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Preface

This volume contains the revised versions of selected papers presented at the 27th
International Conference on Inductive Logic Programming (ILP 2017). ILP 2017 was
held in Orléans, France, during September 4–6, 2017.

Inductive logic programming (ILP) is a subfield of machine learning, which origi-
nally relied on logic programming as a uniform representation language for expressing
examples, background knowledge, and hypotheses. Due to its strong representation
formalism, based on first-order logic, ILP provides an excellent means for
multi-relational learning and data mining, and more generally for learning from
structured data. The ILP conference series, started in 1991, is the premier international
forum for learning from structured or semi-structured relational data. Originally
focusing on the induction of logic programs, over the years it has expanded its research
horizon significantly and welcomes contributions to all aspects of learning in logic,
including exploring intersections with probabilistic approaches.

Three kinds of papers were submitted, and the reviewing process was quite
complicated:

1. Regular papers describing original mature work representing a self-contained the-
oretical contribution and/or supported by appropriate experimental evaluation. In
all, 17 regular papers were submitted. These papers were reviewed by at least three
members of the Program Committee. Seven papers were rejected. Ten papers were
accepted for presentation at the conference. Although four were directly accepted
for publication in the proceedings, only three are published in these proceedings.
Six were invited to submit a revised version. After a second round of reviewing,
four were accepted.

2. Late-breaking papers describing original work in progress, brief accounts of original
ideas without conclusive experimental evaluation, and other relevant work of
potentially high scientific interest but not yet qualifying for the regular paper cat-
egory. In total, 14 late-breaking papers were accepted/rejected by the PC chairs, on
the grounds of relevance, to be presented at the conference. Each late-breaking
paper was reviewed by at least three members of the Program Committee taking
also into account the oral presentation. This allowed us to nominate candidates for
the most promising student late-breaking paper. Ten out of 14 late-breaking papers
were invited to submit an extended version, which was evaluated a second time by
three reviewers. Five of them were selected to be included in these proceedings.

3. Recently published papers. Five papers relevant to the conference topics and
recently published or accepted for publication in a first-class conference were
presented at the conference. These papers do not appear in this Springer LNAI
conference proceedings.



In these proceedings, the articles are sorted according to the name of the first author.
We identified several trends during this conference:

– Extension of the foundations of ILP (Bekker & Davis, Ribeiro et al., and Svatoš
et al.)

– Parallelization (Katzouris et al., and Nishiyama & Ohwada)
– Applications of ILP to robotics, breast cancer and vision, respectively (Antanas

et al., Côrte-Real et al., and Dai et al.)
– A new trend exploring connections with deep learning (Dumančić et al., Kaur et al.,

Šourek et al., and Vig et al.)

We had the pleasure to welcome four invited speakers at ILP 2017:

– Alan Bundy, Professor at the University of Edinburgh: “Can Computers Change
Their Minds?”

– Marc Boullé, Senior Researcher at Orange Labs: “Automatic Feature Construction
for Supervised Classification from Large Scale Multi-Relational Data”

– Jennifer Neville, Associate Professor at Purdue University: “Learning from Single
Networks—The Impact of Network Structure on Relational Learning and Collective
Inference”

– Mathias Niepert, Senior Researcher at NEC Labs Europe in Heidelberg: “Learning
Knowledge Base Representations with Relational, Latent, and Numerical Features”

Three prizes were awarded:

– Best paper (supported by Springer): Gustav Šourek, Martin Svatoš, Filip Železný,
Steven Schockaert and Ondřej Kuželka. “Stacked Structure Learning for Lifted
Relational Neural Networks”

– Best student paper (supported by Machine Learning Journal) Sebastijan Dumančić.
“Demystifying Relational Latent Representations” (co-author Hendrick Blockeel)

– Most promising “late-breaking” student paper (supported by Machine Learning
Journal): Laura Antanas. “Relational Affordance Learning for Task-Dependent
Robot Grasping” (co-authors Anton Dries, Plinio Moreno, Luc de Raedt)

We would like to thank all the persons who contributed to the success of ILP 2017:
the members of the Organizing Committee, the members of the Program Committee,
the additional reviewers, and the sponsors.

February 2018 Nicolas Lachiche
Christel Vrain

VI Preface
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Relational Affordance Learning
for Task-Dependent Robot Grasping

Laura Antanas1(B), Anton Dries1, Plinio Moreno2, and Luc De Raedt1

1 Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium
laura.antanas@cs.kuleuven.be, laura.antanas@gmail.com

2 Institute for Systems and Robotics, IST, University of Lisboa, Lisbon, Portugal

Abstract. Robot grasping depends on the specific manipulation sce-
nario: the object, its properties, task and grasp constraints. Object-task
affordances facilitate semantic reasoning about pre-grasp configurations
with respect to the intended tasks, favoring good grasps. We employ
probabilistic rule learning to recover such object-task affordances for
task-dependent grasping from realistic video data.

1 Introduction

Robot grasping skills are essential for acting in dynamic environments. Objects
can be grasped in different ways depending on the specific manipulation sce-
nario: the object, its properties, task and grasp constraints. Inspired by the
definition of object affordances – which refers to the properties of an object to
allow actions to be performed on it by a human or other entity, we investigate
the benefits of object-task affordances for task-dependent grasping in a kitchen
environment. Our earlier work on task-dependent grasping [2] shows that, when
combined with probabilistic reasoning and object/task ontologies, they facili-
tate compact grasping models which generalize over object/task categories in a
natural way, while showing robustness to uncertainty and missing information.
Here we propose, as key contribution, a statistical relational learning approach
to learn object affordances for task-dependent grasping. We employ ProbFOIL+
[7] to realize it.

Let us consider the scenario in Fig. 1. A mobile robot with grasping capabili-
ties must grasp a bottle from the shelf and place it on the table. The environment
constraints (e.g. narrow spaces) and task constraints (e.g. the most stable pre-
grasp gripper pose for grasping the bottle) present a difficult problem which can
be solved using semantic reasoning. If we consider the top, middle and bottom
as semantic parts of the bottle, the best part to grasp it is from the middle,
given that it needs to be placed on the table upright and the top is partially
obstructed by the shelf above. Given such semantic object parts (or pre-grasps),
object properties, and the intended task, we can learn probabilistic grasp-related
rules for our kitchen scenario, e.g., that a bottle affords pick and placing on a
surface by grasping it from the middle. The resulting task-dependent affordances
give the robot the capability to semantically reason about the best pre-grasp and
c© Springer International Publishing AG, part of Springer Nature 2018
N. Lachiche and C. Vrain (Eds.): ILP 2017, LNAI 10759, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-319-78090-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78090-0_1&domain=pdf
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Fig. 1. Manipulation scenario: grasp the
bottle from the shelf and place it upright
on the table.

Fig. 2. Semantic parts for knife and
cup: yellow-top, blue-middle, red-
bottom, green-handle, and magenta-
usable area. (Color figure online)

thus, help the grasp planner. Our experiments show that we can learn reliable
relational affordances from realistic and uncertain video data (Fig. 2).

2 Related Work

Much recent work focuses on incorporating task constraints in robot grasping by
learning a direct mapping function between good grasps and various constraints
(on actions and geometry), action features and object attributes [9–11,17,18,23].
We extend this work by considering either object categorical information as an
additional feature to predict suitable task-dependent grasping constraints or
a task-dependent setting that uses probabilistic logic and world knowledge to
reason about best pre-grasps.

Affordances have been considered before in robot manipulation. While in [24]
the authors employ estimated visual-based latent affordances, the work in [4]
reasons about grasp selection by modeling affordance relations between objects,
actions and effects using either a fully probabilistic setting or a rule-based ontol-
ogy. In contrast, we employ a SRL approach to learn object affordances which
generalize over similar object parts and object/task categories. Closely related
is the semantic grasping pipeline in [5]. It employs a semantic affordance map
which relates gripper approach directions to particular tasks. We exploit addi-
tional world knowledge in form of ontologies. This allows us to experiment with a
wide range of object categories. Further, to compute plans comprising sequences
of actions and to solve complex manipulation tasks, [1] combines symbolic rea-
soning and learning from demonstrations. In [14] meaningful symbolic relational
representations are used to solve sequential manipulation tasks in a goal-directed
manner via active relational reinforcement learning. Relational Markov networks
have been extended to build relational object maps for mobile robots in order to
enable reasoning about hierarchies of objects and spatial relationships amongst
them [16]. Related work for generalizing over doors and handles using SRL has
been proposed in [19].
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However, none of these frameworks solves the problem of learning affordances
for semantic task-dependent grasping. Relational affordance models for robots
have been learned in a multi-object manipulation task context [20]. Differently,
we propose learning pre-grasp configurations using task-category affordances.
Our approach features semantic generalization and can tackle unknown objects.
This research topic has great importance in robotics as robots aimed at work-
ing in daily environments should be able to manipulate many never-seen-before
objects and to deal with increasingly complex scenarios.

The paper is structured as follows. The next section introduces the relational
problem of affordance learning. Subsequently, our SRL approach is described.
After the experiments section, follow the concluding notes.

3 Problem Description and Representation

Each scene contains one object and the task to be executed. Its semantic visual
description consists of the task, object parts, category, pose, and containment
together with their probabilities. In a kitchen scenario, the perception algorithm
proposed in [6] can segment objects, distinguish between upright and sideways
poses and label each part with one of the labels: top, middle, bottom, handle
or usable area. This reduces the search space for robot grasp generation, pre-
diction and planning. The object category can be obtained using any object
classifier. However, due to good results for grasping point prediction, we employ
the manifold-based graph kernel approach proposed in [21]. It ensures a good
appearance-based predictor for the object category. The prediction has the form
of a probability distribution on object categories. Our kitchen setup considers
11 object categories: {pan, pot, cup, glass, bowl, bottle, can, hammer, knife,
screwdriver, cooking tool}. We pick the category with the highest probability to
characterize the object in the grasping scenario.

Further, our kitchen setup includes a set of 7 tasks: {pass, pourOut,
pourIn, pickPlaceInUpright, pickPlaceInUpsidedown, pickPlaceInSideways, pick-
PlaceOn}. The task pass refers to grasping and passing the object to a human
in the exact same pose, the tasks pourOut and pourIn to the actions of pouring
liquid out of and inside the object, respectively, after grasping it. Tasks pickPla-
ceInUpright, pickPlaceInUpsidedown and pickPlaceInSideways refer to picking
the object from the current pose and placing it inside a shelf in the upright,
upside-down and sideways poses, respectively. Finally, the task pickPlaceOn is
defined as picking and placing the object on a surface in the same initial pose.

The scene is represented as a set of relational visual observations. For the sce-
nario in Fig. 1 they are encoded using probabilistic facts, such as 1.0 :: object(o),
stating that an object o is observed with probability 1.0. The observation
object(o) is a logical atom, while object/1 is a predicate symbol of arity 1.
The object identifier o is a constant and represents a ground term. Terms can
also be variables when denoted in uppercase. Ground atoms or facts, such as
object(o) and part(o, p1, top), do not contain variables and represent partic-
ular relations. They possess truth-values. Relational visual observations for our
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scenario are illustrated in Example 1. We consider that the task is given and not
observed, thus it has probability 1.0. We represent it as a probabilistic ground
term, e.g., 1.0 :: task(o, t1, pickPlaceOn).

Example 1. Relational representation for our scenario in Fig. 1:
1.0::object(o).

0.8::category(o,bottle).

0.5::pose(o,upright).

0.9::contains(o,full).

0.5::part(o,p1,top).

0.9::part(o,p2,middle).

0.5::part(o,p3,bottom).

1.0::task(o,t1,pourOut).

1.0::task(o,t2,pass).

1.0::task(o,t3,pourIn).

1.0::task(o,t4,pickPlaceInUpsidedown).

1.0::task(o,t5,pickPlaceInUpright).

1.0::task(o,t6,pickPlaceInSideways).

1.0::task(o,t7,pickPlaceOn).

1.0::affords(o,t1).

1.0::affords(o,t2).

0.0::affords(o,t3).

· · ·
1.0::affords(o,t7).

0.0::impossible(o,t1).

0.0::impossible(o,t2).

1.0::impossible(o,t3).

1.0::impossible(o,t4).

· · ·
0.0::impossible(o,t7).

0.1::grasp(o,t1,p1).

1.0::grasp(o,t1,p2).

0.01::grasp(o,t1,p3).

0.5::grasp(o,t2,p1).

1.0::grasp(o,t2,p2).

0.01::grasp(o,t2,p3).

0.01::grasp(o,t3,p1).

0.01::grasp(o,t3,p2).

0.01::grasp(o,t3,p3).

· · ·
0.5::grasp(o,t7,p1).

1.0::grasp(o,t7,p2).

0.01::grasp(o,t7,p3).

3.1 Object Category-Task (CT) Affordances and Constraints

We define an object-task affordance as the task afforded by an object cate-
gory considered in our robot grasping setup. We keep in mind the manipulation
capabilities of the gripper mounted on a robotic arm, in our case a KUKA
LightWeight Robot (LWR) with two fingers [22]. Figure 3 illustrates a set of 46
common sense affordances marked with � in the form of a table. They allow
us to relate object-task concepts based on human experience and inspired by
AfNet: The Affordance Network (www.theaffordances.net). By looking at the
table, we can extract possible object-task affordance pairs which can be encoded
as logical rules. For example the rule affords(X, T) ← bottle(X), task(T, pass)
states that a bottle indicated by variable X affords the passing task indicated by
variable T. The set of affordances can be extended to include new object or task
categories.

We can further make abstraction of fine-grained object categories by plug-
ging in an object category ontology as in Fig. 4 (top). The super-categories in the
ontology are defined based on the object functionality, and are represented by:
{kitchenContainer, dish, openContainer, canister, container, tool, object}. For
example, the super-category dish subsumes the categories bowl, glass and cup.
Similarly, tasks can be grouped in super-tasks such as: {pickPlaceIn, pickPlace,

www.theaffordances.net
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Fig. 3. Object-task affordances are marked by �, constraints by −.

Fig. 4. Object category ontology (top) and task ontology (bottom).

pour, task} (Fig. 4 bottom). The super-task pour refers to the action of pouring
the liquid in or out, while the super-task pickPlaceIn subsumes the tasks pick-
PlaceInUpright, pickPlaceInUpsidedown and pickPlaceInSideways. The benefit
of exploiting ontological structure is that we can make abstraction of the fine-
grained object categories and tasks. Ontologies are symbolic high-level knowledge
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which allows a compact representation of the affordance model by generalizing
over similar object and task categories in a natural and straightforward way. As
a result, they allows us to experiment with a wide range of objects and better
deal with missing, uncertain or inaccurate information.

Ontologies can be translated into deterministic logical rules and
directly used by our learner. For example, supercategory(X, container) ←
category(X, bottle) states that “any bottle is a container”, pour(T) ←
pourIn(T) specifies that “any task of pouring liquid in to fill some object is
a pouring task”. The arguments X and T are variables and indicate the object
identifier and task, respectively. We can then generally state that any container
affords the task of pouring, i.e., affords(X, T) ← container(X), pour(T). How-
ever, this is not always true, as pouring liquid in a canister is an almost impossible
task, even for a human. We encode such constraints via the impossible/2 predi-
cate. The rule impossible(X, T) ← canister(X), pourIn(T) states that a canis-
ter does not afford the task of pouring in. Constraints are marked in Fig. 3 by −.
Similar to affordances, constraints can be also generalized by making use of the
ontological information, as the afore mentioned constraint. Another example is
impossible(X, T) ← container(X), pickPlaceInSideways(X, T) which indicates
that a container should not be placed sideways.

A first goal of this work is to improve robot grasping by learning relational
object-task affordances and constraints from data. This is done by specifying two
separate learning problems. The CT affordance learning problem is indicated by
keeping as learning target the affords(X, T) predicate, while the CT constraint
problem via the target predicate impossible(X, T).

3.2 Object Part-Category-Task (PCT) Affordances

Further, depending on the object properties, its parts and task, the object should
be grasped in different ways. To reason about good pre-grasp configurations given
the intended task, we use semantic object parts. Similar to object categories,
pre-grasps can be associated to specific tasks. Each task activates grasping affor-
dances according to associations between object categories, object parts and grip-
per poses. Besides object category-task associations, the second goal of our work
is to learn object part-category-task relations. While the first are general pair-wise
affordances, the second are grasp-related triplets that may rely on the first. For
example, the rule grasp(X, T, P) ← affords(X, T), pickPlaceInUpsidedown(T),
glass(X), pose(X, upsidedown), part(X, P, bottom) states that a glass X in the
upside-down pre-grasp pose affords the task T of picking and placing inside
the cupboard in an upside-down post-grasp pose by grasping it from the bot-
tom. The PCT affordance learning problem is specified via the target predicate
grasp(X, T, P). We can make abstraction of fine-grained object categories and tasks
by plugging in the object category and task ontologies here as well. Most of the
times we can state that any dish in an initial upside-down pose can be picked
and placed inside a cupboard in any pose by grasping it from the bottom, i.e.,
grasp(X, T, P) ← affords(X, T), pickPlaceIn(T), dish(X), pose(X, upsidedown),
part(X, P, bottom). Thus, the introduction of super-categories and super-tasks
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reduces considerably the number of rules rendering much more compact model
which are easier to interpret.

3.3 The Affordance Learning Problem

Using the visual observations introduced in Example 1 one can learn several
affordances, e.g., that the bottle affords pick and placing on a surface in the
initial upright pose and, in this case, it should be grasped from the middle or
from the top (from the bottom the gripper might hit the shelf below, from the top
a bit difficult to grasp given that the bottle is full), that it affords pouring out,
and, in this case the bottle should be grasped from the middle (from the bottom
the gripper might hit the shelf below, from the top it is rather difficult even for
a human to pour out). Further, constraints can be also inferred, e.g., the bottle
cannot be poured in liquid or placed upside-down. In order to do so, we assume
to have labeled examples: object category-task relations specified via the target
predicate affords/2, object category-task constraints via impossible/2, and
object part-category-task affordances indicated by the target predicate grasp/3.

Ground target predicates or learning examples for each problem are illus-
trated in Example 1. Each learning problem is tackled in turn. Every learn-
ing example is a fact labeled with a target probability. In our scenario, target
atom 1.0 :: affords(o, t1) states that bottle o allows pouring out with maximum
probability and is a learning example for the CT learning problem. Target label
1.0 :: grasp(o, t1, p2) is a learning example for the PCT problem and asserts
that the bottle can be grasped by the middle part p2 with probability 1.0. The
resulting set of probabilistic ground facts from all the scenarios corresponding to
one learning problem represent input data for our probabilistic rule learner. For
example, for the CT affordance problem, the learner takes as input features all
grounded object, category, pose, containment and task predicates and the target
affords/2 predicates, while for the PCT affordance problem it takes, in addition
as input features all grounded parts and as targets the grasp/3 predicates. In our
learning from entailment setting, probabilistic ground targets are positive learn-
ing examples. Using ProbFOIL+, we obtain negative examples automatically by
taking combinations of possible values for the target arguments. A sampling step
is performed such that the number of negatives balances the number of positives.

4 Approach: Probabilistic Rule Learning

Given the representation of our input and output we employ probabilistic rule
learning for affordance learning. The learned probabilistic rules would have the
form x :: target ← body, where the target is represented, for example, by the
predicate affords(X, T) in the CT affordance learning problem and the body
is represented by the set of pre-grasp configurations w.r.t the object category,
pose, containment and task. The set of rules obtained are used to predict tar-
get predicates. We proceed with learning from entailment since our examples
are facts probabilistically entailed by the theory. This setting is incorporated
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in the probabilistic rule learner ProbFOIL+. It combines the principles of the
rule learner FOIL with the probabilistic Prolog called ProbLog [12] and is capa-
ble of learning probabilistic rules from probabilistic ground input facts. Because
ProbFOIL+ is a natural probabilistic extension of ILP and rule learning with
respect to probabilistic data, we employ it to learn relational affordances. Prob-
FOIL+ generalizes FOIL, nFOIL [15], mFOIL [13] and ProbFoil [8]. Its output
is a probabilistic classifier in the form of a set of generalized rules that return a
probabilistic target atom.

The ProbFOIL+ algorithm directly generalizes the mFOIL rule learner. It
follows a typical sequential covering approach where the outer loop of the algo-
rithm starts from an empty set of clauses and repeatedly adds clauses to the
hypothesis until no more improvements are observed with respect to some global
scoring function (e.g. accuracy, recall or F1-measure). The clause to be added
is obtained in a greedy manner by performing beam search using m-estimate
such that it maximizes a local scoring function using a refinement operator.
Each clause is learned in a greedy manner by performing beam search using m-
estimate as a local scoring function. What sets ProbFOIL+ apart from mFOIL is
its support for probabilistic data by generalizing the concepts of true/false pos-
itive/negative to a probabilistic context. In addition, it performs an additional
step of parameter learning that allows it to learn rules that express probabilistic
relationships.

While ProbLog and Prolog assume that the rules are definite clauses, in
ProbFOIL+ we use probabilistic rules. We note that all facts for such rules are
independent of one another, and the probability is determined by the rule learn-
ing algorithm. ProbFOIL+ uses versions of standard scoring functions for rule
learning. As the global scoring function, which determines the stopping criterion
of the outer loop, we use F1 measure. The local scoring function is based on the
m-estimate, a variant of precision that is more robust against noise in the train-
ing data. Both metrics are based on the number of examples correctly classified
as positive (true positives) and the number of examples incorrectly classified as
positive (false positives) which are upgraded for use in a probabilistic setting.
While in a deterministic setting, each example ei has a 1/0 target classification,
in ProbFOIL+ it has a probability value pi. This means that every example
contributes pi to the positive part of the dataset and (1 − pi) to the negative
part of the dataset, which generalizes the deterministic setting with pi = 1 for
positive and pi = 0 for negative examples. ProbFOIL+ defines the positive part
of a dataset of size M as P =

∑M
i=0 pi and the negative part as N =

∑M
i=0 1 − pi.

The same approach generalizes the predictions of a model to the probabilistic
setting where a hypothesis H will predict a value pH,i for example ei instead
of 0 or 1. In this way the rule learner uses a probabilistic version of the true
positive and false positive rates of the predictive model. If H overestimates the
target value of ei, that is, pH,i > pi then the true positive part will be maximal,
that is, equal to pi. The remaining part pH,i −pi, is part of the false positives. If
H underestimates the target value of ei then the true positive part is only pH,i
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and the remaining part pi − pH,i contributes to the false negative part of the
prediction.

In order to avoid learning large hypotheses with many clauses that only have
limited contributions, ProbFOIL+ uses a significance test, used also by mFOIL.
It is a variant of the likelihood ratio statistics. As a local stopping criteria for
finding a viable next candidate, the clause must have a refinement that has a
higher local score than the current best rule, has a significance that is high
enough (according to a preset threshold), and has a better global score than the
current rule set without the additional clause.

As input we provide ProbFOIL+ with the target predicate to be learned
(e.g. affords/2) and a description of the refinement operator in terms of mode
declarations. For example, task(+,+, c) indicates that the first two arguments
should be variables that already exist in the clause, and the third argument is to
be replaced by a constant. ProbFOIL+ then proceeds by iteratively extending
the clause with one literal, pruning the least promising candidates at each step,
until no more improvement can be made. We refer to the ProbFOIL+ paper for
more details.

5 Experiments

We experiment on task-dependent robotic grasping datasets for kitchen-related
scenarios introduced in [2]. We consider two datasets to quantitatively investigate
the robustness and power of generalization of ProbFOIL+ for learning grasping
affordances. The synthetic dataset denoted SSY N considers flawless detection
of objects from 3D meshes. The object points are distributed uniformly on the
object surface according to their size by applying the midpoint surface subdivi-
sion technique. The object pose, its parts and object containment are manually
labeled, while the object category is estimated using the global similarity classi-
fier in [2]. The dataset is synthetic and actual grasps are not executed. It contains
41 objects belonging to all categories in our ontology and 102 grasping scenar-
ios. This synthetic dataset serves as an upper-bound comparison scenario to the
other realistic scenarios and allows an extensive evaluation of the generalization
capabilities of the affordance learner.

The other dataset is obtained with the ORCA simulator [3] which provides
sensors (laser range camera Asus Xtion PRO and the Universal Gripper WSG
50 force sensor), the robotic arm (KUKA LightWeight Robot (LWR)), objects
and interface to a physics engine (Newton Game Dynamics library) for robot
grasping simulation. The other modules that we use on top of ORCA, i.e., object
completion, part and pose detection, category recognition and the tree-based
motion planner (available in the Open Motion Planning Library), are external
to ORCA and interfaced with the simulated robot. The datasets contain 25
objects belonging to all categories, except pot and cooking tool, and 134 grasping
scenarios. We assume all containers empty. Each object is placed on top of a
table. We obtain the dataset SREAL by estimating object pose, category and its
parts after the point cloud completion. It may have missing parts, when they
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are occluded or not detected, or extra parts according to the limitations of the
detection algorithm. The pose and parts have associated probabilities according
to the limitations of the detection algorithms.

Our goal is to investigate if we can recover affordances from labeled data and
to evaluate if these rules are good. In order to do so, we manually inspect the
learned rules for the 3 datasets and compare them against the affordance table.
Besides the number of correct rules recovered, we report recall, F1 measure,
accuracy which are calculated based on classified probabilistic examples. The
goal of this work is to focus on a more qualitative evaluation, and thus, we
use all available data for training. Reported evaluation results are obtained by
optimizing F1 measure on this data.

5.1 Results for Object Category-Task (CT) Affordances

We obtain CT affordances by specifying affords/2 as the learning target. This
gives a dataset of 714 examples for SSY N , and 882 examples for SREAL. As
input information we consider two settings. In a first setting we use only object
category, parts and task in order to asses the importance of the object cate-
gory for affordances. In the second setting we add the pose and containment as
well. Figure 5 shows part of learned rules on SSY N for the first input setting by
employing object fine-grained categories. A learned rule in the discovered set is
0.78 :: affords(A, B) ← category(A, cup), task(A, B, pourIn). We obtain 40 rules
out of which 38 are fine-grained affordance rules (from 44 possible cf. Fig. 3) and
an accuracy of 98% as Table 1 shows. We note that our dataset did not contain

Fig. 5. Examples of CT affordances learned for SSY N using object fine-grained cate-
gories (top) and super-categories (bottom).
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Table 1. Number of learned rules, accuracy, F1 and recall for fine-grained categories
and tasks. Input features used are object parts, category and executed task (without
pose and containment).

CT affordances CT constraints PCT affordances

Dataset SSY N SREAL SSY N SREAL SSY N SREAL

Number of rules 40 15 42 41 33 22

Accuracy % 98 98 97 85 95 93

F1 0.86 0.86 0.82 0.83 0.52 0.54

Recall 0.87 0.77 0.77 0.76 0.37 0.58

Table 2. Input information, besides object parts, category and executed task, includes
object pose and containment. Number of learned rules and accuracy are reported for
fine-grained categories and tasks.

CT affordances CT constraints PCT affordances

Dataset SSY N SREAL SSY N SREAL SSY N SREAL

Number of rules 51 16 39 52 81 21

Accuracy % 98 98 98 98 97 96

F1 0.89 0.89 0.86 0.84 0.83 0.62

Recall 0.79 0.80 0.77 0.89 0.76 0.52

positive targets for pot-pourIn and pan-pourIn. The other affordances were not
recovered because they depend also on the object initial pose and its contain-
ment. When we include them, the number of meaningful affordances learned
does not increase. The learner discovers more category-task-pose (specialized
CT affordances with the pose refinement), task-pose dependencies, but not new
category-task affordances. This indicates that the pose is not so relevant for the
CT pairs. The extra 2 input features do not notably impact the evaluation mea-
sures, which also proves, that the dataset, even synthetic, is not perfect. Next,
using super-categories, we can summarize the set of 38 fine-grained affordances
with 15 rules, while keeping the same accuracy, recall and F1-measure. Learned
supercategory-task affordances are more general, specifically cup, glass, bowl are
replaced by dish, bottle and can by canister, and hammer, screwdriver, cooking
tool and knife by tool. Examples of more general rules obtained by ProbFOIL+
are illustrated in Fig. 5.

For the realistic datasetwe can recover 35fine-grained affordances out of 39 pos-
sible (cf. Fig. 3without pot and cooking toolwhich are not included in the datasets)
forSREAL. We obtain 2 affordance rules for category pot which is not in the dataset
(according to Fig. 3 one is correct, the other not), but none for pickPlaceInUpside-
down. This is due to object misclassification. We note that 22 of these affordances
are summarized by 2 rules, i.e., 0.44 :: affords(X, T) ← task(X, T, pickPlaceOn)
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Fig. 6. Examples of learned CT affordances for SREAL using super-categories.

and 0.72 :: affords(X, T) ← task(X, T, pass). The body has only the task predi-
cate and no explicit object category predicate as the rule applies to all 11 object
categories. This is due to lack of negative examples.

By using super-categories, we can replace the set of fine-grained rule with 7
generalized rules keeping similar evaluation values. The obtained rules are more
general and can apply to new object categories. ProbFOIL+ does not learn again
any rules for task pickPlaceInUpsidedown and pourIn. Examples of general rules
using super-categories for SREAL are illustrated in Fig. 6.

5.2 Results for Object Category-Task (CT) Constraints

To obtain CT constraints we give as target predicate impossible/2. It rep-
resents the opposite of affords/2 probabilistically in the sense that what is
affordable with a very small probability it is impossible with a high probabil-
ity. We note that we obtain 42 constraint rules for SSY N and 41 for SREAL

using fine-grained categories, without pose and containment. When we include
the later 2 features, the model slightly improves in terms of rules, but also accu-
racy. A mistake that the learner returns is the constraint 0.8 :: impossible(X, T)
← task(X, T, pickPlaceInUpsidedown), category(X, cup). This constraint holds
only when the cup is full. If we include pose and containment, this constraint
is removed. Looking at the evaluation results as well, we note that for CT con-
straints the initial pose of the object and its containment play a fairly important
role. By using super-categories the learned affordance model reduces from 42
rules to 13 rules for SSY N while keeping similar accuracy, F1 and recall. For
SREAL we obtain 18 rules instead of 41 with better evaluation values.

5.3 Results for Object Part-Category-Task (PCT) Affordances

The target to be learned is grasp/3. This gives us a dataset of 2093 examples for
SSY N and 2674 for SREAL. Our setting considers as input information the task,
object category, parts and pose, since the part from which to grasp an object
for a given task highly depends on the pose as well, as Tables 1 and 2 show.
Experiments using ProbFOIL+ give us a grasping model of 81 affordance rules
for SSY N and 21 rules for SREAL. By introducing super-categories the grasp-
based models are generalized from 81 rules to 31 and from 21 to 17, respec-
tively, while keeping a close accuracy. A part-category-task affordance learned
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Fig. 7. Examples of PCT affordances learned for SSY N using super-categories and
super-tasks.

from SSY N is for example 0.8 :: grasp(A, B, C) ← part(A, C, usable area),
supercategory(A, tool), task(A, B, pass). More learned rules are illustrated in
Fig. 7.

5.4 Discussion

We note that learning PCT affordances is harder than learning CT affordances.
First, this is due to the fact that the problem considers an extra input feature,
i.e., the part, which adds additional noise. Although defined by hand, the SSY N

dataset is not perfect. There are many possible scenarios and constraints, and it
is difficult, even by hand, to define learning instances without noise. For example,
the containment, an input feature which is challenging to estimate and highly
influences object grasping is not thoroughly considered across scenarios. SREAL,
much noisier than SSY N , did not include the containment as input feature at
all, although it is taken into account when defining the ground-truth. This is
one of the reasons why the recall and F1 drop in Table 2 for SREAL compared
to SSY N , and this holds for Table 1 as well.

Second, it becomes harder for SREAL in the cases when the category was
wrongly predicted (we used as input only the most likely object category
although it is probably better to include the full object category distribution)
and when the pose is difficult to estimate (it was mostly assigned by chance). It
becomes difficult for SSY N in Table 1 as well, when the pose is not considered.
The object category and pose, as containment, play an important role.

6 Conclusions

Our previous experiments on robot grasping with respect to the intended high-
level task confirm the importance of high-level reasoning and world knowledge
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as opposed to using solely local shape information for robot grasping. The use
of affordances and object/task ontologies plays a key role in obtaining better
robot grasping. In this paper we propose a probabilistic rule learning approach
to learn rule-based affordances that generalize over similar object parts and
object/task categories and can be used to semantically reason in task-dependent
robot grasping. Our experiments show that we can learn different reliable rela-
tional affordances from realistic data.

Acknowledgements. Partial support from the CHIST-ERA ReGROUND project on
relational symbol grounding through affordance learning.
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FOIL. In: Proceedings of the 20th National Conference on Artificial Intelligence,
AAAI 2005, vol. 2, pp. 795–800. AAAI Press (2005)

16. Limketkai, B., Liao, L., Fox, D.: Relational object maps for mobile robots. In:
IJCAI, pp. 1471–1476 (2005)

17. Madry, M., Song, D., Ek, C.H., Kragic, D.: “Robot bring me something to drink
from”: object representation for transferring task specific grasps. In: ICRA Work-
shop on Semantic Perception, Mapping and Exploration, pp. 1–6 (2012)

18. Madry, M., Song, D., Kragic, D.: From object categories to grasp transfer using
probabilistic reasoning. In: ICRA, pp. 1716–1723 (2012)

19. Moldovan, B., Antanas, L., Hoffmann, M.E.: Opening doors: an initial SRL app-
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Abstract. Many applications, such as knowledge base completion and
automated diagnosis of patients, only have access to positive examples
but lack negative examples which are required by standard relational
learning techniques and suffer under the closed-world assumption. The
corresponding propositional problem is known as Positive and Unlabeled
(PU) learning. In this field, it is known that using the label frequency (the
fraction of true positive examples that are labeled) makes learning easier.
This notion has not been explored yet in the relational domain. The goal
of this work is twofold: (1) to explore if using the label frequency would
also be useful when working with relational data and (2) to propose a
method for estimating the label frequency from relational positive and
unlabeled data. Our experiments confirm the usefulness of knowing the
label frequency and of our estimate.

1 Introduction

Relational classification traditionally requires positive and negative examples to
learn a theory. However, in many applications, it is only possible to acquire
positive examples. A common solution to this issue is to make the closed-world
assumption and assume that unlabeled examples belong to the negative class.
In reality, this assumption is often incorrect, for example: knowledge bases are
incomplete [1], diabetics often go undiagnosed [2] and people do not bookmark
all interesting pages. Considering unlabeled cases as negative is therefore sub-
optimal. To cope with this, several score functions have been proposed that use
only positive examples [3–5].

In propositional settings, having training data with only positive and unla-
beled examples is known as Positive and Unlabeled (PU) learning. It has been
noted that if the class prior is known, then learning in this setting is greatly
simplified. Specifically, knowing the class prior allows calculating the label fre-
quency, which is the probability of a positive example being labeled. The label
frequency is crucial as it enables converting standard score functions into PU
score functions that can incorporate information about the unlabeled data [6].
Following this insight, several methods have been proposed to estimate the label
frequency from PU data [7–10]. To the best of our knowledge, this notion has
not been exploited in relational settings. We propose a method to estimate the
c© Springer International Publishing AG, part of Springer Nature 2018
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label frequency from relational PU data and a way to use this frequency when
learning a relational classifier.

Our main contributions are: (1) Investigating the helpfulness of the label
frequency in relational positive and unlabeled learning by extending two common
relational classifiers to incorporate the label frequency; (2) Modifying TIcE, a
method for estimating the label frequency in PU data, to operate with relational
data, and (3) Evaluating our approach experimentally.

The paper is organized as follows: Sect. 2 gives an overview of related work.
A general background on PU learning and how the label frequency simplifies
this problem is presented in Sect. 3. Section 4 discusses how the label frequency
can be estimated from PU data. The helpfulness of the label frequency and our
method to estimate it from the data are empirically evaluated in Sect. 5. Finally,
we conclude in Sect. 6.

2 Related Work

Positive and Unlabeled Learning has been studied mostly in propositional con-
texts. The proposed methods fall into four categories of approaches. The first
and most straightforward approach is to use standard machine learning tech-
niques and just assuming all the unlabeled examples to be negative. The second
approach is to look for examples that are very different from the labeled ones
and label these as negative. Subsequently, semi-supervised learning methods can
be applied [11–15]. The third approach is to formulate an evaluation metric that
has only positive or positive and unlabeled data as input and use this for tuning
class weights or regularization settings [16–19]. The fourth approach is the app-
roach considered in this paper. It explicitly uses the label frequency to modify
traditional classification algorithms [6,20–23].

In order to use the label frequency, it needs to be given as input. Note that
the label frequency can be calculated from the class prior, because the proportion
of labeled data is directly proportional to the class prior with the label frequency
as the proportionality constant. The class prior could be known from domain
knowledge or it could be estimated from a smaller fully labeled dataset. Because
this knowledge or data is often not available, several methods have been proposed
to estimate it directly from the positive and unlabeled data [6–10,24].

A few relational positive and unlabeled learning methods exist. The method
proposed by Muggleton follows the third positive and unlabeled learning app-
roach and searches for the smallest hypothesis which covers all the positive exam-
ples [3]. If the underlying concept is complicated, this is likely to overgeneralize.
RelOCC is a positive and unlabeled classification method that incrementally
learns a tree-based distance measure which measures the distance to the posi-
tive class [25]. The SHERLOCK system is also related because it learns rules
from positive examples by evaluating the rules on their statistical relevance and
significance, however, it does not utilize the unlabeled data [5].

Knowledge base completion is inherently a positive and unlabeled problem:
all the examples that are already in the knowledge base are positive and all the
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additional facts that could be included are unlabeled [26]. However, many meth-
ods make a closed world assumption when learning models from the original
knowledge base and assume everything that is not present to be false [27–30].
Recently, a new score function for evaluating knowledge base completion rules
was proposed [1]. It approximates the true precision of a rule by assuming that
the coverage of a rule is equal for labeled and unlabeled positives and by esti-
mating the functionality of the relation.

3 PU Learning and the Label Frequency

This section gives some background on PU learning and how the label frequency
is used to simplify learning. The methods for using the label frequency are then
applied to popular relational classifiers. Table 1 presents the terminology used
throughout the paper.

3.1 Positive Unlabeled (PU) Learning

In traditional binary classification, learners are supplied with two types of exam-
ples: positive and negative ones. When learning from positive and unlabeled data,
commonly referred to as PU learning, there are also two types of examples: pos-
itively labeled and unlabeled ones, where the latter can be either positive or
negative.

In PU Learning, the labeled positive examples are commonly assumed to be
‘selected completely at random’ [6,20–22,31]. This means that the probability
c = Pr(s = 1|y = 1) for a positive example to be labeled is constant, which is
the same for every positive example. The constant c is called the label frequency.
Implicit techniques to employ the ‘selected completely at random’ property are
to give more weight to the positive class or to model more noise in the negative
class [16–18]. It can also be used explicitly by taking the label frequency into
account when training a model [6,20,22,31], which greatly simplifies learning

Table 1. Description of terminology used in the paper.

Term Description

y Indicator variable for an example to be positive

s Indicator variable for an example to be labeled

c Label frequency Pr(s = 1|y = 1)

ĉ Estimate of the label frequency

P (Estimated) number of positive examples

N (Estimated) number of negative examples

L Number of labeled examples

U Number of unlabeled examples

T Total number of examples
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because traditional classifiers can be adjusted to incorporate it in a straightfor-
ward manner. This is well-established knowledge for propositional PU learning,
however, to the best of our knowledge, using the label frequency has not been
investigated yet for relational PU learning. We briefly review some of the propo-
sitional methods and discuss how they can be adjusted to the relational setting.

3.2 Using the Label Frequency to Simplify PU Learning

Elkan and Noto propose to use the label frequency directly to modify tradi-
tional classifiers for PU learning [6]. Concretely, they proposed the following two
methods:

1. Probabilistic classifier modification: This method trains a probabilistic
classifier to predict the probability for instances to be labeled. To this end,
during training, it considers unlabeled examples as negative. The label fre-
quency is then employed to modify the output probabilities. It transforms the
probability that an instance is labeled Pr(s = 1|x) into the probability that an
instance is positive: Pr(y = 1|x) = 1

c Pr(s = 1|x) [22]. This modified classifier
can be used directly or to transform the PU dataset into a probabilistically
weighted PN dataset.

2. Score function modification: Learning algorithms that make decisions
based on counts of positive and negative examples data subsets i can be
modified to use counts of labeled and unlabeled examples. The positive and
negative counts Pi and Ni can be obtained with Pi = Li/c and Ni = Ti − PI .
Decision trees, for example, assign classes to leaves and score splits based on
the positive/negative counts in the potential subsets and can, therefore, be
transformed to PU learners [23].

In this paper, we demonstrate how to use these two methods in the relational
domain. The proposed solutions c-adjusted TILDE and c-adjusted Aleph are
described below.

Relational Probabilistic Classifier Modification: c-adjusted TILDE.
The first method for using the label frequency requires a probabilistic classi-
fier which predicts the probability that an instance is labeled. The first-order
logical decision tree learner TILDE can easily be made probabilistic. Doing so
simply requires counting for each leaf i the number of labeled Li and unlabeled
examples Ui that reach i setting the leaf’s probability to Li

Ui+Li
[32]. The tree

that predicts the probability for instances to be positive has the same struc-
ture as the tree for distinguishing between labeled and unlabeled example, but
requires altering the probability in each of its leaves. The new probability in
each leaf i is 1

c
Li

Ui+Li
, where Li and Ui are defined as above.

Relational Score Function Modification: c-adjusted Aleph. The second
method for using the label frequency requires a classifier that makes decisions
based on the counts Ni and Pi in a subset of the data i. TILDE satisfies this
criterion, and so does the rule learner Aleph [33]. The default evaluation function
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of Aleph is coverage, which is defined as Pi−Ni, where i is the subset of examples
that satisfy the rule. To modify Aleph to use the label frequency c, the coverage
for each rule r should be calculated as follows:

PU coverage = Pi − Ni = 2Pi − Ti = 2
Li

c
− Ti (1)

where Li is the number of labeled (i.e., positive) examples covered by the rule
and Ti is the total number of examples covered by the rule.

4 Label Frequency Estimation

To estimate the label frequency in relational PU data, we will use the insights
of a propositional label frequency estimator. We first review the original method
and then propose a relational version.

4.1 Label Frequency Estimation in Propositional PU Data

The propositional estimator is TIcE [10]. It is based on two main insights: (1)
a subset of the data naturally provides a lower bound on the label frequency,
and (2) the lower bound of a large enough positive subset approximates the real
label frequency. TIcE uses decision tree induction to find likely positive subsets
and estimates the label frequency by taking the maximum of the lower bounds
implied by all the subsets in the tree.

The label frequency is the same in subsets of the data because of the ‘selected
completely at random’ assumption, therefore it can be estimated in a subset of
the data. Clearly, the true number of positive examples Pi in a subset i cannot
exceed the total number of examples in that subset Ti. This naively implies a
lower bound: c = Li/Pi ≥ Li/Ti. To take stochasticity into account, this bound
is corrected with confidence 1−δ using the one-sided Chebyshev inequality which
introduces an error term based on the subset size:

Pr

(
c ≤ Li

Ti
− 1

2

√
1 − δ

δTi

)
≤ δ (2)

The higher the ratio of positive examples in the subset, the closer the bound
gets to the actual label frequency. The ratio of positive examples is unknown, but
directly proportional to the ratio of labeled examples. Therefore, TIcE aims to
find subsets of the data with a high proportion of labeled examples using decision
tree induction. To avoid overfitting, i.e. finding subsets i where Li/Pi > c, k folds
are used to induce the tree and estimate the label frequency on different datasets.

