
Roman Wyrzykowski
Jack Dongarra
Ewa Deelman
Konrad Karczewski (Eds.)

 123

LN
CS

 1
07

78

12th International Conference, PPAM 2017
Lublin, Poland, September 10–13, 2017
Revised Selected Papers, Part II

Parallel Processing
and Applied Mathematics

Lecture Notes in Computer Science 10778

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

Roman Wyrzykowski • Jack Dongarra
Ewa Deelman • Konrad Karczewski (Eds.)

Parallel Processing
and Applied Mathematics
12th International Conference, PPAM 2017
Lublin, Poland, September 10–13, 2017
Revised Selected Papers, Part II

123

Editors
Roman Wyrzykowski
Czestochowa University of Technology
Czestochowa
Poland

Jack Dongarra
University of Tennessee
Knoxville, TN
USA

Ewa Deelman
University of Southern California
Marina Del Rey, CA
USA

Konrad Karczewski
Czestochowa University of Technology
Czestochowa
Poland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-78053-5 ISBN 978-3-319-78054-2 (eBook)
https://doi.org/10.1007/978-3-319-78054-2

Library of Congress Control Number: 2018937375

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-1724-1786
http://orcid.org/0000-0003-3247-1782
http://orcid.org/0000-0001-5106-503X

Preface

This volume comprises the proceedings of the 12th International Conference on
Parallel Processing and Applied Mathematics – PPAM 2017, which was held in Lublin,
Poland, September 10–13, 2017. It was organized by the Department of Computer and
Information Science of the Czestochowa University of Technology together with Maria
Curie-Skłodowska University in Lublin, under the patronage of the Committee of
Informatics of the Polish Academy of Sciences, in technical cooperation with the IEEE
Computer Society and ICT COST Action IC1305 “Network for Sustainable Ultrascale
Computing (NESUS)”. The main organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Ten previous events have been held in different
places in Poland since 1994. The proceedings of the last six conferences have been
published by Springer in the Lecture Notes in Computer Science series (Nałęczów,
2001, vol. 2328; Częstochowa, 2003, vol. 3019; Poznań, 2005, vol. 3911; Gdańsk,
2007, vol. 4967; Wrocław, 2009, vols. 6067 and 6068; Toruń, 2011, vols. 7203 and
7204; Warsaw, 2013, vols. 8384 and 8385; Kraków, 2015, vols. 9573 and 9574).

The PPAM conferences have become an international forum for the exchange of
ideas between researchers involved in parallel and distributed computing, including
theory and applications, as well as applied and computational mathematics. The focus
of PPAM 2017 was on models, algorithms, and software tools that facilitate efficient
and convenient utilization of modern parallel and distributed computing architectures,
as well as on large-scale applications, including big data and machine learning
problems.

This meeting gathered more than 170 participants from 25 countries. A strict review
process resulted in the acceptance of 100 contributed papers for publication in the
conference proceedings, while approximately 42% of the submissions were rejected.
For regular tracks of the conference, 49 papers were selected from 98 submissions,
giving an acceptance rate of 50%.

The regular tracks covered such important fields of parallel/distributed/cloud com-
puting and applied mathematics as:

– Numerical algorithms and parallel scientific computing, including parallel matrix
factorizations and particle methods in simulations

– Task-based paradigm of parallel computing
– GPU computing
– Parallel non-numerical algorithms
– Performance evaluation of parallel algorithms and applications
– Environments and frameworks for parallel/distributed/cloud computing
– Applications of parallel computing
– Soft computing with applications

The invited talks were presented by:

– Rosa Badia from the Barcelona Supercomputing Center (Spain)
– Franck Cappello from the Argonne National Laboratory (USA)
– Cris Cecka from NVIDIA and Stanford University (USA)
– Jack Dongarra from the University of Tennessee and ORNL (USA)
– Thomas Fahringer from the University of Innsbruck (Austria)
– Dominik Göddeke from the University of Stuttgart (Germany)
– William Gropp from the University of Illinois Urbana-Champaign (USA)
– Georg Hager from the University of Erlangen-Nurnberg (Germany)
– Alexey Lastovetsky from the University College Dublin (Ireland)
– Satoshi Matsuoka from the Tokyo Institute of Technology (Japan)
– Karlheinz Meier from the University of Heidelberg (Germany)
– Manish Parashar from Rutgers University (USA)
– Jean-Marc Pierson from the University Paul Sabatier (France)
– Uwe Schwiegelshohn from TU Dortmund (Germany)
– Bronis R. de Supinski from the Lawrence Livermore National Laboratory (USA)
– Boleslaw K. Szymanski from the Rensselaer Polytechnic Institute (USA)
– Michela Taufer from the University of Delaware (USA)
– Andrei Tchernykh from the CICESE Research Center (Mexico)
– Jeffrey Vetter from the Oak Ridge National Laboratory and Georgia Institute of

Technology (USA)

Important and integral parts of the PPAM 2017 conference were the workshops:

– Workshop on Models, Algorithms, and Methodologies for Hierarchical Parallelism
in New HPC Systems organized by Giulliano Laccetti and Marco Lapegna from the
University of Naples Federico II (Italy), and Raffaele Montella from the University
of Naples Parthenope (Italy)

– Workshop on Power and Energy Aspects of Computation — PEAC 2017 organized
by Ariel Oleksiak from the Poznan Supercomputing and Networking Center
(Poland) and Laurent Lefevre from Inria (France)

– Workshop on Scheduling for Parallel Computing— SPC 2017 organized by Maciej
Drozdowski from the Poznań University of Technology (Poland)

– The 7th Workshop on Language-Based Parallel Programming Models — WLPP
2017 organized by Ami Marowka from Bar-Ilan University (Israel)

– Workshop on PGAS Programming organized by Piotr Bała from Warsaw
University (Poland)

– Special Session on Parallel Matrix Factorizations organized by Marian Vajtersic
from the University of Salzburg (Austria) and Slovak Academy of Sciences

– Minisymposium on HPC Applications in Physical Sciences organized by Grzegorz
Kamieniarz and Wojciech Florek from the A. Mickiewicz University in Poznań
(Poland)

– Minisymposium on High-Performance Computing Interval Methods organized by
Bartłomiej J. Kubica from Warsaw University of Technology (Poland)

– Workshop on Complex Collective Systems organized by Paweł Topa and Jarosław
Wąs from the AGH University of Science and Technology in Kraków (Poland)

VI Preface

The PPAM 2017 meeting began with three tutorials:

– Scientific Computing with GPUs, by Dominik Göddeke from the University of
Stuttgart (Germany) and Robert Strzodka from Heidelberg University (Germany)

– Advanced OpenMP Tutorial, by Dirk Schmidl from RWTH Aachen University
(Germany)

– Parallel Computing in Java, by Piotr Bała from Warsaw University (Poland), and
Marek Nowicki from the Nicolaus Copernicus University in Toruń (Poland)

A new topic at PPAM 2017 was “Particle Methods in Simulations.” Particle-based
and Lagrangian formulations are all-time classics in supercomputing and have been
wrestling with classic mesh-based approaches such as finite elements for quite a while
now, in terms of computational expressiveness and efficiency. Computationally, par-
ticle formalisms benefit from very costly inter-particle interactions. These interactions
with high arithmetic intensity make them reasonably “low-hanging” fruits in super-
computing with its notoriously limited bandwidth and high concurrency.

Surprisingly, PPAM 2017 was shaped by articles that give up on expensive particle–
particle interactions: discrete element methods (DEM) study rigid bodies which interact
only rarely once they are in contact, while particle-in-cell (PIC) methods use the
physical expressiveness of Lagrangian descriptions but make the particles interact
solely locally with a surrounding grid. It is obvious that the lack of direct long-range
particle–particle interaction increases the concurrency of the algorithms. Yet, it comes
at a price. With low arithmetic intensity, all data structures have to be extremely
fine-tuned to perform on modern hardware, and load-balancing has to be lightweight.
Codes cannot afford to resort data inefficiently all the time, move around too much data,
or work with data structures that are ill-suited for vector processing, while notably the
algorithmic parts with limited vectorization potential have to be revisited and maybe
rewritten for emerging processors tailored toward stream processing.

The new session “Particle Methods in Simulations” provided a platform for some
presentations with interesting and significant contributions addressing these challenges:

– Contact problems are rephrased as continuous minimization problems coupled with
a posteriori validity checks, which allows codes to vectorize at least the first step
aggressively (by K. Krestenitis, T. Weinzierl, and T. Koziara)

– Classic PIC is recasted into a single-touch algorithm with only few synchronization
points, which releases pressure from the memory subsystem (by Y. Barsamian,
A. Chargueraud, and A. Ketterlin)

– Cell-based shared memory parallelization of PIC is revised from a scheduling point of
view and tailored parallelization schemes are developed, which anticipate the enor-
mous per-cell load imbalances resulting from clustered particles (by A. Larin et al.)

– Particle sorting algorithms are revisited that make the particles be stored in memory
in the way they are later accessed by the algorithm even though the particles tend to
move through the domain quickly (by A. Dorobisz et al).

Another new topic at PPAM 2017 was “Task-Based Paradigm of Parallel Com-
puting.” Task-based parallel programming models have appeared in the recent years as
an alternative to traditional parallel programming models, both for fine-grain and

Preface VII

coarse-grain parallelism. In this paradigm, the task is the unit of execution and tradi-
tionally a data-dependency graph of the application tasks represents the application.
From this graph, the potential parallelism of the application is exploited, enabling an
asynchronous execution of the tasks that do not require explicit fork-join structures.

Research topics in the area are multiple, from the specification of the syntax or
programming interfaces, the definition of new scheduling and resource management
algorithms that take into account different metrics, the design of the interfaces with the
actual infrastructure, or new algorithms specified in this parallel paradigm. As an
example of the success of this paradigm, the OpenMP standard has adopted this
paradigm in its latest releases.

This topic was presented at PPAM 2017 in the form of a session that consisted of
several presentations from various topics:

– “A Proposal for a Unified Interface for Task-Based Programming Models That
Enables the Execution of Applications in Multiple Parallel Environments”
(by A. Zafari)

– “A Comparison of Time and Energy Oriented Scheduling for Task-Based Pro-
grams, Which Is Based on Real Measured Data for the Tasks Leading to Diverse
Effects Concerning Time, Energy, and Power Consumption” (by T. Rauber and
G. Rünger)

– “A Study of a Set of Experiments with the Sparse Cholesky Decomposition on
Multicore Platforms, Using a Parametrized Task Graph Implementation” (by I. Duff
and F. Lopez)

– “A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix in Real
Schur Form, Which Is Realized on Top of the StarPU Runtime System”
(by M. Myllykoski)

A new topic at PPAM 2017 was the “Special Session on Parallel Matrix Factor-
izations.” Nowadays, in order to meet demands of high-performance computing, it is
necessary to pay serious attention to the development of fast, reliable, and
communication-efficient algorithms for solving kernel linear algebra problems. Tasks
that lead to matrix decomposition computations are undoubtedly some of the most
frequent problems encountered in this field. Therefore, the aim of the special session
was to present new results from parallel linear algebra with an emphasis on methods
and algorithms for factorizations and decompositions of large sparse and dense
matrices. Both theoretical aspects and software issues related to this problem area were
considered for submission.

The topics of the special session focused on: (a) efficient algorithms for the
EVD/SVD/NMF decompositions of large matrices, their design and analysis; (b) im-
plementation of parallel matrix factorization algorithms on parallel CPU and GPU
systems; (c) usage of parallel matrix factorizations for solving problems arising in
scientific and technical applications. Seven papers were accepted for presentation,
which covered the session topics. Geographically, the authors were dispersed among
two continents and five countries. The individual themes of the contributions included:

– “New Preconditioning for the One-Sided Block-Jacobi Singular Value Decompo-
sition Algorithm” (by M. Bečka, G. Okša, and E. Vidličková)

VIII Preface

– “Using the Cholesky QR Method in the Full-Blocked One-Sided Jacobi Algorithm”
(by S. Kudo and Y. Yamamoto)

– “Parallel Divide-and-Conquer Algorithm for Solving Tridiagonal Eigenvalue
Problems on Manycore Systems” (by Y. Hirota and I. Toshiyuki)

– “Structure-Preserving Technique in the Block SS-Hankel Method for Solving
Hermitian Generalized Eigenvalue Problems” (by A. Imakura, Y. Futamura, and
T. Sakurai)

– “Parallel Inverse of Non-Hermitian Block Tridiagonal Matrices” (by L. Spellacy
and D. Golden)

– “Tunability of a New Hessenberg Reduction Algorithm Using Parallel Cache
Assignment” (by M. Eljammaly, L. Karlsson, and B. Kågström)

– “Convergence and Parallelization of Nonnegative Matrix Factorization (NMF) with
Newton Iteration” (by R. Kutil, M. Flatz, and M. Vajtersic).

The organizers are indebted to the PPAM 2017 sponsors, whose support was vital
for the success of the conference. The main sponsor was the Intel Corporation. Another
important sponsor was Lenovo. We thank all the members of the international Program
Committee and additional reviewers for their diligent work in refereeing the submitted
papers. Finally, we thank all the local organizers from the Częstochowa University of
Technology, and Maria Curie-Skłodowska University in Lublin, who helped us run the
event very smoothly. We are especially indebted to Grażyna Kołakowska, Urszula
Kroczewska, Łukasz Kuczyński, Adam Tomaś, and Marcin Woźniak from the
Częstochowa University of Technology; and to Przemysław Stpiczyński and Beata
Bylina from Maria Curie-Skłodowska University. Also, Paweł Gepner from Intel
offered great help in organizing social events for PPAM 2017, including the excursion
to the Zamoyski Palace in Kozłówka and the concert of the youth accordion orchestra
“Arti Sentemo” at the Royal Castle in Lublin.

We hope that this volume will be useful to you. We would like everyone who reads
it to feel invited to the next conference, PPAM 2019, which will be held during
September 8–11, 2019, in Białystok, the largest city in northeastern Poland, located
close to the world-famous Białowieża Forest.

January 2018 Roman Wyrzykowski
Jack Dongarra
Ewa Deelman

Konrad Karczewski

Preface IX

Organization

Program Committee

Jan Węglarz
(Honorary Chair)

Poznań University of Technology, Poland

Roman Wyrzykowski
(Program Chair)

Częstochowa University of Technology, Poland

Ewa Deelman
(Program Co-chair)

University of Southern California, USA

Pedro Alonso Universidad Politecnica de Valencia, Spain
Hartwig Anzt University of Tennessee, USA
Peter Arbenz ETH, Zurich, Switzerland
Cevdet Aykanat Bilkent University, Ankara, Turkey
Marc Baboulin University of Paris-Sud, France
David A. Bader Georgia Institute of Technology, USA
Michael Bader TU München, Germany
Piotr Bała Warsaw University, Poland
Krzysztof Banaś AGH University of Science and Technology, Poland
Olivier Beaumont Inria Bordeaux, France
Włodzimierz Bielecki West Pomeranian University of Technology, Poland
Paolo Bientinesi RWTH Aachen, Germany
Radim Blaheta Czech Academy of Sciences, Czech Republic
Jacek Błażewicz Poznań University of Technology, Poland
Pascal Bouvry University of Luxembourg
Jerzy Brzeziński Poznań University of Technology, Poland
Marian Bubak AGH Kraków, Poland and University of Amsterdam,

The Netherlands
Tadeusz Burczyński Polish Academy of Sciences, Warsaw, Poland
Christopher Carothers Rensselaer Polytechnic Institute, USA
Jesus Carretero Universidad Carlos III de Madrid, Spain
Raimondas Čiegis Vilnius Gediminas Technical University, Lithuania
Andrea Clematis IMATI-CNR, Italy
Zbigniew Czech Silesia University of Technology, Poland
Pawel Czarnul Gdańsk University of Technology, Poland
Jack Dongarra University of Tennessee and ORNL, USA
Maciej Drozdowski Poznań University of Technology, Poland
Mariusz Flasiński Jagiellonian University, Poland
Tomas Fryza Brno University of Technology, Czech Republic
Jose Daniel Garcia Universidad Carlos III de Madrid, Spain
Pawel Gepner Intel Corporation, Poland
Shamsollah Ghanbari Universiti Putra, Malaysia

Domingo Gimenez University of Murcia, Spain
Jacek Gondzio University of Edinburgh, Scotland, UK
Andrzej Gościński Deakin University, Australia
Laura Grigori Inria, France
Inge Gutheil Forschungszentrum Juelich, Germany
Georg Hager University of Erlangen-Nuremberg, Germany
José R. Herrero Universitat Politecnica de Catalunya, Barcelona, Spain
Ladislav Hluchy Slovak Academy of Sciences, Bratislava, Slovakia
Sasha Hunold Vienna University of Technology, Austria
Aleksandar Ilic Technical University of Lisbon, Portugal
Florin Isaila Universidad Carlos III de Madrid, Spain
Ondrej Jakl Institute of Geonics, Czech Academy of Sciences,

Czech Republic
Emmanuel Jeannot Inria, France
Bo Kagstrom Umea University, Sweden
Grzegorz Kamieniarz A. Mickiewicz University in Poznań, Poland
Eleni Karatza Aristotle University of Thessaloniki, Greece
Ayse Kiper Middle East Technical University, Turkey
Jacek Kitowski Institute of Computer Science, AGH, Poland
Joanna Kołodziej Cracow University of Technology, Poland
Jozef Korbicz University of Zielona Góra, Poland
Stanislaw Kozielski Silesia University of Technology, Poland
Tomas Kozubek Technical University of Ostrava, Czech Republic
Dieter Kranzlmueller Ludwig-Maximillian University, Munich

and Leibniz Supercomputing Centre, Germany
Henryk Krawczyk Gdańsk University of Technology, Poland
Piotr Krzyżanowski University of Warsaw, Poland
Krzysztof Kurowski PSNC, Poznań, Poland
Jan Kwiatkowski Wrocław University of Technology, Poland
Giulliano Laccetti University of Naples Federico II, Italy
Marco Lapegna University of Naples Federico II, Italy
Alexey Lastovetsky University College Dublin, Ireland
Laurent Lefevre Inria and University of Lyon, France
Joao Lourenco University Nova of Lisbon, Portugal
Tze Meng Low Carnegie Mellon University, USA
Hatem Ltaief KAUST, Saudi Arabia
Emilio Luque Universitat Autonoma de Barcelona, Spain
Piotr Luszczek University of Tennessee, USA
Victor E. Malyshkin Siberian Branch, Russian Academy of Sciences,

Russian Federation
Pierre Manneback University of Mons, Belgium
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Svetozar Margenov Bulgarian Academy of Sciences, Sofia
Ami Marowka Bar-Ilan University, Israel
Norbert Meyer PSNC, Poznań, Poland

XII Organization

Iosif Meyerov Lobachevsky State University of Nizhni Novgorod,
Russian Federation

Marek Michalewicz ICM, Warsaw University, Poland
Ricardo Morla INESC Porto, Portugal
Jarek Nabrzyski University of Notre Dame, USA
Raymond Namyst University of Bordeaux and Inria, France
Edoardo Di Napoli Forschungszentrum Juelich, Germany
Gabriel Oksa Slovak Academy of Sciences, Bratislava, Slovakia
Tomasz Olas Częstochowa University of Technology, Poland
Ariel Oleksiak PSNC, Poland
Ozcan Ozturk Bilkent University, Turkey
Marcin Paprzycki IBS PAN and SWPS, Warsaw, Poland
Dana Petcu West University of Timisoara, Romania
Jean-Marc Pierson University Paul Sabatier, France
Radu Prodan University of Innsbruck, Austria
Enrique S. Quintana-Ortí Universidad Jaime I, Spain
Omer Rana Cardiff University, UK
Thomas Rauber University of Bayreuth, Germany
Krzysztof Rojek Częstochowa University of Technology, Poland
Jacek Rokicki Warsaw University of Technology, Poland
Leszek Rutkowski Częstochowa University of Technology, Poland
Robert Schaefer Institute of Computer Science, AGH, Poland
Stanislav Sedukhin University of Aizu, Japan
Franciszek Seredyński Cardinal Stefan Wyszyński University in Warsaw,

Poland
Happy Sithole Centre for High Performance Computing, South Africa
Jurij Silc Jozef Stefan Institute, Slovenia
Karolj Skala Ruder Boskovic Institute, Croatia
Renata Słota Institute of Computer Science, AGH, Poland
Leonel Sousa Technical University of Lisbon, Portugal
Vladimir Stegailov Joint Institute for High Temperatures of RAS, Moscow,

Russian Federation
Radek Stompor Universite Paris Diderot and CNRS, France
Przemysław Stpiczyński Maria Curie-Skłodowska University, Poland
Maciej Stroiński PSNC, Poznań, Poland
Reiji Suda University of Tokyo, Japan
Lukasz Szustak Częstochowa University of Technology, Poland
Boleslaw Szymanski Rensselaer Polytechnic Institute, USA
Domenico Talia University of Calabria, Italy
Andrei Tchernykh CICESE Research Center, Ensenada, Mexico
Christian Terboven RWTH Aachen, Germany
Parimala Thulasiraman University of Manitoba, Canada
Roman Trobec Jozef Stefan Institute, Slovenia
Giuseppe Trunfio University of Sassari, Italy
Denis Trystram Grenoble Institute of Technology, France

Organization XIII

Marek Tudruj Polish Academy of Sciences and Polish-Japanese
Academy of Information Technology, Warsaw,
Poland

Pavel Tvrdik Czech Technical University, Prague, Czech Republic
Bora Ucar Ecole Normale Superieure de Lyon, France
Marian Vajtersic Salzburg University, Austria, and Slovak Academy

of Sciences, Slovakia
Vladimir Voevodin Moscow State University, Russian Federation
Kazimierz Wiatr Academic Computer Center CYFRONET AGH,

Poland
Bogdan Wiszniewski Gdańsk University of Technology, Poland
Roel Wuyts IMEC, Belgium
Andrzej Wyszogrodzki Institute of Meteorology and Water Management,

Warsaw, Poland
Ramin Yahyapour University of Göttingen/GWDG, Germany
Jiangtao Yin University of Massachusetts Amherst, USA
Krzysztof Zielinski Institute of Computer Science, AGH, Poland
Julius Žilinskas Vilnius University, Lithuania
Jarosław Żola University of Buffalo, USA

Steering Committee

Jack Dongarra University of Tennessee and ORNL, USA
Leszek Rutkowski Częstochowa University of Technology, Poland
Boleslaw Szymanski Rensselaer Polytechnic Institute, USA

XIV Organization

Contents – Part II

Workshop on Models, Algorithms and Methodologies
for Hybrid Parallelism in New HPC Systems

An Experience Report on (Auto-)tuning of Mesh-Based PDE
Solvers on Shared Memory Systems . 3

Dominic E. Charrier and Tobias Weinzierl

Using GPGPU Accelerated Interpolation Algorithms for Marine
Bathymetry Processing with On-Premises and Cloud Based
Computational Resources . 14

Livia Marcellino, Raffaele Montella, Sokol Kosta, Ardelio Galletti,
Diana Di Luccio, Vincenzo Santopietro, Mario Ruggieri,
Marco Lapegna, Luisa D’Amore, and Giuliano Laccetti

Relaxing the Correctness Conditions on Concurrent Data Structures
for Multicore CPUs. A Numerical Case Study . 25

Giuliano Laccetti, Marco Lapegna, Valeria Mele,
and Raffaele Montella

Energy Analysis of a 4D Variational Data Assimilation Algorithm
and Evaluation on ARM-Based HPC Systems . 37

Rossella Arcucci, Davide Basciano, Alessandro Cilardo,
Luisa D’Amore, and Filippo Mantovani

Performance Assessment of the Incremental Strong Constraints
4DVAR Algorithm in ROMS . 48

Luisa D’Amore, Rossella Arcucci, Yi Li, Raffaele Montella,
Andrew Moore, Luke Phillipson, and Ralf Toumi

Evaluation of HCM: A New Model to Predict the Execution Time
of Regular Parallel Applications on a Heterogeneous Cluster 58

Thiago Marques Soares, Rodrigo Weber dos Santos,
and Marcelo Lobosco

Workshop on Power and Energy Aspects
of Computations (PEAC 2017)

Applicability of the Empirical Mode Decomposition for Power
Traces of Large-Scale Applications . 71

Gary Lawson, Masha Sosonkina, Tal Ezer, and Yuzhong Shen

Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware
for Memory-Bound Problems: A Case Study of Ab Initio
Calculations with VASP . 81

Vladimir Stegailov and Vyacheslav Vecher

GPU Power Modeling of HPC Applications for the Simulation
of Heterogeneous Clouds . 91

Antonios T. Makaratzis, Malik M. Khan,
Konstantinos M. Giannoutakis, Anne C. Elster,
and Dimitrios Tzovaras

Bi-cluster Parallel Computing in Bioinformatics – Performance
and Eco-Efficiency . 102

Paweł Foszner and Przemysław Skurowski

Performance and Energy Analysis of Scientific Workloads
Executing on LPSoCs . 113

Anish Varghese, Joshua Milthorpe, and Alistair P. Rendell

Energy Efficient Dynamic Load Balancing over MultiGPU
Heterogeneous Systems . 123

Alberto Cabrera, Alejandro Acosta, Francisco Almeida,
and Vicente Blanco

Workshop on Scheduling for Parallel Computing (SPC 2017)

Scheduling Data Gathering with Maximum Lateness Objective 135
Joanna Berlińska

Fair Scheduling in Grid VOs with Anticipation Heuristic 145
Victor Toporkov, Dmitry Yemelyanov, and Anna Toporkova

A Security-Driven Approach to Online Job Scheduling in IaaS
Cloud Computing Systems . 156

Jakub Gąsior, Franciszek Seredyński, and Andrei Tchernykh

Dynamic Load Balancing Algorithm for Heterogeneous Clusters. 166
Tiago Marques do Nascimento, Rodrigo Weber dos Santos,
and Marcelo Lobosco

Multi-Objective Extremal Optimization in Processor Load Balancing
for Distributed Programs . 176

Ivanoe De Falco, Eryk Laskowski, Richard Olejnik,
Umberto Scafuri, Ernesto Tarantino, and Marek Tudruj

XVI Contents – Part II

Workshop on Language-Based Parallel Programming
Models (WLPP 2017)

Pardis: A Process Calculus for Parallel and Distributed
Programming in Haskell. 191

Christopher Blöcker and Ulrich Hoffmann

Towards High-Performance Python . 203
Ami Marowka

Actor Model of a New Functional Language - Anemone 213
Paweł Batko and Marcin Kuta

Almost Optimal Column-wise Prefix-sum Computation on the GPU 224
Hiroki Tokura, Toru Fujita, Koji Nakano, and Yasuaki Ito

A Combination of Intra- and Inter-place Work Stealing
for the APGAS Library . 234

Jonas Posner and Claudia Fohry

Benchmarking Molecular Dynamics with OpenCL
on Many-Core Architectures . 244

Rene Halver, Wilhelm Homberg, and Godehard Sutmann

Efficient Language-Based Parallelization of Computational
Problems Using Cilk Plus . 254

Przemysław Stpiczyński

A Taxonomy of Task-Based Technologies for
High-Performance Computing. 264

Peter Thoman, Khalid Hasanov, Kiril Dichev, Roman Iakymchuk,
Xavier Aguilar, Philipp Gschwandtner, Pierre Lemarinier,
Stefano Markidis, Herbert Jordan, Erwin Laure, Kostas Katrinis,
Dimitrios S. Nikolopoulos, and Thomas Fahringer

Workshop on PGAS Programming

Interoperability of GASPI and MPI in Large Scale
Scientific Applications . 277

Dana Akhmetova, Luis Cebamanos, Roman Iakymchuk,
Tiberiu Rotaru, Mirko Rahn, Stefano Markidis, Erwin Laure,
Valeria Bartsch, and Christian Simmendinger

Evaluation of the Parallel Performance of the Java and PCJ
on the Intel KNL Based Systems . 288

Marek Nowicki, Łukasz Górski, and Piotr Bała

Contents – Part II XVII

Fault-Tolerance Mechanisms for the Java Parallel Codes
Implemented with the PCJ Library . 298

Michał Szynkiewicz and Marek Nowicki

Exploring Graph Analytics with the PCJ Toolbox . 308
Roxana Istrate, Panagiotis Kl. Barkoutsos, Michele Dolfi,
Peter W. J. Staar, and Costas Bekas

Big Data Analytics in Java with PCJ Library: Performance
Comparison with Hadoop. 318

Marek Nowicki, Magdalena Ryczkowska, Łukasz Górski,
and Piotr Bala

Performance Comparison of Graph BFS Implemented
in MapReduce and PGAS Programming Models . 328

Magdalena Ryczkowska and Marek Nowicki

Minisymposium on HPC Applications in Physical Sciences

Efficient Parallel Generation of Many-Nucleon Basis
for Large-Scale Ab Initio Nuclear Structure Calculations 341

Daniel Langr, Tomáš Dytrych, Tomáš Oberhuber,
and František Knapp

Parallel Exact Diagonalization Approach to Large Molecular
Nanomagnets Modelling . 351

Michał Antkowiak

Application of Numerical Quantum Transfer-Matrix Approach
in the Randomly Diluted Quantum Spin Chains . 359

Ryszard Matysiak, Philipp Gegenwart, Akira Ochiai,
and Frank Steglich

Minisymposium on High Performance Computing Interval Methods

A New Method for Solving Nonlinear Interval and Fuzzy Equations 371
Ludmila Dymova and Pavel Sevastjanov

Role of Hull-Consistency in the HIBA_USNE Multithreaded
Solver for Nonlinear Systems . 381

Bartłomiej Jacek Kubica

Parallel Computing of Linear Systems with Linearly Dependent
Intervals in MATLAB . 391

Ondřej Král and Milan Hladík

XVIII Contents – Part II

What Decision to Make in a Conflict Situation Under Interval Uncertainty:
Efficient Algorithms for the Hurwicz Approach . 402

Bartłomiej Jacek Kubica, Andrzej Pownuk, and Vladik Kreinovich

Practical Need for Algebraic (Equality-Type) Solutions of Interval
Equations and for Extended-Zero Solutions . 412

Ludmila Dymova, Pavel Sevastjanov, Andrzej Pownuk,
and Vladik Kreinovich

Workshop on Complex Collective Systems

Application of Local Search with Perturbation Inspired
by Cellular Automata for Heuristic Optimization
of Sensor Network Coverage Problem . 425

Krzysztof Trojanowski, Artur Mikitiuk, and Krzysztof J. M. Napiorkowski

A Fuzzy Logic Inspired Cellular Automata Based Model for Simulating
Crowd Evacuation Processes . 436

Prodromos Gavriilidis, Ioannis Gerakakis, Ioakeim G. Georgoudas,
Giuseppe A. Trunfio, and Georgios Ch. Sirakoulis

Nondeterministic Cellular Automaton for Modelling Urban Traffic with
Self-organizing Control . 446

Jacek Szklarski

Towards Multi-Agent Simulations Accelerated by GPU 456
Kamil Piętak and Paweł Topa

Tournament-Based Convection Selection in Evolutionary Algorithms 466
Maciej Komosinski and Konrad Miazga

Multi-agent Systems Programmed Visually with Google Blockly 476
Szymon Górowski, Robert Maguda, and Paweł Topa

Author Index . 485

Contents – Part II XIX

Contents – Part I

Numerical Algorithms and Parallel Scientific Computing

Advances in Incremental PCA Algorithms . 3
Tal Halpern and Sivan Toledo

Algorithms for Forward and Backward Solution of the Fokker-Planck
Equation in the Heliospheric Transport of Cosmic Rays. 14

Anna Wawrzynczak, Renata Modzelewska, and Agnieszka Gil

Efficient Evaluation of Matrix Polynomials . 24
Niv Hoffman, Oded Schwartz, and Sivan Toledo

A Comparison of Soft-Fault Error Models in the Parallel Preconditioned
Flexible GMRES . 36

Evan Coleman, Aygul Jamal, Marc Baboulin, Amal Khabou,
and Masha Sosonkina

Multilayer Approach for Joint Direct and Transposed Sparse Matrix
Vector Multiplication for Multithreaded CPUs . 47

Ivan Šimeček, Daniel Langr, and Ivan Kotenkov

Comparison of Parallel Time-Periodic Navier-Stokes Solvers 57
Peter Arbenz, Daniel Hupp, and Dominik Obrist

Blocked Algorithms for Robust Solution of Triangular Linear Systems 68
Carl Christian Kjelgaard Mikkelsen and Lars Karlsson

A Comparison of Accuracy and Efficiency of Parallel Solvers for Fractional
Power Diffusion Problems . 79

Raimondas Čiegis, Vadimas Starikovičius, Svetozar Margenov,
and Rima Kriauzienė

Efficient Cross Section Reconstruction on Modern Multi and Many
Core Architectures. 90

Yunsong Wang, François-Xavier Hugot, Emeric Brun,
Fausto Malvagi, and Christophe Calvin

Parallel Assembly of ACA BEM Matrices on Xeon Phi Clusters. 101
Michal Kravcenko, Lukas Maly, Michal Merta, and Jan Zapletal

Stochastic Bounds for Markov Chains on Intel Xeon Phi Coprocessor 111
Jarosław Bylina

Particle Methods in Simulations

Fast DEM Collision Checks on Multicore Nodes . 123
Konstantinos Krestenitis, Tobias Weinzierl, and Tomasz Koziara

A Space and Bandwidth Efficient Multicore Algorithm
for the Particle-in-Cell Method . 133

Yann Barsamian, Arthur Charguéraud, and Alain Ketterlin

Load Balancing for Particle-in-Cell Plasma Simulation
on Multicore Systems . 145

Anton Larin, Sergey Bastrakov, Aleksei Bashinov,
Evgeny Efimenko, Igor Surmin, Arkady Gonoskov,
and Iosif Meyerov

The Impact of Particle Sorting on Particle-In-Cell Simulation Performance . . . 156
Andrzej Dorobisz, Michał Kotwica, Jacek Niemiec, Oleh Kobzar,
Artem Bohdan, and Kazimierz Wiatr

Task-Based Paradigm of Parallel Computing

TaskUniVerse: A Task-Based Unified Interface for Versatile
Parallel Execution . 169

Afshin Zafari

Comparison of Time and Energy Oriented Scheduling
for Task-Based Programs . 185

Thomas Rauber and Gudula Rünger

Experiments with Sparse Cholesky Using a Parametrized Task
Graph Implementation . 197

Iain Duff and Florent Lopez

A Task-Based Algorithm for Reordering the Eigenvalues of a Matrix
in Real Schur Form. 207

Mirko Myllykoski

GPU Computing

Radix Tree for Binary Sequences on GPU . 219
Krzysztof Kaczmarski and Albert Wolant

A Comparison of Performance Tuning Process for Different Generations
of NVIDIA GPUs and an Example Scientific Computing Algorithm 232

Krzysztof Banaś, Filip Krużel, Jan Bielański, and Kazimierz Chłoń

XXII Contents – Part I

NVIDIA GPUs Scalability to Solve Multiple (Batch) Tridiagonal Systems
Implementation of cuThomasBatch . 243

Pedro Valero-Lara, Ivan Martínez-Pérez, Raül Sirvent,
Xavier Martorell, and Antonio J. Peña

Two-Echelon System Stochastic Optimization with R and CUDA 254
Witold Andrzejewski, Maciej Drozdowski, Gang Mu,
and Yong Chao Sun

Parallel Hierarchical Agglomerative Clustering for fMRI Data 265
Mélodie Angeletti, Jean-Marie Bonny, Franck Durif, and Jonas Koko

Parallel Non-numerical Algorithms

Two Parallelization Schemes for the Induction of Nondeterministic Finite
Automata on PCs . 279

Tomasz Jastrzab

Approximating Personalized Katz Centrality in Dynamic Graphs. 290
Eisha Nathan and David A. Bader

Graph-Based Speculative Query Execution for RDBMS. 303
Anna Sasak-Okoń and Marek Tudruj

A GPU Implementation of Bulk Execution of the Dynamic Programming
for the Optimal Polygon Triangulation . 314

Kohei Yamashita, Yasuaki Ito, and Koji Nakano

Performance Evaluation of Parallel Algorithms and Applications

Early Performance Evaluation of the Hybrid Cluster with Torus
Interconnect Aimed at Molecular-Dynamics Simulations 327

Vladimir Stegailov, Alexander Agarkov, Sergey Biryukov,
Timur Ismagilov, Mikhail Khalilov, Nikolay Kondratyuk,
Evgeny Kushtanov, Dmitry Makagon, Anatoly Mukosey,
Alexander Semenov, Alexey Simonov, Alexey Timofeev,
and Vyacheslav Vecher

Load Balancing for CPU-GPU Coupling in Computational
Fluid Dynamics . 337

Immo Huismann, Matthias Lieber, Jörg Stiller, and Jochen Fröhlich

Implementation and Performance Analysis of 2.5D-PDGEMM
on the K Computer . 348

Daichi Mukunoki and Toshiyuki Imamura

Contents – Part I XXIII

An Approach for Detecting Abnormal Parallel Applications Based on Time
Series Analysis Methods . 359

Denis Shaykhislamov and Vadim Voevodin

Prediction of the Inter-Node Communication Costs of a New Gyrokinetic
Code with Toroidal Domain . 370

Andreas Jocksch, Noé Ohana, Emmanuel Lanti, Aaron Scheinberg,
Stephan Brunner, Claudio Gheller, and Laurent Villard

D-Spline Performance Tuning Method Flexibly Responsive to Execution
Time Perturbation . 381

Guning Fan, Masayoshi Mochizuki, Akihiro Fujii, Teruo Tanaka,
and Takahiro Katagiri

Environments and Frameworks for Parallel/Distributed/Cloud
Computing

Dfuntest: A Testing Framework for Distributed Applications 395
Grzegorz Milka and Krzysztof Rzadca

Security Monitoring and Analytics in the Context of HPC
Processing Model . 406

Mikołaj Dobski, Gerard Frankowski, Norbert Meyer,
Maciej Miłostan, and Michał Pilc

Multidimensional Performance and Scalability Analysis for Diverse
Applications Based on System Monitoring Data . 417

Maya Neytcheva, Sverker Holmgren, Jonathan Bull, Ali Dorostkar,
Anastasia Kruchinina, Dmitry Nikitenko, Nina Popova, Pavel Shvets,
Alexey Teplov, Vadim Voevodin, and Vladimir Voevodin

Bridging the Gap Between HPC and Cloud Using HyperFlow
and PaaSage . 432

Dennis Hoppe, Yosandra Sandoval, Anthony Sulistio, Maciej Malawski,
Bartosz Balis, Maciej Pawlik, Kamil Figiela, Dariusz Krol,
Michal Orzechowski, Jacek Kitowski, and Marian Bubak

A Memory Efficient Parallel All-Pairs Computation Framework:
Computation – Communication Overlap. 443

Venkata Kasi Viswanath Yeleswarapu and Arun K. Somani

Automatic Parallelization of ANSI C to CUDA C Programs. 459
Jan Kwiatkowski and Dzanan Bajgoric

Consistency Models for Global Scalable Data Access Services 471
Michał Wrzeszcz, Darin Nikolow, Tomasz Lichoń, Rafał Słota,
Łukasz Dutka, Renata G. Słota, and Jacek Kitowski

XXIV Contents – Part I

Applications of Parallel Computing

Global State Monitoring in Optimization of Parallel
Event–Driven Simulation . 483

Łukasz Maśko and Marek Tudruj

High Performance Optimization of Independent Component Analysis
Algorithm for EEG Data . 495

Anna Gajos-Balińska, Grzegorz M. Wójcik, and Przemysław Stpiczyński

Continuous and Discrete Models of Melanoma Progression Simulated
in Multi-GPU Environment . 505

Witold Dzwinel, Adrian Kłusek, Rafał Wcisło, Marta Panuszewska,
and Paweł Topa

Early Experience on Using Knights Landing Processors for Lattice
Boltzmann Applications . 519

Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano,
and Raffaele Tripiccione

Soft Computing with Applications

Towards a Model of Semi-supervised Learning for the Syntactic Pattern
Recognition-Based Electrical Load Prediction System 533

Janusz Jurek

Parallel Processing of Color Digital Images for Linguistic Description
of Their Content . 544

Krzysztof Wiaderek, Danuta Rutkowska, and Elisabeth Rakus-Andersson

Co-evolution of Fitness Predictors and Deep Neural Networks 555
Włodzimierz Funika and Paweł Koperek

Performance Evaluation of DBN Learning on Intel Multi- and Manycore
Architectures . 565

Tomasz Olas, Wojciech K. Mleczko, Marcin Wozniak,
Robert K. Nowicki, and Pawel Gepner

Special Session on Parallel Matrix Factorizations

On the Tunability of a New Hessenberg Reduction Algorithm
Using Parallel Cache Assignment . 579

Mahmoud Eljammaly, Lars Karlsson, and Bo Kågström

New Preconditioning for the One-Sided Block-Jacobi SVD Algorithm. 590
Martin Bečka, Gabriel Okša, and Eva Vidličková

Contents – Part I XXV

Structure-Preserving Technique in the Block SS–Hankel Method
for Solving Hermitian Generalized Eigenvalue Problems 600

Akira Imakura, Yasunori Futamura, and Tetsuya Sakurai

On Using the Cholesky QR Method in the Full-Blocked One-Sided
Jacobi Algorithm. 612

Shuhei Kudo and Yusaku Yamamoto

Parallel Divide-and-Conquer Algorithm for Solving Tridiagonal Eigenvalue
Problems on Manycore Systems . 623

Yusuke Hirota and Toshiyuki Imamura

Partial Inverses of Complex Block Tridiagonal Matrices 634
Louise Spellacy and Darach Golden

Parallel Nonnegative Matrix Factorization Based on Newton Iteration
with Improved Convergence Behavior . 646

Rade Kutil, Markus Flatz, and Marián Vajteršic

Author Index . 657

XXVI Contents – Part I

Workshop on Models, Algorithms and
Methodologies for Hybrid Parallelism in

New HPC Systems

An Experience Report on (Auto-)tuning
of Mesh-Based PDE Solvers on Shared

Memory Systems

Dominic E. Charrier(B) and Tobias Weinzierl

Department of Computer Science, Durham University, Durham, Great Britain
{dominic.e.charrier,tobias.weinzierl}@durham.ac.uk

Abstract. With the advent of manycore systems, shared memory par-
allelisation has gained importance in high performance computing. Once
a code is decomposed into tasks or parallel regions, it becomes crucial to
identify reasonable grain sizes, i.e. minimum problem sizes per task that
make the algorithm expose a high concurrency at low overhead. Many
papers do not detail what reasonable task sizes are, and consider their
findings craftsmanship not worth discussion. We have implemented an
autotuning algorithm, a machine learning approach, for a project devel-
oping a hyperbolic equation system solver. Autotuning here is important
as the grid and task workload are multifaceted and change frequently
during runtime. In this paper, we summarise our lessons learned. We
infer tweaks and idioms for general autotuning algorithms and we clar-
ify that such a approach does not free users completely from grain size
awareness.

Keywords: Autotuning · Shared memory · Grain size
Machine learning

1 Introduction

Whenever a code is decomposed into parallel regions or tasks, the number of
tasks determines the concurrency level and hence the code’s potential to scale.
It is common knowledge, however, that tasks must be reasonably computation-
ally intense. Otherwise, the system spends precious time in administering the
concurrency [5, p. 197]. Thus, modern parallelisation paradigms allow users to
prescribe a grain size, a minimal subproblem size for parallel loops, while task-
based approaches group logical tasks into one physical task if separate tasks were

This work received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 671698 (ExaHyPE). It made use
of the facilities of the Hamilton HPC Service of Durham University. The authors fur-
thermore gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.
gauss-centre.eu) for funding this project by providing computing time on the GCS
Supercomputer SuperMUC at Leibniz Supercomputing Centre (www.lrz.de). All
software is freely available from www.exahype.eu.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-319-78054-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_1&domain=pdf
www.gauss-centre.eu
www.gauss-centre.eu
www.lrz.de
www.exahype.eu

4 D. E. Charrier and T. Weinzierl

too lightweight. For plain bulk synchronous processing and non-nested tasks,
finding grain sizes is often done manually via trial-and-error since developers
assume that the size vs. performance curve is convex ([9, p. 37] or [6]).

Today, nested parallel loops perform efficiently—older OpenMP versions
sometimes fail to deliver performance here—but yield a high-dimensional grain
size optimisation problem. With the advent of manycores and hierarchical paral-
lelisation, manual search becomes inappropriate. Sophisticated coherence proto-
cols, performance fluctuations, and cache effects invalidate the convexity assump-
tion to some degree. Task formalisms with inhomogeneous execution patterns
gain importance. Machine learning (autotuning) which determines both the cost
function and well-suited grain sizes becomes necessary. This manuscript dis-
cusses an autotuning approach that yields reasonable grain sizes in the ExaHyPE
project [2], which combines dynamically adaptive Cartesian grids [12] with
ADER-DG plus local limiting [3]. Support of interacting solvers with varying
polynomial order (arithmetic intensity), inhomogeneous memory access charac-
teristics and hierarchical hardware [11] render the use of autotuning mandatory.
Our goal is two-fold: To present the algorithmic concept and rationale, and to
document experiences on how this algorithm is made efficient and used effi-
ciently. Our hypothesis is that autotuning never is a pure black box but that
users have to have empirical knowledge to allow autotuning to integrate into soft-
ware projects successfully and perform economically. Näıve coding of autotuning
software is often ill-suited for HPC. Both goals interact.

We briefly sketch ADER-DG [3] in Sect. 2. Its task formulation is straight-
forward. However, the tasks differ significantly in arithmetic intensity, and some
may have largely varying runtime. We then present our autotuning concept
(Sect. 3). It tackles the grain size integer optimisation problem [7] parameterised
by real-time measurements via randomised directional search. Emphasis is put on
implementation pitfalls, e.g. the identification of valid real-time measurements.
In Sect. 4, we discuss the algorithm’s impact on the simulation workflow, before
we present numerical results and close the discussion.

2 Use Case: An ADER-DG Solver

In the underlying ExaHyPE project, we solve hyperbolic PDEs

∂Q

∂t
+ ∇ · F(Q) = 0 on Ω ⊂ R

d, d = 2, 3 (1)

subject to appropriate initial and boundary conditions. Q is the solution, F the
conservative flux, d is the space dimension, ∇· (·) denotes the tensor divergence,
while ∇(·) is the vector gradient. We solve (1) on a dynamically adaptive Carte-
sian grid [12] with ADER-DG [3]. In its simplest form, used here, there are three
phases per time step (Fig. 1).

Per grid cell K and time step interval [ta, tb], we first implicitly solve
∫

K

∫ tb

ta

θh
∂qh

∂t
dxdt +

∫
K

∫ tb

ta

θh ∇ · F(qh) dxdt = 0. (2)

(Auto-)tuning of Mesh-Based PDE Solvers 5

Fig. 1. Two snapshots from a d = 2 simulation of the Euler equations applied to an
setup where the initial system energy (density) is determined by the project logo.

The space-time predictor qh and the space-time test functions θh are constructed
using tensor products of Lagrange polynomials over Gauss-Legendre points. Fol-
lowing Discontinuous Galerkin, they have compact support on each cell. Equa-
tion (2) yields a discrete fixed-point problem solved by Picard iterations [3]. All
cell operations are independent of each other. The concurrent solves of (2) yield
jumps along the cell faces in the solution qh and its derivatives determining F.

The second phase traverses all faces of the grid and computes a numerical nor-
mal flux G using qh and F from both adjacent cells. We use a Rusanov Riemann
solver. The solves are embarrassingly parallel with low arithmetic intensity.

In the third algorithmic phase, we traverse the cells again and solve
∫

K

vh Δqh dx = −
∫

K

∫ tb

ta

∇vh : F(qh) dxdt +
∫

∂K

∫ tb

ta

vh Gdsdt (3)

for Δqh = qh(tb)−qh(ta). The time step (3) is derived from spatially testing and
partially integrating (1). It can be easily inverted given that the ansatz and test
space yield a diagonal mass matrix, is evaluated per cell, and, hence, parallel.

ADER-DG describes three types of parallel tasks corresponding to phases.
One is computationally heavy while two are lightweight. In our implementa-
tion, we either fuse the three task types within one grid sweep through a task
formalism—one task then comprises a triad of predictor, Riemann solve and
time step—or run through the grid three times and launch them through par-
allel force. The runtime of the heavy tasks can typically not been predicted due
to the Picard iteration. There is no single grain size well-suited for all steps.

3 Programming an Autotuning Algorithm

Our autotuning approach picks up concepts from Intel’s TBB [9]. There is a cen-
tral instance, a singleton [4] which is notified by the overall algorithm regarding
which algorithmic phase is to be run next. We call this instance Oracle [6].

Our code runs through the dynamically adaptive Cartesian grid. Whenever
it enters a code section which has a multithreaded implementation using tasks
or contains parallel for loops, it passes the maximum problem size N of the
current subproblem, and an identifier for the current code section to the Oracle.

6 D. E. Charrier and T. Weinzierl

The Oracle then returns a GrainSize instance. The latter holds information on
the grain size to be used and the number of logical tasks which can be grouped
into one physical task. After the code exits the code section, the GrainSize
object is destroyed again.

The GrainSize object can also be configured to measure the time which
has elapsed since its creation. The measured time is then reported back to the
Oracle at destruction. Proper move constructors ensure this is only done once.

3.1 Algorithmic Idea

The Oracle manages a database which stores, per entry, a code section, the
algorithmic step, and further:

Nmax the maximum problem size w.r.t. code section and algorithmic step.
g the grain size used for this problem; g = Nmax indicates that parallelisation

of this code section does not pay off.
Δg the delta from g to the previously studied grain size with g + Δg ≤ Nmax.

Sold the speedup obtained with this previous grain size g + Δg.
ts the time per problem entity needed without parallelisation.
tg the time per problem entity needed if grain size g is used.

If no entry for these settings exists or N > Nmax, a new database entry with
(Nmax = N, g = C ·N,Δg = N −C ·N,Sold = ∞, . . .) is created. C ∈ {0.5, 1

p} for
p threads are convenient choices as detailed later. The Oracle then determines a
well-suited grain size for the calling code section: For N > g, the invoking code
is instructed to use g as grain size. Otherwise, it runs serially.

Our algorithm realises interval halving similar to [6]: We start with relatively
large g and compare the multithreaded performance to a serial setting. If the
serial version is faster, we deactivate the parallelisation, i.e. we set g = Nmax.
Otherwise, we successively shrink g with steps Δg until the resulting runtime
starts rising again. Once we observe that g decrements make the runtime rise,
we fall back to the previous choice of g and continue the descending search with
Δg/2.

3.2 Implementation Pitfalls

Whilst our approach is realised straightforwardly and similar concepts have been
proposed, we identified tiny details which decide whether it is successful. One
important detail hereby is the notion of a “valid” timing. We do normalise all
timings w.r.t. time per problem item: if a GrainSize for a problem of size N
measures that the corresponding code lasts t, it reports back a time of t/N to the
Oracle. Working with GrainSize instances ensures that overlapping parallelised
code regions can be handled. Yet, all timings are subject to noise and, more
importantly, any timing is only a characteristic sample if the underlying work per
problem item is not constant. The latter is the case for our nonlinear equation
system solves. Our Oracle thus tracks accumulated times and the number of

(Auto-)tuning of Mesh-Based PDE Solvers 7

measurements. The resulting average time is declared valid by an additional
Boolean flag once a new measurement does not change the average by more than
ε anymore. It is not evaluated for decision making before. Linux system timers
yield useless data if all code regions are paced simultaneously. Timer invocations
come along with an overhead which quickly pollutes all timings. Our solution is
to introduce a global flag that determines for which code part a timer is enabled
at all. After each grid sweep, this flag is randomly set to another parallel code
fragment known. This way, only one code segment at a time is surveyed.

If we start to determine ts first, the algorithm requires a long time to enable any
parallelism at all. As all timings have to converge subject to ε, our simulation runs
in serial for a while if the Oracle first determines the ts entries in the database.
This is not acceptable in HPC. Therefore, our Oracle randomises the grain size
selection whenever it is invoked for a code fragment for which timings should
be made. For one out of Nmax/g samples, it instructs the invoking code to run
serially and to report back the serial runtime. Otherwise, g shall be used and the
parallel runtime tg is updated. With shrinking grain sizes, i.e. longer simulation
runtimes, fewer serial samples are taken. The sliding ts updates anticipate that
the serial timings of code parts change if parallel regions are embedded into each
other that search for well-suited grain sizes, i.e. have not converged yet.

Proper constants C determine whether the algorithm exploits a reasonable num-
ber of cores in the first place. For C = 0.5 in the database entry’s initialisation,
the maximum initial concurrency equals two. In a multicore environment, this
is not acceptable. We thus choose C = 0.5 for N < 2p, i.e. for small problems
compared to the thread count p, and otherwise use C = 1/p.

The initial ε choice should take the runtime distribution into account. While we
may expect runtime noise to cancel out for large data sets N and, thus, that
those measurements converge quickly, it is particular important to come up with
working grain sizes for large subproblems quickly as those dominate the walltime.
In our code, we thus scale the initial ε with the total serial runtime of a source
code fragment. If a code fragment requests a grain size first, we ask it to run
serially and to report back the time. We then scale ε with this time: the longer
a source code fragments runs serially the more relaxed ε.

No fixed ε works for all parts of the code. Some tasks in our application solve
nonlinear equation systems. Furthermore, we have nested parallelism. While a
too relaxed choice of ε makes the Oracle accept garbage measurements and
terminate in suboptimal (local) grain size choices, a restrictive ε makes measure-
ments for some code parts never yield valid results. We thus apply widening:
After each grid sweep, we analyse whether the code fragment currently stud-
ied has been supplemented with new timings and whether those timings have
switched on the valid flag for our timings. If this is not the case, we widen the
admissibility constraint by 10 i.e. multiply ε with 1.1.

No fixed ε works all the simulation through. We work with large initial ε to come
up with reasonable grain sizes choices quickly. We thus must accept inaccurate

8 D. E. Charrier and T. Weinzierl

measurements at startup. Furthermore, runtime statistics do vary significantly
as long as the grain sizes of embedded, nested parallel sections do vary. We thus
half ε each time we have found a better grain size g or roll back to the previous
grain size. Our Oracle increases the reliability of all data successively.

Track good grain sizes per problem size. We have to assume that a good grain
size g depends not only on the algorithmic context but also on the problem size
N . Our approach so far is N -agnostic. While a linear dependency on N might
exist in some cases, we do not assume such a global relation here. Instead, our
approach uses binning. We start searching for good grain sizes for Nmax = 2. If
the code requests a grain size for N > Nmax, we recursively add new database
entries for 2Nmax. Per Oracle request, the database entry i is chosen for which
Nmax(i − 1) < N ≤ Nmax(i).

Restart measurements. After each grid sweep, we examine all database entries
subject of search. If we observe that new measurements would have been made
but all grain sizes belonging to the code fragment of interest are fixed, i.e. all
database entries evaluated hold Δg = 0, we restart the search for these entries
in one out of ten cases. This avoids that we stick to local minima always.

4 Using and Integrating Autotuning

Though we use the autotuning as black box, we found that the user has to
remain aware of their integration into the simulation workflow: Context-aware
autotuning is mandatory. We found our code to react sensitively to machine
type, core count, and input data sets. Some data sets may perform poorly with
autotuning settings derived for other data sets. This is likely an effect of the
nonlinear subalgorithms, but certainly holds for many applications. It is thus
important to work with independent autotuning searches per problem setup
rather than one holistic database.

Autotuning for large data sets is problematic in large-scale compute environ-
ments. Autotuning temporarily runs into inefficient parameter choices (if the
grain size becomes too small, e.g.), while large single node parameter studies for
the many required parameter settings might be deemed unsuitable for supercom-
puters or not practical. At the same time, it is important to obtain autotuning
configurations on the actual target machine that later shall host a large-scale
run. We thus augment our binning. Whenever the database can not host an
N , a new entry for a new Nmax copies over all setting from the next smaller
Nmax, scales them, and continues to work with those parameters. Further, if a
valid parameter configuration is found for some Nmax, our approach extrapolates
this to all database entries with larger Nmax and then makes those restart their
search. This allows us to run small-scale, yet characteristic runs briefly and to
automatically extrapolate reasonable grain size to large production runs.

Accuracy improves over time, i.e. the more samples the more reliable the mea-
surement data. It is thus a natural choice to dump and reload autotuning proper-
ties. It further is very reasonable to archive them alongside the simulation data.

(Auto-)tuning of Mesh-Based PDE Solvers 9

Simulation re-runs then do not start autotuning searches from scratch but reuse
performance knowledge.

We “sacrifice” only one node in a parallel environment. Autotuning introduces
overhead. It has to be used carefully in large-scale simulations where all over-
heads have to be multiplied with the number of nodes used. We thus disable the
autotuning’s search on all MPI ranks besides one. All others read in the auto-
tuning properties from a file and stick to those. The one rank tracking runtimes
dumps all insight into a property file at the end of the simulation from where
this knowledge becomes available to all other ranks in the next simulation. More
sophisticated techniques may pass the responsibility for measurements from one
rank to another throughout the simulation and propagate knowledge on-the-fly.

5 Computational Evidence

We start our computational exercises with the performance model

tg = (1 − f̂) · ts

min
(⌊

N
g

⌋
, p

) + f̂ · ts + h ·
⌈

N

g

⌉
with f̂ = f +

N mod g

N
(1 − f)

which extends Amdahl’s law [1] by a task administration overhead h scaling
linearly with the number of tasks. f ∈ [0, 1] is the code fraction not benefiting
from multithreading at all. It enters the model through f̂ which anticipates that
problems might not be decomposed exactly.

Fig. 2. Normalised time tg/ts according to our performance model for Nmax = 8, f =
0.1, C = 10−1 (left) and Nmax = 64, f = 0.2, C = 10−2 (right).

Our simplistic model relying on invariant ts illustrates (Fig. 2) that one has
to be careful not to choose the grain size too small to avoid overhead, while too
large grain sizes do not yield good speedup. This is common knowledge. Different
to textbooks [9] our speedups however do not develop smoothly but exhibit a

10 D. E. Charrier and T. Weinzierl

non-convex step pattern. Finally, it might be reasonable not to choose a grain
size for small problems that does keep all threads p busy and thus to spare cores.

The performance model motivates our decision to trigger the search for good
grain sizes with half the maximum grain size for small problems and 1/p·Nmax for
bigger problems. As the difference between two local minima becomes the smaller
the smaller g, it is reasonable to start with rather inaccurate time measurements
(noise for large differences can be expected not to pollute any conclusion) and to
increase the accuracy successively throughout the search. From our model, we
derive that good autotuning searches for a different grain size per core number
and problem size: it is reasonable to apply the binning.

Our runtime experiments were run on SuperMUC hosting Haswell Xeon E5-
2697 v3 processors with 28 cores and 2.6 GHz base clock. All shared memory
tests rely on Intel’s TBB [9]. We studied five grain size selection strategies:

serial runs provide the measurement baseline and normalise all runtimes.
dummy is a choice of grain sizes per code part that does not anticipate the algo-

rithmic context. We manually tuned it to yield good performance in many
iterations.

with-finest-grid runs the autotuning strategy.
from-coarse-grid runs a cascade of autotuning experiments: it starts with a

very coarse mesh, runs the autotuning, dumps the grain sizes identified, and
then continues with the next finer mesh. We report only on the final run
where the finest mesh sizes matches the other setups.

from-coarse-grid-without-learning takes the final dump of the cascading
autotuning and reruns the test again but switches off the learning, i.e. no
time measurements are done and grain sizes remain invariant.

Fig. 3. Cost per time step for d = 2 Euler simulations where all three algorithmic
steps are fused and we use polynomial order p = 3 (left) against a code where the three
algorithmic phases are ran after each other with p = 9 (right).

Comparing cascading autotuning with the experiment switching off all mea-
surements (Fig. 3) reveals that there is a significant overhead to do real-time

(Auto-)tuning of Mesh-Based PDE Solvers 11

measurements, and that there is a price to pay for the sliding updates of ts.
Once this overhead is removed, our autotuning can cope with a manual (and
laborious) grain size selection. It thus makes sense to turn off autotuning wher-
ever possible, notably on most MPI ranks.

Autotuning starting on the green field for a large problem does yield some
valid grain sizes but the search process suffers from runtime spikes. The spikes
result from unfortunate grain size choices that the autotuning tries and then
discards. If we start autotuning on a coarse grid and then successively extrapolate
the grain sizes to finer grids, we can remove the majority of these peaks.

Fig. 4. Cost per time step for a d = 2 simulation of a shock where the ADER-DG
solution is augmented with a Finite Volume limiter. p = 3 (left) vs. p = 9 (right) while
all phases are fused into one grid sweep.

If we run the three ADER-DG phases consecutively, our autotuning requires
longer to identify grain sizes able to compete with a manual optimisation (more
than 60 time steps). It particularly struggles for the two arithmetically cheap
phases. It is thus advantageous to try to fuse algorithmic phases—which can be
read as a task fusion—to end up with computationally heavy individual steps.

We observe that our initial choice of C ∈ {0.5, 1/p} (C = 1/p is the OpenMP
default for static partitioning) is reasonable. Already in the first iteration where
the autotuning is unaware of Nmax, we exploit the multicore architecture. Once
we switch from ADER-DG to limited ADER-DG (Fig. 4), autotuning becomes
particularly important. Here, an additional Finite Volume scheme is interwoven
into ADER-DG, eliminating numerical oscillations. As a consequence, the run-
times per cell start to vary greatly and it is hard to find globally valid good grain
sizes. Our extrapolating approach is no longer robust and requires appropriate
restart mechanisms.

The Oracle’s internal decisions are not visible from the plots. It first tries to
remove parallelism from the code where parallel overhead increases the walltime.
Only afterwards, it starts to tune the grain sizes for the scaling regions. Non-
scaling features may significantly perturb the timings of the scaling regions and,
thus, the Oracle’s decision making.

12 D. E. Charrier and T. Weinzierl

6 Conclusion

We describe an autotuning algorithm and summarise realisation decisions which
made, throughout the development, the difference of whether the autotuning
succeeds or not. Though the common perception of a convex runtime curve may
be oversimplified, our autotuning yields proper grain size choices.

Our autotuning approach assumes codes which are completely decomposed
into tasks and use parallel for loops wherever possible. Our algorithm first
switches off parallelism where it does not pay off. Only then, it starts searching
for optimal grain sizes for the remaining code sections. Such an approach, assum-
ing omnipresent parallelism, seems to be a reasonable pattern for future code
development. In terms of implementation difficulty, we regard it to be favourable
to successive automated induction of concurrency.

An interesting next step is to augment the grain size optimisation with an
additional constraint w.r.t. employed cores. We see that we can, at little loss of
efficiency, for many setups reduce the number of used cores. For codes deploying
multiple MPI ranks per node, other ranks then can grab these freed cores [10].
Furthermore, we believe that the proposed implementation pattern and on-the-
fly autotuning approach can help with dynamic scheduling on heterogeneous
systems. Here, tasks typically have to be reallocated to compute resources which
differ in performance per thread and level of parallelism [8].

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing. In: AFIPS Proceedings of the SJCC, vol. 31, pp. 483–485 (1967)

2. Bader, M., Dumbser, M., Gabriel, A., Igel, H., Rezzolla, L., Weinzierl, T.:
ExaHyPE–An Exascale Hyperbolic PDE Engine (2017). http://www.exahype.org

3. Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of
the discontinuous Galerkin finite element method for hyperbolic conservation laws.
J. Comput. Phys. 278, 47–75 (2014)

4. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns - Elements
of Reusable Object-Oriented Software, 1st edn. Addison-Wesley Longman, Boston
(1994)

5. Gerber, R.: The Software Optimization Cookbook-High-performance Recipes for
the Intel Architecture. Intel Press, Hillsboro (2002)

6. Nogina, S., Unterweger, K., Weinzierl, T.: Autotuning of adaptive mesh refinement
PDE solvers on shared memory architectures. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7203, pp. 671–680.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31464-3 68

7. Papadimitriou, C., Steiglitz, K. (eds.): Combinatorial Optimization: Algorithms
and Complexity. Dover Publications Inc., New York (2000)

8. Reano, C., Silla, F., Leslie, M.J.: schedGPU: fine-grain dynamic and adaptative
scheduling for GPUs. In: 2016 International Conference on High Performance Com-
puting Simulation (HPCS), pp. 993–997, July 2016

9. Reinders, J.: Intel Threading Building Blocks. O’Reilly, Sebastopol (2007)

http://www.exahype.org
https://doi.org/10.1007/978-3-642-31464-3_68

(Auto-)tuning of Mesh-Based PDE Solvers 13

10. Schreiber, M., Riesinger, C., Neckel, T., Bungartz, H.J., Breuer, A.: Invasive com-
pute balancing for applications with shared and hybrid parallelization. Int. J. Par-
allel Prog. 43(6), 1004–1027 (2015)

11. Wahib, M., Maruyama, N., Aoki, T.: Daino: a high-level framework for parallel and
efficient AMR on GPUs. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Press (2016)

12. Weinzierl, T., Mehl, M.: Peano—a traversal and storage scheme for octree-like
adaptive cartesian multiscale grids. SIAM J. Sci. Comput. 33(5), 2732–2760 (2011)

Using GPGPU Accelerated Interpolation
Algorithms for Marine Bathymetry

Processing with On-Premises and Cloud
Based Computational Resources

Livia Marcellino1 , Raffaele Montella1(B) , Sokol Kosta3 ,
Ardelio Galletti1 , Diana Di Luccio1 , Vincenzo Santopietro1 ,

Mario Ruggieri1 , Marco Lapegna2 , Luisa D’Amore2 ,
and Giuliano Laccetti2

1 Department of Science and Technologies,
University of Napoli Parthenope, Naples, Italy

{livia.marcellino,raffaele.montella,ardelio.galletti,diana.diluccio,
vincenzo.santopietro,mario.ruggieri}@uniparthenope.it

2 Department of Mathematics and Applications,
University of Napoli Federico II, Naples, Italy

{marco.lapegna,luisa.damore,giuliano.laccetti}@unina.it
3 CMI, Aalborg University Copenhagen, Copenhagen, Denmark

sok@cmi.aau.dk

Abstract. Data crowdsourcing is one of most remarkable results of per-
vasive and internet connected low-power devices making diverse and dif-
ferent “things” as a world wide distributed system. This paper is focused
on a vertical application of GPGPU virtualization software exploita-
tion targeted on high performance geographical data interpolation. We
present an innovative implementation of the Inverse Distance Weight
(IDW) interpolation algorithm leveraging on CUDA GPGPUs. We per-
form tests in both physical and virtualized environments in order to
demonstrate the potential scalability in production. We present an use
case related to high resolution bathymetry interpolation in a crowdsource
data context.

Keywords: GPGPU · Virtualization · High performance computing
Geographic data · Interpolation

1 Introduction

The rise of democratically distributed computing power thanks to the astonish-
ing achievements of low power embedded and mobile devices acted as a spin-
ning wheel effect of the pervasive technology generally known as Internet of
Things (IoT) [21]. The first and more touchable result is the increase of data
raw availability gathered using ad-hoc sensor networks, sampling campaigns and
data crowdsourcing. Focusing on the earth system science, managing spatial
data and exploiting hidden knowledge makes the difference between reach the

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 14–24, 2018.
https://doi.org/10.1007/978-3-319-78054-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_2&domain=pdf
http://orcid.org/0000-0003-2319-8008
http://orcid.org/0000-0002-4767-2045
http://orcid.org/0000-0002-9441-4508
http://orcid.org/0000-0002-5208-6219
http://orcid.org/0000-0002-0810-2250
http://orcid.org/0000-0002-4765-2925
http://orcid.org/0000-0003-0184-9084
http://orcid.org/0000-0001-9953-1319
http://orcid.org/0000-0002-3379-0569
http://orcid.org/0000-0002-0057-2573

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 15

success in human activities development or completely fail it with potential not
reversible environmental damages. The indirect sampling techniques available
today enabled engineers and scientist to record high resolution land and ocean
digital elevation models (DTM) using different instruments but facing the same
problem: producing surface models from a finite, but huge, amount of measures
irregularly distributed on the spatial domain. The problem size is characterized
by a remarkable complexity due to the number of known points (where the mea-
surements are already done and validated) and the new sampled point rate. The
management problem became even more complex if data have to be periodically
updated from different sources. From the computational point of view, the hierar-
chical and heterogeneous high performance computing paradigm delivery enough
power to process spatial big data leveraging on massive multicore CPUs, general
purpose graphic processing units (GPGPUs) and, recently field-programmable
generic arrays (FPGAs) and supported by solid state storage skyrocketing the
long term memory access performance [30]. While CPU virtualization and elastic
storage is a common practice in public, private and hybrid clouds [28], the same
techniques are not widely available due to the fact that often the accelerators
leverage on closed technologies. In this paper we demonstrate how is possible
to democratize the GPGPU resource availability for spatial marine data science
leveraging on the GVirtuS [27] GPGPU virtualization service presenting a spe-
cific use case related to marine bathymetry processing. In particular we present a
CUDA enabled innovative inverse distance weighting (IDW) interpolation algo-
rithm comparing and contrasting the computation performance carried out on
both on-premises and cloud computing scenarios both leveraging on GPGPU
sharing and multiplexing.

Novelty. GVirtuS has been extended in order to support CUDA ancillary
libraries enabling the use of a novel IDW algorithm based on cuBLAS.

Contributions. The rest of the paper is organized as follows: the Sect. 2 is
about the related work on the different semantic components of the paper; in
the Sect. 3 we show the acceleration infrastructure; the Sect. 4 is about the algo-
rithm description, the design choices and the implementation techniques; the
evaluation is carried out in the Sect. 5; finally in the Sect. 6 the conclusions and
some future directions.

2 Related Work

About GPGPU virtualization. One of the most prominent solutions related
to concurrent remote usage of CUDA-enabled devices in a transparent way is
rCUDA [36]. Thanks to the split-driver approach, there is no need to modify
and recompile the CUDA-enabled application in order to use it with rCUDA.
Indeed, the framework takes care of all the necessary details in order to execute
the CUDA kernels on a remote or local GPGPU [32]. The overhead introduced
by using a remote GPU is evaluable as about less than 4% when a high perfor-
mance network fabric is used [33]. At the time of writing, rCUDA delivers high
performance CUDA virtualization [26,29] and it is up to date supporting the
latest CUDA 8.0 framework and its ancillary libraries.

16 L. Marcellino et al.

About CUDA interpolators. The most frequently used spatial interpola-
tion algorithms in geographic information science include the Inverse Distance
Weighting (IDW), Kriging, Discrete Smoothing Interpolation, nearest neigh-
bors, etc. [10–12]; see a comparative survey investigated in [16]. As well-known,
those interpolation algorithms have a computational cost very high when deal-
ing with large-scale datasets. An effective approach to solve this problem is
to perform interpolation algorithms in parallel [31]. There are many research
efforts in this field, using different parallel computing architectures [35]. Among
them, multicore-cluster approaches, parallel pipeline procedures, domain decom-
position strategies. Recently, on the track of current developments of Graphics
Processing Units (GPUs) for High Performance Computing (HPC) [9], interpo-
lation algorithms have been accelerated with good results [14,19]. Here we will
deal with the IDW interpolation algorithm, who has been parallelized on various
platforms [24]. Our parallel implementation starts from [18] and proposes some
variants in the algorithm design, in order to exploit the computational power of
the NVIDIA cuBLAS library, to perform this basic linear algebra operation.

Algorithm 1. G-IDW
Require: locations p(i), known values z(i), query locations q(j), search radius R
Ensure: unknown values z∗(i)
1: // initialize α
2: loc q ← q(tid)
3: for each chunk c do
4: i ← 0
5: start ind ← tid ∗ stride
6: while (i < stride) and (i + start ind) < size(c) do
7: // put pc(start ind + i) into shared memory
8: i ← i + 1
9: end while

10: // synchronize threads
11: for i ← 1 . . . size(c) do
12: // loc p ← pc(i) from shared memory
13: d ← dist(loc p, loc q)
14: if d �= 0 then
15: if dij < R then
16: λ ← d−α; z∗(tid) ← z∗(tid) + λzc(i); wsum ← wsum + λ
17: end if
18: else
19: z∗(tid) ← zc(i); wsum ← 1
20: // break and skip this cycle for the next chunks
21: end if
22: end for
23: // synchronize threads
24: end for
25: // put z∗(tid)/wsum into global memory

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 17

3 Acceleration Infrastructure

The overall architecture is described with more details, referring to GVirtuS (the
GPGPU virtualization and remoting engine) [23,27], designed to be integrated
and deeply cooperate in order to accelerate low-power devices.

3.1 GVirtuS GPU Code Offloading

The GPU virtualization architecture is based on a split-driver model [4], involves
sharing a physical GPU. Hardware management is left to a privileged domain.
A front-end driver runs in the unprivileged VM and forwards calls to the back-
end driver in the privileged domain [15]. The back-end driver then takes care
of sharing resources among virtual machines. This approach requires special
drivers for the guest VM. The split driver model is currently the only GPU
virtualization technique that effectively allows sharing the same GPU hardware
between several VMs simultaneously [22]. This framework offers virtualization
for generic GPU libraries on traditional x86 computers.

3.2 CUDA Ancillary Libraries

It’s well known that NVIDIA provides a set of GPU-accelerated libraries con-
taining several highly optimized algorithms for specific problems. For this reason,
GVirtuS has been extended by providing the support for several CUDA ancillary
libraries, such as cuBLAS. In order to extend the set of CUDA functions supported
by GvirtuS, it’s necessary to define three main components for each library that
are responsible for the communication between the guest and host machine: (i)
Front-end Layer; (ii) Back-end Layer; (iii) Function Handler. The first one con-
tains the definitions of the wrapper functions called by the client, with the same
signature as the library ones, where the name of the requested routine and the
addresses of the input parameters, variables and host/device pointers, are encap-
sulated in a buffer that is sent to the back-end through a communicator.

4 Algorithm Description

The IDW is a deterministic method for spatial interpolation [34], based on the
principle that near points have similar values. Let pi ∈ Rn, i = 1, . . . , N, be the
locations whose the values zi are known. The interpolated value z∗

j of the j-th
query location qj ∈ Rn is obtained by computing the weighted average of known
value, as follows:

z∗
j =

∑N
i=1 λjizi

∑N
i=1 λji

(1)

where the weights λji are defined by the Euclidean distance, as:

λji =
1

dist(pi, qj)α
(2)

18 L. Marcellino et al.

In most application for each point only a subset of points is chosen with respect
to a fixed radius R. Therefore, the weighted average in (1) is computed only for
the sub-set Qj = {pi : d(pi, qj) < R}, i.e.:

z∗
j =

∑
pi∈Qj

λjizi
∑

pi∈Qj
λji

(3)

The IDW problem can be re-written as a matrix-vector problem as follows:
considering a matrix Λ with M rows (the number of unknown values) and N
columns (the number of locations pi). The j-th row contains the weights λji

that are required to obtain the unknown value z∗
j . Then, indicated with z the

vector that contains the known values, the unknown vector z∗, which contains
the unknown values, is the solution of the following problem:

z∗ = Λz (4)

We implemented two strategies for the IDW parallel algorithm on CUDA
environment:

G-IDW: Each thread interpolates a different value computing the weight for
each known value and updating the weighted mean at the same time. Block
threads are synchronized to store dataset points into shared memory before the
interpolation phase. For too large datasets, the points are stored into shared
memory in different chunks.

G-IDW-MV: The matrix Λ is to compute, where the i-th row contains the
weights for the i-th value to be interpolated. Threads are synchronized to store
dataset points into shared memory as the first strategy. The i-th thread com-
putes the elements of the i-th row. Λ is multiplied by the vector containing
the known values. The i-th element of the result vector is divided by the sum
of the weights for the i-th value in order to get the weighted mean. We com-
puted the matrix-vector multiplication using two different approaches: the first
one demands a thread for each scalar product; the second one (G-IDW-MVblas)
uses the cuBLAS library. For the two strategies, the data transfer, Host-to-Device
and vice versa, is based on two fundamental steps: the host sends to device the
locations pi with its related values zi and the locations qj corresponding to values
to be estimated; the device sends to the host the computed values z∗

j .
The parallel pseudocodes related to the two strategies are shown in Algo-

rithms 1 and 2. We called tid the number which uniquely identifies a thread
and stride the number of dataset points which each thread in a block loads into
shared memory. We use the c subscript to indicate a location or value belonging
to the c-th chunk.

5 Use Case and Evaluation

Using commercial and leisure vessels as a sensor network for coastal protection
and marine area management is an application field that could massively benefit

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 19

from high-performance tools for big data collection, information processing, and
dissemination of the generated metadata [6]. In this operational scenario, Fair-
Wind inserts as a smart, cloud-enabled, marine navigation software [25]. Data
collected by FairWind from on-board sensor networks deployed in oceans repre-
sents a major challenge, as these devices generate huge amounts of geolocated
data about the marine coastal environment [1]. By relying on a cloud-based file
transfer protocol, collected data could be sent to remote computing facilities for
conducting further processing with the aim of calibrating on-board instruments,
and enhance depth maps [8]. We made several benchmarks of the proposed
approaches, using the GVirtuS GPGPU virtualization service. The client is an
Ubuntu based machine characterized by poor computational resources (single-
core CPU, 1 GB of RAM), virtualized with KVM. The server machine is charac-
terized by a Xeon E5-2609 v3 CPU, 64 GB of RAM and 2 Nvidia GeForce Titan
X GPUs. Table 1 shows the execution times (Fig. 1) obtained by each algorithm,
increasing firstly the number of the known values and secondly the number of
the query locations. The execution times grow linearly by increasing the number
of query locations.

Algorithm 2. G-IDW-MV
Require: locations p(i), known values z(i), query locations q(i), search radius R
Ensure: unknown values z∗(i)
1: // initialize α and R
2: loc q ← q(tid)
3: for each chunk c do
4: for i ← 1 . . . size(c) do
5: // loc p ← pc(i) from shared memory
6: d ← dist(loc p, loc q)
7: if d �= 0 then
8: if dij < R then
9: λ ← d−α; Λ(tid, column of pc(i)) ← λ; wsum ← wsum + λ

10: else
11: Λ(tid, column of pc(i)) ← 0
12: end if
13: else
14: // put all row values to 0
15: Λ(tid, column of pc(i)) ← 1; wsum ← 1
16: // break and skip this cycle for the next chunks
17: end if
18: end for
19: // synchronize threads
20: end for
21: // use a strategy to compute Λz
22: z∗(tid) ← z∗(tid)/wsum

The use case is relative to bathymetry dataset extracted from EMOD-
net Digital Terrain Model (DTM) with original spatial resolution of 1/8

20 L. Marcellino et al.

Table 1. Performance results

Known values Query locations IDW (s) G-IDW (s) G-IDW-MV (s) G-IDW-MVblas (s)

103 104 2.365 0.006 0.009 0.009

103 105 23.711 0.045 0.09 0.089

103 5 · 105 118.296 0.204 0.448 0.411

104 104 23.734 0.036 0.071 0.064

104 105 236.800 0.313 0.688 0.560

104 5 · 105 1185.581 1.545 3.462 2.775

5 · 104 104 120.293 0.186 0.406 0.276

5 · 104 105 1183.199 1.757 4.315 2.62

5 · 104 5 · 105 5935.798 7.729 19.513 15.227

Fig. 1. Execution times of the proposed approaches.

Fig. 2. EMODnet dataset interpolated with G-IDW algorithm on its original spatial
resolution computational grid (1/8 * 1/8 arc minutes), fixed R = 400m.

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 21

Fig. 3. Detail of bathymetry in Gulf of Pozzuoli (Italy). (a) EDMOnet dataset inter-
polated with G-IDW algorithm (R = 250 m) on about 25m spatial resolution grid; (b)
EDMOnet dataset added with 100000 crowdsourced punctual depth data interpolated
on about 25 m spatial resolution computational grid (R= 250m).

arc minutes in latitude and longitude. The used dataset (Latmin = 40.558◦N,
Latmax = 40.84◦N, Lonmin = 13.705◦E, Lonmax = 14.490◦E), consisting of
about 206908 points (including land mask points) was interpolated, using G-IDW
algorithm, on its original spatial resolution computational grid, fixed R = 400 m.
The obtained bathymetry (Fig. 2) has a low accuracy to detect regional sea phe-
nomena, so we interpolated it still on 25 m spatial resolution grid, fixed R = 250 m
(Fig. 3a), the new grid (about 2640387 points) is more dense but the depth infor-
mation in coastal area are still few. To fill this gap, we increase the dataset with
a cloud of 100000 points, between 0 and −75 m water depth, collected in marine
data-crowdsourcing mode using FairWind. To do this, using the G-IDW algo-
rithm, about 2740387 points have been interpolated on a 25 m spatial resolution
lat-lon regular grid (Fig. 3b) to obtain a more accurate seabed morphology.

22 L. Marcellino et al.

6 Conclusions and Future Directions

In this paper we demonstrate the performance achieved by our IDW imple-
mentation in both regular and virtualized environments. Nevertheless some
improvements could be done considering other computational approaches on
HPC systems [20]. An hierarchical approach combining distributed memory
techniques [17] and performance contracts [7] could better exploit the highly
distributed environment in which we set our prototype [5]. In the next steps,
we will focused on infrastructure improvement with regard to cloud based data
movement protocols in order to implement a reliable mechanism able to move
acquired data from the logging equipment to the cloud infrastructure for process-
ing and usage in data assimilation in order to improve the results produced by
prediction models [3] with techniques [2] devoted to improve the scalability [13].

Acknowledgments. This research has been supported by the Grant Agreement
no. 644312-RAPID-H2020-ICT-2014/H2020-ICT-2014-1 “Heterogeneous Secure Multi-
level Remote Acceleration Service for Low-Power Integrated Systems and Devices
(RAPID)” and by the project DSTE333 “Modelling mytilus farming System with
Enhanced web technologies (MytiluSE)”.

References

1. Ajmar, A., Balbo, S., Boccardo, P., Tonolo, G.F., Piras, M., Princic, J.: A low-cost
mobile mapping system (LCMMS) for field data acquisition: a potential use to
validate aerial/satellite building damage assessment. Int. J. Digit. Earth 6(Suppl.
2), 103–123 (2013)

2. Arcucci, R., D’Amore, L., Celestino, S., Laccetti, G., Murli, A.: A scalable numer-
ical algorithm for solving tikhonov regularization problems. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM
2015. LNCS, vol. 9574, pp. 45–54. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32152-3 5

3. Arcucci, R., D’Amore, L., Carracciuolo, L.: On the problem-decomposition of scal-
able 4D-Var data assimilation models. In: 2015 International Conference on High
Performance Computing and Simulation (HPCS), pp. 589–594. IEEE (2015)

4. Armand, F., Gien, M., Maigné, G., Mardinian, G.: Shared device driver model for
virtualized mobile handsets. In: Proceedings of the First Workshop on Virtualiza-
tion in Mobile Computing, pp. 12–16. ACM (2008)

5. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB:
enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 700–709. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3 71

6. Van den Broek, A., Neef, R., Hanckmann, P., van Gosliga, S.P., Van Halsema, D.:
Improving maritime situational awareness by fusing sensor information and intel-
ligence. In: 2011 Proceedings of the 14th International Conference on Information
Fusion (FUSION), pp. 1–8. IEEE (2011)

https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-31464-3_71

Using GPGPU Accelerated Interpolation Algorithms for Marine Science 23

7. Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a grid
enabling, component based programming environment. In: Sloot, P.M.A., Hoek-
stra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470,
pp. 982–992. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380 100

8. Chard, K., Pruyne, J., Blaiszik, B., Ananthakrishnan, R., Tuecke, S., Foster, I.:
Globus data publication as a service: lowering barriers to reproducible science. In:
2015 IEEE 11th International Conference on e-Science (e-Science), pp. 401–410.
IEEE (2015)

9. Cuomo, S., De Michele, P., Galletti, A., Marcellino, L.: A parallel PDE-based
numerical algorithm for computing the optical flow in hybrid systems. J. Comput.
Sci. 22, 228–236 (2016)

10. Cuomo, S., Galletti, A., Giunta, G., Marcellino, L.: A class of piecewise interpo-
lating functions based on barycentric coordinates. Ricerche Mat. 63(1), 87–102
(2014)

11. Cuomo, S., Galletti, A., Giunta, G., Marcellino, L.: A novel triangle-based method
for scattered data interpolation. Appl. Math. Sci. 8(133–136), 6717–6724 (2014)

12. Cuomo, S., Galletti, A., Giunta, G., Marcellino, L.: Piecewise hermite interpolation
via barycentric coordinates: in memory of prof. carlo ciliberto. Ricerche Mat. 64(2),
303–319 (2015)

13. D’Apuzzo, M., Lapegna, M., Murli, A.: Scalability and load balancing in adaptive
algorithms for multidimensional integration. Parallel Comput. 23(8), 1199–1210
(1997)

14. De Ravé, E.G., Jiménez-Hornero, F.J., Ariza-Villaverde, A.B., Gómez-López, J.:
Using general-purpose computing on graphics processing units (GPGPU) to accel-
erate the ordinary kriging algorithm. Comput. Geosci. 64, 1–6 (2014)

15. Dunlap, G.W., Lucchetti, D.G., Fetterman, M.A., Chen, P.M.: Execution replay
of multiprocessor virtual machines. In: Proceedings of the Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, pp.
121–130. ACM (2008)

16. Falivene, O., Cabrera, L., Tolosana-Delgado, R., Sáez, A.: Interpolation algorithm
ranking using cross-validation and the role of smoothing effect. A coal zone exam-
ple. Comput. Geosci. 36(4), 512–519 (2010)

17. Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled
MPI library. Future Gener. Comput. Syst. 24(2), 158–165 (2008)

18. Henneböhl, K., Appel, M., Pebesma, E.: Spatial interpolation in massively par-
allel computing environments. In: Proceedings of the 14th AGILE International
Conference on Geographic Information Science (AGILE 2011) (2011)

19. Huraj, L., Siládi, V., Siláci, J.: Design and performance evaluation of snow cover
computing on GPUs. In: Proceedings of the 14th WSEAS International Conference
on Computers: Latest Trends on Computers, pp. 674–677 (2010)

20. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive
algorithm for multidimensional integration on multicore based HPC systems. Int.
J. Parallel Prog. 40(4), 397–409 (2012)

21. Laccetti, G., Montella, R., Palmieri, C., Pelliccia, V.: The high performance inter-
net of things: using GVirtuS to share high-end GPUs with ARM based cluster
computing nodes. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski,
J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 734–744. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55224-3 69

22. Li, T., Narayana, V.K., El-Araby, E., El-Ghazawi, T.: GPU resource sharing and
virtualization on high performance computing systems. In: 2011 International Con-
ference on Parallel Processing (ICPP), pp. 733–742. IEEE (2011)

https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/978-3-642-55224-3_69

24 L. Marcellino et al.

23. López, L., Nieto, F.J., Velivassaki, T.H., Kosta, S., Hong, C.H., Montella, R.,
Mavroidis, I., Fernández, C.: Heterogeneous secure multi-level remote acceleration
service for low-power integrated systems and devices. Procedia Comput. Sci. 97,
118–121 (2016)

24. Mei, G., Tian, H.: Impact of data layouts on the efficiency of GPU-accelerated
IDW interpolation. SpringerPlus 5(1), 104 (2016)

25. Montella, R., Di Luccio, D., Ferraro, C., Izzo, F., Troiano, P., Giunta, G.: FairWind:
a marine data crowdsourcing platform based on internet of things and mobile/cloud
computing technologies. In: 8th International Workshop on Modeling the Ocean
(IWMO), Bologna, Italy, 7–10 June 2016

26. Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro,
C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J.,
Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3–14. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-32152-3 1. https://www.scopus.com/
inward/record.uri?eid=2-s2.0-84964461702&doi=10.1007%2f978-3-319-32152-3
1&partnerID=40&md5=79bc02e92d87e0d0b24026a8c7196967

27. Montella, R., Coviello, G., Giunta, G., Laccetti, G., Isaila, F., Blas, J.G.: A general-
purpose virtualization service for HPC on cloud computing: an application to
GPUs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 740–749. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3 75

28. Montella, R., Foster, I.: Using hybrid grid/cloud computing technologies for
environmental data elastic storage, processing, and provisioning. In: Furht, B.,
Escalante, A. (eds.) Handbook of Cloud Computing, pp. 595–618. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-6524-0 26

29. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139–152 (2014)

30. Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro, C.,
Pelliccia, V., Hong, C.H., Spence, I., Nikolopoulos, D.S.: On the virtualization of
CUDA based GPU remoting on ARM and X86 machines in the GVirtuS frame-
work. Int. J. Parallel Program. 45(5), 1142–1163 (2017)

31. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained dis-
tributed implementation of the parallel block conjugate gradient algorithm. Con-
curr. Comput.: Pract. Exp. 22(15), 2053–2072 (2010)

32. Reaño, C., Silla, F.: A performance comparison of CUDA remote GPU virtualiza-
tion frameworks. In: 2015 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 488–489. IEEE (2015)

33. Reaño, C., Silla, F.: Reducing the performance gap of remote GPU virtualiza-
tion with InfiniBand Connect-IB. In: 2016 IEEE Symposium on Computers and
Communication (ISCC), pp. 920–925. IEEE (2016)

34. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data.
In: Proceedings of the 1968 23rd ACM National Conference, pp. 517–524. ACM
(1968)

35. Shi, X., Ye, F.: Kriging interpolation over heterogeneous computer architectures
and systems. GISci. Remote Sens. 50(2), 196–211 (2013)

36. Silla, F., Prades, J., Iserte, S., Reano, C.: Remote GPU virtualization: is it useful?
In: 2016 2nd IEEE International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB), pp. 41–48. IEEE (2016)

https://doi.org/10.1007/978-3-319-32152-3_1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964461702&doi=10.1007%2f978-3-319-32152-3_1&partnerID=40&md5=79bc02e92d87e0d0b24026a8c7196967
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964461702&doi=10.1007%2f978-3-319-32152-3_1&partnerID=40&md5=79bc02e92d87e0d0b24026a8c7196967
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964461702&doi=10.1007%2f978-3-319-32152-3_1&partnerID=40&md5=79bc02e92d87e0d0b24026a8c7196967
https://doi.org/10.1007/978-3-642-31464-3_75
https://doi.org/10.1007/978-3-642-31464-3_75
https://doi.org/10.1007/978-1-4419-6524-0_26

Relaxing the Correctness Conditions on
Concurrent Data Structures for Multicore

CPUs. A Numerical Case Study

Giuliano Laccetti1 , Marco Lapegna1(B) , Valeria Mele1 ,
and Raffaele Montella2

1 Department of Mathematics and Applications,
Università di Napoli Federico II, Napoli, Italy

{giuliano.laccetti,marco.lapegna,valeria.mele}@unina.it
2 Department of Science and Technologies,

Università di Napoli Parthenope, Napoli, Italy
raffaele.montella@uniparthenope.it

Abstract. The rise of new multicore CPUs introduced new challenges
in the process of design of concurrent data structures: in addition to
traditional requirements like correctness, linearizability and progress, the
scalability is of paramount importance. It is a common opinion that
these two demands are partially in conflict each others, so that in these
computational environments it is necessary to relax the requirements on
the traditional features of the data structures. In this paper we introduce
a relaxed approach for the management of heap based priority queues on
multicore CPUs, with the aim to realize a tradeoff between efficiency and
sequential correctness. The approach is based on a sharing of information
among only a small number of cores, so that to improve performance
without completely losing the features of the data structure. The results
obtained on a numerical algorithm show significant benefits in terms of
parallel efficiency.

Keywords: HPC heterogeneous systems
Concurrent data structures · Programming models

1 Introduction

Concurrent data structures are widely used in many software stack levels, rang-
ing from high level parallel scientific applications to low level operating systems.
The key issue of these objects is their concurrent use by two or more threads
(or processes) in a shared address space with a high risk of data inconsistency
caused by a bad interleaving of hardware instructions (the so-called race condi-
tion). Such a problem makes the design of these structures much more difficult
compared to their sequential counterpart, because of the need of a synchroniza-
tion protocol to ensure data consistency [24].

Furthermore, the presence of multicore CPUs in last 10 years has dramati-
cally changed the algorithms development methodologies, since these computing
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 25–36, 2018.
https://doi.org/10.1007/978-3-319-78054-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_3&domain=pdf
http://orcid.org/0000-0002-0057-2573
http://orcid.org/0000-0001-9953-1319
http://orcid.org/0000-0002-2643-3483
http://orcid.org/0000-0002-4767-2045

26 G. Laccetti et al.

devices do not merely represent a new generation of CPUs. More precisely, it
is widely recognized that their special architecture (based on several computing
units sharing key resources such as memory, caches and buses) is forcing scien-
tists towards new programming models and new requirements imposed to the
execution of the algorithms, both in the scientific computing field and in the
more general software design field [11,18,31]. Such studies emphasize a tension
between the needs of sequential correctness and efficiency of algorithms, and in
many cases it is evident the need to rethink the software design and data struc-
ture using approaches based on randomization and/or redistribution techniques
in order to fully exploit the computational power of the multicore CPUs.

In very recent years, a new research trend is emerging, where the main under-
lying ideas are the relaxation of the semantic conditions required for the data
structures and a non-deterministic execution of the algorithms. At the same
time, the lack of a inherently sequential protocol, as one based on the critical
sections, makes it possible a higher degree of concurrency [31].

Our work joins the previous research trend and it presents a relaxed approach
to the management of a heap-based priority queue in multicore environment,
aimed to achieve high scalability relaxing the strong conditions related to a
strict replica of the behavior of the sequential data structure.

The rest of the paper is organized as follows: Sect. 2 provides an overview
of the computing environment, focusing the attention on the multicore archi-
tectures and the model used to assess the performances. Section 3 is aimed to
describe the core of the paper: a relaxed approach to heap-based priority queues
in multicore environments. Section 4 shows numerical tests about the efficiency
and the effectiveness of an algorithm using a relaxed heap described in Sect. 3.
Finally, Sect. 5 concludes this paper.

2 The Computing Model

Current general-purpose multicore CPUs can be modeled as a collection of N
processing elements (the cores) sharing a common memory. Updated examples of
general-purpose multicore CPUs are nowadays the Intel XEON E7 v4 series with
16 cores, the AMD Opteron 6300 series with 16 cores and the IBM POWER8
series with 12 cores. In these CPUs, each core has its own set of processor regis-
ters so that the operating system is able to schedule independent threads among
them, so that a general purposes shared-memory Single Program Multiple Data
programming model can be used. To this end several software tools are available
for the threads management, such as the POSIX Thread Library (pthreads) or
the OpenMP environment. Even if each core can execute efficiently more than
one thread, for our purpose let assume that on the N cores are in execution
just N independent threads pi (i = 0, .., N − 1), one for each core. In our com-
puting model, a multi-threaded task is then represented by the spawning of N
computing threads at the beginning of the execution, that run independently
interacting among them by means of the shared memory, up to the waiting for
their completion, according a fork-join model.

Relaxing the Correctness Conditions on Concurrent Data Structures 27

Based on this model, we define now T (k, z) as the total elapsed time to
complete a task with problem dimension z using k threads. For our purposes we
then decompose it as [13]:

T (k, z) = Ts +
Tc(z)

k
+ To(k) (1)

where [13]:

– Ts is the running time for the serial sections of the algorithm. It is assumed
that Ts is independent from z and from k;

– Tc(z)/k is the running time for the parallelizable sections of the algorithm. It
is assumed that parallelizable sections of the algorithm can be decomposed
in k concurrent tasks of equal running time;

– To(k) is the synchronization overhead. We assume that To(1) = 0 and that
To(k) is a not-decreasing function only depending on k.

Therefore, with these definitions in hand, we can define scalable an algorithm
when, if the number of threads k and the problem size z are increased by a same
factor N , the running time (1) remains the same [12]. When the original number
of threads is k = 1, a formal definition for the scalability is for example:

R(N, z) =
T (1; z)

T (N ;Nz)
(2)

The (2) is often said scaled efficiency or weak scalability and its ideal value is
R(N, z) = 1 but in practice a small degradation, due to operating system over-
head, is acceptable. Furthermore, under the above assumptions 1–3, if Tc(Nz)/N
is a not decreasing function of N , it is easy to prove that:

R(N, z) ≤ T (1, z)
T (1, z) + To(N)

≤ 1 (3)

The previous expression (3) represents an upper limit for the weak scalability
when the number of threads N increases, and its strong dependence on the
synchronization overhead To(N).

3 A Loosely Coordinated Heap

It is very frequent that an application uses set of data not requiring a complete
ordering, but only the access to some items tagged with high priority. For exam-
ple many iterative algorithms attempt to reduce the numerical error accessing
only the data with maximum error, or the process scheduling algorithms for real
time applications need to access the data with the closest deadline. A priority
queue S is a dynamical data structure where each node s(k) ∈ S, (k = 1, ..,K)
is tagged with a problem-dependent priority e(k). A very efficient priority queue
is a heap, that is a partially ordered binary tree where each node has a priority

28 G. Laccetti et al.

higher than its children, so that the item ŝ with highest priority ê = maxk e(k)
is in the root (the so called max-heap property).

A heap, and more generally all dynamical data structures, is used when
there is need to process items produced at run time by the execution of the
algorithm, with an ordering depending on the application data and that cannot
be envisaged. Therefore, in many scientific applications, the heap is periodically
updated in an iterative section as in the following Algorithm 1.

Algorithm 1. Updating heap in an iterative algorithm
while (stopping criterion == false) do iteration j

...
remove(max priority item)
process data
produce new items
insert(new items)
...

endwhile

Usually, at each iteration j, the item with the highest priority is removed
from the root, and it is replaced by two o more new elements. If all threads
process data with high priority, a fast convergence of the iterative process is
ensured.

In a multicore CPU, an efficient way to reorganize the Algorithm 1 is to pro-
cess several nodes simultaneously by threads running on different cores, with the
aim to share among them the items with the highest priority. In a centralized
approach, where all threads access a single shared heap with a global synchro-
nization, all the basic operations on the heap must be carried out in a critical
section, with a strong scalability degradation.

In the case of N threads entering M times in a critical section one at a time,
the total overhead is To(N) = M(N − 1)tc = O(N), where tc is the time to
traverse the critical region, so that from (3) follows R(N, z) ≤ O(N−1). Because
of the linear dependence on To(N) on the number of threads N , the scaled
efficiency R(N, z) will quickly decreases, so the algorithm is poorly scalable. For
these reasons, our first step in the development of a scalable heap, is to remove
all global critical sections from the algorithm. To this aim, we give up the idea
of a single centralized heap, and we reorganize the heap S in N separate heaps
Si, one for each thread pi, each of them accessing its private data structure
without synchronizations with other threads. Without global synchronization,
we have a pleasantly parallel algorithm (e.g. [12]), where it easy to show that
To(N) = const.

However also this approach has a side effect: because the complete disjunc-
tion of the heaps Si, the N items with the highest priority ŝi may not be the
ones that globally have the highest priority, so that some threads can process
unimportant items with no significant progress for the whole application. There-
fore it is important to observe that, in case of items with priority very poorly
distributed among the heaps, it should be desirable a periodical redistribution

Relaxing the Correctness Conditions on Concurrent Data Structures 29

strategy for the ŝi in order to balance the critical items among the threads. Actu-
ally the sequence of items with high priority is unpredictable, and it is impossible
to distribute them uniformly among the several heaps before the computation,
with the aim to process only the items with highest priority at each iteration. In
other words we have to deal with the contraposition between algorithms with cen-
tralized heap requiring several global synchronizations where all threads always
process items with high priority, and algorithms with data structures distributed
in several locations without synchronizations but with the risk that some threads
process unimportant items. Our approach is aimed to address the above contra-
position, by means of a tradeoff based on the periodical reorganization of the
items ŝi, only among a small group of threads, with a synchronization overhead
that does not depend on the number of threads N . More precisely the N threads
pi are logically organized according a 2-dimensional periodical mesh M2. This
structure is a virtual grid of Λ0 × Λ1 = N threads, arranged along the points
of a 2-dimensional space with integer non negative coordinates, and where a
shared buffer between each couple of connected nodes is established. The buffers
are used to allow sharing data between two threads according to a producer-
consumer protocol. In addition, the corresponding threads on the opposite faces
of the mesh are connected too, so that the mesh is periodical. In a 2-dimensional
periodical mesh, each thread pi has 4 neighbors: 2 for each direction. In the hor-
izontal direction (dir = 0), we define p

(0)
i− and p

(0)
i+ respectively the leftmost and

the rightmost thread of pi in M2. Analogously in the vertical direction (dir = 1)
we define p

(1)
i− and p

(1)
i+ the lowermost and the uppermost threads of pi.

We now define S∗ a loosely coordinate heap [21] as a collection of partially
ordered binary trees Si i = 0, .., N − 1 with the max-heap property, where the
roots are connected among them according to a given topology. In our loosely
coordinated approach, at the iteration j, each thread pi attempts to share its item
ŝi ∈ Si, with highest priority êi only with the next thread p

(dir)
i+ in the direction

dir = mod(j, 2) of the mesh M2, that is alternatively in the two horizontal and
vertical directions. More precisely, in a fixed direction dir let êi êi+ and êi− be
respectively the highest priority of the items in the heap root of the threads
pi, p

(dir)
i+ and p

(dir)
i− . If êi > êi+ then the item ŝi ∈ Si with highest priority êi

is moved to the heap Si+ along the direction dir, using a producer-consumer
protocol on the shared buffer. In the same way if êi− > êi the item ŝi− ∈ Si−
with highest priority êi− is moved to the heap Si. In this way, the critical items
with highest priority are passed from thread in thread, an iteration after the
other, through all the nodes of M2. The loosely coordinated heap management,
described for the i-th thread pi with a Single Program Multiple Data (SPMD)
programming model, is then reported in Algorithm 2.

About the scalability, it should be noted that in the proposed data redis-
tribution, at each iteration j, there are not global synchronizations among
threads pi and each of them exchanges data only with the two threads p

(dir)
i+

and p
(dir)
i− , so that the cost of threads synchronization is To(N) = O(1) because

it does not depends on the number of threads N . From (3) it follows that
R(N, z) ≤ const ≤ 1, so that the resulting algorithm can be considered scalable.

30 G. Laccetti et al.

Algorithm 2. SPMD version of Algorithm 1
with a loosely coordinated heap
1 Determine p

(dir)
i− and p

(dir)
i+ , (dir = 0, 1)

2 initialize Si

3 while (stopping criterion == false) do iteration j
4 define dir = mod(j, 2)
5 share êi with the closest threads p

(dir)
i− and p

(dir)
i+

6 if (êi > êi+) then
7 remove (ŝi) from Si

8 produce (ŝi) for p
(dir)
i+

9 endif
10 if (êi− > êi) then
11 consume (ŝi−) produced by p

(dir)
i−

12 insert (ŝi−) in Si

13 endif
14 remove(max priority item)
15 process data
16 produce two o more new items
17 insert(new items)
18 ...
19 endwhile

4 A Numerical Case Study

A scientific computing area where heaps are widely used is the development of
adaptive algorithms for numerical computation of multidimensional integrals:

I(f) =
∫
U

f(x) dx =
∫
U

f(x1, ..., xd) dx1 · · · dxd, (4)

In (4) U = [a1, b1]×· · ·× [ad, bd] is a d-dimensional hyper-rectangular region.
Because the scientific importance of such problem, since the 1980’s several effi-
cient parallel routines have been developed for its solution. Most of them (see for
example [3,19,20,22]) are based on adaptive algorithms, that allow high accu-
racy with a reasonable computational cost.

An adaptive algorithm for the computation of (4) is an iterative procedure
processing a family of hyper-rectangular subdomains s(k) (k = 1, ..,K) of a
partition P of U with the aim to compute a sequence Q(j) approaching I(f)
and a sequence |E(j)| of approximations of the error |Q(j) − I(f)| approaching
0, until a stopping criterion is not satisfied. Since the convergence rate of this
procedure depends on the behavior of the integrand function (presence of peaks,
oscillations, and so on), in order to reduce as soon as possible the error, at the
iteration j, the algorithm splits in two parts, s(λ) and s(μ), the subdomain
ŝ ∈ P with maximum error estimate ê. The two new subdomains take the place
of ŝ in the partition P, that is: P = P − {ŝ} ∪ {s(λ) , s(μ)}. In a similar way

Relaxing the Correctness Conditions on Concurrent Data Structures 31

the approximations Q(j) and E(j) are updated. A natural implementation of a
such procedure can be done with a priority queue with the max-heap property,
where the nodes of the heap S contain the subdomains s(k) of the partition
P, and where the priority is represented by the error estimate e(k) in each
subdomain. The subdomain ŝ to be split at the iteration j, with maximum error
estimate ê is then in the root of the tree. For such a reason, to implement an
adaptive in a multicore based computing environment, it is possible to use the
loosely synchronous approach to the heap management previously described in
Sect. 3. More precisely, after the arrangement of the N threads pi according
a 2-dimensional periodical mesh M2 at the beginning of the algorithm, the
integration domain U is fairly subdivided in N equal subdomains si, each of
them assigned to a thread pi. Such a step represents the initialization of Si in pi.
Then, each thread pi of the algorithm repeatedly refines the subdomains in the
heap root ŝi ∈ Si, sharing them with the neighboring threads p

(dir)
i− and p

(dir)
i+ ,

along the 2 directions dir of M2.
To test the effectiveness of our approach we use a test functions family taken

from the Genz’s package [14]:

f(x) =
{

0 if x1 > β1 or x2 > β2
exp(

∑
i=1,..,d αi xi) otherways

where U = [0, 1]d with d = 10 and αi < 1 and βi < 1 are positive random value.
The values of αi are scaled according to d2

∑
αi = 100 in order to control the

difficulty of the function. The integrand function has a integrable discontinuity
along the edges of the rectangle [0, β1] × [0, β2]. For such a reason, the error
estimate procedure will compute a very large error only in those subdomains
where x1 = β1 or x2 = β2, that will be managed only by some threads. Without
a suitable redistribution of the subdomains with large errors, only one thread
will perform an useful job, while the other threads will refine subdomains where
the error is already small enough.

For the experiments of this case study we use a computing system based on 2
CPUs Intel Xeon E5-4610 v2 with 8-core at 2.33 GHz, and a shared main memory
DDR3 of 256 GB at 133 MHz. The system runs an operating system Scientific
Linux 6.2, with GNU C compiler version 4.4 and POSIX Thread Library.

A first set of experiments is aimed to measure the scaled efficiency of the
algorithm as defined in (2) with the described test function, with an approach
similar to the one described in [10]. In this case the problem size z when N = 1 is
the total number of evaluations of the integrand function f(x). The quadrature
rule on the basis of the adaptive algorithm is based on the Genz and Malik rule
[15], and in d = 10 dimensions it requires m = 1245 function evaluations, so that
the number of iterations, at the basis of the algorithm stopping criterion, can
be computed by dividing the total number of function evaluations Nz by 2m,
because in each iteration the algorithm evaluate the quadrature rule in the two
subdomains si(λ) and si(μ). Therefore we run the algorithm in two way:

– Option (a): without redistribution procedure (i.e. without rows 4–13 in
Algorithm 2): the integration domain U is equally distributed among the

32 G. Laccetti et al.

N threads pi and the calculation goes on without interaction among threads.
In this case any difficulties in the integration domain are not shared among
the threads.

– Option (b) with redistribution procedure (i.e. with rows 4–13 in Algorithm
2): after the same distribution of U among the threads, the computation
attempts to balance the work load among the local data structures Si of the
loosely coordinated heap S∗, as described in Sect. 3. In this case the difficulties
in the integration domain are shared among the threads.

To this aim we used 10 different integrand functions with different values of αi

and βi in order to test different locations and sharpness of the discontinuity.
In Fig. 1 are reported respectively the scaled efficiencies of the algorithm for

both tests with Option (a) and Option (b). More precisely are reported the best
value, the worst value and average values, over the 10 test functions, of the scaled
efficiency as defined in (2) with N = 16 threads and z = 250000, 500000, 750000,
1000000 integrand function evaluations.

Fig. 1. Scaled efficiency of the adaptive algorithm. Left: 16 threads and Option (a).
Right: 16 threads and Option (b). ◦ = worst case - � = average case - � = best case

Mainly for large values of the number of function evaluations (z = 750000
and z = 1000, 000) we observe a very small difference between the two cases,
confirming, once again, our expectation of a small impact of the redistribution
procedure among the threads on the scaled efficiency. In the worst case, the
scaled efficiency is about R(N, z) � 0.6 with both Options (a) and (b), and it is
only 0.1 larger with Option (a) with respect to Option (b) in the best case. The
average values differ of only 0.05 between Option (a) and Option (b).

A second set of experiments is aimed, instead, to measure the benefit of
the proposed redistribution procedure on the accuracy of the results. This is
a critical experiment because it is tested the ability of the loosely coordinated
heap S∗ to supply effectively high-priority items to the threads. Also in this
case we used the function described for the previous experiment. In Fig. 2
are reported the estimated numerical error, with N = 1 thread and N = 16
threads. Furthermore, with N = 16 threads we executed the Algorithm 3 with
Option (a) and Option (b). In all cases we report the numerical error with
z = 250000, 500000, 750000, 1000000 integrand function evaluations for each

Relaxing the Correctness Conditions on Concurrent Data Structures 33

thread, so that the total number of function evaluations is Nz. It is possible
to observe the great benefit on the numerical error, achieved when the number
of function evaluations z in each thread is increased, as well as when are used
N = 16 threads with Option (b). On the contrary, the execution of the algorithm
with N = 16 threads and Option (a) produces a poorly significant improvement
in numerical accuracy respect to the case with N = 1 thread. That means that,
in this case, only 1 thread performs useful work.

Fig. 2. Numerical error vs number of function evaluations ◦ = 16 threads with Opt.
(b) - � = 16 threads with Opt. (a) - � = 1 thread

5 Conclusion

In this paper we proposed a relaxed model for heap-based priority queues in
multicore environments. The work is motivated by the need to achieve a balance
between two contrasting requirements on the data structure: correctness and
scalability. The first one requires global access to the data structure in order to
assess traditional issues such as the linearizability [17]; on the other hand, high
efficiency can be achieved in parallel environments only if the synchronization
cost is independent from the number of processing units. To this end, we have
developed an approach based on a distribution of the data structure among the
computing units where the synchronization strategy involves only a small (and
constant) number of processing units.

Our experiments show that such a strategy is able to realize an effective
compromise between the two requirements. More precisely, we compared our
algorithm with a pleasantly version of the same algorithm without redistribution
of the node in the data structure, and we observed a gain of at least 3 significant
digits in accuracy with a loss of efficiency of only 5% in the average case.

In any case it should be noted that modern computing environments are
based on hybrid forms of parallelism, where large clusters are connected together
by means of grid and/or cloud infrastructures. Therefore, we plan to inte-
grate the resulting software in geographically distributed systems or com-
puting environments (e.g. [6,7]) as we did already for other applications in

34 G. Laccetti et al.

[1,2,8,9,16,23,25,26], paying special attention to the techniques developed to
enhance the performance [5], the fault tolerance [4], the transparent use of
resources [27,28,30] and the load balancing among them [29].

References

1. Arcucci, R., D’Amore, L., Celestino, S., Laccetti, G., Murli, A.: A scalable numer-
ical algorithm for solving tikhonov regularization problems. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM
2015. LNCS, vol. 9574, pp. 45–54. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32152-3 5

2. Arcucci, R., D’Amore, L., Carracciuolo, L.: On the problem-decomposition of scal-
able 4D-Var data assimilation models. In: Proceedings of the 2015 International
Conference on High Performance Computing and Simulation, pp. 589–594 (2015)

3. Berntsen, J., Espelid, T., Genz, A.: Algorithm 698: DCUHRE - an adaptive multi-
dimensional integration routine for a vector of integrals. ACM Trans. Math. Softw.
17, 452–456 (1991)

4. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB:
enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 700–709. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3 71

5. Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a
grid enabling, component based programming environment. In: Sloot, P.M.A.,
Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS,
vol. 3470, pp. 982–992. Springer, Heidelberg (2005). https://doi.org/10.1007/
11508380 100

6. D’Ambra, P., Danelutto, M., di Serafino, D., Lapegna, M.: Advanced environments
for parallel and distributed applications: a view of current status. Parallel Comput.
28, 1637–1662 (2002)

7. D’Ambra, P., Danelutto, M., di Serafino, D., Lapegna, M.: Integrating MPI-based
numerical software into an advanced parallel computing environment. In: Proceed-
ings of 11th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, Euro-PDP 2003, pp. 283–291 (2003)

8. D’Amore, L., Marcellino, L., Mele, V., Romano, D.: Deconvolution of 3D flu-
orescence microscopy images using graphics processing units. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol.
7203, pp. 690–699. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31464-3 70

9. D’Amore, L., Laccetti, G., Romano, D., Scotti, G., Murli, A.: Towards a parallel
component in a GPU-CUDA environment: a case study with the L-BFGS Harwell
routine. Int. J. Comput. Math. 92, 59–76 (2015)

10. D’Apuzzo, M., Lapegna, M., Murli, A.: Scalability and load balancing in adap-
tive algorithms for multidimensional integration. Parallel Comput. 23, 1199–1210
(1997)

11. Dongarra, J., Gannon, D., Fox, G., Kennedy, K.: The impact of multicore on
computational science software. CTWatch Q. 3(1), 1–10 (2007)

12. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L., White,
A.: Sourcebook of Parallel Computing. Morgan Kaufmann Publishers, Burlington
(2003)

https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/978-3-642-31464-3_70
https://doi.org/10.1007/978-3-642-31464-3_70

Relaxing the Correctness Conditions on Concurrent Data Structures 35

13. Flatt, H.P., Kennedy, K.: Performance of parallel processors. Parallel Comput. 12,
1–20 (1989)

14. Genz, A.: Testing multiple integration software. In: Ford, B., Rault, J.C.,
Thommaset, F. (eds.) Tools, Methods and Language for Scientific and Engineering
Computation. North Holland, New York (1984)

15. Genz, A., Malik, A.: An embedded family of fully symmetric numerical integration
rules. SIAM J. Numer. Anal. 20, 580–588 (1983)

16. Guarracino, M.R., Laccetti, G., Murli, A.: Application oriented brokering in med-
ical imaging: algorithms and software architecture. In: Sloot, P.M.A., Hoekstra,
A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp.
972–981. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380 99

17. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12, 463–492 (1990)

18. Herlihy, M.P., Shavit, N.: The Art of Multiprocessor Programming, Revised 1 edn.
Morgan Kaufmann, Burlington (2012)

19. Laccetti, G., Lapegna, M.: PAMIHR. A parallel FORTRAN program for mul-
tidimensional quadrature on distributed memory architectures. In: Amestoy, P.,
Berger, P., Daydé, M., Ruiz, D., Duff, I., Frayssé, V., Giraud, L. (eds.) Euro-Par
1999. LNCS, vol. 1685, pp. 1144–1148. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48311-X 160

20. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive
algorithm for multidimensional integration on multicore based HPC systems. Int.
J. Parallel Program. 40, 397–409 (2012)

21. Laccetti, G., Lapegna, M., Mele, V.: A loosely coordinated model for heap-based
priority queues in multicore environments. Int. J. Parallel Program. 44, 901–921
(2016)

22. Lapegna, M.: A global adaptive quadrature for the approximate computation
of multidimensional integrals on a distributed memory multiprocessor. Concurr.:
Pract. Exp. 4, 413–426 (1992)

23. Maddalena, L., Petrosino, A., Laccetti, G.: A fusion-based approach to digital
movie restoration. Pattern Recogn. 42, 1485–1495 (2009)

24. Moir, M., Shavit, N.: Concurrent data structures. In: Metha, D., Sahni, S. (eds.)
Handbook of Data Structures and Applications, pp. 47-1–47-30. CRC Press, New
york (2005)

25. Montella, R., Giunta, G., Riccio, A.: Using grid computing based component in on
demand environmental data delivery. In: Proceedings of 2nd workshop on Use of
P2P, Grid and Agent for the development of content Networks, pp. 81–86 (2005)

26. Montella, R., Coviello, G., Giunta, G., Laccetti, G., Isaila, F., Blas, J.G.: A general-
purpose virtualization service for HPC on cloud computing: an application to
GPUs. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 740–749. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3 75

27. Montella, R., Giunta, G., Laccetti, G., Lapegna, M.: Virtualizing high-end GPG-
PUs on ARM clusters for the next generation of high performance cloud computing.
Cluster Comput. 17, 139–152 (2014)

28. Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro,
C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr,
K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3–14. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32152-3 1

https://doi.org/10.1007/11508380_99
https://doi.org/10.1007/3-540-48311-X_160
https://doi.org/10.1007/3-540-48311-X_160
https://doi.org/10.1007/978-3-642-31464-3_75
https://doi.org/10.1007/978-3-642-31464-3_75
https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1007/978-3-319-32152-3_1

36 G. Laccetti et al.

29. Murli, A., Boccia, V., Carracciuolo, L., D’Amore, L., Laccetti, G., Lapegna, M.:
Monitoring and migration of a PETSc-based parallel application for medical imag-
ing in a grid computing PSE. In: Gaffney, P.W., Pool, J.C.T. (eds.) Grid-Based
Problem Solving Environments. ITIFIP, vol. 239, pp. 421–432. Springer, Boston,
MA (2007). https://doi.org/10.1007/978-0-387-73659-4 25

30. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained
distributed implementation of the parallel Block Conjugate Gradient algorithm.
Concurr. Comput. Pract. Exp. 22, 2053–2072 (2010)

31. Shavit, N.: Data structure in multicore age. Commun. ACM 54, 76–84 (2011)

https://doi.org/10.1007/978-0-387-73659-4_25

Energy Analysis of a 4D Variational Data
Assimilation Algorithm and Evaluation

on ARM-Based HPC Systems

Rossella Arcucci1(B), Davide Basciano1, Alessandro Cilardo1, Luisa D’Amore1,
and Filippo Mantovani2

1 University of Naples Federico II, Naples, Italy
rossella.arcucci@unina.it

2 Barcelona Supercomputing Center (BSC), Barcelona, Spain

Abstract. Driven by the emerging requirements of High Performance
Computing (HPC) architectures, the main focus of this work is the inter-
play of computational and energetic aspects of a Four Dimensional Varia-
tional (4DVAR) Data Assimilation algorithm, based on Domain Decom-
position (named DD-4DVAR). We report first results on the energy con-
sumption of the DD-4DVAR algorithm on embedded processor and a
mathematical analysis of the energy behavior of the algorithm by assum-
ing the architectures characteristics as variable of the model. The main
objective is to capture the essential operations of the algorithm exhibit-
ing a direct relationship with the measured energy. The experimental
evaluation is carried out on a set of mini-clusters made available by the
Barcelona Supercomputing Center.

Keywords: Data assimilation · 4DVar · Domain Decomposition
Embedded processor architectures · Energy consumption

1 Introduction and Motivations

Data assimilation (DA) is an uncertainty quantification technique by which mea-
surements and model predictions are combined to obtain an accurate representa-
tion of the state of the modeled system [8,13]. Due to the scale of the forecasting
area and the number of state variables used to describe ocean or atmosphere for
climate or weather predictions, DA applications are large scale problems that
should be solved in near real-time. This mandates to design and develop DA
algorithms to be run by exploiting High Performance Computing (HPC) envi-
ronments till to the heterogeneous ones composed by multiprocessors multicores
and graphics accelerators (see for example [10,16,17]).

During the last 20 years, parallel algorithms for DA have been investigated
by a number of federal research institutes and universities. Up to now, the main
efforts towards the development of parallel 4DVAR DA systems were achieved in
numerical weather prediction applications, namely by the ECMWF (European
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 37–47, 2018.
https://doi.org/10.1007/978-3-319-78054-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_4&domain=pdf

38 R. Arcucci et al.

Center for Medium-Range Weather Forecasts), in Reading (UK) and by the
NCAR (National Center for Atmospheric Research), in Colorado (USA). In this
paper, we employ a 4DVAR algorithm described in [1,2,9], named DD-4DVAR,
based on a Domain Decomposition approach. In [5,15,18,19] are described some
different approaches to take full advantage of emerging HPC architectures. In
the model we employ, the parallelism is achieved by dividing the global problem
into multiple local 4DVAR DA sub-problems solved across processors. The global
solution is obtained by collecting the local minimums. The sub-problems are
handled by a slightly modified 4DVAR algorithm, custom implemented on an
ARM-based low-energy node with the aim of minimizing the overall energy-to-
solution experienced by the application.

The performance and energy cost of a parallel algorithm executing on HPC
systems have different trade-offs, depending on how many processors the algo-
rithm uses, at what characteristics these processors have, and the structure of
the algorithm. Due to the interest of the HPC community towards low-power
architectures such as the ones used in smartphone and tablets [20], we report
in this paper the first results on the energy consumption of the DD-4DVAR
algorithm on embedded processor. Note that our approach addresses the prob-
lem in the spirit of scalability analysis of parallel algorithms as distinct from
practical performance analysis on specific architecture. We provide a mathemat-
ical analysis of the energy behavior of the DD-4DVAR algorithm as function
of the architectures characteristics of the platforms where are executed. The
main objective is to capture the essential operations in the algorithm exhibit-
ing a direct relationship with the measured energy. Such analysis will enable
predicting the energy requirements of the DD-4DVAR code, provided that a
set of architecture-dependent parameters are available, as well as understand-
ing its energy breakdown, which may in turn underpin a systematic approach
to combined performance/energy optimization. The experimental evaluation is
carried out on a set of AMR based platforms made available by the Barcelona
Supercomputing Center in the context of the Mont-Blanc European project [21].
The evaluation, aimed at understanding the energy breakdown and the related
scalability issues, pointing out the importance of the underplay between parallel
performance and energy optimization.

2 The DD-4DVAR Computational Kernel

Hereafter we provide a concise formalization of the DD-4DVAR model we imple-
mented in Algorithm 1 [2].

Let tk, k = 0, 1, . . . , n be a sequence of observation times and, for each k, let
be

xk ≡ x(tk) ∈ �N (1)

the vector denoting the state of a sea system such that xk = Mk (xk−1) with
Mk : �N �→ �N forecasting model.

At each time step tk, let be

yk = Hk(xk) ∈ �p (2)

Energy Analysis of a 4D Variational Data Assimilation Algorithm 39

the observations vector where Hk : �N �→ �p is a non-linear interpolation oper-
ator collecting the observations at time tk.

The aim of DA problem is to find an optimal tradeoff between the current
estimate of the system state (background) defined in (1) and the available obser-
vations yk defined in (2).

Let (3) be an overlapping decomposition of the physical domain Ω such that
Ωi ∩ Ωj = Ωij �= 0 if Ωi and Ωj are adjacent and Ωij is called overlapping
region [2].

Ω =
Nsub⋃

i=1

Ωi (3)

For a fixed time tk = t0, according to this decomposition, the DD-4DVAR com-
putational model is a system of Nsub non-linear least square problems described
in (4)–(5) where Ji in (5) is called cost-function.

xDA
0 =

Nsub∑

i=1

x̃DA
0i , with x̃DA

0i =
{

argminx0Ji(xDA
0i) on Ωi

0 on Ω − Ωi
(4)

Ji(xDA
0i) = ‖xDA

0i − xM
0i ‖2Bi

+
N∑

k=0

‖Gki
(xDA

0i) − yi‖2Ri
+ ‖xDA

0i /Ωij − xDA
0j /Ωij‖Bij

(5)
where Gk = Mk ◦ Hk.

xDA
0 in (4) is the analysis (i.e. the estimation of the vector xDA

0i at time t0).
The variables x0i and yki

are the same vectors x0 and yk in (1) and (2) defined
on the subdomain Ωi, Ri and Bi are the covariance matrices whose elements
provide the estimate of the errors on yki

and on x0i , respectively.
Let d = [yk − H(xk)] be the misfit, by using the linearization of H such that

H(x) = H(x + δx) + H δx, where H is the matrix obtained by the first order
approximation of the Jacobian of H and, by setting vi = V T

i δxi, with Vi such
that Bi = ViV

T
i , the cost function in (5) is written as:

Ji(vi) =
1
2
vT
i vi +

1
2

N∑

k=0

(Gki
Vivi − dki

)TR−1
ki

(Gki
Vivi − dki

)

+
1
2
(Vijv

+
i − Vijv

−
i)T (Vijv

+
i − Vijv

−
i) (6)

The minimum of the cost function Ji in (6) is computed by the L-BFGS method
[22] which implements a quasi Newton method. Then we need to compute
∇Ji(vi) such that:

∇Ji(vi) = vi +
N∑

k=0

V T
ki

GT
ki

R−1
ki

(Gki
Vivi − dki

) (7)

where GT
ki

is the adjoint operator of Gki
.

40 R. Arcucci et al.

Algorithm 1. The DD-4DVAR algorithm on each subdomain Ωi × [t0, tn]
1: Input: {yki}k=0,...,m and xM

0i

2: Define Hki

3: Compute dki ← yki − HkiMki . . . M1ix
M
0i % compute the misfit

4: Define Rki starting from the observed data yki

5: Define Vi starting from a temporal sequence of hystorical data {xM
ki

}k=0,...,M

6: Define the initial value of δxDA
i

7: Compute vi ← V T
i δxDA

i

8: repeat % start of the L-BFGS steps
9: Send and Receive the boundary conditions from the adjacent domains

10: Compute Ji ← Ji(vi) % Defined in (6)
11: Compute gradJi ← ∇Ji(vi) % Defined in (7)
12: Compute new values for vi
13: until (Convergence on vi is obtained) % end of the L-BFGS steps
14: Compute xDA

i ← xM
0i + Vivi

3 Energy Analysis of the Algorithm

In this section we set a DD-4DVAR algorithm configuration and we perform a
mathematical analysis of the energy behaviour of the algorithm.

For the DD-4DVAR algorithm configuration we assume:

– N defined in (1), which is the dimension of the problem, such that

N = nx × ny × nz = n × n × 3

as this does not affect the generality, where n ∈ N , n > 1;
– a 2D decomposition along the x-axes and the y-axes such that each subdomain

has dimension:
Ni =

n

p
× n

p
× 3; (8)

where p ∈ N , p > 1. Then, Nsub the number of subdomain in (3) (which
constitutes the domain decomposition) is

Nsub = p2. (9)

– the algorithm be implemented on a parallel architecture by employing nproc
processors such that nproc = Nsub, i.e. from (9), we are assuming

nproc = p2.

Concerning the energy model, we assume that [14]:

– the energy consumption is additive and it is essentially proportional to the
respective activity intensity in each component of the computing architecture,
in terms of compute operation count, exchanged messages, memory accesses,
plus a static energy contribution which is not affected by the activity and
only depends on the considered time interval.

Energy Analysis of a 4D Variational Data Assimilation Algorithm 41

Based on the above assumption, we can write the energy breakdown as:

EHC(p, n) = Ecomp(p, n) + Emem(p, n) + Emes(p, n) + Estatic(p, n) (10)

where the superscript HC denotes the dependency on the computing architec-
ture, and

– Ecomp(p, n) is the energy for computation:

Ecomp(p, n) = Ed · f2 · μcomp(p, n), (11)

where Ed is a hardware constant [7], μcomp(p, n) is the number of computa-
tions and f is the frequency;

– Emem(p, n) is the energy for memory accesses:

Emem(p, n) = Em · μmem(p, n), (12)

where Em is the energy consumed for a single memory access (both read and
write) and and μmem(p, n) is the number of memory accesses;

– Emes(p, n) is the energy for message transfers:

Emes(p, n) = Et · μmes(p, n), (13)

where Et is the energy consumed for a single message transfer between the
processors and μmes(p, n) is the number of message transfers at all processors;

– Estatic(p, n) is the static energy:

Estatic(p, n) = El · f · Tactive(p, n). (14)

where El is a hardware constant [7] and Tactive(p, n) is the execution time for
performing the whole algorithm.

Let

– NL−BFGS,p be the number of L-BFGS steps (see Steps 8–13 of Algorithm 1)
which depends on the sub domains dimension (i.e., from (8), it depends on
p) [3];

– nHC
C be the maximum size of the allocable problem in the memory cache of

the architecture HC.
– pHC

max be the maximum number of cores of the architecture HC.

By assuming
n ≤ nHC

C , p < pHC
max (15)

and by analyzing the time complexity of Algorithm1, we can estimate the order
of magnitude of the energy consumption by the following result.

Theorem 1. By assuming (10), (11)–(14) and (15), it holds:

EHC(p, n) = O
(

CHC(p) · 9
n4

p2

)
(16)

42 R. Arcucci et al.

where EHC(p, n) denotes the energy consumption defined in (10) and where
CHC(p):

CHC(p) = Ed · NL−BFGS,p + El · tflop (17)

with tflop denotes the unitary time required for the execution in each processor
of one floating point operation.

Proof: Let Si(p, n) and Vi(p, n) denote the number of floating point exchanges
at each algorithm iteration and the floating point computations at each iteration
respectively, proportional to surface area and the volume of each subdomain in
Algorithm1:

Si(p, n) = 12
n

p
(18)

Vi(p, n) = 3
n2

p2
(19)

then μcomp(p, n), μmem(n, p) and μmes(p, n) are such that:

μcomp(p, n) = NL−BFGS,p · p2 · V 2
i (p, n), (20)

μmem(p, n) = 2NL−BFGS,p · p2 · Vi(p, n), (21)

μmes(p, n) = NL−BFGS,p · p2 · Si(p, n), (22)

Also we assume Tactive(p, n) be the execution time for performing V 2
i (p, n) float-

ing point operations:

Tactive(p, n) = tflop · V 2
i (p, n) (23)

Then, from (10), (18)–(19) and (20)–(22), it holds

EHC(p, n) = Ed · NL−BFGS,p (p2)
(

3
n2

p2

)2

· f2 + Em · 2NL−BFGS (p2)
(

3
n2

p2

)

+ Et · NL−BFGS,p (p2)
(

6
n

p
+ 6

n

p

)
+ El · tflop(p2)

(
3
n2

p2

)2

· f

(24)

As we run in a single computational node (i.e. p < pmax as expressed in (15))
this means that we are not implying communications, so the third term can be
neglected. From qualitative observations, we can assume that the second term
can be neglected because we fit the whole data in cache (as expressed in (15)),
therefore a negligible number of access to the main memory are performed. Then
the (16) follows.

Definition 1 (Energy Variation parameter). We denote with Energy Variation
parameter the ratio

V Ep1,p2 =
EHC(p1, n)
EHC(p2, n)

(25)

Energy Analysis of a 4D Variational Data Assimilation Algorithm 43

The following result holds:

Proposition 1. For a fixed architecture and, under the hypothesis of Theorem1,
it is

V Ep1,p2 >
p22
p21

(26)

for p2 ≥ p1.

Proof: From (24) and (16) for a fixed value of n, it is

V Ep1,p2 =
CHC(p1)
CHC(p2)

p22
p21

(27)

We observe that, from (27), it is

CHC(p1)
CHC(p2)

> 1 =⇒ V Ep1,p2 ≥ p22
p21

which gives:

CHC(p1) > CHC(p2) =⇒ V Ep1,p2 >
p22
p21

(28)

From (28) and (17) it is

CHC(p1) > CHC(p2) ⇐⇒ Ed·NL−BFGS,p1+El ·tflop > Ed·NL−BFGS,p2+El·tflop
As for a fixed architecture, the values of Ed, El and tflop are also fixed, it is

CHC(p1) > CHC(p2) ⇐⇒ NL−BFGS,p1 > NL−BFGS,p2

Due the better conditioning of the smaller problems, it is NL−BFGS,p1 >
NL−BFGS,p2 [3]. Then the (26) holds.

Remark 1. We observe that, if the (15) is not satisfied, then CHC(p) includes
also Emes which increases as the number of processors increases. In that case,
for p2 > p1, it is:

CHC(p2) ≥ CHC(p1) (29)

which gives

V Ep1,p2 ≤ p22
p21

(30)

4 Experimental Results

The proposed approach is validated on a case study based on the linear Shallow
Water Equation (SWE) for n = 64, i.e. we consider a fixed size configuration of
the DD-4DVAR algorithm and we discuss results obtained by varying p.

44 R. Arcucci et al.

Table 1. Reference architectures details

Specifications Cavium ThunderX Nvidia JetsonTx1 Samsung Exynos

Instruction set ARMv8 ARMv8 ARMv7

Num. of cores/node 2 · 48 4 2

Num. of cluster nodes 1 16 16

Clock freq. [GHz] 2.5 1.73 1.7

L2 cache size [MB] 16 2 1

The experiments are been conducted on architectures available at the
Barcelona Supercomputing Center (BSC) and the power measurements have
been enabled by the Mont-Blanc computing environment [21].

In Table 1 are summarized the reference architectures. HC = CT refers to a
single Cavium ThunderX server [23], HC = JT refers to a cluster of 16 nodes
of Nvidia JetsonTx1, while HC = MB refers to a partition of 5 nodes of the
Mont-Blanc prototype cluster [21] used for this work.

Relying on the potential of the Mont-Blanc computing environment, we were
particularly interested in the results in terms of power efficiency and energy-
to-solution. Here we provide results in terms of (measured) Energy Variation
Parameter defined in (25) and computed using the values of energy consumptions
given by EHC(p, 64) = PHC

p · THC
p , where PHC

p and THC
p are the power and

the execution time respectively. We compare the obtained results with the upper
and lower bounds provided in (26) and (30).

We observe that, in Table 1, the Cavium ThunderX has 16 Megabyte of
memory cache which allows to satisfy condition in (15). In fact1,

nCT
C = 16 · nC,1 = 96 > 64 = n, p < pCT

max = 2 · 48 = 96.

Under condition (15), the (26) holds as confirmed by the results in Table 2.

Table 2. Cavium ThunderX

p2 PCT
p TCT

p ECT (p, 64) V E1,p p2/1

1 125.0 W 906 s 113250.0 J 1.0 1

4 125.5 W 211 s 26480.5 J 4.3 4

16 126.5 W 42 s 5313.0 J 21.3 16

The JetsonTx1 and Mont-Blanc, with 2 Megabyte and 1 Megabyte of cache
instead (see Table 1) do not satisfy (15). In fact, nJT

C = 2 · nC,1 = 12 and

1 Due the time complexity of the computation, for each Megabyte, the values on
nC which is independent from the computing architecture, is such that: nC,1 =⌈(

1048576
8∗3

) 1
6
⌉

= 6, where �·� denotes the integer part.

Energy Analysis of a 4D Variational Data Assimilation Algorithm 45

Table 3. JetsonTx1

f = 800000

p2 P JT
p T JT

p EJT (p, 64) V E1,p p2/1

1 5.3 W 429 s 2273.7 J 1.0 1

4 6.6 W 115 s 759.0 J 3.0 4

16 6.6 W 45 s 297.0 J 7.7 16

f = 1700000

p2 P JT
p T JT

p EJT (p, 64) V E1,p p2/1

1 6.5 W 210 s 1365.4 J 1.0 1

4 10.0 W 86 s 860.6 J 3.1 4

16 10.0 W 21 s 210.0 J 6.5 16

Table 4. Mont-Blanc

f = 800000

p2 PMB
p TMB

p EMB(p, 64) V E1,p p2/1

1 5.4 W 375 s 2025.0 J 1.0 1

4 5.5 W 86 s 473.0 J 4.2 4

16 5.5 W 23 s 126.5 J 16.0 16

f = 1700000

p2 PMB
p TMB

p EMB(p, 64) V E1,p p2/1

1 5.4 W 181 s 977.4 J 1.0 1

4 5.5 W 48 s 264 J 3.7 4

16 5.5 W 13 s 71.5 J 13.7 16

nMB
C = 1 · nC,1 = 6 for the JT and MB respectively, both smaller than n = 64.

