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Abstract. The aim of this paper is to evaluate Cilk Plus as a language-
based tool for simple and efficient parallelization of recursively defined
computational problems and other problems that need both task and
data parallelization techniques. We show that existing source codes can
be easily transformed to programs that can utilize multiple cores and
additionally offload some computations to coprocessors like Intel Xeon
Phi. We also advise how to improve simplicity and performance of data
parallel algorithms by tuning data structures to utilize vector extensions
of modern processors. Numerical experiments show that in most cases
our Cilk Plus versions of Adaptive Simpson’s Integration and Belman-
Ford Algorithm for solving single-source shortest-path problems achieve
better performance than corresponding OpenMP programs.
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1 Introduction

Recently, multicore and manycore computer architectures have become very
attractive for achieving high performance execution of scientific applications
at relatively low costs [8,17,20]. Modern CPUs and accelerators achieve per-
formance that was recently reached by supercomputers. Unfortunately, the pro-
cess of adapting existing software to such new architectures can be difficult if
we expect to achieve reasonable performance without putting much effort into
software development. For example, the use of OpenCL [10] leads to a substan-
tial increase of software complexity. However, sometimes the use of high-level
language-based programming interfaces devoted to parallel programming can
get satisfactory results with rather little effort [19].

Software development process for modern Intel multicore CPUs and many-
core coprocessors like Xeon Phi [8,17] requires special optimization techniques to
obtain codes that would utilize the power of underlying hardware. Usually it is
not sufficient to parallelize applications because in case of such computer archi-
tectures efficient vectorization is crucial for achieving satisfactory performance
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[8,20]. Unfortunately, very often compiler-based automatic vectorization is not
possible because of some non-obvious data dependencies inside loops [1,21]. On
the other hand, people expect parallel programming to be easy and they prefer to
concentrate on algorithms and use simple and powerful programming constructs
that can utilize underlying hardware.

Cilk Plus introduces new extensions to C/C++ programming languages
to express task and data parallelism using high-level constructs [8,9,12,18].
Although Cilk Plus has more usability than OpenMP [6], it is not very pop-
ular (several interesting applications can be found in [2,3,13,15]).

In this paper we show that Cilk Plus can be very easily applied to parallelize
recursively defined adaptive Simpson’s integration rule [11] and such implemen-
tation can be easily transformed to utilize coprocessors like Intel Xeon Phi. We
also advise how to simplify move from OpenMP to Cilk Plus and improve the
performance of such algorithms by tuning data structures to utilize hardware
(i.e. vector units) of modern multicore and manycore processors. As an example
we consider our Cilk Plus implementation of Belman-Ford algorithm for solving
the single-source shortest-path problem [7] which achieves better performance
than the corresponding simple OpenMP version of the algorithm. These two
computational problems have been chosen to demonstrate the most important
features of Cilk Plus that can be easily added to sequential C/C++ programs.

2 Short Overview of Cilk Plus

Cilk Plus offers several powerful extensions to C/C++ that allow to express
both task and data parallelism [8,17]. The most important constructs are useful
to specify and handle possible parallel execution of tasks:

cilk for followed by the body of a for loop tells that iterations of the loop can
be executed in parallel. Runtime applies the divide-and-conquer approach to
schedule tasks among active workers to ensure balanced workload of available
cores.

cilk spawn permits a given function to be executed asynchronously with the
rest of the calling function.

cilk sync tells that all tasks spawned in a function must complete before exe-
cution continues.

Another important feature of Cilk Plus is the array notation which introduces
vectorized operations on arrays. Expression A[start:len:stride] represents an
array section of length len starting from A[start] with the given stride. Omit-
ted stride means 1. The operator [:] can be used on both static and dynamic
arrays. There are also several built-in functions to perform basic computations
among elements in an array such as sum, min, max etc. It should be noticed that
the array notation can also be used for array indices. For example, A[x[0:len]]
denotes elements of the array A given by indices from x[0:len].

