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Abstract. This paper considers incorporating a hull-consistency enforc-
ing procedure in an interval branch-and-prune method. Hull-consistency
has been used with interval algorithms in several solvers, but its imple-
mentation in a multithreaded environment is non-trivial. We describe
arising issues and discuss the ways to deal with them. Numerical results
for some benchmark problems are presented and analyzed.
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1 Introduction

In a series of papers, including [15,16,19,20] the author considered an inter-
val solver for nonlinear systems – targeted mostly at underdetermined equa-
tions systems – and its shared-memory parallelization (see also references in [19]
for the author’s other papers). The solver described in these papers is called
HIBA USNE (Heuristical Interval Branch-and-prune Algorithm for Underdeter-
mined and well-determined Systems of Nonlinear Equations) and is currently
available from the author’s ResearchGate profile under the GPL license [6].

In none of these papers (and in none of previous versions of HIBA USNE),
hull-consistency has been used.

2 Generic Algorithm

HIBA USNE uses interval methods. They are based on interval arithmetic oper-
ations and basic functions operating on intervals instead of real numbers (so that
result of an operation on numbers always belongs to the result of operation on
intervals that contain the numerical inputs). We shall not define interval opera-
tions here; the interested reader is referred to several papers and textbooks, e.g.,
[12,13].

The solver is based on the branch-and-prune (B&P) schema that can be
expressed by pseudocode presented in Algorithm 1.
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Algorithm 1. Interval branch-and-prune algorithm
Require: L, f, ε
1: {L – the list of initial boxes, often containing a single box x(0)}
2: {Lver – verified solution boxes, Lpos – possible solution boxes}
3: Lver = Lpos = ∅
4: x = pop (L)
5: loop
6: process the box x, using the rejection/reduction tests
7: if (x does not contain solutions) then
8: discard x
9: else if (x is verified to contain a segment of the solution manifold) then

10: push (Lver, x)
11: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
12: x = x(1)

13: push (L, x(2))
14: cycle loop
15: else if (widx < ε) then
16: push (Lpos, x) {The box x is too small for bisection}
17: if (x was discarded or x was stored) then
18: if (L == ∅) then
19: return Lver, Lpos {All boxes have been considered}
20: x = pop (L)
21: else
22: bisect (x), obtaining x(1) and x(2)

23: x = x(1)

24: push (L, x(2))

The “rejection/reduction tests”, mentioned in the algorithm are described in
previous papers (specifically [19]), i.e.:

– switching between the componentwise Newton operator (for larger boxes) and
Gauss-Seidel with inverse-midpoint preconditioner, for smaller ones,

– a heuristic to choose whether to use or not the BC3 algorithm [19],
– a heuristic to choose when to use bound-consistency [20],
– sophisticated heuristics to choose the bisected component [16,19],
– an additional second-order approximation procedure [18],
– an initial exclusion phase of the algorithm (deleting some regions, not con-

taining solutions) – based on Sobol sequences [17,19].

Other possible variants (see, e.g., [15]) are not going to be considered.

3 Hull-Consistency

Hull-consistency (also known under the name of 2B-consistency) has been used
in several interval programs over the years; see, e.g., [7,8]. It can be defined as
follows.
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Definition 1. A box x = (x1, . . . ,xn)T is hull-consistent with respect to a con-
straint c(x1, . . . , xn), iff:

∀i xi = �{s ∈ xi | ∃x1 ∈ x1, · · · ∃xi−1 ∈ xi−1,∃xi+1 ∈ xi+1 · · · ∃xn ∈ xn

c(x1, . . . , xi−1, s, xi+1, . . . , xn)} .

Following [14], the symbol “�” denotes the interval hull.
Other words, x is hull-consistent iff for each i we can find two points xa and

xb, satisfying the property c, for which xa
i = xi and xb

i = xi.
Now, let us describe, how to check if a box is hull-consistent and how to

enforce hull-consistency on a box.

3.1 Algorithms for Enforcing Hull-Consistency

For simple constraints, checking and/or enforcing hull-consistency is relatively
simple.

As a simple example, let us consider an equation x1 +x2 −3 = 0. By obvious
symbolic transformations, we obtain formulae for both variables that can be
used to obtain their consistent domains:

x1 = 3 − x2 and
x2 = 3 − x1.

Using the above consistency operators, we can simply check consistency for any
box or compute its sub-box containing all consistent values. For instance, a box
[−4, 2]× [−2, 4] is not hull-consistent, but it can be reduced to the hull consistent
one, by applying:

x1 = x1 ∩ (3 − x2) = [−4, 2] ∩ [−1, 5] = [−1, 2],
x2 = x2 ∩ (3 − x1) = [−2, 4] ∩ [1, 7] = [1, 4].

