
On the Tunability of a New Hessenberg
Reduction Algorithm Using Parallel

Cache Assignment

Mahmoud Eljammaly(B), Lars Karlsson, and Bo K̊agström

Ume̊a University, 901 87 Ume̊a, Sweden
{mjammaly,larsk,bokg}@cs.umu.se

Abstract. The reduction of a general dense square matrix to Hessen-
berg form is a well known first step in many standard eigenvalue solvers.
Although parallel algorithms exist, the Hessenberg reduction is one of
the bottlenecks in AED, a main part in state-of-the-art software for the
distributed multishift QR algorithm. We propose a new NUMA-aware
algorithm that fits the context of the QR algorithm and evaluate the sen-
sitivity of its algorithmic parameters. The proposed algorithm is faster
than LAPACK for all problem sizes and faster than ScaLAPACK for the
relatively small problem sizes typical for AED.

Keywords: Hessenberg reduction · Parallel cache assignment
NUMA-aware algorithm · Shared-memory · Tunable parameters
Off-line tuning

1 Introduction

This work is motivated by a bottleneck in the distributed parallel multi-shift QR
algorithm for large-scale dense matrix eigenvalue problems [7]. On the critical
path of the QR algorithm lies an expensive procedure called Aggressive Early
Deflation (AED) [1,2]. The purpose of AED is to detect and deflate converged
eigenvalues and to generate shifts for subsequent QR iterations. There are three
main steps in AED: Schur decomposition, eigenvalue reordering, and Hessenberg
reduction. This work focuses on the last step while future work will investigate
the first two steps.

In the context of AED, Hessenberg reduction is applied to relatively small
problems (matrices of order hundreds to thousands) and, since AED appears on
the critical path of the QR algorithm, there are relatively many cores available
for its execution. The distributed QR algorithm presented in [7] computes the
AED using a subset of the processors. We propose to select one shared-memory
node and use a shared-memory programming model (OpenMP) for the AED.
The aim is to develop a new parallel Hessenberg reduction algorithm which out-
performs the state-of-the-art algorithm for small problems by using fine-grained
parallelization and tunable algorithmic parameters to make it more efficient and
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10777, pp. 579–589, 2018.
https://doi.org/10.1007/978-3-319-78024-5_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78024-5_50&domain=pdf


580 M. Eljammaly et al.

flexible. Tuning the algorithmic parameters of the new algorithm is not one of
the main concerns in this paper. Rather, this work focuses on the tunability
potential of the algorithmic parameters.

A shared-memory node within a distributed system commonly has a Non-
Uniform Memory Access (NUMA) architecture. Since Hessenberg reduction is a
memory-bound problem where matrix–vector multiplications typically account
for most of the execution time, high performance is obtained when the cost of
memory accesses is minimized. Therefore, our algorithm employs the Parallel
Cache Assignment (PCA) technique proposed by Castaldo and Whaley [4,5,8].
This technique leads to two benefits. First, the algorithm becomes NUMA-aware.
Second, the algorithm uses the aggregate cache capacity more effectively.

The rest of the paper is organized as follows. Section 2 reviews a blocked Hes-
senberg reduction algorithm and the PCA technique. Section 3 describes how
we applied the PCA technique to the blocked algorithm. Section 4 evaluates
the impact of tuning each parameter. Section 5 shows the new algorithm’s per-
formance after tuning and compares it with state-of-the-art implementations.
Section 6 concludes and highlights future work.

2 Background

2.1 Blocked Hessenberg Reduction

In this section we review the basics of the state-of-the-art algorithm in [11] on
which our algorithm is based. Hessenberg reduction transforms a given square
matrix A ∈ IRn×n to an upper Hessenberg matrix H = QTAQ, where Q is an
orthogonal matrix. A series of Householder reflections applied to both sides of
A are used to zero out—reduce—the columns one by one from left to right.

The algorithm revolves around block iterations, each of which reduces a block
of adjacent columns called a panel. After reducing the first k − 1 columns, the
matrix A is partitioned as in Fig. 1, where b is the panel width.

k − 1 b

n

n

A1,1

A2,1

A1,2 A1,3

A2,2 A2,3

b

Y1

Y2
V2

V1

V2

b

k

T

b

b

Fig. 1. Partitioning of A after reducing the first k − 1 columns, and Y , V and T to be
used for reducing A2,2.



