallel, w.r.t. TP, FP, FN complex event occurrences. These actions are
in accordance with the indicated actions in (A) (leaves of the trees). “Rewarding” a
clause refers to increasing the TP count of the clause, while “penalizing” a clause refers
to increasing its F'P or F'N counts. Penalizing clauses reduces their score, it therefore
contributes to their specialization after a sufficient number of examples has been seen.

Parallel Online Learning of Event Definitions 83

1 from that instance and adding the empty-bodied clause “r = head(L) < to
theory H. From that point on, r is gradually specialized by the addition of lit-
erals from L to its body. New clauses are added to H whenever existing clauses
in H become too specific to account for positive examples in new incoming
interpretations. Bottom clause construction is preceded by an abductive process
that handles the fact that target predicates (initiatedAt/2 and terminatedAt/2) dif-
fer from observed annotation predicates (holdsAt/2). We refer to [18] for more
details.

When learning domain-specific axioms in the Event Calculus, the aforemen-
tioned generic theory construction strategy must be modified to account for
the fact that initiation and termination clauses behave differently w.r.t. encoun-
tered TP, FP and FN complex event instances. A description of this behavior
is illustrated in Fig. 1(A). To handle this behavior, initiation and termination
clauses are learnt separately, by two parallel processes, each of which runs the
core OLED Algorithm. The input stream is forwarded to each of these processes.
Figure 1(B) presents the different actions that each learner takes whenever it
encounters TP, FP and FN instances.

4 A Parallel Version of OLED

We now proceed to the description of a data parallel version of oLeED, which we
henceforth denote by p-oLED. The parallelization strategy is based on evaluating a
clause and its candidate specializations on incoming interpretations by distribut-
ing the workload across multiple processing nodes that operate on sub-streams
of the input stream. When a node is about to specialize or remove a clause r,
it consults its peer nodes and combines their evaluation results for r with its
own, so that a more informed decision is made. We next describe this strategy
in more detail.

4.1 Main Operations of the Parallel OLED Strategy

We assume that learning is performed by a set N of independent processing
nodes. Each node handles a sub-stream S; of training interpretations, gener-
ated from an input stream S, according to some data distribution scheme. For
instance, the data from S may be distributed to the processing nodes in A in a
“round-robin” manner, or by using specific data attributes as “key” in the dis-
tribution process. Processing nodes communicate by exchanging messages and
they collaborate in order to learn a theory H in parallel. In particular, p-OLED
differs from the sequential algorithm in the following respects:

New clause generation: When a node N; generates a new clause r, it broad-
casts r to all other nodes in N, via an AddNewClause(r) message (see Table 3
for the main types of message of parallel oLeD). Each node that receives such a
message adds clause r to its own theory and starts scoring r, and its candidate

84 N. Katzouris et al.

Table 3. The main messages exchanged between data processing nodes in parallel

OLED.
Message Conditions for message Actions upon message
broadcast receipt
AddNewClause(r) Generation of clause r Add r to local theory

SpecializeRequest(7;q)

Clause with id r;4 is about
to be specialized (the
Hoeffding test for this
clause has succeeded)

Reply to the sender by the
local TP, FP,FN,E
counts for clause with id
r;q and for each of its
candidate specializations

SpecializeReply(args), where
args = (ryq, TP, FP, FN, E)

Reply to a specialization
request message for the
clause with id 74

Add the received counts for
the corresponding clause to
the local ones and repeat
the Hoeffding test

Replace(7ig, 1)

Clause with id r;4 has been
specialized to clause r’

Replace clause with id r;4
by 7’ in local theory

PruneRequest(7;4)

Clause with id r;4 is about
to be pruned

Reply to the sender by the
local TP, FP, FN counts
for clause with id r;4, as
well as the period for
which r remains (locally)
unchanged

PruneReply(args), where

args = (riq, TP, FP, FN, T), T being
the period for which the clause with
id r;4 remained unchanged at the
sender node

Reply to a prune request
message

Add the received counts for
the corresponding clause to
the local ones and repeat
the clause removal test

Remove(74)

Clause with id r;4 has
been pruned

Remove clause with id 7;4
from local theory

specializations on its local data stream. As in the sequential version of OLED, a
new clause r consists of an initially empty-bodied clause “head(L) <, where
1 is a bottom clause generated at NN;, which is subsequently used to gradually
specialize r.