The parameter δ is set such that at least one tenth of the data or 1000
examples are needed to estimate the label frequency with an error term of 0.1:
1/2

√
(1 − δ)/(δTR) = 0.1, with TR = min[T/10, 1000]. This imposed by

δ = max
[
0.025,

1
1 + 0.004T

]
(3)
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4.2 Label Frequency Estimation in Relational PU Data

We propose TIcER (Tree Induction for c Estimation in Relational data). The
main difference with TIcE is that it learns a first-order logical decision tree using
TILDE [32]. Each internal node splits on the formula which locally optimizes the
gain ratio, considering the unlabeled examples as negative. The examples that
satisfy the formula go to the left, the others to the right. Each node in the tree,
therefore, specifies a subset of the data, and each subset implies a lower bound
on the label frequency through (2). The estimate for the label frequency is the
maximal lower bound implied by the subsets:

ĉ = max
i∈subsets

[
Li

Ti
− 1

2

√
1 − δ

δTi

]
(4)

To prevent overfitting, k folds are used to induce the tree and estimate the
label frequency on different datasets. With relational data, extra care should be
taken that the data in different folds are not related to each other. The final
estimate is the average of the estimates made in the different folds.

5 Experiments

Our goal is to evaluate if knowing the label frequency makes learning from
relational PU data easier and if TIcER provides a good estimate of the label
frequency. More specifically, we will answer the following questions:

Q1: Does c-adjusted TILDE, the proposed relational probabilistic classifier
modification method, improve over classic TILDE when faced with PU data
and how sensitive is it to the correctness of ĉ?

Q2: Does c-adjusted Aleph, the proposed relational score function modifica-
tion method, improve over classic Aleph when faced with PU data and how
sensitive is it to the correctness of ĉ?

Q3: How well does TIcER estimate the label frequency? In which cases does it
perform better or worse?

Q4: How do label frequency adapted methods compare with Muggleton’s
PosOnly method?

5.1 Datasets

We evaluate our approach on four commonly used datasets for relational classi-
fication (Table 2). All datasets are available on Alchemy1, except for Mutagene-
sis.2 The classes of WebKB are disjunctive concepts. Person contains web pages
from students, faculty and staff and Other contains web pages from depart-
ments, courses, and research projects. To get an intuition of the complexity

1 http://alchemy.cs.washington.edu/data/.
2 http://www.cs.ox.ac.uk/activities/machlearn/mutagenesis.html.

http://alchemy.cs.washington.edu/data/
http://www.cs.ox.ac.uk/activities/machlearn/mutagenesis.html
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Table 2. Characteristics of the Datasets

Datasets #Examples Class 1 (#) Class 2 (#) # Folds

IMDB 268 Actor (236) Director (32) 5

Mutagenesis 230 Yes (138) No (92) 5

UW-CSE 278 Student (216) Professor (62) 5

WebKB 922 Person (590) Other (332) 4

Table 3. Dataset complexities: The complexities of the models that are trained on
the complete and fully labeled datasets. For TILDE, the number of splits in the tree is
shown. For Aleph, the number of rules is reported and the average rule length is given
in parentheses.

Dataset TILDE Aleph Class1 Aleph Class2

IMDB 1 1 (1) 1 (1)

Mutagenesis 6 7 (2.29) 8 (2.25)

UW-CSE 3 5 (1) 5 (1.4)

WebKB 33 32 (3.19) 38 (2.08)

of the concepts to be learned, Table 3 shows how big the TILDE and Aleph
models are if they are trained on the complete dataset with labels for all exam-
ples. The datasets were converted to PU datasets by selecting some of the posi-
tive examples at random to be labeled. The labeling was done with frequencies
c ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Each has five different random labelings.

5.2 Methods

For our experiments we used the following PU classifiers:

– c-adjusted TILDE, as described in Sect. 3.2.
– c-adjusted Aleph, as described in Sect. 3.2.
– Aleph, taking unlabeled examples as negative (ĉ = 1)
– TILDE, taking unlabeled examples as negative (ĉ = 1)
– PosOnly: Muggleton’s approach, implemented in Aleph [3].3

All classifiers, including TILDE when used for TIcER, use standard settings,
with the exceptions of requiring PosOnly rules to cover at least two example and
allowing infinite noise and exploration in Aleph.

For the c-adjusted methods, an estimate of the label frequency c is required.
This estimate ĉ can be the correct label frequency c or the estimate obtained
by our method TIcER. For the sensitivity experiments, the ĉ is varied in c ± Δ
with Δ ∈ {0, 0.05, 0.15, 0.25}. The naive baseline where unlabeled examples are

3 http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph.

http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph
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considered to be negative can be seen as a special case of the c-adjusted methods
with ĉ = 1.

k-fold cross-validation was applied for validation, i.e., k − 1 folds were used
for learning the classifier and the other fold to evaluate it. TIcER also needs
folds for estimation, it used 1 fold for inducing a tree and the other k − 2 folds
for bounding the label frequency.

The classifiers are compared using the F1 score and the average absolute
error of the estimated cs are reported.

5.3 c-adjusted TILDE: Performance and Sensitivity to ĉ

This section aims to answer Q1: Does c-adjusted TILDE, the proposed relational
probabilistic classifier modification method, improve over classic TILDE when
faced with PU data and how sensitive is it to the correctness of ĉ? To this end,
TILDE was adjusted with different estimates for the label frequency that deviate
from the true label frequencies with fixed values Δ. The adjusted versions are
compared to the naive method which considers unlabeled examples as negative,
i.e., ĉ = 1. The results are presented in Fig. 1.

As expected, taking the label frequency into account improves the classifier.
A striking observation is that overestimates of the label frequency c can severely

Fig. 1. TILDE sensitivity to c. Taking the label frequency into account clearly
improves the classifier. The F1 does decrease as fewer labeled examples are provided.
It is striking that underestimates and overestimates of the label frequency have very dif-
ferent effects on the performance. c-adjusted TILDE is very sensitive to overestimates,
but not to underestimates. In fact, in some cases it even benefits from underestimates!
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degrade performance, while underestimates may even improve performance. This
is because of the modification method: only the leaf probabilities are altered.
Therefore, an underestimate makes leaves with at least one labeled example
more likely to classify instances as positive, while leaves without any labeled
examples will always classify instances as negative.

5.4 c-adjusted Aleph: Performance and Sensitivity to ĉ

This section aims to answer Q2: Does c-adjusted Aleph, the proposed relational
score function modification method, improve over classic Aleph when faced with
PU data and how sensitive is it to the correctness of ĉ? To this end, Aleph was
adjusted with different estimates for the label frequency that deviate from the
true label frequencies with fixed values Δ. The adjusted versions are compared
to the naive method which considers unlabeled examples as negative, i.e., ĉ = 1.
The results are presented in Fig. 2.

Taking the label frequency into account drastically improves the classifier:
the F1 score barely drops when the label frequency decreases. In most cases,
a reasonable approximation of the label frequency yields an equivalent perfor-
mance to using the true label frequency. Two exceptions are (1) when there
are few positive examples in the fully labeled dataset, and (2) when the target

Fig. 2. Aleph sensitivity to c. Considering the label frequency clearly substantially
improves the classifier: as the number of labeled examples decreases, the F1 score
barely drops. Aleph is not very sensitive to the label frequency c, except when there
are few positive examples to start with (IMDB-director and UW-CSE-Prof) or when
the target concept is complex (WebKB). Even in these cases, a bad estimate for the
label frequency is better than taking the unlabeled examples as negative (ĉ = 1).
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concept is very complex. But even in these cases, the performance does not suf-
fer that much, especially when compared to simply assuming that all unlabeled
examples belong to the negative class.

5.5 TIcER Evaluation

This section aims to answer Q3: How well does TIcER estimate the label fre-
quency? In which cases does it perform better or worse? To this end, TIcER was
used to estimate the label frequency c and compared to the true label frequency
in all the training folds of all the datasets. Based on the theory, it is expected
that TIcER works well when it can find subsets in the dataset that are purely
positive and contain a sufficient number of examples. To check this, the maximal
proportion of true positives over all the used subsets was recorded for each set-
ting. We could look at the size of this purest subset to check if a large subset is
found. However, the purest subset could be very small and another subset that
is almost as pure could be very big. Therefore, we recorded the largest subset
that is at least 90% as pure as the purest subset. Figure 3 shows the averaged
absolute error |ĉ− c|, purity max(Pi/Ti) of the purest subset i and size Tj of the
largest subset j with purity close to that of the purest subset, for different label
frequencies c. Figures 4 and 5 compare the performance of TILDE and Aleph
respectively when adjusted with the TIcER estimate, the true label frequency
and without adjusting it.

TIcER gives reasonable results most of the time. The experiments confirm
our expectations: it performs worse when it fails to find subsets with a high ratio
of positive examples or when the subsets contain few examples. Although the

Fig. 3. Label Frequency Estimates. The estimate is expected to be good if a large
enough subset with a high proportion of positives was found, this is confirmed by the
experiments. For example, the worst results, for UW-CSE (Prof), are explained by the
low positive proportions. Subset i is the subset with the maximum purity and subset
j is the largest subset that is at least 90% as pure.
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Fig. 4. TIcER-adjusted TILDE. Adjusting TILDE with the TIcER estimate gives
very similar results to adjusting it with the true label frequency, sometimes even better.
This is explained by TIcER giving underestimates.

Fig. 5. TIcER-adjusted Aleph. Adjusting Aleph with the TIcER estimate gives for
most cases similar results to adjusting it with the true label frequency. It performs
worse for the datasets where Aleph is very sensitive to c. UW-CSE-Prof is doubly
problematic because it is both sensitive to the label frequency and the most difficult
dataset for TIcER.
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estimates are not perfect, they still can improve the performance of TILDE and
Aleph. Most of the time, the performance using the estimated label frequency
is close to the performance of using the true label frequency. TILDE even gives
better results with the estimate than with the true label frequency, this is because
TIcER estimates the label frequency by looking for the maximum lower bound
and hence tends to give underestimates. Aleph performs worse for the cases where
it is sensitive to the label frequency. This is notably the case for UW-CSE.

5.6 Method Comparison

This section aims to answer Q4: How do label frequency adapted methods
compare with Muggleton’s PosOnly method? To this end, we compare TIcER-
adjusted TILDE and Aleph with PosOnly. The results are presented in Fig. 6.

The label frequency indeed makes learning from PU data easier, as it gives
similar or better results than PosOnly. It is especially interesting that for the
most complex dataset (WebKB) PosOnly is outperformed. The label frequency-
based methods are only outperformed when there are exceptionally few labeled
examples or no close-to-pure subsets in the data. Because using the label

Fig. 6. Comparison of methods. In most cases, the methods give similar results,
which supports the claim that using the label frequency simplifies PU learning, also
in the relational domain. It is interesting to see that for the most complex dataset
(WebKB) Muggleton’s PosOnly is outperformed. The only situations where any of
the c-adjusted methods perform significantly worse than PosOnly are those with an
extremely small number of labeled examples (IMDB-Director with low label frequency)
or when the estimate is extremely bad because of the lack of pure positive subsets
(UW-CSE)
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frequency adjust existing methods, it can benefit from any advancements and
optimizations made to traditional classifiers.

6 Conclusions

For propositional PU classification tasks, it has long been known that knowing
the label frequency greatly simplifies the problem. We transferred this idea to
the relational classification tasks and make the same conclusion here. Adjusting
established classifiers such as TILDE and Aleph in very simple ways perform
equally well as Muggleton’s PosOnly method. For the most complex dataset,
PosOnly is even outperformed. Because only small adjustments in traditional
classifiers are needed, this PU classification method will improve as traditional
classifiers improve.

When the label frequency is unknown, it needs to be estimated from the
positive and unlabeled data. We propose a TIcER, a relational version of TIcE,
which employs decision trees to find pure positive subsets in the data and uses
these to estimate the label frequency. This method works well when it can find
highly positive subsets of the data that contain enough examples.
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Abstract. Medical data is particularly interesting as a subject for rela-
tional data mining due to the complex interactions which exist between
different entities. Furthermore, the ambiguity of medical imaging causes
interpretation to be complex and error-prone, and thus particularly
amenable to improvement through automated decision support. Proba-
bilistic Inductive Logic Programming (PILP) is a particularly well-suited
tool for this task, since it makes it possible to combine the relational
nature of this field with the ambiguity inherent in human interpretation
of medical imaging. This work presents a PILP setting for breast cancer
data, where several clinical and demographic variables were collected ret-
rospectively, and new probabilistic variables and rules reflecting domain
knowledge were introduced. A PILP predictive model was built automat-
ically from this data and experiments show that it can not only match
the predictions of a team of experts in the area, but also consistently
reduce the error rate of malignancy prediction, when compared to other
non-relational techniques.

1 Introduction

Probabilistic Inductive Logic Programming (PILP) is a subset of Statistical Rela-
tional Learning (SRL) that handles statistical information by using a probabilis-
tic first-order logic language to represent data and their induced models. This
technique merges technologies from the SRL and Inductive Logic Programming
(ILP) [19] fields in order to automatically compose theories as understandable
First Order Logic (FOL) sentences based on data annotated with probabilistic
information. PILP manipulates structured representations of data so as to cap-
ture the logic relations that lie beyond the low-level features and reason about
them by learning the (logical) structure of the data inductively.

The unique ability to combine the expressiveness of FOL rules with a degree
of uncertainty makes PILP methods particularly well-suited to be applied in
medical domains. Expert knowledge regarding the problem setting can be coded
as facts or rules with varying frequencies or degrees of belief [15], and subse-
quently be used during the knowledge extraction stage to generate the final
model. In addition, this final model also consists of a FOL theory which explains
the behaviour of the system, and is easily interpretable by human experts (even
though it may also be used to perform prediction over new examples).
c© Springer International Publishing AG, part of Springer Nature 2018
N. Lachiche and C. Vrain (Eds.): ILP 2017, LNAI 10759, pp. 31–45, 2018.
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Breast cancer is one of the most common forms of cancer and mammograms
are the most commonly used technique to detect patients at risk. Image-guided
core needle biopsy of the breast is then performed to decide on surgery. Biopsy
is a necessary, but also aggressive, high-stakes procedure. The assessment of
malignancy risk following breast core biopsy is imperfect and biopsies can be
non-definitive in 5–15% of cases [2]. In particular, the dataset used in this work
consists of demographic-related variables and information about the biopsy pro-
cedure and BI-RADS (Breast Imaging Reporting and Data System) [12] anno-
tations, as well as domain knowledge annotated both prospectively and retro-
spectively by experts of three different areas: mammography, biopsy surgery and
biopsy pathology. Using an automated decision support system is conducive to
rigorous and accurate risk estimation of rare events and has the potential to
enhance clinician decision-making and provide the opportunity for shared deci-
sion making with patients in order to personalize and strategically target health
care interventions.

This work proposes a PILP decision support system targeted to this breast
cancer setting. Contrary to other decision support systems, well-known in the
literature (for example, Bayesian-based or SVM-based), the model proposed in
this work combines probabilistic data with first order logic in order to produce
both probabilistic outputs and human interpretable rules. The proposed setting
includes experts’ domain knowledge as (i) probabilistic rules in the background
and (ii) probabilistic target values for examples. Experiments show that incor-
porating this domain knowledge in the model results in automated predictions
which are statistically similar to those of a multidisciplinary team of human
experts. Furthermore, the rules produced by the decision support system are
human interpretable and relevant to the domain, which can help clinicians assess
new cases.

2 Probabilistic Inductive Logic Programming

Introducing probabilistic information in a FOL setting allows for modelling facts
or rules which are believed to be true to some degree or with a given frequency (as
opposed to crisp true or false statements), which results in a closer representation
of reality. Probabilities in a logic setting can also be used in cases where all the
data were not gathered, since rules containing some information (if available from
other sources) can be taken into account when building the final theory model.
Additionally, in cases where there are privacy concerns, a similar approach can
be used to avoid using the patient instances explicitly, while still considering
some of the information contained in the original data.

More formally, PILP is a machine learning technique which learns predictive
models from a set of probabilistic logic facts and rules. Like ILP, PILP uses
a set of Probabilistic Examples (PE) and additional probabilistic logical infor-
mation about the domain, the Probabilistic Background Knowledge (PBK), to
find a model that explains the probabilistic examples. The PBK is a description
of observed data composed of Horn clauses that can be annotated with prob-
abilistic information known a priori. If not annotated, it is assumed that their
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probabilistic value is 1. The PE represent the observations that the system is
attempting to explain. They also have probabilistic values a priori. Good models
will approximate the probabilistic examples values with minimum error.

In this work, probabilities are annotated according to ProbLog’s syntax, using
possible world semantics [11]. Each fact pj :: cj in the PBK represents an inde-
pendent binary random variable in ProbLog, meaning that it can either be true
with probability pj or false with probability 1− pj . This means that each prob-
abilistic fact introduces a probabilistic choice in the model. Each set of possible
choices over all facts of the PBK represents a possible world ωi, where ω+

i is the
set of facts that are true in that particular world, and ω−

i = ωi \ ω+
i is the set

of facts that are false. Since these facts have a probabilistic value, a ProbLog
program defining a probabilistic distribution over the possible worlds can be
formalized as shown in Eq. 1.

P (ωi) =
∏

cj∈ω+
i

pj

∏

cj∈ω−
i

(1 − pj) (1)

A ProbLog query q is said to be true in all worlds wq where wq |= q, and
false in all other worlds. As such, the success probability of a query is given by
the sum of the probabilities of all worlds where it is found to be true, as denoted
in Eq. 2.

P (q) =
∑

ωi|=q

P (wi) (2)

PILP systems learn models in the form of probabilistic logic programs.
The theories used to explain examples in PILP are built from the literals that

are present in the program’s PBK. The rule (AND) search space is composed by
all Rules whose body contains one or more of those literals. Rules can be com-
bined using logical conjunction to form longer more specific rules. Let Literals
be the set of distinct literals in the PBK. The AND search space is then the
power set of Literals, P(Literals).

The theory (OR) search space can be defined in a similar way. Theories are
formed by combining a set of distinct rules using logical disjunction. In the same
way that literals are the building blocks of rules, rules are the building blocks of
theories. Adding a rule to a theory makes it more general. The OR search space
is then the set of all theories Theories such that Theories = P(Rules).

Fully exploring the PILP search space is equivalent to evaluating all theories
in order to determine the best theory according to a given metric. This can be
done in two steps: (i) exploring the AND search space, and (ii) exploring the
OR search space. Algorithm 1 presents this procedure.

Algorithm 1 explores the AND search space in a direction of increasing speci-
ficity. It starts out by generating rules containing only one literal, using the mode
declarations (line 2), and then uses these rules to generate combinations, which
are possible according to the language bias, for the next iteration (lines 5–8),
and removing the redundant rules. The combination process is repeated until it
yields no new rules, or until the number of literals in the rules is greater than



34 J. Côrte-Real et al.

Algorithm 1. PILP search space(PBK , PE , MaxRuleLen,MaxTheoryLen)
1: Rall = ∅
2: R1 = generate rules one literal(PBK,PE)
3: Rnew = R1

4: Rlen = 1
5: while Rnew �= ∅ and RLen ≤ MaxRuleLen do
6: Rall = Rall ∪ Rnew

7: Rnew = {r1 ∧ rnew | (r1, rnew) ∈ R1 × Rnew}
8: Rlen = Rlen + 1
9: Tall = ∅

10: T1 = Rall

11: Tnew = T1

12: Tlen = 1
13: while Tnew �= ∅ and TLen ≤ MaxTheoryLen do
14: Tall = Tall ∪ Tnew

15: Tnew = {t1 ∨ tnew | (t1, tnew) ∈ T1 × Tnew}
16: Tlen = Tlen + 1
17: return Tall

a pre-defined maximum number of literals. The set of initial theories T1 is then
populated with all rules in Rall (line 10). Similarly to the AND search space,
T1 is used to generate new theories Tnew through combination using logical dis-
junction (lines 13–16). This process is analogous to the exploration of the AND
search space.

3 Methodology

Breast cancer is one of the most common forms of cancer. Mammograms are
the most commonly used technique to detect patients at risk. Image-guided
core needle biopsy of the breast is then performed to decide on surgery. Biopsy
is a necessary, but also aggressive, high-stakes procedure. The assessment of
malignancy risk following breast core biopsy is imperfect and biopsies can be
non-definitive in 5–15% of cases [2–4,14,17,18].

A non-definitive result means that the chance of malignancy remains high due
to possible sampling error (i.e., the obtained biopsy is not representative of the
suspicious finding), for which surgical excisional biopsy or aggressive radiologic
follow-up is proposed. Non-definitive biopsies may therefore result in missed
breast cancers (false negatives) and unnecessary interventions (false positives).
In the US, the women over the age of 20 years have an annual breast biopsy
utilization rate of 62.6 per 10,000 women, translating to over 700,000 women
undergoing breast core biopsy in 2012. As a result of non-definitive biopsies,
approximately 35,000–105,000 of these women will require additional biopsies or
follow-up secondary to judged inadequacy of breast core biopsy.
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Interpretation can be complex and error-prone, and thus particularly
amenable to improvement through automated decision support, where rigor-
ous and accurate risk estimation of rare events have the potential to enhance
clinician decision-making and provide the opportunity for shared decision mak-
ing with patients in order to personalize and strategically target health care
interventions.

The dataset used for this experiment contains anonymised data from 130
biopsies dating from January 2006 to December 2011, collected from the School
of Medicine and Public Health of the University of Wisconsin-Madison. The data
was prospectively given a non-definitive diagnosis at radiologic-histologic corre-
lation conferences. 21 cases were determined to be malignant after surgery, and
the remaining 109 proved to be benign. For all of these cases, several sources
of variables were systematically collected including variables related to demo-
graphic and historical patient information (age, personal history, family history,
etc.), mammographic BI-RADS descriptors (like mass shape, mass margins or
calcifications), pathological information after biopsy (type of disease, if it is inci-
dental or not, number of foci, and so on), biopsy procedure information (such
as needle gauge, type of procedure), and other relevant facts about the patient.

Probabilistic data was then added to (i) the Probabilistic Examples (PE)
and (ii) the Probabilistic Background Knowledge (PBK). In the first instance,
the confidence in malignancy for each case (before excision) is associated with
the target predicate is malignant/1. The chance of malignancy is an empirical
confidence value assigned by a multidisciplinary group of physicians who meet to
discuss and reach an agreement about each case. Thus, the target probabilities
of examples represent the perceived chance of malignancy for each patient. A
high probability indicates the team of physicians thinks the case is most likely
malignant, and conversely a low probability indicates the case is most likely
benign. This probabilistic value was then added to the probabilistic examples
and a sample of the PE is presented next:

Each example is a patient case and the three examples above are part of the
PE used in this experiment (one per line). Each example has two arguments,
the first being the target predicate is malignant/1 concerning a particular case
(case1, case2, or case3) and the second the chance of malignancy of this case
(10% for case1, 15% for case2, and 1% for case3).

Regarding the domain knowledge incorporated in the PBK, breast cancer
literature values were used to complement the information on the character-
istics of masses, since physicians rely on these values to perform a diagnosis.
For example, it is well known among radiology experts in mammography that
if a mass has a spiculated margin, the probability that the associated find-
ing is malignant is around 90%. The same kind of information is available in



36 J. Côrte-Real et al.

Fig. 1. Probabilistic information from the literature regarding mass shape

Fig. 2. Probabilistic information from the literature regarding mass margin

the literature for mass shape or mass density (all part of the BIRADS terms).
Figures 1, 2, and 3 show how these variables are encoded in the PBK, (the nota-
tion is probability value::relation(...)...). Figure 1 encodes the proba-
bilistic information regarding mass shape obtained from the literature. There
are three possible rules, each one applicable to a particular kind of shape (oval,
round, or irregular). A rule of this type can be read as IF this Case has a Mass
AND the Mass is of type Shape THEN this feature exists with probability P. The
probability value annotated in each rule is the frequency with which a mass
whose shape is of that type is malignant. Independent rules such as the ones
presented in Fig. 1 are not mutually exclusive. This means that a finding may
have simultaneously an oval and round mass shape, for instance. Given that
possible world semantics is used to encode these rules, the probability of two
rules occurring simultaneously is given by the product of their probabilities. For



On Applying Probabilistic Logic Programming to Breast Cancer Data 37

Fig. 3. Probabilistic information from the literature regarding mass density

Fig. 4. A PILP model for the target predicate is malignant/1

instance, the probability that a mass has both an oval and round shape is equal
to 0.05 × 0.50 = 0.025.

Similarly, Fig. 2 also encodes independent rules, each for a characteristic of
the mass margin. In this case it becomes obvious that both the microlobulated
and spiculated margins have a high correlation with malignancy in the literature,
given their high probability of malignancy (70% and 90% respectively).

Figure 3 differs from Fig. 1 and Fig. 2 in that it encodes three mutually exclu-
sive possibilities for the mass density: low, equal, or high (note the new operator
“;” for disjunction). The probability of malignancy from the literature is encoded
in the top three lines, which can be read as IF the density of Mass is low, the
probability of malignancy is 5%; ELSE IF the density of the Mass is equal, the
probability of malignancy is 10%; ELSE IF the density of the Mass is high, the
probability of malignancy is 50%. The density rule is then constructed based on
the mutual exclusivity introduced by the density/1 fact above.

PILP models produce classifiers which are composed by a set of FOL rules,
learnt automatically from the data, that represent a disjunctive explanation to
the target predicate being learned. Figure 4 presents an example of a PILP model
for the target predicate is malignant/1, which explains malignancy in terms
of margin OR mass shape and density. Since the rules in this explanation are
composed of probabilistic literals (feature margin/1, feature shape/1, and
feature density/1), the target predicate is malignant/1 will also predict a
probabilistic value ranging from 0 to 1, even though this is not made explicit in
the PILP model. This probability output is computed using the possible world
semantics [16], and it takes into account the mutual dependency between all the
probabilistic literals in the model.
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The experiment presented in this work aims at demonstrating that it is pos-
sible to use the probabilistic data to build a model that not only obtains good
predictive accuracy, but also presents a human-interpretable explanation of the
factors that affect the system in study. This model is learnt automatically from
the data. In the medical domain it is crucial to represent data in a way that
experts can understand and reason about, and as such ILP can successfully be
used to produce such models. Furthermore, PILP allows for incorporating in the
PBK the confidence of physicians in observations and known values from the
literature.

4 Experiments

The PILP SkILL system [6] was used for these experiments. It runs on top of
the Yap Prolog system [7] and uses TopLog [20] as the basis rules generator
and the ProbLog Yap library as its probabilistic inference engine. This system
was selected because it can perform exhaustive search over the theory search
space. Since this is a small dataset, exhaustive search is possible. However, if
the dataset were larger there might be scalability issues in using exhaustive
search, and so either SkILL with pruning strategies [5] or another PILP system
whose search engine is greedy could be used instead (such as ProbFOIL+ [10]
or SLIPCOVER [1]). In this experiment, 130 train and tune sets were used to
perform leave-one-out cross validation on the dataset, and the predicted values
for the test examples were recorded.

In addition to the PILP model described earlier, three other methods were
used to compare against PILP in terms of predictive accuracy, using default
parameters: a Support Vector Machine (SVM), a Linear Regression (LREG),
and a Naive Bayes classifier (NB). The scikit-learn python library [21] was used
to perform the preprocessing of these experiments for the three non-relational
methods. Since these data contain several categorical features, it was necessary
to transform them into numerical features to be able to apply these methods. As
such, each possible label was first encoded as an integer. Once this was done, each
feature was transformed in several auxiliary features, each one of them binary
and regarding only one of the labels. This methodology was used to prevent the
integer values corresponding to the labels of a feature from being interpreted as
being ordered, which would not represent the independence between the labels
accurately. Once these operations were performed over all categorical features,
a scaler (standardization) was applied so as to reduce all features to mean 0 and
unit variance. The predictions for each method were then obtained.

Figure 5 presents the ROC curves for the malignant class and four methods
tested: PILP, SVM, LREG and NB. Each sub-figure shows the ROC of the
physicians’ predictions (blue dashed line) and the ROC of a method (brown
solid line), both against the ground truth (confirmed malignancy or benignity of
a tumour after excision). Each figure also presents the respective AUCs and the
p-value found using DeLong’s test for comparing both curves plotted.
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Fig. 5. ROC curves, AUCs and p-values for PILP, SVM, LREG and NB methods
(Color figure online)

The ROC curves presented in Fig. 5 were compared using DeLong’s test for
two correlated ROC curves and the difference between them was found to be sta-
tistically not significant, thus implying that all methods are statistically indis-
tinguishable from a physician when predicting the degree of malignancy of a
patient in this dataset. This experiment established that both PILP and other
non-relational methods can successfully mimic the mental model of physicians
in what concerns the probabilities of each case in this dataset.

Next, the absolute error of the predictions was analysed. The absolute error is
calculated by finding the absolute value of the difference between the prediction
and the physicians’ score, for a given case. It is relevant to consider the absolute
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Fig. 6. Plot of benign and malignant cases for the PILP, SVM, LREG and NB methods,
for errors greater than 0.1, using a negligible amount of jittering (Color figure online)

error of predictions because these are the points where the classifiers’ predictions
disagree with the physicians’ mental model, and more information about the
performance of the classifier can be obtained from them. Figure 6 shows a plot
of the classifiers prediction values (x-axis) against the physicians’ prediction
values (y-axis), for points where the absolute error was greater than 10%. Points
in green (round markers) are cases where the tumour was found to be benign
after excision, and conversely points in red (square markers) are cases where the
tumour was found to be malignant.

Ideally, malignant prediction by both physician and the classifier should agree
and appear on the top right of the plot. Conversely, benign predictions would
appear on the bottom left. Points that are plotted below the diagonal line have
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higher classifier scores than physician scores, and conversely points which are
plotted above the diagonal line have higher physician scores than classifier scores.

From the plots in Fig. 6, it is clear to see that the PILP classifier assigns
higher malignancy values than physicians do to the confirmed malignancy cases
(red points under the diagonal line). This is the case for 8 of the 9 malignant
cases, and in the single case where this does not happen, PILP still predicts a
reasonably high probability of malignancy (60%). Furthermore, for a malignancy
threshold of 0.8, PILP still classifies five malignant cases correctly, whilst this
only happens for one case using the physicians’ scores. When PILP is compared
to the other methods tested, it becomes clear that, in most cases, the other
methods do not assign higher scores to malignant points than physicians do
(few red points beneath the diagonal line), therefore not being of as much use
to physicians as PILP, to aid in the diagnosis of malignant tumours. The ability
to identify malignant cases is desirable in medical data since a false negative
corresponds to assigning a benign label to a patient who in fact has a malignant
tumour.

Since the aim of decision support systems is to aid the process of medical
diagnoses, two more models were built based on the results obtained previously.
These two models are human and machine models, meaning that they take
into account both the physicians’ and the classifiers scores. The PILP classifier
was selected since it proved to be best at identifying malignant cases that the
physicians had difficulty with (unlike other methods). For this reason, two models
were analysed: calculating the average of physician and the PILP scores, and
calculating the maximum of the physician and the PILP scores. Figure 7 presents
the ROCs, AUCs and p-values using DeLong’s test for both these models.

Fig. 7. ROC curves, AUCs and p-values for the average of physician and PILP scores
and for the maximum of physicians and PILP scores
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Fig. 8. Plot of benign and malignant cases for the average and maximum of physician
and PILP models, for errors greater than 0.1, using a negligible amount of jittering
(Color figure online)

The ROC curves plotted in Fig. 7 show no significant difference to the physi-
cians predictive power, similarly to all other classifiers tested. Figure 8 performs
the absolute error analysis, plotting the points where these models’ predictions
and physician’s predictions differ by a value greater than 10%.

The scatter plots in Fig. 8 show that the maximum model can now predict
higher scores for all malignant points (all red points below the diagonal line).
This is to be expected since the model’s scores are in effect the maximum score of
the PILP and the Physician’s model. However, both these models predict higher
values for the benign cases as well, which is particularly evident in the case of
the maximum model, where there are no points above the diagonal line. Whilst
a high recall is a desirable feature in a medical decision support system, the
ability to discriminate between malignant and benign cases is also important.
The PILP model performs better in this area (Fig. 6), since there is a vertical
cluster of benign points which are clearly identified by the PILP model as being
benign (score of 0.1 or less), and which are no longer present in the combined
models analysed here.

Next, the full dataset was used to extract non-trivial knowledge regarding
the physician’s mental model that is being mimicked and the final theories found
are reported in Fig. 9.

From the rules shown in Fig. 9, the first one contains a probabilistic fact
related to one mammography descriptor: the shape of a mass. In medical litera-
ture, irregular shapes or spiculated margins indicate higher risk of malignancy.
This is captured by the system, as well as other features such as no observed
increase in mass size and an ultrasound core needle biopsy type. Similarly, the
other two rules present features that are evidence of higher risk of malignancy,
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Fig. 9. Theory extracted for physician’s mental models.

such as asymmetry, the gauge of the needle and a possible displacement of the
needle (offset) during biopsy which can contribute as a confounding factor.

5 Related Work

Relational learning in the form of ILP (without probabilities) has been success-
fully used in the field of breast cancer. Burnside et al. [8] uncovered rules that
showed high breast mass density as an important adjunct predictor of malig-
nancy in mammograms. Later, using a similar dataset, Woods et al. validated
these findings [22] performing cross-validation. In another work, Davis et al.
used SAYU, an ILP system that could evaluate rules according to their score
in a Bayesian network, in order to classify new cases as benign or malignant.
Results for a dataset of around 65,000 mammograms consisting of malignant and
benign cases showed ROC areas slightly above 70% for Recall values greater than
50% [9]. Dutra et al. showed that the integration of physician’s knowledge in the
ILP learning process yielded better results than building models using only raw
data [13]. The model we use in this paper was presented in more detail in [6]
and [5]. One of the datasets used in those works is the same used in this paper,
but only for comparing system’s execution times. To the best of our knowledge,
this is the first work that applies PILP to the area of breast cancer, and illus-
trates how a probabilistic knowledge representation can be linked with a logic
representation to learn stronger and more expressive data models.

6 Conclusion

This work presented a study conducted over breast cancer data, where a PILP
model is learnt from the data. This and other machine learning techniques were
used to perform a reasonably accurate estimate of breast cancer risk after image-
guided breast biopsy, thus alleviating biopsy sampling error. The PILP model
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combines first order logic with probabilistic data in order to obtain interpretable
models that predict probabilities for each new case. The results show that a
PILP model can achieve similar results to other traditional classifiers and that
its predictions on the test sets are quite close to the experts’ predictions. Fur-
thermore, the cases where the models and physicians disagree were analysed in
greater detail and it was found that the PILP model consistently assigns high
malignancy probabilities to malignant cases, unlike the other models tested.
Moreover, the PILP model can explicitly explain why some probability is given
to a particular case (using the FOL rules generated), unlike non-relational mod-
els. Future work includes studying how changing PILP parameters affects the
performance of the system on this and other datasets, as well as studying whether
other relevant facts and rules from medical literature can be incorporated in the
model.
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Abstract. Statistical machine learning is widely used in image classi-
fication. However, most techniques (1) require many images to achieve
high accuracy and (2) do not provide support for reasoning below the
level of classification, and so are unable to support secondary reason-
ing, such as the existence and position of light sources and other objects
outside the image. In recent work an Inductive Logic Programming app-
roach called Logical Vision (LV) was shown to overcome some of these
limitations. LV uses Meta-Interpretive Learning combined with low-level
extraction of high-contrast points sampled from the image to learn recur-
sive logic programs describing the image. This paper extends LV by using
(a) richer background knowledge enabling secondary reasoning from raw
images, such as light reflection that can itself be learned and used for
resolving visual ambiguities, which cannot be easily modelled using sta-
tistical approaches, (b) a wider class of background models representing
classical 2D shapes such as circles and ellipses, (c) primitive-level statis-
tical estimators to handle noise in real images. Our results indicate that
the new noise-robust version of LV is able to handle secondary reason-
ing task in real images with few data, which is very similar to scientific
discovery process of humans. Specifically, it uses a single example (i.e.
one-shot LV) converges to an accuracy at least comparable to thirty-
shot statistical machine learner on the prediction of hidden light sources.
Moreover, we demonstrate that the learned theory can be used to identify
ambiguities in the convexity/concavity of objects such as craters.

1 Introduction

Galileo’s Siderius Nuncius [16] describes the first ever telescopic observations of
the moon. Using sketches of shadow patterns Galileo conjectured the existence
c© Springer International Publishing AG, part of Springer Nature 2018
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Convex Concave

a) b) c) d)
e) light(X,X).

light(X,Y ) : −reflect(X,Z), light(Z, Y ).

Fig. 1. Interpretation of light source direction: (a) Waxing crescent moon (Credit: UC
Berkeley), (b) Concave/Convex illusion caused by the viewer’s assumption about the
light source location, (c) Concave and (d) Convex photon reflection models, (e) Pro-
log background knowledge of recursive model of photon reflection, where light(X, Y )
denotes that there exists a light path between X and Y, reflect(X, Z) is background
knowledge meaning the photon travels from X to Z when Z is reflecting.

of mountains containing hollow areas (i.e. craters) on a celestial body previously
thought perfectly spherical. His reasoned description, derived from a handful of
observations, relies on a knowledge of (i) classical geometry, (ii) straight line
movement of light and (iii) the Sun as a light source. This paper investigates
use of Inductive Logic Programming (ILP) [32] to derive such hypotheses from
a small set of real images. Figure 1 illustrates part of the generic background
knowledge used by ILP for interpreting object convexity.

Figure 1a shows an image of the crescent moon in the night sky, in which
convexity of the overall surface implies the position of the Sun as a hidden light
source beyond the lower right corner of the image. Figure 1b shows an illusion
caused by the viewer’s assumption about where the light source is. Assuming the
light source is above makes the top right and bottom left circles appear convex
and the other circles concave. Assuming the light source is below makes the
top left and bottom right circles appear convex and the other circles concave.
Figure 1c shows how interpretation of a convex feature, such as a mountain,
comes from illumination of the right side of a convex object. Figure 1d shows
that perception of a concave feature, such as a crater, comes from illumination
of the left side. Figure 1e shows how Prolog background knowledge encodes a
recursive definition of the reflected path of a photon.

This paper explores the phenomenon of knowledge-based perception using
an extension of Logical Vision (LV) [9] based on Meta-Interpretive Learning
(MIL) [7,31]. In the previous work Logical Vision was shown to accurately learn
a variety of polygon classes from artificial images with low sample requirements
compared to statistical learners. In this paper we propose a noise-robust version
of Logical Vision provided with basic generic background knowledge about radi-
ation and reflection of photons to inform the generation of hypotheses in the
form of logic programs based on evidence sampled from a single real image. Our
experiments on light source position verified that LV is effective and accurate for
performing secondary reasoning tasks. Empirical comparisons are made between
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LV and Support Vector Machines (SVMs), because SVMs cannot exploit
background knowledge in the form of first-order logic like LV, we provide them
stronger supervision. Experiments showed SVMs only achieving similar accuracy
with LV at least after more than 30 training images. Moreover, LV discovers a
theory that could be used for explaining ambiguity.

The main contributions of this paper are extending Logical Vision [9] by using
(1) richer background knowledge enabling secondary reasoning from raw images,
such as a simple but generic recursive theory of light reflection for resolving visual
ambiguities which cannot be easily modelled using pure statistical approaches,
(2) a wider class of background models representing classical 2D shapes such as
circles and ellipses, (3) primitive-level statistical estimators to handle noise in
real images and demonstrating that the extended LV can learn well-performed
models from only one training example (i.e. one-shot Logical Vision).

The paper is organised as follows. Section 2 describes related work. The the-
oretical framework for Logical Vision is provided in Sect. 3. Section 4 describes
the implementation of Logical Vision, including the recursive background knowl-
edge for describing radiation and reflection of light. Experiments on predicting
the light source direction in images of the moon and microscopic images of illu-
minated micro-organisms are described in Sect. 5. In Sect. 6 we show how the
approach perform secondary reasoning and interprets convexity, concavity and
visual illusions from raw images. Finally, we conclude and discuss further work
in Sect. 7.

2 Related Work

Statistical machine learning based on low-level feature extraction has been
increasingly successful in image classification [35]. However, high-level vision,
involving interpretation of objects and their relations in the external world, is
still relatively poorly understood [5]. Since the 1990s perception-by-induction [18]
has been the dominant model within computer vision, where human perception
is viewed as inductive inference of hypotheses from sensory data. The idea origi-
nated in the work of the 19th century physiologist Hermann von Helmholtz [20].
The approach described in this paper is in line with perception-by-induction in
using ILP for generating high-level perceptual hypotheses by combining sensory
data with a strong bias in the form of explicitly encoded background knowl-
edge. Whilst Gregory [17] was one of the earliest to demonstrate the power of
the Helmholtz’s perception model for explaining human visual illusion, recent
experiments [19] show Deep Neural Networks fail to reproduce human-like per-
ception of illusion. This contrasts with results in Sect. 6, in which Logical Vision
achieves analogous outcomes to human vision.

Shape-from-shading [21,40] is a key computer vision technology for estimat-
ing low-level surface orientation in images. Unlike our approach for identifying
concavities and convexities, shape-from-shading generally requires observation
of the same object under multiple lighting conditions. By using background
knowledge as a bias we reduce the number of images for accurate perception
of high-level shape properties such as the identification of convex and concave
image areas.
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ILP has previously been used for learning concepts from images [2,8,11,
13,15]. For instance, in [1,4] object recognition is carried out using existing
low-level computer vision approaches, with ILP being used for learning general
relational concepts from this already symbolised starting point. By contrast,
Logical Vision [9] uses ILP and abductive perception technique [36] to provide a
bridge from very low-level primitives, such as high contrast points, to higher-level
interpretation of objects such as shapes. ILP also has been used for 3D scene
analysis [14,30] with 3D point cloud data, however there was no comparison
made to statistical learning and image ambiguity is not addressed.

The present paper extends the earlier work on LV by implementing a noise-
proofing technique, applicable to real images, and extending the use of back-
ground knowledge radiation to allow the identification of objects such as light
sources, not directly identifiable within the image itself. Moreover, this work
shows that by considering generic knowledge about radiation, LV can invent
generic high-level concepts applicable to many different images including con-
cavity, convexity and light reflection, enabling 2D image analysis to learn a 3D
concept with ambiguity handled.

One-shot learning of concepts from images using probabilistic program induc-
tion is discussed in [23,24]. However, unlike the approach in this paper, the
images are relatively simple and artificially generated and learning involves
parameter estimation for a given program schema, rather than a search
through general program space, relative to incrementally generated background
knowledge.