In these cases, the upper bound in (30) holds as confirmed by the results in
Tables 3 and 4.

5 Conclusions

We introduced an energy analysis of the DD-4DVAR algorithm for data assim-
ilation problems. An implementation of the algorithm was evaluated on some
prototype ARM-based platforms made available by the Barcelona Supercomput-
ing Center. We performed the analysis of the energy behaviour of the algorithm
depending on several architectures characteristics. A preliminary experimental
evaluation confirmed the estimations provided by our analysis on a fixed size
problem varying the number of processors. As a future development, we aim
at scaling up the methodology by demonstrating energy-driven parallelization
approaches on production-grade ARM-based HPC clusters.

46 R. Arcucci et al.

Future developments could be straightforwardly take into account the exper-
tise of scientists of our workgroup, to face fault-tolerance problems [4,6,18] as
well as implementations in cloud and/or distributed environments [11,12], and
in heterogeneous ones [15,19].

Acknowledgment. The research has received funding from European Commission
under H2020-MSCA-RISE NASDAC project (grant agreement no. 691184) FP7 Mont-
Blanc and Mont-Blanc 2 (grant agreements no. 288777 and 610402), H2020-FET Mont-
Blanc 3 (grant agreement 671697).

References

1. Arcucci, R., D’Amore, L., Carracciuolo, L., Scotti, G., Laccetti, G.: A decomposi-
tion of the tikhonov regularization functional oriented to exploit hybrid multilevel
parallelism. Int. J. Parallel Prog. 45(5), 1214–1235 (2017)

2. Arcucci, R., D’Amore, L., Carracciuolo, L.: On the problem-decomposition of scal-
able 4D-Var data assimilation models. In: Proceedings of HPCS 2015, pp. 589–594
(2015)

3. Arcucci, R., D’Amore, L., Pistoia, J., Toumi, R., Murli, A.: On the variational data
assimilation problem solving and sensitivity analysis. JCPH 335, 311–326 (2017)

4. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB:
enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 700–709. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3 71

5. Carracciuolo, L., D’Amore, L., Murli, A.: Towards a parallel component for imag-
ing in PETSc programming environment: a case study in 3-D echocardiography.
Parallel Comput. 32, 67–83 (2006)

6. Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a
grid enabling, component based programming environment. In: Sloot, P.M.A.,
Hoekstra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS,
vol. 3470, pp. 982–992. Springer, Heidelberg (2005). https://doi.org/10.1007/
11508380 100

7. Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-power CMOS digital design.
J. Solid-State Circ. 27(4) (1992)

8. D’Amore, L., Arcucci, R., Marcellino, L., Murli, A.: HPC computation issues of
the incremental 3D variational data assimilation scheme in OceanVar software.
JNAIAM 7(3–4), 91–105 (2012)

9. D’Amore, L., Arcucci, R., Carracciuolo, L., Murli, A.: A scalable approach to
variational data assimilation. J. Sci. Comput. 2, 239–257 (2014)

10. Di Lauro, R., Giannone, F., Ambrosio, L., Montella, R.: Virtualizing general pur-
pose GPUs for high performance cloud computing: an application to a fluid sim-
ulator. In: Proceedings of 10th IEEE International Symposium on Parallel and
Distributed Processing with Applications, ISPA (2012)

11. Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled
MPI library. Future Gener. Comput. Syst. (FGCS) 24(2), 158–165 (2008)

12. Guarracino, M.R., Laccetti, G., Murli, A.: Application oriented brokering in med-
ical imaging: algorithms and software architecture. In: Sloot, P.M.A., Hoekstra,
A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp.
972–981. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380 99

https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/11508380_99

Energy Analysis of a 4D Variational Data Assimilation Algorithm 47

13. Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability. Cam-
bridge University Press, Cambridge (2003)

14. Korthikanti, V.A., Agha, G.: Energy-performance trade-off analysis of parallel algo-
rithms. In: Hot Topics in Parallelism (HotPar) (2010)

15. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive
algorithm for multidimensional integration on multicore based HPC systems. Int.
J. Parallel Program. (IJPP) 40(4), 397–409 (2012)

16. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUs on ARM
clusters for the next generation of high performance cloud computing. Cluster
Comput. 17(1), 139–152 (2014)

17. Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro,
C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr,
K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3–14. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32152-3 1

18. Murli, A., Boccia, V., Carracciuolo, L., D’Amore, L., Laccetti, G., Lapegna, M.:
Monitoring and migration of a PETSc-based parallel application for medical imag-
ing in a grid computing PSE. In: Gaffney, P.W., Pool, J.C.T. (eds.) Grid-Based
Problem Solving Environments. ITIFIP, vol. 239, pp. 421–432. Springer, Boston
(2007). https://doi.org/10.1007/978-0-387-73659-4 25

19. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained
distributed implementation of the parallel Block Conjugate Gradient algorithm.
Concurr. Comput.: Pract. Exp. 22(15), 2053–2072 (2010)

20. Rajovic, N., Carpenter, P.M., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.R.:
Supercomputing with commodity CPUs: are mobile SoCs ready for HPC? In: Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1–12 (2013)

21. Rajovic, N., et al.: The Mont-Blanc prototype: an alternative approach for HPC
systems. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, Piscataway, NJ, USA, pp. 38:1–
38:12 (2016)

22. Nocedal, J., Byrd, R.H., Lu, P., Zhu, C.: L-BFGS-B: fortran subroutines for large-
scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560
(1997)

23. http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-
cores/

https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1007/978-0-387-73659-4_25
http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores/
http://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores/

Performance Assessment
of the Incremental Strong Constraints

4DVAR Algorithm in ROMS

Luisa D’Amore1(B), Rossella Arcucci1, Yi Li2, Raffaele Montella3,
Andrew Moore4, Luke Phillipson2, and Ralf Toumi2

1 University of Naples Federico II, Naples, Italy
{luisa.damore,rossella.arcucci}@unina.it

2 Imperial College in London, London, UK
{y.li14,l.phillipson14,r.toumi}@imperial.ac.uk

3 University of Naples Parthenope, Naples, Italy
raffaele.montella@uniparthenope.it

4 University of Santa Cruz, Santa Cruz, USA
ammoore@ucsc.edu

Abstract. We consider the Incremental Strong constraint 4D VARia-
tional (IS4DVAR) algorithm for data assimilation implemented in ROMS
with the aim to study its performance in terms of strong scaling scalabil-
ity on computing architectures such as a cluster of CPUs. We consider
realistic test cases with data collected in enclosed and semi enclosed seas,
namely, Caspian sea, West Africa/Angola, as well as data collected into
the California bay. The computing architecture we use is currently avail-
able at Imperial College London. The analysis allows us to highlight that
the ROMS-IS4DVAR performance on emerging architectures depends on
a deep relation among the problems size, the domain decomposition app-
roach and the computing architecture characteristics.

Keywords: Data assimilation · 4DVAR algorithm
Performance analysis · Parallel algorithm

1 IS4DVAR Algorithm

The Incremental Strong Constraint 4DVAR (IS4DVAR) Algorithm is one of
Data Assimilation modules of the Regional Ocean Modelling System (ROMS)
[18–20]. It solves a regularized Non Linear Least Square (NL-LS) problem of the
type (see [2–4,8,22] for details):

argminu∈�N JDA(u) = argminu∈�N ‖FDA(u,MΔ×Ω ,ub
0,R,B,v,Δ,Ω)‖,

where MΔ×Ω the predictive model defined in the time-and-space physical
domain Δ × Ω with initial condition ub

0, R, and B the covariance matrices
and v the vector of the observations.
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 48–57, 2018.
https://doi.org/10.1007/978-3-319-78054-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_5&domain=pdf

Performance of the Incremental Strong Constraints 4DVAR Algorithm 49

The common approach for solving NL-LS problems consists in defining a
sequence of local approximations of JDA where each member of the sequence is
minimized by employing Newton’s method or one its variants (such as Gauss-
Newton, L-BFGS, Levenberg-Marquardt). See Algorithms 1 and 2. Approxima-
tions are obtained by means of truncated Taylor’s series, while the minimum is
obtained by using second-order sufficient conditions [1,24] (see step 7 of Algo-
rithm 1). In particular, two approaches could be employed:

(a) by truncating Taylor’s series expansion of JDA at the second order such as
Newton’methods (including LBFGS and Levenberg-Marquardt) following
the Newton’s descend direction (see Algorithm 3);

(b) by truncating Taylor’s series expansion of JDA at the first order such as
Gauss-Newton’s methods (including Truncated Gauss-Newton or Approx-
imated Gauss-Newton) following the steepest descend direction, which is
computed solving the normal equations arising from the local Linear Least
Squares (LLS) problem (see Algorithm 4).

In ROMS-IS4DVAR the NL-LS problem is solved by using Gauss-Newton’s
method, where solution of normal equations system is obtained by applying a

Algorithm 1

1: procedure IS4DVar(in : MΔ×Ω ,ub
0,R,B,v, Δ, Ω; out : uDA)

2: %Run MΔ×Ω with initial condition ub
0 for computing ub, in Δ × Ω

3: ub = MΔ×Ω [ub
0]

4: k := 0,u0
DA = ub

DA

5: repeat
6: k := k + 1
7: Call NLLS(in : MΔ×Ω ,R,B,v,ub, Δ, Ω; out : uk

DA)
8: until ‖uk

DA − uk−1
DA ‖ < eps

9: end procedure

Algorithm 2

1: procedure NLLS(in : MΔ×Ω ,R,B,v,ub, Δ, Ω; out : uk
DA)

2: Initialize u0 := ub;
3: Initialize k = 0;
4: repeat
5: % Compute δuk

DA = argminJDA by using QN or LLS
6: If (QN) then
7: Call QN (in : MΔ×Ω ,R,B,v,ub, Δ, Ω; out : uk

DA)
8: ElseIf (LLS) then
9: Call LLS (in : MΔ×Ω ,R,B,v,ub, Δ, Ω; out : uk

DA)
10: EndIf
11: Update uk

DA = uk
DA + δuk

DA

12: Update k = k + 1
13: until (convergence is reached)
14: end procedure

50 L. D’Amore et al.

Algorithm 3

1: procedure QN(MΔ×Ω ,R,B,v,ub, Δ, Ω; out : uk
DA)

2: Initialize u0
DA := ub

A;
3: Initialize k = 0;
4: repeat
5: %Compute δuk

DA = argminJQD
DA, by Newton’s method

6: 1.1 Compute ∇JDA(uk
DA) = ∇FT

DA(uk
DA)∇FDA(uk

DA)
7: 1.2 Compute ∇2JDA(uk) = ∇FT

DA(uk)∇FDA(uk
DA) + Q((uk

DA))
8: 1.3 Solve ∇2JDA(uk

DA)δuk
DA = −∇JDA(uk

DA)
9: Update uk

DA = uk
DA + δuk

DA

10: Update k = k + 1
11: until (convergence is reached)
12: end procedure

Algorithm 4

1: procedure LLS(MΔ×Ω ,R,B,v,ub, Δ, Ω; out : uk
ji)

2: Initialize u0 := ub;
3: Initialize k = 0;
4: repeat
5: Compute ∇JDA = ∇FT

DA(uk
DA)∇FDA(uk

DA)
6: %Compute δuk

DA = argminJTL
DA by solving the normal equations system:

7: Solve ∇FT
DA(uk

DA)∇FDA(uDA)δuk
DA = −∇FT

DA(uk
DA)FDA(uk

DA)
8: Update uk

DA = uk
DA + δuk

DA

9: Update k = k + 1
10: until (convergence is reached)
11: end procedure

Krylov subspace iterative method (this task is also referred to as the inner-
loop while the steps along the descent direction are called the outer-loop) (see
Algorithm 6). IS4DVAR is described in Algorithms 5 and 6 [13]. Finally, in Fig. 1
we report the flowchart of IS4DVAR algorithm as it is implemented in ROMS.

Figure 1 illustrates the IS4DVAR Algorithm as it is implemented in ROMS
and in Fig. 2 we describe the software architecture of ROMS. For details see
description in [18].

2 Performance Assessment of Parallel IS4DVAR
Algorithm

As IS4DVAR is part of the ROMS, the parallelization strategy implemented for
the IS4DVAR algorithm takes advantage of the parallelization strategy imple-
mented in ROMS. In other words, each part of the IS4DVAR which depends on
the forecasting model (in particular, NLROMS, TLROMS and ADROMS mod-
ules) implement the two dimensional DD approach (2D-DD) approach (i.e. a
coarse-grain parallelism), while Preconditioner and Lanczos Algorithm modules
implement the one dimensional DD (1D-DD) approach (i.e. a fine-grain paral-
lelism). I/O is all happening on the master process unless you specifically ask

Performance of the Incremental Strong Constraints 4DVAR Algorithm 51

Algorithm 5 (IS4DVAR refined)

1: procedure IS4DVar(MΔ×Ω ,R,B,v,ub, Δ, Ω; out : uk
DA)

2: Initialize u0 := ub = MΔ×Ω [ub
0];

3: Initialize k = 0;
4: repeat
5: Compute dk = v − H(uk

DA)
6: Compute G, V
7: %Solve the normal equations system by using Krylov iterative methods
8: Call Lanczos-4DVAR (G,V,R,B,v,ub, Δ, Ω; out : δuk

DA)
9: Update uk

DA = uk
DA + δuk

DA

10: Update k = k + 1
11: until (convergence is reached)
12: end procedure

Algorithm 6

1: procedure Lanczos-4DVar(G,V,R,B,v,ub, Δ, Ω; out : δuk
DA)

2: Compute G,GT ,R−1, V;
3: Solve (I + GTR−1Gδuk

DA = GTR−1d
4: % by using Lanczos algorithm
5: end procedure

it to use MPI-I/O. Concerning the 1D-DD approach, the parallelism in ROMS
is introduced (into the step (vi) of Fig. 1) by distributing the data among a 1D
processor grid blocked by rows (see the Parallel version of the ARPACK library
[15] for details). We observe that this is the most suitable way to reduce com-
munication overheads in the execution of linear algebra operations required by
concurrently performing Lanczos algorithms.

Let us briefly model the coarse-and-fine parallelization strategy implemented
in IS4DVAR Algorithm.

Definition 1 (1D and 2D Domain Decomposition Strategy). Let the
domain Ω be decomposed in Ntile subdomains (also named tiles) with overlap
areas, where

Ntile = NtileI × NtileJ.

If
size(Ω) = N = N1 × N2 × N3,

then in 2D-DD

size2D−DD(tile) =
N1

NtileI
× N2

NtileJ
× N3;

while in 1D-DD, it is

size1D−DD(tile) =
N1

NtileI
× N2 × N3.

♠

52 L. D’Amore et al.

Fig. 1. A flow chart illustrating ROMS-IS4DVar algorithm where NLROMS, TLROMS
and ADROMS implement the ROMS non linear model, the tangent linear (First Order
Taylor Approximation of ROMS) and the Adjoint (for computing the Adjoint operator
of ROMS) [18]. Parameters k and m (where k � m) are the steps for the linearization
(First Order Taylor approximation) and for the minimization algorithms (by using
Lanczos algorithm) respectively.

The surface S(N,Ntile) of each 2D-DD tile is

S(N,Ntile) = 2
(

N1

NtileI
× N2

NtileJ

)
+ 2

(
2

N1

NtileI
+ 2

N2

NtileJ

)
× N3 (1)

and the volume is

V (N,Ntile) =
N1

NtileI
× N2

NtileJ
× N3. (2)

If the 2D-DD is uniform, i.e. if N1 = N2 = N3 = M, and NtileI = NtileJ = p
then, from (1) and (2) it is

S(M,p) = O

(
2
M2

p2
+ 2

M2

p

)
, V (M,p) = O

(
M3

p2

)
. (3)

As communication is much slower than computation, we will continue to get
slower relative to computation over time, so we address performance of IS4DVAR
Algorithm computing an estimate of the communication overhead, let us say
Ohcom. In particular, we investigate the behavior of the communication over-
head, let us denote Ohcom, in terms of the surface-to-volume ratio, for the 2D-DD
approach.

Performance of the Incremental Strong Constraints 4DVAR Algorithm 53

Fig. 2. ROMS software architecture. The version 3.6 of ROMS is been installed.
This is the last version available. The ROMS source code is only distributed using
Subversion (SVN). Its parallel framework includes both shared-memory (OpenMP)
and distributed-memory (MPI) paradigms. The Middleware level includes a copy of
ARPACK in the Lib directory which is used for the adjoint-based algorithms. The
Lib directory also contains a copy of the Model Coupling Toolkit (MCT) which you
will need if you wish to couple ROMS to other models. ROMS-IS4DVAR is written
in F90/F95 with dynamic allocation of memory which allows multiple levels of nest-
ing and/or composed grids. Finally, ROMS-IS4DVAR uses extensive C-preprocessing
(CPP) to configure its various numerical and physical options. ROMS supports serial,
OpenMP, and MPI computations, with the user choosing between them at compile
time. Here we focus on the compiling for MPI. Also, details about parallelization strat-
egy and the variables involved are available on www.myroms.org/wiki/Parallelization.

Definition 2 (Surface-to-volume). The surface-to-volume ratio is a measure
of the amount of data exchange (proportional to surface area of domain) per unit
operation (proportional to volume of domain).

Definition 3 (Communication Overhead). Let Tcom denote the total com-
munication time and Tflop the total computation time, then

Ohcom :=
Tcom

Tflop
.

Proposition 1. Let tcom be the sustained communication time for send-
ing/receiving one data in IS4DVAR and tflop the sustained execution time of
one floating point operation in IS4DVAR, such that1.

tcom = αtflop, α = 10q, q > 1.

For the IS4DVAR Algorithm it holds that

Ohcom < 1 ⇔ 0 < k < r − q , q ∈]0, r[. (4)

1 Relation between tcom and tcalc (namely, the value of the parameter q) heavily
depends on how the software under consideration is able to efficiently exploit the
parallelism of such advanced architectures (the so called sustained performance).

https://www.myroms.org/wiki/Parallelization

54 L. D’Amore et al.

Proof: For each m, from (3) it follows

Ohcom =
S

V

Tcom

Tflop
=

2 + 2p · tcom

M · tflop
.

We write N = 10r and p = 10k, then we have

Ohcom = O

(
10q(2 + 2p)

10r

)
= O

(
10q−r(2 + 2 · 10k)

)
= O(10q−r+k)

i.e. the (4).
Expression in (4) states that in order to increase the upper bound on k =

log(p), the problems size should increases, and/or the ratio of the sustained
unitary communication time over the sustained computation time (i.e. parameter
a = 10q) should decreases. Since the experiments which we consider here use
realistic configurations of medium-size, performance results will confirm that
the efficiency degrades below 50% for p > 16.

3 Experiments

We describe the configurations we have chosen for testing and analysing the per-
formance of IS4DVAR on the California Current System, the Caspian sea and
the Angola Basin. All the experiments are carried out on the CX2 (Helen) com-
puting system provided by Imperial College London2. For each experiment, we
report strong scaling results, in terms of execution time, speed up and efficiency.
The variable proc on the tables refer to the number of processors involved, Tp

refers to the execution time, Ntile = p, Sp = T1
Tp

, Ep = Sp

p . Finally, we use the
mapping proc ↔ MPI process. The test cases we have chosen refers to:

– TC1: the California Current System (CCS) with 30 km (horizontal) resolution
and 30 levels in the vertical direction. The global grid is then:

N = 54 × 53 × 30 = 8.586 × 104.

– TC2: the Caspian Sea with 8 km resolution and 32 vertical layers. The vertical
resolution is set with a minimum depth of 5 m. Then, problem dimension in
terms of the grid/mesh size consists of

N = 90 × 154 × 32 = 4.43520 × 105

grid points. A set of sensitivity experiments (not shown) suggests that k = 1
and m = 50. In each of these experiments, only one assimilation cycle (4
days) is conducted.

2 Helen is an SGI ICE 8200EX system. The first part of the system is comprised of
122 nodes. Each node has two 4-core 2.93 GHz Intel X5570 (Nehalem) processors
and 24GB of RAM. The processors are hyperthreaded - each physical core appears
as two logical processors. The second part of the system consists of two extra ICE
8400EX racks with 179 extra nodes. These nodes have two 6-core 2.93 GHz X5670
(Westmere) processors and 24 GB of RAM. Like the Nehalem processors these are
hyperthreaded. Then, the system has a total of 602 processors.

Performance of the Incremental Strong Constraints 4DVAR Algorithm 55

– TC3: the Angola Basin with 10 km of resolution and 40 terrain-following
vertical levels. The vertical levels are stretched as so to increase resolution
near the surface. The model domain with highlighted bathymetry is shown in
Fig. 1. The experiments consist of a 4 day window using IS4DVar assimilating
satellite Sea Surface Temperature (SST), in situ T&S profiles and Sea Surface
Height (SSH) observations from the 1st to the 5th January 2013 (Table 1).

Table 1. Strong scaling results for TC1, TC2 and TC3 on CX2. As k = log(p) = 1.2
and r = 4, experimental results confirm the upper bound in (4).

p Tp (secs) Sp Ep p Tp (secs) Sp Ep p Tp (secs) Sp Ep

TC1 TC2 TC3

1 7088 1 1 1 42224 1 1 1 109905 1 1

2 3859 1.84 0.92 2 24424 1.7 0.8 2 57550 1.91 0.96

4 2348 3.02 0.76 4 15411 2.7 0.7 4 31648 3.47 0.87

8 1704 4.16 0.52 8 10501 4.0 0.5 8 18697 5.88 0.74

16 1770 4.00 0.25 16 9117 4.6 0.3 16 11755 9.35 0.58

32 8022 13.70 0.43 32 8022 13.70 0.43

64 5814 18.90 0.30

In all the experiments we use realistic configurations of medium-size, so per-
formance results show that the efficiency degrades below 50% for p > 16. As
k = log(p) = 1.2 and r = 4 or r = 5 at most, experimental results confirm the
upper bound in (4), assuming that for the ROMS implementation of IS4DVAR
Algorithm the ratio of the sustained unitary communication time over the sus-
tained computation time is a = 10q where q � 2.8 or q � 3.8.

4 Conclusion and Future Work

The analysis showed that the surface-to-volume of the current parallelization
strategy of IS4DVAR Algorithm strongly limits the performance of the ROMS
software as it does not fulfill the features of the emerging architectures, where the
unitary sustained communication time should be comparable to the computation
time. In line with these issues, and relying on previous activities of the authors
[23], the approach we are going to adopt in the NASDAC research activity meets
the following demand: parallelization of IS4DVAR Algorithm has be considered
from the beginning, which means on the numerical model [6,9,10].

In the next steps in future direction, we will focused on infrastructure
improvement with particular regard to data movement [5,7,11,14,16,17,21] in
order to implement a reliable mechanism able to move acquired data for pro-
cessing, publishing and usage with techniques devoted to improve the scalability
on HPC systems [12].

56 L. D’Amore et al.

Acknowledgment. The research has received funding from European Commission
under H2020-MSCA-RISE NASDAC project (grant agreement n. 691184).

References

1. Antonelli, L., Carracciuolo, L., Ceccarelli, M., D’Amore, L., Murli, A.: Total vari-
ation regularization for edge preserving 3D SPECT imaging in high performance
computing environments. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Don-
garra, J.J. (eds.) ICCS 2002. LNCS, vol. 2330, pp. 171–180. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46080-2 18

2. Arcucci, R., D’Amore, L., Celestino, S., Laccetti, G., Murli, A.: A scalable numer-
ical algorithm for solving Tikhonov regularization problems. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM
2015. LNCS, vol. 9574, pp. 45–54. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32152-3 5

3. Arcucci, R., D’Amore, L., Carracciuolo, L., Murli, A.: A scalable variational data
assimilation. J. Sci. Comput. 61, 239–257 (2014)

4. Arcucci, R., D’Amore, L., Marcellino, L., Murli, A.: Hpc computation issues of
the incremental 3D variational data assimilation scheme in oceanvar software. J.
Numer. Anal. Ind. Appl. Math. 7, 91–105 (2012)

5. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB:
enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 700–709. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3 71

6. Carracciuolo, L., D’Amore, L., Murli, A.: Towards a parallel component for imag-
ing in PETSc programming environment: a case study in 3-D echocardiography.
Parallel Comput. 32, 67–83 (2006)

7. Caruso, P., Laccetti, G., Lapegna, M.: A performance contract system in a grid
enabling, component based programming environment. In: Sloot, P.M.A., Hoek-
stra, A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470,
pp. 982–992. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380 100

8. D’Amore, L., Campagna, R., Galletti, A., Marcellino, L., Murli, A.: A smoothing
spline that approximates laplace transform functions only known on measurements
on the real axis. Inverse Probl. 28, 025007 (2012)

9. D’Amore, L., Laccetti, G., Romano, D., Scotti, G., Murli, A.: Towards a parallel
component in a GPU-CUDA environment: a case study with the L-BFGS harwell
routine. Int. J. Comput. Math. 92, 59–76 (2015)

10. D’Amore, L., Marcellino, L., Mele, V., Romano, D.: Deconvolution of 3D flu-
orescence microscopy images using graphics processing units. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol.
7203, pp. 690–699. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31464-3 70

11. Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled
MPI library. Future Gener. Comput. Syst. (FGCS) 24, 158–165 (2008)

12. Guarracino, M.R., Laccetti, G., Murli, A.: Application oriented brokering in med-
ical imaging: algorithms and software architecture. In: Sloot, P.M.A., Hoekstra,
A.G., Priol, T., Reinefeld, A., Bubak, M. (eds.) EGC 2005. LNCS, vol. 3470, pp.
972–981. Springer, Heidelberg (2005). https://doi.org/10.1007/11508380 99

https://doi.org/10.1007/3-540-46080-2_18
https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/11508380_100
https://doi.org/10.1007/978-3-642-31464-3_70
https://doi.org/10.1007/978-3-642-31464-3_70
https://doi.org/10.1007/11508380_99

Performance of the Incremental Strong Constraints 4DVAR Algorithm 57

13. Gurol, S., Weaver, A.T., Moore, A.M., Piacentini, M., Arango, H.G., Gratton, S.:
B-preconditioned minimization algorithms for variational data assimilation with
the dual formulation. Q. J. Roy. Metereol. Soc. 140, 539–556 (2014)

14. Laccetti, G., Lapegna, M.: PAMIHR. A parallel FORTRAN program for mul-
tidimensional quadrature on distributed memory architectures. In: Amestoy, P.,
Berger, P., Daydé, M., Ruiz, D., Duff, I., Frayssé, V., Giraud, L. (eds.) Euro-Par
1999. LNCS, vol. 1685, pp. 1144–1148. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48311-X 160

15. Maschhoff, A.J., Sorensen, D.: A portable implementation of ARPACK for dis-
tributed memory parallel architectures, vol. 91 (1996)

16. Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUS on ARM
clusters for the next generation of high performance cloud computing. Clust. Com-
put. 17, 139–152 (2014)

17. Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro,
C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In:
Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr,
K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3–14. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32152-3 1

18. Moore, A.M., Arango, H.G., Broquet, G., Edwards, C., Veneziani, M., Powell, B.,
Foley, D., Doyle, J.D., Costa, D., Robinson, P.: The Regional Ocean Modeling
System (ROMS) 4-dimensional variational data assimilation systems. Part II -
performance and application to the California Current System. Prog. Oceanogr.
91(1), 50–73 (2011)

19. Moore, A.M., Arango, H.G., Broquet, G., Edwards, C., Veneziani, M., Powell, B.,
Foley, D., Doyle, J.D., Costa, D., Robinson, P.: The Regional Ocean Modeling
System (ROMS) 4-dimensional variational data assimilation systems. Part III -
observation impact and observation sensitivity in the California Current System.
Prog. Oceanogr. 91(1), 74–94 (2011)

20. Moore, A.M., Arango, H.G., Broquet, G., Powell, B.S., Weaver, A.T., Zavala-
Garay, J.: The Regional Ocean Modeling System (ROMS) 4-dimensional varia-
tional data assimilation systems. Part I - system overview and formulation. Prog.
Oceanogr. 91(1), 34–49 (2011)

21. Murli, A., Boccia, V., Carracciuolo, L., D’Amore, L., Laccetti, G., Lapegna, M.:
Monitoring and migration of a PETSc-based parallel application for medical imag-
ing in a grid computing PSE. In: Gaffney, P.W., Pool, J.C.T. (eds.) Grid-Based
Problem Solving Environments. ITIFIP, vol. 239, pp. 421–432. Springer, Boston,
MA (2007). https://doi.org/10.1007/978-0-387-73659-4 25

22. Murli, A., Cuomo, S., D’Amore, L., Galletti, A.: Numerical regularization of a real
inversion formula based on the Laplace transform’s eigenfunction expansion of the
inverse function. Inverse Prob. 23(2), 713–731 (2007)

23. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained dis-
tributed implementation of the parallel block conjugate gradient algorithm. Con-
curr. Comput.: Pract. Exp. 22, 2053–2072 (2010)

24. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999).
https://doi.org/10.1007/978-0-387-40065-5

https://doi.org/10.1007/3-540-48311-X_160
https://doi.org/10.1007/3-540-48311-X_160
https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1007/978-3-319-32152-3_1
https://doi.org/10.1007/978-0-387-73659-4_25
https://doi.org/10.1007/978-0-387-40065-5

Evaluation of HCM: A New Model
to Predict the Execution Time of Regular
Parallel Applications on a Heterogeneous

Cluster

Thiago Marques Soares, Rodrigo Weber dos Santos ,
and Marcelo Lobosco(B)

Graduate Program on Computational Modeling,
Federal University of Juiz de Fora, Juiz de Fora, Brazil

thiagomarquesmg@gmail.com, {rodrigo.weber,marcelo.lobosco}@ufjf.edu.br

Abstract. In a previous work we proposed a new model that predicts
the execution time of a regular application on a heterogeneous parallel
environment. The model considers that a heterogeneous cluster is com-
posed by distinct types of processors, accelerators and networks. This
work further details and proposes some modifications to the original
model, as well as evaluate it on a heterogeneous cluster environment.
The results have show that the worst error in the estimations of the par-
allel execution time was about 12.7%, and, in many cases, the estimated
execution time is equal to or very close to the actual one.

Keywords: Performance modeling · Parallel architectures
Heterogeneous clusters · Scheduling · Resource management

1 Introduction

Scientific simulations usually demand the use of high-end computers, which are
projected to deal with the processing of large amounts of data. Cluster of com-
puters is perhaps the most representative architecture devoted to deal with this
task. Due to the rapid development and adoption of new technologies, this archi-
tecture is becoming more heterogeneous, mixing, in a single system, distinct
processors, accelerators, such as GPUs, and network connections.

The goal of this paper is to present a parallel model, HCM (Heterogeneous
Cluster Model), that estimates the execution time of regular parallel applications
running on small heterogeneous clusters. HCM modifies its previous version [8]
in order to better estimate the time applications spend doing computation. In
this work we also present, in more details, some of the key aspects of HCM,
as well as evaluate it using distinct applications. The preliminary results are

The authors would like to thank UFJF, FAPEMIG, CAPES, and CNPq for sup-
porting this research.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 58–67, 2018.
https://doi.org/10.1007/978-3-319-78054-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_6&domain=pdf
http://orcid.org/0000-0002-0633-1391
http://orcid.org/0000-0002-7205-9509

Evaluation of HCM 59

promising: the model could predict the parallel execution time with a moderate
margin of error (from 0% to 12.7%).

The remaining of this work is organized as follows. Section 2 reviews the
model and presents the proposed modifications. The benchmarks used to eval-
uate HCM are described in Sect. 3. The experimental results are presented in
Sect. 4. Finally, Sect. 5 presents our conclusions and plans for future works.

2 HCM: A Model to Predict the Execution Time
on Parallel Environments

The objective of HCM is to predict, with a moderate margin of error, the total
execution time of a regular parallel application on modern small heterogeneous
cluster environments, composed by distinct processors, accelerators and net-
works. In HCM, the prediction of the execution time takes into account that it
is composed by two distinct phases: (a) computation, and (b) communication.
So, the model introduces some variables that will be used to model the compu-
tation phase, and other variables that will be used to model the communication
phase.

In order to estimate the execution time of a regular parallel application, the
following steps must be followed: (a) a mathematical model that describes the
main computation and communication phases of the application must be written
using the set of variables defined in the HCM model; (b) the time spent by a
CPU to execute a small number of sequential steps of the application must be
collected; and (c) some parameters must be collected from the heterogeneous
cluster. The first two steps varies from application to application, while the last
one depends only on the hardware used and can be collected and stored for all
applications only once, as it will be explained in details below.

2.1 Estimating the Computation Time

The main parameters and variables used in HCM to model the computation time
of a regular parallel application are the following: (a) RP , the relative computing
power of the processing units (i.e., CPU cores and accelerators, such as GPUs);
(b) the total number of iterations(I) that will be executed; and (c) the time (Ts)
to execute a small number of sequential iterations of the program (Is).

Our previous work [8] proposed two ways to measure RP on each processing
unit: (a) running a benchmark to collect the amount of data that can be handled
per time, or (b) using the average computation time that a processing unit takes
to run some sequential iterations of an application. In the first case, given the
size of the problem (size) and the amount of data a device can handle per time
(RP), the computation time was given by: size/RP . In the second case, the
computation time was given by RP × I.

In this work we propose a new way to compute RP . A benchmark or some
sequential iterations of an application can be executed to collect any metric:
execution time, amount of data processed per time, iterations per second, etc.
The execution is done in each processing unit and, after executed, the value

60 T. M. Soares et al.

obtained by the slowest processing unit is used to normalize the results, so RP is
dimensionless. The following equation is proposed to estimate the computation
time of an application:

Tcomputation =
I

Is
× (

Ts∑n
i=1 RPi

× Fr
), (1)

where I is the total number of iterations of the problem, and Is is the number
of sequential iterations that will be used to predict the computation time of the
application. More accurate values for the prediction of the parallel execution
time are obtained when larger values of Is are used. Ts is the time to execute
Is iterations of the application considering the slowest processing unit, which
is used as reference because the faster ones must wait for it before finishing a
computation step. Even if load balancing is used, the computation time will not
be exactly the same in all processing units due to the overhead imposed by the
load balancing algorithm or because it may be impossible to split the data unit
used in computation, which would be mandatory to obtain a perfect balancing
across multiple heterogeneous devices.

∑n
i=1 RPi

is the sum of the Rp values
for all processing units that will be used in the parallel execution, and Fr is a
correction factor. The correction factor can be used when a linear speedup is
not expected to occur in the computation phase. Constant values equal to, less
than or greater than one or even the result of a function can be used to impose
a speedup factor distinct from the linear one. For example, this could occur due
to the reduction of memory access costs, since more cache space is available with
the use of more processors. Additionally, observe that size is not used anymore
to estimate the computation time.

The use of some sequential steps of the application whose parallel execution
time will be estimate rather than the use of a generic benchmark has the advan-
tage of generating precise results, since the set of instructions present in the
benchmark may be distinct from the set of instructions used by the application.
While a standard benchmark can be executed only once for each processing unit
and then used to estimate the computation time of many distinct applications,
the execution of some sequential steps of the application is necessary each time
a new hardware is included in the parallel environment.

2.2 Estimating the Communication Time

This work proposes the use of a modified version of the LogP [2] model in order
to predict the communication time of a parallel application in a heterogeneous
environment. The main parameters and variables used in HCM are the following:
(a) Ld, that represents an upper bound on the communication latency of a device
d; (b) od, that represents the overhead in device d, i.e., the time that a processor
spends in the transmission or reception of each message and that cannot be used
to execute other instructions; (c) gd, the gap, that represents the minimum time
interval between consecutive message transmissions/receptions by a processor in
a device d; (d) Nop, the number of communication operations per iteration, and
(e) M, the message size. The gap can be replaced by the bandwidth (Bd), since
one is the inverse of the other.

Evaluation of HCM 61

Some parameters used to estimate the communication time can be acquired
only once, using specific benchmarks for this purpose. For example, the values of
Ld and gd were obtained in this work using a network benchmark. The bench-
mark was executed for each type d of network that was available in the cluster.
The benchmark collected the values of Ld and gd for distinct message sizes,
varying from 0 to 4 MB. Each message size modeled by our model uses their
corresponding Ld and gd values found by the benchmark. Also, the value of
od was obtained using a benchmark [3] that considers that the overhead varies
with the message size. The total overhead in a point-to-point communication
operations is given by: od = os + or, where os and or are respectively the send
and the receive overheads. Again, each message size modeled by our model uses
the corresponding od value found by the benchmark. Benchmarks can be exe-
cuted once to collect the communication costs, overheads, as well as the relative
performance of the processors and accelerators, or each time a new hardware or
network is included in the system.

The communication cost depends basically on two factors: the type of mes-
sage sent (point-to-point or collective), and the message size. The message size
determines the costs, and the type of message sent the number of messages
exchanged. As a general rule, the cost of a single message is equal to:

Tsingle = Ld +
M

Bd
+ od. (2)

The type and the size of each message exchanged by the application can be
found directly in its source code. It is also important to verify how the com-
munication library implements their primitives in a specific network, since some
optimizations can be made. The next section will present some formulas that can
be used to model the communication costs for distinct communication patterns.

The main differences between HCM and the original LogP model are the
following: (a) HCM focus on the prediction of the total execution time; (b)
the LogP model assumes an homogeneous environment, while HCM assumes
an heterogeneous one; (c) the LogP model assumes that all messages are of the
same small size, while HCM makes no assumption about the message size, which
is also a parameter for our model; and (d) new parameters and variables, such
as RP , Nop, M, Is, etc., were introduced in order to better estimate both the
computation and communication times of an application.

3 Benchmarks and Their Models

This section presents the process of building a mathematical model based on
HCM to describe the execution time of an application. Two NAS benchmarks
were selected to illustrate the process: IS and CG. Although this section presents
only two NAS benchmarks, the next section will present the parallel execution
times estimated using HCM for the complete NAS benchmark. Since the NAS
benchmarks were developed to execute in a CPU environment, another applica-
tion, HIS (Human Immune System) [6], was chosen to illustrate how HCM can

62 T. M. Soares et al.

be used to estimate the execution time of an application on a hybrid CPU/GPU
environment.

3.1 IS

Integer Sort (IS) is a kernel that performs sorting operations. This kernel tests
both integer computation speed as well as the communication performance [1].
Algorithm 1 presents the pseudocode of this application.

Algorithm 1. Pseudocode of the IS kernel
main

2: . . . generate sequence of rand numbers and subsequent keys on all processors . . .
. . . get the bucket size for the entire problem using MPI Allreduce . . .

4: . . . determine the redistribution of keys . . .
. . . redistribute using MPI AlltoAll . . .

6: . . . send the keys to the respective processors using MPI Alltoallv . . .
. . . determine total # of keys on all other processors . . .

8: end-main

Equation 3 models the IS benchmark.

Ttotal = Tcomputation + Tcommunication, (3)

where

Tcommunication = Nop × {[2 × (P − 1) × Tsingle] + log2 P × Tsingle}. (4)

For IS and all the following applications, the value of Tcomputation is given
by Eq. 1 and the value of Tsingle is given by Eq. 2.

As one can observe, for each MPI communication primitive in the code, a
distinct equation is used to model it. However, some of them can be modeled
in the same way, since their implementation are similar. The first part of the
equation (inside square brackets) models two MPI primitives: MPI AlltoAll and
MPI Alltoallv. In the MPI library used, these primitives are implemented in the
same way for all network cards used: a process send messages to all other pro-
cesses, except itself. Distinct MPI implementations can implement these prim-
itives in distinct ways depending on, for example, the network characteristics.
The last part of the equation models the MPI Allreduce primitive.

3.2 CG

The CG kernel uses the conjugate gradient method to compute an approxima-
tion to the smallest eigenvalue of a large sparse symmetric positive matrix [1].
This kernel tests irregular long distance communication employing unstructured
matrix vector multiplication [1]. Algorithm 2 presents the pseudocode of this
application, in which only point-to-point communication primitives are used.

Equation 5 models the CG benchmark.

Ttotal = Tcomputation + Nop × Tsingle. (5)

Evaluation of HCM 63

Algorithm 2. Pseudocode of the CG kernel
main

2: . . . call to the conjugate gradient routine . . .
. . . obtain rho with a sum-reduce using MPI Send . . .

4: . . . sum the partition submatrix-vec A.z’s across rows using MPI Send . . .
. . . exchange pieces of q using MPI Send . . .

6: . . . normalize z to obtain x . . .
end-main

3.3 HIS

A three dimensional simulator of the Human Immune System (HIS) [6] was used
in the model evaluation. The simulator implements a mathematical model that
uses a set of eight Partial Differential Equations (PDEs) to describe how some
cells and molecules involved in the innate immune response react to a pathogen.
A detailed discussion about the model can be found in previous works [5,6].
The implementation is based on the Finite Difference Method [4] for the spatial
discretization and the explicit Euler method for the time evolution. The code
was implemented in C and uses CUDA to solve the PDEs simultaneously in
CPUs and GPUs. The CPU is also responsible for the communication, due to
border exchanges, using MPI for this purpose. As one can observe, this imple-
mentation is distinct from the one used to evaluate our model in our previous
work [8] because HIS used only GPUs for computation [7], and now both GPUs
and CPUs are used. Also, a dynamic load balancing technique (not shown in
the algorithm) is used to improve performance. This represents an additional
challenge to HCM because the application behavior changes along its execu-
tion: the time to execute each iteration is distinct, so this application behaves
like a irregular one and HCM was designed to deal with regular applications.
Border exchange occurs at the end of each iteration. For this application, the
communication between CPU and GPU was not considered. Algorithm 3 gives
an overview of the implementation of the HIS simulator.

Algorithm 3. Implementation of the HIS simulator
main

2: . . . define the mesh slice to be computed by each device . . .
. . . initialize submeshes according to their initial conditions . . .

4: for t from 0 to final time do
. . . Computes points on CPUs and GPUs . . .

6: . . . use MPI Isend and MPI Receive to exchange boundaries . . .
. . . synchronize all machines . . .

8: end-for
end-main

Equation 6 models the HIS benchmark. Point-to-point communication prim-
itives are used to exchange boundaries between distinct machines. The

64 T. M. Soares et al.

simultaneous use of CPUs and GPUs in the computation does not change the
way the Tcomputation is modeled. Although the use of the dynamic load-balancing
technique impacts the amount of data exchanged at each iteration, we assumed
it remains constant in order to simplify the model.

Ttotal = Tcomputation + Nop × Tsingle. (6)

4 Results

In this section, we present the values that HCM estimates to the execution time
of HIS and all NAS benchmarks. The actual execution time was obtained using
the average of 5 executions in order to minimize the standard deviation.

The experiments were executed on a small cluster with 16 machines. Half
of these machines have two Intel Xeon E5620 processors with 16 GB of main
memory, six of these have two Tesla C1060 GPUs (240 CUDA cores and 4 GB of
global memory each) and the other two have two Tesla M2050 GPUs (448 CUDA
cores and 3 GB of global memory). The other eight machines have two AMD
6272 processors, with 32 GB of main memory, two Tesla M2075 GPUs, each one
with 448 CUDA cores and 6 GB of global memory. Linux 2.6.32, CUDA driver
version 6.0, OpenMPI version 1.6.2, nvcc release 6.0 and gcc version 4.4.7 were
used to run and compile all codes. Two distinct networks are available in the
cluster: Intel 82576 Gigabit Ethernet and InfiniBand Mellanox MT26428 with
a QDR of 40 Gb/s. The Intel machines are connected by the Gigabit Ethernet
card, while the AMD machines are connected by both cards. Both cards have
the full-duplex mode, so data can be transmitted and received simultaneously.
For this reason, the model for each application considers only half of the number
of messages exchanged since they occur in parallel. Although the total number
of cores available in each machine is equal to 32 for AMD (2×16) and 8 for Intel
(2 × 4), in all experiments only one core was used per machine.

Two distinct environments were used in the experiments. A homogeneous
environment that uses only one type of CPU and a heterogeneous one, that
mixes distinct types of CPUs. In the homogeneous environment, composed by
AMD processors, we also used distinct types of network cards (Ethernet and
Infiniband). In the heterogeneous environment, half of the processors are AMD
and half are Intel. The only exception are BT and SP benchmarks that were
executed with 9 processors, in which 5 Intel and 4 AMD CPUs were used. Also,
we evaluated our model on a homogeneous and a heterogeneous GPU environ-
ment. The homogeneous environment is composed only by M2075 GPUs, while
the heterogeneous one mixes C1060, M2050 and M2075 GPUs.

4.1 Parameters

For the NAS benchmark, the value of I is given by the problem size. For all
benchmarks, the class C was used in the simulations. The exceptions are FT
and LU, which used class B in the evaluations. For the HIS benchmark, it is

Evaluation of HCM 65

equal to 10, 000 steps. The value of Is was fixed in a value equal to 10% of I. In
all experiments we considered that Fr is equal to one. The value used for RP is
given in Table 1, which was obtained using the HIS execution time as reference to
establish a relationship among distinct processing units. For some applications,
the Nop value is constant. However, for other applications its value depends on
P . For this reason, and due to the lack of space, its value will be omitted. The
MTU size, 1.5 kbytes, defines the values used for the latency and bandwidth,
which are equal to (a) Leth = 6.9 × 10−5 s and Beth = 93.4 MB/s for Ethernet
and (b) Linf = 5.1 × 10−6 s and Binf = 1,030.3 MB/s for Infiniband. The value
of od depends on the message size M .

Table 1. Values of RP for each processing unit available in the computational platform.

Processing unit RP

AMD 1

Intel 1.78

C1060 131.22

M2050 299.34

M2075 333.73

M2090 364.41

4.2 Results

Table 2 shows the result for HIS. HIS is executed simultaneously on GPUs and
CPUs, which is a very challenge scenario, since we mix distinct GPUs and CPUs.
As one can observe, the errors varied from 0% to 11.8%.

Table 3 presents the results for the NAS benchmark running on a homoge-
neous CPU environment, but using distinct network cards, Ethernet and Infini-
band. The errors varied from 3% to 12.7%. In absolute values, the difference
between the estimated execution time and the actual one was very tiny for IS:
0.1 s in InfiniBand and 0.4 s in Ethernet. Table 4 presents the results for the NAS
benchmark running on a heterogeneous CPU environment, composed by Intel
and AMD processors, and using the Ethernet network card. The errors varied
from 3.2% to 11.1%. The difference between the estimated execution time and
the actual one, in absolute values, was tiny for IS (0.4 s) and EP (0.9 s).

In general, the execution time estimated by HCM was very close to the actual
one for the IS application, both when considering a scenario with heterogeneous
processors, as well as in a scenario with distinct network adapters. On the other
hand, the worst results were obtained for the estimation of the execution time
of SP. The reason is that SP did not scale linearly in our environment: the
computation time reduces about 3.2 times (from 414 s to 130 s) when the number
of nodes increases 4 times (from 4 to 16). Perhaps a good choice is to choose a
function to represent Fr, instead of one, as we used.

66 T. M. Soares et al.

Table 2. Results for HIS using both GPUs and CPUs and Ethernet network. All
times in seconds. Both absolute and percentage errors are presented. Configuration 1:
2 CPUs (1 AMD and 1 Intel) and 2 GPUs (M2075 and C1060). Configuration 2: 3 CPUs
(1 AMDs and 2 Intels) and 3 GPUs (1 M2075 and 2 C1060). Configuration 3: 7 CPUs
(3 AMDs and 4 Intels) and 7 GPUs (3 M2075, 2 M2050 and 2 C1060).

Configuration # Actual Estimated Error

1 47.2 51.2 4.0/8.6%

2 57.4 57.4 0.0/0.0%

3 107.8 95.1 12.7/11.8%

Table 3. Results for the NAS benchmark using 8 AMD processors on two distinct net-
work cards. All times are in seconds. Both absolute and percentage errors are presented.
BT and SP require a square number of processors, and executed in 9 nodes.

Ethernet Infiniband

Actual Estimated Error Actual Estimated Error

FT 73.8 68.7 5.1/6.9% 23.9 21.7 2.2/9.0%

IS 10.0 9.6 0.4/3.4% 3.4 3.3 0.1/5.4%

CG 150.3 169.2 18.9/12.6% 70.5 77.9 7.4/10.5%

MG 38.2 42.3 4.1/10.6% 23.3 25.1 1.8/7.4%

EP 71.3 74.0 2.7/3.8% 71.2 74.0 2.8/3.9%

LU 77.0 74.7 2.3/3.0% 62.0 57.2 4.8/7.7%

BT* 371.1 340.5 30.6/8.3% 294.7 264.5 30.2/10.2%

SP* 309.0 334.9 25.9/8.4% 238.7 266.5 27.8/12.7%

Table 4. Results for the NAS benchmark using 16 processors (8 Intel and 8 AMD) and
Ethernet. All times are in seconds. Both absolute and percentage errors are presented.

Actual Estimated Error

FT 65.7 61.3 4.4/6.7%

IS 4.9 4.5 0.4/7.8%

CG 262.5 253.7 8.8/3.2%

MG 51.8 46.1 5.7/11.1%

EP 28.5 27.6 0.9/3.2%

LU 62.7 57.9 4.8/7.4%

BT 245.8 259.5 13.7/5.5%

SP 343.2 305.1 38.1/11.1%

Evaluation of HCM 67

5 Conclusion and Future Works

This paper evaluated HCM, a new model to predict the execution time of reg-
ular parallel applications on a small heterogeneous parallel environments. Some
modifications to our previous work were proposed in this paper, basically in the
way the computation time is estimated. The results have shown that HCM can
predict the total execution time of regular applications with distinct communica-
tion characteristics, running on distinct devices and interconnected by different
network types. The error found during the estimation of the total execution time
stayed below to 12.7% and, in some cases, was equal or very close to the actual
execution time. As future work, we plan to use this model to predict the hard-
ware configuration that minimizes the execution time of an application, which is
not necessarily the configuration that uses all computational resources available.
This can be of great impact in the management of computational resources and
scheduling of tasks in a cluster environment.

References

1. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS
parallel benchmarks. Int. J. High Perform. Comput. Appl. 5(3), 63–73 (1991)

2. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E.,
Subramonian, R., von Eicken, T.: Logp: towards a realistic model of parallel com-
putation. SIGPLAN Not. 28(7), 1–12 (1993)

3. Doerfler, D., Brightwell, R.: Measuring MPI send and receive overhead and appli-
cation availability in high performance network interfaces. In: Mohr, B., Träff, J.L.,
Worringen, J., Dongarra, J. (eds.) EuroPVM/MPI 2006. LNCS, vol. 4192, pp. 331–
338. Springer, Heidelberg (2006). https://doi.org/10.1007/11846802 46

4. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems (Classics in Applied Mathemat-
ics Classics in Applied Mathematics). SIAM, Philadelphia (2007)

5. Pigozzo, A.B., Macedo, G.C., Santos, R.W., Lobosco, M.: On the computational
modeling of the innate immune system. BMC Bioinform. 14(Suppl. 6), S7 (2013)

6. Rocha, P.A.F., Xavier, M.P., Pigozzo, A.B., de M. Quintela, B., Macedo, G.C.,
dos Santos, R.W., Lobosco, M.: A three-dimensional computational model of the
innate immune system. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp. 691–
706. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-3 52

7. Soares, T.M., Xavier, M.P., Pigozzo, A.B., Campos, R.S., dos Santos, R.W.,
Lobosco, M.: Performance evaluation of a human immune system simulator on a
GPU cluster. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 458–468.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21909-7 44

8. Soares, T.M., dos Santos, R.W., Lobosco, M.: A parallel model for heterogeneous
cluster. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol. 10049, pp. 76–90.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49956-7 6

https://doi.org/10.1007/11846802_46
https://doi.org/10.1007/978-3-642-31125-3_52
https://doi.org/10.1007/978-3-319-21909-7_44
https://doi.org/10.1007/978-3-319-49956-7_6

Workshop on Power and Energy Aspects
of Computations (PEAC 2017)

Applicability of the Empirical Mode
Decomposition for Power Traces

of Large-Scale Applications

Gary Lawson(B), Masha Sosonkina, Tal Ezer, and Yuzhong Shen

Old Dominion University, Norfolk, VA 23529, USA
{glaws003,msosonki,tezer,yshen}@odu.edu

Abstract. Current trends in HPC show that exascale systems will be
power capped, prompting their users to determine the best combination
of resources to satisfy a power budget. Hence, performance and energy
models must interplay and aid users in this resource selection based on
the desired application parameters. While existing performance models
may predict application execution at a scale, current power models are
inadequate for this propose due, in part, to the variability of instanta-
neous dynamic power and the need to handle large amount of power
measurements at the runtime to populate the models. In this paper, the
latter challenge is tackled by selecting certain power measurements and
applying to them the empirical mode decomposition (EMD) technique,
which itself already deals with instantaneous variability of power during
the runtime. Specifically, it is proposed here to apply EMD to segments
of a power trace to rapidly generate a quadratic model that describes
overall time, power, and thus energy simultaneously. The proposed mod-
els have been applied to several realistic applications. The error across
the proposed models and the measured energy consumption is within 5%
for the smaller segments consisting of 2,000 trace samples and is about
2% for the segments of 6,000 samples.

Keywords: Energy savings · Energy modeling · Power traces
Empirical mode decomposition · Power measurements

1 Introduction

Exascale systems of the future will have more strict power requirements for
devices in order to meet the 20 MW power cap imposed by the U.S. Department

This work was supported in part by the Air Force Office of Scientific Research under
the AFOSR award FA9550-12-1-0476, by the U.S. Department of Energy, Office
of Advanced Scientific Computing Research, through the Ames Laboratory, oper-
ated by Iowa State University under contract No. DE-AC02-07CH11358, and by
the U.S. Department of Defense High Performance Computing Modernization Pro-
gram, through a HASI grant. The authors thank the reviewers for their constructive
comments.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 71–80, 2018.
https://doi.org/10.1007/978-3-319-78054-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_7&domain=pdf

72 G. Lawson et al.

of Energy [9] to keep the annual cost of the cluster maintainable since power
is expensive, especially when 60% goes toward cooling the system. Thus, it is
not far fetched to believe that future systems will come in two flavors; those
where hardware devices meet power draw limitations, and those where users
must abide by power caps for resource requests. Considering the current trend
in power draw, the later is the more likely scenario in the near-future; thus it is
important to optimize application performance for power constraints. However,
this is quite the endeavor.

One of the many areas of research in HPC is the determination of the optimal
configuration settings for an application on a given hardware platform. A user
may not be able to run long experiments to test all permutations of admissible
configuration options. To alleviate this problem, other methods include auto-
tuning an application for common compatible optimizations, which is difficult
to perform for real-world applications, and still requires testing all permutations.
A less costly option is to run the application fewer times, capture application
behavior using time, power, and energy models, and then use the models to
predict untested options. Although this is more ideal, it is incredibly difficult to
quantify application-hardware interactions in a manner that a model can accu-
rately predict. This work is a step towards predicting application performance on
hardware platforms using a novel energy model, based on the Empirical Model
Decomposition (EMD) method [6,18].

Empirical Mode Decomposition: EMD has been investigated by the authors to
obtain a reliable model for energy [10]. In [10], EMD has been applied to the
entire power trace to avoid breaking it into phases corresponding to specific
parallel patterns, such as communication or computation, to correlate them with
specific power measurements. For the proxy application CoMD, such a phase
distinction within a power trace has been achieved by the authors in [11], leading
to a construction of a sequence of models corresponding to each phase. For real-
world application, this distinction is not always possible; thereby EMD has been
adapted in [10] for the power trace.

EMD provides non-parametric non-stationary time-series analysis, which has
been already successfully applied in a variety of fields, such as medicine, finance,
engineering, and more recently in geosciences. The EMD code used here is based
on the code adapted for analysis of sea level data [4] and climate change stud-
ies [3]. The main advantage of EMD over standard spectral methods is that it
detects oscillating modes with time-dependent amplitudes and frequencies, so
it is useful for analyzing irregular data with unknown frequencies. When EMD
is applied to a time-series, it produces a sequence of intrinsic mode functions
(IMFs) and the resultant trend known as the “residual”; the sum of the resid-
ual and IMFs restores the original time-series [6]. Each IMF has an amplitude
and frequency, which can be used to estimate the Teager Energy of the time-
series. Teager Energy is the amount of physical energy required to generate a
signal, computed as the product of amplitude and frequency [14]. To compute
the Teager Energy, a power trace in its entirety may be required.

EMD for Large-Scale Applications 73

Quadratic-Fit Model for Residual: The EMD-based energy model proposed
in [10] describes power draw as a function of time. The model is obtained by first
applying EMD to a complete power trace and then fitting a quadratic equation
(P (t) = a · t2 + b · t + c) to the residual. In this paper, that model is denoted as
the quadratic-fit residual (QFR) model, an example of which is shown in Fig. 1.
Power is shown on the y-axis, and time is the x-axis in Fig. 1. The power model
describes the trend in power draw over time where power draw always returns to
idle. The coefficients relate to time in maximum power draw as shown in Eqs. (1)
and (2). To obtain these definitions, assume that c = 0 and static power draw is
removed from the trend; then time may be described as the x-intercept greater
than zero, see Eq. (1). Power is defined at the apex, or axis of symmetry [16],
as shown in Eq. (2). Notice that power, even defined as a quadratic, has a static
and dynamic component, where static power is c. Conversely, the coefficients
may then be defined using these definitions; a is shown in Eq. (3) and b is shown
in Eq. (4). The QFR shown in Fig. 1 was created for a time of 450 s, static power
of 80 W, and dynamic power of 90 W - the coefficients are then a = −0.0018,
b = 0.80, and c = 80. Using the QFR to model energy, it has been shown that
measured energy for traces longer than 100 s has an error of 10% or less [10].
Power measurements and analysis of these measurements is important; the influ-
ence of hardware behavior is critical to the power behavior of the application
and must be tested since the hardware behavior is not easily predicted.

The paper is organized as follows: Sect. 2 describes the proposed model and its
variant using certain trace segments instead of the entire trace, Sect. 3 discusses
the error in the proposed energy modeling, and Sect. 4 concludes and notes on
future research directions.

Fig. 1. QFR model of power over time.

Time =
−b

a
(1)

MaxPower =
−b2 + 4ac

4a
(2)

a =
−b

T ime
(3)

b =
4 · Pdyn

T ime
(4)

1.1 Related Work

Determination of the optimal hardware-application strategy is challenging. Auto-
tuning [7,8] is a method where many different compiled versions of a code are
tested for performance. However, all permutations must be tested which is time

74 G. Lawson et al.

consuming but is a practical choice. It would be more ideal to use a model,
but execution performance is not easily quantified into available models. Some
models measure only performance [17]; others require advanced or expert level
knowledge of the application, hardware, or both [1,12]. These requirements are
not feasible for an end-user of an Exascale system. The method proposed in
this work can be used to rapidly generate a model of an application-hardware
combination.

2 Segmented Trace Modeling (STM)

STM approximates the QFR using a power trace of only a fraction of total exe-
cution time, which speeds up the EMD modeling process and makes the power-
trace handling manageable. In particular, modeling with EMD is dominated by
the number of times EMD is applied to the trace, which increases non-linearly
with the number of samples. For example, a trace with 6,000 samples (i.e., 30-s
long at a sampling rate of 5 ms) requires 24 s to perform EMD, and a trace ten
times long, with 60,000 samples, requires as much as 443 s. After 30,000 samples
(150 s) of a trace in this example, the EMD processing time begins to surpass
the trace length, which is detrimental for real-world applications, with typical
runtime on the order of hours or days. And a faster sampling rate may only
exacerbate the problem. Hence, the major aim of the proposed STM is to reduce
the amount of time power must be measured to obtain the EMD residual. The
viability of the segment trace modeling lies in the fact that EMD can be applied
to a time-series of any length as long as there are enough measurement samples,
often as few as few as five [6].

2.1 Segmenting Power Traces

In this work, 2,000 measurement samples are used per segment. EMD is sensitive
to the sampling rate; the more fine-grained the samples, the more information
EMD can yield. However, the more fine-grained, the more space required to
store such a trace. Note that modern systems are also limited in the maximum
sampling rate allowed, which is about 1 ms. For a realistically stable sampling
rate, a value of 5 ms is used, which leads to 10-s trace segments (given 2,000
samples). A 10-s segment may also fit the experimentally found durations of the
pre- and post-execution measurements1, which span five seconds each.

Figure 2 shows the complete power trace (left), the power trace after EMD
has been applied to each 10 s segment (center), and the power trace after every
other segment has been removed (right).2 Notice that when EMD is applied to
each segment (center), it closely mimics the trend of each respective segment in
the original trace (left). This is because EMD acts similar to a low-pass filter
when applied to such short traces. High frequency oscillations are removed from
1 See [10] for a discussion of the importance of these measurements.
2 Here, all the traces were collected for the CoMD proxy application on an Intel Xeon

E5-2650 v1 with 16 cores; processor clock-rate is varied.

EMD for Large-Scale Applications 75

Fig. 2. Segmenting a power trace: the original power trace (left), set of residuals when
EMD was applied to each 10-s segment (center), and a comparison of STM and QFR
residuals for the trace with missing segments (right).

the trace to reveal the underlying trend, as shown in Fig. 2 (right). A quadratic
function may be fit to the segment trends, which provides an estimate of the
QFR that is quite accurate, especially when many segments are used to fit the
model. In fact, the quadratics for QFR and STM appear as overlapping in Fig. 2
(right). Indeed, the difference of these curves is within 1%, albeit the STM has
been calculated using all of the segments shown in Fig. 2 (right), whereas the
QFR is calculated using the residual of EMD when applied to the entire power
trace. This indicates that STM with missing segments is a good candidate for
approximating the QFR.

The STM requires a minimum of three key segments, broadly denoted as
start, end, and workload. The start and end segments are required to capture
power draw at the start and end of the application with respect to idle power.
Generally, an application begins by allocating memory and reading data from
the hard-drive; this causes a large spike in power draw which is captured by the
start segment. Likewise, when the application exits and memory is released, a
large drop in power draw is observed which is captured by end. The workload
segment depends on the application; at least one segment must be provided.
Applications with large variations in power draw may require additional seg-
ments to more accurately estimate workload power draw. In this work, only one
workload segment is used, for the sake of simplicity of exposition. The number of
workload segments, however, may depend of the nature of the application power
trace, and its determination is left as future work.

2.2 EMD on Partial Trace

Figure 3 presents two examples of the STM applied to complex power traces. The
two applications CG [13] and GAMESS [5,15] with class D and 1L2Y inputs,
respectively, were chosen because their power traces exhibit rather erratic vari-
ability. In particular, CG features two sections of execution with distinctly dif-
ferent power draws, see Fig. 3(a): The first section, ending near 200 s, has much
more variability than the remainder of the trace. In Fig. 3(d), GAMESS may be
characterized by multiple sections. For example, there is a distinct rise in power
draw between 50 s and 100 s. Large trace variability is not typically found in

76 G. Lawson et al.

(a) CG (b) Segment Residuals (c) Raw Segments

(d) GAMESS (e) Segment Residuals (f) Raw Segments

Fig. 3. STM applied to complex power traces. The QFR is shown as a dashed line in
each plot (white and blue), the STM is a solid red line, and segments in black. (Color
figure online)

most benchmarks, which are designed to test a particular computational feature
iterating on data objects, and, hence, present a rather regular power draw. On
the other hand, complex real-world applications may exhibit large variability in
power draw due to the variability in workload throughout the simulation.

Figure 3(a and d) show the original power trace for CG and GAMESS, respec-
tively, as well as their QFRs (white dashed lines). Figure 3(b, c, e, f) compare the
corresponding QFRs and STMs with only three segments, chosen in a certain
way. Specifically, the workload segment is composed of one 10-s interval taken
from the absolute center of the trace; this segment was chosen to keep the result-
ing STM balanced (peak power in the center). At any other location (assuming
only one segment), peak power would be more towards the start or end of execu-
tion which impacts the resulting STM. This may be desired to more accurately
model the power draw of an application that ends with a higher power draw
than that when starting the application (cf. CG in Fig. 3(a)).

Observe the differences between the QFR and STM model curves in Fig. 3(b,
c) and (e, f), respectively. When EMD is applied to each of the three chosen
segments, the error between QFR and STM is within 5% of the measured energy
as shown in Fig. 3(b, e), while the error is greater than 10% when using the raw
traces of the three key segments the for the quadratic fit as in Fig. 3(c, f). Hence,
STM, which employs EMD on the key segments followed by the quadratic fit, is
beneficial.

EMD for Large-Scale Applications 77

Next observe that the QFR model more closely mimics the power trend since
it is based on the entire trace. On the other hand, the STM accuracy may be
improved by adding more workload segments, and thus, capturing various trace
spikes. Hence, a trade-off between the STM accuracy and speed of processing
with EMD may be sought and tailored to the particular needs and resource
availability.

2.3 STM with Segment Approximations

Although STM reduces the amount of measurement samples required to perform
the quadratic fit to the final EMD residual, the few remaining measurements
must still be made throughout the entire execution. With this requirement, one
still has to wait till the execution end to compute the quadratic fit. This may
not be desirable for the large-scale applications that may take hours or days
to execute. Therefore, a further approximation of the STM is proposed, which
relies only on one measured segment, at the start of the execution, and assumes
that the average power draw and the execution time are known (or may be
estimated).

Recall that the STM requires three key segments: start, workload, and end.
The start segment can be measured easily by the user, since only one segment is
needed, and the time for each segment is relatively short compared to the total
execution time. Assuming that average power is known, an artificial segment,
where every sample is equal to the average power, may then be created as sub-
stitute for the workload segment. The end segment may be approximated also, if
assumed that the “cool-down” period mirrors the start-up one—corresponding
to the start segment—with a negative slope. Hence, the start segment charac-
teristics may be used in place of those for the end with the samples in reverse
order (with respect to time). The STM with the start segment mirroring and the
artificial segment creation is denoted henceforth as approximate STM (ASTM).

3 Relative Modeling Error

Power traces were collected for several applications (CoMD, NAS parallel bench-
marks, and GAMESS). CoMD is a molecular dynamics application developed
by the Department of Energy co-design research effort [2] at the Extreme Mate-
rials at Extreme Scale (ExMatEx) center. Both force kernels, Lennard-Jones
and the Embedded Atom Model are tested. The General Atomic and Molec-
ular Electronic Structure System (GAMESS) [5,15] is a widely used quantum
chemistry package capable of performing molecular structure and property calcu-
lations by a rich variety of ab initio methods finding an (approximate) solution
of the Schrödinger equation for a given molecular system. The NAS Parallel
Benchmarks [13] is a collection of programs used to evaluate the performance of
parallel supercomputers, which was derived from computational fluid dynamics
applications.

78 G. Lawson et al.

(a) CG-D (b) GAMESS-1L2Y

Fig. 4. Energy consumption error for the STM and ASTM applied to complex power
traces.

In this work, applications were run on two hardware platforms while varying
the number of available cores and problem size. The two hardware platforms,
Borges and Rulfo of Old Dominion University, are single-node systems; Borges is
a Sandy-bridge node and Rulfo is a Xeon Phi “Knights Landing” node. Borges
has 2x Intel Xeon E5-2650’s with a total of 16 cores at 2.0 GHz. Rulfo has an
Intel Xeon Phi 7210 with a total of 64 cores at 1.3 GHz.

Figure 4 shows the relative error in energy consumption for three pairs of
models—(QFR, STM), (QFR, ASTM), and (STM, ASTM)—and for measured
energy vs STM and vs ASTM with the increase in the number of samples used.
All but (STM, ASTM) error curves approach zero as the segment size increases,
although errors between STM and measured or QFR errors continue to grow
beyond 30-s segments (i.e., 6,000 samples). The error in the energy consumption
between the STM and ASTM exhibits a horizontal trend, starting from zero
and leveling at about 3% of difference. This indicates that the ASTM is a good
approximation of the STM. In general, the overall small magnitude of errors
demonstrates that the STM and its variant ASTM approximate with an accept-
able accuracy the quadratic fit into the entire trace. Note that, although Fig. 4
only depicts CG and GAMESS modeling errors, the errors computed for all the
other applications tested were found to be of magnitudes and trends compara-
ble to the ones in Fig. 4. That is to say that each method tested using CoMD,
GAMESS, and each benchmark in the NPB converge within 5% error as the
number of samples per segment increases.

4 Conclusion

In the proposed trace segmentation and subsequent use of the Empirical Mode
Decomposition on each segment, large amounts of power trace data may be now
be avoided without sacrificing the accuracy of the EMD energy model QFR,

EMD for Large-Scale Applications 79

which is modified to use a quadratic fit on the residuals of each segment. The
segment length, defined either by the number of samples or by time in seconds,
can be used to improve the accuracy of the STM model without requiring addi-
tional segments. For segments between 10 and 30 s, error is within 5% of the
measured and QFR-modeled energy consumption. Furthermore, the proposed
approximations of the two key STM segments lead to as little as 5% of the
additional error. The future work includes using the proposed trace approxima-
tion modeling techniques for predicting the energy consumption of large-scale
applications.

References

1. Choi, J., Mukhan, M., Liu, X., Vuduc, R.: Algorithmic time, energy, and power
on candidate HPC compute building blocks. In: 2014 IEEE 28th International
Symposium on Parallel Distributed Processing (IPDPS), Arizona, USA, May 2014

2. DOE:Co-design (2013). http://science.energy.gov/ascr/research/scidac/co-design/
3. Ezer, T., Atkinson, L.P., Corlett, W.B., Blanco, J.L.: Gulf stream’s induced sea

level rise and variability along the U.S. Mid-Atlantic coast. J. Geophys. Res. Oceans
118(2), 685–697 (2013). https://doi.org/10.1002/jgrc.20091

4. Ezer, T., Corlett, W.: Is sea level rise accelerating in the Chesapeake Bay? A
demonstration of a novel new approach for analyzing sea level data. Geophys. Res.
Lett. 39(19) (2012). http://dx.doi.org/10.1029/2012GL053435

5. Gordon, M.S., Schmidt, M.W.: Advances in electronic structure theory: GAMESS
a decade later (2005)

6. Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C.C.,
Liu, H.: The empirical mode decomposition and the Hilbert spectrum for non-
linear and non-stationary time series analysis. Proc. Roy. Soc. Lond. A: Math.
Phys. Eng. Sci. 454(1971), 903–995 (1998). http://rspa.royalsocietypublishing.org/
content/454/1971/903

7. Jordan, H., Thoman, P., Durillo, J., Pellegrini, S., Gschwandtner, P., Fahringer,
T., Moritsch, H.: A multi-objective auto-tuning framework for parallel codes. In:
Proceedings of International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC 2012, pp. 10:1–10:12. IEEE Computer Society
Press, Los Alamitos (2012). http://dl.acm.org/citation.cfm?id=2388996.2389010

8. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework
for parallel multicore stencil computations. In: 2010 IEEE International Sympo-
sium on Parallel Distributed Processing (IPDPS), pp. 1–12, April 2010

9. Kusnezov, D., Binkley, S., Harrod, B., Meisner, B.: DOE exascale initia-
tive (2013). http://www.industry-academia.org/download/20130913-SEAB-DOE-
Exascale-Initiative.pdf

10. Lawson, G., Sosonkina, M., Ezer, T., Shen, Y.: Empirical mode decomposition for
modeling of parallel applications on Intel Xeon Phi processors. In: Proceedings of
2nd International Workshop on Theoretical Approaches to Performance Evalua-
tion, Modeling and Simulation. TAPEMS 2017 (2017)

11. Lawson, G., Sundriyal, V., Sosonkina, M., Shen, Y.: Modeling performance and
energy for applications offloaded to Intel Xeon Phi. In: Proceedings of 2nd Inter-
national Workshop on Hardware-Software Co-design for High Performance Com-
puting, Co-HPC 2015, pp. 7:1–7:8. ACM, New York (2015). http://doi.acm.org/
10.1145/2834899.2834903

http://science.energy.gov/ascr/research/scidac/co-design/
https://doi.org/10.1002/jgrc.20091
http://dx.doi.org/10.1029/2012GL053435
http://rspa.royalsocietypublishing.org/content/454/1971/903
http://rspa.royalsocietypublishing.org/content/454/1971/903
http://dl.acm.org/citation.cfm?id=2388996.2389010
http://www.industry-academia.org/download/20130913-SEAB-DOE-Exascale-Initiative.pdf
http://www.industry-academia.org/download/20130913-SEAB-DOE-Exascale-Initiative.pdf
http://doi.acm.org/10.1145/2834899.2834903
http://doi.acm.org/10.1145/2834899.2834903

80 G. Lawson et al.

12. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.:
McPAT: an integrated power, area, and timing modeling framework for multi-
core and manycore architectures. In: 2009 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 469–480, December 2009

13. NASA: NAS parallel benchmarks (2013). http://www.nas.nasa.gov/publications/
npb.html

14. Ramakrishna, G., Padmaja, N.: Estimation of teager energy using EMD. In: 2016
2nd International Conference on Applied and Theoretical Computing and Com-
munication Technology (iCATccT), pp. 6–11, July 2016

15. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen,
J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis,
M., Montgomery, J.J.A.: General atomic and molecular electronic structure sys-
tem. J. Comput. Chem. 14, 1347–1363 (1993). http://portal.acm.org/citation.cfm?
id=163483.163497

16. Wikipedia: Quadratic function (2017). https://en.wikipedia.org/wiki/Quadratic
function

17. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
http://doi.acm.org/10.1145/1498765.1498785

18. Wu, Z., Huang, N.: Ensemble empirical mode decomposition: a noise-assisted
data analysis method. Adv. Adapt. Data Anal. 01(01), 1–41 (2009). http://www.
worldscientific.com/doi/abs/10.1142/S1793536909000047

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://portal.acm.org/citation.cfm?id=163483.163497
http://portal.acm.org/citation.cfm?id=163483.163497
https://en.wikipedia.org/wiki/Quadratic_function
https://en.wikipedia.org/wiki/Quadratic_function
http://doi.acm.org/10.1145/1498765.1498785
http://www.worldscientific.com/doi/abs/10.1142/S1793536909000047
http://www.worldscientific.com/doi/abs/10.1142/S1793536909000047

Efficiency Analysis of Intel, AMD
and Nvidia 64-Bit Hardware

for Memory-Bound Problems: A Case
Study of Ab Initio Calculations

with VASP

Vladimir Stegailov1,2,3(B) and Vyacheslav Vecher1,2

1 Joint Institute for High Temperatures of RAS, Moscow, Russia
2 Moscow Institute of Physics and Technology (State University),

Dolgoprudny, Russia
vecher@phystech.edu

3 National Research University Higher School of Economics, Moscow, Russia
v.stegailov@hse.ru

Abstract. Nowadays, the wide spectrum of Intel Xeon processors is
available. The new Zen CPU architecture developed by AMD has
extended the number of options for x86 64 HPC hardware. Moreover,
Nvidia has released a custom 64-bit Denver architecture based on the
ARM instruction set. This large number of options makes the optimal
CPU choice for perspective HPC systems not a straightforward proce-
dure. Such a co-design procedure should follow the requests from the
end-users community. Modern computational materials science studies
are among the major consumers of HPC resources worldwide. The VASP
code is perhaps the most popular tool for these research. In this work, we
discuss the benchmark metric and results based on a VASP test model
that give us the possibility to compare different hardware and to distin-
guish the best options with respect to energy-to-solution criterion.

Keywords: Energy-to-solution · VASP · Broadwell · Zen · Denver

1 Introduction

Computational materials science provides an essential part of the deployment
time for high performance computing (HPC) resources worldwide. The VASP
code [1–4] is among the most popular programs for electronic structure cal-
culations that gives the possibility to calculate materials properties using the
non-empirical (so called ab initio) methods. According to the recent estimates,
VASP alone consumes up to 15–20% of the world’s supercomputing power [5,6].
Such unprecedented popularity justifies the special attention to the optimization
of VASP for both existing and novel computer architectures (e.g. see [7]). At the
same time, one can ask a question what type of processing units would be the
most efficient for VASP calculations.
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 81–90, 2018.
https://doi.org/10.1007/978-3-319-78054-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_8&domain=pdf
http://orcid.org/0000-0002-5349-3991

82 V. Stegailov and V. Vecher

A large part of HPC resources installed during the last decade is based on
Intel CPUs. Novel generations of Intel CPUs present the wide spectrum of mul-
ticore processors. The number Xeon CPU types for dual-socket systems is 26 for
the Sandy Bridge family, 27 for Ivy Bridge, 22 for Haswell and 23 for Broadwell
families. In each family, the processors share the same core type but differ by
their frequency, core count, cache sizes, network-on-chip structure etc.

In March 2017, AMD released the first processors based on the novel x86 64
architecture called Zen. It is assumed that the efficiency of this architecture for
HPC applications would be comparable to the latest Intel architectures (Broad-
well and Skylake).

In March 2017, Nvidia released the Jetson TX2 minicomputer with the Tegra
“Parker” SoC. This Tegra SoC consists of four 64-bit ARMv8 Cortex-A57 cores,
two custom-made Nvidia Denver cores that use the 64-bit ARMv8 instruction
set [8], a GPU unit and other components. These Denver cores represent a new
type of 64-bit architecture that could be used in HPC systems in the future.

The diversity of CPU types complicates significantly the choice of the best
variant for a particular HPC system. The first criterion is certainly the time-to-
solution of a given computational task or a set of different tasks that represents
an envisaged workload of a system under development.

Another criterion is the energy efficiency of an HPC system. Energy efficiency
becomes one of the most important concerns for the HPC development today
and will remain in foreseeable future [9].

The need for clear guiding principles stimulates the development of models for
HPC systems performance prediction. However, the capabilities of the idealized
models are limited by the complexity of real-life applications. That is why the
empirical benchmarks of the real-life examples serve as a complimentary tool for
the co-design and optimization of software-hardware combinations.

In this work, we present the efficiency analysis of a limited but representative
list of modern Intel, AMD and Nvidia 64-bit systems using a typical VASP
workload example.

2 Related Work

HPC systems are notorious for operating at a small fraction of their peak per-
formance and the deployment of multi-core and multi-socket compute nodes
further complicates performance optimization. Many attempts have been made
to develop a more or less universal framework for algorithms optimization that
takes into account essential properties of the hardware (see e.g. [10,11]). The
recent work of Stanisic et al. [12] emphasizes many pitfalls encountered when
trying to characterize both the network and the memory performance of modern
machines.

The increase of power consumption and heat generation of computing plat-
forms is a very significant problem. Measurement and presentation of the results
of performance tests of parallel computer systems become more and more often

Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware 83

evidence-based [13], including the measurement of energy consumption, which
is crucial for the development of exascale supercomputers [14].

The work of Calore et al. [15] discloses some aspects of relations between
power consumption and performance using small Nvidia Jetson TK1 minicom-
puter running the Lattice Boltzmann method algorithms. An energy-aware task
management mechanism for the MPDATA algorithms on multicore CPUs was
proposed by Rojek et al. [16].

Minicomputers serve as prototypes that allow benchmarking novel technolo-
gies without spending a significant budget for purchasing full-scale prototypes.
Moreover, minicomputers are considered as a perspective elements of energy-
efficient HPC systems [17].

Our previous results on energy consumption for minicomputers running clas-
sical MD benchmarks were published previously for Odroid C1 [18] and Nvidia
Jetson TK1 and TX1 [19,20].

3 Hardware and Software

In this work, we consider several Intel Xeon CPUs, the novel AMD Ryzen pro-
cessor and the novel Nvidia Tegra “Parker” SoC and compare the results with
the data [21] for the IBM Power 7. The features of the systems considered are
summarized in Table 1.

Table 1. The main features of the systems considered

CPU type Ncores Nmem.ch. LLC (Mb) CPUfreq

(GHz)
DRAMfreq

(MHz)

Single socket, Intel X99 chipset

Xeon E5-2620v4 8 4 20 2.1 2133

Xeon E5-2660v4 14 4 35 2.0 2400

Single socket, AMD B350 chipset

Ryzen 1800X 8 2 16 3.6 2400

Nvidia Jetson TX2 (2 Denver + 4 Cortex-A57 cores)

Tegra “Parker” 2 + 4 4 (32-bit) 2 + 2 2.0 1866

Dual socket, Intel C602 chipset (the MVS10P cluster)

Xeon E5-2690 8 4 20 2.9 1600

Dual socket, Intel C612 chipset (the MVS1P5 cluster)

Xeon E5-2697v3 14 4 35 2.6 2133

Dual socket, Intel C612 chipset (the IRUS17 cluster)

Xeon E5-2698v4 20 4 50 2.2 2400

Quad socket, IBM Power 775 (the Boreasz cluster [21])

Power 7 8 4 32 3.83 1600

84 V. Stegailov and V. Vecher

The single socket Intel Broadwell systems benchmarks are performed under
Ubuntu ver. 16.04 with Linux kernel ver. 4.4.0. The single socket AMD Ryzen
system is benchmarked under Ubuntu ver. 17.04 with Linux kernel ver. 4.10.0.
Jetson TX2 is benchmarked under Linux4Tegra Ubuntu 16.04 LTS aarch64 with
Linux kernel ver. 4.4.0.

3.1 Test Model in VASP

VASP 5.4.1 is compiled for Intel systems using Intel Fortran, Intel MPI and
linked with Intel MKL for BLAS, LAPACK and FFT calls. For the AMD and
Nvidia systems, gfortran ver.6.3 is used together with OpenMPI, OpenBLAS
and FFTW libraries.

VASP is known to be both a memory-bound and a compute-bound code. In
general, VASP execution is dominated by the back and forth FFTs (from/to
the real space to/from the Fourier space), and zgemm/dgemm calls [7]. Our test
model in VASP is the same as used previously for the benchmarks of the IBM
775 system [21]. The model represents a GaAs crystal consisting of 80 atoms
in the supercell. The calculation protocol corresponds to the iterative electron
density optimization. We use the time for the first iteration τiter during this
optimization as a target parameter of the performance metric.

The choice of a particular test model has a certain influence on the bench-
marking results. However, our preliminary tests of other VASP models show that
the main conclusions of this study do not depend significantly on a particular
model. In the future, a set of regression tests will be considered.

3.2 Power Consumption Measurement

For the single socket systems considered, the power consumption measure-
ments are performed. For Intel and AMD systems, we use APC Back-UPS Pro
BR1500G-RS and the corresponding apcupsd linux driver for digital sampling
of power consumed during VASP runs.

For Jetson TX2, we use two SmartPower digital wattmeters with the inte-
grated DC source. Each wattmeter provides voltage in the range from 3 to 5.25 V
and measures the current and power consumption every 0.2 s with a nominal
error of less than 0.01 V. The wattmeter shows the data on the display in real
time and allows to transfer the data via USB to the PC for further analysis.
Because both Jetson platforms have nominal voltage values higher than 5.25 V,
we connect two SmartPower wattmeters in a sequential way to achieve higher
voltage [19,20]. The nominal voltage is 19 V for Jetson TX2. However, we dis-
cover that the minicomputer can operate steadily at much lower voltages, and
hence use 10.5 V.

In this way, we measure the total power consum‘ption of the CPU, the mem-
ory, the motherboard and PSU. For the evaluation of the total energy consumed
during one benchmark run, we multiply the average power value during the run
by the time of the first iteration τiter.

Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware 85

Fig. 1. The dependence of the time for the first iteration of the GaAs test on the
number of cores per socket in the reduced parameters Rpeakτiter and balance B (here
Rpeak is the total peak performance of all the core used, and the balance B corresponds
to total bandwidth for a single/dual socket server.)

4 Results and Discussion

4.1 Computational Efficiency and the Balance Between Rpeak and
DRAM Bandwidth

The performance comparison of different CPUs resembles a comparison of
“apples and oranges”. For comparison of CPUs with different frequencies and
different peak numbers of Flops/cycle, it is better to use the reduced param-
eter of Rpeakτiter [19,22], where Rpeak is the theoretical peak performance in
Flops/sec. Rpeakτiter gives the number floating-point operations that could be
performed during the time τiter if the data are available in registers without any
delay.

Another reduced parameter that characterizes the memory subsystem is the
so-called balance B that is the ratio of Rpeak to the CPU memory bandwidth
(in this work, we measure the latter quantity using the STREAM benchmark).

We detect that for Broadwell systems considered (with 4 memory channels
per socket) τiter saturates at 4 cores per socket and shows no significant decrease
for higher core counts. In order to better understand the dependence on the
number of memory channels, we perform tests with E5-2620v4 CPU with only
2 or 1 memory channels activated (with only 2 DIMMs or 1 DIMM installed
into the motherboard). Figure 1 shows the results for different systems. In this
way, we have eliminated the differences of CPUs considered in floating point
performance and in the memory bandwidth.

86 V. Stegailov and V. Vecher

Fig. 2. The average power draw and energy consumption of the single socket systems
under the VASP test model load. The number of active cores is shown near each data
point.

One can see that in these reduced coordinates there is an evident common
trend. The data point for the IBM Power 7 CPU is located at the same trend
that suggests the low sensitivity of the results to the hardware and software
differences between Intel, AMD, Nvidia and IBM systems considered.

Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware 87

The test model considered defines (by its choice) the total number of arith-
metic operations (Flops) required for its solution NFP . The increase of Rpeakτiter
(that is proportional to the number of CPU cycles) shows the increase of the over-
head due to the limited memory bandwidth. More CPU cycles are required for
the CPU cores involved in computations to get data from DRAM.

We have calculated the number of floating-point operations that corresponds
to τiter. We used a system with Intel Core i7 640UM CPU. This CPU does not
support AVX instructions and the performance counters work unambiguously.
The resulting value of NFP = 5.5 TFlops is shown at Fig. 1 as a dash-dotted
horizontal line. The ratio of Rpeakτiter/NFP shows the overhead of the CPU
cycles that are not deployed for computations because of the required data from
DRAM are not available. As it is shown at Fig. 1, this overhead is about 3 for the
cases with the lowest balance values considered. The overhead becomes about
10–20 if 8 cores per CPU are deployed for the VASP test run.

We should notice that the overall trend at Fig. 1 corresponds very well to the
limiting case Rpeakτiter → NFP when B → 0.

4.2 Analysis of the Energy-to-Solution

For the single socket systems considered (see Table 1) the power consumption
measurements are performed together with the VASP model test runs. The
results are summarized in Fig. 2 that shows the average power and the total
consumed energy as functions of τiter.

Comparing E5-2620v4 (with 8 cores in total) and E5-2660v4 (with 14 cores
in total), we conclude that non-active cores do not contribute significantly to
the power draw during VASP test runs.

AMD Ryzen shows a competitive level of power consumption. However, the
increase of average power consumption after the transition from 1 to 2 cores for
AMD Ryzen is more pronounced than for Intel Broadwell CPUs considered. The
probable reason is the activation of both quad-core CPU-Complexes (CCX) of
the Ryzen 1800X CPU.

In most cases, there is a minimum in energy consumption for a given CPU.
This minimum is mainly connected with the reduction of τiter. Beyond this
minimum, when more cores come into play, further acceleration is connected
with essentially higher power draw, or there is no acceleration at all.

The most power-efficient and energy-efficient case among the x86 64 variants
considered is the use of 4 cores of E5-2660v4. The reason for this advantage is
the large L3 cache size E5-2660v4 in comparison with E5-2620v4. AMD Ryzen
CPU shows a competitive level of energy efficiency and performance.

Benchmarks of the Jetson TX2 minicomputer using one and two Nvidia Den-
ver cores show a much better energy efficiency. Extrapolating the results for
1 and 2 cores for higher core counts, one can say that the energy efficiency is
about 2 times better. Here, we should notice, however, the differences between
the motherboards and PSUs of Intel and AMD systems considered and the Jet-
son TX2 minicomputer. The latter was designed for an essentially lower power
load and thus has a lower power overhead [17].

88 V. Stegailov and V. Vecher

From the point of view of the silicon technology, there is no evident reason
of the observed results on energy efficiency. Tegra “Parker” SoC is based on the
16 nm technology. The Ryzen architecture is based on 14 nm technology, as well
as the Broadwell architecture (the oldest among considered).

5 Conclusions

In this work, we have considered several Intel CPUs (from Sandy Bridge, Haswell
and Broadwell families), the novel AMD Ryzen CPU and Nvidia Tegra “Parker”
SoC with novel 64-bit Denver cores. Moreover, we have used the data on IBM
Power 7 for comparison. In all the cases, we have used the test VASP model of
GaAs crystal as a benchmark tool. Power consumption measurements have been
carried out.

Additionally to the variation of the CPU types, we have considered the vari-
ations in the number of active memory channels for E5-2620v4 CPU.

For comparison of different systems, we have used the reduced parame-
ters: the time for iteration normalized by the floating point peak performance
Rpeakτiter and the balance B that is the ratio of the peak floating-point perfor-
mance to the maximum sustained memory bandwidth. The benchmark results
correlate with these reduced parameters quite well. This fact allows us to make
several conclusions on optimal VASP performance.

For VASP, the optimal number of cores per memory channel is 1–2. Using
more that 2 cores per channel provides no acceleration. Comparing different
CPUs at the same level of performance, we conclude that CPUs with larger L3
cache size needs less power and consumes less energy.

The AMD Ryzen system demonstrates a competitive level of performance
and energy efficiency in comparison with the Intel Broadwell systems. The bench-
marks of the Jetson TX2 system with Nvidia Denver cores show a very promising
level of energy efficiency that is about 2 times better than the results for Broad-
well and Ryzen systems.

Acknowledgment. The authors are grateful to Dr. Maciej Cytowski and Dr. Jacek
Peichota (ICM, University of Warsaw) for the data on the VASP benchmark [21].

The authors acknowledge Joint Supercomputer Centre of Russian Academy of
Sciences (http://www.jscc.ru) and Shared Resource Center “Far Eastern Computing
Resource” IACP FEB RAS (http://cc.dvo.ru) for the access to the supercomputers
MVS10P, MVS1P5 and IRUS17.

The work was supported by the grant No. 14-50-00124 of the Russian Science Foun-
dation. A part of the equipment used in this work was purchased with the financial
support of MIPT and HSE.

http://www.jscc.ru
http://cc.dvo.ru

Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware 89

References

1. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev.
B 47, 558–561 (1993). http://link.aps.org/doi/10.1103/PhysRevB.47.558

2. Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-
amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269
(1994). http://link.aps.org/doi/10.1103/PhysRevB.49.14251

3. Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for
metals and semiconductors using a plane-wave basis set. Computat. Mater. Sci.
6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0. http://www.
sciencedirect.com/science/article/pii/0927025696000080

4. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
http://link.aps.org/doi/10.1103/PhysRevB.54.11169

5. Bethune, I.: Ab initio molecular dynamics. In: Introduction to Molecular Dynamics
on ARCHER (2015). https://www.archer.ac.uk/training/course-material/2015/
06/MolDy Strath/AbInitioMD.pdf

6. Hutchinson, M.: VASP on GPUs. When and how. In: GPU Technology Theater, SC
2015 (2015). http://images.nvidia.com/events/sc15/pdfs/SC5107-vasp-gpus.pdf

7. Zhao, Z., Marsman, M.: Estimating the performance impact of the MCDRAM on
KNL using dual-socket Ivy Bridge nodes on Cray XC30. In: Proceedings of Cray
User Group – 2016 (2016). https://cug.org/proceedings/cug2016 proceedings/
includes/files/pap111.pdf

8. Boggs, D., Brown, G., Tuck, N., Venkatraman, K.S.: Denver: Nvidia’s first 64-
bit arm processor. IEEE Micro 35(2), 46–55 (2015). https://doi.org/10.1109/MM.
2015.12

9. Kogge, P., Shalf, J.: Exascale computing trends: adjusting to the “new normal” for
computer architecture. Comput. Sci. Eng. 15(6), 16–26 (2013). https://doi.org/10.
1109/MCSE.2013.95

10. Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.:
Perfexpert: an easy-to-use performance diagnosis tool for HPC applications. In:
Proceedings of 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer
Society, Washington, DC (2010). https://doi.org/10.1109/SC.2010.41

11. Rane, A., Browne, J.: Enhancing performance optimization of multicore/multichip
nodes with data structure metrics. ACM Trans. Parallel Comput. 1(1), 3:1–3:20
(2014). http://doi.acm.org/10.1145/2588788

12. Stanisic, L., Mello Schnorr, L.C., Degomme, A., Heinrich, F.C., Legrand, A.,
Videau, B.: Characterizing the performance of modern architectures through
opaque benchmarks: pitfalls learned the hard way. In: IPDPS 2017–31st IEEE
International Parallel & Distributed Processing Symposium (RepPar Workshop),
Orlando, USA (2017). https://hal.inria.fr/hal-01470399

13. Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems: twelve
ways to tell the masses when reporting performance results. In: Proceedings of
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2015, pp. 73:1–73:12. ACM, New York (2015). https://doi.org/
10.1145/2807591.2807644

14. Scogland, T., Azose, J., Rohr, D., Rivoire, S., Bates, N., Hackenberg, D.: Node
variability in large-scale power measurements: perspectives from the Green500,
Top500 and EEHPCWG. In: Proceedings of International Conference for High

http://link.aps.org/doi/10.1103/PhysRevB.47.558
http://link.aps.org/doi/10.1103/PhysRevB.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://www.sciencedirect.com/science/article/pii/0927025696000080
http://link.aps.org/doi/10.1103/PhysRevB.54.11169
https://www.archer.ac.uk/training/course-material/2015/06/MolDy_Strath/AbInitioMD.pdf
https://www.archer.ac.uk/training/course-material/2015/06/MolDy_Strath/AbInitioMD.pdf
http://images.nvidia.com/events/sc15/pdfs/SC5107-vasp-gpus.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap111.pdf
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap111.pdf
https://doi.org/10.1109/MM.2015.12
https://doi.org/10.1109/MM.2015.12
https://doi.org/10.1109/MCSE.2013.95
https://doi.org/10.1109/MCSE.2013.95
https://doi.org/10.1109/SC.2010.41
http://doi.acm.org/10.1145/2588788
https://hal.inria.fr/hal-01470399
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/2807591.2807644

90 V. Stegailov and V. Vecher

Performance Computing, Networking, Storage and Analysis, SC 2015, pp. 74:1–
74:11. ACM, New York (2015). http://doi.acm.org/10.1145/2807591.2807653

15. Calore, E., Schifano, S.F., Tripiccione, R.: Energy-performance tradeoffs for HPC
applications on low power processors. In: Hunold, S., et al. (eds.) Euro-Par 2015.
LNCS, vol. 9523, pp. 737–748. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27308-2 59

16. Rojek, K., Ilic, A., Wyrzykowski, R., Sousa, L.: Energy-aware mechanism for
stencil-based MPDATA algorithm with constraints. Concurr. Comput.: Pract. Exp.
e4016-n/a (2016). http://dx.doi.org/10.1002/cpe.4016.Cpe.4016

17. Luijten, R.P., Cossale, M., Clauberg, R., Doering, A.: Power measurements and
cooling of the DOME 28nm 1.8GHz 24-thread ppc64 μServer compute node. In:
2015 International Conference on IC Design Technology (ICICDT), pp. 1–4 (2015).
https://doi.org/10.1109/ICICDT.2015.7165919

18. Nikolskiy, V., Stegailov, V.: Floating-point performance of ARM cores and their
efficiency in classical molecular dynamics. J. Phys.: Conf. Ser. 681(1), 012,049
(2016). http://stacks.iop.org/1742-6596/681/i=1/a=012049

19. Nikolskiy, V.P., Stegailov, V.V., Vecher, V.S.: Efficiency of the Tegra K1 and X1
systems-on-chip for classical molecular dynamics. In: 2016 International Conference
on High Performance Computing Simulation (HPCS), pp. 682–689 (2016). https://
doi.org/10.1109/HPCSim.2016.7568401

20. Vecher, V., Nikolskii, V., Stegailov, V.: GPU-accelerated molecular dynamics:
energy consumption and performance. In: Voevodin, V., Sobolev, S. (eds.) RuSC-
Days 2016. CCIS, vol. 687, pp. 78–90. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-55669-7 7

21. Cytowski, M.: Best Practice Guide – IBM Power 775. PRACE, November 2013.
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-IBM-Power-775.pdf

22. Stegailov, V.V., Orekhov, N.D., Smirnov, G.S.: HPC hardware efficiency for quan-
tum and classical molecular dynamics. In: Malyshkin, V. (ed.) PaCT 2015. LNCS,
vol. 9251, pp. 469–473. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21909-7 45

http://doi.acm.org/10.1145/2807591.2807653
https://doi.org/10.1007/978-3-319-27308-2_59
https://doi.org/10.1007/978-3-319-27308-2_59
http://dx.doi.org/10.1002/cpe.4016.Cpe.4016
https://doi.org/10.1109/ICICDT.2015.7165919
http://stacks.iop.org/1742-6596/681/i=1/a=012049
https://doi.org/10.1109/HPCSim.2016.7568401
https://doi.org/10.1109/HPCSim.2016.7568401
https://doi.org/10.1007/978-3-319-55669-7_7
https://doi.org/10.1007/978-3-319-55669-7_7
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-IBM-Power-775.pdf
https://doi.org/10.1007/978-3-319-21909-7_45
https://doi.org/10.1007/978-3-319-21909-7_45

GPU Power Modeling of HPC
Applications for the Simulation

of Heterogeneous Clouds

Antonios T. Makaratzis1, Malik M. Khan2, Konstantinos M. Giannoutakis1(B),
Anne C. Elster2, and Dimitrios Tzovaras1

1 Information Technologies Institute, Centre for Research and Technology Hellas,
57001 Thessaloniki, Greece

{antomaka,kgiannou,Dimitrios.Tzovaras}@iti.gr
2 Norwegian University of Science and Technology, Trondheim, Norway

{malikmk,elster}@ntnu.no

Abstract. Hardware accelerators have been widely used in the scientific
community, as the gain in the performance of HPC applications is signif-
icant. Hardware accelerators have been used in cloud computing as well,
though existing cloud simulation frameworks do not support modeling
and simulation of such hardware. Models for the estimation of the power
consumption of accelerators have been proposed by many researchers,
but they require large number of inputs and computations, making them
unsuitable for hyper scale simulations. In previous work, a generic model
for the estimation of the power consumption of accelerators has been
proposed, that can be combined with generic CPU power models suit-
able for integration in hyper scale simulation environments. This paper
extends this work by providing models for the energy consumption of
GPUs and CPU-GPU pairs, that are experimentally validated with the
use of different GPU hardware models and GPU intensive applications.
The relative error between the actual and the estimated energy consump-
tion is low, thus the proposed models provide accurate estimations and
can be efficiently integrated into cloud simulation frameworks.

Keywords: Power consumption modeling
Energy consumption modeling · Accelerators
High Performance Computing · Graphics Processing Units
Central processing units · Heterogeneous clouds

1 Introduction

The power consumption of cloud resources has been investigated by many
researchers during the last years, due to the rapid increase of the energy con-
sumed by massive hardware infrastructures. For simulating the energy consump-
tion of cloud data centres, various energy aware simulators have been developed
such as CloudSim [4], GreenCloud [8], DCSIM [16], iCanCloud [12], SimGrid
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 91–101, 2018.
https://doi.org/10.1007/978-3-319-78054-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_9&domain=pdf

92 A. T. Makaratzis et al.

[13] and DCworms [5,9]. Hardware accelerators, such as Graphics Processing
Units (GPUs), have been widely used in High Performance Computing (HPC),
and recently have been adopted by cloud providers. Currently, no cloud simula-
tion framework consider heterogeneity in terms of hardware accelerators in the
computing nodes.

Cloud simulators tend to model the hardware infrastructure with simple gen-
eralized models that require small number of inputs and computations, in order
to keep the computational complexity low. This is essential considering the large
number of hardware resources that have to be simulated, especially when clouds
of thousands or millions of servers are simulated. Simple models for CPU servers
have already been proposed, i.e. linear functions of CPU utilization and its power
consumption, and have been widely used in cloud simulators such as CloudSim
and DCSIM. Models proposed by individual research efforts for hardware acceler-
ators such as GPUs, are not suitable for such simulation platforms, since they are
hardware/application specific and require large number of inputs, [7,11,15,17].
General models for hardware accelerators with simple inputs are recommended
in cloud simulations of large data centers.

A generic power consumption model for accelerators was proposed recently in
[6], which targets HPC cloud environments, that can be combined with existing
CPU power models of cloud simulation frameworks. This model targets hyper
scale cloud simulation environments, as it requires small number of inputs and
computations. This work extends this model by proposing energy models for
GPUs and computing nodes of CPU-GPU pairs, while it provides experiments
for the evaluation of the proposed models.

In Sect. 2, related work on GPU power modeling is discussed. The proposed
GPU power models are presented in Sect. 3, while experiments for the evaluation
of the models are given in Sect. 4. Finally, conclusions and suggestions for future
research are presented in Sect. 5.

2 Related Work

Many research efforts have been devoted aiming at modeling of the power con-
sumption of GPUs. Nagasaka et al. proposed a power model for GPUs that uses
performance counters collected from the runtime profiler, [11]. The proposed
power model uses linear regression that models the GPU power consumption by
assuming linearity between the power consumption of the GPU and the perfor-
mance counter values. Song et al. [15], proposed a model of power-performance
efficiency on GPU architectures, that computes the total energy consumption
of GPU-based clusters. The model uses measurements on performance counters,
which are used for the training of a back-propagation Artificial Neural Network
in order to ease portability to different hardware architectures. The use of per-
formance counters for the modeling of the GPU power consumption introduces
the following limitations: (i) the model can estimate the average power of a given
kernel but not the instantaneous power consumption at arbitrary timings, (ii)
the number of simultaneously monitored counters is limited to four, thus each

GPU Power Modeling for the Simulation of Heterogeneous Clouds 93

kernel needs to be executed multiple times in order to collect all the counter val-
ues, (iii) each counter records the number of specific events only on a single SM
instead of the whole GPU, which makes the model effective only when the load
is balanced between all the SMs of the GPU, and (iv) some important events in
CUDA, such as data reads from DRAM through texture hardware, are not mon-
itored by the performance counters, thus the models cannot accurately estimate
the GPU power consumption. Finally, these approaches requires a considerable
number of inputs/measurements regarding the specific GPU hardware and the
type of application.

A GPU power model was presented by Hong and Kim in [7], that can predict
the power consumption of GPGPU workloads by using empirical power con-
sumption values of the GPU components and instruction mixture information
of the application (access rates of the application in each architectural compo-
nent). More specifically, the maximum power consumption of each architectural
element (floating point unit, register file, ALU, etc.) is measured, and by using
the access rates of the application in each GPU element, the energy consump-
tion is computed. Such information is hard to be obtained for different types
of applications and hardware types of GPUs. Xie et al. [17], presented a simi-
lar power model based on GPU native instructions. More detailed, the energy
requirements of each native GPU instruction is measured, thus the energy of an
application is computed if the number of each GPU instruction of the application
is given. Thus, the model requires energy measurements of each instruction on
the architectural element of the GPU hardware model, and the number/types of
the instructions that the application is executing on each element. The authors
state that the error of the model does not exceed 15%.

Recently, Sirbu et al. [14], proposed a power model for predicting the power
consumption of future jobs in a hybrid CPU-GPU-MIC system. In this model,
the prediction problem is formulated as a regression task, where the given fea-
ture values are divided into sub-problems for each hardware type (CPU, GPU,
MIC). In each individual problem, Support vector Regression is used, while the
total power is obtained by summing the individual power consumptions. The
model is trained by using data from the user’s history, and can achieve high per-
formance when enough history data are available. Barik et al. [2], presented an
energy aware scheduler for optimizing the power usage on integrated CPU-GPU
systems. This approach is based on power models that are computed in order to
characterize the power consumption of hardware for different kinds of workload.
These efforts contribute significantly on the energy efficiency of heterogeneous
resources, though do not give generic power consumption models that can be
integrated in cloud simulation frameworks.

Concluding, the available GPU power models of the literature use detailed
power measurements on the architectural components of the GPUs, and require
detailed information on the type and the number of instructions that are exe-
cuted by the application. Such approaches are not suitable for integration in
cloud simulation environments, due to the large number of required inputs
for each type of GPU and each type of application. More generic with less

94 A. T. Makaratzis et al.

computational complexity models are required in order to be able to scale up to
millions of hardware cloud nodes. The model proposed in [6] is examined in this
work, that only requires the maximum and the minimum power consumption
values that the application consumes on the GPU, as well as the percentage
of the execution time that the application utilize the GPU. This information
can be easily obtained and the proposed model can be combined with existed
CPU power models for computing the total amount of the power consumption
of heterogeneous nodes.

3 Energy Modeling of HPC Heterogeneous Resources

Generic models for estimating the power consumption of CPU servers, have
been widely used in cloud simulators, [10]. The CPU power models that have
been proposed in CloudSim are the following, [3]: linear (Pcpu(u) = Pmin +
(Pmax −Pmin)u), square (Pcpu(u) = Pmin+(Pmax −Pmin)u2), cubic (Pcpu(u) =
Pmin+(Pmax−Pmin)u3) and square root (Pcpu(u) = Pmin+(Pmax−Pmin)

√
u),

where u ∈ [0, 1], is the CPU utilization and Pmin, Pmax are the CPU’s power
consumption in idle and max state respectively. An additional model has been
proposed, that applies linear interpolation on real measured power consumption
values, obtained from SPEC [1].

Therefore, the energy consumption of an application that is executed on a
CPU server for the time period [t1, t2], can be computed as follows:

Ecpu =
∫ t2

t1

Pcpu(u(t))dt. (1)

By considering constant CPU utilization, i.e. the mean utilization of an applica-
tion is available, the energy consumption of the application on the CPU server
can be computed as follows:

Ecpu = (t2 − t1) · Pcpu(umean). (2)

For modeling the GPU power consumption, it can be assumed that HPC appli-
cations use the full potential of the compute capabilities of GPUs, when the
application run on the GPU. Thus, a binary model can be utilized, [6]:

Pgpu(ρ) = (1 − ρ) · Pgpumin
+ ρ · Pgpumax

, (3)

where Pgpumin
, Pgpumax

are the minimum and the maximum GPU power con-
sumption values that the application can consume, while ρ is the percentage of
the application that is parallelized on the GPU. When the full potential of the
GPU is used, ρ(t) = 1 when the GPU is utilized and ρ(t) = 0 when the GPU
is idle. The model can be extended further to support applications that do not
use the full potential of the GPU by setting ρ(t) < 1 when the GPU is utilized.
In that case, the Eq. (3) is extended to the following form:

Pgpu(ρ) = (1 − ρ′) · Pgpumin
+ ρ · Pgpumax

, (4)

GPU Power Modeling for the Simulation of Heterogeneous Clouds 95

where ρ′ = 0 when ρ = 0, and ρ′ = 1 when ρ > 0. The energy consumption that
is consumed on the GPU during the interval [t1, t2], can be computed as follows:

Egpu =
∫ t2

t1

Pgpu(ρ(t))dt, (5)

where ρ(t) = 1 when the GPU is utilized and ρ(t) = 0 when the GPU is idle.
The mean value of the parameter ρ can be computed as the ratio of the time
that the GPU is utilized over the total execution time of the application. Using
the mean value of ρ (denoted as ρmean), the GPU energy consumption of the
application can be computed as follows:

Egpu = (t2 − t1) · Pgpu(ρmean). (6)

The combined power consumption of a CPU-GPU heterogeneous node can
be computed as follows, [6]:

Pcpu−gpu(u, ρ) = Pcpu(u) + Pgpu(ρ), (7)

where Pcpu(u) can be any CPU power consumption model, while Pgpu(ρ) is the
GPU power model of Eq. (3). The energy consumption of an application that is
executed on a CPU-GPU heterogeneous node is then:

Ecpu−gpu =
∫ t2

t1

Pcpu−gpu(u(t), ρ(t))dt. (8)

By using the mean values of u and ρ, the energy consumption can be derived as:

Ecpu−gpu = (t2 − t1) · Pcpu−gpu(umean, ρmean). (9)

The proposed GPU power model does not require any detailed information
on the GPU’s hardware or the instruction mixture information of the appli-
cation. The only required parameters are the maximum and minimum power
values that the application consume on the GPU, and the percentage of the
application that is run on the GPU. It is noted that various phenomena, such
as memory bottlenecks, can be tuned through the ρ parameter (i.e., the incre-
ment/decrement that need to be applied on the ρ parameter when memory
bound applications are considered, can be computed through experimentation).
Thus, any application characteristic can be modeled through the ρ parameter.
In the next section the proposed theoretical model is evaluated, for predicting
the total energy consumption of various GPU intensive applications for various
GPU hardware models.

4 Experimentation

4.1 Evaluation of the GPU Power Model

The proposed GPU power model was tested for predicting the energy consump-
tion of three GPU intensive applications1 and on three different GPU hardware
1 Applications retrieved from http://docs.nvidia.com/cuda/cuda-samples/index.

html#simple.

http://docs.nvidia.com/cuda/cuda-samples/index.html#simple
http://docs.nvidia.com/cuda/cuda-samples/index.html#simple

96 A. T. Makaratzis et al.

models. The same instances of applications were executed on all GPUs, which
where the following: a dense matrix multiplication (17920 × 17920), an FFT
convolution (2D, 10240 × 10240) and an NBody simulation (120832 bodies, 10
iterations). The hardware models of the GPUs were the following: a “GeForce
GTX 980”, a “Tesla K20C” and a “Tesla P100”.

The power and utilization measurements of the GPUs were collected using
the nvidia-smi utility, which periodically provides the power consumption and
the utilization of the selected GPU. In order to collect measurements for a longer
time period, the applications were executed multiple times successively in each
experiment. These power consumption measurements were used for computing
the actual energy consumption of each experiment.

In Table 1 the estimation of the mean GPU power consumption of each exper-
iment is depicted, using the mean value of ρ (ρmean) in Eq. (3). The Pgpumin

and Pgpumax
parameters (minimum and maximum GPU power consumption

that each application consumes) were obtained from the recorded power val-
ues of each experiment. The mean value of the parameter ρ (ratio of the time
that the GPU is utilized over the total execution time of the application)
was computed from the GPU utilization measurements of each application as
ρmean = ExecutionTime(gpuUtil > 75%)

ExecutionTime(total) .

Table 1. Inputs of the power model of Eq. (3) and estimation of the mean power
consumption of each experiment in Watts.

Application GPU model Pgpumin Pgpumax ρmean Pgpu

NBodySim GTX980 44.9900 194.9700 0.7662 159.9097

K20C 48.6200 151.2500 0.8592 136.7951

P100 31.4200 198.2500 0.9629 192.0607

MatrixMul GTX980 18.9900 182.0900 0.8872 163.6975

K20C 15.1300 176.8900 0.4794 92.6758

P100 29.9500 250.0800 0.7755 171.4621

FFTConv GTX980 54.0400 105.7400 0.0808 58.2178

K20C 46.3300 125.1500 0.1140 55.3182

P100 32.6200 182.1600 0.0522 32.2992

In Table 2, the actual GPU energy consumption for each experiment (in Wh)
and the GPU energy consumption (in Wh) that was estimated with Eq. (6), are
presented. The last column depicts the error of the estimation for each experi-
ment. The error was computed with the following formula:

Error =
|ActualEnergy − EstimatedEnergy|

ActualEnergy
. (10)

The GPU power consumption over time, for the three applications and the
three GPU hardware implementations is depicted in Fig. 1, where the measured

GPU Power Modeling for the Simulation of Heterogeneous Clouds 97

Table 2. Errors in the estimation of the energy consumption.

Application GPU model Actual GPU energy Estimated GPU energy Error

NBodySim GTX980 3.3662 3.4203 1.61%
K20C 5.3372 5.3958 1.10%
P100 28.3666 29.6093 4.38%

MatrixMul GTX980 47.5562 48.7910 2.60%
K20C 81.9927 82.4300 0.53%
P100 147.4077 155.1644 5.47%

FFTConv GTX980 1.6217 1.6010 1.28%
K20C 1.6540 1.7517 5.91%
P100 4.6581 4.5367 2.61%

values are presented together with the model estimation over time, using Eq. (3)
for the instantaneous value of ρ.

4.2 Evaluation of the CPU-GPU Power Model

Additional experiments were performed for the estimation of the power con-
sumption of a computing node, consisting of a pair of CPU and GPU. The
experiments were conducted on the “Tesla P100”, coupled with an “Intel R© Xeon R©

CPU E5-2609 v3” processor running at 1.90GHz. The power and utilization mea-
surements of the computing node were collected with the command ipmi-oem
Dell get-instantaneous-power-consumption-data, which periodically provides the
instantaneous CPU utilization and power consumption of the computing node.

The total energy consumption (in Wh) for the three applications is given in
Table 3 (using the inputs of Table 1). Additionally, the corresponding errors in
the estimation of the energy (Eq. (9)) for using each of the generic CPU power
models are given in Table 4.

It can be observed that the CPU-GPU power model achieves accurate esti-
mations of the total energy consumption of the heterogeneous node, where the
Square and the Cubic CPU power models proved less accurate than the Lin-
ear and the Square Root models. Matrix Multiplication also revealed increased
errors compared to the other applications, especially when the Square and the
Cubic power models were used. This error occurs due to the heavy data trans-
mits that take place during the computations, which result in high frequency
increments and decrements of the power consumption.

98 A. T. Makaratzis et al.

Fig. 1. GPU power consumption over time for the three applications. The blue line
depicts the recorded power consumption, while the orange line depicts the GPU power
model estimation (Eq. (3)). (Color figure online)

GPU Power Modeling for the Simulation of Heterogeneous Clouds 99

Table 3. Inputs of the CPU power model and total estimated and actual energy
consumption for the three applications.

Application Pcpumin Pcpumax umean Linear Square Cubic Sqrt Actual

NBodySim 142.5800 257.7500 0.0828 53.0612 51.7123 51.6005 56.7007 54.1936

MatrixMul 134.0500 280.9200 0.0827 268.7223 260.0935 259.3802 292.0313 282.1008

FFTConv 137.3800 182.3800 0.0823 20.3695 19.9880 19.9566 21.4028 20.2350

Table 4. Errors in the estimation of the energy for each CPU power model.

Application Linear Square Cubic Sqrt

NBodySim 2.09% 4.58% 4.78% 4.63%
MatrixMul 4.74% 7.80% 8.05% 3.52%
FFTConv 0.66% 1.22% 1.38% 0.44%

5 Conclusions and Future Work

GPUs have been widely used as accelerators of HPC applications during the
last years. Many models have been developed for the energy modeling of GPUs,
though these models require a significant number of inputs and complex compu-
tations, which can hardly be integrated into cloud simulation platforms. In this
paper, a generic power and energy model for GPUs was presented and evaluated.
The proposed model can be easily integrated in cloud simulation platforms, as it
requires substantially less number of inputs and number of computations, while
it can be combined with generic CPU power models.

The experimentation on various GPU hardware models revealed that the
proposed model can derive accurate estimations of the energy consumption of
HPC applications. The model was also combined with generic CPU power models
for the estimation of the total energy consumption of a computing node, where
the errors of the estimation remained low (from 0.44% to 8.05%). Since the
proposed model is parameterized (by tuning parameter ρ), it is expected to
achieve accurate results also on different software/hardware configurations.

Future work will be focused on the improvement of the generic CPU power
models and on the development of new and more accurate CPU-GPU power
models. Additionally, evaluating the proposed model on other accelerator hard-
ware types, such as Many Integrated Cores (MICs) and Field-Programmable
Gate Arrays (FPGAs), will be investigated.

Acknowledgment. This work is partially funded by the European Union’s Hori-
zon 2020 Research and Innovation Programme through CloudLightning project under
Grant Agreement No. 643946.

100 A. T. Makaratzis et al.

References

1. Server power and performance characteristics (spec) (2008). http://www.spec.org/
power_ssj2008/

2. Barik, R., Farooqui, N., Lewis, B.T., Hu, C., Shpeisman, T.: A black-box approach
to energy-aware scheduling on integrated CPU-GPU systems. In: Proceedings of
the 2016 International Symposium on Code Generation and Optimization, pp. 70–
81. ACM, New York (2016). https://doi.org/10.1145/2854038.2854052

3. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive
heuristics for energy and performance efficient dynamic consolidation of virtual
machines in cloud data centers. Concurr. Comput.: Pract. Exper. 24(13), 1397–
1420 (2012). https://doi.org/10.1002/cpe.1867

4. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evalua-
tion of resource provisioning algorithms. Softw. Pract. Exper. 41(1), 23–50 (2011).
https://doi.org/10.1002/spe.995

5. Fontoura Cupertino, L., Da Costa, G., Oleksiak, A., PiąTek, W., Pierson, J.M.,
Salom, J., Siso, L., Stolf, P., Sun, H., Zilio, T.: Energy-efficient, thermal-aware
modeling and simulation of datacenters: the CoolEmAll approach and evaluation
results. Ad Hoc Netw. J. 25(B), 535–553 (2015). https://doi.org/10.1016/j.adhoc.
2014.11.002

6. Giannoutakis, K.M., Makaratzis, A.T., Tzovaras, D., Filelis-Papadopoulos, C.K.,
Gravvanis, G.A.: On the power consumption modeling for the simulation of hetero-
geneous HPC clouds. In: Proceedings of the 1st International Workshop on Next
Generation of Cloud Architectures, CloudNG 2017, pp. 1:1–1:6. ACM, New York
(2017). https://doi.org/10.1145/3068126.3068127

7. Hong, S., Kim, H.: An integrated GPU power and performance model. SIGARCH
Comput. Archit. News 38(3), 280–289 (2010). https://doi.org/10.1145/1816038.
1815998

8. Kliazovich, D., Bouvry, P., Khan, S.U.: Greencloud: a packet-level simulator of
energy-aware cloud computing data centers. J. Supercomput. 62(3), 1263–1283
(2012). https://doi.org/10.1007/s11227-010-0504-1

9. Kurowski, K., Oleksiak, A., Piatek, W., Piontek, T., Przybyszewski, A.W.,
Weglarz, J.: DCworms - a tool for simulation of energy efficiency in distributed
computing infrastructures. Simul. Model. Practice Theory 39, 135–151 (2013)

10. Makaratzis, A.T., Giannoutakis, K.M., Tzovaras, D.: Energy modeling in cloud
simulation frameworks. Future Gener. Comput. Syst. (2017). https://doi.org/10.
1016/j.future.2017.06.016

11. Nagasaka, H., Maruyama, N., Nukada, A., Endo, T., Matsuoka, S.: Statistical
power modeling of GPU kernels using performance counters. In: International Con-
ference on Green Computing, pp. 115–122, August 2010

12. Núñez, A., Vázquez-Poletti, J.L., Caminero, A.C., Castañé, G.G., Carretero, J.,
Llorente, I.M.: iCanCloud: a flexible and scalable cloud infrastructure simulator. J.
Grid Comput. 10(1), 185–209 (2012). https://doi.org/10.1007/s10723-012-9208-5

13. Pouilloux, L., Hirofuchi, T., Lebre, A.: SimGrid VM: virtual machine support for a
simulation framework of distributed systems. IEEE Trans. Cloud Comput. (2015).
https://hal.inria.fr/hal-01197274

14. Sîrbu, A., Babaoglu, O.: Power consumption modeling and prediction in a hybrid
CPU-GPU-MIC supercomputer. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par
2016. LNCS, vol. 9833, pp. 117–130. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-43659-3_9

http://www.spec.org/power_ssj2008/
http://www.spec.org/power_ssj2008/
https://doi.org/10.1145/2854038.2854052
https://doi.org/10.1002/cpe.1867
https://doi.org/10.1002/spe.995
https://doi.org/10.1016/j.adhoc.2014.11.002
https://doi.org/10.1016/j.adhoc.2014.11.002
https://doi.org/10.1145/3068126.3068127
https://doi.org/10.1145/1816038.1815998
https://doi.org/10.1145/1816038.1815998
https://doi.org/10.1007/s11227-010-0504-1
https://doi.org/10.1016/j.future.2017.06.016
https://doi.org/10.1016/j.future.2017.06.016
https://doi.org/10.1007/s10723-012-9208-5
https://hal.inria.fr/hal-01197274
https://doi.org/10.1007/978-3-319-43659-3_9
https://doi.org/10.1007/978-3-319-43659-3_9

GPU Power Modeling for the Simulation of Heterogeneous Clouds 101

15. Song, S., Su, C., Rountree, B., Cameron, K.W.: A simplified and accurate model
of power-performance efficiency on emergent GPU architectures. In: 2013 IEEE
27th International Symposium on Parallel and Distributed Processing, pp. 673–
686 (2013)

16. Tighe, M., Keller, G., Bauer, M., Lutfiyya, H.: DCSim: a data centre simulation tool
for evaluating dynamic virtualized resource management. In: 2012 8th International
Conference on Network and Service Management (CNSM) and 2012 Workshop on
Systems Virtualization Management (SVM), pp. 385–392, October 2012

17. Xie, Q., Huang, T., Zou, Z., Xia, L., Zhu, Y., Jiang, J.: An accurate power model
for GPU processors. In: 2012 7th International Conference on Computing and
Convergence Technology (ICCCT), pp. 1141–1146, December 2012

Bi-cluster Parallel Computing
in Bioinformatics – Performance

and Eco-Efficiency

Pawe�l Foszner(B) and Przemys�law Skurowski

Institute of Informatics, Silesian University of Technology, Gliwice, Poland
{pawel.foszner,przemyslaw.skurowski}@polsl.pl

http://inf.polsl.pl

Abstract. The paper discusses the selected bi-clustering algorithms in
terms of energy efficiency. We demonstrate the need for the power aware
software development, elaborate bi-clustering methods and applications,
and describe the experimental computational cluster with a custom built
energy measurement instrumentation.

Keywords: Bioinformatics computation · Green computing
Bi-clustering

1 Introduction

Parallel processing plays pivotal role in the bioinformatics data processing.
Because of tremendous amount of data and complex processing methods, the
parallel systems makes feasible that computations. With the growing comput-
ing power, the more and more complex tasks can be accomplished, nevertheless
there is notable cost of that capabilities in the growing energy demand for com-
putations and cooling in the computation facilities. High performance computing
(HPC) is of everyday usage in bioinformatics, it causes respective carbon foot-
print, that makes the HPC to be of an interest for the power saving.

The information and communication technologies (ICT) consume ∼5% of the
world electrical energy [2] of which ∼20% is data center share; these numbers
are growing [11]. Due to considerable share in energy consumption, power-aware
ICT is an important aspect for the policy makers, it is one of the objectives in the
European Commission research agenda [1]. Therefore, eco-efficiency evaluation
of the algorithms and implementations seems to be important.

In the field of bioinformatics, we usually deal with data related to the list
of genes or complex protein structures. These are, for example, gene expression
matrices, genetic variation data, etc. Algorithms operating on these data seek to
find patterns that carry relevant information. They may be expression profiles
or patterns of behavior that can distinguish diseased tissue from healthy ones.
Bi-clustering is a technique of data mining which has found itself particularly
well in the analysis of gene expression matrices [5,21,26]. Such matrices are the
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 102–112, 2018.
https://doi.org/10.1007/978-3-319-78054-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_10&domain=pdf
http://orcid.org/0000-0001-5491-9096
http://orcid.org/0000-0001-5306-9528

Bi-cluster Computing in Bioinformatics – Performance and Eco-Efficiency 103

result of a series of microarray experiments. Microarrays are used to measure
the expression levels of large numbers of genes simultaneously. The procedure is
repeated for many tissues or under different conditions. From the combination
of multiple expression vectors, we get a matrix that in one dimension consists of
genes and in another dimension different tissues/patients/conditions.

Bi-clustering algorithms can be very useful for this type of data because they
perform parallel clustering of both dimensions simultaneously. Whereby they
seek for subgroups of genes highly correlated only to a subgroup of patients.
This is an advantage over the classic approach (clustering) that loses some of the
information by finding subgroups of genes of a similar profile from the perspective
of all conditions or a subset of conditions correlated across the whole set of genes.

The dimensionality of biological data can make the computer short of breath.
The number of dimensions ranges from several thousand to several dozens of
thousands. Such an input data sizes do not even guarantee the finite time of
calculations for some groups of algorithms. Due to the fact that bioinformatics
is one of the most important fields of science, and in addition, every day comes
with more and more data - the question arises whether we make the best use
of our resources. In general, during research, the two most valuable resources
are: (1) the scientist’s time as a precious and non-renewable resource, and (2)
the electricity that generates significant costs (financial and environmental). In
our work, we will try to see usage of these resources by popular bi-clustering
algorithms in typical application.

The articles is organized as follows: Sect. 2 brings overall background on
the computation problem; Sect. 3 outlines the experiment – the computation
methods, data, evaluation criteria, hardware, and software. Section 4 brings the
experimental results and their interpretation. The work is summarized in Sect. 5.

2 Background

2.1 Green Computing in Bio-Informatics

Green computing or green IT is a whole set of manufacturing, organizational,
business, and engineering efforts towards the eco-efficiency of computing [2].
During the computations, the energy is drawn, utilized, and then dissipated as a
waste heat and it is proportional to the algorithm’s computation time, intensity,
and efficiency. Additionally, the power consumption in a computer system is
related to the other factors, not directly related to the implemented algorithms
– energy-efficient hardware design, system power management, software releases.
The guidelines for evaluation of the program efficiency are provided in [2,23].

Most of AI techniques employed in bio-informatics are computationally inten-
sive and operate on a massive amount of data – hundreds to thousands of objects
(e.g. proteins, patients) and tens of thousands of features (e.g. genes). This makes
the notable power consumption and the power-aware computing is known in
bioinformatics for relatively long time [7]. Although, the motivation for the fast
progress (not only) in research overcomes usually the power-efficiency of the
computation. Nevertheless, proper selection of implementation or algorithm by

104 P. Foszner and P. Skurowski

the researcher or the HPC staff could result in both obtaining fine results in a
reasonable time at reasonable cost.

Evaluation of energy efficiency in bio-informatics applications has no signif-
icant difference to the general computer science. The main discriminant of bio-
informatics is in usage patterns of HPC by bio- and genomic researchers [10],
who prefer easy available software tools over creating new ones. So it makes the
software deployment decisions by the HPC staff even more important because
these tools are highly re-used in numerous experiments.

2.2 Bi-clustering

Bi-clustering is a data mining technique that in two-dimensional matrix finds a
subset of attributes from one dimensions that reveals similar behavior only on
subset of attributes from second dimensions. In a very simple words bi-clustering
is about finding sub-matrices in data matrix or finding a bi-cliques in bipartite
graphs. Single bi-cluster consist of subset of rows and subset of columns very
strongly correlated with each other. This correlation can take many forms. Rows
and columns inside bi-clusters can be correlated by constant values, constant
values with offset or scaling, etc. A very good survey of the bi-cluster data
structures and algorithms available in literature can be found in work of Madeira,
et al. [22]. Bi-clusters and its data structure is a latent information which must be
extracted by the algorithm. Nevertheless, very often the choice of the appropriate
method depends on the data and information that must be discovered. In order
to solve this problem consensus method were developed [9,12]. The idea of these
algorithms is to combine the results of different bi-clustering methods into one
with better quality. And the quality of the bi-cluster itself is usually expressed
by a function dependent on its data. For data with fixed values, good measures
are functions that measure variance within a bi-cluster (MSR) [5]. More general
measures are those based on the average correlation of each pair of rows and
columns (ACV [34] and ASR [27]). An extensive survey of quality measures can
be found in Orzechowski’s paper [28].

In recent years interest in algorithms for bi-clustering of data has substan-
tially grown due to many new areas of applications, e.g., text analysis [4], pattern
recognition [17], signal analysis [14] bioinformatics [3].

2.3 Parallel Processing

The maximal speedup possible to achieve by means of parallel processing is
described using Amdahl’s law [15], which is given as follows:

S = Tseq/Tpar = 1/ ((1 − P) + P/N) , (1)

where: Tseq, Tpar – sequential and parallel execution time, S – speedup, P – time
fraction (as executed sequentially) of parallelizable part of code, (1 − P) – time
fraction of non-parallelizable part, N – number of processing units (CPUs/cores).

Bi-cluster Computing in Bioinformatics – Performance and Eco-Efficiency 105

The speedup according to the Amdahl’s law is a theoretical value. It assumes
perfect load balancing, neglects I/O and memory bandwidth, and it does not
include the overhead of communication and synchronization. Just a selection
of communication model – shared memory (SM) or message passing (MP) –
can have notable influence even on the performance of a relatively simple data
mining tasks [31]. Another issue for the computation that may affect efficiency is
the computation locality [24]. For the high performance, the tasks should be well
partitioned, without referencing to the data of other workers and independent
on each other results. Alas, predictable load balancing is not possible in case of
non-deterministic algorithms [8], which results and performance might depend
on the initial data, and which is the case of many of AI methods. Starting from
the initialization they iteratively minimize an objective function. Parallelism is
employed using multi-start to avoid stuck in local minimum.

3 Experiment Plan

The purpose of this research is to evaluate the power efficiency of selected bi-
clustering algorithms. As a final outcome, the energy in Wh (watt-hours) used
by each of the implementations will be provided. The results are obtained for
the small cluster, made of two off-the-shelf workstations.

The scenario includes data for which we know what structure to expect and
would know what algorithm to choose. We will use data containing somatic muta-
tion information - in which data we expect correlation based on constant values
(or bi-clusters with very small variation to be exact) and we know how many
bi-clusters to expect. The scenario will be divided into two parts: (1) 4 NMF
algorithms (PLSA [16], LSE, K-L [21], nsK-L [29]) will be executed. Because the
methods are based on searching for a local minimum - the step will be repeated
8 times, each with another initial condition. This will result in different results
which, (2) using a consensus algorithm [9], will be combined into one that gives
better quality. The main computational burden of the entire experiment rests
on step (1). However, these are tasks that are very easy to divide and disperse
between computational nodes. As a result, we expect many independent comput-
ing threads and little interaction between nodes. This scenario will be evaluated
10 times to obtain statistical values for every computation setup. We tested fol-
lowing configurations: (1) 1 node (4 cores), 1 worker thread; (2) 1 node (4 cores),
4 worker threads; (3) 1 node (4 cores), 8 worker threads; (4) 2 nodes (2 * 4 cores),
8 worker threads. If just one node works the other is turned-off.

The quality of results obtained in the bi-clustering process is evaluated with
average correlation value (ACV ∈ 〈0, 1〉), expressing inter-cluster consistency
because. It is given as a maximal of average correlations R of all-versus-all n
rows (objects) and m columns (attributes):

ACV(A) = max
{∑

i

∑
j |Rrowij

| − n

n2 − n
,

∑
k

∑
l |Rcolkl

| − m

m2 − m

}
. (2)

106 P. Foszner and P. Skurowski

3.1 Survey of Algorithms

In terms of computational complexity majority of formulations of bi-clustering
problems belong to the NP-complete class, e.g., [19]. There are numerous algo-
rithms for data bi-clustering, which use variety of different approaches, approx-
imations and heuristics, and their running times scale differently with the data
size. Published approaches can be classified into several groups, heuristic iter-
ative searches along rows and columns of data matrices [32], iterative numeri-
cal optimization [35], using (bipartite) graph theory [33], algebraic operations
on matrices including non-negative matrix factorizations [18], using statistical
models of bi-clusters, likelihood maximization by using an appropriate formula-
tion of the EM algorithm [20], using two-way clustering approach [13] or fuzzy
bi-clustering techniques [25].

Non-negative Matrix Factorization. A very wide range of algorithms are
algorithms based on data matrix decomposition. In such methods data matrix
(A) is factorized into (usually) much smaller matrices. Such a distribution,
because of the much smaller matrices is much easier to analyze, and the obtained
matrices reveal previously hidden features. These algorithms are often called
NMF algorithms. NMF stands for non-negative matrix factorization. Two effi-
cient algorithms were introduced by Seung and Lee [21]. First minimize con-
ventional least square error distance function and second generalized Kullback-
Leibler divergence. Third and last from this group is algorithm that slightly
modify the second approach. Author [29] introduce smoothing matrix for achiev-
ing a high degree of sparseness, and better interpretability of the results. Data
matrix in this techniques is factorized into (usually) two smaller matrices:

A ≈ WH (3)

Finding the exact solution is computationally very difficult task. Instead, the
existing solutions focus on finding local extrema of the function describing the
fit of the model to the data. Following list represent most common algorithms
based on non-negative matrix factorization:

– PLSA witch stands for Probabilistic Latent Semantic Analysis. Introduced
by Hoffman [16], and based on maximizing log-likelihood function. For this
purpose author use Expectation-Maximization (E-M) algorithm [6].

– Based on minimization of Least Square Error distance function

‖A − WH‖2 =
∑
ij

(Aij − WHij)2 (4)

– Based on minimization of Kullback-Leibler divergence

D(A ||WH) =
∑
ij

(Aij log
Aij

WHij
− Aij + WHij) (5)

Bi-cluster Computing in Bioinformatics – Performance and Eco-Efficiency 107

– Based on minimization of non-smooth Kullback-Leibler divergence (where S
is a smoothing matrix).

D(A ||WSH) =
∑
ij

(Aij log
Aij

WSHij
− Aij + WSHij) (6)

3.2 Data

The data was carefully prepared from a combination of 3 patient classes. The
values represent the number of somatic mutations in a particular patient genome.
We expect to find exactly 3 bi-clusters in the data and we assume that the
structure of the found bi-clusters will be based on values of very low variance.
This allows to significantly narrow down the spectrum of algorithms. In this
case, we can focus more on finding a solution of very high quality.

Data set was taken from TCGA database. Have been retrieved all patients
with one of three types of cancer - head & neck, prostate and thyroid. For each
patient, we looked at theirs somatic mutations. The final data set was composed
of 3 patient groups (according to cancer type). Such data matrix consist of gene –
patient information where rows represent genes and columns represent patients.
Data showing the relationship of these two dimensions is the number of somatic
mutations of a given gene in a given patient genome. As the following numbers
show - the patient classes in the selected set are very well balanced: (1) head &
neck (510 patients), (2) prostate (505 patients), (3) thyroid (504 patients).

The total number of genes relevant for the above tumors is 43754. Mutation
numbers for a single gene vary from 0 to 2130.

3.3 Hardware Setup

The testbed (see Fig. 1) for the considered algorithms comprises two parts –
instrumentation and system under test (SUT). The instrumentation comprises
a PC with controller/logger role and a custom built power measurement unit
[30]. The controller records power consumption from the measurement device
connected with USB/RS485. The measurement unit is sampling power consump-
tion at 5 Hz and 1% relative error at the operation range.

Fig. 1. Overview of a hardware setup, comprising instrumentation and SUT

108 P. Foszner and P. Skurowski

The SUT is a cluster consisting of one master node (which is also a worker)
and workers. For the testing purposes we set up minimalistic cluster of two off-
the-shelf PCs – Lenovo ThinkStation S20 – equipped with: Xeon W3550 CPU
with 4 cores at 3.07 GHz, and max. TDP 130 W; 4 GB RAM; NVidia Quadro
FX580; 0.5 TB WD Caviar blue series HDD; 610 W power supply; GNU/Linux
Debian 9 OS. Hosts’ idle power consumption is between 46–48 W, they offer peak
of 21.50 GFlops in the linpack test, being 155.81 MFlops/watt.

One of the PCs acts as a cluster master and hosts a number of worker threads
as well. In order to obtain clearer results, master node display and network 1 Gb
switch are considered to be out of SUT but they can be considered as a part
of the cluster as well. The cluster operated in the room temperature around
20–22 ◦C with no air conditioning.

3.4 Software

For this work we used the AspectAnalyzer software [9], which was run on a test
cluster (see Sect. 3.3). Figure 2 presents a diagram describing the fragment of the
AspectAnalyzer environment that was used in this work. According to the exper-
imental plan, only NMF algorithms and the author’s own consensus algorithm
were used. The software was written in C++ and mathematical calculations were
made using the Armadillo library. Distributed computations was developed by
authors as ad-hoc cluster and is based on direct TCP/IP communication.

