
Early Experience on Using Knights
Landing Processors for Lattice Boltzmann

Applications

Enrico Calore1,2 , Alessandro Gabbana1,2,3 ,
Sebastiano Fabio Schifano1,2(B) , and Raffaele Tripiccione1,2

1 Università degli Studi di Ferrara, Ferrara, Italy
schifano@fe.infn.it

2 INFN Ferrara, Ferrara, Italy
3 Bergische Universität Wuppertal, Wuppertal, Germany

Abstract. The Knights Landing (KNL) is the codename for the latest
generation of Intel processors based on Intel Many Integrated Core (MIC)
architecture. It relies on massive thread and data parallelism, and fast
on-chip memory. This processor operates in standalone mode, booting an
off-the-shelf Linux operating system. The KNL peak performance is very
high – approximately 3 Tflops in double precision and 6 Tflops in single
precision – but sustained performance depends critically on how well all
parallel features of the processor are exploited by real-life applications.
We assess the performance of this processor for Lattice Boltzmann codes,
widely used in computational fluid-dynamics. In our OpenMP code we
consider several memory data-layouts that meet the conflicting comput-
ing requirements of distinct parts of the application, and sustain a large
fraction of peak performance. We make some performance comparisons
with other processors and accelerators, and also discuss the impact of
the various memory layouts on energy efficiency.

Keywords: Lattice Boltzmann methods · Memory data layouts
Performance analysis · Knights Landing

1 Introduction

Hi-end processors commonly used in HPC computer systems, have seen a steady
increase in the number of processing cores and operations per clock-cycle. This
trend has been further pushed forward in accelerators, such as GPUs and Intel
Xeon-Phi processors based on the Many Integrated Cores (MIC) architecture,
offering large computing power together with a high ratio of computing power
per Watt. However, the use of accelerated systems is not without problems. The
link between host CPU and accelerator, usually based on PCIe interface, creates
a data bottleneck that reduces the sustained performance of most applications.
Reducing the impact of this bottleneck in heterogeneous systems requires com-
plex implementations [1,2] with a non negligible impact on development and
c© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10777, pp. 519–530, 2018.
https://doi.org/10.1007/978-3-319-78024-5_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78024-5_45&domain=pdf
http://orcid.org/0000-0002-2301-3838
http://orcid.org/0000-0002-8367-6596
http://orcid.org/0000-0002-0132-9196
http://orcid.org/0000-0002-8516-2492

520 E. Calore et al.

maintenance efforts. The latest generation of Xeon-Phi processor, codename
Knights Landing (KNL), offers a way out of this problem: it is a self-hosted
system, running a standard Linux operating system, so it can be used alone to
assemble homogeneous clusters.

In this work we present an early assessment of the performance of the KNL
processor, using as test-case a state-of-the-art Lattice Boltzmann (LB) code. For
regular applications like LB codes, task parallelism is easily done by assigning
tiles of the physical lattice to different cores. However, exploiting data-parallelism
through vectorization requires additional care, and in particular a careful design
of the data layout is critical to allow an efficient use of vector instructions. Our
code uses OpenMP to manage task parallelism, and we experiment with different
data-layouts trying to find a compromise between the conflicting requirements of
the two main critical compute-intensive kernels propagate and collide. We then
assess the impact of several layout choices in terms of computing and energy
performance. Recent works have studied the performance of KNL [3–5] with
several applications, but as far as we know none of these investigate the impact
of data layouts on computing performance and energy efficiency of applications.
Concerning data-layouts, [6–8] study optimal data structures for LB simula-
tions. However, [6] analyses only the propagate kernel, while [7] does not take
into account vectorization of the code. In [8] vectorization is exploited using
intrinsic functions only. Conversely, in the present work we aim to allow efficient
vectorization by the compiler for both propagate and collide steps for the KNL
architecture. The rest of this paper is organized as following: Sect. 2 gives a short
overview of the KNL architecture, highlighting the main features relevant for this
work; Sect. 3 briefly sketches an outline of the Lattice Boltzmann method, while
Sect. 4 presents the various options for data-layout that we have studied; Sect. 5
analyzes our results, and Sect. 6 ends with some concluding remarks.