Various statistics-based techniques making use of high-level vision have been
proposed for one- or even zero-shot learning [34,37]. They usually start from
an existing model pre-trained on a large corpus of instances, and then adapt
the model to data with unseen concepts. Approaches can be separated into
two categories. The first exploits a mapping from images to a set of semantic
attributes, then high-level models are learned based on these attributes [25,28,
34]. The second approach uses statistics-based methods, pre-trained on a large
corpus, to find localised attributes belonging to objects but not the entire image,
and then exploits the semantic or spatial relationships between the attributes for
scene understanding [12,22,26]. Unlike these approaches, we focus on one-shot
learning from scratch, i.e. high-level vision based on just very low-level primitives
such as high contrast points.

3 Framework

We present Meta-Interpretive Learning (MIL) first since Logical Vision is a spe-
cial case of MIL.

3.1 Meta-Interpretive Learning

Given background knowledgeB and examplesE the aimof aMIL system is to learn
a hypothesisH such thatB,H |= E, whereB = Bp∪M ,Bp is a set of Prolog defini-
tions and M is a set ofmetarules (see Fig. 2). MIL [6,7,29–31] is a form of ILP based
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Name Metarule
PropObj P (Obj) ←
PropHL P (H) ←
PropLight P (Light) ←
Conjunct3 P (x, y, z) ← Q(x, y, z), R(x, y, z)
Chain3 P (u, x, y) ← Q(u, x, z), R(u, z, y)
Chain32 P (u, x, y) ← Q(u, x, z), R(z, y)
PrePost3 P (x, y, z) ← Q(x, y), R(x), S(z)

Fig. 2. Metarules used in this paper. Uppercase letters P, Q, R, S denote existentially
quantified variables. Lowercase letters u, x, y, and z are universally quantified. Obj,
H, Light are constants representing the main object, highlight on the object and the
light source in the domain, Prop∗ is the meta-rule for learning predicates describing
the property of *.

on an adaptedPrologmeta-interpreter.A standardPrologmeta-interpreter proves
goals by repeatedly fetching first-order clauses whose heads unify with the goal. By
contrast, a MIL learner proves a set of examples by fetching higher-order metarules
(Fig. 2) whose heads unify with the goal. The resulting meta-substitutions are
saved, allowing them to be used to generate a hypothesised program which proves
the examples by substituting themeta-substitutions into correspondingmetarules.

MIL sample complexity. Use of metarules and background knowledge helps min-
imise the number of clauses n of the minimal consistent hypothesis H and conse-
quently the number of examples m required to achieve error below ε bound. As
shown in [7], the error of consistent hypotheses is bounded by ε with probability
at least 1− δ once m ≥ n ln |M |+p ln(3n)+ln 1

δ

ε , where p is the number of predicates
and M is the number of metarules.

3.2 Logical Vision

In Logical Vision [9], the background knowledge B, in addition to Prolog defi-
nitions, contains a set of one or more named images I. The examples describe
properties associated with I.

4 Implementation

In this section we describe the implementation of Logical Vision. The task can
be formally defined as follows: The input consists of a set of training images
D = {(x, y)}n

i with a first-order background knowledge base B, where xi stands
for a raw image in training set, yi ∈ {1..12} is a label, B is the background
knowledge that is composed of a set of first-order logical clauses which is pro-
vided to MetagolAI [7] with corresponding compiled background knowledge and
metarules. The target is to learn a logic program for predicting light source
direction on images.
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Algorithm 1. LogV is(I,B)
Input : Training images I; Background knowledge B.
Output: Hypothesised logic program H.

1 Candidates = Φ;
2 for each labelled image i ∈ I do
3 Angles = Φ;

/* Object & highlight detection */

4 for t ∈ [1, T ] do
5 Obj = objectDetection(i);
6 α = argmaxAngle contrast(split(Obj, Angle));
7 Angles = append(Angles, α);

8 end
/* Highlight angle */

9 HAngle = mode(Angles);
/* Light source angle */

10 LAngle = label(i);
/* Call MetagolAI to learn a model */

11 Modelt = MetagolAI(B, HAngle, LAngle);
12 Candidates = add(Modelt, Candidates);

13 end
14 Return(H = best(Candidates));

Within this paper we narrow the task and background knowledge. The aim
is to firstly let Logical Vision discover objects with their highlights from the
raw image, and then MetagolAI is applied for learning the target program with
background knowledge about radiation and reflection.

Our implementation of Logical Vision is shown in Algorithm 1. The proce-
dure of LogVis is divided into two stages. The first stage is to extract symbolic
background knowledge from images, which is done by the objectDetection func-
tion. By including abductive theories in B, objectDetection can abduce ground
facts about certain visual primitives from images, such as points and lines to
forming polygons and ellipses as the discovered objects. The second stage of
LogV is simply calls the MIL system MetagolAI to induce a hypothesis for the
target concept, such as the light source direction in this paper.

4.1 Meta-Interpretation in Real Images

Because microscopic and telescopic images usually contain a degree of noise, we
extend the Logical Vision for polygon learning [9] by enhancing it with statistical
models. As shown in Fig. 3, the basic process of objectDetection is the sampling
of edge points—which decides if an image pixel belongs to the edge of an target
object. Different to the previous version which makes judgement according to the
contrast of a pixel’s local area, the new version of edge point/1 is implemented
with a statistical model. For example, in both Protist and Moon experiments of
Sect. 5, the edge point/1 is based on a pre-trained statistical image background
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Fig. 3. Object detection: (a) Sampling lines and detect possible edge points on them;
(b) Fitting of initial ellipse centred at O. Hypothesis tested by sampling new lines
halfway between existing adjacent points and check if there exist edge points on the
hypothesised ellipse. (c) Revising hypothesis by including the newly obtained edge
points and have it tested repeatedly until a hypothesis passes test.

model which can categorise pixels into foreground or background points using
Gaussian models or other image segmentation techniques [39].

Moreover, objects of interest in microscopic and telescopic images such as
protists and planets are often composed of curves, using polygon to represent
them (as for polygon learning [9]) would be inefficient. Consequently, we use
ellipse and circle models estimated from sets of edge points (see Fig. 3).

Detected objects take the form elps(Centre, Parameter) or circle(Centre,
Radius) where Centre = [X,Y ] is the object’s centre, Parameter = [A,B, T ilt]
are the axis lengths and tilting angle and Radius is the circle radius. The com-
putational complexity of estimating ellipse is O(n), where n is the number of
edge points.

To estimate light source direction LogVis (line 6) cuts the object in half at
different angles, and returns the angle α which maximises brightness contrast
between the split halves, where α ∈ {1..12} is a clock face angle. Since the noise
brought by edge point sampling may cause object detection to fail, Logical Vision
repeats the process T times and returns the mode of {α} as HAngle, (line 4 to
9). In order to be processed by MetagolAI , Logical Vision finally outputs the dis-
covered maximum contrast angle with a logic fact clock angle(Obj,H,HAngle),
where Obj is the name of detected ellipse or circle, H is a constant symbol rep-
resenting the brighter half of Obj.

Background knowledge for MetagolAI is shown in Fig. 4. The primitives are
used for constructing hypothesis H, compiled BK defines some basic facts that
can be called during MIL learning process. Together with the metarules in Fig. 2,
MetagolAI can learn a theory (line 11 in Algorithm1) which is abductive logic
program explaining the observation of highlight on object (discovered by LV )
with light source direction and object’s convexity/concavity. The metarules are
3-ary extensions to the 2-ary metarules defined in [31].

For example, when an image of convex object (such as moon, whose light
source is the sun) and an example light source angle(moon, sun, ang) is pro-
vided, LogVis work as follows: (1) objDetection is first called to extract the
main object (moon) as a circle; (2) By splitting the circle into two halves and
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Primitives Compiled BK
prim(light source angle/3). % supervision
prim(highlight/2). % highlight relation
prim(opposite angle/2).

highlight(Obj,H). % H is the highlight on Obj
opposite angle(3,9). opposite angle(9,3).
opposite angle(12,6). opposite angle(6,12).

Fig. 4. Background knowledge for MetagolAI . The first primitive light source
angle(Obj, Light, Ang) stands for the ground truth of light source Light and its angle
Ang to the main object Obj, where ang comes from data label, Obj is the object
abduced from image. highlight(Obj, H) is a fact which says H is the bright part on
Obj. opposite angle/2 defines the background knowledge about opposite clock angles.

calculating the contrast, LogVis can estimate the highlight position, then output
facts highlight(moon,H) and clock angle(moon,H, ang); (3) The two facts will
be input to MetagolAI as a part of background knowledge for learning an abduc-
tive hypothesis to explain the example light source angle(moon, sun, ang).

When a dataset has more than one example, LogVis runs the entire one-shot
learning process for a random example, and returns the most accurate hypothesis
on the rest of training set (line 14).

5 Experiments

This section describes experiments comparing one-shot LV 1 with multi-shot
statistics-based learning on real image datasets.

5.1 Materials

We collected two real image datasets for the experiments: (1) Protists drawn
from a microscope video of a Protist micro-organism, and (2) Moons a collection
of images of the moon drawn from Google images. The instances in Protists are
coloured images, while the images in Moons come from various sources and some
of them are grey-scale. For the purpose of classification, we generated the two
datasets by rotating images through 12 clock angles2. The datasets consist of
30 images for each angle, providing a total of 360 images. Each image contains
one of four labels as follows: North = {11, 12, 1} clocks, East = {2, 3, 4} clocks,
South = {5, 6, 7} clocks, and West = {8, 9, 10} clocks, as shown in Fig. 5. As we
can see from the figure, there is high variance in the image sizes and colours.

5.2 Methods

The aim is to learn a model to predict the correct category of light source angle
from real images. For each dataset, we randomly divided the 360 images into
training and test sets, with 128 and 232 examples respectively. To evaluate the

1 Data and code at https://github.com/haldai/LogicalVision2.
2 Clock face angle between 12 and each hour position in {1..12}.

https://github.com/haldai/LogicalVision2
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Fig. 5. Illustrations of data: (a) Examples of the datasets, (b) Four classes for twelve
light source positions, (c) Crater on Mars (Credit: NASA/JPL/University of Arizona),
(d) 180◦ rotated crater.

performance, the models were trained by randomly sampling 1, 2, 4, 8, 16, 32,
64 and 128 images from the training set. The sequences of training and test
instances are shared by all compared methods. The random partition of data
and learning are repeated 5 times.

Logical Vision. In the experiments, we used the grey intensity of both image
datasets for LV. The hyper-parameter T in Algorithm 1 was set at 11 by cross-
validation. To handle image noise, we used a background model as the statistics-
based estimator for predicate edge point/1. When edge point([X,Y ]) is called,
a vector of colour distribution (which is represented by histogram of grey-scale
value) of the 10× 10 region centred at (X, Y) is calculated, then the background
model is applied to determine whether this vector represents an edge point. The
parameter of neighbourhood region size 10 is chosen as a compromise between
accuracy and efficiency after having tested it ranging from 5 to 20. The back-
ground model is trained from 5 randomly sampled images in the training set
with supervision.

Statistics-Based Classification. The experiments with statistics-based clas-
sification were conducted in different colour spaces combined with various fea-
tures. Firstly, we performed feature extraction to transform images into fixed
length vectors. Next SVMs (libSVM [3]) with RBF kernel were applied to learn
a multiclass-classifier model. Parameters of the SVM are chosen by cross vali-
dation on the training set. We did not choose deep neural networks because the
amount of our data is limited.

Like LV, we used grey intensity from both image datasets for the Moons
experiments. For the coloured Protists dataset, we also tried to transform the
images to HSV and Lab colour spaces for statistics-based method as they have
more natural metrics to describe luminance in images.

Since the image sizes in the dataset are irregular, during the object detec-
tion stage of compared statistics-based learner, we used background models and
computer graphic techniques (e.g. curve fitting) to extract the main objects and
unified them into same sized patches for feature extraction. The sizes of object
patches were 80 × 80 and 401 × 401 in Protists and Moons respectively. For the
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feature extraction process of the statistics-based method, we avoided descriptors
which are insensitive to scale and rotation, instead choosing the luminance-
sensitive features below.

– HOG: The Histogram of Oriented Gradient (HOG) [10] is known as its capa-
bility of describing the local gradient orientation in an image, and widely used
in computer vision and image processing for the purpose of object detection.

– LBP: Local binary pattern (LBP) [33] is a powerful feature for texture clas-
sification by converting the local texture of an image into a binary number.

Remark. Despite our best efforts it proved impossible to make testing entirely
fair. In the Moons task, LV and the compared statistics-based approach both
used geometrical background knowledge for fitting circles (though in different
forms) during object extraction. However, in the Protists task, the noise in
images always caused poor performance in automatic object extraction for the
statistics-based method. Therefore, we provided additional supervision to the
statistics-based method consisting of manually labelled bounding boxes for the
main objects in both training and test images during feature extraction. By
comparison LV discovers the objects automatically.

5.3 Results and Discussion

Figure 6 shows the results for Moons. Note that performance of the statistics-
based approach only surpasses one-shot LV after 100 training examples.
In this task, background knowledge involving circle fitting exploited by LV
and statistics-based approaches are similar, though low-level feature used
by statistics-based approach are first-order information (grey-scale gradients),
which is stronger than the zero-order information (grey-scale value) used by LV.
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Fig. 6. Classification accuracy on the
Moon dataset.

Results on Protists task are shown
in Fig. 7. After 30+ training exam-
ples only one statistics-based app-
roach outperforms one-shot LV. Since
the statistics-based approaches have
additional supervision (bounding box
of main object) in the experiments,
improved performance is unsurprising.

The results of LV in Figs. 6 and 7
form horizontal lines. When the num-
ber of training examples exceeds one,
LV performs multiple one-shot learn-
ing and selects the best output, which
we found is always in the same equiv-
alent class in MetagolAI ’s hypothesis
space. This suggests LV learns the
optimal logical model in its hypothesis space from a single example. In fact,
the errors are caused by LV ’s object-detection, which produces noisy inputs to
the learned logical model.
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Fig. 7. Classification accuracy on the Pro-
tists dataset.

The results in Figs. 6 and 7 demon-
strate that Logical Vision can learn an
accurate model using a single training
example. By comparison the statistics-
based approaches require 40 or even
100 more training examples to reach
similar accuracy. However, the per-
formance of LV heavily relies on the
accuracy of the statistical estimator of
edge point/1, because the mistakes of
edge points detection will harm the
shape fitting results and consequently
the accuracy of main object extrac-
tion. Unless we train a better statis-
tical classifier for edge point/1, the best performance of LV is limited as
Figs. 6 and 7 shows.

The learned programs are shown in Fig. 8. They are abductive theories for
explaining the observed images. Therefore they invent predicates clock angle2
to represent the property of Obj, which can be interpreted as convexity (Fig. 8a)
or concavity (Fig. 8b). For example, the abductive theory in Fig. 8a states that
when Logical Vision observed an object A and its highlight B forming an angle
C, a possible explanation is that the light source is Light, A=Obj is convex, the
angle between light source and Obj is also C.

clock angle(A,B,C):-
clock angle1(A,B,D),
light source angle(A,D,C).

clock angle1(A,B,C):-
highlight(A,B),
clock angle2(A),clock angle3(C).

clock angle2(Obj).
clock angle3(Light).

clock angle(A,B,C):-
clock angle1(A,B,D),
clock angle4(A,D,C).

clock angle1(A,B,C):-
highlight(A,B),
clock angle2(A),clock angle3(C).

clock angle4(A,B,C):-
light source angle(A,B,D),
opposite angle(D,C).

clock angle2(Obj).
clock angle3(Light).

)b)a

Fig. 8. Program learned by LV : (a) Hypothesis learned when training data only con-
tains convex objects. (b) Hypothesis learned when training data only contains concave
objects. clock angle/3 denotes the clock angle from B (highlight) to A (object). high-
light/2 is a built-in predicate meaning B is the brighter half of A. light source angle/3
is an abducible predicate and the learning target. With background knowledge about
lighting and compare the two programs, we can interpret the invented predicate
clock angle2 as convex, clock angle3 as light source name.
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Learning Concavity. The Protists and Moons contain only convex objects,
therefore LV only learned hypothesis for light radiation reacting with convex
objects as shown in Fig. 8a. If instead we provide images with concave objects
(such as Fig. 5c and d), LV learns a program such as Fig. 8b. Here the invented
predicate clock angle2/1 can be interpreted as concave because its interpreta-
tion is related to the appearance of opposite angle/2. If both convex and con-
cave examples are provided together, LV can learn a more general hypothesis
equivalent to Fig. 9.

Running Time. We implemented LV in SWI-Prolog [38] with multi-thread
processing. Experiments were executed on a laptop with Intel i5-3210M CPU
(2.50 GHz × 4), the time costs of object discovery are 9.5 s and 6.4 s per image on
Protists and Moons dataset respectively; the average running time of MetagolAI

procedure is 0.001 s on both datasets.

6 Using LV for Secondary Reasoning: Interpreting
Ambiguity

A major character of science discovery is that human beings can reuse the learned
knowledge as a prior to perform efficient secondary reasoning, just like Galileo
uses his knowledge about geometry and light for observing the moon. The key to
this ability is the common symbolic representation of prior knowledge, learned
model and the formulation of human reasoning. In Sect. 5 we have shown that
LV is able to learn logical theories as explanations to visual observations, in
this section we will show that the learned models can be reused in secondary
reasoning tasks.

Figure 5c and d shows two images of a crater on Mars, where Fig. 5d is a
180◦ rotated image of Fig. 5c. Human perception often confuses the convexity of
the crater in such images3. This phenomenon, called the crater/mountain illu-
sion, occurs because human vision usually interprets pictures under the default
assumption that the light is from the top of the image.

Logical Vision can use MIL to perform abductive inference. We show below
that incorporation of generic recursive background knowledge concerning light
enables LV to generate multiple mutually inconsistent perceptual hypotheses
from real images. To the authors’ knowledge, such ambiguous prediction has not
been demonstrated previously with other forms of machine learning.

Recall the learned programs from Fig. 8 from the previous experiments. If
we rename the invented predicates we get the general theory about lighting and
convexity shown in Fig. 9.

Now we can use the program as a part of background knowledge for LV to
perform abduction, where the abducible predicates and the rest of background
knowledge are shown in Fig. 10.

3 http://www.universetoday.com/118616/do-you-see-a-mountain-or-a-crater-in-this-
picture/.

http://www.universetoday.com/118616/do-you-see-a-mountain-or-a-crater-in-this-picture/
http://www.universetoday.com/118616/do-you-see-a-mountain-or-a-crater-in-this-picture/
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clock angle(O,H,A):-
highlight(O,H),convex(O),light source(L),
light source angle(O,L,A).

clock angle(O,H,A):-
highlight(O,H),concave(O),light source(L),
light angle(O,L,A1),opposite(A1,A).

Fig. 9. Interpreted background knowledge for abducing ambiguity, it is a combination
of the two hypotheses in Fig. 8 learned by LV.

Abducibles Interpreted BK
prim(convex/1).
prim(concave/1).
prim(light source/1).
prim(light angle/3).

highlight(X,Y):-
contains(X,Y),brighter(Y,X),light source(L),
light path(L,R),reflector(R),light path(R,O),
observer(O).
Compiled BK

% “obj1” is an object discovered from image by LV;
% “obj2” is the brighter part of “obj1”;
% “observer” is the camera
contains(obj1,obj2). brighter(obj2,obj1). observer(camera). reflector(obj2).
light path(X,X).
light path(X,Y):-unobstructed(X,Z), light path(Z,Y).

Fig. 10. Background knowledge for abducing ambiguity from images. The abducibles
are open predicates in background knowledge, i.e. they neither have definition or
grounding in background knowledge. Interpreted BK are the logical rules containing
abducibles in body. Compiled BK consists of the rest part of background knowledge.

Fig. 11. Depiction and output hypotheses abduced from Fig. 5c.

When we input Fig. 5c to Logical Vision, it outputs four different abductive
hypotheses to explain the image, as shown in Fig. 114. From the first two results
we see that, by considering different possibilities of light source direction, LV can
predict that the main object (which is the crater) is either convex or concave,
which shows the power of learning ambiguity. The last two results are even more

4 Code also at https://github.com/haldai/LogicalVision2.

https://github.com/haldai/LogicalVision2
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interesting: they suggest that obj2 (the brighter half of the crater) might be the
light source as well, which indeed is possible, though seems unlikely.5

Hence, by applying a logic-based learning paradigm, Logical Vision is able to
reuse the learned models in image processing. This paradigm, to a certain degree,
mimics the human reasoning process during scientific discovery and many other
tasks which requires the unification of raw data based perception and logic based
reasoning.

7 Conclusions and Further Work

Human beings learn visual concepts from single image presentations (so-called
one-shot-learning) [23]. This phenomenon is hard to explain from a standard
Machine Learning perspective, given that it is unclear how to estimate any statis-
tical parameter from a single randomly selected instance drawn from an unknown
distribution. In this paper we show that learnable generic logical background
knowledge can be used to generate high-accuracy logical hypotheses from single
examples. This compares with similar demonstrations concerning one-shot MIL
on string transformations [27] as well as previous concept learning in artificial
images [9]. The experiments in Sect. 5 show that the LV system can accurately
identify the position of a light source from a single real image, in a way analo-
gous to scientists such as Galileo, observing the moon for the first time through a
telescope or Hook observing micro-organisms for the first time through a micro-
scope. In Sect. 6 we show that logical theories learned by LV from labelled images
can also be used to predict concavity and convexity predicated on the assumed
position of a light source.

As future work, we aim to investigate broader sets of visual phenomena which
can naturally be treated using background knowledge. For instance, the effects
of object obscuration; the interpretation of shadows in an image to infer the
existence of out-of-frame objects; the existence of unseen objects reflected in a
mirror found within the image. All these phenomena could possibly be considered
in a general way from the point of view of a logical theory describing reflection
and absorption of light, where each image pixel is used as evidence of photons
arriving at the image plain. We will also investigate the use of universal metarules
similar to those used in [6]. Future work also includes the use of probabilistic
representation.

The authors believe that LV has long-term potential as an AI technology
with the potential for unifying the disparate areas of logical based learning with
visual perception.

Acknowledgements. This research was supported by the National Science Founda-
tion of China (61751306). The second author acknowledges support from his Royal
Academy of Engineering/Syngenta Research Chair at the Department of Computing
at Imperial College London. Authors want to thank reviewers and ILP’17 attendees
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5 The result can be reproduced and visualised by the example in Logical Vision 2
GitHub repository.
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Abstract. Latent features learned by deep learning approaches have
proven to be a powerful tool for machine learning. They serve as a data
abstraction that makes learning easier by capturing regularities in data
explicitly. Their benefits motivated their adaptation to the relational
learning context. In our previous work, we introduce an approach that
learns relational latent features by means of clustering instances and their
relations. The major drawback of latent representations is that they are
often black-box and difficult to interpret. This work addresses these issues
and shows that (1) latent features created by clustering are interpretable
and capture interesting properties of data; (2) they identify local regions
of instances that match well with the label, which partially explains their
benefit; and (3) although the number of latent features generated by this
approach is large, often many of them are highly redundant and can be
removed without hurting performance much.

Keywords: Relational learning · Deep learning
Unsupervised representation learning · Clustering

1 Introduction

Latent representations created by deep learning approaches [1] have proven to
be a powerful tool in machine learning. Traditional machine learning algorithms
learn a function that directly maps data to the target concept. In contrast, deep
learning creates several layers of latent features between the original data and
the target concept. This results in a multi-step procedure that simplifies a given
task before solving it.

The progress in learning such latent representations has predominantly
focused on vectorized data representations. Likewise, their utility has been rec-
ognized in the relational learning community [2] in which models are learned
not only from instances but from their relationships as well [3,4]. There the
problem is known as predicate invention [5,6]. The prevalent latent represen-
tations paradigm in that direction are embeddings to vector spaces [7–9]. The
core idea behind the embeddings is to replace symbols with numbers and log-
ical reasoning with algebra. More precisely, relational entities are transformed
to low-dimensional vectors and relations to vectors or matrices. This way of
c© Springer International Publishing AG, part of Springer Nature 2018
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learning latent features corresponds to learning the low-dimensional representa-
tions of relational entities and relations. Many variations of this formalization
exist, but they share the same underlying principles. Assuming facts p(a,b) and
r(b,a), a and b are entities whereas p and r are existing relations between them.
One major line of research interprets relations as translations between facts in
Euclidean space. More precisely, given the fact p(a,b) the goal is to find vec-
tor representations of a, b and p (namely a, b and p) such that a + p ≈ b and
b + r ≈ a. The other major line of research interprets embeddings as a factor-
ization of a knowledge base. These approaches represent entities as vectors and
relations as matrices; the goal is to find vector representations of entities and
relations (vectors a and b for a and b, matrices P and R for p and R) such that
products aPb and bRa have high values. In contrast, given a false statement
q(a,b) product aQb should have a low value.

These embeddings approaches have several drawbacks. First, the latent fea-
tures created that way have no inherent meaning – they are created to satisfy
the aforementioned criteria. This is thus a major obstacle for interpretability of
the approach, which is important in many aspects and one of the strengths of
relational learning. Second, huge amounts of data are needed in order to extract
useful latent features. Knowledge bases used for training often contain millions
of facts. Third, it is not clear how these approaches can handle unseen entities
(i.e., an entity not present in the training set and whose embedding is therefore
not known) without re-training the entire model. Fourth, compared to the full-
fledged expressivity of statistical relational learning [3] these approaches have
reduced expressivity.

Recently, Dumančić and Blockeel [10] introduced a complementary approach,
titled CUR2LED, that takes a relational learning stance and focuses on learning
relational latent representations in an unsupervised manner. Viewing relational
data as a hypergraph in which instances form vertices and relationships among
them form hyperedges, the authors rely on clustering to obtain latent features. The
core component in this approach is a declarative and intuitive specification of the
similarity measure used to cluster both instances and their relationships. This con-
sequently makes entire approach more transparent with respect to the meaning of
latent features, as the intuitive meaning of similarity is precisely specified.

The benefits of latent representations were clearly shown with respect to
both performance and complexity. The complexity of models learned on latent
features was consistently lower compared to the models learned on the original
data representation. Moreover, the models learned with latent features often
resulted in improved performance, by a large margin as well. These two results
jointly show that latent representations capture more complex dependencies in
a simple manner.

In this work we further investigate the properties of relational latent rep-
resentations created by CUR2LED. We start by asking the question: what do
latent features mean? We introduce a simple method to extract the meaning of
the latent features, and show that they capture interesting properties. We ask
next: what makes latent representations effective? The initial work showed the
benefits of the latent representations, however, no explanation is offered why
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that is the case. We hope to shed light behind the scene and offer (at least a
partial) answer why that is the case.

In the following section we first briefly introduce neighbourhood trees – a
central concept of CUR2LED. We then describe an approach used in extracting
the knowledge form the latent features, and investigating the properties of such
latent representation. The results are presented and discussed next, followed by
the conclusion.

2 Background

2.1 Neighbourhood Trees

The central concept of CUR2LED is a neighbourhood tree [11]. The neigh-
bourhood tree is a rooted directed graph describing an instance, together with
instances it relates to and their properties. Viewing relational data as a hyper-
graph, the neighbourhood tree provides a summary of all path of a pre-defined
length that originate in a particular vertex (see Fig. 1).

As instances are represented as neighbourhood trees, two instances are com-
pared by comparing corresponding neighbourhood trees. The authors introduce
a versatile and declarative similarity measure [11] that analyses neighbourhood
trees over multiple aspects by introducing the following core similarities:

– attribute similarity of root vertices
– attribute similarity of neighbouring vertices
– connectivity between root vertices
– similarity of vertex identities in a neighbourhood
– similarity of edge types

Fig. 1. A snapshot of a knowledge base (left) and the corresponding neighbourhood
trees of ProfA entity (right). The knowledge base describes students, professors and
courses they teach. Entities (people and courses) are represented with node, their
attributes with rectangles and relationships with edges. Attribute values are left out
for brevity.
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Continuing the example in Fig. 1, person instances can be clustered based on
their own attributes, which yields clusters of professors and students. Clustering
person instances based on the vertex identities in their neighbourhood yields
clusters of research groups – a professor and his students.

In order to obtain the core similarities, a neighbourhood tree is first decom-
posed into three multisets:

– the multiset of vertices of type t at depth l, with the root having depth 0 (V l
t )

– the multiset of values of attribute a observed among the nodes of type t at
depth l (Bl

t,a)
– the multiset of edge types between depth l and l + 1 (El).

Each of the core similarities is now defined in terms of comparing relative fre-
quencies of elements in the aforementioned multisets. For instance, the attributes
similarity of root vertices is achieved by comparing relative frequencies of ele-
ments in B0

t,a (for each attribute a), while the attributes similarity of neighbour-
ing vertices is achieved by comparing B>1

t,a (for each vertex type t and attribute
a). Similarly, the similarity of edge types is achieved by comparing relative fre-
quencies of elements in El for each level l of a neighbourhood tree. This com-
parison of relative frequencies of elements in a neighbourhood tree is the central
notion we will exploit when discovering the meaning of latent features.

These core similarities form basic building blocks for a variety of similarity
measure, all defined over neighbourhood trees. The final similarity measure is
a linear weighted combination of the core similarities. Weights simply define a
relative importance of core similarities in the final similarity measure. The value
assignments to the weights defines a similarity interpretation. For more details
of the approach we refer the reader to [11].

2.2 CUR2LED

Two ideas are central to CUR2LED. First, it learns latent features by cluster-
ing instances and their relationships. In order to cluster relationships, it makes
a straightforward interpretation of relationships as sets of vertices (ordered or
not). Second, it uses multiple similarity interpretations (i.e., combinations of
core similarities) to obtain a variety of features. This is inspired by the notion
of distributed representation, one of the pillars of representation learning. Dis-
tributed representation refers to a notion of a reasonable sized representation
capturing a hug number of possible configurations [12]. A common view is that
a distributed representation represents concepts with independently manipu-
lated factors, instead of a single one with one-hot representations. Both ideas
are realised by means of neighbourhood trees. Instances and relationships are
represented as (collections of) neighbourhood trees, while using different simi-
larity interpretations (which consider only certain parts of neighbourhood trees)
explicitly defines a distributed representation.

Latent features are thus learned through repeated clustering of instances and
relations and alternating the similarity measure in each iteration (see Fig. 2).



Demystifying Relational Latent Representations 67

Fig. 2. (Figure and example taken from [10]) Starting from a relational data see as a
hypergraph, CUR2LED clusters the vertices and hyperedges in the hypergraph accord-
ing to different similarity interpretations. It first performs clustering based on the vertex
attributes (indicated by the colour of vertices): the vertices are clustered into red and
black ones, while the edges are clustered according to the colour of the vertices they
connect. It then performs clustering based on the structure of the neighbourhoods
(the bottom part). The vertices are clustered into clusters that have (i) only black
neighbours ({1}), (ii) only red neighbours ({6,7}), and (iii) neighbours of both colours
({2,3,4,5}). The edges are clustered into clusters of (i) edges connecting black vertices
with only black neighbours and black vertices with red neighbours ({1-2,1-3}), (ii)
edges connecting red vertices with only red neighbours to red vertices with neighbours
of both colour ({6-7}), and so on. The final step represents the obtained clusterings in
the format of first-order logic. (Color figure online)

Each latent feature, corresponding to a cluster of instances, is associated with
one latent predicate. Truth instantiations of latent predicates reflect the cluster
assignments, i.e., the instantiations of a latent predicate are true for instances
that belong to the cluster; therefore, latent features are defined extensionally
and lack an immediate interpretable definition.

3 Opening the Black Box of Latent Features

The primary focus of this work is on understanding what do latent features
created by CUR2LED mean and why do they prove useful. We start by describing
the procedure to extract the meaning of the latent features.
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3.1 Extracting the Meaning of Latent Features

Although the latent features discovered by CUR2LED are defined extensionally,
the intuitive specification of the similarity measure (and its core similarities)
makes CUR2LED a transparent method with a clear description which elements
of neighbourhood trees make two instances similar. Consequently, discovering
the meaning of latent features is substantially easier than with the embedding
approaches (and deep learning in general).

Each latent feature corresponds to a cluster and the meaning of the fea-
tures is reflected in the prototype of the cluster. To approximate the mean or
prototypical neighbourhood tree, we search for the elements common to all neigh-
bourhood trees forming a cluster. These elements can be either attribute values,
edge types or vertex identities. The similarity interpretations used to obtain the
cluster limits which elements are considered to be a part of a definition. More-
over, neighbourhood trees [11] are compared by the relative frequencies of their
elements, not the existence only. Therefore, to find a mean neighbourhood tree
and the meaning of a latent feature, we search for the elements with similar
relative frequencies within each neighbourhood tree forming a cluster.

To identify such elements, we proceed in three steps illustrated in Fig. 3.

1. Calculate the relative frequencies of all elements within each indi-
vidual neighbourhood tree, per level and vertex type. In case of dis-
crete attributes, that corresponds to a distribution of its values. In case of
numerical attributes, we consider its mean value. In case of vertex identities
and edge types, we simply look into their frequencies with respect to the
depth in a neighbourhood tree. In the example in Fig. 3, the neighbourhood
tree for profA contains two advisedBy relations, thus its frequency is 2

3 .

Fig. 3. Discovering the meaning of latent features by analysing their rela-
tions. Properties that describe latent features are the ones that have similar relative
frequency in all neighbourhood trees. Starting from a cluster of instances viewed as
neighbourhood trees (left), the relative frequencies of elements are calculated for each
neighbourhood tree (middle). Next, the mean and standard deviation of relative fre-
quencies are calculated for each individual element within the cluster (right). Which
elements explain the latent features is decided with θ-confidence. Setting θ to 0.3 iden-
tifies advisedBy and teaches as relevant elements (in black).
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2. Calculate the mean and standard deviation of relative frequency for
each element within a cluster. In Fig. 3, the frequencies of the advisedBy
elements in individual neighbourhood trees are 2

3 , 2
3 and 1

3 . Thus, its mean is
0.55 with a standard deviation of 0.15.

3. Select relevant elements. The final step involves a decision which elements
should form a definition of a latent feature. Relevant elements are identified
by a notion of θ-confidence which captures the allowed amount of variance in
order to element to be relevant.

Definition 1 (θ-confidence). An element with mean value μ and standard
deviation σ in a cluster, is said to be θ-confident if σ ∈ [0, θ · μ].

In Fig. 3, setting θ to 0.3 makes advisedBy a 0.3-confident element, because
its standard deviation of 0.15 is within the range [0, 0.3 · 0.55] = [0, 0.165]
specified by θ. In contrast, member is not a 0.3-confident elements as its standard
deviation is outside the range [0, 0.3 · 0.11] = [0, 0.0363].

The above-described procedure explains the latent features in terms of dis-
tribution of the elements in the neighbourhood of an instance, which has its pros
and cons. On the downside, this type of explanation does not conform to the
standard first-order logic syntax common within relational learning. Despite this
reduced readability, these explanations are substantially more transparent and
interpretable than the ones produced by the embeddings approaches. However,
one benefit of this approach is that it increases the expressivity of a relational
learner by extensionally defining properties otherwise inexpressible in the first-
order logic.

3.2 Properties of Latent Spaces

Latent features produced by CUR2LED have proven useful in reducing the com-
plexity of models and improving their performance. However, no explanation
was offered why that is the case. In the second part of this work, we look into
the properties of these latent representations and offer a partial explanation for
their usefulness. To answer this question we introduce the following properties:
label entropy, sparsity and redundancy.

Entropy and sparsity. Label entropy and sparsity serve as a proxy to a quan-
tification of learning difficulty – i.e., how difficult is it to learn a definition of
the target concept. Considering a particular predicate, label entropy reflects a
purity of its true groundings with respect to the provided labels. Intuitively,
if true groundings of predicates tend to predominantly focus on one particular
label, we expect model learning to be easier.

Sparse representations, one of the cornerstones of deep learning [12], refer
to a notion in which concepts are explained based on local (instead of global)
properties of instance space. Even though many properties might exist for a
particular problem, sparse representations describe instances using only a small
subset of those properties. Intuitively, a concept spread across a small number of
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local regions is expected to be easier to capture than a concept spread globally
over an entire instance space.

Quantifying sparsity in relational data is a challenging task which can be
approached from multiple directions – either by analysing the number of true
groundings or interaction between entities, for instance. We adopt a simple def-
inition: the number of true groundings of a predicate.

Label entropy and sparsity jointly describe a compelling property of data
representation – instances space is divided in many local regions that match
labels well and consequently make learning substantially easier.

Redundancy. A downside of CUR2LED is the high number of created features.
Despite their proven usefulness, a high number of latent features enlarges the
search space of a relational model and increases the difficulty of learning. As
similarity interpretations are provided by the user, it is possible that almost
identical clusterings are obtained with different similarity interpretations. Thus,
if many of the features are redundant, removing them simplifies learning.

We measure the redundancy with the adjusted Rand index (ARI) [13], a stan-
dard measure for overlap between clusterings, and study its impact on the perfor-
mance. To evaluate the influence of redundant features, we modify CUR2LED
by adding an additional overlap parameter α. Every time a new clustering is
obtained, we check its overlap with the previously discovered clusterings using
the ARI. If the calculated value is bigger than α, the clustering is rejected.

4 Experiments and Results

We devise the experiments to answer the following questions:

(Q1) Are latent features created by CUR2LED interpretable and do they capture
sensible information?

(Q2) Do latent features that result in models of lower complexity and/or
improved performance exhibit a lower label entropy compared to the original
data representation?

(Q3) Are latent representation that improve the performance of a model sparser
than the original data representations?

(Q4) To which extent are latent features redundant?

4.1 Datasets and Setup

The results obtained in [10] can be divided in three categories. The first cat-
egory contains the IMDB and UWCSE datasets; these datasets present easy
relational learning tasks in which the original data representation is sufficient
for almost perfect performance. The main benefit of latent representations for
these tasks was the reduction of model complexity. The second category includes
the TerroristAttack dataset, in which the main benefit of latent representation
was the reduction of complexity, but not the performance. The third category
involves the Hepatitis, Mutagenesis and WebKB datasets. These tasks benefited
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from latent representations in both performance and reduced model complex-
ity. That is especially true for the Hepatitis and WebKB datasets on which the
performance was improved by a large margin.

We take a representative task from each of the categories. Precisely, we use
IMDB, UWCSE, Hepatitis and TerroristAttack datasets in our experiments.
Both IMDB and UWCSE datasets were included as they are easy to understand
without the domain knowledge, and thus useful for analysing the interpretability
of relational latent features. As for the parameters of latent representation, we
take the best parameters on individual datasets selected by the model selection
procedure in [10]. When analysing the interpretability, we set θ to 0.3.

When evaluating the redundancy, we create latent representations by setting
the α to the following values: {0.9, 0.8, 0.7, 0.6, 0.5}. We then learn a relational
decision tree TILDE [14] on the obtained representation and compare accuracies,
the number of created features and the number of facts.

When analysing the entropy and sparsity of representations, predicates indi-
cating labels (such as Professor or Student) and entity definitions (such as
Person or Course) are not considered in the analysis.

4.2 Interpretability

To illustrate the interpretability of relational features, we show examples of latent
features created for two easy to interpret dataset - IMDB and UWCSE. We show
that the relational decision trees learned on both original and latent representa-
tions. The explanations of latent features are provided as well.

Figure 4 shows the decision trees learned on the IMDB dataset. The task is to
distinguish between actors and directors – this is a simple relational learning task
and both original and latent decision tree achieve the perfect performance with

Fig. 4. Relational decision trees learned on the original (left) and latent (right) data
representation of the IMDB dataset. The dashed ellipse indicates the target predicate
and its arguments. The first argument, marked A and declared as input (+), denotes a
person. The second argument, marked B and declared as output (-), states the label
of the instance given by A. The values in the leaves of the decision trees are assign-
ments to B. The dashed rectangle describes the latent feature – for each level of the
mean neighbourhood tree, θ-confident elements are listed with the mean and standard
deviation.
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only a single node. Even though latent representation does not seem beneficial
in this particular case, it is interesting to see that the selected latent feature
captures the same information as the decision tree learned on the original data –
person instances in cluster 1 are the ones that have a relationship with movie
instances, and have worked under another person (a director).

Figure 5 shows the decision trees for the UWCSE dataset, which benefit from
the latent features. Despite the simplicity of distinguishing students from pro-
fessors, the decision tree learned on the latent features is more compact and
has only a single node whereas the decision tree learned on the original features
consists of three nodes. The latent feature here again captures similar knowl-
edge as the original decision tree but expressed in a simpler manner – professor
is someone who either has a position at the faculty, or is connected to people
who are currently in a certain phase of a study program and have been in the
program for a certain number of years.

What is particularly interesting about the examples above is that, even
though the latent features are created in an unsupervised manner, they match
the provided label very well. Moreover, they seem to almost perfectly capture
the labelled information as only a few features are needed to outperform the
decision tree learned on the original data representation. This observation shows
that CUR2LED is indeed capturing sensible knowledge in the latent space.

Both aforementioned examples are easy to understand and interpret without
an extensive domain knowledge. The other tasks that have benefited more from
the latent features are substantially more difficult to understand. For instance,
the latent features created from the Mutagenesis dataset reduce the complexity
of the relational decision tree from 27 to only 3 nodes, while improving the accu-
racy for 4%. Similarly, on the Hepatitis dataset the latent features reduced the

Fig. 5. Relational decision trees learned on the original (left) and latent (right) repre-
sentations of the UWCSE dataset. The elements have the same meanings as in Fig. 4.
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complexity of a decision tree from 22 nodes down to 5, improving the accuracy
for 11%. Because these examples require an extensive knowledge to interpret
them, we leave them out from this work.

4.3 Properties of Latent Spaces

Label entropy. Figure 6 summarizes the label entropy for each dataset. In all
cases where representation learning proved helpful (i.e., IMDB, UWCSE, Hepati-
tis), latent representations have a substantially larger number of predicates with
low label entropy compared to the original data representation. The latent repre-
sentation for the TerroristAttack datasets, however, shows a different behaviour
in which latent features with high entropy dominate the representation. These
results agree with the expectation that a high number of low entropy features
makes learning easier. However, not all latent features have low label entropy.
This is expected, as the labels are not considered during learning of latent fea-
tures. It also does not pose a problem – these latent features are less consistent
with the one particular task, but it might well be the case that those features
are useful for a different task.

Sparsity. Figure 7 summarizes the sparsity results in terms of the number of true
instantiations of predicates. The distribution of the number of true groundings
in the latent representations (where latent features are beneficial) is heavily
skewed towards a small number of groundings, in contrast with the original
representation. That is especially the case with the Hepatitis dataset, which
profits the most from the latent features. The exception to this behaviour is
again the TerroristAttack dataset in which the original representation already is
very sparse. These results indicates that latent features indeed describe smaller
groups of instances and their local properties, instead of global properties of all
instances.

IMDB

0 0.2 0.4 0.6

Label entropy

0

45
Number of predicates

nt

Original

UWCSE

0 0.2 0.4 0.6
0

29

Hepatitis

0 0.1 0.2 0.3 0.4 0.5
0

14

TerroristAttack

0 0.2 0.4 0.6
0
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Fig. 6. Latent representations for IMDB, UWCSE and Hepatitis datasets contain sub-
stantially larger number of predicates (and the corresponding facts) with low label
entropy, compared to the original representation of data. On the TerroristAttack
dataset, for which the latent representation has not been useful, that is not the case -
both original and latent representation demonstrate similar trends in label entropy of
the predicates and the corresponding facts.
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Fig. 7. Latent representation tends to be sparser than the original representation on the
datasets where it is beneficial (IMDB, UWCSE and Hepatitis). On the TerroristAttack
dataset, where the latent representation is not beneficial, both original and latent
representation follow the same trend.
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Fig. 8. Contrasting the label entropy of predicates and the number of true groundings
reveals that the many latent predicates with the low label entropy have similar number
of groundings as the predicates of the original data representation. This means that the
trivial case, in which a large number of low-entropy predicates is obtained due to many
predicates that have just a few true groundings, is not explanation for the experimental
results. Instead, the latent representation, when beneficial, successfully identifies local
regions in the instance space that match well with the provided labels. The exception
to this is again the TerroristAttack dataset.

