Roman Wyrzykowski
Jack Dongarra

Ewa Deelman

Konrad Karczewski (Eds.)

Parallel Processing
and Applied Mathematics

12th International Conference, PPAM 2017
Lublin, Poland, September 10-13, 2017
Revised Selected Papers, Part II

LNCS 10778

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10778

More information about this series at http://www.springer.com/series/7407

Roman Wyrzykowski - Jack Dongarra
Ewa Deelman - Konrad Karczewski (Eds.)

Parallel Processing
and Applied Mathematics

12th International Conference, PPAM 2017
Lublin, Poland, September 10-13, 2017
Revised Selected Papers, Part 11

@ Springer

Editors

Roman Wyrzykowski

Czestochowa University of Technology
Czestochowa

Poland

Jack Dongarra
University of Tennessee
Knoxville, TN

USA

Ewa Deelman

University of Southern California
Marina Del Rey, CA

USA

Konrad Karczewski

Czestochowa University of Technology
Czestochowa

Poland

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-319-78053-5 ISBN 978-3-319-78054-2 (eBook)
https://doi.org/10.1007/978-3-319-78054-2

ISSN 1611-3349 (electronic)

Library of Congress Control Number: 2018937375
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1724-1786
http://orcid.org/0000-0003-3247-1782
http://orcid.org/0000-0001-5106-503X

Preface

This volume comprises the proceedings of the 12th International Conference on
Parallel Processing and Applied Mathematics — PPAM 2017, which was held in Lublin,
Poland, September 10-13, 2017. It was organized by the Department of Computer and
Information Science of the Czestochowa University of Technology together with Maria
Curie-Sktodowska University in Lublin, under the patronage of the Committee of
Informatics of the Polish Academy of Sciences, in technical cooperation with the IEEE
Computer Society and ICT COST Action IC1305 “Network for Sustainable Ultrascale
Computing (NESUS)”. The main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Ten previous events have been held in different
places in Poland since 1994. The proceedings of the last six conferences have been
published by Springer in the Lecture Notes in Computer Science series (Nalgczow,
2001, vol. 2328; Czestochowa, 2003, vol. 3019; Poznan, 2005, vol. 3911; Gdansk,
2007, vol. 4967; Wroctaw, 2009, vols. 6067 and 6068; Torun, 2011, vols. 7203 and
7204; Warsaw, 2013, vols. 8384 and 8385; Krakow, 2015, vols. 9573 and 9574).

The PPAM conferences have become an international forum for the exchange of
ideas between researchers involved in parallel and distributed computing, including
theory and applications, as well as applied and computational mathematics. The focus
of PPAM 2017 was on models, algorithms, and software tools that facilitate efficient
and convenient utilization of modern parallel and distributed computing architectures,
as well as on large-scale applications, including big data and machine learning
problems.

This meeting gathered more than 170 participants from 25 countries. A strict review
process resulted in the acceptance of 100 contributed papers for publication in the
conference proceedings, while approximately 42% of the submissions were rejected.
For regular tracks of the conference, 49 papers were selected from 98 submissions,
giving an acceptance rate of 50%.

The regular tracks covered such important fields of parallel/distributed/cloud com-
puting and applied mathematics as:

— Numerical algorithms and parallel scientific computing, including parallel matrix
factorizations and particle methods in simulations

— Task-based paradigm of parallel computing

— GPU computing

— Parallel non-numerical algorithms

— Performance evaluation of parallel algorithms and applications

— Environments and frameworks for parallel/distributed/cloud computing

— Applications of parallel computing

— Soft computing with applications

VI

Preface

The invited talks were presented by:

Rosa Badia from the Barcelona Supercomputing Center (Spain)

Franck Cappello from the Argonne National Laboratory (USA)

Cris Cecka from NVIDIA and Stanford University (USA)

Jack Dongarra from the University of Tennessee and ORNL (USA)

Thomas Fahringer from the University of Innsbruck (Austria)

Dominik Géddeke from the University of Stuttgart (Germany)

William Gropp from the University of Illinois Urbana-Champaign (USA)

Georg Hager from the University of Erlangen-Nurnberg (Germany)

Alexey Lastovetsky from the University College Dublin (Ireland)

Satoshi Matsuoka from the Tokyo Institute of Technology (Japan)

Karlheinz Meier from the University of Heidelberg (Germany)

Manish Parashar from Rutgers University (USA)

Jean-Marc Pierson from the University Paul Sabatier (France)

Uwe Schwiegelshohn from TU Dortmund (Germany)

Bronis R. de Supinski from the Lawrence Livermore National Laboratory (USA)
Boleslaw K. Szymanski from the Rensselaer Polytechnic Institute (USA)
Michela Taufer from the University of Delaware (USA)

Andrei Tchernykh from the CICESE Research Center (Mexico)

Jeffrey Vetter from the Oak Ridge National Laboratory and Georgia Institute of
Technology (USA)

Important and integral parts of the PPAM 2017 conference were the workshops:

Workshop on Models, Algorithms, and Methodologies for Hierarchical Parallelism
in New HPC Systems organized by Giulliano Laccetti and Marco Lapegna from the
University of Naples Federico II (Italy), and Raffacle Montella from the University
of Naples Parthenope (Italy)

Workshop on Power and Energy Aspects of Computation — PEAC 2017 organized
by Ariel Oleksiak from the Poznan Supercomputing and Networking Center
(Poland) and Laurent Lefevre from Inria (France)

Workshop on Scheduling for Parallel Computing — SPC 2017 organized by Maciej
Drozdowski from the Poznan University of Technology (Poland)

The 7th Workshop on Language-Based Parallel Programming Models — WLPP
2017 organized by Ami Marowka from Bar-Ilan University (Israel)

Workshop on PGAS Programming organized by Piotr Bata from Warsaw
University (Poland)

Special Session on Parallel Matrix Factorizations organized by Marian Vajtersic
from the University of Salzburg (Austria) and Slovak Academy of Sciences
Minisymposium on HPC Applications in Physical Sciences organized by Grzegorz
Kamieniarz and Wojciech Florek from the A. Mickiewicz University in Poznan
(Poland)

Minisymposium on High-Performance Computing Interval Methods organized by
Bartlomiej J. Kubica from Warsaw University of Technology (Poland)

Workshop on Complex Collective Systems organized by Pawet Topa and Jarostaw
Was from the AGH University of Science and Technology in Krakow (Poland)

Preface VII

The PPAM 2017 meeting began with three tutorials:

— Scientific Computing with GPUs, by Dominik Goddeke from the University of
Stuttgart (Germany) and Robert Strzodka from Heidelberg University (Germany)

— Advanced OpenMP Tutorial, by Dirk Schmidl from RWTH Aachen University
(Germany)

— Parallel Computing in Java, by Piotr Bala from Warsaw University (Poland), and
Marek Nowicki from the Nicolaus Copernicus University in Torun (Poland)

A new topic at PPAM 2017 was “Particle Methods in Simulations.” Particle-based
and Lagrangian formulations are all-time classics in supercomputing and have been
wrestling with classic mesh-based approaches such as finite elements for quite a while
now, in terms of computational expressiveness and efficiency. Computationally, par-
ticle formalisms benefit from very costly inter-particle interactions. These interactions
with high arithmetic intensity make them reasonably “low-hanging” fruits in super-
computing with its notoriously limited bandwidth and high concurrency.

Surprisingly, PPAM 2017 was shaped by articles that give up on expensive particle—
particle interactions: discrete element methods (DEM) study rigid bodies which interact
only rarely once they are in contact, while particle-in-cell (PIC) methods use the
physical expressiveness of Lagrangian descriptions but make the particles interact
solely locally with a surrounding grid. It is obvious that the lack of direct long-range
particle—particle interaction increases the concurrency of the algorithms. Yet, it comes
at a price. With low arithmetic intensity, all data structures have to be extremely
fine-tuned to perform on modern hardware, and load-balancing has to be lightweight.
Codes cannot afford to resort data inefficiently all the time, move around too much data,
or work with data structures that are ill-suited for vector processing, while notably the
algorithmic parts with limited vectorization potential have to be revisited and maybe
rewritten for emerging processors tailored toward stream processing.

The new session “Particle Methods in Simulations” provided a platform for some
presentations with interesting and significant contributions addressing these challenges:

— Contact problems are rephrased as continuous minimization problems coupled with
a posteriori validity checks, which allows codes to vectorize at least the first step
aggressively (by K. Krestenitis, T. Weinzierl, and T. Koziara)

— Classic PIC is recasted into a single-touch algorithm with only few synchronization
points, which releases pressure from the memory subsystem (by Y. Barsamian,
A. Chargueraud, and A. Ketterlin)

— Cell-based shared memory parallelization of PIC is revised from a scheduling point of
view and tailored parallelization schemes are developed, which anticipate the enor-
mous per-cell load imbalances resulting from clustered particles (by A. Larin et al.)

— Particle sorting algorithms are revisited that make the particles be stored in memory
in the way they are later accessed by the algorithm even though the particles tend to
move through the domain quickly (by A. Dorobisz et al).

Another new topic at PPAM 2017 was “Task-Based Paradigm of Parallel Com-
puting.” Task-based parallel programming models have appeared in the recent years as
an alternative to traditional parallel programming models, both for fine-grain and

VIII Preface

coarse-grain parallelism. In this paradigm, the task is the unit of execution and tradi-
tionally a data-dependency graph of the application tasks represents the application.
From this graph, the potential parallelism of the application is exploited, enabling an
asynchronous execution of the tasks that do not require explicit fork-join structures.

Research topics in the area are multiple, from the specification of the syntax or
programming interfaces, the definition of new scheduling and resource management
algorithms that take into account different metrics, the design of the interfaces with the
actual infrastructure, or new algorithms specified in this parallel paradigm. As an
example of the success of this paradigm, the OpenMP standard has adopted this
paradigm in its latest releases.

This topic was presented at PPAM 2017 in the form of a session that consisted of
several presentations from various topics:

— “A Proposal for a Unified Interface for Task-Based Programming Models That
Enables the Execution of Applications in Multiple Parallel Environments”
(by A. Zafari)

— “A Comparison of Time and Energy Oriented Scheduling for Task-Based Pro-
grams, Which Is Based on Real Measured Data for the Tasks Leading to Diverse
Effects Concerning Time, Energy, and Power Consumption” (by T. Rauber and
G. Riinger)

— “A Study of a Set of Experiments with the Sparse Cholesky Decomposition on
Multicore Platforms, Using a Parametrized Task Graph Implementation” (by I. Duff
and F. Lopez)

— “A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix in Real
Schur Form, Which Is Realized on Top of the StarPU Runtime System”
(by M. Myllykoski)

A new topic at PPAM 2017 was the “Special Session on Parallel Matrix Factor-
izations.” Nowadays, in order to meet demands of high-performance computing, it is
necessary to pay serious attention to the development of fast, reliable, and
communication-efficient algorithms for solving kernel linear algebra problems. Tasks
that lead to matrix decomposition computations are undoubtedly some of the most
frequent problems encountered in this field. Therefore, the aim of the special session
was to present new results from parallel linear algebra with an emphasis on methods
and algorithms for factorizations and decompositions of large sparse and dense
matrices. Both theoretical aspects and software issues related to this problem area were
considered for submission.

The topics of the special session focused on: (a) efficient algorithms for the
EVD/SVD/NMF decompositions of large matrices, their design and analysis; (b) im-
plementation of parallel matrix factorization algorithms on parallel CPU and GPU
systems; (c) usage of parallel matrix factorizations for solving problems arising in
scientific and technical applications. Seven papers were accepted for presentation,
which covered the session topics. Geographically, the authors were dispersed among
two continents and five countries. The individual themes of the contributions included:

— “New Preconditioning for the One-Sided Block-Jacobi Singular Value Decompo-
sition Algorithm” (by M. Be€ka, G. OkS3a, and E. Vidli¢kov4)

Preface X

— “Using the Cholesky QR Method in the Full-Blocked One-Sided Jacobi Algorithm”
(by S. Kudo and Y. Yamamoto)

— “Parallel Divide-and-Conquer Algorithm for Solving Tridiagonal Eigenvalue
Problems on Manycore Systems” (by Y. Hirota and 1. Toshiyuki)

— “Structure-Preserving Technique in the Block SS-Hankel Method for Solving
Hermitian Generalized Eigenvalue Problems” (by A. Imakura, Y. Futamura, and
T. Sakurai)

— “Parallel Inverse of Non-Hermitian Block Tridiagonal Matrices” (by L. Spellacy
and D. Golden)

— “Tunability of a New Hessenberg Reduction Algorithm Using Parallel Cache
Assignment” (by M. Eljammaly, L. Karlsson, and B. Kagstrom)

— “Convergence and Parallelization of Nonnegative Matrix Factorization (NMF) with
Newton Iteration” (by R. Kutil, M. Flatz, and M. Vajtersic).

The organizers are indebted to the PPAM 2017 sponsors, whose support was vital
for the success of the conference. The main sponsor was the Intel Corporation. Another
important sponsor was Lenovo. We thank all the members of the international Program
Committee and additional reviewers for their diligent work in refereeing the submitted
papers. Finally, we thank all the local organizers from the Czgstochowa University of
Technology, and Maria Curie-Sktodowska University in Lublin, who helped us run the
event very smoothly. We are especially indebted to Grazyna Kotakowska, Urszula
Kroczewska, Lukasz Kuczynski, Adam Toma$, and Marcin Wozniak from the
Czestochowa University of Technology; and to Przemystaw Stpiczynski and Beata
Bylina from Maria Curie-Sktodowska University. Also, Pawel Gepner from Intel
offered great help in organizing social events for PPAM 2017, including the excursion
to the Zamoyski Palace in Kozldéwka and the concert of the youth accordion orchestra
“Arti Sentemo” at the Royal Castle in Lublin.

We hope that this volume will be useful to you. We would like everyone who reads
it to feel invited to the next conference, PPAM 2019, which will be held during
September 8-11, 2019, in Bialystok, the largest city in northeastern Poland, located
close to the world-famous Bialowieza Forest.

January 2018 Roman Wyrzykowski
Jack Dongarra

Ewa Deelman

Konrad Karczewski

Program Committee

Jan Weglarz
(Honorary Chair)

Roman Wyrzykowski
(Program Chair)

Ewa Deelman
(Program Co-chair)

Pedro Alonso

Hartwig Anzt

Peter Arbenz

Cevdet Aykanat

Marc Baboulin

David A. Bader

Michael Bader

Piotr Bata

Krzysztof Bana$

Olivier Beaumont

Wtodzimierz Bielecki

Paolo Bientinesi

Radim Blaheta

Jacek Btazewicz

Pascal Bouvry

Jerzy Brzezinski

Marian Bubak

Tadeusz Burczynski
Christopher Carothers
Jesus Carretero
Raimondas Ciegis
Andrea Clematis
Zbigniew Czech
Pawel Czarnul

Jack Dongarra
Maciej Drozdowski
Mariusz Flasinski
Tomas Fryza

Jose Daniel Garcia
Pawel Gepner
Shamsollah Ghanbari

Organization

Poznan University of Technology, Poland
Czestochowa University of Technology, Poland
University of Southern California, USA

Universidad Politecnica de Valencia, Spain
University of Tennessee, USA

ETH, Zurich, Switzerland

Bilkent University, Ankara, Turkey
University of Paris-Sud, France

Georgia Institute of Technology, USA

TU Miinchen, Germany

Warsaw University, Poland

AGH University of Science and Technology, Poland

Inria Bordeaux, France

West Pomeranian University of Technology, Poland

RWTH Aachen, Germany

Czech Academy of Sciences, Czech Republic
Poznan University of Technology, Poland
University of Luxembourg

Poznan University of Technology, Poland

AGH Krakéw, Poland and University of Amsterdam,

The Netherlands
Polish Academy of Sciences, Warsaw, Poland
Rensselaer Polytechnic Institute, USA
Universidad Carlos III de Madrid, Spain

Vilnius Gediminas Technical University, Lithuania

IMATI-CNR, Italy

Silesia University of Technology, Poland
Gdansk University of Technology, Poland
University of Tennessee and ORNL, USA
Poznan University of Technology, Poland
Jagiellonian University, Poland

Brno University of Technology, Czech Republic
Universidad Carlos III de Madrid, Spain

Intel Corporation, Poland

Universiti Putra, Malaysia

XII Organization

Domingo Gimenez
Jacek Gondzio
Andrzej Goscinski
Laura Grigori
Inge Gutheil
Georg Hager

José R. Herrero
Ladislav Hluchy
Sasha Hunold
Aleksandar Ilic
Florin Isaila
Ondrej Jakl

Emmanuel Jeannot
Bo Kagstrom
Grzegorz Kamieniarz
Eleni Karatza

Ayse Kiper

Jacek Kitowski
Joanna Kotodziej
Jozef Korbicz
Stanislaw Kozielski
Tomas Kozubek
Dieter Kranzlmueller

Henryk Krawczyk
Piotr Krzyzanowski
Krzysztof Kurowski
Jan Kwiatkowski
Giulliano Laccetti
Marco Lapegna
Alexey Lastovetsky
Laurent Lefevre
Joao Lourenco

Tze Meng Low
Hatem Ltaief
Emilio Luque

Piotr Luszczek
Victor E. Malyshkin

Pierre Manneback
Tomas Margalef
Svetozar Margenov
Ami Marowka
Norbert Meyer

University of Murcia, Spain

University of Edinburgh, Scotland, UK
Deakin University, Australia

Inria, France

Forschungszentrum Juelich, Germany
University of Erlangen-Nuremberg, Germany

Universitat Politecnica de Catalunya, Barcelona, Spain

Slovak Academy of Sciences, Bratislava, Slovakia
Vienna University of Technology, Austria
Technical University of Lisbon, Portugal
Universidad Carlos III de Madrid, Spain
Institute of Geonics, Czech Academy of Sciences,
Czech Republic
Inria, France
Umea University, Sweden
A. Mickiewicz University in Poznan, Poland
Aristotle University of Thessaloniki, Greece
Middle East Technical University, Turkey
Institute of Computer Science, AGH, Poland
Cracow University of Technology, Poland
University of Zielona Gora, Poland
Silesia University of Technology, Poland
Technical University of Ostrava, Czech Republic
Ludwig-Maximillian University, Munich
and Leibniz Supercomputing Centre, Germany
Gdansk University of Technology, Poland
University of Warsaw, Poland
PSNC, Poznan, Poland
Wroctaw University of Technology, Poland
University of Naples Federico II, Italy
University of Naples Federico II, Italy
University College Dublin, Ireland
Inria and University of Lyon, France
University Nova of Lisbon, Portugal
Carnegie Mellon University, USA
KAUST, Saudi Arabia
Universitat Autonoma de Barcelona, Spain
University of Tennessee, USA
Siberian Branch, Russian Academy of Sciences,
Russian Federation
University of Mons, Belgium
Universitat Autonoma de Barcelona, Spain
Bulgarian Academy of Sciences, Sofia
Bar-Ilan University, Israel
PSNC, Poznan, Poland