Fig. 2. Schematic diagram of a AspectAnalyzer fragment used in the experiments

4 Results and Discussion

The results are demonstrated for visual examination in Fig. 3 and they are aggre-
gated into statistical descriptors in Tables 1, 2 and 3 representing, energy con-
sumption, time and bi-clustering results quality estimation respectively.

The plots demonstrate a non-deterministic character of the computations.
The clearly visible step in multi-core computations reveals passing form the

Bi-cluster Computing in Bioinformatics – Performance and Eco-Efficiency 109

computationally intensive error minimization stage to the consensus stage, which
utilizes up to the declared number of threads but no more than a number of bi-
clusters (3 in our case), so it is less intensive and causes lower power demand.
Both the stages have varying durations as they are dependent on initial con-
ditions. Another non-deterministic behavior observed in the energy profiles is
valley between minimization and consensus stages. It appears due to need for
synchronization need of all workers, it lasts until all realizations are completed.

For the PLSA and K-L we observe more consistent power usage than for
the other two methods, it suggests these two methods are more consistent in
convergence (less dependent of initialization) with just a few inconsistencies in
timing and power drawn during the execution – it is reflected by small value of
standard deviations in Tables 1 and 2.

A special attention should be given to the performance of the K-L method,
which appears to be the most effective in terms of time and energy regardless of
the hardware setup. Moreover, as it is shown in Table 3, K-L method outcomes
are the best for our test data, although, it can be different for other data sets.

We observed no benefit of cluster computations in the tested scenario. Appar-
ently, the test computations were a bit too small. The task migration cost over-
whelmed the advantage of faster computations, which are observed as shorter
intense power consumption during the minimization stage. Supposedly, the larger
computational problem with more initializations would get gain. Another obser-
vation were ‘jaggy’ plots in third column, related to process contexts switching.
Clearly, it had negligible impact on the overall energy consumption.

Table 1. Average energy consumption - mean and standard deviation [Wh]

1 worker @ 4 cores 4 workers @ 4 cores 8 workers @ 4 cores 8 workers @ 8 cores
mean std dev mean std dev mean std dev mean std dev

PLSA 47.7817 0.6833 30.2366 1.5892 29.3323 0.6391 44.6754 0.9258
LSE 25.3439 8.8501 16.2953 8.6965 14.5348 6.4935 27.9426 11.8277
K-L 20.2808 0.0760 10.8141 0.4462 9.4203 0.0361 15.2544 0.2253
nsK-L 56.0443 10.8252 25.2366 6.5378 25.4836 9.0289 55.8117 16.5715

Table 2. Average execution times [seconds]

1 worker @ 4 cores 4 workers @ 4 cores 8 workers @ 4 cores 8 workers @ 8 cores
mean std dev mean std dev mean std dev mean std dev

PLSA 1899.0727 21.6183 998.7361 78.4178 925.0467 22.9704 877.4406 23.4889
LSE 1004.1657 355.2545 546.6430 316.5878 476.4764 229.2346 571.1822 257.4949
K-L 799.4731 2.1240 298.6876 29.0432 238.9589 1.7275 261.0155 5.4058
nsK-L 2219.0811 428.1098 846.2043 218.4888 839.7787 307.4473 1142.7699 353.4086

Table 3. Stats of ACV values for ten experiment realizations

PLSA LSE K-L nsK-L
mean std dev mean std dev mean std dev mean std dev

Cluster 1 0.9598 0.0263 0.9881 0.0108 0.9931 0.0046 0.9872 0.0058
Cluster 2 0.9697 0.0281 0.9881 0.0081 0.9930 0.0044 0.9904 0.0095
Cluster 3 0.9543 0.0229 0.9827 0.0062 0.9929 0.0047 0.9887 0.0070

110 P. Foszner and P. Skurowski

0 10 20 30 40
80

85

90

95

100

105

P
ow

er
 [W

]

1 worker on 4 core CPU

0 5 10 15 20
80

100

120

140

160

4 workers on 4 core CPU

0 5 10 15 20
80

100

120

140

160

8 workers on 4 core CPU

0 5 10 15 20

150

200

250

300
8 workers, cluster of 2 PCs with 4 core CPUs

P
LS

A

0 5 10 15 20 25 30
85

90

95

100

105

P
ow

er
 [W

]

0 5 10 15 20
80

100

120

140

160

0 5 10 15
80

100

120

140

160

0 5 10 15 20 25

150

200

250

300

LS
E

0 5 10 15
85

90

95

100

105

P
ow

er
 [W

]

0 1 2 3 4 5 6
80

100

120

140

160

0 1 2 3 4 5
80

100

120

140

160

0 1 2 3 4 5

150

200

250

300

K
-L

0 10 20 30 40 50 60

time [min.]

85

90

95

100

105

P
ow

er
 [W

]

0 5 10 15 20

time [min.]

80

100

120

140

160

0 5 10 15 20 25 30

time [min.]

80

100

120

140

160

0 5 10 15 20 25 30

time [min.]

150

200

250

300

ns
K

-L

Fig. 3. Overview of power usage profiles during the test bi-clusterization task

5 Summary

In the paper we have studied a group of algorithms for a sophisticated and
computationally demanding AI technique – bi-clustering. We have demonstrated
that the parallel processing is a logical way for achieving better performance
and energy-efficiency, but its efficiency scales in hardly predictable way. We also
found out that, fortunately, there is no contradiction between the quality of
results, time and energy efficiency for the considered case – K-L minimization
offers the best performance according to all these criteria. As was shown in the
Fig. 3 one simple guideline can be recommended for the users of NMF based
bi-clustering methods - use K-L divergence measure to achieve results fast with
small energetic cost and of decent quality.

Further studies in this area might include: other bi-clustering algorithms (and
other AI techniques as well), larger computing facilities or different architectures,
and alternative data sets.

Acknowledgment. This work is supported by Silesian Univ. of Technology grants:
P. Foszner – 02/020/BKM 17/0115, P. Skurowski – 02/020/BK 17/0105.

Bi-cluster Computing in Bioinformatics – Performance and Eco-Efficiency 111

References

1. ICT for Sustainable Growth. http://ec.europa.eu/information society/activities/
sustainable growth/ict sector/index en.htm. Accessed 03 May 2017

2. Ardito, L., Morisio, M.: Green IT - available data and guidelines for reducing energy
consumption in IT systems. Sust. Comput.: Inform. Syst. 4(1), 24–32 (2014)

3. Ben-Dor, A., et al.: Discovering local structure in gene expression data: the order-
preserving submatrix problem. J. Comput. Biol. 10(3–4), 373–384 (2003)

4. de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying
biclustering to text mining: an immune-inspired approach. In: de Castro, L.N.,
Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 83–94.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73922-7 8

5. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Ismb, vol. 8, pp.
93–103 (2000)

6. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. J. Roy. Stat. Soc. Ser. B 39 (1977)

7. Feng, W.: Green destiny + mpiBLAST = bioinfomagic. In: 10th International
Conference on Parallel Computing (ParCo), September 2003

8. Floyd, R.W.: Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967)
9. Foszner, P., Polański, A.: Aspectanalyzer-distributed system for bi-clustering anal-

ysis. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds.) Man-Machine
Interactions 4. AISC, vol. 391, pp. 411–420. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-319-23437-3 35

10. Ganote, C.L., et al.: A voice for bioinformatics. In: Proceedings of the PEARC
2017, pp. 36:1–36:5 (2017)

11. Gelenbe, E., Caseau, Y.: The impact of information technology on energy con-
sumption and carbon emissions. Ubiquity 2015(June), 1:1–1:15 (2015)

12. Hanczar, B., Nadif, M.: Ensemble methods for biclustering tasks. Pattern Recogn.
45(11), 3938–3949 (2012)

13. Hartigan, J.A.: Direct clustering of a data matrix. JASA 67(337), 123–129 (1972)
14. Hibbs, M.A., et al.: Exploring the functional landscape of gene expression: directed

search of large microarray compendia. Bioinformatics 23(20), 2692–2699 (2007)
15. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. Computer 41, 33–38

(2008)
16. Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis.

Mach. Learn. J. 177–196 (2001)
17. Kerr, G., et al.: Techniques for clustering gene expression data. Comput. Biol. Med.

38(3), 283–293 (2008)
18. Kluger, Y., et al.: Spectral biclustering of microarray data: coclustering genes and

conditions. Genome Res. 13(4), 703–716 (2003)
19. Kong, M., Partoens, B., Peeters, F.: Structural, dynamical and melting properties

of two-dimensional clusters of complex plasmas. New J. Phys. 5(1), 23 (2003)
20. Lazzeroni, L., Owen, A.: Plaid models for gene expression data. Statistica sinica

61–86 (2002)
21. Lee, D., Seung, S.: Algorithms for non-negative matrix factorization. In: Advances

in Neural Information Processing Systems, pp. 556–562 (2000)
22. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:

a survey. IEEE/ACM Trans. Comput. Biol. Bioinform. 24–45 (2004)
23. Mair, J., et al.: Myths in power estimation with performance monitoring counters.

Sust. Comput.: Inform. Syst. 4(2), 83–93 (2014)

http://ec.europa.eu/information_society/activities/sustainable_growth/ict_sector/index_en.htm
http://ec.europa.eu/information_society/activities/sustainable_growth/ict_sector/index_en.htm
https://doi.org/10.1007/978-3-540-73922-7_8
https://doi.org/10.1007/978-3-319-23437-3_35
https://doi.org/10.1007/978-3-319-23437-3_35

112 P. Foszner and P. Skurowski

24. Markatos, E.P., LeBlanc, T.J.: Load balancing vs. locality management in shared-
memory multiprocessors. Technical report, Rochester, NY, USA (1991)

25. Maulik, U., et al.: Multiobjective fuzzy biclustering in microarray data: method
and a new performance measure. In: IEEE World Congress on Computational
Intelligence Evolutionary Computation, CEC 2008, pp. 1536–1543. IEEE (2008)

26. Michalak, M., Lachor, M., Polański, A.: HiBi – the algorithm of biclustering the
discrete data. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,
Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 760–
771. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3 66

27. Myers, J.L., Well, A.D.: Research Design and Statistical Analysis (ed.) (2003)
28. Orzechowski, P.: Proximity measures and results validation in biclustering – a

survey. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 206–217.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38610-7 20

29. Pascual-Montano, A., et al.: Non-smooth non-negative matrix factorization. IEEE
Trans. Pattern Anal. Mach. Intell. 403–415 (2006)

30. Rzepka, K., et al.: Design of portable power consumption measuring system for
green computing needs. Studia Informatica (in press). arXiv:1512.08201 [cs]

31. Skurowski, P., Staniszewski, M.: Parallel distance matrix computation for matlab
data mining. In: AIP Conference Proceedings, vol. 1738, no. 1, p. 070004 (2016)

32. Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters
in gene expression data. Bioinformatics 18(Suppl. 1), S136–S144 (2002)

33. Tanay, A., et al.: Revealing modularity and organization in the yeast molecular
network by integrated analysis of highly heterogeneous genomewide data. PNAS
101(9), 2981–2986 (2004)

34. Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted
correlation coefficient in gene expression data. J. Sig. Proc. Syst. 1520–1527 (2010)

35. Yang, J., et al.: δ-clusters: capturing subspace correlation in a large data set. In:
Proceedings of 18th International Conference Data Engineering, pp. 517–528. IEEE
(2002)

https://doi.org/10.1007/978-3-319-07176-3_66
https://doi.org/10.1007/978-3-642-38610-7_20
http://arxiv.org/abs/1512.08201

Performance and Energy Analysis
of Scientific Workloads Executing

on LPSoCs

Anish Varghese(B), Joshua Milthorpe, and Alistair P. Rendell

Research School of Computer Science, Australian National University,
Canberra, Australia

{anish.varghese,josh.milthorpe,Alistair.Rendell}@anu.edu.au

Abstract. Low-power system-on-chip (LPSoC) processors provide an
interesting alternative as building blocks for future HPC systems due to
their high energy efficiency. However, understanding their performance-
energy trade-offs and minimizing the energy-to-solution for an applica-
tion running across the heterogeneous devices of an LPSoC remains a
challenge. In this paper, we describe our methodology for developing an
energy model which may be used to predict the energy usage of appli-
cation code executing on an LPSoC system under different frequency
settings. For this paper, we focus only on the CPU. Performance and
energy measurements are presented for different types of workloads on
the NVIDIA Tegra TK1 and Tegra TX1 systems at varying frequencies.
From these results, we provide insights on how to develop a model to
predict energy usage at different frequencies for general workloads.

Keywords: Energy usage model · LPSoC · Tegra SoC
Energy efficiency · DVFS

1 Introduction

Leading high performance computing (HPC) systems today consist of thousands
of nodes containing heterogeneous elements such as CPUs, GPUS and other cus-
tom cores. The push to increase the scale of these systems presents considerable
challenges in reliability, programmability and energy efficiency. The DARPA
Exascale Technology study [10] has outlined power as the major bottleneck to
achieving exascale computing. With the power requirements of future systems
expected to increase by an order of magnitude using current technologies, meet-
ing such high energy demands is not economically feasible.

Consequently, there has been an increased effort to investigate the suitabil-
ity of low-power hardware, which are traditionally used in a mobile context,
for HPC [15,16]. Low-power system-on-chip (LPSoC) processors, in particular,
provide an interesting alternative as building blocks for future HPC systems.
LPSoCs generally have heterogeneous compute units such as a multi-core CPU
and on-chip accelerators such as Graphics Processing Units (GPU) or other
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 113–122, 2018.
https://doi.org/10.1007/978-3-319-78054-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_11&domain=pdf

114 A. Varghese et al.

custom cores on a single chip. Such heterogeneous SoCs have high floating
point capability and consume less power per flop compared to conventional pro-
cessors used in HPC platforms. There are, however, significant challenges for
using such LPSoCs for HPC, including (i) developing application software capa-
ble of utilizing all the processing elements on the LPSoC, (ii) minimizing the
energy-to-solution for an application running across the heterogeneous devices
and (iii) understanding the performance-energy trade-offs. This work (currently
in progress) focuses on how to model and consequently minimize the energy
consumption of an application executing on an LPSoC.

The contributions of this paper are as follows - (i) We present our results
from exploring the effect of Dynamic Voltage and Frequency Scaling (DVFS) on
the performance and power consumption of an application running on an LPSoC
system. (ii) We describe the methodology that we are developing (in progress) to
extend our previous energy usage model [12], in order to predict the energy usage
of application code executing under different frequency settings. The extended
model may subsequently be used to determine the frequency settings to use in
order to minimize total energy consumption. Our methodology involves applying
frequency scaling to the processing elements and observing the variation in per-
formance and energy consumption for various benchmark codes. Although our
approach is applicable to the different components of an LPSoC (such as CPU,
GPU, memory), in this work, we present results only for the CPU. We also mea-
sure the effect of scaling the number of active CPU cores. Results are presented
from experiments on the NVIDIA Tegra K1 and X1 systems. Comparisons of
energy consumption are presented for three benchmark codes - (i) GEMM kernel,
(ii) 2D stencil computation and (iii) Block-Tridiagonal (BT) solver.

2 Related Work

The PEACH model [7] provides an analytical performance and energy model
which captures the performance and energy impact of computation distribution
and energy-saving scheduling to identify the optimal strategy for best perfor-
mance or lowest energy consumption. Evaluation is done on heterogeneous sys-
tems with Intel Sandy Bridge processors and NVIDIA Tesla GPUs and does not
consider ARM and SoC-based systems. Although this work is similar to ours, this
model analyses how power varies with frequency for three particular applications
in isolation and uses the results to make energy optimality predictions for the
same applications. In contrast, our work attempts to study the power behaviour
for different classes of workloads in order to model the energy consumption for
a general application.

Du et al. [6] describe a family of models of power consumption for homo-
geneous multicore systems, which capture the effects of independent frequency
scaling of different cores. Their results support a simple linear model which takes
into account average core speed and speed variation between cores.

Other works [11,17] describe power as a cubic function of frequency and
empirically derive power using non-linear regression models.

Performance and Energy Analysis of Workloads Executing on LPSoCs 115

More complex models study the effects on power of micro-architectural fea-
tures and use this information for developing detailed models [13]. Isci and
Martonosi [8] express the power consumption of a Pentium 4 CPU as the sum of
the power consumption of the processor’s 22 major sub-units. Bertran et al. [1]
propose a methodology to develop PMC-based models for multicore processors.
They identify and classify micro-architectural components into three categories,
namely, in-order engine, out-of-order engine, and memory. The authors develop
a set of 97 micro-benchmarks to stress each of these components in isolation
under different scenarios to detect those performance monitoring events (PMEs)
that best reflect the activity level of each component, and use these PMEs to
estimate the power consumption of the CPU cores. Other works employ simi-
lar techniques and methodologies to model the power of Intel and AMD based
CPUs [2,3,18].

3 Platforms

We use two NVIDIA Tegra-based SoC platforms for our experiments as detailed
in Table 1. The Jetson TK1 development kit contains an NVIDIA Tegra K1 SoC
and the Jetson TX1 development kit contains an NVIDIA Tegra X1 SoC. Both
the systems considered have NVIDIA GPUs which share memory with the host.
For the ARM host in TK1, gcc 4.8.4 is used and for TX1, gcc 5.4 is used.

Table 1. Platforms

Platform CPU Max freq RAM GPU
cores

Max freq Linux kernel CUDA

TK1 Cortex-A15 2.3GHz 2GB LPDDR3 192 852MHz 3.10.40armhf v6.5

TX1 Cortex-A57 1.7GHz 4GB LPDDR4 256 998MHz 3.10.67aarch64 v8.0

4 Energy Model

We briefly describe our existing energy usage model [12] that describes the energy
consumed by an application which is partitioned to execute between different
devices on a chip. Consider two processing elements, a CPU and a GPU, denoted
by c and g respectively. These processing elements execute an application at the
computational rates Rc and Rg. The active power draw (in watts) of the CPU
and GPU are denoted by P a

c and P a
g while their idle power draws are denoted by

P i
c and P i

g respectively. The total computational cost of executing the application
is labelled as N , with the fraction of the work given to the CPU denoted as w.
The times spent by the CPU and GPU executing the application are denoted
as Tac and Tag (s) respectively where Tac = Nw

Rc
and Tag = N(1−w)

Rg
. The total

time to solution is labelled as Ts (s) where Ts = max[Tac, Tag]. The total energy

116 A. Varghese et al.

consumed by the system can then be modelled as the sum of the energy consumed
by the CPU and that consumed by the GPU:

E(w) =
[
(P a

c − P i
c)

Nw

Rc
+ P i

cTs

]
+

[
(P a

g − P i
g)

N(1 − w)
Rg

+ P i
gTs

]
(1)

The results showed that this model is able to accurately predict the energy
usage (error of less than 5% on TK1 and TX1) of a code which was partitioned
to execute on both the CPU and GPU. However, the model is not able to predict
the energy usage when the operating frequencies of the components is varied. It
is also not able to predict the energy usage when number of active cores is scaled.
In this work, we aim to address these shortfalls by characterizing the variation
in energy usage when scaling frequency and number of active cores, which can
then be substituted in Eq. 1.

5 Frequency Scaling

DVFS is a popular method for reducing energy consumption of processors. This
is due to the possibility of getting the same results using much less energy and
often without significant performance penalties. Although frequency scaling can
be applied to different components such as CPU, GPU (or accelerator) and
memory, for the purpose of this paper we focus only on the effects of CPU
frequency scaling.

The power consumption of a processor consists of two parts: (1) dynamic part
that is mainly related to CMOS circuit switching energy, and (2) static part that
addresses the CMOS circuit leakage power. The dynamic portion of power can
be modeled as a cubic function of frequency while the static portion can be
modeled as a linear function of frequency where voltage is linearly proportional
to frequency [9,17].

P = λf3 + μf (2)

6 Microbenchmarks

To characterize the power requirements of the CPU and memory components,
we created two synthetic microbenchmarks: a “CPU-bound” code with a high
proportion of floating-point and integer instructions that operate on data in (on-
chip) cache, and a “memory-bound” code designed to be highly cache-inefficient,
such that a high proportion of time and energy is devoted to off-chip memory
access. We hypothesize that most real world applications will fall somewhere
between these two extremes.

The CPU-bound code evaluates a polynomial function for every element of an
array. The computation has a high flop intensity of 36 flops per memory access.
The size of the vectors is chosen so that the array can be stored entirely in L1
cache. This is to ensure that there is no memory access during computation and
the microbenchmark is thus bound by CPU performance.

Performance and Energy Analysis of Workloads Executing on LPSoCs 117

The memory-bound code copies 32-bit values from one array to another.
To ensure that copying of each element involves explicit memory access, after
transferring one element in the array, the next element to be transferred is located
at an offset such that the element will not be present in the cache, thereby
necessitating an off-chip memory access.

6.1 CPU-Bound Workload

In the first experiment, we measured performance and power consumption for the
CPU-bound workload while varying the CPU frequency, on 1, 2 and 4 cores. The
mean of 20 samples are reported for all experiments with a margin of error, at a
confidence level of 95%, of less than 0.5% for performance and 1% for energy and
power. Power consumption was observed to increase non-linearly with increase
in CPU frequency as shown in Fig. 1(a).

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

2

4

6

8

10

CPU Frequency (MHz)

P
ow

er
(W

)

Idle Power 1 core Active Power
4 core Active Power 2 core Active Power

(a) Power

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
·104

P
er
fo
rm

an
ce
(M

F
L
O
P
S)

MFLOPS-1 core
MFLOPS-2 cores
MFLOPS-4 cores

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

10

20

30

40

50

60

CPU Frequency (MHz)

E
ne

rg
y
(J
)

JOULES-1 core
JOULES-2 cores
JOULES-4 cores

(b) Performance and Energy

Fig. 1. CPU-bound workload on TK1 - varying CPU frequency

To identify the relation between power and frequency, a non-linear curve-
fitting was done on the measured data. The result describes a cubic relation as
identified by [11,17]. The relations are shown in Eq. 3 for TK1 and Eq. 4 for
TX1.

P = [0.09, 0.18, 0.31] ∗ f3 + [0.36, 0.73, 1.66] ∗ f + 1.95 (3)

P = [0.025, 0.11, 0.25] ∗ f3 + [0.72, 1.04, 1.81] ∗ f + 2.66 (4)

where P is the power consumption in watts, and f is the CPU frequency in GHz.
The equation consists of a cubic term in frequency, a linear term in frequency
and a constant. The coefficients in brackets are for single core execution, 2-core
execution and 4-core execution respectively. The constant term is fixed to the
idle power of the system at lowest CPU frequency under no load, which is 1.95 W
for the TK1 and 2.66 W for the TX1.

The measured performance and energy to solution are shown in Fig. 1(b).
Performance increases linearly with CPU frequency, which is to be expected as

118 A. Varghese et al.

the workload is executed entirely within the CPU. The overall energy to solution
is lowest at the maximum CPU frequency as execution time is lowest in this case.

The behaviour for multicore execution was very similar, with the performance
scaling linearly with the number of cores as expected. A speedup of around 3.1
is observed for 4 cores compared to 1 on the TK1. The overall energy to solution
is lower when executing with a greater number of cores.

6.2 Memory-Bound Workload

A similar experiment was conducted for the memory bound workload. The
observed increase in power consumption with increasing CPU frequency is shown
in Fig. 2(a).

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

2

4

6

8

10

CPU Frequency (MHz)

P
ow

er
(W

)

Idle Power 1 core Active Power
4 core Active Power 2 core Active Power

(a) Power

0

50

100

150

200

250

B
an

dw
id
th

(M
B
/s
)

MEM BAND-1 core
MEM BAND-2 cores
MEM BAND-4 cores

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

10

20

30

40

50

CPU Frequency (MHz)

E
ne

rg
y
(J
)

JOULES-1 cores
JOULES-2 cores
JOULES-4 cores

(b) Performance and Energy

Fig. 2. Memory-bound workload on TK1 - varying CPU frequency

The relations obtained from curve-fitting are shown in Eq. 5 for TK1 and
Eq. 6 for TX1. The coefficient for the cubic term is negligible, resulting in a linear
relation between power and CPU frequency for the memory-bound workload.
Similar behaviour is seen for multicore execution.

P = [0.89, 1.30, 1.74] ∗ f + 1.95 (5)

P = [0.90, 1.19, 1.72] ∗ f + 2.66 (6)

Memory bandwidth performance might not be expected to change much when
varying CPU frequency [14]. However, in Fig. 2(b), memory bandwidth is seen
to increase with CPU frequency. This might be explained by the CPU overhead
of loop increment after each memory access and this becomes a bottleneck at
very low CPU frequencies. It may also be explained by the cache performance
at these very low frequencies since cache misses drive memory access.

As the CPU frequency reaches higher values, the memory bandwidth
approaches an asymptote of around 90 MB/s for a single core and around
190 MB/s when using 4 cores on the TK1. Overall energy to solution is observed

Performance and Energy Analysis of Workloads Executing on LPSoCs 119

to decrease gradually with increase in CPU frequency and reaches a constant
value at higher CPU frequencies. We also observed, by running the experiment
at lower memory frequencies, that the overall energy to solution increased when
memory frequency was reduced. This suggests it is more energy efficient to run
workloads at higher memory frequencies.

For multicore execution, the performance and energy behaviour are seen to
be similar. On the TK1 (at the highest memory frequency), the bandwidth using
4 cores was only 2.1 times higher than the bandwidth using a single core, due to
memory contention between the cores. However, energy to solution is still lower
with a greater number of cores, due to static power.

7 Predicting Power for a General Workload

Based on the observations of power consumption for the 2 microbenchmarks,
we describe our approach to derive a model (work in progress) for determining
the power consumed by any general workload at a given frequency, which can
be then substituted in Eq. 1. From Eqs. 3 and 5, we observe how power con-
sumption varies with frequency for a completely CPU-bound workload and for
a completely memory-bound workload respectively. Naively one might expect
the power consumed by any general application workload to lie within these
two extremes. To test this hypothesis, we measured the power consumed by
three benchmark codes – Matrix Multiplication, Stencil Computation and Block
Tridiagonal Solver – at different CPU frequencies and compared them with the
results from the microbenchmarks. The result for single core execution is shown
in Fig. 3.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

1

2

3

4

5

CPU Frequency (MHz)

P
ow

er
(W

)

CPU-bound Power Memory-bound Power BT MZ Matmul Stencil

Fig. 3. Comparison of power consumed by benchmark codes - TK1

From Fig. 3 it is evident that the above hypothesis does not hold, as the
application results fall outside the bounds provided by the CPU-bound and
memory-bound workloads. An alternative would be to model application power
consumption as a linear combination of Eqs. 3 and 5 (power behaviours for com-
pletely CPU-bound and completely memory bound workloads), as follows:

P = x ∗ (a1.f
3 + b1.f + c) + y ∗ (a2.f

3 + b2.f + c) (7)

120 A. Varghese et al.

The first term in the equation signifies the contribution to the power by on-
chip activity and the second term denotes the contribution by off-chip or memory
activity. To test this hypothesis, we constructed a benchmark that executes both
the CPU-bound and memory-bound workloads disjointly in segments spanning
very short durations of time. We ran an experiment where we varied the time
periods of each segment and measured the power consumption. We compared
this to the power predicted by Eq. 7, by substituting the relative time proportion
of each segment for x and y. We obtained the results for a few configurations
of x and y. An average error of less than 5% is observed for all the predictions,
validating this simple combination model for these workloads. The results for
two configurations (single-core) are shown in Fig. 4.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

1

2

3

4

5

CPU Frequency (MHz)

P
ow

er
(W

)

Measured Model

(a) x=80%, y=20%

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200
0

1

2

3

4

5

CPU Frequency (MHz)

P
ow

er
(W

)

Measured Model

(b) x=20%, y=80%

Fig. 4. Combination model results for two configurations - TK1

Our aim is to characterize a general workload by examining the relative mix
of instructions executed by the workload in order to estimate the contributions
of the on-chip components and off-chip components to the overall power. With
this in mind, we also collected available hardware performance counters for the
previous experiments with the aim of estimating x and y from the collected met-
rics. The operational intensity metric (in flops:byte) is widely used to describe
compute or memory boundness [4,5]. For our experiments we measure hardware
performance counter metrics such as total instructions per cycle and last level
cache misses per cycle in order to estimate operational intensity since they are
good indicators of levels of on-chip and off-chip activity. However detailed anal-
ysis of these metrics in order to characterize a general workload is currently in
progress and not included in this work. Table 2 lists a few collected performance
metrics for the microbenchmarks and the three benchmark codes.

Table 2. Collected hardware performance metrics on TK1

Metric CPU-bound Memory-bound Stencil BT solver GEMM

inst per cyc 0.815 0.040 0.865 1.302 *

fp ins per tot 0.676 0 0.356 0.264 *

mem ins per tot 0.020 0.376 0.427 0.658 *

llc miss per tot 0 0.347 0.005 0.001 0.011

llc miss per mem 0 0.921 0.011 0.002 0.037

* GEMM counters could not be reliably measured.

Performance and Energy Analysis of Workloads Executing on LPSoCs 121

8 Conclusions and Future Work

This paper presented our results from exploring the effect of DVFS on the per-
formance and power usage of an application running on an LPSoC system. We
presented our methodology to model the power consumed by an application
under different frequencies. This involved executing specially designed workloads
which stress on-chip components and off-chip components in isolation. From the
results, it was observed that the power consumed by a CPU-bound workload
varies as a cubic function of frequency while the power consumed by a memory-
bound workload varies as a linear function of frequency on the experimental
platforms. The power behaviour of the workloads under single core and multi-
core execution was also described. It is observed that while power consumption
reduces when reducing CPU frequency, the overall energy consumption is lowest
at higher CPU frequencies for both the CPU-bound and memory-bound work-
loads. It was also observed that increasing the number of cores of execution also
resulted in reduction in overall energy consumption for both types of workloads.

A comparison of the power measurements of three application benchmark
codes was shown along with the measurements from the microbenchmark work-
loads. Based on this, we are in the process of developing a simple model which
describes the power consumed by any general workload at varying frequencies as
a combination of the power consumption behaviour of the on-chip components
and that of the off-chip components. Since the contributions of these different
components to the overall power depends on the mix of instructions involved for
a particular workload, our approach is to collect hardware performance counters
in order to estimate the contributions of the on-chip and off-chip activity to the
overall power consumption. This is currently a work in progress. In our future
work we aim to extend our model by applying the proposed methodology to
the other components of an LPSoC, such as GPU (or other accelerators) and
memory.

References

1. Bertran, R., Gonzelez, M., Martorell, X., Navarro, N., Ayguade, E.: A systematic
methodology to generate decomposable and responsive power models for CMPs.
IEEE Trans. Comput. 62(7), 1289–1302 (2013)

2. Bircher, W.L., John, L.K.: Complete system power estimation using processor
performance events. IEEE Trans. Comput. 27(11), 563–577 (2015)

3. Chen, X., Xu, C., Dick, R.P., Mao, Z.M.: Performance and power modeling in
a multi-programmed multi-core environment. In: ACM/IEEE Design Automation
Conference (DAC) (2010)

4. Choi, J., Dukhan, M., Liu, X., Vuduc, R.: Algorithmic time, energy, and power on
candidate HPC compute building blocks. In: Proceedings of International Parallel
and Distributed Processing Symposium (IPDPS) (2014)

5. Choi, J.W., Bedard, D., Fowler, R., Vuduc, R.: A roofline model of energy. In: Pro-
ceedings of International Parallel and Distributed Processing Symposium (IPDPS)
(2013)

122 A. Varghese et al.

6. Du, Z., Ge, R., Lee, V.W., Vuduc, R., Bader, D.A., He, L.: Modeling the power
variability of core speed scaling on homogeneous multicore systems. Sci. Program.
2017, 13 p. (2017). https://doi.org/10.1155/2017/8686971. Article ID 8686971

7. Ge, R., Feng, X., Burtscher, M., Zong, Z.: Performance and energy modeling for
cooperative hybrid computing. In: Proceedings of IEEE International Conference
on Networking, Architecture, and Storage (NAS) (2014)

8. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: method-
ology and empirical data. In: Proceedings of Annual International Symposium on
Microarchitecture (MICRO) (2003)

9. Ishihara, T., Yasuura, H.: Voltage scheduling problem for dynamically variable
voltage processors. In: Proceedings of International Symposium on Low Power
Electronics and Design (ISLPED), vol. 1, no. 1 (1998)

10. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Den-
neau, M., Franzon, P., Harrod, W., Hill, K., Hiller, J., et al.: Exascale computing
study: technology challenges in achieving exascale systems. Technical report TR-
2008-13, DARPA (2008)

11. Lang, J., Rünger, G.: An execution time and energy model for an energy-aware
execution of a conjugate gradient method with CPU/GPU collaboration. J. Parallel
Distrib. Comput. 74(9), 2884–2897 (2014)

12. Mitra, G., Haigh, A., Varghese, A., Angove, L., Rendell, A.P.: Split wisely: When
work partitioning is energy-optimal on heterogeneous hardware. In: Proceedings of
International Conference on High Performance Computing and Communications
(HPCC) (2016)

13. Möbius, C., Dargie, W., Schill, A.: Power consumption estimation models for pro-
cessors, virtual machines, and servers. IEEE Trans. Parallel Distrib. Syst. 25(6),
1600–1614 (2014)

14. Nikl, V., Hradecky, M., Keleceni, J., Jaros, J.: The investigation of the ARMv7
and intel Haswell architectures suitability for performance and energy-aware com-
puting. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS,
vol. 10266, pp. 377–393. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-58667-0 20

15. Rajovic, N., Carpenter, P.M., Gelado, I., Puzovic, N., Ramirez, A., Valero, M.:
Supercomputing with commodity CPUs: Are mobile SoCs ready for HPC? In:
Proceedings of International Conference for High Performance Computing, Net-
working, Storage and Analysis (SC). ACM (2013)

16. Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., Ramirez, A.: Tibidabo: Mak-
ing the case for an ARM-based HPC system. Future Gener. Comput. Syst. 36,
322–334 (2014)

17. Rizvandi, N.B., Zomaya, A.Y., Lee, Y.C., Boloori, A.J., Taheri, J.: Multiple fre-
quency selection in DVFS-enabled processors to minimize energy consumption. In:
Energy-Efficient Distributed Computing Systems, pp. 443–463 (2012)

18. Singh, K., Bhadauria, M., McKee, S.A.: Real time power estimation and thread
scheduling via performance counters. ACM SIGARCH Comput. Archit. News
37(2), 46 (2009)

https://doi.org/10.1155/2017/8686971
https://doi.org/10.1007/978-3-319-58667-0_20
https://doi.org/10.1007/978-3-319-58667-0_20

Energy Efficient Dynamic Load Balancing
over MultiGPU Heterogeneous Systems

Alberto Cabrera(B), Alejandro Acosta, Francisco Almeida, and Vicente Blanco

HPC Group, Escuela Superior de Ingenieŕıa y Tecnoloǵıa,
Universidad de La Laguna, ULL, 38270 La Laguna, Tenerife, Spain

Alberto.Cabrera@ull.edu.es

Abstract. Current HPC technologies demand high amounts of power
and energy to achieve good performances. In order to address the next
milestone in peak power, powerful graphic processing units and many-
core processors present in current HPC systems need to be programmed
having energy efficiency in mind. As energy efficiency is a major issue
in this area, the existing codes and libraries need to be adapted to
improve the use of the available resources. Rewriting the code requires
deep knowledge of programming and architectural details to achieve
good efficiency, which is an ad-hoc solution for a concrete system. We
present the Ull Multiobjective Framework, an interface that allows auto-
matic dynamic balance of the workload for parallel iterative codes in
heterogeneous environments. UllMF allows to include the overall energy
consumption as a parameter during the balancing process. This tool hides
all architectural measurement details, requires very low effort to the pro-
grammer and introduces a minimum overhead. The calibration library
has been used to solve iterative problems over heterogeneous platforms.
To validate it, we present an analysis of different Dynamic Programming
problems over different hardware configurations of a MultiGPU hetero-
geneous system.

Keywords: Dynamic load balancing · Energy efficiency
Iterative algorithms

1 Introduction

There is a major concern in high performance computing regarding to the
increasing energy consumption of the top end systems as current Petaflop sys-
tems draw a huge amount of energy at full performance. With the current growth,
by 2020, exascale systems will start to appear, and the main challenge will be
to have them limited to 20 MW to have a bearable infrastructure cost.

Highly heterogeneous environments are nowadays available as computational
resources for institutions. However, applications usually have a performance
penalty when they are not tuned explicitly for the heterogeneous platform and
there is a strong dependence between parallel code and target architectures [4].

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 123–132, 2018.
https://doi.org/10.1007/978-3-319-78054-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_12&domain=pdf

124 A. Cabrera et al.

New architectures are still affected by the same well known problems that
affect conventional parallel programming, including the load balancing problem
while solving irregular problems, an aggravated problem when the systems used
have different efficiencies in terms of both energy and time.

As new architectures are developed, good performances per watt can be
achieved by sacrificing performance, allowing distinction between time and
energy efficiency. The principles of load balancing, developed to improve exe-
cution time before the exascale objective, can now be applied to achieve good
performances per watt are achieved by sacrificing performance. We investigate
the load balancing problem appearing when parallel problems are executed in
multiGPU heterogeneous systems and how the energy consumption is related to
imbalance problems.

We designed a simple mechanism to balance the workload between differ-
ent parallel processes dynamically, with few changes to the source code of an
application, the ULL Multiobjective Framework (UllMF), that allows dynamic
workload balancing inside a parallel program running on a heterogeneous system,
adapting to the conditions of the system during the execution of the application.
This software allows calibration for different objectives, time and energy, with
the time module being ULL Calibrate lib [2] and a new module for energy
calibration. This module uses the Energy Measurement Library (EML) [3] for
energy measurement, that has proven to have a negligible overhead, and provides
all the tools needed to perform the measurement for the calibration phase of the
dynamic load balance operations. We prove that performing different approaches
for balancing is feasible to improve energy efficiency.

The main contributions of this paper are:

– Extending the ideas and methodologies developed for the load balancing of
heterogeneous clusters to energy consumption.

– A new library design, capable of being extended for calibrating based on a
user objective by adding new modules.

– Dynamic load balancing to reduce energy consumption in a heterogeneous
multiGPU environment, with an energy module developed for UllMF.

To validate our proposal, we have executed several Dynamic Programming
algorithms where the portability of the single GPU code to a multiGPU system
is compromised due to load imbalance inefficiencies. The chosen problems corre-
spond to an iterative scheme that is representative of many other problems like
Jacobi, GaussSeidel, Longest Common Subsequence, Matrix Parenthesization
and to some classes of stencil codes. The efficiency level obtained, considering
the minimum code intrusion, makes this methodology a useful tool in the context
of the energy efficiency in heterogeneous platforms.

This paper is structured as follows: Sect. 2 covers the related work in the
field of load balancing workload on heterogeneous systems. Section 3 describes
the problem we address and our proposal. Section 4 illustrates our hardware
configuration and the results obtained after multiple executions performed with
our energy balancing methodology. Finally, Sect. 5 summarizes our conclusions
and future research possibilities.

Energy Efficient Dynamic Load Balancing over MultiGPU Systems 125

2 Related Work

Extensive work has been done in the field of load balancing in heterogeneous
systems to improve time performance. The most direct approach to address the
problem requires to develop code specifically for the architecture in order to
maximize performance. This requires a deep understanding on parallel program-
ming for the target systems and also a manual task allocation according to the
capability of every processing unit. A different approach consist of developing
the applications using skeleton based programming. This concept implies finding
an skeleton that covers your implementation, so that you can develop the partic-
ularities of your exact problem. Once done, this skeletons that are optimized to
obtain an optimal load balance for maximum time efficiency, could be modified to
obtain the best configuration for energy efficiency. Frameworks like SkelCL [11]
and DPSKEL [1,9] are examples for this paradigm. Our approach to balance
the workload of iterative algorithms on heterogeneous systems is closer to the
work presented in ADITHE [7]. This environment and ULL Calibrate lib [1]
follow a similar strategy. Starting from an homogeneous distribution of the work-
load on the heterogeneous system, the speed of every node is estimated during
the first iterations of the algorithm. According to the speed of every node, new
workload distributions are carried out for the remaining iterations of the algo-
rithm. A similar approach can be used to balance workloads in terms of energy
consumption.

Energy-aware scheduling algorithms can be found in datacenters with vir-
tual machines deployments. Examples of this can be found at HEROS [6], that
proposes a load balancing algorithm for energy-efficient resource allocation in
heterogeneous systems, or PVA [12], peer VMs aggregation to enable dynamic
discovery of communication patterns and reschedule VMs based on the deter-
mined communication patterns using VM migration. These techniques minimize
network traffic and deal with an energy efficient scheduling.

In manycore systems, ALEPH [10] is an algorithm that solves the bi-objective
optimization problem for performance and energy (BOPPE) in multicore archi-
tectures by introducing the problem size as a decision variable. In iterative
schemes, E-ADITHE [5] was introduced as a two step process for integrated
CPU-GPUs system on chip (SoC), where a first step is made for selecting the
most energy efficient resources and then the load balance technique is applied
to maximize performance.

Other techniques use DVFS processor capabilities to implement energy-aware
schedulers to balance energy in iterative algorithms [8].

In UllMF we start the execution of an iterative application with an homoge-
neous distribution of work. The difference with the other authors is that we redis-
tribute workload depending on the current performance of the application rather
than using a model of the application, without a preparation phase. Depend-
ing on the overall performance, the workload gets dynamically redistributed to
improve the execution time or the energy consumption. With this approach, we
exchange a slight performance in order to reduce the overhead of the calibration
methodology.

126 A. Cabrera et al.

3 Dynamic Load Balancing for Energy Efficiency

3.1 Dynamic Load Balancing

The problem we are trying to address is formulated as a variation of the classic
technique of load balancing in iterative algorithms to improve performance in
heterogeneous environments. As every system is different, performing an uniform
workload distribution would result in a resource loss caused by the different
computing capabilities of each computing element. The most powerful hardware
would end its work, and to continue its next step, it would need to wait for the
slower hardware to end. By redistributing the work appropriately, it is possible
to minimize these waiting times in order to improve the overall performance of an
iterative algorithm. The same principle can be applied to energy consumption.

However, when the problem to be solved presents an irregular nature, i.e.,
every iteration requires a different amount of work, the load balance has to
be done not only at the beginning of the execution but multiple times along
the execution. Furthermore, the input may cause variation, forcing to rebalance
after some iterations have been performed. This is why a simple, but dynamic,
method of load balance is required, even if it is less accurate than algorithms
based on models, as it needs to be performed multiple times without sacrificing
the possible gains from a more precise load balance.

Four examples of irregular iterative algorithms have been chosen for the
experimentation using a dynamic programming implementation based on pro-
gramming skeletons. These algorithms are the Knapsack Problem (KP), the
Resource Allocation Problem (RAP), the Cutting Stock Problem (CSP) and
the Triangulation of Convex Polygons (TCP). Their implementations follow the
recurrence formulations described in Table 1.

Table 1. Dynamic programming problems description.

Problem name Recurrence equation

KP fi,j = {fi−1,j , fi−1,j−w + pi}

RAP
fi,j = p1,j if i = 1 and j > 0

fi,j = max0≤k<j{fi−1,j−k + pi,k if (i > 1) and (j > 0)

CSP fi,j = max

⎧
⎪⎨

⎪⎩

max0≤k<object{profitk}
max0≤z≤i/2{fz,j + fi−z,j}
max0≤y≤j/2{fi,y + fi,j−y}

TCP
fi,j = costi · costi+1 · costi+2 if i = (j − 2)

fi,k = mini<j<k{fi,j + Tk,j + (costi · costj · costk)

3.2 Workload Distribution to Increase Energy Efficiency

Current technologies do not always operate at maximum energy efficiency when
they work as fast as possible, minimizing execution time. Figure 1a illustrates

Energy Efficient Dynamic Load Balancing over MultiGPU Systems 127

(a) 3D representation of the solution
space for the Knapsack Problem

(b) 2D representation of the solution
space for the Knapsack Problem, each
curve represents a problem size

Fig. 1. Knapsack problem solution space study

this phenomenon through an exhaustive analysis of the space solutions for KP,
a fine grained memory bounded problem. The 3D surface summarizes different
workload distributions for multiple problem sizes using two different GPUs. X
and Y axis, represent the workload given to each process, the former executed
in a Tesla M2090, and the latter in the Tesla MK40c. The surface itself, in the
Z axis, represents the energy consumed in total by each execution. Additionally,
the best workload distribution for minimizing energy consumption is labelled
with an O symbol and the best workload distribution for minimizing execution
time with the + symbol, for every problem size, which can be calculated by
adding the X and Y values. These sets of optimal solutions are different enough
to demonstrate the disparity between energy consumption and execution time.

The same data set is represented in the two dimensional chart labeled as
Fig. 1b. Each curve with a given color represents a different problem size, labeled
at the end of the curve itself. Energy consumption is depicted in the Y axis, the
lower the better. The X axis is the workload given to the Tesla M2090 Process,
i.e. to left part of the axis less workload is given to the M2090 GPU and to
the right more workload is given to it. As the size of the problem increases, the
workload curves start to display local minima and irregular shapes.

Observing the results obtained in the study, it is valid to conclude that an
optimization for energy consumption can yield results that differ to an optimiza-
tion performed to reduce the execution time of a parallel application. Considering
the following terminology:

– p, number of parallel processes.
– wi, normalized amount of work given to process i, with 0 ≤ wi ≤ 1 and∑p

i=1 wi = 1.

128 A. Cabrera et al.

– d(d1, d2, · · · , dp), workload displacement, with −wi ≤ di ≤ (1 − wi) and∑p
i=1 di = 0.

– Ei, energy consumed by process i.
– Ei

wi
, estimated energy consumed per unit of work by process i.

Our proposal is to reassign the workload between processors dynamically, on
each step of the iterative algorithm by finding the best combination of workload
that minimizes the whole energy consumed by all the processors. To achieve it, we
generate a small set of different workload displacements d(d1, d2, · · · , dp), adding
or subtracting workload of process i depending on its performance. This set of
possible data movements is used to simulate the estimated energy consumption
with Eq. 1.

minf(d), f(d) =
p∑

i=1

[

(wi + di) · Ei

wi

]

(1)

This equation is summarized as the total cost of the current iteration if process
i workload is wi − di. The amplitude of the movement, determined by max(di),
is decreased after every iteration, stopping when a local minima is reached, as
the effort of finding the optimal solution using this methodology outweights the
potential energy savings that can be achieved.

3.3 Ull Multiobjective Framework

We have developed UllMF, a calibration framework, to support the proposal in
the previous section, as well to allow the reutilization of the code of traditional
calibration techniques. UllMF is currently composed of two calibration modules,
the energy calibration module (our proposal) and a time calibration module
(based on Ull calibrate lib). Additionally, we have developed the usage of energy
measurement libraries independently, and while we are using EML to measure
energy, it is possible to modify and substitute the energy measurement module.
The resulting structure is visualized in Fig. 2.

This implementation was done to offer dynamic load balancing capabilities to
non expert programmers, focusing on the ease of use. The overhead introduced
by our system is at most 2% of the total energy consumption in its current state,
as shown in Fig. 3.

Fig. 2. UllMF component diagram. In orange, work in progress. (Color figure online)

Energy Efficient Dynamic Load Balancing over MultiGPU Systems 129

Nodes CPUs (Xeon) GPU Memory
Verode16 2x E5-2660 M2090 64 GB
Verode17 2x E5-2660 K20c 64 GB
Verode18 2x E5-2660 K40m 64 GB
Verode20 2x E5-2698 v3 M2090 128 GB

GPU Type M2090 K20c K40m
Cores 512 2496 2880
RAM 6GB 5GB 12GB

Mem BW 177.6 GB/s 208 GB/s 288 GB/s
Power 225 W 225 W 235 W

(a) GPU Cluster (b) Overhead

Fig. 3. GPU cluster and overhead caused by energy calibration

The framework provides an unified API to be used. Initially, it requires
four API calls in the code to be used: UllMF setup, UllMF calibrate start,
UllMF calibrate stop and UllMF finalize. To simplify usage, the framework pro-
vides a datatype, calibration t, to encapsulate the workload distribution, which
calibration technique to use, the measurement module to use, and a threshold
to determine when to stop the dynamic calibration.

First, UllMF setup should be called with the workload distribution, the cal-
ibration module, the measurement module and the stop threshold. Then, in the
core of the iterative procedure, UllMF calibrate start and UllMF calibrate stop
need to be called at every computation phase. Workload distributions are mod-
ified by the measurements obtained between these two points, and are redis-
tributed to every process inside the UllMF calibrate stop procedure. After the
work is done, UllMF finalize is called to free the memory allocated for this pur-
pose, and to stop the energy measurements.

4 Computational Results

We have used an heterogeneous cluster as tested architecture to evaluate our
proposals. The cluster consists of 4 nodes with different CPU-GPU configura-
tions. They have two types of CPUs and three types of GPUs that are detailed
in Fig. 3. These nodes use Debian 9 with the kernel 4.9.0-2-amd64. The build
and execution environments have GCC version 4.4.5, OpenMPI 1.6.3 and CUDA
version 7.5. Every compilation was done with the −O2 optimization flag. Energy
measurement was performed for the GPUs using the Nvidia Management Library
(NVML) interface through EML. Every problem is executed for multiple sizes
in different hardware combinations.

Figure 4 collects a subset of all the experimentation that properly represents
the strengths and weaknesses of our methodology. Each subfigure represent a

130 A. Cabrera et al.

(a) KP (b) RAP

(c) CSP (d) TCP

Fig. 4. Energy consumption of UllMF compared to an evenly distributed workload

different problem using multiple column sets, with different problem sizes rep-
resented in the X axis, and the energy consumed by the execution in the Y
axis. Each column set is composed by three columns that visualize a comparison
between three procedures: a uniform workload distribution, labeled as reference;
a workload distribution performed using the UllMF version of Ull Calibrate Lib,
labeled as time; and the newly developed procedure of workload distribution to
minimize energy consumption, labeled as energy cal.

The results for the KP are summarized in Fig. 4a. The UllMF framework is
capable of balancing the work in order to minimize energy consumption, using
one of its modules. The energy module, which we will refer as energy cal, however,
misbehaves in 18% of the cases, where the obtained workload distribution reaches
the opposite effect. In this figure, we observe how for size 6000 and 8000, the
energy consumption increases due to a poor load balance, since the solution gets
trapped in a workload distribution that is worse than the reference, and is not
able to recognize the situation. In the rest of the cases, it achieves results that
improve between 2% and 9% the energy consumption of the Ull Calibrate Lib
module. On average, including the results were the calibration makes the solution

Energy Efficient Dynamic Load Balancing over MultiGPU Systems 131

worse, energy consumption is reduced by 4%. When energy cal works properly,
the average energy consumption is reduced by 13%.

The RAP shares 90% of the code with the KP. The main difference is that
the KP is a fine grain and memory bounded problem, while the RAP is compute
bounded. Figure 4b displays how energy cal obtains very good performances,
in terms of energy savings, in this environment. This is expected as the RAP
irregularity lies in being unbalanced when the work is distributed evenly. The
interesting result here, apart from the noticeable improvement from the reference
(up to 400%), is that energy cal is better than the Ull Calibrate Lib module in
every case studied, with an average improvement of 10.2%.

The CSP, as shown in Fig. 4c, is improved by both the Ull Calibrate Lib mod-
ule and energy cal, with a 2.1% worse performance by the latter, as opposed by
the last problem. Ull Calibrate Lib improves the result of the reference problem
by an average of 15.3% while energy cal improves it by 13.2%.

Both modules behave in the TCP similarly to the CSP as shown in Fig. 4d.
In this case, we observe that the energy cal produces bad balancing when size
is 2000, additionally in size 2500, in spite of improving the reference energy
consumption, its performance is subpar compared to Ull Calibrate Lib. Despite
the possibility of misbehaviour, the energy module of UllMF improves on average
the energy consumption by 6%. When balanced properly, energy cal provides an
average reduction of energy consumption of 18.5%. However, Ull Calibrate Lib
improves the overall energy consumption by 30.5% compared to these values.

These results, though they could still be improved, demonstrate that our
approach is competitive enough to justify its simplicity. In spite of the evident
misbehaviour for some cases, we observe problems where the calibration tech-
nique improve energy consumption greatly, with a little overhead of 3% shown
in Fig. 3.

5 Conclusion

We have developed a library that allow us to perform dynamic load balancing
for energy consumption in heterogeneous systems. We included our library in a
calibration framework we have developed, UllMF. It has been proven to work
using iterative problems and can be easily applied to a wider range of problems
with little effort required by the programmer, adding a few lines to the available
codes. It also has been proven to work properly with most presented cases, but
still requires improvements in order to compete with a time based load balancing.
In the future we will extend the library to allow users a multi-objective approach
where multiple objectives are taken into account so that optimizing workload
distributions can be feasible with a Strategy Selector that choose automatically
the proper load balance calibration technique in order to increase the efficiency
of the system.

Acknowledgment. This work was supported by the Spanish Ministry of Educa-
tion and Science through the TIN2016-78919-R project, the Government of the

132 A. Cabrera et al.

Canary Islands through the grant with reference TESIS2017010134, partially funded
by FEDER funds; the Spanish network CAPAP-H4, and the European COST Actions
NESUS and CHIPSET.

References

1. Acosta, A., Almeida, F.: Skeletal based programming for dynamic programming
on MultiGPU systems. J. Supercomput. 65(3), 1125–1136 (2013). https://doi.org/
10.1007/s11227-013-0895-x

2. Acosta, A., Blanco, V., Almeida, F.: Dynamic load balancing on heterogeneous
multi-GPU systems. Comput. Electr. Eng. 39(8), 2591–2602 (2013). https://doi.
org/10.1016/j.compeleceng.2013.08.004

3. Cabrera, A., Almeida, F., Arteaga, J., Blanco, V.: Measuring energy consumption
using EML (energy measurement library). Comput. Sci. - Res. Dev. 30(2), 135–143
(2014). https://doi.org/10.1007/s00450-014-0269-5

4. Dongarra, J., Bosilca, G., Chen, Z., Eijkhout, V., Fagg, G.E., Fuentes, E., Langou,
J., Luszczek, P., Pjesivac-Grbovic, J., Seymour, K., You, H., Vadhiyar, S.S.: Self-
adapting numerical software (SANS) effort. IBM J. Res. Dev. 50(2/3), 223–238
(2006)

5. Garzón, E.M., Moreno, J.J., Mart́ınez, J.A.: An approach to optimise the energy
efficiency of iterative computation on integrated GPU-CPU systems. J. Supercom-
put. 73(1), 114–125 (2017). https://doi.org/10.1007/s11227-016-1643-9

6. Guzek, M., Kliazovich, D., Bouvry, P.: HEROS: energy-efficient load balancing for
heterogeneous data centers. In: Pu, C., Mohindra, A. (eds.) 8th IEEE International
Conference on Cloud Computing, CLOUD 2015, New York City, NY, USA, 27
June–2 July 2015, pp. 742–749. IEEE (2015). https://doi.org/10.1109/CLOUD.
2015.103

7. Mart́ınez, J., Garzón, E., Plaza, A., Garćıa, I.: Automatic tuning of iterative com-
putation on heterogeneous multiprocessors with ADITHE. J. Supercomput. 1–9
(2009). https://doi.org/10.1007/s11227-009-0350-1

8. Padoin, E.L., Castro, M.B., Pilla, L.L., Navaux, P.O.A., Méhaut, J.: Saving
energy by exploiting residual imbalances on iterative applications. In: 21st Inter-
national Conference on High Performance Computing, HiPC 2014, Goa, India, 17–
20 December 2014, pp. 1–10. IEEE (2014). https://doi.org/10.1109/HiPC.2014.
7116895

9. Peláez, I., Almeida, F., Suárez, F.: DPSKEL: a skeleton based tool for parallel
dynamic programming. In: 7th International Conference Parallel Processing and
Applied Mathematics, PPAM2007, Gdansk, Poland, pp. 1104–1113, September
2007. https://doi.org/10.1007/978-3-540-68111-3 117

10. Reddy, R., Lastovetsky, A.: Bi-objective optimization of data-parallel applications
on homogeneous multicore clusters for performance and energy. IEEE Trans. Com-
put. PP(99), 1 (2017)

11. Steuwer, M., Gorlatch, S.: SkelCL: a high-level extension of OpenCL for multi-GPU
systems. J. Supercomput. 69(1), 25–33 (2014). https://doi.org/10.1007/s11227-
014-1213-y

12. Takouna, I., Rojas-Cessa, R., Sachs, K., Meinel, C.: Communication-aware and
energy-efficient scheduling for parallel applications in virtualized data centers. In:
IEEE/ACM 6th International Conference on Utility and Cloud Computing, UCC
2013, Dresden, Germany, 9–12 December 2013, pp. 251–255. IEEE (2013). https://
doi.org/10.1109/UCC.2013.50

https://doi.org/10.1007/s11227-013-0895-x
https://doi.org/10.1007/s11227-013-0895-x
https://doi.org/10.1016/j.compeleceng.2013.08.004
https://doi.org/10.1016/j.compeleceng.2013.08.004
https://doi.org/10.1007/s00450-014-0269-5
https://doi.org/10.1007/s11227-016-1643-9
https://doi.org/10.1109/CLOUD.2015.103
https://doi.org/10.1109/CLOUD.2015.103
https://doi.org/10.1007/s11227-009-0350-1
https://doi.org/10.1109/HiPC.2014.7116895
https://doi.org/10.1109/HiPC.2014.7116895
https://doi.org/10.1007/978-3-540-68111-3_117
https://doi.org/10.1007/s11227-014-1213-y
https://doi.org/10.1007/s11227-014-1213-y
https://doi.org/10.1109/UCC.2013.50
https://doi.org/10.1109/UCC.2013.50

Workshop on Scheduling for Parallel
Computing (SPC 2017)

Scheduling Data Gathering
with Maximum Lateness Objective

Joanna Berlińska(B)

Faculty of Mathematics and Computer Science, Adam Mickiewicz University
in Poznań, Umultowska 87, 61-614 Poznań, Poland

Joanna.Berlinska@amu.edu.pl

Abstract. In this paper, scheduling in a star data gathering network
is studied. The worker nodes of the network produce datasets that have
to be gathered by a single base station. The datasets may be released
at different moments. Each dataset is assigned a due date by which it
should arrive at the base station. The scheduling problem is to organize
the communication in the network so that the maximum dataset lateness
is minimized. As this problem is strongly NP-hard, we propose a heuristic
algorithm for solving it. The performance of the algorithm is evaluated
on the basis of computational experiments.

Keywords: Scheduling · Data gathering · Maximum lateness
Release times

1 Introduction

Parallel and distributed processing has become very popular in recent years.
Complex computations may often be divided between many computers working
in parallel. Distributed networks are also used for sensing and measuring the
environment. In many cases the obtained data have to be collected together
on a single machine for further analysis or storing. The efficiency of the data
gathering process influences the overall performance of a distributed application.
Therefore, scheduling data gathering becomes an important research area.

Data gathering scheduling problems were studied in [5–7,10,21]. In [10,21]
data gathering wireless sensor networks were analyzed. The scheduling problem
was to assign the amounts of measured data to the network nodes and organize
the communications with the base station so that the total time of sensing and
gathering data was minimized. An algorithm for maximizing the lifetime of a
data gathering network with limited node memory was proposed in [5]. Schedul-
ing in data gathering networks whose nodes were able to compress data at some
monetary cost was studied in [6]. The goal was to transfer all data to the base
station within given time at the minimum cost. In [7] scheduling algorithms for
data gathering networks with variable communication speed were proposed.

In this work we analyze gathering the results of a set of applications run in
parallel in a star network. When a worker node completes its job, the dataset
it produced becomes ready to be sent to the base station. Each dataset has a
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 135–144, 2018.
https://doi.org/10.1007/978-3-319-78054-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_13&domain=pdf

136 J. Berlińska

due date by which it should arrive at the base station. The communications
between the worker nodes and the base station have to be scheduled so that the
maximum dataset lateness is minimized.

The rest of this paper is organized as follows. In Sect. 2 we present the net-
work model and formulate the scheduling problem. Related work is outlined in
Sect. 3. In Sect. 4 a heuristic scheduling algorithm is proposed. The results of
computational experiments on its performance are described in Sect. 5. The last
section comprises conclusions.

2 Problem Formulation

We analyze a data gathering network consisting of m worker nodes P1, . . . , Pm

and a single base station, to which the computation results should be passed.
Node Pj generates dataset Dj of size αj at time rj . The due date for receiving Dj

at the base station is denoted by dj . At most one worker can communicate with
the base station at a time. Following the methodology of divisible load theory
(see, e.g., [8,12]), we assume that a dataset can be divided into pieces of arbitrary
(rational) sizes, sent separately. The communication capabilities of the network
are described by two parameters: communication startup S and communication
rate (inverse of speed) C. Thus, sending a message of size x from a worker node
to the base station takes time S+Cx. Hence, if a dataset is sent in many separate
messages, then each additional message increases the total dataset transfer time
by S.

Let Tj denote the time when the whole dataset Dj arrives at the base station.
The lateness of dataset Dj is Lj = Tj−dj . Our goal is to schedule the communica-
tions in the network so that the maximum dataset lateness Lmax = maxm

j=1{Lj}
is minimized.

Since the network nodes communicate with the base station sequentially, our
problem is equivalent to scheduling m preemptive jobs of size pj = Cαj on a
single machine, where setup time S is required when a job is started, whether
initially or after preemption. Following the three-field notation [13], this problem
can be denoted by 1|pmtn, rj , sj = S|Lmax.

3 Related Work

Single machine scheduling with setup times was studied in [9,14,16,19,20]. In
[14] it was assumed that machine maintenance must be performed within cer-
tain intervals. If a job is not fully processed before the maintenance, then an
additional setup is required when the job is resumed. The two analyzed prob-
lems were minimizing the total weighted job completion time and minimizing
the maximum lateness. Both problems were shown to be NP-hard in the case of
a long planning horizon, and dynamic programming algorithms were proposed
for solving them. It was also shown that for a short planning horizon, minimizing
the total weighted completion time is NP-hard, while the total completion time
problem and the maximum lateness problem can be solved in polynomial time.

Scheduling Data Gathering with Maximum Lateness Objective 137

Article [19] considered a preemptive scheduling problem with job release
dates, delivery times and setup times. A job-dependent setup time was incurred
whenever a job was started or resumed. The objective was to minimize the
maximum delivery time. It is known that such a scheduling problem is equivalent
to that with due dates rather than delivery times, where the objective is to
minimize the maximum lateness [15]. Thus, the results obtained for problem
1|pmtn, rj , sj |Dmax in [19] can be also applied to problem 1|pmtn, rj , sj |Lmax. It
was proved in [19] that problem 1|pmtn, rj , sj |Dmax is strongly NP-hard even if
each setup time is one unit. Hence, our data gathering scheduling problem is also
strongly NP-hard. Moreover, [19] proposed a dynamic programming algorithm
and a PTAS for solving the analyzed problem. However, both algorithms were
based on an observation that job preemptions need to occur only at the release
times of other jobs. Unfortunately, as we will show in Sect. 4, this observation is
not true, and in consequence, the algorithms are not correct.

In [20] the analyzed problem was to minimize the total weighted completion
time in the same model of processing as in [19]. This problem was also proved to
be strongly NP-hard, and a greedy algorithm with the worst-case performance
guarantee of 25/16 was proposed.

Online minimization of the total flow time subject to job release dates and
setup times was analyzed in [16]. It was proved that the problem is strongly NP-
hard even if the setup time is one unit, and a heuristic algorithm was proposed.
Later on, it was proved in [9] that no online algorithm for this problem can be
competitive.

Scheduling problems with job setup times were also studied for the parallel
machines setting (see, e.g., [24]) and in the flow shop environment [3]. They
emerge in the context of resource constrained project scheduling [1,2] and real
time systems [22,23,25,26]. An extensive survey of scheduling with setup times
can be found in [4].

To conclude this section, let us indicate two special cases of our problem that
boil down to well-known scheduling problems without setup times. For S = 0 our
scheduling problem is equivalent to 1|pmtn, rj |Lmax, and hence can be solved
in O(m log m) time [17]. Moreover, if S �= 0 but C = 0, then the problem
is equivalent to 1|pj = p, rj |Lmax, and hence can be solved in O(m2 log m)
time [11].

4 Heuristic Algorithm

As it follows from [19] that our scheduling problem is strongly NP-hard, in this
section we will construct a heuristic algorithm for solving it. We will first show
that considering schedules with preemptions taking place only at dataset release
times (as suggested in [19]) is not enough to obtain optimum solutions for all
instances.

Proposition 1. Constructing an optimum schedule for the data gathering prob-
lem with maximum lateness objective may require preempting a communication
at a moment when no dataset is released.

138 J. Berlińska

(a)

(b)

(c)

Fig. 1. Schedule structures for the proof of Proposition 1. Gray fields depict startup
time, white fields depict data transfer. (a) D1 preempted by D2 at time t = 2, (b) D1

not preempted by D2, (c) D1 preempted by D2 at time t = 4.

Proof. Let m = 3, S = C = 1. Let the dataset parameters be (α1, r1, d1) =
(4, 0, 10), (α2, r2, d2) = (1, 2, 6) and (α3, r3, d3) = (1, 6, 8). If communications
are preempted only at dataset release times, dataset D1 can be preempted by
D2 either at time t = 2 or not at all. In both cases we obtain a schedule with
Lmax = 1 (cf. Fig. 1a and b). However, if dataset D1 is preempted by D2 at time
t = 4, we obtain the optimum schedule with Lmax = 0 (see Fig. 1c). ��

It follows from Proposition 1 that the approach from [19] cannot be used to
construct an exact algorithm for our data gathering problem, and that it does
not always lead to obtaining optimum solutions for problem 1|pmtn, rj , sj |Dmax.

Let us now prove an intuitive observation that preempting dataset Di by Dj

can be beneficial only if dj < di.

Proposition 2. For any instance of the data gathering problem with maximum
lateness objective there exists an optimum schedule such that for each pair of
indices i, j, such that dataset Di is preempted by Dj, we have dj < di.

Proof. Suppose that there exists an optimum schedule Σ in which dataset Di

is preempted by Dj and dj ≥ di. Let xi, xj denote the amounts of data from
datasets Di and Dj , correspondingly, transferred in the two messages forming
the preemption. Let yi be the size of the next message containing data from
Di. We will transform schedule Σ into a new schedule Σ′ by increasing the
amount of data from Di sent just before the preemption by min{yi, xj + S

C }. As
the communication startup is non-preemptive and has to be performed directly
before dataset transfer, we distinguish three cases: yi < xj or xj ≤ yi ≤ S

C + xj ,
or S

C + xj < yi. Figure 2 shows how to rearrange the communications in each
case. The analyzed preemption is either deleted or delayed (if the message of
size yi was not the last part of Di) in schedule Σ′. Let Lk and L′

k denote the

Scheduling Data Gathering with Maximum Lateness Objective 139

(a)

(b)

(c)

Fig. 2. Schedule modifications for the proof of Proposition 2. Σ is the original schedule,
Σ′ is the modified schedule. White and gray fields depict sending datasets Di and Dj ,
correspondingly. (a) Case 1: yi < xj , (b) Case 2: xj ≤ yi ≤ S

C
+ xj , (c) Case 3:

S
C

+ xj < yi.

lateness of dataset Dk in schedules Σ and Σ′, respectively. We have L′
k = Lk

for k �= i, j, and L′
i ≤ Li. Moreover, L′

j ≤ max{Ti − dj , Tj − dj} ≤ max{Li, Lj}.
Hence, Σ′ is an optimum schedule. This procedure can be applied iteratively
until all preemptions that do not have the required property are removed. ��

On the one hand, preempting communications when new datasets with small
due dates are released, may be necessary to construct a good schedule. On the
other hand, each preemption extends the total communication time by S, which
may damage the solution quality. Therefore, we propose algorithm DS which
aims at finding some balance between the due date differences and the com-
munication startup costs. As suggested by Proposition 2, the algorithm pre-
empts transferring dataset Di only when a dataset Dj with a smaller due date is
released, and the difference between due dates di and dj is large enough in com-
parison to startup time S. In more detail, algorithm DS consists in the following
scheduling rules.

1. If the communication network is idle and some datasets are available (i.e.
already released but not fully transferred to the base station), we start sending
an available dataset with the smallest due date.

2. If dataset Di is being transferred at time rj , then it is preempted by Dj if
dj < di − γS, where γ ∈ [0,∞] is a tunable algorithm parameter. If several
datasets are released at time rj and could preempt Di according to this rule,
we choose the one with the smallest due date.

Parameter γ controls the balance between the due dates and the communi-
cation startup times. When γ is small, more communication preemptions occur.

140 J. Berlińska

When γ is big, a dataset may be preempted only by a dataset with a much smaller
due date. In particular, for γ = 0 a preemption is always made if dj < di, i.e.
algorithm DS follows the preemptive EDD rule [17]. When γ = ∞, no preemp-
tions take place, and algorithm DS is equivalent to the non-preemptive EDD
algorithm [18]. In the following text, algorithm DS with a given value of γ will
be denoted by DS(γ).

Since algorithm DS preempts communications only at dataset release times,
it introduces at most m − 1 preemptions, and the total number of messages is
at most 2m − 1. Thus, the algorithm can be implemented to run in O(m log m)
time.

5 Computational Experiments

In this section we analyze the performance of algorithm DS for different values
of parameter γ. Let us remind that this parameter controls the number of com-
munication preemptions. The maximum number of preemptions introduced by
algorithm DS is m − 1, and each preemption extends the total communication
time by S. Therefore, we study the influence of parameters m and S on the
quality of the obtained schedules. The algorithm was implemented in C++ in
Microsoft Visual Studio.

The test instances were constructed as follows. The total size of data to
be gathered was always V = 1E9. The number of datasets m belonged to the
set {10, 20, . . . , 100}. In order to select particular dataset sizes, numbers βj were
chosen from U [1, 2] (the uniform distribution in range [1, 2]) for j = 1, . . . ,m. The
size of dataset Dj was set to αj = βjV/(

∑m
j=1 βj). Thus, the greatest dataset was

at most twice bigger than the smallest one. This construction reflects gathering
a diversified, but not very unbalanced collection of datasets. The communication
rate was C = 1E-8, which corresponds with the bitrate of Gigabit Ethernet. The
experiments were repeated for S ∈ {1E−3, 2E−3, 5E−3, 1E−2}. We present
here the results obtained for S = 1E−2 and S = 2E−3, which represent a big
and a small startup time, correspondingly. For given m and S, the minimum
possible communication time T = mS + CV was computed. The release times
rj were selected randomly from U [0, δrT], and the due dates dj from U [0, δdT].
In order to construct more and less demanding sets of instances, we tested all
combinations of δr and δd such that δr, δd ∈ {0.25, 0.5, 0.99}. Due to lack of
space, we report here only on the results obtained for δr = δd = 0.5 and for
δr = 0.25, δd = 0.99. Algorithm DS uses parameter γ to make the decision
whether or not to preempt dataset Di by Dj , only if dj < di. Therefore, in order
to emphasize the influence of γ, we sorted the selected release times and due
dates so that r1 ≤ r2 ≤ · · · ≤ rm and d1 ≥ d2 ≥ · · · ≥ dm. Thus, a newly
released dataset always has a smaller due date than all previous datasets.

In order to assess the quality of the obtained solutions, for each instance
we computed a lower bound LoBo on the maximum dataset lateness by solving
problem 1|pmtn, rj |Lmax with job execution times pj = S + Cαj , job release
times rj and due dates dj , for j = 1, . . . ,m. It follows from the construction of

Scheduling Data Gathering with Maximum Lateness Objective 141

(a)

10 20 30 40 50 60 70 80 90 100
1.00

1.02

1.04

1.06

1.08

1.10

1.12

(b)

10 20 30 40 50 60 70 80 90 100
1.00

1.02

1.04

1.06

1.08

Fig. 3. Solution quality vs. m for δr = δd = 0.5. (a) S = 1E−2, (b) S = 2E−3.

our test instances that the last job in the above instance of 1|pmtn, rj |Lmax is
completed after its due date, as

∑m
j=1 pj = mS + CV > maxm

j=1{dj}. Hence,
LoBo > 0, and the schedule quality can be measured by the ratio Lmax/LoBo.
As the maximum dataset lateness is to be minimized, a smaller number means
better quality. The value of algorithm parameter γ was tuned experimentally. We
chose to use γ ∈ {0, 1, 10, 100,∞}. Each point in the following charts represents
an average of 100 instances.

The results obtained for δr = δd = 0.5, S = 1E−2 and different values of m
are shown in Fig. 3a. For small m, the best schedules are obtained for γ = 10.
It seems that for γ ≤ 1 the cost of preemptions is too big, whereas for γ ≥ 100
the delays caused by waiting until previous communications finish are too high.
When m gets bigger, the performance of the algorithm variants with γ ≤ 10
gradually decreases. This is caused by the fact that the number of preemptions
and hence, their total cost, increases with growing m. Contrarily, for γ = 100 and
γ = ∞ the results get better with growing m. Indeed, when the fixed amount of
data V is divided between more processors, dataset transfer times are shorter,
and waiting for the end of some communication takes less time. Therefore, the
delays in sending datasets with the smallest due dates are shorter than in the
case of small m. All in all, in this experiment configuration, the best results are
obtained for γ = 10 when m ≤ 40 and for γ = 100 when m ≥ 50.

Figure 3b presents the results obtained for small startup time, S = 2E−3. In
most cases the influence of m on the performance of the algorithms is similar
as in the previous chart. However, as for finite γ the value of γS is now smaller
than for S = 1E−2, the differences between the algorithms with γ < ∞ become
less significant. In particular, the performance of DS(100) is comparable to the
variants with γ ≤ 10 for small m. As the cost of additional startups is now
lower, the performance of all algorithms with γ < ∞ improves in comparison
to the case with S = 1E−2. The value of S has no influence on the behavior of
DS(∞), which can be confirmed by comparing Fig. 3a and b. A slightly better
quality reported for DS(∞) when S = 2E−3 is caused by the fact that when S
is smaller, the lower bound LoBo is closer to the actual optimum Lmax. When
the startup time is small, it is profitable to make a lot of preemptions for greater

142 J. Berlińska

(a)

10 20 30 40 50 60 70 80 90 100
1.00

1.05

1.10

1.15

1.20

1.25

(b)

10 20 30 40 50 60 70 80 90 100
1.00

1.05

1.10

1.15

1.20

Fig. 4. Solution quality vs. m, for δr = 0.25, δd = 0.99. (a) S = 1E−2, (b) S = 2E−3.

values of m than in the case of a big startup time. Thus, algorithm DS(10) wins
here for m ≤ 60, and DS(100) for m ≥ 70.

The results obtained for δr = 0.25, δd = 0.99 are depicted in Fig. 4. Decreas-
ing δr means that the datasets are available earlier, and increasing δd that the
due dates are bigger. Hence, these instances may be considered easier than those
with δr = δd = 0.5. However, the results improve only for the algorithms that
create many preemptions. The algorithms that introduce a small number of
preemptions (DS(100) and DS(∞) for S = 1E−2, and DS(∞) for S = 2E−3)
perform much worse than for δr = δd = 0.5. This can be explained in the follow-
ing way. Since all datasets are released rather early, and the first datasets have
quite big due dates, the algorithm should concentrate on transferring the last
datasets (with the largest release times and the smallest due dates) as soon as
possible. This can only be done if a sufficient number of previous datasets are
preempted. Algorithm DS(∞), which does not allow preemptions, starts send-
ing the last datasets too late, which damages its performance. Algorithm DS(10)
wins for all combinations of m and S when δr = 0.25, δd = 0.99.

6 Conclusions

In this work we studied scheduling data gathering with maximum dataset late-
ness objective. As the problem is computationally hard, we proposed a heuristic
algorithm DS(γ) running in O(m log m) time. The quality of schedules generated
by this algorithm for different values of parameter γ was tested experimentally.
The algorithm performance depends on the number of datasets m and the com-
munication startup time S. If m is small, then the algorithm obtains better
results for smaller γ. If both m and S are big, the algorithm variants with big γ
perform better. The quality of the schedules is also influenced by the ranges of
dataset release times rj and due dates dj . For all analyzed experiment settings,
the best results were obtained either by algorithm DS(10) or DS(100), depending
on the instance parameters. It is worth noting that for each tested setting, the
average relative error of the solutions delivered by the algorithm with the best
value of γ was below 3%.

Scheduling Data Gathering with Maximum Lateness Objective 143

Future research in this area may include a more detailed experimental anal-
ysis of the algorithm behavior, e.g. for different distributions of dataset sizes,
release times and due dates. In particular, an important question is how to
choose γ in general, in order to obtain good results for various types of problem
instances. Theoretical performance guarantees of algorithm DS should also be
investigated.

Acknowledgements. This research was partially supported by the National Science
Centre, Poland, grant 2016/23/D/ST6/00410.

References

1. Afshar-Nadjafi, B.: Resource constrained project scheduling subject to due dates:
preemption permitted with penalty. Adv. Oper. Res. 2014, 10 p. (2014)

2. Afshar-Nadjafi, B., Majlesi, M.: Resource constrained project scheduling problem
with setup times after preemptive processes. Comput. Chem. Eng. 69, 16–25 (2014)

3. Allahverdi, A.: Minimizing mean flowtime in a two-machine flowshop with
sequence-independent setup times. Comput. Oper. Res. 27, 111–127 (2000)

4. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling
problems with setup times or costs. Eur. J. Oper. Res. 187, 985–1032 (2008)

5. Berlińska, J.: Communication scheduling in data gathering networks with limited
memory. Appl. Math. Comput. 235, 530–537 (2014)

6. Berlińska, J.: Scheduling for data gathering networks with data compression. Eur.
J. Oper. Res. 246, 744–749 (2015)

7. Berlińska, J.: Scheduling data gathering with variable communication speed. In:
Proceedings of the First International Workshop on Dynamic Scheduling Problems,
pp. 29–32 (2016)

8. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.G.: Scheduling Divisible Loads
in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos
(1996)

9. Chan, H.-L., Lam, T.-W., Li, R.: Online flow time scheduling in the presence of
preemption overhead. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.)
APPROX/RANDOM 2012. LNCS, vol. 7408, pp. 85–97. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32512-0 8

10. Choi, K., Robertazzi, T.G.: Divisible load scheduling in wireless sensor networks
with information utility. In: IEEE International Performance Computing and Com-
munications Conference 2008, IPCCC 2008, pp. 9–17 (2008)

11. Condotta, A., Knust, S., Shakhlevich, N.V.: Parallel batch scheduling of equal-
length jobs with release and due dates. J. Sched. 13, 463–477 (2010)

12. Drozdowski, M.: Scheduling for Parallel Processing. Springer, London (2009).
https://doi.org/10.1007/978-1-84882-310-5

13. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: a survey. Ann.
Discret. Math. 5, 287–326 (1979)

14. Graves, G.H., Lee, C.Y.: Scheduling maintenance and semiresumable jobs on a
single machine. Nav. Res. Logist. 46, 845–863 (1999)

15. Hall, L.A., Shmoys, D.B.: Jackson’s rule for single-machine scheduling: making a
good heuristic better. Math. Oper. Res. 17, 22–35 (1992)

https://doi.org/10.1007/978-3-642-32512-0_8
https://doi.org/10.1007/978-1-84882-310-5

144 J. Berlińska

16. Heydari, M., Sadjadi, S.J., Mohammadi, E.: Minimizing total flow time subject
to preemption penalties in online scheduling. Int. J. Adv. Manuf. Technol. 47,
227–236 (2010)

17. Horn, W.A.: Some simple scheduling algorithms. Nav. Res. Logist. Q. 21, 177–185
(1974)

18. Jackson, J.R.: Scheduling a production line to minimize maximum tardiness.
Research Report 43, Management Sciences Research Project, UCLA (1955)

19. Liu, Z., Cheng, T.C.E.: Scheduling with job release dates, delivery times and pre-
emption penalties. Inf. Process. Lett. 82, 107–111 (2002)

20. Liu, Z., Cheng, T.C.E.: Minimizing total completion time subject to job release
dates and preemption penalties. J. Sched. 7, 313–327 (2004)

21. Moges, M., Robertazzi, T.G.: Wireless sensor networks: scheduling for measure-
ment and data reporting. IEEE Trans. Aerosp. Electron. Syst. 42, 327–340 (2006)

22. Nasri, M., Nelissen, G., Fohler, G.: A new approach for limited preemptive schedul-
ing in systems with preemption overhead. In: 2016 28th Euromicro Conference on
Real-Time Systems (ECRTS), pp. 25–35 (2016)

23. Phavorin, G., Richard, P.: Cache-related preemption delays and real-time
scheduling: a survey for uniprocessor systems. Technical report, Laboratoire
d’Informatique et d’Automatique pour les Systemes (2015)

24. Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup
times. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms,
pp. 759–767 (1999)

25. Thekkilakattil, A., Dobrin, R., Punnekkat, S.: The limited-preemptive feasibility
of real-time tasks on uniprocessors. Real-Time Syst. 51, 247–273 (2015)

26. Ward, B.C., Thekkilakattil, A., Anderson, J.H.: Optimizing preemption-overhead
accounting in multiprocessor real-time systems. In: Proceedings of the 22nd Inter-
national Conference on Real-Time Networks and Systems, pp. 235–246 (2014)

Fair Scheduling in Grid VOs
with Anticipation Heuristic

Victor Toporkov1(B) , Dmitry Yemelyanov1 , and Anna Toporkova2

1 National Research University MPEI,
ul. Krasnokazarmennaya, 14, Moscow 111250, Russia

ToporkovVV@mpei.ru, YemelyanovDM@mpei.ru
2 National Research University Higher School of Economics,

ul. Myasnitskaya, 20, Moscow 101000, Russia
atoporkova@hse.ru

Abstract. In this work, a job-flow scheduling approach for Grid vir-
tual organizations (VOs) is proposed and studied. Users’ and resource
providers’ preferences, VOs internal policies along with local private uti-
lization impose specific requirements for scheduling according to differ-
ent, usually contradictive, criteria. We study the problem of a fair job
batch scheduling with a relatively limited resources supply. With increas-
ing resources utilization level the available resources set and correspond-
ing decision space are reduced. The main problem is a scarce set of job
execution alternatives which eliminates scheduling optimization. In order
to improve overall scheduling efficiency we propose a heuristic anticipa-
tion approach. It generates a reference, most likely infeasible, scheduling
solution. A special replication procedure performs a feasible solution with
a minimum distance to a reference alternative under given metrics.

Keywords: Scheduling · Grid · Resources · Utilization · Heuristic
Job batch · Virtual organization · Anticipation · Replication

1 Introduction and Related Works

Virtual organization (VO) formation and performance largely depends on mutu-
ally beneficial collaboration between all the related stakeholders [1,2]. Applica-
tion level scheduling [3] is based on the available resources utilization and, as a
rule, does not imply any global resource sharing or allocation policy. Job flow
scheduling [4] in user’s VOs supposes uniform rules of resource sharing and con-
sumption, in particular based on economic models [1–3,5]. The VO scheduling
problems may be formulated as follows: to optimize users’ criteria or utility
function for selected jobs [5,6], to keep resource overall load balance [7,8], to
have job run in strict order or maintain job priorities [9], to optimize overall
scheduling performance by some custom criteria [10,11], etc. However, users’,
resource owners’ and administrators’ preferences may conflict with each other.
Users are likely to be interested in the fastest possible running time for their jobs
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 145–155, 2018.
https://doi.org/10.1007/978-3-319-78054-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_14&domain=pdf
http://orcid.org/0000-0002-1484-2255
http://orcid.org/0000-0002-9359-8245

146 V. Toporkov et al.

with least possible costs whereas VO preferences are usually directed to avail-
able resources load balancing or node owners’ profit boosting. Thus, the most
important aspect of rules suggested by VO is their fairness. A number of works
understand fairness as it is defined in the theory of cooperative games, such as
fair job flow distribution [8], fair quotas [12,13], fair user jobs prioritization [9],
and non-monetary distribution [14].

The cyclic scheduling scheme (CSS) [15] implements a fair scheduling
optimization which ensures stakeholders interests to some predefined extent.
Scheduling of a job flow using CSS is performed in time cycles, by job batches.
The actual scheduling procedure consists of two main steps. The first step
involves a search for alternative scenarios of each job execution, or simply alter-
natives [16]. The launch of any job requires a co-allocation of a specified num-
ber of slots, as well as in the classic backfilling variation [17]. A single slot is
a time span that can be assigned to run a part of a parallel job. The target
is to scan a list of available slots and to select a window of parallel slots for
the required resource reservation time. The user job requirements are arranged
into a resource request containing the resource reservation time, characteristics
of computational nodes (clock speed, RAM volume, disk space, operating sys-
tem etc.), limitation on the selected window maximum cost. Window search
algorithms were discussed in [16]. During the second step the dynamic pro-
gramming methods [15] are used to choose an optimal alternatives’ combina-
tion. One alternative is selected for each job with respect to the given VO and
user criteria. The downside of centralized metascheduling approaches, includ-
ing CSS [4,13,15], is that they lose their efficiency and optimization features in
distributed environments with a limited resources supply. For example, the tradi-
tional backfilling [17] provides better scheduling outcome when compared to dif-
ferent optimization approaches in resource domain with a minimal performance
configuration [2].

Main contribution of this paper is a heuristic CSS-based job-flow scheduling
approach which retains efficiency even in distributed computing environments
with limited resources. A special replication procedure is proposed and studied to
ensure a feasible scheduling result. The rest of the paper is organized as follows.
Section 2 presents a problem statement for cyclic fair scheduling. The proposed
heuristic-based scheduling technique is presented in Sect. 3. Section 4 contains
simulation experiment setup and results for the proposed scheduling approach.
Finally, Sect. 5 summarizes the paper.

2 Problem Statement for Cyclic Fair Scheduling

Cyclic scheduling is based on a hierarchical job-flow management scheme [15].
Job-flow scheduling is performed in cycles by separate job batches on the basis
of dynamically updated local schedules of computational nodes.

Let Si be the family of appropriate sets of slots for executing job i,
i = 1, . . . , n, in the batch, sj ∈ Sj be the set of slots that are appropri-
ate by the resource request, the cost ci(sj) and the execution time ti(sj),

Fair Scheduling in Grid VOs with Anticipation Heuristic 147

j = 1, . . . , N,N = |⋃n
i=1 Si|. Denote by S the family of appropriate sets of slots

and by s = (s1, . . . , sn), s ∈ S, the sequence, which we call the combination of
slots, for executing the batch of jobs. Let fi(sj) be a function determining the
efficiency of executing job i in the batch on the set of slots sj under the admissi-
ble expenses specified by the function gi(sj). For example, fi(sj) = ci(sj) is the
price of using the set sj for the time gi(sj) = ti(sj). The expenses are admissible
if gi(sj) ≤ gi ≤ g∗, where gi is the level of the total expenses for the execution
of a part of jobs from the batch (for example, jobs i, i+1, . . . , n or i, i−1, . . . , 1)
and g∗ is the restriction for the entire set of jobs (in particular, the restriction
on a total time t∗ of slot occupation or a limitation on a VO budget b∗).

Formally, the statement of the problem of the optimal choice of a slot com-
bination s = (s1, . . . , sn) is as follows:

extr
s∈S

f(s) = extr
sj∈Si

n∑

i=1

fi(sj), gi(sj) ≤ gi ≤ g∗, g∗ =
n∑

i=1

g0i (sj), (1)

where g0i (sj) is the resource expense level function of executing the batch.
The recurrences for finding the extremum of the criterion in (1) for the set

of slots sj ∈ Si, i = 1, n, j ∈ {1, . . . , N} based on backward recursion are

fi(gi) = extr
sj∈Sj

{fi(sj) + fi+1(gi − gi(sj))}, gi(sj) ≤ gi ≤ g∗, i = 1, n,

fn+1(gn+1) = 0, gi = gi−1 − gi−1(sk), 1 < i ≤ n, g1 = g∗, sk ∈ Si−1,
(2)

where gi are the total expenses (utilization time or cost) for using the slots for
jobs i, i + 1, . . . , n of this batch. The optimal expenses are determined from the
equation

g∗
i (sj) = arg extr

gi(sj)≤gi

fi(gi), i = 1, n. (3)

The optimal set of slots s∗
i ∈ {1, . . . , N} in the scheme (2), (3) is given by

the relation
s∗
i (sj) = arg extr

sj∈Si

fi(g∗
i (sj)), i = 1, n. (4)

Here (4) represents the solution of the problem (1). An example of a resource
expense level function in (1) is t0i (sj) = [

∑
sj
ti(sj)/li], where li is the number

of admissible (alternative) sets of slots for the execution of job i, [.] is the ceiling
of t0i (sj). Then the constraint on the total time of slot occupation in the current
scheduling cycle can have the form

t∗ =
n∑

i=1

t0i (sj). (5)

Let us consider several problems of practical importance. Suppose it is
required to select a set of slots for executing a batch of n jobs so as to maximize
the total cost of resource utilization fi(ti) = maxsj inSi

{ci(sj)+fi+1(ti−ti(sj))},
i = 1, . . . , n, fn+1(tn+1) = 0 (maximization of profit of resource owners under

148 V. Toporkov et al.

restrictions on the total time of slot utilization). The restriction on the total time
of using slots by all the jobs is given by (5). Minimization of the total completion
time of a batch of jobs under a restriction on the budget b∗ of the virtual organi-
zation: fi(ci) = minsj∈Si

{ti(sj)+fi+1(ci−ci(sj))}, i = 1, . . . , n, fn+1(cn+1) = 0.
An example for a user scheduling criterion Z may be an overall job running time,
an overall running cost, etc. This criterion describes user’s preferences for that
specific job execution and expresses a type of an additional optimization to per-
form when searching for alternatives. Alongside with time T =

∑n
i=1 ti(sj) and

cost C =
∑n

i=1 ci(sj) properties each job execution alternative has a user utility
(U) value: user evaluation against the scheduling criterion. We consider the fol-
lowing relative approach to represent a user utility U . A job alternative with the
minimum (best) user-defined criterion value Zmin corresponds to the left inter-
val boundary (U = 0%) of all possible job scheduling outcomes. An alternative
with the worst possible criterion value Zmax corresponds to the right interval
boundary (U = 100%). In the general case, for each alternative with value Z,
U is set depending on its position in [Zmin;Zmax] interval using the following
formula: U = Z−Zmin

Zmax−Zmin
∗ 100. Thus, each alternative gets its utility in relation

to the best and the worst optimization criterion values user could expect accord-
ing to the job’s priority. A common VO optimization problem may be stated
as either minimization or maximization of one of the properties, having other
fixed or limited, or involve Pareto-optimal strategy search involving both kinds
of properties [1,15,18].

The job batch scheduling performs consecutive allocation of multiple alterna-
tives with nonintersecting slots for each job. Otherwise irresolvable collisions for
resources may occur if different jobs will share the same time-slots. Sequential
alternatives search and resources reservation procedures help to prevent such
scenario. However in an extreme case when resources are limited or overutilized
only at most one alternative execution could be reserved for each job. In this case
the alternative-based scheduling will be no different from the First Fit resources
allocation procedure [2]. In order to address this problem, we propose a heuristic
job batch scheduling scheme discussed in the next section.

3 Anticipation-Based Heuristic Fair Scheduling

The proposed approach consists of three main steps. First, a set of all possible
execution alternatives is found for each job not considering time slots intersec-
tions and without any resources reservations. The resulting alternatives found
for each job reflect a full range of different job execution possibilities user may
expect on the current scheduling interval. Second, CSS procedure (1–4) is per-
formed to select the alternatives combination optimal according to VO policy.
The resulting combination most likely corresponds to an infeasible scheduling
solution as possible time slots intersection will cause collisions on the resources
allocation stage. The main idea of this step is that obtained infeasible solution
will provide some heuristic insights on how each job should be handled during
the scheduling. Third, a feasible resources allocation is performed by replicating

Fair Scheduling in Grid VOs with Anticipation Heuristic 149

alternatives selected in step 2. The base for this replication step is an Algorithm
searching for Extreme Performance (AEP) described in details in [16]. In the
current step AEP helps to find and reserve feasible execution alternatives most
similar to those selected in the reference optimal solution (4). After these three
steps are performed the resulting solution is both feasible and efficient as it
reflects scheduling pattern obtained from the reference solution from step 2.

Data: slotList - a list of available slots ordered by start time; job - a job for
which the search is performed; refAlternative – reference alternative
used to find similar job execution window.

Result: closestWindow – execution window similar to refAlternative
minDistance = MAX VALUE;
for each slot in slotList do

windowSlotList.add(slot);
windowStartTime = slot.startTime;
for each wSlot in windowSlotList do

minLength = wSlot.node.getWorkingTimeEstimate();
if (wSlot.endTime - windowStartTime) < minLength then

windowSlotList.remove(wSlot);
end

end
if windowSlotList.size() ≥ job.nodesNeed then

distance = calculateDistance(windowSlotList, refAlternative);
if distance < minDistance then

minDistance = distance;
closestWindow = windowSlotList;

end

end

end
Algorithm 1. AEP modification to allocate a set of job execution alternatives

We use AEP modification to allocate a diverse set of execution alternatives
for each job. Originally AEP scans through a whole list of available time slots
and retrieves one alternative execution satisfying user resource request and opti-
mal according to user custom criterion. During this scan, we save all interme-
diate AEP search results (2) to a dedicated list of possible alternatives. For the
replication purpose a new Execution Similarity criterion was introduced which
helps AEP to find a window with a minimum distance to a reference alternative.
Generally, we define a distance between two different alternatives as a relative
difference or error between their significant criteria values. For example if the
reference alternative has Cref total cost, and some candidate alternative cost is
Ccan, then the relative cost error EC is calculated as EC = |Cref−Ccan|

Cref
. If one

need to consider several criteria the distance D between two alternatives may
be calculated as a linear sum of criteria errors Dl = EC + ET + ...EU or as a
geometric distance in a parameters space Dg =

√
E2

C + E2
T + ... + E2

U .

150 V. Toporkov et al.

AEP modification with Execution Similarity criterion is represented as
Algorithm 1. In this algorithm an expanded window windowSlotList of size M
moves through a whole list of all available slots slotList sorted by their start
time in ascending order. At each step any combination of m slots inside win-
dowSlotList (in the case, when m ≤ M) can form a window that meets all the
requirements to run the job.

The main difference from the original AEP is that instead of searching for
a window with an extreme criterion value (1), we retrieve one of the windows
according to (2) with the minimum distance Dl or Dg to the reference alternative.

For a feasible job batch resources allocation AEP consequentially allocates for
each job a single window with the minimum distance to the reference alternative
from an infeasible solution. Time slots allocated for i-th job are reserved and
excluded from the slot list when AEP search algorithm is performed for the
following jobs i+1, i+2, . . . , etc. Thus this procedure prevents any conflicts for
resources and provides scheduling which in some sense reflects a near-optimal
solution.

4 Simulation Study

An experiment was prepared as follows using a custom distributed environment
simulator [2,15,16]. For our purpose, it implements a heterogeneous resource
domain model: nodes have different usage costs and performance levels. A space-
shared resources allocation policy simulates a local queuing system (like in Grid-
Sim or CloudSim [19]) and, thus, each node can process only one task at any
given simulation time. The execution cost of each task depends on its execu-
tion time which is proportional to the dedicated node’s performance level. The
execution of a single job requires parallel execution of all its tasks.

During each experiment new instances for the computing environment and
the job flow are automatically generated. VO and computing environment gen-
eration properties used for the simulation are the following. The resource pool
includes 80 heterogeneous computational nodes. Each nodes performance level is
given as a uniformly distributed random value in the interval [2,10]. A base cost
of a node is an exponential function of its performance value, so any two nodes
of the same resource type and performance have the same base cost. Effective
node cost during the scheduling interval is then calculated by adding a vari-
able distributed normally as ±0.6 of a base cost, simulating discounts or extra
charges up to 60%. The scheduling interval length is 800 time quanta. The initial
resource load with owner jobs is distributed hyper-geometrically resulting in 5%
to 10% utilization on each node.

Job batch properties are as follows. Jobs number in a batch is 125. Nodes
quantity required simultaneously for a job execution is a whole number dis-
tributed evenly on [2; 6]. Node reservation time is a whole number distributed
evenly on [100; 500]. Job budget varies in the way that some of jobs can pay as
much as 160% of base cost whereas some may require a discount. Every request
contains a specification of a custom user criterion which is one of the following:
minimization of job execution runtime or job execution cost.

Fair Scheduling in Grid VOs with Anticipation Heuristic 151

The selected parameters for computing environment are generally suitable to
execute the whole job-flow during the simulation cycle, but not much more The
generated resources are heterogeneous in terms of performance and cost, which
increases fair scheduling efficiency [2]. At the same time we make sure that
resource domain does not contain nodes with performance differing by more
than an order of magnitude. The source code for the simulator as well as for
the current experiment setup is freely available at https://github.com/dmieter/
mimapr.

The main feature of the current simulation is to study and compare schedul-
ing results provided by CSS, Anticipation and Backfilling algorithms. We are
especially interested in integral job-flow execution criteria (such as an average
finish time), as well as compliance with user’s individual criteria.

4.1 Replication Scheduling Accuracy

The first experiment is dedicated to a replication scheduling accuracy study.
First, a general CSS was performed in each experiment for the following job-
flow execution cost maximization problem C → max, limUa = 10%. Ua stands
for the average user utility for one job, i.e. limUa = 10% means that at average
resulting deviation from the best possible outcome for each user did not exceed
10%. Next, linear and geometric replication algorithms were executed to repli-
cate CSS solution using linear Dl and geometric Dg distances. In the current
experiment we used job execution cost error EC and processor time usage error
Et to calculate distances Dl and Dg.

Table 1. CSS replication average scheduling results

Job execution
characteristic

C → max,
Ua ≤ 0%

C → max,
Ua ≤ 10%

Linear
replication

Geometric
replication

C → max,
Ua ≤ 100%

Cost 1283 1349 1353 1353 1475

Processor time 191.6 191.2 190.6 190.5 202.3

Finish time 367.1 353.8 356.2 356.4 358.5

Ua,% 0 9.9 17.6 17.8 65

In order to evaluate the resulting difference in scheduling outcomes, we addi-
tionally performed CSS algorithm for C → max, limUa = 0% (ensuring users’
individual preferences only) and C → max, limUa = 100% (ensuring VO pref-
erence, i.e. maximizing overall cost without taking into account users’ criteria)
problems. These additional problems reflect extreme boundaries for schedul-
ing results, which can be used to evaluate a relative replication error. Table 1
contains scheduling results for all these three problems and two replication algo-
rithms. To address this discrepancy in more details Fig. 1 shows average linear
and geometric replication distances for each job of the batch. There values are

https://github.com/dmieter/mimapr
https://github.com/dmieter/mimapr

152 V. Toporkov et al.

practically independent from an ordinal job number and do not exceed 0.05. For
comparison average distances between the most and the least expensive alterna-
tive executions for the first batch job amounted as follows: 1.15 for linear and
0.88 for geometric metrics.

Fig. 1. Average replication error for user jobs

4.2 Anticipation Scheduling Simulation

The second experiment series consider anticipation scheduling efficiency. Dur-
ing each experiment a VO domain and a job batch were generated and the
following scheduling schemes were simulated and studied. First, a general CSS
solved the optimization problems T → min, limU with different limits Ua ∈
{0%, 1%, 4%, 10%, 16%, 32%, 100%}. Second, a near-optimal but infeasible ref-
erence solution REF was obtained for the same problems. Third, a replication
procedure CSSrep was performed based on CSS solution to demonstrate a repli-
cation process accuracy. For the heuristic anticipation scheduling ANT the same
replication procedure was performed based on REF solution. We used a geo-
metric distance as a replication criterion. Finally, two independent job batch
scheduling procedures were performed to find scheduling solutions most suitable
for VO users (USERopt) and VO administrators (VOopt).

An average number of alternatives found for a job in CSS was 2.6. This result
shows that while for relatively small jobs usually a few alternative executions
have been found, large jobs usually had at most one possible execution option. At
the same time REF algorithm at average considered more than 100 alternative
executions for each job. CSS failed to find any alternative executions for at least
for one job of the batch in 209 experiments; ANT - in 155 experiments. These
results show that simulation settings at the same time provided quite a diverse
job batch and a limited set of resources not allowing executing all the jobs during
every experiment. Figure 2 shows average job execution time (VO criterion) in
T → min, limU optimization problem. Different limits Ua specify to what extent
user preferences were taken into account. Two horizontal lines USERopt and
VOopt represent practical T values when only user or VO administration criteria
are optimized correspondingly, i.e. USERopt was obtained by using only user

Fair Scheduling in Grid VOs with Anticipation Heuristic 153

criteria to allocate resources for jobs without taking into account VO preferences.
VOopt was obtained by using one VO optimization criterion (T → min) for each
job scheduling without taking into account user preferences.

Fig. 2. Average job execution time in T → min, lim U problem

Fig. 3. Average job execution cost in C → max, lim U problem

First thing that catches the eye in Fig. 2 is that REF for Ua > 10% pro-
vides job execution time value better (smaller) than those of VOopt. However
such behavior is expected as REF generates an infeasible solution and may use
time-slots from more suitable (according to VO preferences) resources several
times for different jobs. Otherwise ANT provided better VO criterion value than
CSS for all Ua > 0%. The relative advantage reaches 20% when Ua > 20% is
considered. ANT algorithm graph gradually changes from USERopt value at
Ua = 0% to almost VOopt value at Ua = 100% just with changing average user
utility limit. Thereby, ANT represents a general scheduling approach allowing
balancing between VO or user criteria optimization.

154 V. Toporkov et al.

A similar pattern can be observed in Fig. 3, where C → max, limU scheduling
problem is presented. However, in this case ANT advantage over CSS amounts
to 10% against VO criterion.

5 Conclusions and Future Work

In this paper, we study the problem of fair job batch scheduling with a relatively
limited resources supply. The main problem arise is a scarce set of job execution
alternatives which eliminates optimization efficiency.

We propose the heuristic scheme which generates an infeasible reference solu-
tion and then replicates it to allocate a feasible accessible solution. A special
replication procedure is proposed which provides 2–5% error from the reference
scheduling solution. The obtained results show that the new heuristic approach
provides flexible and efficient solutions for different fair scheduling scenarios.
Future work will be focused on replication algorithm study and its possible
application to fulfill complex user preferences expressed in a resource request.

Acknowledgments. This work was partially supported by the Council on Grants of
the President of the Russian Federation for State Support of Young Scientists and Lead-
ing Scientific Schools (grants YPhD-2297.2017.9 and SS-6577.2016.9), RFBR (grants
18-07-00456 and 18-07-00534), and by the Ministry on Education and Science of the
Russian Federation (project no. 2.9606.2017/8.9).

References

1. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria aspects of
grid resource management. In: Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.)
Grid Resource Management. State of the Art and Future Trends, pp. 271–293.
Kluwer Academic Publishers, Dordrecht (2003). https://doi.org/10.1007/978-1-
4615-0509-9 18

2. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D., Potekhin, P.:
Heuristic strategies for preference-based scheduling in virtual organizations of util-
ity grids. J. Ambient Intell. Human. Comput. 6(6), 733–740 (2015). https://doi.
org/10.1007/s12652-015-0274-y

3. Buyya, R., Abramson, D., Giddy, J.: Economic models for resource management
and scheduling in grid computing. Concurr. Comput. 14(5), 1507–1542 (2002).
https://doi.org/10.1002/cpe.690

4. Rodero, I., Villegas, D., Bobroff, N., Liu, Y., Fong, L., Sadjadi, S.M.: Enabling
interoperability among grid meta-schedulers. J. Grid Comput. 11(2), 311–336
(2013). https://doi.org/10.1007/s10723-013-9252-9

5. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic scheduling in grid com-
puting. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002.
LNCS, vol. 2537, pp. 128–152. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-36180-4 8

6. Rzadca, K., Trystram, D., Wierzbicki, A.: Fair game-theoretic resource manage-
ment in dedicated grids. In: IEEE International Symposium on Cluster Comput-
ing and the Grid (CCGRID 2007), pp. 343–350. IEEE Computer Society, Rio De
Janeiro (2007). https://doi.org/10.1109/ccgrid.2007.52

https://doi.org/10.1007/978-1-4615-0509-9_18
https://doi.org/10.1007/978-1-4615-0509-9_18
https://doi.org/10.1007/s12652-015-0274-y
https://doi.org/10.1007/s12652-015-0274-y
https://doi.org/10.1002/cpe.690
https://doi.org/10.1007/s10723-013-9252-9
https://doi.org/10.1007/3-540-36180-4_8
https://doi.org/10.1007/3-540-36180-4_8
https://doi.org/10.1109/ccgrid.2007.52

Fair Scheduling in Grid VOs with Anticipation Heuristic 155

7. Vasile, M., Pop, F., Tutueanu, R., Cristea, V., Kolodziej, J.: Resource-aware hybrid
scheduling algorithm in heterogeneous distributed computing. Future Gener. Com-
put. Syst. 51, 61–71 (2015). https://doi.org/10.1016/j.future.2014.11.019

8. Penmatsa, S., Chronopoulos, A.T.: Cost minimization in utility computing sys-
tems. Concurr. Comput.: Pract. Exp. 16(1), 287–307 (2014). https://doi.org/10.
1002/cpe.2984

9. Mutz, A., Wolski, R., Brevik, J.: Eliciting honest value information in a batch-
queue environment. In: 8th IEEE/ACM International Conference on Grid Com-
puting, New York, USA, pp. 291–297 (2007). https://doi.org/10.1109/grid.2007.
4354145

10. Blanco, H., Guirado, F., Lrida, J.L., Albornoz, V.M.: MIP model scheduling for
multi-clusters. In: Caragiannis, I., et al. (eds.) Euro-Par 2012. LNCS, vol. 7640, pp.
196–206. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-36949-
0 22

11. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An advance reservation-based
co-allocation algorithm for distributed computers and network bandwidth on QoS-
guaranteed grids. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2010.
LNCS, vol. 6253, pp. 16–34. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-16505-4 2

12. Carroll, T., Grosu, D.: Divisible load scheduling: an approach using coalitional
games. In: Proceedings of the Sixth International Symposium on Parallel and Dis-
tributed Computing, ISPDC 2007, p. 36 (2007). https://doi.org/10.1109/ispdc.
2007.16

13. Kim, K., Buyya, R.: Fair resource sharing in hierarchical virtual organizations for
global grids. In: Proceedings of the 8th IEEE/ACM International Conference on
Grid Computing, pp. 50–57. IEEE Computer Society, Austin (2007). https://doi.
org/10.1109/grid.2007.4354115

14. Skowron, P., Rzadca, K.: Non-monetary fair scheduling cooperative game theory
approach. In: Proceeding of SPAA 2013 Proceedings of the Twenty-Fifth Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 288–297.
ACM, New York (2013). https://doi.org/10.1145/2486159.2486169

15. Toporkov, V., Yemelyanov, D., Bobchenkov, A., Tselishchev, A.: Scheduling in grid
based on VO stakeholders preferences and criteria. In: Zamojski, W., Mazurkiewicz,
J., Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.) Dependability Engineering and
Complex Systems. AISC, vol. 470, pp. 505–515. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39639-2 44

16. Toporkov, V., Toporkova, A., Tselishchev, A., Yemelyanov, D.: Slot selection algo-
rithms in distributed computing. J. Supercomput. 69(1), 53–60 (2014). https://
doi.org/10.1007/s11227-014-1210-1

17. Dimitriadou, S.K., Karatza, H.D.: Job scheduling in a distributed system using
backfilling with inaccurate runtime computations. In: Proceedings of the 2010
International Conference on Complex, Intelligent and Software Intensive Systems,
pp. 329–336 (2010). https://doi.org/10.1109/CISIS.2010.65

18. Farahabady, M.H., Lee, Y.C., Zomaya, A.Y.: Pareto-optimal cloud bursting.
IEEE Trans. Parallel Distrib. Syst. 25, 2670–2682 (2014). https://doi.org/10.1109/
TPDS.2013.218

19. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–
50 (2011). https://doi.org/10.1002/spe.995

https://doi.org/10.1016/j.future.2014.11.019
https://doi.org/10.1002/cpe.2984
https://doi.org/10.1002/cpe.2984
https://doi.org/10.1109/grid.2007.4354145
https://doi.org/10.1109/grid.2007.4354145
https://doi.org/10.1007/978-3-642-36949-0_22
https://doi.org/10.1007/978-3-642-36949-0_22
https://doi.org/10.1007/978-3-642-16505-4_2
https://doi.org/10.1007/978-3-642-16505-4_2
https://doi.org/10.1109/ispdc.2007.16
https://doi.org/10.1109/ispdc.2007.16
https://doi.org/10.1109/grid.2007.4354115
https://doi.org/10.1109/grid.2007.4354115
https://doi.org/10.1145/2486159.2486169
https://doi.org/10.1007/978-3-319-39639-2_44
https://doi.org/10.1007/978-3-319-39639-2_44
https://doi.org/10.1007/s11227-014-1210-1
https://doi.org/10.1007/s11227-014-1210-1
https://doi.org/10.1109/CISIS.2010.65
https://doi.org/10.1109/TPDS.2013.218
https://doi.org/10.1109/TPDS.2013.218
https://doi.org/10.1002/spe.995

A Security-Driven Approach to Online
Job Scheduling in IaaS Cloud

Computing Systems

Jakub G ↪asior1(B), Franciszek Seredyński1, and Andrei Tchernykh2

1 Department of Mathematics and Natural Sciences,
Cardinal Stefan Wyszyński University, Warsaw, Poland

j.gasior@uksw.edu.pl
2 CICESE Research Center, Ensenada, Baja California, Mexico

Abstract. The paper presents a general framework to study issues
of multi-objective on-line scheduling in the Infrastructure as a Service
model of Cloud Computing (CC) systems taking into account the aspects
of the total work-flow execution cost while meeting the deadline and
risk rate constraints. Our goal is providing fairness between concurrent
job submissions by minimizing tardiness of individual applications and
dynamically rescheduling them to the best suited resources. The system,
via the scheduling algorithms, is responsible to guarantee the correspond-
ing Quality of Service (QoS) and Service Level Agreement (SLA) for all
accepted jobs.

Keywords: Cloud Computing · Service Level Agreement
Security-aware scheduling · Infrastructure as a Service

1 Introduction

The emerging CC paradigm represents an important architectural shift from the
traditional distributed computing approaches [4,13]. From the users’ point of
view, CC moves the application software from their own devices to the Cloud
side, which makes users able to plug-in anytime from anywhere and utilize large-
scale storage and computing resources by dynamically expanding and contracting
their demands with the natural flow of the involved business life-cycle. Specifi-
cally, end-users rent resources from Cloud infrastructure providers, according to
a pay-per-use pricing model, to deploy specific service instances in the form of
Virtual Machines (VMs) or runtime applications [13].

On the other hand, the providers are responsible for dispatching the execution
of these instances on their physical resources. In doing this, they have to focus
on how to automatically and dynamically distribute and schedule the involved
tasks according to the current workloads experienced on their infrastructures.
This elastic management aspect of CC platform allows applications to scale and
grow without needing traditional upgrades.
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 156–165, 2018.
https://doi.org/10.1007/978-3-319-78054-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_15&domain=pdf

A Security-Driven Approach to Online Job Scheduling in IaaS Clouds 157

The official commitment that prevails between a service provider and the
customer defining aspects of the service such as quality, availability and respon-
sibilities is specified in the SLA. SLAs can be extended to include provider
and consumer responsibilities, bonuses and penalties, availability, conditions of
services supporting, rules and exceptions, excess usage thresholds and charges,
payment and penalty regulation, purchasing options, pricing policy, payment
procedure, security and privacy issues, etc.

In addition to the optimal utilization of computing resources, security has
become another critical concern for a wide range of applications on cloud com-
puting systems [7–10]. Unfortunately, since distributed computing allows a vast
number of users to execute a broad spectrum of unverified third-party applica-
tions, both applications and users can be sources of security threats to computing
environments. However, many existing cloud computing environments have not
employed any security measures to counter security threats [1].

Hence, there is an emergent need to exploit security services to protect
security-critical applications from attacks during their operation in the cloud
data center. However, adding the security services to applications inevitably in-
curs overhead in terms of computation time, which increase the makespan and
operational cost of applications. In this study, we restrict ourselves to the SLA
performance guarantees with the aim of minimizing the total workflow execution
cost while meeting the deadline and risk rate constraints.

The remainder of this paper is organized as follows. In Sect. 2, we present
the works related to the distributed scheduling and load balancing in distributed
computing systems. In Sect. 3, we describe the problem definition, while Sect. 4
presents the proposed scheduling model. The experimental evaluation of the
proposed approach is given in Sect. 5. We end the paper in Sect. 6 with some
conclusions and indications for future work.

2 State of the Art

Distributed scheduling has been widely studied in the context of real-time sys-
tems, when jobs have deadline constraints. Among others, in [15] authors pro-
posed a distributed algorithm to solve general constraint optimization problem
with a guaranteed convergence using only localized, asynchronous communica-
tion between agents involved in this process.

We address in our work the problem of resource provisioning in environments
with multiple CC nodes. Emerging deadline-driven applications require access
to several resources and predictable Quality of Service (QoS) metrics. However,
it is often difficult to provision resources to these applications because of the
complexity of providing guarantees about the start or completion times of appli-
cations currently in execution or waiting in the resources’ queues.

To complicate matters further, users commonly access resources from a Cloud
via mediators such as brokers or gateways [3]. The design of gateways that pro-
vision resources to deadline-driven applications may be complex and prone to
scheduling decisions that are far from optimal. Furthermore, a gateway repre-
senting a Cloud can have peering arrangements or contracts with other gateways

158 J. G ↪asior et al.

through which they coordinate the resource provisioning. This complicates pro-
visioning as a gateway needs not only to provision resources to its users, but also
provision spare capacity to other gateways. Previous work has demonstrated how
information about fragments in the scheduling queue of clusters, or free time
slots, can be obtained from RMSs and provided to gateways to be provisioned
to Grid and Cloud applications [11,19].

Due to the distributed nature of such systems, several concurrent jobs origi-
nating from different users are likely to compete for the resources. Traditionally,
schedulers aim at minimizing the overall completion time of a job [2]. Closer
to our problem, Viswanathan in [18] proposed a distributed scheduling strat-
egy specifically designed to handle large volumes of computationally intensive
and arbitrarily divisible workloads submitted for processing involving multiple
sources and processing nodes. In [6] authors proposed a distributed scheduling
solution ensuring a fair and efficient use of the available resources by providing a
similar share of the platform to every application through stretch optimization.

Research on SLAs in CC has also addressed the usage of SLAs for resource
management and admission control techniques, automatic negotiation protocols,
economic aspects associated with the usage of SLAs for service provision. For
example, in [23] authors explored the benefits of power optimization for dis-
tributed systems by turning off or on (activating/deactivating) servers so that
only the minimum number of servers required to execute a given workload is
kept active. A similar concept is used in [17] where authors analyzed the effects
of virtual machine allocation on power consumption.

In another study [16] authors focused on multiobjective planning of cloud dat-
acenters considering SLAs and power profiles. Their experimental analysis per-
formed on realistic datacenters demonstrates that accurate schedules, accounting
for different trade-offs between power, temperature and QoS, can be computed
by combining a traditional NSGA-II multiobjective evolutionary algorithm with
a backfilling technique to deal with sleeping/switched off computing resources.

3 Problem Formulation

In this section we formally define basic elements of the model and provide cor-
responding notation, its characteristics and the type of jobs to be scheduled.
We follow the job, system and cost function model presented in [21,22]. We are
interested in providing QoS guarantees defined in the SLA and optimizing both
the provider income, while meeting the deadline and security constraints.

3.1 Cloud Datacenter Model

We assume that cloud data-center offers a set of VM instances M1,M2, . . . ,Mm

specified by several characteristics, including their processing capacity si in mil-
lion floating point operations per second (MFLOPS), cost per hour ci, memory
and storage space. For the purpose of this paper we follow the specification of

A Security-Driven Approach to Online Job Scheduling in IaaS Clouds 159

Compute Optimized - Current Generation VM series provided by Amazon EC2
and shown Table 1. Prices are adjusted for Dedicated On-Demand Instances in
EU region.

Table 1. Compute optimized dedicated on-demand VM instances in Amazon EC2.

CPU (ECU) Processing capacity (MFLOPS) Cost per hour

c4.large 2 (8) 8 800 $0.131
c4.xlarge 4 (16) 17 600 $0.261
c4.2xlarge 8 (32) 35 200 $0.524
c4.4xlarge 16 (62) 70 400 $1.045
c4.8xlarge 36 (132) 140 800 $1.902

VMs are charged based on its leasing time in unit of time (e.g., hour, minute,
etc.), and partial time unit of use is rounded up to the next whole time unit. As
an infinite amount of resources can be accessed in clouds, there is no limit on
the number of VMs that can be executed in the workflow. Moreover, we assume
that all VMs in the cloud datacenter have the same communication bandwidth.

3.2 Job, Security and Pricing Model

Individual users (U1, U2, . . . , Un) submit to the system workflow application Jj
k

for execution. Each application is the set of n tasks or jobs. Users are expected
to pay appropriate fees to the Cloud provider dependent on the SLA requested.

Job (denoted as Jj
k) is jth job produced (and owned) by user Uk. Jk stands

for the set of all jobs produced by user Uk, while nk = |Jk| is the number of
such jobs. Each task has varied parameters defined as a tuple <rj

k, sizej
k, tjk, dj

k>,
specifying its release dates rj

k ≥ 0; its size 1 ≤ sizej
k ≤ mm, that is referred to

as its processor requirements or degree of parallelism; its workload tjk defined in
MFLOPs and a deadline dj

k.
In mapping jobs onto cloud resources, we have to tackle a number of security-

related problems [14]. The first step is for a user to issue a Security Demand (SD)
to all submitted jobs. When setting up the SD values, users should be concerned
about issues related to job sensitivity, job execution environment, access control
and data integration [20], etc. On the other hand, the Security Level (SL) of a
machine can be attributed to the available intrusion detection mechanisms, fire-
walls and anti-virus capabilities, as well as prior job execution success rates. This
defense capability is evaluating the risk existing in the allocation of a submitted
job to a specific machine.

Thus, a job is expected to be successfully carried out when SD and SL satisfy
a security-assurance condition (SD ≤ SL) during the job mapping process. The
SD is a real fraction in the range [0,1] with 0 representing the lowest and 1

160 J. G ↪asior et al.

the highest security requirement. The SL is in the same range with 0 for the
most risky resource site and 1 for a risk-free or fully trusted site. Specifically,
we define a Job Failure Model as a function of the difference between the job
security demand and a resource trust (Eq. 1):

PFailure
i,j =

{
0, SDj ≤ SLi,

1 − exp−(SDj−SLi), SDj > SLi.
(1)

Meeting the security assurance condition (SDj ≤ SLi) for a given job-
machine pair guarantees successful execution of that particular job. Such a
scheduling will be further called as a Secure Job Allocation. On the other hand,
successful execution of the job assigned to machine without meeting this condi-
tion (SDj > SLi), will be dependent on the calculated probability and further
referred to as a Risky Job Allocation.

3.3 Job Scheduling Problem Formulation

Once the job is released, the provider has to decide, before any other job arrives,
whether the job is accepted or not. In the case of acceptance, later submitted
jobs cannot cause job Jj

k to miss its deadline. If a deadline violation occurs,
provider will be expected to refund αSecure

Penalty = 90% of costs to the customer in
a case of the Secure Job Allocation policy and αRisky

Penalty = 45% of costs in a case
of the Risky Job Allocation policy. Two related objectives are considered in this
work:

– The minimization of the SLA Violation Count, defined as a weighted sum of
user’s Uk tardy jobs in the schedule Sk, that is SLACount

V iolation =
∑nk

j=1 wj ∗Dj
k.

The weight coefficient wj is equal to 0.25 for jobs with Risky Job Allocation
SLA class and 0.75 for jobs with Secure Job Allocation SLA class. Dj

k stands
for a total number of jobs that fail to meet their deadline or due date measured
calculated as:

Dj
k =

{
1, Cj

k > dj
k,

0, otherwise.
(2)

– The maximization of the Total Provider’s Income, V =
∑nk

j=1

(
(1−αPenalty)∗

pj
k∗sizej

k∗uj
k(sizej

k)
)

. Due to the definition of the problem, we have to assure

a benefit for the service provider. The first term is the sum of the processing
times of all released jobs multiplied by the penalty factor, a number of used
processors and a cost function dependent on a number of used processors (see
Table 1).

4 Scheduling Approach

The machine for job allocation can be determined by taking into account dif-
ferent criteria. In this work we apply a modified version of the approach pro-
posed in [12]. The first step is estimating an accurate availability summary which

A Security-Driven Approach to Online Job Scheduling in IaaS Clouds 161

describes node’s capacity to process new jobs submitted by clients. The avail-
ability of a node can be characterized by the size (duration) of a free Time Slot
that can be allocated to the arriving jobs.

Whenever a resource becomes overburdened in comparison with its neighbors,
its local SLA Violation Count, exceeds the local average by a specified threshold
value. Resources in such a state are considered as Overloaded. They will send all
incoming traffic to their neighbors, as well as any surplus workload that cannot
be completed in a required time frame (i.e., before deadline).

Resource that are not overburdened with workload can be considered as
Underloaded. Their estimated SLA Violation Count is lower than the local aver-
age and they are capable of accepting excessive workload from their Overloaded
neighbors, as well as any incoming workload submitted by users. Resources in the
Balanced state are characterized by the estimated SLA Violation Count close to
the local average. They will run jobs, which exist in their local queue and will
accept new jobs as well.

If the arrival of the job triggers the Overloaded transition rule (i.e., causes
workload imbalance), the excessive jobs will be sent to one of the available neigh-
bors. Selection of an appropriate destination can be seen as a bin packing prob-
lem with variable bin sizes and prices, where bins represent the physical nodes;
items are the VMs that have to be allocated; bin sizes are the available CPU
capacities of the nodes; and prices correspond to the power consumption by the
nodes.

5 Experimental Analysis and Performance Evaluation

In this section, we present the experiments in order to evaluate the performance
of the proposed Sandpile CA-based scheduling and load balancing algorithm.
All experiments were conducted using the CloudSim framework [5] to simulate
a cloud environment.

5.1 Workloads

We evaluate the performance of our strategies with a series of experiments using
traces of real HPC jobs obtained from the Parallel Workloads Archive, and
the Grid Workload Archive. The workloads include nine traces from: DAS2-
University of Amsterdam, DAS2-Delft University of Technology, DAS2-Utrecht
University, DAS2-Leiden University, KHT, DAS2-Vrije University Amsterdam,
HPC2N, CTC, and LANL. These workloads are suitable for assessing the sys-
tem because our IaaS model with multiple heterogeneous parallel machines is
intended to execute jobs traditionally executed on Grids and parallel machines.

To adapt these workloads to the problem studied in our work artificial dead-
line constraints were added according to the following formula. Each job’s Jj

k

deadline dj
k was set to be dj′

k [Time Units] from its release dates rj
k. Parameter

dj′
k was generated from a uniform distribution U{pi,j′

k , 50} [Time Units]. Variable
pi,j′

k denotes the job’s Jj
k processing time at the slowest machine in the system.

162 J. G ↪asior et al.

Table 2. VM selection policies

Name Description

CA-Stretch
(CS)

Our proposed algorithm, the purpose of which is to
minimize the total workflow execution cost while
meeting the deadline and risk rate constraints

Maximum
Reliability (MR)

This algorithm always meets the security assurance
condition (SDj ≤ SLi) minimizing the failure rate

Minimum Cost
(MC)

This algorithm always disregards the security
assurance condition (SDj ≤ SLi) minimizing the
associated execution cost

Minimum Cost
with Deadline
(MCD)

This algorithm maps each job to the least expensive
VM instance, which can meet the associated deadline
constraints

5.2 Experimental Scenarios

For all scenarios we consider eight infrastructure sizes with the number of
machines from 1 to 128. It does not exactly match all machines on which the
workloads are recorded, and in some cases may cause artifacts in the single
run. To obtain valid statistical values, 50 repetitions per run are simulated. We
employ four allocation heuristics described in Table 2.

Additionally, we randomly assign Security Level (SL) factors to each machine
uniformly selected from the range U{0.3, . . . , 1.0} and Job Security Demand
(SD) factors uniformly selected from the range U{0.6, . . . , 0.9}.

In the following simulation experiments, the efficiency of the analyzed job
scheduling methods was measured in terms of:

– Total Cost: cost function dependent on both the requested level of SLA and
a number of used machines;

– Delayed Jobs: stands for a total number of jobs that fail to meet their
deadline or due date measured by: D =

∑nk

j=1 Dj
k.

The simulation results are given in Fig. 1. It shows that for the given work-
loads we receive the best results by the CA-Stretch allocation strategy. In par-
ticular, the best return on infrastructure per machine can be seen when 8 to
16 machines are used. When we increase the number of machines, the income
generated by each machine is decreased. Figure 1(b) shows the total number of
delayed jobs during simulation. Once again, the CA-Stretch achieves the best
performance of all analyzed lower level scheduling strategies.

It can be attributed to the employed reshuffling and rescheduling mechanisms
in the proposed CA-Stretch scheme and its capability to equalize the workload
in the local balancing domain. As a result, the number of concurrent requests
submitted by the users has less negative impact on the scheduler’s effectiveness.
We can conclude that the QoS provided to the user can be optimized only by

A Security-Driven Approach to Online Job Scheduling in IaaS Clouds 163

finding an optimal trade-off between various criteria inherent in the scheduling
process. Single-minded approaches (such as Maximum Reliability or Maximum
Cost policies) might seem like a simple solution to a complex problem, but as
indicated by experimental simulation, such an outlook is not valid in practice.
Their similar goals and optimization criteria result in allocating jobs to the same
pool of machines which leads to the overall congestion and load imbalance, and
in the effect, more frequent delays and higher execution costs.

Fig. 1. Performance results of conducted experiments with eight infrastructure sizes
from 1 to 128 VMs: (a) Total Cost, (b) Delayed Jobs.

6 Conclusion and Future Work

In this paper we have proposed a novel parallel and distributed algorithm based
on the Sandpile Cellular Automata (CA) model for dynamic load balancing and
rescheduling of jobs in a distributed IaaS CC environment. We analyzed a vari-
ety of cloud configurations and workloads considering two objectives: provider
income and SLA compliance. A user submits jobs to the service provider, which
offers a guaranteed level of service. For a given service level the user is charged
by a cost per unit of execution time. In return, the customer receives guarantees
regarding the provided resources. These guarantees are maximum response time
or deadlines used as QoS constraints.

As a future line of work we plan to extend our scheduling framework for
tackling the problem of energy efficiency in CC systems. On the one hand, energy
efficiency can be achieved by a smart consolidation of submitted workloads and
optimizing system utilization. On the other hand, the proposed scheduler can
be easily modified not only for spreading but also for consolidating workloads
between VMs thus finding optimal trade-offs between system performance and
energy consumption.

164 J. G ↪asior et al.

References

1. Ali, M., Khan, S.U., Vasilakos, A.V.: Security in cloud computing: opportunities
and challenges. Inf. Sci. 305, 357–383 (2015)

2. Benoit, A., Marchal, L., Pineau, J.-F., Robert, Y., Vivien, F.: Scheduling concur-
rent bag-of-tasks applications on heterogeneous platforms. IEEE Trans. Comput.
59(2), 202–217 (2010)

3. Buyya, R., Abramson, D., Giddy, Í.: Nimrod/G: an architecture for a resource man-
agement and scheduling system in a global computational grid. In: Proceedings of
the Fourth International Conference/Exhibition on High Performance Computing
in the Asia-Pacific Region (HPC Asia 2000), pp. 283–289. IEEE Computer Society
Press (2000)

4. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: vision, hype and reality for delivering computing as
the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

5. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50
(2011)

6. Celaya, J., Marchal, L.: A fair decentralized scheduler for bag-of-tasks applications
on desktop grids. In: 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid), pp. 538–541, May 2010

7. Chang, V.: The business intelligence as a service in the cloud. Future Gener. Com-
put. Syst. 37, 512–534 (2014). Special Section: Innovative Methods and Algorithms
for Advanced Data-Intensive Computing. Special Section: Semantics, Intelligent
Processing and Services for Big Data. Special Section: Advances in Data-Intensive
Modelling and Simulation. Special Section: Hybrid Intelligence for Growing Inter-
net and its Applications

8. Chang, V.: Towards a big data system disaster recovery in a private cloud. Ad
Hoc Netw. 35, 65–82 (2015). Special Issue on Big Data Inspired Data Sensing,
Processing and Networking Technologies

9. Chang, V., Kuo, Y.-H., Ramachandran, M.: Cloud computing adoption framework:
a security framework for business clouds. Future Gener. Comput. Syst. 57, 24–41
(2016)

10. Chang, V., Walters, R.J., Wills, G.B.: Organisational sustainability modelling-an
emerging service and analytics model for evaluating cloud computing adoption
with two case studies. Int. J. Inf. Manag. 36(1), 167–179 (2016)

11. de Assunção, M.D., Buyya, R.: Performance analysis of multiple site resource
provisioning: effects of the precision of availability information. In: Sadayappan,
P., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2008. LNCS, vol.
5374, pp. 157–168. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-89894-8 17

12. G ↪asior, J., Seredyński, F.: A Sandpile cellular automata-based scheduler and load
balancer. J. Comput. Sci. 21(Suppl. C), 460–468 (2017)

13. Jansen, W.A.: Cloud hooks: security and privacy issues in cloud computing. In:
Proceedings of the 2011 44th Hawaii International Conference on System Sciences,
HICSS 2011, pp. 1–10. IEEE Computer Society, Washington, DC (2011)

14. Kolodziej, J., Khan, S.U., Wang, L., Kisiel-Dorohinicki, M., Madani, S.A.,
Niewiadomska-Szynkiewicz, E., Zomaya, A.Y., Xu, C.-Z.: Security, energy, and
performance-aware resource allocation mechanisms for computational grids. Future
Gener. Comput. Syst. 31, 77–92 (2014)

https://doi.org/10.1007/978-3-540-89894-8_17
https://doi.org/10.1007/978-3-540-89894-8_17

A Security-Driven Approach to Online Job Scheduling in IaaS Clouds 165

15. Modi, P.J., Shen, W.-M., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraint optimization with quality guarantees. Artif. Intell. 161(1–2), 149–180
(2005)

16. Nesmachnow, S., Perfumo, C., Goiri, I.: Controlling datacenter power consumption
while maintaining temperature and QoS levels. In: 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet), pp. 242–247, October 2014

17. Raycroft, P., Jansen, R., Jarus, M., Brenner, P.R.: Performance bounded energy
efficient virtual machine allocation in the global cloud. Sustain. Comput.: Inform.
Syst. 4(1), 1–9 (2014)

18. Viswanathan, S., Veeravalli, B., Robertazzi, T.G.: Resource-aware distributed
scheduling strategies for large-scale computational cluster/grid systems. IEEE
Trans. Parallel Distrib. Syst. 18(10), 1450–1461 (2007)

19. Singh, G., Kesselman, C., Deelman, E.: A provisioning model and its compari-
son with best-effort for performance-cost optimization in grids. In: Proceedings of
the 16th International Symposium on High Performance Distributed Computing,
HPDC 2007, pp. 117–126. ACM, New York (2007)

20. Song, S., Hwang, K., Kwok, Y.-K.: Risk-resilient heuristics and genetic algorithms
for security-assured grid job scheduling. IEEE Trans. Comput. 55(6), 703–719
(2006)

21. Tchernykh, A., Lozano, L., Bouvry, P., Pecero, J.E., Schwiegelshohn, U.,
Nesmachnow, S.: Energy-aware on-line scheduling: ensuring quality of service for
IaaS clouds. In: 2014 International Conference on High Performance Computing
Simulation (HPCS), pp. 911–918, July 2014

22. Tchernykh, A., Lozano, L., Schwiegelshohn, U., Bouvry, P., Pecero, J.E.,
Nesmachnow, S., Drozdov, A.Y.: Online bi-objective scheduling for IaaS clouds
ensuring quality of service. J. Grid Comput. 14(1), 5–22 (2016)

23. Tchernykh, A., Pecero, J.E., Barrondo, A., Schaeffer, E.: Adaptive energy efficient
scheduling in peer-to-peer desktop grids. Future Gener. Comput. Syst. 36, 209–220
(2014). Special Section: Intelligent Big Data Processing. Special Section: Behavior
Data Security Issues in Network Information Propagation. Special Section: Energy-
Efficiency in Large Distributed Computing Architectures. Special Section: eScience
Infrastructure and Applications

Dynamic Load Balancing Algorithm
for Heterogeneous Clusters

Tiago Marques do Nascimento, Rodrigo Weber dos Santos ,
and Marcelo Lobosco(B)

Graduate Program on Computational Modeling, Federal University of Juiz de Fora,
Juiz de Fora, Brazil

tiago.nascimento@uab.ufjf.br, {rodrigo.weber,marcelo.lobosco}@ufjf.edu.br

Abstract. Half of the ten fastest supercomputers in the world use mul-
tiprocessors and accelerators. This hybrid environment, also present in
personal computers and clusters, imposes new challenges to the program-
mer that wants to use all the processing power available on the hardware.
OpenCL, OpenACC and other standards can help in the task of writing
parallel code for heterogeneous platforms. However, some issues are not
eliminated by such standards. Since multiprocessors and accelerators are
different architectures and for this reason present distinct performance,
data parallel applications have to find a data division that distributes
the same amount of work to all devices, i.e., they have to finish their
work in approximately the same time. This work proposes a dynamic
load balancing algorithm that can be used in small-scale heterogeneous
environments. A simulator of the Human Immune System (HIS) was
used to evaluate the proposed algorithm. The results have shown that
the dynamic load balancing algorithm was very effective in its purpose.

Keywords: Load balancing · Heterogeneous cluster · GPUs
Multiprocessors

1 Introduction

Heterogeneous clusters environments are becoming popular parallel platforms.
These environments are composed by distinct processors and accelerators, such
as GPUs. From a programmer perspective, it is not an easy task to write a
parallel program to take advantage of all the computing resources, CPUs1 and
GPUs, present in such environment. This happens not only due to the fact that
the computing resources have distinct computational power, but also because
of the distinct types of parallelism they were designed to exploit. There are
basically two types of parallelism in applications: Data-Level Parallelism (DLP)
and Task-Level Parallelism (TLP). The first one arises due to the multiple data

The authors would like to thank UFJF and the Brazilian agencies FAPEMIG,
CAPES, and CNPq.

1 The term CPU in this work refers to multicore processors.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 166–175, 2018.
https://doi.org/10.1007/978-3-319-78054-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_16&domain=pdf
http://orcid.org/0000-0002-0633-1391
http://orcid.org/0000-0002-7205-9509

Dynamic Load Balancing Algorithm for Heterogeneous Clusters 167

items that must be computed by an application, whereas the second one due
to the multiple tasks that must be executed. CPUs were designed to deal with
TLP and small amounts of DLP, whereas GPUs were designed to explore large
amounts of DLP [6]. Programmers that want to explore DLP in all devices of a
heterogeneous platform must take these differences into account, since they can
impact the way the code is written and executed.

Some tools, such as those based on OpenCL (Open Computing Language)
[15] and OpenACC (Open Accelerators) [1] standards, can help programmers
to write code to execute on heterogeneous architectures. Some issues, however,
remain open, such as the data division between GPUs and CPUs that balance
the amount of work each one will execute. Since GPUs were designed to explore
large amounts of DLP, they must receive more data than CPUs to compute, but
how much more? Also, depending on the type of instruction that is executed
(e.g., float point or integer instruction), the amount of data each computing
resource must receive changes. A load balancing (LB) algorithm can help in this
task. In this work we use the term LB in the sense of the data division that makes
all devices in a heterogeneous cluster composed by CPUs and GPUs finish their
computing in approximately the same time.