2 Overview of Knights Landing Architecture

The Xeon-Phi codename Knights Landing (KNL) is the second generation of
Intel processors based on the MIC architecture, and the first self-bootable pro-
cessor in this family. It has an array of 64, 68 or 72 cores and four high speed
memory banks based on the Multi-Channel DRAM (MCDRAM) technology pro-
viding an aggregated bandwidth of more than 450 GB/s [9]. It also integrates 6
DDR4 channels supporting up to 384 GB of memory with a peak raw bandwidth
of 115.2 GB/s. Two cores form a tile and share an L2-cache of 1 MB. Tiles are
connected by a 2D-mesh of rings and can be clustered in several NUMA con-
figurations. In this work we only consider the Quadrant cluster configuration
in which tiles are divided in four quadrants, each directly connected to one
MCDRAM bank. This configurations is the recommended one to use the KNL
as a symmetric multi-processor, as it reduces the latency of L2-cache misses, and
the 4 blocks of MCDRAM appear as contiguous block of addresses. For more
details on clustering see [10]. MCDRAM on a KNL can be configured at boot
time in FLAT, CACHE or Hybrid mode. The FLAT mode defines the whole

Using Knights Landing Processors for Lattice Boltzmann Applications 521

MCDRAM as addressable memory allowing explicit data allocation, whereas
CACHE mode uses the MCDRAM as a last-level cache between the L2-caches
and the on-platform DDR4 memory. In Hybrid mode, the MCDRAM is used
partly as addressable memory and partly as cache. For more details on mem-
ory configuration see [11]. In this work we only consider FLAT and CACHE
modes. Parallelism is exploited at two levels on the KNL: task parallelism builds
onto the large number of integrated cores, while data parallelism uses the AVX
512-bit vector (SIMD) instructions. Each core has two out-of-order vector pro-
cessing units (VPUs) and supports the execution of up to 4 threads. The KNL
has a peak theoretical performance of 6 TFlops in single precision and 3 TFlops
in double precision. Typical thermal design power (TDP) is 215 W including
MCDRAM memories (but not the Omni-Path interface). For more details on
KNL architecture see [12].

Fig. 1. Top to bottom, AoS, SoA, CSoA and CAoSoA data memory layouts for a 4×8
lattice with two populations (red and blue) per site. For CSoA and CAoSoA each grey-
box is a cluster with VL = 2. Memory addresses increase left-to-right top-to-bottom.
(Color figure online)

3 Lattice Boltzmann Methods

Lattice Boltzmann Methods [13] (LBM) are widely used in computational fluid-
dynamics, to describe fluid flows. They are used in science and engineering to
accurately model single and multi-phase flows and can be easily accommodate
irregular boundary conditions. This is why they are usually used in the oil&gas
industry to study the dynamics of oil and shale-gas reservoirs and to maximize
their yield. This class of applications, discrete in time and momenta and living
on a discrete and regular grid of points, offers a large amount of available par-
allelism, so they are an ideal target for multi- and many-core processors. LBM
are based on the synthetic dynamics of populations corresponding to (pseudo-
)particles sitting at the sites of a discrete lattice. At each time step, populations
propagate from lattice-sites to lattice-sites, and then collide mixing and chang-
ing their values accordingly. In these processes, there is no data dependency
between different lattice points, so both the propagate and collide steps can

522 E. Calore et al.

be performed in parallel on all grid points following any convenient schedule.
A model describing flows in n dimensions and using m populations is labeled as
DnQm. In this work we study a D2Q37 model, a 2-dimensional system with 37
populations associated to each lattice-site moving up to three lattice points away.
This recently developed [14,15] LB model automatically enforces the equation
of state of a perfect gas (p = ρT). It has been recently used to perform large
scale simulations of convective turbulence in several physics regimes [16,17].