Tosif Meyerov

Marek Michalewicz
Ricardo Morla
Jarek Nabrzyski
Raymond Namyst
Edoardo Di Napoli
Gabriel Oksa
Tomasz Olas

Ariel Oleksiak
Ozcan Ozturk
Marcin Paprzycki
Dana Petcu
Jean-Marc Pierson
Radu Prodan
Enrique S. Quintana-Orti
Omer Rana
Thomas Rauber
Krzysztof Rojek
Jacek Rokicki
Leszek Rutkowski
Robert Schaefer
Stanislav Sedukhin
Franciszek Seredynski

Happy Sithole
Jurij Silc

Karolj Skala
Renata Stota
Leonel Sousa
Vladimir Stegailov

Radek Stompor
Przemystaw Stpiczynski
Maciej Stroinski

Reiji Suda

Lukasz Szustak
Boleslaw Szymanski
Domenico Talia
Andrei Tchernykh
Christian Terboven
Parimala Thulasiraman
Roman Trobec
Giuseppe Trunfio
Denis Trystram

Organization XTI

Lobachevsky State University of Nizhni Novgorod,
Russian Federation

ICM, Warsaw University, Poland

INESC Porto, Portugal

University of Notre Dame, USA

University of Bordeaux and Inria, France

Forschungszentrum Juelich, Germany

Slovak Academy of Sciences, Bratislava, Slovakia

Czestochowa University of Technology, Poland

PSNC, Poland

Bilkent University, Turkey

IBS PAN and SWPS, Warsaw, Poland

West University of Timisoara, Romania

University Paul Sabatier, France

University of Innsbruck, Austria

Universidad Jaime I, Spain

Cardiff University, UK

University of Bayreuth, Germany

Czestochowa University of Technology, Poland

Warsaw University of Technology, Poland

Czestochowa University of Technology, Poland

Institute of Computer Science, AGH, Poland

University of Aizu, Japan

Cardinal Stefan Wyszynski University in Warsaw,
Poland

Centre for High Performance Computing, South Africa

Jozef Stefan Institute, Slovenia

Ruder Boskovic Institute, Croatia

Institute of Computer Science, AGH, Poland

Technical University of Lisbon, Portugal

Joint Institute for High Temperatures of RAS, Moscow,
Russian Federation

Universite Paris Diderot and CNRS, France

Maria Curie-Sktodowska University, Poland

PSNC, Poznan, Poland

University of Tokyo, Japan

Czestochowa University of Technology, Poland

Rensselaer Polytechnic Institute, USA

University of Calabria, Italy

CICESE Research Center, Ensenada, Mexico

RWTH Aachen, Germany

University of Manitoba, Canada

Jozef Stefan Institute, Slovenia

University of Sassari, Italy

Grenoble Institute of Technology, France

XIV Organization

Marek Tudryj

Pavel Tvrdik
Bora Ucar
Marian Vajtersic

Vladimir Voevodin
Kazimierz Wiatr

Bogdan Wiszniewski
Roel Wuyts
Andrzej Wyszogrodzki

Ramin Yahyapour
Jiangtao Yin
Krzysztof Zielinski
Julius Zilinskas
Jarostaw Zola

Steering Committee

Jack Dongarra
Leszek Rutkowski
Boleslaw Szymanski

Polish Academy of Sciences and Polish-Japanese
Academy of Information Technology, Warsaw,
Poland

Czech Technical University, Prague, Czech Republic

Ecole Normale Superieure de Lyon, France

Salzburg University, Austria, and Slovak Academy
of Sciences, Slovakia

Moscow State University, Russian Federation

Academic Computer Center CYFRONET AGH,
Poland

Gdansk University of Technology, Poland

IMEC, Belgium

Institute of Meteorology and Water Management,
Warsaw, Poland

University of Gottingen/GWDG, Germany

University of Massachusetts Amherst, USA

Institute of Computer Science, AGH, Poland

Vilnius University, Lithuania

University of Buffalo, USA

University of Tennessee and ORNL, USA
Czestochowa University of Technology, Poland
Rensselaer Polytechnic Institute, USA

Contents — Part 11

Workshop on Models, Algorithms and Methodologies
for Hybrid Parallelism in New HPC Systems

An Experience Report on (Auto-)tuning of Mesh-Based PDE
Solvers on Shared Memory Systemst
Dominic E. Charrier and Tobias Weinzierl

Using GPGPU Accelerated Interpolation Algorithms for Marine

Bathymetry Processing with On-Premises and Cloud Based

Computational Resources.
Livia Marcellino, Raffaele Montella, Sokol Kosta, Ardelio Galletti,
Diana Di Luccio, Vincenzo Santopietro, Mario Ruggieri,
Marco Lapegna, Luisa D’Amore, and Giuliano Laccetti

Relaxing the Correctness Conditions on Concurrent Data Structures

for Multicore CPUs. A Numerical Case Study
Giuliano Laccetti, Marco Lapegna, Valeria Mele,
and Raffaele Montella

Energy Analysis of a 4D Variational Data Assimilation Algorithm

and Evaluation on ARM-Based HPC Systems
Rossella Arcucci, Davide Basciano, Alessandro Cilardo,
Luisa D 'Amore, and Filippo Mantovani

Performance Assessment of the Incremental Strong Constraints

4DVAR Algorithm in ROMS
Luisa D’Amore, Rossella Arcucci, Yi Li, Raffaele Montella,
Andrew Moore, Luke Phillipson, and Ralf Toumi

Evaluation of HCM: A New Model to Predict the Execution Time

of Regular Parallel Applications on a Heterogeneous Cluster
Thiago Marques Soares, Rodrigo Weber dos Santos,
and Marcelo Lobosco

Workshop on Power and Energy Aspects
of Computations (PEAC 2017)

Applicability of the Empirical Mode Decomposition for Power
Traces of Large-Scale Applications
Gary Lawson, Masha Sosonkina, Tal Ezer, and Yuzhong Shen

XVI Contents — Part 11

Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware

for Memory-Bound Problems: A Case Study of Ab Initio

Calculations with VASP 81
Viadimir Stegailov and Vyacheslav Vecher

GPU Power Modeling of HPC Applications for the Simulation

Antonios T. Makaratzis, Malik M. Khan,
Konstantinos M. Giannoutakis, Anne C. Elster,
and Dimitrios Tzovaras

Bi-cluster Parallel Computing in Bioinformatics — Performance
and Eco-Efficiency 102
Pawel Foszner and Przemystaw Skurowski

Performance and Energy Analysis of Scientific Workloads
Executing on LPSoCs o 113
Anish Varghese, Joshua Milthorpe, and Alistair P. Rendell

Energy Efficient Dynamic Load Balancing over MultiGPU

Heterogeneous SyStemst te 123
Alberto Cabrera, Alejandro Acosta, Francisco Almeida,
and Vicente Blanco

Workshop on Scheduling for Parallel Computing (SPC 2017)

Scheduling Data Gathering with Maximum Lateness Objective. 135
Joanna Berlinska

Fair Scheduling in Grid VOs with Anticipation Heuristic. 145
Victor Toporkov, Dmitry Yemelyanov, and Anna Toporkova

A Security-Driven Approach to Online Job Scheduling in IaaS
Cloud Computing SyStems.ottt e et e e 156
Jakub Ggsior, Franciszek Seredynski, and Andrei Tchernykh

Dynamic Load Balancing Algorithm for Heterogeneous Clusters. 166
Tiago Marques do Nascimento, Rodrigo Weber dos Santos,
and Marcelo Lobosco

Multi-Objective Extremal Optimization in Processor Load Balancing

for Distributed Programs 176
Ivanoe De Falco, Eryk Laskowski, Richard Olejnik,
Umberto Scafuri, Ernesto Tarantino, and Marek Tudruj

Contents — Part II

Workshop on Language-Based Parallel Programming
Models (WLPP 2017)

Pardis: A Process Calculus for Parallel and Distributed

Programming in Haskell.

Christopher Blocker and Ulrich Hoffmann

Towards High-Performance Python

Ami Marowka

Actor Model of a New Functional Language - Anemone

Pawet Batko and Marcin Kuta

Almost Optimal Column-wise Prefix-sum Computation on the GPU

Hiroki Tokura, Toru Fujita, Koji Nakano, and Yasuaki Ito

A Combination of Intra- and Inter-place Work Stealing

forthe APGAS Library

Jonas Posner and Claudia Fohry

Benchmarking Molecular Dynamics with OpenCL

on Many-Core Architectures.ottt

Rene Halver, Wilhelm Homberg, and Godehard Sutmann

Efficient Language-Based Parallelization of Computational

Problems Using Cilk Plus,

Przemystaw Stpiczynski

A Taxonomy of Task-Based Technologies for

High-Performance Computing.,

Peter Thoman, Khalid Hasanov, Kiril Dichev, Roman lakymchuk,
Xavier Aguilar, Philipp Gschwandtner, Pierre Lemarinier,
Stefano Markidis, Herbert Jordan, Erwin Laure, Kostas Katrinis,
Dimitrios S. Nikolopoulos, and Thomas Fahringer

Workshop on PGAS Programming

Interoperability of GASPI and MPI in Large Scale

Scientific Applications. e

Dana Akhmetova, Luis Cebamanos, Roman lakymchuk,
Tiberiu Rotaru, Mirko Rahn, Stefano Markidis, Erwin Laure,
Valeria Bartsch, and Christian Simmendinger

Evaluation of the Parallel Performance of the Java and PCJ

on the Inte]l KNL Based Systems

Marek Nowicki, £ukasz Gorski, and Piotr Bata

XVvII

288

XVIIL Contents — Part 11

Fault-Tolerance Mechanisms for the Java Parallel Codes
Implemented with the PCJ Library 298
Michat Szynkiewicz and Marek Nowicki

Exploring Graph Analytics with the PCJ Toolbox 308
Roxana Istrate, Panagiotis KI. Barkoutsos, Michele Dolfi,
Peter W. J. Staar, and Costas Bekas

Big Data Analytics in Java with PCJ Library: Performance

Comparison with Hadoop. 318
Marek Nowicki, Magdalena Ryczkowska, Lukasz Gorski,
and Piotr Bala

Performance Comparison of Graph BFS Implemented
in MapReduce and PGAS Programming Models. 328
Magdalena Ryczkowska and Marek Nowicki

Minisymposium on HPC Applications in Physical Sciences

Efficient Parallel Generation of Many-Nucleon Basis

for Large-Scale Ab Initio Nuclear Structure Calculations 341
Daniel Langr, Tomas Dytrych, Tomads Oberhuber,
and Frantisek Knapp

Parallel Exact Diagonalization Approach to Large Molecular
Nanomagnets Modelling 351
Michal Antkowiak

Application of Numerical Quantum Transfer-Matrix Approach

in the Randomly Diluted Quantum Spin Chains 359
Ryszard Matysiak, Philipp Gegenwart, Akira Ochiai,
and Frank Steglich

Minisymposium on High Performance Computing Interval Methods

A New Method for Solving Nonlinear Interval and Fuzzy Equations. 371
Ludmila Dymova and Pavel Sevastjanov

Role of Hull-Consistency in the HIBA_USNE Multithreaded
Solver for Nonlinear Systems, 381
Barttomiej Jacek Kubica

Paralle] Computing of Linear Systems with Linearly Dependent
Intervals in MATLAB 391
Ondrej Kral and Milan Hladik

Contents — Part II XIX

What Decision to Make in a Conflict Situation Under Interval Uncertainty:
Efficient Algorithms for the Hurwicz Approach 402
Bartlomiej Jacek Kubica, Andrzej Pownuk, and Viadik Kreinovich

Practical Need for Algebraic (Equality-Type) Solutions of Interval

Equations and for Extended-Zero Solutions 412
Ludmila Dymova, Pavel Sevastjanov, Andrzej Pownuk,
and Vladik Kreinovich

Workshop on Complex Collective Systems

Application of Local Search with Perturbation Inspired

by Cellular Automata for Heuristic Optimization

of Sensor Network Coverage Problem 425
Krzysztof Trojanowski, Artur Mikitiuk, and Krzysztof J. M. Napiorkowski

A Fuzzy Logic Inspired Cellular Automata Based Model for Simulating

Crowd Evacuation Processes 436
Prodromos Gavriilidis, loannis Gerakakis, loakeim G. Georgoudas,
Giuseppe A. Trunfio, and Georgios Ch. Sirakoulis

Nondeterministic Cellular Automaton for Modelling Urban Traffic with
Self-organizing Control e 446
Jacek Szklarski

Towards Multi-Agent Simulations Accelerated by GPU. 456
Kamil Pigetak and Pawel Topa

Tournament-Based Convection Selection in Evolutionary Algorithms 466
Maciej Komosinski and Konrad Miazga

Multi-agent Systems Programmed Visually with Google Blockly 476
Szymon Gorowski, Robert Maguda, and Pawet Topa

Author Index e 485

Contents — Part 1

Numerical Algorithms and Parallel Scientific Computing

Advances in Incremental PCA Algorithms 3
Tal Halpern and Sivan Toledo

Algorithms for Forward and Backward Solution of the Fokker-Planck
Equation in the Heliospheric Transport of Cosmic Rays. 14
Anna Wawrzynczak, Renata Modzelewska, and Agnieszka Gil

Efficient Evaluation of Matrix Polynomials 24
Niv Hoffiman, Oded Schwartz, and Sivan Toledo

A Comparison of Soft-Fault Error Models in the Parallel Preconditioned

Flexible GMRES 36
Evan Coleman, Aygul Jamal, Marc Baboulin, Amal Khabou,
and Masha Sosonkina

Multilayer Approach for Joint Direct and Transposed Sparse Matrix
Vector Multiplication for Multithreaded CPUs 47
Ivan Simecek, Daniel Langr, and Ivan Kotenkov

Comparison of Parallel Time-Periodic Navier-Stokes Solvers 57
Peter Arbenz, Daniel Hupp, and Dominik Obrist

Blocked Algorithms for Robust Solution of Triangular Linear Systems 68
Carl Christian Kjelgaard Mikkelsen and Lars Karlsson

A Comparison of Accuracy and Efficiency of Parallel Solvers for Fractional

Power Diffusion Problems 79
Raimondas éiegis, Vadimas Starikovicius, Svetozar Margenov,
and Rima Kriauziené

Efficient Cross Section Reconstruction on Modern Multi and Many

Core Architectures. i e 90
Yunsong Wang, Francois-Xavier Hugot, Emeric Brun,
Fausto Malvagi, and Christophe Calvin

Parallel Assembly of ACA BEM Matrices on Xeon Phi Clusters. 101
Michal Kravcenko, Lukas Maly, Michal Merta, and Jan Zapletal

Stochastic Bounds for Markov Chains on Intel Xeon Phi Coprocessor. 111
Jarostaw Bylina

XXII Contents — Part 1

Particle Methods in Simulations

Fast DEM Collision Checks on Multicore Nodes 123
Konstantinos Krestenitis, Tobias Weinzierl, and Tomasz Koziara

A Space and Bandwidth Efficient Multicore Algorithm
for the Particle-in-Cell Method 133
Yann Barsamian, Arthur Charguéraud, and Alain Ketterlin

Load Balancing for Particle-in-Cell Plasma Simulation

on Multicore Systemsottt e 145
Anton Larin, Sergey Bastrakov, Aleksei Bashinov,
Evgeny Efimenko, Igor Surmin, Arkady Gonoskov,
and losif Meyerov

The Impact of Particle Sorting on Particle-In-Cell Simulation Performance. .. 156
Andrzej Dorobisz, Michal Kotwica, Jacek Niemiec, Oleh Kobzar,
Artem Bohdan, and Kazimierz Wiatr

Task-Based Paradigm of Parallel Computing

TaskUniVerse: A Task-Based Unified Interface for Versatile
Parallel Execution. e 169
Afshin Zafari

Comparison of Time and Energy Oriented Scheduling
for Task-Based Programs. 185
Thomas Rauber and Gudula Riinger

Experiments with Sparse Cholesky Using a Parametrized Task
Graph Implementation 197
lain Duff and Florent Lopez

A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix
in Real Schur Form. 207
Mirko Myllykoski

GPU Computing

Radix Tree for Binary Sequenceson GPU 219
Krzysztof Kaczmarski and Albert Wolant

A Comparison of Performance Tuning Process for Different Generations
of NVIDIA GPUs and an Example Scientific Computing Algorithm 232
Krzysztof Banas, Filip Kruzel, Jan Bielanski, and Kazimierz Chion

Contents — Part 1

NVIDIA GPUs Scalability to Solve Multiple (Batch) Tridiagonal Systems

Implementation of cuThomasBatch

Pedro Valero-Lara, Ivan Martinez-Pérez, Raiil Sirvent,
Xavier Martorell, and Antonio J. Peiia

Two-Echelon System Stochastic Optimization with R and CUDA.

Witold Andrzejewski, Maciej Drozdowski, Gang Mu,
and Yong Chao Sun

Parallel Hierarchical Agglomerative Clustering for fMRI Data

Mélodie Angeletti, Jean-Marie Bonny, Franck Durif, and Jonas Koko

Parallel Non-numerical Algorithms

Two Parallelization Schemes for the Induction of Nondeterministic Finite

Automata on PCs e

Tomasz Jastrzab

Approximating Personalized Katz Centrality in Dynamic Graphs.

Eisha Nathan and David A. Bader

Graph-Based Speculative Query Execution for RDBMS.

Anna Sasak-Okon and Marek Tudruj

A GPU Implementation of Bulk Execution of the Dynamic Programming

for the Optimal Polygon Triangulation.