This box is hull-consistent indeed, as points (−1, 4) and (1, 2) are solutions of
the initial constraint x1 + x2 − 3 = 0.

However, for a more sophisticated constraint, obtaining a consistent box is
not as straightforward. Let us consider the constraint:

x3
1 + x2

1 − exp(x2) = 0. (1)

Again, by relatively simple symbolic transformations we can extract x2 from
Eq. (1), but not x1. The solution is to decompose such an equation into prim-
itive ones, by adding additional variables and apply hull-consistency to such a
decomposed system. For the constraint (1), we could obtain:

t1 − x3
1 = 0,

t2 − x2
1 = 0,

t3 − t1 − t2 = 0,
t4 − exp(x2) = 0,

t3 − t4 = 0.
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Fig. 1. Expression tree of constraint (1)

The algorithm HC4 [7] (cf. also [11]) performs such a decomposition, creating
a tree of the initial constraint, where a variable corresponds to each node: By
traversing the tree forward and backward, we enforce hull-consistency on subse-
quent variables (Fig. 1).

3.2 ADHC Implementation

The ADHC library [5] (Algorithmic Differentiation and Hull Consistency enforc-
ing), developed by the author, contains procedures for constructing the expres-
sion tree and for the HC4 algorithm.

Thanks to the virtues of C++ template metaprogramming, the same source
code can be used to generate binary procedures computing function values, gra-
dients and Hesse matrices, and to generate the procedure creating the expression
tree, in the form of a dynamic data structure.

4 Hull-Consistency Vs Multithreading

Since the very beginning (cf. [15]) the HIBA USNE solver has been implemented
as parallel. The early version has been parallelized using OpenMP, but then the
author switched to Intel TBB (Threading Building Blocks [3]). Parallelization
of the HIBA USNE solver, i.e., of Algorithm 1, is done on several levels. Firstly,
operations on different boxes form different tasks that can be executed by dif-
ferent threads.

Also, some of the procedures applied on a single box are parallel. Such a con-
current implementations has been particularly useful for the procedure enforcing
bound-consistency [20], but enforcing box-consistency (see, e.g., [8]) can be par-
allelized, also – and such version is applied at least for the initial box.
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Parallel implementation of the HC4 algorithm is also possible, but it does
not seem worthwhile. The cost of enforcing hull-consistency is far smaller than
box-consistency (which, in particular, requires computing derivatives – at least
for BC3 and BC4 algorithms; cf. [7].

Hence, the HC4 implementation we use in the current version of the solver
(Beta 2.5; cf. Sect. 5). Still, it is not easy to implement the HC4 algorithm in
a MT-safe (multithreaded-safe) manner. The procedure requires the expression
tree representation. There are, in general, three possibilities:

– there is a shared expression tree and access to it is synchronized,
– there is a shared expression tree, but domains of variables associated to each

node are thread-specific,
– each thread has its own copy of the expression tree, to compute the domains

of variables for various boxes.

The first approach seems absolutely unacceptable for a solver that is supposed
to be scalable with the number of threads. The second one seems interesting, but
is somewhat cumbersome to implement. Also, it might result in suboptimal cache
usage as domains of each variable will have to be placed outside the node of the
expression tree. The third approach is currently implemented in HIBA USNE.
It uses some memory, as each of the threads has a separate copy of the data
structure (and this might become an issue for higher number of threads, e.g.,
on the MIC architecture, where 240 threads can work in parallel), but, in our
experiments, is seems to be acceptable.

5 Computational Experiments

Numerical experiments have been performed on a machine with two Intel Xeon
E5-2695 v2 processors (2.4 GHz). Each of them has 12 cores and on each core two
hyper-threads (HT) can run. So, 2×12×2 = 48 HT can be executed in parallel.
The machine runs under control of a 64-bit GNU/Linux operating system, with
the kernel 3.10.0-123.e17.x86 64 and glibc 2.17. They have non-uniform turbo
frequencies from range 2.9–3.2 GHz.

As there have been other users performing their computations also, we limited
ourselves to using 24 threads only.

The Intel C++ compiler ICC 15.0.2 has been used.
The solver has been written in C++, using the C++11 standard. The C-XSC

library (version 2.5.4) [2] was used for interval computations. The parallelization
was done with the packaged version of TBB 4.3 [3].