4 Implementation and Optimization of D2Q37 LB Model

In LB applications, propagate and collide take most of the compute-time of the
whole code, so optimization efforts have to target largely on these two ker-
nels. The D2Q37 model is computationally more demanding than other simpler
methods, because propagate is strongly memory-bound accessing 37 neighbor
cells to gather all populations and generating sparse memory accesses, while
collide is strongly compute-bound and executes ≈6600 double-precision float-
ing point operations per lattice point. In this section we focus mostly on data
memory-layouts which are becoming more and more important for exploiting
vector performance on recent many-core processors. In the following we discuss
several possible choices and we show that they have very large effects on comput-
ing and energy performances for the KNL processor. Here, we extend previous
works [2,18], where additional details on other aspects of the code structure are
available.

Array of Structures (AoS) and Structure of Arrays (SoA) are a starting points
to implement more complex data memory organizations. In the AoS scheme,
population data associated to each lattice site are stored one after the other
at contiguous memory addresses. In this arrangement all data associated to
one lattice point are at close memory locations, but same index populations
of different lattice sites are stored in memory at non-unit stride addresses. To
handle this, the compiler makes intensive use of GATHER and SCATTER SIMD
instructions which are up to 10X slower than contiguous vector loads and stores
(VMOVE) of 8 double-precision elements [19] resulting in poor data locality with
many L2 Misses during the execution as shown in Table 1. Conversely, the SoA
scheme stores same index populations of all sites one after the other. This is
appropriate for vector SIMD instructions, as it allows to move several lattice
sites – 8 for the KNL – in parallel. Figure 1 – first two designs from the top –
visualize the AoS and SoA memory layouts, for a mockup lattice of 4 × 8 with
two populations (red and blue) per site.

The SoA layout stores same index populations of all lattice-sites one after the
other reducing the L2 miss-rate (see again Table 1), but introduces a potential
inefficiency associated to unaligned memory accesses. In fact, the read-address
for population values is computed as the sum of the address of the current site
plus an offset, and the resulting address is in general not aligned to a 64 Byte
boundary, preventing direct memory copies to vector registers. In order to cir-
cumvent this problem, we start from the SoA layout and, for a lattice of size

Using Knights Landing Processors for Lattice Boltzmann Applications 523

Table 1. Efficiency metrics measuring the impact of the different data-layouts on L2-
CACHE and L2-TLB misses for propagate and collide kernels. The values are absolute
numbers, and thresholds is a value suggested by Intel [19] to investigate code imple-
mentation if exceeded.

Metric AoS SoA CSoA CAoSoA Threshold

propagate L2 CACHE miss rate 0.50 0.10 0.05 0.00 <0.20

collide L2 TLB miss overhead 0.00 0.21 1.00 0.00 <0.05

#define LYOVL (LY / VL)
typedef struct { double c [VL] ; } vdata_t ;
typedef struct { vdata_t s [LX∗LYOVL] ; } vpop_csoa_t ;
vpop_csoa_t prv [NPOP] , nxt [NPOP] ;
#pragma omp parallel for num_threads (NTHREAD) schedule (dynamic)
for (ix = startX ; ix < endX ; ix++) {

idx = (NYOVL∗ix) + HYOVL ;
for (p = 0 ; p < NPOP ; p++){

for (iy = 0 ; iy < SIZEYOVL ; iy++) {
#pragma unroll
#pragma vector aligned nontemporal
for (k = 0 ; k < VL ; k++)

nxt [p] . s [idx+iy] . c [k] = prv [p] . s [idx+iy+OFF [p]] . c [k]
} } }

Listing 1. Source code of propagate kernel for using the CSoA data layouts. OFF is a
vector containing memory-address offsets associated to each population hop. VL is the
size of a cluster.

LX × LY , we cluster together VL elements of each population at a distance
LY /VL, with VL a multiple of the KNL vector size. We call this data layout a
Cluster Structure of Array (CSoA), see Fig. 1 – third design from top – for the
case of V L = 2 corresponding to an hypothetical processor using vectors consist-
ing of two 64-bit values. Using CSoA, propagate, whose main task is to read the
same population elements at all sites and move them to different sites, is able
to use vector instructions to process clusters of properly memory-aligned items.
Listing 1 shows the corresponding C type definitions and code implementation
for propagate.