Kohei Yamashita, Yasuaki Ito, and Koji Nakano

Performance Evaluation of Parallel Algorithms and Applications

Early Performance Evaluation of the Hybrid Cluster with Torus

Interconnect Aimed at Molecular-Dynamics Simulations

Vladimir Stegailov, Alexander Agarkov, Sergey Biryukov,
Timur Ismagilov, Mikhail Khalilov, Nikolay Kondratyuk,
Evgeny Kushtanov, Dmitry Makagon, Anatoly Mukosey,
Alexander Semenov, Alexey Simonov, Alexey Timofeev,
and Vyacheslav Vecher

Load Balancing for CPU-GPU Coupling in Computational

Fluid Dynamicst e

Immo Huismann, Matthias Lieber, Jorg Stiller, and Jochen Fréhlich

Implementation and Performance Analysis of 2.5D-PDGEMM

onthe KComputer. i

Daichi Mukunoki and Toshiyuki Imamura

XXIII

XXIV Contents — Part 1

An Approach for Detecting Abnormal Parallel Applications Based on Time
Series Analysis Methods L L 359
Denis Shaykhislamov and Vadim Voevodin

Prediction of the Inter-Node Communication Costs of a New Gyrokinetic

Code with Toroidal Domain. 370
Andreas Jocksch, Noé Ohana, Emmanuel Lanti, Aaron Scheinberg,
Stephan Brunner, Claudio Gheller, and Laurent Villard

D-Spline Performance Tuning Method Flexibly Responsive to Execution

Time Perturbation L 381
Guning Fan, Masayoshi Mochizuki, Akihiro Fujii, Teruo Tanaka,
and Takahiro Katagiri

Environments and Frameworks for Parallel/Distributed/Cloud
Computing

Dfuntest: A Testing Framework for Distributed Applications 395
Grzegorz Milka and Krzysztof Rzadca

Security Monitoring and Analytics in the Context of HPC

Processing Model 406
Mikotaj Dobski, Gerard Frankowski, Norbert Meyer,
Maciej Mifostan, and Michal Pilc

Multidimensional Performance and Scalability Analysis for Diverse

Applications Based on System Monitoring Data 417
Maya Neytcheva, Sverker Holmgren, Jonathan Bull, Ali Dorostkar,
Anastasia Kruchinina, Dmitry Nikitenko, Nina Popova, Pavel Shvets,
Alexey Teplov, Vadim Voevodin, and Vladimir Voevodin

Bridging the Gap Between HPC and Cloud Using HyperFlow

and PaaSage. 432
Dennis Hoppe, Yosandra Sandoval, Anthony Sulistio, Maciej Malawski,
Bartosz Balis, Maciej Pawlik, Kamil Figiela, Dariusz Krol,
Michal Orzechowski, Jacek Kitowski, and Marian Bubak

A Memory Efficient Parallel All-Pairs Computation Framework:
Computation — Communication Overlap. 443
Venkata Kasi Viswanath Yeleswarapu and Arun K. Somani

Automatic Parallelization of ANSI C to CUDA C Programs. 459
Jan Kwiatkowski and Dzanan Bajgoric

Consistency Models for Global Scalable Data Access Services 471
Michat Wrzeszcz, Darin Nikolow, Tomasz Lichon, Rafal Stota,
tukasz Dutka, Renata G. Stota, and Jacek Kitowski

Contents — Part 1

Applications of Parallel Computing

Global State Monitoring in Optimization of Parallel

Event-Driven Simulation

Ltukasz Masko and Marek Tudruj

High Performance Optimization of Independent Component Analysis

Algorithm for EEG Data

Anna Gajos-Balinska, Grzegorz M. Wojcik, and Przemystaw Stpiczynski

Continuous and Discrete Models of Melanoma Progression Simulated

in Multi-GPU Environment

Witold Dzwinel, Adrian Kitusek, Rafal Wcisto, Marta Panuszewska,
and Pawetl Topa

Early Experience on Using Knights Landing Processors for Lattice

Boltzmann Applications.

Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano,
and Raffaele Tripiccione

Soft Computing with Applications

Towards a Model of Semi-supervised Learning for the Syntactic Pattern

Recognition-Based Electrical Load Prediction System

Janusz Jurek

Parallel Processing of Color Digital Images for Linguistic Description

of Their Content. e e e

Krzysztof Wiaderek, Danuta Rutkowska, and Elisabeth Rakus-Andersson

Co-evolution of Fitness Predictors and Deep Neural Networks

Wiodzimierz Funika and Pawet Koperek

Performance Evaluation of DBN Learning on Intel Multi- and Manycore

ATChIteCtures e

Tomasz Olas, Wojciech K. Mleczko, Marcin Wozniak,
Robert K. Nowicki, and Pawel Gepner

Special Session on Parallel Matrix Factorizations

On the Tunability of a New Hessenberg Reduction Algorithm

Using Parallel Cache Assignment

Mahmoud Eljammaly, Lars Karlsson, and Bo Kdgstrém

New Preconditioning for the One-Sided Block-Jacobi SVD Algorithm.

Martin Becka, Gabriel Oksa, and Eva Vidlickova

XXV

XXVI Contents — Part 1

Structure-Preserving Technique in the Block SS—Hankel Method

for Solving Hermitian Generalized Eigenvalue Problems

Akira Imakura, Yasunori Futamura, and Tetsuya Sakurai

On Using the Cholesky QR Method in the Full-Blocked One-Sided

Jacobi Algorithm.

Shuhei Kudo and Yusaku Yamamoto

Parallel Divide-and-Conquer Algorithm for Solving Tridiagonal Eigenvalue

Problems on Manycore Systems

Yusuke Hirota and Toshiyuki Imamura

Partial Inverses of Complex Block Tridiagonal Matrices

Louise Spellacy and Darach Golden

Parallel Nonnegative Matrix Factorization Based on Newton Iteration

with Improved Convergence Behavior.

Rade Kutil, Markus Flatz, and Marian Vajtersic

Author Index e

Workshop on Models, Algorithms and
Methodologies for Hybrid Parallelism in
New HPC Systems

®

Check for
updates

An Experience Report on (Auto-)tuning
of Mesh-Based PDE Solvers on Shared
Memory Systems

Dominic E. Charrier®™) and Tobias Weinzierl

Department of Computer Science, Durham University, Durham, Great Britain
{dominic.e.charrier,tobias.weinzierl}@durham.ac.uk

Abstract. With the advent of manycore systems, shared memory par-
allelisation has gained importance in high performance computing. Once
a code is decomposed into tasks or parallel regions, it becomes crucial to
identify reasonable grain sizes, i.e. minimum problem sizes per task that
make the algorithm expose a high concurrency at low overhead. Many
papers do not detail what reasonable task sizes are, and consider their
findings craftsmanship not worth discussion. We have implemented an
autotuning algorithm, a machine learning approach, for a project devel-
oping a hyperbolic equation system solver. Autotuning here is important
as the grid and task workload are multifaceted and change frequently
during runtime. In this paper, we summarise our lessons learned. We
infer tweaks and idioms for general autotuning algorithms and we clar-
ify that such a approach does not free users completely from grain size
awareness.

Keywords: Autotuning * Shared memory - Grain size
Machine learning

1 Introduction

Whenever a code is decomposed into parallel regions or tasks, the number of
tasks determines the concurrency level and hence the code’s potential to scale.
It is common knowledge, however, that tasks must be reasonably computation-
ally intense. Otherwise, the system spends precious time in administering the
concurrency [5, p. 197]. Thus, modern parallelisation paradigms allow users to
prescribe a grain size, a minimal subproblem size for parallel loops, while task-
based approaches group logical tasks into one physical task if separate tasks were

This work received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 671698 (ExaHyPE). It made use
of the facilities of the Hamilton HPC Service of Durham University. The authors fur-
thermore gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.
gauss-centre.eu) for funding this project by providing computing time on the GCS
Supercomputer SuperMUC at Leibniz Supercomputing Centre (www.lrz.de). All
software is freely available from www.exahype.eu.
© Springer International Publishing AG, part of Springer Nature 2018

R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 3-13, 2018.
https://doi.org/10.1007/978-3-319-78054-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_1&domain=pdf
www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de
www.exahype.eu

4 D. E. Charrier and T. Weinzierl

too lightweight. For plain bulk synchronous processing and non-nested tasks,
finding grain sizes is often done manually via trial-and-error since developers
assume that the size vs. performance curve is convex ([9, p. 37] or [6]).

Today, nested parallel loops perform efficiently—older OpenMP versions
sometimes fail to deliver performance here—but yield a high-dimensional grain
size optimisation problem. With the advent of manycores and hierarchical paral-
lelisation, manual search becomes inappropriate. Sophisticated coherence proto-
cols, performance fluctuations, and cache effects invalidate the convexity assump-
tion to some degree. Task formalisms with inhomogeneous execution patterns
gain importance. Machine learning (autotuning) which determines both the cost
function and well-suited grain sizes becomes necessary. This manuscript dis-
cusses an autotuning approach that yields reasonable grain sizes in the ExaHyPE
project [2], which combines dynamically adaptive Cartesian grids [12] with
ADER-DG plus local limiting [3]. Support of interacting solvers with varying
polynomial order (arithmetic intensity), inhomogeneous memory access charac-
teristics and hierarchical hardware [11] render the use of autotuning mandatory.
Our goal is two-fold: To present the algorithmic concept and rationale, and to
document experiences on how this algorithm is made efficient and used effi-
ciently. Our hypothesis is that autotuning never is a pure black box but that
users have to have empirical knowledge to allow autotuning to integrate into soft-
ware projects successfully and perform economically. Naive coding of autotuning
software is often ill-suited for HPC. Both goals interact.

We briefly sketch ADER-DG [3] in Sect. 2. Its task formulation is straight-
forward. However, the tasks differ significantly in arithmetic intensity, and some
may have largely varying runtime. We then present our autotuning concept
(Sect. 3). It tackles the grain size integer optimisation problem [7] parameterised
by real-time measurements via randomised directional search. Emphasis is put on
implementation pitfalls, e.g. the identification of valid real-time measurements.
In Sect. 4, we discuss the algorithm’s impact on the simulation workflow, before
we present numerical results and close the discussion.

2 Use Case: An ADER-DG Solver

In the underlying ExaHyPE project, we solve hyperbolic PDEs

9Q
ot

subject to appropriate initial and boundary conditions. () is the solution, F the
conservative flux, d is the space dimension, V - (-) denotes the tensor divergence,
while V(+) is the vector gradient. We solve (1) on a dynamically adaptive Carte-
sian grid [12] with ADER-DG [3]. In its simplest form, used here, there are three
phases per time step (Fig. 1).

Per grid cell K and time step interval [t,,t], we first implicitly solve

// O 8% dt+// 0, V - F(qp) dadt = 0. (2)

+V-FQ) =0 onQcRY d=23 (1)

(Auto-)tuning of Mesh-Based PDE Solvers 5

Fig. 1. Two snapshots from a d = 2 simulation of the Euler equations applied to an
setup where the initial system energy (density) is determined by the project logo.

The space-time predictor g5 and the space-time test functions 6}, are constructed
using tensor products of Lagrange polynomials over Gauss-Legendre points. Fol-
lowing Discontinuous Galerkin, they have compact support on each cell. Equa-
tion (2) yields a discrete fixed-point problem solved by Picard iterations [3]. All
cell operations are independent of each other. The concurrent solves of (2) yield
jumps along the cell faces in the solution ¢; and its derivatives determining F.

The second phase traverses all faces of the grid and computes a numerical nor-
mal flux G using ¢, and F from both adjacent cells. We use a Rusanov Riemann
solver. The solves are embarrassingly parallel with low arithmetic intensity.

In the third algorithmic phase, we traverse the cells again and solve

ty ty
/ vy Agp dx = —/ Vo, : F(q) dedt + / / vy, G dsdt (3)
K OK Jtq

K Jt,

for Agn = qn(ts) — qn(ta). The time step (3) is derived from spatially testing and
partially integrating (1). It can be easily inverted given that the ansatz and test
space yield a diagonal mass matrix, is evaluated per cell, and, hence, parallel.

ADER-DG describes three types of parallel tasks corresponding to phases.
One is computationally heavy while two are lightweight. In our implementa-
tion, we either fuse the three task types within one grid sweep through a task
formalism—one task then comprises a triad of predictor, Riemann solve and
time step—or run through the grid three times and launch them through par-
allel force. The runtime of the heavy tasks can typically not been predicted due
to the Picard iteration. There is no single grain size well-suited for all steps.

3 Programming an Autotuning Algorithm

Our autotuning approach picks up concepts from Intel’s TBB [9]. There is a cen-
tral instance, a singleton [4] which is notified by the overall algorithm regarding
which algorithmic phase is to be run next. We call this instance Oracle [6].
Our code runs through the dynamically adaptive Cartesian grid. Whenever
it enters a code section which has a multithreaded implementation using tasks
or contains parallel for loops, it passes the maximum problem size N of the
current subproblem, and an identifier for the current code section to the Oracle.

6 D. E. Charrier and T. Weinzierl

The Oracle then returns a GrainSize instance. The latter holds information on
the grain size to be used and the number of logical tasks which can be grouped
into one physical task. After the code exits the code section, the GrainSize
object is destroyed again.

The GrainSize object can also be configured to measure the time which
has elapsed since its creation. The measured time is then reported back to the
Oracle at destruction. Proper move constructors ensure this is only done once.

3.1 Algorithmic Idea

The Oracle manages a database which stores, per entry, a code section, the
algorithmic step, and further:

Npax the maximum problem size w.r.t. code section and algorithmic step.
g the grain size used for this problem; g = Np,.x indicates that parallelisation
of this code section does not pay off.
Ag the delta from g to the previously studied grain size with g + Ag < Npax-
Soia the speedup obtained with this previous grain size g + Ag.
ts the time per problem entity needed without parallelisation.
ty the time per problem entity needed if grain size g is used.

If no entry for these settings exists or N > Np.x, a new database entry with
(Nmax = N, g=C-N,Ag=N—-C-N,Spq = 0,...) is created. C € {0.5, %} for
p threads are convenient choices as detailed later. The Oracle then determines a
well-suited grain size for the calling code section: For N > g, the invoking code
is instructed to use g as grain size. Otherwise, it runs serially.

Our algorithm realises interval halving similar to [6]: We start with relatively
large g and compare the multithreaded performance to a serial setting. If the
serial version is faster, we deactivate the parallelisation, i.e. we set g = Npax-
Otherwise, we successively shrink g with steps Ag until the resulting runtime
starts rising again. Once we observe that g decrements make the runtime rise,
we fall back to the previous choice of g and continue the descending search with
Ag/2.

3.2 Implementation Pitfalls

Whilst our approach is realised straightforwardly and similar concepts have been
proposed, we identified tiny details which decide whether it is successful. One
important detail hereby is the notion of a “valid” timing. We do normalise all
timings w.r.t. time per problem item: if a GrainSize for a problem of size NV
measures that the corresponding code lasts ¢, it reports back a time of ¢/ N to the
Oracle. Working with GrainSize instances ensures that overlapping parallelised
code regions can be handled. Yet, all timings are subject to noise and, more
importantly, any timing is only a characteristic sample if the underlying work per
problem item is not constant. The latter is the case for our nonlinear equation
system solves. Our Oracle thus tracks accumulated times and the number of

(Auto-)tuning of Mesh-Based PDE Solvers 7

measurements. The resulting average time is declared valid by an additional
Boolean flag once a new measurement does not change the average by more than
€ anymore. It is not evaluated for decision making before. Linux system timers
yield useless data if all code regions are paced simultaneously. Timer invocations
come along with an overhead which quickly pollutes all timings. Our solution is
to introduce a global flag that determines for which code part a timer is enabled
at all. After each grid sweep, this flag is randomly set to another parallel code
fragment known. This way, only one code segment at a time is surveyed.

If we start to determine tg first, the algorithm requires a long time to enable any
parallelism at all. As all timings have to converge subject to €, our simulation runs
in serial for a while if the Oracle first determines the t entries in the database.
This is not acceptable in HPC. Therefore, our Oracle randomises the grain size
selection whenever it is invoked for a code fragment for which timings should
be made. For one out of Nyax/g samples, it instructs the invoking code to run
serially and to report back the serial runtime. Otherwise, g shall be used and the
parallel runtime ¢4 is updated. With shrinking grain sizes, i.e. longer simulation
runtimes, fewer serial samples are taken. The sliding ¢, updates anticipate that
the serial timings of code parts change if parallel regions are embedded into each
other that search for well-suited grain sizes, i.e. have not converged yet.

Proper constants C determine whether the algorithm exploits a reasonable num-
ber of cores in the first place. For C' = 0.5 in the database entry’s initialisation,
the maximum initial concurrency equals two. In a multicore environment, this
is not acceptable. We thus choose C' = 0.5 for N < 2p, i.e. for small problems
compared to the thread count p, and otherwise use C = 1/p.

The initial € choice should take the runtime distribution into account. While we
may expect runtime noise to cancel out for large data sets N and, thus, that
those measurements converge quickly, it is particular important to come up with
working grain sizes for large subproblems quickly as those dominate the walltime.
In our code, we thus scale the initial € with the total serial runtime of a source
code fragment. If a code fragment requests a grain size first, we ask it to run
serially and to report back the time. We then scale € with this time: the longer
a source code fragments runs serially the more relaxed e.

No fixed € works for all parts of the code. Some tasks in our application solve
nonlinear equation systems. Furthermore, we have nested parallelism. While a
too relaxed choice of ¢ makes the Oracle accept garbage measurements and
terminate in suboptimal (local) grain size choices, a restrictive ¢ makes measure-
ments for some code parts never yield valid results. We thus apply widening:
After each grid sweep, we analyse whether the code fragment currently stud-
ied has been supplemented with new timings and whether those timings have
switched on the valid flag for our timings. If this is not the case, we widen the
admissibility constraint by 10 i.e. multiply € with 1.1.

No fixed € works all the simulation through. We work with large initial € to come
up with reasonable grain sizes choices quickly. We thus must accept inaccurate

8 D. E. Charrier and T. Weinzierl

measurements at startup. Furthermore, runtime statistics do vary significantly
as long as the grain sizes of embedded, nested parallel sections do vary. We thus
half € each time we have found a better grain size g or roll back to the previous
grain size. Our Oracle increases the reliability of all data successively.

Track good grain sizes per problem size. We have to assume that a good grain
size g depends not only on the algorithmic context but also on the problem size
N. Our approach so far is N-agnostic. While a linear dependency on N might
exist in some cases, we do not assume such a global relation here. Instead, our
approach uses binning. We start searching for good grain sizes for Np.x = 2. If
the code requests a grain size for N > Ny, we recursively add new database
entries for 2Np,.x. Per Oracle request, the database entry ¢ is chosen for which
Niax(i — 1) < N < Npax ().

Restart measurements. After each grid sweep, we examine all database entries
subject of search. If we observe that new measurements would have been made
but all grain sizes belonging to the code fragment of interest are fixed, i.e. all
database entries evaluated hold Ag = 0, we restart the search for these entries
in one out of ten cases. This avoids that we stick to local minima always.

4 Using and Integrating Autotuning

Though we use the autotuning as black box, we found that the user has to
remain aware of their integration into the simulation workflow: Contezt-aware
autotuning is mandatory. We found our code to react sensitively to machine
type, core count, and input data sets. Some data sets may perform poorly with
autotuning settings derived for other data sets. This is likely an effect of the
nonlinear subalgorithms, but certainly holds for many applications. It is thus
important to work with independent autotuning searches per problem setup
rather than one holistic database.