Connecting label entropy and sparsity. A potential explanation of the above
discussed results might be that many latent features capture a very small number
of instances (e.g., 1 or 2) which would lead to a large number of features with low
label entropy. Such features would largely be useless as they make generalization
very difficult. To verify that this is not the case, Fig. 8 plots the label entropy
versus the number of groundings of a predicate. If latent features of low label
entropy would indeed capture only a small number of instances, many points
would be condensed in the bottom left corner of the plot. However, that is not
the case – many latent predicates with low label entropy actually have a number
of groundings comparable to the predicates in the original representation. The
exception to this is again the TerroristAttacks dataset.
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Fig. 9. The performance in terms of the accuracy is barely effected by removing over-
lapping clusterings, while the number of predicates and facts can be reduced up to
30%. The only noticeable reduction in performance happen on the Hepatitis dataset,
but only for approximately 5%.

These results jointly point to the following conclusion: latent features success-
fully identify local regions in the instance space that match well with the provided
labels. As a consequence, these local regions are easier to capture and represent.

Redundancy. Figure 9 summarizes the influence of α on the accuracy and the
number of latent features. The figure shows relative reduction in the number
of features (equal to the number of predicates), the number of facts and the
accuracy with respect to the latent representation obtained without rejecting the
overlapping clusterings. These results show that the performance of the classifier
is not affected by removing features based on the overlap of clusterings they
define. The performance of TILDE remains approximately the same, whereas
the number of latent features is reduced by 20 to 30 %. As the number of features
is directly related to the size of the search space of relational model (and thus
the complexity of learning), this is an encouraging result indicating that the size
of the search space can be naively reduced without sacrificing the performance.

4.4 Looking Forward

The proposed experimental framework is only the first step towards under-
standing how latent representations can benefit relational learning methods.
The interaction between label entropy and sparsity seems to play an important
role, indicative of the benefit of a latent representation. On the other hand, the
method for extracting the meaning of the latent features and analysis of their
redundancy are developed especially for CUR2LED and might have a limited
benefit for future approaches.

Understanding when learning latent representation is (not) beneficial is an
important question for further research. Majority of tasks benefits from learn-
ing latent representations, but some, like the TerroristAttack dataset, do not.
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Though we cannot definitely explain why that is the case, we suspect that the
reason might be that the features of instances contain the most relevant informa-
tion while the structure is uninformative. In contrast, CUR2LED is developed
to exploit the rich structure in relational dataset and is thus not suited for the
scenario where only the features are relevant.

Another important question is how this kind of insights connects to the
embeddings to vector spaces. The analysis done in this work focuses on con-
trasting the properties of predicates and associated data of original and latent
representation obtained by CUR2LED. The embeddings to vector spaces replace
the logical representation of data with points in the Euclidean space and are
thus not amenable to this kind of analysis. However, similar kind of analysis
for embedding spaces is currently missing in the literature. Further research
towards combining relational and deep learning methods might greatly bene-
fit from understanding up- and downsides of both directions of research, and
developing new ideas that combine advantages of both.

5 Conclusion

In this work we closely inspect the properties of latent representations for rela-
tional data. We focus on relational latent representations created by clustering
both instances and relations among them, introduced by CUR2LED [10]. The
first property we analyse is the interpretability of latent features. We introduce
a simple method to explain the meaning of latent features, and show that they
capture interesting and sensible properties. Second, we identify two properties of
these latent representation that partially explain their usefulness – namely, the
label entropy and sparsity. Using these two properties, we show that obtained
latent features identify local regions in instance space that match well with the
labels. Consequently, this explains why predictive model learned from latent fea-
tures are less complex and often perform better than the model learned from
the original features. Third, we show that latent features tend to be redundant,
and that 20 to 30 % of latent features can be discarded without sacrificing the
performance of the classifier. This consequently reduces the search space for the
relational models, and simplifies learning.
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Abstract. Logic-based event recognition systems infer occurrences of
events in time using a set of event definitions in the form of first-order
rules. The Event Calculus is a temporal logic that has been used as a basis
in event recognition applications, providing among others, direct connec-
tions to machine learning, via Inductive Logic Programming (ILP). OLED

is a recently proposed ILP system that learns event definitions in the form
of Event Calculus theories, in a single pass over a data stream. In this
work we present a version of OLED that allows for parallel, online learning.
We evaluate our approach on a benchmark activity recognition dataset
and show that we can reduce training times, while achieving super-linear
speed-ups on some occasions.

1 Introduction

Event recognition systems [9] process sequences of simple events, such as sen-
sor data, and recognize complex events, i.e. events that satisfy some pattern.
Logic-based systems for event recognition [6] typically use a knowledge base of
first-order rules to represent complex event patterns and a reasoning engine for
pattern matching in the incoming data stream. The Event Calculus (EC) [19]
has been used as the basis for event recognition systems [4,23], offering direct
connections to machine learning, via Inductive Logic Programming (ILP) [8].

Event recognition applications deal with noisy data streams [1]. Methods
that learn from such streams typically build a decision model by a single pass
over the input [13]. OLED (Online Learning of Event Definitions) [18] is an ILP
system that learns event definitions in the form of EC theories in a single pass
over a relational data stream. OLED learns clauses in top-down manner, by grad-
ually specializing an over-general clause using literals from a bottom clause. Its
single-pass strategy is based on the Hoeffding bound [15], a statistical tool that
allows to build decision models by approximating their quality on the entire
input from a small subset of it. We present an extension of OLED, that allows for
learning a theory in an online and parallel fashion. Our approach is based on
a simple parallelization scheme of the core OLED functionality. In the proposed
parallelization strategy, a clause is evaluated in parallel on sub-streams of the
input stream and its independent scores are combined whenever a specialization
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N. Lachiche and C. Vrain (Eds.): ILP 2017, LNAI 10759, pp. 78–93, 2018.
https://doi.org/10.1007/978-3-319-78090-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78090-0_6&domain=pdf


Parallel Online Learning of Event Definitions 79

decision must be made. We present an evaluation of our approach on a bench-
mark activity recognition dataset and show that it can reduce training times,
while it is also capable of super-linear speed-ups on some occasions.

The rest of this paper is structured as follows: In Sect. 2 we present some
background on the EC. In Sect. 3 we present OLED and in Sect. 4 we present its
parallel version. In Sect. 5 we present our experimental results, while in Sect. 6
we discuss related work. Finally, in Sect. 7 we discuss some directions for future
work and conclude.

2 Background

The Event Calculus (EC) [19] is a temporal logic for reasoning about events and
their effects. Its ontology consists of time points (integer numbers); fluents, i.e.
properties that have different values in time; and events, i.e. occurrences in time
that may alter fluents’ values. The axioms of the EC incorporate the common
sense law of inertia, according to which fluents persist over time, unless they are
affected by an event. We use a simplified version of the EC that has been shown to
suffice for event recognition [4]. The basic predicates and its domain-independent
axioms are presented in Table 1. Axiom (1) states that a fluent F holds at time
T if it has been initiated at the previous time point, while Axiom (2) states
that F continues to hold unless it is terminated. Definitions for initiatedAt/2 and
terminatedAt/2 predicates are given in an application-specific manner by a set of
domain-specific axioms.

We illustrate our approach using the task of activity recognition, as defined
in the CAVIAR project1. The CAVIAR dataset consists of videos where actors
perform some activities. Manual annotation (performed by the CAVIAR team)
provides ground truth for two activity types. The first type corresponds to simple
events and consists of knowledge about the activities of a person at a certain
video frame/time point, such as walking, or standing still. The second activity
type corresponds to complex events and consists of activities that involve more

Table 1. The basic predicates and domain-independent axioms of EC.

Predicate Meaning

happensAt(E, T ) Event E occurs at time T

initiatedAt(F, T ) At time T a period of time for which fluent F holds is initiated

terminatedAt(F, T ) At time T a period of time for which fluent F holds is terminated

holdsAt(F, T ) Fluent F holds at time T

Axioms

holdsAt(F, T + 1) ←
initiatedAt(F, T )

holdsAt(F, T + 1) ←
holdsAt(F, T ),

not terminatedAt(F, T )

1 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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than one person, e.g. two people meeting each other, or moving together. The goal
is to recognize complex events as combinations of simple events and additional
contextual knowledge, such as a person’s direction and position.

Table 2(a) presents some example CAVIAR data, consisting of a narrative
of simple events in terms of happensAt/2, expressing people’s short-term activi-
ties, and context properties in terms of holdsAt/2, denoting people’ coordinates
and direction. Table 2(a) also shows the annotation of complex events (long-
term activities) for each time-point in the narrative. Negated complex events’
annotation is obtained via the closed world assumption (although both posi-
tive and negated annotation atoms are presented in Table 2, to avoid confusion).
Table 2(b) presents two domain-specific axioms in the EC.

Our goal is to learn definitions of complex events in terms of initiation and
termination conditions, as in Table 2(b). In the learning setting that we assume
the training data consist of Herbrand interpretations, i.e. sets of true ground
atoms, as in Table 2(a). Positive examples are annotation atoms contained in
such interpretations, while negative examples are false annotation atom instances
generated via the closed world assumption. Given a set of training interpreta-
tions I, some background theory B, which in our case consists of the domain-
independent axioms of the EC, and some language bias M , the goal is to learn
a theory H that fits the training data well, i.e. it accounts for as many positive
examples and as few negative examples as possible. Formally, given a theory H
and an interpretation I, let MH

I denote a model of B ∪H ∪ I and annotation(I )
denote the annotation atoms of I. Although different semantics are possible,
in this work by “model” we mean a stable model. Also, let positives(H , I )

Table 2. (a) Example data from activity recognition. For example, at time point 1
person with id1 is walking, her (x, y) coordinates are (201, 454) and her direction is
270◦. The annotation for the same time point states that persons with id1 and id2 are
not moving together, in contrast to the annotation for time point 2. (b) An example of
two domain-specific axioms in the EC. E.g. the first clause dictates that moving together
between two persons X and Y is initiated at time T if both X and Y are walking at
time T , their euclidean distance is less than 25 pixel positions and their difference in
direction is less than 45◦. The second clause dictates that moving together between X
and Y is terminated at time T if one of them is standing still at time T (exhibits an
inactive behavior) and their euclidean distance at T is greater that 30.
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(resp. negatives(H , I )) be the set of complex event instances a with the property
α ∈ MH

I ∩ annotation(I ) (resp. α ∈ MH
I � annotation(I )). The goal then is to

learn a theory H with the property

argmax
H∈L(M)

(
∑

I∈I
|positives(H, I)| − |negatives(H, I)|)

where L(M) denotes the hypothesis language defined by the language bias M .
The language bias that we assume is mode declarations [20].

3 The OLED System

OLED [18] learns a theory by joining together independently-constructed clauses,
each of which is learnt in an online fashion. It relies on the Hoeffding bound [15]
to approximate the quality of a clause on the entire input using only a subset of
the data. Given a random variable X with range in [0, 1] and an observed mean
X of its values after n independent observations, the Hoeffding Bound states
that, with probability 1 − δ, the true mean X̂ of the variable lies in an interval

(X − ε,X + ε), where ε =
√

ln(1/δ)
2n . In other words, the true average can be

approximated by the observed one with probability 1− δ, given an error margin
ε that becomes smaller as the number of observations n increases.

OLED learns a clause in a top-down fashion, by specializing it using literals
from a bottom clause [8]. The Hoeffding bound is utilized in the specialization
process as follows. Given a clause evaluation function G and some clause r, OLED

evaluates r and all of its candidate specializations on training interpretations
that stream-in, counting positive and negative examples in these interpreta-
tions that are covered by each of these clauses. Assume that after n examples,
r1 is r’s specialization with the highest observed mean G-score G and r2 is
the second-best one, i.e. ΔG = G(r1) − G(r2) > 0. Then by the Hoeffding
bound we have that for the true mean of the scores’ difference ΔĜ it holds that
ΔĜ > ΔG − ε, with probability 1 − δ, where ε =

√
ln(1/δ)

2n . Hence, if ΔG > ε

then ΔĜ > 0, implying that r1 is indeed the best specialization, with proba-
bility 1 − δ. In order to decide which specialization to select, it thus suffices to
accumulate example counts from the incoming interpretations until ΔG > ε.
These interpretations need not be stored or reprocessed. Each interpretation is
processed once to extract the necessary statistics for calculating G-scores and
is subsequently discarded, thus giving rise to an online (single-pass) clause con-
struction strategy. To ensure that no clause r is replaced by a specialization of
lower quality, r itself is also considered as a potential candidate along with its
specializations, ensuring that specializing r is a better decision, with probability
1 − δ, than not specializing it at all.

The default specialization process follows a FOIL-like, hill-climbing strategy,
where a single literal is added to a clause at each specialization step. However,
OLED supports different specialization strategies as well, e.g. by allowing to simul-
taneously try all specializations up to a given clause length, or by supporting
user-defined, TILDE-like look-ahead specifications [7].
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To calculate G-scores, each clause r is equipped with a true positive (TP), a
false positive (FP) and a false negative (FN ) counter, whose values are updated
accordingly as r gets evaluated on training interpretations that stream-in. True
negative counts are not taken into account, since the annotation for complex
events is acquired via the closed world assumption. Although different scor-
ing functions may be plugged into OLED, in this work we use precision to score
initiation clauses and recall to score termination clauses, as in [18]. Moreover,
OLED supports a clause pruning mechanism, that allows to remove low-quality
clauses (e.g. clauses that have been generated from noisy interpretations) and
a tie-breaking mechanism, that allows to randomly select between equally good
specializations. We refer to [18] for more details on these features.

In the general case, a theory learnt by OLED is a collection of clauses con-
structed with the online mechanism described above. A clause is generated from a
positive example in an incoming interpretation, by constructing a bottom clause

Annotation Inferred
TP holds holds

No actions necessary

Annotation Inferred
FP not holds holds

Incorrectly
initiated

by clause rinit

Specialize rinit

No termination
clause “fires”

Generate new
termination clause

Annotation Inferred
FN holds not holds

No initiation
clause “fires”

Generate new
initiation clause

Incorrectly
treminated

by clause rterm

Specialize rterm

OR OR

TP instance occurs FP instance occurs FN instance occurs

InitiationLearner Reward all clauses that
correctly initiate the
complex event.

Penalize all clauses that
incorrectly initiate the
complex event.

Generate new initiation
clause.

TerminationLearner Reward all clauses that
correctly allow the com-
plex event to persist.

Generate new termina-
tion clause.

Penalize all clauses that
incorrectly terminate
the complex event.

(A)

(B)

Fig. 1. (A) Different behaviors of initiation and termination clauses w.r.t. to occur-
rences of TP ,FP and FN complex event instances. Dash-lined boxes explain what it
means to encounter a TP ,FP ,FN complex event instance, in terms of (dis)agreement
between the actual label of the instance and the one inferred by the theory. Round-
cornered boxes describe the causes of FP, FN occurrences w.r.t. the different types
of clause (initiation or termination). Regular boxes at the “leaves” of the tree-like
structures indicate proper courses of action in order to eliminate FP/FN instances.
(B) Actions taken by the two different processes that learn initiation and termination
clauses in parallel, w.r.t. TP ,FP ,FN complex event occurrences. These actions are
in accordance with the indicated actions in (A) (leaves of the trees). “Rewarding” a
clause refers to increasing the TP count of the clause, while “penalizing” a clause refers
to increasing its FP or FN counts. Penalizing clauses reduces their score, it therefore
contributes to their specialization after a sufficient number of examples has been seen.
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⊥ from that instance and adding the empty-bodied clause “r = head(⊥) ←” to
theory H. From that point on, r is gradually specialized by the addition of lit-
erals from ⊥ to its body. New clauses are added to H whenever existing clauses
in H become too specific to account for positive examples in new incoming
interpretations. Bottom clause construction is preceded by an abductive process
that handles the fact that target predicates (initiatedAt/2 and terminatedAt/2) dif-
fer from observed annotation predicates (holdsAt/2). We refer to [18] for more
details.

When learning domain-specific axioms in the Event Calculus, the aforemen-
tioned generic theory construction strategy must be modified to account for
the fact that initiation and termination clauses behave differently w.r.t. encoun-
tered TP ,FP and FN complex event instances. A description of this behavior
is illustrated in Fig. 1(A). To handle this behavior, initiation and termination
clauses are learnt separately, by two parallel processes, each of which runs the
core OLED Algorithm. The input stream is forwarded to each of these processes.
Figure 1(B) presents the different actions that each learner takes whenever it
encounters TP ,FP and FN instances.

4 A Parallel Version of OLED

We now proceed to the description of a data parallel version of OLED, which we
henceforth denote by p-OLED. The parallelization strategy is based on evaluating a
clause and its candidate specializations on incoming interpretations by distribut-
ing the workload across multiple processing nodes that operate on sub-streams
of the input stream. When a node is about to specialize or remove a clause r,
it consults its peer nodes and combines their evaluation results for r with its
own, so that a more informed decision is made. We next describe this strategy
in more detail.

4.1 Main Operations of the Parallel OLED Strategy

We assume that learning is performed by a set N of independent processing
nodes. Each node handles a sub-stream Si of training interpretations, gener-
ated from an input stream S, according to some data distribution scheme. For
instance, the data from S may be distributed to the processing nodes in N in a
“round-robin” manner, or by using specific data attributes as “key” in the dis-
tribution process. Processing nodes communicate by exchanging messages and
they collaborate in order to learn a theory H in parallel. In particular, p-OLED

differs from the sequential algorithm in the following respects:

New clause generation: When a node Ni generates a new clause r, it broad-
casts r to all other nodes in N , via an AddNewClause(r) message (see Table 3
for the main types of message of parallel OLED). Each node that receives such a
message adds clause r to its own theory and starts scoring r, and its candidate
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Table 3. The main messages exchanged between data processing nodes in parallel
OLED.

Message Conditions for message

broadcast

Actions upon message

receipt

AddNewClause(r) Generation of clause r Add r to local theory

SpecializeRequest(rid ) Clause with id rid is about

to be specialized (the

Hoeffding test for this

clause has succeeded)

Reply to the sender by the

local TP,FP,FN ,E

counts for clause with id

rid and for each of its

candidate specializations

SpecializeReply(args), where

args = 〈rid ,TP,FP,FN ,E〉
Reply to a specialization

request message for the

clause with id rid

Add the received counts for

the corresponding clause to

the local ones and repeat

the Hoeffding test

Replace(rid , r ′) Clause with id rid has been

specialized to clause r′
Replace clause with id rid

by r′ in local theory

PruneRequest(rid ) Clause with id rid is about

to be pruned

Reply to the sender by the

local TP,FP,FN counts

for clause with id rid, as

well as the period for

which r remains (locally)

unchanged

PruneReply(args), where

args = 〈rid ,TP,FP,FN ,T〉, T being

the period for which the clause with

id rid remained unchanged at the

sender node

Reply to a prune request

message

Add the received counts for

the corresponding clause to

the local ones and repeat

the clause removal test

Remove(rid ) Clause with id rid has

been pruned

Remove clause with id rid

from local theory

specializations on its local data stream. As in the sequential version of OLED, a
new clause r consists of an initially empty-bodied clause “head(⊥) ←”, where
⊥ is a bottom clause generated at Ni, which is subsequently used to gradually
specialize r.

Clause specialization: When a node Ni is about to specialize a clause r, i.e.
when OLED’s Hoeffding test for clause r succeeds, locally at Ni, node Ni sends a
SpecializeRequest(rid) message to all other nodes, where rid is a unique iden-
tifier of clause r, common to all copies of r shared among processing nodes.
Upon receiving such a message, each node uses rid to retrieve its own evaluation
statistics for clause r and its candidate specializations, which are sent over to
the requesting node Ni. These statistics consist of TP ,FP ,FN and E counts
for clause r and its candidate specializations, where by E we denote the number
of examples on which a clause has been evaluated so far (number of groundings
of target predicates). The received counts for clause r and its specializations
are combined with node Ni’s local counts as follows (we describe the process
for clause r only, but it is similar for each of its specializations). Denoting by
TP j

r ,FP j
r ,FN j

r and Ej
r the respective counts for clause r, received from node

Nj ∈ N , j �= i, the current node Ni updates r’s counts accordingly, by increasing
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r’s local counts with those received from other nodes. For instance, the new TP
count for clause r in node Ni becomes TP i

r = TP i
r +

∑
Nj ∈N

TP j
r .

Each processing node Ni ∈ N maintains a record, for each clause r in its
theory and each one of r’s specializations, that contains the exact counts previ-
ously received for them, from each node Nj ∈ N , j �= i. When node Ni receives a
set of new TP j

r ,FP j
r ,FN j

r and Ej
r counts for clause r from node, the respective

previous counts are subtracted from the new ones, to avoid over-scoring r with
counts that have already been taken into account in previous updates. The same
holds for r’s specializations.

Once individual clause evaluation statistics are combined as described above,
node Ni repeats the Hoeffding test for clause r to assess if the test still succeeds
after the accumulated counts have been taken into account. If it does, clause r is
replaced in H, the current theory at node Ni, by its best-scoring specialization r′

that results from the Hoeffding test. Then, node Ni sends out a Replace(rid , r ′)
message to all other nodes, instructing them to also replace their local copy
that corresponds to rid in their own theories with r′. If, on the other hand, the
Hoeffding test fails at node Ni after the updated counts are taken into account,
clause r is not specialized.

Clause pruning: For a clause r to be removed, two conditions must hold: First,
clause r must be unchanged (not specialized) for a sufficiently long period, which,
in the single-core version of OLED, is set to the average number of examples for
which the Hoeffding test succeeds, i.e. the average value of n = O( 1

ε2 ln 1
δ ) that

has resulted in clause specializations so far. Second, from that point on where
clause r remains unchanged, a sufficiently large number of data must be seen, in
order to use a Hoeffding test to infer that, with probability 1 − δ, the quality of
clause r is below the pruning threshold, i.e. a user-defined lower bound on the
quality of acceptable clauses.

In p-OLED, each node uses the above heuristics to decide locally whether a
clause r should be pruned. Once it has seen enough data from its own stream
to make that decision for clause r, it sends a PruneRequest(rid) message to all
other nodes. Each node that receives such a message sends back to the requesting
node the necessary information (period for which clause r remains unchanged
and TP ,FP ,FN and Er counts for clause r), which node Ni uses to re-assess
whether clause r should be pruned, based on the global view of clause r, obtained
by combining r’s separate evaluations from all processing nodes. If node Ni

eventually decides to prune clause r, it sends a Remove(rid) to all other nodes,
which instructs them to also remove clause r from their theories.

4.2 Decentralized Coordination

Each processing node in p-OLED operates autonomously and there is no centralized
coordination. This may result in undesired behavior, therefore some extra actions
are in order, at an implementation level, to avoid such behavior. We next discuss
such issues and outline the way that p-OLED handles them.
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Clause specialization requires some coordination between processing nodes.
For instance, assume that node Nj handles a SpecializeRequest for some clause
r, sent from a node Ni. Nj sends r’s evaluation statistics to the requesting node
Ni and it subsequently continues to process data from its local training stream.
This implies that during the time taken for node Ni to decide on r’s specializa-
tion (receive the statistics for r and its candidate specializations from all nodes
and repeat the Hoeffding test), node Nj continues to evaluate clause r on its own
data. It is possible that during this time the Hoeffding test for clause r succeeds at
node Nj , in which case it will attempt to specialize r. This is unnecessary, since r’s
specialization is already under assessment at node Ni. To avoid this behaviour and
ensure that a potential specialization of a clause r is handled by a single node at
a time, each recipient node of a SpecializeRequest message “marks” the clause
in question as a specialization candidate. For a marked clause r, all potential spe-
cialization attempts are temporarily suspended, until a “verdict” for this clause is
received from the node that is currently attempting to specialize clause r.

The above strategy is insufficient in cases where the Hoeffding test for
clause r succeeds at more than one processing nodes simultaneously, or at a
very close temporal proximity. In such cases, a node Ni may need to handle a
SpecializeRequest for some clause r, while currently attempting itself to spe-
cialize r, implying that two nodes are attempting to specialize the same clause
simultaneously. Consider for instance a situation where node Ni has just finished
processing an interpretation where the Hoeffding test for clause r succeeded,
while in the meantime, a SpecializeRequest message for the same clause r,
sent from some other node Nj , has been enqueued in Ni’s message queue. To
resolve conflicts in cases like these, a priority order is imposed beforehand on all
processing nodes, using each node’s index k, 1 ≤ k ≤ |N |. Nodes of higher index
are prioritized to specialize a clause r over nodes of lower index. That is, a node
of index k abandons its effort to specialize a clause r whenever it encounters
a SpecializeRequest message for the same clause, received from a node with
index k′ > k. Similarly, nodes of higher index do not serve specialization requests
for a clause r, received from nodes of lower index, in case they themselves are
already attempting to specialize r.

A similar coordination mechanism is used to ensure that a potential removal
of a low-quality clause during pruning is handled by a single node at a time.

Another cause for unwanted behaviour is related to delays in message pass-
ing. For instance, a node Ni may be currently carrying out an intensive, time-
consuming task (e.g. processing a large and complex interpretation), while some
other node Nj is expecting Ni’s reply on a SpecializeRequest message, in
order to specialize some clause r. This results in Nj “wasting data”, since it
keeps processing new interpretations during this time. These data could have
been used to evaluate new specializations for clause r, had node Ni responded
in a timely fashion. To avoid situations like these, in practice each node uses a
time-out parameter t to handle the replies of its peers nodes, considering only
the replies received within the time-out. The time-out parameter is adapted
during the learning process according to the mean processing time per training
interpretation.
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5 Empirical Evaluation

We present an experimental evaluation of our approach on CAVIAR (described in
Sect. 2), a benchmark dataset for activity recognition. CAVIAR contains 282,067
training interpretations with a mean size of 25 atoms each. p-OLED is implemented
in the Scala programming language. It uses Clingo2 as its main reasoning compo-
nent and Scala’s akka Actors library3 to model the behavior of a processing node
and implement message passing. The code and data of the empirical analysis are
available online4. All experiments were conducted on a Debian Linux machine
with a 3.6 GHz processor (4 cores and 8 threads) and 16 GB of RAM.

The purpose of our first experiment was to compare p-OLED with its monolithic
counterpart. We performed learning with 1, 2, 4 and 8 processing threads (each
representing a processing node) for constructing the definitions of two complex
events, related to two persons meeting each other or moving together. We used
tenfold cross-validation with an 80%–20% training-testing ratio. CAVIAR con-
tains 6,272 positive interpretations for moving (i.e. interpretations where moving
occurs) and 3,722 positive interpretations for meeting, forming respectively 12
positive sequences for moving and 11 positive sequences for meeting (a positive
(resp. negative) sequence encompasses a time interval where a complex event
holds (resp. does not hold) continuously). The testing set for each fold of the
cross-validation process consisted of 2 positive sequences per complex event, plus
negative sequences amounting to the 20% of the total negatives in the dataset,
while the remaining positive and negative sequences where used for training. For
this experiment positive and negative sequences in the training set were evenly
distributed across the different processing nodes, so that all nodes were fed with
approximately the same number of positive and negative examples. In each fold
of the cross-validation process, the training interpretations were presented to
each processing node in a random order. The parameters for both the sequential
and the parallel version of OLED was δ = 10−5 and clause pruning threshold set to
0.65 for moving and 0.8 for meeting. These values were chosen empirically based
on previous experiments with OLED on the CAVIAR dataset [18]. The pruning
threshold values refer to precision for initiation clauses and recall for termination
clauses, which were used as scoring functions in this experiment.

We also created a larger version of CAVIAR, in order to evaluate our algo-
rithms on a more demanding learning task. This dataset consists of 10 copies of
the original CAVIAR dataset, where each copy differs from the others only in
the constants referring to the tracked entities (persons, objects) that appear in
simple and complex events. This dataset contains 100 different tracked entities,
as compared to only 10 entities of the original CAVIAR dataset. In each copy
of the dataset, the coordinates of each entity p differ by a fixed offset from the
coordinates of the entity of the original dataset that p mirrors. The setting for
the x10-CAVIAR experiment was as described above.

2 http://potassco.sourceforge.net/.
3 http://akka.io/.
4 https://github.com/nkatzz/OLED.

http://potassco.sourceforge.net/
http://akka.io/
https://github.com/nkatzz/OLED
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The results from our experiment with CAVIAR and x10-CAVIAR are pre-
sented in Table 4(A) and (B) respectively, in the form of averages (over the ten runs
of the cross-validation process) for training time, F1-score and theory size (total
number of literals), as well as average number of exchanged messages. F1-scores
were obtained by micro-averaging results from each fold. We also present F1-scores
and theory sizes for hand-crafted theories for the two target complex events. The
hand-crafted theories may be considered as the standard in this domain and they
are presented in [5]. They are available online5, in addition to learnt theories for
meeting and moving with OLED. Table 4 also presents the achieved speed-ups for
p-OLED, defined as T1/Tn, where T1 and Tn are respectively the training times of
a monolithic and a parallel learner that uses n cores. The speed-up is linear if it’s
approximately equal to n, for each n, while it is sub-linear (resp. super-linear) if
it is smaller (resp. greater) than n.

Starting with the results from the CAVIAR dataset (Table 4(A)), we see
that p-OLED constructed theories of slightly higher F1-score for meeting, as com-
pared to its single-core counterpart. In the monolithic setting, OLED postpones

Table 4. (A) Experimental results from the CAVIAR dataset; (B) Experimental
results from the x10-CAVIAR dataset.

#cores Time (sec) Speed-up F1-score Theory size #Msgs

(A) Meet 1 46 – 0.798 28 –

2 18 2.5 0.818 31 75

4 15 3 0.805 34 168

8 15 3 0.802 35 358

HandCrafted – – – 0.700 24 –

Move 1 68 – 0.744 21 –

2 31 2.1 0.740 21 58

4 27 2.5 0.739 21 112

8 26 2.6 0.743 23 228

HandCrafted – – – 0.732 28 –

(B) Meet 1 7588 – 0.834 36 –

2 2144 3.5 0.834 36 78

4 1682 4.5 0.834 36 158

8 912 8.3 0.832 36 342

HandCrafted – – – 0.700 24 –

Move 1 7898 – 0.758 34 –

2 2312 3.4 0.753 34 82

4 1788 4.4 0.756 34 164

8 966 8.1 0.753 34 322

HandCrafted – – – 0.732 28 –

5 http://users.iit.demokritos.gr/∼nkatz/CAVIAR-theories/.

http://users.iit.demokritos.gr/~nkatz/CAVIAR-theories/
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the generation of new clauses, up to the point where existing clauses become
too specific to account for new examples in the incoming interpretations. During
this time, interpretations which may result in a good clause (recall that OLED

learns by “encoding” interpretations into bottom clauses), are “skipped”, i.e.
they are not used for learning new clauses, since they are covered by existing
ones. In contrast, the data distribution in p-OLED resulted in cases where interest-
ing interpretations that would have been missed in the monolithic setting, are
actually used for learning. A similar effect was not observed for moving, which
has a simpler definition than meeting.

Regarding training times, OLED achieves a significant speed-up for both com-
plex events, by moving from sequential learning to learning with 2 cores, but
from that point on, training times do not improve proportionally to the number
of cores, resulting in sub-linear speed-ups. This is not the case however in the
x10-CAVIAR experiment (Table 4(B)), where p-OLED achieves super-linear speed-
ups. The x10-CAVIAR dataset consists of larger training interpretations, each
containing an increased number of domain constants and ground literals. Such
interpretations are significantly harder to be reasoned upon, as indicated by the
exponential growth in training times in the x10-CAVIAR experiment. Therefore,
the contrast between the speed-up patterns of the regular CAVIAR and the sig-
nificantly larger x10-CAVIAR version seems to be in line with the fact that
gains by parallelizing an ILP algorithm are often observed only when significant
data volumes are involved [12,28,30]. Additionally, the reported behavior seems
to imply that the gain in efficiency of our proposed parallel learning strategy
increases with the difficulty of the learning task at hand, in terms of the “unit
cost” of processing individual interpretations.

Due to the increase in training data size in the x10-CAVIAR experiment,
F1-scores for all runs (number of cores) are improved as compared to the regular
CAVIAR experiment and they seem to converge. For example, in the regular
CAVIAR experiment, good rules were often constructed “too-late”, from inter-
pretations that were encountered shortly before the data were exhausted. Such
rules may be discarded, since OLED (and its parallel version) use a “warm-up”
period parameter that controls a minimum number of interpretations a rule must
be evaluated on, in order to be included in an output hypothesis. In contrast, in
the x10-CAVIAR experiment such problems were avoided, thanks to the increase
in training data size.

We performed an additional experiment where the goal was to assess the
effect of uneven data distribution on the amount of communication, total train-
ing time and F1-score. The experimental setting was similar to the one described
previously, i.e. a tenfold cross-validation process with an 80% − 20% training-
testing ratio. One of the nodes, however, handled a larger data load than its
peers. To introduce the imbalance we used an external data distribution pro-
cesses that takes as input an imbalance parameter k. This process reads the
data from disk, in the actual order in which they appear in the CAVIAR videos,
and forwards training interpretations to processing nodes as follows: The first
k interpretations are forwarded to the first node. Subsequently, each one of the
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Table 5. Effects on the imbalance in data load on CAVIAR, using 8 processing nodes.

Imbalance Time (sec) #Msgs F1-score Theory size

Meet 10 16 348 0.802 34

50 24 327 0.808 34

100 41 298 0.799 34

Move 10 24 231 0.739 22

50 38 212 0.741 23

100 52 191 0.742 23

following N −1 interpretations (N being the number of used nodes) is forwarded
to one of the remaining N − 1 nodes. The next k interpretations are forwarded
again to the first node and so on, so that the first node eventually handles
k-times more data than its peer nodes. In the process of data distribution, data
sequences that are intended to be used for testing are “skipped” (they are not
forwarded to any node).

We performed experiments in this setting with 8 processing nodes and three
different values for the imbalance parameter k = 10, 50, 100. The results are
presented in Table 5 in the form of averages from the tenfold cross-validation
process for total training time, number of messages, F1-score (micro-averaged
over all folds) and theory size. As the imbalance parameter k grows, training
time increases slightly, while the amount of communication drops. The increase
in training time may be explained by the “bottleneck” of a single node handling
larger data loads sequentially, as the imbalance increases, while the drop in the
total number of exchanged messages is due to the fact the majority of the pro-
cessing nodes, which handle fewer training data, also broadcast fewer messages,
as compared to the scenario where data are evenly distributed between nodes.
Regarding the F1-score and the theory size, only small changes are reported
with respect to the results of Table 4(A). These differences are attributed to the
different order in which training interpretations are presented to p-OLED in the
two experiments.

6 Related Work

An overview of existing approaches to learning theories in the Event Calculus
with ILP may be found in [16,17] and a discussion on how OLED compares to
such approaches may be found in [16,18]. In this section we mainly discuss
parallel ILP algorithms, for which a substantial amount of work exists in the
literature. A thorough review may be found in [12,30]. Parallel ILP algorithms
exploit parallelism across three main axes [12]: Searching through the hypothesis
space in parallel (search parallelism); splitting the training data and learning
from data subsets (data parallelism); and evaluating candidate clauses in parallel
(evaluation/coverage parallelism).
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In [28] the authors present a data-parallel version of a standard set-cover
loop: Each processing node learns a fragment of the concept definition from
a partition of the data, and then these fragments are exchanged between all
nodes. Good-enough clauses are kept by all nodes. A cover removal step is sub-
sequently implemented by each core and the set-cover loop continues. Overall,
the approach in [28] learns much faster than a sequential algorithm, achieving
super-linear speed-ups. A similar approach is proposed in [11], where the train-
ing interpretations are split across multiple nodes and searched in parallel, while
the best rules from each node are “pipe-lined” to all other nodes.

In [30] the authors use a MapReduce-based framework to parallelize the oper-
ation of a classical set-cover ILP algorithm towards both evaluation-parallelism
and search-parallelism. In the former case, coverage tests of candidate clauses
are performed in parallel, on disjoint partitions of the data. In the latter case,
bottom clauses (which are generalized to acquire a hypothesis clause) are gener-
ated and searched in a concurrent fashion from more than one “seed” examples.
The reducer then selects the best hypothesis clause that results from this pro-
cess. A similar approach for parallel exploration of independent hypotheses has
been proposed in [22], while similar approaches towards parallel coverage tests
have been proposed in [10,14]. In [21], the approach of [30] was extended to a
framework that is capable of self-regulating the workload of distributing learning
costs across multiple nodes. In [25,26] the authors propose a strategy for col-
laborative learning of action models. The problem is modelled in a multi-agent
systems context, where autonomous agents communicate with each other and
revise their local models in an effort to establish global consistency of the latter.
An important difference of this work is that the communication is based on the
exchange of examples, as opposed to clauses, which is the case with p-OLED and
most of the works described above. Finally, some work exists in the literature
on parallelizing (unsupervised) relational data-mining tasks, such as frequent
pattern mining [2,3].

A main difference of the work presented here from the aforementioned
approaches to parallel ILP is that they mostly rely on iterative ILP algorithms,
which require several passes over the data to compute a hypothesis. In contrast,
OLED is an online, single-pass algorithm. In relation to the latter, some work on
streaming ILP exists. However, existing approaches are either oriented towards
unsupervised tasks like frequent pattern discovery [27], or they rely on proposi-
tionalization techniques and off-the-self, online propositional learners [29].

7 Conclusions and Future Work

We presented a parallel version of a recently proposed algorithm for online learn-
ing of event definitions in the form of Event Calculus theories. We also presented
an experimental evaluation of our approach on a benchmark dataset for activity
recognition, which demonstrates that it can reduce training times, while also
achieving super-linear speed-ups on some occasions. As future work, we aim to
evaluate our approach in a distributed setting and on larger datasets, in terms of
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in-situ, geographically distributed learning, as required in maritime monitoring
[24]. We also plan to formally analyze the behavior of the proposed approach in
terms of communication cost, comparison to its monolithic counterpart in terms
of convergence and convergence speed, as well as comparison to similar learning
strategies that adopt different communication protocols.
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Abstract. We consider the problem of learning Boltzmann machine
classifiers from relational data. Our goal is to extend the deep belief
framework of RBMs to statistical relational models. This allows one to
exploit the feature hierarchies and the non-linearity inherent in RBMs
over the rich representations used in statistical relational learning (SRL).
Specifically, we use lifted random walks to generate features for predi-
cates that are then used to construct the observed features in the RBM
in a manner similar to Markov Logic Networks. We show empirically that
this method of constructing an RBM is comparable or better than the
state-of-the-art probabilistic relational learning algorithms on six rela-
tional domains.

1 Introduction

Restricted Boltzmann machines (RBMs, [30]) are popular models for learning
probability distributions due to their expressive power. Consequently, they have
beenapplied to various tasks suchas collaborative filtering [39],motion capture [41]
and others. Similarly, there has been significant research on the theory of RBMs:
approximating log-likelihood gradient by contrastive divergence (CD, [17]), persis-
tent CD [42], parallel tempering [11], extending them to handle real-valued vari-
ables and discriminative settings. While these models are powerful, they make the
standard assumption of using flat feature vectors to represent the problem.

In contrast to flat-feature representations, Statistical Relational Learning
(SRL, [9,15]) methods use richer symbolic features during learning; however,
they have not been fully exploited in deep-learning methods. Learning SRL
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models is computationally intensive [33] however, particularly model structure
(qualitative relationships). This is due to the fact that structure learning requires
searching over objects, their attributes, and attributes of related objects. Hence,
the state-of-the-art learning method for SRL models learns a series of weak rela-
tional rules that are combined during prediction. While empirically successful,
this method leads to rules that are dependent on each other making them unin-
terpretable, since weak rules cannot always model rich relationships that exist
in the domain. For instance, a weak rule could say something like: “a professor is
popular if he teaches a course”. When learning discriminatively, this rule could
have been true if some professors teach at least one course, while at least one not
so popular professor did not teach a course in the current data set. We propose
to use a set of interpretable rules based on the successful Path Ranking Algo-
rithm (PRA, [28]). Recently, Hu et al. [20] employed logical rules to enhance
the representation of neural networks. There has also been work on lifting neu-
ral networks to relational settings [4]. While specific methodologies differ, all
these methods employ relational and logic rules as features of neural networks
and train them on relational data. In this spirit, we propose a methodology for
lifting RBMs to relational data. While previous methods on lifting relational
networks employed logical constraints or templates, we use relational random
walks to construct relational rules, which are then used as features in a RBM.
Specifically, we consider random walks constructed by the PRA approach of Lao
and Cohen [28] to develop features that can be trained using RBMs. We con-
sider the formalism of discriminative RBMs as our base classifier and use these
relational walks with the base classifier.

We propose two approaches to instantiating RBM features: (1) similar to
the approach of Markov Logic Networks (MLNs, [12]) and Relational Logistic
Regression (RLR, [21]), we instantiate features with counts of the number of
times a random walk is satisfied for every training example; and (2) similar
to Relational Dependency Networks (RDNs, [32]), we instantiate features with
existentials (1 if ∃ at least one instantiation of the path in the data, otherwise 0).
Given these features, we train a discriminative RBM with the following assump-
tions: the input layer is multinomial (to capture counts and existentials), the
hidden layer is sigmoidal, and the output layer is Bernoulli.

We make the following contributions: (1) we combine the powerful formal-
ism of RBMs with the representation ability of relational logic; (2) we develop
a relational RBM that does not fully propositionalize the data; (3) we show
the connection between our proposed method and previous approaches such as
RDNs, MLNs and RLR, and (4) we demonstrate the effectiveness of this novel
approach by empirically comparing against state-of-the-art methods that also
learn from relational data.

The rest of the paper is organized as follows: Sect. 2 presents the background
on relational random walks and RBMs, Sect. 3 present our RRBM approach and
algorithms in detail, and explore its connections to some well-known probabilis-
tic relational models. Section 4 presents the experimental results on standard
relational data sets. Finally, the last section concludes the paper by outlining
future research directions.
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2 Prior Work and Background

In this article, we represent relational data using standard first-order logic nota-
tion. We refer to objects of a particular type as constants of that type. Relations
in the domain are called predicates and the true relations in the data are called
ground atoms.

2.1 Random Walks

Relational data is often represented using a ground (or lifted) graph. The con-
stants (or types) form the nodes and the ground atoms (or predicates) form
the edges. N -ary predicates can be represented with hyperedges or multiple
binary relations, where a node is introduced for every ground atom (or pred-
icate) and edges are introduced from this node to each argument. This graph
representation allows the use of many path-based approaches for discovering the
structure of the data. A path in a ground relational graph (where nodes are
constants) corresponds to a conjunction of ground atoms. For example, the path
s1−takes−c1−taughtBy−p1 describes an example where the student s1 takes
class c1 taught by professor p1. In a ground relational graph, this path can be
converted to: takes(s1, c1) ∧ taughtBy(c1, p1). In contrast, in a lifted relational
graph (where nodes are types), paths are conjunctions of predicates with shared
variables: takes(S, C) ∧ taughtBy(C, P).