Tunability of a New Hessenberg Reduction Algorithm 581

The panel A2,2 (starting at the sub-diagonal) is reduced to upper triangular
form by constructing and applying a transformation of the form

A ← (I − V TV T )TA(I − V TV T ),

where I − V TV T is a compact WY representation [12] of the b Householder
reflections that reduced the panel. In practice, the algorithm incrementally builds
an intermediate matrix Y = AV T to eliminate redundant computations in the
updates from the right. The matrix Y is partitioned as in Fig. 1. Each block
iteration consists of two phases. In the first phase, the panel A2,2 is reduced and
fully updated. This gives rise to a set of b Householder reflections, which are
accumulated into a compact WY representation I −V TV T . The first phase also
incrementally computes Y2 ← A2,2:3V T . In the second phase, Y1 ← A1,2:3V T is
computed, and blocks A1,2, A1,3, and A2,3 are updated according to

A ← (I − V TV T )T (A − Y V T ), (1)

where the dimensions of A, V , T and Y are derived from Fig. 1 according to
which block is to be updated.

Other Variants of Hessenberg Reduction. A multi-stage Hessenberg reduction
algorithm exists [9]. In this variant, some of the matrix-vector operations are sub-
stituted by matrix-matrix operations for the cost of performing more compute-
bound computations overall. Applying PCA to this variant will be much less
efficient since PCA is useful when we have repetitive memory-bound computa-
tions, as explained in Sect. 2.2.

2.2 PCA: Parallel Cache Assignment

Multicore shared-memory systems have parallel cache hierarchies with sibling
caches on one or more levels. In such systems, the aggregate cache capac-
ity might be able to persistently store the whole working set. To exploit this
phenomenon, Castaldo and Whaley proposed the PCA technique and applied
it to the panel factorizations of one-sided factorizations [5] as well as to the
unblocked Hessenberg reduction algorithm [4]. They argued that PCA is able to
turn memory-bound computations of small problems into cache-bound (or even
compute-bound) computations by utilizing the parallel caches to transform the
vast majority of memory accesses into local cache hits.

The main idea of PCA is to consider sibling caches as local memories in a
distributed memory system and to assign to each core a subset of the data. Work
is then assigned using the owner-computes rule. In addition, one may explicitly
copy the data assigned to a specific core into a local memory to that core.

A pivotal aspect to benefit from using PCA is having a repeated memory-
bound computation for the same memory region. Applying PCA allows fetching
a large block of data from the main memory into several caches and use it repeat-
edly while still in the cache, which eliminates the slowdown penalty presented
by repeatedly using the memory buses.



582 M. Eljammaly et al.

3 Hessenberg Reduction Using PCA

The proposed algorithm (Algorithm 1) is a parallel variant of [11] using PCA and
aimed at small matrices. The algorithm consists of two nested loops. The inner
loop, lines 7–24, implements the first phase while the remainder of the outer loop,
lines 25–30, implements the second phase. In the following, we briefly describe
the parallelization of each phase. For more details see the technical report [6].

3.1 Parallelization of the First Phase

The first phase is memory-bound due to the large matrix–vector multiplications
on lines 17–18. The objective is to apply PCA to optimize the memory accesses.
We partition A, V , and Y as illustrated in Fig. 1. This phase consists of four main
steps for each column a = A2,2(:, j) of the panel: update a from the right (lines
9–10), update a from the left (lines 11–15), reduce a (line 16), augment Y and T
(lines 17–24). Two parallelization strategies are considered for this phase. In the
full strategy, all multiplications except triangular matrix–vector are parallelized.
In the partial strategy, only the most expensive computational step, lines 17–18,
is parallelized. The full strategy exposes more parallelism at the cost of more
overhead which makes it suitable only for sufficiently large problems.