Autotuning for large data sets is problematic in large-scale compute environ-
ments. Autotuning temporarily runs into inefficient parameter choices (if the
grain size becomes too small, e.g.), while large single node parameter studies for
the many required parameter settings might be deemed unsuitable for supercom-
puters or not practical. At the same time, it is important to obtain autotuning
configurations on the actual target machine that later shall host a large-scale
run. We thus augment our binning. Whenever the database can not host an
N, a new entry for a new Np.x copies over all setting from the next smaller
Nuax, scales them, and continues to work with those parameters. Further, if a
valid parameter configuration is found for some Ny, ., our approach extrapolates
this to all database entries with larger Ny ,x and then makes those restart their
search. This allows us to run small-scale, yet characteristic runs briefly and to
automatically extrapolate reasonable grain size to large production runs.

Accuracy improves over time, i.e. the more samples the more reliable the mea-
surement data. It is thus a natural choice to dump and reload autotuning proper-
ties. It further is very reasonable to archive them alongside the simulation data.

(Auto-)tuning of Mesh-Based PDE Solvers 9

Simulation re-runs then do not start autotuning searches from scratch but reuse
performance knowledge.

We “sacrifice” only one node in a parallel environment. Autotuning introduces
overhead. It has to be used carefully in large-scale simulations where all over-
heads have to be multiplied with the number of nodes used. We thus disable the
autotuning’s search on all MPI ranks besides one. All others read in the auto-
tuning properties from a file and stick to those. The one rank tracking runtimes
dumps all insight into a property file at the end of the simulation from where
this knowledge becomes available to all other ranks in the next simulation. More
sophisticated techniques may pass the responsibility for measurements from one
rank to another throughout the simulation and propagate knowledge on-the-fly.

5 Computational Evidence

We start our computational exercises with the performance model

R ts

Ry N mod g

-

ty=(1— +f-ts+h-rq with f = f +
p) g

min ([EJ ,

g
which extends Amdahl’s law [1] by a task administration overhead h scaling
linearly with the number of tasks. f € [0,1] is the code fraction not benefiting

from multithreading at all. It enters the model through f which anticipates that
problems might not be decomposed exactly.

1.5 : ‘ . .
148 @@ 2cores V-V 16 cores | 1.2
. Bl 4cores <4< 72cores

g 1.3 A—A 8 cores 1.0

Normalised time
o0

0.6 @@ 2cores V-V 16cores |
Bl 4 cores << 72cores
0.4 A—A 8 cores 1
0 10 20 30 40 50 60 70
Grain size Grain size

Fig. 2. Normalised time t4/ts according to our performance model for Npmax = 8, f =
0.1,C = 107" (left) and Nmax = 64, f = 0.2,C = 1072 (right).

Our simplistic model relying on invariant ¢, illustrates (Fig.2) that one has
to be careful not to choose the grain size too small to avoid overhead, while too
large grain sizes do not yield good speedup. This is common knowledge. Different
to textbooks [9] our speedups however do not develop smoothly but exhibit a

10 D. E. Charrier and T. Weinzierl

non-convex step pattern. Finally, it might be reasonable not to choose a grain
size for small problems that does keep all threads p busy and thus to spare cores.

The performance model motivates our decision to trigger the search for good
grain sizes with half the maximum grain size for small problems and 1/p- Ny for
bigger problems. As the difference between two local minima becomes the smaller
the smaller g, it is reasonable to start with rather inaccurate time measurements
(noise for large differences can be expected not to pollute any conclusion) and to
increase the accuracy successively throughout the search. From our model, we
derive that good autotuning searches for a different grain size per core number
and problem size: it is reasonable to apply the binning.

Our runtime experiments were run on SuperMUC hosting Haswell Xeon E5-
2697 v3 processors with 28 cores and 2.6 GHz base clock. All shared memory
tests rely on Intel’s TBB [9]. We studied five grain size selection strategies:

serial runs provide the measurement baseline and normalise all runtimes.

dummy is a choice of grain sizes per code part that does not anticipate the algo-
rithmic context. We manually tuned it to yield good performance in many
iterations.

with-finest-grid runs the autotuning strategy.

from-coarse-grid runs a cascade of autotuning experiments: it starts with a
very coarse mesh, runs the autotuning, dumps the grain sizes identified, and
then continues with the next finer mesh. We report only on the final run
where the finest mesh sizes matches the other setups.

from-coarse-grid-without-learning takes the final dump of the cascading
autotuning and reruns the test again but switches off the learning, i.e. no
time measurements are done and grain sizes remain invariant.

2! 2!

2(’ 26 | o oo oo n ou on o on o om o mu o o B
g 2 g 2
= ol = ol J
2 9 S Zm . By N T olY N, S
£Z 2 2 g0ty
g 2 g 2 =3 serial 1
o 20 ® 2l e-@ dummy
_g 91 g 9—1||m-m with-finest-grid

-2 9-2 ® -® from-coarse-grid

A4 from-coarse-grid-without-learning
-3 \ \ \ \ \ \ \ \ -3 " " " " \
2 0 10 20 30 40 50 60 70 80 90 2 0 10 20 30 40 50 60
time step time step

Fig. 3. Cost per time step for d = 2 Euler simulations where all three algorithmic
steps are fused and we use polynomial order p = 3 (left) against a code where the three
algorithmic phases are ran after each other with p = 9 (right).

Comparing cascading autotuning with the experiment switching off all mea-
surements (Fig. 3) reveals that there is a significant overhead to do real-time

(Auto-)tuning of Mesh-Based PDE Solvers 11

measurements, and that there is a price to pay for the sliding updates of ts.
Once this overhead is removed, our autotuning can cope with a manual (and
laborious) grain size selection. It thus makes sense to turn off autotuning wher-
ever possible, notably on most MPI ranks.

Autotuning starting on the green field for a large problem does yield some
valid grain sizes but the search process suffers from runtime spikes. The spikes
result from unfortunate grain size choices that the autotuning tries and then
discards. If we start autotuning on a coarse grid and then successively extrapolate
the grain sizes to finer grids, we can remove the majority of these peaks.

27
26‘ -8 serial
5 dummy
¢ 2°! m-m with-finest-grid @
= 94| @-@ from-coarse-grid =
fo3 a
3 e
« 2]
E E
g 5
Qo aQ
2 o
£2 £
2™ 2
2 9 ;
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
time step time step

Fig. 4. Cost per time step for a d = 2 simulation of a shock where the ADER-DG
solution is augmented with a Finite Volume limiter. p = 3 (left) vs. p = 9 (right) while
all phases are fused into one grid sweep.

If we run the three ADER-DG phases consecutively, our autotuning requires
longer to identify grain sizes able to compete with a manual optimisation (more
than 60 time steps). It particularly struggles for the two arithmetically cheap
phases. It is thus advantageous to try to fuse algorithmic phases—which can be
read as a task fusion—to end up with computationally heavy individual steps.

We observe that our initial choice of C' € {0.5,1/p} (C = 1/p is the OpenMP
default for static partitioning) is reasonable. Already in the first iteration where
the autotuning is unaware of Np,.x, we exploit the multicore architecture. Once
we switch from ADER-DG to limited ADER-DG (Fig.4), autotuning becomes
particularly important. Here, an additional Finite Volume scheme is interwoven
into ADER-DG, eliminating numerical oscillations. As a consequence, the run-
times per cell start to vary greatly and it is hard to find globally valid good grain
sizes. Our extrapolating approach is no longer robust and requires appropriate
restart mechanisms.

The Oracle’s internal decisions are not visible from the plots. It first tries to
remove parallelism from the code where parallel overhead increases the walltime.
Only afterwards, it starts to tune the grain sizes for the scaling regions. Non-
scaling features may significantly perturb the timings of the scaling regions and,
thus, the Oracle’s decision making.

12 D. E. Charrier and T. Weinzierl

6 Conclusion

We describe an autotuning algorithm and summarise realisation decisions which
made, throughout the development, the difference of whether the autotuning
succeeds or not. Though the common perception of a convex runtime curve may
be oversimplified, our autotuning yields proper grain size choices.

Our autotuning approach assumes codes which are completely decomposed
into tasks and use parallel for loops wherever possible. Our algorithm first
switches off parallelism where it does not pay off. Only then, it starts searching
for optimal grain sizes for the remaining code sections. Such an approach, assum-
ing omnipresent parallelism, seems to be a reasonable pattern for future code
development. In terms of implementation difficulty, we regard it to be favourable
to successive automated induction of concurrency.

An interesting next step is to augment the grain size optimisation with an
additional constraint w.r.t. employed cores. We see that we can, at little loss of
efficiency, for many setups reduce the number of used cores. For codes deploying
multiple MPT ranks per node, other ranks then can grab these freed cores [10].
Furthermore, we believe that the proposed implementation pattern and on-the-
fly autotuning approach can help with dynamic scheduling on heterogeneous
systems. Here, tasks typically have to be reallocated to compute resources which
differ in performance per thread and level of parallelism [8].

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing. In: AFIPS Proceedings of the SJCC, vol. 31, pp. 483-485 (1967)

2. Bader, M., Dumbser, M., Gabriel, A., Igel, H., Rezzolla, L., Weinzierl, T.:
ExaHyPE-An Exascale Hyperbolic PDE Engine (2017). http://www.exahype.org

3. Dumbser, M., Zanotti, O., Loubere, R., Diot, S.: A posteriori subcell limiting of
the discontinuous Galerkin finite element method for hyperbolic conservation laws.
J. Comput. Phys. 278, 47-75 (2014)

4. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns - Elements
of Reusable Object-Oriented Software, 1st edn. Addison-Wesley Longman, Boston
(1994)

5. Gerber, R.: The Software Optimization Cookbook-High-performance Recipes for
the Intel Architecture. Intel Press, Hillsboro (2002)

6. Nogina, S., Unterweger, K., Weinzierl, T.: Autotuning of adaptive mesh refinement
PDE solvers on shared memory architectures. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Wadniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 671-680.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31464-3_68

7. Papadimitriou, C., Steiglitz, K. (eds.): Combinatorial Optimization: Algorithms
and Complexity. Dover Publications Inc., New York (2000)

8. Reano, C., Silla, F., Leslie, M.J.: schedGPU: fine-grain dynamic and adaptative
scheduling for GPUs. In: 2016 International Conference on High Performance Com-
puting Simulation (HPCS), pp. 993-997, July 2016

9. Reinders, J.: Intel Threading Building Blocks. O’Reilly, Sebastopol (2007)

http://www.exahype.org
https://doi.org/10.1007/978-3-642-31464-3_68

10.

11.

12.

(Auto-)tuning of Mesh-Based PDE Solvers 13

Schreiber, M., Riesinger, C., Neckel, T., Bungartz, H.J., Breuer, A.: Invasive com-
pute balancing for applications with shared and hybrid parallelization. Int. J. Par-
allel Prog. 43(6), 1004-1027 (2015)

Wahib, M., Maruyama, N., Aoki, T.: Daino: a high-level framework for parallel and
efficient AMR on GPUs. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press (2016)
Weinzierl, T., Mehl, M.: Peano—a traversal and storage scheme for octree-like
adaptive cartesian multiscale grids. STAM J. Sci. Comput. 33(5), 2732-2760 (2011)

)

Check for
updates

Using GPGPU Accelerated Interpolation
Algorithms for Marine Bathymetry
Processing with On-Premises and Cloud
Based Computational Resources

Livia Marcellino' @, Raffaele Montella! @, Sokol Kosta?
Ardelio Galletti'@®, Diana Di Luccio!®), Vincenzo Santopietro®
Mario Ruggieri'@®, Marco Lapegna?®, Luisa D’Amore?
and Giuliano Laccetti?

b
)

)

! Department of Science and Technologies,
University of Napoli Parthenope, Naples, Italy
{livia .marcellino,raffaele.montella,ardelio.galletti,diana.diluccio,
vincenzo.santopietro,mario.ruggieri}@uniparthenope.it
2 Department of Mathematics and Applications,
University of Napoli Federico II, Naples, Italy
{marco.lapegna,luisa.damore,giuliano.laccetti}@unina.it
3 CMI, Aalborg University Copenhagen, Copenhagen, Denmark
sok@cmi.aau.dk

Abstract. Data crowdsourcing is one of most remarkable results of per-
vasive and internet connected low-power devices making diverse and dif-
ferent “things” as a world wide distributed system. This paper is focused
on a vertical application of GPGPU virtualization software exploita-
tion targeted on high performance geographical data interpolation. We
present an innovative implementation of the Inverse Distance Weight
(IDW) interpolation algorithm leveraging on CUDA GPGPUs. We per-
form tests in both physical and virtualized environments in order to
demonstrate the potential scalability in production. We present an use
case related to high resolution bathymetry interpolation in a crowdsource
data context.

Keywords: GPGPU - Virtualization - High performance computing
Geographic data - Interpolation

1 Introduction

The rise of democratically distributed computing power thanks to the astonish-
ing achievements of low power embedded and mobile devices acted as a spin-
ning wheel effect of the pervasive technology generally known as Internet of
Things (IoT) [21]. The first and more touchable result is the increase of data
raw availability gathered using ad-hoc sensor networks, sampling campaigns and
data crowdsourcing. Focusing on the earth system science, managing spatial
data and exploiting hidden knowledge makes the difference between reach the
© Springer International Publishing AG, part of Springer Nature 2018

R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 14-24, 2018.
https://doi.org/10.1007/978-3-319-78054-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_2&domain=pdf
http://orcid.org/0000-0003-2319-8008
http://orcid.org/0000-0002-4767-2045
http://orcid.org/0000-0002-9441-4508
http://orcid.org/0000-0002-5208-6219
http://orcid.org/0000-0002-0810-2250
http://orcid.org/0000-0002-4765-2925
http://orcid.org/0000-0003-0184-9084
http://orcid.org/0000-0001-9953-1319
http://orcid.org/0000-0002-3379-0569
http://orcid.org/0000-0002-0057-2573

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 15

success in human activities development or completely fail it with potential not
reversible environmental damages. The indirect sampling techniques available
today enabled engineers and scientist to record high resolution land and ocean
digital elevation models (DTM) using different instruments but facing the same
problem: producing surface models from a finite, but huge, amount of measures
irregularly distributed on the spatial domain. The problem size is characterized
by a remarkable complexity due to the number of known points (where the mea-
surements are already done and validated) and the new sampled point rate. The
management problem became even more complex if data have to be periodically
updated from different sources. From the computational point of view, the hierar-
chical and heterogeneous high performance computing paradigm delivery enough
power to process spatial big data leveraging on massive multicore CPUs, general
purpose graphic processing units (GPGPUs) and, recently field-programmable
generic arrays (FPGAs) and supported by solid state storage skyrocketing the
long term memory access performance [30]. While CPU virtualization and elastic
storage is a common practice in public, private and hybrid clouds [28], the same
techniques are not widely available due to the fact that often the accelerators
leverage on closed technologies. In this paper we demonstrate how is possible
to democratize the GPGPU resource availability for spatial marine data science
leveraging on the GVirtuS [27] GPGPU virtualization service presenting a spe-
cific use case related to marine bathymetry processing. In particular we present a
CUDA enabled innovative inverse distance weighting (IDW) interpolation algo-
rithm comparing and contrasting the computation performance carried out on
both on-premises and cloud computing scenarios both leveraging on GPGPU
sharing and multiplexing.

Novelty. GVirtuS has been extended in order to support CUDA ancillary
libraries enabling the use of a novel IDW algorithm based on cuBLAS.

Contributions. The rest of the paper is organized as follows: the Sect.2 is
about the related work on the different semantic components of the paper; in
the Sect. 3 we show the acceleration infrastructure; the Sect. 4 is about the algo-
rithm description, the design choices and the implementation techniques; the
evaluation is carried out in the Sect. 5; finally in the Sect. 6 the conclusions and
some future directions.

2 Related Work

About GPGPU virtualization. One of the most prominent solutions related
to concurrent remote usage of CUDA-enabled devices in a transparent way is
rCUDA [36]. Thanks to the split-driver approach, there is no need to modify
and recompile the CUDA-enabled application in order to use it with rCUDA.
Indeed, the framework takes care of all the necessary details in order to execute
the CUDA kernels on a remote or local GPGPU [32]. The overhead introduced
by using a remote GPU is evaluable as about less than 4% when a high perfor-
mance network fabric is used [33]. At the time of writing, rCUDA delivers high
performance CUDA virtualization [26,29] and it is up to date supporting the
latest CUDA 8.0 framework and its ancillary libraries.

16 L. Marcellino et al.

About CUDA interpolators. The most frequently used spatial interpola-
tion algorithms in geographic information science include the Inverse Distance
Weighting (IDW), Kriging, Discrete Smoothing Interpolation, nearest neigh-
bors, etc. [10-12]; see a comparative survey investigated in [16]. As well-known,
those interpolation algorithms have a computational cost very high when deal-
ing with large-scale datasets. An effective approach to solve this problem is
to perform interpolation algorithms in parallel [31]. There are many research
efforts in this field, using different parallel computing architectures [35]. Among
them, multicore-cluster approaches, parallel pipeline procedures, domain decom-
position strategies. Recently, on the track of current developments of Graphics
Processing Units (GPUs) for High Performance Computing (HPC) [9], interpo-
lation algorithms have been accelerated with good results [14,19]. Here we will
deal with the IDW interpolation algorithm, who has been parallelized on various
platforms [24]. Our parallel implementation starts from [18] and proposes some
variants in the algorithm design, in order to exploit the computational power of
the NVIDIA cuBLAS library, to perform this basic linear algebra operation.

Algorithm 1. G-IDW

Require: locations p(z), known values z(i), query locations ¢(j), search radius R

Ensure: unknown values z* (%)

1: // initialize o

2: loc_q «— q(tid)

3: for each chunk c do

1+ 0

start_ind < tid * stride

while (i < stride) and (i + start_ind) < size(c) do
// put pe(start_ind + i) into shared memory
te—1+1

9: end while

10: // synchronize threads

11: for i« 1...size(c) do

12: // locp — pc(i) from shared memory

13: d — dist(loc_p,loc_q)

14: if d # 0 then

15: if d;; < R then

16: A —d™% 27 (tid) «— 2" (tid) + Azc(4); wsum — wsum + A
17: end if

18: else

19: 2" (tid) «— zc(i); wsum — 1

20: // break and skip this cycle for the next chunks
21: end if

22: end for

23: // synchronize threads

24: end for

25: // put z*(tid)/wsum into global memory

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 17

3 Acceleration Infrastructure

The overall architecture is described with more details, referring to GVirtuS (the
GPGPU virtualization and remoting engine) [23,27], designed to be integrated
and deeply cooperate in order to accelerate low-power devices.