In previous works [16,17] we have proposed two distinct algorithms to deal
with LB in Accelerated Processing Units (APUs) [3]. APUs merge, in a single
silicon chip, the functionality of GPUs with the traditional multicore CPUs. In
this paper two new contributions are presented. The first one is the extension
done on the dynamic algorithm in order to execute it on a distinct architec-
ture, a heterogeneous cluster. Some modifications in the original algorithm were
introduced in order to deal with the new environment. The last one is the evalu-
ation of the impact of the dynamic LB algorithm in performance, using for this
purpose the HIS (Human Immune System) simulator.

The remaining of this work is organized as follows. Section 2 presents related
works. Section 3 presents a brief overview of OpenCL. OpenCL and MPI were
used in the implementation of HIS. In Sect. 4 we present the dynamic LB algo-
rithm. Section 5 presents the performance evaluation. Finally, Sect. 6 presents
our conclusions and plans for future works.

2 Related Work

A significant amount of research has been done on heterogeneous computing
techniques [14]. Harmony [4] is a runtime supported programming and execution
model that uses a data dependency graph to schedule and run independent ker-
nels in parallel heterogeneous architectures. This approach is distinct from ours
because we focus on data parallelism, while Harmony focus on task parallelism.
Merge [11] is a library system that deals with map-reduce applications on hetero-
geneous system. Qilin [12] is an API that automatically partitions threads to one
CPU and one GPU. SKMD [9] is a framework that transparently distributes the
work of a single parallel kernel across CPUs and GPUs. SOCL [7] is an OpenCL
implementation that allows users to dynamically dispatch kernels over devices.

168 T. M. do Nascimento et al.

StarPU [2] is a task programming library for hybrid architectures that provides
support for heterogeneous scheduling. Our approach is distinct because we are
not proposing a new library, API, framework or OpenCL implementation, nor
we limit the number of CPUs or GPUs that can be used as Qilin does. Also,
StarPU does not perform inter-node load-balancing as our approach does. Since
the proposed dynamic scheduling approach is implemented in the application
code, we do not have to pay the overheads imposed by the frameworks, runtime
systems or APIs.

3 OpenCL

OpenCL (Open Computing Language) [15] is an open standard framework that
was created by the industry (Khronos Group) in order to help the development
of parallel applications in heterogeneous systems. An OpenCL platform includes
a single host, which submits work to devices. OpenCL devices, such as CPUs,
GPUs, and so on, are divided into compute units, which can further be divided
into processing elements(PEs). An OpenCL application consists of two parts, the
host program and one or more kernels. PEs execute the kernels, while the host
program is executed by the host. The host sends commands to devices through a
command-queue. There are three types of commands that can be issued: kernel
execution, memory and synchronization commands. The commands issued to a
specific queue can be executed in the same order they appear in the command-
queue (in-order execution), or can be executed out-of-order. The programmer
can use explicit synchronization mechanisms to enforce an order constrain to
the execution of commands in a queue. An automatic LB scheme, based on
the master-worker parallel pattern [13,15], can be implemented using command-
queues, specially those that implements out-of-order execution. However, this
parallel pattern is particularly suited for problems based on TLP [13]. In previous
works [16,17] we proposed distinct solutions based on an in-order execution for
problems based on DLP for an APU architecture.

4 Dynamic Load Balancing Scheme

Heterogeneous computers represent a big challenge to the development of appli-
cations that explore DLP. The use of all distinct PEs available to simultaneously
operate in all data items is not easy due to the distinct hardware characteristics.
In fact, heterogeneous computing on CPUs and GPUs using architectures like
CUDA [8] has fixed the roles for each device: GPUs have been used to handle
data parallel work while CPUs handle all the rest. The use of this fixed role has
impacts on performance, since CPUs are idle while GPUs are handling the data
parallel work. Actually CPUs could handle part of the work submitted to the
GPU. In this scenario, OpenCL [15] represents an interesting alternative, since
it is easy to program parallel codes that use all devices to operate in data items.
The point is that the programmer is responsible for the data division between
CPUs and GPUs. A good data division would give to each PE a distinct amount

Dynamic Load Balancing Algorithm for Heterogeneous Clusters 169

of data proportional to its relative performance. So if device A is 1.5 times faster
than device B, it should receive 1.5 times more data to compute than device B.

In previous works we have presented two distinct LB algorithms [16,17] to be
used with data parallel OpenCL codes running on an APU. The key idea behind
the two algorithms is similar: data is split into two parts, one of which will be
computed by the CPU, while the other one will be computed by the GPU. The
amount of data that will be assigned to the CPU and GPU depends on their
relative computing capabilities, which is measured in both LB algorithms during
the execution of the application.

This work further extends our previous LB algorithms to be used in a different
hardware platform: a heterogeneous cluster. Since an APU merges GPUs and
CPUs cores on a single silicon chip, some modifications have to be done in the
algorithm to deal with multiple GPUs and CPUs available in distinct nodes of a
cluster. Also, the algorithm does not assume that all machines in a cluster have
the same configuration, i.e., the same number and types of CPUs and GPUs.

The dynamic LB algorithm can be used in a wide variety of applications
that explore DLP. Usually these applications have at least two aligned loops,
in which the inner loop performs the same operations on distinct data items,
as Algorithm 1 shows. Each step of the inner loop (or a collection of loops, if a
multidimensional data structure is used) could be executed in any order, since
no data dependency occurs between two distinct loop iterations. The number of
steps the outer loop iterates is determined by the nature of the problem, but
usually a dependency exists between two consecutive steps: a new step cannot
proceed without the result of a previous one, since their results will be used
during the computation of the new step. In many applications the outer loop
is related to the progress of a simulation over time, and for this reason will be
referred in this work as time-steps. The dynamic LB algorithm will decide the
amount of data each PE will receive to compute in the inner loop.

During the computation of each data item, some applications require also
access to its neighbors data, which can be located at distinct memory spaces due
to data splitting between CPUs and GPUs. These data, called boundaries, must
be updated between two consecutive iteration of the outer loop. This update
requires the introduction of synchronization operations and the explicit copy of
data. In the case of a heterogeneous cluster, this copy may occur inside a machine
(e.g., copying data between two distinct GPUs or between the memory space of
a CPU and a GPU, and vice-versa) or between machines, which imposes the use
of communication primitives. Both data copy and synchronization operations
are expensive, deteriorating performance, and for this reason should be avoided.

The dynamic LB algorithm is presented in Algorithm 2 and works as follows.
For a single time-step, all GPUs and CPUs receive an equal amount of data to
compute (data size divided by the total number of PEs) and the time required to
compute them is recorded. This information is then used to compute the relative
computing power of each PE and consequently determine the amount of data it
will receive for the next time-steps. Equation 1 is used for this purpose.

170 T. M. do Nascimento et al.

1 for all time-steps do
2 for each data item do
3 call cpus/gpus devices to compute a piece of data;
4 end
5 send/receive boundaries;
6 synchronize devices;

7 end
Algorithm 1. Data parallel algorithm

1 initialize MPI and OpenCL;
2 allocate memory in each device’s memory space;
3 divide data equally among all devices;
4 start clock;
5 for a single time-step do
6 call cpus/gpus to compute their data;
7 synchronize;

8 end
9 finish clock;

10 compute P
(t)
i and transfer data accordingly;

11 for all remaining time-steps do
12 if time-step % LB interval == 0 then
13 start clock;
14 call cpus/gpus to compute their data;
15 synchronize;
16 finish clock;

17 compute P
(t)
i ;

18 if |P (t)
i − P

(t−1)
i | > LB threshold then

19 transfer data accordingly;
20 synchronize devices;

21 end
22 else

23 P
(t)
i = P

(t−1)
i (keeps data distribution);

24 end

25 end
26 else
27 call cpus/gpus to compute interior points and transfer border points in

parallel;
28 synchronize;
29 call cpus/gpus to compute border points;
30 synchronize;

31 end

32 end
Algorithm 2. The dynamic LB algorithm

Dynamic Load Balancing Algorithm for Heterogeneous Clusters 171

P
(t)
i =

P
(t−1)
i × T

(t−1)
r

T
(t−1)
i × ∑n

k=1
P

(t−1)
k ×T

(t−1)
r

T
(t−1)
k

, (1)

where P
(t)
i is the percentage of data the PE i will receive to compute in the next

time-step, P (t−1)
i is the percentage of data the PE i received in the previous time-

step, T (t−1)
i is the time in which PE i executed the previous time-step, T (t−1)

r is
the time in which an arbitrary reference PE r executed the previous time-step
and k is the total number of PEs available in the heterogeneous cluster. In the
first time-step (t = 0), the percentage of data each PE will receive to compute
is divided equally among all PEs.

After the computation of the amount of data each PE will compute in the
next time-step, memory should be reallocated and data copied from its last
owner to the new one. However, in order to avoid memory reallocations, the
dynamic LB algorithm allocates, at each PE, an additional amount of memory
to avoid memory reallocations, and only data copies are required.

After the first time-step has finished, the LB algorithm will be executed from
time to time to adjust the amount of data each PE will receive till the end of the
computation. This occur because some applications exhibit an irregular behavior
during computation, while other applications that seems to be regular parallel
applications, such as the one that will be used in the performance evaluation,
suffer from irregular execution time phases during their execution. This happens
due to hardware optimizations done in the CPU, which would impact a static
LB algorithm, i.e., an algorithm that keeps the percentage found in the first
time-step until the end of computation [18].

The LB step is a time consuming task, specially due to data transfers between
PEs located in distinct machines. If the change in the amount of data each PE
must compute is minimal, the eventual performance gain is not compensated by
the overhead of moving data. So a parameter, called LB threshold, was added
to avoid this situation. If the difference between P

(t)
i and P

(t−1)
i is lower than

this threshold, the PEs remain with their previous loads until another LB step
is reached.

A final optimization is done in order to reduce the communication costs. Each
PE divides its data into two subsets: borders and interior points. The border
points are composed by the points that must be exchanged with the neighbors,
whereas the interior points are not exchanged. The PE compute first the border
points. While computing the interior points, the PE exchange borders with its
neighbors, so computation and communication overlap.

5 Performance Evaluation

This section evaluates the performance of the LB algorithm presented in this
work using for this purpose a simulator of the HIS [19,20]. This simulator was

172 T. M. do Nascimento et al.

chosen because it is a representative of data parallel algorithm: the same set of
operations must be executed on a large amount of data.

All tests were executed on a small cluster composed by 3 machines. The
machines have two AMD 6272 processors (each machine has 32 cores), 32 GB
of main memory, two Tesla M2075 GPUs, each one with 448 CUDA cores and
6 GB of global memory. Linux 2.6.32, OpenMPI version 1.6.2 and gcc version
4.4.7 were used to run and compile all codes. The machines are connected by
a Gigabit Ethernet network. Although the AMD machines have a total of 96
cores, one Float-Point Unit (FPU) is shared by two cores, so only 48 FPUs are
available in the machines.

5.1 Benchmark

A three dimensional simulator of the HIS [19,20] was used to evaluate the perfor-
mance of the two load-balancing algorithms. The simulator implements a math-
ematical model that uses a set of eight Partial Differential Equations (PDEs) to
describe how some cells and molecules involved in the innate immune response,
such as neutrophils, macrophages, protein granules, pro- and anti-inflammatory
cytokines, react to an antigen, which is represented by lipopolysaccharides. The
diffusion of some cells and molecules are described by the mathematical model,
as well as the process of chemotaxis. Chemotaxis is the movement of immune
cells in response to chemical stimuli by pro-inflammatory cytokine. Neutrophils
and macrophages move towards the gradient of pro-inflammatory cytokine con-
centration. A detailed discussion about the model can be found in [19,20].

The numerical method used in the computational implementation of the
mathematical model was the Finite Difference Method [10], a method commonly
used in the discretization of PDEs. The computation of the convective term (the
chemotaxis term) is a complex part in the resolution of the PDEs. Our imple-
mentation is based on the finite difference method for the spatial discretization
and the explicit Euler method for the time evolution. First-Order Upwind scheme
[5] is used in the discretization of the chemotaxis term. More details about the
numerical implementation, specially how the Laplace operator, that simulates
the diffusion phenomenon, is implemented in 3D, can be found in a previous
work [20]. This previous work used C and CUDA in the implementation, using
only GPUs in the computation, while this work uses C and OpenCL, using all
resources (CPUs and GPUs) available in the cluster.

There are two ways to divide the data mesh: division by planes and division
by individual elements. The division by individual elements allows the algorithm
to use of a fine-grain data partition in the LB. In a previous work [18], we have
found that the division by individual elements performs better and, for this
reason, this division will be used in this work. A mesh of size 50 × 50 × 3200
was used in the experiments. The values used to set the initial conditions and
parameters of HIS are the same used in our previous work [16]. A total of 10, 000
time-steps were executed. The LB interval is equal to 10% of the time-steps and
the LB threshold is equal to 50 elements.

Dynamic Load Balancing Algorithm for Heterogeneous Clusters 173

Three versions of the HIS were executed: a sequential one, a version that
used the dynamic LB algorithm and one that did not use LB. In the version
that did not use the LB, the mesh size was divided equally among all PEs that
were used to execute the code. Each HIS version was executed at least 3 times,
and all standard deviations of the execution time were below 1%.

5.2 Results

Table 1 presents the results. As one can observe, the sequential version of the
code executes in more than 36 h. A typical simulation requires 1,000,000 time-
steps, which represents more than 151 days of computation. The parallel version
of the simulator that does not use the LB algorithm executes up to 435 times
faster. But the dynamic LB algorithm improved the performance even more:
using the same configuration, the application executed 916 times faster than the
sequential one and 2.1 times faster than the version that does not use the LB
algorithm.

Table 1. Experimental results for the parallel version of the code in a small clus-
ter. Average execution time(s) and gains relative to the version without LB and the
sequential one.

Platform w/o LB LB Gain

32 CPUs + 2 GPUs 531.3 283.1 1.9

64 CPUs + 4 GPUs 308.3 182.1 1.7

96 CPUs + 6 GPUs 300.5 142.7 2.1

Sequential 130,694.33 916

Table 2 presents the HIS parallel execution time in a single machine, consid-
ering the use of each computational resource at a time, as well as using all of
them simultaneously, with and without the use of the LB algorithm proposed
in this work. The best result obtained with the use of a single computational

Table 2. Using all resources types available in a single machine × using one at a time.
Times in seconds. Gains compared to the version that uses 2 GPUs to execute the
code.

Platform Execution time Gain

32 CPUs 1,688 -

1 GPU 627 -

2 GPUs 317 -

32 CPUs + 2 GPUs (w/o LB) 531.3 0.6

32 CPUs + 2 GPUs (LB) 283.1 1.12

174 T. M. do Nascimento et al.

resource was 317 s, when 2 GPUs are used to execute the code. The simultane-
ous use of all resources does not guarantee a performance gain: if all CPUs and
GPUs are included in the computation, the parallel execution time increases to
531 s. However, the same configuration can obtain a performance gain if the LB
algorithm is used: the execution time reduces to 283 s.

6 Conclusions and Future Works

This paper presented the implementation of a dynamic LB algorithm in a hetero-
geneous cluster environment. Its key idea is to split data items of an application
that explore DLP into multiple parts that will be computed simultaneously by
CPUs and GPUs. The amount of data that will be assigned to CPUs and GPUs
depends on their relative computing capabilities, which is measured and updated
during all the execution of the application.

A performance evaluation of the dynamic LB algorithm was executed, using
for this purpose the Human Immune System simulator. The results have shown
that the algorithm was very effective in its purpose, resulting in gains up to 916-
fold in execution time compared to the sequential one. Compared to the version
that did not use the LB, the gains in performance were 2.1 times. We have also
shown that performance gains could only be obtained using all resources in a
single machine if the LB algorithm was used.

As future works, we plan: (a) to measure the overheads imposed by the algo-
rithm, specially the time spent with communication due to a new data division;
(b) to develop a static version of the algorithm, and compare it to the dynamic
one; (c) to evaluate the proposed LB algorithm using other benchmarks; and (d)
evaluate the impacts of the algorithm in the scalability of applications.

References

1. The OpenACC application programming interface - version 2.5. Technical report,
OpenAcc.org (2015)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187–198 (2011)

3. Branover, A., Foley, D., Steinman, M.: AMD fusion APU: Llano. IEEE Micro
32(2), 28–37 (2012)

4. Diamos, G.F., Yalamanchili, S.: Harmony: an execution model and runtime for
heterogeneous many core systems. In: Proceedings of the 17th International Sym-
posium on High Performance Distributed Computing, HPDC 2008, pp. 197–200.
ACM, New York(2008)

5. Hafez, M.M., Chattot, J.J.: Innovative Methods for Numerical Solution of Partial
Differential Equations. World Scientific Publishing Company, Singapore (2002)

6. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach, 5th edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)

Dynamic Load Balancing Algorithm for Heterogeneous Clusters 175

7. Henry, S., Denis, A., Barthou, D., Counilh, M.-C., Namyst, R.: Toward OpenCL
automatic multi-device support. In: Silva, F., Dutra, I., Santos Costa, V. (eds.)
Euro-Par 2014. LNCS, vol. 8632, pp. 776–787. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-09873-9 65

8. Kirk, D.B., Wen-Mei, W.H.: Programming Massively Parallel Processors: A Hands-
on Approach, 2nd edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

9. Lee, J., Samadi, M., Park, Y., Mahlke, S.: Transparent CPU-GPU collaboration
for data-parallel kernels on heterogeneous systems. In: Proceedings of the 22nd
International Conference on Parallel Architectures and Compilation Techniques,
PACT 2013, pp. 245–256. IEEE Press, Piscataway (2013)

10. LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equa-
tions: Steady-State and Time-Dependent Problems (Classics in Applied Mathemat-
ics). Society for Industrial and Applied Mathematics, Philadelphia (2007)

11. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: a programming
model for heterogeneous multi-core systems. In: Proceedings of the 13th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XIII, pp. 287–296. ACM, New York (2008)

12. Luk, C.K., Hong, S., Kim, H.: Qilin: exploiting parallelism on heterogeneous multi-
processors with adaptive mapping. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 42, pp. 45–55. ACM, New
York (2009)

13. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming, 1st
edn. Addison-Wesley Professional, Boston (2004)

14. Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing tech-
niques. ACM Comput. Surv. 47(4), 69:1–69:35 (2015)

15. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Program-
ming Guide, 1st edn. Addison-Wesley Professional, Boston (2011)

16. do Nascimento, T.M., de Oliveira, J.M., Xavier, M.P., Pigozzo, A.B., dos Santos,
R.W., Lobosco, M.: On the use of multiple heterogeneous devices to speedup the
execution of a computational model of the human immune system. Appl. Math.
Comput. 267, 304–313 (2015)

17. do Nascimento, T.M., dos Santos, R.W., Lobosco, M.: On a dynamic scheduling
approach to execute OpenCL jobs on APUs. In: Osthoff, C., Navaux, P.O.A.,
Barrios Hernandez, C.J., Silva Dias, P.L. (eds.) CARLA 2015. CCIS, vol. 565, pp.
118–128. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26928-3 9

18. do Nascimento, T.M., dos Santos, R.W., Lobosco, M.: Performance evaluation of
two load balancing algorithms on a hybrid parallel architecture. In: Malyshkin, V.
(ed.) PaCT 2017. LNCS, vol. 10421, pp. 58–69. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-62932-2 5

19. Pigozzo, A.B., Macedo, G.C., Santos, R.W., Lobosco, M.: On the computational
modeling of the innate immune system. BMC Bioinform. 14(6), S7 (2013)

20. Rocha, P.A.F., Xavier, M.P., Pigozzo, A.B., de M. Quintela, B., Macedo, G.C.,
dos Santos, R.W., Lobosco, M.: A three-dimensional computational model of the
innate immune system. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha,
A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012. LNCS, vol. 7333, pp.
691–706. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31125-
3 52

https://doi.org/10.1007/978-3-319-09873-9_65
https://doi.org/10.1007/978-3-319-09873-9_65
https://doi.org/10.1007/978-3-319-26928-3_9
https://doi.org/10.1007/978-3-319-62932-2_5
https://doi.org/10.1007/978-3-319-62932-2_5
https://doi.org/10.1007/978-3-642-31125-3_52
https://doi.org/10.1007/978-3-642-31125-3_52

Multi-Objective Extremal Optimization
in Processor Load Balancing
for Distributed Programs

Ivanoe De Falco1, Eryk Laskowski2(B), Richard Olejnik3, Umberto Scafuri1,
Ernesto Tarantino1, and Marek Tudruj2,4

1 Institute of High Performance Computing and Networking, CNR, Naples, Italy
{ivanoe.defalco,umberto.scafuri,ernesto.tarantino}@icar.cnr.it

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
{laskowsk,tudruj}@ipipan.waw.pl

3 Université Lille — CRISTAL, CNRS, Lille, France
richard.olejnik@univ-lille1.fr

4 Polish-Japanese Academy of Information Technology, Warsaw, Poland

Abstract. The paper presents a multi-objective load balancing algo-
rithm based on Extremal Optimization in execution of distributed pro-
grams. The Extremal Optimization aims in defining task migration as
a means for improving balance in loading executive processors with
program tasks. In the proposed multi-objective approach three objec-
tives relevant in processor load balancing for distributed applications are
jointly optimized. These objectives include: balance in computational
load of distributed processors, total volume of inter-processor commu-
nication between tasks and task migration metrics. In the proposed
Extremal Optimization algorithms a special approach called Guided
Search is applied in selection of a new partial solution to be improved.
It is supported by some knowledge of the problem in terms of com-
putational and communication loads influenced by task migration. The
proposed algorithms are assessed by simulation experiments with dis-
tributed execution of program macro data flow graphs.

Keywords: Extremal Optimization · Multi-objective optimization
Processor load balancing

1 Introduction

The focus of this paper is on using a multi-objective optimization approach based
on Extremal Optimization (EO) [1] in the context of processor load balancing.
EO is a nature inspired optimization approach based on improvements of a single
solution which has small computational and memory complexity. These features
justify using this approach in processor load balancing in distributed systems.
Good reviews and classifications of classic load balancing methods are presented

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 176–188, 2018.
https://doi.org/10.1007/978-3-319-78054-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_17&domain=pdf

Multi-Objective Extremal Optimization in Processor Load Balancing 177

in [2,7,8]. Good reviews of load balancing methods based on evolutionary algo-
rithms including EO are contained in [5,9]. Based on them, we can state that
except for our works, the known solutions of load balancing methods have not
yet shown interest in EO applied in load balancing algorithms.

In our previous research [3–5], we have proposed to use EO in iterative load
balancing phases to determine periodic migration of tasks among processors
leading to improvement of program task placement on processors. It is based
on a special quality model which covers both computation and communication
parameters of parallel application tasks and component features of the execu-
tive system. In these algorithms, a special EO-GS approach (EO with a Guided
Search) is applied which assures that selection of a new partial solution to be
improved is guided by some knowledge of the problem in terms of computational
and communication loads. It replaces the fully random task and processor selec-
tion in solution improvement by stochastic selection which improves convergence
of the algorithm. In papers [4,5] we have compared our load balancing algorithms
based on EO-GS approach against algorithms based on greedy deterministic and
genetic approaches. It has been shown the proposed algorithm based on the pro-
posed by us EO-GS approach provides better applications parallel execution
speedup than obtained with the use of the other mentioned approaches. Expe-
rience on EO-supported load-balancing gathered by us in our previous research
was suggesting that a multi-criteria approach could be used to improve load
balancing algorithms by search which covers a larger area of optimization space.
The algorithms presented in the current paper concern the EO-GS based load
balancing algorithms similar to the mentioned above but developed by using a
multi-objective optimization approach instead of the single-objective one.

Large surveys on general methods of multi-objective optimization can be
found in [13,14]. Extensive surveys on multi-objective optimization methods
combined with evolutionary algorithms in general can be found in [15,16]. Multi-
objective approach applied to EO has already been discussed in several papers
[17–22]. They propose basic methods of multi-objective optimization and cover
different technical aspects of this approach. However, they are oriented towards
generalized optimization problems and do not cover algorithms applied to pro-
cessor load balancing. In this respect our work has fully originality features.

In the current paper, we show that our multi-objective approach based on
three parameters of program execution in cluster environments: computational
load of processors, inter-processor communication intensity and the number of
task migrations provides better results than that of the EO applied to proces-
sor load balancing presented in our previous papers. The three objectives are
included into a generalized EO algorithm iterative structure in which the algo-
rithm sequentially performs series of steps based on the dynamically changing
three objectives (EO-GS global fitness functions) and on respective methods of
solution element selection for improvement (EO local fitness function). The algo-
rithm delivers the final compromise solution which minimizes the distance to the
ideal point with respect to a given norm which is the Manhattan distance [6].

178 I. De Falco et al.

The proposed algorithms are validated by experimental results obtained by
simulation.

The paper is organized as follows. Section 2 recalls EO algorithm principles.
Section 3 presents the scheme of the load balancing based on the multi-objective
EO and important details of the applied multi-objective approach. Section 4
describes the experimental assessment of the proposed algorithms including sim-
ulation results.

2 Extremal Optimization Algorithm Principles

Extremal Optimization is an attractive nature-inspired optimization method for
NP–hard combinatorial and physical optimization problems. It was proposed by
Boettcher and Percus [1], following the Bak–Sneppen approach of self–organized
dynamic criticality [10].

A probabilistic version EO operates on a single solution S consisting of a
given number of components si, each of which is a variable of the problem. At
each algorithm iteration, a local fitness value φi is assigned to each of them.
Then, for a minimization problem, the components are ranked in decreasing
order of local fitness values. The worst component sj is of rank 1, while the best
one is of rank G, where G is the number of components. Then, a distribution
probability over the ranks k is considered as follows: pk ∼ k−τ , 1 ≤ k ≤ G for
a given value of the parameter τ . Finally, at each update, a rank k is selected
according to pk so that the component si of rank k randomly changes its state
and the solution moves to a neighboring one, S′ ∈ Neigh(S), unconditionally. At
the end of iteration, the global fitness Φ(S′) is computed, and the new solution
S′ is saved if its global fitness value is better than that of the best solution
found so far. The only parameters are the total number of iterations Niter and
the probabilistic selection parameter τ .

To foster the convergence speed of EO optimization, we have proposed a
modified version of EO algorithm, called Extremal Optimization with Guided
Search (EO-GS) [4,5]. In EO-GS, some knowledge of the problem properties is
used during the next solution selection in consecutive EO iterations with the help
of an additional local target function ωs. The value of this function is evaluated
for all neighbours Neigh(S) of rank k. Then, the neighbour solutions are sorted
and assigned GS-ranks g with the use of the function ωs. The new state S′ ∈
Neigh(S) is selected in a stochastic way using the exponential distribution with
the selection probability p ∼ Exp(g, λ) = λe−λg. Due to this, better neighbour
solutions are more probable to be selected. The bias to better neighbours is
controlled by the λ parameter.

3 Load Balancing Based on the Multi-Objective EO

3.1 Processor Load Balancing Scheme Based
on Multi-Objective EO

The proposed Multi-Objective EO-GS-based load balancing algorithm is meant
for a cluster of multi-core processors interconnected by a message passing

Multi-Objective Extremal Optimization in Processor Load Balancing 179

Fig. 1. The general scheme of load balancing based on Multi-Objective EO with guided
search.

network. Load balancing actions are performed on-line to dynamically preserve
the even distribution of application tasks on processors.

We assume that the load balancing algorithms dynamically control assign-
ment of program tasks tk, k ∈ 1, . . . , |T | to processors (computing nodes)
n, n ∈ 0, 1, . . . , |N | − 1, where T and N are the sets of all the tasks and the
computing nodes, respectively. The goal is the minimal total program execu-
tion time, achieved by task migration between processors. The load balancing
method is based on a series of steps in which detection and correction of pro-
cessor load imbalance is done, Fig. 1. The imbalance detection relies on some
run-time infrastructure which observes the state of processors in the executive
computer system and the execution states of application programs. When load
imbalance is discovered, processor load correction actions are launched. For them
a multi-objective EO-GS algorithm is executed to identify the tasks which need
migration and the processor nodes which will be migration targets. Following
this, the required physical task migrations are performed with the return to the
load imbalance detection.

To evaluate the load of the system two indicators are used. The first is the
computing power of a node n: powerCPU(n), which is the sum of potential com-
puting powers of all the active cores on the node, available for application exe-
cution. The second is the percentage of the CPU power available for application
threads on the node n: timeCPU(n), periodically estimated on computing nodes.

System load imbalance I is a Boolean variable defined based on the difference
of the CPU availability between the currently most heavily and the least heavily
loaded computing nodes:

I = max
n=0,...,|N |−1

(timeCPU(n)) − min
n=0,...,|N |−1

(timeCPU(n)) ≥ α (1)

The load imbalance equal true requires a load correction. The value of α is
determined experimentally (during experiments we set it between 25% and 75%).

180 I. De Falco et al.

Algorithm 1. Multi-objective EO with Guided Search (MOEO-GS)
initialize configuration S at will
Sbest ← S
DS ← ∅ {the set of non-dominated solutions (Pareto-front)}
while total number of iterations Niter not reached do

c ← a criterion for evaluation in the current iteration
evaluate φi,c for each variable si of the current solution S
rank the variables si based on their local fitness φi,c

choose the rank k according to k−τ so that the variable sj with j = π(k) is selected
evaluate ωs for each neighbour Sv ∈ Neigh(S, sj), generated by sj change of the
current solution S
rank neighbours Sv ∈ Neigh(S, sj) based on the target function ωs

choose S′ ∈ Neigh(S, sj) according to the exponential distribution
accept S ← S′ unconditionally
if S is non-dominated then

include S in DS, remove dominated solutions from DS

end if
end while
select Sbest from DS using Φ(S)
return Sbest and Φ(Sbest)

An application is characterized by two programmer-supplied parameters,
based on the volume of computations and communications tasks: com(ts, td) is
a communication metrics between tasks ts and td, wp(t) is a load weight metrics
introduced by a task t. com(ts, td) and wp(t) metrics can provide exact values,
e.g. for well-defined tasks sizes and inter-task communication in regular parallel
applications, or only some predictions, e.g. when the execution time depends on
the processed data. Even when the values are exact, we assume that there can
some fluctuations of tasks execution or CPU power availability, so the dynamic
load balancing is required.

A task mapping solution S is represented by a vector μ(S) = (μ1, . . . , μ|T |)
of |T | integers ranging in the interval {0, 1, . . . , |N | − 1}. μi = j means that the
solution S maps the i–th task ti onto the computing node j.

In our solution we solve a processor load balancing problem in execution
of distributed programs with the use of a multi-objective EO-GS algorithm
(MOEO-GS), shown as Algorithm 1. The proposed MOEO-GS algorithm fol-
lows the general scheme of EO-GS approach described in the Sect. 2, with the
exception that it uses a set of EO local and global fitness functions and maintains
the Pareto front of non-dominated solutions.

During an iteration, the selection and solution improvement are performed
using a single objective c (i.e. a single EO local and a respective single global
fitness functions). It is selected in a probabilistic way from the MO objectives
specified for our load balancing problem (the local and global fitness functions
used in our MOEO-GS algorithm are defined in the Subsect. 3.2).

The Pareto front is analyzed at the end of the algorithm to deliver the Sbest

solution. The Sbest is selected from DS using some utility function, which in our

Multi-Objective Extremal Optimization in Processor Load Balancing 181

implementation of the algorithm is the Manhattan distance metrics. The Sbest

is then used by the load balancing controller to decrease the load imbalance.

3.2 Global and Local Fitness Functions Applied
in Multi-Objective EO

In our algorithm, we operate using three objective functions oriented on support-
ing the load balancing problem: total computational load imbalance in execution
of application tasks on processors, total volume of communication between tasks
placed on different computing nodes and task migration number which should
be possibly small in fighting imbalance of processor loads. As MOEO-GS is a
minimization algorithm, it looks for the solutions with lower values of the global
fitness (or components with lower values of the local fitness, respectively).

The definitions of fitness functions use two auxiliary formulas:

nwp(S, n) =
∑

t∈T :μt=n

wp(t) (2)

WT =
∑

t∈T

wp(t)/
∑

n=0,...,|N |−1

powerCPU(n) (3)

where nwp(S, n) is the sum of computational load of program tasks allocated to
processor n in the solution S, and WT is the average computational weight of
program tasks attributed to one unit of computational power of processors.

A load imbalance normalization constant is equal to maximal numerical value
of the imbalance (i.e. when all tasks are assigned to the slowest processor):

Dnorm = (|N | − 2) ∗ WT +
∑

t∈T

wp(t)/ min
n=0,...,|N |−1

powerCPU(n) (4)

The first objective concerns the reduction of the computational load imbal-
ance among executive processors in the system during a given phase of dis-
tributed program execution i.e. defined by the current MOEO-GS solution S.
The global fitness functions Φ(S) for objective 1 (computational load imbal-
ance) is defined as follows:

Φ1
l (S) =

{
1 exists at least one unloaded node
deviation(S)/Dnorm otherwise (5)

where:

deviation(S) =
∑

n=0,...,|N |−1

|nwp(S, n)/powerCPU(n) − WT | (6)

The function Φ1
l (S) represents the numerical load imbalance metrics in the solu-

tion S. It is equal to 1 when in S there exists at least one unloaded (empty)
computing node, otherwise it is equal to the normalized absolute load deviation
of tasks from average load in S.

182 I. De Falco et al.

The local fitness function for MOEO-GS algorithm for the objective 1 is
designed as follows:

φl(t) = γ ∗ load(μt) + (1 − γ) ∗ (1 − ldev(t)) (7)

where the function load(n) indicates how much the load of node n, which exe-
cutes t, exceeds the average load of all nodes. It is normalized versus the heav-
iest load among all the nodes. The function ldev(t) is defined as the difference
between the load metrics of the task t and the average task load on the node μt,
normalized versus the highest such value for all tasks on the node [5].

The second objective for the MOEO-GS algorithm is the global EO-GS fitness
function Φ(S) for objective 2 (external communication) defined as follows:

Φc(S) =
∑

s,d∈T :μs �=μd

com(s, d)/
∑

s,d∈T

com(s, d) (8)

The function Φc(S) ∈ [0, 1] represents the impact of the external (i.e. inter-node)
communication between tasks on the quality of a given mapping S. It is a quo-
tient of the sum of external communication volume and the total communication
volume in a program. When all tasks are placed on the same node Φc(S) = 0,
when tasks are placed so that all communication is external Φc(S) = 1.

The local fitness function for objective 2 is designed as follows:

φc(t) = 1 − attr(t) (9)

where the attraction of the task t to its executive computing node attr(t) is
defined as the amount of communication between task t and other tasks on the
same node, normalized versus the maximal attraction inside the node [5].

The third objective for the MOEO-GS algorithm is concerned with task
migrations induced by the current EO-GS solution S in terms of the compu-
tational load imbalance. The global EO-GS fitness function for objective 3
(migration) corresponds to the number of migrations:

Φ1
m(S) = migration(S) (10)

migration(S) = |{t ∈ T : μS
t �= μS∗

t }|/|T | (11)

where: μS
t is the current node of the task t in the solution S, and μS∗

t is the
node of the task t in the initial solution at the start of the algorithm. The
function Φ1

m(S) ∈ [0, 1] is a migration number metrics. It is equal to 0 when
there is no migration, when all tasks have to be migrated Φ1

m(S) = 1, otherwise
0 ≤ Φ1

m(S) ≤ 1.
The local fitness function φm(t) for migration objective Φ1

m(S) is designed
as follows:

φm(t) =
{

1 when task t is migrated
0 otherwise (12)

The φm(t) local fitness function forces the migration of already migrated tasks,
thus increasing the probability that finally more tasks will occupy their initial
computing nodes.

Multi-Objective Extremal Optimization in Processor Load Balancing 183

An alternative version of the global fitness functions Φ1
m(S) for the

migration objective includes the migration quality coefficient. The function
improvement(n) indicates how much the current placement of tasks on a node
n improves (i.e. decreases) the load imbalance of the application, comparing the
initial task placement:

improvement(n) = | nwp(S, n)
powerCPU(n)

− WT | − | nwp(S∗, n)
powerCPU(n)

− WT | (13)

where S is the currently considered solution and S∗ is the initial task placement
at the start of the algorithm.

Φ2
m(S) =

totalimpr(S) + 1
2

∗ migration(S) (14)

where:

totalimpr(S) =

∑
n=0,...,|N |−1 improvement(n)

Dnorm
(15)

The function totalimpr(S) ∈ [−1, 1] indicates whether there is the improvement
(when totalimpr(S) < 0) or deterioration (when totalimpr(S) > 0) in the total
load balance in the system comparing the initial placement of tasks of the appli-
cation.

We have also designed another variant of the MOEO-GS global fitness
function for objective 1 (computational load imbalance). Instead of the total
load imbalance as in Eq. 5, the second variant of objective 1 function uses the
totalimpr(S) metrics as a load balance indicator:

Φ2
l (S) =

totalimpr(S) + 1
2

(16)

In such a way the task placement which ensures the best total processors balance
improvement is a preferred outcome of the algorithm.

To summarize, the following MOEO-GS variants were designed: MO-1-
GS which uses Φ1

l (S), Φc(S), Φ1
m(S) global fitness functions, MO-2-GS with

Φ1
l (S), Φc(S), Φ2

m(S) and MO-3-GS with Φ2
l (S), Φc(S), Φ1

m(S) global fitness
functions, respectively. These variants use the respective local fitness functions,
defined in Eqs. 7, 9 and 12, which match the used global fitness functions, respec-
tively.

4 Experimental Assessment of the Proposed Algorithms

In this section we present an experimental assessment of the presented load
balancing algorithms. The experiments have been conducted using simulated
execution of application programs in a distributed system. The applied simulator
was built following the DEVS discrete event system approach [11].

The simulated model of execution corresponds to parallelization based on
message-passing, using the MPI library for communication. The general struc-
ture of a program resembled typical numerical programs or physical phenomena

184 I. De Falco et al.

Fig. 2. The general structure of exemplary applications.

simulations. The exemplary programs were modeled as Temporal Flow Graphs,
TFG, [12]. In the TFG model, an application program consists of a set of program
modules called phases, composed of parallel tasks, Fig. 2. Tasks of the same phase
can communicate. At the boundaries between phases there is a global exchange
of data which enables the next phases for execution.

During experiments we used a set of 10 synthetic exemplary programs, which
were randomly generated. The number of tasks in an application varied from
64 to 544. The communication/computation ratio C/E (the quotient of the
communication time to the execution time in our experimental environment) for
applications was in the range [0.05, 0.20].

To assess performance of the presented multi-objective algorithms, we used
two reference single objective load balancing algorithms based on sequential
extremal optimization algorithms EO. One (denoted as SO-C) aims in balancing
exclusively computational loads of processor nodes. It is based on a classical
sequential EO without guided search. The second one (denoted as SO-WS-GS)
is based on a single objective EO with the guided search and is using a global
fitness function which is a weighted sum of the three aforementioned optimization
criteria (see Subsect. 3.2) according to the following equation:

ΦWS(S) = Φc(S)Δ1 + Φ1
m(S)Δ2 + Φ1

l (S)[1 − (Δ1 + Δ2)] (17)

where Δ1 and Δ2 are weights from the range (0,1).
We have compared to these two algorithms three MOEO-GS-based algorithm

variants (MO-1-GS, MO-2-GS, MO-3-GS, see Subsect. 3.2). A comparison of
our reference algorithms SO-C, SO-WS-GS to other common methods of load
balancing like genetic algorithm and deterministic local-search algorithm has
been presented in [3,4].

Load-balanced execution of exemplary applications was studied in systems
containing from 2 to 32 homogeneous processor nodes. The parameters used
in EO, EO-GS, the load balancing control and the weighted sum of the global
fitness function of the single objective EO-WS-GS were selected based on the
results of the experimental research, presented in [3,4]. We applied such param-
eter values for which balanced performance between application speedup and

Multi-Objective Extremal Optimization in Processor Load Balancing 185

migration count was obtained: α = 0.5, τ = 1.5, λ = 0.14, Niter = 500,
β = 0.5, Δ1 = 0.13, Δ2 = 0.17, γ = 0.75. Our simulation environment allowed
us to model the task migration cost.

The results are averages of 10 runs of each application. For each run 4 dif-
ferent methods of initial task placements (random, round-robin, METIS graph
partitioning, packed /i.e. round-robin mapping of equal groups of tasks/) were
used. Thus, the result for each parameter set is an average of 40 runs in total.

Fig. 3. Application parallel speedup for different numbers of computing nodes for all
tested algorithms.

Fig. 4. The number of task migrations per single application execution on different
numbers of computing nodes with different load balancing algorithms.

The application parallel speedup for both EO-based algorithms and the MO-
EO algorithms as a function of the number of executive processors is shown

186 I. De Falco et al.

Fig. 5. Relative application speedup improvement for different load balancing algo-
rithms versus SO-C for execution on 32 computing nodes with different migration
costs.

in Fig. 3. We have assumed here the cost of migration of a single task to be
equal to 20% of the task computational weight, as a medium migration cost
between 0% and 40% considered in further experiments. The presented results
are averaged over all tested exemplary applications. For these applications the
parallel speedup obtained by multi-objective algorithms MO-1-GS and MO-3-GS
is greater than that obtained with single-objective EO.

To better characterize our proposed MOEO-GS algorithms we collected also
the migration number statistics, Fig. 4. It gives the average total number of task
migrations in application execution resulting from applied different load balanc-
ing algorithms with the migration cost assumed as 20% of the task computational
weight.

Since migration burden can be very different we decided to perform experi-
ments also as a function of variable migration costs, Fig. 5, set as 0%, 20% and
40% of task computational weight.

Figures 3 and 4 have shown the superiority of two multi-objective algorithms
over the single-objective ones, especially for a large number of computing nodes
(32, 16) on which the application was executed. Here the multi-objective versions
MO-1-GS and MO-3-GS are better than single objective versions SO-C and
SO-WS-GS. Figure 5 has shown the superiority of the multi-objective approach
(MO-1-GS and MO-3-GS) over the single objective approach (SO-WS-GS) for
larger migration costs (20% and 40% of task computational weight).

The experimental results confirm advantages of the proposed load balanc-
ing multi-objective algorithms. For a realistic case with not null migration cost,
all multi-objective algorithm variants are much better than the single-objective
SO-C algorithm. The conclusions are that out from three MOEO-GS variants,
MO-3-GS is the best suited for systems with the most demanding load bal-
ancing requirements (high migrations costs, big number of computing nodes),
while MO-1-GS works very well for low or medium migrations costs and the

Multi-Objective Extremal Optimization in Processor Load Balancing 187

medium number of computing nodes. The algorithm MO-2-GS requires further
improvement before it can be advised to be used.

5 Conclusions

The paper has presented a multi-objective approach applied to Extremal Opti-
mization used in processor load balancing in execution of distributed programs.
Additional approach of the EO-GS has been embedded in the fundamental EO
algorithm which improves the convergence of the entire algorithm. In the multi-
objective EO approach, three objectives relevant in processor load balancing
for distributed applications are simultaneously controlled: total computational
load balance, total volume of external communication between tasks placed on
different processors and parameters of task migration. Different global fitness
function variants for computational load balancing and task migration minimal-
ization were designed and verified. The proposed algorithms were assessed by
simulation experiments on EO-controlled execution of macro data flow graphs
of distributed programs. The experiments have shown that the multi-objective
approach added to the EO algorithms for load balancing has improved the qual-
ity of obtained results. More detailed coverage of the internal properties of the
proposed multi-objective algorithms including the analysis of the Pareto front
graph itself will be presented in a larger journal paper which is currently under
preparation.

References

1. Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from co-
evolution. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO 1999). Morgan Kaufmann, San Francisco, pp. 825–832 (1999)

2. Barker, K., Chrisochoides, N.: An evaluation of a framework for the dynamic load
balancing of highly adaptive and irregular parallel applications. In: Proceedings of
the ACM/IEEE Conference on Supercomputing, Phoenix. ACM Press (2003)

3. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.:
Load balancing in distributed applications based on extremal optimization. In:
Esparcia-Alcázar, A.I. (ed.) EvoApplications 2013. LNCS, vol. 7835, pp. 52–61.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37192-9 6

4. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.:
Improving extremal optimization in load balancing by local search. In: Esparcia-
Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 51–62.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45523-4 5

5. De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.:
Extremal optimization applied to load balancing in execution of distributed pro-
grams. Appl. Soft Comput. 30, 501–513 (2015)

6. Taxicab geometry. https://en.wikipedia.org/wiki/Taxicab geometry. Accessed 20
Nov 2017

7. Xu, C., Lau, Francis C.M.: Load Balancing in Parallel Computers: Theory and
Practice. Kluwer Academic Publishers, Dordrecht (1997)

https://doi.org/10.1007/978-3-642-37192-9_6
https://doi.org/10.1007/978-3-662-45523-4_5
https://en.wikipedia.org/wiki/Taxicab_geometry

188 I. De Falco et al.

8. Khan, R.Z., Ali, J.: Classification of task partitioning and load balancing strategies
in distributed parallel computing systems. Int. J. Comput. Appl. 60(17), 48–53
(2012)

9. Mishra, M., Agarwal, S., Mishra, P., Singh, S.: Comparative analysis of various
evolutionary techniques of load balancing: a review. Int. J. Comput. Appl. 63(15),
8–13 (2013)

10. Sneppen, K., et al.: Evolution as a self-organized critical phenomenon. Proc. Nat.
Acad. Sci. 92, 5209–5213 (1995)

11. Zeigler, B.: Hierarchical, modular discrete-event modelling in an object-oriented
environment. Simulation 49(5), 219–230 (1987)

12. Roig, C., Ripoll, A., Guirado, F.: A new task graph model for mapping message
passing applications. IEEE Trans. Parallel Distrib. Syst. 18(12), 1740–1753 (2007)

13. Collette, Y., Siarry, P.: Multi-objective Optimization: Principles and Case Studies.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-08883-8. p. 293

14. Ehrgott, M.: Multi-criteria Optimization. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-27659-9. p. 324

15. Coello Coello, C.A.: Evolutionary multi-objective optimization: a historical view
of the field. IEEE Comput. Intell. Mag. 1, 28–36 (2006)

16. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Springer, Boston (2007). https://doi.org/10.
1007/978-0-387-36797-2. p. 800

17. Chen, M.-R., Lu, Y.-Z.: A novel elitist multi-objective optimization algorithm:
multi-objective extremal optimization. Shanghai Jiao Tong University

18. Ahmed, E., Elettreby, M.F.: On multi-objective evolution model. Int. J. Mod. Phys.
C 15(9), 1189–1195 (2004)

19. Gómez-Meneses, P., Randall, M., Lewis, A.: A hybrid multi-objective extremal
optimisation approach for multi-objective combinatorial optimisation problems.
Bond University, Griffith University, Australia (2010)

20. Galski, R.L., de Sousa, F.L., Ramos, F.M., Muraoka, I.: Spacecraft thermal design
with the generalized extremal optimization algorithm. In: Proceedings of Inverse
Problems, Design and Optimization Symposium, Rio de Janeiro, Brazil, 2004

21. Chen, M., Lu, Y., Yang, G.: Multi-objective extremal optimization with applica-
tions to engineering design. J. Zhejiang Univ. Sci. A 8(12), 1905–1911 (2007)

22. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: A multiobjec-
tive extremal optimization algorithm for efficient mapping in grids. In: Mehnen, J.,
Köppen, M., Saad, A., Tiwari, A. (eds.) Applications of Soft Computing. Advances
in Intelligent and Soft Computing. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-540-89619-7 36

https://doi.org/10.1007/978-3-662-08883-8
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1007/978-3-540-89619-7_36
https://doi.org/10.1007/978-3-540-89619-7_36

Workshop on Language-Based Parallel
Programming Models (WLPP 2017)

Pardis: A Process Calculus for Parallel
and Distributed Programming in Haskell

Christopher Blöcker(B) and Ulrich Hoffmann

Department of Computer Science,
FH Wedel, University of Applied Sciences, Wedel, Germany

{chb,uh}@fh-wedel.de

Abstract. Parallel and distributed programming involve substantial
amounts of boilerplate code for process management and data syn-
chronisation. This leads to increased bug potential and often results
in unintended non-deterministic program behaviour. Moreover, algo-
rithmic details are mixed with technical details concerning parallelisa-
tion and distribution. Process calculi are formal models for parallel and
distributed programming but often leave details open, causing a gap
between formal model and implementation. We propose a fully deter-
ministic process calculus for parallel and distributed programming and
implement it as a domain specific language in Haskell to address these
problems. We eliminate boilerplate code by abstracting from the exact
notion of parallelisation and encapsulating it in the implementation of
our process combinators. Furthermore, we achieve correctness guaran-
tees regarding process composition at compile time through Haskell’s
type system. Our result can be used as a high-level tool to implement
parallel and distributed programs.

Keywords: Process calculus · Parallel programming
Distributed programming · Domain specific language · Haskell

1 Introduction

Since the start of the multi-core revolution, parallel programming has gained
more and more importance. Nowadays, multi-core hardware is found not only in
servers and desktop computers, but also in low-end laptops and smartphones. In
order to leverage the available processing power of modern hardware, software
must be implemented accordingly, i.e., in a parallel fashion.

Parallel programs should create the exact same results as their sequential
counterparts and must be distinguished from concurrent programs. While paral-
lelism is used to execute and obtain a program’s result faster by running parallel
parts of the program on different processing units, concurrency is more of a soft-
ware engineering technique to better structure multiple tasks a program has

C. Blöcker—This work was done while the author was working on his Master’s degree
at FH Wedel.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 191–202, 2018.
https://doi.org/10.1007/978-3-319-78054-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_18&domain=pdf

192 C. Blöcker and U. Hoffmann

to carry out. Concurrency may involve hundreds of threads that are executed
on one or more processing units in an interleaved way and can, but does not
necessarily use parallelism. Whereas determinism is generally a requirement for
parallel programs, there are concurrent algorithms that rely on non-determinism
to find their solution.

Contemporary ways to express parallelism and concurrency are based on the
same programming constructs which allow non-determinism. This includes pro-
cesses and threads which usually have a mutable internal state and can depend
on other processes or threads, making process management and data synchroni-
sation necessary. Process management and data synchronisation, however, result
in large amounts of repetitive boilerplate code and increased software complexity
and give rise to new classes of bugs, such as deadlocks, livelocks or unintended
non-deterministic program behaviour.

On the theory side, process calculi are used to model parallel and concur-
rent systems and to reason about them in a mathematical way. Typically, pro-
cesses are modelled as stateful sequential programs and communication between
them is expressed explicitly. Semantics of parallel process execution is defined
non-deterministically so that, when carried over into a programming model, a
choice of how to represent this non-determinism has to be made, resulting in a
gap between specification and implementation. In order to achieve determinis-
tic programs, software developers have to take special care, but this is far from
trivial.

In this paper, we propose a deterministic process calculus for parallel and
distributed programming to address these problems. We define a set of process
combinators to compose simpler processes into more complex ones and elimi-
nate the need for manual process management and data synchronisation, thus
reducing error-prone boilerplate code and removing potential sources for bugs.
We show that the same abstraction can be used to express both parallel and dis-
tributed programs. Our Haskell implementation is in one-to-one correspondence
with our formal model with no gap between specification and implementation
and gives developers a high-level tool to implement parallel and distributed pro-
grams.

2 Related Work

Various process calculi have been proposed over the past decades, including
Hoare’s Communicating Sequential Processes (CSP) [8] and Milner’s Calculus of
Communicating Systems (CCS) [15]. CSP and CCS (and others) can be derived
from a more general algebraic core [9] and share a set of properties, including
mutable process-internal state, explicit communication between processes, and
non-deterministic process compositions [8,9,15]. Non-deterministic behaviour is
relevant for certain concurrent algorithms and gives rise to interesting research
questions, but is undesired in many real-world applications where reproducible
behaviour is an essential requirement [2,4].

A Process Calculus for Parallel and Distributed Programming in Haskell 193

Various models for parallel programming with different focus have been intro-
duced: while some take a low level approach and require manual management of,
e. g., threads and data locks, others take higher level approaches with different
degrees of automation regarding process management and communication [1].
Although low level approaches have been considered prone to errors and bugs
for over a decade [1,6,11], they are still widely used. High level approaches are
promoted by the scientific community as a way to make parallel programming
easier and better manageable [1,4].

Haskell as a purely functional, statically typed and highly extensible language
with isolated side-effect is well suited for parallel programming [1,4]. Different
embedded domain specific languages for parallel programming have reached a
sufficiently sophisticated level for production use [3,5,12–14,21]. The parallel
package provides the Eval monad for pure, parallel evaluation using so-called
strategies [13,21]. The Par monad from the monad-par package provides a pro-
gramming model based on dataflow parallelism [14]. repa implements parallelised
operations on arrays, and accelerate can be used to exploit massive parallelism
on GPUs [3]. Concurrent programming in Concurrent Haskell is supported by
lightweight threads using forkIO with shared variables (MVars) [16] or Software
Transactional Memory (STM) [7] for synchronisation. Cloud Haskell, which is
heavily influenced by Erlang, is designed for distributed programming and uses
message passing for process communication [5].

3 The Calculus

In this section, we develop our process calculus and define its syntax, static
typing rules, and semantics. For background on the used methodology we point
to [18,20].

But what do we mean by process? A process is (a piece of) a computer
program. It can be executed by supplying it with an input of appropriate type
and it then produces an output. Processes can either be basic or composed. Basic
processes are structurally minimal, i. e., not created by composition. Composed
processes are composed of other (basic or composed) processes.

3.1 Syntax

Our process calculus comprises four syntactic rules. Let P,Q,R be (basic or
composed) processes, then syntactically correct (composed) processes can be
formed using the following rules:

1. (P � Q) (Sequence)
2. (R ∝ P) (Repetition)

3. (R → P ∨ Q) (Choice)
4. (R ← P |Q) (Parallel)

The set of syntactically correct processes is the smallest set that includes all
basic processes and composed processes constructed with the above rules.

194 C. Blöcker and U. Hoffmann

3.2 Static Typing

For each syntactic rule, there is a corresponding static typing rule. Process com-
position is valid if and only if it follows the static typing rules, all other compo-
sitions are invalid. Without loss of generality, we consider unary processes in the
following, i. e., processes that take exactly one argument, (un-)currying where
necessary. Other arities can be simulated by using the unit type or product types.

Let P be the set of processes, let P,Q,R ∈ P be processes, let a, b, c, d be
type variables and let Bool be the boolean type. Let P : a → b denote that
process P is of type a → b, i. e., P takes an input value of type a and produces
and output value of type b. Let x1 ··· xn

z denote that if x1 ∧· · ·∧xn, then z. The
typing rules for process composition are:

P : a → c Q : c → b

(P � Q) : a → b
(1)

R : a → Bool P : a → a

(R ∝ P) : a → a
(2)

R : a → Bool P : a → b Q : a → b

(R → P ∨ Q) : a → b
(3)

R : (c, d) → b P : a → c Q : a → d

(R ← P |Q) : a → b
(4)

3.3 Semantics

We define the semantics of processes in a denotational fashion and introduce the
polymorphic higher order function sem : P → (a → b) for this purpose. sem can
be applied to a process P ∈ P to obtain the function calculated by P , we write
sem 〈P 〉 for this. Note that we use lifted types to represent partial functions and
processes where the undefined value is denoted ⊥1.

The semantics of a basic process is straightforward: let P ∈ P be a basic
process and fP be the function calculated by P , then the semantics of P is

sem 〈P 〉 = fP (5)

The semantics of a composed process depends on the semantics of its sub-
processes and the process combinator. Let P,Q,R ∈ P be processes with appro-
priate types for the respective composition in the following. Then the semantics
of composed processes are:

sem 〈(P � Q)〉 = x �→ sem 〈Q〉 (sem 〈P 〉 (x)) = sem 〈Q〉 ◦ sem 〈P 〉 (6)

sem 〈(R ∝ P)〉 = x �→
⎧
⎨

⎩

sem 〈(P � (R ∝ P))〉 (x) if sem 〈R〉 (x) = true
x if sem 〈R〉 (x) = false
⊥ otherwise.

(7)

1 To be precise, there is an undefined value ⊥a for every type a, e. g., we have Bool =
{⊥Bool, false, true}. We omit the type index since it shall be clear from context.

A Process Calculus for Parallel and Distributed Programming in Haskell 195

sem 〈(R → P ∨ Q)〉 = x �→
⎧
⎨

⎩

sem 〈P 〉 (x) if sem 〈R〉 (x) = true
sem 〈Q〉 (x) if sem 〈R〉 (x) = false
⊥ otherwise.

(8)

sem 〈(R ← P |Q)〉 = x �→ sem 〈R〉 (sem 〈P 〉 (x) , sem 〈Q〉 (x)) (9)

The existence of a solution satisfying Eq. (7) is not immediately obvious.
However, this is a well-studied problem in domain theory and a solution can be
characterised by a least fixed point [20].

4 Implementation

In principle, we could implement our model in virtually any programming lan-
guage, including imperative languages such as C or Java. However, there are
some important restriction: firstly, in order to guarantee type-safe process com-
position, we require a statically typed language. Secondly, in impure languages
where threads operate on shared memory, it is harder, and in some cases not
possible, to achieve determinism. For example, in Deterministic Parallel Java [2],
fallbacks to runtime checks are necessary and runtime exceptions may be thrown
when threads perform concurrent data accesses.

For our implementation, we choose Haskell. Haskell’s purity, static type sys-
tem, and effect system enable us to implement our model in one-to-one corre-
spondence with the definitions given in Sect. 3.

We implement the data type of processes Proc as a generalised algebraic
data type using the language extension GADTs [17], c.f. listing 1. There is one
data constructor for each syntactic rule from Sect. 3.1 with type signatures cor-
responding to Eqs. (1)–(4). We introduce another type constructor to lift basic
processes into the calculus, namely Lifted. Proc has three type parameters:
a basic process type p, an input type a, and an output type b. In order for
processes to be composable, they must share the same basic process type p.

196 C. Blöcker and U. Hoffmann

We use the language extension TypeFamilies [19] to define the type class
Pardis for process execution based on a monad m, c.f. listing 2. Basic processes
and evaluation environments, i. e., Basic m and Env m, are associated with m.
Basic m is of kind * -> * -> *, i. e., it is a type constructor that takes two type
parameters, corresponding to input and output type of a process, and returns
a type. Env m is of kind *, i. e., it is a type, and is used to provide information
that is necessary for process execution in m. The type alias P is introduced for
brevity. Pardis defines functions for process execution for each data construc-
tor of Proc. We specifically do not implement a single function for processes
execution within Pardis since execution of composed processes using Sequence,
Choice, and Repetition is independent of the concrete monad m. We give default
implementations according to Eqs. (6)–(8) for these cases.

A Process Calculus for Parallel and Distributed Programming in Haskell 197

The function runProcess executes processes by pattern matching on their
constructor and dispatching to the corresponding function in Pardis, c.f.
listing 3.

4.1 Parallel Implementation

For process execution in parallel, we use Concurrent Haskell [16] and the IO
monad, c.f. listing 4. Basic processes in this case hold an IO action of type
a -> IO b and a value of type Dict (NFData b), i. e., a proof that b has an
instance of NFData2. Evaluation environments are empty as there is no additional
information needed for parallel processes execution in IO.

We execute basic processes by applying their intrinsic action to their input
as defined in Eq. (5), and processes involving the Parallel combinator in a
(lightweight) concurrent thread with forkIO. The implementation is according
to Eq. (9) and we enforce full evaluation of sub-results in parallel with force.

We make process composition deterministic by introducing implicit synchro-
nisation points in the interpretation of the Parallel process combinator. For
that, we use Haskell’s MVars which represent a data container that can either be
empty or hold exactly one element. Reading a value from an MVar succeeds if
the MVar contains a value and blocks until a value becomes available otherwise.

Note that, in general, we would place constraints such as NFData b in the
context of functions and data constructors where they are required. However,
this is not an option here since adding constraints to Proc or Pardis would be
too strict and enforce them on all possible instances.

2 NFData stands for normal form data and values of data types with an instance of
NFData can be fully evaluated. Haskell’s evaluation strategy is lazy evaluation, i. e.,
values are only evaluated if they are needed. However, through NFData we can enforce
full evaluation in parallel to benefit from parallelisation.

198 C. Blöcker and U. Hoffmann

In order to use force, Haskell’s type system requires instances of NFData
for the respective types in scope. We retrieve these instances from the basic
processes at the bottom layer of process composition with getDict and bring
them into scope by pattern matching, cf. listings 4 and 5.

4.2 Distributed Implementation

For distributed process execution, we use the Process monad from Cloud Haskell
[5], c.f. listing 6. Basic processes in this case hold a closure generator3, i. e., a
function that takes a value and returns a closure, and a value of type Static
(SerializableDict b), i. e., a compile time constant that describes how to
serialise values of type b. Evaluation environments contain an action getNode4

that, when executed, returns a NodeId, i. e., the address of a (local or remote)
node that can be used to execute closures.

We execute basic processes by generating a closure which we then run on a
(local or remote) node using call. Parallel processes are executed by spawning a
(lightweight) local helper process5. One of the two parallel sub-processes is then

3 Roughly speaking, a closure is a data structure that contains an executable compu-
tation together with inputs for that computation.

4 We assume there is a way to obtain a node but omit node management for brevity.
5 Note that there is a difference between Pardis processes and Cloud Haskell processes.

A Process Calculus for Parallel and Distributed Programming in Haskell 199

executed in the helper process while the other one is executed in the current
process. As before, we use an MVar to introduce an implicit synchronisation
point. Once both sub-processes have terminated, we combine their results. In
this case, explicit full evaluation of the results is not necessary as this is done
implicitly before serialisation.

5 Application Example: Web Crawler

Here, we present a rudimentary web crawler for indexing web pages with the pur-
pose to illustrate how Pardis can be used to implement parallel and distributed
programs. The parallel and distributed implementations are almost identical but
differ in technicalities regarding the creation of basic processes. We display the
relevant pieces of the parallel implementation here, while the full source code
(including the distributed version) can be found on github6.

The crawler’s aim is to create an Index. An Index holds URLs that have been
crawled, URLs that should be crawled, as well as the crawling results, i. e., a Map
that associates words with URLs.

page retrieves the document from a given URL and creates a single-page index
from its content, c.f. listing 8. In order to keep the code simple, we ignore errors
and exceptions that may arise when retrieving web pages for now.

The helper functions mkBasic and liftP create basic processes and lift pure
functions into processes, respectively, c.f. listing 7.

When crawling with crawl, we check with continue whether there is work
left to do, c.f. listing 8. We repeat indexing all URLs currently in todo with
crawlAll until todo becomes empty. crawlAll builds up a process structure in
the shape of a binary tree for crawling all URLs in todo. The leaf nodes of the tree
contain crawlOne processes and the inner nodes contain crawlMany processes
that use merge to combine the single-page indices created at the leaf nodes. Note
that the web crawler does not involve any code for process management but is
solely expressed in terms of our process combinators.

6 https://github.com/chrisbloecker/pardis.

https://github.com/chrisbloecker/pardis

200 C. Blöcker and U. Hoffmann

6 Conclusion

Our main goal was to eliminate sources of boilerplate code in parallel and dis-
tributed programming and thereby reducing bug potential. For that, we designed
a process calculus with process combinators for sequence, repetition, choice, and
parallel composition and gave their semantics in a denotational fashion. Our
abstractions are similar to those of arrows [10], a general interface to compu-
tation. However, we make specialisations in order to allow for parallelism and
distribution in the interpretation of computations. Process management and
synchronisation points between processes are implicit and incorporated into the
semantics of our process combinators. In contrast to other calculi, the semantics
of our calculus are deterministic and therefore well suited to express parallel and
distributed programs that behave the same as their sequential counterparts.

We implemented our process calculus as a domain specific language in Haskell
and used Haskell’s type system to ensure that only well-typed processes can be
expressed. We presented two implementations of our calculus, i. e., one for paral-
lel and one for distributed programming. The implementations are in one-to-one
correspondence with our formal model which lays the foundation for automated
reasoning about and optimisation of processes, which we believe is worth inves-
tigating further.

We demonstrated the utility of our approach by implementing a web crawler
that does not involve code for process management or communication but uses
our calculus to model parallelism. Other potential use cases include, e. g., imple-
mentations of data processing pipelines, linear algebra algorithms, or algoritms
for discrete optimisation.

Typical steps to transform sequential programs into parallel ones are to
find a suitable partition into parallel pieces and to implement these pieces.

A Process Calculus for Parallel and Distributed Programming in Haskell 201

The implementation step is where error-prone boilerplate code for process man-
agement is used and bugs are easily introduced. However, our approach replaces
the implementation step by modelling parallel processes using the parallel com-
binator which removes this source of bugs. Our calculus completely isolates the
exact notion of parallelisation inside its implementation which in effect can be
interchanged without modifying programs that use it. As such, Pardis can be
seen as a high-level tool to describe parallel and distributed programs.

Acknowledgements. We would like to thank Jan-Philip Loos and Uwe Schmidt for
inspiring discussions and helpful feedback.

References

1. Belikov, E., Deligiannis, P., Totoo, P., Aljabri, M., Loidl, H.W.: A survey of
high-level parallel programming models. Technical report. HW-MACS-TR-0103,
Department of Computer Science, Heriot-Watt University (December 2013)

2. Bocchino Jr., R.L., Adve, V.S., Adve, S.V., Snir, M.: Parallel programming must be
deterministic by default. In: Proceedings of the First USENIX Conference on Hot
Topics in Parallelism, HotPar 2009, p. 4. USENIX Association, Berkeley (2009).
http://dl.acm.org/citation.cfm?id=1855591.1855595

3. Chakravarty, M.M., Keller, G., Lee, S., McDonell, T.L., Grover, V.: Accelerating
haskell array codes with multicore gpus. In: Proceedings of the Sixth Workshop
on Declarative Aspects of Multicore Programming, DAMP 2011, pp. 3–14. ACM,
New York (2011). http://doi.acm.org/10.1145/1926354.1926358

4. Coutts, D., Löh, A.: Deterministic parallel programming with haskell. Comput.
Sci. Eng. 14(6), 36–43 (2012)

5. Epstein, J., Black, A.P., Peyton-Jones, S.: Towards haskell in the cloud. In: Pro-
ceedings of the 4th ACM Symposium on Haskell, Haskell 2011, pp. 118–129. ACM,
New York (2011). http://doi.acm.org/10.1145/2034675.2034690

6. Gorlatch, S.: Send-receive considered harmful: myths and realities of mes-
sage passing. ACM Trans. Program. Lang. Syst. 26(1), 47–56 (2004).
http://doi.acm.org/10.1145/963778.963780

7. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2005, pp. 48–60. ACM, New York
(2005). http://doi.acm.org/10.1145/1065944.1065952

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

9. Hoare, T., van Staden, S.: The laws of programming unify process calculi. In:
Gibbons, J., Nogueira, P. (eds.) MPC 2012. LNCS, vol. 7342, pp. 7–22. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31113-0 2

10. Hughes, J.: Generalising monads to arrows. Sci. Comput. Program. 37(1–3), 67–
111 (2000). http://dx.doi.org/10.1016/S0167-6423(99)00023–4

11. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006).
http://dx.doi.org/10.1109/MC.2006.180

12. Marlow, S.: Parallel and concurrent programming in haskell. In: Zsók, V., Horváth,
Z., Plasmeijer, R. (eds.) CEFP 2011. LNCS, vol. 7241, pp. 339–401. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32096-5 7

http://dl.acm.org/citation.cfm?id=1855591.1855595
http://doi.acm.org/10.1145/1926354.1926358
http://doi.acm.org/10.1145/2034675.2034690
http://doi.acm.org/10.1145/963778.963780
http://doi.acm.org/10.1145/1065944.1065952
https://doi.org/10.1007/978-3-642-31113-0_2
http://dx.doi.org/10.1016/S0167-6423(99)00023--4
http://dx.doi.org/10.1109/MC.2006.180
https://doi.org/10.1007/978-3-642-32096-5_7

202 C. Blöcker and U. Hoffmann

13. Marlow, S., Maier, P., Loidl, H.W., Aswad, M.K., Trinder, P.: Seq no more: better
strategies for parallel haskell. In: Proceedings of the Third ACM Haskell Sympo-
sium on Haskell, Haskell 2010, pp. 91–102. ACM, New York (2010). http://doi.
acm.org/10.1145/1863523.1863535

14. Marlow, S., Newton, R., Peyton Jones, S.: A monad for deterministic parallelism.
In: Proceedings of the 4th ACM Symposium on Haskell, Haskell 2011, pp. 71–82.
ACM, New York (2011). http://doi.acm.org/10.1145/2034675.2034685

15. Milner, R.: A Calculus of Communicating Systems. Springer-Verlag New York Inc.,
Secaucus (1982). https://doi.org/10.1007/3-540-10235-3

16. Peyton Jones, S., Gordon, A., Finne, S.: Concurrent haskell. In: Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1996, pp. 295–308. ACM, New York (1996). http://doi.acm.org/10.
1145/237721.237794

17. Peyton Jones, S., Washburn, G., Weirich, S.: Wobbly types: type inference for
generalised algebraic data types. Technical report, MS-CIS-05-26, University of
Pennsylvania, Computer and Information Science Department, Levine Hall, 3330
Walnut Street, Philadelphia, Pennsylvania, 19104–6389, July 2004

18. Schmidt, D.A.: Denotational Semantics: A Methodology for Language Develop-
ment. William C. Brown Publishers, Dubuque (1986)

19. Schrijvers, T., Peyton Jones, S., Chakravarty, M., Sulzmann, M.: Type checking
with open type functions. SIGPLAN Not. 43(9), 51–62 (2008)

20. Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, Cambridge (1977)

21. Trinder, P.W., Hammond, K., Loidl, H.W., Peyton Jones, S.L.: Algo-
rithm + strategy = parallelism. J. Funct. Program. 8(1), 23–60 (1998).
http://dx.doi.org/10.1017/S0956796897002967

http://doi.acm.org/10.1145/1863523.1863535
http://doi.acm.org/10.1145/1863523.1863535
http://doi.acm.org/10.1145/2034675.2034685
https://doi.org/10.1007/3-540-10235-3
http://doi.acm.org/10.1145/237721.237794
http://doi.acm.org/10.1145/237721.237794
http://dx.doi.org/10.1017/S0956796897002967

Towards High-Performance Python

Ami Marowka(B)

Parallel Research Lab, Jerusalem, Israel
amimar2@yahoo.com

Abstract. Python became the preferred language for teaching in
academia, and it is one of the most popular programming languages for
scientific computing. This wide popularity occurs despite the weak per-
formance of the language. This weakness is the motivation that drives the
efforts devoted by the Python community to improve the performance of
the language. In this article, we are following these efforts while we focus
on one specific promised solution that aims to provide high-performance
for Python applications.

Keywords: Python · Numba · Just-in-Time compilation

1 Introduction

Python is widely used for teaching programming in academia today [1]; it has
been the first choice of coding language among software programmers in the last
four years [2]; it is ranked fifth in the TIOBE Index [3], a measure of popularity
of programming languages; and its popularity is also ranked third in the IEEE
Spectrum ranking for 2016 [4].

Python is also widely used for scientific computing. Scientific applications
make use of a very rich readymade collection of scientific libraries such as SciPy
[5], NumPy [6], and Matplotlib [7]. However, the performance of Python is con-
sidered slow compared to compiled languages such as C, C++, and FORTRAN,
especially for heavy computations. The main reasons for its slowness lie in being
an interpreted programming language and its limitations on concurrency [8].
Therefore, the Python community has developed various solutions in order to
improve the performance and speed of Python.

The range of solutions and techniques offered in order to overcome the
slowness of Python adopt different approaches and various optimization tech-
niques. The following are some examples. NumPy uses specialized data struc-
tures (densely packed arrays of homogeneous type) that use efficient in-memory
representation. Furthermore, NumPy uses efficient, specialized implementations
of operations in C and dynamic optimization; SciPy usually implements time-
intensive loops in C or FORTRAN and uses sophisticated wrappers to wrap
up existing optimized scientific algorithms. PyPy [9] is a Python implementa-
tion written in RPython (a subset of pure Python). RPython code is statically

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 203–212, 2018.
https://doi.org/10.1007/978-3-319-78054-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_19&domain=pdf

204 A. Marowka

compiled and optimized to generate the PyPy interpreter in C while automat-
ically adding in features as garbage collection and a Just-In-Time compiler.
PyCUDA [10] and PyOpenCL [11] are Python wrappers, of the software libraries
CUDA and OpenCL, respectively, which exploit the massive parallelism comput-
ing power provided by GPGPU platforms.

In this article, we describe a select number of solutions that are widely used
by the community and focus on one specific solution: Numba [12]. Numba offers a
comprehensive, user-friendly solution for portable high performance computing.

This article is organized as follows. Section 2 describes a few popular solutions
that enhance Python’s performance. Section 3 introduces the Numba compiler.
Section 4 analyses the performance of a Numba implementation of Matrix Mul-
tiplication algorithm. Finally, Sect. 5 concludes the article.

2 Python Accelerators

In this section, we review a few notable solutions that are widely used in the
scientific computing domain, which is characterized by high performance appli-
cations.

NumPy (Numerical Python) is an open source extension module for scientific
computing in Python. NumPy handles the inefficiency problem of Python by
providing fast, precompiled functions for mathematical and numerical routines
that operate efficiently on multi-dimensional arrays of homogeneous data types
called ndarray objects. Ndarray is internally based on C arrays, and therefore,
it can easily interface NumPy with existing C code. NumPy arrays are a data
structure of elements of the same data type that allows it to efficiently pack the
data and store it in a way that NumPy can perform arithmetic and mathemat-
ical operations at high speed. These routines include mathematical and logical
routines, sorting, shape manipulation, selecting, discrete FFT, basic linear alge-
bra (based on BLAS and LAPACK), basic statistical operations, and random
simulation. Vectorization and broadcasting are the two most powerful features
of the package. Specifically, vectorization enables arithmetic operations to be
performed on an array without writing any for loops. By implementing in C
element-wise operations on the array rather than applying element-by-element
computation, NumPy accelerates computations dramatically. For example, eval-
uation of the function f below over 1e5 numbers stored in an array x while using
a for-loop appears as follows:

Listing 2.1. NumPy Example.

In [2 4] : de f f (x) :
. . . : . . . : r e turn x∗∗3 − 4∗x∗∗2 + 5∗x

In [2 5] : x = np . arange (1 e5)
In [2 6] : y = np . arange (1 e5)

In [2 7] : %t ime i t y = [f (i) f o r i in x]
10 loops , bes t o f 3 : 77 .9 ms per loop

Towards High-Performance Python 205

Applying the function f on the NumPy array x using vectorized loop appears
as follows:

In [2 8] : %t ime i t y = f (x)
100 loops , bes t o f 3 : 213 micro seconds per loop

As can be observed, a speedup of x365 is obtained.

SciPy (Scientific Python) is an open source package for science and engineering
for Python. It extends the functionality of NumPy with a substantial collection
of efficient numerical routines for minimization, regression, signal and image
processing, Fourier-transformation, and applied mathematical techniques. Com-
paring the performance of LU factorization of square random matrices using
SciPy against pure Python shows incomprehensible speed-up of x4142 [13].

PyPy is a Just-in-Time compiler and interpreter for Python. It aims to provide a
faster, efficient, and compatible alternative implementation of Python language.
It achieves these features by using a different interpreter language (RPython)
instead the original CPython interpreter. Moreover, PyPy has a Just-in-Time
compiler that is capable to compile Python code on-the-fly into a machine code.
Applications written with PyPy demand less memory footprint and have the
capability to use micro-threads for massive concurrency. PyPy trunk (with JIT)
benchmark yielding a geometric average speed-up of x7.6 compared to pure
Python [14].

Cython [15] is a superset compiled language of Python aimed to achieve com-
parable performance to C programming language. By enabling declarations of
static typing to functions, variables, and classes, Cython allows C code to be
generated once and then compiles with C/C++ compilers to produce efficient C
code. In average, Cython exhibits speedup of x30 compared to pure Python.

Numexpr [16] is a module that aims to accelerate evaluation of a numeri-
cal expression operation on NumPy arrays while using less memory footprint
compared to pure Python. Moreover, Numexpr uses an efficient multithreading
mechanism for speedup computations by taking advantage of multi-core archi-
tectures. These capabilities are reached by avoiding memory allocation of tempo-
rary results that improve cache utilization, using an integrated virtual machine
that parses expressions into its own op-codes, and splitting array operands into
chunks that fit in cache memory. In average, Numexpr outperforms NumPy by
x30 for four threads.

Parallelism is often one of the solutions offered by almost any programming
language today for increasing performance. The Python community offers many
solutions based on parallelism. For example, the multiprocessing module [17],
which is part of the standard library of the language, implements process-based
parallel programming for shared memory systems.

In the next section, we describe in more detail how to use Numba compiler,
in order to increase the performance of applications that are written in Python
language.

206 A. Marowka

Listing 3.1. An example for annotating a function by using @jit compiler directive.

1 from numba import j i t
2 @j i t (nopython=True | nog i l=True | cache=True)
3 de f mult (x , y) :
4 re turn x ∗ y

3 Numba in a Nutshell

Numba is a NumPy-aware Python programming model and a Just-in-Time com-
piler based on source-code annotations. Numba uses the LLVM compiler for gen-
erating optimized machine code similar in performance to C. It was designed in
mind for array-oriented and numerical code that supports CPUs, CUDA GPUs,
and HSA APUs. Numba is in active development (the current version is 0.30.1).
Numba is part of Anaconda Accelerate [18], which is available under a free
license for academic users. It runs on top of Anaconda Python [19], which is a
completely free package and environment manager for large-scale data process-
ing and scientific computing. It includes hundreds of open source packages to
include the popular packages of NumPy, SciPy, Matplotlib, IPython, and Spider
IDE.

Numba Just-in-Time Compilation
The example in Listing 3.1 demonstrates how annotation of a function mult

that adds two scalars is performed. The compiler directive @jit, which is attached
to the function header, will cause the function mult to be compiled on-the-fly
for generating optimized code.

There are three compiler options that can be passed to the called function.
The first one is nopython=True that instructs the compiler to run in a nopython
mode that generates faster code while preventing Numba to fall back to the
slower mode (object mode) when an error occurs. The nogil=True option instructs
the compiler to release Python’s global interpreter lock (GIL) that allows the
compiled code to run in parallel while using the code’s threads to take advantage
of multi-core machines. The cache=True option instructs the compiler to write
the compiled function into a file-based cache for avoiding the need to compile
the code each time the Python program is invoked.

Numba Vectorization
Numba vectorization can be applied in one of two forms: vectorize or guvec-

torize. Vectorize uses scalar arguments, which are passed by Python functions,
as NumPy universal functions that work on one element of input array at a
time (but not in a loop fashion), while guvectorize work on a chunk of ele-
ments of input arrays. Listing 3.2 and Listing 3.3 show how to apply @vectorize
and @guvectorize decorators respectively to the function mult that computes
2-vectors multiplication.

The first argument of the annotation is the type signatures. The second argu-
ment in Listing 3.3 is the declaration, in symbolic form, of input and output lay-

Towards High-Performance Python 207

Listing 3.2. An example of using @vectorize for multiplication two vectors.

1 from numba import v e c t o r i z e , f l o a t 6 4
2 @vector i ze ([f l o a t 6 4 (f l oa t64 , f l o a t 6 4)])
3 de f mult (X, Y) :
4 re turn X ∗ Y

Listing 3.3. An example of using @guvectorize for multiplication of two vectors.

1 @guvector ize ([(in t64 [:] , i n t64 [:] , i n t64 [:])] ,
’ (n) , (n)−>(n) ’ , t a r g e t =’cpu ’)

2 de f mult (X, Y, RES) :
3 f o r i in range (X. shape [0]) :
4 RES[i] = X[i] ∗ Y[i]

outs. In our example, the expression (n), (n)− > (n) tells that the function f takes
two n-element one-dimension arrays and returns a n-element one-dimension array.
The third argument, target, instructs the compiler to generate code for one of three
target architectures: cpu, parallel or cuda. The cpu target means a single-threaded
CPU, parallel means multi-core CPU and cuda means CUDA GPU.

Numba for Accelerators
Numba supports CUDA GPU programming and HSA APU programming. For

example, Numba’s NVIDIA CUDA GPU support is able to compile a restricted
subset of Python code into CUDA kernels and device functions and then follow-
ing the CUDA execution framework. NumPy arrays have direct access from those
kernels, while their transformation between the host and the driver is done auto-
matically. Furthermore, managing the memory hierarchy of threads can be per-
formed by Numba’s CUDA specific functions that are similar to those supported
by CUDA C language. Listing 3.4 demonstrates how to use the @cuda.jit compiler
directive in order to compile the function mult into a CUDA kernel. This function
multiplies two vectors on the device. The memory hierarchy of threads is deter-
mined in lines 10–11 before calling to the function mult by initializing the variable
threadsperblock and computing the variable blockspergrid. Then, these variables
are passed as parameters when calling the function mult in line 13.

4 Test Case: Matrix-Matrix Multiplication

In this section, we examine and analyze the performance of various implementa-
tions of Matrix-Matrix Multiplication algorithm. We compare the performance of
the pure Python version against those of Numba, NumPy, Numba CUDA API,
Numba scientific library, pure CUDA, and pure C code. Table 1 summarizes
the times and the computed speedups of our measurements. The matrices sizes
used for all the benchmarks are 320× 320. The times in Table 1 are the aver-
age running time of each implementation over one-hundred runs. Our bench-
marking environment includes Python 2.7; Anaconda version 4.2.13; Numba

208 A. Marowka

Listing 3.4. An example of using @cuda.jit for multiplication of two vectors.

1 import numpy as np
2 from numba import cuda
3
4 @cuda . j i t
5 de f mult (x , y , r e s) :
6 pos = cuda . g r id (1)
7 i f pos < x . s i z e :
8 r e s [pos] = x [pos] + y [pos]
9

10 threadspe rb lock = 32
11 b l o ck sp e r g r i d = (x . s i z e + (threadspe rb lock − 1))

// threadspe rb lock
12
13 mult [b l ockspe rg r id , th readspe rb lock] (x , y , r e s)

0.30.1; Spyder 3.0; NumPy 1.11.1; SciPy 0.18.1; Cython 0.25.2; Numexpr 2.6.2;
PyPy2.7 v5.6.0; Visual Studio C++ 2015; OpenMP 3.0; CUDA 8.0; GPU pro-
cessor NVIDIA GeForce GTX 550 Ti with compute capability 2.1 (It is a relative
old processor but was sufficient for our purpose); and Intel Core-i7 3.4 GHz multi-
core processor. All the running times of the GPU implementations do not include
the time required to transmit data from the host to the driver and vice versa. The
rationale for not taking into account the time overhead of the communication is
due to the fact that heterogeneous processors that will be lunched in the fore-
seeable future will include physical unified shared memory for the host and the
driver. Therefore, the communication time between them will be negligible.

Table 1 is devised into two groups of implementations: serial and parallel
implementations. All the computed speedups are relative to the running time of
the pure Python implementation. The implementations in Table 1 are sorted in
ascending order of the speedup obtained from our benchmarks.

Listing 4.1 presents the pure Python implementation based on for-loop of
the Matrix Multiplication algorithm.

Let’s start with the serial implementations. Annotating the function matmul
with the annotation @jit (nopython=True) instructs the compiler to compile
the function matmul to the fastest code possible. The time measurement in
Table 1 shows an impressive speedup of x534. This result reflects the difference
in performance that can be obtained from an interpreted code compared to a
compiled code.

Generating matmul function as a NumPy generalized universal function is
completed by annotating the function matmul by the following annotation:

@guvector ize ([’ void (f l o a t 6 4 [: , :] , f l o a t 6 4 [: , :] ,
f l o a t 6 4 [: , :]) ’] , ’ (m, n) , (n , p)−>(m, p) ’ ,
nopython=True , t a r g e t =’cpu ’)

Towards High-Performance Python 209

Table 1. Times and speedups of various Matrix Multiplication implementations.

Program Time (in seconds) Speedup

Serial implementations

Pure Python 18.6031195509 x1

Numba @jit 0.0347767734007 x534

Numba @guvectorize Target = ‘cpu’ 0.0333741619215 x558

C on windows 0.02513 x740

Pure NumPy 0.000834 x22,302

Parallel implementations

Numba @guvectorize Target = ‘parallel’ 0.0668405298234 x278

Python threading

1 thread Nogil = False 0.03643389......x1

4 thread Nogil = False 0.03849981......x0.94

4 thread Nogil = True 0.01314321......x2.73 x1415

C-OpenMP, 4 cores 0.00860 x2162

Pure CUDA 0.000830 x22,409

Numba @guvectorize Target = ‘cuda’ 0.000377642710865 x49,258

Numba CUDA API 0.000131226685019 x141,740

cuBLAS GEMM 0.0000753513070663 x246,848

The first list is the type signatures of the input and the output arguments of
the function. The second argument is a symbolic declaration of the function mat-
mul that takes as input (m,n)-element and (n,p)-element two-dimension arrays
and returns a (m,p)-element two-dimension array. The third argument, target,
instructs the compiler to generate code for a single-threaded CPU. As observed
in Table 1, when the target is ’cpu,’ the speedup achieved is x558 compared to
the result of pure Python which is 4.4% better than the performance achieved
by automatic compilation using @jit decorator.

Implementing the matrix-matrix multiplication algorithm using pure C lan-
guage with Microsoft Visual Studio C++ 2015 increases the speedup up to x740.

Listing 4.1. A pure Python Matrix Multiplication algorithm.

1 de f matmul (A, B, C) :
2 m, n = A. shape
3 n , p = B. shape
4 f o r i in range (m) :
5 f o r j in range (p) :
6 C[i , j] = 0
7 f o r k in range (n) :
8 C[i , j] += A[i , k] ∗ B[k , j]

210 A. Marowka

This result is usually considered, by mistake, to the upper limit of the speedup
attainable. However, comparing the running time of the pure Python algorithm
against pure NumPy: C = np.dot(A,B), yield an imaginary speedup of x22302!
In other words, the upper limit term in applied computer science must be taken
with a grain of salt.

Now, let’s examine the results of the parallel implementations. Generating
parallel matmul function as a NumPy generalized universal function is done by
annotating the function matmul similar to the single-core case, but this time
with the compiler option target=’parallel’

As observed in Table 1, the achieved speedup is x278. However, this result
shows no gain in performance compared to the running time on a single-core.
There are two reasons for this disappointing outcome. First, @guvectorize actu-
ally parallelizes the “loop” dimension of the matrices which has only one entry
in our case. Second, the overhead incurred by attempting to parallelize the algo-
rithm is high relative to the gain from parallelizing the matrices. Another exam-
ple involves parallelism overhead cost which will be further discussed a few lines
ahead when the results of explicit parallelism of the algorithm will be introduced.

Numba compiler supports explicit parallelism using Python threading pack-
age [20]. However, the threading package is unable to parallelize code using its
multithreading mechanism. The reason for this limitation is that the Python
interpreter, CPython, is not thread-safe. In order to enforce it to be thread-safe,
the threading module makes use of a global lock called the Global Interpreter
Lock (GIL). This means that only one thread can execute a bytecode instruction
at the same time; Python routinely switches between threads after a quantum
of time. In other words, all threads in Python run on the same core, so no per-
formance is gained by using multiple threads. Nevertheless, Numba allows the
bypass of this problem by using the option nogil=True. The measurements that
appear in Table 1 confirm our claims. When using the option nogil=False, we
get speedup of x0.94 when running with four threads. However, when we set the
option to nogil=True, then for four threads, we get speedup of x2.7 relative to
the running time of one thread. The speedup relative to pure Python is x1415.
The parallelism overhead inhibits us from gaining better speedup. However, by
increasing the input size of the matrices to 2000 by 2000, we increase the work
of each thread and therefore increase the computation time relative to the over-
head time. The speedup, as expected, increases to x3.38 (times are not shown
in Table 1).

The next entry in Table 1 is the implementation using C-OpenMP with four
threads. In this case, the speedup soared to x2162.

All other implementations in Table 1 are exploiting the massive parallelism
of the GPU processors. The first in this group of implementations is the Pure
CUDA implementation that was borrowed from the CUDA 8.0 samples that were
inspired from [21]. It has been written for clarity of exposition to illustrate var-
ious CUDA programming principles, not with the goal of providing the optimal
performance of generic kernel for matrix multiplication. This implementation

Towards High-Performance Python 211

Listing 4.2. Matrix Multiplication using CuBLAS GEMM routine.

1 import numpy as np
2 import time
3 import a c c e l e r a t e . cuda . b l a s as cub las
4
5 b la s = cub las . Blas ()
6
7 n = 320
8 A = np . random . random ((n , n)) . astype (np . f l o a t 6 4)
9 B = np . random . random ((n , n)) . astype (np . f l o a t 6 4)

10 C = np . z e r o s l i k e (A, order=’F ’)
11
12 b la s .gemm(’T’ , ’T’ , n , n , n , 1 . 0 , A, B, 1 . 0 , C}
13
14 a s s e r t (np . a l l c l o s e (np . dot (A, B) , C))

has achieved a result that is a quantum leap compared with the previous ones
with a remarkable speedup of up to x22169.

Now, we return to the generation of a parallel matmul function as a NumPy
generalized universal function, but this time with the compiler option tar-
get=’cuda’.

The recorded result shows more than double improvement in performance
compared to the previous results, while the speedup reached to a level of x49,258.
It is worth mentioning again that the timing measurements of the implementa-
tions running on the GPU are net time which does not include the communi-
cation costs of downloading and uploading the data from the host to the driver
and vice versa.

The implementation of matrix-matrix multiplication using Numba CUDA
GPU programming API introduces a new level of performance while attaining
an astonishing speedup of x141740 that looks like an unbreakable achievement.
However, the last implementation leaves no doubt that when it comes to opti-
mizing the performance of parallel applications, the sky is the limit.

Anaconda Accelerate provides access to optimized numerical libraries for high
performance on Intel CPUs and NVidia GPUs. One such binding is cuBLAS that
provides an interface that accepts NumPy arrays and Numba’s CUDA device
arrays. The binding automatically transfers NumPy array arguments to the
device as required. Listing 4.2 presents an example that uses cuBLAS GEMM
routine to perform matrix-matrix multiplication. GEMM transposes the input
matrices so that they can be in C order. Note that the output matrix is still
in FORTRAN array. The string arguments in GEMM tell it to apply trans-
formation on the input matrices. GEMM routine archives speedup of x246848
compared to pure Python code.

212 A. Marowka

5 Conclusion

Today, the presence of Python in many academic courses and as emerging soft-
ware development tool for scientific applications is not in doubt. This presence
has accelerated the development community’s motivation and the users of the
language to find effective solutions to improve its performance. In this article, we
reviewed the main proposed solutions that are adopted by the Python develop-
ers’ community while we focused on Numba, a much-promised solution that is in
its advanced stages of development. This solution also preserves the performance
improvement of code while it is ported to different target architectures.

References

1. Guo, P.: Python is Now the Most Popular Introductory Teaching Language
at Top U.S. Universities. 7 July 2014. http://cacm.acm.org/blogs/blog-cacm/
176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-
us-universities/fulltext

2. Most Popular Coding Languages of 2016. 2 February 2016. http://blog.codeeval.
com/

3. TIOBE Index. http://www.tiobe.com/tiobe-index/
4. IEEE Spectrum ranking. http://spectrum.ieee.org/computing/software/the-2016-

top-programming-languages
5. Scipy. http://www.scipy.org/
6. Numpy. http://www.numpy.org/
7. Matplotlib. http://matplotlib.org/
8. Marowka, A.: On parallel software engineering education using Python. Educ. Inf.

Technol. 23, 357–372 (2017). Springer
9. PyPy. http://pypy.org/

10. PyCUDA. https://mathema.tician.de/software/pycuda/
11. PyOpenCL. https://mathema.tician.de/software/pyopencl/
12. Numba. http://numba.pydata.org/
13. A Speed Comparison of C, Julia, Python, Numba and Cython on LU Factorization.

https://www.ibm.com/developerworks/community/blogs/jfp/entry Comparison
Of C Julia Python Numba Cython Scipy and BLAS on LU Factorization?
lang=en

14. PyPy Speed Center. http://speed.pypy.org/
15. Cython. http://cython.org/
16. Numexpr. https://github.com/pydata/numexpr
17. Python Multiprocessing module. https://docs.python.org/2/library/

multiprocessing.html
18. Anaconda Accelerate. https://docs.continuum.io/accelerate/
19. Anaconda Python. https://www.continuum.io/downloads
20. Python threading module. https://docs.python.org/3.3/library/threading.html
21. Volkov, V., Demmel, J.: Benchmarking GPUs to tune dense linear algebra. In:

Proceedings of ACM/IEEE Conference on Supercomputing (SC 2008), pp. 31:1–
31:11. IEEE Press, Piscataway (2008)

http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://blog.codeeval.com/
http://blog.codeeval.com/
http://www.tiobe.com/tiobe-index/
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages
http://www.scipy.org/
http://www.numpy.org/
http://matplotlib.org/
http://pypy.org/
https://mathema.tician.de/software/pycuda/
https://mathema.tician.de/software/pyopencl/
http://numba.pydata.org/
https://www.ibm.com/developerworks/community/blogs/jfp/entry_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry_Comparison_Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang=en
http://speed.pypy.org/
http://cython.org/
https://github.com/pydata/numexpr
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html
https://docs.continuum.io/accelerate/
https://www.continuum.io/downloads
https://docs.python.org/3.3/library/threading.html

Actor Model of a New Functional
Language - Anemone

Pawe�l Batko1 and Marcin Kuta2(B)

1 VirtusLab, Smoleńsk 21/15, 31-108 Krakow, Poland
pbatko@virtuslab.com

2 Department of Computer Science, AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Krakow, Poland

mkuta@agh.edu.pl

Abstract. This paper describes actor system of a new functional lan-
guage called Anemone and compares it with actor systems of Scala and
Erlang. Implementation details of the actor system are described. Per-
formance evaluation is provided on sequential and concurrent programs.

Keywords: Compiler construction · Concurrent programming
Actors · Threads · Message passing

1 Introduction

Creating a new language is a complex task, requiring a lot of time and human
resources. Creating a functional language is even more difficult, as it contains
many high-level concepts, e.g., higher-order functions or closures. This work
presents design and implementation of Anemone – fully useful, secure, functional
language with user-friendly syntax, which can be enriched with new components
and optimized in future.

Anemone [4] supports concurrent programming model based on actors com-
municating via messages. Polymorphic type system of Anemone supports error
detection at compile time and encourages code reuse. Complete type inference
disposes a programmer of defining explicit type signatures. Anemone functions
are first class citizens [1] and memory is automatically managed with the garbage
collector module. Mechanism of external functions gives access to functions and
libraries written in C. Anemone compiler is based on the LLVM infrastruc-
ture, which generates high quality code for many computer architectures [6].
Created language draws inspiration from many mechanisms present in various
programming languages, including Scala, Erlang, Haskell and ML. Actor sys-
tem integrated directly into language, safe programming style encouraged by
immutable variables, coherent type system with subtyping, pattern matching
mechanism, and compiler retargetability make Anemone attractive compared to
other languages.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 213–223, 2018.
https://doi.org/10.1007/978-3-319-78054-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_20&domain=pdf
http://orcid.org/0000-0002-5496-6287

214 P. Batko and M. Kuta

The aims of this work were the following:

1. Implementation of a functional language compiler, analysis of such languages
and ways of their implementation.

2. Convenient model of parallel processing based on actors mechanism and mes-
sage passing.

3. Performance comparison of the implemented model with existing mechanisms
in other languages.

2 Related Work

Threads are a low-level abstraction of concurrent programming, but using them
is difficult because they share memory. Secure, concurrent access to shared mem-
ory requires synchronization with a critical section along with structures like
semaphores, mutexes or critical sections. A programmer has to pay attention to
avoid race conditions, starvation, dead locks or live locks.

Actor model [2,5] offers several advantages over thread model. Actors intu-
itively model real world, and writing reliable applications using actors is sim-
ple. Asynchronous communication between actors leads to better utilization of
CPU time, as idle cycles are not wasted while waiting for an answer. Sepa-
ration between actors makes programs easier to understand. The whole actor
system can be understood by analysing each actor behaviour in isolation. Actors
are well suited for problems requiring high performance, responsiveness or multi-
scaling [7], as they can delegate tasks to workers. Actors are also lightweight and
thousands of instances can be created, which is impossible for system threads.
With actor model, synchronization mechanisms present in thread model are no
longer needed. As actors do not share a global state, critical sections are neither
needed. Taking into account above advantages, actor model has been adopted
as concurrency model in Anemone.

2.1 Actors in Erlang and Scala

Erlang implements actors at a language level and calls them processes. Erlang
processes are lightweight, as they are implemented at the level of Erlang virtual
machine and do not involve threads or processes of a operating system. Each
actor is assigned its own dynamic memory, and garbage collection is performed
for each actor independently. Sent messages are copied between heaps, which
prevents them sharing by two or more actors. Actor scheduling is a duty of the
Erlang virtual machine, and no synchronization mechanism, e.g., semaphores, is
needed. Erlang actor system ensures scalability (one actor needs only 300 bytes
of memory) and high reliability of written programs [3].

Figure 1(a) presents two actors, ping and pong, defined as functions in Erlang.
It is worth noting code conciseness, built-in message sending operator, a block
for receiving messages, and message identification with pattern matching.

Scala provides actors implementation in the Akka library [8]. Message passing
is done in shared memory, if actors run within one Java virtual machine. If actors

Actor Model of a New Functional Language - Anemone 215

perform on different virtual machines, messages are serialized before sending
them. Garbage collection applies to all the actors from a given JVM instance.
Actors are scheduled by the Akka library. Akka does not impose immutable
messages and avoiding global state although strongly recommends them.

ping(N, Pong) ->

Pong ! {self(), ping}.

class Ping extends Actor {

val state: Int = 1

def receive = {

case Ping =>

pong ! PingMsg

}

}

pong() ->

receive

{From, ping} ->

From ! pong,

pong();

end.

class Pong extends Actor {

def receive = {

case PingMsg =>

sender ! PongMsg

}

}

(a) Erlang implementation (b) Scala implementation

Fig. 1. Two actors ping and pong implemented in Erlang and Scala

Erlang actors are implemented as ping and pong functions, while Scala actors
are represented with instances of Ping and Pong classes. In both cases, messages
are sent with ! operator and received within receive block.

Figure 1(b) presents actor definitions with Akka. In contrast to Erlang, Akka
actors are defined as classes. Pattern matching, message sending operator, and
a block for receiving messages are exploited similarly as in Erlang. Actor state
is represented as a field of an actor instance. Continuity of actor work is ensured
by Akka, so an actor does not have to call itself, as it is in Erlang.

3 Actor Model of Anemone

Anemone does not provide a programmer low-level model of threads, which,
although very expressive, does not fit needs of a high-level, secure functional
language.

Actor model is more restrictive than thread model, as actors communicate
only through message passing. It makes manual synchronization redundant and
allows to write programs more easily, due to imposed style of communication
and message identification. Continuity of actor work is provided in Anemone
by internal implementation, which, similarly to Akka, calls actor function for
each new message. Similarly to Erlang, Anemone models actors as functions,

216 P. Batko and M. Kuta

which can accept an initial state and pass it through. Message passing model in
Anemone is similar to Akka, as they both use shared memory to implement it.

Actor model of Anemone characterizes with:

– asynchronous communication
– possibility of creating many actors in one thread
– possibility of dynamic creation of new actors
– complete integration with the garbage collector
– modeling actors as functions, similarly to Erlang
– actor control similar to Akka
– message handling through pattern matching.

Implementation of many actors within one system thread was especially chal-
lenging, as it required their proper scheduling. Construction of the garbage
collector which correctly and effectively cooperates with multithreaded actors
architecture was equally challenging.

Figure 2 presents a complete program implementing two actors which com-
municate with each other via messages. Function createActorSystem creates an
actor system on the basis of two system threads, and next, actors ping and pong
are created. Function sendFromOutside starts activities of actors, i.e., sending
messages. Actors exploit pattern matching to identify received messages, func-
tion sendMsg to send messages, and maintain the state identifying the address
of the second actor.

4 Implementation of Actor System

Anemone models concurrent computing with the actor module, which provides
abstraction for convenient work on multicore architectures. Figure 3 presents
detailed architecture of the actor module. Actor module consists of the following
submodules:

– Mailbox module defines how received messages are stored and is responsible
for actors adding and removing.

– Actor management module defines architecture of a single actor.
– Threads module is responsible for management of OS threads.
– Dispatcher module is responsible for running actors on system threads.

In Anemone using actors is possible due to the actor module. The actor
library is an interface to this module from Anemone. Figure 4 presents func-
tions to handle actors. The actors library provides the following functions to
manipulate actors:

– createActorSystem creates an actor system running on a given number of
system threads.

– createActor creates a new actor in the actor system. Two parameters define
actor behaviour and an initial state of actor. Function returns the id of a
created actor.

Actor Model of a New Functional Language - Anemone 217

fun ping(state, msg) {

var otherActorId = state in {

match msg {

| s :: String => {

printStr(s)

sendMsg(otherActorId, "fromPing")

nap(1)

state

}

| otherActorId :: ActorId => {

sendMsg(otherActorId, "fromPing - first")

otherActorId

} } } }

fun pong(state, msg) {

var otherActorId = state in {

match msg {

| s :: String => {

printStr(s)

sendMsg(otherActorId, "fromPong")

nap(1)

state

} } } }

fun main_fun() {

createActorSystem(2)

var pingActorRef = createActor(ping, 0),

pongActorRef = createActor(pong, pingActorRef) in {

sendFromOutside(pingActorRef, pongActorRef)

} }

Fig. 2. Creation and starting actor system

Mailbox module

Actor management module Threads module

Dispatcher module

Fig. 3. Main submodules of module of actors and message passing

218 P. Batko and M. Kuta

– killActor returns an object, which sent to an actor or passed as its new
state terminates its action.

– sendMsg sends a message, specified in the second parameter, to an actor
defined by the first parameter. Function can be called only by an actor.

– become can be called only by an actor. The function takes as its argument a
function determining actor new behaviour.

type:: (double) -> unit

fun createActorSystem(n)

type:: ((’s, ’m) -> ’s, ’s) -> ActorId

fun createActor(f, a)

type:: (ActorId, ’a) -> unit

fun sendMsg(to, msg)

type:: ((’s, ’m) -> ’s) -> unit

fun become(f)

Fig. 4. Functions of actor library of Anemone

4.1 Creating Actor System

Creating actor system is equivalent to creating a number of threads and initial-
ization of their data structures. The actor system of Anemone distinguishes two
kinds of threads: system threads and actor threads. Each actor thread contains
a system thread and a number of actors.

struct __athread_t {

int64_t thread_id;

int64_t actors_array_capacity;

int64_t actors_array_occupied;

int64_t current_actor_idx;

actor_t** actors_array;

};

typedef struct __athread_t athread_t;

Fig. 5. Structure of actor module describing an actor thread of Anemone

Function createActorSystem creates a new actor system with a given num-
ber of threads. In particular, it creates a table of athread t structures, describ-
ing actor threads (Fig. 5). Each athread t structure corresponds to one system
thread and many actors (actors array).

System threads are created and managed with the help of the POSIX pthreads
library. Function athread main fun creates system threads and defines their
behaviour. Function athread main fun works as follows:

Actor Model of a New Functional Language - Anemone 219

– initializes structures describing an actor thread.
– waits for the first actor in this thread.
– takes the next actor assigned to this actor thread.
– starts handling at most max msg handled per actor messages in the

mailbox of the actor. Variable max msg handled per actor is tunable.
– removes an actor from the system in the following cases:

• an actor received a message being a result of killActor call
• an actor returned a new state equal to the return value of killActor

call.
– serves next actor, if it is present.
– terminates, if no actors are present in this actor thread.

4.2 Implementation of an Actor and Message Passing

Actors and message passing are implemented in the actor module in C. Figure 6
presents the structure of the actor module used by the actor management mod-
ule. It consists from the following fields:

– user cls - a closure describing actor behaviour,
– state - actor state, it is passed as a parameter to a closure describing actor

behaviour,
– actor id - actor id in the actor management module,
– mailbox - a pointer to the mailbox of an actor.

struct __actor_t {

closure_t *user_cls;

void *state;

uint64_t actor_id;

mailbox_t *mailbox;

};

typedef struct __actor_t actor_t;

Fig. 6. Structure of actor module describing a single actor of Anemone

An actor mailbox stores messages sent to a given actor. Each message has
a sender, a receiver, and the content. Messages are processed under the FIFO
regime. Sending a message does not incur copying the whole message but only
a lightweight copying of a pointer to the message, as message passing is done in
shared memory.

Function pong takes as its arguments a current actor state and a new message.
It sends a message of type string to an actor identified by pingActorID. The
function returns a new state (in this case unchanged) as a result of its call.

At any time, an actor thread can run at most one actor. Figure 7 presents a
simple actor definition. Function sendMsg, responsible for sending a message to

220 P. Batko and M. Kuta

fun pong(state, msg) {

printStr("Pong: " ^ msg)

sendMsg(pingActorId, "PONG" ^ msg)

state

}

Fig. 7. An example of a function defining actor behaviour

void* threads_getspecific() {

return pthread_getspecific(THREAD_KEY);

}

void threads_setspecific(void* data) {

pthread_setspecific(THREAD_KEY, data);

}

Fig. 8. Getting and setting local state of a given actor thread

another actor, does not specify explicitly the sender of a message. The sender
(currently running actor) is identified due to the local context of the actor thread,
implemented by the actor module.

Function threads getspecific gets local state of a actor thread, while
threads setspecific sets it. Key THREAD KEY defines local data of a given
actor thread. Both functions are implemented in pthreads.

Figure 8 presents functions of the actor management module, responsible for
associating actor threads with contextual data. Function threads setspecific
is used in the main loop of athread main fun to set thread context to current
actor. When function responsible for sending messages is called, it can access
local context of a thread to get the id of the actor. The advantage of such a
solution is a support for many actors in one system thread through changing
value of thread context and conciseness of function sendMesg.

In addition to local context setters and getters, implementation of the actor
module uses synchronization primitives – mutexes and conditional variables of
pthreads. Correct and effective realization of the actor system on the basis of
above mechanisms is a duty of the runtime system of Anemone. Anemone users
profit from multicore architectures without using difficult and insecure low-level
synchronization mechanisms.

4.3 Scheduling Many Actors in One System Thread

The actor module can create a huge number of actors, significantly exceeding
the number of running threads of the operating system, as an Anemone actor is
defined by a lightweight data structure (several hundred bytes). An actor thread
associates a system thread with many actors. Actor scheduling in Anemone is
a duty of the actor module and is based on the number of received messages.
Each running actor may receive no more than max msg handled per actor

Actor Model of a New Functional Language - Anemone 221

messages. If an actor receives all the messages from its mailbox (but not exceed-
ing the max msg handled per actor threshold), the next actor belonging to
the same actor thread will be scheduled. Above scheduling algorithm promotes
implementation of actors as quickly performing functions. Time-consuming tasks
should be delegated by an actor to its child workers. The drawback of this solu-
tion is that some system threads will be blocked by these heavy computations.

4.4 Pattern Matching

With pattern matching supported by Anemone, defining actors and their
behaviour is easier.

fun anActor(state, msg) {

match msg {

| Bar(b) => { ... }

| f :: Foo => { ... }

}

}

Fig. 9. Usage of pattern matching in definition of Anemone actor

Figure 9 presents an actor defined with pattern matching. Message msg,
received by an actor, is matched to the first pattern, Bar(b), where Bar denotes
a data type defined in Anemone, and b denotes a field of this data type. If the
first match fails, pattern f :: Foo will be checked. The second pattern will be
matched if msg is of type Foo. Identifier f introduces variable f, which refers to
matched object, msg, and has type Foo.

5 Experiments

To assess quality of Anemone implementation and its runtime system, perfor-
mance tests have been conducted and execution time of programs written in
Anemone, Scala and Java have been compared. For each language, the arith-
metic mean of ten measurements with time command was reported. The experi-
ments were performed under dual-core Intel Core i3-2310M CPU with 2.10 GHz
clock and Linux Ubuntu 13.10. Heap size for Scala and Java was set to default
values. For Anemone heap size was set to 100 KiB and the threshold triggering
collection to 0.8.

The first experiment, which assessed quality of generated code and efficiency
of the runtime system, compared time performance of a sequential program
(computation of 20th element of the Fibonacci sequence) written in Java, Scala
and Anemone. Results in Table 1 show that implementation in Scala was two
times faster, while implementation in Java three times faster. It can be partly

222 P. Batko and M. Kuta

attributed to memory organization in Anemone. Language performance is signifi-
cantly influenced by efficiency of the memory allocation module. While Anemone
is a new language, memory allocation algorithm in JVM used by Scala and Java
has been fine-tuned for many years.

Table 1. Execution time of the program computing 20th element of the Fibonacci
sequence

Language Execution time [s] Ratio

Java (1.7.0 60) 0.45 3.09

Scala (2.10.4) 0.75 1.87

Anemone 1.41 1.00

The second experiment assessed efficiency of the Anemone actor system.
Implementations in Anemone and Akka of two actors communicating with each
other were compared. Actors sent in total 10000 messages.

Table 2. Execution time of the program creating simple actor system

Language Execution time [s] Ratio

Scala (2.10.4) + Akka (2.2-M3) 1.86 6.12

Anemone 11.41 1.00

Implementation in Akka turned out to be six times faster than implemen-
tation in Anemone (Table 2). Efficiency of the memory allocation module of
Anemone could have significant impact on results.

6 Conclusions

Model and implementation of actor system of a new functional language,
Anemone, have been described. Anemone was developed within a limited period
of time. Proposed language was few times slower than Scala or Java, which is
a very good result, taking into account that latter languages have been already
developed and optimized for a long period of time by large teams of experts.

Acknowledgements. This research was financed by AGH University of Science and
Technology Statutory Fund.

Actor Model of a New Functional Language - Anemone 223

References

1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer
Programs, 2nd edn. MIT Press/McGraw-Hill, Cambridge (1996)

2. Agha, G.A.: ACTORS - A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press series in artificial intelligence. MIT Press, Cambridge (1990)

3. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
4. Batko, P.: A compiler for functional language with support for message passing

(in Polish). Master’s thesis, Department of Computer Science, AGH University of
Science and Technology, Krakow, Poland (2014)

5. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, IJCAI 1973, pp. 235–245 (1973)

6. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis
& transformation. In: Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO 2004), pp. 75–88 (2004)

7. Rycerz, K., Bubak, M.: Using Akka actors for managing iterations in multiscale
applications. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K.,
Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 332–341. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-32149-3 32

8. Wyatt, D.: Akka Concurrency. Artima Incorporation, Sunnyvale (2013)

https://doi.org/10.1007/978-3-319-32149-3_32

Almost Optimal Column-wise Prefix-sum
Computation on the GPU

Hiroki Tokura, Toru Fujita, Koji Nakano(B), and Yasuaki Ito

Department of Information Engineering, Hiroshima University,
Kagamiyama 1-4-1, Higashihiroshima 739-8527, Japan

nakano@hiroshima-u.ac.jp

Abstract. The row-wise and column-wise prefix-sum computation of
a matrix has many applications in the area of image processing such
as computation of the summed area table and the Euclidean distance
map. It is known that the prefix-sums of a 1-dimensional array can be
computed efficiently on the GPU. Hence, the row-wise prefix-sums of a
matrix can also be computed efficiently on the GPU by executing this
prefix-sum algorithm for every row in parallel. However, the same app-
roach does not work well for computing the column-wise prefix-sums,
because inefficient stride memory access to the global memory is per-
formed. The main contribution of this paper is to present an almost
optimal column-wise prefix-sum algorithm on the GPU. Since all ele-
ments in an input matrix must be read and the resulting prefix-sums
must be written, computation of the column-wise prefix-sums cannot
be faster than simple matrix duplication in the global memory of the
GPU. Quite surprisingly, experimental results using NVIDIA TITAN X
show that our column-wise prefix-sum algorithm runs only 2–6% slower
than matrix duplication. Thus, our column-wise prefix-sum algorithm is
almost optimal.

Keywords: Prefix computation · Parallel algorithms · GPU · CUDA

1 Introduction

A GPU (Graphics Processing Unit) is a specialized circuit designed to acceler-
ate computation for building and manipulating images [2,5,14]. Latest GPUs
are designed for general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs have attracted the
attention of many application developers. NVIDIA provides a parallel computing
architecture called CUDA (Compute Unified Device Architecture) [13], the com-
puting engine for NVIDIA GPUs. CUDA gives developers access to the virtual
instruction set and memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multicore processors [5],
since they have thousands of processor cores and very high memory bandwidth.

When we develop programs running on GPUs, we can use the CUDA pro-
gramming model [13]. Usually, a CUDA program executed on the host computer
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 224–233, 2018.
https://doi.org/10.1007/978-3-319-78054-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_21&domain=pdf

Almost Optimal Column-wise Prefix-sum Computation on the GPU 225

invokes CUDA kernels one or more times. A CUDA kernel executes one or more
CUDA blocks with at most 1024 threads running on streaming multiprocessors
of the GPU. CUDA blocks in a CUDA kernel are identical in the sense that they
have the same number of threads executing the same program. CUDA blocks are
dispatched to a streaming multiprocessor in turn. Threads in a CUDA block is
partitioned into groups of 32 threads each called warp. All threads in a warp are
dispatched to cores in a streaming multiprocessor at the same time and execute
the same instruction.

CUDA uses two types of memories in the NVIDIA GPUs: the shared mem-
ory and the global memory [13]. The shared memory is an extremely fast on-
chip memory with lower capacity such as 16–96 Kbytes. The global memory is
implemented as an off-chip DRAM, and thus, it has large capacity such as 1.5–
12 Gbytes, but its access latency is quite large. The efficient usage of the shared
memory and the global memory is a key for CUDA developers to accelerate
applications using GPUs. In particular, we need to consider bank conflicts of the
shared memory access and coalescing of the global memory access [5,12]. The
address space of the shared memory is mapped into several physical memory
banks. If two or more threads access different addresses in the same memory
bank at the same time, they are processed sequentially in turn. Hence, to max-
imize the memory access performance, threads should access distinct memory
banks to avoid bank conflicts. To maximize the bandwidth between the GPU
and the DRAM chips, the consecutive addresses of the global memory must be
accessed at the same time. Thus, CUDA threads should perform coalesced access
when they access the global memory.

Let a0, a1, . . ., an−1 be n numbers. The prefix-sums â of a are n numbers such
that âi = a0 + a1 + · · · + ai for all i (0 ≤ i ≤ n − 1). Suppose that each variable
A[i] stores ai. After executing A[i] ← A[i] + A[i − 1] for all i (1 ≤ i ≤ n − 1)
in turn, each A[i] stores the prefix-sum âi. The computation of the prefix-sums
of a 1-dimensional array is one of the most important computation for many
algorithms. For example, list ranking problem which determines the position of
each item in a linked list can be solved by computing the prefix-sums. It is also
used for computing the positions of keys in radix sort. In [1], several fundamental
algorithms for computing the prefix-sums on the GPU have been shown. Also,
Merrill et al. [6,7] has presented a more sophisticated GPU implementation for
the prefix-sums using decoupled look-back technique. As far as we know this
algorithm is the most efficient GPU implementation for computing the prefix-
sums of a 1-dimensional array. For later reference, we call this algorithm CUB-
prefix in this paper.

Suppose that a matrix a with n × n elements ai,j (0 ≤ i, j ≤ n − 1) is given.
As usual, we assume that each ai,j is an element in the i-th row and j-th column.
The row-wise prefix-sums correspond to a matrix r of the same size such that
ri,j = ai,0+ai,1+· · ·+ai,j for all i and j (0 ≤ i, j ≤ n−1). Similarly, the column-
wise prefix-sums correspond to a matrix c such that ci,j = a0,j + a1,j + · · · + ai,j

for all i and j (0 ≤ i, j ≤ n − 1). Figure 1 illustrates the row-wise and the
column-wise prefix-sums of a 4 × 4 matrix. They have many applications in the

226 H. Tokura et al.

1 2 1 3

3 2 3 1

2 1 0 1

1 3 1 2

1 3 4 7

3 5 8 9

2 3 3 4

1 4 5 7

1 2 1 3

4 4 4 4

6 5 4 5

7 8 5 7

input matrix row-wise prefix-sums column-wise prefix-sums

Fig. 1. Row-wise and column-wise prefix-sums of a 4 × 4 matrix

area of image processing. For example, the summed area table [3,4,11] can be
obtained by computing the row-wise prefix-sums and the column-wise prefix-
sums. Also, in the computation of Euclidean distance map of a binary image,
the column-wise prefix-minima is computed [5].

The main contribution of this paper is to present the Look-back Column-wise
Prefix-sum (LCP) algorithm, which computes the column-wise prefix-sums of
a matrix very efficiently on the GPU. It partitions the matrix into small tiles
and the column-wise sums and prefix-sums of every tile are computed using one
CUDA block for each tile in parallel. The LCP algorithm involves several GPU
computing techniques including the warp prefix scan [1], the diagonal arrange-
ment of a matrix [10], and the decoupled look-back [7] to minimize memory access
and synchronization overhead. The LCP algorithm does not perform stride access
to the global memory, shared memory access with bank conflicts, or separated
kernel calls for global synchronization, which involve large overhead. Clearly, no
GPU implementation of column-wise prefix-sum computation of an n×n matrix
can be faster than matrix duplication, in which n2 elements are read and writ-
ten. Thus, we can say that a column-wise prefix-sum algorithm is optimal if the
computing time is equal to matrix duplication. Quite surprisingly, the experi-
mental results on NVIDIA TITAN X GPU show that our LCP algorithm runs
only 2–6% slower than matrix duplication. Thus, our LCP algorithm is almost
optimal.

2 Preliminary

This section shows several fundamental techniques on the GPU necessary to
understand our LCP algorithm and naive algorithms for computing the column-
wise prefix-sums.

Let A be an n×n 2-dimensional array storing a matrix of n×n numbers. We
assume that each A[i][j] storing ai,j is arranged in offset i · n + j of the memory
space for A. Suppose that A stores the values of an n×n matrix a. The row-wise
prefix-sums of a can be computed using n threads as follows:

[Naive row-wise prefix-sum algorithm]

Almost Optimal Column-wise Prefix-sum Computation on the GPU 227

for i ← 0 to n − 1 do in parallel
for j ← 1 to n − 1 do

thread i performs A[i][j] ← A[i][j] + A[i][j − 1];

Clearly, n threads access A[0][j], A[1][j], . . . , A[n − 1][j] for each j. Since these n
elements are not coalesced, a lot of clock cycles are necessary to read/write these
elements. Similarly, the column-wise prefix-sums can be computed by executing
A[j][i] ← A[j][i]+A[j−1][i]. Since n threads access A[j][0], A[j][1], . . . , A[j][n−1]
for each j, the memory access is coalesced and this naive algorithm may run
efficiently on the GPU. However, only n threads are used and it is not possible
to fully utilize high memory bandwidth of the GPU.

Clearly, the row-wise prefix-sums can be computed efficiently by executing
CUB-prefix [6,7] for every row in parallel. Since CUB-prefix can compute the
prefix-sums of a 1-dimensional array efficiently, this CUB-based row-wise prefix-
sum computation also works very efficiently. However, the same parallel compu-
tation does not work well for the column-wise prefix-sums, because each CUDA
block computes the prefix-sums of stride elements and memory access to the
2-dimensional array in the global memory is not coalesced. Thus, the naive algo-
rithm and the CUB-based algorithm should be used for the column-wise and
the row-wise prefix-sums computations. Further, the CUB-based algorithm run
faster than the naive algorithm because it uses more threads. Hence, we will
develop more efficient algorithm for the column-wise prefix-sums.

Let w = 32 denote the number of threads in a warp of the GPU. Suppose
that each thread in a warp has a register a storing a number and we write
A[i] (0 ≤ i ≤ w − 1) to denote register A of thread i. We assume that a 1-
dimensional array a of size n are stored in register A’s such that each A[i] stores
ai. The prefix-sums of a can be computed in log2 w steps as follows:

[Warp prefix scan]
for k ← 0 to log2 w − 1 do

for i ← 0 to w − 1 do in parallel
thread i performs A[i] ← A[i] + A[i − 2k] if i ≥ 2k;

Figure 2 illustrates how the warp prefix scan computes the prefix-sums. The
reader should refer [1,8,9] for the details. In the warp prefix scan, each thread
i (0 ≤ i ≤ w − 1) must read register A[i − 2k] of thread i − 2k. This register
read can be done very efficiently by warp shuffle function shfl up(A,2k), which
directly reads the value of register A of thread i − 2k. Since no memory access
to the shared memory or the global memory is performed, the warp prefix scan
runs very efficiently on the GPU.

Suppose that we have a w × w 2-dimensional array A stored in the shared
memory with w memory banks. Each A[i][j] is in offset wi + j of S, which is
arranged in bank (wi + j) mod w = j. Thus, the row-wise memory access to
A[i][0], A[i][1], . . . , A[i][w − 1] has no bank conflict while the column-wise mem-
ory access to A[0][j], A[1][j], . . . , A[w − 1][j] is destined for the same bank j. By
the diagonal arrangement which maps each A[i][j] to offset wi+((i+ j) mod w),
both the row-wise memory access and the column-wise memory access have

228 H. Tokura et al.

0 1 2 3 4 5 6 7

0 0-1 1-2 2-3 3-4 4-5 5-6 6-7

0 0-1 0-2 0-3 1-4 2-5 3-6 4-7

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7

0,0

0

0,1

1

0,2

2

0,3

3

0,4

4

0,5

5

0,6

6

0,7

7

1,0 1,1 1,2 1,3 1,4 1,5 1,61,7

2,0 2,1 2,2 2,3 2,4 2,52,6 2,7

3,0 3,1 3,2 3,3 3,43,5 3,6 3,7

4,0 4,1 4,2 4,34,4 4,5 4,6 4,7

5,0 5,1 5,25,3 5,4 5,5 5,6 5,7

6,0 6,16,2 6,3 5,4 6,5 6,6 6,7

7,07,1 7,2 7,3 7,4 7,5 7,6 7,7

warp prefix scan diagonal arrangement

Fig. 2. Illustrating warp prefix scan and diagonal arrangement for w = 8

no bank conflict. Figure 2 illustrates the diagonal arrangement for w = 8.
Since w elements A[i][0], A[i][1], . . . , A[i][w − 1] are arranged in banks i mod w,
(i + 1) mod w, . . ., (i + w − 1) mod w, respectively, the row-wise memory access
is conflict-free. Similarly, the column-wise memory access has no bank conflict.
Thus, the column-wise (or the row-wise) prefix-sums can be computed very effi-
ciently by executing warp prefix scan for each column (or row) in parallel. For
later reference, we call the column-wise prefix-sum computation by this tech-
nique column-wise warp scan.

As we have mentioned, the CUB-based row-wise prefix-sum computation
runs very efficiently, while the CUB-based column-wise prefix-sum performs
stride memory access with large overhead. To avoid stride memory access, we
can transpose the input matrix in advance. More specifically, the column-wise
prefix-sums can be computed, by matrix transposition, the row-wise prefix-sum
computation, and matrix-transposition. Since matrix transposition can be done
very efficiently by coalesced memory access to the global memory [10], this 3-step
algorithm may run more efficiently on the GPU.

3 The Look-back Column-wise Prefix-sums (LCP)
Algorithm on the GPU

This section shows our LCP algorithm that computes the column-wise prefix-
sums on the GPU. Again, let w = 32 denote the number of threads. We use
CUDA blocks with w2 = 1024 threads each and let ti,j (0 ≤ i, j ≤ w − 1) denote
thread j in warp i, i.e. thread iw + j in a CUDA block. Suppose that an n × n
matrix a in the global memory is partitioned into n

wd × n
w tiles of size wd × w

each as illustrated in Fig. 3, where d ≥ 1 is an integer parameter. Let T (i, j)
(0 ≤ i ≤ n

wd − 1 and 0 ≤ j ≤ n
w − 1) denote a tile. We assume that serial

numbers from 0 to n2

w2d − 1 are assigned to tiles in row major order, that is, each

Almost Optimal Column-wise Prefix-sum Computation on the GPU 229

w

wd 0 1 n
w

− 1

n

n

n2

w2d
− 1

0

1

2

w − 1

w

d

wd

matrix partitoned into n2

w2d
into w stripstiles tile partitoned

Fig. 3. Serial numbers assigned to tiles

T (i, j) is assigned a serial number i nw +j. We also call T (i, j) tile k for k = i nw +j
and the computation performed for tile k task k. Each tile is further partitioned
into w strips 0, 1, . . ., w − 1 of size d × w each as illustrated in Fig. 3.

Each tile k (0 ≤ k ≤ n2

w2d − 1) is assigned a CUDA block, which performs
task k in three steps. Let a[i][j] (α ≤ i ≤ α + wd − 1 and β ≤ j ≤ β + w − 1) be
elements of tile k. In Step 1 of task k, the local column-wise sums (LS) of tile k,
a[α][j]+a[α+1][j]+· · ·+a[α+wd−1][j] for all j (β ≤ j ≤ β+w−1), are computed
and written in the global memory. Step 2 computes the global column-wise sums
(GS), a[0][j] + a[1][j] + · · · + a[α + wd − 1][j] for all j (β ≤ j ≤ β + w − 1) and
writes them in the global memory. Finally, the global column-wise prefix-sums
(GP), a[0][j] + a[1][j] + · · · + a[i][j] for all i and j (α ≤ i ≤ α + wd − 1 and
β ≤ j ≤ β + w − 1) are computed and written in the global memory in Step 3.
Thus, when Step 3 of all tasks is completed, all column-wise prefix-sums of a are
stored in the global memory. Figure 4 illustrates the LS, the GS, and the GP of
a tile.

For later reference, we define the state of a tile in the LCP. Initially, all tiles
are in null state. A tile changes to State LS when values of the LS are written
in the global memory in Step 1. After that, it changes to State GS when values
of the GS are written in the global memory in Step 2. The LCP algorithm uses
a 2-dimensional array of size n

wd × n
w in the global memory to store the states

of all n
wd × n

w tiles. A CUDA block assigned to a tile updates the corresponding
element of this 2-dimensional array when the tile changes the state.

A CUDA block is assigned to one of the tiles in increasing order of serial num-
ber in turn. For this purpose, a global counter c initialized by zero in the global
memory is used. A CUDA kernel for the LCP algorithm invokes min(n2

w2d ,m)
CUDA blocks, where m is the maximum number of CUDA blocks that can be

230 H. Tokura et al.

w

wd

local (column-wise) sums (LS)
global (column-wise) sums (GS)

global (column-wise) prefix-sums (GP)

LS

Step 1 Step 2.1 Step 3

GS

LS

LS GS

GS

Step 2.2

GP

Fig. 4. The LS, the GS, and the GP of a tile and the computation of three steps

dispatched in the GPU at the same time. For example, NVIDIA TITAN X has
28 streaming multiprocessors with 2048 resident threads each and the LCP uses
CUDA blocks with 1024 threads each, we have m = 28·2048

1024 = 56. The first
thread 0 of every CUDA block performs atomicAdd(&c,1), which exclusively
increments c and returns the value of c before addition. Thus, atomicAdd(&c,1)
returns 0, 1, . . . in turn and no two threads receive the same return value. A
CUDA block with the first thread receiving return value k performs task k for
tile k if k < n2

w2d . It terminates if k ≥ n2

w2d . After task k is completed, it executes
k ←atomicAdd(&c,1) again and performs task k provided that return value k

satisfies k < n2

w2d . Otherwise, it terminates. The same procedure is repeated as
long as return value k satisfies k < n2

w2d .
We first show how w2 threads in a CUDA block perform task 0 for tile 0.

Tasks 1, 2, . . ., n
w − 1 can be done in the same way. Let a[i][j] (0 ≤ i ≤ wd − 1

and 0 ≤ j ≤ w − 1) be elements in tile 0. A CUDA block assigned to tile 0
uses a w × w 2-dimensional array E with the diagonal arrangement. Thus, the
row-wise/column-wise memory access to E is conflict-free. The details of the
algorithm are spelled out as follows:

Step 1.1. Each thread ti,j (0 ≤ i, j ≤ w−1) reads d elements a[id][j], a[id+1][j],
. . ., a[id + d − 1][j] one by one and store them in d registers.

Step 1.2. Each thread ti,j computes the sum a[id][j]+a[id+1][j]+ · · ·+a[id+
d − 1][j] of the d registers and write it in E[i][j] in the shared memory.

Almost Optimal Column-wise Prefix-sum Computation on the GPU 231

Step 1.3. Execute the column-wise warp prefix scan for E. Clearly, each E[i][j]
stores the value of a[0][j] + a[1][j] + · · · + a[id + d − 1][j] for all i and j.

Step 1.4 and 2. The LS of tile 0, the values stored in E[w − 1][0], E[w − 1][1],
. . ., E[w − 1][w − 1] are written in the global memory. Since tile 0 is in the
topmost row, they are also the GS of tile 0.

Step 3. Each thread ti,j (0 ≤ i, j ≤ w − 1) computes the prefix-sums of E[i −
1][j]+a[id][j], a[id+1][j], a[id+2][j], . . . , a[id+d−1][j] in an obvious way, and
writes them in the global memory. For simplicity, we assume E[−1][j] = 0 for
all j. Since E[i − 1][j] = a[0][j] + a[1][j] + · · · + a[id − 1][j], these prefix-sums
thus obtained are the GP of tile 0.

Clearly, all memory access operations to the global memory are coalesced, and
those to the shared memory are conflict-free.

Next, we will show how tasks n
w and larger are performed. For simplicity, we

show the algorithm for task l nw for tile T (l, 0) such that 1 ≤ l ≤ n
wd − 1. The

other tasks can be done in the same way. Step 1, which computes the LS, can
be done in the same way as task 0 for tile 0. Steps 2 and 3 of task l nw are spelled
out as follows:

Step 2.1. The GS of tile T (l − 1, 0), a[0][j] + a[1][j] + · · · + a[lwd − 1][j] for all
j (0 ≤ j ≤ w − 1), are computed and stored in registers. We will show how
these values are computed later. Let g[j] = a[0][j]+a[1][j]+ · · ·+a[lwd−1][j]
be the GS of tile T (l − 1, 0) thus obtained.

Step 2.2. Each thread tw−1,j (0 ≤ j ≤ w−1) computes g[j]+E[w−1][j], which
is equal to the GS of tile T (l, 0), a[0][j] + a[1][j] + · · · + a[(l + 1)wd − 1][j],
and writes it in the global memory.

Step 3. Each thread ti,j (0 ≤ i, j ≤ w−1) computes the prefix-sums of g[j]+E[i−
1][j]+a[lwd+id][j], a[lwd+id+1][j], a[lwd+id+2][j], . . . , a[lwd+id+d−1][j],
which are equal to the GP of tile T (l, 0), and writes them in the global
memory.

The reader should refer to Fig. 4 illustrating computation performed in three
steps. Step 2.1 is implemented by looking back above tiles. If T (l − 1, 0) is in
State GS, then the GS of T (l−1, 0) can be obtained simply by reading the global
memory. If it is not in State GS then tiles are looked back upwards until it finds
a tile with State GS. Since CUDA blocks run asynchronously, tile 0 may not be
in State GS when it is looked back. If this is the case, it repeatedly reads the
state of tile 0 until it is changed to State GS. Let tile T (l′, 0) (l′ ≤ l − 1) be the
first tile in State GS. The GS of tile T (l − 1, 0) can be computed by summing
the GS of T (l′, 0), the LS of T (l′ + 1, 0), the LS of T (l′ + 2, 0), . . ., and the LS
of T (l − 1, 0). To read the LS of these tiles, the state of each tile stored in the
global memory is repeatedly read until it changes to State LS.

4 Experimental Results

We have used NVIDIA TITAN X GPU, which has 28 streaming multiprocessors
with 128 processor cores each to evaluate GPU implementations of column-wise
prefix-sum computation.

232 H. Tokura et al.

Table 1. The running time (in milliseconds) of the column-wise prefix-sums computa-
tion for a n×n matrix and the ratio of the running time over that of matrix duplication

n 1K 2K 4K 8K 16K 32K

Duplicate Time 0.0274 0.0974 0.379 1.50 6.00 22.3

Naive Time 0.277 0.557 1.26 3.12 8.48 41.0

Ratio 10.1 5.72 3.33 2.07 1.41 1.84

Column-wise CUB Time 0.138 0.376 1.38 5.25 20.5 83.3

Ratio 5.04 3.86 3.64 3.49 3.41 3.74

Transposed CUB Transpose time 0.101 0.246 0.877 3.90 15.8 61.9

Row-wise time 0.0527 0.125 0.433 1.62 6.32 25.6

Total time 0.154 0.370 1.31 5.52 22.1 87.5

Ratio 5.60 3.80 3.46 3.67 3.68 3.93

LCP Time 0.0281 0.101 0.392 1.58 6.33 23.5

Ratio 1.02 1.04 1.04 1.05 1.05 1.06

Table 1 shows the running time in milliseconds for an n×n matrix with 4-byte
single precision floating point numbers from n =1K (1024) to 32K (32768). In
“duplicate” the input matrix is duplicated using cudaMemcpy, which reads all n2

elements of the matrix and writes them in the other space of the global memory.
Clearly, no column-wise prefix-sum algorithm cannot be faster than “duplicate”,
we can say that the running time of “duplicate” is the lower bound of that of any
column-wise prefix-sum computation. In “naive”, the naive column-wise prefix-
sum algorithm executed using n

32 CUDA blocks with 32 threads each. In the
table, “ratio” is the running time ratio over “duplicate”, that is, the running
time of “naive” divided by that of “duplicate.” Thus, the ratio indicates the
computation overhead, that is, the algorithm has ε overhead if it is 1 + ε. Since
“naive” uses only n threads, the ratio is much larger than 1. In particular, the
overhead is more than 900% when n = 1K, because it uses only 1024 threads on
the GPU with 3584 cores.

In “column-wise CUB”, CUB-prefix is executed for every column in parallel.
Since memory access to the global memory is not coalesced, the overhead is
more than 200% for all n. In “transposed CUB”, matrix transpose, row-wise
CUB, and matrix transpose are executed to compute the column-wise prefix-
sums. In the table, “transpose time” is the time for performing matrix transpose
twice and “row-wise time” is that for executing CUB-prefix for every row in
parallel. We can see that row-wise CUB is much faster than column-wise CUB,
because memory access to the global memory by row-wise CUB is coalesced.
However, due to large overhead of matrix transpose, the running time is almost
the same as “column-wise CUB.”

In our LCP, we fix d = 8, because the running time of LCP for d = 8 is faster
than d = 1, 2, 4, 16, and 32 for all n. Thus, the size of each tile is fixed to 256×32.
Since each of 28 streaming multiprocessor has 2048 resident threads, we should

Almost Optimal Column-wise Prefix-sum Computation on the GPU 233

invoke min(n2

8192 , 56) CUDA blocks with 1024 threads each. Since n ≥ 1024, only
56 CUDA blocks are invoked. From the table, we can see that the LCP is much
faster than “naive”, “column-wise CUB”, and “transposed CUB.” In particular,
the ratio is very close to 1 and the overhead is only 2–6%. Thus, we can say that
computation performed by our LCP is almost hidden by necessary coalesced
memory access to the global memory.

5 Conclusion

In this paper, we have shown an almost optimal parallel algorithm for com-
puting the column-wise prefix-sums of a matrix on the GPU. The computation
overhead over necessary global memory access is only only 2–6%. Hence, our
implementation is almost optimal.