The outer loop on X spacial direction is parallelized at a thread level using
the OpenMP pragma parallel loop, making each thread to work on a slice of
the lattice. The inner loop, copying elements of a cluster into another clus-
ter, can be unrolled and vectorized since both read and write pointers are now
properly aligned. This is confirmed by the compiler optimization report and by
inspection of generated assembly code, now consisting of aligned load and store
(VMOVE) vector instructions. A further optimization can in this case be applied
with the use of non-temporal write operations saving time and reducing the
overall memory traffic by 1/3 [2]. We instruct the compiler to do this through
the pragmas unroll and vector aligned nontemporal. Figure 2 shows mea-
sured bandwidth for our data structures, using the FLAT mode, and using both

524 E. Calore et al.

off-chip and MCDRAM memory, and the CACHE memory mode. The results
refer to a 64 core Xeon-Phi 7230 running at 1.4 GHz.

Fig. 2. Performance of propagate (top) is in GB/s and collide (bottom) is in MLUPS.
All data for a 64 core Xeon-Phi 7230 running at 1.4 GHz. For the FLAT configuration
we use a 2304 × 8192 lattice that fits into MCDRAM; for the CACHE configuration,
the lattice is 4608× 12288, twice the size of MCDRAM. For each layout, 3 groups of 4
bars correspond respectively to FLAT-DDR4, FLAT-MCDRAM and CACHE. Within
each group, bars correspond respectively to 1, 2, 3 and 4 threads per core.

The collide kernel can be vectorized using the same strategy as of propagate,
so one expects the CSoA layout should be an efficient choice. However, profiling
the execution of this kernel, we found that a large number of L2-TLB misses are
generated (see Table 1). This happens because different populations associated
to each lattice site are stored at memory addresses far from each other, and sev-
eral non-unit stride reads are necessary to load all population values necessary
to compute the collisional operator. To reduce this penalty, we start again from
the SoA layout, and for each population array, we divide each Y -column in VL
partitions each of size LY/VL. All elements sitting at the ith position of each
partition are then packed together into an array of VL elements called cluster.
For each index i we then store in memory one after the other the 37 clusters
– one for each population – associated to it. This defines a new data-structure
called Clustered Array of Structure of Arrays (CAoSoA). The main improvement
on CSoA is that it still allows vectorization of clusters of size V L, and at the
same time improves locality of populations, keeping all population data asso-
ciated to each lattice site at close and aligned addresses (see again Fig. 1 for a
visual description). CAoSoA combines the benefits of the CSoA scheme, allowing
aligned memory accesses and vectorization (relevant for the propagate) together
with the benefits of the AoS layout providing population locality (relevant for

Using Knights Landing Processors for Lattice Boltzmann Applications 525

the collide). Taking into account that for KNL the cost of a L2 TLB miss is in the
order of 100 clock cycles, these benefits can be quantitatively evaluated using the
L2 TLB Miss Overhead metric reported in Table 1. For CAoSoA layout, usage
of L2 TLB is as efficient as for the AoS case, whereas significant overheads are
associated using to SoA and CSoA schemes.

5 Analysis of Results

In this section we present our performance results in terms of computing and
energy. We also compare computing results with that we have measured on other
multi- and many-core architectures.

5.1 Experimental Setup

We have run our tests on a desktop machine with a Xeon-Phi 7230 processor
running at clock frequency of 1.3 GHz, and 128 MB of DDR4 memory. We have
tested the FLAT and CACHE memory configurations. For the FLAT configura-
tion we have allocated the data-domain of our application either on the 16 GB
on-chip MCDRAM, or on the off-chip DDR4 memory. For the CACHE configu-
ration we have used a lattice size that does not fit the 16 GB of on-chip memory.
We have fixed the configuration of the cluster of cores to quadrant. This con-
figurations is that recommended by Intel as it reduces the latency of L2-cache
misses, the 4 blocks of MCDRAM appear as contiguous block of addresses, and
the processor can be used as symmetric multi-processor. Tests are run launching
one MPI process which spawns 1, 2, 3 and 4 threads per core.