3.1 GVirtuS GPU Code Offloading

The GPU virtualization architecture is based on a split-driver model [4], involves
sharing a physical GPU. Hardware management is left to a privileged domain.
A front-end driver runs in the unprivileged VM and forwards calls to the back-
end driver in the privileged domain [15]. The back-end driver then takes care
of sharing resources among virtual machines. This approach requires special
drivers for the guest VM. The split driver model is currently the only GPU
virtualization technique that effectively allows sharing the same GPU hardware
between several VMs simultaneously [22]. This framework offers virtualization
for generic GPU libraries on traditional x86 computers.

3.2 CUDA Ancillary Libraries

It’s well known that NVIDIA provides a set of GPU-accelerated libraries con-
taining several highly optimized algorithms for specific problems. For this reason,
GVirtuS has been extended by providing the support for several CUDA ancillary
libraries, such as cuBLAS. In order to extend the set of CUDA functions supported
by GvirtuS, it’s necessary to define three main components for each library that
are respousible for the communication between the guest and host machine: (i)
Front-end Layer; (ii) Back-end Layer; (iii) Function Handler. The first one con-
tains the definitions of the wrapper functions called by the client, with the same
signature as the library ones, where the name of the requested routine and the
addresses of the input parameters, variables and host/device pointers, are encap-
sulated in a buffer that is sent to the back-end through a communicator.

4 Algorithm Description

The IDW is a deterministic method for spatial interpolation [34], based on the
principle that near points have similar values. Let p; € R™,i =1,..., N, be the
locations whose the values z; are known. The interpolated value z7 of the j-th
query location g; € R™ is obtained by computing the weighted average of known

value, as follows:

N
i—1 AjiZi
Z; _ Zz?vl J ? (1)
i1 Aji
where the weights \j; are defined by the Euclidean distance, as:
1

Njig = ————
J dist(pi, q;)®

18 L. Marcellino et al.

In most application for each point only a subset of points is chosen with respect
to a fixed radius R. Therefore, the weighted average in (1) is computed only for
the sub-set Q; = {p; : d(pi,q;) < R}, i.e:

. _ Sneo, b
Zj = 27)\ (3)

pi€Q; It
The IDW problem can be re-written as a matrix-vector problem as follows:
considering a matrix A with M rows (the number of unknown values) and N
columns (the number of locations p;). The j-th row contains the weights Aj;
that are required to obtain the unknown value z7. Then, indicated with z the
vector that contains the known values, the unknown vector z*

the unknown values, is the solution of the following problem:

, which contains

2" = Az (4)

We implemented two strategies for the IDW parallel algorithm on CUDA
environment:

G-IDW: Each thread interpolates a different value computing the weight for
each known value and updating the weighted mean at the same time. Block
threads are synchronized to store dataset points into shared memory before the
interpolation phase. For too large datasets, the points are stored into shared
memory in different chunks.

G-IDW-MYV: The matrix A is to compute, where the i-th row contains the
weights for the i-th value to be interpolated. Threads are synchronized to store
dataset points into shared memory as the first strategy. The i-th thread com-
putes the elements of the i-th row. A is multiplied by the vector containing
the known values. The i-th element of the result vector is divided by the sum
of the weights for the i-th value in order to get the weighted mean. We com-
puted the matrix-vector multiplication using two different approaches: the first
one demands a thread for each scalar product; the second one (G-IDW-MVblas)
uses the cuBLAS library. For the two strategies, the data transfer, Host-to-Device
and vice versa, is based on two fundamental steps: the host sends to device the
locations p; with its related values z; and the locations g; corresponding to values
to be estimated; the device sends to the host the computed values 2.

The parallel pseudocodes related to the two strategies are shown in Algo-
rithms 1 and 2. We called t¢id the number which uniquely identifies a thread
and stride the number of dataset points which each thread in a block loads into
shared memory. We use the ¢ subscript to indicate a location or value belonging
to the c-th chunk.

5 Use Case and Evaluation

Using commercial and leisure vessels as a sensor network for coastal protection
and marine area management is an application field that could massively benefit

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 19

from high-performance tools for big data collection, information processing, and
dissemination of the generated metadata [6]. In this operational scenario, Fair-
Wind inserts as a smart, cloud-enabled, marine navigation software [25]. Data
collected by FairWind from on-board sensor networks deployed in oceans repre-
sents a major challenge, as these devices generate huge amounts of geolocated
data about the marine coastal environment [1]. By relying on a cloud-based file
transfer protocol, collected data could be sent to remote computing facilities for
conducting further processing with the aim of calibrating on-board instruments,
and enhance depth maps [8]. We made several benchmarks of the proposed
approaches, using the GVirtuS GPGPU virtualization service. The client is an
Ubuntu based machine characterized by poor computational resources (single-
core CPU, 1 GB of RAM), virtualized with KVM. The server machine is charac-
terized by a Xeon E5-2609 v3 CPU, 64 GB of RAM and 2 Nvidia GeForce Titan
X GPUs. Table 1 shows the execution times (Fig. 1) obtained by each algorithm,
increasing firstly the number of the known values and secondly the number of
the query locations. The execution times grow linearly by increasing the number
of query locations.

Algorithm 2. G-IDW-MV

Require: locations p(i), known values z(4), query locations ¢(i), search radius R
Ensure: unknown values z*(7)

1: // initialize @ and R

2: loc-q «— q(tid)

3: for each chunk c do

4: for i« 1...size(c) do
5: // loc_p < pc(i) from shared memory
6: d — dist(loc_p,loc_q)
T if d # 0 then
8: if d;; < R then
9: A — d™%; A(tid, column of pe(i)) < A; wsum «— wsum + A
10: else
11: A(tid, column of pe(i)) < 0
12: end if
13: else
14: // put all row values to 0
15: A(tid, column of pe(i)) < 1; wsum «— 1
16: // break and skip this cycle for the next chunks
17: end if
18: end for
19: // synchronize threads
20: end for

21: // use a strategy to compute Az
22: z*(tid) « z*(tid) /wsum

The use case is relative to bathymetry dataset extracted from EMOD-
net Digital Terrain Model (DTM) with original spatial resolution of 1/8

20 L. Marcellino et al.

Table 1. Performance results

Known values | Query locations | IDW (s) | G-IDW (s) | G-IDW-MV (s) | G-IDW-MVblas (s)
108 10* 2.365 | 0.006 0.009 0.009
108 10° 23.711 | 0.045 0.09 0.089
102 5.10° 118.296 | 0.204 0.448 0.411
104 104 23.734 | 0.036 0.071 0.064
104 10° 236.800 | 0.313 0.688 0.560
104 5.10° 1185.581 | 1.545 3.462 2.775
5.10% 10% 120.293 | 0.186 0.406 0.276
5.10% 10° 1183.199 | 1.757 4.315 2.62
5.10% 5-10° 5935.798 | 7.729 19.513 15.227

Performance results - Known Values fixed at 50000
T

IDW

e G-IDW
G-IDW-MV
G-IDW-MVblas

Execution Time (s)

El L
10
104 10° 10
Query Locations

Fig. 1. Execution times of the proposed approaches.

14,08 14 14,12 14,14 14,16 14,18
Fig.2. EMODnet dataset interpolated with G-IDW algorithm on its original spatial

resolution computational grid (1/8* 1/8 arc minutes), fixed R =400 m.

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 21

L]]
EE88d88388%

[w] yadag

. WC/(c /¢ (e i8 T - - ~=
14,08 141 14,12 14,14 14,16 14,18

5
8

[w] yadag

Es88d88388¢

14,08 14,1 14,12 14,14 ‘ 14,16 1418
Fig. 3. Detail of bathymetry in Gulf of Pozzuoli (Italy). (a) EDMOnet dataset inter-
polated with G-IDW algorithm (R =250m) on about 25m spatial resolution grid; (b)
EDMOnet dataset added with 100000 crowdsourced punctual depth data interpolated
on about 25m spatial resolution computational grid (R =250m).

arc minutes in latitude and longitude. The used dataset (Lat,;, =40.558°N,
Latmax =40.84°N, Lony,;,, =13.705°E, Lonmax = 14.490°E), consisting of
about 206908 points (including land mask points) was interpolated, using G-IDW
algorithm, on its original spatial resolution computational grid, fixed R =400 m.
The obtained bathymetry (Fig. 2) has a low accuracy to detect regional sea phe-
nomena, so we interpolated it still on 25 m spatial resolution grid, fixed R =250 m
(Fig. 3a), the new grid (about 2640387 points) is more dense but the depth infor-
mation in coastal area are still few. To fill this gap, we increase the dataset with
a cloud of 100000 points, between 0 and —75m water depth, collected in marine
data-crowdsourcing mode using FairWind. To do this, using the G-IDW algo-
rithm, about 2740387 points have been interpolated on a 25 m spatial resolution
lat-lon regular grid (Fig.3b) to obtain a more accurate seabed morphology.

22 L. Marcellino et al.

6 Conclusions and Future Directions

In this paper we demonstrate the performance achieved by our IDW imple-
mentation in both regular and virtualized environments. Nevertheless some
improvements could be done considering other computational approaches on
HPC systems [20]. An hierarchical approach combining distributed memory
techniques [17] and performance contracts [7] could better exploit the highly
distributed environment in which we set our prototype [5]. In the next steps,
we will focused on infrastructure improvement with regard to cloud based data
movement protocols in order to implement a reliable mechanism able to move
acquired data from the logging equipment to the cloud infrastructure for process-
ing and usage in data assimilation in order to improve the results produced by
prediction models [3] with techniques [2] devoted to improve the scalability [13].

Acknowledgments. This research has been supported by the Grant Agreement
no. 644312-RAPID-H2020-ICT-2014/H2020-ICT-2014-1 “Heterogeneous Secure Multi-
level Remote Acceleration Service for Low-Power Integrated Systems and Devices
(RAPID)” and by the project DSTE333 “Modelling mytilus farming System with
Enhanced web technologies (MytiluSE)”.

References

1. Ajmar, A., Balbo, S., Boccardo, P., Tonolo, G.F., Piras, M., Princic, J.: A low-cost
mobile mapping system (LCMMS) for field data acquisition: a potential use to
validate aerial/satellite building damage assessment. Int. J. Digit. Earth 6(Suppl.
2), 103-123 (2013)

2. Arcucci, R., D’Amore, L., Celestino, S., Laccetti, G., Murli, A.: A scalable numer-
ical algorithm for solving tikhonov regularization problems. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM
2015. LNCS, vol. 9574, pp. 45-54. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32152-3.5

3. Arcucci, R., D’Amore, L., Carracciuolo, L.: On the problem-decomposition of scal-
able 4D-Var data assimilation models. In: 2015 International Conference on High
Performance Computing and Simulation (HPCS), pp. 589-594. IEEE (2015)

4. Armand, F., Gien, M., Maigné, G., Mardinian, G.: Shared device driver model for
virtualized mobile handsets. In: Proceedings of the First Workshop on Virtualiza-
tion in Mobile Computing, pp. 12-16. ACM (2008)

5. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB:
enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wadniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 700-709. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3_71

6. Van den Broek, A., Neef, R., Hanckmann, P., van Gosliga, S.P., Van Halsema, D.:
Improving maritime situational awareness by fusing sensor information and intel-
ligence. In: 2011 Proceedings of the 14th International Conference on Information
Fusion (FUSION), pp. 1-8. IEEE (2011)

https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-31464-3_71

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 23

Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a grid
enabling, component based programming environment. In: Sloot, P.M.A., Hoek-
stra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470,
pp- 982-992. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380-100
Chard, K., Pruyne, J., Blaiszik, B., Ananthakrishnan, R., Tuecke, S., Foster, I.:
Globus data publication as a service: lowering barriers to reproducible science. In:
2015 IEEE 11th International Conference on e-Science (e-Science), pp. 401-410.
IEEE (2015)
Cuomo, S., De Michele, P., Galletti, A., Marcellino, L.: A parallel PDE-based
numerical algorithm for computing the optical flow in hybrid systems. J. Comput.
Sci. 22, 228-236 (2016)
Cuomo, S., Galletti, A., Giunta, G., Marcellino, L.: A class of piecewise interpo-
lating functions based on barycentric coordinates. Ricerche Mat. 63(1), 87-102
2014
(Cuom)o, S., Galletti, A., Giunta, G., Marcellino, L.: A novel triangle-based method
for scattered data interpolation. Appl. Math. Sci. 8(133-136), 67176724 (2014)
Cuomo, S., Galletti, A., Giunta, G., Marcellino, L.: Piecewise hermite interpolation
via barycentric coordinates: in memory of prof. carlo ciliberto. Ricerche Mat. 64(2),
303-319 (2015)
D’Apuzzo, M., Lapegna, M., Murli, A.: Scalability and load balancing in adaptive
algorithms for multidimensional integration. Parallel Comput. 23(8), 1199-1210
1997
I()e Rz)wé, E.G., Jiménez-Hornero, F.J., Ariza-Villaverde, A.B., Gémez-Lépez, J.:
Using general-purpose computing on graphics processing units (GPGPU) to accel-
erate the ordinary kriging algorithm. Comput. Geosci. 64, 1-6 (2014)
Dunlap, G.W., Lucchetti, D.G., Fetterman, M.A., Chen, P.M.: Execution replay
of multiprocessor virtual machines. In: Proceedings of the Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, pp.
121-130. ACM (2008)
Falivene, O., Cabrera, L., Tolosana-Delgado, R., Sdez, A.: Interpolation algorithm
ranking using cross-validation and the role of smoothing effect. A coal zone exam-
ple. Comput. Geosci. 36(4), 512-519 (2010)
Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled
MPI library. Future Gener. Comput. Syst. 24(2), 158-165 (2008)
Hennebdhl, K., Appel, M., Pebesma, E.: Spatial interpolation in massively par-
allel computing environments. In: Proceedings of the 14th AGILE International
Conference on Geographic Information Science (AGILE 2011) (2011)
Huraj, L., Siladi, V., Sildci, J.: Design and performance evaluation of snow cover
computing on GPUs. In: Proceedings of the 14th WSEAS International Conference
on Computers: Latest Trends on Computers, pp. 674-677 (2010)
Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive
algorithm for multidimensional integration on multicore based HPC systems. Int.
J. Parallel Prog. 40(4), 397-409 (2012)
Laccetti, G., Montella, R., Palmieri, C., Pelliccia, V.: The high performance inter-
net of things: using GVirtuS to share high-end GPUs with ARM based cluster
computing nodes. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski,
J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 734-744. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55224-3_69
Li, T., Narayana, V.K., El-Araby, E., El-Ghazawi, T.: GPU resource sharing and
virtualization on high performance computing systems. In: 2011 International Con-
ference on Parallel Processing (ICPP), pp. 733-742. IEEE (2011)

https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/978-3-642-55224-3_69

24

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

L. Marcellino et al.

Loépez, L., Nieto, F.J., Velivassaki, T.H., Kosta, S., Hong, C.H., Montella, R.,
Mavroidis, I., Fernandez, C.: Heterogeneous secure multi-level remote acceleration
service for low-power integrated systems and devices. Procedia Comput. Sci. 97,
118-121 (2016)

Mei, G., Tian, H.: Impact of data layouts on the efficiency of GPU-accelerated
IDW interpolation. SpringerPlus 5(1), 104 (2016)

Montella, R., Di Luccio, D., Ferraro, C., Izzo, F., Troiano, P., Giunta, G.: FairWind:
a marine data crowdsourcing platform based on internet of things and mobile/cloud
computing technologies. In: 8th International Workshop on Modeling the Ocean
(IWMO), Bologna, Italy, 7-10 June 2016

Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro,
C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J.,
Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3-14. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32152-3_1. https://www.scopus.com/
inward /record.uri?eid=2-52.0-84964461702&doi=10.1007%2£978-3-319-32152-3_
1&partnerID=40&md5=79bc02e92d87e0d0b24026a8c7196967

Montella, R., Coviello, G., Giunta, G., Laccetti, G., Isaila, F., Blas, J.G.: A general-
purpose virtualization service for HPC on cloud computing: an application to
GPUs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wadniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 740-749. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3_75

Montella, R., Foster, I.. Using hybrid grid/cloud computing technologies for
environmental data elastic storage, processing, and provisioning. In: Furht, B.,
Escalante, A. (eds.) Handbook of Cloud Computing, pp. 595-618. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-6524-0-26

Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139-152 (2014)

Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro, C.,
Pelliccia, V., Hong, C.H., Spence, 1., Nikolopoulos, D.S.: On the virtualization of
CUDA based GPU remoting on ARM and X86 machines in the GVirtuS frame-
work. Int. J. Parallel Program. 45(5), 1142-1163 (2017)

Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained dis-
tributed implementation of the parallel block conjugate gradient algorithm. Con-
curr. Comput.: Pract. Exp. 22(15), 2053-2072 (2010)

Reaitio, C., Silla, F.: A performance comparison of CUDA remote GPU virtualiza-
tion frameworks. In: 2015 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 488-489. IEEE (2015)

Reano, C., Silla, F.: Reducing the performance gap of remote GPU virtualiza-
tion with InfiniBand Connect-IB. In: 2016 IEEE Symposium on Computers and
Communication (ISCC), pp. 920-925. IEEE (2016)

Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data.
In: Proceedings of the 1968 23rd ACM National Conference, pp. 517-524. ACM
(1968)

Shi, X., Ye, F.: Kriging interpolation over heterogeneous computer architectures
and systems. GISci. Remote Sens. 50(2), 196-211 (2013)

Silla, F., Prades, J., Iserte, S., Reano, C.: Remote GPU virtualization: is it useful?
In: 2016 2nd IEEE International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB), pp. 41-48. IEEE (2016)

https://doi.org/10.1007/978-3-319-32152-3_1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964461702&doi=10.1007%2f978-3-319-32152-3_1&partnerID=40&md5=79bc02e92d87e0d0b24026a8c7196967
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964461702&doi=10.1007%2f978-3-319-32152-3_1&partnerID=40&md5=79bc02e92d87e0d0b24026a8c7196967
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964461702&doi=10.1007%2f978-3-319-32152-3_1&partnerID=40&md5=79bc02e92d87e0d0b24026a8c7196967
https://doi.org/10.1007/978-3-642-31464-3_75
https://doi.org/10.1007/978-3-642-31464-3_75
https://doi.org/10.1007/978-1-4419-6524-0_26

®

Check for
updates

Relaxing the Correctness Conditions on

Concurrent Data Structures for Multicore
CPUs. A Numerical Case Study

Giuliano Laccetti'@®, Marco Lapegna!®)@®, Valeria Mele'®,
and Raffaele Montella?

