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Abstract. Half of the ten fastest supercomputers in the world use mul-
tiprocessors and accelerators. This hybrid environment, also present in
personal computers and clusters, imposes new challenges to the program-
mer that wants to use all the processing power available on the hardware.
OpenCL, OpenACC and other standards can help in the task of writing
parallel code for heterogeneous platforms. However, some issues are not
eliminated by such standards. Since multiprocessors and accelerators are
different architectures and for this reason present distinct performance,
data parallel applications have to find a data division that distributes
the same amount of work to all devices, i.e., they have to finish their
work in approximately the same time. This work proposes a dynamic
load balancing algorithm that can be used in small-scale heterogeneous
environments. A simulator of the Human Immune System (HIS) was
used to evaluate the proposed algorithm. The results have shown that
the dynamic load balancing algorithm was very effective in its purpose.
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1 Introduction

Heterogeneous clusters environments are becoming popular parallel platforms.
These environments are composed by distinct processors and accelerators, such
as GPUs. From a programmer perspective, it is not an easy task to write a
parallel program to take advantage of all the computing resources, CPUs1 and
GPUs, present in such environment. This happens not only due to the fact that
the computing resources have distinct computational power, but also because
of the distinct types of parallelism they were designed to exploit. There are
basically two types of parallelism in applications: Data-Level Parallelism (DLP)
and Task-Level Parallelism (TLP). The first one arises due to the multiple data

The authors would like to thank UFJF and the Brazilian agencies FAPEMIG,
CAPES, and CNPq.

1 The term CPU in this work refers to multicore processors.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 166–175, 2018.
https://doi.org/10.1007/978-3-319-78054-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_16&domain=pdf
http://orcid.org/0000-0002-0633-1391
http://orcid.org/0000-0002-7205-9509


Dynamic Load Balancing Algorithm for Heterogeneous Clusters 167

items that must be computed by an application, whereas the second one due
to the multiple tasks that must be executed. CPUs were designed to deal with
TLP and small amounts of DLP, whereas GPUs were designed to explore large
amounts of DLP [6]. Programmers that want to explore DLP in all devices of a
heterogeneous platform must take these differences into account, since they can
impact the way the code is written and executed.

Some tools, such as those based on OpenCL (Open Computing Language)
[15] and OpenACC (Open Accelerators) [1] standards, can help programmers
to write code to execute on heterogeneous architectures. Some issues, however,
remain open, such as the data division between GPUs and CPUs that balance
the amount of work each one will execute. Since GPUs were designed to explore
large amounts of DLP, they must receive more data than CPUs to compute, but
how much more? Also, depending on the type of instruction that is executed
(e.g., float point or integer instruction), the amount of data each computing
resource must receive changes. A load balancing (LB) algorithm can help in this
task. In this work we use the term LB in the sense of the data division that makes
all devices in a heterogeneous cluster composed by CPUs and GPUs finish their
computing in approximately the same time.

In previous works [16,17] we have proposed two distinct algorithms to deal
with LB in Accelerated Processing Units (APUs) [3]. APUs merge, in a single
silicon chip, the functionality of GPUs with the traditional multicore CPUs. In
this paper two new contributions are presented. The first one is the extension
done on the dynamic algorithm in order to execute it on a distinct architec-
ture, a heterogeneous cluster. Some modifications in the original algorithm were
introduced in order to deal with the new environment. The last one is the evalu-
ation of the impact of the dynamic LB algorithm in performance, using for this
purpose the HIS (Human Immune System) simulator.

The remaining of this work is organized as follows. Section 2 presents related
works. Section 3 presents a brief overview of OpenCL. OpenCL and MPI were
used in the implementation of HIS. In Sect. 4 we present the dynamic LB algo-
rithm. Section 5 presents the performance evaluation. Finally, Sect. 6 presents
our conclusions and plans for future works.

2 Related Work

A significant amount of research has been done on heterogeneous computing
techniques [14]. Harmony [4] is a runtime supported programming and execution
model that uses a data dependency graph to schedule and run independent ker-
nels in parallel heterogeneous architectures. This approach is distinct from ours
because we focus on data parallelism, while Harmony focus on task parallelism.
Merge [11] is a library system that deals with map-reduce applications on hetero-
geneous system. Qilin [12] is an API that automatically partitions threads to one
CPU and one GPU. SKMD [9] is a framework that transparently distributes the
work of a single parallel kernel across CPUs and GPUs. SOCL [7] is an OpenCL
implementation that allows users to dynamically dispatch kernels over devices.
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StarPU [2] is a task programming library for hybrid architectures that provides
support for heterogeneous scheduling. Our approach is distinct because we are
not proposing a new library, API, framework or OpenCL implementation, nor
we limit the number of CPUs or GPUs that can be used as Qilin does. Also,
StarPU does not perform inter-node load-balancing as our approach does. Since
the proposed dynamic scheduling approach is implemented in the application
code, we do not have to pay the overheads imposed by the frameworks, runtime
systems or APIs.