5.2 Computing Performance Results

We summarize our performance results analyzing data reported in figure Fig. 2,
where we report the measured performance for the propagate kernel measured in
GB/s and the collide kernel – expressed in Million Lattice UPdates per Second, a
common figure of performance for this operation – for all data-layouts considered
so far. For both kernels we have analyzed the performance using the FLAT
and CACHE memory configurations. For the propagate kernel, performance is
almost independent from the number of threads per core, while the impact of
the various data layouts is large. Indeed, using a FLAT MCDRAM configuration
the measured bandwidth increases from 138 GB/s of AoS to 314 GB/s of SoA
and to 433 GB/s of CSoA. This trend is similar using the DDR4 memory bank
but performance is much lower, ranging from 54 GB/s of AoS to 56 GB/s of SoA
and to 81 GB/s of CSoA. We have a similar behavior also with the CACHE
configuration, measuring in this case a bandwidth of 59, 60 and 62 GB/s for the
AoS, SoA and CSoA memory layouts for a lattice size that does not fit into
MCDRAM. Using the CAoSoA layout, performance does not further improves,
both for FLAT and CACHE configurations.

526 E. Calore et al.

For collide kernel, using a FLAT configuration and MCDRAM, we obtain a
good level of performance, 114 MLUPS, using the AoS layout with 4 threads per
core. The SoA layout performance does not allow efficient vectorization, so per-
formance goes down to 62 MLUPS with one thread per core, further decreasing if
we use 2, 3 and 4 threads per core. Enforcing memory alignment with the CSoA
layout, we obtain again a properly vectorized code and performance increases
up to 135 MLUPS using 4 threads per core. Performances further improve with
the CAoSoA layout removing the overhead associated to TLB misses, and reach-
ing the level of 165 MLUPS with 4 threads per core, corresponding to a factor
1.4X and 1.2X w.r.t. the AoS and CSoA layouts. The collide kernels performs
≈6600 floating-point operations per lattice site. The KNL processor then delivers
a sustained performance of approximately 1 TFlops using the CAoSoA layout,
corresponding to ≈30% of the available raw peak. Using DDR4 results follows
the same trend as in the MCDRAM case, but performances are harmed by mem-
ory bandwidth, reaching 89 MLUPS with the CAoSoA layout. The same is true
with CACHE configuration where collide reaches a peak of 98 MLUPS for the
CAoSoA layout.

Fig. 3. Energy-to-Solution for propagate (top) and collide (bottom), for all data layouts,
using the FLAT configuration. For each layout we plot two groups of bars corresponding
to the use of either DDR4 off-chip memory or on-chip MCDRAM. Within each group
the bars correspond respectively to 1, 2, 3 and 4 threads per core. All values are
computed as the sum of the Package and DRAM RAPL energy counters, per iteration.

5.3 Energy Performance Results

We now consider energy efficiency for our code. We use data from the RAPL
(Running Average Power Limit) register counters available in the KNL read
through the custom library we have developed in [20]. Figure 3 shows the results

Using Knights Landing Processors for Lattice Boltzmann Applications 527

for FLAT configuration using both MCDRAM and DDR4, and assessing the
impact of data-layouts on energy consumption. All figures refer to Energy-to-
Solution (ES) and are the sum of package and off-chip DDR4 contributions.
For propagate, we see that the average power drain increase using MCDRAM
(≈35%) compared to the use of off-chip DDR4, but ES is lower since a slightly
higher power gets integrated over a much shorter (≈4×) time. Also, the CSoA
and CAoSoA data-layouts halve ES w.r.t. the AoS and SoA as a result of their
shorter execution times and slightly lower power drain. For the collide kernel the
SoA has a rather low power drain (≈30% less than CSoA and CAoSoA) because
vector units are not used. However, the code runs also much slower (≈3×),
translating into the worst performance figure in terms of ES . Conversely, the
CAoSoA gives the best result in terms of energy efficiency, with ES decreasing
while increasing the number of threads per core, thanks to a constant power drain
and an increasing performance. Using CACHE configurations, the average power
drain is in between the values recorded for the DDR4 and MCDRAM cases. As
shown in Fig. 2 performances are similar to the case of DDR4, with a slightly
performance decrease for propagate and a slightly increase for collide when using
CSoA and CAoSoA data-layouts. Thus, from the energy consumption point of
view, using cache configuration leads to similar energy behaviors as using DDR4.