Intel Cilk Plus also supports Shared Virtual Memory which allows to
share data between the CPU and the coprocessor what is promising especially



256 P. Stpiczyński

for complex data structures [8,17]. Such shared variables are declared using
Cilk shared keyword. It also allows to declare functions that should be avail-
able for CPU and coprocessors. Computations can be offloaded to coprocessors
for asynchronous execution using Cilk spawn Cilk offload construct. In such
a case all necessary data are moved to the coprocessor. Memory synchronization
between the CPU and the coprocessor takes place when an offloaded function is
called by CPU or an offloaded function returns (i.e. when cilk sync is used).
The description of other features of Cilk Plus (like reducers) can be found in [17].

3 Two Examples of Computational Problems

Now we will present two exemplary problems which can be easily parallelized
and optimized using Cilk Plus. All implementations have been tested on a server
with two Intel Xeon E5-2670 v3 (totally 24 cores with hyperthreading, 2.3 GHz),
128 GB RAM, with Intel Xeon Phi Coprocessor 7120P (61 cores with multi-
threading, 1.238 GHz, 16 GB RAM), running under CentOS 6.5 with Intel Par-
allel Studio ver. 2017, C/C++ compiler supporting Cilk Plus. Experiments on
Xeon Phi have been carried out using its native and offload modes.

3.1 Adaptive Simpson’s Integration Rule

Let us consider the following recursive method for numerical integration called
Adaptive Simpson’s Rule [11]. We want to find the approximation of

I(f) =
∫ b

a

f(x)dx (1)

with a user-specified tolerance ε. Let S(a, b) = h
6 (f(a) + 4f(c) + f(b)), where

h = b − a and c is a midpoint of the interval [a, b]. The method uses Simpson’s
rule to the halves of the interval in recursive manner until the following stopping
criterion is reached [14]:

1
15

|S(a, c) + S(c, b) − S(a, b)| < ε. (2)

Figure 1 shows our parallel version of the straightforward recursive implementa-
tion of the method [4]. Note that we have only included keywords Cilk spawn
and Cilk sync. The first one specifies that cilkAdaptiveSimpsonsAux() can
execute in parallel with the remainder of the calling kernel. Cilk sync tells that
all spawned calls in the current call of the kernel must complete before execu-
tion continues. For comparative purposes we have also implemented the method
using OpenMP tasks [16], where the keywords Cilk spawn and Cilk sync are
simply replaced with task and taskwait constructs.

Another Cilk implementation of the method assumes that some computa-
tions can be offloaded to a coprocessor (i.e. Xeon Phi, if available). The auxil-
iary kernel cilkAdaptiveSimpsonsAux() should be declared with the keyword
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Fig. 1. Parallel version of Adaptive Simpson’s method

Cilk shared, what makes the function available for CPU and coprocessors. In
the main kernel cilkAdaptiveSimpsonsOff(), the integration over the first half
of the interval [a, b] can offloaded to Xeon Phi using Cilk spawn Cilk offload
construct, while the rest is to be done by CPU.

Table 1 shows the execution time of our three parallel implementations
applied for finding the approximation of

∫ 4.4

−4.4
exp(x2)dx with ε = 1.0e − 7 and

depth = 40 (namely OpenMP with tasks, Cilk, and Cilk with offload). We can
observe that cilkAdaptiveSimpsons() outperforms ompAdaptiveSimpsons()
significantly (about four times faster for CPU and three times for Xeon Phi). It
should be noticed that the execution time (seconds) of the sequential version of
the method is 62.8 for CPU and 638.04 for Xeon Phi. Thus, the speedup achieved
by our Cilk implementation is 14.35 (CPU) and 70.66 (Xeon Phi), respectively.

Our non-offloaded Cilk version scales very well when the number of Cilk
workers increases up to 24 for CPU and 60 for Xeon Phi, respectively, i.e. to the
number of physical cores. The further increase in the number of workers results
in smaller and rather marginal gains. For cilkAdaptiveSimpsonsOff(), we can
observe that the shortest execution time is achieved for twelve workers. Then the
execution time of cilkAdaptiveSimpsonsAux() on CPU and Xeon Phi working
on the halves of the interval is approximately the same.