3 OpenCL

OpenCL (Open Computing Language) [15] is an open standard framework that
was created by the industry (Khronos Group) in order to help the development
of parallel applications in heterogeneous systems. An OpenCL platform includes
a single host, which submits work to devices. OpenCL devices, such as CPUs,
GPUs, and so on, are divided into compute units, which can further be divided
into processing elements(PEs). An OpenCL application consists of two parts, the
host program and one or more kernels. PEs execute the kernels, while the host
program is executed by the host. The host sends commands to devices through a
command-queue. There are three types of commands that can be issued: kernel
execution, memory and synchronization commands. The commands issued to a
specific queue can be executed in the same order they appear in the command-
queue (in-order execution), or can be executed out-of-order. The programmer
can use explicit synchronization mechanisms to enforce an order constrain to
the execution of commands in a queue. An automatic LB scheme, based on
the master-worker parallel pattern [13,15], can be implemented using command-
queues, specially those that implements out-of-order execution. However, this
parallel pattern is particularly suited for problems based on TLP [13]. In previous
works [16,17] we proposed distinct solutions based on an in-order execution for
problems based on DLP for an APU architecture.

4 Dynamic Load Balancing Scheme

Heterogeneous computers represent a big challenge to the development of appli-
cations that explore DLP. The use of all distinct PEs available to simultaneously
operate in all data items is not easy due to the distinct hardware characteristics.
In fact, heterogeneous computing on CPUs and GPUs using architectures like
CUDA [8] has fixed the roles for each device: GPUs have been used to handle
data parallel work while CPUs handle all the rest. The use of this fixed role has
impacts on performance, since CPUs are idle while GPUs are handling the data
parallel work. Actually CPUs could handle part of the work submitted to the
GPU. In this scenario, OpenCL [15] represents an interesting alternative, since
it is easy to program parallel codes that use all devices to operate in data items.
The point is that the programmer is responsible for the data division between
CPUs and GPUs. A good data division would give to each PE a distinct amount
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of data proportional to its relative performance. So if device A is 1.5 times faster
than device B, it should receive 1.5 times more data to compute than device B.

In previous works we have presented two distinct LB algorithms [16,17] to be
used with data parallel OpenCL codes running on an APU. The key idea behind
the two algorithms is similar: data is split into two parts, one of which will be
computed by the CPU, while the other one will be computed by the GPU. The
amount of data that will be assigned to the CPU and GPU depends on their
relative computing capabilities, which is measured in both LB algorithms during
the execution of the application.

This work further extends our previous LB algorithms to be used in a different
hardware platform: a heterogeneous cluster. Since an APU merges GPUs and
CPUs cores on a single silicon chip, some modifications have to be done in the
algorithm to deal with multiple GPUs and CPUs available in distinct nodes of a
cluster. Also, the algorithm does not assume that all machines in a cluster have
the same configuration, i.e., the same number and types of CPUs and GPUs.

The dynamic LB algorithm can be used in a wide variety of applications
that explore DLP. Usually these applications have at least two aligned loops,
in which the inner loop performs the same operations on distinct data items,
as Algorithm 1 shows. Each step of the inner loop (or a collection of loops, if a
multidimensional data structure is used) could be executed in any order, since
no data dependency occurs between two distinct loop iterations. The number of
steps the outer loop iterates is determined by the nature of the problem, but
usually a dependency exists between two consecutive steps: a new step cannot
proceed without the result of a previous one, since their results will be used
during the computation of the new step. In many applications the outer loop
is related to the progress of a simulation over time, and for this reason will be
referred in this work as time-steps. The dynamic LB algorithm will decide the
amount of data each PE will receive to compute in the inner loop.

During the computation of each data item, some applications require also
access to its neighbors data, which can be located at distinct memory spaces due
to data splitting between CPUs and GPUs. These data, called boundaries, must
be updated between two consecutive iteration of the outer loop. This update
requires the introduction of synchronization operations and the explicit copy of
data. In the case of a heterogeneous cluster, this copy may occur inside a machine
(e.g., copying data between two distinct GPUs or between the memory space of
a CPU and a GPU, and vice-versa) or between machines, which imposes the use
of communication primitives. Both data copy and synchronization operations
are expensive, deteriorating performance, and for this reason should be avoided.