The following test problems have been considered: two underdetermined
ones: 5R planar and Puma7, and six well-determined: Brent10, BT50
(Broyden-tridiagonal), BB30 (Broyden-banded), BB24-mod, Transistor, EF200
(Extended-Freudenstein). Their formulation (and used accuracies) has been
described in [19,20] and references therein. Function BB24-mod is the Broyden-
banded function BB24 minus 1; such a minor modification results in a much
harder problem. It is worth noting that it was the function BroyN-mod that was
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used in previous papers ([15,19,20], etc.) under the name of the Broyden-banded
function.

Here we give used accuracies:

– 5R planar: ε = 0.02,
– Puma7: ε = 0.05,
– Brent10: ε = 10−7,
– BT50: ε = 10−6,
– BB30, BB24-mod: ε = 10−6,
– Transistor: ε = 10−8,
– EF200: ε = 10−6.

The following algorithm versions have been considered:

– “Beta 2.0” – HIBA USNE Beta 2.0, using box and bound-consistency, but no
hull-consistency,

– “HC only” – hull-consistency used instead of box-consistency and 3B consis-
tency, instead of bound-consistency,

– “Beta 2.5” – HIBA USNE Beta 2.5, combining box and hull-consistency, in a
manner similar to BC4 [7]: algorithm HC4 is used always and BC3 is applied
after it, but only if there is more than one occurrence of the variable in the
formula for the constraint.

Also, please note, execution times of parallel programs are to some extent
random. We try to present median results, but please note all of them may vary
in a few-seconds interval.

The following notation is used in the tables:

– fun.evals, grad.evals, Hesse evals – numbers of functions evaluations, func-
tions’ gradients and Hesse matrices evaluations (in the interval automatic
differentiation arithmetic),

– bisecs – the number of boxes bisections,
– preconds – the number of preconditioning matrix computations (i.e., per-

formed Gauss-Seidel steps),
– Sobol excl. – the number of boxes to be excluded generated by the initial

exclusion phase,
– Sobol resul. – the number of boxes resulting from the exclusion phase (cf.

[17,19]),
– bc3 – the number of calls of bc3revise; see [19],
– hc – the number of calls of hc enforce,
– 3B/bnd.cons. – the number of calls to the procedure enforcing a higher-order

consistency, i.e., – depending on the algorithm variant – bound-consistency,
3B consistency or a mixed one (when BC4 is used),

– pos.boxes, verif.boxes – number of elements in the computed lists of boxes
containing possible and verified solutions,

– Leb.pos., Leb.verif. – total Lebesgue measures of both sets,
– time – computation time in seconds.
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Table 1. Computational results for the “Beta 2.0” solver version

Problem 5R planar Puma7 Brent10 BT50 BB30 BB24-mod Transistor EF200

fun. evals 215,370,202 24,716,399 9,288,556 546,517,232 48,025,431 2,560,784,337 177,883,219 13,531,560

grad.evals 53,540,850 25,687,861 6,479,385 139,774,706 3,929,878 288,405,687 19,786,538 1,300,186

Hesse evals 307,648 357 264,252 30 30 91,564 127,749 200

bisections 5,445,519 1,718,076 50,299 617057 21,644 3,903,618 33,246 1,300

preconds 10,056,243 3,206,635 78,424 221427 26,019 6,225,697 67,554 2

bc3.rev 86,889,730 1,039,374 2,218,450 241,468,708 23,193,747 1,190,987,170 84,359,918 1,454,871

hc — — — — — — — —

3B/bnd.cons 110,745 222 95 0 48 8,190 10,408 0

pos.boxes 1,878,238 681,004 401 2 0 0 0 0

verif.boxes 3,458 202,694 820 1 1 1 1 1

Leb.poss 0.000333 3e-47 3e-83 1e-323 0.0 0.0 0.0 0.0

Leb.verif 1e-6 3e-11 1e-82 5e-324 3e-12 3e-233 2e-102 5r-324

time 54 14 11 209 11 662 32 39

Table 2. Computational results for the “HC only” algorithm version

Problem 5R planar Puma7 Brent10 BT50 BB30 BB24-mod Transistor EF200

fun. evals 34,874,569 20,989,100 898,053 279,863,240 65,789,226 n/a 2,615,238 11,031,042

grad.evals 35,558,735 23,491,133 1,696,949 310,595,033 88,392,235 n/a 3,637,807 1,080,256