To apply PCA, before each first phase the data are assigned to threads where
each thread mainly works on data it owns. The matrix–vector multiplications in
this phase involve mostly tall–and–skinny or short–and–fat matrices. For efficient
parallelization in the full strategy, the matrices are partitioned along their longest
dimension into p1 parts assigned to p1 threads. To parallelize the costly step in
lines 17–18, A2,2:3 is first partitioned into p1 block rows then each thread explic-
itly copies its assigned block into local memory, (line 6). Having the assigned
data from this block in a buffer local to the thread will reduce the amount of
remote memory accesses, cache conflicts and false sharing incidents, which make
the algorithm NUMA-aware. So even if the data did not fit into the cache, the
algorithm will still benefit from the data locality. In general, all matrices are
distributed among the threads in a round-robin fashion based on memory-pages.

3.2 Parallelization of the Second Phase

The second phase is compute-bound and mainly involves matrix–matrix multi-
plications. The objective is to balance the workload and avoid synchronization
as much as possible. There are four main steps: updating A2,3 from the right
(lines 26–27), updating A2,3 from the left (line 28), computing Y1 (line 29), and
updating A1,2:3 (line 30). With conforming block partitions of the columns of
A2,3 and V T

2 , and of the block rows of A1,2:3 and Y1 (line 25) the computation
can be performed without any synchronization.

3.3 Algorithmic Parameters

There are four primary algorithmic parameters: the panel width, the paralleliza-
tion strategy, and the thread counts for both phases. The panel width b can be set



Tunability of a New Hessenberg Reduction Algorithm 583

Algorithm 1. Parallel blocked Hessenberg reduction using PCA.
1 for k ← 1 : b : n − 2 do // Outer loop over panels

2 V ← 0n−k×0, T ← 00×0, Y ← 0n×0// Initialize intermediate matrices

3 if s = full then p̂ ← p1 else p̂ ← 1// Select strategy

4 Partition A, V , and Y as in Fig. 1

5 Partition A2,2:3 into p1 row blocks A
(i)
2,2:3 for i = 1 . . . p1

6 Thread i copies A
(i)
2,2:3 to local memory

// First Phase

7 for j ← 1 : min{b, n − k − 1} do
8 Partition A2,2(:, j), V, V2,vj , Y2 and yj into p̂ row blocks

A
(i)
2,2(:, j), V

(i), V
(i)
2 ,v

(i)
j , Y

(i)
2 and y

(i)
j for i = 1 . . . p̂

// Update column j of A22 from both sides

9 parfor i ← 1 : p̂ do

10 A
(i)
2,2(:, j) ← A

(i)
2,2(:, j) − Y

(i)
2 V2(1, :)T

11 w(i) ← V iTA
(i)
2,2(:, j)

12 w ← w(1) + · · · + w(p̂)

13 w ← TTw
14 parfor i ← 1 : p̂ do

15 A
(i)
2,2(:, j) ← A

(i)
2,2(:, j) − V (i)w

16 Construct a Householder reflection (vj , τj) that reduces A2,2(j + 1 : n, j)
// Augment Y , T, and V

17 parfor i ← 1 : p1 do

18 y(i) ← A
(i)
2,2:3(:, j + 1 : n)vj

19 parfor i ← 1 : p̂ do

20 t(i) ← V
(i)
2

T
v
(i)
j

21 t ← t(1) + · · · + t(p̂)

22 parfor i ← 1 : p̂ do

23 y(i) ← τy(i) − Y
(i)
2 t

24 Y ←
[
Y1 0
Y2 y

]
, T ←

[
T −τjT t
0 τj

]
, V ← [

V vj

]

// Second Phase

25 Partition A2,3 into p2 column blocks A
(i)
2,3 and A1,2:3(:, 2 : n), Y1 and V2 into

p2 row blocks A
(i)
1,2:3(:, 2 : n), Y 1(i) and V

(i)
2 for i = 1 . . . p2

26 parfor i ← 1 : p2 do
// Update A2,3 from the right

27 A
(i)
2,3 ← A

(i)
2,3 − Y2V

(i)
2

T

// Update A2,3 from the left

28 A
(i)
2,3 ← A

(i)
2,3 − V TTV TA

(i)
2,3

// Compute the top block of Y

29 Y
(i)
1 ← A

(i)
1,2:3(:, 2 : n)V T

// Update A1,2:3 from the right

30 A
(i)
1,2:3(:, 2 : n) ← A

(i)
1,2:3(:, 2 : n) − Y

(i)
1 V T



584 M. Eljammaly et al.

to any value in the range 1, . . . , n − 2. The first phase can be parallelized using
either the full or the partial parallelization strategy, as described in Sect. 3.1.
The strategy s ∈ {full, partial} can be set independently for each iteration of
the outer loop. Using all available cores can potentially hurt the performance,
especially near the end where the operations are small-sized. The synchroniza-
tion overhead and cache interference may outweigh the benefits of using more
cores. Therefore, the number of threads to use in each phase (p1 and p2) are
tunable parameters that can be set independently in each outer loop iteration.
If the thread count is less than the number of available cores, then threads are
assigned to as few NUMA domains as possible to maximize memory throughput.