References

1. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA. In:
GPU Gems 3. Addison-Wesley (2007). Chapter 39

2. Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann,
Burlington (2011)

3. Kasagi, A., Nakano, K., Ito, Y.: Parallel algorithms for the summed area table
on the asynchronous hierarchical memory machine, with GPU implementations.
In: Proceedings of International Conference on Parallel Processing (ICPP), pp.
251–260, September 2014

4. Lauritzen, A.: Summed-area variance shadow maps. In: GPU Gems 3. Addison-
Wesley (2007). Chapter 8

5. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a paral-
lel algorithm for computing Euclidean distance map in multicore processors and
GPUs. Int. J. Netw. Comput. 1(2), 260–276 (2011)

6. Merrill, D.: CUB: a library of warp-wide, block-wide, and device-wide GPU parallel
primitives (2017). https://nvlabs.github.io/cub/

7. Merrill, D., Garland, M.: Single-pass parallel prefix scan with decoupled look-back.
Technical report NVR-2016-002, NVIDIA, March 2016

8. Nakano, K.: An optimal parallel prefix-sums algorithm on the memory machine
models for GPUs. In: Xiang, Y., Stojmenovic, I., Apduhan, B.O., Wang, G.,
Nakano, K., Zomaya, A. (eds.) ICA3PP 2012. LNCS, vol. 7439, pp. 99–113.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33078-0 8

9. Nakano, K.: Optimal parallel algorithms for computing the sum, the prefix-sums,
and the summed area table on the memory machine models. IEICE Trans. Inf.
Syst. E96–D(12), 2626–2634 (2013)

10. Nakano, K.: Simple memory machine models for GPUs. Int. J. Parallel Emerg.
Distrib. Syst. 29(1), 17–37 (2014)

11. Nehab, D., Maximo, A., Lima, R.S., Hoppe, H.: GPU-efficient recursive filtering
and summed-area tables. ACM Trans. Graph. 30(6), 176 (2011)

12. NVIDIA Corporation: NVIDIA CUDA C best practice guide version 3.1 (2010)
13. NVIDIA Corporation: NVIDIA CUDA C programming guide version 8.0, March

2017
14. Takeuchi, Y., Takafuji, D., Ito, Y., Nakano, K.: ASCII art generation using the

local exhaustive search on the GPU. In: Proceedings of International Symposium
on Computing and Networking, pp. 194–200, December 2013

https://nvlabs.github.io/cub/
https://doi.org/10.1007/978-3-642-33078-0_8

A Combination of Intra- and Inter-place
Work Stealing for the APGAS Library

Jonas Posner(B) and Claudia Fohry

Research Group Programming Languages/Methodologies,
University of Kassel, Kassel, Germany
{jonas.posner,fohry}@uni-kassel.de

Abstract. Since today’s clusters consist of nodes with multicore pro-
cessors, modern parallel applications should be able to deal with shared
and distributed memory simultaneously. In this paper, we present a novel
hybrid work stealing scheme for the APGAS library for Java, which is
a branch of the X10 project. Our scheme extends the library’s runtime
system, which traditionally performs intra-node work stealing with the
Java Fork/Join framework. We add an inter-node work stealing scheme
that is inspired by lifeline-based global load balancing. The extended
functionality can be accessed from the APGAS library with new con-
structs. Most important, locality-flexible tasks can be submitted with
asyncAny, and are then automatically scheduled over both nodes and
cores. In experiments with up to 144 workers on up to 12 nodes, our
system achieved near linear speedups for three benchmarks.

Keywords: Task pool · Work stealing · APGAS · Java

1 Introduction

Almost all present high performance computing systems deploy multicore pro-
cessors and a high speed network. Efficient use of these architectures requires a
combination between the traditional approaches of shared and distributed mem-
ory parallel programming.

The Partitioned Global Address Space (PGAS) model is a popular base for
such hybrid programming. In this model, a partition of the global address space,
together with some computational resources, is denoted as place. Each place
can access every memory partition, but accesses to the local partition are faster
than accesses to remote partitions. Beside the original PGAS model, there is an
asynchronous variant, in which sequential tasks can be spawned at runtime on
user-defined places.

This asynchronous PGAS variant is, for instance, implemented in the lan-
guage X10 [5] and the related APGAS library for Java [15]. In both, tasks can
be created on the current place with the async construct, and on a specified
remote place with a combination of the constructs async and at.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 234–243, 2018.
https://doi.org/10.1007/978-3-319-78054-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_22&domain=pdf

Inter- and Intra-place Work Stealing for the APGAS Library 235

Many applications involve locality-flexible tasks that can run equally well on
any resource of the overall system. For these tasks, programmers want to achieve
load balancing without the need to worry about their placement. Habaner-
oUPC++, another implementation of the asynchronous PGAS variant, provides
an asyncAny construct for spawning locality-flexible tasks [7]. These tasks are
automatically distributed over all places and place-internal computing resources,
called workers. Implementation strategies are described in [7]. Unfortunately,
that publication does not report speedup values, and we were not able to obtain
speedups with the code provided by the authors [14].

As of yet, asyncAny is unique to HabaneroUPC++, whereas other asyn-
chronous PGAS implementations only support intra-place work stealing in their
runtime systems. X10’s standard library additionally supports inter-place work
stealing for task-based irregular applications with the separate Global Load Bal-
ancing (GLB) framework [18]. In previous work, we developed a multithreaded
GLB variant for APGAS [12]. Still, both GLB implementations have a limitation
of one worker per place. Thus, exploiting a multicore system requires to start
a separate place on each core, which results in unnecessary communication and
increased memory load.

This paper introduces a novel hybrid work stealing scheme for the APGAS
library. We selected this library, since it is based on Java, one of the most popular
programming languages in general, which also gains more and more attention as
an interesting language in high-performance computing [1].

Our hybrid work stealing scheme is inspired by the asyncAny construct of
HabaneroUPC++, but the implementation is different. Our scheme combines
the intra-place work stealing of Java’s ForkJoinPool with GLB’s lifeline-based
inter-place work stealing. We customized the ForkJoinPool to enable polling
out multiple tasks at once, which can then be sent to a remote thief. In contrast,
HabaneroUPC++ utilizes the scalable locality-aware adaptive work stealing
scheduler for intra-place work stealing [4]. In its inter-place scheme, a good vic-
tim is selected with the help of network Remote Direct Memory Access (RDMA),
and an unlimited number of remote victims is contacted.

Our implementation extends the APGAS source code [6]. New constructs are
asyncAny, asyncAnyFinish and a few others that supports storing and reducing
task results. The asyncAnyFinish construct resembles X10’s finish. It defines
a scope, in which asyncAny-tasks may be spawned recursively and synchronize
at the end. Overall, this paper makes the following contributions:

– It introduces a hybrid work stealing technique that combines GLB’s lifeline
scheme with Java’s ForkJoinPool.

– It describes the implementation of this technique in the APGAS library for
Java.

– It presents experimental results for three benchmarks (Unbalanced Tree
Search, Betweenness Centrality and NQueens) that show near linear speedups
over sequential execution with up to 144 workers on up to 12 places.

The paper is structured as follows. Section 2 provides background informa-
tion about APGAS and the GLB lifeline scheme. After that, Sect. 3 explains

236 J. Posner and C. Fohry

programming with the novel constructs. The design and implementation of
the hybrid work stealing technique are explained in Sect. 4. Experiments are
described and discussed in Sect. 5. The paper finishes with related work and
conclusions in Sects. 6 and 7, respectively.

2 Background

2.1 APGAS Library

The APGAS library is written in Java 8. It brings the parallel programming
concepts of X10 to Java by using lambdas [15]. Each place is represented by a
Java Virtual Machine (JVM).

APGAS programmers encapsulate computations in lightweight asynchronous
tasks, and specify the mapping of each task to a place. The APGAS runtime exe-
cutes the different tasks with multiple workers. Inside each place, it deploys a task
pool that is an instance of the Java class ForkJoinPool [9]. Thus, workers corre-
spond to Java threads. Users can set the number of workers via APGAS THREADS,
default is the number of CPU cores.

The async construct submits a task to the local ForkJoinPool. It is exe-
cuted right away, or when a worker becomes available. The call always returns
immediately. The at construct sends a task to a specified remote place, where
it is inserted into the local ForkJoinPool. The at construct blocks until the
transferred task has been executed. The asyncAt construct performs the same
actions as at, but in an asynchronous manner such that it returns immediately.
The immediateAsyncAt construct immediately starts a new Java thread on the
remote place, which executes a specified task. Such a thread runs concurrently
to the ForkJoinPool.

When task spawning is enclosed by a finish block, the block’s execution
ends only when all submitted async and asyncAt-tasks, including recursively
spawned ones, have been executed.

2.2 Lifeline-Based Global Load Balancing

GLB deploys the so-called lifeline scheme. Each worker runs on a separate place,
where it maintains its own task pool. It takes tasks from the pool for processing,
and inserts any newly generated tasks there. The following task model is used:

– Tasks are free of side effects.
– Each task generates a result and possibly new tasks.
– Each worker accumulates task results in a partial result.
– The final result is computed from partial results by a reduction operation.
– All results have the same type. The reduction operator matches this type,

and is commutative and associative.

If a worker runs out of tasks, it tries to steal tasks from another worker. First,
the thief contacts up to w random victims and, if not successful, afterwards up

Inter- and Intra-place Work Stealing for the APGAS Library 237

to z lifeline buddies. If a victim has no tasks, it responds with a reject message,
otherwise it sends tasks, called loot. When all w + z steal attempts have returned
unsuccessfully, the thief goes inactive. An inactive thief is restarted when a
lifeline buddy sends loot in reaction to an earlier recorded steal request. When
all workers have become inactive, the final result is computed.

3 Programming with AsyncAny-Tasks

We provide the following constructs for APGAS:

– asyncAny: Submits a locality-flexible task, which is initially placed in the
local pool.

– asyncAnyFinish: Returns when all submitted tasks from a block have been
processed.

– staticInit: Creates a copy of static data (e.g. constants), which are passed
as parameter on each place.

– staticAsyncAny: Resembles asyncAny, but allows to specify an initial place-
ment and refers to a list of tasks.

– mergeResult: Merges a task result into a partial result.
– reduceAsyncAny: Computes the final result by reduction and returns it.

Listing 1.1 shows an example. In line 1, an asyncAnyFinish block is spawned
to detect when all asyncAny-tasks that are submitted in line 3 of the loop have
been finished.

1 asyncAnyFinish (() -> {
2 for (int i = 0; i < n; i++) {
3 asyncAny (() -> {
4 UserResult r = new UserTask ().compute ();
5 mergeResult(r);
6 });
7 }
8 }, 1000);
9 reduceAsyncAny ().display ();

Listing 1.1. Submitting asyncAny-tasks within an asyncAnyFinish block

The class UserTask must be provided by the user for each type of task. Its
compute() method contains the application code for the task. The computation
returns a result of type UserResult (line 4). This class has to extend the abstract
APGAS class AsyncAnyResult<T>, where T is the result type. Therefore, the user
result class must implement the methods display(), getResult() and a few
others.

238 J. Posner and C. Fohry

Internally, the APGAS runtime deploys a result array of type
AsyncAnyResult<T> on each place. Its length corresponds to the number of
workers. The call of mergeResult (line 5) saves the task result by accumulating
it in the worker’s array entry.

The final result of all tasks is computed by the call to reduceAsyncAny
(line 9). This call must be placed behind an asyncAnyFinish-block and refers
to the result computed in this block. The asyncAnyFinish construct provides
an optional second parameter which switches on a periodic computation and
display of a preliminary result. In line 8, the parameter is set to 1000, such that
the preliminary result is displayed every 1000 ms.

4 Design and Implementation

We extended the open source code of APGAS and will commit our changes to
the official APGAS repository [6].

As mentioned in Sect. 2, APGAS deploys the Java class ForkJoinPool for
the place-internal pools. A call of asyncAny inserts a task into the local instance
of this pool, from where it can be stolen away later. We combined the intra-
place work stealing of the internal pool with inter-place work stealing, which is
performed by a dedicated management worker.

4.1 Management Worker

A call to asyncAnyFinish starts one management worker on each place. This
worker is not scheduled by the ForkJoinPool, but runs in a separate Java thread
concurrently to the pool. The management worker realizes a modified variant
of the lifeline scheme. Pseudocode of its main loop is shown in Listing 1.2. The
operations in the loop are performed once per second, except when the worker is
inactive (line 10). In GLB, in contrast, a worker performs these operations after
processing n tasks.

If the local pool contains less unprocessed tasks than there are available
workers, work stealing starts (line 4). This is a difference to GLB, where the
stealing only starts when a worker has no tasks left. Stealing is performed with
immediateAsyncAt. Unlike the lifeline scheme, our work stealing scheme involves
direct accesses to remote task pools, in which a thief tries to pull half of the
unprocessed tasks from the victim’s pool itself. We modified the ForkJoinPool
to enable pulling multiple tasks at once. This polling can be performed concur-
rently to the running computation, because the task pool deploys internal syn-
chronization. If the victim is out of work, the thief aborts the stealing request.
Otherwise, the loot is sent with staticAsyncAny.

If w + z stealing attempts were unsuccessful, the management worker sends
a notification to place 0 and goes inactive (line 6–9).

The management worker is reactivated when an asyncAny-task is submitted
on its place. This can happen through a user call to asyncAny or when loot
arrives via staticAsyncAny.

Inter- and Intra-place Work Stealing for the APGAS Library 239

1 while (tasks available) {
2 send loot to recorded lifeline thieves;
3 if (not enough local tasks left) {
4 try to steal from up to w+z victims;
5 }
6 if (all local tasks have been executed &&

all potential victims were contacted) {
7 notify place 0;
8 go inactive;
9 }

10 sleep one second;
11 }

Listing 1.2. Main loop of management worker

4.2 AsyncAnyFinish

The existing finish implementation observes every single task, which induces a
high overhead when the number of tasks is large. Therefore, we implemented a
new asyncAnyFinish construct, which observes loot only. This construct inter-
nally starts a new thread that executes the corresponding block, and afterwards
cyclically checks whether (1) the internal pool contains unprocessed tasks, and
(2) there are unprocessed tasks in remote pools.

The first condition is checked with standard methods from the ForkJoinPool
class. To check the second condition, each place holds an int array stealCounts
with one entry per place. Entries are initialized with 0. Before a victim sends
loot, it increments its local stealCounts[thief]. When a thief receives loot,
it decrements its local stealCounts[thief]. Just before a management worker
goes inactive, it sends its stealCounts array to place 0 (line 7 in Listing 1.2).
On place 0, the received arrays are added to the local stealCounts array. If all
entries are 0, the second condition from above must be met, and all management
workers have become inactive. Thus, the asyncAnyFinish thread on place 0
terminates all management workers and itself.

5 Experiments

Experiments were run on a cluster with 12 homogeneous nodes. Each node has
256 GB of main memory and two six-core Intel Xeon E5-2643-v4E5 CPUs [16].
First, we measured the intra-place speedup by varying the number of workers
from 1 to 12. Then, we measured the inter-place speedup by varying the number
of places from 1 to 12. Here, each place was mapped to a separate node and
deployed 12 workers internally. Java was used in version 1.8.0 121.

As benchmarks we adapted Unbalanced Tree Search (UTS) [8], NQueens and
Betweenness Centrality (BC) [2]. UTS and BC were taken from X10’s standard

240 J. Posner and C. Fohry

library [5], and NQueens was taken from the HabaneroUPC++ repository [14].
We ported the three benchmarks to Java, thereby using APGAS and our novel
constructs.

UTS counts the number of nodes in a highly irregular tree, which is dynami-
cally generated from node descriptors. NQueens calculates the number of place-
ments of N queens on an N × N chessboard, so that no two queens threaten
each other. BC calculates a centrality score for each node of a given graph. UTS
and NQueens start with a single task, which is submitted with asyncAny, while
the other tasks are spawned dynamically. BC initializes all tasks statically at the
beginning and spreads them evenly over all places with staticAsyncAny. The
result is a single long value for UTS and NQueens, and a long array with one
entry per graph node for BC.

UTS was started with geometric tree shape, branching factor b = 4, random
seed s = 19, and tree depth d = 17. Like in GLB [5], the initial task processes
up to 511 tree nodes, and afterwards submits a new asyncAny-task for half of
the remaining tree nodes. Any subsequent task does the same. NQueens was
started with N = 17, but asyncAny-tasks are only spawned up to a tree depth
of 6, as in the HabaneroUPC++ implementation [14]. BC was started with
random seed s = 2, number of graph nodes N = 215 for intra-place experiments
and with N = 217 for inter-place experiments. Moreover, we observed the best
performance with a chunk size of 32.

Figures 1(intra-place) and 2(inter-place) depict the measured speedups for
the three benchmarks. As we can see, all benchmarks achieve near linear speedup.
NQueens even has a slightly superlinear speedup with 12 workers, which is prob-
ably caused by its exploratory decomposition [3]. NQueens deviates up to 2.40%

0

1

2

3

4

5

6

7

8

9

10

11

12

13

2 3 4 5 6 7 8 9 10 11 12

Sp
ee
du

p

Number of Workers

UTS
NQueens

BC

Fig. 1. Intra-place speedup over sequential execution time

Inter- and Intra-place Work Stealing for the APGAS Library 241

from the linear speedup, UTS deviates up to 22.78% (both with 11 workers),
and BC deviates up to 11.12% (with 12 workers).

Figure 2 shows that all benchmarks perform well with the new hybrid work
stealing scheme. They get close to near linear speedup, although the deviation
is a bit higher with 14.78% for BC and 26.54% for NQueens, both on 12 places.
UTS, on the other hand, has a smaller deviation of 17.62% on 12 places. The
overall slightly lower performance of inter-place work stealing is probably caused
by communication costs. Comparing the hybrid variants with 144 workers to the
sequential base variants, UTS achieves a speedup of 100 and NQueens of 109.

0

1

2

3

4

5

6

7

8

9

10

11

2 3 4 5 6 7 8 9 10 11 12

Sp
ee
du

p

Number of Places

UTS
NQueens

BC

Fig. 2. Inter-place speedup over one place execution time with 12 workers

Furthermore, we ran experiments with 11 workers per place instead of 12,
so that one CPU core was reserved for the management worker. The loss in
speedup was about proportional to the reduction in the number of workers, from
which we conclude that the management workers needs almost no computational
resources. Consequently, it does not pay off to reserve a core for it.

6 Related Work

As mentioned before, the idea of hybrid work stealing with asyncAny tasks was
adopted from HabaneroUPC++ [7], but our implementation is fundamentally
different. The HabaneroUPC++ scheme does not limit the number of remote vic-
tims and selects them with the help of network Remote Direct Memory Access
(RDMA). A performance comparison between variants with and without RDMA
in [7] reveals an enhancement by up to 7% with RDMA. In contrast, we have
adopted the lifeline scheme from GLB [18], and thus steal from up to w + z

242 J. Posner and C. Fohry

remote victims, which are selected without RDMA. Like HabaneroUPC++, we
utilize a dedicated management worker for the inter-place work stealing. How-
ever, HabaneroUPC++ runs it on a dedicated CPU core that does not partici-
pate in the actual computation, whereas we use as many computation workers
as cores. Finally, HabaneroUPC++ binds to C++, and APGAS to Java.

An earlier outcome of the Habanero project is Habanero-C MPI (HCMPI).
It integrates the place-internal task parallelism of Habanero-C [13] with MPI’s
message passing model between the places.

Yamashita and Kamada [17] present multistage execution and multithreading
for GLB in X10. Each worker maintains an own queue, and each place holds two
shared queues for intra- and inter-place work stealing, respectively. However, the
overall scheme is quite complicated, and the implementation has problems with
network message scheduling.

Paudel et al. investigate hybrid task placement in X10 with work stealing and
work dealing, respectively [10,11]. Both papers deploy a dedicated thread for
inter-place communication. Programmers use annotations to distinguish tasks
into location-sensitive and location-flexible ones. Both task types are handled
together in their work stealing scheme, which uses multiple deques per place.
Work dealing achieves speedups from 2% to 16% [10], and work stealing achieves
speedups from 12% to 31% [11], each in comparison to X10’s default scheduler.

7 Conclusions

In this paper, we have presented a combined intra- and inter-place work stealing
technique for the APGAS library. APGAS programmers can submit locality-
flexible tasks via asyncAny, and the APGAS runtime automatically schedules
them over all places and their computational resources. We have described the
usage and implementation of the extended APGAS library. Moreover, we ported
three benchmarks to this library, and observed near linear speedups with up to
144 workers on up to 12 places.

Future work should measure performance on a larger scale. Furthermore, we
plan to combine the submission of locality-flexible and standard APGAS tasks
inside the same finish, and support nested asyncAnyFinishs.

Acknowledgments. This work is supported by the Deutsche Forschungsgemein-
schaft, under grant FO 1035/5-1.

References

1. Diaz, J., Munoz-Caro, C., Nino, A.: A survey of parallel programming models and
tools in the multi and many-core era. IEEE Trans. Parallel Distrib. Syst. 23(8),
1369–1386 (2012)

2. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40(1), 35 (1977)

3. Grama, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing. Addison-
Wesley, Boston (2003)

Inter- and Intra-place Work Stealing for the APGAS Library 243

4. Guo, Y., Zhao, J., Cave, V., Sarkar, V.: SLAW: a scalable locality-aware adap-
tive work-stealing scheduler for multi-core systems. In: Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming -
PPoPP 2010. ACM Press (2010)

5. IBM: Core implementation of X10 programming language including compiler, run-
time, class libraries, sample programs and test suite (2017). https://github.com/
x10-lang/x10

6. IBM: The APGAS library for fault-tolerant distributed programming in Java 8
(2017). https://github.com/x10-lang/apgas

7. Kumar, V., Murthy, K., Sarkar, V., Zheng, Y.: Optimized distributed work-
stealing. In: Proceedings of the Sixth Workshop on Irregular Applications: Archi-
tectures and Algorithms, IA3 2016, pp. 74–77. IEEE Press (2016)

8. Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., Tseng, C.-W.:
UTS: an unbalanced tree search benchmark. In: Almási, G., Caşcaval, C., Wu,
P. (eds.) LCPC 2006. LNCS, vol. 4382, pp. 235–250. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72521-3 18

9. Oracle: Class ForkJoinPool (2017). http://download.java.net/java/jdk9/docs/api/
java/util/concurrent/ForkJoinPool.html

10. Paudel, J., Tardieu, O., Amaral, J.N.: Hybrid parallel task placement in X10. In:
Proceedings of the ACM SIGPLAN X10 Workshop. ACM Press (2013)

11. Paudel, J., Tardieu, O., Amaral, J.N.: On the merits of distributed work-stealing
on selective locality-aware tasks. In: Proceedings of the International Conference
on Parallel Processing (ICPP). IEEE (2013)

12. Posner, J., Fohry, C.: Cooperation vs. coordination for lifeline-based global load
balancing in APGAS. In: Proceedings of the ACM SIGPLAN X10 Workshop. ACM
Press (2016)

13. Rice University: Habanero C language (2017). https://wiki.rice.edu/confluence/
display/HABANERO/Habanero-C

14. Rice University: HabaneroUPC++: a Compiler-free PGAS Library (2017). https://
github.com/habanero-rice/habanero-upc

15. Tardieu, O.: The APGAS library: resilient parallel and distributed programming in
Java 8. In: Proceedings of the ACM SIGPLAN X10 Workshop. ACM Press (2015)

16. University of Kassel: Scientific data processing (2017). https://www.uni-kassel.de/
its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung.html

17. Yamashita, K., Kamada, T.: Introducing a multithread and multistage mechanism
for the global load balancing library of X10. J. Inf. Process. 24(2), 416–424 (2016)

18. Zhang, W., Tardieu, O., Grove, D., Herta, B., Kamada, T., Saraswat, V., Takeuchi,
M.: GLB lifeline-based global load balancing library in X10. In: Proceedings of
the ACM Workshop on Parallel Programming for Analytics Applications (PPAA).
ACM Press (2014)

https://github.com/x10-lang/x10
https://github.com/x10-lang/x10
https://github.com/x10-lang/apgas
https://doi.org/10.1007/978-3-540-72521-3_18
http://download.java.net/java/jdk9/docs/api/java/util/concurrent/ForkJoinPool.html
http://download.java.net/java/jdk9/docs/api/java/util/concurrent/ForkJoinPool.html
https://wiki.rice.edu/confluence/display/HABANERO/Habanero-C
https://wiki.rice.edu/confluence/display/HABANERO/Habanero-C
https://github.com/habanero-rice/habanero-upc
https://github.com/habanero-rice/habanero-upc
https://www.uni-kassel.de/its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung.html
https://www.uni-kassel.de/its-handbuch/en/daten-dienste/wissenschaftliche-datenverarbeitung.html

Benchmarking Molecular Dynamics
with OpenCL on Many-Core

Architectures

Rene Halver1, Wilhelm Homberg1, and Godehard Sutmann1,2(B)

1 Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS),
Forschungszentrum Jülich (JSC), 52425 Jülich, Germany

g.sutmann@fz-juelich.de
2 ICAMS, Ruhr-University Bochum, 44801 Bochum, Germany

Abstract. Molecular Dynamics (MD) is a widely used tool for simu-
lations of particle systems with pair-wise interactions. Since large scale
MD simulations are very demanding in computation time, parallelisa-
tion is an important factor. As in the current HPC environment different
heterogeneous computing architectures are emerging, a benchmark tool
for a representative number of these architectures is desirable. OpenCL
as a platform-overarching standard provides the capabilities for such a
benchmark. This paper describes the implementation of an OpenCL MD
benchmark code and discusses the results achieved on different types of
computing hardware.

Keywords: Molecular Dynamics · OpenCL
Shared memory parallelisation · Many-core architectures

1 Introduction

Molecular Dynamics (MD) is widely used in various scientific domains, e.g.
materials science or biophysics, where the evolution of specific systems can be
described by point-like or extended particles, obeying the classical equations
of motion [5,8]. Parametrised potentials describe pair-wise interactions between
particles that may have either short-ranged (e.g. Lennard Jones interactions [5])
or long-ranged (e.g. electrostatics [7]) influences. The essential difference between
long- and short-range interactions is the number of interaction partners, which
strongly determines the performance of the method and also determines differ-
ent types of, e.g., parallelisation schemes. While long range interactions require
essentially all atoms in the system as interaction partners, short range interac-
tions can be restricted to a narrow range, defined by a spherical region of radius
Rc (the cutoff radius), in which interactions decrease to a sufficiently small value
which can be tolerated as error.

In the present paper we will focus on short-range interactions, for which
also neighbour list techniques will be considered which allow for a linear com-
putational complexity with increasing number of particles in the system (cmp.
Fig. 1).
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 244–253, 2018.
https://doi.org/10.1007/978-3-319-78054-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_23&domain=pdf
http://orcid.org/0000-0002-9004-604X

Benchmarking Molecular Dynamics with OpenCL 245

For a shared-memory parallelisation the construction of these neighbour lists
must avoid race conditions which would occur, when multiple threads try to
update the list of a single cell at the same time, which can be expected for the
case of a thread-parallel implementation where particles are divided between
threads and are sorted into the cell structure simultaneously. To avoid possible
race-conditions there exist basically three options: (i) explicit synchronisation;
(ii) list copies; or (iii) atomic memory access implemented via compare-and-swap
(CAS) operations.

Rc

Fig. 1. Schematic of a particle sys-
tem in 2D with overlayed cell struc-
ture for sorting. The circle with
radius Rc illustrates the interac-
tion range of a tagged particle.

In order to implement a function portable
benchmark that can be run on a variety of
different architectures, it is required to use a
programming language that supports a large
variety of architectures. OpenCL is one pos-
sible choice as it supports code execution on
CPUs, GPUs, FPGAs as well as Intels Xeon
Phi architecture. [1] Although other languages
or language extensions, such as Intel TBB or
OpenACC exist, which provide the possibility
to run code on a set of different architectures,
for this work OpenCL was chosen, because it
supports all of the platforms available at the
Jülich Supercomputing Centre (JSC). The set
of features of OpenCL that can be used for
a platform-overarching benchmark is limited
by the lowest commonly supported OpenCL
standard as well as by the set of extensions

commonly available on these platforms. While the standard level defines the
syntax and general features that can be used, some functionality is kept in
extensions, e.g. the use of double-precision calculations or CAS functionality.
To execute the same program version on all considered architectures we had to
comply with OpenCL 1.2, which was found as common standard level on all
machines.

2 Benchmark

In the present article we focus on short range interacting particle systems, where
the range of influence is defined by the cutoff radius RC . When introducing
the concept of linked-cell lists, the computational complexity is O(NM), where
N is the number of particles in the system and M the maximum number of
particles in a cell [8,10]. As benchmark system we consider particles in a cuboid
3-dimensional box of lengths Lα (α = x, y, z) with periodic boundary conditions,
interacting via the repelling part of the Lennard-Jones potential [5], which is a
typical representative for a short range potential

U(r ≤ r∗) = 4ε

[(σ

r

)12

−
(σ

r

)6

+
1
4

]
(1)

246 R. Halver et al.

with cut-off radius r∗ = 21/6σ and U(r > r∗) = 0 from where forces F = −∇U(r)
onto particles are computed; r is the distance between two particles, ε the depth
of the potential well and σ the characteristic size of a particle. To propagate
particles continuously in space the classical equations of motion are integrated
via the standard Verlet algorithm [5].

In the present article we consider a constant average number of particles
per cell 〈M〉, which leads to a total number of particles in the system N =
nxnynz〈M〉, with nx, ny, nz being the number of cells in each cartesian direction.
The relation of cell size lc to the cutoff radius Rc is simply given by Rc = lc =
21/6σ or σ = lc/21/6 and therefore the boxsize is Lα = nαRc.

In the next section different techniques are described, which improve the
performance of the simulation before presenting the results of the benchmarks
in the final section.

3 Implementation of the Algorithm and Data Structures

3.1 Algorithmic Implementation Details

While a multi-node parallelization of MD simulations, e.g. based on a domain
decomposition [9], is standard, the shared-memory parallelization of neighbor
cell construction within each of the decomposed domains is not trivial. Since
the most efficient way to sort particles into spatial cells is to distribute particles
onto different threads. This might lead to possible concurrent memory accesses,
if more than one thread attempts to sort particles into the same cell. As the
memory access is not synchronized by default, race conditions can occur due to
simultaneous write operations into single memory locations, leading to erroneous
accounting of particles and list constructions.

Three different approaches will be described to avoid such race conditions: (i)
list copying, (ii) explicit synchronization and (iii) atomic memory access. Each
of these approaches has its specific advantages and disadvantages.

Of the three different approaches the synchronization-based approach is the
one that requires the fewest changes to the sequential implementation (ref.
Algorithm 1). The array containing the cell entries needs to be initialized with a
terminating value indicating the end of the list, the array containing the particle
lists needs to be initialized similarily.

Algorithm 1. Sequential implementation of neighbor cell sorting
entry ← EOA; list ← EOA // initialize to end-of-array (EOA)
for all particles pidx ∈ {i}N do

cidx ← f (x[pidx], y[pidx], z[pidx]) // calculate cell index from particle coordinates
list[pidx] ← entry[cidx] // update list element to current cell entry
entry[cidx] ← pidx // update cell entry;

end

As is seen in Algorithm 1 a problem might occur if two threads try to simul-
taneously update the cell information. If these threads execute the first step,

Benchmarking Molecular Dynamics with OpenCL 247

i.e. updating list[pidx], before any of them completes the second step, i.e.
updating entry[cidx], it follows that their particles are pointing in list to
the same former entry particle, entry[cidx], ignorant of each other. Then, after
updating entry[cidx] in the second step, entry[cidx] will contain only one of
those particle indices, the linked list is broken and excludes the other particle
from being accessible through the list.

In order to combine the two statements into one ’atomic’ statement, one can
either use critical sections or locks. Both of these techniques introduce overhead
cost due to the implicit synchronization. Of the two the latter shows a much
better scaling behavior than the first, since the creation of a critical section will
serialize that section [6]. For this benchmark all of these synchronization-based
approaches are not feasible, since the asynchronous execution of work groups
excludes global synchronization. Therefore race-conditions happening between
two different work groups cannot be avoided by these techniques.

In contrast to the synchronization-based approaches the copy-based approach
utilizes thread-local partial copies of the final result in order to avoid race-
conditions. Each thread independently works on its local copy and sorts all of
its particles into this copy. After each thread has finished the local copies are
merged. While this variant can be very efficient for a small number of threads,
it becomes less effective once the number of threads reaches a threshold value,
which depends on memory size and bandwidth [6]. This is due to the increased
number of copies, which have to be filled simultaneously, leading to random
access to (main) memory. For massively parallel systems, this approach is not
feasible since the memory size requirements grow linearly with the number of
threads, particularly on GPUs or Intel MICs, where hundreds and thousands of
threads work concurrently. As a consequence, this approach has been discarded
for the present benchmark.

Listing 1. Creation of a neighbor list using CAS operations in OpenCL

1 int old , cmp;
2 // arrays of particle positions (x,y,z), NC = no. of cells per dim
3 int cidx = (int)(x[pidx]/l_c) +
4 (int)(y[pidx]/l_c) * NC +
5 (int)(z[pidx]/l_c) * NC * NC;
6 // application of CAS operation to update list/entry
7 do
8 {
9 // store old entry particle index

10 old = entry[cidx];
11 // update next particle in list for particle pidx
12 list[pidx] = old;
13 // try to update entry particle of target cell cidx
14 cmp = atomic_cmpxchg(entry+idx ,old ,gid);
15 }
16 // if update failed , repeat the process
17 while(old != cmp);

Therefore, an approach is required which ensures the correctness of a parallel
list construction without exacerbating the memory demand. Atomic memory
access is a possible solution utilizing the compare and swap (CAS) operation.
This hardware operation compares the value stored at a memory address to a
test value before updating the memory address. Listing 1 shows as an example

248 R. Halver et al.

for the parallel list construction implemented with a CAS operation in OpenCL:
First, the cell index cidx is calculated for the local particle pidx. Within a
loop the first entry of the particle list of this cell entry[cidx] is stored in a
temporary test value old. Then, the particle list at index pidx is updated to the
value of old. This operation can be performed safely, since no other work item
processes particle pidx. Next, the CAS operation is used to attempt an update
of entry[cidx]. Now two different outcomes might occur: (i) entry[cidx] was
changed in the mean time by another work item. In this case the value of old
is not equal to the current value of entry[cidx], the update is omitted and
the loop is repeated. (ii) the value of entry[cidx] was not changed and its
value is identical to that of old. In this case entry[cidx] is updated. The CAS
operation returns the current value of entry[cidx], for (i) a value different from
old, for (ii) the same value as old. In order to check the success of the update,
the return value of the CAS operation is stored to cmp and compared with old
at the end of the loop.

Compared to an update of a memory location by an assignment, hardware
supported CAS operations slightly increase the runtime due to the performed
compare operation. The essential advantage of the CAS operation is that it can
be applied to work items of different work groups in an OpenCL implementa-
tion. Therefore the implementation using the CAS operation was the method of
choice for this benchmark.

3.2 Organization and Distribution of Data Structures

An important aspect concerns data locality, i.e. both the important differ-
ence between sorted and unsorted particle data and their access as well as
the layout of the data structures containing this data. To this end, two dif-
ferent memory layouts were implemented for the arrays used to store the par-
ticle data. The first is an array of structures (AoS), where each structure con-
tains the data of a single particle, the second is a structure of arrays (SoA),

Table 1. List of implemented OpenCL
kernels: distribution of (p) particles or (c)
cells onto work items.

Kernel function Distrib.
Creation of particles p
Initial. of cells c
Initial. of particle lists p
Creation of neighbor lists p
Counting of cell contents c
Prefix sums calc. (sorting) c
Resort of particle array c
Calculation of interactions c
Integration of particles p

where a single structure contains a
collection of arrays, each represent-
ing a parameter of a particle. In a
SoA the data of a single particle has
the same index in each of the arrays.
For both implementations (AoS and
SoA) a sorting algorithm was imple-
mented, that sorts the particle data
array with regard to the neighbor list,
i.e. particles in the same neighbor cell
are grouped together in the particle
data array to have higher data local-
ity. In the result section differences
between these four possible implemen-
tations will be shown.

Benchmarking Molecular Dynamics with OpenCL 249

In order to compare a representative set of multi- and many-core architec-
tures, while avoiding a rewrite of the code for each individual type, OpenCL
was selected as a portable programming language. Basic parts of the MD algo-
rithm were implemented into different OpenCL kernels (see Table 1), in order to
benchmark the functional units of the program independently. The table shows
the different ways of distributing data to the work items and related kernel
functions which either act on a single particle or on a complete cell. Some of
the kernel functions require data of all particles in a cell to compute properties
resulting from the whole environment of a particle, e.g. the calculation of total
forces on a particle. Others can update the individual particle state information
independently from other particles, e.g. the propagation of position or velocities.

If not mentioned otherwise, the number of work items (wi) within a work
group (wg) is kept constant, so that the number of required work groups for a
given system is calculated by nwg = n/nwi, where n = N (number of particles)
or n = Nc (number of cells), depending on the kernel (Table 1).

4 Architectures

The benchmarks were conducted on three different machines: JURECA [2],
JUROPA3 [3] (two of the supercomputer systems at JSC) as well as on
a testing system for GPUs. Table 2 shows the specifications for the differ-
ent architectures used for benchmarking. JUROPA3 has different partitions,

Table 2. Specifications of the systems used for the dif-
ferent architectures: (sp) single precision (dp) double
precision

Architecture Relevant components Peak performance

GPU (K20) NVIDIA K20X 3.95 TF (sp), 1.31 TF (dp)
GPU (K80) NVIDIA K80 5.6 TF (sp), 1.87 TF (dp)
GPU (S10000) AMD S10000 5.91 TF (sp), 1.48 TF (dp)
Xeon Phi (5110P) Intel Xeon Phi 5110P 1.011 TF (sp)
CPU (SandyBridge) Intel Xeon E5 2650 128 GF

that employ the same
CPUs (Intel E5 2650), but
contain different acceler-
ators. For the scope of
this paper the bench-
marks were run on the
GPU and the Intel Xeon
Phi partitions. Due to the
availability of the Intel
OpenCL driver on the Intel Xeon Phi partition, the CPU comparison was con-
ducted on JUROPA3 instead of running them on the faster E5-2680 Haswell
processors on JURECA, where no OpenCL support is available for the CPU.
Since the AMD GPU has less memory available than its NVIDIA counterparts,
larger benchmarks could not be performed on the card. For all the tests the
code was compiled with the GNU compiler version 4.9.3., with operating system
CentOS 7.

5 Results

To compare the performance on the different architectures, several benchmark
runs were conducted. The most basic one was the comparison of the nor-
malised runtime of the interaction kernel on each architecture (see Fig. 2a–f).

250 R. Halver et al.

104 105 106 107
10−8

10−7

10−6

random memory accesses

work per particle

≈ 1.4x

≈ 4xlatency

number of particles

no
rm

al
iz
ed

ru
nt
im

e

AoS no resort
AoS resort

SoA no resort
SoA resort

(a) NVIDIA K20

104 105 106 107
10−8

10−7

10−6

number of particles

no
rm

al
iz
ed

ru
nt
im

e

AoS no resort
AoS resort

SoA no resort
SoA resort

(b) NVIDIA K80

104 105 106 107
10−8

10−7

10−6

number of particles

no
rm

al
iz
ed

ru
nt
im

e

SoA no resort
SoA resort

(c) AMD S10000

104 105 106 107
10−7

10−6

10−5

number of particles

no
rm

al
iz
ed

ru
nt
im

e

AoS no resort
AoS resort

SoA no resort
SoA resort

(d) Intel Xeon Phi 5110P

104 105 106 107
10−8

10−7

10−6

number of particles

no
rm

al
iz
ed

ru
nt
im

e

AoS no resort
AoS resort

SoA no resort
SoA resort

(e) Intel Xeon E5-2650

104 105 106 107
10−8

10−7

10−6

10−5

number of particles

no
rm

al
iz
ed

ru
nt
im

e

K20
K80
AMD
MIC
CPU

(f) SoA single precision, all architectures

Fig. 2. Runtime comparison on all architectures, using single-precision calculations.
Note the shift in scale in (d) and (f) in order to show the full range.

Benchmarking Molecular Dynamics with OpenCL 251

Here, normalisation is defined as the measured runtime divided by the num-
ber of particles and the number of timesteps. No data transfer times were
included, since the data is kept resident in the device memory for the com-
plete benchmark and no additional data transfer is required. For the case
of resorting the time required to resort the data is included into the pre-
sented times, i.e. the runtime is the sum of the time spent in the interac-
tion kernel and the time spent to resort the data. All results were obtained
with single precision calculations. For the AMD GPU (Fig. 2c) the AoS vari-
ant of the benchmark failed to execute for unknown reasons and therefore
only the SoA results are presented. When comparing the benchmark results,
it can be seen that the different architectures show a specific behavior;

104 105 106 107
10−8

10−7

10−6

10−5

number of particles

no
rm

al
iz
ed

ru
nt
im

e K20
K80
AMD
MIC
CPU

Fig. 3. All architecture comparison
(double precision)

since the K20X (Fig. 2a) and the K80
GPUs (Fig. 2b) are different versions of
the same production line, their results
look fairly similar. With the excep-
tion of the Xeon E5-2650 CPU (Fig. 2e)
all benchmarks suggest an architecture-
dependent minimum problem size that
must be reached before a stable perfor-
mance is achieved. I.e. for small system
sizes the specific runtime is exceedingly
large compared with large system sizes.
Exemplary this is shown in Fig. 2a and
is due to the latency of high frequency
accesses to small chunks of memory. Since
transfer times are excluded in the results,
an additional contribution to this behaviour is expected to result from a device-
dependent overhead induced by the scheduling of the work-groups on the device.
On the CPU this behaviour can only be observed to a smaller extent than on
the other devices. For nearly all architectures, except the Xeon Phi (Fig. 2d) it
can be observed that in the case of non-sorted data the runtime for larger prob-
lem sizes increases again. This can be understood by the fact that non-sorted
data are scattered over memory and will have an unfavourable access pattern
compared to the case of sorted data, where all particles belonging to a single cell
are stored consecutively in memory. A possible explanation, why this behaviour
cannot be observed on the Xeon Phi is the much lower overall performance of
the Xeon Phi which hides the data access time behind a large computation time.
For all other architectures the compute time is already so small that data access
time is a crucial measure for the overall performance.

The choice of the data structure has a strong impact on the GPU performance
and to a smaller extent also on the Xeon and Xeon Phi architectures. Since for the
calculation of the forces within the interaction kernel only parts of the particle
data is required (position and forces), it is very inefficient to store the whole
set of data (velocities, masses, indices) within a single structure. In this case all
the particle data within the complete structure would be loaded into the cache,

252 R. Halver et al.

filling it with nonessential data, i.e. leading to unnecessary data transfer and
inefficient cache usage. However, if data is stored in individual arrays, data of
consecutive particles is loaded into cache, and can be reused more efficiently.
The difference between GPU and CPU performance comes into play when con-
sidering the size of data loaded into the registers. CPUs have a smaller capacity
of data size loaded into registers, i.e. the load-operations need to be performed
with a higher frequency than on a GPU. Therefore, the ratio between perfor-
mance and load-operations is less favourable on a CPU and data layout patterns
have less impact on the overall performance. On the other hand a GPU can
operate most efficiently on large streams of data which can be consecutively
processed. If the overall number of data loading operations is increased due
to nonessential items in the data structures, performance degradation becomes
more severe. This might explain the differences in the performance between GPU
architectures (NVIDIA GPUs in Fig. 2a, b) and CPUs (Fig. 2e).

One peculiar detail that was observed on the AMD S10000 is the low single-
precision performance compared to the NVIDIA cards. From the specification
of the peak performance characteristics (cmp. Table 2), the AMD card should
perform on the same level as the K80. However, the memory bandwidth of the
S10000 is lower when compared to the NVIDIA GPUs leading to a reduced
overall performance of the single-precision benchmark. For the case of double
precision calculations, the frequency of load operations gets lower and therefore
the effect of memory bandwidth limitations gets less pronounced (cmp. Fig. 3).
Therefore, measuring double-precision performance on the AMD GPU shows
comparable results to the NVIDIA K80, as could be expected.

Overall the benchmark shows a better performance for GPUs in comparison
to the Xeon E5-2650 when test systems have a sufficient size, i.e. beyond showing
memory latencies (Fig. 2f). Only for double-precision calculations it is observed
that the K20X is only as fast as the CPU (cmp. Fig. 3). We only note here that
the performance on the Xeon Phi is lacking behind all other architectures, since
it is roughly a magnitude slower than other machines (Fig. 2f). A main reason
for this behaviour is the missing vectorisation optimisation of the code, which
was out of focus for this paper. Furthermore, the OpenCL drivers might lack
best optimisation for the Intel Xeon Phi KNC, since the OpenCL support for
KNC is deprecated [1].

6 Conclusion

One of the main goals of the present investigation was to investigate the per-
formance characteristics of a function portable cell based MD program on vari-
ous architectures. OpenCL has been selected as a programming language which
allows for interoperability on different types of architectures, e.g. CPU and GPU
based systems. Without any changes of the code it was possible to execute the
code on several multi- and many-core systems available at JSC. As a downside of
that approach the benchmark was not optimised for either of the architectures
and therefore did not present optimal performance achievable. This especially

Benchmarking Molecular Dynamics with OpenCL 253

accounts for the Xeon Phi system, where vectorisation is an essential issue to
outperform a simple porting of a given program in comparison to running (even
not optimised) on other architectures. On the other side this approach offers the
possibility to have a comparison between basic features on the different archi-
tectures, e.g. memory bandwidth and core speed. To account for different data
access patterns, we included the comparison of AoS and SoA, which is an impor-
tant issue for the GPU architectures. It could be shown, that the SoA layout
even improves the performance on the CPU for the non-sorted case and does
not degrade performance in the sorted case. In this respect it can be concluded
that further optimisation for GPU architectures will lead most probable to a
significant performance gain compared to CPUs. Since the OpenCL support for
Xeon Phi is already deprecated, it remains to be seen, if OpenCL will remain to
be a valid option supporting newer Intel Xeon Phi architectures, e.g., KNL. Nev-
ertheless, the choice of OpenCL provides the option to design MD simulation
packages that can run on a variety of different architectures, without the need
to provide specialised kernels or programs for each individual machine. In the
present article we focused the work on function portability. At least as impor-
tant as this is the request for performance portability, which we excluded from
the present investigation, but which is of high importance in view of the devel-
opments towards more complex and heterogeneous architectures. International
consortia are considering this aspect and it has to be awaited whether this leads
to simplified porting and improved accessibility of future architectures (for a
collection of contributions, see e.g. [4]).

References

1. Intel OpenCL SDK. https://software.intel.com/en-us/articles/opencl-drivers
2. JURECA. http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUR

ECA/JURECA node.html
3. JUROPA3. http://www.fz-juelich.de/ias/jsc/EN/Research/HPCTechnology/Clus

terComputing/JUROPA-3/JUROPA-3 node.html
4. Performance Portability WS DOE. https://asc.llnl.gov/DOE-COE-Mtg-2016/
5. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to

Applications. Academic Press, San Diego (2002)
6. Halver, R., Sutmann, G.: Multi-threaded construction of neighbour lists for parti-

cle systems in OpenMP. In: 11th International Conference on Parallel Processing
and Applied Mathematics, Krakow, Poland, 6–9 Sep 2015 (2015). http://juser.fz-
juelich.de/record/279249

7. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. McGraw-
Hill, New York (1981)

8. Rapaport, D.: The Art of Molecular Dynamics Simulation. Cambridge University
Press, Cambridge (2001)

9. Sutmann, G.: Classical molecular dynamics. In: Grotendorst, J., Marx, D.,
Muramatsu, A. (eds.) Quantum Simulations of Many-Body Systems: From Theory
to Algorithms, vol. 10, pp. 211–254. John von Neumann Institute for Computing,
Jülich (2002)

10. Sutmann, G., Stegailov, V.: Optimization of neighbor list techniques in liquid mat-
ter simulations. J. Mol. Liq. 125, 197–203 (2006)

https://software.intel.com/en-us/articles/opencl-drivers
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Research/HPCTechnology/ClusterComputing/JUROPA-3/JUROPA-3_node.html
http://www.fz-juelich.de/ias/jsc/EN/Research/HPCTechnology/ClusterComputing/JUROPA-3/JUROPA-3_node.html
https://asc.llnl.gov/DOE-COE-Mtg-2016/
http://juser.fz-juelich.de/record/279249
http://juser.fz-juelich.de/record/279249

Efficient Language-Based Parallelization
of Computational Problems

Using Cilk Plus

Przemys�law Stpiczyński(B)

Institute of Mathematics, Maria Curie–Sk�lodowska University,
Pl. Marii Curie-Sk�lodowskiej 1, 20-031 Lublin, Poland

przem@hektor.umcs.lublin.pl

Abstract. The aim of this paper is to evaluate Cilk Plus as a language-
based tool for simple and efficient parallelization of recursively defined
computational problems and other problems that need both task and
data parallelization techniques. We show that existing source codes can
be easily transformed to programs that can utilize multiple cores and
additionally offload some computations to coprocessors like Intel Xeon
Phi. We also advise how to improve simplicity and performance of data
parallel algorithms by tuning data structures to utilize vector extensions
of modern processors. Numerical experiments show that in most cases
our Cilk Plus versions of Adaptive Simpson’s Integration and Belman-
Ford Algorithm for solving single-source shortest-path problems achieve
better performance than corresponding OpenMP programs.

Keywords: Cilk Plus · Multicore · Xeon Phi · Vectorization
Offload · Recursive algorithms · Shortest-path problems

1 Introduction

Recently, multicore and manycore computer architectures have become very
attractive for achieving high performance execution of scientific applications
at relatively low costs [8,17,20]. Modern CPUs and accelerators achieve per-
formance that was recently reached by supercomputers. Unfortunately, the pro-
cess of adapting existing software to such new architectures can be difficult if
we expect to achieve reasonable performance without putting much effort into
software development. For example, the use of OpenCL [10] leads to a substan-
tial increase of software complexity. However, sometimes the use of high-level
language-based programming interfaces devoted to parallel programming can
get satisfactory results with rather little effort [19].

Software development process for modern Intel multicore CPUs and many-
core coprocessors like Xeon Phi [8,17] requires special optimization techniques to
obtain codes that would utilize the power of underlying hardware. Usually it is
not sufficient to parallelize applications because in case of such computer archi-
tectures efficient vectorization is crucial for achieving satisfactory performance
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 254–263, 2018.
https://doi.org/10.1007/978-3-319-78054-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_24&domain=pdf
http://orcid.org/0000-0001-8661-414X

Efficient Language-Based Parallelization of Computational Problems 255

[8,20]. Unfortunately, very often compiler-based automatic vectorization is not
possible because of some non-obvious data dependencies inside loops [1,21]. On
the other hand, people expect parallel programming to be easy and they prefer to
concentrate on algorithms and use simple and powerful programming constructs
that can utilize underlying hardware.

Cilk Plus introduces new extensions to C/C++ programming languages
to express task and data parallelism using high-level constructs [8,9,12,18].
Although Cilk Plus has more usability than OpenMP [6], it is not very pop-
ular (several interesting applications can be found in [2,3,13,15]).

In this paper we show that Cilk Plus can be very easily applied to parallelize
recursively defined adaptive Simpson’s integration rule [11] and such implemen-
tation can be easily transformed to utilize coprocessors like Intel Xeon Phi. We
also advise how to simplify move from OpenMP to Cilk Plus and improve the
performance of such algorithms by tuning data structures to utilize hardware
(i.e. vector units) of modern multicore and manycore processors. As an example
we consider our Cilk Plus implementation of Belman-Ford algorithm for solving
the single-source shortest-path problem [7] which achieves better performance
than the corresponding simple OpenMP version of the algorithm. These two
computational problems have been chosen to demonstrate the most important
features of Cilk Plus that can be easily added to sequential C/C++ programs.

2 Short Overview of Cilk Plus

Cilk Plus offers several powerful extensions to C/C++ that allow to express
both task and data parallelism [8,17]. The most important constructs are useful
to specify and handle possible parallel execution of tasks:

cilk for followed by the body of a for loop tells that iterations of the loop can
be executed in parallel. Runtime applies the divide-and-conquer approach to
schedule tasks among active workers to ensure balanced workload of available
cores.

cilk spawn permits a given function to be executed asynchronously with the
rest of the calling function.

cilk sync tells that all tasks spawned in a function must complete before exe-
cution continues.

Another important feature of Cilk Plus is the array notation which introduces
vectorized operations on arrays. Expression A[start:len:stride] represents an
array section of length len starting from A[start] with the given stride. Omit-
ted stride means 1. The operator [:] can be used on both static and dynamic
arrays. There are also several built-in functions to perform basic computations
among elements in an array such as sum, min, max etc. It should be noticed that
the array notation can also be used for array indices. For example, A[x[0:len]]
denotes elements of the array A given by indices from x[0:len].

Intel Cilk Plus also supports Shared Virtual Memory which allows to
share data between the CPU and the coprocessor what is promising especially

256 P. Stpiczyński

for complex data structures [8,17]. Such shared variables are declared using
Cilk shared keyword. It also allows to declare functions that should be avail-
able for CPU and coprocessors. Computations can be offloaded to coprocessors
for asynchronous execution using Cilk spawn Cilk offload construct. In such
a case all necessary data are moved to the coprocessor. Memory synchronization
between the CPU and the coprocessor takes place when an offloaded function is
called by CPU or an offloaded function returns (i.e. when cilk sync is used).
The description of other features of Cilk Plus (like reducers) can be found in [17].

3 Two Examples of Computational Problems

Now we will present two exemplary problems which can be easily parallelized
and optimized using Cilk Plus. All implementations have been tested on a server
with two Intel Xeon E5-2670 v3 (totally 24 cores with hyperthreading, 2.3 GHz),
128 GB RAM, with Intel Xeon Phi Coprocessor 7120P (61 cores with multi-
threading, 1.238 GHz, 16 GB RAM), running under CentOS 6.5 with Intel Par-
allel Studio ver. 2017, C/C++ compiler supporting Cilk Plus. Experiments on
Xeon Phi have been carried out using its native and offload modes.

3.1 Adaptive Simpson’s Integration Rule

Let us consider the following recursive method for numerical integration called
Adaptive Simpson’s Rule [11]. We want to find the approximation of

I(f) =
∫ b

a

f(x)dx (1)

with a user-specified tolerance ε. Let S(a, b) = h
6 (f(a) + 4f(c) + f(b)), where

h = b − a and c is a midpoint of the interval [a, b]. The method uses Simpson’s
rule to the halves of the interval in recursive manner until the following stopping
criterion is reached [14]:

1
15

|S(a, c) + S(c, b) − S(a, b)| < ε. (2)

Figure 1 shows our parallel version of the straightforward recursive implementa-
tion of the method [4]. Note that we have only included keywords Cilk spawn
and Cilk sync. The first one specifies that cilkAdaptiveSimpsonsAux() can
execute in parallel with the remainder of the calling kernel. Cilk sync tells that
all spawned calls in the current call of the kernel must complete before execu-
tion continues. For comparative purposes we have also implemented the method
using OpenMP tasks [16], where the keywords Cilk spawn and Cilk sync are
simply replaced with task and taskwait constructs.

Another Cilk implementation of the method assumes that some computa-
tions can be offloaded to a coprocessor (i.e. Xeon Phi, if available). The auxil-
iary kernel cilkAdaptiveSimpsonsAux() should be declared with the keyword

Efficient Language-Based Parallelization of Computational Problems 257

Fig. 1. Parallel version of Adaptive Simpson’s method

Cilk shared, what makes the function available for CPU and coprocessors. In
the main kernel cilkAdaptiveSimpsonsOff(), the integration over the first half
of the interval [a, b] can offloaded to Xeon Phi using Cilk spawn Cilk offload
construct, while the rest is to be done by CPU.

Table 1 shows the execution time of our three parallel implementations
applied for finding the approximation of

∫ 4.4

−4.4
exp(x2)dx with ε = 1.0e − 7 and

depth = 40 (namely OpenMP with tasks, Cilk, and Cilk with offload). We can
observe that cilkAdaptiveSimpsons() outperforms ompAdaptiveSimpsons()
significantly (about four times faster for CPU and three times for Xeon Phi). It
should be noticed that the execution time (seconds) of the sequential version of
the method is 62.8 for CPU and 638.04 for Xeon Phi. Thus, the speedup achieved
by our Cilk implementation is 14.35 (CPU) and 70.66 (Xeon Phi), respectively.

Our non-offloaded Cilk version scales very well when the number of Cilk
workers increases up to 24 for CPU and 60 for Xeon Phi, respectively, i.e. to the
number of physical cores. The further increase in the number of workers results
in smaller and rather marginal gains. For cilkAdaptiveSimpsonsOff(), we can
observe that the shortest execution time is achieved for twelve workers. Then the
execution time of cilkAdaptiveSimpsonsAux() on CPU and Xeon Phi working
on the halves of the interval is approximately the same.

3.2 Bellman-Ford Algorithm for the Single-Source Shortest-Path
Problem

Let G = (V,E) be a directed graph with n vertices labeled from 0 to n − 1
and m arcs 〈u, v〉 ∈ E, where u, v ∈ V . Each arc has its weight w(u, v) ∈ R

258 P. Stpiczyński

Table 1. Execution time (s) of ompAdaptiveSimpsons(), cilkAdaptiveSimpsons()

and cilkAdaptiveSimpsonsOff() for
∫ 4.4

−4.4
exp(x2)dx

2x E5-2670 and Xeon Phi 7120P (coprocessor)

number of threads/workers (CPU) 2 4 6 12 24 48

ompAdaptiveSimpsons() 202.71 101.43 68.03 34.36 17.43 15.45

cilkAdaptiveSimpsons() 61.99 31.06 20.64 10.57 5.39 4.32

cilkAdaptiveSimpsonsOff() 34.28 17.06 11.33 5.67 5.78 5.95

Xeon Phi 7120P (native mode)

number of threads/workers 2 30 60 120 180 240

ompAdaptiveSimpsons() 1355.67 92.60 45.57 31.13 29.22 28.52

cilkAdaptiveSimpsons() 478.11 32.44 16.71 10.51 9.33 9.03

and we assume w(u, v) = ∞ when 〈u, v〉 �∈ E. For each path 〈v0, v1, . . . , vp〉 we
define its length as

∑p
i=1 w(vi−1, vi). We also assume that G does not contain

negative cycles. Let d(s, t) denotes the length of the shortest path from s to t or
d(s, t) = ∞ if there are no paths from s to t.

Algorithm 1 is the well-known Belman-Ford method for finding shortest
lengths of paths from a given source s ∈ V to all other vertices [7].

Algorithm 1. Bellman-Ford Algorithm
Data: G = (V,E), |V | = n, s ∈ V , w(u, v) for all u, v ∈ V
Result: D[v] = d(s, v) for all v ∈ V

1 for v ∈ V do
2 D[v] ← w(s, v)
3 end
4 D[s] ← 0
5 for k = 1, . . . , n − 2 do
6 for v ∈ V \ {s} do
7 for u ∈ V such that 〈u, v〉 ∈ E do
8 D[v] ← min (D[v],D[u] + w(u, v))
9 end

10 end

11 end

The most common basic implementations of the algorithm assume that a
graph is represented as an array that describes its vertices. Each vertex is
described by an array containing information about incoming arcs. Each arc
is represented by the initial vertex and arc’s weight. It is also necessary to store
the length of arrays describing vertices. In order to parallelize such a basic imple-
mentation using OpenMP (see Fig. 2, left), we should notice that the entire algo-
rithm should be within the parallel construct. Then the loops 7–13 and 18–26

Efficient Language-Based Parallelization of Computational Problems 259

can be parallelized using for construct with clause schedule(dynamic,ChS).
Thus, iterations are divided into pieces having a size specified by chunk size ChS
and such pieces are dynamically dispatched to threads. The assignment in line 4
needs to be a single task (i.e. defined by single). Moreover, we need two copies
of the array D for storing current and previous updates within each iteration of
the loop 20–25. It should be noticed that this loop is automatically vectorized by
the compiler. For the sake of simplicity, we also assume that the vertex labeled
as 0 is the source.

Fig. 2. Belman-Ford algorithm implemented using OpenMP and Cilk Plus

In our Cilk Plus implementation (see Fig. 2, right), the loops 7–13 and 18–26
are parallelized using cilk for construct. We also assume that each vertex of
a given graph is represented by two arrays of the same size. The first one (i.e.
inv) sorted in increasing order contains labels of initial vertices of incoming
arcs. The next one (i.e. inw) stores weights of corresponding arcs. Then (lines
21–24) we can simply vectorize the body of the loop using built-in function
sec reduce min() to find minimum among elements in the array given by the

sum of the array inw and necessary elements from the array d1 given by indices
from inv. This is a very fine example of using the array notation.

Table 2 shows the results of experiments performed for the considered imple-
mentation of Belman-Ford algorithm, namely basic, ompBF1, ompBF2 and
cilkBF. Note that ompBF2 is another implementation that uses OpenMP and

260 P. Stpiczyński

Table 2. Execution time (in seconds) of three implementations of Algorithm 1

2x E5-2670 Xeon Phi 7120P

max deg basic ompBF1 ompBF2 cilkBF basic ompBF1 ompBF2 cilkBF

The number of nodes n = 4000

10 0.20 0.16 0.16 0.19 4.73 0.48 0.43 0.99

20 0.30 0.21 0.16 0.20 6.24 0.84 0.87 1.03

50 0.57 0.25 0.19 0.25 10.04 1.76 1.63 1.38

100 1.05 0.25 0.26 0.35 15.29 2.34 2.05 1.50

200 2.07 0.38 0.31 0.32 27.37 2.26 2.08 1.94

500 5.13 0.67 0.35 0.42 54.97 1.75 1.93 1.70

1000 10.34 0.71 0.92 0.59 100.37 2.60 2.87 2.40

2000 22.22 1.51 1.49 1.07 200.16 5.68 6.22 4.16

The number of nodes n = 10000

10 1.70 0.75 0.83 0.52 31.89 1.02 1.10 3.07

20 2.20 0.80 0.74 0.55 39.66 1.16 1.23 3.26

50 3.74 0.82 0.79 0.71 61.50 1.48 1.54 3.60

100 6.72 0.98 0.96 0.78 97.62 2.31 2.41 4.84

200 13.09 1.22 1.35 1.08 168.09 3.72 3.60 4.98

500 32.99 2.53 2.38 1.61 369.67 7.68 8.90 9.34

1000 71.88 3.90 4.87 4.01 684.38 14.49 16.01 10.85

2000 156.82 12.65 12.68 11.63 1331.26 27.82 30.62 18.25

the same data layout as cilkBF. All results have been obtained for graphs gen-
erated randomly for a given number of vertices and maximum degree (i.e. the
maximum number of incoming arcs). We can observe that the parallel implemen-
tations are much faster than the basic (i.e. non-parallelized) implementation of
Algorithm 1. Usually ompBF2 is faster than ompBF1. cilkBF outperforms
ompBF1 and ompBF2 for larger and wider graphs. However, in case of our
OpenMP implementations, Table 2 shows the best results chosen from several
runs for various values of ChS. Thus, one can say that our OpenMP versions
have been manually tuned. In case of cilkBF, the runtime system has been
responsible for load balancing.

We can observe that for sufficiently large graphs all parallel implementa-
tions utilize multiple cores achieving reasonable speedup (see Fig. 3). Moreover,
cilkBF outperforms ompBF significantly, especially on Xeon Phi. This is the
effect of the efficient and explicit vectorization of the loop 7–9 in Algorithm1. For
this architecture it is also important to vectorize sufficiently long loops. Indeed,
the speedup grows when the maximum degree (i.e. the length of the arrays inv
and inw) grows.

Efficient Language-Based Parallelization of Computational Problems 261

 0

 5

 10

 15

 20

 25

 10 100 1000

sp
ee

du
p

maximum degree

2xE5-2670, number of nodes = 4000

ompBF1
ompBF2

cilkBF

 0

 5

 10

 15

 20

 25

 10 100 1000

sp
ee

du
p

maximum degree

2xE5-2670, number of nodes = 10000

ompBF1
ompBF2

cilkBF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 100 1000

sp
ee

du
p

maximum degree

Xeon Phi 7120P, number of nodes = 4000

ompBF1
ompBF2

cilkBF

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 100 1000

sp
ee

du
p

maximum degree

Xeon Phi 7120P, number of nodes = 10000

ompBF1
ompBF2

cilkBF

Fig. 3. Speedup of OpenMP and Cilk Plus implementations versus non-parallelized
basic version of Belman-Ford algorithm

It should be noticed that we have also tested another version of cilkBF
that uses Cilk spawn Cilk offload construct and where all data structures
have been shared between CPU and coprocessors. Unfortunately, the need for
synchronization of Shared Virtual Memory at the end of each iteration (i.e. the
loop 16–28) leads to a very large increase in processing time and our imple-
mentation with offloading is over 10× slower than cilkBF. However, Shared
Virtual Memory is perfect for exchanging irregular data with limited size, when
explicit synchronization is not used frequently. Both sides (CPU and coproces-
sor) should operate on memory allocated locally. Local data can be persisted
using more sophisticated techniques (the use of Cilk Plus together with #pragma
offload).

262 P. Stpiczyński

4 Conclusions and Future Work

We have shown that Cilk Plus can be very easily applied to parallelize recursively
defined problems like Adaptive Simpson’s Integration Rule and such implemen-
tation can be easily modified to utilize coprocessors like Intel Xeon Phi. It is also
easy to move from OpenMP to Cilk Plus and improve the performance of such
algorithms by tuning data structures to utilize hardware (i.e. vector units) of
modern multicore and manycore processors. For sufficiently large graphs, our
Cilk implementation of Belman-Ford algorithm for solving the single-source
shortest-path problem achieves really better performance than corresponding
OpenMP versions of the algorithm. Thus, Cilk Plus is a good choice for people
who want to concentrate on algorithms and prefer to use simple high-level pro-
gramming constructs to express parallelism. Of course, it is clear that the use
of OpenMP together with more advanced programming tools allows to fine-tune
programs for a particular architecture [17,20]. However, this involves a much
greater effort.

In the future, we plan to implement some other important computational
problems using Cilk Plus. It would also be interesting and important to find
problems that can benefit from using Shared Virtual Memory.

Acknowledgements. This work was partially supported by the National Centre for
Research and Development under MICLAB Project POIG.02.03.00-24-093/13. The use
of computer resources installed at Institute of Mathematics, Maria Curie-Sk�lodowska
University in Lublin is kindly acknowledged.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures:
A Dependence-Based Approach. Morgan Kaufmann, Burlington (2001)

2. Asai, R., Vladimirov, A.: Intel Cilk Plus for complex parallel algorithms: “enormous
fast Fourier transforms” (EFFT) library. Parallel Comput. 48, 125–142 (2015).
https://doi.org/10.1016/j.parco.2015.05.004

3. Basseda, R., Chowdhury, R.A.: A parallel bottom-up resolution algorithm using
Cilk. In: 2013 IEEE 25th International Conference on Tools with Artificial Intel-
ligence, Herndon, VA, USA, 4–6 November 2013, pp. 95–100. IEEE Computer
Society (2013). https://doi.org/10.1109/ICTAI.2013.24

4. Cameron, M.: Adaptive integration (2010). http://www2.math.umd.edu/
∼mariakc/teaching/adaptive.pdf

5. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel
Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco (2001)

6. Coblenz, M.J., Seacord, R., Myers, B.A., Sunshine, J., Aldrich, J.: A course-based
usability analysis of Cilk Plus and OpenMP. In: 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2015, Atlanta, GA, USA,
18–22 October 2015, pp. 245–249. IEEE (2015). https://doi.org/10.1109/VLHCC.
2015.7357223

7. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press,
Cambridge (1994)

https://doi.org/10.1016/j.parco.2015.05.004
https://doi.org/10.1109/ICTAI.2013.24
http://www2.math.umd.edu/~mariakc/teaching/adaptive.pdf
http://www2.math.umd.edu/~mariakc/teaching/adaptive.pdf
https://doi.org/10.1109/VLHCC.2015.7357223
https://doi.org/10.1109/VLHCC.2015.7357223

Efficient Language-Based Parallelization of Computational Problems 263

8. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High-Performance Program-
ming. Morgan Kaufman, Waltham (2013)

9. Khaldi, D., Jouvelot, P., Ancourt, C., Irigoin, F.: Task parallelism and data distri-
bution: an overview of explicit parallel programming languages. In: Kasahara, H.,
Kimura, K. (eds.) LCPC 2012. LNCS, vol. 7760, pp. 174–189. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37658-0 12

10. Kowalik, J.S., Puzniakowski, T.: Using OpenCL - Programming Massively Paral-
lel Computers, Advances in Parallel Computing, vol. 21. IOS Press, Amsterdam
(2012). http://ebooks.iospress.nl/volume/using-opencl

11. Kuncir, G.F.: Algorithm 103: Simpson’s rule integrator. Commun. ACM 5(6), 347
(1962). https://doi.org/10.1145/367766.368179

12. Leiserson, C.E.: Cilk. In: Padua, D.A. (ed.) Encyclopedia of Parallel Computing,
pp. 273–288. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-09766-
4 2339

13. Lewin-Berlin, S.: Exploiting multicore systems with Cilk. In: Proceedings of the
4th International Workshop on Parallel Symbolic Computation, PASCO 2010, 21–
23 July 2010, Grenoble, France, pp. 18–19. ACM (2010). https://doi.org/10.1145/
1837210.1837214

14. Lyness, J.N.: Notes on the adaptive Simpson quadrature routine. J. ACM 16(3),
483–495 (1969). https://doi.org/10.1145/321526.321537

15. Musaev, M., Khujayarov, I., Buriboev, A.: Accelerate the solution of problems of
digital signal processing technology based INTEL CILK PLUS. Asian J. Comput.
Inf. Syst. 3, 48–51 (2015). https://doi.org/10.24203/ajcis.v3i2.2507

16. van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP - The Next Step. Affinity,
Accelerators, Tasking, and SIMD. MIT Press, Cambridge (2017)

17. Rahman, R.: Intel Xeon Phi Coprocessor Architecture and Tools: The Guide for
Application Developers. Apress, Berkely (2013)

18. Robison, A.D.: Composable parallel patterns with Intel Cilk Plus. Comput. Sci.
Eng. 15(2), 66–71 (2013). https://doi.org/10.1109/MCSE.2013.21

19. Stpiczyński, P.: Semiautomatic acceleration of sparse matrix-vector product using
OpenACC. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K.,
Kitowski, J., Wiatr, K. (eds.) PPAM 2015 Part II. LNCS, vol. 9574, pp. 143–152.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3 14

20. Supalov, A., Semin, A., Klemm, M., Dahnken, C.: Optimizing HPC Applications
with Intel Cluster Tools. Apress, Berkely (2014)

21. Wolfe, M.: High Performance Compilers for Parallel Computing. Addison-Wesley,
Boston (1996)

https://doi.org/10.1007/978-3-642-37658-0_12
http://ebooks.iospress.nl/volume/using-opencl
https://doi.org/10.1145/367766.368179
https://doi.org/10.1007/978-0-387-09766-4_2339
https://doi.org/10.1007/978-0-387-09766-4_2339
https://doi.org/10.1145/1837210.1837214
https://doi.org/10.1145/1837210.1837214
https://doi.org/10.1145/321526.321537
https://doi.org/10.24203/ajcis.v3i2.2507
https://doi.org/10.1109/MCSE.2013.21
https://doi.org/10.1007/978-3-319-32152-3_14

A Taxonomy of Task-Based Technologies
for High-Performance Computing

Peter Thoman1(B), Khalid Hasanov2, Kiril Dichev3, Roman Iakymchuk4,
Xavier Aguilar4, Philipp Gschwandtner1, Pierre Lemarinier2,

Stefano Markidis4, Herbert Jordan1, Erwin Laure4, Kostas Katrinis2,
Dimitrios S. Nikolopoulos3, and Thomas Fahringer1

1 University of Innsbruck, Innsbruck, Austria
{petert,philipp,herbert,tf}@dps.uibk.ac.at

2 IBM Ireland, Dublin, Ireland
{khasanov,pierrele,katrinisk}@ie.ibm.com
3 Queen’s University of Belfast, Belfast, UK
{K.Dichev,D.Nikolopoulos}@qub.ac.uk

4 KTH Royal Institute of Technology, Stockholm, Sweden
{riakymch,xaguilar,markidis,erwinl}@kth.se

Abstract. Task-based programming models for shared memory – such
as Cilk Plus and OpenMP 3 – are well established and documented.
However, with the increase in heterogeneous, many-core and parallel sys-
tems, a number of research-driven projects have developed more diver-
sified task-based support, employing various programming and runtime
features. Unfortunately, despite the fact that dozens of different task-
based systems exist today and are actively used for parallel and high-
performance computing, no comprehensive overview or classification of
task-based technologies for HPC exists.

In this paper, we provide an initial task-focused taxonomy for HPC
technologies, which covers both programming interfaces and runtime
mechanisms. We demonstrate the usefulness of our taxonomy by clas-
sifying state-of-the-art task-based environments in use today.

Keywords: Task-based parallelism · Taxonomy · API
Runtime system · Scheduler · Monitoring framework · Fault tolerance

1 Introduction

A large number of task-based programming environments have been developed
over the past decades, and the task-based parallelism paradigm has proven widely
applicable for consumer applications. Conversely, in high-performance comput-
ing (HPC) loop-based and message-passing paradigms are still dominant. In this
work, we specifically aim to categorize task-based parallelism technologies which
are in use in HPC.

For the purpose of this work, we define a task as follows
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 264–274, 2018.
https://doi.org/10.1007/978-3-319-78054-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_25&domain=pdf

A Taxonomy of Task-Based Technologies for High-Performance Computing 265

A task is a sequence of instructions within a program that can be processed
concurrently with other tasks in the same program. The interleaved execu-
tion of tasks may be constrained by control- and data-flow dependencies.

Many programming languages support task-based parallelism directly with-
out external dependencies. Examples include the C++11 thread support library,
Java via its Concurrency API, or Microsoft TPL for .NET. Except for C++, we
do not study these languages in detail in this paper, since they are not common
in the HPC domain.

The Cilk language1 [19] allows task-focused parallel programming, and is an
early example of efficient task scheduling via work stealing. OpenMP [4], which
we consider a language extension, integrates tasks into its programming interface
since version 3.0. Industry-standard and well-supported parallel libraries based
on task parallelism have emerged, such as Intel Cilk Plus [24] or Intel TBB [25].
Task-based environments for heterogeneous hardware have also naturally devel-
oped with the emergence of accelerator and GPU computing; StarPU [8] is an
example of such an environment.

In addition, task-based parallelism is increasingly employed on distributed
memory systems, which constitute the most important target for HPC. In this
context, tasks are often combined with a global address space (GAS) program-
ming model, and scheduled across multiple processes, which together form the
distributed execution of a single task-parallel program. While some examples of
global address space environments with task-based parallelism are specifically
designed languages such as Chapel [6] and X10 [18], it is also possible to imple-
ment these concepts as a library. For instance, HPX [10] is an asynchronous GAS
runtime, and Charm++ [23] uses a global object space.

This already very diverse landscape is made even more complex by the recent
appearance of task-based runtimes using novel concepts, such as the data-centric
programming language Legion [1]. Many of these task-based programming envi-
ronments are maintained by a dedicated community of developers, and are often
research-oriented. As such, there might be relatively little accessible documen-
tation of their features and inner workings.

Crucially, at this point, there is no up to date and comprehensive taxon-
omy and classification of existing common task-based environments. This makes
it very difficult for researchers or developers with an interest in task-based
HPC software development to get a concise picture of the alternatives to the
omnipresent MPI programming model. In this work, we attempt to address
this issue by providing a taxonomy and classification of both state-of-the-art
task-based programming environments and more established alternatives. We
consider a task-based environment as consisting of two major components: a
programming interface (API) and a runtime system; the former is the inter-
face that a given environment provides to the programmer, while the latter

1 Note that we use the term “language” for Cilk and Cilk Plus, even though they
build on C/C++. The reasoning is that a Cilk Plus compiler is strictly required for
compilation (unlike e.g. OpenMP).

266 P. Thoman et al.

encompasses the underlying implementation mechanisms. We present a set of
API characteristics allowing meaningful classification in Sect. 2. For discussing
the more involved topic of runtime mechanisms, we further structure our analy-
sis into the overarching topics of scheduling, performance monitoring, and fault
handling (see Sect. 3). Finally, based on the taxonomy introduced, we classify
and categorize existing APIs and runtimes in Sect. 4.

2 Task-Parallel Programming Interfaces (APIs)

The Application Programming Interface (API) of a given task-parallel program-
ming environment defines the way an application developer describes parallelism,
dependencies, and in many cases other more specific information such as the
work mapping structure or data distribution options. As such, finding a way to
concisely characterize APIs from a developer’s perspective is crucial in providing
an overview of task-parallel technologies.

In this work, we define a set of characterizing features for such APIs which
encompasses all relevant aspects while remaining as compact as possible. A sub-
set of these features was adapted from previous work by Kasim et al. [11]. To
these existing characteristics we added additional information of general impor-
tance – such as technological readiness levels – as well as features which relate to
new capabilities particularly relevant for modern HPC like support for hetero-
geneity and resilience management. We will now define each of these character-
istics and their available options for categorization. Explicit (e) support refers
to features which require extra effort or implementation by the developer, while
implicit (i) support means that the toolchain manages the feature automatically.

Technology Readiness. The technology readiness of the given API and its
implementations according to the European Commission definition.2

Distributed Memory. Whether targeting distributed memory systems is sup-
ported. Options are no support, explicit support, or implicit support. explicit
refers to, for example, message passing between address spaces, while auto-
matic data migration would be an example of implicit support.

Heterogeneity. Indicates whether tasks can be executed on accelerators (e.g.
GPUs). Explicit support indicates that the application developer has to
actively provision tasks to run on accelerators, using a distinct API.

Worker Management. Whether the worker threads and/or processes need to
be started and maintained by the user (explicit) or are provided automatically
by the environment (implicit).

Task Partitioning. This feature indicates whether each task is atomic – can,
thus, only be scheduled as a single unit – or can be subdivided/split.

Work Mapping. Describes the way tasks are mapped to the existing hardware
resources. Possibilities include explicit work mapping, implicit work mapping
(e.g. stealing), or pattern-based work mapping.

2 https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014 2015/
annexes/h2020-wp1415-annex-g-trl en.pdf. Accessed: 2017-05-03.

https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/annexes/h2020-wp1415-annex-g-trl_en.pdf

A Taxonomy of Task-Based Technologies for High-Performance Computing 267

Synchronization. Whether tasks are synchronized in an implicit fashion, e.g.
by regions or the function scope, or explicitly by the application developer.

Resilience Management. Describes whether the API has support for task
resilience management, e.g. fine-grained checkpointing and restart.

Communication Model. Either shared memory (smem), message passing
(msg), or Partitioned Global Address Space (pgas).

Result Handling. Whether the tasking model features explicit handling of the
results of task computations – for example, return types accessed as futures.

Graph Structure. The type of task graph dependency structure supported by
the given API: a tree structure, an acyclic graph (dag) or an arbitrary graph.

Task Cancellation. Whether the tasking model supports cancellation of tasks:
no cancellation support; cancellation is supported either cooperatively (only
at task scheduling points) or preemptively.

Implementation Type. How the API is implemented and addressed from a pro-
gram. A tasking API can be provided either as a library, a language extension,
e.g. pragmas, or an entire language with task integration.

3 Many-Task Runtime Systems

Many-task runtime systems serve as the basis for implementing these APIs, and
are considered a promising tool in addressing key issues associated with Exascale
computing. In this section we provide a taxonomy of many-task runtime systems,
which is summarized and illustrated in Fig. 1.

A crucial difference among various many-task runtime systems is their target
architecture. The evolution of many-task runtime systems started from homo-
geneous shared-memory computers with multiple cores and continued towards
runtimes for heterogeneous shared-memory and distributed-memory systems.
Support for distributed-memory systems varies significantly across different sys-
tems: in case of implicit data distribution, data distribution is handled by the
runtime, without putting any burden on the application developer; on the other
hand, in explicit data distribution, distribution across the nodes is explicitly
specified by the programmer.

Modern HPC systems require efficiency not only in execution times, but
also in power and/or energy consumption. Thus, whether the runtime provides
scheduling objectives other than the total execution time is another impor-
tant distinction. At the same time, there is not a single standard scheduling
methodology that is being used by all many-task runtime systems. Some of
them provide automatic scheduling within a single shared-memory machine while
the application developer needs to handle distributed-memory execution explic-
itly, while others provide uniform scheduling policies across different nodes.

Many-task runtimes may require performance introspection and mon-
itoring to facilitate the implementation of different scheduling policies. While
traditionally it was not part of runtimes, requirements for on-the-fly perfor-
mance information have surfaced. Thus, most task-based runtimes already pro-
vide and make use of introspection capabilities. Fault tolerance is another key

268 P. Thoman et al.

factor that is important in many-task runtime systems in the context of Exas-
cale requirements. As detailed in Sect. 3.3, a runtime may have no resilience
capabilities, or it may target task faults or even process faults.

Many-Task
Runtime Systems

Target
architectureShared-

memory

Distributed-
memory

Fault
tolerance

(Section 3.3)

None Recovery
from task

faults

Recovery
from

process
faults

Performance
monitoring

(Section 3.2)

Offline
utilization

Performance
Analysis

Online
utilization

Performance
Analysis

Introspection

Performance
Modelling

(Historical Data)
Scheduling

(Section 3.1)

Targets
Energy

efficiency

Execution
time

Multi-
objective

Scheduling
Methods

Static

Dynamic

Hybrid

Data
distribution
across nodes

Explicit

Implicit

Fig. 1. Taxonomy of many-task runtime systems.

3.1 Scheduling in Many-Task Runtime Systems

Task Scheduling Targets. Depending on the capabilities of the underlying
many-task runtime system, its scheduling domain is usually limited to a sin-
gle shared-memory homogeneous compute node, a heterogeneous compute node
with accelerators, homogeneous distributed-memory systems of interconnected
compute nodes, or in a most generic form to heterogeneous distributed-memory
systems. By supporting different types of heterogeneous architectures, the run-
time can facilitate source code portability and support transparent interaction
between different types of computation units for application developers.

Traditionally, execution time has been the main objective to minimize for
different scheduling policies. However, the increasing scale of HPC systems makes
it necessary to take the energy and power budgeting of the target system into

A Taxonomy of Task-Based Technologies for High-Performance Computing 269

account as well. Therefore, some many-task runtime systems have already started
providing energy-aware [14] scheduling policies3. In addition, recent research
projects, such as AllScale4 focus on multi-objective scheduling policies trying to
find optimal trade-offs among conflicting optimization objectives like execution
time, energy consumption and/or resource utilization.

Task Scheduling Methods. Extensive research has been conducted in task
scheduling methodologies. We do not try to list all different techniques for task
scheduling, but rather highlight methods used in state-of-the-art many-task run-
time systems. The task scheduling problem can be addressed either in a static
or dynamic manner. In the former case, depending on the decision function it is
assumed that either one or more of the following inputs are known in advance: the
execution times of each task, inter-dependencies between tasks, task precedence,
resource usage of each task, the location of the input data, task communica-
tions, and synchronization points. This is by no means an exhaustive list but it
gives an indication of the multiple possible a priori inputs for static scheduling.
Using all this information the scheduling can be performed offline during com-
pilation time. On the other hand, dynamic scheduling is mainly used in the case
where there is not enough information in advance or obtaining such information
is not trivial. Additionally, hybrid policies which integrate static and dynamic
information are possible.

Most static scheduling algorithms used in many-task runtime systems are
based on the list scheduling methods. Here, it is assumed that the scheduling
list of tasks is statically built before any task starts executing and the sequence
of the tasks in the list is not modified. The list scheduling approach can easily
be adapted and used for dynamic scheduling by re-computing and re-sequencing
the list of tasks. As a matter of fact, heuristic policies based on list scheduling
and performance models are employed in some many-task runtime systems [8].

Work-stealing. [2] can be considered as the most widely used dynamic schedul-
ing method in task-based runtime systems. The main idea in work-stealing is to
distribute tasks between per-processor work queues, where each processor oper-
ates on its local queue. The processors can steal tasks from other queues to
perform load-balancing. There are two main approaches in implementing work-
stealing, namely, child-stealing and parent-stealing. In parent-stealing, which is
also called work-first policy, a worker executes a spawned task and leaves the
continuation to be stolen by another worker. Child-stealing, which is also called
help-first policy, does the opposite, namely, the worker executes the continua-
tion and leaves the spawned task to be stolen by the other workers. Another
approach to dynamic scheduling for many-task runtime systems is the work-
sharing strategy. Unlike work-stealing, it schedules each task onto a processor
when it is spawned and it is usually implemented by using a centralized task pool.
In work-sharing, whenever a worker spawns a new task, the scheduler migrates it
to a new worker to improve load balancing. As such, migration of tasks happens
more often in work-sharing than that of in work-stealing.
3 http://starpu.gforge.inria.fr/doc/html/Scheduling.html#Energy-basedScheduling.
4 The AllScale EC-funded FET-HPC project: allscale.eu.

http://starpu.gforge.inria.fr/doc/html/Scheduling.html#Energy-basedScheduling
www.allscale.eu

270 P. Thoman et al.

Few of the existing many-task runtime systems provide energy efficient
scheduling policies. In the primitive case it is assumed that the application can
provide an energy consumption model which can be used by a scheduling policy
as part of its objective function. In more advanced cases, the runtime provides
offline or online profiling data, such as, instructions per cycle (IPC) and last
level cache misses (LLCM). This data is used to build a look-up table that maps
each frequency setting with the triple of IPC, LLCM, and the number of active
cores. Then, a scheduling decision based on this information [14].

3.2 Performance Monitoring

The high concurrency and dynamic behavior of upcoming Exascale systems
poses a demand for performance observation and runtime introspection. This
performance information is very valuable to guide HPC runtimes in their exe-
cution and resource adaption, thereby maximizing application performance and
resource utilization.

When targeting performance observation, performance monitoring software
is either generating data to be used online [1,7,13,15,16] or offline [1,5,8,15]. In
other words, whether the collected data is going to be used while the application
still runs or after its execution. Furthermore, this taxonomy can be extended with
respect to who is consuming data – either the end user (performance analysis)
or the runtime itself (introspection and historical data). Real-time performance
data (introspection and performance models from historical data) will play an
important role in Exascale for runtime adaptation and optimal task-scheduling.

3.3 Task, Process, and System Faults

For this topic, we extend a recent taxonomy [22] from the HPC domain to include
the concept of task faults. We retain detectability of faults as the main criterion,
but distinguish three levels of the system: distributed execution, process, and
task (see Fig. 2). Each of these levels may experience a fault, and each of them
has a different scope.

Distributed execution

Process

Task

System Fault

Process fault

Task
fault

detects
detects

Undetected

Fig. 2. A taxonomy of faults
based on the detection capabil-
ities: task faults, process faults,
and system faults.

Task Faults: Tasks have the smallest scope of
the three; still, a failure of a task may affect
the result of a process, and subsequently of a
distributed run. A typical example are unde-
tected errors in memory. The process which runs
a task is generally capable of detecting task
faults. There are several examples of shared-
memory runtimes, where task faults within par-
allel regions have been detected and corrected
[17,20].

Process Faults: A process may also fail, which
leads to the termination of all underlying tasks.
For example, a node crash can lead to a process

A Taxonomy of Task-Based Technologies for High-Performance Computing 271

failure. In such a scenario, a process cannot detect its failure; however, in a
distributed run, another process may detect the failure, and trigger a recovery
strategy across all processes. A recovery strategy in this case may rely on one of
two redundancy techniques: checkpoint/restart or replication.

System Faults: On the last level, a distributed system execution may fail in
cases of severe faults like switch failure, or power outage. In this case, a failure
cannot be detected. No recovery strategy can be applied in such scenarios.

4 Classification

Table 1 classifies the existing task-parallel APIs according to the API taxonomy
(see Sect. 2), however with additional clarifications. First, for an API to support
a given feature, this API must not require the user to resort to third party
libraries or implementation-specific details of the API. For instance, some APIs
offer arbitrary task graphs via manual task reference counting [21]. This does
not qualify as support in our classification. Second, all APIs shown as featuring
task cancellation do so in a non-preemtive manner due to the absence of OS-level
preemption capabilities.

Some entries require additional clarification. In C++ STL, we consider the
entity launched by std::async to represent a task. Also, while StarPU offers
shared memory parallelism, it is capable of generating MPI communication from
a given task graph and data distribution [8], hence it is marked with explicit
support for distributed memory using a message-based communication model.
Furthermore, PaRSEC includes both a task-based runtime that works on user-
specified task graph and data distribution information, as well as a compiler that
accepts serial input and generates this data. As the latter is limited to loops, we
only consider the runtime in this work.

Several observations can be made from the data presented in Table 1. First, all
APIs with distributed memory support also allow task partitioning and support
heterogeneity in some form. APIs offering implicit distributed memory support
employ a global address space. Second, among APIs lacking distributed memory,
only OmpSs offers resilience (via its Nanos++ runtime), and distributed memory
APIs only recently started to include resilience support [3] – likely driven by the
continuous increase in machine sizes and hence decreased mean-time-between-
failures. Finally, some form of heterogeneity support is provided in almost all
modern APIs, though it often requires explicit heterogeneous task provisioning
by the programmer.

Table 2 provides the corresponding classification with respect to the runtime
system and its subcomponents (see Sect. 3). It is worth mentioning that there
are various contributions extending runtime features, but these contributions
are not part of the main release yet. We do not consider such extended fea-
tures in our taxonomy. For instance, recent work in X10 [12] extends the X10
scheduler with distributed work-stealing algorithms across nodes; however, we
classify X10 as not (yet) having a distributed scheduler. The same applies to
StarPU and OmpSs. Namely, new distributed-memory scheduling policies are

272 P. Thoman et al.

Table 1. Feature comparison of APIs for task parallelism.

Table 2. Feature comparison of runtimes for task parallelism.

being developed for both runtimes, however, they are not part of their main
release yet5. Also, for Chapel, X10, and HPX, there is automatic data distri-
bution support (runtime feature); however, these runtimes require explicit work
mapping in distributed memory environments (API feature).

5 We received feedback from their developers.

A Taxonomy of Task-Based Technologies for High-Performance Computing 273

Most of the runtime systems have similarities in scheduling within a single
shared-memory node and work-stealing is the most common method of schedul-
ing. On the other hand, there is no established method for inter-node scheduling.
For instance, ParSEC [9] only provides a limited inter-node scheduling based on
remote completion notifications, while Legion uses distributed work-stealing.

5 Conclusions

The shift in HPC towards emerging task-based parallel programming paradigms
has led to a broad ecosystem of different task-based technologies. With such
diversity, and some degree of isolation between individual communities of devel-
opers, there is a lack of documentation and common classification, thus hindering
researchers to have a complete view of the field. In this paper, we provide an
initial attempt to establish a common taxonomy and provide the corresponding
categorization for many existing task-based programming environments.

We divided our taxonomy into two broad categories: API characteristics,
which define how the programmer interacts with the system; and many-task run-
time systems, classifying the underlying technologies. For the latter, we analyze
the types of scheduling policies and goals supported, online and offline perfor-
mance monitoring integration, as well as the level of resilience and detection
provided for task, process and system faults.

Acknowledgement. This work was partially supported by the AllScale project that
has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 671603.

References

1. Bauer, M.E.: Legion: programming distributed heterogeneous architectures with
logical regions. Ph.D. thesis, Stanford University (2014)

2. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM (JACM) 46(5), 720–748 (1999)

3. Cunningham, D.: Resilient X10: efficient failure-aware programming. In: Proceed-
ings of PPoPP 2014, pp. 67–80. ACM (2014)

4. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-memory
programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998)

5. Duran, A., et al.: OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process. Lett. 21(02), 173–193 (2011)

6. Chamberlain, B.L., et al.: Parallel programmability and the chapel language. Int.
J. HPC Appl. 21(3), 291–312 (2007)

7. Augonnet, C., Thibault, S., Namyst, R.: Automatic calibration of performance
models on heterogeneous multicore architectures. In: Lin, H.-X., Alexander, M.,
Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009.
LNCS, vol. 6043, pp. 56–65. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14122-5 9

https://doi.org/10.1007/978-3-642-14122-5_9
https://doi.org/10.1007/978-3-642-14122-5_9

274 P. Thoman et al.

8. Augonnet, C., et al.: StarPU: a unified platform for task scheduling on hetero-
geneous multicore architectures. Concurr. Comput.: Pract. Exp. 23(2), 187–198
(2011)

9. Bosilca, G., et al.: PaRSEC: exploiting heterogeneity to enhance scalability. Com-
put. Sci. Eng. 15(6), 36–45 (2013)

10. Kaiser, H., et al.: HPX: a task based programming model in a global address space.
In: PGAS 2014, p. 6. ACM (2014)

11. Kasim, H., March, V., Zhang, R., See, S.: Survey on parallel programming model.
In: Cao, J., Li, M., Wu, M.-Y., Chen, J. (eds.) NPC 2008. LNCS, vol. 5245, pp.
266–275. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88140-
7 24

12. Paudel, J., et al.: On the merits of distributed work-stealing on selective locality-
aware tasks. In: 42nd International Conference on Parallel Processing, pp. 100–109,
October 2013

13. Planas, J., et al.: Self-adaptive OmpSs tasks in heterogeneous environments. In:
IPDPS 2013, pp. 138–149. IEEE (2013)

14. Meyer, J.C., et al.: Implementation of an energy-aware OmpSs task scheduling
policy. http://www.prace-ri.eu/IMG/pdf/wp88.pdf. Accessed 02 May 2017

15. Huck, K., et al.: An early prototype of an autonomic performance environment for
exascale. In: Proceedings of ROSS13, p. 8. ACM (2013)

16. Huck, K., et al.: An autonomic performance environment for exascale. Supercom-
put. Frontiers Innov. 2(3), 49–66 (2015)

17. Subasi, O., et al.: NanoCheckpoints: a task-based asynchronous dataflow frame-
work for efficient and scalable checkpoint/restart. In: PDP 2015, pp. 99–102 (2015)

18. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. In: Proceedings of OOPSLA 2005, pp. 519–538. ACM (2005)

19. Blumofe, R.D., et al.: Cilk: an efficient multithreaded runtime system. J. Parallel
Distrib. Comput. 37(1), 55–69 (1996)

20. Hukerikar, S., et al.: Opportunistic application-level fault detection through adap-
tive redundant multithreading. In: Proceedings of HPCS 2014, pp. 243–250 (2014)

21. General Acyclic Graphs of Tasks in TBB. https://software.intel.com/en-us/node/
506110. Accessed 02 May 2017

22. Hoemmen, M., Heroux, M.A.: Fault-tolerant iterative methods via selective relia-
bility. In: Proceedings of SC 2011, p. 9. IEEE Computer Society (2011)

23. Kale, L.V., Krishnan, S.: Charm++: a portable concurrent object oriented system
based on c++. In: OOSPLA 1993, pp. 91–108. ACM (1993)

24. Robison, A.D.: Composable parallel patterns with intel cilk plus. Comput. Sci.
Eng. 15(2), 66–71 (2013)

25. Willhalm, T., Popovici, N.: Putting Intel threading building blocks to work. In:
IWMSE08, pp. 3–4. ACM (2008)

https://doi.org/10.1007/978-3-540-88140-7_24
https://doi.org/10.1007/978-3-540-88140-7_24
http://www.prace-ri.eu/IMG/pdf/wp88.pdf
https://software.intel.com/en-us/node/506110
https://software.intel.com/en-us/node/506110

Workshop on PGAS Programming

Interoperability of GASPI and MPI
in Large Scale Scientific Applications

Dana Akhmetova1, Luis Cebamanos2 , Roman Iakymchuk1(B) ,
Tiberiu Rotaru3, Mirko Rahn3, Stefano Markidis1, Erwin Laure1 ,

Valeria Bartsch3, and Christian Simmendinger4

1 KTH Royal Institute of Technology, Stockholm, Sweden
{danaak,riakymch,markidis,erwinl}@kth.se

2 EPCC, The University of Edinburgh, Edinburgh, UK
l.cebamanos@epcc.ed.ac.uk

3 Fraunhofer ITWM, Kaiserslautern, Germany
{tiberiu.rotaru,mirko.rahn,valeria.bartsch}@itwm.fraunhofer.de

4 T-Systems Solutions for Research, Frankfurt, Germany
christian.simmendinger@t-systems-sfr.com

Abstract. One of the main hurdles of a broad distribution of PGAS
approaches is the prevalence of MPI, which as a de-facto standard
appears in the code basis of many applications. To take advantage of
the PGAS APIs like GASPI without a major change in the code basis,
interoperability between MPI and PGAS approaches needs to be ensured.
In this article, we address this challenge by providing our study and pre-
liminary performance results regarding interoperating GASPI and MPI
on the performance crucial parts of the Ludwig and iPIC3D applications.
In addition, we draw a strategy for better coupling of both APIs.

Keywords: Interoperability · GASPI · MPI · Ludwig · iPIC3D
Halo exchange

1 Introduction

The Message Passing Interface (MPI) has been considered the de-facto standard
for writing parallel programs for clusters of computers for more than two decades.
Although the API has become very powerful and rich, having passed through
several major revisions, new alternative models that are taking into account
modern hardware architectures have evolved in parallel. Such a model is the
Global Address Space Programming Interface (GASPI) [9], with GPI-2 (www.
github.com/cc-hpc-itwm/GPI-2) representing an open source implementation of
the GASPI standard.

The GASPI standard promotes the use of one-sided communication, where
one side, the initiator, has all the relevant information for performing the data
movement. The benefit of this is decoupling the data movement from the syn-
chronization between processes. It enables the processes to put or get data from
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 277–287, 2018.
https://doi.org/10.1007/978-3-319-78054-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_26&domain=pdf
http://orcid.org/0000-0001-6594-211X
http://orcid.org/0000-0003-2414-700X
http://orcid.org/0000-0002-9901-9857
www.github.com/cc-hpc-itwm/GPI-2
www.github.com/cc-hpc-itwm/GPI-2

278 D. Akhmetova et al.

remote memory, without engaging the corresponding remote process, or having
a synchronization point for every communication request. However, some form
of synchronization is still needed in order to allow the remote process to be noti-
fied upon the completion of an operation. In addition, GASPI provides what is
known as weak synchronization primitives which update a notification on the
remote side. The notification semantics is complemented with routines that wait
for the update of a single or a set of notifications. GASPI allows for a thread-
safe handling of notifications, providing an atomic function for resetting a local
notification. The notification procedures are one-sided and only involve the local
process.

Thus, there is a potential of enhancing applications’ performance by shifting
to one-sided communication like in GASPI. There are two possibilities for such
shift: 1. Rewriting large legacy MPI codes to use a different inter-node program-
ming model is, in many cases, highly labor intensive and, therefore, not appealing
to developers; 2. Replacing MPI with another API – such as GASPI – only in
performance critical parts of those codes is an attractive solution from a practical
perspective, but this requires both APIs to interoperate effectively and efficiently
on sharing communication and on data management. In this article, we address
the latter and aim to study interoperability of GASPI and MPI in order to allow
for incremental porting of applications. GPI-2 supports [5] this interoperability
with MPI in a so-called mixed-mode, where the MPI and GASPI interfaces can
be mixed in a simple way. As a case study, we consider two large-scale scientific
applications: iPIC3D [7] (see Sect. 3) – an implicit Particle-In-Cell code for space
weather simulations; Ludwig [3] (see Sect. 4) – a large scale Lattice-Boltzmann
code for complex fluids. We collect the preliminary performance results for both
applications (see Sect. 5). Furthermore, we derive a strategy for enhancing the
MPI and GASPI coupling using so-called shared notifications (see Sect. 2) and
provide evidences that this strategy is beneficial (see Sect. 5) on simple opera-
tions such as Allreduce.

2 A Strategy to Better Interoperate GASPI and MPI

Scientific applications may use MPI features – such as MPI derived data types –
not known in the GASPI specification. Due to the fact that GASPI does not
support the derived data types the interoperability between MPI and GASPI
within a program using MPI derived data types lacks ease of use, because the
data of each local process on a node have to be packed, sent, and, then, unpacked.

To mitigate the adverse effect of MPI derived data types on the MPI plus
GASPI interoperability so-called shared notifications have been recently imple-
mented in the GPI implementation of the GASPI standard. This feature allows
a smoother interoperability between a flat MPI code with shared windows
and GASPI. With shared notifications a GASPI memory segment is shared
between all processes local to a node. GASPI segments can be created with
user allocated memory, e.g. using MPI shared windows in an MPI plus GASPI
mixed program. Instead of implicit (via derived data types) or explicit packing/

Interoperability of GASPI and MPI in Large Scale Scientific Applications 279

unpacking of communication data, application can share information about node
local data layout, structure, and computational state. As all node-local processes
can access this shared data, the node local explicit ghost cell exchanges in appli-
cations can be replaced with the corresponding state notifications, where the
required data can be directly read from the neighboring processes based on pre-
viously exchanged information of data layout and type. We believe that the
correspondingly required programming interface can be generic and – for node
local exchanges – common for both MPI and GASPI. The interface will require
an allocation of a shared memory segment across node-local processes. It will
require a universally acceptable format for sharing of process local data layouts
and corresponding data offsets. It will require the ability to automatically detect
whether or not a neighboring process is node-local; the latter information can
be used to signal node-local readiness for the ghost-cell exchange or to perform
explicit packing and/or unpacking into/from linear communication buffers for
remote nodes. The interface will also require the ability to trigger node-local noti-
fications in shared memory. This will include required memory fences between
neighboring node local processes. Last not least – by using shared notifications
– the interface becomes able to aggregate data for remote nodes and to per-
form one single write to the other node (for all local processes on that node)
and notify all remote local processes in one step. As all remote processes can
detect and access this common buffer, each remote process/rank can retrieve the
required partial data for its ghost cell exchange. The ongoing, but converging,
development of this generic interface will facilitate the interoperability of MPI
and GASPI significantly.

3 iPIC3D: Implicit Particle-in-Cell Code

iPIC3D is a Particle-in-Cell (PIC) code for the simulation of space plasmas in
space weather applications during the interaction between the solar wind and the
Earth’s magnetic field. The magnetosphere is a large system with many complex
physical processes, requiring realistic domain sizes and billions of computational
particles. The numerical discretization of Maxwell’s equations and particle equa-
tions of motion is based on the implicit moment method that allows simulations
with large time steps and grid spacing still retaining the numerical stability.
Plasma particles from the solar wind are mimicked by computational particles.
At each computational cycle, the velocity and the location of each particle are
updated, the current and charge densities are interpolated to the mesh grid, and
Maxwell’s equations are solved. Figure 1 depicts these computational steps in
iPIC3D.

iPIC3D is parallelized using domain decomposition and message-passing com-
munications: an iPIC3D simulation is being run on a number of processors and
on a network of cells, so each processor handles a number of cells. However, at
certain intervals, each processor must find out the values of the cells adjacent
to those in its own domain. The procedure of finding these values out is called
halo exchange. To achieve the full 3D halo exchange, the standard approach of
shifting the relevant data in each co-ordinate direction in turn is adopted. This

280 D. Akhmetova et al.

Fig. 1. Structure of the iPIC3D code.

involves extensive communication between processes and requires appropriate
synchronization – a receive in the first co-ordinate direction must be complete
before a send in the second direction involving relevant data can take place,
and so on. Note that only “outgoing” elements of the distribution need to be
sent at each edge. In the particle mover part hundreds of particles per cell are
constantly moved, resulting in billions of particles in large-scale simulations. All
these particles are completely independent from each other, which ensures very
high scalability. MPI communication at this stage is only required to transfer
some of the particles from one cell or a subdomain to its neighbor.

The iPIC3D MPI communication is dominated by non-blocking point-to-
point communication, occurring from communication of particles and ghost cells
among neighboring processes (halo exchange), and by global reductions resulting
from solving two linear systems every simulation time step. In order to reduce the
communication burden in iPIC3D, we aim at replacing the MPI communication
with the GASPI asynchronous one-sided communication on the communication
critical parts of the code such as halo exchange in the field solver and with the
GASPI reduction communication in the iPIC3D linear solver.

Implementation Highlights. The main halo exchange routine uses non-
blocking MPI and MPI derived datatypes. MPI derived datatypes allow us to
specify non-contiguous data in a convenient manner and yet treat it as if it was
contiguous. GASPI requires the creation and later use of the so-called GASPI
segments. In the case of iPIC3D, there is one GASPI segment per plane and
direction. As there are three planes and two directions per plane, iPIC3D will
require six different GASPI segments. The size of the segments is defined as twice
the size of buffer to be sent as we will use the same segment to send and receive
data from the neighbor subdomains. As iPIC3D uses MPI datatypes, complex
data layouts, it is necessary to unpack the MPI datatypes and copy the data
contiguously into a GASPI segment. Once the data has been sent and notified,
we need to put the data back from the GASPI segment to the original buffer to
be able to continue with the execution of iPIC3D.

To implement the halo exchange with GASPI, firstly the field values belong-
ing to the boundary are being copied to the local GASPI segment. Secondly,

Interoperability of GASPI and MPI in Large Scale Scientific Applications 281

segments of neighbors are being read to get their ghost cells and copied to the
local segment. The local copy does not require a barrier: each process writes to
its neighbor process’ segment directly and sends a notification to that process
in order to notify that data writing has accomplished. The remote process does
not know that another process writes something into its memory and will not
wait for when data writing ends, until it receives a notification from its neighbor.
The remote process checks for locally posted notifications to get the informa-
tion about changes related to a segment. Once a notification arrives, the process
starts to work with data related to that particular notification.

In addition, the MPI reduction operations were replaced with the GASPI
communication in the linear solvers (CG and GMRes) to calculate the inner
products and the norm of vectors located on different processes.

4 The Ludwig Application

Ludwig [3] is a versatile code for the simulation of Lattice-Boltzmann models in
3D on cubic lattices. Some of the problems that could be simulated with Ludwig
include detergency, mesophase formation in amphiphiles, colloidal suspensions,
and liquid crystal flows. Broadly, the code is intended for complex fluid prob-
lems at low Reynolds numbers, so there is no consideration of turbulence, high
Mach number flows, high density ratio flows, and so on. Ludwig uses an effi-
cient domain decomposition algorithm, which employs the Lattice-Boltzmann
method to iterate the solution on each subdomain. The domain decomposition
is carried out by splitting a three dimensional lattice into smaller lattices on
subdomains and exchanging information with adjacent subdomains [4]. For each
iteration, Ludwig uses MPI for communications with adjacent subdomains using
halo exchange [2].

Fig. 2. Lattice subdomain where
the internal section represents
the real lattice and the external
region the halo sites.

In the original implementation of the Lud-
wig halo exchange, the number of messages sent
and received by each MPI process is reduced
as much as possible. Each subdomain needs
to exchange data with its 26 neighbors in
three directions to continue with the solution
of the problem. This means that synchroniza-
tion between the different planes is required.
To coordinate the solution, communication
between adjacent subdomains is required after
each iteration. This is done by creating halos
around the dimensions of the subdomain, i.e.
extending the dimension of the subdomain by
one lattice point in each direction as depicted in
Fig. 2. After each time step, MPI processes will
have to communicate a 2D plane of m veloci-
ties to their adjacent MPI processes. Since each

plane shares some sites with the other planes, the exchange of information in
each direction should be synchronized before continuing with the execution.

282 D. Akhmetova et al.

GASPI promotes the use of one-sided communication, where the initiator
has all the relevant information for performing the data movement. This idea
decouples the data movement from the synchronization between processes and it
is especially relevant in applications that rely on continuous halo communications
between neighbors. We aim at reducing the synchronization between subdomains
by porting Ludwig’s main halo exchange routines form MPI to GASPI.

Implementation Highlights. The halo exchange routine responsible for
exchanging data between neighbor subdomains uses non-blocking MPI and MPI
derived datatypes. MPI derived datatypes allow us to specify non-contiguous
data in a convenient manner and yet treat it as if it was contiguous.

GASPI requires the creation and later on use of what is known as GASPI
segments. A GASPI segment is window of memory allocated to be used with the
GASPI model. In our case we have created one GASPI segment per plane and
direction. Therefore, since we have three planes and two directions per plane,
we will require six different GASPI segments. This number of GASPI segments
is sufficient for each subdomain to communicate its faces with its immediate
neighbors in the 3D space. The size of the segments is defined as twice the size
of buffer to be sent since we will use the same segment to send and receive data
from neighbor subdomains.

Listing 1.1. GASPI pointers to GASPI segments in the YZ plane.

int YZ size = lb−>nd i s t ∗NVEL∗ny∗nz ;

/∗ Segment s i z e i s e x a c t l y tw ice the s i z e o f the b u f f e r . ∗/
const g a s p i s i z e t s e g s i z e = 2 ∗ YZ size ∗ s izeof (double) ;

/∗ segment i d s ∗/
const ga sp i s e gmen t i d t seg id YZ L = 0 ;
const ga sp i s e gmen t i d t seg id YZ R = 1 ;
g a s p i p o i n t e r t gptr YZ L , gptr YZ R ;

/∗ po in t e r to the r i g h t ∗/
GASPIERROR(gasp i s egment pt r (seg id YZ L , &gptr YZ L)) ;
double∗ ptr YZ L = (double∗) gptr YZ L ;

/∗ po in t e r to the l e f t ∗/
GASPIERROR(gasp i s egment pt r (seg id YZ R , &gptr YZ R)) ;
double∗ ptr YZ R = (double∗) gptr YZ R ;

For purposes of clarity, Listing 1.1 shows the GASPI pointer creation only in
the YZ plane. For instance, in the YZ plane, each created segment is assigned
with an independent id number. Hence, the data is already contiguous in memory
and, therefore, a simple copy directly from the buffer that contains the data to a
GASPI segment is straightforward. However, since Ludwig uses MPI datatypes,
more complicated layouts of the data exist for other planes and it is necessary
to unpack the MPI datatypes and copy the data contiguously into a GASPI
segment. Once the data has been sent and notified we need to recover the data
back from the GASPI segment to the original buffer to be able to continue with
the normal execution of Ludwig.

Interoperability of GASPI and MPI in Large Scale Scientific Applications 283

5 Performance Results

iPIC3D. We performed our tests on the Beskow supercomputer (Cray XC40)
equipped with two 16-core @ 2.3 GHz Intel Haswell-EP processors. To compare
the original version of the iPIC3D code with the new, GASPI-based, version, we
used a standard simulation cases called Geospace Environment Modeling (GEM)
Reconnection Challenge that is adapted to the Earth’s magnetotail reconnec-
tion [1,6]. In addition, we used two different simulation cases, namely field- and
particle-dominated, with a fixed number of iterations (20) in the field solver.

Figure 3 shows the results of the weak scaling tests for one of the iPIC3D
simulations. Three-dimensional decomposition of MPI processes on X-, Y- and Z-
axes was used, resulting in different topologies of MPI processes. For this particle
dominated Magnetosphere 3D simulation on 64 cores (4× 4× 4 MPI processes
× 4 OpenMP threads), 27× 106 particles and 30× 30× 30 cells were used, and
the simulation size increased proportionally to the number of processes.

Fig. 3. Weak scaling results for the GEM 3D simulation of the particle-mover domi-
nated regime of iPIC3D on Beskow.

For this simulation test case, the new version, based on GASPI, is slightly
faster (by 1–2%) on different number of cores. The challenge of a successful
porting of iPIC3D to GASPI depends on the optimal utilization of one-sided
communication mechanism to achieve performance gain and scalability on pre-
Exascale supercomputers. GASPI provides the one-sided communication that
facilitates asynchronous procedures between processes. However, this requires
the local processes to manage the communication in an optimized way to maxi-
mum the overlapping of communication and computation. The trade-off between
asynchronicity and data synchronization requires further investigation.

284 D. Akhmetova et al.

Ludwig. A set of performance tests were carried out on ARCHER, a Cray
XC30 system equipped with two 12-core @ 2.7 GHz Intel Ivy Bridge processors.
All simulations were executed five times on fully populated nodes, i.e. using 24
MPI/GASPI processes per node.

The time to transfer a message depends on the network latency and band-
width. The latency is independent of the size of the message being sent, but
dependent of the MPI implementation and network use. Figure 4 shows the mea-
sured bandwidth against the message size using Cray MPI. The bandwidth is low
at very small message sizes because the time spent to send each message is dom-
inated by the latency. As soon as the message size is increased over 0.2 MBytes,
the bandwidth quickly rises to the maximum allowed by the fabric interconnect.
We have also measured the amount of data required to be sent and received from
each process at the end of each iteration in 1923 lattice size, as represented in
Fig. 5.

Fig. 4. Bandwidth and message size on ARCHER, using the OSU benchmarks [8].

Figure 6 shows the strong scaling results of running Ludwig on up to 3,072
processes on ARCHER. The total time that Ludwig spends on the main stepping
loop is represented in Fig. 6a, showing small difference in performance between
the pure MPI version and the MPI + GASPI version of Ludwig; the performance
overhead is negligible with less than 1000 processes. When narrowing our focus
to the halo exchange (see Fig. 6b), which is one of the key components in the
main stepping loop, we can see that this performance penalty is low for a small
processes count, but it grows as the number of processes is increased. This is
probably due to the fact that the bandwidth is at its best in that region as
Fig. 4 indicates Thus, there is a direct connection between the overhead in the
halo exchange and the total loop. Nevertheless, given the performance benefits
of one-sided communication in GASPI1, we attribute this performance penalty
1 http://www.gpi-site.com/gpi2/benchmarks/.

http://www.gpi-site.com/gpi2/benchmarks/

Interoperability of GASPI and MPI in Large Scale Scientific Applications 285

Fig. 5. Data transfer size by each process at the end of 1923 lattice size simulation.

(a) Total loop time. (b) Total halo exchange time.

Fig. 6. Strong scaling results of Ludwig for a 1923 lattice size on ARCHER.

to tedious process of unpacking and packing back and forth between the MPI
datatypes and the GASPI segments.

Shared Window Communication in GASPI. In order to validate this new
programming paradigm of shared notifications in GASPI, we have implemented
an equivalent to the MPI Allreduce for large messages. The implementation
makes substantial use of pipelined rings. The algorithm consists of two stages.
In the first stage, each of the N nodes performs a reduction of 1/N of the dataset
(via the pipelined ring). In the second stage, the partial result from each node
is broadcasted to the other nodes (again in the pipelined ring) such that after
the broadcast all nodes have access to the complete reduced dataset.

In order to split the reduction and communication loads across all processes,
each of the N parts is again subdivided into at least M parts (where M is the
number of processes per node) such that there are at least N × M messages
in the ring at any point in time. The GASPI shared notification model allows

286 D. Akhmetova et al.

Fig. 7. Performance results of the pipelined ring implementation of Allreduce.

any process to detect any of these N × M incoming asynchronous and one-
sided notified messages, to reduce and forward them along the pipelined ring.
Figure 7 shows a comparison of Allreduce implemented on top of GASPI shared
windows against various Allreduce MPI low-level implementations in Intel MPI
5.1.2. Those are 1. Recursive doubling; 2. Rabenseifner’s; 3. Reduce + Bcast;
4. Topology aware Reduce + Bcast; 5. Binomial gather + scatter; 6. Topology
aware binominal gather + scatter; 7. Shumilin’s ring; 8. Ring; 9. Knomial; 10.
Topology aware SHM based flat; 11. Topology aware SHM based Knomial. Some
of these implementations feature an optimal bandwidth term (Ring based or
Rabenseifner’s), however they are not able to leverage pipelining as efficiently
as the high-level GASPI Implementation. The main problem here is that the
underlying MPI point-to-point low-level frameworks (such as e.g. UCX) are not
able to make efficient use of notified communication either.

6 Conclusions

The original versions of both iPIC3D and Ludwig – like many other MPI appli-
cations – use MPI datatypes. That soon became a problem while interoperating
with GASPI since GASPI works on segments of data. This means that we had
to unpack the data from the MPI datatypes, copy them to a GASPI segment,
send them, and, then, unpack the data. We believe this packing-unpacking was
the major burden for the applications’ performance.

In order to improve the interoperability with a flat MPI programming model,
GASPI has introduced a novel allocation policy for segments where data and
GASPI notifications can be shared across multiple processes on a single node.
To that end, any incoming one-sided GASPI notification will be visible node-
locally across all node-local ranks. The shared notifications should be used with
GASPI segments that are employing shared memory, such as MPI windows,
provided by the applications under the interoperability mode.

We are currently developing a generic interface which can make use of
these shared memory segments for the specific purpose of ghost cell exchanges.

Interoperability of GASPI and MPI in Large Scale Scientific Applications 287

The developed interface will not only facilitate the interoperability of MPI
plus GASPI significantly, but it will also substantially enrich the programming
paradigm of MPI shared windows.

Acknowledgement. This work was funded by EU H2020 Research and Innovation
programme through the INTERTWinE project (no. 671602). The simulations were
performed on resources provided by SNIC at PDC-HPC, KTH.

References

1. Birn, J., Hesse, M.: Geospace environment modeling (GEM) magnetic reconnection
challenge: resistive tearing, anisotropic pressure and hall effects. JGR: Space Phys.
106(A3), 3737–3750 (2001)

2. Davidson, E.: Message-passing for Lattice Boltzmann. Master’s thesis, EPCC, The
University of Edinburgh, Scotland, UK (2008)

3. Desplat, J.C., Pagonabarraga, I., Bladon, P.: LUDWIG: a parallel Lattice-
Boltzmann code for complex fluids. Comput. Phys. Commun. 134(3), 273–290
(2001)

4. Gray, A., Hart, A., Henrich, O., Stratford, K.: Scaling soft matter physics to thou-
sands of graphic processing units in parallel. IJHPCA 29(3), 274–283 (2015)

5. Machado, R., Rotaru, T., Rahn, M., Bartsch, V.: Guide to porting MPI applications
to GPI-2. Technical report, Fraunhofer ITWM (2015)

6. Markidis, S., Henri, P., Lapenta, G., Rönnmark, K., Hamrin, M., Meliania, Z., Laure,
E.: The fluid-kinetic particle-in-cell method for plasma simulations. J. Comput.
Phys. 271, 415–429 (2014)

7. Markidis, S., Lapenta, G., et al.: Multi-scale simulations of plasma with iPIC3D.
Math. Comput. Simul. 80(7), 1509–1519 (2010)

8. MVAPICH. MVAPICH: MPI over InfiniBand, Omni-Path, Ethernet/iWARP, and
RoCE. http://mvapich.cse.ohio-state.edu/benchmarks/

9. Simmendinger, C., Rahn, M., Gruenewald, D.: The GASPI API: a failure tolerant
PGAS API for asynchronous dataflow on heterogeneous architectures. In: Resch,
M., Bez, W., Focht, E., Kobayashi, H., Patel, N. (eds.) Sustained Simulation Per-
formance 2014, pp. 17–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-10626-7 2

http://mvapich.cse.ohio-state.edu/benchmarks/
https://doi.org/10.1007/978-3-319-10626-7_2
https://doi.org/10.1007/978-3-319-10626-7_2

Evaluation of the Parallel Performance
of the Java and PCJ on the Intel KNL

Based Systems

Marek Nowicki1, �Lukasz Górski1,2, and Piotr Ba�la2(B)

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87-100 Toruń, Poland

faramir@mat.umk.pl
2 Interdisciplinary Centre for Mathematical and Computational Modelling,

University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland
{lgorski,bala}@icm.edu.pl

Abstract. In this paper, we present performance and scalability of
the Java codes parallelized on the Intel KNL platform using Java and
PCJ Library. The parallelization is performed using PGAS programming
model with no modification to Java language nor Java Virtual Machine.
The obtained results show good overall performance, especially for paral-
lel applications. The microbenchmark results, compared to the C/MPI,
show that PCJ communication efficiency should be improved.

Keywords: Parallel computing · Multicore · PCJ · PGAS · KNL

1 Introduction

Recent developments in hardware lead to multinode computers with nodes
equipped with a couple of multicore processors. Therefore developers have to
deal with the node parallelism ranging a hundred cores. Recent developments
are pushing this limit even further. Intel KNL (Knights Landing) processor is
equipped with the 64–72 cores depending on the model, each of them can run
4 threads using Hyper-threading technology. This leads to a couple of hundreds
thread parallelism in the single processor. Keeping in mind that typical node can
be equipped with more than one processor we have to face the situation where
thousands of threads are running in parallel on each node.

1.1 Programming Paradigms

The hardware changes force software to be written in a multi-threaded man-
ner to take full advantages of the current hardware. The current standard for
parallel programming is the MPI (Message Passing Interface) which has been
created decades ago. However, MPI is still under development as in 2015 MPI-
3.1 standard was released. The MPI has its implementation for programming
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 288–297, 2018.
https://doi.org/10.1007/978-3-319-78054-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_27&domain=pdf

Parallel Performance of the Java and PCJ on the Intel KNL Based Systems 289

languages: C, C++, and Fortran. There are also wrappers-bindings for other pro-
gramming languages like Python or Java, but under the cover, they are using
libraries written in C.

For the multicore nodes, in order to achieve good performance, MPI is often
connected with OpenMP which leads to the parallelization on different levels
and makes programmers work more difficult. Therefore there is strong interest
in new programming paradigms which will be easier to use. PGAS (Partitioned
Global Address Space) [2] is one of most promising ones.

In the PGAS paradigm, there are three basic operations: synchronisation, put
and get. Synchronisation (sometimes called barrier) allows ensuring that every
processor reaches the expected execution point before continuing execution. Put
is used for changing shared variable value of another processor while get is used
for retrieving shared variable value of another processor.

1.2 Parallel Programming in Java

Java is considered as a higher level programming language. In the TIOBE index
[1] it is most popular programming language over the world. Designed for wide
range of devices, Java has been developed with the concurrency in mind. From
the very beginning, there was java.lang.Thread class representing native oper-
ating system threads or synchronized keyword for denoting the critical section
in the code. The version 1.5 of the Java Platform added Concurrency Utilities
(under JSR 166: Concurrency Utilities) and the latest version of the Java plat-
form at the time of writing this paper, Java SE 8, introduces the possibility to
process data using parallel streams.

Despite the fact, the Java is concurrency-oriented language, the available
Java Virtual Machines (JVM) allow to run concurrent application only on a
single workstation, single computational node. There were attempts to create
distributed Java Virtual Machines [3,4], that would be visible to the user as
single JVM, but be transparently running on multinode systems, but there were
problems with scalability and narrow applicability.

There are libraries and frameworks for Java that are trying to solve this
issue. There are well-known frameworks like Apache Hadoop or Apache Spark
for processing data in the map-reduce model. However, the model is not well
suitable for many problems. Sometimes it is very hard, or even impossible to
adopt problem to process it using map-reduce model. There is also Akka toolkit
for the Java that uses actor model for processing data in parallel. However,
the data stored by actors is immutable, and concurrency is based on passing
messages between actors that are working transparently on the same or different
nodes.

This paper describes a PCJ library for the Java language [5] which is a Java
library for parallel computing using PGAS programming model. The main focus
is on the performance evaluation of PCJ using Intel KNL processors. The paper
is organized as follows: the PCJ library is described in the Sect. 2. Section 3
provides basic information on Intel KNL platform. The results are described in
Sect. 4. Paper concludes with related work and conclusions.

290 M. Nowicki et al.

2 PCJ Library

The PCJ Library [5–7] uses PGAS paradigm for parallel processing. It helps to
perform parallel calculations on single or multinode architecture. The library is
OpenSource (BSD license), and its source code is available on GitHub [8].

In this paper, we use the newest version of the PCJ library – version 5 (PCJ5).
Compared to the older versions, this one provides modified API, but the most
revolutionary changes were made in the PCJ engine which is hidden from the
user.

In particular, the custom class loaders have been removed, so PCJ threads
on the same JVM can easily share the state of static fields. The deserializers
threads (one for each PCJ thread on the JVM) that were responsible for dese-
rializing incoming data have been removed. Instead of them, there are multiple
threads (workers) that process messages from its arrival to sending, if neces-
sary, a notification. There are also changes in communication protocol: internal
messages that are sent between PCJ nodes (between JVMs that take part of
parallel execution) are modified. The each message type has common only one
field (byte) indicating a type of the message. Any additional data is associated
with the specified message type.

3 Knights Landing Architecture

The Intel KNL architecture was launched during Summer 2016. It is a manycore
system composed of numerous computing CPU cores (at least 64 cores). Each
core is an Intel Airmont (Atom) core having four threads each. The cores are
organized into tiles each containing two cores sharing a 1 MB L2 cache. The
tiles are connected to each other with a mesh. From the memory point of view,
in addition to the traditional DDR4 memory, the device is equipped with the
Multi-Channel DRAM (MCDRAM) memory which is a high bandwidth (about
4x more than DDR4), but low capacity (16 GB) memory.

KNL supports legacy x86 instructions. In addition, it introduces (as its pre-
decessor) the AVX-512 instruction set which provides support for 512-bit-wide
vector instructions. Tiles, memory controllers, I/O controllers and other chip
components are interconnected through a 2D mesh. The mesh supports the
MESIF cache coherent protocol.

The processor used for the experiments in this paper is the Intel Xeon Phi
model 7250 (KNL). The CPU has 68 cores, running at 1.40 GHz. The machine is
equipped with 96 GB of RAM per CPU. The installed OS is a Scientific Linux 7.2
and the kernel version 3.10.0-327.10.1.el7.x86 64 and Java 1.8.0 60. Intel MPI
2017 has been used to launch parallel applications.

4 Results

We have performed a number of performance and scalability tests. The results
are presented below for the microbenchmark such as ping-pong and broadcast
and for the selected applications with the different execution profile.

Parallel Performance of the Java and PCJ on the Intel KNL Based Systems 291

All application have been run using 1 or 2 Intel KNL nodes provided by
the Rescale. The jobs were submitted using Rescale web interface. Example
execution script is presented in the Listing 1.

export JAVA_HOME =/home/rescale/shared/program/java/jre1 .8.0

_60

export PATH=$PATH:$JAVA_HOME/bin

mpirun hostname > nodes.all

uniq nodes.all > nodes.uniq

mpirun -hostfile nodes.uniq -ppn 1 \

java -cp .:PCJ -5.0.3. jar:HelloWorld.jar HelloWorld

Listing 1. Example script to run PCJ HelloWorld Application on Intel KNL provided
by Rescale. Please note that Java JRE is not included in the default path and has been
added explicitly.

4.1 Microbenchmarks

First tests that typically are performed on the new cluster are ping-pong and
broadcast. Those tests measure the performance of simplest interprocess com-
munication to assess possible maximum communication rate on the machine.

Ping-pong. We have measured the bandwidth for sending an array of double

elements ranged from 1 element (8 bytes) up to 4.194.304 elements (32 MB). We
have done 5 tests, each sending 100 times the array and calculating average time
necessary to finish the sending loop. The best time (the lowest value) is taken
as a result. The JVM was warmed up.

The results obtained for the ping-pong is presented on Fig. 1. The figure
compares the performance of MPI and PCJ on the same machine and between
nodes using sending data in blocking manner, that is sending next block of data
is performed after receiving confirmation that previous part has arrived at the
destination. The bandwidth for PCJ is about 25 times lower than for MPI on 1
node. That is due to the fact, the messages in the PCJ has to be serialized, even
when the sender and receiver are on the same node, to have a complete copy
(clone) of the data. Comparing results on 2 nodes shows that the bandwidth of
MPI is 100 times higher than PCJ. Additionally, the usage of TCP sockets in
the PCJ has decreased bandwidth by the factor of 2. However, the bandwidth on
MPI increased by the factor of 2 on intranode communication for large messages.

Figure 1 presents the bandwidth for benchmark made using only the PCJ
on 1 and 2 nodes. In addition to blocking method, the non-blocking method
was used – the next block of data is sent just after previous data was transfer
to send. The confirmation of correctly received message is not used here. The
performance of sending the data using 1 and 2 nodes are in principle the same
in this situation.

292 M. Nowicki et al.

Fig. 1. Ping-pong on 1 and 2 nodes using MPI and PCJ (left). For PCJ results imple-
mented with blocking and non-blocking communication are presented (right).

Broadcast. Broadcast benchmark measures time needed for broadcasting value
from one selected thread to all threads. Like in ping-pong benchmark, the mes-
sage size is calculated as a length in bytes of the data without adding a size of
any header. Similarly, the data sent in this benchmark was an array of double

elements ranged from 1 element (8 bytes) to 4.194.304 elements (32 MB). The
benchmark method was invoked 100 times and the average time necessary to
finish broadcasting (with notification) was calculated as a result.

The charts presented in Fig. 2 show the time needed to perform broadcast to
a number of threads ranged from 1 to 544 transferring 8 bytes and 32 MB. The
time spent on the broadcast operation using PCJ in average is about 100 times
longer than for MPI both for the smaller and bigger array.

1 element array (8 B) 4.194.304 elements array (32 MB)

Fig. 2. Broadcast on 1 and 2 nodes using MPI and PCJ

Figure 3 depicts the bandwidth of the broadcast operation depending on the
message size. The value is calculated as an amount of bytes necessary to transfer
data to each of 544 threads. The bandwidth stabilizes both for MPI and PCJ

Parallel Performance of the Java and PCJ on the Intel KNL Based Systems 293

when the message size is bigger than 16 KB. Regardless of the message size, the
MPI bandwidth is in average 100 times higher than PCJ.

Fig. 3. Broadcast on 2 nodes (544 threads) using MPI and PCJ

4.2 RayTracer

RayTracer is popular performance test based on the rendering of the 3-
dimensional scene using ray tracing. The PCJ version of the application is based
on the example included in the Java Grande Forum Benchmark [9]. The scene
consists of 64 balls placed in a grid 4 × 4 × 4 and 5 light sources. The paral-
lelization of the code is based on the work distribution. While the scene is copied
to the processors, each trace can be processed independently on the designated
core. The work is distributed by image rows, and each PCJ thread executes every
nprocess = PCJ.threadCount() row. The benchmark is computationally intensive
and has one communication point at the end of calculation where the reduction
occurs – every thread sends calculated data to thread 0.

The PCJ implementation has been compared to the C++ implementation
which was directly translated from the Java code. The reference code has been
improved by the adjustment of the keywords and by the optimization of the
syntax. We have decided to use C++ code as the reference to utilizing as much as
possible object oriented features of the original Java Grande Forum Benchmark.
The C++ code was compiled with -O2 flag.

Figure 4 presents the performance of rendering the 2500× 2500 pixels scene.
The performance results were gained using a different amount of threads on 2
nodes. The efficiency of PCJ version of the benchmark is from 15% up to 75%
(in average 45%) higher than MPI version.

294 M. Nowicki et al.

Fig. 4. RayTracer on 2500× 2500 pixels scene using MPI and PCJ

4.3 Genetic Algorithm

The PCJ implementation of evolutionary algorithm has been used to find mini-
mum of two-dimensional Rosenbrock function as defined in the CEC’14 Bench-
mark Suite [10] and used in our other evaluation papers [11]:

f4(x, y) = (1 − x)2 + 100(y − x2)2 (1)

f4’s minimum lies in a deep, parabolic valley and the problem is generally hard
for numerical solvers to approach. For testing purposes, to further increase prob-
lem’s difficulty level, we have decided to deviate from the standard range of func-
tion’s parameters values (x, y ∈ [−2.048, 2.048]) and have chosen significantly
larger parameter space instead (x, y ∈ [−20, 20]).

The optimization problem was solved using the well-known differential evo-
lution algorithm. It is a metaheuristic that has proven to be a solid candidate
for the task of optimization problem-solving. It uses a set of nature-inspired
operations (mutations, crossing-over) to generate candidate vectors that approx-
imate optimal problem solution. A detailed description of the algorithm and its
implementation is given in [11]. For the evolution, we have used 40 000 genera-
tions with 300 individuals at each PCJ thread (island model). Accurate results
could have been achieved with the use of much smaller population data; how-
ever effective running times of milliseconds achieved in that scenario would not
have allowed reaching conclusive performance results. Two migration policies
were tested; migration either occurred every generation (continuous migration)
or every 30 generations, thus limiting bandwidth use.

The scalability results are presented for the weak case, eg. the number of
individuals and populations for each thread is the same. With the increased

Parallel Performance of the Java and PCJ on the Intel KNL Based Systems 295

Fig. 5. Parallel differential evolution - Rosenbrock function

number of threads the total size of the population increases. The number of
configurations tested in the unit of time for the different number of PCJ threads
presented in the Fig. 5 shows that, generally speaking, multicore architecture
is successfully exploited. It is a well known fact that PGAS languages solve
shared-memory scalability problems best with the use of communication-limiting
algorithms [12]. This phenomenon is exhibited by comparing performance results
of 1-node and 2-node runs (internode communication cost is factored out in
the former case) and in case of communication-limiting migration strategy. The
performance results for Cray XC40 are given as reference (dashed lines).

4.4 Performance Analysis

The presented performance results show that PCJ scales well on the KNL hard-
ware. The speedup is usually close to the ideal one, especially for the thread
number fitting to the single CPU size (68 in this case). The good scalability is
visible for the example applications such as raytracing and genetic algorithm.
In both cases PCJ implementation benefits from asynchronous communication
and overlap between calculations and communication. The slowdown visible for
larger number of threads is caused by the small size of the data used for experi-
ments.

Good scalability but with the communication slower than in the case of
C/MPI is visible for the results of microbenchmarks such as ping-pong and
broadcast. This comes from the fact, that PCJ is using Java Concurrency and
socket for the exchange data between PCJ threads. This requires copying of
the data from the arrays to the byte arrays and vice versa. This operation is

296 M. Nowicki et al.

time consuming and decreases performance even if communication is performed
within single CPU.

The communication between KNL CPU’s is performed in PCJ using sock-
ets, while MPI is capable to use OmniPath interconnect which allows for lower
latency and much higher bandwidth. The work on using OmniPath with PCJ
library is ongoing.

5 Related Work

Intel KNL processor has been designed to provide significant computational
performance from a single chip. Therefore it is of strong interest to the HPC
community. Different performance evaluations have been performed, however,
due to small Java popularity in the high performance computing such data is
not yet available for this particular language.

In particular, the Mantevo suite of mini applications and NAS Parallel Bench-
marks are used to analyze the behavior of very different application kernels,
from molecular dynamics to CFD mini-applications [13]. Initial scalability results
show promise for all the applications considered, however still there is need for
improvements.

Performance and scalability results for particle discrete event simulation on
KNL processor show that within a single KNL processor, up to 2X performance
improvement can be achieved compared to commodity Xeon multicore processors
[14]. The performance scales well with the best results achieved when thread
affinity is assigned, CPU cores are evenly loaded, cache sharing is exploited and
communication is limited to small clusters of cores.

6 Conclusions

Presented results confirm that Java applications can run successfully on the Intel
KNL architecture benefiting form the large number of cores available. In particu-
lar, PCJ library allows for easy development of the scalable parallel applications
running on the multiple CPUs.

However, the efficiency of the applications developed with PCJ library can
be improved by reducing data copying in the application and by development of
the dedicated communication mechanisms based on the OmniPath interface.

Acknowledgment. The authors would like to thank CHIST-ERA consortium
for financial support under HPDCJ project (Polish part funded by NCN grant
2014/14/Z/ST6/00007).

The performance tests have been performed using Rescale Inc. computational
facilities.