2.2 Relational Probabilistic Models

Markov Logic Networks (MLNs, [12]) are relational undirected models, where
first-order logic formulas correspond to cliques of a Markov network, and formula
weights correspond to the clique potentials. An MLN can be instantiated as a
Markov network with a node for each ground predicate (atom) and a clique for
each ground formula. All groundings of the same formula are assigned the same
weight leading to the following joint probability distribution over all atoms:
P (X=x) = 1

Z exp (
∑

i wini(x)), where ni(x) is the number of times the i-th
formula is satisfied by possible world x, and Z is a normalization constant.
Intuitively, a possible world where formula fi is true one more time than a
different possible world is ewi times as probable, all other things being equal.
We focus on discriminative learning, where we learn a conditional distribution
of one predicate given all other predicates.

Another such discriminative model is relational logistic regression (RLR,
[21]), which extends logistic regression to relational settings, and where training
examples can have differing feature sizes. An interesting observation is that RLR
can be considered as an aggregator when there are multiple values for the same
set of features.

2.3 Structure Learning Approaches

Many structure learning approaches for Probabilistic Logical Models (PLMs),
including MLNs, use graph representations. For example, Learning via Hyper-
graph Lifting (LHL, [23]) builds a hypergraph over ground atoms; LHL then
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clusters the atoms to create a “lifted” hypergraph, and traverses this graph to
obtain rules. Specifically, they use depth-first traversal to create the paths in
this “lifted” hypergraph to create potential clauses by using the conjunction of
predicates from the path as the body of the clause.

Learning with Structural Motifs (LSM, [24]) performs random walks over
the graph to cluster nodes and performs depth-first traversal to generate poten-
tial clauses. We use random walks over a lifted graph to generate all possible
clauses, and then use a non-linear combination (through the hidden layer) of
ground clauses, as opposed to linear combination in MLNs. Our hypothesis space
includes the clauses generated by both these approaches without the additional
complexity of clustering the nodes.

2.4 Propositionalization Approaches

To learn powerful deep models on relational data, propositionalization is used to
convert ground atoms into a fixed-length feature vector. For instance, kFoil [27]
uses a dynamic approach to learn clauses to propositionalize relational examples
for SVMs. Each clause is converted into a Boolean feature that is 1, if an example
satisfies the clause boyd and each clause is scored based on the improvement of
the SVM learned using the clause features. Alternately, the Path Ranking Algo-
rithm (PRA) [28], which has been used to perform knowledge base completion,
creates features for a pair of entities by generating random walks from a graph.
We use a similar approach to perform random walks on the lifted relational
graph to learn the structure of our relational model.

2.5 Restricted Boltzmann Machines

Boltzmann machines (BMs, [30]) model probability distributions and are inter-
pretable as artificial neural networks [1]. A BM consists of visible units V
(representing observations) and hidden units H (representing dependencies
between features). A general BM is a fully-connected Markov random field [26],
which makes learning computationally intensive. A more tractable model, the
Restricted Boltzmann Machine (RBM), constrains the BM to a bipartite graph
of visible and hidden units. A singular benefit of this representation is that
hidden-layer outputs of one RBM can be used as input to another higher-level
RBM, a procedure known as stacking. Stacking uses RBMs as building blocks to
construct deep belief networks (DBNs) with multiple layers of non-linear trans-
formations of input data; this results in powerful deep belief networks [18].

RBMs have been used as feature extractors for supervised learning [14] and
to initialize deep neural networks [19]. Larochelle and Bengio [29] proposed a
standalone formulation for supervised classification called discriminative RBMs.
We adopt this formalism to demonstrate our approach of combining rich first-
order logic representations of relational data with nonlinear classifiers learned
by discriminative RBMs.
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3 Relational Restricted Boltzmann Machines

Reconsider MLNs, arguably one of the leading relational approaches unifying
logic and probability. The use of relational formulas as features within a log-linear
model allows the exploitation of “deep” knowledge. Nevertheless, this is still a
shallow architecture as there are no “hierarchical” formulas defined from lower
levels. The hierarchical stacking of layers, however, is the essence of deep learning
and, as we demonstrate in this work, critical for relational data, even more
than for propositional data. This is due to one of the key features of relational
modeling: predictions of the model may depend on the number of individuals,
that is, the population size. Sometimes this dependence is desirable, and in
other cases, model weights may need to change. In either case, it is important to
understand how predictions change with population size when modeling or even
learning the relational model [21].

We now introduce Relational RBMs, a deep, relational classifier that can
learn hierarchical relational features through its hidden layer and model non-
linear decision boundaries. The idea is to use lifted random walks to generate
relational features for predicates that are then counted (or used as existentials)
to become RBM features. Of course, more than one RBM could be trained,
stacking them on top of each other. For the sake of simplicity, we focus on a
single layer; however, our approach is easily extended to multiple layers. Our
learning task can be defined as follows:

Given: Relational data, D; Target Predicate, T .

Learn: Relational Restricted Boltzmann Machine (RRBM) in a discriminative
fashion.

We are given data, D = {(xi, ŷi)�
i=1}, where each training example is a vec-

tor, xi ∈ R
m with a multi-class label, ŷi ∈ {1, . . . , C}. The training labels are

represented by a one-hot vectorization: yi ∈ {0, 1}C with yk
i = 1 if ŷi = k

and zero otherwise. For instance, in a three-class problem, if ŷi = 2, then
yi = [0, 1, 0]. The goal is to train a classifier by maximizing the log-likelihood,
L =

∑�
i=1 log p(yi,xi). In this work, we employ discriminative RBMs, for which

we make some key modeling assumptions:

1. input layers (relational features) are modeled using a multinomial distribu-
tion, for counts or existentials;

2. the output layer (target predicate) is modeled using a Bernoulli distribution
3. hidden layers are continuous, with a range in [0, 1].

3.1 Step 1: Relational Data Representation

We use a lifted-graph representation to model relational data, D. Each type
corresponds to a node in the graph and the predicate r(t1, t2) is represented by
a directed edge from the node t1 to t2 in the graph. For N -ary predicates, say
r(t1, ..., tn), we introduce a special compound value type (CVT)1, rCVT, for each
1 wiki.freebase.com/wiki/Compound Value Type.

http://wiki.freebase.com/wiki/Compound_Value_Type
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n-ary predicate. For each argument tk, an edge erk is added between the nodes
rCVT and tk. Similarly for unary predicates, r(t) we create a binary predicate
isa(t, r).

3.2 Step 2: Relational Transformation Layer

Now, we generate the input feature vector xi from a relational example,
T(a1j, a2j). Inspired by the Path Ranking Algorithm [28], we use random walks
on our lifted relational graph to encode the local relational structure for each
example. We generate m unique random walks connecting the argument types for
the target predicate to define the m dimensions of x. Specifically, starting from
the node for the first argument’s type, we repeatedly perform random walks till
we reach the node for the second argument. Since random walks also correspond
to the set of candidate clauses considered by structure-learning approaches for
MLNs [23,24], this transformation function can be viewed as the structure of
our relational model.

A key feature of an RBM trained on standard i.i.d. data is that the fea-
ture set x is defined in advance and is finite. With relational data, this set can
potentially be infinite, and feature size can vary with each training instance. For
instance, if the random walk is a paper written by a professor − student com-
bination, not all professor − student combinations will have the same number
of feature values. This is commonly referred as multiple-parent problem [34]. To
alleviate this problem, SRL methods consider one of two approaches – aggrega-
tors or combining rules. Aggregators combine multiple values to a single value,
while combining rules combine multiple probability distributions into one. While
these solutions are reasonable for traditional probabilistic models that estimate
distributions, they are not computationally feasible for the current task.

Our approach to the multiple-parent problem is to consider existential seman-
tics: if there exists at least one instance of the random walk that is satisfied for
an example, the feature value corresponding to that random walk is set to 1
(otherwise, to 0). This approach was also recently (and independently of our
work) used by Wang and Cohen [43] for ranking via matrix factorization. This
leads to our first model: RRBM-Existentials, or RRBM-E, where E denotes the
existential semantics used to construct the RRBM. One limitation of RRBM-E is
that it does not differentiate between a professor − student combination that
has only one paper and another that has 10 papers, that is, it does not take
into account how often a relationship is true in the data. Inspired by MLNs, we
also consider counts of the random walks as feature values, a model we denote
RRBM-Counts or RRBM-C (Fig. 1). For example, if a professor − student com-
bination has written 10 papers, the feature value corresponding to this random
walk for that combination is 10. To summarize, we define two transformation
functions, xj = g(a1j, a2j)

– ge(a1j, a2j, p) = 1, if ∃ a grounding of the pth random walk connecting object
a1j to object a2j, otherwise 0 (RRBM-E);

– gc(a1j, a2j, p) = #groundings of pth random walk connecting object a1j to
object a2j (RRBM-C).
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Fig. 1. Lifted random walks are converted into feature vectors by explicitly grounding
every randomwalk for every training example. Nodes and edges of the graph in (a) repre-
sent types and predicates, and underscore ( Pr) represents the inverted predicates. The
random walks counts (b) are then used as feature values for learning a discriminative
RBM (DRBM). An example of random walk represented as clause is (c).

For example, consider that the walk takes(S, C) ∧ taughtBy(C, P) is used to
generate a feature for advisedBy(s1, p1). The feature from gc would be set to the
count: |{C | takes(s1, C) ∧ taughtBy(C, p1)}|. With the function, ge, this feature
would be set to 1, if ∃C, takes(s1, C) ∧ taughtBy(C, p1).

These transformation functions also allow us to relate our approach to other
well-known relational models. For instance, gc uses counts similar to MLNs,
while ge uses existential semantics similar to RDNs [32]. Using features from ge

to learn weights for a logistic regression model would lead to an RLR model,
while using features from gc would correspond to learning an MLN (as we show
later). One could also imagine using RLR as an aggregator from these random
walks, but that is a direction for future work. While counts are more infor-
mative and connect to existing SRL formalisms such as MLNs, exact counting
is computationally expensive in relational domains. This can be mitigated by
using approximate counting approaches, such as the one due to [7] that lever-
ages the power of graph databases. Our empirical evaluation did not require
count approximations; we defer integration of approximate counting to future
research.

3.3 Step 3: Learning Relational RBMs

The output of the relational transformation layer is fed into multilayered discrim-
inative RBM (DRBM) to learn a regularized, non-linear, weighted combination
of features. The relational transformation layer stacked on top of the DRBM
forms the Relational RBM model. Due to non-linearity, we are able to learn a
much more expressive model than traditional MLNs and RLRs. Recall that the
DRBM as defined by [29] consists of n hidden units, h, and the joint probability
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is modeled as p(y,x,h) ∝ e−E(y,x,h), where the energy function is parameter-
ized Θ ≡ (W,b, c,d, U):

E(y,x,h) = −hT Wx − bTx − cTh − dTy − hT Uy. (1)

As with most generative models, computing the joint probability p(y,x) is
intractable, but the conditional distribution P (ŷ|x) can be computed exactly
[39] as

p(ŷ|x) =
edŷ+

∑n
j=1 σ(cj+Ujŷ+

∑m
f=1 Wjfxf )

∑C
k=1 edk+

∑n
j=1 σ(cj+Ujk+

∑m
f=1 Wjfxf )

. (2)

In (2), σ(z) = ez /
∑

i ez
i , the logistic softmax function and the index f sums

over all the features xf of a training example x. During learning, the log-
likelihood function is maximized to compute the DRBM parameters Θ. The
gradient of the conditional probability (Eq. 2) can be computed as:

∂

∂θ
log p(ŷi|xi) =

n∑

j=1

σ (oŷj(xi))
∂oŷj(xi)

∂θ
+

C∑

k=1

n∑

j=1

σ (okj(xi)) p(k|xi)
∂okj(xi)

∂θ
.

(3)

In (3), oŷj(xi) = cj + Ujŷ +
∑m

f=1 Wjfxif , where x refers to random-walk
features for every training example. As mentioned earlier, we assume that input
features are modeled using a multinomial distribution. To consider counts as
multinomials, we use an upper bound on counts: 2max(count(xj

i )) for every
feature; bounds are the same for both train and test sets to avoid overfitting.
In other words, the bound is simply twice the max feature count over all the
examples of the training set. We can choose the scaling factor through cross-
validation, but value 2 seems to be a reasonable scale in our experiments. For
the test examples, we can use the random walks to generate the features and
the RBM layers to generate predictions from these features.

RRBM Algorithm: The complete approach to learn Relational RRBMs is
shown in Algorithm 1. In Step 1, we generate type-restricted random walks
using PRA. These random walks (rw) are used to construct the feature matrix.
For each example, we obtain exact counts for each random walk, which becomes
the corresponding feature value for that example. A DRBM can be trained on
the features as explained in Step 3.

3.4 Relation to Probabilistic Relational Models

The random walks can be interpreted as logical clauses (that are used to gener-
ate features) and the DRBM input feature weights b in (1) can be interpreted
as clause weights (wp). This interpretation highlights connections between our
approach and Markov logic networks. Intuitively, the relational transformation
layer captures the structure of MLNs and the RBM layer captures the weights of
the MLNs. More concretely, exp(bTx) in (1) can be viewed as exp(

∑
p wpnp(x))
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Algorithm 1. LearnRRBM(T, G, P): Relational Restricted Boltzmann Machines
Input T(t1, t2): target predicate, G: lifted graph over types, m: number of fea-
tures
1: � Generate m random walks between t1 and t2
2: rw := PerformRandomWalks(G, t1, t2, m)
3: for 0 ≤ j < l do � Iterate over all training examples
4: � Generate features for T(a1j, a2j)
5: for 0 ≤ p < m do � Iterate over all the paths
6: � pth feature computed from the arguments of xj

7: xj [p] := gc(a1j, a2j, rw[p])
8: end for
9: end for
10: x := {xj} � Input matrix
11: � Learn DRBM from the features and examples
12: Θ := LearnDRBM(x, y)
13: return RRBM(Θ, rw)

in the probability distribution for MLNs. To verify this intuition, we compare
the weights learned for clauses in MLNs to weights learned by RRBM-C. We gener-
ated a synthetic data set for a university domain with varying number of objects
(professors and students). We picked a subset of professor − student pairs to
have an advisedBy relationship and add common papers or common courses
based on the following two clauses:

1. author(A, P) ∧ author(B, P) → advisedBy(A, B)
2. teach(A, C) ∧ registered(B, C) → advisedBy(A, B)

The first clause states that if a professor A co-authors a paper P with the
student B, then A advises B. The second states that if a student B registers for
a course C taught by professor A then A advises B. Figure 2 shows the weights
learned by discriminative and generative weight learning in Alchemy and RRBM
for these two clauses as a function of the number of objects in the domain. Recall
that in MLNs, the weight of a rule captures the confidence in that rule — the
higher the number of instances satisfying a rule, the higher is the weight of the
rule. As a result, the weight of the rule learned by Alchemy also increases in
Fig. 2. We observe a similar behavior with the weight learned for this feature in
our RRBM formulation as well. While the exact values differ due to difference
in the model formulation, this illustrates clearly that the intuitions of the model
parameters from standard PLMs are still applicable.

In contrast to standard PLMs, RRBMs are not a shallow architecture. This
can be better understood by looking at the rows of the weights W in the energy
function (1): they act as additional filter features, combining different clause
counts. That is, E(y,x,h) looks at how well the usage profile of a clause aligns
with different filters associated with rows Wj . These filters are shared across
different clauses, but different clauses will make comparisons with different filters
by controlling clause-dependent biases Ujy in the σ terms. Notice also, that two
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(a) Co-author clause (b) Course clause

Fig. 2. Weights learned by Alchemy and RRBMs for a clause vs. size of the domain.

similar clauses could share some filters in W , that is, both could simultaneously
have large positive values of Ujy for some rows Wj . This can be viewed as
a form of statistical predicate invention as it discovers new concepts and is
akin to (discriminative) second-order MLNs. In contrast to second-order MLNs,
however, no second-order rules are required as input to discover new concepts.
While MLNs can learn arbitrary N -ary target predicates, due to the definition of
random walks in the original work, we are restricted to learning binary relations.

4 Experiments

To compare RRBM approaches to state-of-the-art algorithms, we consider RRBM-
E, RRBM-C and RRBM-CE. The last approach, RRBM-CE combines features from both
existential and count RRBMs (i.e., union of count and existential features). Our
experiments seek to answer the following questions:

Q1: How do RRBM-E and RRBM-C compare to baseline MLNs and Decision Trees?
Q2: How do RRBM-E and RRBM-C compare to the state-of-the-art SRL approaches?
Q3: How do RRBM-E, RRBM-C, and RRBM-CE generalize across all domains?
Q4: How do random-walk generated features compare to propositionalization?

To answer Q1, we compare RRBMs to Learning with Structural Motifs
(LSM, [24]). Specifically, we perform structure learning with LSM followed by
weight learning with Alchemy [25] and denote this as MLN. We would also like
to answer the question: how crucial is it to use a RBM, and not some other ML
algorithm? We use decision trees [36] as a proof-of-concept for demonstrating
that a good probabilistic model when combined with our random walk features
can potentially yield better results than naive combination of ML algorithm
with features. We denote the decision tree model Tree-C. For LSM, we used the
parameters recommended by [24]. However, we set the maximum path length of
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random walks of LSM structure learning to 6 to be consistent with the maxi-
mum path length used in RRBM. We used both discriminative and generative
weight-learning for Alchemy and present the best-performing result.

To answer Q2, we compare RRBM-C to MLN-Boost [22], and RRBM-E to RDN-
Boost [32] both of which are SRL models that learn the structure and parame-
ters simultaneously. For MLN-Boost and RDN-Boost, we used default settings
and 20 gradient steps. For RRBM, since path-constrained random walks [28]
are performed on binary predicates, we convert unary and ternary predicates
into binary predicates. For example, predicates such as teach(a1, a2, a3) are
converted to three binary predicates: teachArg1(id, a1), teachArg2(id, a2),
teachArg3(id, a3) where id is the unique identifier for a predicate. As another
example, unary predicates such as student(s1) are converted to binary predi-
cates of the form isa(s1, student). To ensure fairness, we used binary predicates
as inputs to all the methods considered here. We also allow inverse relations in
random walks, that is, we consider a relation and its inverse to be distinct rela-
tions. For one-to-one and one-to-many relations, this sometimes leads to unin-
teresting random walks of the form relation → relation−1 → relation. In
order to avoid this situation, we add additional sanity constraints on walks that
prevent relations and their inverses from immediately following one another and
avoid loops.

To answer Q4, we compare our method with Bottom Clause Propositional-
ization [13] (BCP-RBM), which generates one bottom clause for each example and
considers each atom in the body of the bottom clause to be a unique feature. We
utilize Progol [38] to generate bottom clauses by using its default configuration
but setting variable depth = 1 to handle large data sets. Contrary to the original
work [13] that uses a neural network, we use RBM as the learning model, as our
goal is to demonstrate the usefulness of random walks to generate features.

In our experiments, we subsample training examples at a 2 : 1 ratio of nega-
tives to positives during training. The number of RBM hidden nodes are set to
60% of visible nodes, the learning rate, η = 0.05 and the number of epochs to 5.
These hyperparameters have been optimized by line search.

A Note On Hyperparameter Selection: An important hyperparameter for
RRBMs is the maximum path length of random walks, which influences the
number of RRBM features. Figure 3 shows that the number of features gener-
ated grows exponentially with maximum path length. We restricted the maxi-
mum path length of random walks to λ = 6 in order to strike a balance between
tractability and performance; λ = 6 demonstrated consistently good perfor-
mance across a variety of data sets, while keeping the feature size tractable. As
mentioned above, other benchmark methods such as LSM were also restricted
to a maximum random walk length of 6 for consistency and fairness.

Hyperparameter selection is an open issue in both relational learning as well
as deep learning; in the latter, careful tuning of hyperparameters and architec-
tures such as regularization constants and number of layers is critical. Recent
work on automated hyperparameter selection can also be used with RRBMs, if
a more systematic approach to hyperparameter selection for RRBMs is desired,



Relational Restricted Boltzmann Machines 105

Fig. 3. The number of RRBM features grows exponentially with maximum path length
of random walks. We set λ = 6 to balance tractability with performance.

especially in practical settings. Bergstra and Bengio [2] demonstrated that ran-
dom search is more efficient for hyperparameter optimization than grid search
or manual tuning. This approach can be used to select optimal η and λ jointly.
Snoek et al. [40] recently used Bayesian optimization for automated hyperparam-
eter tuning. While this approach was shown to be highly effective across diverse
machine learning formalisms including for support vector machines [6], latent
Dirichlet allocation [3] and convolutional neural networks [16], it requires pow-
erful computational capabilities and parallel processing to be feasible in practical
settings.

4.1 Data Sets

We used several benchmark data sets to evaluate the performance of our algo-
rithms. We compare several approaches using conditional log-likelihood (CLL),
area under ROC curve (AUC-ROC), and area under precision-recall curve (AUC-
PR). Measuring PR performance on skewed relational data sets yields a more
conservative view of learning performance [8]. As a result, we use this metric to
report statistical significant improvements at p = 0.05. We employ 5-fold cross
validation across all data sets.

UW-CSE: The UW-CSE data set [37] is a standard benchmark that con-
sists of predicates and relations such as professor, student, publication,
hasPosition and taughtBy etc. The data set contains information from five
different areas of computer science about professors, students and courses, and
the task is to predict the advisedBy relationship between a professor and a
student. For MLNs, we present results from generative weight learning as it
performed better than discriminative weight learning.

Mutagenesis: The Mutagenesis data set2 has two entities: atom and
molecule, and consists of predicates that describe attributes of atoms and
2 cs.sfu.ca/∼oschulte/BayesBase/input.

http://cs.sfu.ca/~oschulte/BayesBase/input
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molecules, as well as the types of relationships that exist between atom and
molecule. The target predicate is moleatm(aid, mid), to predict whether a
molecule contains a particular atom. For MLN, we present generative weight
learning as it had better results.

Cora Entity Resolution is a citation matching data set [35]; in the citation-
matching problem, a “group” is a set of citations that refer to the same publica-
tion. Here, a large fraction of publications belong to non-trivial groups, that is,
groups that have more than one citation; the largest group contains as many as
54 citations, which makes this a challenging problem. It contains the predicates
such as Author, Title, Venue, HasWordTitle, SameAuthor and the target pred-
icate is SameVenue. Alchemy did not complete running after 36 h and therefore
we report results from [22].

IMDB: This data set was first created by Mihalkova and Mooney [31]
and contains nine predicates: gender, genre, movie, samegender, samegenre,
samemovie, sameperson, workedunder, actor and director; we predict the
workedUnder relation. Since actor and director are unary predicates, we con-
verted them to one binary predicate isa(person, designation) where desig-
nation can take two values - actor and director. For MLNs, we report the
generative weight learning results here.

Yeast: Contains millions of facts [28] from papers published between 1950 and
2012 on the yeast organism Saccharomyces cerevisiae. It includes predicates like
gene, journal, author, title, chem, etc. The target predicate is cites, that is,
we predict the citation link between papers. As in the original paper, we need
to prevent models from using information obtained later than the publication
date. While calculating features for a citation link, we only considered facts that
were earlier than a publication date. Since we cannot enforce this constraint in
LSM, we do not report Alchemy results for Yeast.

Sports: NELL [5] is an online3 never-ending learning system that extracts infor-
mation from online text data, and converts this into a probabilistic knowledge
base. We consider NELL data from the sports domain consisting of information
about players and teams. The task is to predict whether a team plays a partic-
ular sport or not. Alchemy did not complete its run after 36 h, thus we do not
report its result for this data set.

4.2 Results

Q1: Figure 4 compares our approaches to baseline MLNs and decision trees to
answer Q1. RRBM-E and RRBM-C have significant improvement over Tree-C on UW
and Yeast data sets, with comparable performance on the other four. Across all
data sets (except Cora) and all metrics, RRBM-E and RRBM-C beat the baseline
MLN approach. Thus, we can answer Q1 affirmatively: RRBM models outper-
form baseline approaches in most cases.

3 rtw.ml.cmu.edu/rtw/.

http://rtw.ml.cmu.edu/rtw/
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Fig. 4. (Q1): Results show that RRBMs generally outperform baseline MLN and
decision-tree (Tree-C) models.

Fig. 5. (Q2) Results show better or comparable performance of RRBM-C and RRBM-CE to
MLN-Boost, which all use counts.

Fig. 6. (Q2) Results show better or comparable performance of RRBM-E and RRBM-CE to
RDN-Boost, which all use existentials.
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Fig. 7. (Q4) Results show better or comparable performance of our random-walk-
based feature generation approach (RRBM) compared to propositionalization (BCP-RBM).

Q2: We compare RRBM-C to MLN-Boost (count-based models) and RRBM-E to
RDN-Boost (existential-based models) in Figs. 5 and 6. Compared to MLN-Boost
on CLL, RRBM-C has a statistically significant improvement or is comparable on
all data sets. RRBM-E is comparable to RDN-Boost on all the data sets with
statistical significant CLL improvement on Cora. We also see significant AUC-
ROC improvement of RRBM-C on Cora and RRBM-E on IMDB. Thus, we confirm
that RRBM-E and RRBM-C are better or comparable to the current best structure
learning methods.
Q3: Broadly, the results show that RRBM approaches generalize well across
different data sets. The results also indicate that RRBM-CE generally improves
upon RRBM-C and has comparable performance to RRBM-E. This shows that exis-
tential features are sufficient or better at modeling. This is also seen in the
boosting approaches, where RDN-Boost (existential semantics), generally out-
performs MLN-Boost (count semantics).
Q4: Since BCP-RBM only generates existential features, we compare BCP-RBM with
RRBM-E to answer Q4. Figure 7 shows that RRBM-E has statistically significantly
better performance than BCP-RBM on three data sets on CLL. Further, RRBM-
E demonstrates significantly better performance than BCP-RBM on four data sets:
Cora, Mutagenesis, IMDB and Sports - both on AUC-ROC and AUC-PR. This
allows us to state positively that random-walk features yield better or com-
parable performance than propositionalization. For IMDB, BCP-RBM generated
identical bottom clauses for all positive examples, resulting in an extreme case
of just a single positive example to be fed into RBM. This results in a huge skew
(distinctly observable in AUC-PR of IMDB for BCP-RBM).

5 Conclusion

Relational data and knowledge bases are useful in many tasks, but feeding them
to deep learners is a challenge. To address this problem, we have presented a
combination of deep and statistical relational learning, which gives rise to a pow-
erful deep architecture for relational classification tasks, called Relational RBMs.
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In contrast to propositional approaches that use deep learning features as inputs
to log-linear models (e.g. [10]), we proposed and explored a paradigm connect-
ing PLM features as inputs to deep learning. While statistical relational models
depend much more on the discriminative quality of the clauses that are fed as
input, Relational RBMs can learn useful hierarchical relational features through
its hidden layer and model non-linear decision boundaries. The benefits were
illustrated on several SRL benchmark data sets, where RRBMs outperformed
state-of-the-art structure learning approaches—showing the tight integration of
deep learning and statistical relational learning.

Our work suggests several interesting avenues for future work. First, one
should explore stacking several RRBMs. Since the relational feature extraction
is separated from the deep learning method, different types of deep learning
methods can easily be used and should be explored. Alternatively, one could
explore to jointly learn the underlying relational model and the deep model using
stochastic EM. This “deep predicate invention” holds promise to boost relational
learning. Ultimately, one should close the loop and feed the deep learning features
back into a (relational) log-linear model.
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Abstract. In this study, we improve our parallel inductive logic pro-
gramming (ILP) system to enable superlinear speedup. This improve-
ment redesigns several features of our ILP learning system and parallel
mechanism. The redesigned ILP learning system searches and gathers
all rules that have the same evaluation. The redesigned parallel mech-
anism adds a communication protocol for sharing the evaluation of the
identified rules, thereby realizing superlinear speedup.

1 Introduction

Inductive logic programming (ILP) is a superior supervised learning tool. How-
ever, learning for large problems usually requires a considerable amount of time.
In addition, to generate good rules, continuous learning must be performed while
changing the parameters of ILP learning. It is thus necessary to shorten the ILP
learning time. To solve this problem, various studies have focused on speeding up
ILP using parallel methods [1–3,7,8,12]. Although the problems were partially
solved, the process speed was not sufficiently increased based on the number
of processors provided, and the quality of the generated rules was not optimal,
resulting in difficulty in using it as a practical tool. Skillicorn and Wang [10]
succeeded in achieving superlinear speedup, but their method used only four or
six CPUs, which performed poorly when the dataset was large.

In this study, we improved our parallel ILP system [7,8] to enable superlinear
speedup. We redesigned several features of our ILP learning system [5] and par-
allel mechanism [7]. The redesigned ILP learning system searches and gathers
all rules that have the same evaluation. The redesigned parallel mechanism adds
a communication protocol for sharing the evaluation of the identified rules. To
estimate the speedup, we used dairy cattle data (e.g. hormones, feed, and activ-
ity) to determine successful conditions for artificial insemination [4]. When 30
CPUs were used to solve a large problem (147,992 s for one CPU), we achieved a
speedup of 46.85 times (3,159 s). In addition, we applied the parallel ILP system
to a very large problem (162,768 s for 10 CPUs). However, the problem could
not be solved using one CPU, because it was too large. When 30 and 174 CPUs
were used to solve this problem, we achieved a speedup of 3.13 times (51,968 s)
and 17.73 times (9,183 s) respectively, based on 10 CPUs. Using our parallel ILP
c© Springer International Publishing AG, part of Springer Nature 2018
N. Lachiche and C. Vrain (Eds.): ILP 2017, LNAI 10759, pp. 112–123, 2018.
https://doi.org/10.1007/978-3-319-78090-0_8
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system, we thus succeeded in superlinear speedup and demonstrated it to be
more useful for large problems. In addition, we obtained identical rules using
one CPU, 10 CPUs, 30 CPUs, and 174 CPUs.

2 Improved ILP System

An ILP system finds a hypothesis from a bounded hypothesis space. The ideal
hypothesis covers as many positive examples and as few negative examples as
possible. Let p(h) and n(h) be the numbers of positive and negative examples
covered by hypothesis h. The number of literals in h is denoted by c(h). We
express this as follows, where g(h) indicates the generality of h and f(h) indicates
the compression.

g(h) = p(h) − c(h),

f(h) = g(h) − n(h)

In the ILP system [5], the compression measure f(h) is used to evaluate
hypothesis h. If an evaluation (a value of f(h)) is the best in a bounded hypoth-
esis space, hypothesis h is the best hypothesis in the space. To avoid noise, the
ILP uses two thresholds: pLimit and nLimit.

minimize f(h) subject to p(h) >= pLimit

maximize f(h) subject to n(h) <= nLimit

In addition, the ILP system used a simple set-covering algorithm like that of
the typical ILP algorithm [6]:

Step 1: Find a hypothesis using the method mentioned above.
Step 2: Remove the positive examples covered by the hypothesis from the entire

set of positive examples.
Step 3: Add the hypothesis found to the set of hypotheses being built (also

known as rules), which is initially empty.
Step 4: Repeat step 1 to step 3 until the entire set of positive examples are

covered by the rules.
Step 5: Return the rules.

There is a possibility that some hypotheses have the same evaluation, that is,
the best value in a bounded hypothesis space in step 1. For example, a hypothesis
h1 was found and f(h1) was 20; that is, the best value in a bounded hypothesis
space (p(h1) >= pLimit and n(h1) <= nLimit). In this situation, if another
hypothesis h2 is found and f(h2) is 20, then the same evaluation is the best
value. In addition, h2 is not identical to h1. In this case, the ILP system usually
keeps the hypothesis (h1) that is found first (hypotheses after the second (h2) are
dropped). However, the hypotheses after the second (h2) are potentially good
hypotheses, because the evaluation is identical to the first (h1). If the order
of finding hypotheses is changed, the identified rules may be changed in the
same problem, because we used a simple set-covering algorithm. This algorithm
removes positive examples covered by a hypothesis, identified from the entire set
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of positive examples (in step 2). Therefore, there is a possibility that covered
positive examples may be different between when hypothesis h1 is identified first
and when hypothesis h2 is identified first in the same hypothesis space.

Our new ILP system searches and gathers all hypotheses that have the same
(best) evaluation. During the search, if our system finds a hypothesis with the
same evaluation that is the best value, the system does not drop the hypothesis,
but stores it. The system then finds some hypotheses in a bounded hypothesis
space. Using this method, the identified rules are never changed in the same
problem, even if the order of finding hypotheses is changed. In addition, there is
a possibility that the system can reduce the learning time, because the system
may remove more positive examples covered by hypotheses from the entire set
of positive examples (in step 2), when some hypotheses are found in a bounded
hypothesis space (in step 1). For example, we succeeded in reducing the learning
time by approximately 10% using dairy cattle data (using a CPU).

3 Improvement of Parallel ILP System

3.1 Previous Parallel ILP System

Our previous research [7] designed and implemented a parallel-processing sys-
tem for ILP. Figure 1 presents the system, which consists of a master module
and worker modules (refer to [7] for details). In our system, the master module
does not work for learning, but requests the first task to a worker module using
the contract net negotiation protocol [11] and monitors all worker modules. The
worker module itself has an autonomous function (unlike MapReduce). When
a worker module has no task (e.g. immediately after starting up or completing
a task), the worker module accepts a divided task from another worker mod-
ule using the contract net negotiation protocol and starts the task. When the
workload (the number of relationships in the information that the worker must
search for) reaches a fixed quantity (divideNum), the worker module requests
other worker modules to process the divided task (using the contract net nego-
tiation protocol). After the request for the first task issued by a master module
is implemented for one worker module, autonomous process distribution begins
among worker modules, and all existing worker modules are engaged (saturation
of the task). Because the divided task continues to be repeated among worker
modules, all worker modules finally complete all processing at approximately
the same time. Depending on the size of the fixed quantity (divideNum), it will
take approximately several seconds. For example, when divideNum is defined
as 200 in our implementation, the deviation was less than 1 s, and the master
module monitors and finds that all worker’s tasks are finished, and receives the
processing result (generated rules).

The flow of dividing a space among workers is as follows (step 2© in Fig. 1).

– Workers use a branch-and-bound search and increase search nodes.
– If the nodes > divideNum, a worker requests a subtask (i.e., a part of the

nodes: a part of the space) from others (divideNum is a threshold for dividing
a task).
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Fig. 1. System configuration of the ILP parallel-computation system and flow of dis-
tributed processing.

– A worker accepts the requested subtask if free (i.e., has no task).
– The requesting worker chooses and commits to the accepting worker that

first sent the accepting message, and sends the subtask data. If the accepting
worker does not have data or the background knowledge, then the requesting
worker sends it with the subtask data.

This parallel-processing system has the following merits.

– 1. The master does not need to consider the division of the process in advance.
– 2. All workers work until the end (i.e. no free time) and finish at the same

time.

The first merit indicates that the proposed system does not require the master
to perform pre-division processing. The second merit means that the process
speed can be increased by increasing the number of computers.

3.2 Improvement of the Parallel ILP System Communication
Protocol

In the previous parallel ILP system, each worker module has the best evaluation
of an identified hypothesis in its own module. Figure 2 illustrates one learning
situation of the previous parallel ILP system. The value of the evaluation of the
identified interim hypothesis (interim rule) of Worker Module 3 is 20. However,
other worker modules have smaller values (i.e. the interim hypothesis is the best
hypothesis that satisfies pLimit and nLimit in the searching process). In the
branch-and-bound search, the other worker modules search for useless areas in
the bounded hypothesis space. This system speed thus could not be sufficiently
increased, even if all worker modules finished at the same time.

Our new parallel ILP system included a new communication protocol for
sharing the best evaluation of the identified interim hypotheses (for only sharing
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Fig. 2. One learning situation of the previous parallel ILP system. Each worker module
has the best evaluation of an identified interim hypothesis.

Fig. 3. Worker Module 3 finds an interim hypothesis, and the evaluation is 20, the
best evaluation of the module and others. Worker Module 3 then sends the value to all
modules to share the best value.

the best evaluation value). In this protocol, when a worker module found an
interim hypothesis with a better evaluation, then the worker sent the value to
all other workers. Next, when another worker module received a value better
than its own, then the worker updates its own value to the better one and drops
its identified interim hypotheses. For example, Figs. 3 and 4 depict one learning
situation of our new parallel ILP system. Worker Module 3 identifies an interim
hypothesis and the evaluation is 20, the best evaluation of the module and others.
Worker Module 3 then sends the value to all modules to share the best value
(Fig. 3). Then, Worker Module 1, 2 and n receive the value that is better than
their own, they update their own value to the better one and drops their own
identified interim hypotheses (Fig. 4). This means that the new ILP system can
avoid searching useless areas in the bounded hypothesis space. The new system
can therefore speed up sufficiently, by increasing the number of computers used.
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Fig. 4. When a worker module receives a value that is better than its own, its value is
updated to the better value. Each worker module then shares the best evaluation, and
all worker modules therefore have the same value.

4 Experiment and Results

We implemented the improved parallel ILP system using Java. A total of 30 com-
puters (CPU Core i7 5820 K 6core/12thread 3.3 GHz 64 GBRAM) were used, as
seen in Fig. 5, in an experiment to measure speedup using the implemented sys-
tem. To estimate the speedup, we used data (e.g. hormone, feed, and activity) of
dairy cattle to determine the successful conditions for artificial insemination [4].

4.1 Experiment Problems

We used two problems concerning dairy cattle to determine the successful condi-
tions for artificial insemination [4] while estimating the speedup. The first was a
large-scale problem that required approximately two days using one CPU. The sec-
ond was a very large problem that required approximately two days using 10 CPUs.
This problem could not be completed using one CPU, because it was too large.

Fig. 5. Experiment environment for the parallel ILP system. The Bio-oriented Tech-
nology Research Advancement Institution typically uses this environment for a daily
cow project.
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Problem 1-Large Problem. The first problem is a large one, consisting of
the following learning data:

– Positive examples: 105
– Negative examples: 279
– Kinds of predicates: 6
– Background knowledge size: 49,757 lines

Table 1 lists the predicates and their mode declarations in the background
knowledge of this problem. We also define several parameters. pLimit is 5,
nLimit is 0, and max literals in learning is 8. After learning, we obtained 68
rules from this problem.

Problem 2-Very-Large-Scale Problem. The second problem is a very-large-
scale one, consisting of the following learning data:

– Positive examples: 101
– Negative examples: 101

Table 1. Predicates and their mode declarations in the background knowledge of the
large problem. Mode + indicates an input variable, - an output variable, and # a
constant.

Predicates

progesterone(+cowID, +-preg datetime, #val),

progesterone diff(+cowID, +-preg datetime, +-prog datetime, #time, #val),

feed(+cowID, +-feed datetime, #val),

feed diff(+cowID, +-feed datetime, +-feed datetime, #time, #val),

sametime(+cowID, +-prog datetime, +-feed datetime),

birth num(+cowID, #birth number)

Table 2. Predicates and their mode declarations in the background knowledge of the
very-large-scale problem. Mode + indicates an input variable, - an output variable, and
# a constant.

Predicates

progesterone(+cowID, +-preg datetime, #val),

progesterone diff(+cowID, +-preg datetime, +-prog datetime, #time, #val),

preg datetime definition(+cowID, +-preg datetime, #val),

feed(+cowID, +-feed datetime, #val),

feed diff(+cowID, +-feed datetime, +-feed datetime, #time, #val),

feed datetime definition(+cowID, +-feed datetime, #val),

birth num(+cowID, #birth number),

activity(+cowID, +-activity datetime, #val),

activity diff(+cowID,+-activity datetime,+-activity datetime,#time,#val),

activity datetime definition(+cowID, +-activity datetime, #val)
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– Kinds of predicates: 10
– Background knowledge size: 48,049 lines

Table 2 lists the predicates and their mode declarations in the background
knowledge of this problem. In addition, we define several parameters. pLimit is
10, nLimit is 5, and max literals in learning is 8. After learning, we obtained
168 rules from this problem.

4.2 Experiment Results

Results of Problem 1. Table 3 and Fig. 6 present the results of problem 1,
demonstrating that the parallel ILP system accomplished superlinear speedup.
In addition, we obtained identical rules using 1 to 30 CPUs.

Table 3. Results of parallel experiments of problem 1.

The Number of CPUs Execution time (sec.) Speedup

1 147, 992 1.000

2 52, 123 2.839

3 32, 849 4.505

5 18, 859 7.848

10 9, 183 16.116

15 6, 157 24.036

30 3, 159 46.848

Fig. 6. Graph of parallel experiments of problem 1. The solid line is the result of our
parallel ILP system, and the dashed line shows a linear speedup. This graph thus
demonstrates that our system accomplished superlinear speedup.
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Results of Problem 2. Table 4 and Fig. 7 present the results of problem 2.
Our parallel ILP system accomplished a slight superlinear speedup based on 10
CPUs. This means we can apply our system to larger-scale problems by using
more CPUs. In addition, we obtained identical rules using 10 to 174 CPUs. The
174 CPUs represent 29 computers with six CPUs each. One computer serves as
the master module.

Table 4. Results of parallel experiments of problem 2. The 174 CPUs represent 29
computers six CPUs each. One computer is the master module.

The Number of CPUs Execution time (sec.) Speedup (base: 10 CPUs)

10 162, 768 1.000

15 105, 107 1.549

30 51, 968 3.132

174 9, 183 17.725

Fig. 7.Graph of parallel experiments of problem 2. The results indicate that our system
can be applied to very large problems by using more CPUs.

5 Discussion

5.1 Discussion of Speedup

Our original purpose was to attain linear speedup. However, we succeeded in
attaining superlinear speedup and demonstrated it to be more useful in large
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problems using our parallel ILP system. This demonstrates that all worker mod-
ules can divide a learning task and work ideally without searching useless areas
in the bounded hypothesis space. In addition, we succeeded in obtaining identi-
cal rules by using one to 174 CPUs. This indicates that the rules identified are
unchanged in a given problem, even if the order of finding hypotheses is changed.

Figure 8 provides the reason for the speedup of our parallel ILP system. The
left side of Fig. 8 depicts the usual parallel method for ILP. This method only
divides a space as subtasks among workers. Each worker searches its space only
as in Fig. 8. Here, worker C worked much more than other workers. Thus, it is
not effective. The right side of Fig. 8 depicts our parallel method, where each
worker helps other workers when it completes searching its own space. Using
our method, the workers communicate with each other and request or accept a
portion of the subtasks. Finally, each worker simultaneously completes all tasks.
In addition, our parallel mechanism adds a communication protocol for sharing
the evaluation of rules identified. This means that our system can avoid searching
useless areas in the bounded hypothesis space. Our system can therefore be speed
up sufficiently by increasing the number of computers used.

5.2 Discussion of Speedup Stability

We checked the stability and robustness of our parallel ILP system in another
experimental environment, using 48 computers (2vCPU:2.4 GH, 8 GBRAM) on
an ATLUS Cloud with 95 CPUs for workers and 1 CPU for the master module.
In this experiment, we repeatedly (16 times) executed parallel learning using our
system on problem 2. Table 5 presents the results of this experiment. The average
time is 20,741.69 s, but the standard deviation is only 29.16 s. This means that
our system is very stable for parallel ILP execution.