4 Evaluation of the Tuning Potential

This section evaluates the tuning potential of each algorithmic parameter while
keeping all the others at their default setting.

The experiments were performed on the Abisko system at HPC2N, Ume̊a
University. During the experiments, no other jobs were running on the same
node. One node consists of four AMD Opteron 6238 processors each containing
two chips with six cores each for a total of 48 cores. Each chip has its own memory
controller, which means that the node has eight NUMA domains. The PathScale
(5.0.0) compiler is used together with the following libraries: OpenMPI (1.8.1),
OpenBLAS (0.2.13), LAPACK (3.5.0), and ScaLAPACK (2.0.2). The default
parameter values in Table 1 were used in the experiments unless otherwise stated.
All reported data points is the median of 100 trials, unless otherwise stated.

Tuning Potential for the Panel Width. The panel width plays a key role in
shaping the performance since it determines the distribution of work. To find
how b depends on the problem size we used n ∈ {500, 1000, . . . , 4000}. Figure 2
shows the execution time of the new algorithm for different problem sizes and
panel widths. The stars correspond to the best b found for each problem size.
The algorithm execution time is sensitive to the choice of b which means b need
tuning.

Tuning Potential for the Parallelization Strategy. The partial strategy is expected
to be faster for small panels due to its lower parallelization overhead, while the
full strategy is expected to be faster for large panels due to its higher degree of
parallelism. Figure 3 shows the execution times per iteration of the outer loop for
both strategies for p = 48 and n = 4000. For the first 20 or so iterations, the full
strategy is faster, while the opposite is true for the remaining iterations. Hence,
s needs tuning to find which strategy to use for each iteration of a reduction.
For a smaller n and the same fixed parameters, the resulting figure is a subset
of Fig. 3, e.g., for n = 2000, the resulting figure consists of iterations 40 to 80 of
Fig. 3.



Tunability of a New Hessenberg Reduction Algorithm 585

Table 1. Default values for the algorith-
mic parameters.

Parameter Default

Panel width b = 50

Thread count p1 = p2 = p

Parallelization strategy s = partial

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

Panel width

T
im

e 
in

 s
ec

on
ds

 

 500

1000

1500

2000

2500

3000

3500

4000

Fig. 2. Effect of the panel width on
the execution time for p = 48 and
n ∈ {500, 1000, . . . , 4000} with all other
parameters as in Table 1. The stars rep-
resent the best b for each n.

Tuning Potential for the Thread Counts. The number of threads used in each
phase affects the performance since it affects both the cache access patterns and
the parallel overhead. To find the optimal configuration it suffices to know the
execution time of each of the two phases in every iteration for each thread count
since the phases do not overlap. These data can be obtained by repeating the
same execution with different fixed thread counts. The time measurements are
collected in two tables: T1 for the first phase and T2 for the second phase (not
explicitly showed). One row per thread count and one column per iteration. To
find the optimal thread count for a particular phase and iteration, one scans
the corresponding column of the appropriate table and selects the thread count
(row) with the smallest entry. Figure 4 compares the effect of varying the thread
counts as opposed to always using the maximum number (48). The result shows
that varying the thread counts is better, which means we need to tune the thread
counts for each phase and iteration.

More Evaluation Results. A more thorough evaluation is discussed in the techni-
cal report [6]. Specifically, the report includes an evaluation of varying the panel
width at each iteration of the reduction. The results show that the gain is insignif-
icant compared to varying the panel width once per reduction. The evaluation
of either performing the explicit data redistribution (copying to local buffers)
or not is also included. The results show that it is always useful to redistribute
the data. In addition, more cases for evaluating the effect of varying the thread
counts are considered. The cases include experimenting with varying either p1 or
p2 while fixing the other to the max, varying both but keeping p1 = p2, testing
for a different problem size (n = 4000), and distributing the threads to the cores
in two scheme: packed and round-robin. The general conclusion of all these cases
is that p1 and p2 need to be tuned independently.