Clause specialization: When a node N; is about to specialize a clause r, i.e.
when oLeD’s Hoeffding test for clause r succeeds, locally at N;, node N; sends a
SpecializeRequest(r;q) message to all other nodes, where r;4 is a unique iden-
tifier of clause r, common to all copies of r shared among processing nodes.
Upon receiving such a message, each node uses r;4 to retrieve its own evaluation
statistics for clause r and its candidate specializations, which are sent over to
the requesting node N;. These statistics consist of TP, FP, FN and E counts
for clause r and its candidate specializations, where by F we denote the number
of examples on which a clause has been evaluated so far (number of groundings
of target predicates). The received counts for clause r and its specializations
are combined with node N;’s local counts as follows (we describe the process
for clause r only, but it is similar for each of its specializations). Denoting by
TP), FP}, FN} and EJ the respective counts for clause r, received from node
Nj € N, j # i, the current node N; updates r’s counts accordingly, by increasing

Parallel Online Learning of Event Definitions 85

r’s local counts with those received from other nodes. For instance, the new TP
count for clause r in node N; becomes TP = TP! + . TPi.
N;eN

Each processing node N; € A maintains a record: for each clause r in its
theory and each one of r’s specializations, that contains the exact counts previ-
ously received for them, from each node N; € N, j # i. When node N; receives a
set of new TPJ, FPJ, FNJ and E’ counts for clause r from node, the respective
previous counts are subtracted from the new ones, to avoid over-scoring r with
counts that have already been taken into account in previous updates. The same
holds for r’s specializations.

Once individual clause evaluation statistics are combined as described above,
node N; repeats the Hoeffding test for clause r to assess if the test still succeeds
after the accumulated counts have been taken into account. If it does, clause r is
replaced in H, the current theory at node NN;, by its best-scoring specialization 7’
that results from the Hoeffding test. Then, node N; sends out a Replace(r;q, 1)
message to all other nodes, instructing them to also replace their local copy
that corresponds to r;4 in their own theories with 7’. If, on the other hand, the
Hoeffding test fails at node N; after the updated counts are taken into account,
clause 7 is not specialized.

Clause pruning: For a clause r to be removed, two conditions must hold: First,
clause r must be unchanged (not specialized) for a sufficiently long period, which,
in the single-core version of OLED, is set to the average number of examples for
which the Hoeffding test succeeds, i.e. the average value of n = O(E%ln%) that
has resulted in clause specializations so far. Second, from that point on where
clause r remains unchanged, a sufficiently large number of data must be seen, in
order to use a Hoeffding test to infer that, with probability 1 — ¢, the quality of
clause r is below the pruning threshold, i.e. a user-defined lower bound on the
quality of acceptable clauses.

In p-oLED, each node uses the above heuristics to decide locally whether a
clause r should be pruned. Once it has seen enough data from its own stream
to make that decision for clause r, it sends a PruneRequest(r;4) message to all
other nodes. Each node that receives such a message sends back to the requesting
node the necessary information (period for which clause r remains unchanged
and TP, FP,FN and E, counts for clause r), which node N; uses to re-assess
whether clause r should be pruned, based on the global view of clause r, obtained
by combining r’s separate evaluations from all processing nodes. If node N;
eventually decides to prune clause r, it sends a Remove(r;q) to all other nodes,
which instructs them to also remove clause r from their theories.

4.2 Decentralized Coordination

Each processing node in p-OLED operates autonomously and there is no centralized
coordination. This may result in undesired behavior, therefore some extra actions
are in order, at an implementation level, to avoid such behavior. We next discuss
such issues and outline the way that p-oLED handles them.

86 N. Katzouris et al.

Clause specialization requires some coordination between processing nodes.
For instance, assume that node N; handles a SpecializeRequest for some clause
r, sent from a node N;. N; sends r’s evaluation statistics to the requesting node
N; and it subsequently continues to process data from its local training stream.
This implies that during the time taken for node IV; to decide on 7’s specializa-
tion (receive the statistics for r and its candidate specializations from all nodes
and repeat the Hoeffding test), node N; continues to evaluate clause r on its own
data. It is possible that during this time the Hoeffding test for clause r succeeds at
node NNV;, in which case it will attempt to specialize r. This is unnecessary, since r’s
specialization is already under assessment at node NN;. To avoid this behaviour and
ensure that a potential specialization of a clause r is handled by a single node at
a time, each recipient node of a SpecializeRequest message “marks” the clause
in question as a specialization candidate. For a marked clause 7, all potential spe-
cialization attempts are temporarily suspended, until a “verdict” for this clause is
received from the node that is currently attempting to specialize clause r.

