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Abstract. Task based parallel programming has shown competitive
outcomes in many aspects of parallel programming such as efficiency,
performance, productivity and scalability. Different approaches are used
by different software development frameworks to provide these outcomes
to the programmer, while making the underlying hardware architecture
transparent to her. However, since programs are not portable between
these frameworks, using one framework or the other is still a vital deci-
sion by the programmer whose concerns are expandability, adaptivity,
maintainability and interoperability of the programs. In this work, we
propose a unified programming interface that a programmer can use for
working with different task based parallel frameworks transparently. In
this approach we abstract the common concepts of task based parallel
programming and provide them to the programmer in a single program-
ming interface uniformly for all frameworks. We have tested the inter-
face by running programs which implement matrix operations within
frameworks that are optimized for shared and distributed memory archi-
tectures and accelerators, while the cooperation between frameworks is
configured externally with no need to modify the programs. Further pos-
sible extensions of the interface and future potential research are also
described.
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1 Introduction

In the last decade there were many attempts to simplify parallel programming
techniques by relieving the programmer of thinking about where and how to
use the concurrency controls in a sequential program. One desired outcome is to
minimize the required modification of a sequential program to enable it to run
in parallel, as, e.g., in OpenMP [23] where a sequential program is annotated
with compiler directives and the resulting compiled code can run in parallel on
multiple threads. Along this minimal change paradigm, there are frameworks
that provide parallel design patterns in object oriented programming languages
by which the parallelization efforts are made transparent to the programmer.
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The Intel Threading Building Blocks (Intel TBB) [18], is a C++ template
library for parallel programming on multi-core processors that provides par-
allel constructs like algorithms, containers and tasks that the programmer can
use to implement an algorithm and run it in parallel. The FastFlow and SkePU
C++ template libraries [5,16], abstract the most frequent parallel patterns of
programs, such as map, reduce, pipeline and farm, as skeletons that program-
mers can instantiate with extended and custom operations and actions. Like for
Intel TBB, all the synchronizations, parallelizations, communication and mem-
ory managements are done transparently by different platform-specific and low
level back-end concrete implementations of the templates.

Task based parallel programming has experienced a great acceptance increase
in the past decade due to its competitive outcomes in performance and produc-
tivity. The key to success for task based approaches is the abstract view of a
program as a set of operations and data. This abstraction allows for programs to
be written sequentially using tasks and data whenever an operation is to be per-
formed on program variables/identifiers. When such a program runs, the tasks
corresponding to the operations in the program are submitted to the background
task-based framework run-time system where they are scheduled for parallel exe-
cution. This separation of a written program and its underlying tasks, enables
the providers of the task-based frameworks to use different approaches for find-
ing the optimal solution to the scheduling problem of running the tasks on the
available computing resources.

Different techniques are provided by task based programming frameworks to
the programmer for writing programs. The StarPU [6] and OmpSs [11] frame-
works extend the C compiler and allow the programmer to use compiler directives
to define C functions as tasks kernels and describe their data dependencies. The
PaRSEC [10,13] framework provides tools and utilities to analyze a program
written in a special language that describes tasks and data dependencies and
uses a source to source compiler to translate the optimal solution into a C code
for compilation. The DuctTeip [29], Chunks and Tasks [24] and also StarPU [3]
frameworks provide Application Programming Interfaces (API) for defining data
and tasks to run in a distributed memory environment. The SuperGlue frame-
work [26] provides a header-only C++ portable library for creating tasks and
running them on multi-core processors.

These frameworks have individually shown very good results in terms of per-
formance, scalability and productivity and have been used in a wide spectrum of
scientific applications such as solving partial differential equations (PDE) [27],
N-Body problems using Fast Multipole Method (FMM) [4,17,28], simulating
stochastic discrete events [7,8], Conjugate Gradient method [1], Finite Element
Method (FEM) applications [22], chemistry applications [14], seismic applica-
tions [21] and image processing [9]. They have also shown the feasibility and
benefits of using task based approaches for sparse data structures [20,25].

There are also attempts to join pairs of the task based frameworks to combine
benefits of both. The StarPU and PaRSEC frameworks joined to provide task
parallelism in clusters of heterogeneous processors [2,20]. The DuctTeip and



TaskUniVerse 171

SuperGlue frameworks joined [29] to implement hierarchical task submission
and execution in hybrid distributed and shared memory environments.

While these achievements seem promising for using task based programming
models, the choice of a proper task based framework may still be risky because
the impacts on legacy software could be great to adapt to future changes in the
frameworks.