586 M. Eljammaly et al.

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

Iterations

T
im

e 
in

 s
ec

on
ds

 

 

Partial
Full

Fig. 3. Comparison of the full and par-
tial strategies for p = 48 and n = 4000
with all other parameters as in Table 1.

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

30

24

18

48

12

48

12

48

12

48

12

48

12

48

12

48

24

18

18

12

12

18

18

48

18

18

6

18

12

18

12

12

12

12

6

12

6

12

6

18

Iterations

T
im

e 
in

 s
ec

on
ds

 

 

p1

p2

Max
Vary

Fig. 4. Comparison of varying the
thread counts and using maximum num-
ber of cores (48) for n = 1000 with all
other parameters as in Table 1. The num-
bers at the bottom of the figure are the
thread counts used in each iteration for
each phase.

5 Performance Comparisons

This section illustrates the performance of the new parallel algorithm after tuning
and compares it with LAPACK and ScaLAPACK over a range of problem sizes.

Off-Line Auto-tuning. To tune the parameters we used several rounds of uni-
variate search. Our objective is not to come up with the best off-line auto-tuning
mechanism but rather to get a rough idea how the new algorithm performs after
tuning. Univariate search works by optimizing one variable at a time, in this
case through exhaustive search, while fixing the other variables. The parameters
are tuned separately for each problem size and number of cores.

Hessenberg reduction with and without PCA. Figure 5 shows the speed up of the
Hessenberg algorithm with PCA against without PCA. The LAPACK routine
DGEHRD was used as the variant without PCA since it is the closest in its imple-
mentation to the new algorithm. The comparison made for square matrices of
size n ∈ {100, 300, . . . , 3900} using p ∈ {6, 12, . . . , 48}. To have a fair compari-
son, the parameters of the PCA variant are fixed to the default values in Table 1.
The results show that for most cases the PCA variant is faster.

Performance of The New Algorithm. To measure the new algorithm perfor-
mance, tests are run on square matrices of size n ∈ {100, 300, . . . , 3900} using
p ∈ {6, 12, . . . , 48} threads with 15 rounds of tuning. Figure 6 shows the per-
formance measured in GFLOPS of the new algorithm after tuning on different
numbers of cores. It is inconvenient to present all the parameter values in all
tests since there are thousands of them. The results show that for small prob-
lems (n � 2000), it is not optimal to use the maximum number of cores (48).



Tunability of a New Hessenberg Reduction Algorithm 587

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

9

10

Matrix size

S
pe

ed
 u

p

 

 

6 cores
12 cores
18 cores

24 cores
30 cores
36 cores

42 cores
48 cores

Fig. 5. Speed up comparison between
the Hessenberg reduction algorithm
with PCA, using the default parame-
ters in Table 1, and without PCA.

0 500 1000 1500 2000 2500 3000 3500 4000
0

10

20

30

40

50

60

70

80

Matrix size

G
F

LO
P

S

 

 

6 cores
12 cores
18 cores
24 cores
30 cores
36 cores
42 cores
48 cores

Fig. 6. Performance of the new algo-
rithm using 1–8 NUMA domains.

Comparison with LAPACK and ScaLAPACK. Figure 7 shows the speed up of
the new algorithm after tuning against the DGEHRD routine from LAPACK and
the PDGEHRD routine from ScaLAPACK. The three routines are run using p ∈
{6, 12, 18, · · · , 48} threads for each problem of size n ∈ {100, 300, · · · , 3900}. The
numbers in the figure indicate for each implementation which p gives the best
performance for each n. The comparison for each n is then made between the
best case of the three implementations. Table 2 shows the values of b and s which
are used in the new algorithm for each best case. For n ≥ 3100, the full strategy is
used for the first few iterations then the partial strategy is used. It is inconvenient

Table 2. The panel widths and strategies
of the new algorithm after tuning for the
cases used in the comparison in Fig. 7.