Hesse evals 682,103 820 295,851 82,063 222 n/a 789,087 200

bisections 5,777,688 1,603,978 56,435 3,694,559 1,472,865 n/a 138,951 1,801

preconds 10,486,933 2,997,809 87,508 3,570,485 2,190,128 n/a 286,216 3

bc3.rev 15 21 1,092 1,056 4,656 n/a 52 2,400

hc 282,907 1,406 4,141 8,756,612 2,577,003 n/a 298,050 4,388

3B/bnd.cons 313,406 452 1,268 1 863,681 n/a 181,261 0

pos.boxes 1,872,259 627,067 421 0 0 n/a 0 0

verif.boxes 4,098 203,577 816 2 1 n/a 1 1

Leb.poss 0.000323 1e-47 8e-84 0.0 0.0 n/a 0.0 0.0

Leb.verif 2e-6 1e-12 5e-72 1e-323 5e-324 n/a 1e-112 5e-324

time 41 13 3 192 698 > 3,600 16 9

Table 3. Computational results for the “Beta 2.5” solver version

Problem 5R planar Puma7 Brent10 BT50 BB30 BB24-mod Transistor EF200

fun. evals 173,706,494 28,125,076 9,348,171 118,071 39,817,448 2,343,834,369 80,230,271 12,156,051

grad.evals 47,579,449 31,068,946 6,414,680 118,555 3,075,583 140,805,784 10,551,334 1,161,508

Hesse evals 333,876 637 260,631 60 270 94,705 318,036 200

bisections 5,471,725 2,124,805 50,193 1 16,574 1,265,552 53,239 1,298

preconds 10,087,309 3,947,726 78,336 6 19,441 1,771,075 100,787 2

bc3.rev 67,838,381 235,058 2,288,678 29,147 19,327,021 1,142,463,509 39,421,250 762,070

hc 94,045 1,282 713 325 31,932 2,471,674 110,407 3,314

3B/bnd.cons 117,320 393 99 1 65 6,465 48,197 0

pos.boxes 1,868,601 846,350 419 2 0 0 0 0

verif.boxes 3,415 247,477 820 0 1 1 1 1

Leb.poss 0.000334 2e-47 2e-82 1e-323 0.0 0.0 0.0 0.0

Leb.verif 1e-6 1e-12 7e-65 0.0 5e-7 4e-9 3e-118 5e-324

time 53 17 11 < 1 9 390 21 29
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For comparison, let us consider some results, obtained using another solver,
Realpaver [1] – a mature interval solver that can be considered the current state-
of-the-art:

– 5R-planar – 17 min (for Bisection precision = 2.0, much less accurate
than the presented solver) and did not cover the whole solution set (“Property:
non reliable process (some solutions may be lost)”).

– Brent10 – 55 sec to find all solutions (1065); parameter -number 2000 must
be set to loose no solution.

– Transistor – 30 sec to find the solution for the default setting.

6 Analysis of the Results

Replacing box- with hull-consistency resulted in a minor speedup, for 5R-planar
and Puma7 problems and a major one for Brent10, Transistor and Extended-
Freudenstein200 (see Tables 1 and 2. Hence for problems BT50, BB30 and BB24-
mod, we obtained a significant slowdown.

Combining both consistencies (Table 3) resulted in reasonable runtimes for
all problems. The time for problems BT50 and BB24-mod have been particularly
good – better than for any of the previous algorithm versions. Unfortunately, the
speedup for Brent10 and EF200 problems, that had been observed for the “HC
only” version, has not been preserved. The author has not managed to design a
better heuristic.

As for Realpaver – our solver performed better on all problems; in earlier ver-
sions (e.g., [20]), it had been outperformed for problems, where hull-consistency
was very efficient, like the Transistor problem.

7 Conclusions

We investigated incorporating of a hull-consistency enforcing procedure to the
interval nonlinear systems solver. Contrary to author’s earlier fears (see [19],
Sect. 3), we managed to implement this function in a MT-safe and MT-efficient
(yet not parallelized itself) manner.

In general, trying to replace box- with hull-consistency is often very worth-
while, but there are significant exceptions to this rule; in our experiments hull-
consistency turned out to be inefficient on various instances of the Broyden
function: BT50, BB30, BB24-mod.

Enforcing hull-consistency is less computationally intensive than box-
consistency, but the reduction of the box diameter is usually smaller. An excep-
tion to this rule are constraints, where a variable occurs only once; in such cases
hull-consistency is definitely superior to box-consistency. This is consistent with
results obtained by other researchers, e.g., [10]. Reasonable results have been
obtained for the algorithm version, combining hull- and box-consistency enforc-
ing procedures. Unfortunately, these results, while acceptable, are significantly
worse than using “HC only”, for some problems. As designing a better heuristic
seems difficult, using machine learning might be a proper direction [9].
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