! Department of Mathematics and Applications,
Universita di Napoli Federico II, Napoli, Italy
{giuliano.laccetti,marco.lapegna,valeria.mele}@unina.it
2 Department of Science and Technologies,
Universita di Napoli Parthenope, Napoli, Italy
raffaele.montella@uniparthenope.it

Abstract. The rise of new multicore CPUs introduced new challenges
in the process of design of concurrent data structures: in addition to
traditional requirements like correctness, linearizability and progress, the
scalability is of paramount importance. It is a common opinion that
these two demands are partially in conflict each others, so that in these
computational environments it is necessary to relax the requirements on
the traditional features of the data structures. In this paper we introduce
a relaxed approach for the management of heap based priority queues on
multicore CPUs, with the aim to realize a tradeoff between efficiency and
sequential correctness. The approach is based on a sharing of information
among only a small number of cores, so that to improve performance
without completely losing the features of the data structure. The results
obtained on a numerical algorithm show significant benefits in terms of
parallel efficiency.

Keywords: HPC heterogeneous systems
Concurrent data structures - Programming models

1 Introduction

Concurrent data structures are widely used in many software stack levels, rang-
ing from high level parallel scientific applications to low level operating systems.
The key issue of these objects is their concurrent use by two or more threads
(or processes) in a shared address space with a high risk of data inconsistency
caused by a bad interleaving of hardware instructions (the so-called race condi-
tion). Such a problem makes the design of these structures much more difficult
compared to their sequential counterpart, because of the need of a synchroniza-
tion protocol to ensure data consistency [24].

Furthermore, the presence of multicore CPUs in last 10 years has dramati-
cally changed the algorithms development methodologies, since these computing

© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 25-36, 2018.
https://doi.org/10.1007/978-3-319-78054-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_3&domain=pdf
http://orcid.org/0000-0002-0057-2573
http://orcid.org/0000-0001-9953-1319
http://orcid.org/0000-0002-2643-3483
http://orcid.org/0000-0002-4767-2045

26 G. Laccetti et al.

devices do not merely represent a new generation of CPUs. More precisely, it
is widely recognized that their special architecture (based on several computing
units sharing key resources such as memory, caches and buses) is forcing scien-
tists towards new programming models and new requirements imposed to the
execution of the algorithms, both in the scientific computing field and in the
more general software design field [11,18,31]. Such studies emphasize a tension
between the needs of sequential correctness and efficiency of algorithms, and in
many cases it is evident the need to rethink the software design and data struc-
ture using approaches based on randomization and/or redistribution techniques
in order to fully exploit the computational power of the multicore CPUs.

In very recent years, a new research trend is emerging, where the main under-
lying ideas are the relaxation of the semantic conditions required for the data
structures and a non-deterministic execution of the algorithms. At the same
time, the lack of a inherently sequential protocol, as one based on the critical
sections, makes it possible a higher degree of concurrency [31].

Our work joins the previous research trend and it presents a relaxed approach
to the management of a heap-based priority queue in multicore environment,
aimed to achieve high scalability relaxing the strong conditions related to a
strict replica of the behavior of the sequential data structure.

The rest of the paper is organized as follows: Sect.2 provides an overview
of the computing environment, focusing the attention on the multicore archi-
tectures and the model used to assess the performances. Section 3 is aimed to
describe the core of the paper: a relaxed approach to heap-based priority queues
in multicore environments. Section4 shows numerical tests about the efficiency
and the effectiveness of an algorithm using a relaxed heap described in Sect. 3.
Finally, Sect.5 concludes this paper.

2 The Computing Model

Current general-purpose multicore CPUs can be modeled as a collection of NV
processing elements (the cores) sharing a common memory. Updated examples of
general-purpose multicore CPUs are nowadays the Intel XEON E7 v4 series with
16 cores, the AMD Opteron 6300 series with 16 cores and the IBM POWERS
series with 12 cores. In these CPUs, each core has its own set of processor regis-
ters so that the operating system is able to schedule independent threads among
them, so that a general purposes shared-memory Single Program Multiple Data
programming model can be used. To this end several software tools are available
for the threads management, such as the POSIX Thread Library (pthreads) or
the OpenMP environment. Even if each core can execute efficiently more than
one thread, for our purpose let assume that on the N cores are in execution
just N independent threads p; (i = 0,.., N — 1), one for each core. In our com-
puting model, a multi-threaded task is then represented by the spawning of N
computing threads at the beginning of the execution, that run independently
interacting among them by means of the shared memory, up to the waiting for
their completion, according a fork-join model.

Relaxing the Correctness Conditions on Concurrent Data Structures 27

Based on this model, we define now T'(k,z) as the total elapsed time to
complete a task with problem dimension z using k threads. For our purposes we
then decompose it as [13]:

T.(2)

T =T,
(ky2) =T + =<

+ T (k) (1)

where [13]:

— T is the running time for the serial sections of the algorithm. It is assumed
that T is independent from z and from k;

— T.(2)/k is the running time for the parallelizable sections of the algorithm. It
is assumed that parallelizable sections of the algorithm can be decomposed
in k concurrent tasks of equal running time;

— T,(k) is the synchronization overhead. We assume that T,(1) = 0 and that
T,(k) is a not-decreasing function only depending on k.

Therefore, with these definitions in hand, we can define scalable an algorithm
when, if the number of threads k£ and the problem size z are increased by a same
factor N, the running time (1) remains the same [12]. When the original number
of threads is k = 1, a formal definition for the scalability is for example:

T(1;2)
R(N,z) = ——+— 2
The (2) is often said scaled efficiency or weak scalability and its ideal value is
R(N,z) =1 but in practice a small degradation, due to operating system over-
head, is acceptable. Furthermore, under the above assumptions 1-3, if T.(Nz)/N
is a not decreasing function of NV, it is easy to prove that:

T(,z)
R(IN,2) < ———1—~2 <1 3
SR (IS ik)
The previous expression (3) represents an upper limit for the weak scalability
when the number of threads N increases, and its strong dependence on the
synchronization overhead T,(N).

3 A Loosely Coordinated Heap

It is very frequent that an application uses set of data not requiring a complete
ordering, but only the access to some items tagged with high priority. For exam-
ple many iterative algorithms attempt to reduce the numerical error accessing
only the data with maximum error, or the process scheduling algorithms for real
time applications need to access the data with the closest deadline. A priority
queue S is a dynamical data structure where each node s(k) € S, (k=1,..,K)
is tagged with a problem-dependent priority e(k). A very efficient priority queue
is a heap, that is a partially ordered binary tree where each node has a priority

28 G. Laccetti et al.

higher than its children, so that the item § with highest priority é = maxy e(k)
is in the root (the so called maz-heap property).

A heap, and more generally all dynamical data structures, is used when
there is need to process items produced at run time by the execution of the
algorithm, with an ordering depending on the application data and that cannot
be envisaged. Therefore, in many scientific applications, the heap is periodically
updated in an iterative section as in the following Algorithm 1.

Algorithm 1. Updating heap in an iterative algorithm
while (stopping criterion == false) do iteration j

remove(max_priority_item)
process data

produce new items

insert(new items)

endwhile

Usually, at each iteration j, the item with the highest priority is removed
from the root, and it is replaced by two o more new elements. If all threads
process data with high priority, a fast convergence of the iterative process is
ensured.

In a multicore CPU, an efficient way to reorganize the Algorithm 1 is to pro-
cess several nodes simultaneously by threads running on different cores, with the
aim to share among them the items with the highest priority. In a centralized
approach, where all threads access a single shared heap with a global synchro-
nization, all the basic operations on the heap must be carried out in a critical
section, with a strong scalability degradation.

In the case of N threads entering M times in a critical section one at a time,
the total overhead is T,(N) = M(N — 1)t. = O(N), where t. is the time to
traverse the critical region, so that from (3) follows R(N, z) < O(N~1). Because
of the linear dependence on T,(N) on the number of threads N, the scaled
efficiency R(N, z) will quickly decreases, so the algorithm is poorly scalable. For
these reasons, our first step in the development of a scalable heap, is to remove
all global critical sections from the algorithm. To this aim, we give up the idea
of a single centralized heap, and we reorganize the heap S in N separate heaps
S;, one for each thread p;, each of them accessing its private data structure
without synchronizations with other threads. Without global synchronization,
we have a pleasantly parallel algorithm (e.g. [12]), where it easy to show that
T,(N) = const.

However also this approach has a side effect: because the complete disjunc-
tion of the heaps S;, the N items with the highest priority s; may not be the
ones that globally have the highest priority, so that some threads can process
unimportant items with no significant progress for the whole application. There-
fore it is important to observe that, in case of items with priority very poorly
distributed among the heaps, it should be desirable a periodical redistribution

Relaxing the Correctness Conditions on Concurrent Data Structures 29

strategy for the §; in order to balance the critical items among the threads. Actu-
ally the sequence of items with high priority is unpredictable, and it is impossible
to distribute them uniformly among the several heaps before the computation,
with the aim to process only the items with highest priority at each iteration. In
other words we have to deal with the contraposition between algorithms with cen-
tralized heap requiring several global synchronizations where all threads always
process items with high priority, and algorithms with data structures distributed
in several locations without synchronizations but with the risk that some threads
process unimportant items. Our approach is aimed to address the above contra-
position, by means of a tradeoff based on the periodical reorganization of the
items §;, only among a small group of threads, with a synchronization overhead
that does not depend on the number of threads IN. More precisely the IV threads
p; are logically organized according a 2-dimensional periodical mesh Ms. This
structure is a virtual grid of Ag x A; = N threads, arranged along the points
of a 2-dimensional space with integer non negative coordinates, and where a
shared buffer between each couple of connected nodes is established. The buffers
are used to allow sharing data between two threads according to a producer-
consumer protocol. In addition, the corresponding threads on the opposite faces
of the mesh are connected too, so that the mesh is periodical. In a 2-dimensional
periodical mesh, each thread p; has 4 neighbors: 2 for each direction. In the hor-
izontal direction (dir = 0), we define pg(i) and pl(-i) respectively the leftmost and
the rightmost thread of p; in Mj. Analogously in the vertical direction (dir = 1)
we define pfl_) and pf_lg the lowermost and the uppermost threads of p;.

We now define S* a loosely coordinate heap [21] as a collection of partially
ordered binary trees S; ¢ = 0,.., N — 1 with the max-heap property, where the
roots are connected among them according to a given topology. In our loosely
coordinated approach, at the iteration j, each thread p; attempts to share its item
$; € §;, with highest priority é; only with the next thread pgi”) in the direction
dir = mod(j,2) of the mesh My, that is alternatively in the two horizontal and
vertical directions. More precisely, in a fixed direction dir let é; é;4 and é;_ be
respectively the highest priority of the items in the heap root of the threads
Di, pgfr) and pﬁzr). If é; > é;4 then the item §; € S; with highest priority é;
is moved to the heap S;; along the direction dir, using a producer-consumer
protocol on the shared buffer. In the same way if é;_ > é; the item §;,_ € S;_
with highest priority é;_ is moved to the heap S;. In this way, the critical items
with highest priority are passed from thread in thread, an iteration after the
other, through all the nodes of Ms. The loosely coordinated heap management,
described for the i-th thread p; with a Single Program Multiple Data (SPMD)
programming model, is then reported in Algorithm 2.

About the scalability, it should be noted that in the proposed data redis-
tribution, at each iteration j, there are not global synchronizations among

threads p; and each of them exchanges data only with the two threads pgfr)

and pz(-(i"), so that the cost of threads synchronization is T,(N) = O(1) because
it does not depends on the number of threads N. From (3) it follows that
R(N, z) < const < 1, so that the resulting algorithm can be considered scalable.

30 G. Laccetti et al.

Algorithm 2. SPMD version of Algorithm 1
with a loosely coordinated heap
1 Determine pgd_w) and pl(-iw), (dir =0,1)
2 initialize S;
3 while (stopping criterion == false) do iteration j
4 define dir = mod(j,2)

5 share é; with the closest threads pgd_”) and pgiir)
6 if (él > élJr) then

7 remove (§;) from S;

8 produce (§;) for pgizr)

9 endif
10 if (éi_ > él) then
11 consume (§;_) produced by pgd_w)
12 insert (§;,_)in S;
13 endif

14 remove(max_priority_item)

15 process data

16 produce two o more new items
17 insert(new items)

18

19 endwhile

4 A Numerical Case Study

A scientific computing area where heaps are widely used is the development of
adaptive algorithms for numerical computation of multidimensional integrals:

I(f):/Uf(g)dgz/Uf(scl,...,xd)dml---dxd, (4)

In (4) U = [a1,b1] X - - - X [ag, bq] is a d-dimensional hyper-rectangular region.
Because the scientific importance of such problem, since the 1980’s several effi-
cient parallel routines have been developed for its solution. Most of them (see for
example [3,19,20,22]) are based on adaptive algorithms, that allow high accu-
racy with a reasonable computational cost.

An adaptive algorithm for the computation of (4) is an iterative procedure
processing a family of hyper-rectangular subdomains s(k) (k = 1,..,K) of a
partition P of U with the aim to compute a sequence QU) approaching I(f)
and a sequence |EU)| of approximations of the error |QU) — I(f)| approaching
0, until a stopping criterion is not satisfied. Since the convergence rate of this
procedure depends on the behavior of the integrand function (presence of peaks,
oscillations, and so on), in order to reduce as soon as possible the error, at the
iteration j, the algorithm splits in two parts, s(A) and s(u), the subdomain
§ € P with maximum error estimate é. The two new subdomains take the place
of § in the partition P, that is: P = P — {5} U {s(\) , s(u)}. In a similar way

Relaxing the Correctness Conditions on Concurrent Data Structures 31

the approximations Q) and E\) are updated. A natural implementation of a
such procedure can be done with a priority queue with the max-heap property,
where the nodes of the heap S contain the subdomains s(k) of the partition
P, and where the priority is represented by the error estimate e(k) in each
subdomain. The subdomain § to be split at the iteration j, with maximum error
estimate € is then in the root of the tree. For such a reason, to implement an
adaptive in a multicore based computing environment, it is possible to use the
loosely synchronous approach to the heap management previously described in
Sect. 3. More precisely, after the arrangement of the N threads p; according
a 2-dimensional periodical mesh My at the beginning of the algorithm, the
integration domain U is fairly subdivided in N equal subdomains s;, each of
them assigned to a thread p;. Such a step represents the initialization of S; in p;.
Then, each thread p; of the algorithm repeatedly refines the subdomains in the
heap root §; € S;, sharing them with the neighboring threads pgd_lr) and pgizr),
along the 2 directions dir of M.

To test the effectiveness of our approach we use a test functions family taken
from the Genz’s package [14]:

{0 if 21 > 31 or x5 > (32

flz) = eXp(Ei:l,...,d a; x;) otherways

where U = [0, 1]¢ with d = 10 and «; < 1 and 3; < 1 are positive random value.
The values of o; are scaled according to d? > a; = 100 in order to control the
difficulty of the function. The integrand function has a integrable discontinuity
along the edges of the rectangle [0, 5] x [0, 52]. For such a reason, the error
estimate procedure will compute a very large error only in those subdomains
where x1 = 31 or 9 = (32, that will be managed only by some threads. Without
a suitable redistribution of the subdomains with large errors, only one thread
will perform an useful job, while the other threads will refine subdomains where
the error is already small enough.

For the experiments of this case study we use a computing system based on 2
CPUs Intel Xeon E5-4610 v2 with 8-core at 2.33 GHz, and a shared main memory
DDR3 of 256 GB at 133 MHz. The system runs an operating system Scientific
Linux 6.2, with GNU C compiler version 4.4 and POSIX Thread Library.

A first set of experiments is aimed to measure the scaled efficiency of the
algorithm as defined in (2) with the described test function, with an approach
similar to the one described in [10]. In this case the problem size z when N = 1 is
the total number of evaluations of the integrand function f(z). The quadrature
rule on the basis of the adaptive algorithm is based on the Genz and Malik rule
[15], and in d = 10 dimensions it requires m = 1245 function evaluations, so that
the number of iterations, at the basis of the algorithm stopping criterion, can
be computed by dividing the total number of function evaluations Nz by 2m,
because in each iteration the algorithm evaluate the quadrature rule in the two
subdomains s;(\) and s;(@). Therefore we run the algorithm in two way:

— Option (a): without redistribution procedure (i.e. without rows 4-13 in
Algorithm 2): the integration domain U is equally distributed among the

32 G. Laccetti et al.

N threads p; and the calculation goes on without interaction among threads.
In this case any difficulties in the integration domain are not shared among
the threads.

— Option (b) with redistribution procedure (i.e. with rows 4-13 in Algorithm
2): after the same distribution of U among the threads, the computation
attempts to balance the work load among the local data structures S; of the
loosely coordinated heap &*, as described in Sect. 3. In this case the difficulties
in the integration domain are shared among the threads.

To this aim we used 10 different integrand functions with different values of «;
and (; in order to test different locations and sharpness of the discontinuity.

In Fig. 1 are reported respectively the scaled efficiencies of the algorithm for
both tests with Option (a) and Option (b). More precisely are reported the best
value, the worst value and average values, over the 10 test functions, of the scaled
efficiency as defined in (2) with N = 16 threads and z = 250000, 500000, 750000,
1000000 integrand function evaluations.

EIW

0.8 08 — " f

06 —— 06 P — e

o N &’”@/9—6

02 02

0 ‘ 0 |
250000 500000 750000 1000000 250000 500000 750000 1000000

Fig. 1. Scaled efficiency of the adaptive algorithm. Left: 16 threads and Option (a).
Right: 16 threads and Option (b). o = worst case - /A = average case - 0 =best case

Mainly for large values of the number of function evaluations (z = 750000
and z = 1000,000) we observe a very small difference between the two cases,
confirming, once again, our expectation of a small impact of the redistribution
procedure among the threads on the scaled efficiency. In the worst case, the
scaled efficiency is about R(N, z) ~ 0.6 with both Options (a) and (b), and it is
only 0.1 larger with Option (a) with respect to Option (b) in the best case. The
average values differ of only 0.05 between Option (a) and Option (b).

A second set of experiments is aimed, instead, to measure the benefit of
the proposed redistribution procedure on the accuracy of the results. This is
a critical experiment because it is tested the ability of the loosely coordinated
heap S&* to supply effectively high-priority items to the threads. Also in this
case we used the function described for the previous experiment. In Fig.2
are reported the estimated numerical error, with N = 1 thread and N = 16
threads. Furthermore, with N = 16 threads we executed the Algorithm 3 with
Option (a) and Option (b). In all cases we report the numerical error with
z = 250000, 500000, 750000, 1000000 integrand function evaluations for each

Relaxing the Correctness Conditions on Concurrent Data Structures 33

thread, so that the total number of function evaluations is Nz. It is possible
to observe the great benefit on the numerical error, achieved when the number
of function evaluations z in each thread is increased, as well as when are used
N = 16 threads with Option (b). On the contrary, the execution of the algorithm
with N = 16 threads and Option (a) produces a poorly significant improvement
in numerical accuracy respect to the case with N = 1 thread. That means that,
in this case, only 1 thread performs useful work.