The above strategy is insufficient in cases where the Hoeffding test for
clause r succeeds at more than one processing nodes simultaneously, or at a
very close temporal proximity. In such cases, a node N; may need to handle a
SpecializeRequest for some clause r, while currently attempting itself to spe-
cialize r, implying that two nodes are attempting to specialize the same clause
simultaneously. Consider for instance a situation where node N; has just finished
processing an interpretation where the Hoeffding test for clause r succeeded,
while in the meantime, a SpecializeRequest message for the same clause r,
sent from some other node IN;, has been enqueued in N;’s message queue. To
resolve conflicts in cases like these, a priority order is imposed beforehand on all
processing nodes, using each node’s index k, 1 < k < |A]. Nodes of higher index
are prioritized to specialize a clause 7 over nodes of lower index. That is, a node
of index k abandons its effort to specialize a clause r whenever it encounters
a SpecializeRequest message for the same clause, received from a node with
index &’ > k. Similarly, nodes of higher index do not serve specialization requests
for a clause r, received from nodes of lower index, in case they themselves are
already attempting to specialize 7.

A similar coordination mechanism is used to ensure that a potential removal
of a low-quality clause during pruning is handled by a single node at a time.

Another cause for unwanted behaviour is related to delays in message pass-
ing. For instance, a node N; may be currently carrying out an intensive, time-
consuming task (e.g. processing a large and complex interpretation), while some
other node Nj is expecting N;’s reply on a SpecializeRequest message, in
order to specialize some clause r. This results in IV; “wasting data”, since it
keeps processing new interpretations during this time. These data could have
been used to evaluate new specializations for clause r, had node N; responded
in a timely fashion. To avoid situations like these, in practice each node uses a
time-out parameter ¢ to handle the replies of its peers nodes, considering only
the replies received within the time-out. The time-out parameter is adapted
during the learning process according to the mean processing time per training
interpretation.

Parallel Online Learning of Event Definitions 87

5 Empirical Evaluation

We present an experimental evaluation of our approach on CAVIAR (described in
Sect. 2), a benchmark dataset for activity recognition. CAVIAR contains 282,067
training interpretations with a mean size of 25 atoms each. p-OLED is implemented
in the Scala programming language. It uses Clingo? as its main reasoning compo-
nent and Scala’s akka Actors library® to model the behavior of a processing node
and implement message passing. The code and data of the empirical analysis are
available online*. All experiments were conducted on a Debian Linux machine
with a 3.6 GHz processor (4 cores and 8 threads) and 16 GB of RAM.

The purpose of our first experiment was to compare p-OLED with its monolithic
counterpart. We performed learning with 1, 2, 4 and 8 processing threads (each
representing a processing node) for constructing the definitions of two complex
events, related to two persons meeting each other or moving together. We used
tenfold cross-validation with an 80%-20% training-testing ratio. CAVIAR con-
tains 6,272 positive interpretations for moving (i.e. interpretations where moving
occurs) and 3,722 positive interpretations for meeting, forming respectively 12
positive sequences for moving and 11 positive sequences for meeting (a positive
(resp. negative) sequence encompasses a time interval where a complex event
holds (resp. does not hold) continuously). The testing set for each fold of the
cross-validation process consisted of 2 positive sequences per complex event, plus
negative sequences amounting to the 20% of the total negatives in the dataset,
while the remaining positive and negative sequences where used for training. For
this experiment positive and negative sequences in the training set were evenly
distributed across the different processing nodes, so that all nodes were fed with
approximately the same number of positive and negative examples. In each fold
of the cross-validation process, the training interpretations were presented to
each processing node in a random order. The parameters for both the sequential
and the parallel version of oLED was § = 10~ and clause pruning threshold set to
0.65 for moving and 0.8 for meeting. These values were chosen empirically based
on previous experiments with oLED on the CAVIAR dataset [18]. The pruning
threshold values refer to precision for initiation clauses and recall for termination
clauses, which were used as scoring functions in this experiment.