3.2 Bellman-Ford Algorithm for the Single-Source Shortest-Path
Problem

Let G = (V,E) be a directed graph with n vertices labeled from 0 to n − 1
and m arcs 〈u, v〉 ∈ E, where u, v ∈ V . Each arc has its weight w(u, v) ∈ R
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Table 1. Execution time (s) of ompAdaptiveSimpsons(), cilkAdaptiveSimpsons()

and cilkAdaptiveSimpsonsOff() for
∫ 4.4

−4.4
exp(x2)dx

2x E5-2670 and Xeon Phi 7120P (coprocessor)

number of threads/workers (CPU) 2 4 6 12 24 48

ompAdaptiveSimpsons() 202.71 101.43 68.03 34.36 17.43 15.45

cilkAdaptiveSimpsons() 61.99 31.06 20.64 10.57 5.39 4.32

cilkAdaptiveSimpsonsOff() 34.28 17.06 11.33 5.67 5.78 5.95

Xeon Phi 7120P (native mode)

number of threads/workers 2 30 60 120 180 240

ompAdaptiveSimpsons() 1355.67 92.60 45.57 31.13 29.22 28.52

cilkAdaptiveSimpsons() 478.11 32.44 16.71 10.51 9.33 9.03

and we assume w(u, v) = ∞ when 〈u, v〉 �∈ E. For each path 〈v0, v1, . . . , vp〉 we
define its length as

∑p
i=1 w(vi−1, vi). We also assume that G does not contain

negative cycles. Let d(s, t) denotes the length of the shortest path from s to t or
d(s, t) = ∞ if there are no paths from s to t.

Algorithm 1 is the well-known Belman-Ford method for finding shortest
lengths of paths from a given source s ∈ V to all other vertices [7].

Algorithm 1. Bellman-Ford Algorithm
Data: G = (V,E), |V | = n, s ∈ V , w(u, v) for all u, v ∈ V
Result: D[v] = d(s, v) for all v ∈ V

1 for v ∈ V do
2 D[v] ← w(s, v)
3 end
4 D[s] ← 0
5 for k = 1, . . . , n − 2 do
6 for v ∈ V \ {s} do
7 for u ∈ V such that 〈u, v〉 ∈ E do
8 D[v] ← min (D[v],D[u] + w(u, v))
9 end

10 end

11 end

The most common basic implementations of the algorithm assume that a
graph is represented as an array that describes its vertices. Each vertex is
described by an array containing information about incoming arcs. Each arc
is represented by the initial vertex and arc’s weight. It is also necessary to store
the length of arrays describing vertices. In order to parallelize such a basic imple-
mentation using OpenMP (see Fig. 2, left), we should notice that the entire algo-
rithm should be within the parallel construct. Then the loops 7–13 and 18–26
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can be parallelized using for construct with clause schedule(dynamic,ChS).
Thus, iterations are divided into pieces having a size specified by chunk size ChS
and such pieces are dynamically dispatched to threads. The assignment in line 4
needs to be a single task (i.e. defined by single). Moreover, we need two copies
of the array D for storing current and previous updates within each iteration of
the loop 20–25. It should be noticed that this loop is automatically vectorized by
the compiler. For the sake of simplicity, we also assume that the vertex labeled
as 0 is the source.

Fig. 2. Belman-Ford algorithm implemented using OpenMP and Cilk Plus

In our Cilk Plus implementation (see Fig. 2, right), the loops 7–13 and 18–26
are parallelized using cilk for construct. We also assume that each vertex of
a given graph is represented by two arrays of the same size. The first one (i.e.
inv) sorted in increasing order contains labels of initial vertices of incoming
arcs. The next one (i.e. inw) stores weights of corresponding arcs. Then (lines
21–24) we can simply vectorize the body of the loop using built-in function
sec reduce min() to find minimum among elements in the array given by the

sum of the array inw and necessary elements from the array d1 given by indices
from inv. This is a very fine example of using the array notation.

Table 2 shows the results of experiments performed for the considered imple-
mentation of Belman-Ford algorithm, namely basic, ompBF1, ompBF2 and
cilkBF. Note that ompBF2 is another implementation that uses OpenMP and
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Table 2. Execution time (in seconds) of three implementations of Algorithm 1