Table 2. Performance comparison among several processors. We consider the propagate
and collide kernels and the full code (Global), using the CAoSoA data layout. We
compare the KNL against the KNC, the NVIDIA GK210 and P100 GPUs, and the
Intel E52697v4 CPU. The row labeled with Global report the performance of the full
code.

KNC 7120P GK210 P100 E52697v4 KNL 7230
flat/quad

KNL 7230
cache/quad

KNL 7230
cache/quad

Lattice size 1024 × 8192 4608×12288

Memory
footprint [GB]

≈4.6 ≈30

Tprop [ms] 49.9 32.3 12.5 98.06 12.5 19.65 506.64

Tcoll [ms] 180.9 71.1 24.1 173.42 50.3 51.42 550.25

Propagate
[GB/s]

100 155 396 51 398 253 66

Collide [GF/s] 307 764 2253 320 1100 1079 680

Collide
[MLUPS]

46 115 340 48 166 163 103

Global
[MLUPS]

35 73 232 31 119 106 67

5.4 Comparison with Other Processors

We finally compare our performance results of our code running on KNL, with
that we have measured on other recent multi- and many-core processors. Our

528 E. Calore et al.

comparison is shown in Table 2 for both critical kernels and also for the complete
code. We adopt the CAoSoA layout throughout, as it offers the best performance.
Let first discuss the case of lattice size 1024×8192 requiring a memory footprint
of ≈4.6 GB fitting the 16 GB on-chip MCDRAM. The data size also fits most
other accelerator boards, so we can perform a meaningful comparison. Com-
paring the KNL in FLAT mode with the KNC [21], the previous generation
Xeon-Phi processor, the performance for propagate and collide is respectively
≈4X and ≈3.5X faster. Comparing with NVIDIA GPUs [22,23], the execution
time for propagate is ≈2.5X faster than on a GK2010 GPU (hosted on a K80
board), and the same as a P100 Pascal board. The execution time of collide is
1.4X faster than a GK210, and approximately 50% slower than a P100. Compar-
ing performances with a more traditional Intel E5-2697v4 CPU [24], based on
Broadwell micro-architecture, propagate is 7.8X faster and collide is 3.5X faster.
Using the KNL in CACHE mode with a lattice that does not fit into MCDRAM,
the performance of the processor is much slower. In the last column of Table 2 we
see the results for a lattice using a memory footprint twice the size of MCDRAM.
In this case, comparing with CPU E5-2697v4 for which the lattice 1024 × 8192
does not fit in the last-level cache, the performance of propagate is more or less
the same, and that of collide is ≈2X faster.

6 Conclusions

In summary, based on our experience related to our application, some conclud-
ing remarks are in order: (i) the KNL architecture makes it easy to port and
run codes previously developed for X86 standard CPUs. However performance
is strongly affected by the massive level of parallelism that must necessarily be
exploited, to avoid that the level of performance drops to the value of standard
multi-core CPUs or even worst; (ii) for this reason data layouts plays a rele-
vant role in allowing to reach an efficient level of vectorization. At least for LB
applications, appropriate data structures are necessary to allow the different vec-
torization strategies necessary in different parts of the application; (iii) the KNL
processor improves on the KNC – the previous generation Xeon-Phi processor –
by a factor ≈3 − 4X; (iv) if application data fits within the MCDRAM, perfor-
mances are very competitive with that of GPU accelerators. However, if this is
not the case, performance drops to levels similar to those of multi-core CPUs,
with the further drawback that codes and operations (editing, compilations, IO,
etc.) not exploiting task and data parallelism run much slower.