We also created a larger version of CAVIAR, in order to evaluate our algo-
rithms on a more demanding learning task. This dataset consists of 10 copies of
the original CAVIAR dataset, where each copy differs from the others only in
the constants referring to the tracked entities (persons, objects) that appear in
simple and complex events. This dataset contains 100 different tracked entities,
as compared to only 10 entities of the original CAVIAR dataset. In each copy
of the dataset, the coordinates of each entity p differ by a fixed offset from the
coordinates of the entity of the original dataset that p mirrors. The setting for
the x10-CAVIAR experiment was as described above.

2 http://potassco.sourceforge.net /.
3 http://akka.io/.
* https://github.com/nkatzz/OLED.

http://potassco.sourceforge.net/
http://akka.io/
https://github.com/nkatzz/OLED

88 N. Katzouris et al.

The results from our experiment with CAVIAR and x10-CAVIAR are pre-
sented in Table 4(A) and (B) respectively, in the form of averages (over the ten runs
of the cross-validation process) for training time, Fj-score and theory size (total
number of literals), as well as average number of exchanged messages. Fi-scores
were obtained by micro-averaging results from each fold. We also present F;-scores
and theory sizes for hand-crafted theories for the two target complex events. The
hand-crafted theories may be considered as the standard in this domain and they
are presented in [5]. They are available online®, in addition to learnt theories for
meeting and moving with oLep. Table4 also presents the achieved speed-ups for
p-OLED, defined as T /T, where T and T, are respectively the training times of
a monolithic and a parallel learner that uses n cores. The speed-up is linear if it’s
approximately equal to n, for each n, while it is sub-linear (resp. super-linear) if
it is smaller (resp. greater) than n.

Starting with the results from the CAVIAR dataset (Table4(A)), we see
that p-oLED constructed theories of slightly higher F}-score for meeting, as com-
pared to its single-core counterpart. In the monolithic setting, oLED postpones

Table 4. (A) Experimental results from the CAVIAR dataset; (B) Experimental
results from the x10-CAVIAR dataset.

#cores | Time (sec) | Speed-up | Fi-score | Theory size | #Msgs
(A) | Meet 1 46 - 0.798 |28 -
2 18 2.5 0.818 31 75
4 15 3 0.805 34 168
8 15 3 0.802 35 358
HandCrafted | — - - 0.700 24 -
Move 1 68 - 0.744 21 -
2 31 2.1 0.740 21 58
4 27 2.5 0.739 21 112
8 26 2.6 0.743 23 228
HandCrafted | — - - 0.732 28 -
(B) | Meet 1 7588 - 0.834 |36 -
2 2144 3.5 0.834 36 78
4 1682 4.5 0.834 36 158
8 912 8.3 0.832 36 342
HandCrafted | — — — 0.700 24 —
Move 1 7898 - 0.758 34 -
2 2312 3.4 0.753 34 82
4 1788 4.4 0.756 34 164
8 966 8.1 0.753 34 322
HandCrafted | — - - 0.732 28 -

® http://users.iit.demokritos.gr /~nkatz/CAVIAR-theories/ .

http://users.iit.demokritos.gr/~nkatz/CAVIAR-theories/

Parallel Online Learning of Event Definitions 89

the generation of new clauses, up to the point where existing clauses become
too specific to account for new examples in the incoming interpretations. During
this time, interpretations which may result in a good clause (recall that oLED
learns by “encoding” interpretations into bottom clauses), are “skipped”, i.e.
they are not used for learning new clauses, since they are covered by existing
ones. In contrast, the data distribution in p-OLED resulted in cases where interest-
ing interpretations that would have been missed in the monolithic setting, are
actually used for learning. A similar effect was not observed for moving, which
has a simpler definition than meeting.