n b s n b s

100 30 Partial 2100 60 Partial

300 30 Partial 2300 60 Partial

500 30 Partial 2500 60 Partial

700 30 Partial 2700 50 Partial

900 40 Partial 2900 60 Partial

1100 40 Partial 3100 60 Full until 4

1300 40 Partial 3300 60 Full until 7

1500 40 Partial 3500 60 Full until 11

1700 50 Partial 3700 60 Full until 14

1900 60 Partial 3900 60 Full until 19

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6

6

6

18

6

18

6

12

18

12

36
36

12

36

12

36

12

36

12

36

12

48

12

48

12

48

12

48

12

48

12

48

12

48

12

48

12

48

36

PCA
6 6 12 12 12 18 24 24 36 36 42 48 48 48 48 48 48 48 48 48

Matrix size

S
pe

ed
 u

p

 

 

LAPACK
ScaLAPACK

Fig. 7. Best case speed up comparison
between our new algorithm after tuning
and its counterparts in LAPACK and
ScaLAPACK (block size 50 × 50). The
numbers in the figure show the value of
p which gives the best performance for
each n.



588 M. Eljammaly et al.

to present the values of p1 and p2 for each case. Instead, we summarize how they
change during the reduction. Generally, any reduction starts with p1 = p2 = p,
then p1 gradually decreases until it reaches the minimum number of threads
(6), while p2 decreases but less gradually and does not necessarily reaches the
minimum. The results show that the new algorithm outperforms LAPACK for all
the tested problems while it outperforms ScaLAPACK only for small problems
(n � 1500), a possible reason is that ScaLAPACK might be using local memory
access for both phases.

Comparison with Other Libraries. There are other libraries for numerical lin-
ear algebra than LAPACK and ScaLAPACK. The latest release (2.8) of the
PLASMA [3] library does not support Hessenberg reduction, while MAGMA [13]
uses GPU which is not our focus. On the other hand, libFLAME [14] uses the
LAPACK routine for a counterpart implementation, while the implementation
from Elemental library [10] produces comparable results to ScaLAPACK in the
best case speed up comparison.

6 Conclusion

We presented a new parallel algorithm for Hessenberg reduction which applies
the PCA technique to an existing algorithm. The algorithm is aimed to speed up
the costly AED procedure which lies on the critical path of the distributed par-
allel multi-shift QR algorithm [7]. The proposed algorithm has a high degree of
flexibility (due to tens or hundreds of tunable parameters) and memory locality
(due to the application of PCA). The impact of various algorithmic parameters
of the new algorithm were evaluated. The panel width, the parallelization strat-
egy and the thread counts found to have a significant impact on the algorithm
performance and though they need tuning. A basic off-line auto-tuning using
univariate search is used to tune the parameters. The proposed solution with
tuning outperforms LAPACK’s routine DGEHRD for all cases and ScaLAPACK’s
routine PDGEHRD for small problem sizes.

Future work includes designing an on-line auto-tuning mechanism. The aim
is to obtain an implementation that continuously improves itself the more it
is being used. A major challenge is how to effectively handle the per-iteration
parameters (thread count and parallelization strategy) as well as how to share
information across nearby problem sizes.

Acknowledgements. We thank the High Performance Computing Center North
(HPC2N) at Ume̊a University for providing computational resources and valuable
support during test and performance runs. Financial support has been received from
the European Unions Horizon 2020 research and innovation programme under the
NLAFET grant agreement No. 671633, and by eSSENCE, a strategic collaborative
e-Science programme funded by the Swedish Government via VR.



Tunability of a New Hessenberg Reduction Algorithm 589

References

1. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. Part I: main-
taining well-focused shifts and level 3 performance. SIMAX 23(4), 929–947 (2002).
https://doi.org/10.1137/S0895479801384573

2. Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. Part II:
aggressive early deflation. SIMAX 23(4), 948–973 (2002). https://doi.org/10.1137/
S0895479801384585

3. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled lin-
ear algebra algorithms for multicore architectures. Parallel Comput. 35(1), 38–53
(2009). https://doi.org/10.1016/j.parco.2008.10.002

4. Castaldo, A., Whaley, R.C.: Achieving scalable parallelization for the Hessen-
berg factorization. In: 2011 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 65–73. IEEE (2011). https://doi.org/10.1109/CLUSTER.2011.
16