In the future, we plan to further analyze the energy performance of KNL
comparing with other processors, and to design and develop a parallel hybrid
MPI+OpenMP code able to run on a cluster of KNLs, in order to investigate
scalability.

Acknowledgements. This work was done in the framework of the COKA, COSA
projects of INFN, and the PRIN2015 project of MIUR. We would like to thank CINECA
(Italy) for access to their HPC systems. AG has been supported by the EU Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie grant
agreement No. 642069.

Using Knights Landing Processors for Lattice Boltzmann Applications 529

References

1. Tang, P., et al.: An implementation and optimization of lattice Boltzmann method
based on the multi-node CPU+MIC heterogeneous architecture. In: International
Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), pp. 315–320 (2016). https://doi.org/10.1109/CyberC.2016.67

2. Calore, E., et al.: Optimization of Lattice Boltzmann simulations on heterogeneous
computers. Int. J. High Perform. Comput. Appl. 1–16 (2017). https://doi.org/10.
1177/1094342017703771

3. Rosales, C., Cazes, J., Milfeld, K., Gómez-Iglesias, A., Koesterke, L., Huang, L.,
Vienne, J.: A comparative study of application performance and scalability on the
intel knights landing processor. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC
High Performance 2016. LNCS, vol. 9945, pp. 307–318. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46079-6 22

4. Li, S., et al.: Enhancing application performance using heterogeneous memory
architectures on a many-core platform. In: International Conference on High Per-
formance Computing Simulation (HPCS), pp. 1035–1042 (2016). https://doi.org/
10.1109/HPCSim.2016.7568455

5. Rucci, E., et al.: First Experiences Optimizing Smith-Waterman on Intel’s Knights
Landing Processor. ArXiv e-prints, February 2017

6. Wittmann, M., et al.: Comparison of different propagation steps for the lattice
Boltzmann method. CoRR abs/1111.0922 (2011)

7. Shet, A.G., et al.: Data structure and movement for lattice-based simulations.
Phys. Rev. E 88, 013314 (2013). https://doi.org/10.1103/PhysRevE.88.013314

8. Shet, A.G., et al.: On vectorization for lattice based simulations. Int. J. Mod. Phys.
C 24, 1340011 (2013). https://doi.org/10.1142/S0129183113400111

9. McCalpin, J.D.: Stream: sustainable memory bandwidth in high performance com-
puters (2017). https://www.cs.virginia.edu/stream/

10. Colfax: Clustering modes in knights landing processors (2017). https://
colfaxresearch.com/knl-numa/

11. Colfax: MCDRAM as high-bandwidth memory (HBM) in knights landing proces-
sors: developers guide (2017). https://colfaxresearch.com/knl-mcdram/

12. Sodani, A., et al.: Knights landing: second-generation Intel Xeon Phi product.
IEEE Micro 36(2), 34–46 (2016). https://doi.org/10.1109/MM.2016.25

13. Succi, S.: The Lattice-Boltzmann Equation. Oxford University Press, Oxford
(2001)

14. Sbragaglia, M., et al.: Lattice Boltzmann method with self-consistent thermo-
hydrodynamic equilibria. J. Fluid Mech. 628, 299–309 (2009). https://doi.org/
10.1017/S002211200900665X

15. Scagliarini, A., et al.: Lattice Boltzmann methods for thermal flows: contin-
uum limit and applications to compressible Rayleigh-Taylor systems. Phys. Fluids
22(5), 055101 (2010). https://doi.org/10.1063/1.3392774

16. Biferale, L., Mantovani, F., Pivanti, M., Sbragaglia, M., Scagliarini, A., Schifano,
S.F., Toschi, F., Tripiccione, R.: Lattice Boltzmann fluid-dynamics on the QPACE
supercomputer. Proc. Comput. Sci. 1(1), 1075–1082 (2010). https://doi.org/10.
1016/j.procs.2010.04.119