Parallel Performance of the Java and PCJ on the Intel KNL Based Systems 297

References

1. TIOBE Index—TIOBE - The Software Quality Company. https://www.tiobe.com/
tiobe-index/. Accessed 18 May 2017

2. De Wael, M., Marr, S., De Fraine, B., Van Cutsem, T., De Meuter, W.: Partitioned
global address space languages. ACM Comput. Surv. 47(4), 62 (2015). https://doi.
org/10.1145/2716320

3. Zhu, W., Wang, C.L., Lau, F.C.M.: Lightweight transparent Java thread migra-
tion for distributed JVM. In: 2003 International Conference on Parallel Processing
(ICPP 2003), pp. 465–472. IEEE (2003)

4. Zhu, W., Wang, C.-L., Lau, F.C.M.: JESSICA2: a distributed Java virtual machine
with transparent thread migration support. In: IEEE International Conference on
Cluster Computing, pp. 381–388. IEEE (2002)

5. PCJ Home. http://pcj.icm.edu.pl. Accessed 18 May 2017
6. Nowicki, M., Ba�la, P.: Parallel computations in Java with PCJ library. In: Smari,

W.W., Zeljkovic, V. (eds.) 2012 International Conference on High Performance
Computing and Simulation (HPCS), pp. 381–387. IEEE (2012)

7. Nowicki, M., Górski, �L., Grabarczyk, P., Ba�la, P.: PCJ - Java library for high
performance computing in PGAS model. In: Smari, W.W., Zeljkovic, V. (eds.)
2014 International Conference on High Performance Computing and Simulation
(HPCS), pp. 202–209. IEEE (2014)

8. https://github.com/hpdcj/pcj. Accessed 30 Mar 2017
9. Java Grande Project: benchmark suite. https://www.epcc.ed.ac.uk/research/

computing/performance-characterisation-and-benchmarking/java-grande-
benchmark-suite. Accessed 19 Jan 2014

10. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation cri-
teria for the CEC 2014 special session and competition on single objective real-
parameter numerical optimization. Technical report 201311, Computational Intel-
ligence Laboratory, Zhengzhou University, Zhengzhou, China (2014). http://bee22.
com/resources/Liang%20CEC2014.pdf

11. Górski, �L., Rakowski, F., Ba�la, P.: Parallel differential evolution in the PGAS
programming model implemented with PCJ Java library. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM
2015. LNCS, vol. 9573, pp. 448–458. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-32149-3 42

12. Da Costa, G., Fahringer, T., Gallego, J.A.R., Grasso, T., Hristov, A., Karatza, H.,
Lastovetsky, A., Marozzo, F., Petcu, D., Stavrinides, G.: Exascale machines require
new programming paradigms and runtimes. Supercomput. Front. Innov. 2(2), 627
(2015)

13. Rosales, C., Cazes, J., Milfeld, K., Gómez-Iglesias, A., Koesterke, L., Huang, L.,
Vienne, J.: A comparative study of application performance and scalability on the
Intel knights landing processor. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC
High Performance 2016. LNCS, vol. 9945, pp. 307–318. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46079-6 22

14. Williams, B., Ponomarev, D., Abu-Ghazaleh, N., Wilsey, P.: Performance charac-
terization of parallel discrete event simulation on knights landing processor. In:
Proceedings of ACM SIGSIM International Conference on Principles of Advanced
Discrete Simulation (2017)

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/2716320
https://doi.org/10.1145/2716320
http://pcj.icm.edu.pl
https://github.com/hpdcj/pcj
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/java-grande-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/java-grande-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/java-grande-benchmark-suite
http://bee22.com/resources/Liang%20CEC2014.pdf
http://bee22.com/resources/Liang%20CEC2014.pdf
https://doi.org/10.1007/978-3-319-32149-3_42
https://doi.org/10.1007/978-3-319-32149-3_42
https://doi.org/10.1007/978-3-319-46079-6_22

Fault-Tolerance Mechanisms for the Java
Parallel Codes Implemented

with the PCJ Library

Micha�l Szynkiewicz1,2(B) and Marek Nowicki1

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87-100 Toruń, Poland
{michalsz,faramir}@mat.umk.pl

2 Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland

Abstract. Parallel programs run on multiple processor systems with
hundreds and thousands of cores. Because of a large number of nodes,
failure can happen quite often, sometimes within hours. This makes fault-
tolerance a crucial concern for nowadays HPC solutions.

PCJ library is one of the most successful Java solutions allowing to
parallelize large scale computations up to thousands of cores. This paper
describes a minimal overhead failure discovery and mitigation mecha-
nisms introduced to the PCJ library.

Our implementation provides a programmer with a basic functional-
ity to detect a node failure. Java exception mechanism and local node
monitoring are used to detect execution problems. The problems are pre-
sented to the programmer through easy to use extensions. In the result,
the programmer does not have to deal with low-level programming.

The detailed scenario how to recover from the failure has to be decided
and implemented by the programmer.

Keywords: Java · Fault tolerance · High performance computing
Partitioned Global Address Space

1 Introduction

Because of a large number of nodes, the time between failures of modern com-
putational systems systems ranges from hours to even minutes [1]. Resilience is
the ability of a system to maintain state awareness and an accepted level of oper-
ational normalcy in response to disturbances, including threats of an unexpected
and malicious nature [2]. It is a major roadblock for parallel programming on
current and future HPC systems.

Applications are becoming more complex and consist of an increasingly large
number of distinct modules. Data assimilation, simulation, and analysis are cou-
pled into complex workflows. Furthermore, the need to reduce communication,
allow asynchrony, and tolerate failures results in more complex algorithms.
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 298–307, 2018.
https://doi.org/10.1007/978-3-319-78054-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_28&domain=pdf

Fault-Tolerance Mechanisms for Java Parallel Codes Implemented with PCJ 299

In addition to the progress in the hardware, it turns out that traditional
programming models such as MPI and OpenMP are not enough and program-
mers are looking for new tools, new languages and new paradigms that are
better-suited to exploit parallelism [5]. Languages adhering to Partitioned Global
Address Space (PGAS) paradigm are very promising in that context. In PGAS
languages, the memory is divided among all the threads of execution. The PGAS
languages have been successfully used for parallelization of numerous HPC appli-
cations for which proper handling of fault tolerance becomes important.

This paper deals with resilience for parallel Java applications built using
Parallel Computing in Java (PCJ) library [7,8]. Here we understand resilience as
the techniques for keeping applications running to a correct solution in a timely
and efficient manner despite underlying system faults. The PCJ library is built
upon Partitioned Global Address Space Model and has been successfully used to
parallelize selected scientific applications on the HPC systems with thousands
of cores. The paper presents an extension to the library which allows for the
fault-tolerant execution of applications.

2 Related Work

In this section, we present selected solutions developed for the PGAS pro-
gramming paradigm. The overview of other solutions can be found elsewhere
(eg. [3]).

2.1 Checkpointing for OpenSHMEM

OpenSHMEM is a PGAS implementation that provides bindings to C and FOR-
TRAN. The fault tolerance strategy chosen for OpenSHMEM is the checkpoint-
restart strategy [6]. In this model the shmem checkpoint all() method is used
to copy all shared (symmetric) data to another node. The method needs to
be called on all nodes. Then, in the case of a failure, the failed nodes can be
restarted and the job of all nodes can be started from the latest checkpoint. The
main disadvantage is the cost of synchronization of all nodes on every checkpoint
which grows at least logarithmically with the number of nodes.

2.2 Resilience for X10

The X10 programming language [9] has been developed as a simple, clean and
practical programming model for large scale computation. It uses PGAS pro-
gramming model organized around the notion of places and asynchrony. The
fault tolerance policy for X10 language has been recently developed and called
Resilient X10 [10]. The Resilient X10 precisely defines the semantics of termi-
nation detection in the presence of failures. This makes it possible to continue
executing in spite of failures without reverting to a check-point while preserving
the execution order of all surviving tasks.

300 M. Szynkiewicz and M. Nowicki

The Resilient X10 introduces resilient storage that allows access to nodes
data even if the node has failed and enables the programmer to handle failures
by throwing DeadPlaceException when a node fails.

The Resilient X10 has been used in three ways. One of them is replaying
from disk which is appropriate when there is a large amount of immutable state
that can be recovered from the original input file. The second one, decimation, is
appropriate for applications where an approximate result is acceptable. Finally,
if there is a large amount of mutable state then a resilient store can be used to
allow a state to be checkpointed in memory at neighboring nodes.

3 PCJ Library

The PCJ library [11] is a Java library for parallel and distributed computing
based on the PGAS programming model. The outstanding benefits of the library
are, among others, the ability to use pure Java language to implement HPC
algorithms and easy shipment. Programs that use the library use a standard
javac compiler and can leverage full support from Java IDEs. Moreover, the
library is shipped as a single jar file and does not depend on any third party
libraries, which makes deployment of programs trivial.

The library provides methods to perform basic operations like synchroniza-
tion of tasks, getting and putting values in an asynchronous one-sided way. The
library offers methods for creating groups of tasks, broadcasting, and monitoring
variables. The PCJ has the ability to work on the multinode multicore systems
hiding details of inter- and intra-node communication.

The smallest unit of computation in PCJ is called a thread. Each thread
has its own local address space and shared address space. The owner thread
accesses local and global address spaces variables as usual Java fields. Multi-
ple threads may be run on one physical machine, within a single Java Virtual
Machine (JVM). A JVM that is running group of threads is called a node. PCJ
distinguishes node 0 which is the start node for all the computations.

The PCJ library provides methods for one-sided asynchronous data trans-
fer between nodes e.g. put(), getFutureObject(), synchronous data transfer (e.g.
get() as well as methods for execution synchronization (barrier()). Below we
present functionality important for the resilience implementation. The detailed
description of the PCJ library can be found elsewhere [8].

The described changes are implemented and tested in PCJ version 4.1.

3.1 Shared Memory in the PCJ

Variables that should be put into shared address space have to be annotated
with @Shared annotation. The shared fields are accessible from other threads
with the help of put() and get() methods:

– get(threadId, variableName) and
getFutureObject(threadId, variableName) are used to read the value of
the variable variableName,

Fault-Tolerance Mechanisms for Java Parallel Codes Implemented with PCJ 301

– put(threadId, variableName, value) is used for asynchronous update of
the variable value in a given thread,

– broadcast(variableName, value) is for the asynchronous update of the
variable variableName with the given value. The operation is performed
for all threads. In order to maximize performance, the broadcast does not
update the variable value one by one but uses communication over a binary
tree. The underlying data transfer is organized in a balanced binary tree
which means that the update will reach each node in at most O(log n) steps
(n is the number of nodes used for execution).

Since the above methods are asynchronous, the waitFor(variableName)
and monitor(variableName) methods are used to lock the current thread until
other thread updates given variable on this node.

3.2 Synchronization in the PCJ

Threads synchronization in the PCJ is realized by the barrier() method. The
barrier can be made two threads or all of them. In the second case, each task has
to call barrier method. The barrier is managed by the node 0 and is realized in
two steps. First, each node informs the node 0 that it has reached the barrier
and starts waiting. When node 0 gathers barrier confirmations from all nodes,
it releases the barrier by broadcasting a specific message to all nodes.

4 Fault Tolerant Version of the PCJ Library

PCJ library has notions of node and thread. Fault tolerant extensions focus on
nodes.

A node is considered dead if it is not accessible to the other nodes. If a node
is found dead, all the threads running on the node are assumed dead.

The main concerns for the fault tolerance extensions for the PCJ library were
to minimize the performance overhead and to preserve the compatibility with
the original library.

The idea behind the changes was to provide a set of features that would allow
a programmer to implement a dedicated recovery solution for the program. The
reconfiguration of PCJ internal structures is done automatically and the failures
are presented in a convenient manner, but the way to handle them has to be
decided by the programmer.

This allowed providing a solution that is flexible and has a minimal perfor-
mance overhead. In a way, it resembles the User Level Failure Mitigation for the
MPI [4].

The implementation relies on an assumption that node 0 never dies. Although
it limits the fault-tolerance of the solution, it is a reasonable compromise. node 0
is the place where the execution control is performed. A probability of a failure of
a selected node is much smaller than a probability of a failure among all nodes.

302 M. Szynkiewicz and M. Nowicki

4.1 The Fault Tolerance API

PCJ version with fault tolerance extensions is backward compatible. Existing
programs can be run with it without any modifications.

The existing API is extended with:

– PCJ.getFailedThreadIds() method, which returns the identifiers of failed
threads. Upon failure, all threads keep their identifiers. The identifiers of failed
threads are stored internally by the library and exposed to the programmer
via the aforementioned method.

– NodeFailedException exception, which can be thrown by any of PCJ meth-
ods which rely on the inter-node communication. That is, among others:
• The get/getFutureObject methods throw the exception when they try

to access data from a failed node. In the case of get, the exception is
thrown right away. In the case of getFutureObject, the exception might
be thrown right away or when a program tries to read the result of the
future object, depending on the situation.

• The waitFor method throws an exception on any node failure. waitFor
is used to wait for an update of a variable and PCJ does not have any
information which node should update the variable. Once the exception
is thrown, the programmer may use getFailedThreadIds() method to
check if the particular thread is still alive. Then the waitFor can be
invoked again.

• The put method throws an exception on an attempt to update a variable
on a node that failed. The exception is thrown immediately after the
method is executed.

It is a runtime exception. This means the programs written for the previous
version of the library do not have to be modified to add a try-catch blocks
or throws declarations to.

4.2 Implementation

(i) Failure detection. Failure detection mechanism is hybrid. It consists of
failure propagation of communication exceptions and local node monitoring by
heartbeat.

Communication error propagation. TCP is the underlying protocol used by PCJ
library. We rely on the reliable nature of the TCP protocol, and we assume that
failure to communicate with some node means that the node is dead. I.e., when
an IOException is thrown by Java on TCP communication, the error is caught
and the target node is assumed failed.

What is important is that the error is not exposed directly to the program.
In the case of methods that return an error on a node failure, the execution of
the method is paused and only after the appropriate message comes from the
node 0, the execution is resumed and the exception is thrown. This way we make
sure that the error is not reported twice and that the execution is performed in
a consistent state.

Fault-Tolerance Mechanisms for Java Parallel Codes Implemented with PCJ 303

Heartbeat monitoring. It may happen that a node failure happens when a pro-
gram does not perform any communication. E.g. during a barrier operation.
In this case, it is not enough to propagate the communication errors. To handle
this situation, heartbeat monitoring has been added.

The PCJ library uses a number of internal messages to perform synchro-
nization and communication between nodes. This list has been extended with a
PING message used to monitor if nodes are alive.

To ensure scalability of the heartbeat monitoring, the nodes are monitored
locally. As mentioned in Sect. 3.1, PCJ nodes are organized in a fully balanced
binary tree.

Heartbeat mechanism leverages the tree structure in the following manner:
Each node (but node 0) sends a heartbeat message to its parent in the tree (see
Fig. 1). Each node, but the leaf nodes, is responsible for monitoring its children
nodes. If a parent node does not get a heartbeat message from its child for a
long (configurable) time, it assumes the child node is dead.

In this way, we achieve a scalable monitoring mechanism, similar to the ring
of observers described in [4].

Fig. 1. Node monitoring. Nodes send heartbeat (PING) messages to their parents.

(ii) Reconfiguration. When a node has failed, it has to be removed from all
internal PCJ structures. This includes fixing the communication tree described
in Sect. 3.1.

Fixing of the internal structures is implemented in the following fashion: Let
node k denote the failed node. When node i discovers that node k has failed, it
informs node 0 about the failure. Then the following actions are performed:

1. Node 0 removes the failed node from the configuration - not to try to send
any data to it.

2. If there is a barrier in progress, node 0 removes the node k from the barrier.
If node k is the last node the barrier is waiting for - the barrier is released.

3. The communication tree is updated. To keep the communication tree fully
balanced node k is replaced in the communication tree with the rightmost
leaf node in the deepest layer. The operation is depicted in Fig. 2. To imple-
ment this action, a new message, MessageNodeRemoved, was added. Resilient
broadcasting is used to deliver the message in a reliable and scalable fashion.

304 M. Szynkiewicz and M. Nowicki

Fig. 2. A schematic view of reconfiguration of the node tree after a node failure.

(iii) Replaying communication. As stated above, the node failure can cause
loss of underlying communication. The barrier is a good example of such situ-
ation.

As described in Sect. 3.2, when the barrier is reached by all threads, node 0
broadcasts a message that releases the barrier to all nodes. When node k fails
during broadcast and it has node i and node j as children, node i and node j
will not get this message and will hang.

To prevent this situation node l, which is established a new communication
parent for node i and node j, has to replay the communication. Since a node
can never know in advance when it will become a communication parent, every
node stores all broadcast communication that it gets. Messages are stored for a
configurable amount of time and evicted when the time passes.

When node i and node j are attached to node l, node l sends all broadcast
messages to node i and node j. It might happen that a message was already
processed on e.g. node i. Each message is given a unique identifier. Based on this
identifier, the PCJ figures out if the message has been already processed or not.
If it has not, the message is processed and sent further in the communication
tree. If it has, the message is only passed through.

(iv) Presenting the errors to the user. When MessageNodeRemoved is
received by a node, it may have no means to present this information right
away to the program. E.g. the program may be performing computations and
not invoking any PCJ methods at the time.

However, in some cases, such error may have an impact on how the program
should work in the future. That is why a failure register had to be introduced.

When a node is informed about another node’s failure, it puts this informa-
tion to the register. Then when a user performs an operation that throws an
error on a node failure or asks for failed threads directly, the information about
the failure is presented and the register is cleared.

5 Evaluation

In order to evaluate the fault tolerant version of the PCJ library, we have per-
formed performance tests. The tests were performed on 256 nodes of the Okeanos

Fault-Tolerance Mechanisms for Java Parallel Codes Implemented with PCJ 305

system [12]. The programs were using 256 PCJ nodes, one thread on each node,
to maximize the (negative) impact of node monitoring mechanisms.

The tests were performed for the non-fault tolerant version of PCJ, fault
tolerant version with no errors during execution and for the fault tolerant version
with 1 and 2 node failures. The test used the default settings for node pinging
interval (500 ms) and node timeout (5 s).

The test results are presented in Fig. 3.
The first test periodically invoked the barrier operation for 100 000 times.

The execution time has been recorded. Without failures, the fault-tolerant ver-
sion of the library was 3 s slower (158,618 s vs 162,701 s). This means around
2.5% overhead. The overhead is caused by the increased communication between
nodes and synchronization on access to node’s configuration that had to be intro-
duced to implement fault tolerance extensions. A single failure added 2.5 s to the
execution, i.e. the execution time increased by another 2%. When two failures
occurred, the overhead was comparable to the single failure. It is probably due
to the fact that synchronizing with one node less is slightly faster.

When a node fails, its parent is waiting for the heartbeat messages from that
node, and if it does not get it, it assumes that the node is dead. The performance
results show that node failure has a small impact on the performance - it did
not exceed 3 s in both cases.

Next test was an implementation of π calculation as the integral value. This
algorithm required an extra effort to make it fault-tolerant. The chosen solution
is based on a queue. At first, the whole interval is divided among all nodes. If
some of the nodes fail before the end of the calculations, their work is divided
between the nodes that are still alive. Without any node failures, the version with
fault tolerance extensions performed as good as the non-fault tolerant version.
With node failures, the additional cost was proportionate to the amount of work
that had to be replayed.

A similar experiment has been performed for a simple application, namely
evaluation of the π using Monte Carlo method. When an error occurs, the failing
node is eliminated from the calculations. The final value of the π is calculated
based on the data calculated by the threads which finished calculations suc-
cessfully. The result is, therefore, less accurate. However, the loss of accuracy is
minimal, especially for a large number of threads.

The results show that performance overhead of the extensions is negligible.

6 Future Work

Two most important features that we plan to provide in the future are respawn-
ing failed threads and manual checkpointing.

Currently, the fault tolerant PCJ does not handle the situation when failed
node’s job has to be taken into account to calculate the results. The programmer
has to implement the code to replay the work on a working node himself. We
plan to add a possibility to create new threads on existing nodes to replace the
failed threads.

306 M. Szynkiewicz and M. Nowicki

Fig. 3. Performance comparison of the barrier operation and pi estimation using inte-
gral and Monte Carlo method. The execution time is presented for the following situa-
tions: non-fault tolerant PCJ library, fault tolerant with no node failures, fault tolerant
with a single node failure and fault tolerant with two node failures.

To replay work from the other node, either on an existent thread or on a
new thread it is necessary to start from a state that was already achieved by the
failed thread. This requires checkpointing and support for restoring the state of
a failed node. Which can be implemented for example through a fault tolerant
storage. The data will be shared across physical nodes and will be accessible
even if some node failed.

7 Conclusions

In this paper, we have addressed the important problem of the resilience of the
large-scale parallel programs. We have designed and implemented fault tolerant
version of the PCJ library for the parallel calculations with Java.

The resilience extensions provide a programmer with the basic functional-
ity which allows detecting node failure. For this purposes, the Java exception
mechanism is used which allows to detect execution problems and present it to
the programmer. The programmer can uptake proper actions to continue pro-
gram execution. The detailed scenario how to recover from the failure has to
be decided and implemented by the programmer. The resilience implementation
relies on the assumption that node 0 does not die, therefore, it can handle the
reconfiguration after a node failure. This limitation can be removed later on.

We have performed performance tests of the fault tolerant version of the
PCJ library showing that overhead is small and does not exceed 5–6% of the
total execution time in the case of heavy communication between nodes. In the
example applications, the overhead is significantly reduced.

Fault-Tolerance Mechanisms for Java Parallel Codes Implemented with PCJ 307

The use of the fault tolerant version of the PCJ library is simple and requires
small but straightforward changes in the application code. At the same time
programmer is given high flexibility in the implementation of fault handling.

Acknowledgements. This work has been performed using the PL-Grid infrastruc-
ture. The authors would like to thank CHIST-ERA consortium for financial support
under HPDCJ project (Polish part funded by NCN grant 2014/14/Z/ST6/00007).

References

1. Xie, X., Fang, X., Hu, S., Wu, D.: Evolution of supercomputers. Front. Comput.
Sci. China 4(4), 428–436 (2010)

2. Rieger, C.G., Gertman, D.I., McQueen, M.A.: Resilient control systems: next gen-
eration design research. In: Proceedings of the 2nd Conference on Human System
Interactions, HSI 2009, Piscataway, NJ, USA, pp. 629–633. IEEE Press (2009)

3. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale
resilience: 2014 update. Supercomput. Front. Innov. 1(1), 5–28 (2014)

4. Bosilca, G., Bouteiller, A., Guermouche, A., Herault, T., Robert, Y., Sens, P.,
Dongarra, J.: Failure detection and propagation in HPC systems. In: SC 2016
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, Article No. 27 (2016)

5. Ricci, A., Yonezawa, A.: Away from the sequential paradigm tarpit: modelling
and programming with actors, concurrent objects and agents. In: Proceedings of
the Second International Workshop on Combined Object-Oriented Modelling and
Programming Languages, pp. 1–6. ACM (2013)

6. Hao, P., Shamis, P., Venkata, M.G., Pophale, S., Welch, A., Poole, S., Chapman,
B.: Fault Tolerance for OpenSHMEM, PGAS/OUG14. http://nic.uoregon.edu/
pgas14/oug submissions/oug2014 submission 12.pdf. Accessed 28 May 2017

7. Nowicki, M., Ba�la, P.: Parallel computations in Java with PCJ library. In: Smari,
W.W., Zeljkovic, V., (eds.) International Conference on High Performance Com-
puting and Simulation (HPCS), pp. 381–387. IEEE (2012)

8. Nowicki, M., Górski, �L., Grabarczyk, P., Ba�la, P.: PCJ - Java library for high per-
formance computing in PGAS model. In: Smari, W.W., Zeljkovic, V., (eds.) Inter-
national Conference on High Performance Computing and Simulation (HPCS), pp.
202–209. IEEE (2014)

9. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. In: OOP-SLA 2005, pp. 519–538 (2005)

10. Cunningham, D., Grove, D., Herta, B., Iyengar, A., Kawachiya, K., Murata, H.,
Saraswat, V., Takeuchi, M., Tardieu, O.: Resilient X10. Efficient failure-aware pro-
gramming. In: Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 67–80. ACM (2014)

11. http://pcj.icm.edu.pl. Accessed 4 Apr 2017
12. https://kdm.icm.edu.pl/kdm/Okeanos/en. Accessed 28 May 2017

http://nic.uoregon.edu/pgas14/oug_submissions/oug2014_submission_12.pdf
http://nic.uoregon.edu/pgas14/oug_submissions/oug2014_submission_12.pdf
http://pcj.icm.edu.pl
https://kdm.icm.edu.pl/kdm/Okeanos/en

Exploring Graph Analytics
with the PCJ Toolbox

Roxana Istrate(B), Panagiotis Kl. Barkoutsos, Michele Dolfi,
Peter W. J. Staar, and Costas Bekas

IBM Research - Zurich Research Laboratory, Rüschlikon, Switzerland
{roi,bpa,dol,taa,bek}@zurich.ibm.com

Abstract. Graph analysis is an intrinsic tool embedded in the big data
domain. The demand in processing of bigger and bigger graphs requires
highly efficient and parallel applications. In this work we explore the
possibility of employing the new PCJ library for distributed calculations
in Java. We apply the toolbox to sparse matrix matrix multiplications
and the k-means clustering problem. We benchmark the strong scal-
ing performance against an equivalent C++/MPI implementation. Our
benchmarks found comparable good scaling results for algorithms using
mainly local point-to-point communications, and exposed the potential
for logarithmic collective operations directly available in the PCJ library.
Further more, we also experienced an improvement of development time
to solution, as a result of the high level abstractions provided by Java
and PCJ.

Keywords: PCJ · MPI · PGAS · Java · C++ · SPMM · Sparse
K-means · Graph analytics

1 Introduction

Graphs are modelling tools used in numerous domains such as biology, computer
science, mathematics, physics and many others. Their properties can reveal rela-
tionships, similarities, or discrepancies between graph items, which would be
inaccessible with no structural data representation. In computer science, graphs
are used to represent networks of communication, flow of computation, and data
organization. In natural language processing, dependency graphs provide simple
descriptions of the grammatical relations in a sentence. These descriptions help
people without linguistic expertise disambiguate the meaning of the sentence
when they are only interested in extracting textual relations.

At the core of graph analytics are path analysis, community analysis, and
centrality analysis algorithms. Path analysis refers to determining the shortest
distance between two nodes in a graph. For example, this algorithm is employed
when performing route optimisation in smart cities. Community analysis finds
groups of people in a social network that share similar interests. One widely

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 308–317, 2018.
https://doi.org/10.1007/978-3-319-78054-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_29&domain=pdf

Exploring Graph Analytics with the PCJ Toolbox 309

known use case is the “other customers were also interested in” syntagm. Cen-
trality analysis focuses on identifying the most influential node in a network.
This can indicate the most dominant person in a social network, the highest
accessed web page, the most inspiring scientific article.

Since most of the graph analytics applications are data hungry and data sizes
are growing at unprecedented pace, focusing our attention towards distributed
frameworks comes as a natural consequence. To easily port old algorithms from
single- to multi-node implementations, a distributed framework should allow the
programmer to focus on algorithm specific challenges, by hiding details such as
communication, synchronization, fault tolerance. In this way the time to solution
can be considerably shortened.

Implementation of graph analytics on distributed machines via high-level pro-
gramming languages is intriguing. The high computational requirements of these
algorithms, make the implementation more suitable for powerful, low-level and
fast languages like C/C++ employing message passing interface (MPI) libraries
for the distributed communication. However, the evolution of heterogeneous com-
puting systems redirects development to large shared memory architectures. The
PGAS (Partioned Global Address Space) [8] is the natural extension of this
paradigm on multiple nodes. Thus combining portable programming languages,
such as Java, with these communication patterns and evaluating the performance
is a very interesting point of research.

Java is one of the leading programming languages used in academia and
industry. The major aspects of portability and versatility, as well as the large
ecosystem of tools and libraries that makes it a complete framework, are some
factors that make Java an appealing language for implementation of graph ana-
lytics. Performing parallel and distributed operations using multiple processes
on the same or multiple hosts has been substantially simplified by the PCJ Java
library [6]. The library implements PGAS model without modifying the language
syntax, making it easy to use. Being highly scalable, the programmer is more
involved in the algorithmic part of the program, achieving higher code reliability
and faster development.

1.1 PCJ Library and Related Work

PCJ is an actively developed library which allows programming in multi-node
systems connected using standard TCP sockets [1]. The distribution model used
is based on the PGAS model, allowing only one-sided communication (which in
a general case is easier in comparison with double-sided message parsing of MPI)
with all communication details hidden. The PGAS paradigm for distributed com-
puting creates dedicated areas for storage for each thread and the programmer
has the option to partially (or even fully) share information among threads.

PCJ is based on standard distribution of Java (requiring at least Java SE8 for
the latest PCJ 5 version) and no further libraries are required. Programming-wise
PCJ provides the basic tools for distributed tasks such as synchronization tasks,
asynchronous one-sided communication, broadcasting etc. Every task translates

310 R. Istrate et al.

into a PCJ thread, having by default only local private variables. PCJ threads
share variables using a PCJ specific annotation syntax.

The first performance evaluation of the PCJ library for graph analytics prob-
lems benchmarked two of the Graph500 kernels: generate and compress a graph
into sparse structures (kernel 1), and compute the level-synchronous BFS search
of some random vertices (kernel 2) [9,10]. In the two studies the authors compare
the performance of the PCJ library against existing efficient MPI implementa-
tions, obtaining good results. The performance discrepancy against the MPI
application was attributed to the different communication paradigms employed
by the two solutions.

A recent publication by Nowicki et al. [7] has shown the potential of the
PCJ library to scale on more than 100’000 cores for a 2D stencil code based
on the Game of Life. The techniques employed for this project have provided
substantial input for the improvement of the of the library functionality.

In this work we continue the series of graph analytics benchmarks. We will
focus on the PCJ implementation of the Sparse Matrix Matrix multiplication
(SPMM) kernel and the k-means clustering algorithm. The former is used for
complex graph calculations, such as for centrality analytics [2,3,11], while the
latter is an essential ingredient for unsupervised clustering analytics.

The choice of the two problems is motivated by their different communication
patterns. With the first example we focus on point-to-point local communica-
tions to the neighbouring processes, whereas the second application targets many
global collective reductions enforcing higher synchronization. Further more, in
order to obtain a direct comparison between the Java/PCJ and the C++/MPI
application, we implement the same algorithm with both programming environ-
ments.

This paper is organized as follows: the next section introduces the algorithms
used for the implementation of the two graph analytics kernels. Results of the
scaling behavior and the comparison between the two implementations is pre-
sented in Sect. 3. Finally conclusions of this work and future outlook are high-
lighted.

2 Algorithms

For both proposed applications we describe its standard sequential algorithms
and how these have been distributed to the multi-node architecture. Based on
the algorithmic complexity and the communication patterns, we estimate the
scaling of the maximum speedup, given its problem size.

2.1 SPMM

Standard algorithm. The SPMM kernel is given by the C = AB equation,
where A is an n ∗m matrix, B is an m ∗ k matrix, and C is an n ∗ k matrix. The
equation is identical to the more common dense matrix matrix kernel, but the
matrix A composition and data representation are completely different. While

Exploring Graph Analytics with the PCJ Toolbox 311

in dense matrix matrix multiplication, the frequency of zero elements in the
A matrix is low, in the sparse kernel most of the A matrix elements are zero.
Because storing the entire A matrix is wasteful, we adopted the CSR encoding
[12]. CSR consumes O(nnz) memory, as compared to O(n ∗ m) required by
the full matrix storage, where nnz denotes the number of non-zero elements.
Furthermore, we will present the case where the matrices do not fit the memory
of a single compute node, and the regular multiplication has to be adapted to
work in a distributed environment.

Distributed version. Before detailing the distribution algorithm, it is worth
mentioning that no matrix is fully stored in only one compute node during the
multiplication process.

The distribution algorithm begins by dividing the A, B and C matrices along
rows. In our experiments we considered B matrices with many more rows than
columns (m � k), thus making the blocking along columns unfeasible from the
memory limitations point of view. For simplicity reasons, we choose the number
of blocks to be equal to the number of processes and the size of each block to be
the same among processes. In case of unbalanced sparsity of the A matrix, or in
case of heterogeneous hardware, these constraints can be easily adapted without
affecting the rest of the algorithm.

Since the multiplication between two matrices involves dot products between
each row of matrix A with each column of matrix B, and since matrix B is
distributed among rows, this implies that by the end of the multiplication, each
node needs access to all the other remote B blocks. In the naive approach the
compute nodes are arranged in a mesh topology, where each node communicates
with each other node to obtain the remote B blocks. With a simple trick, we
reduce the network topology to a list, where each node sends its local B block to
the next node in the list, and receives another B block from the previous node
in the list. If we consider the list of nodes {N0, N1 . . . , Np−1}, we say that N0’s
previous node is node Np−1, and Np−1’s next node is N0. By cycling around
p times the B blocks, each node computes p local multiplications between its
local block A, the currently received block B and it accumulates the result in
the local block C. The final result is distributed across the nodes, and obtaining
the result matrix involves a gather operation.

By evaluating the complexity and the communication requirements of the
distributed algorithm we estimate the maximum theoretical scaling. In the case
of SPMM kernel, the scaling for the distributed algorithm is O (

nnz
2n

)
, where nnz

is the number of non-zero elements and n is the matrix size.

2.2 k-means Clustering

Standard algorithm. k-means is a clustering algorithm that groups n data
points into k clusters. Considering the points {P1, P2, . . . , Pn} and the clusters
{C1, C2, . . . , Ck}, point Pi belongs to cluster C = argmink‖Pi − mCk

‖, where
mCk

is the mean of cluster Ck, and ‖Pi − mCk
‖ denotes the Euclidean distance

between the point P and the centroid of the cluster mCk
.

312 R. Istrate et al.

The algorithm initiates by randomly choosing k centroids from the set of
points. It continues by assigning each point to the cluster of the nearest centroid.
Mathematically, this means partitioning the points according to the Voronoi
diagram generated by the centroids. After the points were divided in k clusters,
the centroid position is recalculated as the center of the points assigned to each of
the centroids of the previous step of the algorithm. Then the points are reassigned
and the steps are iteratively repeated until the centroids do not change position
or a maximum number of iterations is reached [5].

k-means belongs to the NP-Hard class of problems, which means that the
optimal solution can not be reached in polynomial time, but for a large number
of iterations the result can be driven to an approximate solution of a certain
error.

Distributed version. The distribution algorithm begins by dividing the group
of points among the available compute nodes. For simplicity reasons, we con-
sidered a balanced division, but this constraint can be easily modified without
affecting the rest of the algorithm. Each compute node, besides the local points,
owns a copy of the list of current centroids and begins by assigning every local
point to its closest centroid. The master node gathers the summaries from all
the other nodes, computes the new centroids, and broadcasts the centroids to
the rest of the cluster.

It is worth mentioning that the summaries send by each node to the master
node represent compressed information in the size of the number of centroids,
not in the number of local points. Therefore, the communication requirements
are upper limited by O(k). Because no compute node stores at any point in
the algorithm the entire dataset of points, the algorithm can be scaled up to
extremely large datasets.

The complexity and the computational intensity of the distributed algorithm
indicate the theoretical scaling of the problem. For distributed k-means the
expected scaling is O

(
n
p

)
, with n the number of data points and p the number

of processes.

3 Results

In this section, we present the performance analysis of the two applications,
i.e., SPMM and k-means, using the two different environment, Java/PCJ and
C++/MPI, that were introduced in the previous sections. In order to better
understand the scaling features and to provide a fair comparison, we don’t rely
on any pre-existing library and we implement the same version of the algorithm
by exploiting just the out-of-the-box features provided by PCJ and MPI, respec-
tively.

Our benchmarks present comparison between the two frameworks in terms
of speedup with increasing the number of processes, speedup when varying the
problem size, and actual time to solution.

Exploring Graph Analytics with the PCJ Toolbox 313

Benchmarks are performed on an IBM POWER8 cluster. Each node is pro-
visioned with highly balanced bandwidth between all the computational compo-
nents that are optimized for data intensive analytics.

We developed CPU-based codes that we scale up to four nodes, for a total of
80 physical cores. The resource allocation is scheduled in a sequential order, i.e.,
first we bind the processes to all the cores of a single node before starting to use
the second node1. We have used the 64-bit version of the Java OpenJDK 1.8.0
with PCJ 5.0.4 and GCC 5.3.1 with OpenMPI 2.1.1. The C++ code is compiled
with the -O3 optimization flag.

3.1 Datasets

To simplify the scale up of the problem size during the benchmark process, we
rely on synthetic data which is generated in a distributed way upon initializa-
tion. However, our example applications are already capable to operate on real
datasets, e.g. the classification datasets available in [4].

Randomly initialized matrices. For the SPMM benchmarks we build ran-
domly initialized sparse matrices with a homogeneously distributed density. For
each matrix block we initialize a random number generator with a unique seed
on the corresponding execution process. For the input dense vector v we initialize
all entries to 1.

Random clusters. The input of the k-means application is a set of homoge-
neously distributed points in the d-dimensional feature space. After initializa-
tion, each executing process is generating its own independent list of points.
The initial position of the centroids is generated only by the master process and
broadcasted to all processes.

3.2 Benchmarks of the Algorithms

Figure 1 provides the scaling results for the SPMM problem. The matrix size and
its density have been scaled up to m= 96’000 with a density varying from d = 0.2
to d = 0.6, corresponding to ca. 80 GB of memory needed only to store the matrix
A. The MPI benchmark shows that the application has the potential to scale
for the given system sizes, even though, for the smallest dataset and a large
number of processes, one observes a small decrease in the scaling, as expected
from the analytic algorithm performance. By increasing the problem size the
communication cost can be better overlapped with the larger computation. At
a first impression, the PCJ results do not seem to provide the expected scaling.
Further investigation shows that the performance degradation is not linked to
the PCJ framework, but with the difficulty of benchmarking short operations
within a JVM. For a large number of processes, a single step in the distributed
multiplication runs for less than 100 ms. Effectively, internal Java mechanisms

1 This is specially relevant in the one-dimensional domain decomposition used in the
SPMM algorithm.

314 R. Istrate et al.

Fig. 1. SPMM strong scaling for multiple matrix sizes and densities. (a) Results using
the C++/MPI application. (b) Results using the Java/PCJ application. Note that the
Java benchmarks are affected by timing issues (see main discussion).

Fig. 2. SPMM - time to solution comparison between PCJ and MPI. The matrices
involved in the multiplication have a constant density of 0.2. This plot is in log-log
scale.

such as the garbage collection and the just-in-time compiler bring a significant
overhead. This is even clearer when analyzing the absolute timings (Fig. 2). The
super-scaling observed for the largest matrix m= 96’000 and d = 0.2 is due
to cache optimization. Because of a warm up execution, the matrix blocks are
already loaded into the faster cache memory.

The scaling results for the k-means application are presented in Fig. 3. The
number of points in the dataset varies from 2.4 M to 480 M, each having nf = 2

Exploring Graph Analytics with the PCJ Toolbox 315

Fig. 3. k-means strong scaling for various number of points n and fixed number of
features nf = 2. (a) Results using the C++/MPI application. (b) Results using the
Java/PCJ application.

Fig. 4. k-means - comparison of the time per iteration between PCJ and MPI. This
plot is in log-log scale.

features and three centroids. The algorithm shows a close to optimal scaling
for the MPI implementation, whereas the small system sizes show performance
degradation for the PCJ scaling. The latter is an expected result, because
MPI profits from the logarithmic collective reductions, which are not currently
exposed in the PCJ API.

Similar results are obtained when comparing the absolute timings for the time
to solution (Figs. 2 and 4). For large problem sizes, the scaling of both frameworks
is very similar, but for smaller problems we encounter timing issues, because of
which the measured time of SPMM with PCJ saturates at the constant overhead

316 R. Istrate et al.

caused by Java internal mechanisms. As expected, the low level optimizations in
the C++ codes achieve 2–3 faster execution compared to the Java implementa-
tion. The stronger difference in the timings of the k-means application reflects
the (current) different algorithmic complexity.

4 Conclusions and Outlook

In this work we implement and benchmark two graph analytic kernels. The
results show a promising strong scaling for the Java/PCJ implementation that,
for larger system sizes, reaches the same performance as the low-level C++/MPI
application. Within the context of the two different kernels we find that the PCJ
library provides excellent out-of-the-box performance for local communications,
whereas the global communications pattern would highly profit from generic col-
lective communications employing logarithmic complexity. Regarding absolute
timings the Java code is found to be between 2–3 times slower than the C++
version. This difference mostly originates from the inner kernel functions and
not from the communication side. The gap is expected to be much smaller if
both implementation would execute the inner kernels on modern accelerators.

However, the large benefit of the PCJ library lies in the reduced development
effort as a result of the abstraction mechanisms available in the Java language.
As an insight, it took very little effort for a first-time user to extend a basic PCJ
skeleton code into a fully working parallel application. Given the easy integration
into existing frameworks and applications used both in academia and industry,
the library has the potential to provide a valid alternative to low-level C++
codes.

The further development of the demonstrative benchmark applications is the
evolution into production application that would, e.g., serve a distributed graph
database. A graph is efficiently described by its adjacency matrix A, i.e., a sparse
matrix with Aij �= 0 when there is an edge between the node i and the node
j. Our benchmark targets already the analysis of large graphs that don’t fit on
the memory of a single machine. This is for example the case of typical social
network graphs with billions of nodes and edges as well as a representation of
the links between webpages [4].

Complex graph analytics, such as a centrality analysis, or simpler traver-
sal operations, such as retrieving neighbouring nodes, are based on the SPMM
kernel, hence the current benchmark applications provide already the core of a
scalable graph database implemented using the PCJ library.

Acknowledgements. The authors wish to thank Piotr Ba�la and Marek Nowicki for
driving the development of the PCJ library and for fruitful discussions and debugging.
This work was partial supported by the CHIST-ERA consortium.

Exploring Graph Analytics with the PCJ Toolbox 317

References

1. Parallel computing in Java. https://pcj.icm.edu.pl
2. Estrada, E.: Subgraph centrality in complex networks. Phys. Rev. E 71(5), 056103

(2005)
3. Estrada, E., et al.: Network properties revealed through matrix functions. SIAM

Rev. 52(4), 696–714 (2010)
4. Leskovec, J., Krevl, A.: Snap datasets: Stanford large network dataset collection

(2014). http://snap.stanford.edu/data
5. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),

129–137 (1982)
6. Nowicki, M., Górski, �L., Grabrczyk, P., Bala, P.: PCJ - Java library for high per-

formance computing in PGAS model. In: 2014 International Conference on High
Performance Computing Simulation (HPCS), pp. 202–209, July 2014. https://doi.
org/10.1109/HPCSim.2014.6903687

7. Nowicki, M., Bzhalava, D., Ba�la, P.: Massively parallel sequence alignment with
BLAST through work distribution implemented using PCJ library. In: Ibrahim, S.,
Choo, K.-K.R., Yan, Z., Pedrycz, W. (eds.) ICA3PP 2017. LNCS, vol. 10393, pp.
503–512. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65482-9 36

8. Ropo, M., Westerholm, J., Dongarra, J. (eds.): Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-03770-2. ISBN: 978-3-642-03769-6

9. Ryczkowska, M., Nowicki, M., Bala, P.: The performance evaluation of the Java
implementation of Graph500. In: Wyrzykowski, R., Deelman, E., Dongarra, J.,
Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp.
221–230. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3 21

10. Ryczkowska, M., Nowicki, M., Ba�la, P.: Level-synchronous BFS algorithm imple-
mented in Java using PCJ library. In: 2016 International Conference on Compu-
tational Science and Computational Intelligence (CSCI), pp. 596–601 (2016)

11. Staar, P.W.J., Barkoutsos, P.K., Istrate, R., Malossi, A.C.I., Tavernelli, I., Moll,
N., Giefers, H., Hagleitner, C., Bekas, C., Curioni, A.: Stochastic matrix-function
estimators: scalable big-data kernels with high performance. In: 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pp. 812–821
(2016). https://doi.org/10.1109/IPDPS.2016.34

12. Tinney, W.F., Walker, J.W.: Direct solutions of sparse network equations by opti-
mally ordered triangular factorization. Proc. IEEE 55(11), 1801–1809 (1967)

https://pcj.icm.edu.pl
http://snap.stanford.edu/data
https://doi.org/10.1109/HPCSim.2014.6903687
https://doi.org/10.1109/HPCSim.2014.6903687
https://doi.org/10.1007/978-3-319-65482-9_36
https://doi.org/10.1007/978-3-642-03770-2
https://doi.org/10.1007/978-3-642-03770-2
https://doi.org/10.1007/978-3-319-32152-3_21
https://doi.org/10.1109/IPDPS.2016.34

Big Data Analytics in Java with PCJ
Library: Performance Comparison

with Hadoop

Marek Nowicki1, Magdalena Ryczkowska1,2, �Lukasz Górski1,2,
and Piotr Bala2(B)

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87-100 Torun, Poland

faramir@mat.umk.pl
2 Interdisciplinary Centre for Mathematical and Computational Modeling,

University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
{lgorski,gdama,bala}@icm.edu.pl

Abstract. The focus of this article is to present Big Data analytics using
Java and PCJ library. The PCJ library is an award-winning library for
development of parallel codes using PGAS programming paradigm. The
PCJ can be used for easy implementation of the different algorithms,
including ones used for Big Data processing. In this paper, we present
performance results for standard benchmarks covering different types
of applications from computational intensive, through traditional map-
reduce up to communication intensive. The performance is compared to
one achieved on the same hardware but using Hadoop. The PCJ imple-
mentation has been used with both local file system and HDFS. The
code written with the PCJ can be developed much faster as it requires
a smaller number of libraries used. Our results show that applications
developed with the PCJ library are much faster compare to Hadoop
implementation.

Keywords: Big Data · Java · Parallel computing · Hadoop

1 Introduction

The concept of big data has been around for years but nowadays organizations
understand that if they capture all the data that streams into their businesses,
they can apply analytics and get significant value from it. The new benefits that
big data analytics brings to the table are speed and efficiency. Whereas a few
years ago one would have gathered information, run analytics and unearthed
information that could be used for future decisions, today there is a strong
need for immediate decisions. Such approach requires parallel processing of data
necessary to provide results in short time.

For the analysis of large-scale data one can use sampling, data condensation,
density-based approaches, grid-based approaches, divide and conquer, incremen-
tal learning, and distributed computing [1]. The focus on big data analytics
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 318–327, 2018.
https://doi.org/10.1007/978-3-319-78054-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_30&domain=pdf

Big Data Analytics in Java with PCJ: Performance Comparison with Hadoop 319

resulted in the development of dedicated algorithms and software tools. The most
popular is MapReduce algorithm [2] which became synonymous with big data
processing. Different flavors of it are available over Apache Hadoop [3] being at
the core of big data processing. It is important to note that the primary Hadoop
MapReduce application programming interfaces (APIs) are mainly called from
Java. In addition, advanced skills are needed for development and maintenance.

Recently, the new approach to the parallel processing has been presented
by the PCJ library [4,5]. It is Java library which allows for easy development
of highly scalable applications using PGAS (Partitioned Global Address Space)
programming paradigm. Although the main focus of PCJ library was on HPC
systems, it can be also used for big data processing.

The aim of this paper is performance comparison of the Hadoop and PCJ
software frameworks for the standard benchmarks running on the same infras-
tructure. The selected benchmarks cover different types of applications from
computational intensive, through traditional map-reduce up to communication
intensive. The experimental setup is described in the Sect. 2. The Sect. 3 presents
details of the performance evaluation and provides results. Next section com-
pares coding effectiveness for Hadoop and PCJ and the following section presents
related work. The paper concludes with the conclusions and summary.

2 Experimental Setup

The experimental results for Hadoop and PCJ implementations were obtained on
the same hardware system. The strong (fixed global problem size) and weak (the
same size of the problem executed by all threads) executions are used depending
on the tested algorithm.

2.1 Hardware

For the tests, a dedicated instance of the Hadoop cluster has been used. It con-
sisted of 68 server (computing) nodes, 3 namenodes, and 2 management nodes.
All nodes were equipped with the two, 24 core Intel(R) Xeon(R) CPU E5-2680
v3 processors running at 2.50 GHz. Nodes were running CentOS Linux release
7.2.1511. The InfiniBand interconnect was used, the storage was HDFS filesys-
tem with 5.1 TB capacity. The cluster was used exclusively for tests and no other
application was running.

2.2 Software

The Cloudera CDH 5.7.5 open source platform distribution, including Apache
Hadoop, was installed on the cluster. By integrating Hadoop with other crit-
ical open source projects, CDH is a functionally advanced system that helps
to perform end-to-end Big Data workflows and minimize administration effort
necessary to set up the system. The PCJ library version 5.0.1 has been used to
implement word count and π estimator. The BFS algorithm was implemented

320 M. Nowicki et al.

and tested using PCJ version 4.1. For PCJ and Hadoop, the same version of Java
was selected. The 64-bit 1.8.0 version from Oracle has been used. The PCJ appli-
cations were started using PCJ.deploy() method, which executes ssh command
to start an application on computing nodes.

3 Results

The parallel workload can consists of different types of applications (e.g. I/O-
intensive, data-intensive and CPU-intensive) [6] which may benefit differently
from software platforms such as Hadoop and PCJ. CPU-intensive applications
devote most execution time to computational requirements and typically require
small volumes of data. CPU-intensive applications executed in parallel can have
different characteristics depends on the amount of communication performed.
There are applications with the low communication profile such as trivially par-
allel, or with the significant communication such as graph processing. The I/O-
intensive applications require large volumes of data and devote most processing
time to I/O. Such applications do not have or have only a few computations and
contain only pure write/read operations.

It is important to gain a deep understanding of each type of applications
because it can provide guidance to decide the best parallelization platform for
a given application to maximize performance and scalability. In this paper, we
mainly focus on investigating the performance and scalability of different types
of applications parallelization with the Hadoop (MapReduce) and PCJ software
platforms.

3.1 Data Intensive

WordCount is a simple piece of code that demonstrates core Hadoop features
and basics of programming in MapReduce paradigm. Test program reads an
input file line-by-line and counts the number of unique words occurring in each
line. Reduction steps gather all computed partial results. Combiners may be
used together with Reducers to facilitate in-memory communication and increase
overall performance. In the end, a mapping between all the unique words in whole
text and number of their occurrences are emitted. No prior text transformations
are performed (for example, stop word list and stemming are not utilized), so -
depending on input formatting and used word division algorithms - glyphs like
punctuation marks and their combinations might be considered a unique word;
the same goes for different grammatical forms of the same word.

PCJ code mimics the structure of Hadoop implementation. The word calcula-
tions are divided into two steps. Mapping phase utilities the same word-division
code that was provided with our Hadoop implementation. Partial results are
stored in a shared global variable, unique to every thread of execution. After this
phase, a reduction occurs with thread 0 chosen as a root. No overlap between
two phases is facilitated. The reduction policies are a major contribution to the
overall scalability results and in the case of PCJ three distinct policies were
implemented:

Big Data Analytics in Java with PCJ: Performance Comparison with Hadoop 321

– Reduction 1 - traditional hypercube reduction scheme, suitable for thread
counts that are a power of two.

– Reduction 2 - a 2-step reduction scheme; first step consists of intra-node
reduction, in second step thread 0 collects partial results from remote com-
putation nodes.

– Reduction 3 - a 2-step reduction scheme in which all threads affiliated with
node 0 performed remote reduction; remote computation nodes were assigned
to node 0 threads on a round-robin fashion; after this step intra-node 0 reduc-
tion was performed.

Two novels were chosen as a textual corpus for the text. We have used
an UTF-8 encoded plain text English translation of Lev Tolstoy’s War and
Peace [7], a file of 3.3 MB, and lesser-known, but nevertheless considerate in
length plain ISO 8859-1 encoded text of original French version of Georges de
Scudéry’s Artamène ou le Grand Cyrus [8], one of the longest novels ever writ-
ten, totaling in 10 MB file size. Different encodings were accounted for in the
code. Whilst data sizes itself are quite small, they have been the basis for the
weak scalability testing, thus forming a sizable dataset for larger numbers of
threads, reaching 52 GB in case of former file and 174 GB for the latter. Other
researchers have reached conclusive results in the past using much smaller sets,
of 1 GB and 8 GB [9].

During the weak scalability testing, each file was replicated n times,
for n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384}.
This allowed to affiliate each PCJ thread with one input file and was decisive
for a number of map operations executed by Hadoop. HDFS filesystem was used
in all Hadoop tests, whilst PCJ performance was tested against the node local
filesystems as well as HDFS. PCJ threads were distributed so that the small-
est number of computing nodes was used, as determined by available hardware
threading capabilities. Each PCJ thread read its own copy of input data.

Fig. 1. WordCount weak scalability for 3.3 MB (left) and 10 MB (right) input files.
Data for various Hadoop and PCJ implementations are presented.

Timing results for different input size are presented in the Fig. 1. Timings
encompass the execution time of job.waitForCompletion() method in the case of

322 M. Nowicki et al.

Hadoop and measure the total time that thread 0 spent in mapping and reduce
phase in the case of PCJ. Input data copying times (from local storage to HDFS
and to remote nodes in non-HDFS PCJ version) are not accounted for in the
timings.

Generally, PCJ exhibits great scalability and first symptoms of a slowdown
are barely visible only when available CPUs are oversubscribed (i.e. when a
number of threads is larger than 3264). Overlapping of mapping and reduction
steps, as well as the usage of combiners, did not allow Hadoop to achieve similar
results and first symptoms of resource exhaustion are exhibited when 1024 input
files are processed. On the other hand, the performance of HDFS (excluding the
data copying times) was exemplary in the tests and allowed PCJ + HDFS version
of the code to achieve even better results. In the case of this implementation,
HDFS allowed achieving about two-fold speedup of mapping phase when com-
pared to non-HDFS code (reduction phase times remained constant as they are
not IO-bound).

3.2 Computational Intensive

For the computationally intensive workload, we have used a map-reduce pro-
gram to estimate the value of π using quasi-Monte Carlo method [10]. Mapper
generates points in a unit square and then counts points inside/outside of the
inscribed circle of the square. Reducer accumulates points inside/outside results
from the mappers. Hadoop π example uses Halton sequence which perfectly
matches this scenario. It has no duplicate numbers in the sequence and sequence
can be as long as needed. The performance data is generated for week scaling
where each mapper is using its own part of the sequence of the defined length.

The PCJ implementation follows the same scheme. The work is distributed
among PCJ threads and after calculations, the results are summed up over all
threads using asynchronous get method.

The performance results were gathered in the weak scaling mode, i.e. with
the constant number of generated point for each PCJ thread or Hadoop mapper.
The execution time for the 1,000,000 points are presented in the Fig. 2. In the
case of Hadoop implementation, the total execution time which accounts for job
creation and execution has to be considered, especially for a larger number of
jobs.

Both implementations show very good scaling up to 64 PCJ threads/Hadoop
mappers which refer to the execution of the single PCJ thread or mapper job on
each hardware node. For the higher number of threads, more than one thread/job
is run on the single node and reduction time increases due to the more commu-
nication performed. For a larger number of threads, the parallel efficiency starts
to decrease for both implementations. Depends on the number of threads used,
the PCJ implementation is 300–450 times faster than Hadoop.

Big Data Analytics in Java with PCJ: Performance Comparison with Hadoop 323

Fig. 2. Execution time for estimate of
the value of π in the case of weak
scaling. The time for PCJ (lower) and
Hadoop (upper) is presented. The total
time (execution and job creation) for
Hadoop is also shown (top).

Fig. 3. BFS strong scalability for graph
consisting of 222 nodes. Execution time
for Hadoop (top) and for PCJ imple-
mentations are presented. The red and
blue lines are for 8 and 4 threads run-
ning on the single physical node.

3.3 Communication Intensive

The important example of the communication intensive algorithm is graph pro-
cessing, which is used in many fields of science such as sociology, risk prediction
or biology. It poses numerous challenges especially for large graphs which have
to be processed on multicore systems.

Most of the tools for graph processing is using traditional programming lan-
guages such as C/C++. However, the growing adoption of Java as a program-
ming language for the data analytics opens requirement for new scalable solu-
tions. The parallel execution in Java is based on the Thread class or fork-join
framework available since Jave SE7. All these features can be used within sin-
gle Java Virtual Machine, which limits parallelization capabilities to the single
shared memory node which is not enough for large problems.

BFS as one of the most important graph algorithms has been widely studied.
The main idea of our BFS implementation is based on MPI reference simple
approach of Graph500 benchmark [11] with synchronization after each level,
which has been closely examined in [12]. Most of the algorithms based on the
level-synchronized BFS, adopt the idea to either specific programming model
or to the environment and present some optimizations to improve performance
[13].

Recently there has been developed PGAS (Partitioned Global Address Space)
version of the level-synchronous BFS (Breadth First Search) algorithm and it
has been implemented in Java using PCJ library which allows running graph
processing on multiple nodes [14]. The implementation is based on 1D partition-
ing: all vertices and edges of the original graph are distributed so that each PCJ
thread owns N/p vertices and its incident edges (p is a number of processors and
N is a number of vertices in a graph). The distribution of vertices is realized by
blocks.

324 M. Nowicki et al.

Hadoop implementation of the BFS algorithm is based on [15] The search
starts from the root node and the neighboring nodes are visited until there are
no more possible nodes to visit. One way of performing the BFS is by coloring
the nodes and traversing according to the color of the nodes. There are three
possible colors for the node: unvisited, visited and finished. Before the start
of the traversal, nodes are colored indicating that all the nodes are unvisited.
The source node is colored as visited which indicates that its neighbors should be
processed. All the nodes adjacent to a visited node that are unvisited are changed
to be visited. The originally visited node is then colored that all its neighbors
are visited and the processing of the node is finished. The process continues until
there are no more visited nodes to process in the graph. Each iteration can use
the previous iteration’s output as its input. This kind of iterative MapReduce
is useful for applications including graph problems such as parallel breadth-first
search. The iteration proceeds using a simple loop condition. Satisfaction of the
loop condition can be determined by the mapper, the reducer or the driver.

In order to speed up processing, the CustomWritable class was used to read
graph data as objects instead of extracting necessary information from strings,
which was used in the original code.

Sample graphs (in the form of edge tuple list) - based on Kronecker Graph
model together with BFS source vertices - used in performance tests have been
generated from Graph Generator of the Graph 500 benchmark. The performance
has been tested on graphs of SCALE = 22 with edgefactor = 6 (SCALE is
the logarithm base two of the number of vertices and edgefactor is the ratio of
the graph’s edge count to its vertex count). In the case of Hadoop, before BFS
computation, the generated binary file with edge tuple list had been converted to
the adjacency list and split into a different number of binary Hadoop sequence
files (org.apache.hadoop.io.SequenceFile). The conversion was not accounted
for final results.

The execution time presented in the Fig. 3 shows that both implementations
show similar scalability - up to 32 threads. For the larger number of threads, the
communication time starts to dominate and execution time increases. There is
a large difference in the total execution time: the PCJ implementation is more
than 100 times faster for the whole range of the threads used.

4 Coding Effectiveness

Coding effectiveness is in general subjective measure and depends significantly
on the programmer’s skills and experience. However, we can set up a number
of commonly used metrics which can be useful for code comparison. One of
them is a number of libraries imported for the application for Hadoop and PCJ
implementations respectively. The number of Java classes required by PCJ is
significantly smaller. The number of lines of the code for the PCJ is usually larger
due to the fact that PCJ implementation contains explicite code for reduction
of the results, while in the Hadoop this task is realized by the classes imported
from the library.

Big Data Analytics in Java with PCJ: Performance Comparison with Hadoop 325

The number of PCJ methods used for implementation of the highly scal-
able code is relatively small and for simple codes does not extend 20. Even for
large codes such as BFS, the number of lines of the code which contain calls to
PCJ library is less than 10%. This data confirms that PCJ library is efficient
and easy to use tool for development of highly scalable applications of different
type. Moreover, the parallelization is not limited to the map-reduce scheme and
programmer can easily implement any parallel algorithm with few lines of code.

There is, of course, a trade-off between programming the application almost
from scratch and framework approach. The framework offers programmer num-
ber of tools which simplify application development. The price to pay is the
adaptation of the application to an available framework which might not be
easy nor efficient. Resulting code, usually smaller compare to programming from
scratch and very often difficult to read.

An opposite approach makes fundaments for the PCJ library. The role of
the programmer is work with the algorithm, decide on the most efficient paral-
lelization strategy and then use relatively simple tools to implement his ideas in
the computer readable form. This might be more difficult for a non-experienced
user but leads to more efficient and scalable code. This is especially important
for parallel programming where most of the work has to be performed on the
algorithm rather than coding itself.

5 Related Work

The performance of Hadoop and Apache Spark attracts significant attention
as both frameworks are widely used in Big Data processing [16]. In particular,
an improvement of Hadoop performance by the in-memory processing was the
motivation for the development of the Apache Spark framework. In results, the
3–4 times better performance compare to Hadoop has been reported [17,18].

A number of optimizations has been performed for Hadoop. Some of them are
based on the parameters tuning, other deal with the adaptation of the hardware.
For example, to solve the defect of storage of small files, they are merged into a
single file which is then stored in the Hadoop filesystem [19]. Another solution
is in-storage computing based on the offloading some data processing performed
by mapper to the ISC device which allows for about 2 times faster execution
[20].

Recent research has focused on the integration of Hadoop and HPC cluster,
particularly in the use of the HPC file system replacing HDFS in the Hadoop
framework, e.g., [21]. Researchers also tried to seek for substitution for HDFS
looking for modern distributed file systems such as GoogleFS [22], PVFS [23]
and OrangeFS [24].

6 Conclusions

We have presented Hadoop and PCJ implementation details of the selected
applications with the different characteristics: data-intensive, computational and

326 M. Nowicki et al.

communication intensive. We have compared the performance of the example
applications such as word count, π estimation using quasi-Monte Carlo method
and BFS search using the level synchronous parallel algorithm. In all cases, PCJ
library provides code which scales well and runs faster compare to the Hadoop.
The LOC for the PCJ is reasonable, the number of imported libraries is signifi-
cantly reduced compare to Hadoop and the fraction of the code which contains
calls to PCJ library is less than 10%. In many cases, the computational kernel
remains the same as for the sequential execution. Presented results confirm that
implementations based on PCJ library are much faster than Hadoop ones, even
for typical Map-Reduce applications.

In this paper, the Hadoop implementation of selected algorithms was used.
The processing can speed up 3–4 times using Apache Spark [17] which does not
change the main outcome of the presented work since PCJ implementation is
much faster than Hadoop ones. The comparison of the PCJ library with the
Apache Spark is ongoing.

Parallel applications using PCJ library can be easy deployed on any infras-
tructure with Java 8 installed. The deployment is much easier than for Hadoop
infrastructure. The Java/PCJ can be therefore used as an interesting solution for
HPC and Big Data types of applications on different hardware platforms. It is
efficient and easy to use tool which can be used to implement highly scalable par-
allel algorithms of a various type including, but not limiting to the map-reduce
schema.

Acknowledgments. The authors would like to thank CHIST-ERA consortium for
financial support under HPDCJ project. The Polish contribution is financed through
NCN grant 2014/14/Z/ST6/00007. The performance tests have been performed using
ICM University of Warsaw computational facilities.

References

1. Tsai, C.-W., Lai, C.-F., Chao, H.-C., Vasilakos, A.V.: Big data analytics: a survey.
J. Big Data 2, 21 (2015)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In Proceedings of OSDI (2004)

3. Apache Hadoop. http://hadoop.apache.org/. Accessed 20 Sept 2017
4. http://pcj.icm.edu.pl. Accessed 20 Sept 2017
5. Nowicki, M., Górski, �L., Grabarczyk, P., Ba�la, P.: PCJ - Java library for high

performance computing in PGAS model. In: Smari, W.W., Zeljkovic, V. (eds.)
2014 International Conference on High Performance Computing and Simulation
(HPCS), pp. 202–209. IEEE (2014)

6. Li, Z., Shen, H., Ligon, W.B., Denton, J.: An exploration of designing a hybrid
scale-up/out hadoop architecture based on performance measurements. IEEE
Trans. Parallel Distrib. Syst. 99, 1–1 (2016)

7. Tolstoy, L.: War and Peace. Random House, Newyork (2016)
8. de Scudéry, M.: Artamène ou le grand Cyrus (1972)

http://hadoop.apache.org/
http://pcj.icm.edu.pl

Big Data Analytics in Java with PCJ: Performance Comparison with Hadoop 327

9. Ibrahim, S., Jin, H., Lu, L., Qi, L., Wu, S., Shi, X.: Evaluating mapreduce on virtual
machines: the hadoop case. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom
2009. LNCS, vol. 5931, pp. 519–528. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-10665-1 47

10. https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/examples/
PiEstimator.html. Accessed 10 Feb 2017

11. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the graph
500. Cray Users’ Group (CUG) 19, 45–74 (2010)

12. Ueno, K., Suzumura, T.: Highly scalable graph search for the Graph500 benchmark,
In: Proceedings of the 21st International ACM Symposium on High-Performance
Parallel and Distributed Computing, pp. 149–160 (2012)

13. Buluc, A., Madduri, K.: Parallel breadth-first search on distributed memory sys-
tems. In: Proceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis (2011)

14. Ryczkowska, M., Nowicki, M., Ba�la, P.: Level-synchronous BFS algorithm imple-
mented in Java using PCJ library. In: 2016 International Conference on Computa-
tional Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, pp.
596–601 (2016)

15. https://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters.
Accessed 21 Mar 2017

16. Li, Z., Shen, H., Denton, J., Ligon, W.: Comparing application performance on
HPC-based hadoop platforms with local storage and dedicated storage. In: 2016
IEEE International Conference on Big Data (Big Data), pp. 233–242 (2016)

17. Augustine, D.P., Raj, P.: Performance evaluation of parallel genetic algorithm
for brain MRI segmentation in hadoop and spark. Indian J. Sci. Technol.
(2016). http://www.indjst.org/index.php/indjst/article/view/91373. Accessed 24
Mar 2017

18. Islam, N.S., Wasi-ur-Rahman, M., Lu, X., Panda, D.K.D.K.: Efficient data access
strategies for Hadoop and Spark on HPC cluster with heterogeneous storage. In:
2016 IEEE International Conference on Big Data (Big Data), Washington, DC,
pp. 223–232 (2016)

19. He, H., Du, Z., Zhang, W., Chen, A.: Optimization strategy of Hadoop small file
storage for big data in healthcare. J. Supercomput. 72, 3696–3707 (2016)

20. Park, D., Wang, J., Kee, Y.S.: In-storage computing for Hadoop mapreduce frame-
work: challenges and possibilities. IEEE Trans. Comput. PP(99), 1–1 (2016)

21. Maltzahn, C., Molina-Estolano, E., Khurana, A., Nelson, A., Brandt, S., Weil,
S.: Ceph as a scalable alternative to the Hadoop Distributed File System. The
USENIX Mag. 4(35), 518–529 (2010)

22. Ghemawat, S., Gobioff, H., Leung, S.-T.: The google file system. In Proceedings
of ACM SOSP (2003)

23. Carsn, P.H., Ligon, W.B., Ross, R.B., Thakur, R.: PVFS: a parallel file system for
linux clusters (2000)

24. Yang, S., Ligon, W., Quarles, E.: Scalable distributed directory implementation on
orange file system. In: Proceedings of SNAPI (2011)

https://doi.org/10.1007/978-3-642-10665-1_47
https://doi.org/10.1007/978-3-642-10665-1_47
https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/examples/PiEstimator.html
https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/examples/PiEstimator.html
https://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters
http://www.indjst.org/index.php/indjst/article/view/91373

Performance Comparison of Graph BFS
Implemented in MapReduce and PGAS

Programming Models

Magdalena Ryczkowska1,2(B) and Marek Nowicki2

1 Interdisciplinary Centre for Mathematical and Computational Modeling,
University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland

gdama@icm.edu.pl
2 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,

Chopina 12/18, 87-100 Torun, Poland
{gdama,faramir}@mat.umk.pl

Abstract. Computations based on graphs are very common problems
but complexity, increasing size of analyzed graphs and a huge amount of
communication make this analysis a challenging task. In this paper, we
present a comparison of two parallel BFS (Breath-First Search) imple-
mentations: MapReduce run on Hadoop infrastructure and in PGAS
(Partitioned Global Address Space) model. The latter implementation
has been developed with the help of the PCJ (Parallel Computations
in Java) - a library for parallel and distributed computations in Java.
Both implementations realize the level synchronous strategy - Hadoop
algorithm assumes iterative MapReduce jobs, whereas PCJ uses explicit
synchronization after each level. The scalability of both solutions is sim-
ilar. However, the PCJ implementation is much faster (about 100 times)
than the MapReduce Hadoop solution.

Keywords: High performance computing · Hadoop · MapReduce
PGAS · Parallel and distributed computation
Performance evaluation · Parallel graph algorithms · Java

1 Introduction

The demand on increasingly faster data processing resulted in creating dedicated
tools and algorithms. One of the most widespread ideas focused on big data
analysis is MapReduce [1] model together with open-source Apache Hadoop
platform [2]. Hadoop application programming interfaces are mainly based on
Java language. The big advantage of this tool is fault tolerance and ability to
keep thousands of terabytes of data on distributed file system. All those features
make MapReaduce and Hadoop an interesting solution. However, gaining high
performance in some sort of problems might be a huge challenge.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 328–337, 2018.
https://doi.org/10.1007/978-3-319-78054-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_31&domain=pdf

Comparison of Graph BFS Implemented in MapReduce and PGAS Models 329

One of the new, promising solutions for parallel and distributed computations
in Java language is PCJ (Parallel Computations in Java) library [3–5]. PCJ is
a library that allows developing applications in pure Java language, which does
not require any language extensions or special compiler. It is based on the PGAS
(Partitioned Global Address Space) model, with all communication details like
threads administration or network programming hidden. The communication in
the model is one-sided. All those features make programming simpler together
with high performance preserved.

PCJ is still being upgraded. At the beginning PCJ was written using Java 7,
later it was upgraded to use Java 8. Recently a new version 5 of the library has
been released, with code fixes and performance boost. Currently, work is being
carried out on further important features like fault tolerance.

The goal of this paper is to compare performance comparison of the BFS
algorithm on Hadoop and using PCJ library, both running on the same infras-
tructure. This paper is constructed as follows: Sect. 2 contains information about
BFS Hadoop implementation. Next Section contains general remarks about how
BFS was implemented using PCJ library. Section 4 contains comparison results of
BFS algorithm implementation using PCJ and Hadoop MapReduce. The paper
concludes with final remarks and future plans in Sect. 5.

2 BFS - Hadoop Implementation

The idea of the Hadoop implementation of the BFS algorithm assumes iterative
MapReduce jobs, where the same Mapper and Reducer run multiple times [6].
The only difference is that in each iteration the previous iteration’s output is
used as input.

In the algorithm, each vertex has its own status (color) which indicates
whether it was visited or not. There are three possible statuses: white (unvis-
ited), gray (visited) and black (finished). BFS traversal proceeds according to
those colors. The search starts from a randomly sampled source vertex of the
graph, which at the beginning has a gray color. All other vertices are white.
The gray color indicates that this vertex is visited and its neighbors should be
processed. All vertices that are adjacent to the gray vertex are becoming visited
and gain gray color. Whereas, the original gray vertex is colored black, what
indicates that all its neighbors are already visited. When there are no other gray
vertices, the BFS algorithm stops.

In the first MapReduce iteration, vertices with distance (understood as the
shortest path connecting two vertices) one from a source are being explored.
In the i-th iteration, new vertices i steps away from the source are becoming
visited.

Each time single MapReduce iteration finishes, to check whether next itera-
tion should proceed, a simple condition: numberOfGrayVertices > 0 is verified.
This is realized via MapReaduce counter defined as an enum type, as in the
Listing 1.

330 M. Ryczkowska and M. Nowicki

1 public static enum NextLevel {

2 numberOfGrayVertices

3 }

Listing 1. Number of gray vertices - counter.

The information about all vertices of the graph is kept in the CustomWritable
class (Listing 2). This class contains data about the list of adjacent vertices, the
distance from the source, the color of the vertex and the predecessor (parent).
By default, each vertex except source is unvisited (white) and its distance is set
to Long.MAX VALUE. The getter and setter methods are omitted.

The input is a binary sequence file, where vertex information is kept
in the following format: color distanceFromSource parent adjacencyList.
For example for source vertex: G 0 MAX 2,4,5, and for regular vertex: W MAX
MAX 2,4,67,.

1 import java.io.DataInput;

2 import java.io.DataOutput;

3 import java.io.IOException;

4 import org.apache.hadoop.io.Writable;

5

6 public class CustomWritable implements Writable {

7

8 private long parent;

9

10 private long [] adjacencyList ;

11

12 // W, G, B

13 private char color;

14

15 private long distance;

16

17 public CustomWritable () {

18 this.color = ’W’;

19 this.distance = Long.MAX_VALUE;

20 this.parent = Long.MAX_VALUE;

21 this.adjacencyList = new long [0];

22 }

23

24 public CustomWritable(char color , long distance , long

parent) {

25 this.color = color;

26 this.distance = distance;

27 this.parent = parent;

28 this.adjacencyList = new long [0];

29 }

30

31 @Override

32 public void readFields(DataInput in) throws IOException {

33 color = in.readChar ();

Comparison of Graph BFS Implemented in MapReduce and PGAS Models 331

34 distance = in.readLong ();

35 parent = in.readLong ();

36 int length = in.readInt ();

37 adjacencyList = new long[length];

38 for (int i = 0; i < length; i++) {

39 adjacencyList [i] = in.readLong ();

40 }

41 }

42

43 @Override

44 public void write(DataOutput out) throws IOException {

45 out.writeChar(color);

46 out.writeLong(distance);

47 out.writeLong(parent);

48 out.writeInt(adjacencyList .length);

49 for (long l : adjacencyList) {

50 out.writeLong(l);

51 }

52 }

53

54 // getters and setters

55 }

Listing 2. Class responsible for keeping information about single vertex.

Class with whole BFS algorithm extends Configured class and implements Tool
interface [10]. Each single MapReduce iteration job is defined as in the Listing 3.

1 job.setMapOutputKeyClass(LongWritable.class);

2 job.setMapOutputValueClass(CustomWritable.class);

3 job.setOutputKeyClass(LongWritable.class);

4 job.setOutputValueClass (CustomWritable.class);

5 job.setInputFormatClass (SequenceFileInputFormat .class);

6 job.setOutputFormatClass(SequenceFileOutputFormat .class);

Listing 3. MapReduce job configuration in each iteration.

Map class extends the Mapper class specifying the parameters as the types of the
input key - LongWritable, input value - CustomWritable, output key - Long-
Writable and output value - CustomWritable (Listing 4). All information about
vertices is written as key-value pairs. Key is vertex unique identification. If ver-
tex v has a gray color, for all its adjacent vertices as a value: color (gray), new
distance and parent is emitted. New vertex distance from the source is set to
be the distance of its parent incremented by one. The original vertex v becomes
black. At the end, for vertex v emit: color, distance, parent and adjacency list.

332 M. Ryczkowska and M. Nowicki

1 public static class Map extends Mapper <LongWritable ,

CustomWritable , LongWritable , CustomWritable > {

2

3 public void map(LongWritable key , CustomWritable v, Context

4 context) throws IOException , InterruptedException {

5 if (v.getColor () == ’G’) {

6 for (final long v2Id : v.getAdjacencyList ()) {

7 CustomWritable v2 = new CustomWritable(’G’, v.

getDistance () + 1, key.get());

8 context.write(new LongWritable(v2Id), v2);

9 }

10 v.setColor(’B’);

11 }

12 context.write(key , v);

13 }

14 }

Listing 4. Hadoop BFS Map class.

Reduce class combines all the information for a single vertex identificator (List-
ing 5). The following values are determined and emitted from the reducer func-
tion to the output file: the complete list of adjacent vertices, the minimum dis-
tance from the source together with parent, the darkest color. If there are more
gray nodes, the counter is incremented by one.

1 public static class Reduce extends Reducer <LongWritable ,

CustomWritable , LongWritable , CustomWritable > {

2

3 public void reduce(LongWritable key , Iterable <

CustomWritable > values , Context context) throws

IOException , InterruptedException {

4

5 final CustomWritable reduced = new CustomWritable(’W’,

Integer.MAX_VALUE , Integer.MAX_VALUE);

6 for (CustomWritable v : values) {

7 if (v.getAdjacencyList ().length > 0) {

8 reduced.setAdjacencyList (v.getAdjacencyList ());

9 }

10 if (v.getDistance () < reduced.getDistance ()) {

11 reduced.setDistance(v.getDistance ());

12 reduced.setParent(v.getParent ());

13 }

14 if (reduced.getColor () > v.getColor ()) {

15 // save the darkest color

16 reduced.setColor(v.getColor ());

17 }

18 }

19 context.write(key , reduced);

20 if (reduced.getColor () == ’G’)

Comparison of Graph BFS Implemented in MapReduce and PGAS Models 333

21 context.getCounter(NextLevel.numberOfGrayVertices).

increment (1L);

22 }

23 }

Listing 5. Hadoop BFS Reduce class.

3 BFS - PCJ Implementation

The BFS implementation, used for performance tests in this paper, is a part
of a recent implementation of Graph500 benchmark in PGAS model using PCJ
library. More detailed description can be found in [7,8]. Below there are presented
only general information.

In the implementation the level-synchronous BFS strategy is used, what
means that all vertices at a distance k form source vertex are visited before
vertices at distance k + 1. Because the input graph is static, it is kept in dis-
tributed CSR format in which every PCJ task holds its own subset of vertices
and its adjacent edges in two arrays. The distribution of vertices among PCJ
tasks is realized by 1D partitioning of the graph.

Each PCJ task keeps two queues. Both queues hold only local vertices owned
by specific PCJ task. The first queue keeps vertices processed at the current level
(from distance k from source vertex), whereas the second queue holds vertices
that are within one vertex away from the source vertex and should be visited at
the next level (distance k+1). The result - predecessor array for BFS result tree
- is also distributed in the way that each PCJ task holds part of the array, only
for its local vertices.

The BFS traversal starts from a random, source vertex sampled from a graph,
put in the first (current level) queue of the owner task. The communication
between PCJ tasks occurs when vertex u adjacent to the vertex v from the first
queue does not belong to the task performing this check. Proper message is
constructed and sent to the owner task of vertex u. At the end of each level, all
tasks exchange information about a number of vertices in the second queue to
check if BFS algorithm should be stopped. Otherwise, search continues to the
next level.

In the implementation, many optimizations have been used. Instead of send-
ing single messages, data is accumulated in array buffers, which is important
as PCJ library supports sending arrays with provided indexes. This allows to
split messages at the time of creation and minimize the overhead connected with
starting the communication. Used bitmap for checking whether the vertex has
already been visited, allows reducing the number of sent messages between tasks
(each task keeps a vector of bits, set to 1 if the vertex is visited, 0 otherwise).
Another important feature is overlapping the communication and computation
- while waiting for communication coming to an end, the task uses this time to
process data that has already been received.

334 M. Ryczkowska and M. Nowicki

4 Results

4.1 Data

Experimental graphs used in performance tests together with BFS source ver-
tices have been taken from Kronecker Generator of the Graph500 benchmark
[9]. Generated graphs have the edge tuple list form, so in the case of Hadoop
implementation, this edge tuple list had to be transformed to the following input
data: vertexId color distanceFromSource parent adjacencyList.

At the beginning, the generated graph file has been converted to the number
of distributed text files holding proper BFS input data. The program required
three parameters: a path to the edge list file (file with sources has the same
path and name, but ends with ‘-root’), the name of generated file and number
of generated files parts. A further step was to create a binary Hadoop sequence
file (org.apache.hadoop.io.SequenceFile) from a text file to read graph data
as objects instead of extracting necessary information from strings. We compare
BFS performance both for sequence files and for text files. Neither the conversion
nor uploading files to HDFS were accounted for final results.

The performance has been tested on graphs of SCALE ∈ {18, 19, 20, 21, 22}
with edgefactor = 16 (SCALE is the logarithm base two of the number of
vertices and edgefactor is the ratio of the graph’s edge count to its vertex count).

4.2 Environment

The results both for Hadoop and PCJ are obtained using the same hardware
system. Hadoop cluster consisted of 68 computing nodes, 3 namenodes, and
2 management nodes. All nodes have two 24 core Intel(R) Xeon(R) CPU E5-
2680 v3 processors with 2.50 GHz and the InfiniBand interconnect. Nodes were
running CentOS Linux release 7.2.1511. The storage was HDFS filesystem with
5.1 TB capacity. The Cloudera CDH 5.7.5 open source platform distribution,
including Apache Hadoop, was installed.

Java version used for both Hadoop and PCJ tests was Oracle 64-bit 1.8.0. The
PCJ library version 4.1 has been used. In the tests, only the strong scalability
has been examined.

4.3 Performance

Figure 1 (left chart) shows comparison of Hadoop BFS algorithm in two variants:
where graph is read and written as a plain text file or a binary Hadoop sequence
file (org.apache.hadoop.io.SequenceFile) which allows to read graph data as
objects instead of extracting necessary information from strings. The sequence
implementation is faster than the text one. The greater the graph, the difference
between sequence and text version is bigger.

The execution time presented in the Figs. 1 and 2 (right chart) shows that
both implementations show similar scalability - up to 32 threads for graphs of

Comparison of Graph BFS Implemented in MapReduce and PGAS Models 335

Fig. 1. BFS on Hadoop for text and binary sequence files as input (left). BFS execu-
tion time for Hadoop (with sequence files) for graphs of SCALE ∈ {18, 19, 20, 21, 22}
(right).

Fig. 2. BFS execution time for Hadoop (with sequence files) and PCJ (with 4 or 8
threads per node - marked as 4pn and 8pn) for graphs SCALE = 20 and SCALE = 22.

SCALE = 22. The bigger the graph, the scalability is better. In PCJ implemen-
tation for the larger number of tasks, the communication time starts to dominate
and execution time increases. There is a huge difference in the total execution
time: namely the PCJ implementation is more than 100 times faster for the
whole range of the tasks used. Slightly better outcomes for PCJ imlementation
have been gained for 4pn (4 threads per node) configuration over 8pn (8 threads
per node).

Figure 3 shows an execution time box chart with informations about 1st
quartile, median, third quartile together with minimum and maximum value for
PCJ implementation (SCALE = 22) with 4pn and 8pn. We can see that, the
more number of threads take part in the algorithm the bigger difference starts to
arise between median and the maximum value especially for 8 thread per node
configuration. Minimum value however, is approximately close to the median for
whole range of the threads used both for 4pn and 8pn.

336 M. Ryczkowska and M. Nowicki

Fig. 3. Box plot for PCJ execution time (with 4 or 8 threads per node - marked as
4pn and 8pn) for graph of SCALE = 22.

Fig. 4. BFS Hadoop execution time for operations: map, reduce, map in occupied slots,
reduce in occupied slots.

5 Conclusions and Future Work

We have presented Hadoop MapReduce and PCJ implementation details of the
level synchronous parallel BFS algorithm and introduced the performance com-
parison of those two solutions. The BFS algorithm coded in the PGAS model
in Java with PCJ library is much faster (about 100 times) than the Hadoop
implementation. The scalability of both implementations is similar.

As graph processing is not a typical Map-Reduce application, we currently are
focused on comparing PCJ implementation of BFS with selected tools strictly
dedicated to graph problems like Apache Giraph (open-source counterpart to
Pregel, built on top of Apache Hadoop) and GraphX (Apache Spark’s API for
graphs and graph-parallel computations).

Comparison of Graph BFS Implemented in MapReduce and PGAS Models 337

Acknowledgments. This work has been performed using the PL-Grid infrastructure.
The authors would like to thank CHIST-ERA consortium for financial support under
HPDCJ project (Polish part funded by NCN grant 2014/14/Z/ST6/00007).

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

2. Apache Hadoop. http://hadoop.apache.org/. Accessed 20 May 2017
3. Nowicki, M., Ba�la, P.: Parallel computations in Java with PCJ library. In: Smari,

W.W., Zeljkovic, V. (eds.) 2012 International Conference on High Performance
Computing and Simulation (HPCS), pp. 381–387. IEEE (2012)

4. Nowicki, M., Ba�la, P.: PCJ - new approach for parallel computations in Java. In:
Manninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 115–125. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36803-5 8

5. http://pcj.icm.edu.pl. Accessed 25 May 2017
6. https://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters.

Accessed 20 Mar 2017
7. Ryczkowska, M., Nowicki, M., Bala, P.: The performance evaluation of the Java

implementation of Graph500. In: Wyrzykowski, R., Deelman, E., Dongarra, J.,
Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp.
221–230. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3 21

8. Ryczkowska, M., Nowicki, M., Ba�la, P.: Level-synchronous BFS algorithm imple-
mented in Java using PCJ library. In: Proceedings of the 2016 International Con-
ference on Computational Science and Computational Intelligence (CSCI), Las
Vegas, NV, USA, pp. 596–601 (2016)

9. Murphy, R.C., Wheeler, K.B., Barrett, B.W., Ang, J.A.: Introducing the Graph500.
Cray User’s Group (CUG) (2010)

10. White, T.: Hadoop: The Definitive Guide, 4th edn. O’Reilly, Sebastopol (2015)
11. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-

ment search tool. J. Mol. Biol. 215(3), 403–410 (1990)
12. Suzumura, T., Ueno, K., Sato, H., Fujisawa, K., Matsuoka, S.: Performance char-

acteristics of Graph500 on large-scale distributed environment. In: Proceedings of
the 2011 IEEE International Symposium on Workload Characterization (IISWC),
pp. 149–158 (2011)

13. Ueno, K., Suzumura, T.: Highly scalable graph search for the Graph500 benchmark,
In: Proceedings of the 21st International ACM Symposium on High-Performance
Parallel and Distributed Computing, pp. 149–160 (2012)

14. Buluc, A., Madduri, K.: Parallel breadth-first search on distributed memory sys-
tems. In: Proceedings of the 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (2011)

15. Berrendorf, R., Makulla, M.: Level-synchronous parallel breadth-first search algo-
rithms for multicore and multiprocessor systems. In: FC 2014, pp. 26–31 (2014)

http://hadoop.apache.org/
https://doi.org/10.1007/978-3-642-36803-5_8
http://pcj.icm.edu.pl
https://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters
https://doi.org/10.1007/978-3-319-32152-3_21

Minisymposium on HPC Applications in
Physical Sciences

Efficient Parallel Generation
of Many-Nucleon Basis for Large-Scale

Ab Initio Nuclear Structure Calculations

Daniel Langr1(B), Tomáš Dytrych2, Tomáš Oberhuber3, and Frantǐsek Knapp4

1 Faculty of Information Technology, Czech Technical University in Prague,
Thákurova 9, 16000 Praha, Czech Republic

daniel.langr@fit.cvut.cz
2 Nuclear Physics Institute, Czech Academy of Sciences,

Řež 130, 25068 Řež, Czech Republic
3 Faculty of Nuclear Sciences and Physical Engineering,

Czech Technical University in Prague, Břehová 7, 11519 Praha, Czech Republic
4 Faculty of Mathematics and Physics, Charles University,

Ke Karlovu 3, 12116 Praha, Czech Republic

Abstract. We address the problem of generating a many-nucleon basis
for ab initio nuclear structure modeling, which quickly becomes a signifi-
cant runtime bottleneck for large model spaces. We first analyze the orig-
inal basis generation algorithm, which does not employ multi-threading
parallel paradigm. Based on the analysis, we propose and empirically
evaluate a new efficient scalable basis generation algorithm. We report
a reduction of basis generation runtime by a factor of 42 on the Blue
Waters supercomputer and by two orders of magnitude on our test-bed
computer system with Broadwell CPUs.

Keywords: Ab initio · Basis generation · Many-nucleon basis ·
Nuclear structure · Parallel algorithm

1 Introduction

Understanding the origin, structure, and phases of hadronic matter is key to
comprehending the evolution of the universe. To fully achieve this, we need
to model the complex dynamics of atomic nuclei that control a vast array of
astrophysical phenomena and are often found key to understanding processes in
extreme environments, from stellar explosions to the interior of nuclear reactors.

Over the past two decades, ab initio approaches to nuclear structure and reac-
tions have considerably advanced our understanding and capability of achieving
first-principles descriptions of light nuclei [6,7,11,12]. To extend the reach of ab
initio methods towards heavier nuclei, we have developed a novel method dubbed
symmetry-adapted no-core shell model (SA-NCSM) [1] and implemented it as a
highly scalable computer code LSU3shell1 [2]. Our approach is to solve the
1 https://sourceforge.net/projects/lsu3shell/ (In the time of writing this paper, latest

updates were included in the LSU3develop repository branch).

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 341–350, 2018.
https://doi.org/10.1007/978-3-319-78054-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_32&domain=pdf
https://sourceforge.net/projects/lsu3shell/

342 D. Langr et al.

Fig. 1. Dimension of basis as a function of Nmax for sample atomic nuclei.

Schrödinger equation for a many-nucleon quantum system interacting via realis-
tic interactions that are tied to the underlying quark/gluon considerations. The
solution to this problem is achieved by finding eigenstates and eigenvalues of
the nuclear Hamiltonian, which is computed in a many-nucleon basis that spans
a physically relevant subspace of the nuclear Hilbert space, the so-called model
space.

In particular, we consider many-nucleon basis states of a fixed parity, consis-
tent with the Pauli principle, and limited by a many-body basis cutoff Nmax .
This cutoff is defined as the maximum number of harmonic oscillator quanta
allowed in a many-nucleon basis state above the minimum for a given nucleus.
The dimension of basis grows combinatorially as a function of Nmax and the
number of nucleons, which is illustrated in Fig. 1.

The SA-NCSM further organizes Nmax model space according to U(3) and
SU(2) symmetries inherent to the low-energy nuclear dynamics [3–5,13]. This
step introduces selection rules that allows us to reduce an Nmax model space to a
smaller number of physically relevant configurations based on their deformations
and proton, neutron, and total intrinsic spins.

In the original version of LSU3shell, the construction of many-nucleon basis
spanning a given model space turns out to be a major bottleneck for large
Nmax cutoffs and medium mass nuclei. For example, to generate basis of 20Ne
in Nmax = 12 takes hours on commodity HPC hardware. In this paper, we
first analyze the original algorithm and identify its inefficiencies. Based on this
analysis, we then propose a new optimized scalable parallel basis generation
algorithm and prove its superiority in the experimental study.

2 Analysis

LSU3shell functionality is divided into the following 3 phases:

Scalable Parallel Construction of SU(3) Basis 343

Fig. 2. Sparsity pattern of a Hamiltonian matrix H (left). Mapping of MPI processes
to the upper triangular part of H for N = 5 (right).

1. Generation of a many-nucleon basis that spans a given model space.
2. Construction of a Hamiltonian matrix H in this basis.
3. Finding few lowest-lying eigenpairs of H using the Lanczos method.

The code is written mostly in C++ and built upon hybrid MPI+OpenMP
parallel programming model. Due to the Hermiticity and sparsity of H, only
nonzero elements from a triangular part need to be stored in memory. LSU3shell
maps MPI processes to the upper triangular part of H in a two-dimensional
checkerboard fashion (see Fig. 2). The basis states are split into N blocks and
each process is then assigned Ith and Jth block for rows and columns of H,
respectively. The total number of MPI processes is equal to nprocs = N · (N +
1)/2. Processes with MPI ranks 0, . . . , N − 1 are mapped to diagonal blocks of
H; we therefore call these processes diagonal. Remaining processes are mapped
to the non-diagonal blocks of H.

To ensure load-balanced computation of H, LSU3shell assigns basis states
to N blocks in a round robin fashion [8]. Consequently, the order of basis states
is a function of N and the rows and columns of H are permuted/reshuffled
accordingly.

For large-scale runs of LSU3shell, we use the Blue Waters supercomputer. Its
non-GPU part consists of 22640 Cray XE6 computational nodes. Each node con-
sists of 16 AMD Bulldozer cores, which are exposed as 2 virtual cores each under
certain conditions (so-called clustered multi-threading; CMT). Since LSU3shell
mostly meet these CMT conditions, we typically use 1 MPI process per node
which is then split into 32 threads in performance-critical program parts. Accord-
ing to the above introduced matrix-processes mapping, we can utilize up to 22366
nodes which corresponds to N = 211 (the implementation of Lanczos method
requires N to be an odd number [10]). MPI processes are then split into 715712
OpenMP threads.

344 D. Langr et al.

Algorithm 1. Reshuffle(modelSpace,N ,K)

Input: modelSpace: given model space
Input: N : number of basis blocks, i.e., diagonal MPI processes
Input: K: index of basis block computed by actual MPI process
Output: dims[], pnBasisIpIn[],wpn[], blockEnd [],firstStateInBlock []: arrays with

calculated basis data

1 Nmax , imax
p , imax

n ← function-of-modelSpace
2 maxStatesInBlock ← 0
3 numberOfStates ← 0
4 ipInPair ← 0
5 dims[0 : N − 1] ← 0
6 for ip ← 0 to imax

p do
7 for in ← 0 to imax

n do
8 Nhw ← function-of-(ip, in)
9 if Nhw > Nmax then break

10 NhwSubspace ← function-of-(modelSpace,Nhw)
11 if NhwSubspace does not belong to modelSpace then continue
12 K′ ← function-of-(ipInPair , N)
13 if NhwSubspace contains allowed spins then

/* current (ip, in) pair is valid but “process-global” */
14 calculate data for current (ip, in)
15 dims[K′] ← dims[K′] + function-of-data
16 if K′ = K then

/* current (ip, in) pair is valid and “process-local” */
17 append (ip, in) at the end of pnBasisIpIn[]
18 append (function-of-data) at the end of wpn[]
19 append (function-of-data) at the end of blockEnd []
20 append numberOfStates at the end of firstStateInBlock []
21 numberOfStates ← numberOfStates + function-of-data

22 ipInPair ← ipInPair + 1

2.1 Basis Generation

Previously, only the matrix construction and eigensolver LSU3shell phases were
parallelized within MPI processes by OpenMP threading. This is convenient for
small model spaces, i.e., for light nuclei and small values of Nmax . However, with
the transition to medium-mass nuclei and larger values of Nmax , the sequential
generation of the basis becomes a significant runtime bottleneck.

The vast majority of the basis generation runtime is spent within a routine
(C++ class member function) called Reshuffle; we show its pseudocode in
Algorithm 1. This routine generates the process-local basis block according to
parameters K and N . Each MPI process generally needs to call this routine
twice while setting its I and J as arguments for the K routine parameter.

Reshuffle iterates over all possible pairs of ip and in indices, which are
pointers into the tables of irreducible proton and neutron representations. Some

Scalable Parallel Construction of SU(3) Basis 345

of these pairs are filtered out by the selection rules; see lines 9, 11, and 13 of
Algorithm 1. We call the pairs that are not filtered-out valid. After applying the
selection rules, the algorithm decides which valid pairs belong to which MPI pro-
cesses (line 12). If the pair belongs to the current MPI process (line 16), we call
it “process-local”. Valid process-local (ip, in) pairs are stored into pnBasisIpIn[]
array and the corresponding calculated basis data are appended at the end of
arrays wpn[], blockEnd [], and firstStateInBlock []. Moreover, there is an additional
array dims[] of the size of N calculated by all processes; this array contains
dimension of each block of basis states. Total dimension of the entire model
space is a sum of all elements of this array.

In the pseudocode, we omit computational details which are irrelevant to
the problem described in this paper. To denote functional dependencies between
particular algorithm parts, we use the simplified syntax with the “function-of-”
prefix, which generally means that some data are calculated in dependence on
another data. We also use the square brackets suffix “[]” to denote that some
data represents an array. Such arrays are generally considered to be dynamic, i.e.,
they are empty at algorithm input and can grow in size by appending elements
to them (in the code, these arrays are C++ vector containers).

3 Parallelization and Optimization of Reshuffle

Two main causes of inefficiency may be observed in Algorithm 1. First, the array
dims[] is redundantly calculated by all MPI processes. To evaluate elements of
dims[], some data need to be calculated first for each valid (ip, in) pair (line 14),
which is a costly operation. We therefore proposed an alternative solution, where
only the diagonal processes evaluate their contribution to the dims[] array, i.e.,
dims[K], and the whole array is finally reduced and distributed to all processes
by MPI Allreduce communication operation. The proposed solution allows all
processes to calculate data only for their local (ip, in) pairs.

Second, there is no threading in Algorithm1. One might observe that the
whole iterative process (lines 6 and 7) is inherently sequential. Namely, the devel-
opment of each iteration depends on the outcome of all the previous iterations
for the following reasons:

1. The distribution of valid (ip, in) pairs to processes is a function of ipInPair
(line 12), which represents its order among all valid pairs (line 22). There is
no way how to find out the value of ipInPair for particular (ip, in) directly.

2. The calculated basis data are appended into corresponding arrays (lines 17–
20). With direct loop OpenMP parallelization, the order of insertions of ele-
ments into these arrays would therefore change, which is not acceptable.

We proposed and introduce here a parallelization of the Reshuffle routine
presented by Algorithm 2. This algorithm iterates over (ip, in) pairs three times,
however, the outer loops over ip indices are performed in parallel by all OpenMP
threads (lines 3, 12, and 26). Our solution is generic such that it allows to
use OpenMP dynamic loop scheduling, which was found necessary for balanced
computational load among threads. Algorithm2 works as follows:

346 D. Langr et al.

Algorithm 2. ParallelOptimizedReshuffle(modelSpace,N ,K)

1 . . . /* initialization */
2 ipInPairsForIp[0 : imax

p] ← 0
3 for ip ← 0 to imax

p do in parallel /* first loop */
4 for in ← 0 to imax

n do
5 . . . /* lines 8–11 in Algorithm 1 */
6 if NhwSubspace does not contains allowed spins then continue

/* current (ip, in) is valid and “process-global” */
7 ipInPairsForIp[ip] ← ipInPairsForIp[ip] + 1

8 firstIpInPairForIp ← parallel exclusive prefix sum over ipInPairsForIp
9 localIpInPairsForIp[0 : imax

p] ← 0
10 localWpnsForIp[0 : imax

p] ← 0
11 locNumStatesForIp[0 : imax

p] ← 0
12 for ip ← 0 to imax

p do in parallel /* second loop */
13 ipInPair ← firstIpInPairForIp[ip]
14 for in ← 0 to imax

n do
15 . . . /* check conditions as in first loop */
16 K′ ← function-of-(ipInPair , N)
17 ipInPair ← ipInPair + 1
18 if K′ �= K then continue

/* current (ip, in) is valid and “process-local” */
19 localIpInPairsForIp[ip] ← localIpInPairsForIp[ip] + 1
20 localWpnsForIp[ip] ← localWpnsForIp[ip] + function-of-(ip, in)
21 locNumStatesForIp[ip] ← locNumStatesForIp[ip] + function-of-data

22 localFirstIpInPairForIp ← parallel excl. prefix sum over localIpInPairsForIp
23 localFirstWpnForIp ← parallel exclusive prefix sum over localWpnsForIp
24 locNumStatesBeforeIp ← parallel exclusive prefix sum over locNumStatesForIp
25 resize pnBasisIpIn, firstStateInBlock , wpn, and blockEnd properly
26 for ip ← 0 to imax

p do in parallel /* third loop */
27 ipInPair ← firstIpInPairForIp[ip]
28 localIpInPair ← localFirstIpInPairForIp[ip]
29 wpnIndex ← localFirstWpnForIp[ip]
30 numberOfStates ← locNumStatesBeforeIp[ip]
31 for in ← 0 to imax

n do
32 . . . /* check conditions as in first and second loop */
33 pnBasisIpIn[localIpInPair] ← (ip, in)
34 firstStateInBlock [localIpInPair] ← numberOfStates
35 calculate data for current (ip, in)
36 if process rank < N then dims[K] ← dims[K]+ function-of-data
37 wpnCount ← function-of-(ip, in)
38 write function-of-data to wpn[wpnIndex : wpnIndex + wpnCount − 1]
39 wpnIndex ← wpnIndex + wpnCount
40 blockEnd [localIpInPair] ← function-of-(ip, in)
41 numberOfStates ← numberOfStates+ function-of-data
42 localIpInPair ← localIpInPair + 1

43 reduce dims across all processes (by using MPI Allreduce)

Scalable Parallel Construction of SU(3) Basis 347

1. Within the first loop, the number of valid (ip, in) pairs for each ip is stored
into the temporary ipInPairsForIp[] array (line 7). Next, the exclusive par-
allel prefix sum is run over this array resulting in a new temporary array
firstIpInPairForIp[]. The element firstIpInPairForIp[ip] therefore equals the
number of valid (ip, in) pairs for all 0 ≤ i′p < ip.

2. Within the second loop, we can now evaluate ipInPair for each ip indepen-
dently (and therefore concurrently; lines 13 and 17). In this loop, the num-
ber of valid process-local (ip, in) pairs for each ip is stored into the tem-
porary array localIpInPairsForIp[] (line 19). Similarly, the number of wpn[]
elements and the number of states for each ip are stored into temporary arrays
localWpnsForIp[] and locNumStatesForIp[], respectively (lines 20 and 21). As
a next step, parallel prefix sums over these arrays are performed (lines 22–24).
The results of these prefix sums then allows to properly resize the resulting
basis arrays (line 25) and to find out, for each ip, where to store generated
basis data into them.

3. Within the third loop, the basis data for process-local (ip, in) pairs are finally
calculated and stored into corresponding arrays (lines 33–41).

The additional advantage of the proposed solution is that data are not
appended into arrays; instead, they are written at already-known positions. This
avoids memory reallocations, which, when performed frequently, might consid-
erably hinder scalability in multi-threaded programs.

Finally, to prevent redundant calculations within loops, we integrated several
software cache data structures into the code. These are not shown in Algorithm 2
due to text space limitations; however, they also contribute to the higher effi-
ciency of the new version of basis generation procedure. These caches are mostly
thread-local and are implemented by arrays (C++ vectors) or binary search trees
(C++ maps).

4 Experiments

We carried out experiments to compare the performance of the original and new
versions of basis generation procedure. For these experiments, we utilized our
test-bed machine that contained two 10-core Intel Xeon CPUs with Broadwell
microarchitecture and 128 GB of memory. For measurements, we used LSU3shell
in a so-called simulation mode; it allows to run only a single MPI process, which
generates its local basis block based on chosen N , I, and J parameters. Since
the basis generation is generally very well balanced across MPI processes, such
an approach provides runtimes similar as if the full basis would be generated
on a hypothetical HPC system consisting of nodes identical with our test-bed
machine.2

2 Note that the simulation mode does not reflect the runtime of the MPI Allreduce

communication operation. However, such a reduction of a small array is generally
very fast. For instance, on Blue Waters it takes up to few seconds even if majority
of the nodes are involved [9].

348 D. Langr et al.

0.01

0.1

1

10

100

1000

10000

4 6 8 10 12

]s[
e

mitnur
noitarenegsisaB

Nmax

12C

20Ne

28Si

12C

20Ne

28Si

Fig. 3. Runtimes of original (solid lines) and optimized (dashed lines) basis generation
for various nuclei and different values of Nmax , measured for 20 OpenMP threads and
N = 211.

First, we compared basis generation runtimes for different nuclei as a function
of increasing Nmax . The results shown in Fig. 3 indicate, that the new optimized
parallel variant of Reshuffle routine reduced the basis generation runtime by
a factor of around 100 on a 20-core machine.

In the second experiment, we measured the basis generation runtime as a
function of growing N . The results are shown in Fig. 4 for the original Reshuffle
version and the optimized version with 1 and 20 OpenMP threads. The original
version was obviously insensitive to N , which may be attributed to the redundant
calculation of the whole dims[] array by all MPI processes. On the contrary, the
new version reduced the runtime significantly even for a single thread, which
was caused by all the proposed optimizations except of multi-threading. The
parallelization itself then additionally reduced the runtime approximately by
a factor of 8 utilizing the 20-core machine. We attribute such a relatively low
parallel efficiency to the limits of memory bandwidth together with the effects
of non-uniform memory architecture (NUMA).

Note that for the single-threaded run with N = 1, the whole basis was
generated by a single MPI process. Even though the optimized basis generation
iterated over (ip, in) indices 3 times, its runtime was only slightly higher than
the runtime of the original version.

Finally, we compared the basis generation runtime in a large-scale LSU3shell
run on Blue Waters (22366 nodes, N = 211) for 20Ne and Nmax = 10. It was
reduced from 2738 to 65 s, i.e., 42 times (matrix construction took 2934 s and
eigensolver 237 s). Such a speedup might seem low in comparison with the test-
bed machine, however, we need to take into account the following facts:

1. In our experience, the architecture of Cray XE6 nodes is considerably less
powerful than the Broadwell-based test-bed system, both in terms of CPU
power and memory bandwidth.

Scalable Parallel Construction of SU(3) Basis 349

1

10

100

1000

0 20 40 60 80 100 120 140 160 180 200 220

]s[
e

mitnur
n oitarenegsis aB

N

original

opt. 1 thread

opt. 20 threads

Fig. 4. Basis generation runtime as a function of growing N , measured for 12C nucleus,
Nmax = 12, and N ∈ {1, 5, 11, 33, 55, 111, 211}.

2. AMD CMT brings only slight improvement for LSU3shell; one therefore
should view Blue Waters nodes more as 16-core rather than 32-core shared-
memory machines.

3. In contrast to the simulation mode, the runtime on Blue Waters additionally
includes the MPI Allreduce communication operation.

5 Conclusions

The contribution of this paper is a new efficient scalable algorithm for generation
of many-nucleon basis in large-scale ab initio nuclear structure calculations. Our
implementation based on the hybrid MPI+OpenMP parallel programming model
reduced the basis generation runtime around 100 times on a commodity 20-
core machine and 42 times in a production large-scale run on Blue Waters.
The proposed algorithm eliminates the basis-generation bottleneck that have
heretofore hindered applications of SA-NCSM approach for ab initio modeling
of important collective and cluster nuclear states in medium- and light-mass
nuclei.

Acknowledgements. This work was supported by the Czech Science Foundation
under Grant No. 16-16772S. This work is also part of the “Collaborative Research:
Innovative ab initio symmetry-adapted no-core shell model for advancing fundamen-
tal physics and astrophysics” PRAC allocation support by NSF (award number ACI-
1516338), and is part of the Blue Waters sustained-petascale computing project, which
is supported by NSF (awards OCI-0725070 and ACI-1238993) and the state of Illinois
(Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and
its National Center for Supercomputing Applications). The authors acknowledge sup-
port from J.P. Draayer from the Louisiana State University, P. Tvrd́ık from the Czech
Technical University in Prague, P. Vrchota from Výzkumný a zkušebńı letecký ústav,
a.s., and M. Pajr from IHPCI.

350 D. Langr et al.

References

1. Dytrych, T., Launey, K., Draayer, J., Maris, P., Vary, J., Saule, E., Catalyurek,
U., Sosonkina, M., Langr, D., Caprio, M.: Collective modes in light nuclei from
first principles. Phys. Rev. Lett. 111(25), 252501 (2013). https://doi.org/10.1103/
PhysRevLett.111.252501

2. Dytrych, T., Maris, P., Launey, K., Draayer, J., Vary, J., Langr, D., Saule, E.,
Caprio, M., Catalyurek, U., Sosonkina, M.: Efficacy of the SU(3) scheme for ab
initio large-scale calculations beyond the lightest nuclei. Comput. Phys. Commun.
207, 202–210 (2016). https://doi.org/10.1016/j.cpc.2016.06.006

3. Elliott, J.P.: Collective motion in the nuclear shell model. I. Classification schemes
for states of mixed configurations. Proc. Roy. Soc. Lond. A: Math. Physi Eng. Sci.
245(1240), 128–145 (1958). https://doi.org/10.1098/rspa.1958.0072

4. Elliott, J.P.: Collective motion in the nuclear shell model. II. The introduction of
intrinsic wave-functions. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 245(1243),
562–581 (1958). https://doi.org/10.1098/rspa.1958.0101

5. Elliott, J.P., Harvey, M.: Collective motion in the nuclear shell model. III. The
calculation of spectra. Proc. Roy. Soc. Lond. A: Math. Phys. Eng. Sci. 272(1351),
557–577 (1963). https://doi.org/10.1098/rspa.1963.0071

6. Epelbaum, E., Krebs, H., Lee, D., Meißner, U.G.: Ab initio calculation of the Hoyle
state. Phys. Rev. Lett. 106, 192501 (2011). https://doi.org/10.1103/PhysRevLett.
106.192501

7. Hagen, G., Papenbrock, T., Hjorth-Jensen, M.: Ab initio computation of the 17F
proton halo state and resonances in A = 17 nuclei. Phys. Rev. Lett. 104, 182501
(2010). https://doi.org/10.1103/PhysRevLett.104.182501

8. Kleinrock, L.: Computer Applications. Queueing Systems, vol. 2, 1st edn. Wiley-
Interscience, Hoboken (1976)

9. Langr, D., Tvrd́ık, P., Šimeček, I., Dytrych, T.: Downsampling algorithms for large
sparse matrices. Int. J. Parallel Prog. 43(5), 679–702 (2014). https://doi.org/10.
1007/s10766-014-0315-8

10. Maris, P., Sosonkina, M., Vary, J.P., Ng, E., Yang, C.: Scaling of ab-initio nuclear
physics calculations on multicore computer architectures. Procedia Comput. Sci.
1(1), 97–106 (2010). https://doi.org/10.1016/j.procs.2010.04.012

11. Navrátil, P., Vary, J.P., Barrett, B.R.: Properties of 12C in the ab initio nuclear
shell model. Phys. Rev. Lett. 84, 5728–5731 (2000). https://doi.org/10.1103/
PhysRevLett.84.5728

12. Quaglioni, S., Navrátil, P.: Ab initio many-body calculations of n-3H, n-4He, p-
3,4He, and n-10Be scattering. Phys. Rev. Lett. 101, 092501 (2008). https://doi.
org/10.1103/PhysRevLett.101.092501

13. Rosensteel, G., Rowe, D.J.: Nuclear Sp(3, R) model. Phys. Rev. Lett. 38, 10–14
(1977). https://doi.org/10.1103/PhysRevLett.38.10

https://doi.org/10.1103/PhysRevLett.111.252501
https://doi.org/10.1103/PhysRevLett.111.252501
https://doi.org/10.1016/j.cpc.2016.06.006
https://doi.org/10.1098/rspa.1958.0072
https://doi.org/10.1098/rspa.1958.0101
https://doi.org/10.1098/rspa.1963.0071
https://doi.org/10.1103/PhysRevLett.106.192501
https://doi.org/10.1103/PhysRevLett.106.192501
https://doi.org/10.1103/PhysRevLett.104.182501
https://doi.org/10.1007/s10766-014-0315-8
https://doi.org/10.1007/s10766-014-0315-8
https://doi.org/10.1016/j.procs.2010.04.012
https://doi.org/10.1103/PhysRevLett.84.5728
https://doi.org/10.1103/PhysRevLett.84.5728
https://doi.org/10.1103/PhysRevLett.101.092501
https://doi.org/10.1103/PhysRevLett.101.092501
https://doi.org/10.1103/PhysRevLett.38.10

Parallel Exact Diagonalization Approach
to Large Molecular Nanomagnets

Modelling

Micha�l Antkowiak(B)

Faculty of Physics, Adam Mickiewicz University,
ul. Umultowska 85, 61-614 Poznań, Poland

antekm@amu.edu.pl

Abstract. The exact diagonalization method is used to calculate the
energy levels of ring-shaped molecular nanomagnets of different sizes
and spin numbers. Two-level hybrid parallelization is used to increase
the efficiency and obtain the optimally balanced workload. The results
of the successful runs of our application on two Tier-0 supercomputers
are presented with emphasis on the satisfactory speedup obtained by
threading the diagonalization process.

Keywords: Molecular nanomagnets · Exact diagonalization
High Performance Computing

1 Introduction

Molecular nanomagnets based on transition metal ions have been very inten-
sively investigated [8]. Their popularity is mostly due to the fact that quantum
phenomena characteristic for a single molecule (like, e.g., quantum tunnelling or
step like field dependence of magnetisation) can be observed in bulk samples.
It is possible because nanomolecules are magnetically shielded from each other
by organic ligands and the dominant interactions are those within the molecule.
There are also expectations that this kind of materials may find application in
quantum computing [4,9,16,18] and information storage [17].

A large family of molecular nanomagnets comprises ring-shaped molecules.
Most of them contain even number of antiferromagnetically interacting ions.
Only recently the first odd membered antiferromagnetic molecules have been
reported [5,6,11,12,19]. They are especially interesting because of magnetic frus-
tration which is expected to appear in this kind of materials.

Precise determination of the energy structure of ring-shaped molecular nano-
magnets is necessary to allow the calculations of the state dependent properties
such as local magnetisations or correlations [1,2,7,13,14]. An ideal tool for ful-
filling this task is the exact diagonalization (ED) of Hamiltonian matrix [3,15].
In this paper we present the testing results of the new version of our ED applica-
tion. We check the ability of our code to efficiently calculate the energy structure
of large spin systems taking advantage of the modern supercomputing facilities.
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 351–358, 2018.
https://doi.org/10.1007/978-3-319-78054-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_33&domain=pdf

352 M. Antkowiak

2 Physical Setup

The ring-shaped molecular nanomagnets can be modelled using the following
Heisenberg Hamiltonian:

H =
n∑

j=1

(
JjSj · Sj+1 + Dj(Sz

j)2 − gjµB
B · Sj

)
, (1)

where j denotes the positions of magnetic ions within a ring, Jj are the nearest-
neighbor exchange integrals between sites j and j +1, Sj is the spin operator of
the spin S of site j, Dj is the single-ion anisotropy of site j, B is the external
magnetic field, gj is the corresponding Landé factor and µB stands for the Bohr
magneton. We assume the periodic boundary conditions (j + n ≡ j) because of
the ring geometry of the molecule.

3 Exact Diagonalization Technique and HPC
Environment

To obtain the precise values of the magnetic properties of the model we use the
ED technique. The results obtained by this method are numerically accurate,
but a major constraint and challenge is the exponential increase of the size of
the matrix defined by (2S + 1)n, where n stands for the size of the system. It is
very helpful to exploit the symmetry of a given compound. If the magnetic field
is oriented along the z axis, the Hamiltonian takes a quasi-diagonal form (see
Fig. 1) in the basis formed by eigenvectors of the total spin projection Sz and
can be divided into a number of submatrices labelled by quantum number M
and the symmetry of the eigenstates.

We used the MPI [23] library to parallelize the processes of the diagonaliza-
tion of separate submatrices. For the most efficient use of computing time of all
processes we implemented the Longest Processing Time algorithm [10]. In the
final version of our code we applied ScaLAPACK library [22] which not only
accelerates the diagonalization process, but also allows to parallelize the diago-
nalization of a single submatrix over all the computational cores at a single node
with shared memory.

The access for two Tier-0 European supercomputers was awarded under the
PRACE Preparatory Access: Hazel Hen located at the Stuttgart Supercom-
puting Center (HLRS) [20] and MareNostrum at the Barcelona Supercomputing
Center (BSC) [21]. Hazel Hen is composed of 7712 compute nodes with a total of
185088 Intel Haswell E5-2680 v3 2.5 GHz compute cores. Each node has 128 GB
DDR4 memory at its disposal. MareNostrum consists of 3056 IBM DataPlex
DX360M4 compute nodes, for a total of 48896 physical Intel Sandy Bridge cores
running at 2.6 GHz. The most of the nodes (2752) have 32 GB of DDR3 mem-
ory each, however there are 128 nodes with 64 GB and another 128 with 128 GB
available. 42 nodes are heterogeneous and consist of both Intel Sandy Bridge and
Xeon Phi processors and have 64 GB of memory each. The peak performance of
the computers is 7.4 Pflops and 1.1 Pflops respectively.

Exact Diagonalization Approach to Large Molecular Nanomagnets Modelling 353

Fig. 1. Structure of the Hamiltonian matrix for chosen small ring-shaped spin systems
varying in dimension from 16 (left) to 12288 (right), in simple vector basis (top) and
exploiting the symmetry (bottom).

4 Results

We run a set of tests on both computers to check the scalability and performance
of the new version of our application. The main task was to check the efficiency
of the two-level hybrid parallelization (blocks in matrix representation and SMP
parallelization of math kernels to solve the eigenvalue problem for a given block)
applied for large systems.

We started with the S = 3/2, n = 10 model (representing the Cr10 molecule)
with 410 dimensional spin space. Exploiting the symmetry of the system we
obtain 60 submatrices from which the dimension of the largest one is 58152 and
it takes 25 GB of memory to store it in double precision. We run the tests for
the 8 and 16 SMP threads and without threading on both supercomputers. The
results are shown in Fig. 2. We were not able to compute the largest matrices
without threading due to time or memory limits, therefore in those cases we
use parallelized runs as a reference point for further analysis. We calculate the
speedup using the equation:

u =
tref
t
pref , (2)

where tref is the time of the calculation for the reference point i.e. the one with
the lowest number of threads used, t is the time of calculation for the current
point and pref is the number of threads for the reference point. We also show the
efficiency using following formula:

354 M. Antkowiak

E =
u

p
, (3)

where p is number of threads used. For small matrix (2245) the sequential run (in
the meaning of threading) is used as a reference point. On Hazel Hen computer
efficiency for 8 and 16 threads stays at the level of 0.8 whereas on MareNostrum
it drops down below 0.5. Although the sequential execution time is shorter for
the latter one (4.7 s comparing to Hazel Hen’s 6.7 s) it is longer for 16 threads
version (0.61 s and 0.53 s respectively). For the largest matrix in this model we
compare only the versions for 8 and 16 threads and we notice a small decrease of
efficiency to 0.96. It takes about 15300 s to calculate the 58152 matrix on Hazel
Hen whereas the execution time on MareNostrum fluctuates strongly varying
between 15300 s and 22200 s.

Fig. 2. Speedup u and efficiency E of the SMP parallelization of the diagonalization
process for different matrix sizes (denoted in the legend). The point for the lowest
number of used threads is always taken as a reference point. For the 68050 matrix
the results for 8 threads were obtained using one and two processes per node showing
significant difference in performance.

Another system tested on Hazel Hen was the S = 5/2, n = 8 model with 68

state space and 80 submatrices, with the dimension of the largest equal 68050
(35 GB). In that case the efficiency for 8 threads is 0.95 for 4 threads as a
reference point, for 16 threads however we notice significant drop to 0.63. This
may be caused by more intensive access to the shared memory. For 8 threads
half of the cores stay idle comparing to 16 threads version. We performed the
run for 8 threads in which 2 processes per node were used (16 cores per node)
and we noticed the significant drop down of the performance. Using this point
as a reference we obtained the efficiency of 0.84 for 16 threads (see Fig. 2).

The system with the same dimensional space as the S = 3/2, n = 10 is
the S = 1/2, n = 20 model (220). In this case however the distribution of the
submatrices is less favourable (see Fig. 3): 40 blocks of which the dimension of
the largest one is 92504 (64 GB). We were able to calculate all the energy levels
of the system only when 16 threads were applied. In that case it took over 17 h
to diagonalize the largest submatrix. The workload for this example is not even

Exact Diagonalization Approach to Large Molecular Nanomagnets Modelling 355

(see Fig. 4) because of the significant dominance of the two largest submatrices
diagonalization time over the others.

The test of the S = 9/2, n = 6 model (106) on the MareNostrum showed
slightly better performance than the other one discussed earlier for this com-
puter. For the largest matrix (27626) and the reference point for 4 threads the
efficiency obtained was 0.85 for 8 and 0.63 for 16 threads which is only slightly
lower than the results for S = 5/2, n = 8 model on Hazel Hen. We have also

Fig. 3. Sizes of the submatrices (labelled by quantum number M) for systems with
different spins S and numbers of sites n but with common state space equal 1048576.
With increasing S the number of submatrices increases, however the size of the largest
submatrices decreases significantly.

Fig. 4. Computing time balance for different systems, number of processes and threads.
First diagram concerns the S = 1/2, n = 20 using 16 threads, next three - S = 3/2, n = 10
using 8 threads and last two - S = 3/2, n = 10 using 16 threads. Uneven workload in
the first diagram is caused by the small number of submatrices and large differences in
their size. For S = 3/2 significant computing time decrease may be noticed when the
number of threads increases.

356 M. Antkowiak

tested the feature of running multiple parameter calculations (so called task
farming) for smaller systems (such as S = 3/2, n= 8 which represents the Cr8
molecule). We successfully run the application using 300 processes each using 4
threads obtaining well balanced workload over 75 nodes of the MareNostrum.

5 Conclusions

Our application was tested on two Tier-0 supercomputers proving usefulness in
the computation of energy levels of the models of ring-shaped molecular nano-
magnets. We are able to obtain well balanced workload among the assigned
computing resources although it is more difficult to achieve it for smaller spin
numbers because of the uneven distribution of the Hamiltonian submatrices.
Using two-level hybrid parallelization we are able to achieve reasonable efficiency,
moreover for large spin systems it is necessary to use threading to fit into time
limits of given machine. SMP parallelization is also recommended when running
to many processes on one node could exceed the memory limits and another
option is to waste the resources by leaving some cores idle. Useful method of
obtaining efficient workload for large sets of smaller spin systems is using the
task farming.

Above tests were run successfully on both tested supercomputers. For large
systems the Hazel Hen appeared to have a slightly better performance. With
faster one-level parallelization runs the MareNostrum proved its ability in cal-
culating smaller models. The results obtained during the Preparatory Access
would be useful for Project Access application.

Acknowledgments. We acknowledge PRACE for awarding us access to resource
MareNostrum based in Spain at Barcelona Supercomputing Center as well as Hazel
Hen in Germany at High Performance Computing Center Stuttgart.

References

1. Antkowiak, M., Koz�lowski, P., Kamieniarz, G.: Zero temperature magnetic frus-
tration in nona-membered s = 3/2 spin rings with bond defect. Acta Phys. Pol. A
121, 1102–1104 (2012)

2. Antkowiak, M., Koz�lowski, P., Kamieniarz, G., Timco, G., Tuna, F., Winpenny,
R.: Detection of ground states in frustrated molecular rings by in-field local mag-
netization profiles. Phys. Rev. B 87, 184430 (2013)

3. Antkowiak, M., Kucharski, �L., Kamieniarz, G.: Genetic algorithm and exact diag-
onalization approach for molecular nanomagnets modelling. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM
2015. LNCS, vol. 9574, pp. 312–320. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-32152-3 29

4. Ardavan, A., Rival, O., Morton, J., Blundell, S., Tyryshkin, A., Timco, G., Win-
penny, R.: Will spin-relaxation times in molecular magnets permit quantum infor-
mation processing? Phys. Rev. Lett. 98, 057201 (2007)

https://doi.org/10.1007/978-3-319-32152-3_29
https://doi.org/10.1007/978-3-319-32152-3_29

Exact Diagonalization Approach to Large Molecular Nanomagnets Modelling 357

5. Baker, M., Timco, G., Piligkos, S., Mathieson, J., Mutka, H., Tuna, F., Koz�lowski,
P., Antkowiak, M., Guidi, T., Gupta, T., Rath, H., Woolfson, R., Kamieniarz, G.,
Pritchard, R., Weihe, H., Cronin, L., Rajaraman, G., Collison, D., McInnes, E.,
Winpenny, R.: A classification of spin frustration in molecular magnets from a
physical study of large odd-numbered-metal, odd electron rings. P. Natl. Acad.
Sci. USA 109(47), 19113–19118 (2012)

6. Cador, O., Gatteschi, D., Sessoli, R., Barra, A.L., Timco, G., Winpenny, R.: Spin
frustration effects in an oddmembered antiferromagnetic ring and the magnetic
Möbius strip. J. Magn. Magn. Mater. 290–291, 55 (2005)

7. Florek, W., Kaliszan, L.A., Jaśniewicz-Pacer, K., Antkowiak, M.: Numerical analy-
sis of magnetic states mixing in the heisenberg model with the dihedral symmetry.
In: EPJ Web of Conferences, vol. 40, p. 14003 (2013). https://doi.org/10.1051/
epjconf/20134014003

8. Gatteschi, D., Sessoli, R., Villain, J.: Molecular Nanomagnets. Oxford University
Press, Oxford (2006)

9. Georgeot, B., Mila, F.: Chirality of triangular antiferromagnetic clusters as qubit.
Phys. Rev. Lett. 104, 200502 (2010)

10. Graham, R.: Bounds of multiprocessing timing anomalies. SIAM J. Appl. Math.
17, 416–429 (1969)

11. Hoshino, N., Nakano, M., Nojiri, H., Wernsdorfer, W., Oshio, H.: Templating odd
numbered magnetic rings: oxovanadium heptagons sandwiched by β-cyclodextrins.
J. Am. Chem. Soc. 131, 15100 (2009)

12. Kamieniarz, G., Florek, W., Antkowiak, M.: Universal sequence of ground states
validating the classification of frustration in antiferromagnetic rings with a single
bond defect. Phys. Rev. B 92, 140411(R) (2015)

13. Kamieniarz, G., Koz�lowski, P., Antkowiak, M., Sobczak, P., Ślusarski, T., Tomecka,
D., Barasiński, A., Brzostowski, B., Drzewiński, A., Bieńko, A., Mroziński, J.:
Anisotropy, geometric structure and frustration effects in molecule-based nano-
magnets. Acta Phys. Pol. A 121, 992–998 (2012)

14. Koz�lowski, P., Antkowiak, M., Kamieniarz, G.: Frustration signatures in the
anisotropic model of a nine-spin s = 3/2 ring with bond defect. J. Nanopart.
Res. 13(11), 6093–6102 (2011)

15. Koz�lowski, P., Musia�l, G., Antkowiak, M., Gatteschi, D.: Effective parallelization
of quantum simulations: nanomagnetic molecular rings. In: Wyrzykowski, R., Don-
garra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8385, pp.
418–427. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55195-
6 39

16. Lehmann, J., Gaita-Ariño, A., Coronado, E., Loss, D.: Spin qubits with electrically
gated polyoxometalate molecules. Nature Nanotech. 2, 312 (2007)

17. Mannini, M., Pineider, F., Sainctavit, P., Danieli, C., Otero, E., Sciancalepore, C.,
Talarico, A., Arrio, M.A., Cornia, A., Gatteschi, D., Sessoli, R.: Magnetic memory
of a single-molecule quantum magnet wired to a gold surface. Nature Mat. 8, 194
(2009)

18. Timco, G., Carretta, S., Troiani, F., Tuna, F., Pritchard, R., Muryn, C., McInnes,
E., Ghirri, A., Candini, A., Santini, P., Amoretti, G., Affronte, M., Winpenny, R.:
Engineering the coupling between molecular spin qubits by coordination chemistry.
Nature Nanotech. 4, 173–178 (2009)

19. Yao, H., Wang, J., Ma, Y., Waldmann, O., Du, W., Song, Y., Li, Y., Zheng, L.,
Decurtins, S., Xin, X.: An iron(III) phosphonate cluster containing a nonanuclear
ring. Chem. Commun. 16, 1745–1747 (2006)

https://doi.org/10.1051/epjconf/20134014003
https://doi.org/10.1051/epjconf/20134014003
https://doi.org/10.1007/978-3-642-55195-6_39
https://doi.org/10.1007/978-3-642-55195-6_39

358 M. Antkowiak

20. Cray XC40 (Hazel Hen). https://www.hlrs.de/en/systems/cray-xc40-hazel-hen/
21. MareNostrum. https://www.bsc.es/innovation-and-services/supercomputers-and-

facilities/marenostrum
22. ScaLAPACK – Scalable Linear Algebra PACKage. http://www.netlib.org/

scalapack/
23. The Message Passing Interface (MPI) Standard. http://www.mcs.anl.gov/

research/projects/mpi/

https://www.hlrs.de/en/systems/cray-xc40-hazel-hen/
https://www.bsc.es/innovation-and-services/supercomputers-and-facilities/marenostrum
https://www.bsc.es/innovation-and-services/supercomputers-and-facilities/marenostrum
http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/

Application of Numerical Quantum
Transfer-Matrix Approach in the

Randomly Diluted Quantum Spin Chains

Ryszard Matysiak1(B), Philipp Gegenwart2,3, Akira Ochiai4,
and Frank Steglich2

1 Institute of Engineering and Computer Education, University of Zielona Góra,
ul. prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland

r.matysiak@iibnp.uz.zgora.pl
2 Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
3 Experimental Physics VI, Center for Electronic Correlations and Magnetism,

University of Augsburg, 86159 Augsburg, Germany
4 Center for Low Temperature Science, Tohoku University, Sendai 980-8578, Japan

Abstract. The description of the numerical method of simulation based
on the quantum transfer-matrix (QTM) approach is presented for diluted
spin S = 1/2 chains. Modification of the extrapolation technique has
been used to obtain better accuracy of numerical results. The simulations
have been performed using the S = 1/2 antiferromagnetic Heisenberg
model with the transverse staggered field and a uniform magnetic field
perpendicular to the staggered field applicable for the diluted compound
(Yb1−xLux)4As3. In the model calculations the fixed microscopic param-
eters established earlier for the pure system have been assumed and the
random impurity distribution has been considered. The experimental
field-dependent specific heat of the polydomain diluted (Yb1−xLux)4As3
sample is compared with that calculated using the HPC resources and
providing additional verification of both the QTM method and the phys-
ical model.

Keywords: Quantum transfer-matrix method
Segmented Heisenberg antiferromagnet · One-dimensional spin chains

1 Introduction

One-dimensional systems have attracted the interest of physicists and chemists
for more then three decades. The theory of ideally uniform S = 1/2 antifer-
romagnetic Heisenberg chain in the magnetic field is well established and the
properties observed in real systems are usually well described. A new class of
rare-earth compounds like Yb4As3 have become the focus of attention. At high-
temperatures (T > 295 K), Yb4As3 is a homogeneous intermediate valent (IV)
metal with a cubic crystal structure. The Yb ions reside statistically on four

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 359–367, 2018.
https://doi.org/10.1007/978-3-319-78054-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_34&domain=pdf

360 R. Matysiak et al.

equivalent families of chains along the space diagonals of a cube [1]. At low-
temperatures the crystal Yb4As3 shrinks along the 〈111〉 direction getting a
trigonal structure and the Yb3+ ions form a one-dimensional spin S = 1/2 chain
along the 〈111〉 direction. The remaining Yb ions occupy nonmagnetic diva-
lent states. The neutron scattering experiments on pure Yb4As3 have confirmed
that the excitation spectrum is well described by the one-dimensional S = 1/2
isotropic Heisenberg model [2] in the absence of magnetic field. The interchain
interactions are small and ferromagnetic, leading to a spin-glass freezing at low
temperatures [3] which are below the region analyzed for the diluted samples.
The system has attracted a lot of interest due to its striking quantum properties
such as the energy gap formation in the magnetic field [4] and Bose-glass effects
recently observed [5].

To simulate the finite-temperature properties of the pure Yb4As3 and the
diluted (Yb1−xLux)4As3 systems we consider the S = 1/2 anisotropic Heisenberg
model with the antisymmetric Dzyaloshinskii–Moriya interaction [6,7]:

H = −
{

J

L∑
i=1

[
Ŝz

i Ŝz
i+1 + cos(2θ)

(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1

)]
+

+ J sin(2θ)
L∑

i=1

(−1)i
(
Ŝx

i Ŝy
i+1 − Ŝy

i Ŝx
i+1

)
+ g⊥μBB

L∑
i=1

Ŝx
i

}
, (1)

where L is the number of spins in the chain, J denotes the nearest–neighbour
interaction constant, B is the external magnetic field and g is the gyromagnetic
ratio.

The Dzyaloshinskii–Moriya interaction is eliminated by rotating the spins in
the x–y plane by the angle θ [8]:

Ŝx
i = cos(θ)Sx

i + (−1)i sin(θ)Sy
i

Ŝy
i = − (−1)i sin(θ)Sx

i + cos(θ)Sy
i

Ŝz
i = Sz

i (2)

Then the model is mapped onto

H = −J

L∑
i=1

SiSi+1 − g⊥μBBx
L∑

i=1

Sx
i − g⊥μBBy

s

L∑
i=1

(−1)i
Sy

i , (3)

where Bx = B cos(θ), By
s = B sin(θ) and B is the uniform external magnetic

field perpendicular to the one–dimensional spin–chain. If the magnetic field B is
applied along the spin–chain we replace θ = 0 and g⊥ = g‖.

Using hamiltonian (3) we can describe thermodynamic properties of the pure
and diluted system both in the absence and the presence of external magnetic
field. In the model (3) all the parameters are fixed and the values arise from
the earlier studies [8–10]. The g factors for the applied field along the directions
parallel and perpendicular to the spin chain amount to g‖ = 3.0 and g⊥ = 1.3,
the exchange coupling J/kB = −28 K and the transformation angle corresponds
to the value tan(θ) = 0.19.

Application of Numerical Quantum Transfer-Matrix Approach 361

2 Description of the Model and the Simulation Technique

To characterize the finite-temperature properties of one-dimensional systems
we need to calculate the free energy F = −kBT ln(Z) which is related to the
partition function Z defined as:

Z = Tre−βH , (4)

where β = 1/(kBT). The values of matrix elements of e−βH cannot be found
exactly for large L because of noncommuting operators in H so we look for the
systematic approximants Zm to the partition function Z, where m is the natural
number (the Trotter number). In the framework of the transfer-matrix method
[11,12], first we divide the Hamiltonian (3) into two noncommuting parts Hodd,
Heven:

H = Hodd + Heven = (H1,2 + . . . + HL−1,L) + (H2,3 + . . . + HL,1) (5)

each part defined by the commuting spin-pair operators Hi,i+1:

Hi,i+1 = −JSiSi+1 − 1
2
g⊥μB

[
Bx

(
Sx

i + Sx
i+1

)
+ (−1)i

By
s

(
Sy

i + Sy
i+1

)]
. (6)

For the infinite chains in the limit L → ∞ the partition function Zm is equal
to the highest eigenvalue [12–16] of the global transfer matrix W [17]:

Zm = Tr (W)L
, (7)

where

W =
2m∏
r=1

Lr,r+1 = (PL1,2)
2m

. (8)

The local transfer matrix L whose elements depend on V elements is defined as:

〈Sz
r,iS

z
r+1,i | Lr,r+1 | Sz

r,i+1S
z
r+1,i+1〉 = 〈Sz

r,iS
z
r,i+1 | Vi,i+1 | Sz

r+1,iS
z
r+1,i+1〉 , (9)

where Vi,i+1 = e−βHi,i+1/m and the shift operator P:

P ≡
∑
Sz
1

. . .
∑
Sz
2m

| Sz
2Sz

3 . . . Sz
2m−1S

z
2mSz

1 〉〈Sz
1Sz

2Sz
3 . . . Sz

2m | . (10)

In the absence of magnetic field, the numerical calculations can be performed
using the pure S = 1/2 isotropic Heisenberg model:

H = −J

L∑
i=1

SiSi+1. (11)

To confirm the reliability of the model (11), the QTM numerical results are
compared with the Bethe ansatz (BA) results [18] which is an exact method and

362 R. Matysiak et al.

then to establish the value of the exchange coupling J , the simulation results are
compared with the experimental specific heat data for Yb4As3 compound [9].
The values of others parameters in Hamiltonian (3) are estimated from compar-
ision with field-dependent specific heat experimental results of Yb4As3 [9].