The dynamic LB algorithm is presented in Algorithm 2 and works as follows.
For a single time-step, all GPUs and CPUs receive an equal amount of data to
compute (data size divided by the total number of PEs) and the time required to
compute them is recorded. This information is then used to compute the relative
computing power of each PE and consequently determine the amount of data it
will receive for the next time-steps. Equation 1 is used for this purpose.
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1 for all time-steps do
2 for each data item do
3 call cpus/gpus devices to compute a piece of data;
4 end
5 send/receive boundaries;
6 synchronize devices;

7 end
Algorithm 1. Data parallel algorithm

1 initialize MPI and OpenCL;
2 allocate memory in each device’s memory space;
3 divide data equally among all devices;
4 start clock;
5 for a single time-step do
6 call cpus/gpus to compute their data;
7 synchronize;

8 end
9 finish clock;

10 compute P
(t)
i and transfer data accordingly;

11 for all remaining time-steps do
12 if time-step % LB interval == 0 then
13 start clock;
14 call cpus/gpus to compute their data;
15 synchronize;
16 finish clock;

17 compute P
(t)
i ;

18 if |P (t)
i − P

(t−1)
i | > LB threshold then

19 transfer data accordingly;
20 synchronize devices;

21 end
22 else

23 P
(t)
i = P

(t−1)
i (keeps data distribution);

24 end

25 end
26 else
27 call cpus/gpus to compute interior points and transfer border points in

parallel;
28 synchronize;
29 call cpus/gpus to compute border points;
30 synchronize;

31 end

32 end
Algorithm 2. The dynamic LB algorithm
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where P
(t)
i is the percentage of data the PE i will receive to compute in the next

time-step, P (t−1)
i is the percentage of data the PE i received in the previous time-

step, T (t−1)
i is the time in which PE i executed the previous time-step, T (t−1)

r is
the time in which an arbitrary reference PE r executed the previous time-step
and k is the total number of PEs available in the heterogeneous cluster. In the
first time-step (t = 0), the percentage of data each PE will receive to compute
is divided equally among all PEs.

After the computation of the amount of data each PE will compute in the
next time-step, memory should be reallocated and data copied from its last
owner to the new one. However, in order to avoid memory reallocations, the
dynamic LB algorithm allocates, at each PE, an additional amount of memory
to avoid memory reallocations, and only data copies are required.

After the first time-step has finished, the LB algorithm will be executed from
time to time to adjust the amount of data each PE will receive till the end of the
computation. This occur because some applications exhibit an irregular behavior
during computation, while other applications that seems to be regular parallel
applications, such as the one that will be used in the performance evaluation,
suffer from irregular execution time phases during their execution. This happens
due to hardware optimizations done in the CPU, which would impact a static
LB algorithm, i.e., an algorithm that keeps the percentage found in the first
time-step until the end of computation [18].

The LB step is a time consuming task, specially due to data transfers between
PEs located in distinct machines. If the change in the amount of data each PE
must compute is minimal, the eventual performance gain is not compensated by
the overhead of moving data. So a parameter, called LB threshold, was added
to avoid this situation. If the difference between P

(t)
i and P

(t−1)
i is lower than

this threshold, the PEs remain with their previous loads until another LB step
is reached.

A final optimization is done in order to reduce the communication costs. Each
PE divides its data into two subsets: borders and interior points. The border
points are composed by the points that must be exchanged with the neighbors,
whereas the interior points are not exchanged. The PE compute first the border
points. While computing the interior points, the PE exchange borders with its
neighbors, so computation and communication overlap.

5 Performance Evaluation

This section evaluates the performance of the LB algorithm presented in this
work using for this purpose a simulator of the HIS [19,20]. This simulator was
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chosen because it is a representative of data parallel algorithm: the same set of
operations must be executed on a large amount of data.

All tests were executed on a small cluster composed by 3 machines. The
machines have two AMD 6272 processors (each machine has 32 cores), 32 GB
of main memory, two Tesla M2075 GPUs, each one with 448 CUDA cores and
6 GB of global memory. Linux 2.6.32, OpenMPI version 1.6.2 and gcc version
4.4.7 were used to run and compile all codes. The machines are connected by
a Gigabit Ethernet network. Although the AMD machines have a total of 96
cores, one Float-Point Unit (FPU) is shared by two cores, so only 48 FPUs are
available in the machines.

5.1 Benchmark

A three dimensional simulator of the HIS [19,20] was used to evaluate the perfor-
mance of the two load-balancing algorithms. The simulator implements a math-
ematical model that uses a set of eight Partial Differential Equations (PDEs) to
describe how some cells and molecules involved in the innate immune response,
such as neutrophils, macrophages, protein granules, pro- and anti-inflammatory
cytokines, react to an antigen, which is represented by lipopolysaccharides. The
diffusion of some cells and molecules are described by the mathematical model,
as well as the process of chemotaxis. Chemotaxis is the movement of immune
cells in response to chemical stimuli by pro-inflammatory cytokine. Neutrophils
and macrophages move towards the gradient of pro-inflammatory cytokine con-
centration. A detailed discussion about the model can be found in [19,20].