Regarding training times, oLED achieves a significant speed-up for both com-
plex events, by moving from sequential learning to learning with 2 cores, but
from that point on, training times do not improve proportionally to the number
of cores, resulting in sub-linear speed-ups. This is not the case however in the
x10-CAVIAR experiment (Table 4(B)), where p-0LED achieves super-linear speed-
ups. The x10-CAVIAR dataset consists of larger training interpretations, each
containing an increased number of domain constants and ground literals. Such
interpretations are significantly harder to be reasoned upon, as indicated by the
exponential growth in training times in the x10-CAVIAR experiment. Therefore,
the contrast between the speed-up patterns of the regular CAVIAR and the sig-
nificantly larger x10-CAVIAR version seems to be in line with the fact that
gains by parallelizing an ILP algorithm are often observed only when significant
data volumes are involved [12,28,30]. Additionally, the reported behavior seems
to imply that the gain in efficiency of our proposed parallel learning strategy
increases with the difficulty of the learning task at hand, in terms of the “unit
cost” of processing individual interpretations.

Due to the increase in training data size in the x10-CAVIAR experiment,
F-scores for all runs (number of cores) are improved as compared to the regular
CAVIAR experiment and they seem to converge. For example, in the regular
CAVIAR experiment, good rules were often constructed “too-late”, from inter-
pretations that were encountered shortly before the data were exhausted. Such
rules may be discarded, since oLED (and its parallel version) use a “warm-up”
period parameter that controls a minimum number of interpretations a rule must
be evaluated on, in order to be included in an output hypothesis. In contrast, in
the x10-CAVIAR experiment such problems were avoided, thanks to the increase
in training data size.

We performed an additional experiment where the goal was to assess the
effect of uneven data distribution on the amount of communication, total train-
ing time and Fj-score. The experimental setting was similar to the one described
previously, i.e. a tenfold cross-validation process with an 80% — 20% training-
testing ratio. One of the nodes, however, handled a larger data load than its
peers. To introduce the imbalance we used an external data distribution pro-
cesses that takes as input an imbalance parameter k. This process reads the
data from disk, in the actual order in which they appear in the CAVIAR videos,
and forwards training interpretations to processing nodes as follows: The first
k interpretations are forwarded to the first node. Subsequently, each one of the

90 N. Katzouris et al.

Table 5. Effects on the imbalance in data load on CAVIAR, using 8 processing nodes.

Imbalance | Time (sec) | #Msgs | Fi-score | Theory size
Meet | 10 16 348 0.802 34
50 24 327 0.808 34
100 41 298 0.799 34
Mowve | 10 24 231 0.739 22
50 38 212 0.741 23
100 52 191 0.742 23

following N —1 interpretations (N being the number of used nodes) is forwarded
to one of the remaining N — 1 nodes. The next k interpretations are forwarded
again to the first node and so on, so that the first node eventually handles
k-times more data than its peer nodes. In the process of data distribution, data
sequences that are intended to be used for testing are “skipped” (they are not
forwarded to any node).

We performed experiments in this setting with 8 processing nodes and three
different values for the imbalance parameter k& = 10,50,100. The results are
presented in Table5 in the form of averages from the tenfold cross-validation
process for total training time, number of messages, Fij-score (micro-averaged
over all folds) and theory size. As the imbalance parameter k grows, training
time increases slightly, while the amount of communication drops. The increase
in training time may be explained by the “bottleneck” of a single node handling
larger data loads sequentially, as the imbalance increases, while the drop in the
total number of exchanged messages is due to the fact the majority of the pro-
cessing nodes, which handle fewer training data, also broadcast fewer messages,
as compared to the scenario where data are evenly distributed between nodes.
Regarding the Fj-score and the theory size, only small changes are reported
with respect to the results of Table4(A). These differences are attributed to the
different order in which training interpretations are presented to p-OLED in the
two experiments.

6 Related Work

An overview of existing approaches to learning theories in the Event Calculus
with ILP may be found in [16,17] and a discussion on how OLED compares to
such approaches may be found in [16,18]. In this section we mainly discuss
parallel ILP algorithms, for which a substantial amount of work exists in the
literature. A thorough review may be found in [12,30]. Parallel ILP algorithms
exploit parallelism across three main axes [12]: Searching through the hypothesis
space in parallel (search parallelism); splitting the training data and learning
from data subsets (data parallelism); and evaluating candidate clauses in parallel
(evaluation/coverage parallelism).