1E-02

1E-04 O

1E-06 A\\E\\E\B
1E-08 I~ \\A
1E-10 \S\\S\e

1E-12

250000 500000 750000 1000000

Fig. 2. Numerical error vs number of function evaluations o =16 threads with Opt.
(b) - A =16 threads with Opt. (a) - O=1 thread

5 Conclusion

In this paper we proposed a relaxed model for heap-based priority queues in
multicore environments. The work is motivated by the need to achieve a balance
between two contrasting requirements on the data structure: correctness and
scalability. The first one requires global access to the data structure in order to
assess traditional issues such as the linearizability [17]; on the other hand, high
efficiency can be achieved in parallel environments only if the synchronization
cost is independent from the number of processing units. To this end, we have
developed an approach based on a distribution of the data structure among the
computing units where the synchronization strategy involves only a small (and
constant) number of processing units.

Our experiments show that such a strategy is able to realize an effective
compromise between the two requirements. More precisely, we compared our
algorithm with a pleasantly version of the same algorithm without redistribution
of the node in the data structure, and we observed a gain of at least 3 significant
digits in accuracy with a loss of efficiency of only 5% in the average case.

In any case it should be noted that modern computing environments are
based on hybrid forms of parallelism, where large clusters are connected together
by means of grid and/or cloud infrastructures. Therefore, we plan to inte-
grate the resulting software in geographically distributed systems or com-
puting environments (e.g. [6,7]) as we did already for other applications in

34

G. Laccetti et al.

[1,2,8,9,16,23,25,26], paying special attention to the techniques developed to
enhance the performance [5], the fault tolerance [4], the transparent use of
resources [27,28,30] and the load balancing among them [29].

References

1.

10.

11.

12.

Arcucci, R., D’Amore, L., Celestino, S., Laccetti, G., Murli, A.: A scalable numer-
ical algorithm for solving tikhonov regularization problems. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM
2015. LNCS, vol. 9574, pp. 45-54. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32152-3.5

. Arcucci, R., D’Amore, L., Carracciuolo, L.: On the problem-decomposition of scal-

able 4D-Var data assimilation models. In: Proceedings of the 2015 International
Conference on High Performance Computing and Simulation, pp. 589-594 (2015)
Berntsen, J., Espelid, T., Genz, A.: Algorithm 698: DCUHRE - an adaptive multi-
dimensional integration routine for a vector of integrals. ACM Trans. Math. Softw.
17, 452-456 (1991)

. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.. HADAB:

enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wadniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 700-709. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3_71

Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a
grid enabling, component based programming environment. In: Sloot, P.M.A.,
Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS,
vol. 3470, pp. 982-992. Springer, Heidelberg (2005). https://doi.org/10.1007/
11508380-100

D’Ambra, P., Danelutto, M., di Serafino, D., Lapegna, M.: Advanced environments
for parallel and distributed applications: a view of current status. Parallel Comput.
28, 1637-1662 (2002)

D’Ambra, P., Danelutto, M., di Serafino, D., Lapegna, M.: Integrating MPI-based
numerical software into an advanced parallel computing environment. In: Proceed-
ings of 11th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, Euro-PDP 2003, pp. 283-291 (2003)

D’Amore, L., Marcellino, L., Mele, V., Romano, D.: Deconvolution of 3D flu-
orescence microscopy images using graphics processing units. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Wadniewski, J. (eds.) PPAM 2011. LNCS, vol.
7203, pp. 690-699. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31464-3_70

. D’Amore, L., Laccetti, G., Romano, D., Scotti, G., Murli, A.: Towards a parallel

component in a GPU-CUDA environment: a case study with the L-BFGS Harwell
routine. Int. J. Comput. Math. 92, 59-76 (2015)

D’Apuzzo, M., Lapegna, M., Murli, A.: Scalability and load balancing in adap-
tive algorithms for multidimensional integration. Parallel Comput. 23, 1199-1210
(1997)

Dongarra, J., Gannon, D., Fox, G., Kennedy, K.: The impact of multicore on
computational science software. CTWatch Q. 3(1), 1-10 (2007)

Dongarra, J., Foster, 1., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White,
A.: Sourcebook of Parallel Computing. Morgan Kaufmann Publishers, Burlington
(2003)

https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/978-3-642-31464-3_70
https://doi.org/10.1007/978-3-642-31464-3_70

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Relaxing the Correctness Conditions on Concurrent Data Structures 35

Flatt, H.P., Kennedy, K.: Performance of parallel processors. Parallel Comput. 12,
1-20 (1989)

Genz, A.: Testing multiple integration software. In: Ford, B., Rault, J.C.,
Thommaset, F. (eds.) Tools, Methods and Language for Scientific and Engineering
Computation. North Holland, New York (1984)

Genz, A., Malik, A.: An embedded family of fully symmetric numerical integration
rules. STAM J. Numer. Anal. 20, 580-588 (1983)

Guarracino, M.R., Laccetti, G., Murli, A.: Application oriented brokering in med-
ical imaging: algorithms and software architecture. In: Sloot, P.M.A., Hoekstra,
A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp.
972-981. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380-99
Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12, 463-492 (1990)

Herlihy, M.P., Shavit, N.: The Art of Multiprocessor Programming, Revised 1 edn.
Morgan Kaufmann, Burlington (2012)

Laccetti, G., Lapegna, M.: PAMIHR. A parallel FORTRAN program for mul-
tidimensional quadrature on distributed memory architectures. In: Amestoy, P.,
Berger, P., Daydé, M., Ruiz, D., Duff, 1., Frayssé, V., Giraud, L. (eds.) Euro-Par
1999. LNCS, vol. 1685, pp. 1144-1148. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48311-X_160

Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive
algorithm for multidimensional integration on multicore based HPC systems. Int.
J. Parallel Program. 40, 397-409 (2012)

Laccetti, G., Lapegna, M., Mele, V.: A loosely coordinated model for heap-based
priority queues in multicore environments. Int. J. Parallel Program. 44, 901-921
(2016)

Lapegna, M.: A global adaptive quadrature for the approximate computation
of multidimensional integrals on a distributed memory multiprocessor. Concurr.:
Pract. Exp. 4, 413-426 (1992)

Maddalena, L., Petrosino, A., Laccetti, G.: A fusion-based approach to digital
movie restoration. Pattern Recogn. 42, 1485-1495 (2009)

Moir, M., Shavit, N.: Concurrent data structures. In: Metha, D., Sahni, S. (eds.)
Handbook of Data Structures and Applications, pp. 47-1-47-30. CRC Press, New
york (2005)

Montella, R., Giunta, G., Riccio, A.: Using grid computing based component in on
demand environmental data delivery. In: Proceedings of 2nd workshop on Use of
P2P, Grid and Agent for the development of content Networks, pp. 81-86 (2005)
Montella, R., Coviello, G., Giunta, G., Laccetti, G., Isaila, F., Blas, J.G.: A general-
purpose virtualization service for HPC on cloud computing: an application to
GPUs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 740-749. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3_75

Montella, R., Giunta, G., Laccetti, G., Lapegna, M.: Virtualizing high-end GPG-
PUs on ARM clusters for the next generation of high performance cloud computing.
Cluster Comput. 17, 139-152 (2014)

Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro,
C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr,
K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3-14. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32152-3_1

https://doi.org/10.1007/11508380_99
https://doi.org/10.1007/3-540-48311-X_160
https://doi.org/10.1007/3-540-48311-X_160
https://doi.org/10.1007/978-3-642-31464-3_75
https://doi.org/10.1007/978-3-642-31464-3_75
https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1007/978-3-319-32152-3_1

36

29.

30.

31.

G. Laccetti et al.

Murli, A., Boccia, V., Carracciuolo, L., D’Amore, L., Laccetti, G., Lapegna, M.:
Monitoring and migration of a PETSc-based parallel application for medical imag-
ing in a grid computing PSE. In: Gaffney, P.W., Pool, J.C.T. (eds.) Grid-Based
Problem Solving Environments. ITIFIP, vol. 239, pp. 421-432. Springer, Boston,
MA (2007). https://doi.org/10.1007/978-0-387-73659-4_25

Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained
distributed implementation of the parallel Block Conjugate Gradient algorithm.
Concurr. Comput. Pract. Exp. 22, 20532072 (2010)

Shavit, N.: Data structure in multicore age. Commun. ACM 54, 76-84 (2011)

https://doi.org/10.1007/978-0-387-73659-4_25

®

Check for
updates

Energy Analysis of a 4D Variational Data
Assimilation Algorithm and Evaluation
on ARM-Based HPC Systems

Rossella Arcucci'®™) | Davide Basciano', Alessandro Cilardo!, Luisa D’Amore!,

and Filippo Mantovani?

L University of Naples Federico II, Naples, Italy
rossella.arcucci@unina.it
2 Barcelona Supercomputing Center (BSC), Barcelona, Spain

Abstract. Driven by the emerging requirements of High Performance
Computing (HPC) architectures, the main focus of this work is the inter-
play of computational and energetic aspects of a Four Dimensional Varia-
tional (4DVAR) Data Assimilation algorithm, based on Domain Decom-
position (named DD-4DVAR). We report first results on the energy con-
sumption of the DD-4DVAR algorithm on embedded processor and a
mathematical analysis of the energy behavior of the algorithm by assum-
ing the architectures characteristics as variable of the model. The main
objective is to capture the essential operations of the algorithm exhibit-
ing a direct relationship with the measured energy. The experimental
evaluation is carried out on a set of mini-clusters made available by the
Barcelona Supercomputing Center.

Keywords: Data assimilation - 4DVar - Domain Decomposition
Embedded processor architectures + Energy consumption

1 Introduction and Motivations

Data assimilation (DA) is an uncertainty quantification technique by which mea-
surements and model predictions are combined to obtain an accurate representa-
tion of the state of the modeled system [8,13]. Due to the scale of the forecasting
area and the number of state variables used to describe ocean or atmosphere for
climate or weather predictions, DA applications are large scale problems that
should be solved in near real-time. This mandates to design and develop DA
algorithms to be run by exploiting High Performance Computing (HPC) envi-
ronments till to the heterogeneous ones composed by multiprocessors multicores
and graphics accelerators (see for example [10,16,17]).

During the last 20 years, parallel algorithms for DA have been investigated
by a number of federal research institutes and universities. Up to now, the main
efforts towards the development of parallel 4ADVAR DA systems were achieved in
numerical weather prediction applications, namely by the ECMWF (European
© Springer International Publishing AG, part of Springer Nature 2018

R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 37-47, 2018.
https://doi.org/10.1007/978-3-319-78054-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_4&domain=pdf

38 R. Arcucci et al.

Center for Medium-Range Weather Forecasts), in Reading (UK) and by the
NCAR (National Center for Atmospheric Research), in Colorado (USA). In this
paper, we employ a 4DVAR algorithm described in [1,2,9], named DD-4DVAR,
based on a Domain Decomposition approach. In [5,15,18,19] are described some
different approaches to take full advantage of emerging HPC architectures. In
the model we employ, the parallelism is achieved by dividing the global problem
into multiple local 4DVAR DA sub-problems solved across processors. The global
solution is obtained by collecting the local minimums. The sub-problems are
handled by a slightly modified 4DVAR algorithm, custom implemented on an
ARM-based low-energy node with the aim of minimizing the overall energy-to-
solution experienced by the application.

The performance and energy cost of a parallel algorithm executing on HPC
systems have different trade-offs, depending on how many processors the algo-
rithm uses, at what characteristics these processors have, and the structure of
the algorithm. Due to the interest of the HPC community towards low-power
architectures such as the ones used in smartphone and tablets [20], we report
in this paper the first results on the energy consumption of the DD-4DVAR
algorithm on embedded processor. Note that our approach addresses the prob-
lem in the spirit of scalability analysis of parallel algorithms as distinct from
practical performance analysis on specific architecture. We provide a mathemat-
ical analysis of the energy behavior of the DD-4DVAR algorithm as function
of the architectures characteristics of the platforms where are executed. The
main objective is to capture the essential operations in the algorithm exhibit-
ing a direct relationship with the measured energy. Such analysis will enable
predicting the energy requirements of the DD-4DVAR code, provided that a
set of architecture-dependent parameters are available, as well as understand-
ing its energy breakdown, which may in turn underpin a systematic approach
to combined performance/energy optimization. The experimental evaluation is
carried out on a set of AMR based platforms made available by the Barcelona
Supercomputing Center in the context of the Mont-Blanc European project [21].
The evaluation, aimed at understanding the energy breakdown and the related
scalability issues, pointing out the importance of the underplay between parallel
performance and energy optimization.

2 The DD-4DVAR Computational Kernel

Hereafter we provide a concise formalization of the DD-4DVAR model we imple-
mented in Algorithm 1 [2].

Let t, Kk =0,1,...,n be a sequence of observation times and, for each k, let
be

oy = a(ty) € RY (1)

the vector denoting the state of a sea system such that zp = My (xx—1) with
My, - RN — RN forecasting model.

At each time step tg, let be

Y = Hk(l‘k) c RP (2)

Energy Analysis of a 4D Variational Data Assimilation Algorithm 39

the observations vector where Hj, : RY +— R? is a non-linear interpolation oper-
ator collecting the observations at time tj.

The aim of DA problem is to find an optimal tradeoff between the current
estimate of the system state (background) defined in (1) and the available obser-
vations yy, defined in (2).

Let (3) be an overlapping decomposition of the physical domain {2 such that
;N §2; = 25 # 0 if 2, and §2; are adjacent and (2;; is called overlapping
region [2].

Nsub

0= UQ (3)

For a fixed time t; = to, according to this decomposition, the DD-4DVAR, com-
putational model is a system of N, non-linear least square problems described
in (4)—(5) where J; in (5) is called cost-function.

Nsup . DA
DA argming, Ji(zg,”) on §2;
g P4, with g, { 0 on Q-0 (4)

A DA DA
Ji(xg) = x5 —xq! 1%, +Z|\gk xo) = yillk, + %64/ 25 — %6 /235l

()
where G, = My o Hy.

zf4 in (4) is the analysis (i.e. the estimation of the vector z5* at time to).
The variables x¢, and yy, are the same vectors xg and y in (1) and (2) defined
on the subdomain 2;, R; and Bj are the covariance matrices whose elements
provide the estimate of the errors on yi, and on x,, respectively.

Let d = [yr — H(zk)] be the misfit, by using the linearization of H such that
H(z) = H(z + dx) + H dx, where H is the matrix obtained by the first order
approximation of the Jacobian of H and, by setting v; = V.I'§z;, with V; such
that B; = V; V., the cost function in (5) is written as:

1
Ji(v;) = 2v v; + = Z (G, Vivy — dy,)TRk (G, Viv; — dy;)
1 _ _
+ i(Vijvj = Vi)T (Vigvi” = Vijvy) (6)

The minimum of the cost function J; in (6) is computed by the L-BFGS method
[22] which implements a quasi Newton method. Then we need to compute
VJ;(v;) such that:

N
VJi(vi) = v+ Y_ViLGE R NG, Vivi — di,) (7)
k=0

where G{, is the adjoint operator of Gy, .

40

R. Arcucci et al.

Algorithm 1. The DD-4DVAR algorithm on each subdomain £2; X [tg, t,]

1: Input: {yk, }r=o,....m and ¢!
2: Define Hy,
3: Compute di, < yr, — Hi, My, ... M1,x)! % compute the misfit
4: Define Ry, starting from the observed data y,
5: Define V; starting from a temporal sequence of hystorical data {I%}k:o,,..,M
6: Define the initial value of dzP#
7: Compute v; — V;I §zP4
8: repeat % start of the L-BFGS steps
9: Send and Receive the boundary conditions from the adjacent domains
10: Compute J; < J;(v;) % Defined in (6)
11: Compute gradJ; — VJ;(v;) % Defined in (7)
12: Compute new values for v;
13: until (Convergence on v; is obtained) % end of the L-BFGS steps
14: Compute xf)A «— xévi[+ Vivi
3 Energy Analysis of the Algorithm
In this section we set a DD-4DVAR algorithm configuration and we perform a

mathematical analysis of the energy behaviour of the algorithm.

For the DD-4DVAR algorithm configuration we assume:
N defined in (1), which is the dimension of the problem, such that

N=ngxnyxn,=nxnx3

as this does not affect the generality, where n € N/, n > 1;
a 2D decomposition along the x-axes and the y-axes such that each subdomain
has dimension:

Nizﬁxﬂx& (8)
p p

where p € A, p > 1. Then, Ny, the number of subdomain in (3) (which
constitutes the domain decomposition) is

Nsub = p2 . (9)

the algorithm be implemented on a parallel architecture by employing nproc
processors such that nproc = Ngyp, i.. from (9), we are assuming

nproc = p*.

Concerning the energy model, we assume that [14]:

the energy consumption is additive and it is essentially proportional to the
respective activity intensity in each component of the computing architecture,
in terms of compute operation count, exchanged messages, memory accesses,
plus a static energy contribution which is not affected by the activity and
only depends on the considered time interval.

Energy Analysis of a 4D Variational Data Assimilation Algorithm 41

Based on the above assumption, we can write the energy breakdown as:

EHC (p7 n) = Ecomp (pa n) + Emem (p’ ’fl) + Emes (p; n) + Estatic(p7 Tl) (10)

where the superscript HC' denotes the dependency on the computing architec-
ture, and

— Ecomp(p,n) is the energy for computation:

Ecomp(pa n) =E;- f2 : Mcomp(pa n)7 (11)

where Ey is a hardware constant [7], ficomp(p,n) is the number of computa-
tions and f is the frequency;
— Emem(p,n) is the energy for memory accesses:

Emem(pv n) =FEp,- ,umem(pv TL), (12)

where E,, is the energy consumed for a single memory access (both read and
write) and and fimem (p,) is the number of memory accesses;
— Emes(p,n) is the energy for message transfers:

Emes(pu n) =F;- Mmes(pu n)7 (13)

where E; is the energy consumed for a single message transfer between the
processors and fimes(p,) is the number of message transfers at all processors;
— FEstatic(p,m) is the static energy:

Estatic(p7 TL) =k - f : Tactive(py TL) (14)

where F) is a hardware constant [7] and T,etive(p, 1) is the execution time for
performing the whole algorithm.

Let

— Nr_Bras,p be the number of L-BFGS steps (see Steps 8-13 of Algorithm 1)
which depends on the sub domains dimension (i.e., from (8), it depends on

p) [3);
— ngc be the maximum size of the allocable problem in the memory cache of
the architecture HC.