17. Biferale, L., et al.: Second-order closure in stratified turbulence: simulations and
modeling of bulk and entrainment regions. Phys. Rev. E 84(1), 016305 (2011).
https://doi.org/10.1103/PhysRevE.84.016305

https://doi.org/10.1109/CyberC.2016.67
https://doi.org/10.1177/1094342017703771
https://doi.org/10.1177/1094342017703771
https://doi.org/10.1007/978-3-319-46079-6_22
https://doi.org/10.1109/HPCSim.2016.7568455
https://doi.org/10.1109/HPCSim.2016.7568455
https://doi.org/10.1103/PhysRevE.88.013314
https://doi.org/10.1142/S0129183113400111
https://www.cs.virginia.edu/stream/
https://colfaxresearch.com/knl-numa/
https://colfaxresearch.com/knl-numa/
https://colfaxresearch.com/knl-mcdram/
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1017/S002211200900665X
https://doi.org/10.1017/S002211200900665X
https://doi.org/10.1063/1.3392774
https://doi.org/10.1016/j.procs.2010.04.119
https://doi.org/10.1016/j.procs.2010.04.119
https://doi.org/10.1103/PhysRevE.84.016305

530 E. Calore et al.

18. Calore, E., Demo, N., Schifano, S.F., Tripiccione, R.: Experience on vectorizing lat-
tice Boltzmann kernels for multi- and many-core architectures. In: Wyrzykowski,
R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.)
PPAM 2015. LNCS, vol. 9573, pp. 53–62. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-32149-3 6

19. Jeffers, J., et al.: Intel Xeon Phi Processor High Performance Programming, 2nd
edn, pp. 213–250. Morgan Kaufmann, Boston (2016). https://doi.org/10.1016/
B978-0-12-809194-4.00010-7

20. Calore, E., et al.: Evaluation of DVFS techniques on modern HPC processors and
accelerators for energy-aware applications. Concurr. Comput.: Pract. Exp. 29, 1–19
(2017). https://doi.org/10.1002/cpe.4143

21. Crimi, G., et al.: Early experience on porting and running a lattice Boltzmann code
on the Xeon-Phi co-processor. Proc. Comput. Sci. 18, 551–560 (2013). https://doi.
org/10.1016/j.procs.2013.05.219

22. Biferale, L., et al.: An optimized D2Q37 lattice Boltzmann code on GP-GPUs.
Comput. Fluids 80, 55–62 (2013). https://doi.org/10.1016/j.compfluid.2012.06.003

23. Calore, E., et al.: Massively parallel lattice Boltzmann codes on large GPU clusters.
Parallel Comput. 58, 1–24 (2016). https://doi.org/10.1016/j.parco.2016.08.005

24. Mantovani, F., et al.: Performance issues on many-core processors: a D2Q37 lattice
Boltzmann scheme as a test-case. Comput. Fluids 88, 743–752 (2013). https://doi.
org/10.1016/j.compfluid.2013.05.014

https://doi.org/10.1007/978-3-319-32149-3_6
https://doi.org/10.1007/978-3-319-32149-3_6
https://doi.org/10.1016/B978-0-12-809194-4.00010-7
https://doi.org/10.1016/B978-0-12-809194-4.00010-7
https://doi.org/10.1002/cpe.4143
https://doi.org/10.1016/j.procs.2013.05.219
https://doi.org/10.1016/j.procs.2013.05.219
https://doi.org/10.1016/j.compfluid.2012.06.003
https://doi.org/10.1016/j.parco.2016.08.005
https://doi.org/10.1016/j.compfluid.2013.05.014
https://doi.org/10.1016/j.compfluid.2013.05.014

	Early Experience on Using Knights Landing Processors for Lattice Boltzmann Applications
	1 Introduction
	2 Overview of Knights Landing Architecture
	3 Lattice Boltzmann Methods
	4 Implementation and Optimization of D2Q37 LB Model
	5 Analysis of Results
	5.1 Experimental Setup
	5.2 Computing Performance Results
	5.3 Energy Performance Results
	5.4 Comparison with Other Processors

	6 Conclusions
	References