Parallel Online Learning of Event Definitions 91

In [28] the authors present a data-parallel version of a standard set-cover
loop: Each processing node learns a fragment of the concept definition from
a partition of the data, and then these fragments are exchanged between all
nodes. Good-enough clauses are kept by all nodes. A cover removal step is sub-
sequently implemented by each core and the set-cover loop continues. Overall,
the approach in [28] learns much faster than a sequential algorithm, achieving
super-linear speed-ups. A similar approach is proposed in [11], where the train-
ing interpretations are split across multiple nodes and searched in parallel, while
the best rules from each node are “pipe-lined” to all other nodes.

In [30] the authors use a MapReduce-based framework to parallelize the oper-
ation of a classical set-cover ILP algorithm towards both evaluation-parallelism
and search-parallelism. In the former case, coverage tests of candidate clauses
are performed in parallel, on disjoint partitions of the data. In the latter case,
bottom clauses (which are generalized to acquire a hypothesis clause) are gener-
ated and searched in a concurrent fashion from more than one “seed” examples.
The reducer then selects the best hypothesis clause that results from this pro-
cess. A similar approach for parallel exploration of independent hypotheses has
been proposed in [22], while similar approaches towards parallel coverage tests
have been proposed in [10,14]. In [21], the approach of [30] was extended to a
framework that is capable of self-regulating the workload of distributing learning
costs across multiple nodes. In [25,26] the authors propose a strategy for col-
laborative learning of action models. The problem is modelled in a multi-agent
systems context, where autonomous agents communicate with each other and
revise their local models in an effort to establish global consistency of the latter.
An important difference of this work is that the communication is based on the
exchange of examples, as opposed to clauses, which is the case with p-oLED and
most of the works described above. Finally, some work exists in the literature
on parallelizing (unsupervised) relational data-mining tasks, such as frequent
pattern mining [2,3].

A main difference of the work presented here from the aforementioned
approaches to parallel ILP is that they mostly rely on iterative ILP algorithms,
which require several passes over the data to compute a hypothesis. In contrast,
OLED is an online, single-pass algorithm. In relation to the latter, some work on
streaming ILP exists. However, existing approaches are either oriented towards
unsupervised tasks like frequent pattern discovery [27], or they rely on proposi-
tionalization techniques and off-the-self, online propositional learners [29].

7 Conclusions and Future Work

We presented a parallel version of a recently proposed algorithm for online learn-
ing of event definitions in the form of Event Calculus theories. We also presented
an experimental evaluation of our approach on a benchmark dataset for activity
recognition, which demonstrates that it can reduce training times, while also
achieving super-linear speed-ups on some occasions. As future work, we aim to
evaluate our approach in a distributed setting and on larger datasets, in terms of

92

N. Katzouris et al.

in-situ, geographically distributed learning, as required in maritime monitoring
[24]. We also plan to formally analyze the behavior of the proposed approach in
terms of communication cost, comparison to its monolithic counterpart in terms
of convergence and convergence speed, as well as comparison to similar learning
strategies that adopt different communication protocols.

Acknowledgments. This work is funded by the H2020 project datAcron (687591).

References

1.

2.

10.

11.

12.

13.
14.

15.

16.

Alevizos, E., Skarlatidis, A., Artikis, A., Paliouras, G.: Probabilistic complex event
recognition: a survey. ACM Comput. Surv. (2018, to appear)

Appice, A., Ceci, M., Turi, A., Malerba, D.: Sampling very large databases for par-
allel and distributed relational frequent pattern discovery. In: First International
Workshop on Ubiquitous Knowledge Discovery Workshop (2008)

Appice, A., Ceci, M., Turi, A., Malerba, D.: A parallel, distributed algorithm for
relational frequent pattern discovery from very large data sets. Intell. Data Anal.
15(1), 69-88 (2011)

Artikis, A., Sergot, M., Paliouras, G.: An event calculus for event recognition.
IEEE Trans. Knowl. Data Eng. 27(4), 895-908 (2015)

Artikis, A., Skarlatidis, A., Paliouras, G.: Behaviour recognition from video con-
tent: a logic programming approach. Int. J. Artif. Intell. Tools 19(2), 193-209
(2010)

Artikis, A., Skarlatidis, A., Portet, F., Paliouras, G.: Logic-based event recognition.
Knowl. Eng. Rev. 27(4), 469-506 (2012)

Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees.
Artif. Intell. 101(1), 285-297 (1998)

De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68856-3

FEtzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co.,
Greenwich (2010)