2x E5-2670 Xeon Phi 7120P

max deg basic ompBF1 ompBF2 cilkBF basic ompBF1 ompBF2 cilkBF

The number of nodes n = 4000

10 0.20 0.16 0.16 0.19 4.73 0.48 0.43 0.99

20 0.30 0.21 0.16 0.20 6.24 0.84 0.87 1.03

50 0.57 0.25 0.19 0.25 10.04 1.76 1.63 1.38

100 1.05 0.25 0.26 0.35 15.29 2.34 2.05 1.50

200 2.07 0.38 0.31 0.32 27.37 2.26 2.08 1.94

500 5.13 0.67 0.35 0.42 54.97 1.75 1.93 1.70

1000 10.34 0.71 0.92 0.59 100.37 2.60 2.87 2.40

2000 22.22 1.51 1.49 1.07 200.16 5.68 6.22 4.16

The number of nodes n = 10000

10 1.70 0.75 0.83 0.52 31.89 1.02 1.10 3.07

20 2.20 0.80 0.74 0.55 39.66 1.16 1.23 3.26

50 3.74 0.82 0.79 0.71 61.50 1.48 1.54 3.60

100 6.72 0.98 0.96 0.78 97.62 2.31 2.41 4.84

200 13.09 1.22 1.35 1.08 168.09 3.72 3.60 4.98

500 32.99 2.53 2.38 1.61 369.67 7.68 8.90 9.34

1000 71.88 3.90 4.87 4.01 684.38 14.49 16.01 10.85

2000 156.82 12.65 12.68 11.63 1331.26 27.82 30.62 18.25

the same data layout as cilkBF. All results have been obtained for graphs gen-
erated randomly for a given number of vertices and maximum degree (i.e. the
maximum number of incoming arcs). We can observe that the parallel implemen-
tations are much faster than the basic (i.e. non-parallelized) implementation of
Algorithm 1. Usually ompBF2 is faster than ompBF1. cilkBF outperforms
ompBF1 and ompBF2 for larger and wider graphs. However, in case of our
OpenMP implementations, Table 2 shows the best results chosen from several
runs for various values of ChS. Thus, one can say that our OpenMP versions
have been manually tuned. In case of cilkBF, the runtime system has been
responsible for load balancing.

We can observe that for sufficiently large graphs all parallel implementa-
tions utilize multiple cores achieving reasonable speedup (see Fig. 3). Moreover,
cilkBF outperforms ompBF significantly, especially on Xeon Phi. This is the
effect of the efficient and explicit vectorization of the loop 7–9 in Algorithm1. For
this architecture it is also important to vectorize sufficiently long loops. Indeed,
the speedup grows when the maximum degree (i.e. the length of the arrays inv
and inw) grows.
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Fig. 3. Speedup of OpenMP and Cilk Plus implementations versus non-parallelized
basic version of Belman-Ford algorithm

It should be noticed that we have also tested another version of cilkBF
that uses Cilk spawn Cilk offload construct and where all data structures
have been shared between CPU and coprocessors. Unfortunately, the need for
synchronization of Shared Virtual Memory at the end of each iteration (i.e. the
loop 16–28) leads to a very large increase in processing time and our imple-
mentation with offloading is over 10× slower than cilkBF. However, Shared
Virtual Memory is perfect for exchanging irregular data with limited size, when
explicit synchronization is not used frequently. Both sides (CPU and coproces-
sor) should operate on memory allocated locally. Local data can be persisted
using more sophisticated techniques (the use of Cilk Plus together with #pragma
offload).
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4 Conclusions and Future Work

We have shown that Cilk Plus can be very easily applied to parallelize recursively
defined problems like Adaptive Simpson’s Integration Rule and such implemen-
tation can be easily modified to utilize coprocessors like Intel Xeon Phi. It is also
easy to move from OpenMP to Cilk Plus and improve the performance of such
algorithms by tuning data structures to utilize hardware (i.e. vector units) of
modern multicore and manycore processors. For sufficiently large graphs, our
Cilk implementation of Belman-Ford algorithm for solving the single-source
shortest-path problem achieves really better performance than corresponding
OpenMP versions of the algorithm. Thus, Cilk Plus is a good choice for people
who want to concentrate on algorithms and prefer to use simple high-level pro-
gramming constructs to express parallelism. Of course, it is clear that the use
of OpenMP together with more advanced programming tools allows to fine-tune
programs for a particular architecture [17,20]. However, this involves a much
greater effort.

In the future, we plan to implement some other important computational
problems using Cilk Plus. It would also be interesting and important to find
problems that can benefit from using Shared Virtual Memory.
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