5. Castaldo, A., Whaley, R.C., Samuel, S.: Scaling LAPACK panel operations using
parallel cache assignment. ACM TOMS 39(4), 22 (2013). https://doi.org/10.1145/
2491491.2491493

6. Eljammaly, M., Karlsson, L., K̊agström, B.: Evaluation of the tunability of a new
NUMA-aware Hessenberg reduction algorithm. NLAFET Working Note 8, Decem-
ber 2016. Also as Report UMINF 16.22, Department of Computing Science, Ume̊a
University, SE-901 87 Ume̊a, Sweden

7. Granat, R., K̊agström, B., Kressner, D., Shao, M.: Algorithm 953: parallel library
software for the multishift QR algorithm with aggressive early deflation. ACM
Trans. Math. Softw. 41(4), 1–23 (2015). https://doi.org/10.1145/2699471. Article
no. 29

8. Hasan, M.R., Whaley, R.C.: Effectively exploiting parallel scale for all problem sizes
in LU factorization. In: 2014 IEEE 28th International Parallel and Distributed Pro-
cessing Symposium, pp. 1039–1048. IEEE (2014). https://doi.org/10.1109/IPDPS.
2014.109

9. Karlsson, L., K̊agström, B.: Parallel two-stage reduction to Hessenberg form
using dynamic scheduling on shared-memory architectures. Parallel Comput.
37(12), 771–782 (2011). https://doi.org/10.1016/j.parco.2011.05.001. 6th Interna-
tional Workshop on Parallel Matrix Algorithms and Applications (PMAA 2010)

10. Poulson, J., Marker, B., van de Geijn, R.A., Hammond, J.R., Romero, N.A.: Ele-
mental: a new framework for distributed memory dense matrix computations. ACM
Trans. Math. Softw. 39(2), 13:1–13:24 (2013). https://doi.org/10.1145/2427023.
2427030

11. Quintana-Ort́ı, G., van de Geijn, R.: Improving the performance of reduction to
Hessenberg form. ACM TOMS 32(2), 180–194 (2006). https://doi.org/10.1145/
1141885.1141887

12. Schreiber, R., Loan, C.V.: A storage efficient WY representation for products of
Householder transformations. Technical report, no. 1 (1989). https://doi.org/10.
1137/0910005

13. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parallel Comput. 36(5–6), 232–240 (2010).
https://doi.org/10.1016/j.parco.2009.12.005

14. Zee, F.G.V., Chan, E., van de Geijn, R.A., Quintana-Ort́ı, E.S., Quintana-Ort́ı,
G.: The libflame library for dense matrix computations. Comput. Sci. Eng. 11(6),
56–63 (2009). https://doi.org/10.1109/MCSE.2009.207

https://doi.org/10.1137/S0895479801384573
https://doi.org/10.1137/S0895479801384585
https://doi.org/10.1137/S0895479801384585
https://doi.org/10.1016/j.parco.2008.10.002
https://doi.org/10.1109/CLUSTER.2011.16
https://doi.org/10.1109/CLUSTER.2011.16
https://doi.org/10.1145/2491491.2491493
https://doi.org/10.1145/2491491.2491493
https://doi.org/10.1145/2699471
https://doi.org/10.1109/IPDPS.2014.109
https://doi.org/10.1109/IPDPS.2014.109
https://doi.org/10.1016/j.parco.2011.05.001
https://doi.org/10.1145/2427023.2427030
https://doi.org/10.1145/2427023.2427030
https://doi.org/10.1145/1141885.1141887
https://doi.org/10.1145/1141885.1141887
https://doi.org/10.1137/0910005
https://doi.org/10.1137/0910005
https://doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1109/MCSE.2009.207

	On the Tunability of a New Hessenberg Reduction Algorithm Using Parallel Cache Assignment
	1 Introduction
	2 Background
	2.1 Blocked Hessenberg Reduction
	2.2 PCA: Parallel Cache Assignment

	3 Hessenberg Reduction Using PCA
	3.1 Parallelization of the First Phase
	3.2 Parallelization of the Second Phase
	3.3 Algorithmic Parameters

	4 Evaluation of the Tuning Potential
	5 Performance Comparisons
	6 Conclusion
	References