In the presence of the external magnetic field applied perpendicular to the
spin-chain in the model (3), the system is nonuniform because of induced stag-
gered field, so we need define the partition function accordingly. Then the m-th
approximant Zm of the partition function Z is related to the two global transfer
matrix W1 and W2:

Zm = Tr (W1W2)
L/2 , where W1 =

(P2L1,2

)m
,W2 =

(P2L2,3

)m
(12)

To calculate the partition function for finite chains we need to define two
vectors which act in a Hilbert space H2m [11,17,19]:

| a〉 =
∑
{Sz}

2m∏
r=1

δSz
2r−1,Sz

2r
| Sz

1 . . . Sz
2m〉 , (13)

| b〉 =
∑
{Sz}

2m∏
r=1

δSz
2r,Sz

2r+1
| Sz

1 . . . Sz
2m〉 . (14)

Then the m-th approximant of the partition function is different for odd and
even number of sites in the chains:

Zm = 〈b | (W1W2)(L−1)/2 | a〉 for odd L , (15)

Zm = 〈b | (W1W2)L/2 | a〉 for even L . (16)

Taking the quantum limit m → ∞ in (12), the partition function Z can be
estimated and the corresponding thermodynamic function can be calculated. In
order to improve the accuracy of the extrapolation for low temperatures, we have
calculated the specific heat using the extrapolation polynomial of the degree k
(k = 1, . . . , kmax) in 1/m2.

Ck

(
1

m2

)
=

k∑
j=0

aj ·
(

1
m2

)j

. (17)

The approximants Cm correspond to mmin ≤ m ≤ mmax. For practical reasons,
in our procedure kmax ≤ 10. The value of the highest Trotter index mmax is
fixed and amounts to 14 or 15 in low temperatures and 13 in high temperatures.
The value mmin is subject to variation in the region 2 ≤ mmin ≤ mmax − 1.

The extrapolation procedure starts with mmin = 2 and is continued till
m = mmax−1. In each step the number of fitted points n (n = mmax−mmin+1)
is fixed and the extrapolations are performed with polynomials of the degree k
(1 ≤ k ≤ n − 1, but not more than 10). In this way for a given field and

Application of Numerical Quantum Transfer-Matrix Approach 363

0 2 4 6 8 10 12
n

0

1

2

3

4

5
C

/T
 [

J/
(K

2 m
ol

e)
]

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10
BA B=0 T

a)

T=1.5 K

0 2 4 6 8 10 12
n

0.2

0.3

C
/T

 [
J/

(K
2 m

ol
e)

]

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10
BA

B=0 T

b)

T=3.0 K

Fig. 1. The extrapolated values of specific heat versus the number of points n for which
the polynomials are constructed. Each particular plot corresponds to the polynomial
of a given degree k. The figures (a) and (b) have been drawn for infinite chains and
B = 0 T with T = 1.5 K and T = 3 K, respectively. The QTM results are presented
by symbols in reference to the Bethe ansatz results (dotted line).

temperature we obtain a set of extrapolated values for different values of n and
k and we can present the variation of the data with n for the fixed degree k of
the polynomial.

The results of the analysis of the extrapolated specific heat values accord-
ing to the above procedure are shown in Fig. 1. To check the accuracy of the
extrapolations performed for infinite chains, the plots were referred to the value
obtained on the basis of the Bethe ansatz approach [18] which is shown as a dot-
ted line in Fig. 1. As demonstrated, the convergence depends significantly on the
degree k of the polynomial. The convergence of the extrapolated values is much
better for higher temperatures and implies higher accuracy of the numerical
estimates.

To describe the magnetic specific heat of diluted (Yb1−xLux)4As3 we need
to calculate the contribution CL of a finite chain with L sites and to find the
probability distribution. Assuming the uniform distribution of non–magnetic
Lu–ions among the chains, each site in the Yb3+–chain is randomly occupied
by a magnetic ion with a probability p = 1 − x. The probability of finding a
chain with L sites is pL(1 − p)2. The number of L–chains is nL = NpL(1 − p)2

(N → ∞ is the total chain length and is much larger than the cluster length)
and the total number of all L-chains is given by the following sum:

nt =
∞∑

L=1

nL = N

∞∑
L=1

pL(1 − p)2 = N(1 − p)2
∞∑

L=1

pL = N(1 − p)p. (18)

364 R. Matysiak et al.

Finally, we obtain the specific heat per spin:

C = x

∞∑
L=1

ωLCL, (19)

where the probability distribution of chains with L sites [20]:

ωL = pL−1(1 − p). (20)

For each temperature we have calculated within the QTM technique the specific
heat C(L) for L ≤ 30. Our specific heat results for two temperatures (T = 7
and T = 14 K) and two configurations of magnetic field are shown in Fig. 2.
The open symbols represent the specific heat for various numbers of sites L. The
filled symbols represent specific heat data whose we have obtained using QTM
technique for infinite chains. Those results are consistent with exact Bethe ansatz
results [18]. For sufficiently large L > L0 we can estimate the specific heat by
the linear function and finally, specific heat for whole range of L [21]:

C = x2 ·
L0∑

L=1

(1 − x)L · C(L)L + C(L > L0). (21)

We emphasize that the value L0 exceeds the sizes where the domain of the
exact diagonalization technique is applicable [21,22]. Moreover, the computa-
tional complexity of the QTM estimates CL increases lineary with L which is
additional advantage with respect to other techniques [14].

0 0.1 0.2 0.3
1/L

0
0 0.1 0.2 0.3 0.4

1/L

0

0.1

0.2

0.3

0.1

0.2

0.3

0.4

T = 7 K
T = 14 K

T = 7 K
T = 14 K

B⊥

⊥

 = 12 T · sin(70°)= 12 T

B
z

B
z

 = 0
B = 0

b)a)

Fig. 2. Size dependence of specific heat calculated for finite segments with different
number of sites L (open symbols). The filled symbols are the simulation results corre-
sponding to the infinite chains. The external magnetic field is applied along the spin
chain (a) and perpendicular to the spin chain (b).

Application of Numerical Quantum Transfer-Matrix Approach 365

3 The Results of the Numerical Simulations
and Discussion

The QTM method described has been tested with respect to convergence in
the Trotter index m and the size L, and has been applied to simulation via
the Heisenberg model (3) of the experimental field-dependent specific heat data
for diluted (Yb1−xLux)4As3 system of particular interest [5]. In order to calcu-
late magnetic specific heat we assumed that 25% of the domains in the poly-
domain single cristal sample were oriented in parallel and 75% were oriented
perpendicular to the direction of the applied field. The effective magnetic field
Beff = B sin(70◦) is assumed to be oriented in the direction perpendicular to
the chain [5]. Finally, the numerical specific heat result is given by:

C(T,B) = 0.75 · C⊥(T,Beff) + 0.25 · C‖(T,B) . (22)

The results of simulations and experimental data are shown in the Fig. 3 for the
concentration of impurities x = 3% and for two different values of magnetic field
B = 6 T and B = 15 T. The experimental data supplement those published
before [5] and were measured using the same protocol.

As demonstrated in Fig. 3, the reliability of the simulation method and the
model applied have been strongly verified. The simulations require the HPC
recourses as far as the temporal and memory complexity are concerned. They
can be efficiently parallelized [17,23–25] as the traces in (7) and (12) refer to

0 5 10 15
T [K]

0

0.05

0.1

0.15

0.2

0.25

C
/T

 [
J/

(K
2 ·

m
ol

e)
]

(Yb
0.97

Lu
0.03

)
4
As

3
 (B=6 T)

QTM x = 3% (B=6 T)
(Yb

0.97
Lu

0.03
)
4
As

3
 (B=15 T)

QTM x = 3% (B=15 T)

Fig. 3. Comparision between experiment and numerical results for the diluted samples
subject to an applied field. The field applied is B = 6 T and 15 T. The concentration
of nonmagnetic impurities x = 3%.

366 R. Matysiak et al.

the independent vectors in the Hilbert space. The finite size contributions CL,
depending on temperature and field, can be also evaluated for each L separately,
i.e. in parallel.

In conclusion, we have presented the numerical QTM approach to character-
ize the finite temperature magnetic properties of the diluted (Yb1−xLux)4As3
system. We have successfully compared the results of our QTM simulations
with the experimental findings. We have enhanced evidence that the spin model
worked out for the pure compound Yb4As3 can also explain the specific heat
results for the diluted systems, using their random distribution.

Acknowledgement. We thank for an access to the HPC resources in PSNC Poznań
(Poland).

References

1. Köppen, M., Lang, M., Helfrich, R., Steglich, F., Thalmeier, P., Schmidt, B., Wand,
B., Pankert, D., Benner, H., Aoki, H., Ochiai, A.: Phys. Rev. Lett. 82, 4548 (1999)

2. Kohgi, M., Iwasa, K., Mignot, J.-M., Ochiai, A., Suzuki, T.: Phys. Rev. B 56,
R11388 (1997)

3. Schmidt, B., Aoki, H., Cichorek, T., Custers, J., Gegenwart, P., Kohgi, M., Lang,
M., Langhammer, C., Ochiai, A., Paschen, S., Steglich, F., Suzuki, T., Thalmeier,
P., Wand, B., Yaresko, A.: Phys. B 300, 121 (2001)

4. Kohgi, M., Iwasa, K., Mignot, J.-M., Fak, B., Gegenwart, P., Lang, M., Ochiai, A.,
Aoki, H., Suzuki, T.: Phys. Rev. Lett. 86, 2439 (2001)

5. Kamieniarz, G., Matysiak, R., Gegenwart, P., Ochiai, A., Steglich, F.: Phys. Rev.
B 94, 100403(R) (2016)

6. Oshikawa, M., Ueda, K., Aoki, H., Ochiai, A., Kohgi, M.: J. Phys. Soc. Jpn. 68,
3181 (1999)

7. Shiba, H., Ueda, K., Sakai, O.: J. Phys. Soc. Jpn. 69, 1493 (2000)
8. Shibata, N., Ueda, K.: J. Phys. Soc. Jpn. 70, 3690 (2001)
9. Matysiak, R., Kamieniarz, G., Gegenwart, P., Ochiai, A.: Phys. Rev. B 79, 224413

(2009)
10. Iwasa, K., Kohgi, M., Gukasov, A., Mignot, J.-M., Shibata, N., Ochiai, A., Aoki,

H., Suzuki, T.: Phys. Rev. B 65, 052408 (2002)
11. Delica, T., Leschke, H.: Phys. A 168, 736 (1990)
12. Kamieniarz, G., Bieliński, M., Renard, J.-P.: Phys Rev. B 60, 14521 (1999)
13. Kamieniarz, G., Matysiak, R., D’Auria, A.C., Esposito, F., Esposito, U.: Phys.

Rev. B 56, 645 (1997)
14. D’Auria, A.C., Esposito, U., Esposito, F., Gatteschi, D., Kamieniarz, G., Wa�lcerz,

S.: J. Chem. Phys. 109, 1613 (1998)
15. Barasiński, A., Kamieniarz, G., Drzewiński, A.: Comput. Phys. Commun. 182,

2013 (2011)
16. Barasiński, A., Kamieniarz, G., Drzewiński, A.: Phys. Rev. B 86, 214412 (2012)
17. Kamieniarz, G., Matysiak, R.: Comput. Mater. Sci. 28, 353 (2003)
18. Johnston, D.C., Kremer, R.K., Troyer, M., Wang, X., Klümper, A., Bud’ko, S.L.,

Panchula, A.F., Canfield, P.C.: Phys. Rev. B 61, 9558 (2000)
19. Kamieniarz, G., Matysiak, R.: J. Comput. Appl. Math. 189, 471 (2006)
20. Asakawa, H., Matsuda, M., Minami, K., Yamazaki, H., Katsumata, K.: Phys. Rev.

B 57, 8285 (1998)

Application of Numerical Quantum Transfer-Matrix Approach 367

21. Matysiak, R., Gegenwart, P., Ochiai, A., Antkowiak, M., Kamieniarz, G., Steglich,
F.: Phys. Rev. B 88, 224414 (2013)

22. Kamieniarz, G., Matysiak, R., D’Auria, A.C., Esposito, F., Benelli, C.: Eur. Phys.
J. B 23, 183 (2001)

23. Kamieniarz, G., Matysiak, R., D’Auria, A.C., Esposito, F., Benelli, C.: Application
of parallel computing in the transfer — matrix simulations of the supramolecules
Mn6 and Ni12. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J.
(eds.) PPAM 2001. LNCS, vol. 2328, pp. 502–509. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-48086-2 55

24. Kamieniarz, G., Matysiak, R.: Deterministic large-scale simulations of the low-
dimensional magnetic spin systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki,
M., Waśniewski, J. (eds.) PPAM 2003. LNCS, vol. 3019, pp. 1091–1098. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24669-5 141

25. Antkowiak, M., Kucharski, �L., Matysiak, R., Kamieniarz, G.: Comput. Methods
Sci. Technol. 22, 87 (2016)

https://doi.org/10.1007/3-540-48086-2_55
https://doi.org/10.1007/978-3-540-24669-5_141

Minisymposium on High Performance
Computing Interval Methods

A New Method for Solving Nonlinear
Interval and Fuzzy Equations

Ludmila Dymova and Pavel Sevastjanov(B)

Institute of Computer and Information Sciences,
Czestochowa University of Technology, Dabrowskiego 73,

42-201 Czestochowa, Poland
{dymowa,sevast}@icis.pcz.pl

Abstract. In this paper, a new concept called “interval extended zero”
method which recently was used for solving interval and fuzzy linear
equations is adapted to the solution of nonlinear interval and fuzzy equa-
tions. The known “test” example of quadratic fuzzy equation is used to
perform the advantages of a new method. In this example, only the pos-
itive solution can be obtained using known methods, whereas generally
a negative fuzzy root can exits too. The sources of this problem are
clarified. It is shown that opposite to the known methods, a new app-
roach makes it possible to get both the positive and negative solutions
of quadratic fuzzy equation. Generally, the developed method can be
applied for solving a wide range of nonlinear interval and fuzzy equa-
tions if some initial constraints on the bounds of solution are known.

Keywords: Interval nonlinear equation · Fuzzy nonlinear equation

1 Introduction

Although the problem of solving nonlinear interval and fuzzy equations is of
perennial interest [1–6,8,11,13,14], to date there are no universal methods for
solving such equations proposed in the literature. Therefore, this problem is now
open.

There are many different numerical methods proposed in the literature for
solving interval and fuzzy equations including such complicated as Neural Net
solutions [4,5] and fuzzy extension of Newton method [1,2], but only particular
solutions valid in specific conditions were obtained. For example, only a positive
root of the quadratic fuzzy equation have been obtained in [1,3], although a
negative solution can exist too.

To alleviate these problems in the case of linear interval and fuzzy equations,
in [15,16] we proposed a new “interval extended zero” method. It was presented
earlier as a useful heuristic [9] which makes it possible to solve the system of
linear interval equations. In the current paper, we show that “interval extended
zero” method may be successfully used for solving nonlinear interval and fuzzy

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 371–380, 2018.
https://doi.org/10.1007/978-3-319-78054-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_35&domain=pdf

372 L. Dymova and P. Sevastjanov

equations. Using the same example as in [1,3], we get not only the positive fuzzy
solution of quadratic fuzzy equation, but the negative too.

The rest of the paper is set out as follows. Section 2 is devoted to presentation
of “interval extended zero” method in the case of quadratic interval and fuzzy
equations. Section 3 concludes with some remarks.

2 Fuzzy Solutions of Nonlinear Interval and Fuzzy
Equations

The general approach described in previous section can be adapted for solving
nonlinear equations. The method we develop in this section can be applied for
solving a wide range of nonlinear interval and fuzzy equations if some initial
constraints on the bounds of solutions are known.

Nevertheless, to present our method more transparent, we consider the well
known example of quadratic fuzzy equation [1,3] that factually can be treated
as the “test” task:

ax2 + bx = c, (1)

where a = (3, 3, 4, 5), b = (1, 2, 3), c = (1, 1, 2, 3) are trapezoidal and triangular
fuzzy numbers (see Fig. 1). In [1,3], the positive fuzzy solution of Eq. (1) with
these fuzzy parameters was obtained (see Fig. 2). Although it is stated in [1,3]
that Eq. (1) have no a negative fuzzy root, we obtain such root. Moreover, using
the results of our analysis in [15,16], we clarify the origins of the problem the
authors of [1,3] faced with.

Fig. 1. Fuzzy parameters of Eq. (1)

As we prefer to use the α-cut representation of fuzzy numbers, fuzzy Eq. (1)
is decomposed to the set of interval equations on the corresponding α-cuts.
Obviously, when dealing with Eq. (1), on the lowest α-cut, i.e., for α = 0, we get

[3, 5]x2 + [1, 3]x = [1, 3]. (2)

Consider the case of [x] > 0, i.e., x, x > 0. Then from Eq. (2) we obtain

3x2 + x = 1, 5x2 + 3x = 3

and finally we obtain the approximate formal (algebraic) solution x =
0.4343, x = 0.5307.

A New Method for Solving Nonlinear Interval and Fuzzy Equations 373

Fig. 2. Positive fuzzy root of Eq. (1) obtained in [1, 4]

Nevertheless, in the assumption of negative x < 0, i.e., x, x < 0, from Eq. (2)
we get

3x2 + 3x = 1, 5x2 + x = 3

and “...x ∼= −0.629, x ∼= −0.98 and therefore the negative root does not exist”
[1].

To clarify the origins of this problem, let as consider the simplest interval
linear equation [a]x = [b], where [a] and [b] are intervals. Using classical interval
arithmetic rules [12], from this equation we get [ax, ax] = [b, b] and finally: x = b

a ,

x = b
a .

Consider some examples.
For [a] = [3, 4], [b] = [1, 2] from x = b

a , x = b
a we get x = 0.333, x = 0.5, for

[a] = [1, 2], [b] = [3, 4] we get x = 3, x = 2, for [a] = [3, 4], [b] = [0.7, 0.8] we get
x = 0.23, x = 0.2.

It is seen that interval equation [a]x = [b] often have only inverted formal
interval solution, i.e., such that x > x. Obviously, in the case of the degenerated
[b], i.e., b = b only inverted solutions can be obtained. Of course in the frame-
works of directed interval arithmetic, modal interval arithmetic or the extended
interval arithmetic developed by Kaucher [10], inverted interval solutions make
a sense from purely mathematical point of view. But generally it is hard to
interpret inverted intervals in economic or mechanic terms.

It is seen that exact correct (noninverted) formal solutions of interval equa-
tion [a]x = [b] exist only in some special conditions. Therefore, only what we
can say is that the interval equation in the form of [a]x = [b] is not a reliable
representation of the interval equation if we are looking for approximate formal

374 L. Dymova and P. Sevastjanov

(algebraic) solution. On the other hand, the united solution set (often called
simply solution set), tolerable solution set and controllable solution set [17] can
be analyzed, but this is out of scope of the current paper.

We can see that Eq. (2) has the structure similar to that of [a]x = [b] which is
an unreliable representation of the interval equation problem if we aim to obtain
an approximate noninverted formal solution. As with lowering of width of the
right hand side of [a]x = [b] this equation can provide inverted interval roots,
we can expect such results from nonlinear Eq. (2) as well. For example, changing
c = (1, 1, 2, 3) by the more narrow value c1 = (1, 1.5, 2), instead of (2) we get
the equation [3, 5]x2 + [1, 3]x = [1, 2] and finally 3x2 + x = 1, 5x2 + 3x = 2. The
positive roots of these equations are x = 0.4343, x = 0.4. So we have inverted
interval solution, x > x.

To avoid above problems, at first we represent Eq. (1) on each α-cut in the
form of interval equation [a]x2 + [b]x − [c] = 0.

In the spirit of “interval extended zero” method described in [15,16], we
represent Eq. (1) in the following form:

[a, a][x, x]2 + [b, b][x, x] − [c, c] = [−y, y], (3)

where y is the undefined parameter (see [15,16]) and index α is omitted for the
simplicity. Using conventional interval arithmetic rules, from Eq. (3) we get

[ax + b, ax + b][x, x] − [c, c] = [−y, y]. (4)

Firstly, consider the case of positive interval root of Eq. (4), i.e., x, x > 0. Then
from (4) we obtain

ax2 + bx − c = −y, ax2 + bx − c = y. (5)

The sum of Eq. (5) results in

ax2 + bx − c + ax2 + bx − c = 0. (6)

As in the case of real valued a, b, c, the positive root of (1) is presented by the
expression x = −b+

√
b2+4ac
2a , the “natural constraints” on the positive interval

solution of (6) can be represented as follows:

xmin =
−b +

√
b2 + 4ac

2a
, xmax =

−b +
√

b
2

+ 4ac

2a
. (7)

Similar to the case of linear interval equation (see [15,16]) we consider the real
valued (degenerated) solution of Eq. (6), xm, as the natural top bound for posi-
tive x, i.e., x ≤ xm and bottom bound for positive x, i.e., xm ≤ x. For the case
of x = x = xm from (6) we get

xm =
−(b + b) +

√
(b + b)2 + 4(a + a)(c + c)

2(a + a)
. (8)

A New Method for Solving Nonlinear Interval and Fuzzy Equations 375

Equation (6) with described above constraints xmin ≤ x ≤ xm, xm ≤ x ≤ xmax
is a typical Constraint Satisfaction Problem [7] and its interval solution can be
obtained. From Eq. (6) we get the expressions

x = f(x) =
−b+

√
b2 + 4a(c+ c− ax2 − bx)

2a
, x = f(x) =

−b+

√
b
2
+ 4a(c+ c− ax2 − bx)

2a
.

Generally, the interval solution of above constraint satisfaction problem can
be represented as follows:

[x] = [xmin, xm] ∩ [x∗
1, x

∗
2], [x] = [xm, xmax] ∩ [x∗

1, x
∗
2], (9)

where

x∗
1 = min f(x), x∗

2 = max f(x) (xm ≤ x ≤ xmax);
x∗
1 = min f(x), x∗

2 = max f(x) (xmin ≤ x ≤ xm).

It is easy to see that in our case

x∗
1 = −b+

√
b2+4a(c+c−ax2

max−bxmax)

2a , x∗
2 = −b+

√
b2+4a(c+c−ax2

m−bxm)

2a ,

x∗
1 =

−b+

√
b
2
+4a(c+c−ax2

m−bxm)

2a , x∗
2 =

−b+

√
b
2
+4a(c+c−ax2

min−bxmin)

2a .

From (9) we obtain the following interval solution

[x] = [xmin, xmax], [x] = [xmin, xmax], (10)

where xmin = max(xmin, x
∗
1), xmax = min(xm, x∗

2), xmin = max(xm, x∗
1), xmax =

min(xmax, x
∗
2).

As in the linear case (see [15,16]), substituting the widest possible inter-
val solution [xmin, xmax] into Eq. (4) we get the maximal value of y, i.e., ymax,
and substituting in this equation the shortness possible solution [xmax, xmin]=
[xm, xm] we obtain ymin. As in the linear case, the formal interval solution (10)
factually represents the continuous set of nested interval solutions of Eq. (4) and
we can use the expression (see [15,16]) η = 1− y−ymin

ymax−ymin
to calculate the values

of y on the η-cuts. For η rising from 0 to 1 using the above expression for η we
get the values of y and substituting them into (5) we obtain the set of interval
solutions [x, x]η on the corresponding η-cuts. In Fig. 3, the positive fuzzy solution
for the lowest α-cut (a = [3, 5], b = [1.3], c = [1, 3]) is presented.

Using the proposed method, the negative root (x, x < 0) of fuzzy Eq. (4) can
be obtained as well. For this case we get the following set of expressions:

ax2 + bx − c = −y, ax2 + bx − c = y. (11)

ax2 + bx − c + ax2 + bx − c = 0. (12)

xm =
−(b + b) −

√
(b + b)2 + 4(a + a)(c + c)

2(a + a)
. (13)

376 L. Dymova and P. Sevastjanov

xmin =
−b −

√
b
2

+ 4ac

2a
, xmax =

−b −
√

b2 + 4ac

2a
. (14)

x = f(x) =
−b −

√
b
2

+ 4a(c + c − ax2 − bx)
2a

,

x = f(x) =
−b −

√
b2 + 4a(c + c − ax2 − bx)

2a
. (15)

[x] = [xmin, xm] ∩ [x∗
1, x

∗
2], [x] = [xm, xmax] ∩ [x∗

1, x
∗
2], (16)

where x∗
1 = min f(x), x∗

2 = max f(x) (xm ≤ x ≤ xmax); x∗
1 = min f(x),

x∗
2 = max f(x) (xmin ≤ x ≤ xm).

The numerical algorithm we have used to obtain the negative root is similar
to that we have presented above for the positive root. The negative fuzzy solution
for the lowest α-cut (a = [3, 5], b = [1.3], c = [1, 3]) is presented in Fig. 3.

Fig. 3. The fuzzy roots of quadratic interval equation: 1, 3-fuzzy roots obtained with
use of “interval extended zero” method, 2-interval solution from [1, 4]

It is seen that our positive fuzzy solution in the considered example is wider
than the interval solution obtained in [1,3]. Nevertheless, it does not mean that
the results from [1,3] are more “true” since the methods proposed in [1,3] do not
provide negative fuzzy roots. Besides, our results may be substantially shortened
using the reduction of fuzzy solution to interval one with a help of defuzzification
procedure (see [15,16]).

The negative fuzzy solution presented in Fig. 3 is obtained for the lowest α-cut
(α = 0). To get the complete fuzzy solution of (11), the fuzzy solutions for other
α-cuts (0 < α ≤ 1) should be obtained using the algorithm described above.
The positive solutions obtained for α = 0, α = 0.5 and α = 1 are presented in
Fig. 4. For different α-cuts we have fuzzy solutions with different supports and
peaks. As a fuzzy value can be represented by the disjunction of its α-cuts, we

A New Method for Solving Nonlinear Interval and Fuzzy Equations 377

Fig. 4. The positive fuzzy root of Eq. (1)

treat the shaded area in Fig. 4 as the final fuzzy solution. It is interesting that
opposite to the result of [1,3] (see Fig. 2) it has the trapezoidal form and this
seems quite natural since some parameters of fuzzy equation (a and c in Eq. (1))
are trapezoidal fuzzy values too.

The numerical algorithm we have used to obtain the negative root is similar
to that we have presented above for the positive root. The result is presented
in Fig. 5. The resulting negative fuzzy root has the triangular form, whereas the
positive root (see Fig. 4) is of trapezoidal type. This fact is a consequence of the
special form of trapezoidal fuzzy parameters a and c (see Fig. 1), which have no
fuzzy left parts.

It is seen that the proposed method allows us to get positive and negative
approximate formal fuzzy solutions of interval quadratic and fuzzy equations,
whereas the known approaches do not provide negative solutions. In the case of
considered quadratic fuzzy equation, from Eq. (5) we have obtained the expres-
sions x = f(x), x = f(x) simplifying the analysis, but in the general case of
nonlinear fuzzy equation F (x) = 0, such expressions can not be always obtained.
Therefore, generally the algorithm of solving nonlinear fuzzy equation (the solu-
tion can be qualified as an approximate formal (algebraical) solution) can be
presented as follows:

1. Split out the nonlinear fuzzy equation F (x) = 0 into the set of α-cuts. For
each α-cut accomplish the steps 2–7.

2. Obtain [F (x, x)] = [−y, y] and

f1(x, x) = −y, f2(x, x) = y. (17)

These expressions are similar to (5). Finally from (17) obtain

g(x, x) = f1(x, x) − f2(x, x) = 0

378 L. Dymova and P. Sevastjanov

Fig. 5. The negative fuzzy root of Eq. (1).

(This equation is the analog of Eq. (6)).
3. Obtain xm as the numerical solution of g(x, x) = 0.
4. Define xmin and xmax as the natural constraints like in the case of quadratic

equation or as the external constraints originated from the mechanical or
economical features of the considered problem.

5. Let x(x) be a numerical solution of g(x, x) = 0 for given x and x(x) be a
numerical solution of g(x, x) = 0 for given x. Then obtain
x∗
1 = min x(x), (x ∈ [xm, xmax]), x∗

2 = max x(x), (x ∈ [xm, xmax]),
x∗
1 = min x(x), (x ∈ [xmin, xm]), x∗

2 = max x(x), (x ∈ [xmin, xm]),
[x] = [xmin, xm] ∩ [x∗

1, x
∗
2], [x] = [xm, xmax] ∩ [x∗

1, x
∗
2],

[x] = [xmin, xmax], [x] = [xmin, xmax],
where xmin = max(xmin, x

∗
1), xmax = min(xm, x∗

2), xmin = max(xm, x∗
1),

xmax = min(xmax, x
∗
2).

6. Substituting the widest possible interval solution [xmin, xmax] into (17) obtain
ymax and substituting in this equation the shortness solution [xmax, xmin]
obtain ymin (usually xmax = xmin = xm).

7. Introduce the set of η-cuts as follows:

η = 1 − y − ymin

ymax − ymin
. (18)

For each η-cut (0 ≤ η ≤ 1) from (18) obtain y, substitute it in (17) and obtain
the numerical solution of nonlinear system on the η-cut: [x, x]η.

To obtain the complete solution of initial nonlinear fuzzy equation F (x) = 0,
the steps 2–7 should be repeated for all α-cuts and solutions obtained on the
α-cuts should be disjointed into the final solution.

A New Method for Solving Nonlinear Interval and Fuzzy Equations 379

3 Conclusion

The aim of this paper is to present an extension of the so called “interval extended
zero” proposed in [15,16], to the case of nonlinear interval equations. The key
idea of this method is the treatment of “interval zero” as an interval symmetrical
with respect to 0. It is shown that such approach is a direct consequence of
interval subtraction operation. It is shown that the method provides a fuzzy
solution of nonlinear interval and fuzzy equations. It is important that opposite
to the known approaches, the method makes it possible to get both the positive
and negative fuzzy solutions of interval and fuzzy quadratic equation. It is shown
that the proposed method may be used for the solution of more complicated
fuzzy nonlinear equations and the corresponding general algorithm is presented
as well.

Acknowledgement. The research has been supported by the grant financed by
National Science Centre (Poland) on the basis of decision number DEC-2013/11/B/
ST6/00960.

References

1. Abbasbandy, S., Asady, B.: Newton’s method for solving fuzzy nonlinear equations.
Appl. Math. Comput. 159, 349–356 (2004)

2. Abbasbandy, S.: Extended Newton’s method for a system of nonlinear equations
by modified Adomian decomposition method. Appl. Math. Comput. 170, 648–656
(2005)

3. Buckley, J.J., Qu, Y.: Solving linear and quadratic fuzzy equations. Fuzzy Sets
Syst. 38, 43–59 (1990)

4. Buckley, J.J., Eslami, E.: Neural net solutions to fuzzy problems: the quadratic
equation. Fuzzy Sets Syst. 86, 289–298 (1997)

5. Buckley, J.J., Eslami, E., Hayashi, Y.: Solving fuzzy equations using neural nets.
Fuzzy Sets Syst. 86, 271–278 (1997)

6. Chang, J.-C., Chen, H., Shyu, S.-M., Lian, W.-C.: Fixed-point theorems in fuzzy
real line. Comput. Math. Appl. 47, 845–851 (2004)

7. Cleary, J.C.: Logical arithmetic. Future Comput. Syst. 2, 125–149 (1987)
8. Dubois, D., Prade, H.: Operations on fuzzy numbers. J. Syst. Sci. 9, 613–626 (1978)
9. Dymova, L., Gonera, M., Sevastianov, P., Wyrzykowski, R.: New method for inter-

val extension of Leontief’s input-output model with use of parallel programming.
In: Proceedings of the International Conference on Fuzzy Sets and Soft Comput-
ing in Economics and Finance, (FSSCEF), St. Petersburg, Russian, pp. 549–556
(2004)

10. Kaucher, E.: Interval analysis in the extended interval space IR. In: Alefeld,
G., Grigorieff, R.D. (eds.) Fundamentals of Numerical Computation (Computer-
Oriented Numerical Analysis). Computing Supplementum, vol. 2, pp. 33–49.
Springer, Vienna (1980). https://doi.org/10.1007/978-3-7091-8577-3 3

11. Kawaguchi, M.F., Da-Te, T.: A calculation method for solving fuzzy arithmetic
equations with triangular norms. In: Proceedings of 2nd IEEE International Con-
ference on Fuzzy Systems (FUZZ-IEEE), San Francisco, pp. 470–476 (1993)

12. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

https://doi.org/10.1007/978-3-7091-8577-3_3

380 L. Dymova and P. Sevastjanov

13. Nieto, J.J., Rodŕıguez-López, R.: Existence of extremal solutions for quadratic
fuzzy equations. Fixed Point Theory Appl. 3, 321–342 (2005)

14. Nieto, J.J., Rodŕıguez-López, R.: Contractive mapping theorems in partially
ordered sets and applications to ordinary differential equations. Order 22, 223–
239 (2005)

15. Sevastjanov, P., Dymova, L.: Fuzzy solution of interval linear equations. In:
Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 1392–1399. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68111-3 147

16. Sevastjanov, P., Dymova, L.: A new method for solving interval and fuzzy equa-
tions: linear case. Inf. Sci. 17, 925–937 (2009)

17. Shary, S.P.: A new technique in systems analysis under interval uncertainty and
ambiguity. Reliab. Comput. 8, 321–418 (2002)

https://doi.org/10.1007/978-3-540-68111-3_147
https://doi.org/10.1007/978-3-540-68111-3_147

Role of Hull-Consistency in the
HIBA USNE Multithreaded Solver

for Nonlinear Systems

Bart�lomiej Jacek Kubica(B)

Department of Applied Informatics, Warsaw University of Life Sciences,
ul. Nowoursynowska 159, 02-776 Warsaw, Poland

bartlomiej kubica@sggw.pl

Abstract. This paper considers incorporating a hull-consistency enforc-
ing procedure in an interval branch-and-prune method. Hull-consistency
has been used with interval algorithms in several solvers, but its imple-
mentation in a multithreaded environment is non-trivial. We describe
arising issues and discuss the ways to deal with them. Numerical results
for some benchmark problems are presented and analyzed.

Keywords: Nonlinear equations systems · Interval computations
Hull consistency · Multithreading · Solver

1 Introduction

In a series of papers, including [15,16,19,20] the author considered an inter-
val solver for nonlinear systems – targeted mostly at underdetermined equa-
tions systems – and its shared-memory parallelization (see also references in [19]
for the author’s other papers). The solver described in these papers is called
HIBA USNE (Heuristical Interval Branch-and-prune Algorithm for Underdeter-
mined and well-determined Systems of Nonlinear Equations) and is currently
available from the author’s ResearchGate profile under the GPL license [6].

In none of these papers (and in none of previous versions of HIBA USNE),
hull-consistency has been used.

2 Generic Algorithm

HIBA USNE uses interval methods. They are based on interval arithmetic oper-
ations and basic functions operating on intervals instead of real numbers (so that
result of an operation on numbers always belongs to the result of operation on
intervals that contain the numerical inputs). We shall not define interval opera-
tions here; the interested reader is referred to several papers and textbooks, e.g.,
[12,13].

The solver is based on the branch-and-prune (B&P) schema that can be
expressed by pseudocode presented in Algorithm 1.
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 381–390, 2018.
https://doi.org/10.1007/978-3-319-78054-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_36&domain=pdf

382 B. J. Kubica

Algorithm 1. Interval branch-and-prune algorithm
Require: L, f, ε
1: {L – the list of initial boxes, often containing a single box x(0)}
2: {Lver – verified solution boxes, Lpos – possible solution boxes}
3: Lver = Lpos = ∅
4: x = pop (L)
5: loop
6: process the box x, using the rejection/reduction tests
7: if (x does not contain solutions) then
8: discard x
9: else if (x is verified to contain a segment of the solution manifold) then

10: push (Lver, x)
11: else if (the tests resulted in two subboxes of x: x(1) and x(2)) then
12: x = x(1)

13: push (L, x(2))
14: cycle loop
15: else if (widx < ε) then
16: push (Lpos, x) {The box x is too small for bisection}
17: if (x was discarded or x was stored) then
18: if (L == ∅) then
19: return Lver, Lpos {All boxes have been considered}
20: x = pop (L)
21: else
22: bisect (x), obtaining x(1) and x(2)

23: x = x(1)

24: push (L, x(2))

The “rejection/reduction tests”, mentioned in the algorithm are described in
previous papers (specifically [19]), i.e.:

– switching between the componentwise Newton operator (for larger boxes) and
Gauss-Seidel with inverse-midpoint preconditioner, for smaller ones,

– a heuristic to choose whether to use or not the BC3 algorithm [19],
– a heuristic to choose when to use bound-consistency [20],
– sophisticated heuristics to choose the bisected component [16,19],
– an additional second-order approximation procedure [18],
– an initial exclusion phase of the algorithm (deleting some regions, not con-

taining solutions) – based on Sobol sequences [17,19].

Other possible variants (see, e.g., [15]) are not going to be considered.

3 Hull-Consistency

Hull-consistency (also known under the name of 2B-consistency) has been used
in several interval programs over the years; see, e.g., [7,8]. It can be defined as
follows.

Role of Hull-Consistency in the HIBA USNE 383

Definition 1. A box x = (x1, . . . ,xn)T is hull-consistent with respect to a con-
straint c(x1, . . . , xn), iff:

∀i xi = �{s ∈ xi | ∃x1 ∈ x1, · · · ∃xi−1 ∈ xi−1,∃xi+1 ∈ xi+1 · · · ∃xn ∈ xn

c(x1, . . . , xi−1, s, xi+1, . . . , xn)} .

Following [14], the symbol “�” denotes the interval hull.
Other words, x is hull-consistent iff for each i we can find two points xa and

xb, satisfying the property c, for which xa
i = xi and xb

i = xi.
Now, let us describe, how to check if a box is hull-consistent and how to

enforce hull-consistency on a box.

3.1 Algorithms for Enforcing Hull-Consistency

For simple constraints, checking and/or enforcing hull-consistency is relatively
simple.

As a simple example, let us consider an equation x1 +x2 −3 = 0. By obvious
symbolic transformations, we obtain formulae for both variables that can be
used to obtain their consistent domains:

x1 = 3 − x2 and
x2 = 3 − x1.

Using the above consistency operators, we can simply check consistency for any
box or compute its sub-box containing all consistent values. For instance, a box
[−4, 2]× [−2, 4] is not hull-consistent, but it can be reduced to the hull consistent
one, by applying:

x1 = x1 ∩ (3 − x2) = [−4, 2] ∩ [−1, 5] = [−1, 2],
x2 = x2 ∩ (3 − x1) = [−2, 4] ∩ [1, 7] = [1, 4].

This box is hull-consistent indeed, as points (−1, 4) and (1, 2) are solutions of
the initial constraint x1 + x2 − 3 = 0.

However, for a more sophisticated constraint, obtaining a consistent box is
not as straightforward. Let us consider the constraint:

x3
1 + x2

1 − exp(x2) = 0. (1)

Again, by relatively simple symbolic transformations we can extract x2 from
Eq. (1), but not x1. The solution is to decompose such an equation into prim-
itive ones, by adding additional variables and apply hull-consistency to such a
decomposed system. For the constraint (1), we could obtain:

t1 − x3
1 = 0,

t2 − x2
1 = 0,

t3 − t1 − t2 = 0,
t4 − exp(x2) = 0,

t3 − t4 = 0.

384 B. J. Kubica

Fig. 1. Expression tree of constraint (1)

The algorithm HC4 [7] (cf. also [11]) performs such a decomposition, creating
a tree of the initial constraint, where a variable corresponds to each node: By
traversing the tree forward and backward, we enforce hull-consistency on subse-
quent variables (Fig. 1).

3.2 ADHC Implementation

The ADHC library [5] (Algorithmic Differentiation and Hull Consistency enforc-
ing), developed by the author, contains procedures for constructing the expres-
sion tree and for the HC4 algorithm.

Thanks to the virtues of C++ template metaprogramming, the same source
code can be used to generate binary procedures computing function values, gra-
dients and Hesse matrices, and to generate the procedure creating the expression
tree, in the form of a dynamic data structure.

4 Hull-Consistency Vs Multithreading

Since the very beginning (cf. [15]) the HIBA USNE solver has been implemented
as parallel. The early version has been parallelized using OpenMP, but then the
author switched to Intel TBB (Threading Building Blocks [3]). Parallelization
of the HIBA USNE solver, i.e., of Algorithm 1, is done on several levels. Firstly,
operations on different boxes form different tasks that can be executed by dif-
ferent threads.

Also, some of the procedures applied on a single box are parallel. Such a con-
current implementations has been particularly useful for the procedure enforcing
bound-consistency [20], but enforcing box-consistency (see, e.g., [8]) can be par-
allelized, also – and such version is applied at least for the initial box.

Role of Hull-Consistency in the HIBA USNE 385

Parallel implementation of the HC4 algorithm is also possible, but it does
not seem worthwhile. The cost of enforcing hull-consistency is far smaller than
box-consistency (which, in particular, requires computing derivatives – at least
for BC3 and BC4 algorithms; cf. [7].

Hence, the HC4 implementation we use in the current version of the solver
(Beta 2.5; cf. Sect. 5). Still, it is not easy to implement the HC4 algorithm in
a MT-safe (multithreaded-safe) manner. The procedure requires the expression
tree representation. There are, in general, three possibilities:

– there is a shared expression tree and access to it is synchronized,
– there is a shared expression tree, but domains of variables associated to each

node are thread-specific,
– each thread has its own copy of the expression tree, to compute the domains

of variables for various boxes.

The first approach seems absolutely unacceptable for a solver that is supposed
to be scalable with the number of threads. The second one seems interesting, but
is somewhat cumbersome to implement. Also, it might result in suboptimal cache
usage as domains of each variable will have to be placed outside the node of the
expression tree. The third approach is currently implemented in HIBA USNE.
It uses some memory, as each of the threads has a separate copy of the data
structure (and this might become an issue for higher number of threads, e.g.,
on the MIC architecture, where 240 threads can work in parallel), but, in our
experiments, is seems to be acceptable.

5 Computational Experiments

Numerical experiments have been performed on a machine with two Intel Xeon
E5-2695 v2 processors (2.4 GHz). Each of them has 12 cores and on each core two
hyper-threads (HT) can run. So, 2×12×2 = 48 HT can be executed in parallel.
The machine runs under control of a 64-bit GNU/Linux operating system, with
the kernel 3.10.0-123.e17.x86 64 and glibc 2.17. They have non-uniform turbo
frequencies from range 2.9–3.2 GHz.

As there have been other users performing their computations also, we limited
ourselves to using 24 threads only.

The Intel C++ compiler ICC 15.0.2 has been used.
The solver has been written in C++, using the C++11 standard. The C-XSC

library (version 2.5.4) [2] was used for interval computations. The parallelization
was done with the packaged version of TBB 4.3 [3].

The following test problems have been considered: two underdetermined
ones: 5R planar and Puma7, and six well-determined: Brent10, BT50
(Broyden-tridiagonal), BB30 (Broyden-banded), BB24-mod, Transistor, EF200
(Extended-Freudenstein). Their formulation (and used accuracies) has been
described in [19,20] and references therein. Function BB24-mod is the Broyden-
banded function BB24 minus 1; such a minor modification results in a much
harder problem. It is worth noting that it was the function BroyN-mod that was

386 B. J. Kubica

used in previous papers ([15,19,20], etc.) under the name of the Broyden-banded
function.

Here we give used accuracies:

– 5R planar: ε = 0.02,
– Puma7: ε = 0.05,
– Brent10: ε = 10−7,
– BT50: ε = 10−6,
– BB30, BB24-mod: ε = 10−6,
– Transistor: ε = 10−8,
– EF200: ε = 10−6.

The following algorithm versions have been considered:

– “Beta 2.0” – HIBA USNE Beta 2.0, using box and bound-consistency, but no
hull-consistency,

– “HC only” – hull-consistency used instead of box-consistency and 3B consis-
tency, instead of bound-consistency,

– “Beta 2.5” – HIBA USNE Beta 2.5, combining box and hull-consistency, in a
manner similar to BC4 [7]: algorithm HC4 is used always and BC3 is applied
after it, but only if there is more than one occurrence of the variable in the
formula for the constraint.

Also, please note, execution times of parallel programs are to some extent
random. We try to present median results, but please note all of them may vary
in a few-seconds interval.

The following notation is used in the tables:

– fun.evals, grad.evals, Hesse evals – numbers of functions evaluations, func-
tions’ gradients and Hesse matrices evaluations (in the interval automatic
differentiation arithmetic),

– bisecs – the number of boxes bisections,
– preconds – the number of preconditioning matrix computations (i.e., per-

formed Gauss-Seidel steps),
– Sobol excl. – the number of boxes to be excluded generated by the initial

exclusion phase,
– Sobol resul. – the number of boxes resulting from the exclusion phase (cf.

[17,19]),
– bc3 – the number of calls of bc3revise; see [19],
– hc – the number of calls of hc enforce,
– 3B/bnd.cons. – the number of calls to the procedure enforcing a higher-order

consistency, i.e., – depending on the algorithm variant – bound-consistency,
3B consistency or a mixed one (when BC4 is used),

– pos.boxes, verif.boxes – number of elements in the computed lists of boxes
containing possible and verified solutions,

– Leb.pos., Leb.verif. – total Lebesgue measures of both sets,
– time – computation time in seconds.

Role of Hull-Consistency in the HIBA USNE 387

Table 1. Computational results for the “Beta 2.0” solver version

Problem 5R planar Puma7 Brent10 BT50 BB30 BB24-mod Transistor EF200

fun. evals 215,370,202 24,716,399 9,288,556 546,517,232 48,025,431 2,560,784,337 177,883,219 13,531,560

grad.evals 53,540,850 25,687,861 6,479,385 139,774,706 3,929,878 288,405,687 19,786,538 1,300,186

Hesse evals 307,648 357 264,252 30 30 91,564 127,749 200

bisections 5,445,519 1,718,076 50,299 617057 21,644 3,903,618 33,246 1,300

preconds 10,056,243 3,206,635 78,424 221427 26,019 6,225,697 67,554 2

bc3.rev 86,889,730 1,039,374 2,218,450 241,468,708 23,193,747 1,190,987,170 84,359,918 1,454,871

hc — — — — — — — —

3B/bnd.cons 110,745 222 95 0 48 8,190 10,408 0

pos.boxes 1,878,238 681,004 401 2 0 0 0 0

verif.boxes 3,458 202,694 820 1 1 1 1 1

Leb.poss 0.000333 3e-47 3e-83 1e-323 0.0 0.0 0.0 0.0

Leb.verif 1e-6 3e-11 1e-82 5e-324 3e-12 3e-233 2e-102 5r-324

time 54 14 11 209 11 662 32 39

Table 2. Computational results for the “HC only” algorithm version

Problem 5R planar Puma7 Brent10 BT50 BB30 BB24-mod Transistor EF200

fun. evals 34,874,569 20,989,100 898,053 279,863,240 65,789,226 n/a 2,615,238 11,031,042

grad.evals 35,558,735 23,491,133 1,696,949 310,595,033 88,392,235 n/a 3,637,807 1,080,256

Hesse evals 682,103 820 295,851 82,063 222 n/a 789,087 200

bisections 5,777,688 1,603,978 56,435 3,694,559 1,472,865 n/a 138,951 1,801

preconds 10,486,933 2,997,809 87,508 3,570,485 2,190,128 n/a 286,216 3

bc3.rev 15 21 1,092 1,056 4,656 n/a 52 2,400

hc 282,907 1,406 4,141 8,756,612 2,577,003 n/a 298,050 4,388

3B/bnd.cons 313,406 452 1,268 1 863,681 n/a 181,261 0

pos.boxes 1,872,259 627,067 421 0 0 n/a 0 0

verif.boxes 4,098 203,577 816 2 1 n/a 1 1

Leb.poss 0.000323 1e-47 8e-84 0.0 0.0 n/a 0.0 0.0

Leb.verif 2e-6 1e-12 5e-72 1e-323 5e-324 n/a 1e-112 5e-324

time 41 13 3 192 698 > 3,600 16 9

Table 3. Computational results for the “Beta 2.5” solver version

Problem 5R planar Puma7 Brent10 BT50 BB30 BB24-mod Transistor EF200

fun. evals 173,706,494 28,125,076 9,348,171 118,071 39,817,448 2,343,834,369 80,230,271 12,156,051

grad.evals 47,579,449 31,068,946 6,414,680 118,555 3,075,583 140,805,784 10,551,334 1,161,508

Hesse evals 333,876 637 260,631 60 270 94,705 318,036 200

bisections 5,471,725 2,124,805 50,193 1 16,574 1,265,552 53,239 1,298

preconds 10,087,309 3,947,726 78,336 6 19,441 1,771,075 100,787 2

bc3.rev 67,838,381 235,058 2,288,678 29,147 19,327,021 1,142,463,509 39,421,250 762,070

hc 94,045 1,282 713 325 31,932 2,471,674 110,407 3,314

3B/bnd.cons 117,320 393 99 1 65 6,465 48,197 0

pos.boxes 1,868,601 846,350 419 2 0 0 0 0

verif.boxes 3,415 247,477 820 0 1 1 1 1

Leb.poss 0.000334 2e-47 2e-82 1e-323 0.0 0.0 0.0 0.0

Leb.verif 1e-6 1e-12 7e-65 0.0 5e-7 4e-9 3e-118 5e-324

time 53 17 11 < 1 9 390 21 29

388 B. J. Kubica

For comparison, let us consider some results, obtained using another solver,
Realpaver [1] – a mature interval solver that can be considered the current state-
of-the-art:

– 5R-planar – 17 min (for Bisection precision = 2.0, much less accurate
than the presented solver) and did not cover the whole solution set (“Property:
non reliable process (some solutions may be lost)”).

– Brent10 – 55 sec to find all solutions (1065); parameter -number 2000 must
be set to loose no solution.

– Transistor – 30 sec to find the solution for the default setting.

6 Analysis of the Results

Replacing box- with hull-consistency resulted in a minor speedup, for 5R-planar
and Puma7 problems and a major one for Brent10, Transistor and Extended-
Freudenstein200 (see Tables 1 and 2. Hence for problems BT50, BB30 and BB24-
mod, we obtained a significant slowdown.

Combining both consistencies (Table 3) resulted in reasonable runtimes for
all problems. The time for problems BT50 and BB24-mod have been particularly
good – better than for any of the previous algorithm versions. Unfortunately, the
speedup for Brent10 and EF200 problems, that had been observed for the “HC
only” version, has not been preserved. The author has not managed to design a
better heuristic.

As for Realpaver – our solver performed better on all problems; in earlier ver-
sions (e.g., [20]), it had been outperformed for problems, where hull-consistency
was very efficient, like the Transistor problem.

7 Conclusions

We investigated incorporating of a hull-consistency enforcing procedure to the
interval nonlinear systems solver. Contrary to author’s earlier fears (see [19],
Sect. 3), we managed to implement this function in a MT-safe and MT-efficient
(yet not parallelized itself) manner.

In general, trying to replace box- with hull-consistency is often very worth-
while, but there are significant exceptions to this rule; in our experiments hull-
consistency turned out to be inefficient on various instances of the Broyden
function: BT50, BB30, BB24-mod.

Enforcing hull-consistency is less computationally intensive than box-
consistency, but the reduction of the box diameter is usually smaller. An excep-
tion to this rule are constraints, where a variable occurs only once; in such cases
hull-consistency is definitely superior to box-consistency. This is consistent with
results obtained by other researchers, e.g., [10]. Reasonable results have been
obtained for the algorithm version, combining hull- and box-consistency enforc-
ing procedures. Unfortunately, these results, while acceptable, are significantly
worse than using “HC only”, for some problems. As designing a better heuristic
seems difficult, using machine learning might be a proper direction [9].

Role of Hull-Consistency in the HIBA USNE 389

Acknowledgments. The author is grateful to Roman Wyrzykowski (Cz ↪estochowa
University of Technology) and the team of the MICLAB project [4], for providing the
great machine with Xeon and Xeon Phi processors, on which the computations have
been performed.

References

1. Realpaver: Nonlinear constraint solving and rigorous global optimization (2014).
http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver/

2. C++ eXtended Scientific Computing library (2015). http://www.xsc.de
3. Intel TBB (2015). http://www.threadingbuildingblocks.org
4. MICLAB project (2015). http://miclab.pl
5. ADHC, C++ library (2017). https://www.researchgate.net/publication/

316610415 ADHC Algorithmic Differentiation and Hull Consistency Alfa-05
6. HIBA USNE, C++ library (2017). https://www.researchgate.net/publication/

316687827 HIBA USNE Heuristical Interval Branch-and-prune Algorithm for
Underdetermined and well-determined Systems of Nonlinear Equations - Beta
25

7. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising hull and box
consistency. In: International Conference on Logic Programming, pp. 230–244. The
MIT Press (1999)

8. Benhamou, F., McAllester, D., Hentenryck, P.V.: CLP (intervals) revisited. In:
Logic Programming, Proceedings of the 1994 International Symposium, pp. 124–
138. The MIT Press (1994)

9. Goualard, F., Jermann, C.: A reinforcement learning approach to interval con-
straint propagation. Constraints 13(1–2), 206–226 (2008)

10. Granvilliers, L.: On the combination of interval constraint solvers. Reliable Com-
put. 7(6), 467–483 (2001)

11. Granvilliers, L., Benhamou, F.: Progress in the solving of a circuit design problem.
J. Global Optim. 20(2), 155–168 (2001)

12. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel
Dekker, New York (2004)

13. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht
(1996)

14. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Hen-
tenryck, P.: Standardized notation in interval analysis. Vychislennyie Tiehnologii
(Comput. Technol.) 15(1), 7–13 (2010)

15. Kubica, B.J.: Interval methods for solving underdetermined nonlinear equations
systems. Reliable Comput. 15, 207–217 (2011)

16. Kubica, B.J.: Tuning the multithreaded interval method for solving underdeter-
mined systems of nonlinear equations. In: Wyrzykowski, R., Dongarra, J., Kar-
czewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7204, pp. 467–476.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31500-8 48

17. Kubica, B.J.: Excluding regions using Sobol sequences in an interval branch-and-
prune method for nonlinear systems. Reliable Comput. 19(4), 385–397 (2014)

http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver/
http://www.xsc.de
http://www.threadingbuildingblocks.org
http://miclab.pl
https://www.researchgate.net/publication/316610415_ADHC_Algorithmic_Differentiation_and_Hull_Consistency_Alfa-05
https://www.researchgate.net/publication/316610415_ADHC_Algorithmic_Differentiation_and_Hull_Consistency_Alfa-05
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25
https://www.researchgate.net/publication/316687827_HIBA_USNE_Heuristical_Interval_Branch-and-prune_Algorithm_for_Underdetermined_and_well-determined_Systems_of_Nonlinear_Equations_-_Beta_25
https://doi.org/10.1007/978-3-642-31500-8_48

390 B. J. Kubica

18. Kubica, B.J.: Using quadratic approximations in an interval method for solv-
ing underdetermined and well-determined nonlinear systems. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol.
8385, pp. 623–633. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55195-6 59

19. Kubica, B.J.: Presentation of a highly tuned multithreaded interval solver for
underdetermined and well-determined nonlinear systems. Numer. Algorithms
70(4), 929–963 (2015)

20. Kubica, B.J.: Parallelization of a bound-consistency enforcing procedure and its
application in solving nonlinear systems. J. Parallel Distrib. Comput. 107, 57–66
(2017)

https://doi.org/10.1007/978-3-642-55195-6_59
https://doi.org/10.1007/978-3-642-55195-6_59

Parallel Computing of Linear Systems
with Linearly Dependent Intervals

in MATLAB

Ondřej Král(B) and Milan Hlad́ık

Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, 118 00 Prague, Czech Republic

ondrejkral@seznam.cz, hladik@kam.mff.cuni.cz

Abstract. We implemented several known algorithms for finding an
interval enclosure of the solution set of a linear system with linearly
dependent interval parameters. To do that we have chosen MATLAB
environment with use of INTLAB and VERSOFT libraries. Because our
implementation is tested on Toeplitz and symmetric matrices, among
others, there is a problem with a sparsity. We introduce straightfor-
ward format for representing such matrices, which seems to be almost
as effective as the standard matrix representation but with less memory
demands. Moreover, we take an advantage of Parallel Computing Tool-
box to enhance the performance of implemented methods and to get more
insights on how the methods stands in a scope of a tightness-performance
ratio. The contribution is a time-tightness performance comparison of
such methods, memory efficient representation and an exploration of
explicit parallelization impact.

Keywords: Interval system · Linear dependency · Parallelization
MATLAB · INTLAB

1 Introduction

Intervals are a natural way to express uncertainty in a real data or to process a
continuum of values [4,7]. Well-defined operations over them are forming foun-
dation for interval analysis. We focus only on one part which is to solve systems
of linear equations with some interval coefficients in a manner of finding as tight
as possible interval containing whole solution set. In addition we are using an
explicit information of coefficients’ linear dependencies to get better results.

1.1 Notation

First, we introduce some basic notation. The set of all intervals over real numbers
is denoted by IR, and the set of m × n interval matrices by IR

m×n. For the
definition of interval arithmetic see, e.g., [4,7]. For an interval x = [x, x] ∈ IR,

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 391–401, 2018.
https://doi.org/10.1007/978-3-319-78054-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_37&domain=pdf

392 O. Král and M. Hlad́ık

we use x and x for its lower and upper bound, respectively. Now we can define
the midpoint, the radius, the magnitude and the absolute value of an interval
x ∈ IR as follows

xc :=
1
2
(x + x),

xΔ :=
1
2
(x − x),

mag(x) := max
x∈x

{|x|},

|x| := {|x|;x ∈ x}.

Linear system with linearly dependent interval parameters is denoted as

A(p)x = b(p),

which is an abbreviation for the following family of parametric linear systems

Σm
k=1A

kpkx = Σm
k=1b

kpk, p ∈ p

where p is an interval vector that we call vector of parameters, Ak (bk) is a
square matrix (column vector) indicating the coefficients of parameter pk in the
linear system. The united solution set is defined as

Σ := {x ∈ IRn; ∃p ∈ p : A(p)x = b(p)}.

For a real matrix A ∈ R
n×n the spectral radius is denoted as ρ(A).

2 Methods and Implementation

The solution set Σ has a complicated structure and there is no closed-form
characterization known [9]. Even for specific case with symmetric matrices, the
known description is rather long [6]. That is why we seek for an outer approxi-
mation in the simple form of an interval vector. There are many methods known;
see, e.g., [2,3,5,14].

2.1 Bauer-Skeel, Hansen-Bliek-Rohn Bounds and Their Refinement

Bauer-Skeel [1,16] bound is generalized by Hlad́ık [3] as follows.
If A(pc) is regular, let us denote

M := Σm
k=1p

Δ
k |A(pc)−1Ak|,

x∗ := A(pc)−1b(pc).

If ρ(M) < 1, then

[x∗ − (I − M)−1Σm
k=1p

Δ
k |A(pc)−1(Akx∗ − bk)|,

x∗ − (I − M)−1Σm
k=1p

Δ
k |A(pc)−1(Akx∗ − bk)|]

Parallel Computing of Linear Systems in MATLAB 393

is an interval enclosure of Σ.
Hansen-Bliek-Rohn bound [10] is also generalized by Hlad́ık [3]. If A(pc) is

nonsingular, denote

M∗ := (I − Σm
k=1p

Δ
k |A(pc)−1Ak|)−1,

x∗ := A(pc)−1b(pc),

x0 := M∗|x∗| + Σm
k=1p

Δ
k M∗|A(pc)−1bk|.

If ρ(M) < 1, then the solution set is included in the interval x defined
component-wise as

xi := max{x̃i, vix̃i},

xi := min{x̂i, vix̂i},

where

x̃i = x0
i + (x∗

i − |x∗
i |)m∗

ii,

x̂i = −x0
i + (x∗

i + |x∗
i |)m∗

ii,

vi = 1/(2m∗
ii − 1).

These bounds can be refined [3] by checking the sign of the following expres-
sion

A(pc)−1(Akx − bk),

and removing absolute value in the inequality

(|A(pc)−1(Akx − bk)|)i ≤ (|A(pc)−1Ak||x − x∗| + |A(pc)−1(Akx∗ − bk)|)i,

where x is the resulting enclosure of Σ computed by some of the previous meth-
ods, or any other. This is what we refer as a refinement of the Bauer-Skeel and
Hansen-Bliek-Rohn method.

2.2 Residual Form

Defining a new variable vector y ∈ IRn and setting

x∗ := A(pc)−1b(pc),
x := x∗ + y,

leads to a new form of the linear system of parametric equations

A(p)y = b(p) − A(p)x∗,

or,

(Σm
k=1pkA

k)y = Σm
k=1pk(b

k − Akx∗), p ∈ p.

394 O. Král and M. Hlad́ık

We solve this system directly by method proposed by Skalna [15] or by Rump’s
epsilon-inflation [13, Algorithm 10.7].

Skalna’s method assumes some preconditioner C ∈ IRn×n and x0 ∈ IRn.
Denote

D := mag(I − Σm
k=1(CAk)pk).

If ρ(D) < 1, we have an enclosure

Σ ⊆ x0 + (I − D)−1mag(Σm
k=1C(bk − Akx0)pk)[−1, 1].

The best results are obtained for C := A(pc)−1, x0 := A(pc)−1b(pc) [15] and we
also use this approach.

Rump’s epsilon-inflation is an algorithm that works with non-parametric
system. As input we’ve chosen

A := Σm
k=1pk(A(pc)−1Ak) , b := Σm

k=1pk(A(pc)−1(bk − Akx∗))

Because of sub-distributive property of intervals, we might get better results.
Original algorithm can be written in the following pseudo-code for some small
d, e ∈ IR, d, e > 0:

C := (Ac)−1

xs := Cbc

z := C(b − Axs)
R := I − CA
repeat
y := xk · [1 − d, 1 + d] + [−e, e]
xk+1 := z + Ry

until z + Ry ⊂ int y or iteration > 15

2.3 Exploiting Monotonicity

Another known approach is exploiting monotonicity of the solution set with
respect to some parameters [8]. The derivative of our linear system by k-th
parameter yields

A(p)
∂x

∂pk
= bk − Akx.

To obtain the enclosure of
∂x

∂pk
, p ∈ p one must resolve the system and get the

result x∗, then use it in the equation above as x := x∗ and find an enclosure d

of the solutions set such that { ∂x

∂pk
|p ∈ p} ⊆ d. Now we introduce new vectors

of parameters pi and pi for each xi as follows

pi
k

=

{
p
k
, if di ≥ 0,

pk, if di ≤ 0,
pik =

{
pk, if di ≥ 0,

p
k
, if di ≤ 0,

Parallel Computing of Linear Systems in MATLAB 395

otherwise pi
k

= pik = pk.

In the case when all signs are determined, we can obtain the hull of the solution
set by solving 2n linear systems in the form

xi = [(A(pi)−1b(pi))i, (A(pi)−1b(pi))i].

In our implementation we reduce parameters with determined signs to point
values, leave others unchanged and do not iterate the process.

2.4 Implementation

Each of the above mentioned methods has been vectorized. A parallelization of
our MATLAB code is done in two ways. Many vectorized operations are executed
in multiple kernel threads. The other way is to use MATLAB workers (instances
of MATLAB) and parfor (parallel loop) construct in order to speed up execution
of the same and independent code for different parameters (SPMD). Here we take
an advantage of the so called reduction variables, which allow us to share a mem-
ory between workers, and sliced variables, which reduce amount of the data trans-
ferred to workers at the initialization (dependency representation of a parameter is
transferred only to the worker where it’s processed). The representation of depen-
dencies is done in a format of triples (row, column, value) each time represented
parameter occurs in the matrix. Then these triples are stored to a cell array. This
is what we call cell representation. By matrix representation, we mean represent-
ing a matrix of coefficients (Ak) by 2D array. For symmetric and Toeplitz matrices
up to dimension 100 × 100 it was tested that there is no significant performance
overhead when we expand cell representation to a matrix representation during
the computation (the delay was lower then 1%). But there is significant memory
saving and therefore faster initial broadcasting of the data. The following table
shows differences in Toeplitz matrix representation memory consumption:

Dimension Cell Array

50 69.69 kb 1.91 Mb

100 256.41 kb 15.26 Mb

Therefore we decided to use cell representation in the following testing.

3 Results

Let us compare the tightness of the computed enclosures. We calculate average
width over all discussed dimensions and use it as a measure of tightness. Then we
compute the average tightness over 10 random Toeplitz and symmetric systems
where all intervals in vector of parameters have same fixed radius and their
centers are uniformly generated from range [−10, 10]. If we relativize this result

396 O. Král and M. Hlad́ık

Toeplitz system dimension 100 Relative tightness

Radius of interval parameters 0.05 0.1 0.5 1

Generalized Bauer-Skeel 1.00000 1.00000 1.00000 1.00000

Refinement of BS 0.99769 0.99537 0.97778 0.95896

Generalized Hansen-Bliek-Rohn 1.44822 1.44721 1.45232 1.14435

Refinement of HBR 1.00557 1.00766 1.04910 1.08704

Residual form, Rump’s alg. 1.00077 1.00132 1.00131 1.01332

Residual form, Skalna’s method 1.00000 1.00000 1.00000 1.00000

Monotonicity approach 0.99251 0.98515 0.92802 0.86494

Symmetric system dimension 100 Relative tightness

Radius of interval parameters 0.05 0.1 0.5 1

Generalized Bauer-Skeel 1.00000 1.00000 1.00000 1.00000

Refinement of BS 0.99912 0.99814 0.99103 0.98398

Generalized Hansen-Bliek-Rohn 1.09541 1.09559 1.09645 1.09423

Refinement of HBR 1.00059 1.00107 1.00629 1.01412

Residual form, Rump’s alg. 1.00073 1.00128 1.00129 1.01341

Residual form, Skalna’s method 1.00000 1.00000 1.00000 1.00000

Monotonicity approach 0.99254 0.98517 0.92932 0.87542

to one particular method, for example Bauer-Skeel method, we obtain following
tables for Teoplitz and symmetric systems (in this order):

The generalized Bauer-Skeel and the residual form with Skalna’s method are
mathematically equivalent. When we increase width of the intervals in vector of
parameters, monotonicity approach and generalized Bauer-Skeel are performing
better than others.

3.1 Execution Time

Now we are interested more in how much faster we can compute these enclosures
and whether there are methods that are less precise but faster than precise ones.
We tested these implementations on AMD Opteron(tm) Processor 6134 with 16
cores, 64 GB RAM, Linux, MATLAB R2016b with the packages INTLAB V9
[12] and VERSOFT V10 [11]. Tested dimensions are 5, 10, 25, 50, 100. Based on
their speed and precision, methods can be naturally divided into three groups
as one can see in the table below. These values are execution times in seconds
with single-worker computation:

First group includes fast methods: the generalized Bauer-Skeel, Hansen-
Bliek-Rohn and the residual forms. Then there are refinement methods and
finally most precise but slowest monotonicity approach.

Parallel Computing of Linear Systems in MATLAB 397

Dimension: 100 Toeplitz Symmetric

Generalized Bauer-Skeel 0.658 16.931

Refinement of BS 18.10 487.18

Generalized Hansen-Bliek-Rohn 0.533 12.894

Refinement of HBR 6.454 333.62

Residual form, Rump’s alg. 0.445 11.385

Residual form, Skalna’s method 0.443 11.399

Monotonicity approach 113.9 2779.3

We also noticed a strange behaviour. We started with one worker with one
computational thread and then we increase number of threads by 1 up to 6 by use
of deprecated maxNumCompThreads() function. Suprisingly, the performance
suffered with each additional thread. Cause of this problem is unknown, might
be tied to a processor cache.

Workers. We are adding more workers from 1 up to 6 and measure performance
speed-up. In contrast to adding new threads, there is visible and significant
performance improvement. For lower dimensions up to 10, more workers are not
so beneficial, 6 workers even slowing the computations, possibly because there is
an initial data broadcast overhead. Major improvements start around dimension
50. For dimension 100 and 6 workers, methods from the first group run 2-times
faster and methods from the second group even 4-times faster. The monotonicity
approach speed-up is the biggest, about 6-times faster. Typical curve of such an
improvement looks like Fig. 1, where x-axis is number of workers and y-axis is
computation time. This particular curve is for the Bauer-Skeel refinement (on
the left) and the monotonicity approach (on the right) over a Toeplitz system of
dimension 100.

Fig. 1. Execution time (y-axis) with respect to number of workers (x-axis). Bauer-Skeel
refinement (on the left) and the monotonicity approach (on the right).

398 O. Král and M. Hlad́ık

Thus the best improvement is for the methods that do some nontrivial oper-
ations with each parameter in one iteration of a for-cycle. On the other hand,
methods that just do some fast matrix computation for each parameter profit
less, beacause of implicit parallelization.

For s symmetric system, there is an increase of parameters, in dimension
100 up to 5000. In this case, speed-up ratio of each method is not so different,
roughly 5-times faster for 6 workers which is closer to the theoretical 6-times
speed-up.

3.2 Conclusion

Comparison of relative tightness and of single-worker execution times help
us develop a basic of understanding, which methods are better (For example
Skalna’s method on residual form is faster and even yields better results than
refinement of generalized Hansen-Bliek-Rohn method.) and how to classify meth-
ods into some reasonable tightness-performance groups. Simple memory saving
representation might be beneficial with increasing number of workers and dimen-
sion, where initial broadcast of variables slowing down the computation. With
large number of parameters in symmetric systems (5000), tightness-performance
groups hold. When this number is getting lower (200), as for Toeplitz systems,
the monotonicity approach and refinement methods are speeding-up more than
others, so they can be an interesting alternative for fast methods. Explicit par-
allelization with workers might have a negative effect for lower dimensions (10).

3.3 Table of Results

The columns correspond to dimensions 5, 10, 25, 50, 100 (in this order). The rows
correspond to the methods in the order used in the previous tables. It’s visual-
ization of execution time in seconds (y-axis) depending on number of workers
(x-axis).

Parallel Computing of Linear Systems in MATLAB 399

Symmetric

400 O. Král and M. Hlad́ık

Toeplitz

Acknowledgments. The authors were supported by the Czech Science Foundation
Grant P402-13-10660S.

References

1. Bauer, F.L.: Genauigkeitsfragen bei der Lösung linearer Gleichungssysteme.
ZAMM 46(7), 409–421 (1966)

2. Hlad́ık, M.: Optimal preconditioning for the interval parametric Gauss–Seidel
method. In: Nehmeier, M., Wolff von Gudenberg, J., Tucker, W. (eds.) SCAN
2015. LNCS, vol. 9553, pp. 116–125. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31769-4 10

3. Hlad́ık, M.: Enclosures for the solution set of parametric interval linear systems.
Int. J. Appl. Math. Comput. Sci. 22(3), 561–574 (2012)

https://doi.org/10.1007/978-3-319-31769-4_10
https://doi.org/10.1007/978-3-319-31769-4_10

Parallel Computing of Linear Systems in MATLAB 401

4. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-0249-6

5. Kolev, L.V.: Improvement of a direct method for outer solution of linear parametric
systems. Reliable Comput. 12(3), 193–202 (2006)

6. Mayer, G.: Three short descriptions of the symmetric and of the skew-symmetric
solution set. Linear Algebra Appl. 475, 73–79 (2015)

7. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

8. Popova, E.D.: Computer-assisted proofs in solving linear parametric problems.
In: 12th GAMM - IMACS International Symposium on Scientific Computing,
Computer Arithmetic and Validated Numerics, SCAN 2006, Conference Post-
Proceedings, Duisburg, Germany, 26–29 September, p. 35. IEEE Computer Society
Press (2006)

9. Popova, E.D.: Solvability of parametric interval linear systems of equations and
inequalities. SIAM J. Matrix Anal. Appl. 36(2), 615–633 (2015)

10. Rohn, J.: Cheap and tight bounds: the recent result by E. Hansen can be made
more efficient. Interval Comput. 4(13–21), 2 (1993)

11. Rohn, J.: VERSOFT: Verification software in MATLAB/INTLAB, version 10
(2009). http://www.nsc.ru/interval/Programing/versoft/

12. Rump, S.M.: INTLAB - INTerval LABoratory. In: Csendes, T. (ed.) Develop-
ments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht
(1999). http://www.ti3.tu-harburg.de/rump/

13. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic.
Acta Numer. 19, 287–449 (2010)

14. Skalna, I.: A method for outer interval solution of systems of linear equations
depending linearly on interval parameters. Reliable Comput. 12(2), 107–120 (2006)

15. Skalna, I.: Enclosure for the solution set of parametric linear systems with
non-affine dependencies. In: Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Waśniewski, J. (eds.) PPAM 2011. LNCS, vol. 7204, pp. 513–522. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-31500-8 53

16. Skeel, R.D.: Scaling for numerical stability in Gaussian elimination. J. ACM 26(3),
494–526 (1979)

https://doi.org/10.1007/978-1-4471-0249-6
http://www.nsc.ru/interval/Programing/versoft/
http://www.ti3.tu-harburg.de/rump/
https://doi.org/10.1007/978-3-642-31500-8_53

What Decision to Make in a Conflict
Situation Under Interval Uncertainty:
Efficient Algorithms for the Hurwicz

Approach

Bart�lomiej Jacek Kubica1, Andrzej Pownuk2(B), and Vladik Kreinovich2

1 Department of Applied Informatics, Warsaw University of Life Sciences,
ul. Nowoursynowska 159, 02-776 Warsaw, Poland

bartlomiej.jacek.kubica@gmail.com
2 Computational Science Program, University of Texas at El Paso,

El Paso, TX 79968, USA
{ampownuk,vladik}@utep.edu

Abstract. In this paper, we show how to take interval uncertainty into
account when solving conflict situations. Algorithms for conflict situa-
tions under interval uncertainty are known under the assumption that
each side of the conflict maximizes its worst-case expected gain. How-
ever, it is known that a more general Hurwicz approach provides a more
adequate description of decision making under uncertainty. In this app-
roach, each side maximizes the convex combination of the worst-case and
the best-case expected gains. In this paper, we describe how to resolve
conflict situations under the general Hurwicz approach to interval uncer-
tainty.

Keywords: Interval uncertainty · Conflict situation
Hurwicz approach

1 Conflict Situations Under Interval Uncertainty:
Formulation of the Problem and What Is Known
so Far

How conflict situations are usually described. In many practical situations
– e.g., in security – we have conflict situations in which the interests of the two
sides are opposite. For example, a terrorist group wants to attack one of our
assets, while we want to defend them.

To fully describe such a situation, we need to describe:

– for each possible strategy i of one side and
– for each possible strategy j of the other side,

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 402–411, 2018.
https://doi.org/10.1007/978-3-319-78054-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_38&domain=pdf

Conflict Situation Under Interval Uncertainty 403

what will be the resulting gain uij to the first side (negative if it is a loss), and
the gain vij to the other side. A conflict situation is when we cannot improve v
without worsening u.

An example of a conflict situation in a zero-sum game, when the gain of one
side is the loss of another side, i.e., when vij = −uij ; see, e.g., [9].

While zero-sum games are a useful approximation, they are not always a per-
fect description of the situation. For example, the main objective of the terrorists
may be publicity. In this sense, a small attack in the country’s capital may not
cause much damage but it will bring them a lot of media attention, while a more
serious attack in a remote location may be more damaging to the country, but
not as media-attractive. To take this difference into account, we need, for each
pair of strategies (i, j), to describe both:

– the gain uij of the first side and
– the gain vij of the second side.

In this general case, we do not necessarily have vij = −uij [9].

How to describe this problem in precise terms. It is a well-known fact that
in conflict situations, instead of following one of the deterministic strategies, it
is beneficial to select a strategy at random, with some probability. For example,
if we only have one security person available and two objects to protect, then
we have two deterministic strategies:

– post this person at the first objects and
– post him/her at the second object.

If we exactly follow one of these strategies, then the adversary will be able to
easily attack the other – unprotected – object. It is thus more beneficial to every
time flip a coin and assign the security person to one of the objects at random.
This way, for each object of attack, there will be a 50% probability that this
object will be defended.

In general, each corresponding strategy of the first side can be described by
the probabilities p1, . . . , pn of selecting each of the possible strategies, so that

n∑

i=1

pi = 1. (1.1)

Similarly, the generic strategy of the second side can be described by the prob-
abilities q1, . . . , qm for which

m∑

j=1

qj = 1. (1.2)

If the first side selects the strategy p = (p1, . . . , pn) and the second side selects
the strategy q = (q1, . . . , qm), then the expected gain of the first side is equal to

g1(p, q) =
n∑

i=1

m∑

j=1

pi · qj · uij , (1.3)

404 B. J. Kubica et al.

while the expected gain of the second side is equal to

g2(p, q) =
n∑

i=1

m∑

j=1

pi · qj · vij . (1.4)

Based on this, how can we select a strategy? It is reasonable to assume that
once a strategy is selected, the other side knows the corresponding probabilities
– simply by observing the past history. So, if the first side selects the strategy
p, the second side should select a strategy for which, under this strategy of the
first side, their gain is the largest possible, i.e., the strategy q(p) for which

g2(p, q(p)) = max
q

g2(p, q). (1.5)

In other words,
q(p) = arg max

q
g2(p, q). (1.6)

Under this strategy of the second side, the first side gains the value g1(p, q(p)). A
natural idea is to select the strategy p for which this gain is the largest possible,
i.e., for which

g1(p, q(p)) → max
p

, where q(p) def= arg max
q

g2(p, q). (1.7)

Similarly, the second side select a strategy q for which

g2(p(q), q) → max
q

, where p(q) def= arg max
p

g1(p, q). (1.8)

Towards an algorithm for solving this problem. Once the strategy p of
the first side is selected, the second side selects q for which its expected gain
g2(p, q) is the largest possible.

The expression g2(p, q) is linear in terms of qj . Thus, for every q, the resulting
expected gain is the convex combination

g2(p, q) =
m∑

j=1

qj · q2j(p) (1.9)

of the gains

g2j(p) def=
n∑

i=1

pi · vij (1.10)

corresponding to different deterministic strategies of the second side. Thus, the
largest possible gain is attained when q is a deterministic strategy.

The j-th deterministic strategy will be selected by the second side if its gain
at this strategy are larger than (or equal to) gains corresponding to all other
deterministic strategies, i.e., under the constraint that

n∑

i=1

pi · vij ≥
n∑

i=1

pi · vik (1.11)

for all k �= j.

Conflict Situation Under Interval Uncertainty 405

For strategies p for which the second side selects the j-th response, the gain
of the first side is

n∑

i=1

pi · uij . (1.12)

Among all strategies p with this “j-property”, we select the one for which the
expected gain of the first side is the largest possible. This can be found by opti-
mizing a linear function under constraints which are linear inequalities – i.e., by
solving a linear programming problem. It is known that for linear programming
problems, there are efficient algorithms; see, e.g., [6].

In general, we thus have m options corresponding to m different values j =
1, . . . ,m. Among all these m possibility, the first side should select a strategy for
which the expected gain is the largest possible. Thus, we arrive at the following
algorithm.

An algorithm for solving the problem. For each j from 1 to m, we solve
the following linear programming problem:

n∑

i=1

p
(j)
i · uij → max

p
(j)
i

(1.13)

under the constraints
n∑

i=1

p
(j)
i = 1, p

(j)
i ≥ 0,

n∑

i=1

p
(j)
i · vij ≥

n∑

i=1

p
(j)
i · vik for all k �= j. (1.14)

Out of the resulting m solutions p(j) =
(
p
(j)
1 , . . . , p

(j)
n

)
, 1 ≤ j ≤ m, we select the

one for which the corresponding value
n∑

i=1

p
(j)
i · uij is the largest.

Comment. Solution is simpler in zero-sum situations, since in this case, we only
need to solve one linear programming problem; see, e.g., [9].

Need for parallelization. For simple conflict situations, when each side has a
small number of strategies, the corresponding problem is easy to solve.

However, in many practical situations, especially in security-related situa-
tions, we have a large number of possible deterministic strategies of each side.
This happens, e.g., if we assign air marshals to different international flights. In
this case, the only way to solve the corresponding problem is to perform at least
some computations in parallel.

Good news is that the above problem allows for a natural parallelization:
namely, all m linear programming problems can be, in principle, solved on differ-
ent processors. Not so good news is that, once we get to the linear programming
problems, while we can improve them somewhat using parallelization, these prob-
lems are P-hard, i.e., provably the hardest to parallelize efficiently; see, e.g., [8].

Need to take uncertainty into account. The above description assumed
that we know the exact consequence of each combination of strategies. This is

406 B. J. Kubica et al.

rarely the case. In practice, we rarely know the exact gains uij and vij . At best,
we know the bounds on these gains, i.e., we know:

– the interval [uij , uij] that contains the actual (unknown) values uij , and
– the interval [vij , vij] that contains the actual (unknown) values vij .

It is therefore necessary to decide what to do in such situations of interval uncer-
tainty.

How interval uncertainty is taken into account now. In the above descrip-
tion of a conflict situation, we mentioned that when we select the strategy p, we
maximize the worst-case situation, i.e., the smallest possible gain g1(p, q) under
all possible actions of the second side. It seems reasonable to apply the same
idea to the case of interval uncertainty, i.e., to maximize the smallest possible
gain g1(p, q) over all possible strategies of the second side and over all possible
values uij ∈ [uij , uij].

For some practically important situations, efficient algorithms for such worst-
case formulation have indeed been proposed; see, e.g., [3].

Need for a more adequate formulation of the problem. In the case of
adversity, it makes sense to consider the worst-case scenario: after all the adver-
sary wants to minimize the gain of the other side.

However, in case of interval uncertainty, using the worst-case scenario may
not be the most adequate idea. The problem of decision making under uncer-
tainty, when for each alternative a, instead of the exact value u(a), we only
know the interval [u(a), u(a)] of possible values of the gain, has been thoroughly
analyzed.

It is known that in such situations, the most adequate decision strategy is
to select an alternative a for which the following expression attains the largest
possible value:

uH(a) def= α · u(a) + (1 − α) · u(a), (1.15)

where α ∈ [0, 1] describes the decision maker’s attitude; see, e.g., [1,4,5]. This
expression was first proposed by the Nobelist Leonid Hurwicz and is thus, known
as the Hurwicz approach to decision making under interval uncertainty.

In the particular case of α = 0, this approach leads to optimizing the worst-
case value u(a), but for other values α, we have different optimization problems.

What we do in this paper. In this paper, we analyze how to solve conflict
situations under this more adequate Hurwicz approach to decision making under
uncertainty.

In this analysis, we will assume that each side knows the other’s parameter α,
i.e., that both sides know the values αu and αv that characterize their decision
making under uncertainty. This can be safely assumed since we can determine
these values by analyzing past decisions of each side.

Conflict Situation Under Interval Uncertainty 407

2 Conflict Situation Under Hurwicz-Type Interval
Uncertainty: Analysis of the Problem

Once the first side selects a strategy, what should the second side do?
If the first side selects the strategy p, then, for each strategy q of the second

side, the actual (unknown) gain of the second side is equal to
n∑

i=1

m∑
j=1

pi · qj · vij .
We do not know the exact values vij , we only know the bounds vij ≤ vij ≤ vij .
Thus, once:

– the first side selects the strategy p and
– the second side selects the strategy q,

the gain of the second side can take any value from

g
2
(p, q) =

n∑

i=1

m∑

j=1

pi · qj · vij (2.1)

to

g2(p, q) =
n∑

i=1

m∑

j=1

pi · qj · vij . (2.2)

According to Hurwicz’s approach, the second side should select a strategy q
for which the Hurwicz combination

gH2 (p, q) def= αv · g2(p, q) + (1 − αv) · g
2
(p, q) (2.3)

attains the largest possible value.
Substituting the expressions (2.1) and (2.2) into the formula (2.3), we con-

clude that

gH2 (p, q) =
n∑

i=1

m∑

j=1

pi · qj · vH
ij , (2.4)

where we denoted
vH
ij

def= αv · vij + (1 − αv) · vij . (2.5)

Thus, once the first side selects its strategy p, the second side should select a
strategy q(p) for which the corresponding Hurwicz combination gH2 (p, q) is the
largest possible, i.e., the strategy q(p) for which

gH2 (p, q(p)) = max
q

gH2 (p, q). (2.6)

In other words,
q(p) = arg max

q
gH2 (p, q). (2.7)

Based on this, what strategy should the first side select? Under the
above strategy q = q(p) of the second side, the first side gains the value

g1(p, q(p)) =
n∑

i=1

m∑

j=1

pi · qj · uij . (2.8)

408 B. J. Kubica et al.

Since we do not know the exact values uij , we only know the bounds uij ≤ uij ≤
uij , we therefore do not know the exact gain of the first side. All we know is
that this gain will be between

g
1
(p, q(p)) =

n∑

i=1

m∑

j=1

pi · qj · uij (2.9)

and

g1(p, q(p)) =
n∑

i=1

m∑

j=1

pi · qj · uij . (2.10)

According to Hurwicz’s approach, the first side should select a strategy p for
which the Hurwicz combination

gH1 (p, q) def= αu · g1(p, q(p)) + (1 − αu) · g
1
(p, q(p)) (2.11)

attains the largest possible value.
Substituting the expressions (2.9) and (2.10) into the formula (2.11), we

conclude that

gH1 (p, q) =
n∑

i=1

m∑

j=1

pi · qj · uH
ij , (2.12)

where we denoted
uH
ij

def= αu · uij + (1 − αu) · uij . (2.13)

What strategy should the second side select? Thus, the first side will
select the strategy p for which this Hurwicz combination is the largest possible,
i.e., for which

gH1 (p, q(p)) → max
p

, where q(p) def= arg max
q

gH2 (p, q). (2.14)

Similarly, the second side select a strategy q for which

gH2 (p(q), q) → max
q

, where p(q) def= arg max
p

gH1 (p, q). (2.15)

We thus reduce the interval-uncertainty problem to the no-uncertainty
case. One can easily see that the resulting optimization problem is exactly the
same as in the no-uncertainty case described in Sect. 1, with the gains uH

ij and vH
ij

described by the formulas (2.13) and (2.5).
Thus, we can apply the algorithm described in Sect. 1 to solve the interval-

uncertainty problem.

Conflict Situation Under Interval Uncertainty 409

3 Algorithm for Solving Conflict Situation Under
Hurwicz-Type Interval Uncertainty

What is given. For every deterministic strategy i of the first side and for every
deterministic strategy j of the second side, we are given:

– the interval [uij , uij] of the possible values of the gain of the first side, and
– the interval [vij , vij] of the possible values of the gain of the second side.

We also know the parameters αu and αv characterizing decision making of each
side under uncertainty.

Preliminary step: forming appropriate combinations of gain bounds.
First, we compute the values

uH
ij

def= αu · uij + (1 − αu) · uij (3.1)

and
vH
ij

def= αv · vij + (1 − αv) · vij . (3.2)

Main step. For each j from 1 to m, we solve the following linear programming
problem:

n∑

i=1

p
(j)
i · uH

ij → max
p
(j)
i

(3.3)

under the constraints
n∑

i=1

p
(j)
i = 1, p

(j)
i ≥ 0,

n∑

i=1

p
(j)
i · vH

ij ≥
n∑

i=1

p
(j)
i · vH

ik for all k �= j. (3.4)

Final step. Out of the resulting m solutions p(j) =
(
p
(j)
1 , . . . , p

(j)
n

)
, 1 ≤ j ≤ m,

we select the one for which the corresponding value

n∑

i=1

p
(j)
i · uH

ij (3.5)

is the largest.

Comment. In view of the fact that in the no-uncertainty case, zero-sum games
are easier to process, let us consider zero-sum games under interval uncertainty.
To be more precise, let us consider situations in which possible values vij are
exactly values −uij for possible uij :

[vij , vij] = {−uij : uij ∈ [uij , uij]}. (3.6)

One can easily see (see, e.g., [2,7]) that this condition is equivalent to

vij = −uij and vij = −uij . (3.7)

410 B. J. Kubica et al.

In this case, we have

vH
ij = αv · vij + (1 − αv) · vij = αv · (−uij) + (1 − αv) · (−uij), (3.8)

and thus,
vH
ij = −((1 − αv) · uij + αv · uij). (3.9)

By comparing this expression with the formula (3.1) for uH
ij , we can conclude

that the resulting game is zero-sum (i.e., vH
ij = −uH

ij) only when αu = 1 − αv.
In all other cases, even if we start with a zero-sum interval-uncertainty game,

the no-uncertainty game to which we reduce that game will not be zero-sum –
and thus, the general algorithm will be needed, without a simplification that is
available for zero-sum games.

4 Conclusion

In this paper, we show how to take interval uncertainty into account when solving
conflict situations.

Algorithms for conflict situations under interval uncertainty are known under
the assumption that each side of the conflict maximizes its worst-case expected
gain. However, it is known that a more general Hurwicz approach provides a more
adequate description of decision making under uncertainty. In this approach,
each side maximizes the convex combination of the worst-case and the best-case
expected gains.

In this paper, we describe how to resolve conflict situations under the general
Hurwicz approach to interval uncertainty.

Acknowledgments. This work was supported in part by the National Science Foun-
dation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence)
and DUE-0926721, and by an award “UTEP and Prudential Actuarial Science Academy
and Pipeline Initiative” from Prudential Foundation.

The authors are thankful to the anonymous referees for valuable suggestions.

References

1. Hurwicz, L.: Optimality Criteria for Decision Making Under Ignorance. Cowles
Commission Discussion Paper, Statistics, No. 370 (1951)

2. Jaulin, L., Kiefer, M., Dicrit, O., Walter, E.: Applied Interval Analysis. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-0249-6

3. Kiekintveld, C., Islam, M.T., Kreinovich, V.: Security fame with interval uncer-
tainty. In: Ito, T., Jonker, C., Gini, M., Shehory, O. (eds.) Proceedings of the Twelfth
International Conference on Autonomous Agents and Multiagent Systems AAMAS
2013, Saint Paul, Minnesota, 6–10 May 2013, pp. 231–238 (2013)

4. Kreinovich, V.: Decision making under interval uncertainty (and beyond). In: Guo,
P., Pedrycz, W. (eds.) Human-Centric Decision-Making Models for Social Sciences.
SCI, vol. 502, pp. 163–193. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-642-39307-5 8

https://doi.org/10.1007/978-1-4471-0249-6
https://doi.org/10.1007/978-3-642-39307-5_8
https://doi.org/10.1007/978-3-642-39307-5_8

Conflict Situation Under Interval Uncertainty 411

5. Luce, R.D., Raiffa, R.: Games and Decisions: Introduction and Critical Survey.
Dover, New York (1989)

6. Luenberger, D.G., Ye, Y.: Linear and Nonlinear Programming. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-18842-3

7. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

8. Sipser, M.: Introduction to Theory of Computation. Thomson Course Technology,
Boston (2012)

9. Tadelis, S.: Game Theory: An Introduction. Princeton University Press, Princeton
(2013)

https://doi.org/10.1007/978-3-319-18842-3

Practical Need for Algebraic
(Equality-Type) Solutions of Interval
Equations and for Extended-Zero

Solutions

Ludmila Dymova1, Pavel Sevastjanov1, Andrzej Pownuk2(B),
and Vladik Kreinovich2

1 Institute of Computer and Information Science,
Czestochowa University of Technology, Dabrowskiego 73,

42-200 Czestochowa, Poland
sevast@icis.pcz.pl

2 Computational Science Program,
University of Texas at El Paso, El Paso, TX 79968, USA

{ampownuk,vladik}@utep.edu

Abstract. One of the main problems in interval computations is solving
systems of equations under interval uncertainty. Usually, interval com-
putation packages consider united, tolerance, and control solutions. In
this paper, we explain the practical need for algebraic (equality-type)
solutions, when we look for solutions for which both sides are equal.
In situations when such a solution is not possible, we provide a justi-
fication for extended-zero solutions, in which we ignore intervals of the
type [−a, a].

Keywords: Interval equations · Extended zero
Nonlinear equations systems · Uncertainty · Algebraic solution

1 Practical Need for Solving Interval Systems
of Equations: What Is Known

Need for data processing. In many practical situations, we are interested in
the values of quantities y1, . . . , ym which are difficult – or even impossible – to
measure directly. For example, we can be interested in a distance to a faraway
star or in tomorrow’s temperature at a certain location.

Since we cannot measure these quantities directly, to estimate these quanti-
ties we must:

– find easier-to-measure quantities x1, . . . , xn which are related to yi by known
formulas yi = fi(x1, . . . , xn),

– measure these quantities xj , and

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 412–421, 2018.
https://doi.org/10.1007/978-3-319-78054-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_39&domain=pdf

Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations 413

– use the results x̃j of measuring the quantities xj to compute the estimates
for yi:

ỹi = f(x̃1, . . . , x̃n).

Computation of these estimates is called indirect measurement or data processing.

Need for data processing under uncertainty. Measurements are never 100%
accurate. Hence, the measurement result x̃j is, in general, different from the
actual (unknown) value xj of the corresponding quantity; in other words, the

measurement errors Δxj
def= x̃j − xj are, in general, different from 0.

Because of the non-zero measurement errors, the estimates ỹi are, in general,
different from the desired values yi. It is therefore desirable to know how accurate
are the resulting estimates.

Need for interval uncertainty and interval computations. The manufac-
turer of the measuring instrument usually provides us with an upper bound Δj

on the measurement error: |Δxj | ≤ Δj ; see, e.g., [8]. If no such upper bound is
known, i.e., if the reading of the instrument can be as far away from the actual
value as possible, then this is not a measuring instrument, this is a wild-guess-
generator.

Sometimes, we also know the probabilities of different values Δxj within this
interval; see, e.g., [8,15]. However, in many practical situations, the upper bound
is the only information that we have [8]. In this case, after we know the result x̃j

of measuring xj , the only information that we have about the actual (unknown)

value xj is that this value belongs to the interval [xj , xj], where xj
def= x̃j − Δj

and xj
def= x̃j + Δj .

In this case, the only thing that we can say about each value yi =
fi(x1, . . . , xn) is that this value belongs to the range

{fi(x1, . . . , xn) : x1 ∈ [x1, x1], . . . , xn ∈ [xn, xn]}.

Computation of this range is one of the main problems of interval computations;
see, e.g., [3,6].

Sometimes, we do not know the exact dependence. The above text
described an ideal case, when we know the exact dependence yi = fi(x1, . . . , xn)
between the desired quantities yi and the easier-to-measure quantities xj . In
practice, often, we do not know the exact dependence. Instead, we know that
the dependence belongs to a finite-parametric family of dependencies, i.e., that

yi = fi(x1, . . . , xn, a1, . . . , ak)

for some parameters a1, . . . , ak.
For example, we may know that yi is a linear function of the quantities xj ,

i.e., that yi = ci +
n
∑

j=1

cij · xj for some coefficients ci and cij .

The presence of these parameters complicates the corresponding data pro-
cessing problem. Depending on what we know about the parameters, we have
different situations.

414 L. Dymova et al.

Simplest situation, when we know the exact values of all the parame-
ters. The simplest situation is when we know the exact values of these param-
eters. In this case, the dependence of yi on xj is known, and we have the same
problem of computing the range as before.

Specific case: control solution. Sometimes, not only we know the values a�

of these parameters, but we can also control these values, by setting them to any
values within certain intervals [a�, a�]. By setting the appropriate values of the
parameters, we can change the values yi. This possibility naturally leads to the
following problem:

– we would like the values yi to be within some given ranges [y
i
, yi]; for example,

we would like the temperature to be within a comfort zone;
– in this case, it is desirable to find the range of possible values of xj for which,

by applying appropriate controls ai ∈ [a�, a�], we can place the values yi

within these intervals.

In the degenerate case, when all the intervals for yi and a� are just points, this
means solving the system of equations y = f(x, a), where we denoted y

def=
(y1, . . . , ym), x

def= (x1, . . . , xn), and a
def= (a1, . . . , ak). From this viewpoint,

the above problem can be viewed as an interval generalization of the problem
of solving a system of equations, or, informally, as a problem of solving the
corresponding interval system of equations.

The set X of all appropriate values x = (x1, . . . , xn) can be formally
described as

X = {x : for some a� ∈ [a�, a�], fi(x1, . . . , xn, a1, . . . , ak) ∈ [y
i
, yi] for all i}.

This set is known as the control solution to the corresponding interval system of
equations [3,14].

Situation when we need to find the parameters from the data. Some-
times, we know that the values ai are the same for all the cases, but we do
not know these values. These values must then be determined based on mea-
surements: we measure xj and yi several times, and we find the values of the
parameters a� that match all the measurement results.

Let us number all membership cycles by values c = 1, . . . , C. After each cycle
of measurements, we conclude that:

– the actual (unknown) value of x
(c)
j is in the interval [x(c)

j , x
(c)
j] and

– the actual value of y
(c)
i is in the interval [y(c)

i
, y

(c)
i].

We want to find the set A of all the values a for which y(c) = f(x(c), a) for some
x(c) and y(c):

A = {a : ∀c∃x
(c)
j ∈ [x(c)

j , x
(c)
j]∃y

(c)
i ∈ [y(c)

i
, y

(c)
i] (f(x(c), a) = y(c))}.

This set A is known as the united solution to the interval system of equations
[3,14].

Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations 415

Comment. To avoid confusion, it is worth mentioning that our notations are
somewhat different from the notations used in [3,14].

The main reason for this difference is that the main focus of this paper is on
the motivations for different types of solutions. As a result, we use the notations
related to the meaning of the corresponding variables. In general, in our descrip-
tion, y denotes the desired (difficult-to-measure) quantities, x denote easier-to-
measure quantities, and a denote parameters of the dependence between these
quantities.

Within this general situation, we can have different problems.

– In some cases, we have some information about the parameters a, and we
need to know the values x – this is the case of the control solution.

– In other practical situations, we have some information about the quantities
x, and we need to know the values a – this is the case, e.g., for the united
solution.

As a result, when we use our meaning-of-variables notations, sometimes x’s are
the unknowns, and sometimes a’s are the unknowns.

Alternatively, if we were interested in actually solving the corresponding
problems, it would be more appropriate to use different notations, in which,
e.g., the unknown is always denoted by x and the known values are denoted by
a – irrespective of the physical meaning of the corresponding variables. In these
notations, the united solution would take a different form

X = {x : ∀c∃a
(c)
j ∈ [a(c)

j , a
(c)
j]∃y

(c)
i ∈ [y(c)

i
, y

(c)
i] (f(x, a(c)) = y(c))}.

What can we do once we have found the range of possible values of a.
Once we have found the set A of possible values of a, we can first find the range
of possible values of yi based on the measurement results, i.e., find the range

{fi(x1, . . . , xn, a) : xj ∈ [xj , xj] and a ∈ A}.

This is a particular case of the main problem of interval computations.
If we want to make sure that each value yi lies within the given bounds

[y
i
, yi], then we must find the set X of possible values of x for which fi(x, a) is

within these bounds for all possible values a ∈ A, i.e., the set

X = {x : ∀a ∈ A∀i (fi(x, a) ∈ [y
i
, yi])}.

This set is known as the tolerance solution to the interval system of equations
[3,14].

Sometimes, we know that the values a may change. In the previous text,
we consider the situations when the values a� are either fixed forever, or can be
changed by us. In practice, these values may change in an unpredictable way –
e.g., if these parameters represent some physical processes that influence yi’s.
We therefore do not know the exact values of these parameters, but what we do
know is some a priori bounds on these values.

416 L. Dymova et al.

We may know bounds [a�, a�] on each parameter, in which case the set A of
all possible combinations a = (a1, . . . , ak) is simply a box:

A = [a1, a1] × . . . × [ak, ak].

We may also have more general sets A – e.g., ellipsoids.
In this case, we can still solve the same two problems whose solutions we

described above; namely:

– we can solve the main problem of interval computations – the problem of
computing the range – and find the set Y of possible values of y;

– we can also solve the corresponding tolerance problem and find the set of
values x that guarantee that each yi is within the desired interval.

Is this all there is? There are also more complex problems (see, e.g., [14]),
but, in a nutshell, most practical problems are either range estimation, or finding
control, united, or tolerance solution. These are the problems solved by most
interval computation packages [3,6].

Is there anything else? In this paper, we show that there is an important
class of practical problems that does not fit into one of the above categories. To
solve these practical problems, we need to use a different notion of a solution to
interval systems of equations: the notion of an algebraic (equality-type) solution,
the notion that has been previously proposed and theoretically analyzed [1,2,5,
7,9,12–14] but is not usually included in interval computations packages.

2 Remaining Problem of How to Find the Set A
Naturally Leads to Algebraic (Equality-Type)
Solutions to Interval System of Equations

Finding the set A: formulation of the problem. In the previous text, we
assumed that when the values of the parameter a can change, we know the set
A of possible values of the corresponding parameter vector. But how do we find
this set?

What information we can use to find the set A. All the information about
the real world comes from measurements – either directly from measurements,
or by processing measurement results. The only relation between the parameters
a and measurable quantities is the formula y = f(x, a). Thus, to find the set A
of possible values of a, we need to use measurements of x and y.

We can measure both x and y many times. As a result, we get:

– the set X of possible values of the vector x and
– the set Y of possible values of the vector y.

Both sets can be boxes, or they can be more general sets.
Based on these two sets X and Y , we need to find the set A.

Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations 417

In this problem, it is reasonable to assume that x and a are independent in
some reasonable sense. Let us formulate this requirement in precise terms.

Independence: towards a formal definition. The notion of independence is
well known in the probabilistic case, where it means that probability of getting
a value x ∈ X does not depend on the value a ∈ A: P (x | a) = P (x | a′) for all
a, a′ ∈ A. An interesting corollary of this definition is that, in spite of being
formulated in a way that is asymmetric with respect to x and a, this definition
is actually symmetric: one can prove that a is independent of x if and only if x
is independent of a.

In the interval case, we do not know the probabilities, we only know which
pairs (x, a) are possible and which are not. In other words, we have a set S ⊆
X × A of possible pairs (x, a). It is natural to say that the values x and a are
independent if the set of possible values of x does not depend on a. Thus, we
arrive at the following definition.

Definition 1. Let S ⊆ X × A be a set.

– We say that a pair (x, a) is possible if (x, a) ∈ S.
– Let x ∈ X and a ∈ A. We say that a value x is possible under a if (x, a) ∈ S.

The set of possible-under-a values will be denoted by Sa.
– We say that the variables x and a are independent if Sa = Sa′ for all a, a′

from the set A.

Proposition 1. Variable x and a are independent if and only if S is a Cartesian
product, i.e., S = sx × sa for some sx ⊆ X and sa ⊆ A.

Proof. If S = sx × sa, then Sa = sx for each a and thus, Sa = Sa′ for all
a, a′ ∈ A.

Vice versa, let us assume that x and a are independent. Let us denote the
common set Sa = Sa′ by sx. Let us denote by sa, the set of all possible values
a ∈ A, i.e., the set of all a ∈ A for which (x, a) ∈ S for some x ∈ X. Let us prove
that in this case, S = sx × sa.

Indeed, if (x, a) ∈ S, then, by definition of the set sx, have x ∈ Sa = sx,
and, by definition of the set sa, we have a ∈ sa. Thus, by the definition of the
Cartesian product B × C as the set of all pairs (b, c) of all pairs of elements
b ∈ B and c ∈ C, we have (x, a) ∈ sx × sa.

Vice versa, let (x, a) ∈ sx × sa, i.e., let x ∈ sx and a ∈ sa. By definition of
the set sx, we have Sa = sx, thus x ∈ Sa. By definition of the set Sa, this means
that (x, a) ∈ S. The proposition is proven.

As a corollary, we can conclude that the independence relation is symmetric –
similarly to the probabilistic case.

Corollary. Variables x and a are independent if and only if a and x are inde-
pendent.

Proof. Indeed, both case are equivalent to the condition that the set S is a
Cartesian product.

418 L. Dymova et al.

What can we now conclude about the dependence between A, X,
and Y . Since we assumed that a and x are independent, we can conclude that
the set of possible values of the pair (x, a) is the Cartesian product X × A. For
each such pair, the value of y is equal to y = f(x, a). Thus, the set Y is equal to
the range of f(x, a) when x ∈ X and a ∈ A.

The resulting solutions to interval systems of equations. So, we look for
sets A for which

Y = f(X,A) def= {f(x, a) : x ∈ X and a ∈ A}.

It is reasonable call the set A satisfying this property an equality-type solution
to the interval system of equations.

Such solutions for the interval system of equations y = f(x, a), in which
we want the interval versions Y and f(X,A) of both sides of the equation to
be exactly equal, are known as algebraic or, alternatively, formal solutions; see,
e.g., [1,2,5,7,9,12–14].

3 What If the Interval System of Equations Does
Not Have an Algebraic (Equality-Type) Solution:
A Justification for Enhanced-Zero Solutions

But what if an equality-type solution is impossible: analysis of the
problem. The description in the previous section seems to make sense, but
sometimes, the corresponding problem has no solutions. For example, in the
simplest case when m = n = k = 1 and f(x, a) = x + a, if we have Y = [−1, 1]
and X = [−2, 2], then clearly the corresponding equation Y = X + A does not
have a solution: no matter what set A we take the width of the resulting interval
X + A is always larger than or equal to the width w(X) = 4 of the interval X
and thus, cannot be equal to w(Y) = 2. What shall we do in this case? How can
we then find the desired set A?

Of course, this would not happen if we had the actual ranges X and Y , but
in reality, we only have estimates for these ranges. So, the fact that we cannot
find A means something is wrong with these estimates.

How are ranges X and Y estimated in the first place? To find out what
can be wrong, let us recall how the ranges can be obtained from the experiments.
For example, in the 1-D case, we perform several measurements of the quantity
x1 in different situations. Based on the corresponding measurement results x

(c)
1 ,

we conclude that the interval of possible values must include the set [x≈
1 , x≈

1],
where x≈

1
def= min

c
x
(c)
1 and x≈

1
def= max

c
x
(c)
1 . Of course, we can also have some

values outside this interval – e.g., for a uniform distribution on an interval [0, 1],
the interval formed by the smallest and the largest of the C random numbers is
slightly narrower than [0, 1]; the fewer measurement we take, the narrower this
interval.

Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations 419

So, to estimate the actual range, we inflate the interval [x≈
1 , x≈

1]. In these
terms, the fact that we have a mismatch between X and Y means that one of
these intervals was not inflated enough.

The values x correspond to easier-to-measure quantities, for which we can
make a large number of measurements and thus, even without inflation, get
pretty accurate estimates of the actual range X. On the other hand, the values
y are difficult to measure; for these values, we do not have as many measurement
results and thus, there is a need for inflation.

From this viewpoint, we can safely assume that the range for X is reasonably
accurate, but the range of Y needs inflation.

So how do we find A? In view of the above analysis, if there is no set A for
which Y = f(X,A), the proper solution is to inflate each components of the set
Y so that the system becomes solvable.

To make this idea precise, let us formalize what is an inflation.

What is an inflation: analysis of the problem. We want to define a mapping
I that transforms each non-degenerate interval x = [x, x] into a wider interval

I(x) ⊃ x.

What are the natural properties of this transformation? The numerical value
x of the corresponding quantity depends on the choice of the measuring unit, on
the choice of the starting point, and – sometimes – on the choice of direction.

– For example, we can measure temperature tC in Celsius, but we can also use
a different measuring unit and a different starting point and get temperatures
in Fahrenheit tF = 1.8 · tC + 32.

– We can use the usual convention and consider the usual signs of the electric
charge, but we could also use the opposite signs – then an electron would be
a positive electric charge.

It is reasonable to require that the result of the inflation transformation does
not change if we simply change the measuring units or change the starting point
or change the sign:

– Changing the starting point leads to a new interval [x, x]+x0 = [x+x0, x+x0]
for some x0.

– Changing the measuring unit leads to λ · [x, x] = [λ · x, x] for some λ > 0.
– Changing the sign leads to −[x, x] = [−x,−x].

Thus, we arrive at the following definition.

Definition 2. By an inflation, we mean a mapping that maps each non-
degenerate interval x = [x, x] into a wider interval I(x) so that:

– for every x0, we have I(x + x0) = I(x) + x0;
– for every λ > 0, we have I(λ · x) = λ · I(x); and
– we have I(−x) = −I(x).

420 L. Dymova et al.

Proposition 2. Every inflation operation has the form

[x̃ − Δ, x̃ + Δ] → [x̃ − α · Δ, x̃ + α · Δ]

for some α > 1.

Comment. A similar result was proven in [4].

Proof. It is easy to see that the above operation satisfies all the properties of
an inflation. Let us prove that, vice versa, every inflation has this form.

Indeed, for intervals x of type [−Δ,Δ], we have −x = x, thus I(x) = I(−x).
On the other hand, due to the third property of an inflation, we should have
I(−x) = −I(x). Thus, for the interval [v, v] def= I(x), we should have −[v, v] =
[−v,−v] = [v, v] and thus, v = −v. So, we have I([−Δ,Δ]) = [−Δ′(Δ),Δ′(Δ)]
for some Δ′. Since we should have [−Δ,Δ] ⊂ I([−Δ,Δ]), we must have

Δ′(Δ) > Δ.

Let us denote Δ′(1) by α. Then, α > 1 and I([−1, 1]) = [−α, α]. By applying
the second property of the inflation, with λ = Δ, we can then conclude that
I([−Δ,Δ]) = [−α · Δ,α · Δ]. By applying the first property of the inflation
operation, with x0 = x̃, we get the desired equality

I([x̃ − Δ, x̃ + Δ]) = [x̃ − α · Δ, x̃ + α · Δ].

The proposition is proven.

So how do we find A? We want to make sure that f(X,A) is equal to the
result of a proper inflation of Y .

How can we tell that an interval Y ′ is the result of a proper inflation of Y ?
One can check that this is equivalent to the fact that the difference Y ′ − Y is
a symmetric interval containing 0; such intervals are known as extended zeros
[10,11].

Thus, if we cannot find the set A for which Y = f(X,A), we should look for
the set A for which the difference f(X,A) − Y is an extended zero.

Historical comment. This idea was first described in [10,11]; in this paper, we
provide a new theoretical justification of this idea.

Multi-D case. What if we have several variables, i.e., m > 1? In this case,
we may have different inflations for different components Yi of the set Y , so
we should look for the set A for which, for all i, the corresponding difference
fi(X,A) − Yi is an extended zero.

Acknowledgments. This work was supported in part by the grant DEC-
2013/11/B/ST6/00960 from the National Science Center (Poland), by the US National
Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of
Excellence) and DUE-0926721, and by an award “UTEP and Prudential Actuarial Sci-
ence Academy and Pipeline Initiative” from Prudential Foundation.

The authors are thankful to the anonymous referees for valuable suggestions.

Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations 421

References

1. Chakraverty, S., Hlad́ık, M., Behera, D.: Formal solution of an interval system of
linear equations with an application in static responses of structures with interval
forces. Appl. Math. Model. 50, 105–117 (2017)

2. Chakraverty, S., Hlad́ık, M., Mahato, N.R.: A sign function approach to solve
algebraically interval system of linear equations for nonnegative solutions. Fundam.
Inform. 152, 13–31 (2017)

3. Jaulin, L., Kiefer, M., Dicrit, O., Walter, E.: Applied Interval Analysis. Springer,
London (2001). https://doi.org/10.1007/978-1-4471-0249-6

4. Kreinovich, V., Starks, S.A., Mayer, G.: On a theoretical justification of the choice
of epsilon-inflation in PASCAL-XSC. Reliab. Comput. 3(4), 437–452 (1997)

5. Lakeyev, A.: On the computational complexity of the solution of linear systems
with moduli. Reliab. Comput. 2(2), 125–131 (1996)

6. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM,
Philadelphia (2009)

7. Nickel, K.: Die Auflösbarkeit linearer Kreisscheineb- und Intervall-
Gleichingssyteme. Linear Algebra Appl. 44, 19–40 (1982)

8. Rabinovich, S.G.: Measurement Errors and Uncertainty: Theory and Practice.
Springer, Berlin (2005). https://doi.org/10.1007/0-387-29143-1

9. Ratschek, K., Sauer, W.: Linear interval equations. Computing 25, 105–115 (1982)
10. Sevastjanov, P., Dymova, L.: Fuzzy solution of interval linear equations. In:

Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007.
LNCS, vol. 4967, pp. 1392–1399. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68111-3 147

11. Sevastjanov, P., Dymova, L.: A new method for solving interval and fuzzy equa-
tions: linear case. Inf. Sci. 17, 925–937 (2009)

12. Shary, S.P.: Algebraic approach to the interval linear static identification, toler-
ance, and control problems, or one more application of Kaucher arithmetic. Reliab.
Comput. 2(1), 3–33 (1996)

13. Shary, S.P.: Algebraic approach in the ‘outer problem’ for interval linear equations.
Reliab. Comput. 3(2), 103–135 (1997)

14. Shary, S.P.: A new technique in systems analysis under interval uncertainty and
ambiguity. Reliab. Comput. 8, 321–418 (2002)

15. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman and Hall/CRC, Boca Raton (2011)

https://doi.org/10.1007/978-1-4471-0249-6
https://doi.org/10.1007/0-387-29143-1
https://doi.org/10.1007/978-3-540-68111-3_147
https://doi.org/10.1007/978-3-540-68111-3_147

Workshop on Complex Collective
Systems

Application of Local Search
with Perturbation Inspired by Cellular
Automata for Heuristic Optimization
of Sensor Network Coverage Problem

Krzysztof Trojanowski, Artur Mikitiuk(B), and Krzysztof J. M. Napiorkowski

Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
{k.trojanowski,a.mikitiuk}@uksw.edu.pl

Abstract. A cellular automata inspired approach to the problem of
effective energy management in a sensor network is presented. The net-
work consisting of a set of sensors is disseminated over an area where
a number of points of interest (POI) is localized. The aim is to maxi-
mize the time when a sufficient number of POIs is monitored by active
sensors. A schedule of sensor activity over time is a solution of this prob-
lem. A new heuristic algorithm inspired by a cellular automata engine is
proposed. It searches for such schedules maximizing the lifetime of the
sensor network. We also present a set of test cases for experimental eval-
uation of our approach. The proposed algorithm is experimentally tested
using these test cases and the obtained results are statistically verified
to prove significant contribution of the algorithm components.

Keywords: Local search · Sensor networks
Maximum Lifetime Coverage Problem · Cellular automata

1 Introduction

Multiple sensor network applications stimulate research concerning optimization
of their effectiveness and efficiency. One of the main goals of this research is
the minimization of energy consumption or, in other words, maximization of
the network lifetime. Maximization of a time when an area is monitored by
a set of distributed sensors with a limited battery capacity is the subject of
the presented research. We assume that a set of points of interest (POI) is
distributed in the monitored area and a coverage constraint has to be satisfied
by a network, that is, sensors have to provide uninterrupted monitoring of a
sufficient number of POIs all the time. The number of sensors is high so their
monitoring areas can overlap. Therefore, usually, there exists a group of POIs
which are monitored by more than one sensor. This opens a possibility of the
network lifetime optimization since we know that sleeping sensors save their
energy and it is not necessary to have all the sensors in an active state all
the time. Precisely, we search for a schedule which represents effective energy
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 425–435, 2018.
https://doi.org/10.1007/978-3-319-78054-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_40&domain=pdf

426 K. Trojanowski et al.

management in the sensor batteries, that is, the longest schedule defining sensor
states over time satisfying the coverage constraint.

In the presented research an idea of a cellular automaton (CA) is employed
in the initialization and perturbation procedures to generate slots of a network
activity schedule. The main novelty lies in an adaptation of CA components,
like a neighborhood structure and a transition function to perform this task. A
new algorithm for generation of sensor activity schedules based on this idea is
proposed. The schedule obtained by this algorithm is an input for a local search
(LS) algorithm whose goal is to improve the result. The LS algorithm makes use
of an original perturbation operator which generates neighbour schedules. We
also present a set of test cases for experimental evaluation of our approach.

The paper consists of six sections. Section 2 gives the definition of the solved
problem and all the necessary constraints. The proposed algorithms are pre-
sented in Sect. 3. A benchmark is defined in Sect. 4 and the results of experiments
are discussed in Sect. 5. Section 6 concludes the paper.

2 Maximum Lifetime Coverage Problem (MLCP)

In the sensor coverage problem [2], NS immobile sensors are randomly deployed
over an area to control a set of points of interest (POI). Each sensor has a sensing
range rsens and its battery is at the beginning fully loaded. We assume that time
is discrete and an active sensor consumes one unit of energy per time unit for
sensing and communication. A sensor can be active during Tbatt consecutive, or
not, time steps. After deployment, the sensors schedule their activity.

Active sensors monitor all POIs located within their sensing range and one
POI can be monitored by more than one active sensor at the same time. For
effective monitoring of a given set of POIs, it is not necessary to control all of
them all the time. We need to achieve a satisfying coverage level cov – some
percentage of the number of POIs being monitored (usually 80–90%). On the
other hand, we do not want to exceed this satisfying coverage level too much to
save sensor batteries. Thus, our goal is to monitor all the time the percentage of
POIs in the range [cov, cov + δ], where δ represents a tolerance factor.

During one time slice a sensor can be either active (in a working mode) or
inactive (in a sleeping state). It is assumed that in a sleeping state the energy
consumption is negligible. We ignore the problem of communication between
sensors both in terms of energy consumption necessary for communication and
in terms of connectivity in the communication graph. We assume that sensors are
always able to communicate regardless of their localization even if some sensors
are in a sleeping state.

A solution we look for is a schedule of sensor activity which gives the satis-
fying coverage level for the given set of POIs as long as possible. This is called
the Maximum Lifetime Coverage Problem. The schedule is a matrix H of 0s and
1s representing states of sensors off and on in consecutive time slots. The value
of a schedule is the length of the longest time period during which the coverage
requirement is met.

Application of Local Search with Perturbation 427

There are many publications concerning sensor networks. However, litera-
ture about heuristic approaches to MLCP as defined above is not very rich. One
can find, e.g., papers on sensor control methods [5] or schedule optimization
based on evolutionary algorithms [6], simulated annealing [7], or graph cellu-
lar automata [8]. In [3] a method for the problem of multiple POI coverage is
proposed but in this case, mobile sensors are considered.

3 Search Algorithm

A local search approach is used for sensor activity schedule optimization. The
main novelty lies in the method for generation of a new schedule which is used
both for generation of an initial one and for building a neighbour schedule. After
the first schedule is created by Algorithm 1, the algorithm iteratively tries to
improve it by the problem specific neighbour operator generateNeighbour (see
Algorithm 3). When a newly found schedule is longer than the current one, the
new one takes place of the current and the process continues.

3.1 Generation of the Initial Schedule

A method of a new schedule generation presented in Algorithm1 starts with
a schedule which can be either empty or partially completed. The main idea
is to add to the schedule new slots one by one even if they do not satisfy the
coverage constraint. For such unfeasible slots, the battery levels are not updated.
Eventually, when no more slots can be added, the unfeasible ones are deleted
from the schedule.

General Description of the Method: Every slot in a schedule undergoes
the same process: states of slot cells are computed with the use of a procedure
inspired by Cellular Automata (PICA) first, and if the coverage constraint is
satisfied the states are accepted. Otherwise, the proposed states are forgotten and
another procedure sets cells states. PICA implements a sort of cellular automata
procedure based on a graph universe (see, for example, [1,9] for details). Due
to the fact that generation of a current state of cells requires states of cells for
the previous time step, when the schedule is built from scratch the initial slot
is filled entirely by zeros (line 2). Then, PICA is run with a copy of the slot
from the previous time step as an input argument (lines 7–8). If the output of
PICA does not satisfy the coverage constraint, another procedure for evaluation
of slot cells is executed. First, all the sensors which have non-empty batteries are
set to on (lines 9–10). Then, just to prevent lavish coverage settings, randomly
selected sensors are switched off as long as the set of remaining active sensors is
able to cover much more than a sufficient number of POIs, that is, covPoi(Ht) >
(cov + δ) (lines 11–13). Eventually, whether the obtained slot is feasible or not,
it is accepted in the schedule, however, only in the former case the battery
levels and the set of active sensors are updated and the max effective coverage
covS(max) is reevaluated (lines 14–18). The loop stops when the set of remaining

428 K. Trojanowski et al.

Algorithm 1. CA Inspired Generation of a Schedule (CABG)
Require: S, cov, t, H;
Ensure: H
1: if t = 0 then � if a schedule is created from scratch..
2: for all S ∈ S do Ht

S ← 0

3: Swork ← filter(S, t) � select subset of active sensors having POIs in range
4: covS(max) ← covPoi(Swork) � evaluate coverage when all active sensors are on
5: repeat
6: t ← t + 1
7: Ht ← Ht−1

8: Ht ← PICA(S,Swork, H
t) � build a slot with a cellular automaton

9: if covPoi(Ht) < cov then � if the coverage constraint is not satisfied..
10: for all S ∈ Swork do Ht

S ← 1 � turn on all sensors from Swork

11: while covPoi(Ht) > (cov + δ) do � while the coverage is lavish ..
12: i ← rand(1, NS) � .. select a sensor randomly, and ..
13: Ht

Si
← 0 � .. set its state to off

14: if cov ≤ covPoi(Ht) ≤ (cov + δ) then � if the coverage constraint is satisfied..
15: for all S ∈ S | Ht

S = 1 do
16: batt(S) ← batt(S) − 1 � .. sensor batteries level update

17: Swork ← filter(S, t) � Swork update
18: covS(max) ← covPoi(Swork) � covS(max) update

19: until cov > covS(max)

20: for t ← 1, Tmax do � remove slots which do not satisfy the coverage constraint
21: if (covPoi(Ht) < cov) ∨ (covPoi(Ht) > (cov + δ)) then delete(Ht)

22: return H

Algorithm 2. Slot Generation Inspired by Cellular Automata (PICA)
1: procedure PICA(S,Swork, H

t)
2: for all S ∈ S do � cellular automaton execution
3: n ← 0 � initialize the number of active neighbour sensors for S
4: for all R ∈ S | R �= S do
5: if N(S, R) ∧ Ht

R = 1 then � if S and R are neighbours and R is on
6: n ← n + 1 � increase the number of active neighbour sensors for S

7: if n = 0 ∧ S ∈ Swork then
8: Ht

S ← 1 � turn the sensor S on
9: else

10: Ht
S ← 0 � turn the sensor S off

11: return Ht

active sensors is not able to cover a sufficient number of POIs even if all of them
are on, that is, cov > covS(max).

Details of Procedure Inspired by Cellular Automata (PICA): PICA
implements steps typically executed in CA, however, it must be stressed that
in contrast to CA its main aim is building a new slot from an existing one.

Application of Local Search with Perturbation 429

In Cellular Automata (CA) main components are (1) cells which can change
their states, (2) a neighborhood relationship between cells and (3) a transition
function. Cells are represented by sensors and can be in any of the two states: on
or off. In a slot, the states are represented by 1 or 0, respectively. Two sensors
are regarded as neighbors when their monitoring areas overlap. The number
of neighbors for each of sensors can be different and depends only on their
location in the monitored area. Thus, cells in our automata do not form a grid
universe but rather a graph universe where nodes represent sensors and edges
represent neighbour relationship. A transition function qtr changes values in a
slot, that is, the state of sensors in the network respectively to the state of their
neighbour sensors. The function changes the state to on when all neighbors are
off and the sensor battery is not empty. Otherwise, the sensor state is set to
off. Formally, qtr(S)t+1 =

∏n
i=1(1 − qtr(Rt

i)) · sgn(batt(St+1)) where S is the
sensor to evaluate, Ri – a neighbour sensor of S, n – the number of neighbours
of S, sgn – a signum function which returns one for values greater than zero,
zero for zero, and minus one for values less than zero. The transition function
works asynchronously, that is, the sensor state is changed instantly and may
influence decisions concerning other sensors which have not changed their state
yet. The order of sensors undergoing the state change is not deterministic and
may be different in subsequent steps of CA. This way of cell update in this
particular case is justified because it guarantees different results of perturbation
for the same slot in subsequent trials. It is worth noting that sensors located
in the boundary regions of the monitored area have fewer neighbors than the
others, however, the transition rule is the same for all of them. Details of the
cellular automata procedure (CA) are presented in Algorithm2. A neighborhood
function N(S,R) used in Algorithm 2 returns true in the case of the neighbour
relationship between S and R, and false – otherwise.

3.2 Iterative Improvement of the Schedule

A method of a neighbour schedule generation is presented in Algorithm3. In the
first stage of this procedure (lines 2–4) five percent of cells in the input schedule
is set to zero (it concerns also the cells already set to zero). Then, all slots are
verified whether they still satisfy the coverage constraint. Slots which are unfea-
sible are deleted (lines 5–6). Next, sensor batteries are recovered respectively to
the number of deleted slots and settings inside them. Finally, the CABG pro-
cedure is called for the modified schedule and the outcome of this procedure is
returned as the neighbour schedule.

4 Benchmark SCP1

We prepared a set of test cases called SCP1 (Sensor Coverage Problem, Set
No. 1) to evaluate the proposed algorithm. Every test case in this set can be
described by a set of parameters. In all test cases, there are 2000 sensors with
sensing range rsens 1 unit. We require the coverage level cov = 80% with tolerance

430 K. Trojanowski et al.

Algorithm 3. A Neighbour Schedule Generation
1: procedure generateNeighbour(S,H,Tmax, cov, δ)
2: for t ← 1, Tmax do
3: for all S ∈ S do
4: if rand(0, 1) < 0.05 then Ht

S ← 0

5: for t ← 1, Tmax do � check where the coverage constraint is not satisfied
6: if covPoi(Ht) < cov then delete(Ht) � delete unfeasible slot

7: Tmax ← length(H) � update schedule length
8: batteryRecovery(S, H) � recover battery levels due to deleted slots in H
9: return CABG(S, cov, Tmax, H) � return the outcome of CABG

δ = 5%. The remaining parameters vary between test cases. There are two types
of distribution of POIs – POIs can be located in nodes of a triangular grid or a
rectangular grid. Coordinates of sensor localization can be obtained using either
a random generator or a Halton generator [4]. The area under consideration is
a square. Its side size can be 13, 16, 19, 22, 25, or 28 units.

The number of POIs is the same for different area sizes. Thus, the distances
between POIs become larger as the square side grows. To avoid full regularity
in the POIs distribution, 20% of nodes in the grid is not filled with POIs. These
nodes are selected randomly for every instance of the test case. The number of
POIs in subsequent test cases varies from 199 to 240 for the triangular grid and
from 166 to 221 for the rectangular grid.

We selected for experiments 8 configurations of the test case which differ in
the area size, the type of a grid for POIs, and the generator of sensor locations.
It was our arbitrary decision to select these particular configurations – someone
else could choose different values for some or all parameters or propose more
than 8 configurations. A set of 40 instances was generated for every test case.
Every instance consists of a file with coordinates of POI locations and a file with
coordinates of sensor locations. Table 1 presents how many sensors can control
on average given numbers of POIs for each of the eight test cases.

Table 1. Mean numbers of sensors covering 0, 1, 2, 3, 4, 5 and more that 5 POIs for
the eight test cases of SCP1. � means a triangular grid of POI locations, and 	 - a
rectangular grid.

No. Configuration 0 1 2 3 4 5 >5

1 13 × 13, �, rand 5.0 58.2 234.9 559.7 691.6 327.9 122.7

2 13 × 13, 	, Halton 18.3 126.6 369.4 691.2 693.5 95.4 5.7

3 16 × 16, �, Halton 24.6 211.1 679.2 902.7 182.4 0.0 0.0

4 19 × 19, 	, rand 135.1 763.0 951.2 128.8 21.8 0.0 0.0

5 19 × 19, �, rand 112.7 631.7 819.7 435.8 0.0 0.0 0.0

6 22 × 22, �, Halton 209.9 1012.6 665.9 111.6 0.0 0.0 0.0

7 25 × 25, �, rand 340.1 1303.4 350.9 5.6 0.0 0.0 0.0

8 28 × 28, �, Halton 450.1 1475.2 74.7 0.0 0.0 0.0 0.0

Application of Local Search with Perturbation 431

This table shows that in the first test case some sensors cover even 5 or
more POIs. In the next cases, sensors can cover smaller and smaller numbers of
POIs. In the last test case, almost 75% of sensors cover only one POI. Similarly,
Fig. 1 shows, that in the first test case the intersections between neighbor sensor
monitoring areas are greater and contain larger numbers of POIs. For the next
test cases, these areas become smaller and smaller and the numbers of common
POIs decrease as well.

Fig. 1. Visualizations of a monitored area for selected instances of a three among the
eight test cases in SCP1: squares represent POIs, dots — sensors, circles around POIs
— which sensors have in its range the POI located in the circle center.

5 Results of Experiments

The SCP1 benchmark was used for experiments with the proposed algorithm.
We generated 40 instances for every test case from SCP1 and the algorithm was
executed once for each of these instances. The experiments were performed for
five different values of Tbatt: 10, 15, 20, 25, and 30. Results of these experiments
are given in Table 2. Table rows show mean lengths of schedules obtained for
respective 40 instances and min and max lengths among them.

The top half of Table 2 presents results returned by Algorithm 1 while the
bottom half – results of the Local Search (LS) algorithm using the perturbation
operator presented in Algorithm 3. The values in the series are paired because
output schedules of Algorithm1 were an input for the LS algorithm.

One can see that the results are better for the cases when the intersections
between the sets of POIs controlled by neighboring sensors are greater. Moreover,
mean lengths of schedules are proportional to the sensor lifetime Tbatt.

We performed statistic t-tests for paired data to determine whether applica-
tion of LS improves the length of the schedules. The null hypothesis is that any
differences in schedule lengths before and after LS are due to chance. Table 3
shows obtained p-values. Since in every case the value is below 0.001, the null

432 K. Trojanowski et al.

Table 2. Mean, min and max lengths of schedules returned by Algorithm 1 – top part
– and by the LS algorithm – bottom part – for each of the eight test cases in SCP1
and for five values of Tbatt from 10 to 30

No. Tbatt Mean Min Max No. Tbatt Mean Min Max

1 10 263.1 256 273 5 10 118.4 113 122

15 394.0 383 406 15 178.0 169 186

20 525.9 514 547 20 236.3 226 245

25 657.7 638 683 25 295.8 280 305

30 787.3 767 812 30 355.4 339 370

2 10 279.7 275 285 6 10 97.7 96 100

15 420.7 412 433 15 147.0 142 151

20 560.6 552 573 20 195.9 191 201

25 701.9 687 718 25 245.3 238 252

30 843.5 827 866 30 295.0 288 302

3 10 182.7 177 186 7 10 66.8 63 71

15 274.5 268 283 15 100.0 94 104

20 366.7 357 375 20 133.4 126 140

25 459.2 448 474 25 167.0 158 173

30 550.4 537 562 30 199.8 189 210

4 10 108.6 103 113 8 10 60.6 59 62

15 163.4 155 170 15 91.0 88 93

20 217.5 207 226 20 122.1 118 126

25 271.9 261 284 25 152.7 149 156

30 326.7 308 339 30 183.5 179 188

1 10 277.3 269 287 5 10 125.1 120 130

15 415.4 403 429 15 188.3 179 197

20 554.4 542 576 20 250.0 240 260

25 693.0 672 718 25 313.1 297 323

30 830.1 810 855 30 375.9 361 390

2 10 294.3 288 301 6 10 103.1 100 106

15 442.6 435 456 15 155.3 149 160

20 590.1 580 604 20 207.1 202 213

25 738.8 724 755 25 259.2 252 266

30 887.8 871 911 30 311.8 305 318

3 10 192.4 186 196 7 10 71.1 67 75

15 289.4 282 298 15 106.5 100 111

20 386.6 376 396 20 140.3 130 145

25 484.1 473 498 25 177.5 168 184

30 580.1 567 591 30 212.4 202 222

4 10 114.8 109 120 8 10 64.4 63 66

15 172.6 164 180 15 96.8 94 99

20 230.4 220 239 20 129.7 126 133

25 287.6 275 300 25 158.4 153 162

30 345.8 327 359 30 194.6 190 199

Application of Local Search with Perturbation 433

Table 3. Results of statistical tests for paired samples obtained from Algorithm 1
and LS: p-values, std.dev.#1 for the results from Algorithm 1 and std.dev.#2 for LS
obtained for each of the eight test cases in SCP1 and for five values of Tbatt from 10
to 30

No. Tbatt p-value s.d.#1 s.d.#2 No. Tbatt p-value s.d.#1 s.d.#2

1 10 1.85E−53 4.22 4.32 5 10 1.4E−42 2.65 2.82

15 2.4E−52 5.49 6.01 15 7.4E−49 4.28 4.56

20 4.25E−59 8.01 8.18 20 1.2E−50 5.01 5.06

25 7.46E−55 10.36 11.15 25 5.72E−51 6.31 6.55

30 1.02E−55 12.18 12.55 30 1.62E−53 7.79 8.01

2 10 2.31E−51 2.90 3.19 6 10 1.09E−39 1.23 1.40

15 1.14E−53 4.52 4.89 15 1.52E−44 1.83 2.08

20 1.02E−56 5.82 6.31 20 1.87E−47 2.19 2.48

25 3.73E−58 7.22 7.77 25 1.71E−54 2.95 3.11

30 3.02E−57 8.42 9.03 30 1E−53 3.37 3.56

3 10 4.66E−50 2.15 2.23 7 10 8.41E−38 1.92 2.01

15 7.23E−52 2.97 3.19 15 7.79E−44 2.37 2.56

20 4.64E−57 4.05 4.33 20 5.62E−46 3.48 3.49

25 4.97E−56 5.38 5.60 25 7.99E−47 3.95 4.22

30 1.08E−61 5.55 5.77 30 4.46E−47 5.36 5.37

4 10 3.25E−42 2.59 2.47 8 10 7.16E−38 0.74 0.74

15 4.48E−45 4.00 4.22 15 8.75E−44 1.04 1.07

20 9.18E−49 5.16 5.22 20 1.18E−45 1.58 1.52

25 7.19E−50 5.64 5.92 25 7.75E−48 1.78 2.05

30 1.89E−54 7.63 7.92 30 1.1E−52 2.40 2.37

hypothesis can be rejected. Hence, one can conclude with 99.9% confidence that
the differences in schedule length before and after LS are not due solely to chance.

We also conducted another set of experiments in order to compare the perfor-
mance of our algorithm with algorithms presented in [7,8]. In these experiments,
means and standard dev. of lengths of schedules produced by LS were compared
with means and standard dev. of schedules obtained by algorithms introduced
in these two papers. We selected a set of four test cases. Three of them were
taken from [8]. In these cases, 100 POIs are located in the form of a rectangular
grid on an area of size 100× 100, and the number of randomly deployed sensors
is, respectively, 100, 200, and 300. The last problem was taken from [7]. In this
problem, 400 POIs are located in the form of a rectangular grid on an area of size
100 × 100, and 100 sensors are randomly deployed. In all four cases cov = 90%,
a sensing range rsens = 20 and Tbatt = 20.

Table 4 shows that Algorithm 3 can give results much better than other meth-
ods (in cases #1-3 schedule length increased by almost 70%, in case #4 by almost

434 K. Trojanowski et al.

180%). However, according to Table 2 in the case of results of Algorithm 1, the
LS algorithm gives improvement only by about 5%. This would indicate that
Algorithm 1 does not give much room for improvement by local search.

Table 4. Mean and standard dev. of lengths of schedules returned by the LS algorithm
using proposed perturbation operator (Algorithm 3) and presented in publications (here
as the reference values)

No. LS Ref. value No. LS Ref. value

case#1 139.43 ± 2.61 83.0 ± 2.23 case#3 419.1 ± 5.25 248.0 ± 2.82

case#2 278.87 ± 4.14 165.0 ± 2.44 case#4 136.4 ± 2.31 49

6 Conclusions

In this paper, we presented a new approach to solving the Maximum Lifetime
Coverage Problem. Our method generates an initial schedule using for generation
of new slots a procedure inspired by cellular automata based on a graph universe.
If a new slot does not satisfy the required coverage constraint, the slot is modified
by turning on all available sensors and turning off randomly selected sensors one
sensor at a time. Next, the initial schedule is passed to a local search procedure
for iterative improvement.

Moreover, a set of benchmarks for experimental evaluation of our algorithm
has been proposed. Our experiments with these test cases show that the system is
operational longer when many sensors can cover multiple POIs. Moreover, mean
lengths of schedules are proportional to the sensor battery capacity. Our local
search algorithm, when applied to initial schedules produced using a procedure
inspired by cellular automata gives slightly longer schedules. However, this local
search algorithm can give results much better than methods from [7,8].