Fig. 8. Comparison between the usual method and our method. The left side depicts
the usual method, and the right side depicts our method. Using our method, each
worker completes all tasks at the same time.
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Table 5. Result of repeated application of the parallel ILP system to problem 2. The
result indicates that the speedup is stable.

Number of times Execution time (sec.)

1 20773

2 20734

3 20747

4 20695

5 20758

6 20774

7 20787

8 20711

9 20755

10 20733

11 20705

12 20736

13 20715

14 20717

15 20738

16 20789

Average 20741.69

Standard deviation 29.16

6 Conclusions

In this study, we improved our parallel ILP system to enable superlinear speedup.
This improvement redesigned several features of our ILP learning system and
parallel mechanism. The redesigned ILP learning system searches and gathers all
rules that have the same evaluation. The redesigned parallel mechanism included
a communication protocol for sharing the evaluations of identified rules. To esti-
mate the speedup, we used data from dairy cattle indicating the successful condi-
tions for artificial insemination. Finally, we succeeded in superlinear speedup and
demonstrated that it was more useful in large problems. We succeeded in obtain-
ing identical rules using one to 174 CPUs. In addition, we applied our system
to the problem of anomaly detection based on the log analysis of a company’s
server, and succeeded in obtaining valid rules in a realistic time [9]. Currently, we
are designing an intelligent grid-search system using this parallel ILP to acquire
better rules for dairy-cattle problems.
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Abstract. Learning from interpretation transition (LFIT) automati-
cally constructs a model of the dynamics of a system from the observa-
tion of its state transitions. So far, the systems that LFIT handles are
restricted to discrete variables or suppose a discretization of continuous
data. However, when working with real data, the discretization choices
are critical for the quality of the model learned by LFIT. In this paper,
we focus on a method that learns the dynamics of the system directly
from continuous time-series data. For this purpose, we propose a model-
ing of continuous dynamics by logic programs composed of rules whose
conditions and conclusions represent continuums of values.

Keywords: Continuous logic programming
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1 Introduction

Learning the dynamics of systems with many interactive components becomes
more and more important due to many applications, e.g., multi-agent systems,
robotics and bioinformatics. Knowledge of system dynamics can be used by
agents and robots for planning and scheduling. In bioinformatics, learning the
dynamics of biological systems can correspond to the identification of the influ-
ence of genes and can help to understand their interactions. Dynamic system
modeling based on time-series data can be classified into discrete and continu-
ous approaches. Discrete and logic-based modeling methodologies assume that
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the temporal evolution of each entity or variable describing the system occurs
in synchronous discrete time steps. These methods seek to infer the regulation
functions that update the state of each variable based on the states at previous
time steps. In contrast with this approach, continuous models are defined by
differential equations in which the rate of change of a given variable is related to
the actual state of the system. Continuous approaches do not need the discretiza-
tion of the real-valued measurement data. As a consequence, using real-valued
parameters over a continuous timescale yields more reliable results, at least in
theory, because it does not introduce any discretization related error. A review of
both approaches, outlining their advantages and limitations, with specific appli-
cations to gene regulatory networks, is found in [8]. In this paper, we propose
a logic-based modeling, which like continuous approaches, allows to deal with
real-valued measured data. It is however assuming discrete time steps.

Fig. 1. Existing work: assumes a discretization of the time-series data used as input
to LFIT. New method: no abstraction of the time-series data.

Learning from interpretation transition (LFIT) [7] has been proposed to auto-
matically construct a model of the dynamics of a system from the observation of
its state transitions. Figure 1 shows this learning process. Given some raw data,
like time-series data of gene expression, a discretization of those data in the form
of state transitions is assumed. From those state transitions, according to the
semantics of the system dynamics, different inference algorithms that model the
system as a logic program are proposed. The semantics of system dynamics can
differ regarding the synchronism of its variables, the determinism of its evolution
and the influence of its history. The LFIT framework proposes several modeling
and learning algorithms to tackle those different semantics. So far the following
systems are tackled: memory-less synchronous consistent systems [7], systems
with memory [13], non-consistent systems [10].

So far, the discretization of the raw data was assumed given. Its quality is
critical to obtain good quality models out of LFIT. For example when learning
gene expression evolution, it means that the gene expression levels must be
known beforehand. This information is usually unknown and statistical methods
are used to guess it. Those methods rely most of the time on static state analysis
to provide a division of the gene expressions into meaningful intervals [6,9].
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But the levels of expressions and the dynamics are inseparable in biological
models. Sometimes those levels of expressions are in fact what must be learned.

In this paper, we learn both at the same time (see Fig. 1). For this purpose,
we extend LFIT to handle variables representing intervals instead of singletons.
In the case of learning gene expression levels, a method that builds dynamical
Bayesian networks has been proposed in [11], but it provides no theoretical guar-
antees. In contrast, our approach, that computes continuous logic programs, is
generic and comes with soundness and completeness results. Time series data
are considered in [14] but continuous data are statically discretized into interval
predicate representing statistical properties and their goal is classification. The
best-known logic handling intervals is temporal logic [4], which is solely con-
cerned with temporal intervals. In [3] learning of temporal interval relationship
defined by [1] (like meet or overlap) is considered. We rely on some of those
relationships for rule comparison but learning those relations is not our concern.
Temporal logic aside, the other related techniques focus on applying continuous
functions on them [12]. The closest to our approach is interval constraint pro-
gramming [2], but it handles static equational systems. All these techniques are
thus unsuitable to solve the problem considered here, where the time is discrete,
the values continuous and no continuous function is required.

The organization of the paper is as follows. Section 2 provides a formaliza-
tion of continuum logic programs, the learning operations and their proper-
ties. Section 3 presents the ACEDIA learning algorithm and its experimental
evaluation.

2 Continuum Logic and Program Learning

In this section, the concepts necessary to understand the learning algorithm are
formalized. In Sect. 2.1 the basic notions of continuum logic (CL) and a number of
important properties that the learned programs must have are presented. Then in
Sect. 2.2 the operations that are performed during the learning, as well as results
about the preservation of the properties introduced in Sect. 2.1 throughout the
learning are exposed.

2.1 Continuum Logic Programs

Let V = {v1, . . . , vn} be a finite set of n variables and IR be the set of all intervals
in R. We use basic interval arithmetic operations such as intersection, hull and
avoid. Formally for I1, I2 ∈ IR, I1 ∩ I2 = {x ∈ R | x ∈ I1 ∧ x ∈ I2},

hull(I1, I2) =

⎧
⎨

⎩

I1 if I2 = ∅,
I2 if I1 = ∅,
{x ∈ R | ∃y ∈ I1,∃z ∈ I2, y ≤ x ≤ z ∨ z ≤ x ≤ y} otherwise.

and avoid(I1, I2) = {{x ∈ I1 | ∀x′ ∈ I2, x < x′}, {x ∈ I1 | ∀x′ ∈ I2, x > x′}}.
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The atoms of CL are of the form vI where v ∈ V and I ∈ IR. An atom vI is
unit when I = {x} and empty when I = ∅. A CL rule is defined by:

R = vI ← vI1
1 ∧ · · · ∧ vIn

n (1)

where vI and vIi
i for 1 ≤ i ≤ n are atoms in CL. The atom on the left-hand side

of the arrow is called the head of R and is denoted h(R). The notation vh(R)

denotes the variable that occurs in h(R). The conjunction on the right-hand
side of the arrow is called the body of R, written b(R). The conjunction b(R),
that contains a single occurrence of each variable in V, is assimilated to the set
{vI1

1 , . . . , vIn
n } and we use set operations such as ∈ and ∩ on it. A continuum

logic program (CLP) is a set of CL rules. Intuitively, the rule R has the following
meaning: the variable v takes a value in I at the next step if each variable vi

takes a value in Ii at the current step.
The two following definitions introduce relations between atoms and between

rules that are used further along.

Definition 1 (Relations between atoms). Two atoms a = vI and a′ = vI′

that are based on the same variable v ∈ V can have the following relationships
with each other:

– a and a′ overlap when I ∩ I ′ �= ∅, written a � a′,
– a subsumes a′ when I ′ ⊆ I, written a′ � a.

In the last case, we also write that a is more general than a′ (resp. a′ is more
specific than a). The notion of subsumption is straightforwardly extended to
conjunctions of atoms B1 and B2 in the following way. B1 subsumes B2, written
B2 � B1 iff:

∀a ∈ B1,∃a′ ∈ B2, such that a′ � a.

Definition 2 (Rules Domination). Let R1, R2 be two CL rules. The rule R1

dominates R2, written R2 ≤ R1 if h(R1) � h(R2) and b(R2) � b(R1).

Proposition 1. Let R1, R2 be two CL rules. If R1 ≤ R2 and R2 ≤ R1 then
R1 = R2.

Proof. Let R1, R2 be two CL rules such that R1 ≤ R2 and R2 ≤ R1. Then
h(R1) � h(R2) and h(R2) � h(R1), hence h(R1) = vI1 and h(R2) = vI2 and
I1 ⊆ I2 ⊆ I1 thus I1 = I2 and h(R1) = h(R2). The same reasoning is applied on
each variable to conclude b(R1) = b(R2). ��

Rules with more specific heads and more general bodies dominate the other
rules. In practice, these are the rules we are interested in since they cover the
most general cases and give the most accurate results.

The dynamical system that we want to learn the rules of is represented by a
succession of continuum states as formally defined below.

Definition 3 (Continuum State). A continuum state s is a function from V
to R, i.e. it associates a real value to each variable in V. It represents the set
of unit atoms {v{x1}

1 , . . . , v{xn}
n }. We write S to denote the set of all continuum

states and a pair of states (s, s′) ∈ S2 is called a transition.
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The following definitions and propositions describe the interactions between
states and rules.

Definition 4 (Rule-states matching). Let s ∈ S. The CL rule R matches s,
written R � s, if ∀a ∈ b(R), ∃a′ ∈ s such that a � a′.

A rule is activated only when it matches the current state of the system.

Definition 5 (Cross-matching). Let R and R′ be two CL rules. These rules
cross-match, written R � R′ when there exists s ∈ S such that R � s and R′ � s.

Cross-matching can also be defined without the use of a matching state.

Proposition 2 (Cross-matching). Let R and R′ be two CL rules.

R � R′ iff ∀(vI , vI′
) ∈ b(R) × b(R′), vI � vI′

.

Proof. For the direct implication, assume given two CL rules R and R′ such
that R � R′. By definition, there exists s ∈ S such that s matches both R and
R′. Also by definition, for all (vI , vI′

) ∈ b(R) × b(R′), there exists a, a′ ∈ s such
that vI � a and vI′ � a′. Moreover, by the definition of a state, a = a′ = v{x}.
Thus x ∈ (I ∩ I ′), hence vI � vI′

.
For the converse implication, it suffices to construct a suitable s ∈ S, which

can be done in the following way: For all v ∈ V, there exists xv ∈ I ∩ I ′,
where vI ∈ b(R) and vI′ ∈ b(R′) since by Definition 1, I ∩ I ′ �= ∅. The state
s = {xv | v ∈ V} is such that s � R and s � R′. ��

The final program we want to learn should be complete and consistent within
itself and with the observed transitions. The following definitions formalize these
desired properties.

Definition 6 (Rule and program realization). Let R be a CL rule and
(s, s′) ∈ S2. The rule R realizes the transition (s, s′), written s

R−→ s′, if R � s
and there exists a ∈ s′ such that a � h(R). It realizes a set of transitions T ⊆ S2,

written
R

↪−→ T if for all (s, s′) ∈ T, s
R−→ s′.

A CLP P realizes (s, s′), written s
P−→ s′, if for all v ∈ V, there exists R ∈ P ,

s
R−→ s′. It realizes T , written

P
↪−→ T if for all (s, s′) ∈ T and all v ∈ V, there exists

R ∈ P , such that vh(R) = v and s
R−→ s′.

Definition 7 (Conflicts). Conflicts can occur between a CL rule R and a state
(s, s′) ∈ S2 or between two CL rules R and R′. The first kind of conflict is when
R � s and �s

R−→ s′ and the second when vh(R) = vh(R′), R � R′ and neither
h(R) � h(R′) or h(R′) � h(R).

Definition 8 (Consistent program). A CLP P is strongly consistent if it
does not contain conflicting rules, i.e. for all R,R′ ∈ P such that vh(R) = vh(R′)
and R � R′, either h(R) � h(R′) or h(R′) � h(R). It is consistent when for all
conflicting R,R′ ∈ P , the rule R′′ = v∅

h(R) ← {vI′′ | v ∈ V, vI ∈ b(R), vI′ ∈
b(R′) and I ∩ I ′ ⊆ I ′′} belongs to P . Otherwise P is said to be non-consistent.
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Note that in the definition of a consistent CLP, due to the conflict between R and
R′, I ∩ I ′ is never empty. In case there is a blind spot in the observed transitions
close to a frontier in the behavior of the system (which always happens to some
degree due to the continuous nature of the rules and the discrete nature of the
observed transitions) the rules with empty heads indicate the uncertainty of the
behavior between the two closest observations.

Definition 9 (Complete program). A CLP P is complete if for all s ∈ S
and all v ∈ V there exists R ∈ P such that R � s and vh(R) = v.

Example 1. Let V = {v1, v2} and consider the two rules R1 = v[5;8]
1 ← v]−∞;∞[

1 ∧
v]0;5[
2 and R2 = v{7}

1 ← v]−∞;∞[
1 ∧ v[4;9]

2 . The rules R1 and R2 cross-match
but they do not conflict since vh(R2) � vh(R1) and they do not dominate each
other since b(R1) �� b(R2) and b(R2) �� b(R1). They both realize the transition
t = ((10; 4.5), (7; 1)), however the program P = {R1, R2} does not realize t
because it contains no rule with v2 as its head variable. P is also not complete,
while the CLP P ′ = {v[1;2]

1 ← v]−∞,∞[
1 ∧ v]−∞,∞[

2 , v∅
2 ← v]−∞,∞[

1 ∧ v]−∞,∞[
2 } is

complete.

2.2 Learning Operations

The three following definitions describe formally the main operation performed
by the learning algorithm, which is to adapt a CLP to realize a new transition
with a minimal amount of changes in the dynamics of the program.

Definition 10 (Rule least specialization). Let R be a CL rule and (s, s′) ∈ S2

such that R and (s, s′) are conflicting. The least specialization of R by (s, s′) is:

Pspe(R, (s, s′)) =
⋃

v{x}
s ∈s

{h(R) ← ({vI′
s } ∪ b(R)\{vIs

s })},

where vIs
s ∈ b(R), I ′ ∈ avoid(Is, {x}).

Definition 11 (Rule least generalization). Let R be a CL rule and (s, s′) ∈
S2 such that R and (s, s′) are conflicting. The least generalization of R by
(s, s′) is:

Pgen(R, (s, s′)) = {vI′′ ← b(R) | h(R) = vI , v{x} ∈ s′, I ′′ = hull(I, {x})}
Note that Pgen(R, (s, s′)) contains a single rule while the number of rules
in Pspe(R, (s, s′)) depends on the relationship between the variables in b(R)
and in s.

Definition 12 (Rule least revision). Let R be a CL rule and t ∈ S2. The
least revision of R by t is:

Prev(R, t) =
{

Pspe(R, t) ∪ Pgen(R, (s, s′)) when R and t are conflicting
{R} otherwise.

The least revision of a CLP P by a transition t ∈ S2 is Prev(P, t) =
⋃

R∈P

Prev(R, t).
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The intuition behind the least revision is that when a rule is conflicting with
a considered transition it is for two possible reasons. Either the conclusion of the
rule is correct but the conditions are too general, or the conditions of the rule
are correct but the conclusion is too specific.

The following theorem collects properties of the least revision that make it
suitable to be used in the learning algorithm.

Theorem 1. Let R be a CL rule and (s, s′) ∈ S2. Assume R and (s, s′) are
conflicting, and let SR = {s′′ ∈ S | R � s′′} and Sspe = {s′′ ∈ S | ∃R′ ∈ Pspe(R,
(s, s′)), R′ � s′′}. The following results hold:

1. Sspe = SR \ {s},
2. s

Pgen(R,(s,s′))−−−−−−−−−→ s′,
3. Prev(R, (s, s′)) is strongly consistent and contains no rule conflicting with R

and (s, s′).

Proof.

1. First, let s′′ ∈ SR \ {s}. Then there exists v{x′′} ∈ s′′, such that v{x} ∈ s,
vI ∈ b(R), x′ ∈ I and x �= x′. Since x ∈ I because R and (s, s′) conflict
with each other, we can assume that x′ < x (the proof in the case x′ > x is
symmetrical). Thus, the rule R′ = h(R) ← b(R) \ {vI} ∪ {v{x′′∈I|x′′<x}} is
such that R′ � s′′ and R′ ∈ Pspe(R, (s, s′)) hence s′′ ∈ Sspe.
Now consider s′′ ∈ Sspe. By the definition of Sspe there exists R′ ∈ Pspe(R,
(s, s′)) such that R′ � s′′ thus there exists I{x} ∈ s′′ such that vI ∈ b(R),
v{x} ∈ s and x′ ∈ I, x′ �= x. Hence R � s′′ but s′′ �= s thus s′′ ∈ SR \ {s}.

2. Let Pgen(R, (s, s′)) = {R′}. Since (s, s′) and R are conflicting, R � s. Moreover
given h(R′) = vI , by the definition of Pgen and the hull function, there exists

v{x} ∈ s′ such that x ∈ I = hull(I, {x}), hence s
R′
−→ s′.

3. Let R1, R2 ∈ Pspe(R, (s, s′)). By the definition of Pspe(R, (s, s′)), h(R1) =
h(R2), thus R1 and R2 cannot conflict. Now let R3 ∈ Pgen(R, (s, s′)). Again
R1 and R3 cannot conflict because h(R1) � h(R3). Thus Prev(R,R′) is free
of conflicts. In addition, for all R′ ∈ Pspe(R, (s, s′)), h(R′) = h(R) and for
{R′} = Pgen(R, (s, s′)), h(R) � h(R′) by the definition of the hull function.
Finally, Prev(R, (s, s′)) does not conflict with (s, s′) due to the two previous
points of this theorem.

��
Example 2. Let V = {v1, v2}, R = v{5}

1 ← v]−∞,∞[
1 ∧ v]−∞,8[

2 and t = ((0; 1),
(4, 2)). Then Prev(R, t) = {v[4;5]

1 ← v]−∞,∞[
1 ∧ v]−∞;8[

2 , v{5}
1 ← v]−∞;0[

1 ∧
v]−∞;8[
2 , v{5}

1 ← v]0;∞[
1 ∧ v]−∞;8[

2 , v{5}
1 ← v]−∞,∞[

1 ∧ v]−∞,1[
2 , v{5}

1 ← v]−∞,∞[
1 ∧

v]1,8[
2 }. The first rule in Prev(R, t) is the least generalization of R.

The following definition groups all the properties that we want the learned
program to have.
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Definition 13. (Suitable and optimal program). Let T ⊆ S2. A CLP P is
suitable for T when:

– P is consistent,
– P is complete,
– P realizes T ,
– there is no rule with empty head in P that matches a s such that (s, s′) ∈ T ,
– for all CL rules R not conflicting with a s such that (s, s′) ∈ T , there exists

R′ ∈ P such that R ≤ R′.

If in addition, for all R ∈ P , all the CL rules R′ belonging to CLP suitable for
T are such that R ≤ R′ implies R′ ≤ R then P is called optimal.

Proposition 3. Let T ⊆ S2. The CLP optimal for T is unique and denoted
PO(T ).

Proof. Let T ⊆ S2. Assume the existence of two distinct CLPs optimal for T ,
denoted by PO1(T ) and PO2(T ) respectively. Then w.l.o.g. we consider that there
exists a CL rule R such that R ∈ PO1(T ) and R �∈ PO2(T ). If R is conflicting
with T , since PO1(T ) realizes T there exists R′ ∈ PO1(T ) and (s, s′) ∈ T such

that R � s, R′ � s, s �R−→ s′, s
R′
−→ s′ and vh(R) = vh(R′). Hence R and R′ are

conflicting, thus there exists R′′ = v∅
h(R) ← {vI′′ | vI ∈ b(R), vI′ ∈ b(R′), I ∩I ′ ⊆

I ′′}. But then R′′ � s and PO1(T ) is not suitable for T , a contradiction. Thus
R is not conflicting with T and there exists a CL rule R2 ∈ PO2(T ), such that
R ≤ R2. By the definition of an suitable program, there exists R1 ∈ PO1(T )
such that R2 ≤ R1 since R2 is not conflicting with T . Thus R ≤ R1 and by the
definition of an optimal program R1 ≤ R. By Proposition 1, R1 = R and thus
R ≤ R2 ≤ R hence R2 = R, a contradiction. ��

The starting point of the learning algorithm is PO(∅), described in the fol-
lowing proposition.

Proposition 4. PO(∅) = {v∅ ← {v′]−∞,∞[ | v′ ∈ V} | v ∈ V}.
Proof. Let P = {v∅ ← {v′]−∞,∞[ | v′ ∈ V} | v ∈ V}. The CLP P is consistent

and complete by construction. Like all CLPs,
∅

↪−→ P and there is no transition
in ∅ to match with the rules in P . In addition, by construction, the rules of P
dominate all CL rules. ��

The CLP optimal for a set of transitions can be obtained from any CLP
suitable for T by removing all the dominated rules from it, as stated in the
following proposition. This means that it suffices to compute a CLP suitable for
T to obtain PO(T ) by getting rid of the dominated rules.

Proposition 5. Let T ⊆ S2. If P is a CLP suitable for T , then PO(T ) = {R ∈
P | ∀R′ ∈ P,R ≤ R′ implies R′ ≤ R}.
Proposition 6. Let P be a consistent CLP and (s, s′) ∈ S2. The CLP
Prev(P, (s, s′)) is consistent.
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Proof. Let us assume there exists two CL rules R1, R2 ∈ Prev(P, (s, s′)). Since
by Theorem 1, for all R ∈ P , Prev(R, (s, s′)) is strongly consistent, neces-
sarily there exists two distinct R′

1, R
′
2 ∈ P such that R1 ∈ Prev(R′

1, (s, s
′))

and R2 ∈ Prev(R′
2, (s, s

′)). The fact that R1 and R2 conflict implies that
vh(R1) = vh(R2) = v. It also implies that R1 � R2. Whether R1 and R2 are
obtained by least specialization or least generation, the following relationships
hold by construction:

1. b(R1) � b(R′
1) and b(R2) � b(R′

2),
2. h(R′

1) � h(R1) and h(R′
2) � h(R2).

Due to point 1, R′
1 � R′

2. Since in addition P is consistent and vh(R′
1)

= vh(R′
2)

,
either h(R′

1) � h(R′
2) or h(R′

2) � h(R′
1). If vh(R′

1)
and vh(R′

2)
are not empty, due

to point 2, the same relationship also holds between R1 and R2, a contradiction
with the fact that there is a conflict between R1 and R2. Otherwise, one of vh(R1)

and vh(R2) is empty, thus its least generalization’s head is sure to be a singleton.
Assume w.l.o.g. that vh(R′

1)
is empty. Since R1 and R2 conflict with each other,

their heads cannot be empty or subsume each other, thus {R1} = Pgen(R′
1, (s, s

′))
and R2 ∈ Pspe(R′

2, (s, s
′)). Thus b(R2) avoids s on a variable v∗ and there is a

rule R ∈ Pspe(R′
1, (s, s

′)) that avoids s on the same variable and in the same
way (either over or under it). The rule R has an empty head since R′

1 also has
one and for all v ∈ V, if vI1 ∈ b(R1), vI2 ∈ b(R2) and vI ∈ b(R) then I1 ∩ I2 ⊆ I
since I coincides with I1 except on v∗ where I ∈ avoid(I1, {x}) and I overlaps
with I2 from its bound at x and until the bound of I1, thus covering I1 ∩ I2
entirely. ��

The following theorem in association with the three previous results gives a
method to iteratively compute PO(T ) for any T ⊆ S2, starting from PO(∅).

Theorem 2. Let T ⊆ S2 and (s, s′) ∈ S2. Prev(PO(T ), (s, s′)) is a CLP suitable
for T ∪ {(s, s′)}.
Proof. Let P = Prev(PO(T ), (s, s′)). Since PO(T ) is consistent, by Proposition 6,
P is also consistent. Since PO(T ) is complete, by the two first points of Theo-
rem 1, P is also complete. By Theorem 1, P is not in conflict with the rules of

PO(T ), and since P is also complete,
P

↪−→ T . In addition, since PO(T ) is complete,
for each v ∈ V, there exists a CL rule R ∈ PO(T ) such that vh(R) = v and R � s.

By Theorem 1, it means that for each of these rules, s
Pgen(R,(s,s′))−−−−−−−−−→ s′, hence

s
P−→ s′ and

P
↪−→ (T ∪ {(s, s′)}). Assume the existence of a rule R ∈ P with empty

head and matching a state s′′ where (s′′, s′′′) = t ∈ T ∪ {(s, s′)}. If R ∈ PO(T )
then t = (s, s′) or PO(T ) is not suitable for T . In this case, since R� t and R has
not been revised, s

R−→ s′, a contradiction with the emptiness of the head of R.
Otherwise, there exists a CL rule R′ ∈ PO(T ) such that R ∈ Pspe(R′, t) because
a generalization cannot produce rules with empty heads. Then by Theorem1,
t �= (s, s′) and since R � s′′, we also have R′ � s′′ by the definition of the special-
ization operation. For the same reason, the head of R′ is empty. Thus, PO(T ) is
not suitable for T , a contradiction. To prove that P verifies the last point of the
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definition of a suitable CLP, let R be a CL rule not conflicting with T ∪{(s, s′)}.
Since R is also not conflicting with T , there exists R′ ∈ PO(T ) such that R ≤ R′.
If R′ is not conflicting with (s, s′), then R′ ∈ P . Otherwise, R ≤ R′ and R′ is in
conflict with (s, s′) (but R is not). Thus there exists at least one variable v ∈ V
such that vI ∈ b(R), vI′ ∈ b(R′), v{x} ∈ s x ∈ I ′, x �∈ I and I ⊆ I ′. Then
one of the intervals in avoid(I ′, {x}) contains I by the definition of the function
avoid. Let us denote this interval by I ′′. The rule R′′ ∈ Pspe(R′, (s, s′)) such that
vI′′ ∈ b(R′′) verifies R ≤ R′′ because vI � vI′′

and R′′ coincides with R′ on all
other body and head variables. ��

3 ACEDIA

In this section we present ACEDIA, the Abstraction-free Continuum Environ-
ment Dynamics Inference Algorithm and its experimental evaluation.

3.1 Algorithm

ACEDIA learns a CLP from time-series data over continuous domains. Those
time-series data are observations of a system’s state transitions (S2). Given as
input a set of transitions T ⊆ S2, ACEDIA iteratively constructs a model of the
system by applying the method formalized in the previous section to compute
PO(T ) as follows:

ACEDIA: Abstraction-free Continuum Environment Dynamics Inference Algorithm

– INPUT: a set of transitions T ⊆ S2.
– Initialize P as PO(∅).
– For each transition (s, s′) ∈ T

• Extract each rule R of P that conflicts with (s, s′).
• For each rule R

∗ Compute its least revision P ′ = Prev(R, (s, s′)).
∗ Remove all the rules in P ′ dominated by a rule in P or P ′.
∗ Remove all the rules in P dominated by a rule in P ′.
∗ Add all remaining rules in P ′ to P .

– OUTPUT: P = PO(T ).

Algorithms 1 and 2 provide the detailed pseudocode of the algorithm. Lines
3–6 of Algorithm 1 realize the computation of PO(∅) as defined in Proposition 4.
Then the learning is performed iteratively on each transition t ∈ T by applying
the least-revision operation (lines 7–17) as defined in Definition 12 and removing
dominated rules (lines 18–20) to ensure the optimality of the obtained program
as stated in Proposition 5. The rules obtained by specialization that have empty
intervals in their bodies are discarded since they cannot match or realize any-
thing. Another noteworthy difference between the theory and the implementa-
tion is that the variables are not necessarily defined over all of R but may be
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constrained over an interval in IR encompassing all the values associated to each
variable in the observed transitions. This does not impact the theoretical results
stated below.

Theorem 3 (ACEDIATermination, soundness, completeness, optimal-
ity). Let T ⊆ S2. The call ACEDIA(T ) terminates and ACEDIA(T )=PO(T )

Proof. Let T ⊆ S2. The call ACEDIA(T ) terminates because all loops iterate
on finite sets.

To prove that ACEDIA(T )=PO(T ), and is thus sound, complete and optimal,
it suffices to prove that the main loop (Algorithm 1 line 7–20) preserves the
invariant P = PO(Ti) after the ith iteration where Ti is the set of transitions
already selected line 8 after the ith iteration for all i from 0 to |T |.

Lines 3–6 initialize P to {v∅ ← {v′]−∞,∞[ | v′ ∈ V} | v ∈ V}. Thus by
Proposition 4, after line 6, P = PO(∅).

Let us assume that before the i + 1th iteration of the main loop, P = PO(Ti).
Through the loop lines 11–14, P ′ = {R ∈ PO(Ti) | R does not conflict with
(s, s′)} is computed. Then the set P ′′ =

⋃{Prev(R, (s, s′)) | R ∈ PO(Ti)\P ′}
is iteratively build through the calls to least revision line 17 and the dominated
rules are pruned as they are detected by the loop lines 18–20. Thus by Theorem2
and Proposition 5, P = PO(Ti+1) after the i + 1th iteration of the main loop. ��
Theorem 4 (ACEDIA Complexity). Let T ⊆ S2 be a set of transitions
and |V| = n. The worst-case time complexity of ACEDIA when learning from T
belongs to O(|T |2n×n5) and its worst-case memory use belongs to O(|T |2n×n2).

Proof. Let xi be the different values a variable vi takes in T . Each xi can be
the minimum or maximum value of a continuum. After the initialization of P
there is a rule with empty head for each xi. According to the definition of the

Algorithm 1. ACEDIA(T )

1: INPUT: T ⊆ S2

2: OUTPUT: PO(T )

3: // 1) Initialization of P
4: P = ∅ // The empty logic program
5: for each v ∈ V do

6: P := P ∪ {v∅ ← {v′]−∞,∞[ | v′ ∈ V}}

7: // 2) Revision of P for each transition
8: for each (s, s′) ∈ T do :
9: conflicts := ∅
10: //2.1) Extraction of conflicting rules
11: for each R ∈ P do

12: if b(R) conflicts with (s, s′) then

13: P := P \ {R}
14: conflicts := conflicts ∪ {R}
15: //2.2) Revision of conflicting rules
16: for each R ∈ conflicts do

17: LR := least revision(R, (s, s′))
18: for each R′ ∈ LR do

19: if �R′′ ∈ P,R′ ≤ R′′ then

20: P := P\{R′′′ ∈ P | R′′′ ≤ R′}∪{R′}
21: return P

Algorithm 2. least revision(R, t)

1: INPUT: a rule R and a transition t = (s, s′),
2: OUTPUT: LR = Prev(R, t).

3: // 1) Least generalization
4: x = I, vI ∈ s′
5: if h(R) = v∅ then

6: h = v{x}
7: else

8: if x < min(h(R)) then

9: h := v[x,max(h(R))]

10: else

11: h := v[min(h(R)),x]

12: LR := {h ← b(R)}

13: // 2) Least specialization
14: for each vI ∈ b(R) do

15: Rmin :=

16: h(R) ← (b(R) \ {vI} ∪ {v]min(I),x[|min(I) 
= x})
17: Rmax :=
18: h(R) ← (b(R) \ {vI} ∪ {v]x,max(I)[|max(I) 
= x})
19: LR := LR ∪ {Rmin,Rmax}

20: return LR



Inductive Learning from State Transitions over Continuous Domains 135

least generalization (Definition 11), those continuum will only be extended to
hull a xi, i.e. their min/max will always be a xi. Thus the number of possible
head continuums of a learned rule is 1 + |xi|2 which belongs to O(1 + |T |2).
Similarly for the rule body, according to the definition of the least specialization
(Definition 10), a continuum in a rule body is only reduced to avoid one of the
xi. The only other possible values are ∞ and −∞, thus the number of possible
continuums for each body variable belongs to O((|xi| + 2)2) ∼ O((|T | + 2)2).
The possible bodies of a rule are all the combinations of these continuums, thus
belong to O(((|T | + 2)2)n). Hence, the total number of possible rules learned by
ACEDIA belongs to O(n × (1 + |T |2) × ((|T | + 2)2n)). The heads of
rules are represented by an integer that encodes the variable it refers to and a
continuum represented by two real numbers. The body of a rule is a vector of
n pairs of variable/continuum encoded in the same way. Thus the memory use
of a rule belongs to O(3 + 3 × n). Conclusion: the memory use of ACEDIA
belongs to O(|P |) ∼ O(n × ((1 + |T |2) × ((|T | + 2)2)n) × (3 + 3 × n)),
i.e. O(|P |) ∼ O(|T |2n × n2).

ACEDIA starts with the generation of the logic program PO(∅), containing
n rules. A rule R has one head variable and its body contains each variable:
building a rule belongs to O(|R|) ∼ O(1 + n). Thus the initialization of P
belongs to O(n × |R|). Afterward, the algorithm checks each transition of T
iteratively and extracts conflicting rules from P . Checking conflict between two
rules requires to compare their heads and all their body atoms: it belongs to
O(|R|). Each rule of P is checked, thus extracting conflicting rules belongs to
O(|P | × |R|). Each conflicting rule is revised using least revision (Definition 12).
This operation generates one rule by least generalization (one head continuum
extension) and 2n rules by least revision (2 for each atom in the body: one that
avoids the value from below and the other that avoids it from the top), it belongs
to O(|LR|) ∼ O((1 + 2n) × |R|). Each revision is then compared to the rules of
P to check domination (Definition 2). Checking domination requires to compare
head continuum and all body continuum: it belongs to O(|R|). Thus removing
the dominated revisions belongs to O(|LR|×|R|×|P |). This is repeated for each
transition of T , thus the complete process belongs to O(n × |R| + |T | × |LR| ×
|R| × |P |) ∼ O(n × (1 + n) + |T | × (1 + 2n) × (1 + n) × (1 + n) × n × (1 + |T |2) ×
(|T | + 2)2n × (3 + 3 × n)) ∼ O(|T | × (1 + |T |2) × (|T | + 2)2n × n5) Conclusion:
the complexity of ACEDIA when learning from T belongs to O(|T |2n ×n5). ��

3.2 Evaluation

In this section, the benefits from ACEDIA are demonstrated on a case study
and its scalability is assessed w.r.t. the input size and the number of variables.
All experiments were conducted on an Intel Core I7 (6700, 3.4 GHz) with 32 Gb
of RAM and can be accessed via the hyperlink given in footnote1.

The first evaluation is a case study on learning a CLP equivalent to a Boolean
network of 3 variables. For the purpose of this experiment the levels of expression

1 Experiments sources: http://tonyribeiro.fr/data/experiments/ILP 2017.zip.

http://tonyribeiro.fr/data/experiments/ILP_2017.zip
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p[0,P1[ ← q[0,Q[.
p[P1,1] ← q]Q,1].

q[0,Q[ ← p[0,P1].
q[0,Q[ ← r[0,R].
q[Q,1] ← p]P1,1], r]R,1].

r[0,R[ ← p[P2,1].
r[R,1] ← p[0,P2[.

(a) CLP with editable
levels of expression in
bold.

p[0,0.5[ ← q[0,0.5[.
p[0.5,1] ← q[0.5,1].

q[0,0.5[ ← p[0,0.5[

q[0,0.5[ ← r[0,0.5[.
q[0.5,1] ← p]0.5,1], r]0.5,1].

r[0,0.5[ ← p[0.75,1].
r[0.5,1] ← p[0,0.75[.

(b) CLP with levels of expres-
sion set to P1=Q=R=0.5 and
P2=0.75

p[0,0.25] ← q[0,0.5[.
p[0.5,1] ← q]0.25,1].
p[0,1].

q[0,0.25] ← p[0,0.5[

q[0,0.25] ← r[0,0.5[.
q[0.5,1] ← p]0.25,1], r]0.25,1].
q[0,1].

r[0,0.25] ← p]0.5,1].
r[0.5,1] ← p[0,0.75[.
r[0,1].

(c)ACEDIA output from all
the transitions of the CLP in
Figure 2b

Fig. 2. Experimentation on a CLP with three variables.

can be changed by setting the condition/conclusion intervals as shown in Fig. 2a
and b. In the rules body, q and r have a unique expression level but the level of
p differs in the dynamics of q and r: to activate q, p = 0.5 is enough but p = 0.75
is necessary to inhibit r. This is done to show that ACEDIA can learn different
behaviors and different expression levels for the same variable, while previous
versions of LFIT assumed the same discretization in all rules. The domain of
each variable is restricted to [0, 1], which can be considered like a normalization
of the time-series in practice. For readability reasons, in the body of the rules,
variables of which the corresponding value is the whole domain are omitted.
Considering a precision of 0.25 for each variable value, 150 possible states are
generated. The algorithm computes the approximately 1700 possible transitions
according to the CLP. From those transitions, ACEDIA learns the original rules
to capture the dynamics of the system and finds the expression level of the vari-
ables. ACEDIA’s output is shown in Fig. 2c. The rules are ordered and grouped
to follow Fig. 2b and the rules with empty heads are omitted. They encode all
non-observed states, e.g. p∅ ← q]0,0.25[. and r∅ ← q]0.25,0.75[. Such minor differ-
ences have been highlighted in bold in Fig. 2c. The first rule is equivalent to the
first rule of p of the original program: the total range of value a variable can take
is [0, 1], thus conditions on this continuum can be ignored. By looking closely to
the first rule in Fig. 2c, it appears to be different from the first rule in Fig. 2b:
the head of the former is equal to [0, 0.25] while the latter is equal to [0, 0.5[.
This is as close an approximation as is possible with a precision of 0.25 in the
states, and the fact that only closed bounds (respectively open bounds) can be
created in the head (respectively body) of a rule. The second rule is equivalent
to the second rule of p: here the target continuum [0.5, 1] is approximated by
]0.25, 1]. The third, as the most general conclusion and conditions, just provides
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the domain of the variable; it is an optimal rule of the observations that can
be expected to be learned. Here we see that the influence of q over p is cor-
rectly learned as well as the level of expression of q to influence p which is 0.5.
Regarding the dynamics of q, the rules are equivalent to the three original rules
of q if we follow the same reasoning as before. The dynamics of the influences
of p and r over q is also learned correctly, as well as the level of expression of
p and r. Again line 7 we have a similar rule that just gives the domain of q
and can be ignored. The rest of the rules are equivalent to the rules of r of the
original program. Here we see that the specific level of expression of p to inhibit
r, P2 = 0.75 is approximated by the continuum ]0.5, 1]. This experiment shows
that the dynamics of the system and the expression level of each variable are
approximated as well as possible by ACEDIA.

Figure 3 shows the run time (Fig. 3a) and memory use (Fig. 3b) of ACEDIA
on learning the CLP of Fig. 2b (middle) with regards to the number of input
transitions. In this experiment, the precision of the value of each variable is
0.1 in the interval [0,1], thus there are 11 possibles values for a variable and
11 × 11 = 121 possible continuums. In theory, more than 200 millions of rules
(121 heads times 1213 bodies) could be learned, but this number never exceeds
much more than 10, 000 at a given time. The domination relation (Definition 2)
allows to reduce the number of candidate rules at each step of the learning
process. After approximately 400 transitions, the real rules of the system are
learned and most of the computation consists in checking those rules against
the new transitions and eliminating the remaining rules that are still specific
enough to survive. This experiment shows that when the observed system has a
small number of variables, the algorithm can be fed with as many observations
as wanted.

Table 1 shows the run times and memory use of ACEDIA on learning partial
mammalian cell Boolean networks [5] by varying the number of variables consid-
ered. The original number of variables is 10. To reduce the variables to n < 10,
we removed the occurrences of 10−n variables in all original rules, thus creating
a new system of n variables. In this experiment the exponential evolution of run

(a) avg. run time (log scale) over 10 runs (b) maximal number of rules

Fig. 3. Evaluation of ACEDIA’s scalability w.r.t. input size (log scale) on learning
the CLP of Fig. 2b.
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Table 1. Evaluation of ACEDIA scalability over 10 runs: average run time and
memory use (in number of rules) on learning mammalian cell Boolean Network evolving
the number of variables. Time Out (T.O.) is 10 h.

Variables Run time/Rules w.r.t. input transitions (|T |)
|T | = 10 |T | = 25 |T | = 50 |T | = 100 |T | = 250 |T | = 500 |T | = 1000

2 0.015 s/137 0.031 s/296 0.067 s/425 0.105 s/437 0.143 s/420 0.217 s/422 0.337 s/456

3 0.034 s/464 0.667 s/3K 3.082 s/5K 10 s/8K 31 s/11K 56 s/13K 73 s/13K

4 0.322 s/2K 16 s/14K 127 s/36K 1081 s/86K T.O T.O T.O.

5 2.8 s/7K 239 s/58K 4,522 s/203K T.O T.O T.O T.O.

6 15 s/21K 4,063 s/217K T.O T.O T.O T.O T.O.

7 73 s/45K 22,616 s/596K T.O T.O T.O T.O T.O.

8 424 s/120K T.O T.O T.O T.O T.O T.O.

9 2,239 s/228K T.O T.O T.O T.O T.O T.O

time caused by the exponential explosion of the number of generated rules can
be seen. For now, ACEDIA cannot handle systems with more than 9 variables
in a reasonable amount of time and memory when considering 10 transitions and
it tends to be limited to 4 variables when more than 10 input transitions are
studied. However, as in the previous experiment, we observe the convergence of
the number of rules and thus run time for 2 and 3 variables, which hints that
such behavior should occur for more variables but with an exponentially greater
input size. The current implementation is rather näıve. As with previous LFIT
algorithms, we can expect better experimental results regarding scalability by
developing dedicated data structures and learning heuristics. Such improvements
remain as future work.

4 Conclusions

In the previous LFIT algorithms, it was assumed that the discretization of raw
input data was performed by some third-party agent. Such a hypothesis is rather
naive, and does not match with real-life systems since the dynamics of a sys-
tem is defined by both the levels of expression of variables and their influences
on each other. In this paper, we introduce ACEDIA, an algorithm to learn
the dynamics of a system directly from continuous time-series data. For this
purpose we propose a modeling of continuous dynamics by continuum logic pro-
grams. As far as we know, this approach is completely new and its strengths
and weaknesses are shown through theoretical results and practical evaluations.
Similarly to continuous approaches, the modeling we propose allows to deal with
real-valued measured data. It however assumes discrete time steps. One of our
future works will thus address continuous time dynamics in the LFIT frame-
work. It is important to note that this method can also be applied to discrete
data like previous LFIT algorithms. In the case of multi-valued discrete data,
ACEDIA learns more compact and expressive rules. Indeed, multiple condi-
tions over different contiguous discrete levels can be expressed by one condition
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over a continuum including those levels. Where previous LFIT algorithms need
several rules to express those conditions, ACEDIA expresses them with a single
one. The detailed comparison of ACEDIA with previous LFITs on this kind
of data is out of the scope of this paper and remains as a future work.