— pHC be the maximum number of cores of the architecture HC.

By assuming

n<nf° p<plt (15)

and by analyzing the time complexity of Algorithm 1, we can estimate the order
of magnitude of the energy consumption by the following result.

Theorem 1. By assuming (10), (11)-(14) and (15), it holds:

4

E"C(p,n) = O (cHC<p> ~ 9p2) (16)

42 R. Arcucci et al.

where EHC (p,n) denotes the energy consumption defined in (10) and where
CHC(p).'
C"%(p) = Eq- Nr_prasp + Ei - tiop (17)

with tr10p denotes the unitary time required for the execution in each processor
of one floating point operation.

Proof: Let S;(p,n) and V;(p,n) denote the number of floating point exchanges
at each algorithm iteration and the floating point computations at each iteration
respectively, proportional to surface area and the volume of each subdomain in
Algorithm 1:

Si(p,n) = 12° (18)
p
n2
then ticomp(Ds 1), tmem (1, D) and pimes(p,n) are such that:
/f«comp(py n) = NLfBFGS,p 'P2 : ‘/;2(177 ’I’L), (20)
,umem(pa TL) = 2JVL—BFGS,[) 'p2 . M(pv Tl), (21)
,Umes(pa ’/l) = NL—BFGS,p 'P2 : Si(pv n)a (22)

Also we assume Tyetive(p, 1) be the execution time for performing V2 (p,n) float-
g point operations:

Toctive (p, n) = tflop : ViQ (p7 n) (23)

Then, from (10), (18)—(19) and (20)-(22), it holds

712 2 nQ
E"C(p,n) = Ea- No-pres,y (v°) <3p2> -+ Em - 2Nr_pras () (3])2)

n n n? 2
+ Et . NLfBFGS,p (p2) (6 + 6) + El 'tflop(p2) (32> : f
p p p
(24)

As we run in a single computational node (i.e. p < Pmax as expressed in (15))
this means that we are not implying communications, so the third term can be
neglected. From qualitative observations, we can assume that the second term
can be neglected because we fit the whole data in cache (as expressed in (15)),
therefore a negligible number of access to the main memory are performed. Then
the (16) follows.

Definition 1 (Energy Variation parameter). We denote with Energy Variation
parameter the ratio
EHC (pl) n)

VEp o = - bt
php? EHC (pQ’ 7’L)

(25)

Energy Analysis of a 4D Variational Data Assimilation Algorithm 43

The following result holds:

Proposition 1. For a fized architecture and, under the hypothesis of Theorem 1,
it is)
P2 (
—= 26)
I

VEprQ >

for pa > p1.

Proof: From (24) and (16) for a fized value of n, it is

CHC 2
VEy 2 = ¢ (p) 2 (27)

CHC(Pz) p%

We observe that, from (27), it is

CHC(Pl) P%
—>1=VE > =
CHC(pg) pl,p2 p?

which gives:
2

CHC (p1) > CHC(py) = VEy1 0 > % (28)

1
From (28) and (17) it is

CH%p1) > % p2) <= Ea-Ni—5rcsp +Eitfiop > Ea'Ni—prasp,+Eitiop
As for a fized architecture, the values of Eq, E; and tyi.p are also fized, it is

CHO(py) > C%(py) <= Nir_Brasp > NL—BrGsps

Due the better conditioning of the smaller problems, it is Ni_prgs,p, >
]\/VL_BFGSJg2 [3/ Then the (26) holds.

Remark 1. We observe that, if the (15) is not satisfied, then C*C(p) includes
also E,es which increases as the number of processors increases. In that case,
for pg > p1, it is:

CHp2) = €M (p1) (29)

which gives
3
VEpl,p2 <)
1

(30)

4 Experimental Results

The proposed approach is validated on a case study based on the linear Shallow
Water Equation (SWE) for n = 64, i.e. we consider a fixed size configuration of
the DD-4DVAR algorithm and we discuss results obtained by varying p.

44 R. Arcucci et al.

Table 1. Reference architectures details

Specifications Cavium ThunderX | Nvidia JetsonTx1 | Samsung Exynos
Instruction set ARMvS8 ARMv8 ARMv7

Num. of cores/node | 2-48 4 2

Num. of cluster nodes | 1 16 16

Clock freq. [GHz] 2.5 1.73 1.7

L2 cache size [MB] 16 2 1

The experiments are been conducted on architectures available at the
Barcelona Supercomputing Center (BSC) and the power measurements have
been enabled by the Mont-Blanc computing environment [21].

In Table 1 are summarized the reference architectures. HC' = CT refers to a
single Cavium ThunderX server [23], HC' = JT refers to a cluster of 16 nodes
of Nvidia JetsonTx1, while HC' = M B refers to a partition of 5 nodes of the
Mont-Blanc prototype cluster [21] used for this work.

Relying on the potential of the Mont-Blanc computing environment, we were
particularly interested in the results in terms of power efficiency and energy-
to-solution. Here we provide results in terms of (measured) Energy Variation
Parameter defined in (25) and computed using the values of energy consumptions
given by EHC(p,64) = Pfc . ch, where Pfc and ch are the power and
the execution time respectively. We compare the obtained results with the upper
and lower bounds provided in (26) and (30).

We observe that, in Table1, the Cavium ThunderX has 16 Megabyte of
memory cache which allows to satisfy condition in (15). In fact!,

nET =16 -nc1 =96>64=n, p<pSl =2-48=96.

Under condition (15), the (26) holds as confirmed by the results in Table 2.

Table 2. Cavium ThunderX

P BT LT EYT(p,64) VB, p?/1
125.0W | 9065 | 113250.0 J | 1.0
41255W | 211s| 264805 43 | 4
16 1265W | 42s| 5313.0J 213 |16

J—

The JetsonTx1 and Mont-Blanc, with 2 Megabyte and 1 Megabyte of cache
instead (see Table1) do not satisfy (15). In fact, nZf = 2-nc; = 12 and

! Due the time complexity of the computation, for each Megabyte, the values on
nc which is independent from the computing architecture, is such that: nc1 =

[(1048576

1
e)6-‘ = 6, where [-] denotes the integer part.

Energy Analysis of a 4D Variational Data Assimilation Algorithm 45

Table 3. JetsonTx1

f = 800000

p’ BT T E(p,64) VEL, p*/1
5.3W 4295 2273.7J | 1.0
4 6.6W|115s 759.0J 3.0 4
16 6.6W | 45s 297.0J (7.7 16
f = 1700000
p> PJT T ETT(p,64) VE:, p*/1
6.5W | 210s 1365.4J | 1.0
4/10.0W| 86s 860.6J 3.1 4
16 10.0W | 21s| 210.0J |65 16

—

Table 4. Mont-Blanc

f = 800000
p* | BB | T)B | EMB(p,64) | VEL, p*/1
1/5.4W|375s [2025.0 J 1.0

4/5.5W | 86s | 473.0J 4.2 4
16 | 5.5W | 23s | 126.5J 16.0 |16

£ = 1700000
P’ BT TP BME(p,64) | VE1, p?/1
154W 181s | 97747 | 1.0

4|/5.5W | 48s 264 J 3.7 4
16 | 5.5W | 13s 71.5J 13.7 |16

n%B =1-n¢g,1 = 6 for the JT and MB respectively, both smaller than n = 64.
In these cases, the upper bound in (30) holds as confirmed by the results in
Tables 3 and 4.

5 Conclusions

We introduced an energy analysis of the DD-4DVAR algorithm for data assim-
ilation problems. An implementation of the algorithm was evaluated on some
prototype ARM-based platforms made available by the Barcelona Supercomput-
ing Center. We performed the analysis of the energy behaviour of the algorithm
depending on several architectures characteristics. A preliminary experimental
evaluation confirmed the estimations provided by our analysis on a fixed size
problem varying the number of processors. As a future development, we aim
at scaling up the methodology by demonstrating energy-driven parallelization
approaches on production-grade ARM-based HPC clusters.

46

R. Arcucci et al.

Future developments could be straightforwardly take into account the exper-

tise of scientists of our workgroup, to face fault-tolerance problems [4,6,18] as
well as implementations in cloud and/or distributed environments [11,12], and
in heterogeneous ones [15,19].

Acknowledgment. The research has received funding from European Commission
under H2020-MSCA-RISE NASDAC project (grant agreement no. 691184) FP7 Mont-
Blanc and Mont-Blanc 2 (grant agreements no. 288777 and 610402), H2020-FET Mont-
Blanc 3 (grant agreement 671697).

References

1.

10.

11.

12.

Arcucci, R., D’Amore, L., Carracciuolo, L., Scotti, G., Laccetti, G.: A decomposi-
tion of the tikhonov regularization functional oriented to exploit hybrid multilevel
parallelism. Int. J. Parallel Prog. 45(5), 1214-1235 (2017)

Arcucci, R., D’Amore, L., Carracciuolo, L.: On the problem-decomposition of scal-
able 4D-Var data assimilation models. In: Proceedings of HPCS 2015, pp. 589-594
2015

Echuc)ci, R., D’Amore, L., Pistoia, J., Toumi, R., Murli, A.: On the variational data
assimilation problem solving and sensitivity analysis. JCPH 335, 311-326 (2017)
Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.. HADAB:
enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wadniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 700-709. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3_71

Carracciuolo, L., D’Amore, L., Murli, A.: Towards a parallel component for imag-
ing in PETSc programming environment: a case study in 3-D echocardiography.
Parallel Comput. 32, 67-83 (2006)

Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a
grid enabling, component based programming environment. In: Sloot, P.M.A.
Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS,
vol. 3470, pp. 982-992. Springer, Heidelberg (2005). https://doi.org/10.1007/
11508380-100

Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power CMOS digital design.
J. Solid-State Circ. 27(4) (1992)

D’Amore, L., Arcucci, R., Marcellino, L., Murli, A.: HPC computation issues of
the incremental 3D variational data assimilation scheme in OceanVar software.
JNATAM 7(3-4), 91-105 (2012)

D’Amore, L., Arcucci, R., Carracciuolo, L., Murli, A.: A scalable approach to
variational data assimilation. J. Sci. Comput. 2, 239-257 (2014)

Di Lauro, R., Giannone, F., Ambrosio, L., Montella, R.: Virtualizing general pur-
pose GPUs for high performance cloud computing: an application to a fluid sim-
ulator. In: Proceedings of 10th IEEE International Symposium on Parallel and
Distributed Processing with Applications, ISPA (2012)

Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled
MPI library. Future Gener. Comput. Syst. (FGCS) 24(2), 158-165 (2008)
Guarracino, M.R., Laccetti, G., Murli, A.: Application oriented brokering in med-
ical imaging: algorithms and software architecture. In: Sloot, P.M.A., Hoekstra,
A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp.
972-981. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380-99

https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/11508380_99

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Energy Analysis of a 4D Variational Data Assimilation Algorithm 47

Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cam-
bridge University Press, Cambridge (2003)
Korthikanti, V.A., Agha, G.: Energy-performance trade-off analysis of parallel algo-
rithms. In: Hot Topics in Parallelism (HotPar) (2010)
Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive
algorithm for multidimensional integration on multicore based HPC systems. Int.
J. Parallel Program. (IJPP) 40(4), 397-409 (2012)
Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139-152 (2014)
Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro,
C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr,
K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3—14. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32152-3_1
Murli, A., Boccia, V., Carracciuolo, L., D’Amore, L., Laccetti, G., Lapegna, M.:
Monitoring and migration of a PETSc-based parallel application for medical imag-
ing in a grid computing PSE. In: Gaffney, P.W., Pool, J.C.T. (eds.) Grid-Based
Problem Solving Environments. ITIFIP, vol. 239, pp. 421-432. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-73659-4_25
Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained
distributed implementation of the parallel Block Conjugate Gradient algorithm.
Concurr. Comput.: Pract. Exp. 22(15), 2053-2072 (2010)
Rajovic, N., Carpenter, P.M., Gelado, 1., Puzovic, N., Ramirez, A., Valero, M.R.:
Supercomputing with commodity CPUs: are mobile SoCs ready for HPC? In: Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1-12 (2013)
Rajovic, N., et al.: The Mont-Blanc prototype: an alternative approach for HPC
systems. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Piscataway, NJ, USA, pp. 38:1—
38:12 (2016)
Nocedal, J., Byrd, R.H., Lu, P., Zhu, C.: L-BFGS-B: fortran subroutines for large-
scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550-560
(1997)
http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-
cores

/

https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1007/978-0-387-73659-4_25
http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores/
http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores/

)

Check for
updates

Performance Assessment
of the Incremental Strong Constraints
4DVAR Algorithm in ROMS

Luisa D’Amore' ®) | Rossella Arcucci®, Yi Li?, Raffaele Montella?,
Andrew Moore?*, Luke Phillipson?, and Ralf Toumi?

L University of Naples Federico II, Naples, Italy

{luisa.damore,rossella.arcucci}@unina.it
2 Tmperial College in London, London, UK
{y.1i14,1.phillipsoni14,r.touni}@imperial.ac.uk
3 University of Naples Parthenope, Naples, Italy
raffaele.montellaQuniparthenope.it
4 University of Santa Cruz, Santa Cruz, USA
ammoore@ucsc.edu

Abstract. We consider the Incremental Strong constraint 4D VARia-
tional (IS4DVAR) algorithm for data assimilation implemented in ROMS
with the aim to study its performance in terms of strong scaling scalabil-
ity on computing architectures such as a cluster of CPUs. We consider
realistic test cases with data collected in enclosed and semi enclosed seas,
namely, Caspian sea, West Africa/Angola, as well as data collected into
the California bay. The computing architecture we use is currently avail-
able at Imperial College London. The analysis allows us to highlight that
the ROMS-IS4DVAR performance on emerging architectures depends on
a deep relation among the problems size, the domain decomposition app-
roach and the computing architecture characteristics.

Keywords: Data assimilation -+ 4DVAR algorithm
Performance analysis - Parallel algorithm

1 IS4DVAR Algorithm

The Incremental Strong Constraint 4DVAR (IS4DVAR) Algorithm is one of
Data Assimilation modules of the Regional Ocean Modelling System (ROMS)
[18-20]. It solves a regularized Non Linear Least Square (NL-LS) problem of the
type (see [2—4,8,22] for details):

argmingegy Jpa(u) = argmingesy |Fpa(a, M2 u) R, B,v, A, Q)|

where MA*? the predictive model defined in the time-and-space physical
domain A x {2 with initial condition ug, R, and B the covariance matrices
and v the vector of the observations.

© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 48-57, 2018.
https://doi.org/10.1007/978-3-319-78054-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_5&domain=pdf

Performance of the Incremental Strong Constraints 4DVAR Algorithm 49

The common approach for solving NL-LS problems consists in defining a
sequence of local approximations of Jp4 where each member of the sequence is
minimized by employing Newton’s method or one its variants (such as Gauss-
Newton, L-BFGS, Levenberg-Marquardt). See Algorithms 1 and 2. Approxima-
tions are obtained by means of truncated Taylor’s series, while the minimum is
obtained by using second-order sufficient conditions [1,24] (see step 7 of Algo-
rithm 1). In particular, two approaches could be employed:

(a) by truncating Taylor’s series expansion of Jp4 at the second order such as
Newton'methods (including LBFGS and Levenberg-Marquardt) following
the Newton’s descend direction (see Algorithm 3);

(b) by truncating Taylor’s series expansion of Jpa at the first order such as
Gauss-Newton’s methods (including Truncated Gauss-Newton or Approx-
imated Gauss-Newton) following the steepest descend direction, which is
computed solving the normal equations arising from the local Linear Least
Squares (LLS) problem (see Algorithm4).

In ROMS-IS4DVAR the NL-LS problem is solved by using Gauss-Newton’s
method, where solution of normal equations system is obtained by applying a

Algorithm 1

1: procedure IS4DVAR(in : M2X? uf, R, B v, A, 2;out : uDA)

2: %Run MA*2 with initial condition u§ for computing u®, in A x 2
3w’ = Mg

4: k:=0,ub, =uby,

5: repeat

6 k=k+1

7 Call NLLS(m MA%2 R B,v,u’, A, 2;out : u,)

8 until |[uf, — ub | < eps

9: end procedure

Algorithm 2

1: procedure NLLS(in : M2*? R, B,v,u®, A, 2;0ut : ul,)

2 Initialize u® := u®;

3 Initialize k£ = 0;

4 repeat

5: % Compute du® 4 = argminJIpa by using QN or LLS
6: If (QN) then

7 Call QN (in: M2*%? R,B,v,u’, A, 2;0ut : u%,)
8: Elself (LLS) then

9: Call LLS (in : M2*? R, B,v,u’, A, 2;0ut : u’h,)
10: EndIf
11: Update u®, = uf , + du’ 4
12: Update k=k+1
13: until (convergence is reached)

14: end procedure

50 L. D’Amore et al.

Algorithm 3

1: procedure QN(M2*? R, B,v,u’, A, 2; out : u ,)
2 Initialize u) 4 := u%;
3 Initialize k£ = 0;
4 repeat
5: %Compute duf, 4, = argmin Jgg, by Newton’s method
6: 1.1 Compute VJIpa(uf) = VFEL 4 (uh4)VFpa(uby)
7 1.2 Compute V2Ipa(u®) = VFE 4 (u*)VFpa(uh 1) + Q((ub4))
8 1.3 Solve V2Ipa(uf 4)oul, = —VIpa(uba)
9: Update u®, = u® , + dub,
10: Update k=k+1
11: until (convergence is reached)

12: end procedure

Algorithm 4

1: procedure LLS(M“*? R, B,v,u’, A, 2;out : u}))

2 Initialize u® := u®;

3 Initialize k£ = 0;

4 repeat

5: Compute VIpa = VFL 4 (ub 1) VFpa(uh)

6: %Compute duf, 4, = argmin JEL by solving the normal equations system:
7 Solve VFL4(ufa)VFpa(upa)dups = —VEL4(uha)Fpa(upa)

8: Update u®, = uf, + du’ ,

9: Update k=k+1
10: until (convergence is reached)

11: end procedure

Krylov subspace iterative method (this task is also referred to as the inner-
loop while the steps along the descent direction are called the outer-loop) (see
Algorithm 6). IS4DVAR is described in Algorithms 5 and 6 [13]. Finally, in Fig. 1
we report the flowchart of IS4DVAR algorithm as it is implemented in ROMS.

Figure1 illustrates the IS4ADVAR Algorithm as it is implemented in ROMS
and in Fig.2 we describe the software architecture of ROMS. For details see
description in [18].

2 Performance Assessment of Parallel IS4DVAR
Algorithm

As IS4DVAR is part of the ROMS, the parallelization strategy implemented for
the ISADVAR algorithm takes advantage of the parallelization strategy imple-
mented in ROMS. I