References

1. Bozapalidis, S., Kalampakas, A.: Graph automata. Theor. Comput. Sci 393(1–3),
147–165 (2008). https://doi.org/10.1016/j.tcs.2007.11.022

2. Cardei, I., Cardei, M.: Energy-efficient connected-coverage in wireless sensor net-
works. IJSNet 3(3), 201–210 (2008). https://doi.org/10.1504/IJSNET.2008.018487

3. Erdelj, M., Loscr̀ı, V., Natalizio, E., Razafindralambo, T.: Multiple point of interest
discovery and coverage with mobile wireless sensors. Ad Hoc Netw. 11(8), 2288–2300
(2013). https://doi.org/10.1016/j.adhoc.2013.04.017

4. Halton, J.H.: Algorithm 247: radical-inverse quasi-random point sequence. Commun.
ACM 7(12), 701–702 (1964). https://doi.org/10.1145/355588.365104

5. Tian, D., Georganas, N.D.: A coverage-preserving node scheduling scheme for large
wireless sensor networks. In: Proceedings of the First ACM International Workshop
on Wireless Sensor Networks and Applications (WSNA 2002), pp. 32–41. ACM
Press (2002). https://doi.org/10.1145/570738.570744

https://doi.org/10.1016/j.tcs.2007.11.022
https://doi.org/10.1504/IJSNET.2008.018487
https://doi.org/10.1016/j.adhoc.2013.04.017
https://doi.org/10.1145/355588.365104
https://doi.org/10.1145/570738.570744

Application of Local Search with Perturbation 435

6. Tretyakova, A., Seredynski, F.: Application of evolutionary algorithms to maximum
lifetime coverage problem in wireless sensor networks. In: IPDPS Workshops, pp.
445–453. IEEE (2013). https://doi.org/10.1109/IPDPSW.2013.96

7. Tretyakova, A., Seredynski, F.: Simulated annealing application to maximum life-
time coverage problem in wireless sensor networks. In: Global Conference on Arti-
ficial Intelligence, GCAI, vol. 36, pp. 296–311. EasyChair (2015)

8. Tretyakova, A., Seredynski, F., Bouvry, P.: Graph cellular automata approach to the
maximum lifetime coverage problem in wireless sensor networks. Simulation 92(2),
153–164 (2016). https://doi.org/10.1177/0037549715612579

9. Wu, A.Y., Rosenfeld, A.: Cellular graph automata I and II. Inf. Control 42, 305–353
(1979). https://doi.org/10.1016/S0019-9958(79)90288-2

https://doi.org/10.1109/IPDPSW.2013.96
https://doi.org/10.1177/0037549715612579
https://doi.org/10.1016/S0019-9958(79)90288-2

A Fuzzy Logic Inspired Cellular
Automata Based Model for Simulating

Crowd Evacuation Processes

Prodromos Gavriilidis1, Ioannis Gerakakis1, Ioakeim G. Georgoudas1(B),
Giuseppe A. Trunfio2(B), and Georgios Ch. Sirakoulis1(B)

1 Department of Electrical and Computer Engineering, School of Engineering,
Democritus University of Thrace, University Campus, Kimmeria,

67100 Xanthi, Greece
{pgavri,igerak,igeorg,gsirak}@ee.duth.gr

2 DADU, University of Sassari, Piazza Duomo, 6, 07041 Alghero, SS, Italy
trunfio@uniss.it

Abstract. This work investigates the incorporation of fuzzy logic prin-
ciples in a cellular automata (CA) based model that simulates crowd
dynamics and crowd evacuation processes with the usage of a Mamdani
type fuzzy inference system. Major attributes of the model that affect its
response, such as orientation, have been deployed as linguistic variables
whose values are words rather than numbers. Thus, a basic concept of
fuzzy logic is realised. Moreover, fuzzy if-then rules constitute the mech-
anism that deals with fuzzy consequents and fuzzy antecedents. The
proposed model also maintains its CA prominent features, thus exploit-
ing parallel activation of transition rules for all cells and efficient use
of computational resources. In case of evacuation, the selection of the
appropriate path is primarily addressed using the criterion of distance.
To further speed up the execution of the Fuzzy CA model the concept
of the inherent parallelization was considered through the GPU pro-
gramming principles. Finally, validation process of the proposed model
incorporates comparison of the corresponding fundamental diagram with
those from the literature for a building that has been selected for hosting
the museum ‘CONSTANTIN XENAKIS’, in Serres, Greece.

Keywords: Crowd modelling · Cellular automata · Fuzzy logic
Evacuation · Flow-density diagram · Speed-density diagram

1 Introduction

Crowd evacuation is a research area that has been thoroughly investigated by
the scientific community. Many researchers from different disciplines have applied
various methodologies to approach realistically issues related to the movement of
people when massively abandoning an area. The major challenge for all deployed
mechanisms is to improve the safety standards of evacuation processes. In such
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 436–445, 2018.
https://doi.org/10.1007/978-3-319-78054-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_41&domain=pdf

A Fuzzy Logic Inspired CA Based Model 437

studies, a large number of people are involved and the interactions between them
can be hardly described by conventional equations because of the psychological
factors that influence their behavior. Moreover, the layout of the facilities has
significant impact on the evolution of the evacuation. Thus, evacuation dynamics
incorporates nonlinear characteristics and is very complex [1].

It is of high interest that modeling approaches of crowd movement can achieve
an acceptable level of realism, and can be efficiently validated with empirical data
in order to provide robust results. According to a recent review about evacuation
models [2], empirical research often focuses on the relationship between walking
speed and density as well as the relationship between flow, people and density.
These relationships are called the ‘fundamental diagram’, because of their impor-
tance in determining the optimal dimensions of pedestrian facilities [3]. Often,
the main modeling issue is the ability to successfully handle congestion, in order
to prevent unpleasant circumstances, such as stampede, trampling and casualties
[4–6]. Concurrently, the applications of fuzzy logic have increased significantly.
According to [7], fuzzy logic is a theory that tries to broaden the limits of a set
of acceptable values by defining not crisp boundaries in which membership is a
matter of degree. Furthermore, by introducing the notion of a linguistic variable,
whose values are words rather than numbers, fuzzy logic could be considered as
a methodology for computing with words rather than numbers that try to lower
the cost of solution at the expense of decreased but acceptable precision.

Literature review shows that the combination of cellular automata (CA)
models with fuzzy logic is quite effective. For instance, Bisgambiglia et al. [8]
presented a method that incorporates fuzzy inference systems in activity-based
CA simulations. Betel and Flocchini [9] investigated the relationship between
fuzzy and Boolean CA, whereas Cattaneo et al. [10] and Adamatzky [11] devel-
oped CA models where the local transition rule is described by a fuzzy function.
Moreover, Chaia et al. presented a safety evaluation of driver cognitive failures
and driving errors on right-turn filtering movement based on fuzzy CA [12].
Finally, Al-Ahmadi et al. developed a fuzzy CA model of urban dynamics [13].

The approach proposed in this paper combines fuzzy logic and CA to build a
reliable model that simulates crowd evacuation. The motivation for incorporating
fuzzy logic stems from the fact that it enables computing with words, which ‘are
inherently less precise than numbers, but their use is closer to human intuition’
[7]. For instance, it is the orientation of the direction (e.g. ‘north’, ‘south-east’,
etc.) that plays a dominant role in the movement of an individual rather than
an exact angle measured in degrees. The same can be adopted for the state of a
cell, which can be adequately characterised by words, such as ‘free’, ‘occupied’
or ‘obstacle’ for the needs of a model that mainly targets to quick response and
tries to lower the cost of solution. Specifically, a Mamdani type fuzzy inference
system (FIS) has been developed using the MATLAB Fuzzy Logic ToolboxTM .
Major features of the model, such as state of a CA cell and direction have been
represented as linguistic variables. Additionally, fuzzy if-then rules are properly
constructed based on the descriptions of the input and output variables. The
structure of the model follows the CA principles, that is, it focuses on optimized

438 P. Gavriilidis et al.

utilisation of computational resources and decreased complexity simultaneously
maintaining accurate modeling of the evacuation process with microscopic and
macroscopic characteristics. Furthermore, and to further speed up the execution
of the introduced Fuzzy CA (FCA) model, the concept of the inherent paral-
lelization was discussed in the view of the GPU programming principles in order
to achieve a fast execution of the FCA. The simulation process is characterized
by fundamental features of crowd evacuation, such as transition from uncoordi-
nated to coordinated movement due to common purpose, arching in front of exits,
herding behaviour [1]. Finally, the evaluation of the model process is addressed
by the comparison of the flow-density and speed-density response of the model
with corresponding representations from literature for a building that has been
decided to host the museum ‘CONSTANTIN XENAKIS’, in Serres, Greece.

In the following, the theoretical principles of the proposed evacuation model
are presented (Sect. 2). In Sect. 3, the GPU implementation of the proposed
model is presented, whereas in Sect. 4, simulation scenarios and corresponding
results are presented and discussed. Finally, conclusions are drawn in Sect. 5.

2 Model Description

The model is CA-based: the space is a two-dimensional grid of identical cells,
which is homogeneous and isotropic. Each cell may be either free or occupied
by an individual or an obstacle. The state of each cell, which is represented by
Ct

i,j , with i and j being the coordinates of the cell and t the evolution time, is
described as:

Ct
i,j = {o, id} (1)

with o representing whether the cell is free or occupied and id representing the
class of the cell, i.e. whether it is a person or an obstacle. The neighbourhood
consists of the eight closest neighbour cells (Moore neighbourhood), thus allow-
ing each person to move towards eight directions. To update the state of a given
cell, it is required the knowledge of the target exit Ct

iexit,jexit
as well as of the

status of all neighbouring cells. Therefore, the evolution rule is defined as:

Ct+1
i,j = R

(
Ct

i,j , C
t
i±1,j,, C

t
i,j±1, C

t
i−1,j+1, C

t
i+1,j−1, C

t
i+1,j+1, C

t
iexit,jexit

)
(2)

The transition function R of the FCA that defines the position of each person
during each time step is realized by a FIS, particularly a Mamdani type, that is
built using the MATLAB Fuzzy Logic ToolboxTM tool [14,15]. Both the state of
each cell of the Moore neighbourhood and the orientation of the person relative
to the closest exit are considered as inputs. The orientation is defined as:

differencex = xexit − xperson, differencey = yexit − yperson (3)

that is, as the position of the an individual relative to its closest exit. It should
be noted that notation x represents the vertical axis, whereas y the horizontal
one. The difference between the ordinate value of an exit (that corresponds
to the outcome of a selection process described below) and that of the person

A Fuzzy Logic Inspired CA Based Model 439

designates the north-south orientation; when the difference is negative then the
exit is located northern in regard to the person (denoted as ‘exit-x is North’ at
the corresponding if-then rule), whereas when the difference is positive then the
exit is located southern (‘exit-x is South’). Accordingly, the difference between
the abscissa values of the exit and that of the person designates the east-west
orientation; when it is negative then the exit lays western in regard to the person
(‘exit-y is West’), whereas when it is positive then the exit lays eastern (‘exit-y
is East’). The combination of the upper two parts defines the overall orientation.
The implementation of the rule can be represented by a triangular membership
function, as shown in Fig. 1. This is just the collection of three points that form
a triangle. Thus, when the difference is negative, the value −5 is assigned to the
membership function (‘North/West’ case), when the difference is positive the
value 5 is assigned (‘South/East’ case), whereas value 0 is assigned when the
individual shares the same ordinate (abscissa) with the exit (‘Non’ case).

Fig. 1. The graphical representations of the membership functions that define (a)
north-south orientation, and (b) east-west orientation regarding the direction of motion
of an individual towards the chosen exit. ‘Non’ function represents the case of zero dif-
ference, i.e. when the individual shares the same ordinate (abscissa) with the exit.

In order all possible cell states, i.e. free, occupied and obstacle, to be repre-
sented for each part of all eight possible directions (N, NW, W, SW, S, SE, E,
NE), a triangular membership function is utilized (Fig. 2). Value 0 is assigned
when the corresponding state of the cell is free, whereas value 2 represents occu-
pation by an individual and value 1 denotes the existence of an obstacle. Thus,
the triangular function is adequate for representing the corresponding rule.

The list of rules that define the behaviour of the system is defined by a set of
forty-eight (48) if-then rule statements that cover all possible cases of movement.
These rules are used to define the conditional statements in terms of fuzzy logic.
A sample of the whole set of rules is provided below:

1. If exit - x is North and exit - y is West and NW - State is Unoccupied then
Output is NW

2. If exit - x is North and exit - y is West and NW - State is Occupied and W -
State is Unoccupied then Output is W

3. If exit - x is North and exit - y is West and NW - State is Occupied and W -
State is Occupied and N - State is Unoccupied then Output is N.

440 P. Gavriilidis et al.

Fig. 2. The membership function that represents the state of each of the cells of the
Moore neighbourhood.

Fig. 3. The graphical representation of the response of the fuzzy inference system.

The corresponding response of the model is depicted in Fig. 3. The selection
of the most appropriate exit for an individual to move during the upcoming time
step is realized by utilizing the criterion of distance. In particular, the closest
exit is computed according to the minimum Euclidean distance of the cell at
(i, j) from all available exits:

R =
√

(i − iexit)2 − (j − jexit)2 (4)

Initially, the maximum distance from each exit is calculated according to the
layout of the site. Maximum distance is algorithmically represented by a vector,
named max dist, the size of which is equal to the number of exits within the
site. Then the distance of each individual is normalised by dividing the elements
of max dist by its greatest element. In case that an element of the normalized
max dist is greater than (or equal to) 2/3 and smaller (or equal to) than unity (1),
then the corresponding distance is characterised ‘long’ and it is assigned value 2
in the corresponding element of a look-up table. Provided that the ratio is greater
than (or equal to) 1/3 and smaller than 2/3 then the distance is characterised
as moderate and is assigned value 1, whereas when the ratio is smaller than 1/3

A Fuzzy Logic Inspired CA Based Model 441

then the distance is characterised as short and the corresponding value in the
look-up table is equal to 0. The distance criterion is initially applied when the
members of the crowd start to move aiming at the initialization of the look-
up table and the characterization of each of the exits for every single person.
Afterwards, the function eval pos is activated, whose argument is a vector that
carries the characterisations of the distances to all the exits (short, medium,
long). Function eval pos calculates a vector that includes all exits that share
the similar characterisation of short, regarding to the minimum distance. In
case that the output vector contains a single element, then that particular exit
is indicated as the closest one, otherwise one of the exits that share the same
minimum distance from the individual is chosen randomly.

Furthermore, the model has incorporated the auto-defined obstacle avoidance
method, which is an automated process that enables people to overcome obsta-
cles based on the effect of a virtual field generated near obstacles. The method
is thoroughly described in [16]. In case that more than one person tries to reach
the same cell then one of them is selected randomly. Finally, individuals are con-
sidered similar in terms of decision-making process, but they can be attributed
different characteristics regarding speed. The model enables the assignment of
dissimilar moving steps to groups of pedestrians, thus enhancing its reliability.

3 GPU Implementation

To enable fast simulations, we devised an implementation of the proposed model
exploiting Graphics Processing Units (GPU) as parallel computing devices. In
particular, we adopted a hybrid CPU-GPU approach based on the NVIDIA
GPGPU platform with the well-known CUDA language. In the latter, the par-
allel computation is obtained by activating at each CA step a GPU thread asso-
ciated to every CA cell occupied by a person (i.e., to every active cell). Such
threads correspond to device (i.e. GPU) functions in C language, which are called
kernels. When a kernel is issued by the CPU, a number of threads (i.e., one for
each active cell, in our case) execute its code in parallel on different data. In the
above CA simulation, the kernels operate on two distinct memory regions, repre-
senting the current and next states for the CA cells, respectively, where the state
refer to the cell’s occupancy by the simulated moving crowd, presence of exits
and obstacles. The simulation begins by transferring from the host memory (i.e.
that directly accessed by the CPU) to the GPU global memory the initial CA
states, stored as arrays in order to favour faster coalesced accesses. Besides the
state of the cells, we used some additional auxiliary arrays in the GPU global
memory for storing the neighbourhood structure and the model parameters.
During each CA step, the kernel execute the CA transition function described in
Sect. 2, operating on the basis of the values from the current CA and exploiting
some auxiliary functions (e.g. implementing the fuzzy membership functions);
after, it writes the new state value into the appropriate elements of the next
CA. At the end of each CA step, a device-to-device memory copy operation is
used to re-initialise the current CA values with the next values. When the CA

442 P. Gavriilidis et al.

state is required by the CPU during the simulation (e.g. for depicting a graphical
output), a device-to-host memory copy is carried out.

To implement the CA transition function, we developed a single kernel, which
is executed on a dynamic grid of threads to improve the scalability with respect
to both the number of involved pedestrians and the size of the CA. This was
accomplished by keeping track of moving people in GPU global memory by
means of an array B of integers. Each element of B encodes a pair 〈id, c〉, where
id identifies a specific person contained in the cell c. Before the beginning of the
simulation, B is initialized by the CPU through a host-to-device memory copy.
Subsequently, movePersonKernel is executed on a dynamic one-dimensional grid
of threads corresponding to the elements of the array B, which is updated by the
kernel itself. More in details, the kernel operates on two global memory areas:
B, which is the input container from where movePersonKernel takes the cells
to process the current iteration; and B∗, which includes the active cells (i.e.,
those containing people) for the next iteration. At the end of each CA step, the
pointers to B and B∗ are simply exchanged. The first step of movePersonKernel
consists of retrieving the pair 〈id, c〉 corresponding to the current thread. Then,
a movement of the person id is considered only if a specific counter, initialized
according to the person speed, is zero. Otherwise, the counter is simply decre-
mented and B∗ is updated with the insertion of 〈id, c〉 (i.e., the person id remains
in the same cell). If the speed counter is zero and, according to the fuzzy rules
outlined above, the person id can move to a neighbouring cell c∗ different from
an exit, then B∗ is updated with the insertion of the pair 〈id, c∗〉. At the end
of each iteration (i.e. when the kernel returns), the size of B∗ is retrieved from
global memory. If B∗ is empty, the simulation ends because all people are outside
the simulation area (i.e., they reached an exit). It is worth noting that to min-
imize expensive synchronizations, the new container B∗ is cooperatively built
by the involved threads by managing a hierarchy of smaller containers stored
in shared memory, as suggested in [17,18]. In particular, thread-level arrays Bt

are used, with the maximum size of a neighbourhood, in which the insertion can
be executed by the owner thread without the need of synchronizations. Then,
in each block, the thread-level arrays are copied into a single block-level array
Bb by using a parallel prefix-scan approach. The latter can be implemented in
a very efficient way in CUDA, only requiring two thread synchronizations and
no atomic operations. Instead, a single atomicAdd is used by the first thread
of each block for obtaining the offset required to copy its block-level array Bb

into the final container B. A particular case that movePersonKernel takes into
account is the conflict that may happen when more than one individuals are try-
ing to reach the same cell. Also, this case is handled though a single atomicMax
operation on the array containing the next states of the CA.

4 Simulation Results

In this study, the venue that is selected for all simulation purposes is the build-
ing that has been decided to host the museum ‘CONSTANTIN XENAKIS’. It

A Fuzzy Logic Inspired CA Based Model 443

is located in Serres, a city of the administrative region of Central Macedonia,
in Northern Greece. The building has not been redecorated yet, thus any use-
ful conclusion regarding its standards of safety could be taken into considera-
tion. The floor plan of the building can be found on the following site: http://
serreonpoliteia.com/?page id=10.

The following considerations were applied concerning the aforementioned
place used for simulation purposed. As outputs of the under-study building,
two exits as well as its main entrance are considered. It is also regarded that the
building windows cannot be used for evacuation purposes. Both the length and
the width of each cell within the CA grid is assumed to be equal with 0.3 m.
Within the building, though, there are walls which are less than 0.3 m thick.
Therefore, every part of the construction that is less than 0.3 m thick is sup-
posed 0.3 m thick. Moreover, for constructions that are more than 0.3 m thick
their corresponding dimension is calculated by dividing this dimension with 0.3
and applying rounding rules. Thus, for instance, an exit that is 4.75 m wide, it
will be represented by (4.75 m)/(0.3 m) = 15.8333 ≈ 16 cells. Consequently, the
maximum width of the building is calculated equal to 76 cells and its maximum
length is equal to 148 cells. According to the simulation scenario 400 individuals
are randomly assigned to positions within the museum (Fig. 4).

Fig. 4. Simulation scenario: random initialisation, main exits and corresponding areas
of interest (AoI).

The model is evaluated by comparing the fundamental characteristics and
graphical representations generated by the simulated three scenarios with the
corresponding diagrams from literature. Particularly, the overall density of the
crowd is measured by counting all individuals in the area of interest and then
dividing by the area of this region. The total flow is calculated by dividing the
total number of individuals who go through the exits per simulation step with

http://serreonpoliteia.com/?page_id=10
http://serreonpoliteia.com/?page_id=10

444 P. Gavriilidis et al.

the length of this intersection. The flow of people results from experimental
relations of speed of people with the density of people. Taking as an assumption
that people move smoothly, the flow per meter of width is given by Q(ρ) = ρV (ρ),
where Q represents the flow per meter of width and ρ is the density of individuals.
Each person covers an area equal to that of single cell, i.e. 0.4 × 0.4 = 0.16m2.
For each step, the number of people within the area of interest (AoI) is counted
and the value of the density is calculated from the relationship:

ρ =
num. of people in RoI

area of AoI
(5)

There are three AoI, each corresponding to an exit (Fig. 4). The total AoI area
consists of 5 × 8 = 40 cells, i.e. 6.4m2. Regarding the simulation scenario and
for the AoI of the first exit (AoI 1) the corresponding curve of flow vs. density is
depicted in Fig. 5(a). In Fig. 5(b), the corresponding flow-density curves from lit-
erature are depicted [19]. As can be seen, the corresponding curves present com-
mon behavioural attributes, both qualitatively and quantitatively, thus enhanc-
ing the validity of the proposed approach.

Fig. 5. (a) Simulation scenario. AoI of exit 1. Flow vs. density; (b) Flow-density results
from literature.

5 Conclusions

Results prove that fuzzy type logic can find application in real-world evacuation
conditions and in particular when describing crowd dynamics. More specifically,
they respond to expected behaviours. According to the directional selection cri-
terion, persons have full sense of orientation towards the desired output and
perform movements as in real-world conditions. Furthermore, the implementa-
tion of the fuzzy CA rules for intuitive exit selection has been achieved, taking
into account the distance of a person from the exit, so that they correspond to
real conditions. The model need further to be validated with real data. Thus, it
could be better calibrated, and it could be parameterised more efficiently.

A Fuzzy Logic Inspired CA Based Model 445

References

1. Helbing, D., Johansson, A.: Pedestrian, crowd and evacuation dynamics. In: Mey-
ers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 16, pp. 6476–
6495. Springer, New York (2010). https://doi.org/10.1007/978-0-387-30440-3 382

2. Vermuyten, H., Beliën, J., De Boeck, L., Reniers, G., Wauters, T.: A review of
optimisation models for pedestrian evacuation and design problems. Saf. Sci. 87,
167–178 (2016)

3. Schadschneider, A., Seyfried, A.: Empirical results for pedestrian dynamics and
their implications for cellular automata models. In: Pedestrian Behavior - Models,
Data Collection and Applications, pp. 27–44 (2009)

4. Georgoudas, I.G., Sirakoulis, G.C., Andreadis, I.T.: An anticipative crowd manage-
ment system preventing clogging in exits during pedestrian evacuation processes.
IEEE Syst. J. 5(1), 129–141 (2010)

5. Vermuyten, H., Lemmens, S., Marques, I., Beliën, J.: Developing compact course
timetables with optimized student flows. Eur. J. Oper. Res. 251(2), 651–661 (2016)

6. Zarboutis, N., Marmaras, N.: Design of formative evacuation plans using agent-
based simulation. Saf. Sci. 45(9), 920–940 (2007)

7. https://www.mathworks.com/help/fuzzy/what-is-fuzzy-logic.html
8. Bisgambiglia, P.A., Innocenti, E., Gonsolin, P.R.: A new way to use fuzzy inference

systems in activity-based cellular modeling simulations. In: IEEE International
Conference on Fuzzy Systems (2017)

9. Betel, H., Flocchini, P.: On the relationship between fuzzy and Boolean cellular
automata. Theor. Comput. Sci. 412(8–10), 703–713 (2011)

10. Cattaneo, G., Flocchini, P., Mauri, G., Vogliotti, C.Q., Santoro, N.: Cellular
automata in fuzzy backgrounds. Phys. D: Nonlinear Phenom. 105(1–3), 105–120
(1997)

11. Adamatzky, A.I.: Hierarchy of fuzzy cellular automata. Fuzzy Sets Syst. 62(2),
167–174 (1994)

12. Chaia, C., Wong, Y.D., Wang, X.: Safety evaluation of driver cognitive failures
and driving errors on right-turn filtering movement at signalized road intersections
based on Fuzzy Cellular Automata (FCA) model. Accid. Anal. Prev. 104, 156–164
(2017)

13. Al-Ahmadi, K., See, L., Heppenstall, A., Hogg, J.: Calibration of a fuzzy cellular
automata model of urban dynamics in Saudi Arabia. Ecol. Complex. 6(2), 80–101
(2009)

14. Zadeh, L.A.: Fuzzy logic. Computer 1(4), 83–93 (1988)
15. Mamdani, E.H.: Applications of fuzzy logic to approximate reasoning using lin-

guistic synthesis. IEEE Trans. Comput. 26(12), 1182–1191 (1977)
16. Georgoudas, I.G., Koltsidas, G., Sirakoulis, G.C., Andreadis, I.T.: A cellular

automaton model for crowd evacuation and its auto-defined obstacle avoidance
attribute. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010.
LNCS, vol. 6350, pp. 455–464. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15979-4 48

17. Trunfio, G.A., Sirakoulis, G.C.: Computing multiple accumulated cost surfaces
with graphics processing units. In: 24th Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pp. 694–701. IEEE (2016)

18. Teodoro, G., Pan, T., Kurc, T.M., Kong, J., Cooper, L.A.D., Saltz, J.H.: Effi-
cient irregular wavefront propagation algorithms on hybrid CPU-GPU machines.
Parallel Comput. 39(4–5), 189–211 (2013)

19. Johansson, A., Helbing, D., A-Abideen, H.Z., Al-Bosta, S.: From crowd dynamics
to crowd safety: a video-based analysis. Adv. Complex Syst. 11(4), 497–527 (2008)

https://doi.org/10.1007/978-0-387-30440-3_382
https://www.mathworks.com/help/fuzzy/what-is-fuzzy-logic.html
https://doi.org/10.1007/978-3-642-15979-4_48
https://doi.org/10.1007/978-3-642-15979-4_48

Nondeterministic Cellular Automaton
for Modelling Urban Traffic with

Self-organizing Control

Jacek Szklarski(B)

Institute of Fundamental Technological Research, Polish Academy of Sciences,
Warsaw, Poland

jszklar@ippt.pan.pl

Abstract. Controlling flow in networks by means of decentralized
strategies have gained a lot of attention in recent years. Typical advan-
tages of such approach – efficiency, scalability, versatility, fault tolerance
– make it an interesting alternative to more traditional, global opti-
mization. In the paper it is shown how the continuous, macroscopic,
self-organizing control proposed by Lämmer and Helbing [10] can be
implemented in the discrete, nondeterministic cellular automaton (CA)
model of urban traffic. Using various examples, it is demonstrated that
the decentralized approach outperforms the best nonresponsive solution
based on fixed cycles. In order to analyse relatively large parameter space,
an HPC cluster has been used to run multiple versions of a serial CA
simulator. The presented model can serve as a test bed for testing other
optimization methods and vehicle routing algorithms realized with the
use of CA.

Keywords: Urban traffic · Nondeterministic cellular automaton
Self-organizing control · Decentralized control

1 Introduction

In communication networks, controlling strategies have a profound impact on
the overall performance [1,2]. Particularly, optimization in traffic networks is
especially important due to a tremendous affection it has on peoples everyday
life. In order to address this issue, one has to apply some kind of traffic model
and then propose optimization procedures.

There exists a large number of traffic models which generally fall in one of
these classes: microscopic where vehicles are represented as particles (e.g., follow-
the-leader models); cellular automata (CA) where a vehicle’s state corresponds
to a cell’s state; based on some master equation (e.g., mean field models); macro-
scopic continuous models (e.g., kinetic waves), and more [3,4]. Obviously, a good
traffic model has to reproduce all its properties which are observed in the real
world.

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 446–455, 2018.
https://doi.org/10.1007/978-3-319-78054-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_42&domain=pdf

Nondeterministic Cellular Automaton for Modelling Urban Traffic 447

Regarding optimization, one of the most common ways to do it is to choose
some pre-calculated schemes, which are aimed at synchronizing green times along
main arterials. In principle such methods force the traffic flow to comply with pre-
viously designed patterns in order to minimize travel times. However, since traffic
demand varies, there is a need for some responsiveness to the current traffic state.
In order to improve efficiency of control methods, it is necessary to implement
on-line optimization techniques based on real time traffic intensity observations.
This can be done in a centralized system, in which there exists a central unit
possessing all information concerning current state of the network. Obviously all
the measuring devices must be somehow connected to a central unit (which is
expensive). Moreover, optimizing globally may be NP-hard [5,6] making it even
more difficult to react in real-time. Consequently, there is a recent trend towards
decentralized and self-organizing optimization techniques [7–12] which instantly
and locally respond to the current traffic state (known, e.g., from vehicle detec-
tors mounted at some distance before an intersection). Naturally, it is desired
that such locally defined mechanisms will produce near-optimal global solution.
One of the most efficient and versatile decentralized self-controlled strategies has
been proposed by Lämmer and Helbing (LH, [10]). The authors have defined the
scheme with the use of a model similar to kinematic waves approach [13].

In this paper it is shown in details how this LH controlling mechanism can be
implemented in a network of cellular automata with the use of nondeterministic
Nagel-Schreckenberg (NS) model [14] (i.e., with the randomization parameter
P > 0). The efficiency of this solution is analysed by considering three scenar-
ios in regular lattice networks. It is shown that the self-controlled intersections
converge to the best possible cycles and phase-shifts for periodic networks, and
that they outperform constant cycle (CC) solutions if vehicles are able to ran-
domly change moving directions (e.g., they turn). Lastly, stochastic boundary
conditions are applied and it is shown that the LH strategy clears the network
significantly more efficient if additional perturbations are allowed.

CA traffic models can be relatively easily parallelized, making it a very useful
tool for efficient prediction, analysis and optimization. Moreover, they can be
implemented withe use of FPGA [15] or GPGPU [16] further increasing efficiency.
The results presented here are calculated with a serial program designed to
advance a network of CA’s. However, since it was desired to obtain a full study of
parameter space, these programs have been run in parallel in an HPC cluster for
various initial conditions and control variables. Therefore, meaningful statistics
could be calculated in a reasonable time (couple of hours).

2 The Model

The city traffic model is essentially similar to the work presented by Chowdhury
and Schadschneider [17], and Brockfeld et al. [18]. There are N2 nodes (inter-
sections) Ii,j , i = 1, . . . , N , j = 1, . . . , N , which form a square lattice. Each
node has two incoming links (one-lane and one-way streets): one from west-side
and one from south-side, and two leaving links: one towards east-side and one

448 J. Szklarski

towards north-side, Fig. 1. Nodes make a decision which traffic stream should
be served. In addition to the previous work, [17,18], here a setup time τ = 2 is
specified (the amount of time for which the both streams have “red light” when
switching from one stream to the other).

Fig. 1. A sample view of part of a grid-like network with link length D = 100.

The links in a network represent a single-lane street which is a one-
dimensional cellular automaton with D cells (D = 100 is used throughout this
paper). An occupied cell n symbolizes a single vehicle, and a discrete, integer
variable vn corresponds to its velocity. Let the maximum allowed velocity be
vmax (here vmax = 5) and the distance to the next vehicle is dn, the distance to
the next intersection is sn. In the classical model by [14] with urban-like modifi-
cations [18], which take into account traffic light, the four consecutive steps for
parallel updating at discrete time steps can be written as:

1. Acceleration: vn ← min(vn + 1, vmax),
2. Breaking:

– Traffic light at the intersection to which the link is connected is “red” or
the intersection is in setup time: vn ← min(vn, dn − 1, sn − 1)

– Traffic light is “green”. If two cells behind the intersection are occupied:
vn ← min(vn, dn − 1, sn − 1), otherwise vn ← min(vn, dn − 1),

3. Randomization with the probability P : vn ← max(vn − 1, 0),
4. Vehicle movement: xn ← xn + vn.

The initial density ρ = m/D is the number of vehicles m divided by the total
number of cells in the link, D. For given vmax there exists a maximum density
for which all the vehicles can move freely with vmax. In the deterministic limit
P = 0, ρmax = (vmax + 1)−1 since for ρ > ρmax there exists at least one vehicle
which has less than vmax occupied cells in front of it, and therefore it is forced
to slow down (vmax = 5 give ρmax = 0.16(6) for P = 0, and ρmax ≈ 0.15 for
P = 0.1). With each link there is associated the mean flux J ′ (number of vehicles
leaving the link per unit time), for the entire network J̄ = N−2

∑N2

1 J ′
i is just

the average of mean flux J ′
i for each link i. Note that the assumed vmax = 5

should be equivalent to about 50 km/h in a real city traffic flow, assuming that
a single cell corresponds to a real size of 7.5 m (a vehicle length with safety
distance in front and behind it), each step is about 2 s in real time.

Nondeterministic Cellular Automaton for Modelling Urban Traffic 449

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

Fl
ow

 [v
eh

/s
te

p]

Steps

P=0.0
P=0.1

Fig. 2. Flux as a function of steps after opening an intersection for a CA fully filled with
vehicles (P = 0 is exact, P = 0.1 is the average for 106 simulations). The horizontal
line represents the exact limiting flux for P = 0, Jmax = vmax/(vmax + 1) = 5/6.

Boundary conditions can be either periodic or stochastic. If periodic bound-
ary conditions are assumed, each vehicle leaving the network at east/north side
will be placed at the beginning of corresponding links at west/south side. As the
stochastic BCs, the so called expanded stochastic boundaries are applied [19].
These are formed by placing an additional CA with length equal to vmax as a
source of vehicles. Vehicles appear at the beginning of such small CA with given
probability Pins and accelerate according to the CA rules. Such treatment is a
proper insertion strategy which makes sure that all possible system states can
be obtained. Here, in networks with stochastic sources, the right-most and the
top-most nodes act as simple sinks, i.e. nothing prevents a vehicle from leaving
the system.

2.1 Periodic Switching

The simplest possible strategy for control is to use cycle-based switching. For
each node the cycle is: (a) “red light” for (T − 2τ)/2 steps; (b) setup time for
τ steps; (c) “green light” for (T − 2τ)/2 steps; and (d) setup time for τ , giving
T steps in total. Additionally, there can be phase shifts Tφ

(i,j) for different nodes
in network. This means that the first step of the cycle for N(i,j) is realized at
the time step t + Tφ

(i,j). It is easy to show that for unidirectional networks one
can form “green waves” along a single direction by selecting the phase shifts as
Tφ
(i,j) = (i + j − 2)Tdelay mod (2T + 2τ), Tdelay = D/vmax.

2.2 Self-controlling Strategy

As the responsive self-organizing controller a CA version of the LH strategy [10]
is implemented. Below only brief summary of the most important principles is
presented, see the original paper for detailed formulation and related proofs (the
symbols used here are the same as in the cited work).

450 J. Szklarski

Let σ denote the stream which get “green light”,

σ =

{
head Ω if Ω �= ∅
arg maxi πi otherwise,

(1)

where Ω is an ordered set containing stream indices πi is a priority index for the
corresponding stream i (the regular lattice networks have i = 0 or i = 1). The
stabilization strategy assures that each stream i will be placed into the queue
Ω at least once in Tmax and, on average, once in Tavg. The priority index for
stream i, provided that currently served stream is σ, is defined as

πi =
n̂i

τpen
i,σ + τ + ĝi

, (2)

where n̂i is the number of vehicles expected to be served in time τ + ĝi for the
stream i, τ is the remaining setup time, ĝi is time required to clear existing
queue at the intersection and all vehicles arriving just after clearing, provided
that they arrive with the maximum flow rate (i.e., as a platoon traveling with
vmax), τpen

i,σ is the additional penalty term for switching from stream σ to i.
Originally, the authors have formulated the strategy using continuous equa-

tions based on kinematic waves approach [13]. Implementing it in a CA is not
a straightforward task, especially if a nondeterministic NS model is considered,
P > 0. It has been done in previous work [12], however, here calculating pre-
dictive variables is improved and the more realistic P > 0 is implemented. Note
that non-zero randomization, P > 0, is of fundamental importance for the NS
model. It makes it possible to reproduce such phenomena as spontaneous jam
formation and destroys any artificial metastable states.

The difficulty for implementing P > 0 comes from the fact, that in order to
calculate the priority index (2), one has to find variables characterizing the state
of a crossing node at the current time step and also in the future. For each node,
it is necessary to calculate the anticipated amount of the green time ĝi which is
the largest possible solution of

Ndep
i (t) + ĝi(t)Qmax

i = N exp
i (t + τi(t) + ĝi(t)), (3)

where Ndep
i (t) denotes the number of vehicles which have departed from the

crossing, N exp
i (t) is the number of vehicles which are expected to arrive at the

node by the time t, τi(t) i the remaining setup time, Qmax
i is the saturation

flow rate. The number of vehicles expected to leave the intersection is n̂i(t) =
ĝi(t)Qmax

i .
In the discussed CA model, it is trivial to keep track of Ndep

i : for each inter-
section one has to count the number of vehicles which have left the node. In
order to find the number of vehicles which will approach the node in the follow-
ing steps t + Δt (t being the current step), N exp

i (t + Δt), a temporary CA is
created, which consists of a link connecting to the node and a link which leaves
this node. Then this temporary automata is advanced for Δt steps according to
the NS rules. Joining the two links is necessary in order to take into account

Nondeterministic Cellular Automaton for Modelling Urban Traffic 451

any spill-back effects arising when there is some congestion immediately after
the intersection. This procedure may be a bit time consuming but it can be
efficiently implemented using appropriate caching mechanisms.

Note that this method of calculating N exp
i will inevitably lead to inefficiency

of the controlling method if P > 0. The reason for this is that advancing the
temporary CA may give different value of N exp

i then the “real” value obtained
when advancing the entire CA system. This is desirable since in any realistic
traffic model, there will be some velocity fluctuations making it impossible to
exactly predict the value of N exp

i (t + Δt).

Mean flow [veh/step] ρ=0.06

 50 100 150 200 250 300
T

 0

 10

 20

 30

 40

 50

 60

 70

φ

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Mean flow [veh/step] ρ=0.09

 50 100 150 200 250 300
T

 0

 10

 20

 30

 40

 50

 60

 70

φ

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Mean flow [veh/step] ρ=0.14

 50 100 150 200 250 300
T

 0

 10

 20

 30

 40

 50

 60

 70

φ

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Mean flow [veh/step] ρ=0.24

 50 100 150 200 250 300
T

 0

 10

 20

 30

 40

 50

 60

 70

φ

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

Fig. 3. A map of the mean flow J̄ in the regular periodic network as a function of
periods T and phase-shifts φ for four different densities for the fixed cycle controlling.
N = 6, D = 100, P = 0.1.

Additionally, there is an important difference in defining the maximum flow
rate Qmax

i in the continuous approach and the one using a cellular automata.
In the former it can be assumed as a constant value, whereas in the latter it
depends on time. Consider an infinitely long CA fully filled with vehicles and
connected to an intersection with “red light”. Assuming that at the moment
t = 0, the light will turn green, vehicles will leave the intersection at the flow
rate J which is presented in Fig. 2. It can be shown that in the deterministic
limit P = 0, the limiting maximum flux is Jmax = vmax/(vmax+1) (p. 240 in [3]).
For non-deterministic models, 0 < P < 1, there is no analytic solution for the
limiting Jmax. However, in order to properly implement the LH mechanism,
one has to use Qmax

i (tg) which depends on the time tg which denotes for how
many steps the considering link has been granted “green light”. In any case
considered here, Qmax

i (tg) has been precalculated: averaged over 106 stop-and-
go CA simulations and tabularized in order to be useful for finding ĝi.

452 J. Szklarski

Finally, if there is more than one CA which belong to the same stream i
(multiple lanes, bidirectional networks), the corresponding values of N exp

i , Qmax
i ,

etc., are simply summed up for all the CA and a single value of πi is calculated.

3 The Results

The correctness of implementation end efficiency of the LH strategy has been
validated using three various scenarios: periodic network; periodic network with
the possibility of vehicle turning; a bidirectional network with stochastic BCs
and random intersection blocking.

3.1 Periodic Network N = 6

The dynamics of fixed cycle based switching for periodic networks with P = 0,
has been discussed in detail in [18]. Here it is shown how the mean flow J(ρ, T)
depends on ρ, T and Tφ for wide range of relevant parameters for N = 6 and
the non-deterministic P = 0.1. All the results are averaged by performing 105

steps for 10 different initial conditions.

 0

 0.1

 0.2

 0.3

 0.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P=0.0

P=0.1

Fl
ow

 J
 [v

eh
/s

te
p]

Initial density ρ [veh/cell]

a) best CC
b) Self-Control

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P=0.0

P=0.1

N
et

w
or

k
m

ea
n

flo
w

 J
 /

m
ax

im
um

 J
m

ax

Initial density ρ [veh/cell]

a) best CC
b) Self-Control

Fig. 4. Left: mean flow JCC
best in the N = 6 network for CC and JSC for SC. Right:

the same J̄ but normalized with the maximum flux Jmax taken from the fundamental
diagram for P = 0 and P = 0.1 (precalculated and interpolated).

Figure 3 displays how the mean flow J̄(T, φ) depends on the fixed cycle length
T and phase-shifts φ for four different densities. Naturally, this CC strategy
imposes a certain dynamical situation rather than being responsive to the cur-
rent traffic state. If T and φ are properly adjusted, vehicle platoons which are
formed get “green wave” giving maximum possible flow rate J̄ . If density is small
enough, i.e., platoon length ρvmaxD per link is shorter than D/2−τvmax, that is
ρ < (2vmax)−1 − τ/D, then there exists cycles and for which vehicles can move
without stopping and the resulting mean flow J̄ = Jmax. On the other hand, for
some values of T platoons are always stopped when arriving to the intersection.
Consequently one can observe significant variations (by ≈ 100%) in J̄ especially
for smaller densities, ρ < ρmax, where clearly there is the largest potential for

Nondeterministic Cellular Automaton for Modelling Urban Traffic 453

optimization. If density is too large, nothing can be done in terms of adjusting
T and φ and there is no optimization which can significantly improve situation.

Comparison between CC and SC strategies for various densities is shown in
Fig. 4. In these plots JCC

best for CC represent the maximum possible value, i.e., is
calculated for given ρ by simulating flows for all 1 ≤ T ≤ 300 and 0 ≤ φ ≤ 300
and choosing the largest J̄ (the same procedure is done in the next section). The
decentralized SC converges to the optimum in the region where optimization is
possible (the stabilization parameters are Tavg = 150 and Tmax = 300).

3.2 Periodic Network with Non-deterministic Turning

Introducing the possibility of vehicle turning (with the probability Pturn) makes
an important difference when comparing to the previous case. Regular vehicle
platoons can not be formed anymore, since they are separated with empty spaces
resulting from changing a vehicle’s direction (which in turn can form other pla-
toons). A constant cycle controller can not adjust to such situation.

SC mean flow / best CC mean flow

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Density ρ

 0

 0.2

 0.4

 0.6

 0.8

 1

P t
ur

n

 1

 1.2

 1.4

 1.6

 1.8

 2

Fig. 5. The ratio JSC/JCC
best as a function of mean density ρ̄ and vehicle turning prob-

ability Pturn.

Figure 5 depicts the ratio of mean flows for the self-controlled and the best CC
outcome. It is clear that in the region where optimization is possible (sufficiently
small density), the SC outperforms the best possible CC by a factor of 2.

3.3 Network with Stochastic Input

As a final example we use a network with more realistic, stochastic boundaries
(as described earlier) at the east and the south side, and open BCs at the west
and the north side. For a single lane, Pins = 1.0 will produce a flow with the
maximum Jmax. Obviously for concurring streams, Jmax can not be reached
for ρ > ρmax, hence there must be a maximal Pins above which one the mean
flow will not increase. Figure 6(a) shows how J̄ depends on the vehicle insertion
probability. Also in this case, the decentralized strategy is able to form vehicle

454 J. Szklarski

 0

 0.1

 0.2

 0.3

 0.4

 0 0.2 0.4 0.6 0.8 1

(a)

(b)

(b)

M
ea

n
flo

w
 J

 [v
eh

/s
te

p]

Insertion probability Pins

best CC
Self-Control

Fig. 6. Mean network flow as a function of vehicle insertion probability. (a) no turning,
(b) turning into south-north direction with the probability Pturn = 1/4 completely
breaks down the CC control.

platoons and green waves so the optimal J is reached. Moreover, if heterogeneous
turning is introduced – vehicle can turn from east-west towards south-north lanes
with Pturn = 0.25 – all the coordination in CC controlled network is lost. On the
other hand, SC is able to recover quite well.

4 Conclusions

It has been shown how the self-controlled strategy proposed in [10] can be imple-
mented in the classical cellular automata model of traffic [14] in the context of
urban road networks [18]. Since the original formulation of the SC control is with
continuous model based on kinematic waves, it is not straightforward to apply it
in a CA model. In particular, the problems arise if the nondeterministic breaking
in the CA is applied, P > 0. This is solved by using appropriate precalculated
time-depended maximum fluxes Qmax

i .
The presented simulations demonstrate that SC, by means of self organiza-

tion, converges to the best possible fixed cycles in the case of regular networks
with periodic and stochastic BCs. Additionally, if randomized scenarios are con-
sidered (e.g., vehicle turning), CC can not control flow in an optimal way since
some responsiveness is required. In these cases SC significantly outperforms the
best fixed cycle networks. In the future work, the presented model will serve as
a test bed for other optimization methods for more complex network topologies
and vehicle routing algorithms.

References

1. Danila, B., Yu, Y., Marsh, J., Bassler, K.: Optimal transport on complex networks.
Phys. Rev. E 74(4), 046106 (2006)

2. Cascone, A., Manzo, R., Piccoli, B., Rarità, L.: Optimization versus randomness
for car traffic regulation. Phys. Rev. E 78(2), 026113 (2008)

Nondeterministic Cellular Automaton for Modelling Urban Traffic 455

3. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular
traffic and some related systems. Phys. Rep. 329(4–6), 199–329 (2000)

4. Helbing, D.: Traffic and related self-driven many-particle systems. Rev. Mod. Phys.
73(4), 1067 (2001)

5. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of optimal queuing network
control. Math. Oper. Res. 24, 293 (1999)

6. Danila, B., Sun, Y., Bassler, K.E.: Collectively optimal routing for congested traffic
limited by link capacity. Phys. Rev. E 80(6), 066116 (2009)

7. Helbing, D., Lämmer, S., Lebacque, J.P.: Self-organized control of irregular or
perturbed network traffic. In: Deissenberg, C., Hartl, R.F. (eds.) Optimal Control
and Dynamic Games, vol. 7, pp. 239–274. AICM. Springer, Boston (2005)

8. Gershenson, C.: Self-organizing traffic lights. Complex Syst. 16, 29 (2004)
9. Lämmer, S., Donner, R., Helbing, D.: Anticipative control of switched queueing

systems. Eur. Phys. J. B 63(3), 341 (2007)
10. Lämmer, S., Helbing, D.: Self-control of traffic lights and vehicle flows in urban

road networks. J. Stat. Mech. Theory Exp. 2008(4), P04019 (2008)
11. Tang, M., Liu, Z., Liang, X., Hui, P.: Self-adjusting routing schemes for time-

varying traffic in scale-free networks. Phys. Rev. E 80(2), 026114 (2009)
12. Szklarski, J.: Cellular automata model of self-organizing traffic control in urban

networks. Bull. Pol. Acad. Sci.: Tech. Sci. 58(3), 435–441 (2010)
13. Lighthill, M.J., Whitham, G.B.: On kinematic waves II. A theory of traffic flow

on long crowded roads. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 229(1178),
317–345 (1955)

14. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J.
Phys. I 2(12), 2221–2229 (1992)

15. Kalogeropoulos, G., Sirakoulis, G.C., Karafyllidis, I.: Cellular automata on FPGA
for real-time urban traffic signals control. J. Supercomput. 65(2), 664–681 (2013)

16. Shen, Z., Wang, K., Zhu, F.: Agent-based traffic simulation and traffic signal timing
optimization with GPU. In: 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pp. 145–150, October 2011

17. Chowdhury, D., Schadschneider, A.: Self-organization of traffic jams in cities:
effects of stochastic dynamics and signal periods. Phys. Rev. E 59(2), R1311–
R1314 (1999)

18. Brockfeld, E., Barlovic, R., Schadschneider, A., Schreckenberg, M.: Optimizing
traffic lights in a cellular automaton model for city traffic. Phys. Rev. E 64(5),
056132 (2001)

19. Barlovic, R., Huisinga, T., Schadschneider, A., Schreckenberg, M.: Open bound-
aries in a cellular automaton model for traffic flow with metastable states. Phys.
Rev. E 66, 046113 (2002)

Towards Multi-Agent Simulations
Accelerated by GPU

Kamil Piętak and Paweł Topa(B)

Department of Computer Science, AGH University of Science and Technology,
Kraków, Poland

{kpietak,topa}@agh.edu.pl

Abstract. At present, GPUs (Graphics Processing Units) are com-
monly used to speedup any kind of computations. In this paper we
present how GPUs and Nvidia CUDA can be used to accelerate the
updating of and agent state in Multi-Agent Simulations. We use the
AgE (Agent Evolution) software framework written in Java, which sup-
ports agent-based computations. In our simulations agents represent
living organisms that interact with the virtual habitat and with each
other. At each step of the simulation thousands of agents update their
state according to a defined set of rules. We use Java bindings for CUDA
(JCUDA) to move massive computations to GPU.

Keywords: Multi-Agent Systems · Evolutionary computations
General purpose computations on GPU

1 Introduction

Graphic Processing Units (GPUs) are currently widely used to speed up any type
of computation. Their architecture assumes that a device is equipped with hun-
dreds of processing units, which are designed to maximize computation through-
put. The control units in GPUs are not as sophisticated as those in general pur-
pose CPU processors. As a result, the programmer must organize data structures
and algorithms to be efficiently processed by a GPU.

Computation with GPUs shows its power when a large number of identical
sequences of instructions (threads) are applied to regularly organized data, i.e.
arrays. In such a case the whole block of data is processed in a perfectly parallel
manner. Any conditional instruction that may change the path of execution in
some threads spoils this perfection.

Agent-Based Computing is a paradigm that at first glance may benefit from
using GPU. Usually, the computation involves hundreds or more of agents, which
usually have homogeneous sets of parameters and rules of behaviour. Their inter-
actions are usually local. Their states are updated at each step of simulation.
In the case of Cellular Automata, which may be partially treated as a kind
of Multi-Agents System with strictly defined network of agents neighbourhood,

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 456–465, 2018.
https://doi.org/10.1007/978-3-319-78054-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_43&domain=pdf

Towards Multi-Agent Simulations Accelerated by GPU 457

the application of GPU results in an enormous speedup of computation — see
examples in [9,17,20].

However, the classic definition of an agent does not impose such strict
assumptions on its position and relation with other agents. Moreover, unlike
in Cellular Automata, the agents are usually processed asynchronously. Thus,
the implementation of a typical Multi-Agent System requires an additional pro-
cedure that prepares the population of agents to be processed on a GPU.

In this paper we present how GPUs can be used to improve the perfor-
mance of an agent-based simulator designed and implemented for modelling the
population of Foraminifera, a marine microorganism [6]. The simulator, named
eVolutus [18,19], is built over AgE, a software framework [5] that supports the
Evolutionary Multi-Agent System (EMAS) computation paradigm [3,4]. EMAS
is an approach that combines the notion of an agent with evolutionary algo-
rithms. It assumes that agents carry a some kind of genome that can be passed
to their offspring. During reproduction the genome is subjected to the genetic
operators: mutation and crossing over. Selection, which is a crucial procedure
in any evolutionary algorithm, are indirectly realised by agents dying childless.
EMAS was invented to solve some engineering problems, but it can be adapted
naturally to model the population dynamics and evolution of living organisms.

The rest of the paper is organized as follows. Section 2 discusses existing appli-
cations of GPU computing in agent-based systems. Next, we briefly presents the
architecture of AgE and eVolutus, and then the modifications that was neces-
sary to employ a GPU for processing agents are explained. Section 5 contains the
results of performance evaluation. At the end we add some concluding remarks.

2 Agent-Based System with Support for GPU Computing

As was mentioned above, in order to achieve high efficiency in computing on
GPUs, the data structures should have regular structure, and the access pattern
to this data also should be regular. Such requirements are often fulfilled by
models based on the Cellular Automata (CA) paradigm. The CA approach,
especially when the rules of local interaction are more complex and sophisticated,
is considered to be very similar to the Multi-Agent Systems paradigm. Such an
approach is very attractive for large scale modelling of crowd dynamics. In this
application, simulations involve a huge number of pedestrians (up to 106) and the
rules that govern their behaviour must take into account not only interactions
with closest neighbours but also with the environment, e.g. the locations of
obstacles and exits. These models are also required to be able to provide results
“faster than real time” when they are used to verify various evacuation scenarios.
Thus, many interesting solutions can be found in this area of research.

Wąs et al. [9,10] introduced a very efficient implementation of their Social
Distance Model of pedestrian dynamics. His works is focused on optimizing algo-
rithms for massive parallel computation. The algorithms are modified to ensure
that all the GPU cores will be filled with the same stream of instructions. In [9]
there are also discussed and tested various scenarios of using configurations with
multiple GPUs.

458 K. Piętak and P. Topa

Aaby et al. [1,12] present more general analysis of using GPU for Agent-
Based Modelling. They investigate how a single GPU speeds up computation
using well known ABM benchmarks. Next they investigated more complex hybrid
configurations which integrates GPU computing with message passing parallel
programming.

In [11] the authors address the most important problem, which confronts
ABM when a GPU is used: the irregular and dynamic structure of data in
ABM, as well as the randomized memory access during computation. Their solu-
tion introduces two important mechanisms to cope with these problems. Agent
manager supervises the GPU memory when agents are created or removed to
optimize this process. Interaction manager supports neighbourhood calculation
which is a major issue in models with continuous space. The authors compare the
proposed solution with existing ABM computing platforms FLAME and Mason,
with positive results.

Out of the many Agent-Based modelling environments, at this moment only
FLAME [8] supports GPU computation [16]. In this environment, agents are
declaratively specified using the templates. The specification is used to gener-
ate the code of the simulator. The framework employs various GPU optimized
algorithms which address main issues in agent-based computation, e.g., calcu-
lating the neighbourhood. FLAME GPU demonstrates its efficiency in many
applications such as crowd dynamics [7], biology [15], sociology [14].

3 eVolutus — EMAS Simulator of Evolution
and Population Dynamics

In eVolutus, Foraminifera individuals are represented by agents. The behaviour
of agents is controlled by several rules and a set of parameters. These parame-
ters are treated as a virtual genome and are passed to offspring in the process of
reproduction. Depending on the Foraminifera species reproduction is either asex-
ual (only a mutation operator is employed) or sexual (a crossing over operator
is used).

The marine habitat is modelled using an approach similar to Cellular
Automata. The space is partitioned using a regular grid of cells. Each cell has
some parameters that correspond to real physical properties, e.g., depth, temper-
ature, insolation, salinity. During the simulation these parameters may change
governed by defined rules.

Cells can be occupied by agents. In order to save computational resources
the exact position of agent inside the cell is not tracked. Agent interacts only
with other agents in the same cell and it is affected only by conditions in the
cell in which is located.

eVolutus is implemented over the AgE framework, developed at AGH Univer-
sity of Science and Technology [5,13]. In Fig. 1 the mapping between AgE objects
and eVolutus components is presented. Each single cell of habitat is implemented
as an AgE aggregate agent. Each has strict and unchangeable position in the grid
of cells. The AgE aggregate works as a container for foram agents located inside

Towards Multi-Agent Simulations Accelerated by GPU 459

this cell at this moment. Altogether, the aggregates form a workplace respon-
sible for running the computation and being a proxy for communication with
aggregates located in other workplaces. Simulation may involve several work-
places when the habitat is partitioned over the distributed computing architec-
ture or when the habitat forms a network of independently processed islands.
Foram agents are able to migrate between different aggregates in the whole
environment.

Fig. 1. The eVolutus simulator implemented over the AgE framework

The aggregate and Foraminifera agents are processed in a pseudo-parallel
manner by calling step() method. It means that however the step() methods
are invoked sequentially, the operations that change the state of the environment
or the state of other agents (called actions) are delayed and executed and the end.
The step method of foram agents is called by their parent, which is an aggregate
agent. The aggregate iterates over its children in an undetermined order, calls
synchronously the step method and then executes the actions registered by
children agents in their step. Thus, when the agents make decisions, they have
exactly the same information about the environment.

In eVolutus, the step() method of Foraminifera agents has a very clear form:

1 public void s tep () {
2 consumeStepEnergy () ;
3 i f (shouldDie (. . .))
4 d ie () ;
5 eat () ;
6 i f (canReproduce (. . .))
7 reproduce () ;
8 i f (canCreateChamber (. . .))
9 createChamber () ;

10 i f (canMigrate (. . .))
11 tryMigrate () ;
12 age += stepDurationInHours ;
13 }

At each step of simulation, an agent always consumes some amount of energy
to maintain its life and gather some food from the environment. The rest of the

460 K. Piętak and P. Topa

actions are optional, when the necessary conditions are fulfilled, the agent may
die, reproduce, grow or migrate.

The eVolutus provides high level of configurability due to using the Oracle
Nashorn technology. This framework allows to execute the Javascript code in
Java Virtual Machine with the same performance as native Java code. User
defines agent’s action without touching Java code by writing short functions in
Javascript, i.e.,:
1 f unc t i on shouldDie (envState , foramState , time) {
2 var energyLow = foramState . energy < foramState . minEnergy ;
3 return energyLow ;
4 }

This functionality of the eVolutus is explained with details in [18].
The organization of agent processing implemented in AgE is very clear and

convenient from the developer point of view. Unfortunately, it cannot be directly
applied when GPU processing is used. In fact, one needs to collect necessary
information from foram agents, form a big regular block of data, send to GPU and
execute in parallel hundreds of threads with the same sequence of instructions.

4 Implementation Using GPGPU

When computations using evolutionary techniques with GPGPU are considered,
the global parallelisation model [2] in the form of master-slave architecture is
a natural choice. The architecture assumes that the CPU performs most of the
evolutionary process and the unit delegates some of most expensive computations
to the GPU. Here, CPU processes a model sequentially but it is also possible to
parallelize these computations.

To allow effective computing using GPGPU, some crucial modifications in the
algorithm presented in Sect. 3 were required. The decisions made by particular
foram agents (such as should die, reproduce, create chamber or migrate?), are
a good choice to delegate to slaves. We are sure that these functions have to
be executed by all agents at each step of simulation. The other procedures may
be invoked occasionally and only by a small group of agents at the same time.
These decisions are extended with required conversions between CPU and GPU
representations of forams attributes (such as genotype, energy, age) required
to make these decisions. To minimize the communication overhead and use the
parallel nature of GPU, these operations are performed for a whole population
of foram agents (located at a particular aggregate) at once. The GPU interface
receives the variable number of individuals that belong to an ocean fragment
and next, as a result, returns a set of decisions for each foram. Based on the
returned set, each foram performs sequentially appropriate operations such as
eating, reproduction, dying or migration.

All of this requires some changes in foram agents processing and their step
method:

– all decisions made by foram agents are extracted into a new method called
processForamsDecisions,

Towards Multi-Agent Simulations Accelerated by GPU 461

– an aggregate executes firstly for all child agents called processForams
Decisions method,

– then, the aggregate for each child agent executes its step method based on
the decisions made in the previous phase.

Additionally, each agent at each step performs two obligatory actions: gather
food from the environment and use stored energy to maintain vital functions
of agents. These two actions refer to the inner state of the agent (although the
gathering food results in updating the environment resources at the end of the
step) and their processing can be easily moved to the GPU.

In eVolutus each agent has several parameters (including “virtual genes”)
which are used during computation. Some of them are changed more or less
frequently, e.g., the level of stored energy is updated at each step, the size of
Foraminifera body usually changes when the agent performs growth action. On
the other hand, the “virtual genes” remain constant through the whole life of the
agent. At this moment at each step of simulation the relatively large numbers of
parameters which are implemented as a field of agents’ class have to be copied
into arrays and sent to GPU’s global memory. In the same way, the results are
transferred from GPU to agent. This is inconvenient from the programmers point
of view and also may impact the performance. Thus, our further investigations
will be connected to find optimal, from the GPU point of view, organization of
agents’ data.

The following listing presents a simplified Java code snippet that illustrates
how an aggregate processes the population of Foraminifera agents:
1 Map<Foram , Decis ion> de c i s i o n s =
2 processForamDecis ions (populat ion , environment) ;
3
4 for (Foram foram : d e c i s i o n s . keySet ()) {
5 de c i s i o n = foram . get (foram) ;
6
7 foram . eat (environment) ;
8
9 i f (d e c i s i o n . doGrowth)

10 foram . createChamber (foramState , environment) ;
11
12 i f (d e c i s i o n . doMigration)
13 foram . tryMigrate (foramState , environment) ;
14
15 i f (d e c i s i o n . doReproduction)
16 reproduce (foram , foramState , environment) ;
17
18 i f (d e c i s i o n . doDie)
19 foram . d i e (environment) ;
20
21 foram . makeOlder () ;
22 }

The processForamDecisions method can be implemented in various ways. In
this case, two realizations have been introduced:

– sequential CPU implementation, in which the decision for every foram agent
is performed in a loop,

– parallel GPGPU implementation with required conversion between data
structures.

462 K. Piętak and P. Topa

These two versions allow for comparing results between pure CPU+GPGPU and
CPU implementations of the algorithm.

5 Performance Evaluation

For testing purposes we use Nvidia GeForce GTX750i graphic card. This graphics
card has a Maxwell processor with 640 of CUDA core and 2GB of GDDR5
memory. The processor supports CUDA Compute Capability 5.0. We compared
the GPU version with pure sequential CPU-only implementation. The CPU is
Intel Core i7 4700MQ 2.40GHz with 6MB cache.

Fig. 2. Comparions of CPU and GPU version. The first chart shows speedup achieved
by GPU version over the CPU one. The second chart presents the results of scalability
tests.

Towards Multi-Agent Simulations Accelerated by GPU 463

We prepared a testing scenario that represents stable Foraminifera habitat
with various densities of agents. The original Javascript functions were translated
into the CUDA kernels. In both simulators, a similar dynamics of populations
were observed.

The tests were performed for various numbers of agents inside the containers:
128, 256, 1024, 2048, 4096, 8192 and 16384. The results show (see Fig. 2, first
chart) that the GPU version of the simulator is up to 1.5 faster than version
for CPU. The performance is poor when the number of agents is low (below
1024). It is the expected behaviour — the amount of calculations have to be
large enough to balance the effort related to invoking GPU computation.

We also tested the performance of the GPU implementation for various sizes
of habitat. The tests were performed for the habitat consisting of 12, 24 and 36
containers (we assumed that containers always has the same size). The results
demonstrate that the implementation keeps good level of scalability for each of
the tested sizes of population (see Fig. 2, second chart). In the most demanding
configuration, the simulation included over 5× 105 agents.

6 Summary

The eVolutus simulator, implemented over the AgE platform has a very clear and
readable structure that has benefits when the model is tested and calibrated —
any modifications and new features can be added to the agents’ code in a safe
way. Our goal is to save this feature when a GPU is used.

The results of the investigations presented, although very preliminary, seem
to be very promising. When the number of agents inside the container is larger
the 103 the performance of the GPU implementation exceeds the results achieved
by using the CPU-only version. The results show that the main problem is to
provide enough tasks to compute. The mandatory calculations made the agents
still very “light” and in order to exploit the power of the GPU we have to provide
huge number agents to process.

The part of the model that is executed on CPU is simply processed sequen-
tially. However, the multicore architecture of today’s CPUs encourages the use
of multithreaded processing. The comparison of multithreading implementation
with GPU implementation might be interesting from practical point of view.
Although, here we limit our investigation to the most basic configuration what
allows to identify the potential directions of further works.

Here, we use only a global memory. Recent GPU processors are equipped
with cache memory which supports transfers from and to global memory. Any
optimizations that will use a shared memory in this case require a more detailed
analysis.

At this moment, we use a relatively simple division of agent’s actions into
two groups performed on host and on device (GPU). In order to increase the
amount of computation performed by GPU, we try to introduce new schema of
agent’s actions and new method of allocating the agents’s actions to the GPU.
We believe that in such a solution most of the computations will be processed

464 K. Piętak and P. Topa

by the GPU. Only actions that require communication with containers of agents
will be processed by host.

Acknowledgements. The work presented in this paper received support from the
Polish National Science Centre (DEC-2013/09/B/ST10/01734).

References

1. Aaby, B.G., Perumalla, K.S., Seal, S.K.: Efficient simulation of agent-based mod-
els on multi-GPU and multi-core clusters. In: Proceedings of the 3rd International
ICST Conference on Simulation Tools and Techniques, p. 29. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering)
(2010)

2. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002)

3. Byrski, A., Kisiel-Dorohinicki, M.: Evolutionary Multi-Agent Systems: From Inspi-
rations to Applications. SCI, vol. 680. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-51388-1

4. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolu-
tion process in multi-agent world to the prediction system. In: Proceedings of the
Second International Conference on Multi-Agent Systems, ICMAS, vol. 96, pp.
26–32 (1996)

5. Faber, Ł., Piȩtak, K., Byrski, A., Kisiel-Dorohinicki, M.: Agent-based simulation in
AgE framework. In: Byrski, A., Oplatková, Z., Carvalho, M., Kisiel-Dorohinicki, M.
(eds.) Advances in Intelligent Modelling and Simulation. SCI, vol. 416, pp. 55–83.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28888-3_3

6. Goldstein, S.: Foraminifera: A Biological Overview. Kluwer Academic Publishers,
Dordrecht (1999)

7. Karmakharm, T., Richmond, P., Romano, D.M.: Agent-based large scale simu-
lation of pedestrians with adaptive realistic navigation vector fields. TPCG 10,
67–74 (2010)

8. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.:
Flame: simulating large populations of agents on parallel hardware architectures.
In: Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2010, pp. 1633–1636 (2010)

9. Kłusek, A., Topa, P., Wąs, J., Lubas, R.: An implementation of the social dis-
tances model using multi-GPU systems. Int. J. High Perform. Comput. Appl.
1094342016679492 (2016)

10. Kłusek, A., Topa, P., Wąs, J.: Towards effective GPU implementation of social
distances model for mass evacuation. In: Wyrzykowski, R., Deelman, E., Dongarra,
J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp.
550–559. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32152-3_51

11. Li, X., Cai, W., Turner, S.J.: Supporting efficient execution of continuous space
agent-based simulation on GPU. Concurr. Comput.: Pract. Exp. 28(12), 3313–3332
(2016). https://doi.org/10.1002/cpe.3808

12. Perumalla, K.S., Aaby, B.G.: Data parallel execution challenges and runtime per-
formance of agent simulations on GPUs. In: Proceedings of the 2008 Spring simula-
tion multiconference, pp. 116–123. Society for Computer Simulation International
(2008)

https://doi.org/10.1007/978-3-319-51388-1
https://doi.org/10.1007/978-3-319-51388-1
https://doi.org/10.1007/978-3-642-28888-3_3
https://doi.org/10.1007/978-3-319-32152-3_51
https://doi.org/10.1002/cpe.3808

Towards Multi-Agent Simulations Accelerated by GPU 465

13. Piętak, K., Kisiel-Dorohinicki, M.: Agent-based framework facilitating component-
based implementation of distributed computational intelligence systems. In:
Nguyen, N.-T., Kołodziej, J., Burczyński, T., Biba, M. (eds.) Transactions on
Computational Collective Intelligence X. LNCS, vol. 7776, pp. 31–44. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38496-7_3

14. Richmond, P., Buesing, L., Giugliano, M., Vasilaki, E.: Democratic population
decisions result in robust policy-gradient learning: a parametric study with GPU
simulations. PLoS ONE 6(5), e18539 (2011)

15. Richmond, P., Coakley, S., Romano, D.: Cellular level agent based modelling on the
graphics processing unit. In: 2009 International Workshop on High Performance
Computational Systems Biology, HIBI 2009, pp. 43–50. IEEE (2009)

16. Richmond, P., Walker, D., Coakley, S., Romano, D.: High performance cellular level
agent-based simulation with flame for the GPU. Brief. Bioinform. 11(3), 334–347
(2010)

17. Topa, P.: Cellular automata model tuned for efficient computation on GPU with
global memory cache. In: 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP 2014, 12–14 February, 2014,
Torino, Italy, pp. 380–383 (2014)

18. Topa, P., Komosinski, M., Tyszka, J., Mensfelt, A., Rokitta, S., Byrski, A., Bassara,
M.: eVolutus: a new platform for evolutionary experiments. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM
2015. LNCS, vol. 9574, pp. 570–580. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-32152-3_53

19. Topa, P., Faber, Ł., Tyszka, J., Komosinski, M.: Modelling ecology and evolution of
foraminifera in the agent-oriented distributed platform. J. Comput. Sci. 18, 69–84
(2017)

20. Topa, P., Młocek, P.: Using shared memory as a cache in high performance cellular
automata water flow simulations. Comput. Sci. 14(3), 385 (2013)

https://doi.org/10.1007/978-3-642-38496-7_3
https://doi.org/10.1007/978-3-319-32152-3_53
https://doi.org/10.1007/978-3-319-32152-3_53

Tournament-Based Convection Selection
in Evolutionary Algorithms

Maciej Komosinski(B) and Konrad Miazga

Institute of Computing Science, Poznan University of Technology,
Piotrowo 2, 60-965 Poznan, Poland

maciej.komosinski@cs.put.poznan.pl

Abstract. One of the problems that single-threaded (non-parallel) evo-
lutionary algorithms encounter is premature convergence and the lack
of diversity in the population. To counteract this problem and improve
the performance of evolutionary algorithms in terms of the quality of
optimized solutions, a new subpopulation-based selection scheme – the
convection selection – is introduced and analyzed in this work. This new
selection scheme is compared against traditional selection of individuals
in a single-population evolutionary processes. The experimental results
indicate that the use of subpopulations with fitness-based assignment
of individuals yields better results than both random assignment and a
traditional, non-parallel evolutionary architecture.

Keywords: Evolutionary algorithms · Selection scheme
Convection selection · Diversity · Exploration

1 Introduction

A selection scheme is one of the most important elements of evolutionary algo-
rithms [2,6,14]. Not only it determines the selective pressure in the population,
but it also controls the distribution of this pressure among all individuals. Over
the years many selection schemes were proposed, some of the most popular ones
being tournament selection [3,13], ranking selection [4], proportional selection [7]
and sigma scaling [1]. A common element for all of them is the monotonicity of
the probability of selection with respect to fitness – a sensible property in opti-
mization, since better individuals deserve a higher chance of propagating their
genes. In this paper we show that a more complex, non-monotonic selection
scheme can improve the performance of evolutionary algorithms.

In a recent paper [11], Komosinski proposed two methods of dividing the
population into subpopulations based only on fitness values of individuals, which
does not require computation of any additional, potentially complex and time-
consuming, similarity measures. The performance gain obtained by these meth-
ods has been verified experimentally in a parallel setting (hence it was a distri-
bution technique). The paper discussed the logic behind this way of splitting of
the population and provided some explanations on why it was beneficial. This
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 466–475, 2018.
https://doi.org/10.1007/978-3-319-78054-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_44&domain=pdf
http://orcid.org/0000-0001-8438-5574

Tournament-Based Convection Selection in Evolutionary Algorithms 467

population-splitting scheme was called the convection distribution because it
facilitates continuous evolutionary progress just like a convection current or a
conveyor belt: each subpopulation always tries to independently improve geno-
types of a specific fitness range which overall ensures more fitness diversity and
avoids the domination of (and the convergence towards) the current globally
best genotypes [5]. Occasional, short ascending trends (convections) are visible
in the entire range of fitness values. As mentioned in [11], this idea can be directly
implemented in a standard, single-threaded (i.e., non-parallel) evolutionary algo-
rithm, where it becomes the convection selection scheme.

It is known that given the same computational cost, parallel evolutionary
algorithms [12,16,18] can sometimes yield better results in optimization tasks
than standard sequential evolutionary algorithms, mostly because of the local
exchange of individuals between independent subpopulations. Local exchange
of individuals leads to increased exploration of the search space, which is often
desirable [16]. Increased exploration can also be achieved in sequential evolu-
tionary optimization using methods such as sharing or restricted mating [15].
Such methods require however calculating of additional measures of similarity
between individuals, which may be time consuming, especially in applications
where individuals are complex [11], such as evolutionary design or artificial life.

Convection selection techniques may be perceived as super-selection tech-
niques in that they determine which individual should be assigned to which sub-
population, yet within these subpopulations traditional selection schemes are still
employed. Thus convection selection can be combined with any traditional selec-
tion method, constituting convection tournament selection, convection roulette
selection, etc. Moreover, while in this work we will discuss one-level convection
selection (i.e., a population divided into sub-populations), this technique can act
on multiple levels with subpopulations recursively embedded in each other.

The experiments reported in [11] proved that convection distribution meth-
ods yielded significantly better results than random distribution of genotypes
among subpopulations. In this work, we investigate when the convection selection
(assigning individuals to subpopulations based on fitness values) can yield better
results compared to standard, single-population positive selection schemes such
as tournament selection. We also analyze the underlying mechanisms responsible
for the success of this new approach.

Apart from implementing three subpopulation-based selection techniques in a
single-threaded (non-parallel) evolutionary algorithm and comparing their per-
formance, we also compare these three approaches against a standard, single-
population evolutionary algorithm. In all comparisons we ensure that the overall
computational cost is the same – in each evolutionary run, we keep the num-
ber of evaluations of individuals equal, and the computational cost of managing
subpopulations and migrations between subpopulations is negligible. Moreover,
we test each of the four mentioned approaches (Fig. 1) using various selective
pressures and populations sizes, and for each approach we choose the best per-
formance among its various parametrizations to ensure a fair comparison.

468 M. Komosinski and K. Miazga

2 Methods

All the experiments described in this paper were performed using Framsticks
software [9,10]. Framsticks allows to evolve bodies and brains of 3D designs
(agents) towards a goal specified by some fitness function. This area of appli-
cation of evolutionary algorithms benefits the most from selection schemes
that improve the performance yet are still computationally inexpensive. This
is because optimization tasks in evolutionary design are extremely difficult and
solutions are very complex due to sophisticated genotype-to-phenotype map-
pings, so calculating sophisticated properties of such solutions or estimating
their similarity is usually very costly and should be avoided if possible.

We have used two fitness functions that differ in the difficulty of optimization:
velocity and height. The velocity criterion is used to evolve individuals that
move fast on land (so body and brain are coevolved and must be coordinated),
whereas height is used to evolve static tall structures (their neural network is
disabled) with the center of mass as elevated as possible.

The “f1” genetic encoding was employed [8,9]. This encoding is a direct
mapping between symbols and parts of a 3D structure: ‘X’ represents a rod (a
stick), parentheses encode branches in the structure, and additional characters
influence properties like length or rotation. Neurons are described in square
brackets and index numbers in their connections are relative, so the information
about connections is local and persists when a part of a genotype is cut out. The
encoding is able to represent tree-like 3D body structures and neural networks of
arbitrary topology. Mutations modify individual aspects of the agent by adding
or removing parentheses in random locations in the genotype, by adding and
removing random symbols that affect the structure, by adding and removing
neurons and connections, and by adding random Gaussian-distributed values to
neural weights.

For both fitness functions, evolution was started from the simplest individ-
ual (i.e., ‘X’ in the f1 encoding). The steady-state (also known as “incremen-
tal”) evolutionary algorithm [17] was used. To limit the number of factors that
might influence the performance of convection selection schemes, no crossover
was employed in the experiments reported here. The crossover was however used
in the experiments discussed in [11], where convection selection schemes provided
superior results. The absence of the crossing over operator in this work and the
fact that convection selection schemes still yielded superior results means that
the crossover operator is not the only mechanism responsible for the efficiency
of these selection techniques.

In the convection selection schemes, individuals are first sorted according to
their fitness. Then each subpopulation receives a subset of individuals that fall
within a range of fitness values. In our experiments, two methods of determining
fitness ranges are considered. In the first method denoted EqualWidth (Fig. 1c),
the entire fitness range has been divided into equal intervals (as many as there
are subpopulations); if there are no individuals in some fitness range, the corre-
sponding subpopulation receives individuals from the nearest lower non-empty
fitness interval. In the second method denoted EqualNumber (Fig. 1d), once the

Tournament-Based Convection Selection in Evolutionary Algorithms 469

Fig. 1. An illustration of four compared selection schemes. The fitness of 20 individuals
is shown as red circles, and 4 subpopulations are depicted as green boxes. (a) Standard
evolutionary algorithm with a single population. (b) Random assignment of individuals
to subpopulations. (c) Convection selection with fitness intervals of equal width. (d)
Convection selection with fitness intervals yielding equal number of individuals. (Color
figure online)

individuals are sorted according to their fitness, they are divided into as many
sets as there are subpopulations so that each subpopulation receives the same
number of individuals.

We compare here four approaches to selection (three of which use subpopu-
lations), and in each of them the underlying traditional selection mechanism is
the tournament selection. The logic of the three evolutionary processes that use
selection to assign individuals to subpopulations (i.e., Random, EqualWidth,
or EqualNumber) is implemented as follows. Every R · N

M evaluations (where R
is the migration period scaling factor which defines how frequently subpopula-
tions should merge, N is the size of the entire population, and M is the number
of subpopulations), M subpopulations are merged and then all individuals from
the complete (merged) population are split again into M subpopulations accord-
ing to the applied selection scheme (Random, EqualWidth, or EqualNumber).
After that, the algorithm cycles through all subpopulations in sequence so that
each subpopulation becomes “current” in turn. The steady-state evolutionary
algorithm selects one individual from the current subpopulation (using tourna-
ment selection with the tournament of size t), mutates it and adds the newly
mutated offspring to the current subpopulation. Once this new individual has
been evaluated, the negative selection process removes randomly one individual
from a random subpopulation, so the size of the complete population remains
constant. Then, the next subpopulation in sequence becomes current. After all
subpopulations have been processed, the cycle starts again unless it is time to
merge all subpopulations and redistribute individuals to newly constructed sub-
populations.

470 M. Komosinski and K. Miazga

In this paper we perform two kinds of analyses. The first kind compares the
quality of solutions obtained from the standard single-population evolutionary
algorithms with the results yielded by the three proposed subpopulation-based
selection schemes. The proper comparison between the single-population algo-
rithm and the three subpopulation-based approaches is not simple, as each of
these two concepts uses a slightly different set of parameters. Moreover, even the
parameters that are shared between the four approaches can have different opti-
mal values for each approach. If one wants to properly compare the quality of
solutions achieved with each of the considered selection schemes, one should com-
pare the best results obtained across a series of many different parametrizations
for each selection scheme. Therefore, within each parametrization, the represen-
tative result for that parametrization is considered to be the average value of
the best fitness values obtained across many independent runs (repetitions).

The second kind of the analysis takes a more detailed look into the results
obtained by the three population-based selection schemes, two of which are con-
vection selection schemes. We compare the average results achieved for each set
of parameter values in order to understand which combinations of parameter
values work well together, which combinations work poorly, and what are the
potential reasons for such behavior.

The data required for both of the analyses discussed above were obtained
from the following experiments. In each of the evolutionary runs, 106 individu-
als were evaluated, so that even though the selection schemes were different, they
did not differ significantly in the overall computational cost. Two fitness func-
tions were considered: velocity and height. For the single-population evolution
and tournament selection, we have tested all the combinations of two parameters:
population size N ∈ {100, 200, 500, 1000} and tournament size t ∈ {2, 3, 5}. For
three subpopulation-based selection schemes, all the combinations of the follow-
ing sets of parameter values were tested: population size N = 1000, tournament
size t ∈ {2, 3, 5}, number of subpopulations M ∈ {4, 10, 25, 50}, and the num-
ber of individual evaluations between merging the subpopulations (given as the
multiple of the size of subpopulations) R ∈ {2, 10, 50}. Such a setup means that
to obtain one result (i.e., best fitness value from one evolutionary run) for each
combination of fitness functions and parameter values, we needed to perform
2 × ((4 × 3) + 3 × (3 × 4 × 3)) = 240 independent evolutionary runs. Since
the evolutionary process is non-deterministic, to obtain averages and standard
deviations for each parametrization, these runs were repeated 10 times which
yielded 2400 independent evolutionary runs.

3 Results

3.1 The Performance of Different Selection Schemes

Figure 2 shows the performance of the evolutionary algorithms in time (mea-
sured as the number of individual evaluations) for four selection schemes –
one single-population tournament selection, and three subpopulation-based algo-
rithms with super-selection schemes. Since the influence of parameter values for

Tournament-Based Convection Selection in Evolutionary Algorithms 471

(a) velocity fitness function.

height fitness function.

Fig. 2. Comparison of the performance of single-population tournament selection and
three proposed meta-selections. Each series consists of the high bound (i.e., best) of
the average fitness value obtainable for a given selection scheme, for any of the tested
sets of parameter values. The band around each series represents 25% of the standard
deviation for that series (25% is used instead of 100% to avoid overlapping bands and
improve the readability of the plots).

472 M. Komosinski and K. Miazga

the single-population approach and the three subpopulation approaches is not
directly comparable (even for the same parameters), in order to provide a fair
comparison we show the best average fitness value achieved by any parametriza-
tion for each approach, computed separately for each point in time. This means
that the chart is a high-level comparison of the best performance of the four
selection schemes that can be achieved over all parametrizations.

For the velocity fitness function, the performance of subpopulation-based
selection schemes is clearly superior to the single-population tournament selec-
tion. While the fitness values for single-population evolution stabilize near the
value of 0.017, the convection-based schemes manage to overtake it by a signif-
icant margin. The Random assignment selection scheme stabilizes only around
the value of 0.024, whereas the convection schemes continue to improve in time
(see Fig. 9 in [11] for the distributions of fitness values that illustrate the con-
vection effect), ultimately reaching 0.031 for the EqualWidth method and 0.037
for the EqualNumber method.

The plot for the height fitness function presents similar, although less pro-
nounced relationships. Once again the subpopulation-based schemes yield better
results than the single-population selection, with convection selection schemes
outperforming the Random assignment of individuals to subpopulations. It
is worth noting however that for the first few thousand evaluations, single-
population selection leads to better individuals than the subpopulation-based
schemes – in this phase the optimization is relatively easy, and so population
diversity (exploration) is not as beneficial as intensive, fast exploitation. Once
the solutions reach the fitness values above 2 it is much harder to produce bet-
ter individuals, at which point the subpopulation-based schemes overtake the
single-population selection.

3.2 The Influence of Parameters of the Convection Selection

Figure 3 presents the effect that parameter values of convection selection have on
the quality of solutions that were found by the evolutionary algorithm. Depend-
ing on the selection scheme, various trends can be seen. For Random assignment
of individuals to subpopulations (Fig. 3a and b) no clear patterns emerged –
parameter values do not demonstrate any direct influence on fitness, which may
suggest that without any specific logic like fitness-based selection, the algorithm
cannot fully exploit the advantages of working with multiple subpopulations.

The opposite is however visible for the EqualNumber convection selection
scheme (Fig. 3e and f). For the height fitness function (Fig. 3f), high selective
pressure yields better results, as represented by darker circles being more filled
up than the light ones. For both fitness functions, increasing the migration period
scaling factor R (the vertical axis) leads to better results. The increase in the
value of R allows each of the subpopulations to significantly increase the qual-
ity of its solutions before the subpopulations are merged; for longer migration
periods, the contents of each subpopulation can change considerably between
migrations which facilitates diversity, and this is a desired property for hard
optimization problems.

Tournament-Based Convection Selection in Evolutionary Algorithms 473

Fig. 3. Average best fitness values for each combination of parameter values after 106

evaluations, additionally averaged along each of the three dimensions (parameters).
Empty circles represent the minimal fitness value present in each chart, and full circles
represent the maximal fitness value in each chart. The minimal and maximal fitness
values are shown in the legend.

The number of subpopulations M has a different effect on fitness values for
each fitness function. For velocity (Fig. 3e), increasing the number of subpop-
ulations (and hence reducing their size) has a positive effect on the quality of

474 M. Komosinski and K. Miazga

results, which is indicated by the circles filling up along the horizontal axis,
while for height (Fig. 3f) and for early evolution of velocity (around the first
50k evaluations) it has a negative effect. While it is not clear what causes this
difference, one possible explanation is related to different properties of these
fitness functions, as demonstrated in Fig. 2. While the velocity criterion allows
the algorithm to continuously improve the quality of solutions by exploring new
ideas of “how to be fast” (i.e., more possibilities for exploration), the evolution of
height quickly leads to a plateau, where the improvement can be achieved mostly
by fine-tuning of existing solutions (“local optima”) that are easy to break.

Although no obvious trends are visible for the EqualWidth selection scheme
(Fig. 3c and d), it is worth noting that the combination of a small number of big
subpopulations and frequent migrations is unfavorable for both fitness functions,
as indicated by primarily empty circles in the bottom-left part of these plots.
The most likely explanation of this is the low level of exploration that results
from such parametrization.

4 Conclusions

In this article, we investigated the concept of convection distribution and convec-
tion selection [11] in single-threaded (non-parallel) evolutionary algorithms and
demonstrated that dividing the population into subpopulations based on fitness
values of individuals can significantly improve the quality of optimized solutions.
We have discussed potential mechanisms responsible for superior results of the
convection-based methods, the most important ones being the diversification
of the population and the ability to constantly explore diverse paths in fitness
landscape [11]. If many subpopulations are allowed to evolve independently for
longer periods of time, we can expect that each of them will produce unique, fit
solutions which can then compete and cooperate every time the subpopulations
are merged.

There are a number of issues that should still be examined. Even though the
experiments reported in this paper were computationally highly expensive due
to a large number of combinations of parameter values and very complex evolu-
tionary goals, it would be worthwhile to extend the ranges of parameters to test
the space of possible parameter combinations more comprehensively. It would
be advantageous to test the proposed approaches on more fitness functions,
including well-known benchmark optimization problems. Apart from convection
selection and random assignment of individuals to subpopulations, we would like
to additionally test the policy that ensures the best individual is placed in each
subpopulation. For larger populations, the convection selection may have multi-
ple levels so that it is applied recursively and subpopulations are nested in each
other – this concept is worth testing too, along with dynamic, adaptive strategies
of splitting and merging subpopulations and recursion levels. It would be useful
to devise a formal statistical model behind convection selection to understand
its mechanisms and causes of its success. Finally, it will be interesting to investi-
gate to what extent can crossover benefit from convection-based schemes where
fitness of parents is in most cases similar.

Tournament-Based Convection Selection in Evolutionary Algorithms 475

Acknowledgments. The research presented in the paper received support from Pol-
ish National Science Center (DEC-2013/09/B/ST10/01734).

References

1. Back, T.: Selective pressure in evolutionary algorithms: a characterization of selec-
tion mechanisms. In: Proceedings of the First IEEE Conference on Evolutionary
Computation. IEEE World Congress on Computational Intelligence, pp. 57–62.
IEEE (1994)

2. Back, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford
(1996)

3. Blickle, T., Thiele, L.: A mathematical analysis of tournament selection. In: ICGA,
pp. 9–16. Citeseer (1995)

4. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary
algorithms. Evol. Comput. 4(4), 361–394 (1996)

5. Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary
algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)

6. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applica-
tions. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-662-03423-1

7. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in
genetic algorithms. In: Foundations of Genetic Algorithms, vol. 1, pp. 69–93 (1991)

8. Komosinski, M., Rotaru-Varga, A.: Comparison of different genotype encodings for
simulated 3D agents. Artif. Life J. 7(4), 395–418 (2001)

9. Komosinski, M., Ulatowski, S.: Framsticks: creating and understanding complexity
of life, chap. 5. In: Komosinski, M., Adamatzky, A. (eds.) Artificial Life Models
in Software, 2nd edn, pp. 107–148. Springer, London (2009). https://doi.org/10.
1007/978-1-84882-285-6 5

10. Komosinski, M., Ulatowski, S.: Framsticks web site (2016). http://www.framsticks.
com

11. Komosinski, M., Ulatowski, S.: Multithreaded computing in evolutionary design
and in artificial life simulations. J. Supercomput. 73(5), 2214–2228 (2017).
http://www.framsticks.com/files/common/MultithreadedEvolutionaryDesign.pdf

12. Luque, G., Alba, E., Dorronsoro, B.: Parallel genetic algorithms. In: Parallel Meta-
heuristics: A New Class of Algorithms, pp. 107–126 (2005)

13. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the
effects of noise. Complex Syst. 9(3), 193–212 (1995)

14. Sastry, K., Goldberg, D.E., Kendall, G.: Genetic algorithms. In: Burke, E., Kendall,
G. (eds.) Search Methodologies, pp. 93–117. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-1-4614-6940-7 4

15. Spears, W.M.: Simple subpopulation schemes. In: Proceedings of the Evolutionary
Programming Conference, vol. 3, pp. 296–307. World Scientific River Edge, NJ
(1994)

16. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W.
(eds.) Springer Handbook of Computational Intelligence, pp. 929–959. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-43505-2 46

17. Syswerda, G.: A study of reproduction in generational and steady state genetic
algorithms. In: Foundations of Genetic Algorithms, vol. 2, pp. 94–101 (1991)

18. Tomassini, M.: Parallel and distributed evolutionary algorithms: a review (1999)

https://doi.org/10.1007/978-3-662-03423-1
https://doi.org/10.1007/978-1-84882-285-6_5
https://doi.org/10.1007/978-1-84882-285-6_5
http://www.framsticks.com
http://www.framsticks.com
http://www.framsticks.com/files/common/MultithreadedEvolutionaryDesign.pdf
https://doi.org/10.1007/978-1-4614-6940-7_4
https://doi.org/10.1007/978-1-4614-6940-7_4
https://doi.org/10.1007/978-3-662-43505-2_46

Multi-agent Systems Programmed
Visually with Google Blockly

Szymon Górowski, Robert Maguda, and Pawe�l Topa(B)

Department of Computer Science, AGH University of Science and Technology,
Kraków, Poland
topa@agh.edu.pl

Abstract. In this paper we propose a very user-friendly method for
programming multi-agent systems. We use the well known visual pro-
gramming library Blockly from Google. With this library the behaviour
of agents can by programmed intuitively even by those not skilled in
programming. We demonstrate this idea using an agent-based simulator
named eVolutus, designed and implemented for conducting large scale
ecological and evolutionary experiments.

Keywords: Agent-based programming · Multi-agent systems
Visual programming

1 Introduction

Computer science provides methods and tools that are used by other scien-
tific disciplines: physics, chemistry, geology, biology and so on. In order to make
designing and implementing such tools efficient and fast, many sophisticated pro-
gramming languages and programming libraries have been invented and devel-
oped. From the programmer’s point of view they are more reliable and convenient
than old-fashioned languages like Fortran or C. Unfortunately, they still require
high levels of skills and experience from programmers.

Users usually expect that computer programs have interfaces optimized for
the tasks they want to perform. In some cases the functionality of programs can
be enclosed within menus, dialogues and other components of a typical GUI.
In many applications, such an approach is insufficient, and various scripting
languages optimized for specific tasks are provided.

One of the main problems for inexperienced users of scripting languages are
syntax errors that may appear in the script due to poor knowledge of instruc-
tions or as a result of typos. In such the cases, the visual programming tech-
nique can be useful. Visual Programming Languages (VPLs) [5] work like Lego
bricks—programs are constructed using components that can be connected only
in particular, permitted way.

VPLs have long history, and they have been applied with success in software
for data processing and visualisation (see [4]). In such programs the data flow

c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10778, pp. 476–484, 2018.
https://doi.org/10.1007/978-3-319-78054-2_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78054-2_45&domain=pdf

Multi-agent Systems Programmed Visually with Google Blockly 477

model of programming is especially useful: data sets are processed by a chain of
“black boxes”.

Currently, VPLs are often used for educational purposes. Scratch [8] is one
of the most popular platforms that use visual programming for teaching basic
programming concepts. It is freely available and used in many projects and
applications, e.g., it is used to program the famous robotics suite Lego Wedo.
Another example is Blockly—an open source library developed by Google. It
is used in the application presented in this paper and we introduce it in more
detail below.

There are also several examples of using VPLs in Agent-Based Modelling
(ABM). The SeSAm [7] platform allows for specifying the complete model of a
given phenomena. The behaviour of agents is defined by activity diagrams similar
to UML diagrams. Analogously, the user defines the environment, its state and
evolution. Diagrams are also used to define interactions between agents and
their reactions to the environmental conditions. Plugins can be used to extend
SeSAM’s functionality. Before starting the simulation, SeSAm generates the code
of the simulator to achieve higher efficiency.

VPL are also used by DeltaTick [13], which is an extension to NetLogo [12],
one of the most popular ABM computational environments. In order to a build
model, the user creates actors and assigns them actions (behaviour) selected
from an existing collection. Such an approach is very convenient and makes it
possible to build a complete model very fast. On the other hand, it is not as
flexible as SeSAm, where a user can define their own low-level procedures.

The project demonstrated in this paper was created as an extension of
eVolutus—an agent based simulator of ecology and evolution [9]. eVolutus was
designed and developed for microbiologists that investigate Foraminifera [6],
single-cellular marine microogranisms. This simulator makes it possible to pro-
gram the behaviour of a single agent using short functions named kernels. We
believe that Blockly can support scientists that do not have programming skills
in conducting sophisticated experiments with eVolutus.

The paper is organized as follows: In the next section the eVolutus simulator
and its crucial functionality, behaviour and environmental kernels, are briefly
introduced. Next, we describe the Oracle Nashorn framework, which allows for
implementing the kernels’ functionality. The next section discusses the Blockly
library. Sect. 3 contains detailed information on using Blockly to program eVo-
lutus agents. Next, we present some examples of kernels generated using this
software. At the end, we summarize the presented results.

2 eVolutus: The Simulator of Multiscale Evolutionary
Processes Tested on Foraminifera

eVolutus [9] is the simulator of population dynamics and evolutionary processes
designed using the Individual Based Modelling (IBM) paradigm [11]. This
method assumes that a population of individuals (animals, pedestrians) is rep-
resented in a computer model as a set of entities. Each entity has its own state

478 S. Górowski et al.

and its behaviour is governed by a set of rules. Global behaviour of population
emerges as a result of interactions between entities and interactions with envi-
ronmental conditions. A model based on the IBM paradigm can be implemented
in natural way using the Agent-Based Modelling (ABM) approach [12].

One of the main advantages of IBM/ABM methodology is a bottom-up app-
roach to building the model. The modeller focuses on the behaviour of a single
agent, its survival strategy, as well as its reactions to its environment and to
other agents. These rules can be easily encoded as a set of procedures that the
agent calls when the related events are occurring.

When a model based on the IBM/ABM approach is developed, tested, ver-
ified and calibrated, most modifications are related to the agents’ behaviour.
Thus, it is reasonable to construct model with clearly distinguished section of
code that is executed by agent in each step of simulation. Later, when the model
is tuned, only these parts of the code are changed. Moreover, when the simulator
is used by an experimenter who tries to encode their own knowledge related to
the modelled phenomena, any modifications can be limited to only this part of
code. In case of any problems with execution it is easier to detect the location
of errors.

Currently, the eVolutus is able to model populations of Foraminifera [6], a
large group of marine single cellular microorganisms, however its structure allows
for a relatively simple change the modelled object.

In eVolutus each individual is represented by an agent that has its own param-
eters and rules of behaviour. The Foraminiferal habitat is represented in a man-
ner similar to the Cellular Automata approach. The whole space is partitioned
using a regular grid. Each cell represents a portion of the habitat of a given
size. In the computer model each cell is described by several numerical values
that correspond to various environmental factors,e.g., insolation, depth, temper-
ature, salinity. During the simulation these parameters may change according to
defined rules.

2.1 The eVolutus Kernels

Both the behaviour of agents and the evolution of the habitat are governed by
functions which are invoked at each step of simulation for each agent. These
short functions have been named “kernels” by analogy with the CUDA kernels.
i.e., relatively short procedures processed by the cores of the GPU (Graphics
Processing Unit) in a massive parallel manner (hundreds of threads execute the
same stream of instructions at the same time). Here, the kernels also contain,
usually short, sequence of instructions that have to be processed for thousands
of agents, potentially in a parallel manner.

eVolutus is created for users that are not skilled programmers. Thus, the
main goal of this project is to provide an interface which is simple but does not
limit the experimenter. The functionality supplied by the Nashorn framework [3]
partially fulfils these requirements. Users do not have to use Java programming
language, which is relatively difficult to use. Instead, the Javascript scripting
language is used which has a much more simple syntax. Nashorn framework is

Multi-agent Systems Programmed Visually with Google Blockly 479

able to execute Javascript code on JVM with the same performance as native
Java code. However, this approach is still prone to syntax errors. Finding and
correcting these errors may be a problem for inexperienced users.

One solution could be a visual programming approach. Using this method,
user constructs programs or algorithms using graphical blocks that represent
various instructions (see Fig. 1). We assume that the implementer of the simu-
lator has to create a template which contains all the information necessary to
properly generate and handle blocks. Such templates can be used to generate
the stubs of kernels which will be filled with instructions by the experimenter.

Fig. 1. Visual programming for multi-agent modelling using Google Blockly

The eVolutus kernels are the functions that determine the behaviour of agents
in various situations:

– gathering food,
– moving,
– reproduction,
– shortage of food/energy etc.

The sample kernel presented below evaluates a decision about growth (more
on the model of Foraminifera morphogenesis in [10]):
1 function canCreateChamber (envState , foramState , time) {
2 var volumeOfCytoplasm =

3 foramState . energy / foramState . genotype . me t abo l i cE f f e c t i v en e s s [0] ;

4 var needMoreSpace =

5 volumeOfCytoplasm > 0 .95 ∗ foramState . s h e l l . vo lumeShel l ;

6 var energyEnough =

7 foramState . energy > energyNeededForGrowth (envState , foramState , time) ;

8 return needMoreSpace && energyEnough

9 && ! i s InH ibe rna t i onS ta t e (envState , foramState , time) ;

10 }

480 S. Górowski et al.

In this function, the current volume of cytoplasm is calculated using the current
level of energy and a parameter that describes metabolic effectiveness of the
individual (a very detailed explanations of the model of Foraminifera physiology
applied in eVolutus can be found in [9]). Next instruction check whether new
Foraminifera should growth and calculate necessary amount of energy. Function
returns logical value which is used to turn on the procedure of growing.

Additionally, a separate group of kernels is used to govern the evolution of
the habitat (these are called environmental kernels). Each cell of habitat changes
its state according to the calculations made in the appropriate kernels, e.g.,
insolation inside a box of water may be controlled using the following code:
1 function i n s o l a t i o n (time , envStates) {
2 var s u r f a c e I n s o l a t i o n = 1 . 0 ;
3 var l i g h t = su r f a c e I n s o l a t i o n − 10 ∗ envStates [0] . p o s i t i o n . z ;
4 return Math .max(0 . 0 , l i g h t) ;
5 }

Here, it is assumed that at the water’s surface the level is at its maximum and
that it decreases with depth.

2.2 Google Blockly

Blockly [2] is a library written using JavaScript that allows visual programming.
At this moment it is supported by most web browsers. Since 2011 it is developed
by Google, but its source code is publicly available as an open-source project.

Blockly has a defined set of graphic components (blocks) with basic pro-
gramming instructions. Those blocks can be connected (in a specified manner)
to compound more complex instructions or sequences of instructions. Blockly is
able to generate code in JavaScript, Python, PHP, Lua and Dart.

Blockly is widely used in many projects, especially those that are targeted
to support students who are learning programming. It can be also used by users
that are not skilled programmers. Blockly Games1 is a publicly available portal
devoted to teaching children the basic ideas of programming, e.g. turtle graphics.
Another example of using Blockly is App Inventor for Android [1] which is a web-
based platform for creating programs for mobile devices running on Android.

One of the main advantages of Blockly is the licence that allows it to be
freely modified and extended. Thus, we are able to tune the project to provide
its users the set of blocks that they need for this particular application.

3 Implementation

The software has been intentionally designed not to be strictly dependent on the
architecture of the eVolutus simulator. Thus, it was assumed that the function
stubs must be generated using templates. The developer of the simulator has to
provide files that describe all the functions and data structures that are inter-
preted by Nashorn during computation. Kernels are defined using the following
format:
1 https://blockly-games.appspot.com/.

https://blockly-games.appspot.com/

Multi-agent Systems Programmed Visually with Google Blockly 481

1 // @descript ion descr ip t i on of funct ion
2 // @param argName1 type descr ip t i on
3 // @param argName2 type descr ip t i on
4 // @param . . .
5 // @return type descr ip t i on
6 func name argName1 argName2 [. . .]

Field description is used to include short information about defined function.
Fields param describe the name and type of the function arguments, they can
be also supplied with short explanation. Finally, the returned value is specified
in an analogous way. In a similar manner we can define new data structures:
1 // @descript ion s t ruc t descr ip t i on
2 // @outputField x Number f i e l d descr ip t i on
3 // @outputField y Number f i e l d descr ip t i on
4 // @outputField z Number f i e l d descr ip t i on
5 s t r u c t output coo rd ina t e s x y z

The code below contains a real template of a function which returns direction
and speed of ocean current in a single habitat cell. This definition assumes that
functions have to return an array with three numbers (coordinates). Thus we
have to define a block named Coordinates which obviously represents coordi-
nates in 3D.
1 // @descript ion Return 3D coordinates
2 // @param time Number Timestep
3 // @param envStates Environment s t a t e
4 // @return Coordinates
5 func cu r r en tD i r e c t i on time envStates
6

7

8 // @descript ion Points or vec tors in 3D
9 // @outputField x Number x−coordinate

10 // @outputField y Number y−coordinate
11 // @outputField z Number z−coordinate
12 s t r u c t output coo rd ina t e s x y z

As already mentioned, the software generates dedicated blocks for each data
structure defined in the template. For this purpose, a Blockly mechanism was
used to create custom blocks. Blockly blocks consist of 3 components:

– Block Definition Object - an object that defines the appearance and behaviour
of the block, including its fields and connections

– Toolbox Reference - a reference to the block type in XML describing the
content of the toolbox (to allow the user to add it to the workspace)

– Generator Function - a function that generates block code in a given pro-
gramming language

Creating a new type of block requires implementing these components and
adding them to the script files from which Blockly loads the blocks (resulting
block is included):

482 S. Górowski et al.

1 Blockly . Blocks [’ p r i n t ’] = {
2 i n i t : function () {
3 this . appendValueInput (” text ”) . setCheck (nu l l) .

appendField (” p r in t ”) ;

4 this . s e t I n pu t s I n l i n e (t rue) ;

5 this . setOutput (true , nu l l) ;

6 this . s e tColour (270) ;

7 this . s e tToo l t i p (’ ’) ;

8 this . s e tHe lpUr l (’ ’) ;

9 }
10 } ;

1 Blockly . JavaScr ipt [’ p r i n t ’] = function (b lock) {
2 var va lu e t ex t =

3 Blockly . JavaScr ipt . valueToCode (block , ’ t ext ’ ,

Blockly . JavaScr ipt .ORDER ATOMIC) ;

4 var code = ’window . a l e r t (’ + va lu e t ex t + ’) ’ ;

5 return [code , Blockly . JavaScr ipt .ORDERNONE] ;

6 } ;

In the application, new types of blocks are created dynamically each time a
template is loaded, because each template can define different data structures
for which different types of blocks are needed. Blockly Developer Tools2 make
creating new block types significantly easier. They are web-based tools that allow
for building one’s own blocks using the graphical interface and generate Block
Definition Objects for them in Blockly format.

4 Sample Scripts

The platform is available for users in the most convenient way, i.e., as a web
service3. The user has their own account with a database of templates. New
templates can be uploaded to the server. After choosing the template, a set of
empty functions and corresponding blocks is generated and visualised. Now, the
user can fill the functions with instructions and data structures. In addition to
the standard blocks, the available set has additional ones generated using the
templates. At any moment, the current state of work can be saved to continue
development later.

In Figs. 2 and 3 we present sample diagrams created using the platform as
well as the resulting code.

2 https://blockly-demo.appspot.com/static/demos/blockfactory/index.html.
3 https://mongo.icsr.agh.edu.pl/ace.

https://blockly-demo.appspot.com/static/demos/blockfactory/index.html
https://mongo.icsr.agh.edu.pl/ace

Multi-agent Systems Programmed Visually with Google Blockly 483

Fig. 2. Visually programmed environmental kernel for oxygene distribution inside the
modelled habitat. Below, the Javascript code accepted by eVolutus simulator as well
as the the equivalent code in Python.

Fig. 3. Behavioural kernel which controls the moment of reproduction. Agent cannot
be in hibernation state, it must be mature enough and have the necessary amount of
energy. Reproduction is triggered with some probability.

484 S. Górowski et al.

5 Conclusions

Simulators based on ABM paradigm are designed for users that are focused on
solving some scientific and engineering problems. The architecture of computa-
tion and its implementation should be a black-box for them. The agent-based
systems in such an application have a big advantage—the code that control
agents behaviour can be isolated from the rest of the software and exposed to
direct modification by the user. The ABM paradigm assumes that the solution
to the problem can be found by mutual interactions of many agents, as well as
by their interactions with the environment. Thus, the code that governs agents’
behaviour is crucial for solving the defined problems.

Our platform provides a convenient method for programming agents in ABM-
based software. The Blockly-based interface supports the user in creating code
that is free of syntax errors. Moreover, the blocks that represent data structures
and instructions can be provided with an extensive manual which leads the user
through the process of programming the agents.

Acknowledgements. The work presented in this paper received support from the
Polish National Science Centre (DEC-2013/09/B/ST10/01734).

References

1. App inventor for android. https://ai2.appinventor.mit.edu/
2. Google blockly. https://developers.google.com/blockly/
3. Nashorn official website. http://blogs.oracle.com/nashorn/
4. Boshernitsan, M., Downes, M.S.: Visual programming languages: a survey. Tech-

nical report, University of California, Berkeley, USA (2004)
5. Erwig, M., Smeltzer, K., Wang, X.: What is a visual language? J. Vis. Lang.

Comput. 38, 9–17 (2017). SI:In honor of Prof. S.K. Chang
6. Goldstein, S.T.: Foraminifera: A Biological Overview. Kluwer Academic Publish-

ers, Dordrecht (1999)
7. Klügl, F.: Sesam: visual programming and participatory simulation for agent-based

models. In: Multi-agent Systems: Simulation and Applications, pp. 477–508 (2009)
8. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-

nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., et al.: Scratch:
programming for all. Commun. ACM 52(11), 60–67 (2009)

9. Topa, P., Faber, �L., Tyszka, J., Komosinski, M.: Modelling ecology and evolution
of Foraminifera in the agent-oriented distributed platform. J. Comput. Sci. 18,
69–84 (2017)

10. Tyszka, J., Topa, P.: A new approach to modeling of Foraminiferal shells. Paleo-
biology 31(30), 526–541 (2005)

11. Uchmański, J., Grimm, V.: Individual-based modelling in ecology: what makes the
difference? Trends Ecol. Evol. 11(10), 437–441 (1996)

12. Wilensky, U., Rand, W.: An Introduction to Agent-Based Modeling: Modeling Nat-
ural, Social, and Engineered Complex Systems with NetLogo. MIT Press, Cam-
bridge (2015)

13. Wilkerson-Jerde, M.H., Wilensky, U.: Restructuring change, interpreting changes:
the deltatick modeling and analysis toolkit. In: Proceedings of Constructionism
(2010)

https://ai2.appinventor.mit.edu/
https://developers.google.com/blockly/
http://blogs.oracle.com/nashorn/

Author Index

Acosta, Alejandro II-123
Agarkov, Alexander I-327
Aguilar, Xavier II-264
Akhmetova, Dana II-277
Almeida, Francisco II-123
Andrzejewski, Witold I-254
Angeletti, Mélodie I-265
Antkowiak, Michał II-351
Arbenz, Peter I-57
Arcucci, Rossella II-37, II-48

Baboulin, Marc I-36
Bader, David A. I-290
Bajgoric, Dzanan I-459
Bała, Piotr II-288, II-318
Balis, Bartosz I-432
Banaś, Krzysztof I-232
Barkoutsos, Panagiotis Kl. II-308
Barsamian, Yann I-133
Bartsch, Valeria II-277
Basciano, Davide II-37
Bashinov, Aleksei I-145
Bastrakov, Sergey I-145
Batko, Paweł II-213
Bečka, Martin I-590
Bekas, Costas II-308
Berlińska, Joanna II-135
Bielański, Jan I-232
Biryukov, Sergey I-327
Blanco, Vicente II-123
Blöcker, Christopher II-191
Bohdan, Artem I-156
Bonny, Jean-Marie I-265
Brun, Emeric I-90
Brunner, Stephan I-370
Bubak, Marian I-432
Bull, Jonathan I-417
Bylina, Jarosław I-111

Cabrera, Alberto II-123
Calore, Enrico I-519
Calvin, Christophe I-90
Cebamanos, Luis II-277
Charguéraud, Arthur I-133

Charrier, Dominic E. II-3
Chłoń, Kazimierz I-232
Čiegis, Raimondas I-79
Cilardo, Alessandro II-37
Coleman, Evan I-36

D’Amore, Luisa II-14, II-37, II-48
De Falco, Ivanoe II-176
Di Luccio, Diana II-14
Dichev, Kiril II-264
do Nascimento, Tiago Marques II-166
Dobski, Mikołaj I-406
Dolfi, Michele II-308
Dorobisz, Andrzej I-156
Dorostkar, Ali I-417
dos Santos, Rodrigo Weber II-58, II-166
Drozdowski, Maciej I-254
Duff, Iain I-197
Durif, Franck I-265
Dutka, Łukasz I-471
Dymova, Ludmila II-371, II-412
Dytrych, Tomáš II-341
Dzwinel, Witold I-505

Efimenko, Evgeny I-145
Eljammaly, Mahmoud I-579
Elster, Anne C. II-91
Ezer, Tal II-71

Fahringer, Thomas II-264
Fan, Guning I-381
Figiela, Kamil I-432
Flatz, Markus I-646
Fohry, Claudia II-234
Foszner, Paweł II-102
Frankowski, Gerard I-406
Fröhlich, Jochen I-337
Fujii, Akihiro I-381
Fujita, Toru II-224
Funika, Włodzimierz I-555
Futamura, Yasunori I-600

Gabbana, Alessandro I-519
Gajos-Balińska, Anna I-495

Galletti, Ardelio II-14
Gąsior, Jakub II-156
Gavriilidis, Prodromos II-436
Gegenwart, Philipp II-359
Georgoudas, Ioakeim G. II-436
Gepner, Pawel I-565
Gerakakis, Ioannis II-436
Gheller, Claudio I-370
Giannoutakis, Konstantinos M. II-91
Gil, Agnieszka I-14
Golden, Darach I-634
Gonoskov, Arkady I-145
Górowski, Szymon II-476
Górski, Łukasz II-288, II-318
Gschwandtner, Philipp II-264

Halpern, Tal I-3
Halver, Rene II-244
Hasanov, Khalid II-264
Hirota, Yusuke I-623
Hladík, Milan II-391
Hoffman, Niv I-24
Hoffmann, Ulrich II-191
Holmgren, Sverker I-417
Homberg, Wilhelm II-244
Hoppe, Dennis I-432
Hugot, François-Xavier I-90
Huismann, Immo I-337
Hupp, Daniel I-57

Iakymchuk, Roman II-264, II-277
Imakura, Akira I-600
Imamura, Toshiyuki I-348, I-623
Ismagilov, Timur I-327
Istrate, Roxana II-308
Ito, Yasuaki I-314, II-224

Jamal, Aygul I-36
Jastrzab, Tomasz I-279
Jocksch, Andreas I-370
Jordan, Herbert II-264
Jurek, Janusz I-533

Kaczmarski, Krzysztof I-219
Kågström, Bo I-579
Karlsson, Lars I-68, I-579
Katagiri, Takahiro I-381
Katrinis, Kostas II-264
Ketterlin, Alain I-133

Khabou, Amal I-36
Khalilov, Mikhail I-327
Khan, Malik M. II-91
Kitowski, Jacek I-432, I-471
Kjelgaard Mikkelsen, Carl Christian I-68
Kłusek, Adrian I-505
Knapp, František II-341
Kobzar, Oleh I-156
Koko, Jonas I-265
Komosinski, Maciej II-466
Kondratyuk, Nikolay I-327
Koperek, Paweł I-555
Kosta, Sokol II-14
Kotenkov, Ivan I-47
Kotwica, Michał I-156
Koziara, Tomasz I-123
Král, Ondřej II-391
Kravcenko, Michal I-101
Kreinovich, Vladik II-402, II-412
Krestenitis, Konstantinos I-123
Kriauzienė, Rima I-79
Krol, Dariusz I-432
Kruchinina, Anastasia I-417
Krużel, Filip I-232
Kubica, Bartłomiej Jacek II-381, II-402
Kudo, Shuhei I-612
Kushtanov, Evgeny I-327
Kuta, Marcin II-213
Kutil, Rade I-646
Kwiatkowski, Jan I-459

Laccetti, Giuliano II-14, II-25
Langr, Daniel I-47, II-341
Lanti, Emmanuel I-370
Lapegna, Marco II-14, II-25
Larin, Anton I-145
Laskowski, Eryk II-176
Laure, Erwin II-264, II-277
Lawson, Gary II-71
Lemarinier, Pierre II-264
Li, Yi II-48
Lichoń, Tomasz I-471
Lieber, Matthias I-337
Lobosco, Marcelo II-58, II-166
Lopez, Florent I-197

Maguda, Robert II-476
Makagon, Dmitry I-327
Makaratzis, Antonios T. II-91

486 Author Index

Malawski, Maciej I-432
Malvagi, Fausto I-90
Maly, Lukas I-101
Mantovani, Filippo II-37
Marcellino, Livia II-14
Margenov, Svetozar I-79
Markidis, Stefano II-264, II-277
Marowka, Ami II-203
Martínez-Pérez, Ivan I-243
Martorell, Xavier I-243
Maśko, Łukasz I-483
Matysiak, Ryszard II-359
Mele, Valeria II-25
Merta, Michal I-101
Meyer, Norbert I-406
Meyerov, Iosif I-145
Miazga, Konrad II-466
Mikitiuk, Artur II-425
Milka, Grzegorz I-395
Miłostan, Maciej I-406
Milthorpe, Joshua II-113
Mleczko, Wojciech K. I-565
Mochizuki, Masayoshi I-381
Modzelewska, Renata I-14
Montella, Raffaele II-14, II-25, II-48
Moore, Andrew II-48
Mu, Gang I-254
Mukosey, Anatoly I-327
Mukunoki, Daichi I-348
Myllykoski, Mirko I-207

Nakano, Koji I-314, II-224
Napiorkowski, Krzysztof J. M. II-425
Nathan, Eisha I-290
Neytcheva, Maya I-417
Niemiec, Jacek I-156
Nikitenko, Dmitry I-417
Nikolopoulos, Dimitrios S. II-264
Nikolow, Darin I-471
Nowicki, Marek II-288, II-298, II-318,

II-328
Nowicki, Robert K. I-565

Oberhuber, Tomáš II-341
Obrist, Dominik I-57
Ochiai, Akira II-359
Ohana, Noé I-370
Okša, Gabriel I-590
Olas, Tomasz I-565

Olejnik, Richard II-176
Orzechowski, Michal I-432

Panuszewska, Marta I-505
Pawlik, Maciej I-432
Peña, Antonio J. I-243
Phillipson, Luke II-48
Piętak, Kamil II-456
Pilc, Michał I-406
Popova, Nina I-417
Posner, Jonas II-234
Pownuk, Andrzej II-402, II-412

Rahn, Mirko II-277
Rakus-Andersson, Elisabeth I-544
Rauber, Thomas I-185
Rendell, Alistair P. II-113
Rotaru, Tiberiu II-277
Ruggieri, Mario II-14
Rünger, Gudula I-185
Rutkowska, Danuta I-544
Ryczkowska, Magdalena II-318, II-328
Rzadca, Krzysztof I-395

Sakurai, Tetsuya I-600
Sandoval, Yosandra I-432
Santopietro, Vincenzo II-14
Sasak-Okoń, Anna I-303
Scafuri, Umberto II-176
Scheinberg, Aaron I-370
Schifano, Sebastiano Fabio I-519
Schwartz, Oded I-24
Semenov, Alexander I-327
Seredyński, Franciszek II-156
Sevastjanov, Pavel II-371, II-412
Shaykhislamov, Denis I-359
Shen, Yuzhong II-71
Shvets, Pavel I-417
Šimeček, Ivan I-47
Simmendinger, Christian II-277
Simonov, Alexey I-327
Sirakoulis, Georgios Ch. II-436
Sirvent, Raül I-243
Skurowski, Przemysław II-102
Słota, Rafał I-471
Słota, Renata G. I-471
Soares, Thiago Marques II-58
Somani, Arun K. I-443
Sosonkina, Masha I-36, II-71

Author Index 487

Spellacy, Louise I-634
Staar, Peter W. J. II-308
Starikovičius, Vadimas I-79
Stegailov, Vladimir I-327, II-81
Steglich, Frank II-359
Stiller, Jörg I-337
Stpiczyński, Przemysław I-495, II-254
Sulistio, Anthony I-432
Sun, Yong Chao I-254
Surmin, Igor I-145
Sutmann, Godehard II-244
Szklarski, Jacek II-446
Szynkiewicz, Michał II-298

Tanaka, Teruo I-381
Tarantino, Ernesto II-176
Tchernykh, Andrei II-156
Teplov, Alexey I-417
Thoman, Peter II-264
Timofeev, Alexey I-327
Tokura, Hiroki II-224
Toledo, Sivan I-3, I-24
Topa, Paweł I-505, II-456, II-476
Toporkov, Victor II-145
Toporkova, Anna II-145
Toumi, Ralf II-48
Tripiccione, Raffaele I-519
Trojanowski, Krzysztof II-425
Trunfio, Giuseppe A. II-436

Tudruj, Marek I-303, I-483, II-176
Tzovaras, Dimitrios II-91

Vajteršic, Marián I-646
Valero-Lara, Pedro I-243
Varghese, Anish II-113
Vecher, Vyacheslav I-327, II-81
Vidličková, Eva I-590
Villard, Laurent I-370
Voevodin, Vadim I-359, I-417
Voevodin, Vladimir I-417

Wang, Yunsong I-90
Wawrzynczak, Anna I-14
Wcisło, Rafał I-505
Weinzierl, Tobias I-123, II-3
Wiaderek, Krzysztof I-544
Wiatr, Kazimierz I-156
Wójcik, Grzegorz M. I-495
Wolant, Albert I-219
Wozniak, Marcin I-565
Wrzeszcz, Michał I-471

Yamamoto, Yusaku I-612
Yamashita, Kohei I-314
Yeleswarapu, Venkata Kasi Viswanath I-443
Yemelyanov, Dmitry II-145

Zafari, Afshin I-169
Zapletal, Jan I-101

488 Author Index

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Workshop on Models, Algorithms and Methodologies for Hybrid Parallelism in New HPC Systems
	An Experience Report on (Auto-)tuning of Mesh-Based PDE Solvers on Shared Memory Systems
	1 Introduction
	2 Use Case: An ADER-DG Solver
	3 Programming an Autotuning Algorithm
	3.1 Algorithmic Idea
	3.2 Implementation Pitfalls

	4 Using and Integrating Autotuning
	5 Computational Evidence
	6 Conclusion
	References

	Using GPGPU Accelerated Interpolation Algorithms for Marine Bathymetry Processing with On-Premises and Cloud Based Computational Resources
	1 Introduction
	2 Related Work
	3 Acceleration Infrastructure
	3.1 GVirtuS GPU Code Offloading
	3.2 CUDA Ancillary Libraries

	4 Algorithm Description
	5 Use Case and Evaluation
	6 Conclusions and Future Directions
	References

	Relaxing the Correctness Conditions on Concurrent Data Structures for Multicore CPUs. A Numerical Case Study
	1 Introduction
	2 The Computing Model
	3 A Loosely Coordinated Heap
	4 A Numerical Case Study
	5 Conclusion
	References

	Energy Analysis of a 4D Variational Data Assimilation Algorithm and Evaluation on ARM-Based HPC Systems
	1 Introduction and Motivations
	2 The DD-4DVAR Computational Kernel
	3 Energy Analysis of the Algorithm
	4 Experimental Results
	5 Conclusions
	References

	Performance Assessment of the Incremental Strong Constraints 4DVAR Algorithm in ROMS
	1 IS4DVAR Algorithm
	2 Performance Assessment of Parallel IS4DVAR Algorithm
	3 Experiments
	4 Conclusion and Future Work
	References

	Evaluation of HCM: A New Model to Predict the Execution Time of Regular Parallel Applications on a Heterogeneous Cluster
	1 Introduction
	2 HCM: A Model to Predict the Execution Time on Parallel Environments
	2.1 Estimating the Computation Time
	2.2 Estimating the Communication Time

	3 Benchmarks and Their Models
	3.1 IS
	3.2 CG
	3.3 HIS

	4 Results
	4.1 Parameters
	4.2 Results

	5 Conclusion and Future Works
	References

	Workshop on Power and Energy Aspects of Computations (PEAC 2017)
	Applicability of the Empirical Mode Decomposition for Power Traces of Large-Scale Applications
	1 Introduction
	1.1 Related Work

	2 Segmented Trace Modeling (STM)
	2.1 Segmenting Power Traces
	2.2 EMD on Partial Trace
	2.3 STM with Segment Approximations

	3 Relative Modeling Error
	4 Conclusion
	References

	Efficiency Analysis of Intel, AMD and Nvidia 64-Bit Hardware for Memory-Bound Problems: A Case Study of Ab Initio Calculations with VASP
	1 Introduction
	2 Related Work
	3 Hardware and Software
	3.1 Test Model in VASP
	3.2 Power Consumption Measurement

	4 Results and Discussion
	4.1 Computational Efficiency and the Balance Between Rpeak and DRAM Bandwidth
	4.2 Analysis of the Energy-to-Solution

	5 Conclusions
	References

	GPU Power Modeling of HPC Applications for the Simulation of Heterogeneous Clouds
	1 Introduction
	2 Related Work
	3 Energy Modeling of HPC Heterogeneous Resources
	4 Experimentation
	4.1 Evaluation of the GPU Power Model
	4.2 Evaluation of the CPU-GPU Power Model

	5 Conclusions and Future Work
	References

	Bi-cluster Parallel Computing in Bioinformatics – Performance and Eco-Efficiency
	1 Introduction
	2 Background
	2.1 Green Computing in Bio-Informatics
	2.2 Bi-clustering
	2.3 Parallel Processing

	3 Experiment Plan
	3.1 Survey of Algorithms
	3.2 Data
	3.3 Hardware Setup
	3.4 Software

	4 Results and Discussion
	5 Summary
	References

	Performance and Energy Analysis of Scientific Workloads Executing on LPSoCs
	1 Introduction
	2 Related Work
	3 Platforms
	4 Energy Model
	5 Frequency Scaling
	6 Microbenchmarks
	6.1 CPU-Bound Workload
	6.2 Memory-Bound Workload

	7 Predicting Power for a General Workload
	8 Conclusions and Future Work
	References

	Energy Efficient Dynamic Load Balancing over MultiGPU Heterogeneous Systems
	1 Introduction
	2 Related Work
	3 Dynamic Load Balancing for Energy Efficiency
	3.1 Dynamic Load Balancing
	3.2 Workload Distribution to Increase Energy Efficiency
	3.3 Ull Multiobjective Framework

	4 Computational Results
	5 Conclusion
	References

	Workshop on Scheduling for Parallel Computing (SPC 2017)
	Scheduling Data Gathering with Maximum Lateness Objective
	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 Heuristic Algorithm
	5 Computational Experiments
	6 Conclusions
	References

	Fair Scheduling in Grid VOs with Anticipation Heuristic
	1 Introduction and Related Works
	2 Problem Statement for Cyclic Fair Scheduling
	3 Anticipation-Based Heuristic Fair Scheduling
	4 Simulation Study
	4.1 Replication Scheduling Accuracy
	4.2 Anticipation Scheduling Simulation

	5 Conclusions and Future Work
	References

	A Security-Driven Approach to Online Job Scheduling in IaaS Cloud Computing Systems
	1 Introduction
	2 State of the Art
	3 Problem Formulation
	3.1 Cloud Datacenter Model
	3.2 Job, Security and Pricing Model
	3.3 Job Scheduling Problem Formulation

	4 Scheduling Approach
	5 Experimental Analysis and Performance Evaluation
	5.1 Workloads
	5.2 Experimental Scenarios

	6 Conclusion and Future Work
	References

	Dynamic Load Balancing Algorithm for Heterogeneous Clusters
	1 Introduction
	2 Related Work
	3 OpenCL
	4 Dynamic Load Balancing Scheme
	5 Performance Evaluation
	5.1 Benchmark
	5.2 Results

	6 Conclusions and Future Works
	References

	Multi-Objective Extremal Optimization in Processor Load Balancing for Distributed Programs
	1 Introduction
	2 Extremal Optimization Algorithm Principles
	3 Load Balancing Based on the Multi-Objective EO
	3.1 Processor Load Balancing Scheme Based on Multi-Objective EO
	3.2 Global and Local Fitness Functions Applied in Multi-Objective EO

	4 Experimental Assessment of the Proposed Algorithms
	5 Conclusions
	References

	Workshop on Language-Based Parallel Programming Models (WLPP 2017)
	Pardis: A Process Calculus for Parallel and Distributed Programming in Haskell
	1 Introduction
	2 Related Work
	3 The Calculus
	3.1 Syntax
	3.2 Static Typing
	3.3 Semantics

	4 Implementation
	4.1 Parallel Implementation
	4.2 Distributed Implementation

	5 Application Example: Web Crawler
	6 Conclusion
	References

	Towards High-Performance Python
	1 Introduction
	2 Python Accelerators
	3 Numba in a Nutshell
	4 Test Case: Matrix-Matrix Multiplication
	5 Conclusion
	References

	Actor Model of a New Functional Language - Anemone
	1 Introduction
	2 Related Work
	2.1 Actors in Erlang and Scala

	3 Actor Model of Anemone
	4 Implementation of Actor System
	4.1 Creating Actor System
	4.2 Implementation of an Actor and Message Passing
	4.3 Scheduling Many Actors in One System Thread
	4.4 Pattern Matching

	5 Experiments
	6 Conclusions
	References

	Almost Optimal Column-wise Prefix-sum Computation on the GPU
	1 Introduction
	2 Preliminary
	3 The Look-back Column-wise Prefix-sums (LCP) Algorithm on the GPU
	4 Experimental Results
	5 Conclusion
	References

	A Combination of Intra- and Inter-place Work Stealing for the APGAS Library
	1 Introduction
	2 Background
	2.1 APGAS Library
	2.2 Lifeline-Based Global Load Balancing

	3 Programming with AsyncAny-Tasks
	4 Design and Implementation
	4.1 Management Worker
	4.2 AsyncAnyFinish

	5 Experiments
	6 Related Work
	7 Conclusions
	References

	Benchmarking Molecular Dynamics with OpenCL on Many-Core Architectures
	1 Introduction
	2 Benchmark
	3 Implementation of the Algorithm and Data Structures
	3.1 Algorithmic Implementation Details
	3.2 Organization and Distribution of Data Structures

	4 Architectures
	5 Results
	6 Conclusion
	References

	Efficient Language-Based Parallelization of Computational Problems Using Cilk Plus
	1 Introduction
	2 Short Overview of Cilk Plus
	3 Two Examples of Computational Problems
	3.1 Adaptive Simpson's Integration Rule
	3.2 Bellman-Ford Algorithm for the Single-Source Shortest-Path Problem

	4 Conclusions and Future Work
	References

	A Taxonomy of Task-Based Technologies for High-Performance Computing
	1 Introduction
	2 Task-Parallel Programming Interfaces (APIs)
	3 Many-Task Runtime Systems
	3.1 Scheduling in Many-Task Runtime Systems
	3.2 Performance Monitoring
	3.3 Task, Process, and System Faults

	4 Classification
	5 Conclusions
	References

	Workshop on PGAS Programming
	Interoperability of GASPI and MPI in Large Scale Scientific Applications
	1 Introduction
	2 A Strategy to Better Interoperate GASPI and MPI
	3 iPIC3D: Implicit Particle-in-Cell Code
	4 The Ludwig Application
	5 Performance Results
	6 Conclusions
	References

	Evaluation of the Parallel Performance of the Java and PCJ on the Intel KNL Based Systems
	1 Introduction
	1.1 Programming Paradigms
	1.2 Parallel Programming in Java

	2 PCJ Library
	3 Knights Landing Architecture
	4 Results
	4.1 Microbenchmarks
	4.2 RayTracer
	4.3 Genetic Algorithm
	4.4 Performance Analysis

	5 Related Work
	6 Conclusions
	References

	Fault-Tolerance Mechanisms for the Java Parallel Codes Implemented with the PCJ Library
	1 Introduction
	2 Related Work
	2.1 Checkpointing for OpenSHMEM
	2.2 Resilience for X10

	3 PCJ Library
	3.1 Shared Memory in the PCJ
	3.2 Synchronization in the PCJ

	4 Fault Tolerant Version of the PCJ Library
	4.1 The Fault Tolerance API
	4.2 Implementation

	5 Evaluation
	6 Future Work
	7 Conclusions
	References

	Exploring Graph Analytics with the PCJ Toolbox
	1 Introduction
	1.1 PCJ Library and Related Work

	2 Algorithms
	2.1 SPMM
	2.2 k-means Clustering

	3 Results
	3.1 Datasets
	3.2 Benchmarks of the Algorithms

	4 Conclusions and Outlook
	References

	Big Data Analytics in Java with PCJ Library: Performance Comparison with Hadoop
	1 Introduction
	2 Experimental Setup
	2.1 Hardware
	2.2 Software

	3 Results
	3.1 Data Intensive
	3.2 Computational Intensive
	3.3 Communication Intensive

	4 Coding Effectiveness
	5 Related Work
	6 Conclusions
	References

	Performance Comparison of Graph BFS Implemented in MapReduce and PGAS Programming Models
	1 Introduction
	2 BFS - Hadoop Implementation
	3 BFS - PCJ Implementation
	4 Results
	4.1 Data
	4.2 Environment
	4.3 Performance

	5 Conclusions and Future Work
	References

	Minisymposium on HPC Applications in Physical Sciences
	Efficient Parallel Generation of Many-Nucleon Basis for Large-Scale Ab Initio Nuclear Structure Calculations
	1 Introduction
	2 Analysis
	2.1 Basis Generation

	3 Parallelization and Optimization of Reshuffle
	4 Experiments
	5 Conclusions
	References

	Parallel Exact Diagonalization Approach to Large Molecular Nanomagnets Modelling
	1 Introduction
	2 Physical Setup
	3 Exact Diagonalization Technique and HPC Environment
	4 Results
	5 Conclusions
	References

	Application of Numerical Quantum Transfer-Matrix Approach in the Randomly Diluted Quantum Spin Chains
	1 Introduction
	2 Description of the Model and the Simulation Technique
	3 The Results of the Numerical Simulations and Discussion
	References

	Minisymposium on High Performance Computing Interval Methods
	A New Method for Solving Nonlinear Interval and Fuzzy Equations
	1 Introduction
	2 Fuzzy Solutions of Nonlinear Interval and Fuzzy Equations
	3 Conclusion
	References

	Role of Hull-Consistency in the HIBA_USNE Multithreaded Solver for Nonlinear Systems
	1 Introduction
	2 Generic Algorithm
	3 Hull-Consistency
	3.1 Algorithms for Enforcing Hull-Consistency
	3.2 ADHC Implementation

	4 Hull-Consistency Vs Multithreading
	5 Computational Experiments
	6 Analysis of the Results
	7 Conclusions
	References

	Parallel Computing of Linear Systems with Linearly Dependent Intervals in MATLAB
	1 Introduction
	1.1 Notation

	2 Methods and Implementation
	2.1 Bauer-Skeel, Hansen-Bliek-Rohn Bounds and Their Refinement
	2.2 Residual Form
	2.3 Exploiting Monotonicity
	2.4 Implementation

	3 Results
	3.1 Execution Time
	3.2 Conclusion
	3.3 Table of Results

	References

	What Decision to Make in a Conflict Situation Under Interval Uncertainty: Efficient Algorithms for the Hurwicz Approach
	1 Conflict Situations Under Interval Uncertainty: Formulation of the Problem and What Is Known so Far
	2 Conflict Situation Under Hurwicz-Type Interval Uncertainty: Analysis of the Problem
	3 Algorithm for Solving Conflict Situation Under Hurwicz-Type Interval Uncertainty
	4 Conclusion
	References

	Practical Need for Algebraic (Equality-Type) Solutions of Interval Equations and for Extended-Zero Solutions
	1 Practical Need for Solving Interval Systems of Equations: What Is Known
	2 Remaining Problem of How to Find the Set A Naturally Leads to Algebraic (Equality-Type) Solutions to Interval System of Equations
	3 What If the Interval System of Equations Does Not Have an Algebraic (Equality-Type) Solution: A Justification for Enhanced-Zero Solutions
	References

	Workshop on Complex Collective Systems
	Application of Local Search with Perturbation Inspired by Cellular Automata for Heuristic Optimization of Sensor Network Coverage Problem
	1 Introduction
	2 Maximum Lifetime Coverage Problem (MLCP)
	3 Search Algorithm
	3.1 Generation of the Initial Schedule
	3.2 Iterative Improvement of the Schedule

	4 Benchmark SCP1
	5 Results of Experiments
	6 Conclusions
	References

	A Fuzzy Logic Inspired Cellular Automata Based Model for Simulating Crowd Evacuation Processes
	1 Introduction
	2 Model Description
	3 GPU Implementation
	4 Simulation Results
	5 Conclusions
	References

	Nondeterministic Cellular Automaton for Modelling Urban Traffic with Self-organizing Control
	1 Introduction
	2 The Model
	2.1 Periodic Switching
	2.2 Self-controlling Strategy

	3 The Results
	3.1 Periodic Network N=6
	3.2 Periodic Network with Non-deterministic Turning
	3.3 Network with Stochastic Input

	4 Conclusions
	References

	Towards Multi-Agent Simulations Accelerated by GPU
	1 Introduction
	2 Agent-Based System with Support for GPU Computing
	3 eVolutus — EMAS Simulator of Evolution and Population Dynamics
	4 Implementation Using GPGPU
	5 Performance Evaluation
	6 Summary
	References

	Tournament-Based Convection Selection in Evolutionary Algorithms
	1 Introduction
	2 Methods
	3 Results
	3.1 The Performance of Different Selection Schemes
	3.2 The Influence of Parameters of the Convection Selection

	4 Conclusions
	References

	Multi-agent Systems Programmed Visually with Google Blockly
	1 Introduction
	2 eVolutus: The Simulator of Multiscale Evolutionary Processes Tested on Foraminifera
	2.1 The eVolutus Kernels
	2.2 Google Blockly

	3 Implementation
	4 Sample Scripts
	5 Conclusions
	References

	Author Index