This paper focuses on the theoretical bases of ACEDIA and we are now
working on an efficient implementation of the algorithm, with the goal of apply-
ing it to real biological time-series data. The complexity of the current algorithm
(see Theorem 4) limits its current usability to rather small systems as shown by
the experimental results. However, the convergences observed gives us good hope
about the practical use of the methods.
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Abstract. Lifted Relational Neural Networks (LRNNs) describe rela-
tional domains using weighted first-order rules which act as templates
for constructing feed-forward neural networks. While previous work has
shown that using LRNNs can lead to state-of-the-art results in various
ILP tasks, these results depended on hand-crafted rules. In this paper, we
extend the framework of LRNNs with structure learning, thus enabling
a fully automated learning process. Similarly to many ILP methods, our
structure learning algorithm proceeds in an iterative fashion by top-down
searching through the hypothesis space of all possible Horn clauses, con-
sidering the predicates that occur in the training examples as well as
invented soft concepts entailed by the best weighted rules found so far.
In the experiments, we demonstrate the ability to automatically induce
useful hierarchical soft concepts leading to deep LRNNs with a compet-
itive predictive power.

1 Introduction

Lifted Relational Neural Networks (LRNNs [15]) are weighted sets of first-order
rules, which are used to construct feed-forward neural networks from relational
structures. A central characteristic of LRNNs is that a different neural network
is constructed for each learning example, but crucially, the weights of these
different neural networks are shared. This allows LRNNs to use neural networks
for learning in relational domains, despite the fact that training examples may
vary considerably in size and structure.

In previous work, LRNNs have been learned from hand-crafted rules. In such
cases, only the weights of the first-order rules have to be learned from training
data, which can be accomplished using a variant of back-propagation. The use of
hand-crafted rules offers a natural way to incorporate domain knowledge in the
learning process. In some applications, however, (sufficient) domain knowledge
is lacking and both the rules and their weights have to be learned from data. To
this end, in this paper we introduce a structure learning method for LRNNs.
c© Springer International Publishing AG, part of Springer Nature 2018
N. Lachiche and C. Vrain (Eds.): ILP 2017, LNAI 10759, pp. 140–151, 2018.
https://doi.org/10.1007/978-3-319-78090-0_10
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Our proposed structure learning method proceeds in an iterative fashion. In
each iteration, it may either learn a set of rules that intuitively correspond to
a new layer of a neural network template or to learn a set of rules that intu-
itively correspond to creating new connections among existing layers, a strategy
which we refer to as stacked structure learning. The rules that are added in a
given iteration either define one of the target predicates, or they define a new
predicate that may depend on predicates that were ‘invented’ at earlier layers as
well as on predicates from the considered domain. Since the actual meaning of
these predicates depends on both the learned rules and their associated weights,
structure learning is alternated with weight learning. Intuitively, this means that
the definitions of predicates defined in earlier layers can be fine-tuned based on
the rules which are added to later layers.

We present experimental result which show that the resulting LRNNs per-
form comparably to LRNNs that have been learned from hand-crafted rules. We
believe that this makes LRNNs a particularly convenient framework for learning
in relational domains, without any need for prior knowledge nor for any extensive
hypertuning. Somewhat surprisingly, we find that LRNNs with learned rules are
often more compact than those with hand-crafted rules. Finally, we also present
some initial results which suggest that the use of logical rules enable LRNNs to
efficiently learn concepts which neural networks normally struggle with.

The remainder of the paper is structured as follows. In the next section, we
first provide the required background on LRNNs. In Sect. 3, we then present the
proposed structure learning method, after which we discuss our experimental
results in Sect. 4.

2 Preliminaries

In this section, we briefly recall the LRNN framework from [15].

LRNN Structure. A lifted relational neural network (LRNN) N is a set of
weighted definite clauses, i.e. a set of pairs (Ri, wi) where Ri is a definite clause
and wi ∈ R. For a LRNN N , we write N ∗ to denote the corresponding set of
definite clauses, i.e. N ∗ = {C | (C,w) ∈ N}. The grounding N of a LRNN N
is defined as N = {(Cθ,w) | (C,w) ∈ N , Cθ ∈ G(N ∗)}, where G(N ∗) is the
restriction of the grounding of N ∗ to those clauses that correspond to active
rules, i.e. rules whose antecedent is satisfied in the least Herbrand model of N ∗.
The neural network corresponding to N contains the following types of neurons:

– For each ground atom h occurring in N , there is a neuron Ah, called an atom
neuron.

– For each ground fact (h,w) ∈ N , there is a neuron F(h,w), called a fact neuron.
– For every ground rule (cθ ← b1θ ∧ · · · ∧ bkθ, w) ∈ N , there is a neuron

R(cθ←b1θ∧···∧bkθ,w), called a rule neuron.
– For every (possibly non-ground) rule (c ← b1 ∧ · · · ∧ bk, w) ∈ N and every

grounding h = cθ of c that occurs in H, there is a neuron Aggh
(c←b1∧···∧bk,w),

called an aggregation neuron.
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Forward Propagation. Intuitively, the neural network computes for each gro-
und atom h a truth value, which is given by the output of the atom neuron
Ah. To obtain these truth values, the network propagates values in a way which
closely mimics the immediate consequence operator from logic programming. In
particular, when using the immediate consequence operator, there are two ways
in which h can become true: if h corresponds to a fact, or if h is the head of
a rule whose body is already satisfied. Similarly, the inputs of the atom neuron
Ah consist of the fact neurons of the form F(h,w) and aggregation neurons of the
form Aggh

(c←b1∧···∧bk,w). The output of an atom neuron with inputs i1, ..., im is
given by g∨(i1, ..., im), where g∨ is an activation function that maps the inputs
to a real-valued output. In this paper we will use

g∨(b1, . . . , bk) = sigm

(
a ·

(
k∑

i=1

bi + b0

))

where sigm is the sigmoid function sigm(x) = 1/(1+e−x). We set the parameters
a = 6 and b0 = −0.5, as g∨ then closely approximates the �Lukasiewicz fuzzy
disjunction [7] (see right panel in Fig. 1). This helps with the interpretability of
LRNNs, as it means that we can intuitively think of the activation functions as
logical connectives, and of LRNNs as (fuzzy) logic programs.

A fact neuron F(h,w) has no input and has the value w as its output. The
output of the aggregation neuron Aggh

(c←b1∧···∧bk,w) intuitively expresses how
strongly h can be derived using the rule c ← b1 ∧ · · · ∧ bk. The inputs of the
aggregation neuron Aggh

(c←b1∧···∧bk)
are all rule neurons R(cθ←b1θ∧···∧bkθ,w) for

which cθ = h. The output of this aggregation neuron is given by w ·g∗(i1, ..., im),
where i1, ..., im are its inputs, g∗ is an activation function, and w is the weight
of the corresponding rule. We will use

g∗(b1, . . . , bm) =
1
m

m∑
i=1

bi.

The rule neuron R(cθ←b1θ∧···∧bkθ,w) intuitively needs to fire if the atoms
b1θ, ..., bkθ are all true. Accordingly, its inputs i1, ..., ik are given by the atom
neurons Ab1θ, ..., Abkθ, and its output is g∧(i1, ..., ik, w), with g∧ a third type of
activation function. In this paper we will use the activation function

g∧(b1, . . . , bk) = sigm

(
a ·

(
k∑

i=1

bi − k + 1 + b0

))

where we set a = 6 and bo = −0.5, which approximates �Lukasiewicz fuzzy
conjunction [7] (see left panel in Fig. 1).

Weight Learning. In applications, we usually consider LRNNs of the form
N ∪ E , where N is a weighted set of first-order rules and E is a weighted set
of ground facts. In particular, each E represents an example, while N acts as a
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Fig. 1. An approximation of �Lukasiewicz conjunction (left) and disjunction (right) by
sigmoidal activation functions g∧ and g∨ for the use in LRNNs.

template for constructing feed-forward neural networks, with N ∪ E being the
network corresponding to example E . While the weights of E are given, the
weights of N typically need to be learned from training data, as follows.

We are given a list of examples E = (E1, . . . , Em) where each Ej is a LRNN,
typically containing only weighted ground facts, and a list of training queries
Q = ({(q11 , t

1
1), . . . , (q

1
k1

, t1k1
)}, . . . , {(qm

1 , tm1 ), . . . , (qm
km

, tmkm
)}) where each qj

i is a
ground atom, which we call a training query atom, and tji is its target value. For
a query atom qj

i , let yj
i denote the output of the atom neuron Aqj

i
in the ground

neural network of N ∪ Ej . The goal of the learning process is to find the weights
wh of the rules (and possibly facts) in N for which the loss J on the training
query atoms J(Q) =

∑m
j=1

∑kj

i=1 loss(y
j
i , t

j
i ) is minimized. This loss function

is then optimized using standard stochastic gradient descent algorithm [2]. For
details about weight learning of LRNNs, see [15].

3 Structure Learning

In this section we describe a structure learning algorithm for LRNNs. The algo-
rithm receives a list of training examples and a list of training queries, and it
produces a LRNN. For simplicity, we will assume that constants are only used
as identifiers of objects. In particular, we will assume that attribute values are
represented using unary literals, e.g. we would use red(o) instead of color(o, red).
Besides that we do not put any restrictions on the structure of the training
examples.

3.1 Structure of the Learned LRNNs

The structure learning algorithm will create LRNNs having a generic “stacked”
structure which we now describe. First, there are rules that define d new pred-
icates, representing soft clusters [17] of unary predicates from the dataset.
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These can be thought of as the first layer of the LRNN, where the weighted
facts from the dataset comprise the zeroth layer. For instance, if the unary pred-
icates in the dataset are A,B, . . . , Z then the LRNN will contain the following
rules:

wa1 : α1
1(X) ← A(X) wb1 : α1

1(X) ← B(X) ... wz1 : α1
1(X) ← Z(X)

wa2 : α1
2(X) ← A(X) wb2 : α1

2(X) ← B(X) ... wz2 : α1
2(X) ← Z(X)

... ... ... ...

wad
: α1

d(X) ← A(X) wbd : α1
d(X) ← B(X) ... wzd

: α1
d(X) ← Z(X)

Here each αi
j is a latent predicate representing a soft cluster, the index i denotes

the layer in which it appears (in this case, the first layer) and j indexes the
individual soft clusters in that level.

In general, the second layer will consist of two types of rules. First, there may
be rules introducing new latent predicates. In contrast to the unary predicates
that were introduced in the first layer, here the latent predicates could be also of
higher arity, although in practice an upper bound will be imposed for efficiency
reasons. In the body of these rules, we may find predicates from the dataset
itself, or latent predicates that were introduced in the first layer. The new latent
predicates introduced in these rules may then be used in the bodies of rules in
subsequent layers. Second, there may also be rules that have a predicate from the
dataset in their head. These will typically be rules that were learned to predict
the target predicates that we want to learn.

Example 1. For instance, in datasets of molecules, unary predicates can be used
to represent types of atoms, such as carbon or hydrogen. An example of a possible
second layer rule is:

wp1 : p1(X,Y ) ← bond(X,Y ) ∧ α1
1(X) ∧ α1

2(Y )

Here p1 is assumed to be one of the predicates from the dataset. Second layer
rules that introduce a new latent predicate could look as follows.

w2
1,1 : α2

1(V 1, V 2) ← bond(V 1, V 2) ∧ α1
1(V 1) ∧ α1

1(V 2)

w2
1,2 : α2

1(V 1, V 3) ← bond(V 1, V 2) ∧ bond(V 2, V 3) ∧ α1
1(V 1) ∧ α1

1(V 3)

The actual intuitive meaning of the predicate α2
1 will depend on the weights w2

1,1,
w2

1,2. For instance, if both are large enough, the (atom neurons corresponding to
the) predicate will have high output whenever its arguments correspond to two
atoms which are either one or two steps apart from each other in the molecule,
and which have sufficiently high membership in the soft cluster α1

1.

Any higher layers have a similar structure to the second layer, where the nth

layer contains rules whose bodies only contain predicates from layers 0 to n − 1,
and whose heads either contain a target predicate or introduce a new latent
predicate.
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Algorithm 1. General schema of structure learning
1: E ← learning examples
2: d ← latent concepts’ dimension
3: W,V,R ← ∅

4: R ← createLayer1Rules(E , d)
5: W ← initWeights(R)
6: (F ,V) ← weightedFacts(E , R,W )
7: while ¬StoppingCriterion do
8: bestRule ← ruleLearning(F ,V,R)
9: bestRules ← predicateInvention(bestRule)

10: R ← R ∪ bestRules
11: W ← trainWeights(R, E ,W)
12: (F ,V) ← weightedFacts(E ,R,W)
13: end while
14: return (R,W)

3.2 Structure Learning Algorithm

The structure learning algorithm (Algorithm1) iteratively constructs LRNNs
that have the structure described in the previous section. It alternates weight
learning steps with rule learning steps1. In the weight learning steps, the algo-
rithm uses stochastic gradient descent to minimise the squared loss of the LRNN
by optimising the weights of the rules, as described in Sect. 2. In the rule learning
steps, the algorithm fixes the weights of all rules which define latent predicates
and it searches for some good rule R. This rule R should be such that the squared
loss of the LRNN decreases after we add R to it and and after we retrain the
weights of all rules with non-latent head predicates. Next we describe this algo-
rithm in detail.

The first step of the structure learning algorithm (lines 4–5) is the construc-
tion of the first level of the LRNN, which defines the unary predicates represent-
ing soft clusters of object properties, as described in Sect. 3.1.

After the first step, the algorithm repeats the following procedure for a given
number of iterations or until no suitable rules can be found anymore. It fixes
the weights of all rules defining latent predicates (line 6). Then it runs a beam
search algorithm searching through the space of possible rules2 (line 8). The
scoring function which is used by the beam search algorithm is computed as
follows. Given a rule R, the algorithm creates a copy of the current LRNN to
which the given candidate rule R is added. It then optimises the log-loss of this
new LRNN (which corresponds to maximum-likelihood estimation for logistic
regression), training just the non-fixed weights, i.e. the weights of the rules with
non-latent predicates in their heads. The score of the rule R is then defined to

1 Variants of this strategy are employed by many structure learning algorithms in the
context of statistical relational learning, e.g. [4,5,8].

2 The space of rules is defined by two user-specified constraints: maximum rule length
and maximum number of variables in a rule.
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be the log-loss after training the non-fixed weights. The reason why we do not
retrain all weights of the LRNN when checking score of a rule R are efficiency
considerations because training the weights of the whole LRNN corresponds to
training a deep neural network. After the beam search algorithm finishes, the
rule R∗ that it returned is added to the original LRNN.

Note that R∗ contains one of the target predicates in its head. However,
in addition to adding R∗, we also add a set of related rules that have latent
predicates in their head (line 9), as follows. Here, we will assume for simplicity
that all latent predicates have the same arity k, but the same method can still be
used when the latent predicates are allowed to have different arities. Let i be the
highest index such that R∗ contains a latent predicate of the form αi

j (i.e. a latent
predicate from layer i) in its body, where we assume i = 1 if R∗ does not contain
any latent predicates. Then for each latent predicate αi+1

j from the (i + 1)-th
layer, the algorithm adds to the LRNN all rules which have αi+1

j (V1, . . . , Vk) in
the head and which can be obtained by unifying V1, . . . , Vk with the variables in
R∗. This process is illustrated in the following example.

Example 2. Revisiting the example of molecular datasets, let R∗ = p(A,B) ←
bond(A,B) ∧ α1

2(A) ∧ α2
5(B) and let k = 1. Then the algorithm will add the

following latent-predicate rules:

w3
1,1 : α3

1(V1) ← bond(V1, B) ∧ α1
2(V1) ∧ α2

5(B)

w3
1,2 : α3

1(V1) ← bond(A, V1) ∧ α1
2(A) ∧ α2

5(V1)

w3
2,1 : α3

2(V1) ← bond(V1, B) ∧ α1
2(V1) ∧ α2

5(B)

w3
2,2 : α3

2(V1) ← bond(A, V1) ∧ α1
2(A) ∧ α2

5(V1)

. . . . . . . . .

w3
d,1 : α3

d(V1) ← bond(V1, B) ∧ α1
2(V1) ∧ α2

5(B)

w3
d,2 : α3

d(V1) ← bond(A, V1) ∧ α1
2(A) ∧ α2

5(V1)

Note that the algorithm has to add the new rules to the layer 3 because R∗

already contained predicates from the layer 2.

After the LRNN has been extended by all these rules obtained from R∗, the
weights of all the rules, including those corresponding to latent predicates, are
retrained using stochastic gradient descent (line 11). Note that typically there
will be some latent predicates which are not used in any rules; their weights
are not considered during training. Subsequently, the algorithm again fixes the
weights of the rules corresponding to the latent predicates, and repeats the
same process to find an additional rule. This is repeated until a given stopping
condition is met.

4 Experiments

In this section we describe the results of experiments performed with the struc-
ture learning algorithm on a real-life molecular dataset and on a difficult artificial
learning problem.
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4.1 Molecular Datasets

We performed experiments on 72 NCI datasets [13], each of which contains sev-
eral thousands of molecules, labeled by their ability to inhibit the growth of
different types of tumors. We compare the performance of the proposed LRNN
structure learning method with the best previously published LRNNs, which
contain large generic, yet manually constructed weighted rule sets [15]. For fur-
ther comparison we include the relational learners kFOIL [10] and nFOIL [9],
which respectively combine relational rule learning with support vector machines
and with naive Bayes learning.

The results are shown in Figs. 2 and 3. The automatically learned LRNNs
outperform both kFOIL and nFOIL in terms of predictive accuracy (measured
using cross-validation). The learned LRNNs are also competitive with the man-
ually constructed LRNNs from [15,16], although they do not outperform them.
They are slightly worse than the largest of the manually constructed LRNNs,
based on graph patterns with 3 vertices, enumerating all possible combinations of
soft cluster types of the three atoms and soft cluster types of the two bonds con-
necting them. Figure 4 displays statistics of the learned LRNN rule sets. These
statistics show that the structure learner turned out to produce quite complex
LRNNs having multiple layers of invented latent predicates.

The weights of the rules defining the latent predicates in the first layer of
the LRNN can be interpreted as coordinates of a vector-space embedding of the
properties (atom types in our case). In Fig. 5, we plot the evolution of these
embeddings as new rules are being added by the structure learning algorithm.
The left panel of Fig. 5 displays the evolution of the embeddings of atom types
after these have been pre-trained using an unsupervised method which was orig-
inally used for statistical predicate invention in [17]. The right panel of the same
figure displays the evolution of the embeddings when starting from random ini-
tialization without any unsupervised pre-training. What can be seen from these

0
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0,25

0,3

0,35

0,4

0,45

structureLearning nFoil kFoil

Fig. 2. Comparison of crossvalidated test errors of LRNNs produced by structure learn-
ing with nFoil and kFoil learners as baselines.
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Fig. 3. Comparison of test errors of LRNNs produced automatically by structure learn-
ing with 3 handcrafted LRNNs with varying lengths of chain patterns from [15].

Fig. 4. Statistics of the learned LRNN rule sets from experiments with the 72 NCI
datasets. We display (i) the number of rules (including zeroth layer soft clusters),
(ii) the number of conjunctive rules (patterns) learned, (iii) the average length of these
rules (patterns), and (iv) the overall number of layers (depth of template).

figures is how, as the model becomes more complex, the atom types start to make
more visible clusters. Interestingly and perhaps somewhat against intuition, the
use of the unsupervised pre-training seemed to consistently decrease predictive
performance (we omit details due to limited space).

4.2 A Hard Artificial Problem

We consider the following variant of graph colorability, which can be seen as
a relational generalization of the problem of learning the XOR function. For a
graph, where each node may take on different “shades” {sh1 . . . shn} of colors
{col1 . . . colm} that are not observed (i.e. it is not given to which color each shade
corresponds), the task is to learn to classify graphs that are correctly colored, i.e.
where each edge in the graph connects two nodes of shades of different colors. In
this problem, learning a correct representation of the colors (as sets of shades)



Stacked Structure Learning for LRNNs 149

pt /1 s3/1nar/1
c1/1 cl/1

o3/1 car/1

br/1

c2/1

n4/1

npl3/1
s2/1

n2/1

f/1so2/1

sn/1ni/1fe/1

oco2/1

n1/1pd/1

o2/1

nam/1

i/1se/1p3/1

n3/1

c3/1

ge/1pt /1

s3/1

nar/1

c1/1

cl/1

o3/1

car/1

br/1

c2/1

n4/1

npl3/1

s2/1

n2/1f/1

so2/1

sn/1

ni/1

fe/1

oco2/1

n1/1

pd/1

o2/1

nam/1

i/1
se/1

p3/1

n3/1

c3/1

ge/1

c3/1oco2/1n3/1so2/1n1/1s3/1n4/1p3/1s2/1npl3/1car/1ni/1fe/1se/1ge/1

i/1
n2/1o2/1c2/1

f/1
pd/1nar/1
c1/1

pt /1

br/1cl/1o3/1sn/1nam/1

c3/1

oco2/1n3/1

so2/1

n1/1
s3/1

n4/1
p3/1

s2/1

npl3/1

car/1

ni/1
fe/1

se/1ge/1
i/1

n2/1

o2/1

c2/1

f/1
pd/1

nar/1

c1/1

pt /1

br/1cl/1

o3/1

sn/1

nam/1

0

1

2

3

4

5

Fig. 5. PCA projection of evolution of atom embeddings during first 6 iterations
(denoted by colors) of structure learning of a LRNN, with initialization based on unsu-
pervised pre-training (left) and with completely random initialization (right). (Color
figure online)

is completely decorrelated from the target, but to correctly learn to classify
correctly colored graphs, we need to learn some such color concepts. An ideal
learned LRNN correctly solving the problem could be very compact, for instance
for 3 colors if might look like

w1 : notCorrectlyColored ← cl0(X), edge(X,Y ), cl0(Y )
w2 : notCorrectlyColored ← cl1(X), edge(X,Y ), cl1(Y )
w3 : notCorrectlyColored ← cl2(X), edge(X,Y ), cl2(Y )

together with rules defining the color concepts cl0, cl1 and cl2.
Initial experiments with these artificial problems showed that the structure

learning algorithm is able to learn appropriate LRNNs. The rule sets were typi-
cally different from the rule set shown above but they also encoded correct solu-
tions that were comparably short. The performance results, shown in Table 1,
suggest that the LRNN structure learning method is able to efficiently produce
accurate and compact solutions without extensive hyper-tuning.

5 Related Work

LRNNs are related to many older works on using neural networks for relational
learning such as [1] and more recent approaches such as [3,14]. The structure
learning strategy that we employ in the methods presented in this paper is in
many respects similar to structure learning methods from statistical relational
learning such as [4,5,8]. However, what clearly distinguishes it from all these
previous SRL approaches is its ability to automatically induce hierarchies of
latent concepts. In this respect, it is also related to meta-interpretive learning
[11]. However, meta-interpretive learning is only applicable to the learning of
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Table 1. Results of the structure learning algorithm (SL) on the graph coloring classi-
fication problem. Reported statistics are majority train error, training error, and ratio
of cases with zero learning error. All problems were run 10 times with different random
initialization seeds.

#colors-#shades Majority error Training error % of perfect solutions

2c-1s 0.5 0.025 0.9

2c-2s 0.5 0.0 1

3c-1s 0.33 0.0 1

3c-2s 0.33 0.014 0.6

3c-3s 0.33 0.111 0.4

4c-1s 0.25 0.1375 0.0

4c-2s 0.25 0.160 0.0

4c-3s 0.25 0.129 0.1

4c-4s 0.25 0.044 0.1

crisp logic programs. The structure learning approach is also related to works
on refining architectures of neural networks [6,12]. However, from these it differs
in its ability to handle relational data.

6 Conclusions and Future Work

In this paper we have introduced a method for learning the structure of LRNNs,
capable of learning deep weighted rule sets with invented latent predicates.
The predictive accuracies obtained by the learned LRNNs were competitive
with results that we obtained in our previous work using manually constructed
LRNNs. The method presented in this paper therefore has the potential to make
LRNNs useful in domains where it would otherwise be difficult to come up with
a rule set manually. It also makes the adoption of LRNNs by non-expert users
more straightforward, as the proposed method can learn competitive LRNNs
without requiring any user input (besides the dataset).
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networks. arXiv preprint (2015). http://arxiv.org/abs/1508.05128
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Abstract. We present a method to prune hypothesis spaces in the con-
text of inductive logic programming. The main strategy of our method
consists in removing hypotheses that are equivalent to already consid-
ered hypotheses. The distinguishing feature of our method is that we use
learned domain theories to check for equivalence, in contrast to existing
approaches which only prune isomorphic hypotheses. Specifically, we use
such learned domain theories to saturate hypotheses and then check if
these saturations are isomorphic. While conceptually simple, we exper-
imentally show that the resulting pruning strategy can be surprisingly
effective in reducing both computation time and memory consumption
when searching for long clauses, compared to approaches that only con-
sider isomorphism.

1 Introduction

A key challenge for inductive logic programmming (ILP) algorithms (e.g. Progol
[12]) is the fact that they typically have to search through large hypothesis spaces.
Methods for pruning this search space have the potential to dramatically improve
the quality of learned hypotheses and/or the runtime of the algorithms. One way
of doing this is by filtering isomorphic hypotheses, which is the strategy used, for
instance, in the relational pattern mining algorithm Farmr [14]. However, pruning
isomorphic hypotheses is often not optimal, in the sense that it may be possible to
prune hypotheses which are not isomorphic, but which are nonetheless equivalent
in the considered domain. For example, the hypothesis that “if X is the father of
Y then X and Y have the same last name” is equivalent to the hypothesis that “if
X is male and a parent of Y then X and Y have the same last name”.

In this paper, we introduce a method which explicitly tries to prune equiva-
lent hypotheses that are created during the hypothesis search, while still main-
taining completeness1. One important challenge is that we need a quick way of
1 As we show later in the paper, the completeness requirement disqualifies relative

subsumption [15] as a candidate for such a pruning method.
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testing whether a new hypothesis is equivalent to a previously considered one.
To this end, we propose a saturation method which, given a first-order-logic
clause, derives a longer saturated clause that is equivalent to it modulo a domain
theory. This saturation method has the important property that two clauses are
equivalent, given a domain theory, whenever their saturations are isomorphic.
This means that we can use saturations to detect equivalent hypotheses as fol-
lows. We compute saturations of all hypotheses as they are being constructed,
as well as certain invariants2 of these saturations. Then we use the invariants to
compute hashes for the saturated hypotheses, which allows us to use hash tables
to efficiently narrow down the set of previously constructed hypotheses against
which equivalence needs to be tested. In this way, we can avoid the need to
explicitly compare new hypotheses with all previously constructed ones, which
would clearly be infeasible in spaces with possibly millions of hypotheses. Note
that this technique crucially relies on the use of saturations, and would not be
possible with e.g. just a notion of relative subsumption modulo a background
theory. To avoid the need for any prior domain knowledge, our method learns
the required domain theories from the training data.

We experimentally show that our method can be orders of magnitude faster
than methods which merely check for isomorphism, even when taking into
account the time needed for learning domain theories.

2 Preliminaries

In this section, we first give an overview of the notations and terminology from
first-order logic that will be used throughout the paper, after which Sect. 2.2
describes the considered learning setting.

2.1 First-Order Logic

We consider a function-free first-order language, which is built from a finite set
of constants, variables, and predicates in the usual way. A term is a variable or
a constant. An atom is a formula of the form p(t1, ..., tn), where p is an n-ary
predicate symbol and t1, ..., tn are terms. A literal is an atom or the negation of
an atom. A clause A is a universally quantified disjunction of literals ∀x1...∀xn :
φ1 ∨ ... ∨ φk, such that x1, .., xn are the only variables occurring in the literals
φ1, ..., φk. For the ease of presentation, we will sometimes identify a clause A
with the corresponding set of literals {φ1, ..., φk}. The set of variables occurring
in a clause A is written as vars(A) and the set of all terms as terms(A). For a

clause A, we define the sign flipping operation as ˜A
def
=

∨

l∈A l̃, where ã = ¬a
and ¬̃a = a for an atom a. In other words, the sign flipping operation simply
replaces each literal by its negation.

A substitution θ is a mapping from variables to terms. For a clause A, we write
Aθ for the clause {φθ |φ ∈ A}, where φθ is obtained by replacing each occurrence
2 We use invariants based on a generalized version of Weisfeiler-Lehman procedure

[22].
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in φ of a variable v by the corresponding term θ(v). If A and B are clauses then we
say that A θ-subsumes B (denoted A �θ B) if and only if there is a substitution θ
such that Aθ ⊆ B. If A �θ B and B �θ A, we call A and B θ-equivalent (denoted
A ≈θ B). Note that the ≈θ relation is indeed an equivalence relation (i.e. it is
reflexive, symmetric and transitive). Clauses A and B are said to be isomorphic
(denoted A ≈iso B) if there exists an injective substitution θ such that Aθ = B.
Finally, we say that A OI-subsumes B (denoted A �OI B [6]) if there is an injective
substitution such that Aθ ⊆ B. Note that A is isomorphic to B iff A �OI B and
B �OI A.

Example 1. Let us consider the following four clauses:

C1 = p1(A,B) ∨ ¬p2(A,B)
C2 = p1(A,B) ∨ ¬p2(A,B) ∨ ¬p2(A,C)
C3 = p1(X,Y ) ∨ ¬p2(X,Y ) ∨ ¬p2(X,Z)
C4 = p1(A,B) ∨ ¬p3(A,B)

Then we can easily verify that C1 ≈θ C2 ≈θ C3 (and thus also Ci �θ Cj for
i, j ∈ {1, 2, 3}). We also have C1 �≈iso C2, C1 �≈iso C3, C2 ≈iso C3, as well as
Ci ��θ C4 and C4 ��θ Ci for any i ∈ {1, 2, 3}. Finally we also have C1 �OI Ci for
i ∈ {1, 2, 3}, C2 �OI C3 and C3 �OI C2.

A literal is ground if it does not contain any variables. A grounding substitu-
tion is a substitution in which each variable is mapped to a constant. Clearly, if θ
is a grounding substitution, then for any literal φ it holds that φθ is ground. An
interpretation ω is defined as a set of ground literals. A clause A = {φ1, ..., φn}
is satisfied by ω, written ω |= A, if for each grounding substitution θ, it holds
that {φ1θ, ..., φnθ}∩ω �= ∅. In particular, note that a ground literal φ is satisfied
by ω if φ ∈ ω. The satisfaction relation |= is extended to (sets of) propositional
combinations of clauses in the usual way. If ω |= T , for T a propositional com-
bination of clauses, we say that ω is a model of T . If T has at least one model,
we say T is satisfiable. Finally, for two (propositional combinations of) clauses
A and B, we write A |= B if every model of A is also a model of B. Note that
if A �θ B for clauses A and B then A |= B, but the converse does not hold in
general.

Deciding θ-subsumption between two clauses is an NP-complete problem.
It is closely related to constraint satisfaction problems with finite domains and
tabular constraints [4], conjunctive query containment [3] and homomorphism of
relational structures. The formulation of θ-subsumption as a constraint satisfac-
tion problem has been exploited in the ILP literature for the development of fast
θ-subsumption algorithms [8,11]. CSP solvers can also be used to check whether
two clauses are isomorphic, by using the primal CSP encoding described in [11]
together with an alldifferent constraint [7] over CSP variables representing logi-
cal variables. In practice, this approach to isomorphism checking can be further
optimized by pre-computing a directed hypergraph variant of Weisfeiler-Lehman
coloring [22] (where terms play the role of hyper-vertices and literals the role of
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directed hyper-edges) and by enriching the respective clauses by unary liter-
als with predicates representing the labels obtained by the Weisfeiler-Lehman
procedure, which helps the CSP solver to reduce its search space.

2.2 Learning Setting

In this paper we will work in the classical setting of learning from interpretations
[16]. In this setting, examples are interpretations and hypotheses are clausal
theories (i.e. conjunctions of clauses). An example e is said to be covered by a
hypothesis H if e |= H (i.e. e is covered by H if it is a model of H). Given
a set of positive examples E+ and negative examples E−, the training task is
then to find a hypothesis H from some class of hypotheses H which optimizes
a given scoring function (e.g. training error). For the ease of presentation, we
will restrict ourselves to classes H of hypotheses in the form of clausal theories
without constants, as constants can be emulated by unary predicates (since we
do not consider functions).

The covering relation e |= H can be checked using a θ-subsumption solver
as follows. Each hypothesis H can be written as a conjunction of clauses H =
C1 ∧ · · · ∧ Cn. Clearly, e �|= H if there is an i in {1, . . . , n} such that e |= ¬Ci,
which holds precisely when Ci �θ ¬(

∧

e).

Example 2. Let us consider the following example, inspired by the Michalski’s
East-West trains datasets [20]:

e = {eastBound(car1), hasCar(car1), hasLoad(car1, load1), boxShape(load1),
¬eastBound(load1),¬hasCar(load1),¬hasLoad(load1, car1),
¬hasLoad(load1, load1),¬hasLoad(car1, car1),¬boxShape(car1)}

and two hypotheses H1 and H2

H1 = eastBound(C) ∨ ¬hasLoad(C,L) ∨ ¬boxShape(L)
H2 = ¬eastBound(C) ∨ ¬hasLoad(C,L)

To check if e |= Hi, i = 1, 2, using a θ-subsumption solver, we construct

¬(
∧

e) = ¬eastBound(car1) ∨ ¬hasCar(car1) ∨ ¬hasLoad(car1, load1)

∨ boxShape(load1) ∨ eastBound(load1) ∨ hasCar(load1)
∨ hasLoad(load1, car1) ∨ hasLoad(load1, load1) ∨ hasLoad(car1, car1)
∨boxShape(car1)

It is then easy to check that H1 ��θ ¬(
∧

e) and H2 �θ ¬(
∧

e), from which it
follows that e |= H1 and e �|= H2.

In practice, when using a θ-subsumption solver to check Ci �θ ¬(
∧

e), it
is usually beneficial to flip the signs of all the literals, i.e. to instead check
˜Ci �θ

∨

e, which is clearly equivalent. This is because θ-subsumption solvers
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often represent negative literals in interpretations implicitly to avoid excessive
memory consumption3, relying on the assumption that most predicates in real-
life datasets are sparse.

2.3 Theorem Proving Using SAT Solvers

The methods described in this paper will require access to an efficient the-
orem prover for clausal theories. Since we restrict ourselves to function-free
theories without equality, we can rely on a simple theorem-proving procedure
based on propositionalization, which is a consequence of the following well-known
result4 [13].

Theorem 1 (Herbrand’s Theorem). Let L be a first-order language without
equality and with at least one constant symbol, and let T be a set of clauses.
Then T is unsatisfiable iff there exists some finite set T0 of L-ground instances
of clauses from T that is unsatisfiable.

Here Aθ is called an L-ground instance of a clause A if θ is a grounding substitu-
tion that maps each variable occurring in A to a constant from the language L.

In particular, to decide if T |= C holds, where T is a set of clauses and C is
a clause (without constants and function symbols), we need to check if T ∧ ¬C
is unsatisfiable. Since Skolemization preserves satisfiability, this is the case iff
T ∧¬CSk is unsatisfiable, where ¬CSk is obtained from ¬C using Skolemization.
Let us now consider the restriction LSk of the considered first-order language
L to the constants appearing in CSk, or to some auxiliary constant s0 if there
are no constants in CSk. From Herbrand’s theorem, we know that T ∧ ¬CSk is
unsatisfiable in LSk iff the grounding of this formula w.r.t. the constants from
LSk is satisfiable, which we can efficiently check using a SAT solver. Moreover, it
is easy to see that T ∧¬CSk is unsatisfiable in LSk iff this formula is unsatisfiable
in L5.

In practice, it is not always necessary to completely ground the formula
T ∧¬CSk. It is often beneficial to use an incremental grounding strategy similar
to cutting plane inference in Markov logic [19]. To check if a clausal theory T is
satisfiable, this method proceeds as follows.

Step 0: start with an empty Herbrand interpretation H and an empty set of
ground formulas G.

3 This is true for the θ-subsumption solver based on [8] which we use in our imple-
mentation.

4 The formulation of Hebrand’s theorem used here is taken from notes by Cook and
Pitassi: http://www.cs.toronto.edu/∼toni/Courses/438/Mynotes/page39.pdf.

5 Indeed, if T ∧¬CSk is unsatisfiable in L, then there is a set of corresponding L-ground
instances of clauses that are unsatisfiable. If we replace each constant appearing in
these ground clauses which does not appear in Csk by an arbitrary constant that does
appear in Csk, then the resulting set of ground clauses must still be inconsistent,
since T does not contain any constants and there is no equality in the language,
meaning that T ∧ ¬CSk cannot be satisfiable in LSk.

http://www.cs.toronto.edu/~toni/Courses/438/Mynotes/page39.pdf
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Step 1: check which groundings of the formulas in T are not satisfied by H (e.g.
using a CSP solver). If there are no such groundings, the algorithm returns
H, which is a model of T . Otherwise the groundings are added to G.

Step 2: use a SAT solver to find a model of G. If G does not have any model
then T is unsatisfiable and the method finishes. Otherwise replace H by this
model and go back to Step 1.

3 Pruning Hypothesis Spaces Using Domain Theories

In this section we show how domain theories can be used to prune the search
space of ILP systems. Let us start with two motivating examples.

Example 3. Let us consider the following two hypotheses for some target con-
cept x:

H1 = x(A) ∨ ¬animal(A) ∨ ¬cod(A)
H2 = x(A) ∨ ¬fish(A) ∨ ¬cod(A)

Intuitively, these two hypotheses are equivalent since every cod is a fish and
every fish is an animal. Yet ILP systems would need to consider both of these
hypotheses separately because H1 and H2 are not isomorphic, they are not θ-
equivalent and neither of them θ-subsumes the other.

Example 4. Problems with redundant hypotheses abound in datasets of
molecules, which are widespread in the ILP literature. For instance, consider
the following two hypotheses:

H1 = x(A) ∨ ¬carb(A) ∨ ¬bond(A,B) ∨ ¬bond(B,C) ∨ ¬hydro(C)
H2 = x(A) ∨ ¬carb(A) ∨ ¬bond(A,B) ∨ ¬bond(C,B) ∨ ¬hydro(C)

These two hypotheses intuitively represent the same molecular structures (a
carbon and a hydrogen both connected to the same atom of unspecified type).
Again, however, their equivalence cannot be detected without the domain knowl-
edge that bonds in molecular datasets are symmetric6.

In the remainder of this section we will describe how background knowledge
can be used to detect equivalent hypotheses. First, we introduce the notion
of saturations of clauses in Sect. 3.1. Subsequently, in Sect. 3.2 we show why
pruning hypotheses based on these saturations does not hurt the completeness of
a refinement operator. In Sect. 3.3, we then explain how these saturations can be
used to efficiently prune search spaces of ILP algorithms. In Sect. 3.4 we describe
a simple method for learning domain theories from the given training data.
Finally, in Sect. 3.5 we show why using relative subsumption is not sufficient.
6 In the physical world, bonds do not necessarily have to be symmetric, e.g. there is an

obvious asymmetry in polar bonds. However, it is a common simplification in data
mining on molecular datasets to assume that bonds are symmetric.
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3.1 Saturations

The main technical ingredient of the proposed method is the following notion of
saturation.

Definition 1 (Saturation of a clause). Let B be a clausal theory and C a
clause (without constants or function symbols). If B �|= C, we define the satura-
tion of C w.r.t. B to be the maximal clause C ′ satisfying: (i) vars(C ′) = vars(C)
and (ii) B ∧ C ′θ |= Cθ for any injective grounding substitution θ. If B |= C, we
define the saturation of C w.r.t. B to be T, where T denotes tautology.

When B is clear from the context, we will simply refer to C ′ as the saturation
of C.

Definition 1 naturally leads to a straightforward procedure for computing
the saturation of a given clause. Let P = {l1, l2, . . . , ln} be the set of all literals
which can be constructed using variables from C and predicate symbols from
B and C. Let θ be an arbitrary injective grounding substitution; note that we
can indeed take θ to be arbitrary because B and C do not contain constants. If
B �|= C, the saturation of C is given by the following clause:

∨

{l ∈ P : B |= ¬lθ ∨ Cθ} (1)

This means in particular that we can straightforwardly use the SAT based theo-
rem proving method from Sect. 2.3 to compute saturations. The fact that (1) cor-
rectly characterizes the saturation can be seen as follows. If C ′ is the saturation of
C then B ∧ C ′θ |= Cθ by definition, which is equivalent to B ∧ ¬(Cθ) |= ¬(C ′θ).
We have ¬(C ′θ) =

∧

{l̃θ : B ∧ ¬(Cθ) |= l̃θ} =
∧

{l̃θ : B ∧ lθ |= Cθ}, and
thus C ′θ =

∨

{lθ : B ∧ lθ |= Cθ}. Finally, since θ is injective, we have7

C ′ = (C ′θ)θ− =
∨

{l : B ∧ lθ |= Cθ}.

Example 5. Let us consider the following theory

B = {¬friends(X,Y ) ∨ friends(Y,X)}

which expresses the fact that friendship is a symmetric relation and a clause

C = ¬friends(X,Y ) ∨ happy(X).

To find the saturation of this clause, we first need a suitable injective substitution
θ; let us take θ = {X �→ c1, Y �→ c2}. Then we have

B ∪ ¬(Cθ) = B ∪ {friends(c1, c2) ∧ ¬happy(c1)}
|= friends(c1, c2) ∧ friends(c2, c1) ∧ ¬happy(c1),

After negating the latter formula and inverting the substitution (noting that it
is injective) we get the following saturation:

C ′ = ¬friends(X,Y ) ∨ ¬friends(Y,X) ∨ happy(X).
7 Note that we are slightly abusing notation here, as θ−1 is not a substitution.
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Now, let us consider another clause D = ¬friends(X,Y ) ∨ happy(Y ). This
clause is not isomorphic to C. However, it is easy to see that its saturation

D′ = ¬friends(X,Y ) ∨ ¬friends(Y,X) ∨ happy(Y )

is isomorphic to the saturation C ′ of C.

The next proposition will become important later in the paper as it will allow
us to replace clauses by their saturations when learning from interpretations.

Proposition 1. If C ′ is a saturation of C w.r.t. B then B ∧ C ′ |= C.

Proof. We have B∧C ′ |= C iff B∧C ′ ∧¬C is unsatisfiable. Skolemizing ¬C, this
is equivalent to B∧C ′ ∧¬(CθSk) being unsatisfiable, where θSk is a substitution
representing the Skolemization. As in Sect. 2.3, we find that the satisfiability
of B ∧ C ′ ∧ ¬(CθSk) is also equivalent to the satisfiability of the grounding of
B ∧ C ′ ∧ ¬(CθSk) w.r.t. the Skolem constants introduced by θSk. In particular,
this grounding must contain the ground clause C ′θSk. From the definition of
saturation, we have that B ∧ C ′θSk ∧ ¬(CθSk) |= F, where F denotes falsity
(noting that θSk is injective). It follows that B ∧ C ′ ∧ ¬C |= F, and thus also
B ∧ C ′ |= C. ��

The next proposition shows that saturations cover the same examples as the
clauses from which they were obtained, when B is a domain theory that is valid
for all examples in the dataset.