Fidjeland, A.K., Luk, W., Muggleton, S.H.: Customisable multi-processor accel-
eration of inductive logic programming. In: Latest Advances in Inductive Logic
Programming, pp. 123-141 (2014)

Fonseca, N.A., Silva, F.M.A., Costa, V.S., Camacho, R.: A pipelined data-parallel
algorithm for ILP. In: 2005 IEEE International Conference on Cluster Computing
(CLUSTER 2005), Boston, Massachusetts, USA, 26-30 September 2005, pp. 1-10
(2005)

Fonseca, N.A., Srinivasan, A., Silva, F., Camacho, R.: Parallel ILP for distributed-
memory architectures. Mach. Learn. 74(3), 257-279 (2009)

Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Florida (2010)
Graham, J.H., David Page Jr., C., Kamal, A.H.: Accelerating the drug design
process through parallel inductive logic programming data mining. In: 2nd IEEE
Computer Society Bioinformatics Conference, CSB 2003, Stanford, CA, USA,
11-14 August 2003, pp. 400-402 (2003)

Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13-30 (1963)

Katzouris, N.: Scalable relational learning for event recognition. Ph.D. thesis,
University of Athens (2017). http://users.iit.demokritos.gr/~nkatz/papers/nkatz-
phd.pdf

https://doi.org/10.1007/978-3-540-68856-3
http://users.iit.demokritos.gr/~nkatz/papers/nkatz-phd.pdf
http://users.iit.demokritos.gr/~nkatz/papers/nkatz-phd.pdf

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

Parallel Online Learning of Event Definitions 93

Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions
with inductive logic programming. Mach. Learn. 100(2-3), 555-585 (2015)
Katzouris, N., Artikis, A., Paliouras, G.: Online learning of event definitions. TPLP
16(5-6), 817-833 (2016)

Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gener. Comput.
4(1), 67-95 (1986)

Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13(3&4),
245-286 (1995)

Nishiyama, H., Ohwada, H.: Yet another parallel hypothesis search for inverse
entailment. In: ILP (2015)

Ohwada, H., Mizoguchi, F.: Parallel execution for speeding up inductive logic pro-
gramming systems. In: Arikawa, S., Furukawa, K. (eds.) DS 1999. LNCS (LNAI),
vol. 1721, pp. 277-286. Springer, Heidelberg (1999). https://doi.org/10.1007/3-
540-46846-3_25

Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA
management. Decis. Support Syst. 46(1), 187-205 (2008)

Patroumpas, K., Alevizos, E., Artikis, A., Vodas, M., Pelekis, N., Theodoridis, Y.:
Online event recognition from moving vessel trajectories. Geolnformatica 21(2),
389-427 (2017)

Rodrigues, C., Soldano, H., Bourgne, G., Rouveirol, C.: A consistency based app-
roach of action model learning in a community of agents. In: International con-
ference on Autonomous Agents and Multi-Agent Systems, AAMAS 2014, Paris,
France, 5-9 May 2014, pp. 1557-1558 (2014)

Rodrigues, C., Soldano, H., Bourgne, G., Rouveirol, C.: Multi agent learning of
relational action models. In: ECAT 2014 - 21st European Conference on Artificial
Intelligence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious
Applications of Intelligent Systems (PAIS 2014), pp. 1087-1088 (2014)

Silva, A., Antunes, C.: Multi-relational pattern mining over data streams. Data
Min. Knowl. Disc. 29(6), 1783-1814 (2015)

Skillicorn, D.B., Wang, Y.: Parallel and sequential algorithms for data mining using
inductive logic. Knowl. Inf. Syst. 3(4), 405-421 (2001)

Srinivasan, A., Bain, M.: Relational models with streaming ILP. In: ILP (2013)
Srinivasan, A., Faruquie, T.A., Joshi, S.: Data and task parallelism in ILP using
mapreduce. Mach. Learn. 86(1), 141-168 (2012)

https://doi.org/10.1007/3-540-46846-3_25
https://doi.org/10.1007/3-540-46846-3_25

	Parallel Online Learning of Event Definitions
	1 Introduction
	2 Background
	3 The OLED System
	4 A Parallel Version of OLED
	4.1 Main Operations of the Parallel OLED Strategy
	4.2 Decentralized Coordination

	5 Empirical Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