The numerical method used in the computational implementation of the
mathematical model was the Finite Difference Method [10], a method commonly
used in the discretization of PDEs. The computation of the convective term (the
chemotaxis term) is a complex part in the resolution of the PDEs. Our imple-
mentation is based on the finite difference method for the spatial discretization
and the explicit Euler method for the time evolution. First-Order Upwind scheme
[5] is used in the discretization of the chemotaxis term. More details about the
numerical implementation, specially how the Laplace operator, that simulates
the diffusion phenomenon, is implemented in 3D, can be found in a previous
work [20]. This previous work used C and CUDA in the implementation, using
only GPUs in the computation, while this work uses C and OpenCL, using all
resources (CPUs and GPUs) available in the cluster.

There are two ways to divide the data mesh: division by planes and division
by individual elements. The division by individual elements allows the algorithm
to use of a fine-grain data partition in the LB. In a previous work [18], we have
found that the division by individual elements performs better and, for this
reason, this division will be used in this work. A mesh of size 50 × 50 × 3200
was used in the experiments. The values used to set the initial conditions and
parameters of HIS are the same used in our previous work [16]. A total of 10, 000
time-steps were executed. The LB interval is equal to 10% of the time-steps and
the LB threshold is equal to 50 elements.
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Three versions of the HIS were executed: a sequential one, a version that
used the dynamic LB algorithm and one that did not use LB. In the version
that did not use the LB, the mesh size was divided equally among all PEs that
were used to execute the code. Each HIS version was executed at least 3 times,
and all standard deviations of the execution time were below 1%.

5.2 Results

Table 1 presents the results. As one can observe, the sequential version of the
code executes in more than 36 h. A typical simulation requires 1,000,000 time-
steps, which represents more than 151 days of computation. The parallel version
of the simulator that does not use the LB algorithm executes up to 435 times
faster. But the dynamic LB algorithm improved the performance even more:
using the same configuration, the application executed 916 times faster than the
sequential one and 2.1 times faster than the version that does not use the LB
algorithm.

Table 1. Experimental results for the parallel version of the code in a small clus-
ter. Average execution time(s) and gains relative to the version without LB and the
sequential one.

Platform w/o LB LB Gain

32 CPUs + 2 GPUs 531.3 283.1 1.9

64 CPUs + 4 GPUs 308.3 182.1 1.7

96 CPUs + 6 GPUs 300.5 142.7 2.1

Sequential 130,694.33 916

Table 2 presents the HIS parallel execution time in a single machine, consid-
ering the use of each computational resource at a time, as well as using all of
them simultaneously, with and without the use of the LB algorithm proposed
in this work. The best result obtained with the use of a single computational

Table 2. Using all resources types available in a single machine × using one at a time.
Times in seconds. Gains compared to the version that uses 2 GPUs to execute the
code.

Platform Execution time Gain

32 CPUs 1,688 -

1 GPU 627 -

2 GPUs 317 -

32 CPUs + 2 GPUs (w/o LB) 531.3 0.6

32 CPUs + 2 GPUs (LB) 283.1 1.12
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resource was 317 s, when 2 GPUs are used to execute the code. The simultane-
ous use of all resources does not guarantee a performance gain: if all CPUs and
GPUs are included in the computation, the parallel execution time increases to
531 s. However, the same configuration can obtain a performance gain if the LB
algorithm is used: the execution time reduces to 283 s.

6 Conclusions and Future Works

This paper presented the implementation of a dynamic LB algorithm in a hetero-
geneous cluster environment. Its key idea is to split data items of an application
that explore DLP into multiple parts that will be computed simultaneously by
CPUs and GPUs. The amount of data that will be assigned to CPUs and GPUs
depends on their relative computing capabilities, which is measured and updated
during all the execution of the application.

A performance evaluation of the dynamic LB algorithm was executed, using
for this purpose the Human Immune System simulator. The results have shown
that the algorithm was very effective in its purpose, resulting in gains up to 916-
fold in execution time compared to the sequential one. Compared to the version
that did not use the LB, the gains in performance were 2.1 times. We have also
shown that performance gains could only be obtained using all resources in a
single machine if the LB algorithm was used.

As future works, we plan: (a) to measure the overheads imposed by the algo-
rithm, specially the time spent with communication due to a new data division;
(b) to develop a static version of the algorithm, and compare it to the dynamic
one; (c) to evaluate the proposed LB algorithm using other benchmarks; and (d)
evaluate the impacts of the algorithm in the scalability of applications.
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