Proposition 2. Let B be a clausal theory such that for all examples e from a
given dataset it holds that e |= B. Let C be a clause and let C ′ be its saturation
w.r.t. B. Then for any example e from the dataset we have (e |= C) ⇔ (e |= C ′).

Proof. From the characterization of saturation in (1), it straightforwardly follows
that C |= C ′, hence e |= C implies e |= C ′. Conversely, if e |= C ′, then we have
e |= B ∧ C ′, since we assumed that e |= B. Since we furthermore know from
Proposition 1 that B ∧ C ′ |= C, it follows that e |= C.

Finally, we define positive and negative saturations, which only add positive or
negative literals to clauses. Among others, this will be useful in settings where
we are only learning Horn clauses.

Definition 2. A positive (resp. negative) saturation of C is defined as C ′′ =
C ∪ {l ∈ C ′ : l is a positive (resp. negative) literal} where C ′ is a saturation
of C.

Propositions 1 and 2 are also valid for positive or negative saturations; their
proofs can be straightforwardly adapted. When computing the positive (resp.
negative) saturation, we can restrict the set P of candidate literals to the pos-
itive (resp. negative) ones. This can speed up the computation of saturations
significantly.
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3.2 Searching the Space of Saturations

In this section we show how saturations can be used together with refinement
operators to search the space of clauses ordered by OI-subsumption8. Specifically,
we show that if we have a refinement operator that can completely generate some
set of clauses then we can use the same refinement operator, in combination with
a procedure for computing saturations, to generate the set of all saturations of
the considered set of clauses. Since this set of saturations is typically smaller
than the complete set of clauses (as many clauses can lead to the same saturated
clauses), this is already beneficial for reducing the size of the hypothesis space. In
Sect. 3.3, we show that it also allows us to very quickly prune equivalent clauses.
First we give a definition of refinement operator [21].

Definition 3 (Refinement operator). Let L be a first-order language. A
refinement operator9 on the set C of all L-clauses is a function ρ : C → 2C

such that for any C ∈ C and any D ∈ ρ(C) it holds C �OI D. A refinement
operator ρ is complete if for any two clauses C and D such that C �OI D,
a clause E isomorphic to D (D ≈iso E) can be obtained from C by repeated
application of the refinement operator (i.e. E ∈ ρ(ρ(. . . ρ(C) . . . ))).

Most works define refinement operators w.r.t. θ-subsumption instead of OI-
subsumption [21]. We need the restriction to OI-subsumption as a technical
condition for Proposition 3 below. It should be noted, however, that our results
remain valid for many refinement operators that are not specifically based on
OI-subsumption, including all refinement operators that only add new literals
to clauses. Also note that we do not use OI-subsumption as a covering operator
but only to structure the space of hypotheses. Therefore there is no loss in what
hypotheses can be learnt.

The next definition formally introduces the combination of refinement oper-
ators and saturations.

Definition 4 (Saturated refinement operator). Let L be a first-order lan-
guage. Let ρ be a refinement operator on the set C of all L-clauses containing at
most n variables. Let B be a clausal theory. Let σB : C → C be a function that
maps a clause C to its saturation C ′ w.r.t. B. Then the function ρB = σB ◦ ρ is
called the saturation of ρ w.r.t. B.

Clearly, the saturation of a refinement operator w.r.t. some clausal theory
B is a refinement operator as well. However, it can be the case that ρ is com-
plete whereas its saturation is not. As we will show next, this is not a problem
for completeness w.r.t. the given theory B in the sense that saturations of all
clauses from the given class C are guaranteed to be eventually constructed by
the combined operator, when ρ is a complete refinement operator.
8 Note that we only use OI-subsumption to partially order the constructed hypotheses,

not to check the entailment relation.
9 What we call refinement operator in this paper is often called downward refinement

operator. Since we only consider downward refinement operators in this paper, we
omit the word downward.
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Proposition 3. Let L be a first-order language. Let ρ be a complete refinement
operator on the set of L-clauses C, B be clausal theory, σB a function that maps
a clause C to its saturation C ′ w.r.t. B and let ρB be the saturation of ρ w.r.t. B.
Let C ∈ C be a clause, SC and let SB

C be the sets of clauses that can be obtained
from C by repeated application of ρ and ρB, respectively. Then for any clause
D ∈ SC there is a clause D′ ∈ SB

C such that σB(D) ≈iso D′.

Proof. We first note that if A �OI B then σB(A) �OI σB(B) (assuming an
extended definition of OI-subsumption such that A �OI T for any A), which
follows from the monotonicity of the entailment relation |=. Let us define X =
{σB(A)|A ∈ SC}. Note that X and SB

C are not defined in the same way (X is
the set of saturations of clauses in SC whereas SB

C is the set of clauses that can
be obtained by the saturated refinement operator ρB from the clause C). We
need to show that these two sets are equivalent. Clearly, SB

C ⊆ X . To show the
other direction, let us assume (for contradiction) that there is a clause X ∈ X
for which there is no clause Y ∈ SB

C which is isomorphic to X. Let us assume
that X is a minimal clause with this property, meaning that for any clause
X ′ contained in the set ZX = {Z ∈ X |Z �OI X ∧ X �≈iso Z} there is a
clause Y ′ ∈ SB

C which is isomorphic to X ′. Clearly, if there is one such clause
X then there is also a minimal one which follows from the fact that all the
considered clauses are finite and �OI is a partial order. Let us take a clause
X ′ ∈ ZX which is maximal10 w.r.t. the ordering induced by �OI and let Y ′

be the respective isomorphic clause from SB
C . Then ρ(Y ′) must contain a clause

Y ′′, Y ′ �≈iso Y ′′, that OI-subsumes X, which follows from completeness of the
refinement operator ρ. However, then σB(Y ′′) must be contained in SB

C . It must
also hold that σB(Y ′′) �OI σB(X) = X. Here, σB(Y ′′) �OI σB(X) follows from
the already mentioned observation that if A �OI B then σB(A) �OI σB(B), and
the equality σB(X) = X follows from the idempotence of σB, noting that X is
already a saturation of some clause. However, this is a contradiction with the
maximality of X ′ and the corresponding Y ′. ��

3.3 Pruning Isomorphic Saturations

When searching the space of clauses or, in particular, saturations of clauses, we
should avoid searching through isomorphic clauses. It is easy to see that the sets
of clauses generated by a (saturated) complete refinement operator ρ from two
isomorphic clauses C and C ′ will contain clauses that are isomorphic (i.e. for any
clause in the first set there will be an isomorphic clause in the second set and
vice versa). Therefore it is safe to prune isomorphic clauses during the search.

When searching through the hypothesis space of clauses, most ILP algorithms
maintain some queue of candidate clauses. This is the case, for instance, in algo-
rithms based on best-first search (Progol, Aleph [12]). Other algorithms, e.g. those
based on level-wise search, maintain similar data structures (e.g. Warmr [5]).

10 If we ordered the set of clauses by θ-subsumption instead of OI-subsumption then
there would not have to exist a maximal clause with this property.
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Many of the clauses that are stored in such queues or similar data structures
will be equivalent, even if they are not isomorphic. Existing methods, even if
they were removing isomorphic clauses during search11, have to consider each of
these equivalent clauses separately, which may greatly affect their performance.
This is where using saturations of clauses w.r.t. some background knowledge is
most useful because it can replace the different implicitly equivalent clauses by
their saturation.

In theory, one could try to test isomorphism of all pairs of clauses currently
in the queue data structures. However, this would be prohibitively slow in most
practical cases. To efficiently detect equivalences by checking isomorphism of
saturations, we replace the queue data structure (or a similar data structure
used by the given algorithm) by a data structure that is based on hash tables.
When a new hypothesis H is constructed by the algorithm, we first compute
its saturation H ′. Then, we check whether the modified queue data structure
already contains a clause that is isomorphic to H ′. To efficiently check this, we
use a straightforward generalization of the Weisfeiler-Lehman labeling procedure
[22]. We then only need to check whether two clauses are isomorphic if they have
the same hash value. We similarly check whether H ′ is isomorphic to a clause
in the so-called closed set of previously processed hypotheses. If H ′ is neither
isomorphic to a clause in the queue nor to a clause in the closed set, it is added
to the queue.

Example 6. Let us again consider the two clauses from Example 3: H1 = x(A)∨
¬animal(A) ∨ ¬cod(A) and H2 = x(A) ∨ ¬fish(A) ∨ ¬cod(A). Suppose that the
theory B encodes the taxonomy of animals and contains the rules ¬cod(X) ∨
fish(X) and ¬fish(X) ∨ animal(X). Computing the saturations of H1 and H2,
we obtain H ′

1 = x(A) ∨ ¬animal(A) ∨ ¬cod(A) ∨ ¬fish(A) and H ′
2 = x(A) ∨

¬fish(A)∨¬cod(A)∨¬animal(A), which are isomorphic. Therefore both of them
can be replaced by the same saturations while the corresponding algorithm keeps
searching the hypothesis space.

Similarly as shown above for the two clauses from Example 3, saturations could
be used to detect equivalence of the two clauses from Example 4 w.r.t. the
corresponding background knowledge theory B.

In addition to equivalence testing, saturations can be used to filter trivial
hypotheses, i.e. hypotheses covering every example, without explicitly computing
their coverage on the dataset (which would be very costly on large datasets). We
illustrate this use of saturations in the next example.

Example 7. Consider a domain theory B = ¬professor(X) ∨ ¬student(X) which
states that no one can be both a student and a professor. Let us also consider
a hypothesis H = employee(X) ∨ ¬professor(X) ∨ ¬student(X). If the domain
theory B is correct, H should cover all examples from the dataset and is thus
trivial. Accordingly, the saturation of H contains every literal, and is in particular
equivalent to T.
11 For instance, Farmr [14] or RelF [9] remove isomorphic clauses (or conjunctive pat-

terns), but many existing ILP systems do not attempt removing isomorphic clauses.
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3.4 Learning Domain Theories for Pruning

The domain theories that we want to use for pruning hypothesis spaces can be
learned from the given training dataset. Every clause C in such a learned domain
theory should satisfy e |= C for all examples e in the dataset. We construct such
theories using a level-wise search procedure, starting with an empty domain
theory. The level-wise procedure maintains a list of candidate clauses (modulo
isomorphism) with i literals. If a clause C in the list of candidate clauses covers
all examples (i.e. e |= C for all e from the dataset) then it is removed from the
list and if there is no clause in the domain theory which θ-subsumes C, then C
is also added to the domain theory. Each of the remaining clauses in the list,
i.e. those which do not cover all examples in the dataset, are then extended in
all possible ways by the addition of a literal. This is repeated until a threshold
on the maximum number of literals is reached. The covering of examples by the
candidate clauses is checked using θ-subsumption as outlined in Sect. 2.

It is worth pointing out that if we restrict the domain theories, e.g. to contain
only clauses of length at most 2 or only Horn clauses, the saturation process will
be guaranteed to run in polynomial time (which follows from the polynomial-
time solvability of 2-SAT and Horn-SAT).

3.5 Why Relative Subsumption is Not Sufficient

Although the motivation behind relative subsumption [15] is similar to ours,
relative subsumption has two main disadvantages that basically disqualify it for
the purpose of pruning the hypothesis space. The first problem is that pruning
hypotheses that are equivalent w.r.t. relative subsumption may not guarantee
completeness of the search. This is the same issue as with pruning based on
plain θ-subsumption which, unlike pruning based on isomorphism, may lead to
incompleteness of the search. Note that this is already the case in the more
restricted setting of graph mining under homomorphism [18]. The second issue
with relative subsumption is that it would need to be tested for all pairs of
candidate hypotheses, whereas the pruning based on saturations and isomor-
phism testing allows us to use the more efficient hashing strategy based on the
Weisfeiler-Lehman procedure.

4 Experiments

In this section we evaluate the usefulness of the proposed pruning method on real
datasets. We test it inside an exhaustive feature construction algorithm which
we then evaluate on a standard molecular dataset KM20L2 from the NCI GI
50 dataset collection [17]. This dataset contains 1207 examples (molecules) and
64404 facts.
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4.1 Methodology and Implementation

The evaluated feature construction method is a simple level-wise algorithm which
works similarly to the Warmr frequent pattern mining algorithm [5]. It takes two
parameters: maximum depth d and maximum number of covered examples t (also
called “maximum frequency”). It returns all connected12 clauses which can be
obtained by saturating clauses containing at most d literals, and which cover
at most t examples. Unlike in frequent conjunctive pattern mining where mini-
mum frequency constraints are natural, when mining in the setting of learning
from interpretations, the analogue of the minimum frequency is the maximum
frequency constraint13.

The level-wise algorithm expects as input a list of interpretations (examples)
and the parameters t and d > 0. It proceeds as follows:

Step 0: set i := 0 and L0 := {�} where � denotes the empty clause.
Step 1: construct a set Li+1 by extending each clause from Li with a negative

literal (in all possible ways).
Step 2: replace clauses in Li+1 by their negative saturations and for each set

of mutually isomorphic clauses keep only one of them.
Step 3: remove from Li+1 all clauses which cover more than t examples in the

dataset.
Step 4: if Li+1 is empty or i+1 > d then finish and return

⋃i+1
j=0 Lj . Otherwise

set i := i + 1 and go to step 1.

As can be seen from the above pseudocode, we restricted ourselves to min-
ing clauses which contain only negative literals. This essentially corresponds to
mining positive conjunctive queries, which is arguably the most typical scenario.
Nonetheless, it would be easy to allow the algorithm to search for general clauses,
as the θ-subsumption solver used in the implementation actually allows efficient
handling of negations.

We implemented the level-wise algorithm and the domain theory learner in
Java14. To check the coverage of examples using θ-subsumption, we used an
implementation of the θ-subsumption algorithm from [8]. For theorem proving,
we used an incremental grounding solver which relies on the Sat4j library [1] for
solving ground theories and the θ-subsumption engine from [8].

4.2 Results

We measured runtime and the total number of clauses returned by the level-
wise algorithm without saturations and with saturations. Both algorithms were
12 A clause is said to be connected if it cannot be written as disjunction of two non-

empty clauses. For instance ∀X, Y : p1(X) ∨ p2(Y ) is not connected because it can
be written also as (∀X : p1(X))∨ (∀Y : p2(Y )) but ∀X, Y : p1(X)∨p2(Y )∨p3(X, Y )
is connected. If a clause is connected then its saturation is also connected.

13 Frequent conjunctive pattern mining can be emulated in our setting. It is enough to
notice that the clauses that we construct are just negations of conjunctive patterns.

14 Available from https://github.com/martinsvat.

https://github.com/martinsvat
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Fig. 1. Left panels: Runtime of the level-wise algorithm using saturations for prun-
ing (red) and without using saturations (blue). Right panels: Number of clauses con-
structed by the algorithm using saturations (red) and without using saturations (blue).
Top panels display results for maximal number of covered examples equal to dataset
size minus one and bottom panels for this parameter set to dataset size minus 50,
which corresponds to minimum frequency of 50. One minute, one hour, and ten hours
are highlighted by yellow, green, and purple horizontal lines. Runtimes are extrapolated
by exponential function and shown in dashed lines. (Color figure online)

exactly the same, the only difference being that the second algorithm first learned
a domain theory and then used it for computing the saturations. Note in par-
ticular that both algorithms used the same isomorphism filtering. Therefore any
differences in computation time must be directly due to the use of saturations.

We performed the experiments reported here on the NCI dataset KM20L2.
The learned domain theories were restricted to contain only clauses with at
most two literals. We set the maximum number of covered examples equal to
the number of examples in the dataset minus one (which corresponds to a mini-
mum frequency constraint of 1 when we view the clauses as negated conjunctive
patterns). Then we also performed an experiment where we set it equal to the
number of examples in the dataset minus 50 (which analogically corresponds to
a minimum frequency constraint of 50). We set the maximum time limit to 10 h.
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The results of the experiments are shown in Fig. 1. The pruning method based
on saturations turns out to pay off when searching for longer clauses where it
improves the baseline by approximately an order of magnitude and allows it to
search for longer hypotheses within the given time limit. When searching for
smaller clauses, the runtime is dominated by the time for learning the domain
theory, which is why the baseline algorithm is faster in that case. The number
of generated clauses, which is directly proportional to memory consumption,
also becomes orders of magnitude smaller when using saturations for longer
clauses. Note that for every clause constructed by the baseline algorithm, there
is an equivalent clause constructed by the algorithm with the saturation-based
pruning. We believe these results clearly suggest the usefulness of the proposed
method, which could potentially also be used inside many existing ILP systems.

5 Related Work

The works most related to our approach are those relying on a special case
of Plotkin’s relative subsumption [15] called generalized subsumption [2]. Gen-
eralized subsumption was among others used in [10]. In Sect. 3.5 we discussed
the reasons why relative subsumption is not suitable for pruning. Background
knowledge was also used to reduce the space of hypotheses in the Progol 4.4
system [12], which uses Plotkin’s relative clause reduction. Note that the latter
is a method for removing literals from bottom clauses, whereas in contrast our
method is based on adding literals to hypotheses. Hence, the Progol 4.4 strategy
is orthogonal to the methods presented in this paper. Another key difference is
that our approach is able to learn the background knowledge from the training
data whereas all the other approaches use predefined background knowledge.
Finally, our approach is not limited to definite clauses, which is also why we do
not use SLD resolution. On the other hand, as our method is rooted in first-order
logic (due to the fact that we use the learning from interpretations setting) and
not directly in logic programming, it lacks some of the expressive power of logic
programming.

6 Conclusions

In this paper, we introduced a generally applicable method for pruning hypothe-
ses in ILP, which goes beyond mere isomorphism testing. We showed that the
method is able to reduce the size of the hypothesis space by orders of magni-
tudes, and also leads to a significant runtime reduction. An interesting aspect of
the proposed method is that it combines induction (domain theory learning) and
deduction (theorem proving) for pruning the search space. In future, it would
be interesting to combine these two components of our approach more tightly.
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Abstract. Computing similarity in high-dimensional vector spaces is a
long-standing problem that has recently seen significant progress with
the invention of the word2vec algorithm. Usually, it has been found that
using an embedded representation results in much better performance
for the task being addressed. It is not known whether embeddings can
similarly improve performance with data of the kind considered by Induc-
tive Logic Programming (ILP), in which data apparently dissimilar on
the surface, can be similar to each other given domain (background)
knowledge. In this paper, using several ILP classification benchmarks, we
investigate if embedded representations are similarly helpful for problems
where there is sufficient amounts of background knowledge. We use tasks
for which we have domain expertise about the relevance of background
knowledge available and consider two subsets of background predicates
(“sufficient” and “insufficient”). For each subset, we obtain a baseline
representation consisting of Boolean-valued relational features. Next,
a vector embedding specifically designed for classification is obtained.
Finally, we examine the predictive performance of widely-used classifi-
cation methods with and without the embedded representation. With
sufficient background knowledge we find no statistical evidence for an
improved performance with an embedded representation. With insuffi-
cient background knowledge, our results provide empirical evidence that
for the specific case of using deep networks, an embedded representation
could be useful.

1 Introduction

The idea of a distance between instances is at the heart of automated methods
for classification. This is self-evident for clustering methods that use an explicit
distance measure like the Euclidean distance. But even supervised classifica-
tion methods can often be recast as techniques using more specialised distance
c© Springer International Publishing AG, part of Springer Nature 2018
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calculation. It is therefore not entirely unexpected that with data requiring a
high-dimensional representation, the choice of distance measure becomes increas-
ingly important for identifying groups of similar instances. In [1], the authors
show that as the data dimension increases, distances can behave unexpectedly.
Crucially, for certain obvious measures of distance (the mean-squared distance,
for example; and more generally Lk norms for k > 1), notions of nearest- and
furthest-points become meaningless, and all points are approximately at the
same distance from each other. The results concerning high-dimensional data
are of relevance to one form of relational learning, in which the data are repre-
sented by relational (Boolean) features. In Inductive Logic Programming (ILP),
there is a long history (starting from [11]) of addressing classification problems
by first identifying Boolean functions of data instances, defined in terms of pred-
icates provided as background knowledge. The values of the functions identified
represent a relational instance as a Boolean vector (with the i-th entry for a
relational instance x being 1 if the corresponding function Fi(x) = 1), aug-
mented with class value of the instance. A straightforward approach would then
attempt to build a classification model using the class-augmented Boolean vec-
tors as input data. Difficulties can arise, since the Boolean vectors may contain
100’s or even 1000’s of dimensions, thus bringing up the problems associated
with high-dimensional data.

Ignoring for the moment the large body of work on feature-subset selection,
at least two kinds of distance-relevant remedies have been proposed to address
this issue: (1) In [1], “fractional norms” (Lk norms with k < 1) have been found
to be more useful as dimensionality increases; and (2) Distance computations use
a representation of data instances as vectors of real-numbers with fewer dimen-
sions. This is similar in spirit to what is done in principal components analysis
(PCA), but the new dimensions are the result of non-linear transformations.
One way of constructing this non-linear transformation, or embedding, of data
instances is via the use of neural networks, most prominently embodied by the
word2vec algorithm.

Developed by Mikolov et al. [15], word2vec refers to neural network models
that are able to embed words into fixed dimensional vector spaces based on their
context. The resulting embeddings have been shown to capture some desirable
semantic properties with words sharing similar context being mapped to similar
vectors. The technique is not restricted to text and embeddings can also be
generated in any supervised classification setting in either a class-sensitive or
class-agnostic fashion.

Recent methods to model relational data have attempted to map entitites
and relationships into an embedding space. Methods such as transE [2], assume
that the relationship between two entitites is a translation in the joint vector
space of entitites and relations, transH [26] allows for an entity to have multiple
representations depending on the relationship, and TransR [12] allows for dif-
ferent embedding spaces for entities and relationships and performs translations
in the relation space. However, these methods are directed towards the task of
knowledge graph completion.
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In this paper, we are interested in whether neural-net embeddings can assist
the classification of relational data instances. Specifically, we investigate whether
there is evidence for the following hypothesis:

Embedding Hypothesis (H1). Even for problems for which a sufficient
amount of background knowledge exists, embedded representations are still
useful.

Here, “useful” will mean predictive performance improves. The correspond-
ing “null” hypothesis (H0) for experiments is that for problems with sufficient
background knowledge, there is no statistical evidence for the utility of embed-
dings. We will also comment on a hypothesis related to H1, and of practical
interest, namely: if there isn’t sufficient background knowledge, then embedded
representations are useful.

Two immediate difficulties arise when seeking to test the hypothesis H1.
First, how are we to judge whether background knowledge is sufficient? Sec-
ondly, how can we ensure a fair comparison of performance, against reports in
the literature? The question of sufficiency of background knowledge is essentially
a domain-specific statement, and therefore best provided as domain-knowledge.
Comparisons with past results is clearly best done with the same inputs and
data-splits used in those reports. For a small number of problems in the ILP
literature, we are fortunate both to have domain-knowledge about the relevance
of background predicates, and the same input/data-splits used, and we will use
these datasets in the paper. Using the relevance-information, we first obtain a
baseline representation without the use of embeddings. This consists of relational
features defined in terms of the background knowledge.1 The usual approach to
constructing embeddings is class-label agnostic. Instead, we construct an embed-
ding that specifically accounts for class-labels using networks that attempt to
maximise the distances between classes (using the baseline representations of
training instances in each class). Finally, we use three classification methods that
have been widely successful (deep networks, boosted trees and support vector
machines). With this choice of problems, methods, and embeddings we compare
the predictive performance obtained with the vector-space embeddings against
the performance obtained with the baseline representation. If there is evidence
of an improvement in performance. For completeness, we also perform the same
comparisons using the most widely-used class-agnostic embedding method.

The rest of the paper is organised as follows. In Sect. 2 we briefly describe how
we obtain baseline- and vector-representations of relational data. Experimental
evaluation of the conjecture is in Sect. 3. Section 4 concludes the paper.

1 ILP practitioners will recognise this as a “propositionalisation” step. In fact, as
will become apparent, our approach for obtaining features is simpler than most
propositionalisation methods.
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2 Baseline and Vector-Space Representations

2.1 First-Order Feature-Based Representation

We use the approach similar to [19] for obtaining a baseline feature representation
for relational data. This does a random selection of features expressible within a
mode language and using a weak-constraint of relevancy based on subsuming the
most-specific clause of at least one data instance (details of the mode-language
and the most-specific clause are as described in [17]). The procedure for random
feature selection is in Fig. 1.

The ILP practitioner will recognise this as a simple randomised proposition-
alisation method. The idea of obtaining a Boolean-feature representation from
relational data has a long and useful history inspired by the initial work in
LINUS [11] (see, for example, [4,7,18–20,23] and of more immediate relevance
here, [5,13] for use of such features as inputs to neural networks).

2.2 Vector-Space Representation

The objective with obtaining an embedded representation is to generate rep-
resentations of the data as fixed-sized real-valued vectors, that are usually of a
lower dimension than the input representation. We start with the simplest way of

DrawFeatures(B,M,E,L, d,MaxDraws) :
1. Let F be 〈〉
2. Let draws = 0
3. Let i = 1
4. Let Drawn be ∅
5. while draws ≤ MaxDraws do

(a) Randomly draw with replacement an example ei ∈ E
(b) Let ⊥d(B, ei) be the most specific rule in the depth-limited mode language

Ld(M) that subsumes ⊥(B, ei) (the most-specific clause that entails e,
given B).

(c) Randomly draw an clause Ci s.t. Ci ⊆ ⊥d(B, ei)
(d) if (Ci is not redundant given Drawn) then

i. Let Ci = (Class(x, c) ← Cpi(x))
ii. Lef fi = (Fi(x) ← Cpi(x))
iii. Update sequence F with fi
iv. Drawn := Drawn ∪ {Ci}
v. increment i

(e) increment draws
6. done
7. return F

Fig. 1. A procedure for obtaining features within a mode language, given background
knowledge and data.
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generating such a vector that is class-agnostic (that is, the representation is not
specifically designed for classification tasks). We then describe a class-sensitive
approach, which attempts to maximise the distance between vectors of different
classes.

The class-agnostic representation is generated using an autoencoder. Here
a low-dimensional real-vector representation of the data is obtained by using a
feedforward neural network that is trained to reconstruct the input data, using
one or more intermediate layers with significantly fewer nodes than the input.
The class-sensitive embeddings are obtained by learning similarity across sam-
ples of the same class using a Siamese network [10]. A Siamese network takes
pairs of samples as input and maps each sample into an embedding space via
identical base networks. During training the euclidean distance in the embedding
space between samples of the same class is minimized and that between samples
belonging to different classes is maximized (see Fig. 2(a) and (b)). Networks for
the autoencoder and Siamese embeddings need a feature-based representation

Fig. 2. (a) Class-agnostic; and (b) Class-sensitive vector representations. (a) is obtained
from the hidden layers of an auto-encoder (that is, a network that simply reconstructs
the input data: usually the auto-encoder will have more than one hidden layer, as
shown in the shaded box, top-right); and (b) is obtained from the hidden layers of a
Siamese network (that is, one of a matched pair of networks that are trained to separate
instances xi,j belonging to different classes).
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to start with: we use the Boolean feature-vector representation of the relational
instances as the input for the autoencoder or the Siamese network.

3 Empirical Evaluation

3.1 Aims

We investigate the Embedding Hypothesis introduced in Sect. 1. Recast in the
terminology of statistical hypothesis testing, the Embedding Hypothesis H1 and
the corresponding null hypothesis are these:2

H1: The (median) predictive performance using an embedded representation is
higher than that obtained using the baseline representation.

H0: There is no difference in the (median) predictive performances of the embed-
ded and baseline representations.

3.2 Materials

Data and Background Knowledge. We report results from experiments
conducted using 7 well-studied real world problems from the ILP literature.
These are: Mutagenesis [8]; Carcinogenesis [9]; DssTox [16]; and 4 datasets arising
from the comparison of Alzheimer’s drugs denoted here as Amine, Choline, Scop
and Toxic [22]. We have chosen these datasets for the following reasons: (1)
Results are available in the ILP literature using standardised testing protocols;
(2) We have access to orderings over sets of background knowledge (from less to
more relevant).3

We refer the reader to the relevant ILP literature with details of the back-
ground knowledge available for each problem. Here we restrict ourselves to
describing the two end-points of the relevancy ordering available for background
knowledge:

Least relevant. For Mutagenesis, Carcinogenesis and DssTox, these are the
predicates describing just the molecular (atom-bond) structure. For the
Alzheimers datasets, these are predicates that simply include counts of the
numbers and kinds of substitutions into template positions of the molecules.

2 It is useful to clarify the choice of hypotheses. The null hypothesis H0 holds if there
is no evidence for the utility of an embedded representation. This choice is moti-
vated by the fact that obtaining an class-sensitive embedded representation requires
substantial computational effort. Thus, the experiment is set up to be conservative:
an embedded representation will only be obtained if there is statistical evidence to
support it.

3 Information of this nature is already available in the ILP literature for Mutagenesis
and Carcinogenesis from [24]. The information on relevance in that paper was pro-
vided by Professor R.D. King. We thank him extending this to the other problems
here.
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All. For Mutagenesis and Carcinogenesis these include predicate definitions
for molecular structure; higher-order functional groups; ring structures; bulk
properties along with arithmetic predicates to deal with numbers. For the
Alzheimer’s data, this includes additional predicates describing the actual
substituents at template positions; and physico -chemical properties of the
substititents (size, polarity, hydrophobicity etc.: the so-called “Hansch” pred-
icates).

In this paper, we will take the least relevant subset of background as consti-
tuting insufficient domain-knowledge for the problem; and the “All” subset as
constituting (a superset of) sufficient background knowledge. We note that of
the 7 datasets, 6 have both sufficient and insufficient definitions for background
knowledge. One dataset (DssTox) only has insufficient background knowledge
(that is, “All” is the same as “Least Relevant”).

Algorithms and Machines. Random features were constructed on an Intel
Core i7 laptop computer, using VMware virtual machine running Fedora 13,
with an allocation of 2 GB for the virtual machine. The Prolog compiler used was
Yap. Feature-construction uses the utilities provided by the Aleph ILP system
[21] for constructing most-specific clauses in a depth-bounded mode language,
and for drawing clauses subsuming such most-specific clauses. No use is made of
any of the search procedures within Aleph. The deep networks were constructed
using the Keras library with Theano as the backend, and were trained using an
NVIDIA K-40 GPU card.

3.3 Method

The main steps of our experimental method are these:

For each problem p:
1. Let Tr denote the training set and Te denote the test set
2. Obtain a sequence of features F using Tr
3. Let TrF denote the baseline feature-based representation of Tr using val-

ues for the F and TeF be the corresponding feature-based representation
of Te (we assume for simplicity that TrF and TeF include the class-values
of instances)

4. Let MF be the classification model constructed with TrF and AF be its
performance on TeF

5. Let TrV be a vector-space representation of Tr obtained using TrF and
a class-sensitive embedding e. Let TeV be the vector-space representation
of Te

6. Let MV be the classification model by a method m constructed with TrV
and AV be its performance on TeV

7. Compare AF and AV
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A number of points require further clarification:

– For obtaining features, we allow a maximum number of samples of 10,000.
Thus, the maximum dimensionality of the baseline representation is bounded
by this number.

– By a class-agnostic embedding, we mean an embedding obtained from using
an auto-encoder of the Boolean feature-vectors obtained using the base-
line representation of the data. By a class-sensitive embedding, we mean an
embedding obtained by using a Siamese network trained to separate feature-
vectors of positive and negative instances.

– For the Siamese networks used for embeddings we chose a deep feedforward
network with two hidden layers, and an embedding dimension of 100. The
training procedure involved creating 20 training batches comprising of 1000
positive and 1000 negative sample pairs (obtained by sampling with repe-
tition) in addition to 500 positive and 500 negative validation pairs. After
every 20 epochs of training, the worst performing class pairs on the valida-
tion set were identified and additional pairs from these classes were added
to the training set. This was continued until performance converged on the
validation set.

– We consider three kinds of classification methods. First, we use a straightfor-
ward deep neural network (DNN). This is a model with multiple, fully con-
nected feedforward layers of rectified linear (ReLU) units followed by Dropout
for regularization (see [6] for a description of these ideas). The model weights
were initialized with a Gaussian distribution. The number of layers, number
of units for each layer, the optimizers, and other training hyperparameters
such as learning rate, were determined automatically using a validation set,
which is part of the training data. Since the data is limited for the datasets
under consideration, after obtaining the model which yields the best valida-
tion score, the chosen model is then retrained on the complete training set
(this includes the validation set) until the training loss exceeds the training
loss obtained for the chosen model during validation. The second method con-
sidered are gradient boosted trees as implemented by the XGBoost procedure
[3], wherein fixed sized trees are usually the base models, and new tree models
are fit on the error residuals at each step, and successively merged with the
base model. We used a maximum tree depth of 6, with an L2 regularization
parameter of 1, and a step size of 0.3 for our XGBoost model. Finally, we also
consider support vector machines.

– For all problems, performance is assessed using 10-fold cross-validation. So
the steps above are repeated 10 times for each train-test split. A standard-
ised cross-validation split for these specific datasets is available from previ-
ous reports in the literature, which allows a direct comparison against those
results. For the comparisons here, we will take an embedding-based represen-
tation to be useful (a “win” for the embedded representation) if the cross-
validated accuracy with embeddings is greater than the corresponding accu-
racy with the baseline representation.

– The appropriate statistical test for testing the hypothesis in Sect. 3.1 is the
one-sided sign test. The computation is simple: suppose the number of trials
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on which an embedded representation does better is s out of n. Let h be
s or n − s, whichever is smaller. The p-value is the binomial probability of
observing at most h heads in n tosses of a fair coin. If this value exceeds
some significance level α, we cannot reject the null hypothesis. We will take
α = 0.05.

3.4 Results

The principal results of the empirical evaluation are tabulated in Figs. 3 and 4,
and summarised in Fig. 5.

Accuracy
Problem Base Embed

Mut188 0.91(0.06) 0.91 (0.04)
Canc330 0.68(0.03) 0.60 (0.07)
Amine 0.89(0.04) 0.93 (0.03)
Choline 0.81(0.03) 0.81 (0.05)
Scop 0.80(0.05) 0.83 (0.08)
Toxic 0.93(0.03) 0.93 (0.03)

(a) Deep Network

Accuracy
Problem Base Embed

Mut188 0.91 (0.06) 0.89 (0.05)
Canc330 0.64 (0.10) 0.61 (0.08)
Amine 0.91 (0.02) 0.92 (0.02)
Choline 0.83 (0.03) 0.81 (0.04)
Scop 0.74 (0.02) 0.80 (0.09)
Toxic 0.93 (0.03) 0.93 (0.03)

(b) XGBoost

Accuracy
Problem Base Embed

Mut188 0.88 (0.05) 0.90 (0.05)
Canc330 0.60 (0.08) 0.55 (0.03)
Amine 0.93 (0.03) 0.93 (0.03)
Choline 0.83 (0.04) 0.81 (0.04)
Scop 0.76 (0.09) 0.81 (0.08)
Toxic 0.93 (0.03) 0.93 (0.03)

(c) SVM

Fig. 3. Results with sufficient background knowledge. Estimated predictive accuracies
using the baseline (Base) and embedded (Embed) representations, obtained using a
Siamese network. Note: DssTox does not appear in the list of problems here, since it
is characterised as having insufficient background knowledge.

The p-value column in Fig. 5 is the probability of observing the result if the
null hypothesis is true (that is, there is no difference in median performance
when using an embedded representation). A statistical case can be made when
using the one-sided sign test, or when numbers are small, of not ignoring ties
that support the null hypothesis (see for example, [14]). The tabulations in Fig. 5
do this, although the conclusions we draw below do not change even if ties are
discarded. The main observations that can be made from these tabulations are
these:

– With sufficient background knowledge (B), we do not have statistically sig-
nificant evidence that an embedded representation (E) is useful (p-values are
all over α = 0.05).
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Accuracy
Problem Base Embed

Mut188 0.82 (0.06) 0.84 (0.05)
Canc330 0.56 (0.08) 0.57 (0.09)
DssTox 0.70 (0.06) 0.74 (0.05)
Amine 0.73 (0.03) 0.75 (0.03)
Choline 0.70 (0.02) 0.72 (0.02)
Scop 0.59 (0.07) 0.60 (0.06)
Toxic 0.78 (0.03) 0.80 (0.03)

(a) Deep Network

Accuracy
Problem Base Embed

Mut188 0.82 (0.04) 0.83 (0.04)
Canc330 0.56 (0.07) 0.56 (0.06)
DssTox 0.75 (0.05) 0.73 (0.05)
Amine 0.74 (0.03) 0.75 (0.04)
Choline 0.71 (0.02) 0.70 (0.03)
Scop 0.62 (0.06) 0.59 (0.07)
Toxic 0.78 (0.02) 0.78 (0.03)

(b) XGBoost

Accuracy
Problem Base Embed

Mut188 0.67 (0.10) 0.67 (0.09)
Canc330 0.54 (0.02) 0.54 (0.02)
DssTox 0.75 (0.06) 0.69 (0.05)
Amine 0.72 (0.04) 0.72 (0.04)
Choline 0.70 (0.03) 0.70 (0.03)
Scop 0.60 (0.05) 0.59 (0.06)
Toxic 0.77 (0.04) 0.72 (0.05)

(c) SVM

Fig. 4. Results with insufficient background knowledge. Estimated predictive accura-
cies using the baseline (Base) and embedded (Embed) representations.

Successes p

Back. ¬E E value
B 4 2 0.34

¬B 0 7 0.01

(a) Deep Network

Embed. Wins p

Back. ¬E E value
B 4 2 0.34

¬B 5 2 0.22

(b) XGBoost

Embed. Wins p

Back. ¬E E value
B 4 2 0.34

¬B 6 1 0.062

(c) SVM

Fig. 5. Summary of results. Here B denotes sufficient background knowledge and
E denotes the number of times the embedded representation performed better. ¬E
denotes the number of times the embedded representation did not perform better.

– The p-values when background knowledge is insufficient (¬B) is lower than
those obtained in the case above. However, only in the case of deep networks
is there appear to be statistically significant evidence that an embedded rep-
resentation improves performance.

We are thus able to make the following practical suggestions:

1. If background knowledge is deficient, then consider using a deep network with
an embedded representation from a Siamese network for the relational data.
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2. If background knowledge is sufficient, then an embedded representation will
not be needed. Consider using either a deep networks or gradient boosted
trees with the baseline representation for the relational data.4

There are some additional observations we provide on the experiments:

General. The following general comments concern the methods and problems:

– In common to all propositionalisation-based methods, there is a limitation
to the kinds of problems that can be tackled. Suppose we consider the fol-
lowing categories of problems: (a) those for which relational features can be
constructed, and are sufficient; (b) those for which relational features can be
constructed, but are not sufficient; and (c) those for which relational features
cannot be constructed. The results in the paper refer to categories (a) and
(b): the latter being the case where the background knowledge is deliberately
insufficient. Category (c) is not considered in this paper, and it is indeed
instructive to note problems that come under this category. These include
the following: those which require the use of recursion; and those that require
higher-order (second-order or higher) constructs. The approach we have used
cannot handle problems of this kind.

– A common feature of the data is that they are all drawn from the broad area of
biochemistry. This raises a question of whether the results are only applicable
to data from that domain. The data and problems are extremely varied: in
fact, even apparently related problems of mutagenesis and carcinogenesis deal
with very different sets of chemicals, and ultimately, have very different target
concepts. It can therefore be somewhat misleading to think of the problems
as being of the same kind, simply because they deal with different tasks in the
broad area of chemical toxicology. The problems were chosen for this study
for the following reasons. First, we have very well-established benchmarks for
these in the ILP literature. This includes the results from the use of relational
features with widely-used statistical learners and from parameter-optimised
ILP learners. We also have the same data-splits on which these results were
obtained, making a controlled comparison possible. Secondly, the background
knowledge ranges from largely propositional (the Alzheimer’s data), to a mix
of propositional and first-order relations (mutagenesis and carcinogenesis),
to only first-order relations (DssTox). Thirdly, and most important, we have
relevance-information about background predicates that we have been able
to use to give meaning to notions of sufficient and insufficient background
knowledge.

Specific. The following comments refer specifically to the results:

– A legitimate concern is whether the results are artifacts of the choice of
embedding method, and a different embedding method would in fact result
in improving performance. The tabulation in Fig. 6 using embeddings from

4 Comparing the results in Figs. 3 and 7 suggests that this will perform better than
using an ILP approach, even with optimised parameters.
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autoencoders suggests that this may not be the case (the results are for a
deep network: the other classifiers show the same trend).

– How do the results compare with ILP-based methods that use the relational
representation directly, or statistical methods with a propositionalised rep-
resentation? In Fig. 7 we tabulate some of the best predictive performances
reported in the ILP literature on the same datasets (with the same cross-
validation splits). It is evident that the predictive performances reported in
Fig. 3 compare favourably in all cases.

Accuracy
Problem Auto Siam

Mut188 0.67 (0.07) 0.91 (0.04)
Canc330 0.54 (0.02) 0.60 (0.07)
Amine 0.63 (0.07) 0.93 (0.03)
Choline 0.50 (0.04) 0.81 (0.05)
Scop 0.51 (0.07) 0.83 (0.08)
Toxic 0.53 (0.06) 0.93 (0.03)

Fig. 6. Results with sufficient background knowledge using a deep network. Auto
denotes embeddings obtained using an autoencoding, and Siam denotes embeddings
obtained using a Siamese network.

Accuracy
Problem OptILP Stat

[24] [18]
Mut188 0.88(0.02) 0.85(0.05)
Canc330 0.58(0.03) 0.60(0.02)
DssTox 0.73(0.02) 0.72(0.01)
Amine 0.80(0.02) 0.81(0.00)
Choline 0.77(0.01) 0.74(0.00)
Scop 0.67(0.02) 0.72(0.02)
Toxic 0.87(0.01) 0.84(0.01)

Fig. 7. Predictive accuracies of some of the best reported performances using ILP
(OptILP ) and statistical learners (Stat) in the ILP literature. All estimates are 10-
fold cross-validation estimates that use the same splits as those used here, and with
the background predicates used to obtain the results in Fig. 3.

4 Concluding Remarks

This paper has been concerned with the effect of background knowledge on the use
of embedded vector-space representations of relational data. Our principal contri-
bution has been to present evidence that for problems rich in domain knowledge,
embedded representations of the data may be limited value. During the course of
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our experiments, we also find evidence that for problems poor in domain knowl-
edge, embedded representations may prove useful for deep networks.

Turning to the results, there are some cautionary notes. Even fixing the
background knowledge and the baseline features, the results are still dependent
on the choice of problems, classification techniques, and embedding methods
used. These are the perils of an empirical study of course. We have tried to control
for this by using three of the most powerful classification methods available at
present. The use of Siamese networks is also considered one of the best ways of
obtaining embeddings for classification (results, for example, with the standard
class-agnostic embeddings obtained from an auto-encoder are substantially worse
than with the class-sensitive method). To ensure we do not see a spurious effect,
we also need to ensure our baseline is good. The results in Fig. 7 suggest that our
baseline is at least as good or better, than the best reported in the literature.
It is of course possible that with more experimentation, results may change.
If so—as Keynes is reputed to have said—we would have to change our mind.
In the meantime, the experiments here mark out a territory within which the
conclusions drawn are plausible and the practical suggestions, probably useful.
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