In this paper, we address these issues by proposing a unified task based
programming TaskUniVersre (TUV) model in which any number of task based
frameworks can be used to run a single application in many parallel environ-
ments. The idea of having one front-end with multiple back-ends for shared
memory, heterogeneous computing and distributed memory has been explored
before both at the language level, as done in the Chapel language [12], and at
the library level as in HPX [19] and Generic Parallel Programming Interface
(GrPPI) [15]. The main focus of this paper, however, is enabling an application
to mix different available frameworks while avoiding rewriting the code in a new
syntax.

This section continues with explaining the motivation for designing such a
programming model. The overview, implementation and programming of the
TUV model are described in Sects. 2.1–2.3. Section 3 shows the performance
results of executing a Cholesky factorization program in different parallel com-
puting environments. The last section is devoted to discussion and conclusions.

1.1 Motivation

The number of applications that use task based programming approaches is
increasing and more attempts to join two or more task based frameworks to
exploit different advantages can be foreseen. These achievements for the task
based parallel programming make it interesting for application scientists to try
it on their codes to efficiently scale to thousands of processors. However, choosing
frameworks for implementing solutions for a specific application domain is still
a vital decision for the expert end users in that domain.

The basic factors influencing the choice of framework(s) are richness and flex-
ibility. When needs of a scientific application span a wide spectrum of software
and hardware varieties, it becomes hard or impossible to find a single framework
to address them. Also the investment of developing an application even on top
of a mixture of frameworks has to be secured against probable risks of future
changes in underlying software and hardware. In this paper we show how these
issues can be addressed by the TUV model through a unified task program-
ming interface. In the experiments section, we show that if an application (e.g.,
Cholesky dense matrix factorization) expected to run hierarchically in cluster of
CPU-GPU computing nodes, there is no choice of a single framework to satisfy
this requirement. It is also shown that even if two frameworks support common
features but use different methods, it can also be advantageous to gain the best
performance of each framework while combining them together.
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2 The TUV Model

2.1 Overview of the TUV Model

The TUV programming model is designed to provide an abstraction for common
structures and behaviors of the task based frameworks mentioned above. This
abstraction generalizes the task based frameworks as black boxes which get a
set of sequential tasks and detects when they are ready to execute in parallel.
Since all the frameworks use data dependencies for finding ready-to-run tasks
and partition data for data locality concerns, data definitions and partitions are
also included in the abstraction. We found these abstractions the most influential
factors in achieving high performance in the frameworks and consider them as
a boundary for the abstraction, without sacrificing any generality or degrading
the frameworks performance.

To avoid losing any richness of frameworks by imposing this boundary, the
abstraction can (be extended to) include interfaces for setting or getting frame-
work specific parameters, for example, through environment variables or specific
function calls (as it is in many BLAS and MPI libraries). This boundary is suf-
ficient for demonstrating the idea and usefulness of a unified interface. A rich,
thorough and high performing standard interface that covers a broad range of
software and hardware requires much more amount of work (like the HiHAT1

framework which is in its early phases of development) and is beyond the scope
of this paper.

In the TUV abstract view, all the operations performed by a program on its
data are replaced by tasks and special data types (e.g., handles or descriptors)
representing the program data. Instead of running the operations immediately,
the corresponding tasks are submitted to the frameworks’ runtime where their
dependencies are tracked and ready tasks are executed in parallel. Actual kernel
computations of a ready task are performed through call back mechanisms which
are introduced to the frameworks at task creation.

In order to have a single interface for cooperation, the TUV model requires
the frameworks to implement predefined interfaces for data definition and task
creation, submission, execution and completion. These interfaces unify the coop-
eration of TUV with any other compliant framework via conversations of generic
data and tasks regardless of the concrete instances inside the framework. These
generic data and task definitions will be mapped to internal data by every frame-
work to extract task-data dependencies and find ready-to-run tasks. The mem-
ory management of the data contents is left to the application program and the
frameworks only get access to the memory using specific attributes or member
methods of the generic data objects. A central dispatcher in the TUV model
orchestrates the flow of tasks and data between the program and frameworks by
connecting the interfaces of one framework to another. The dispatcher submits
tasks to the frameworks and they notify the dispatcher when the tasks are ready
to execute or when the tasks are finished.

1 https://xstackwiki.modelado.org/HiHAT SW Stack.

https://xstackwiki.modelado.org/HiHAT_SW_Stack
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The TUV model divides the software stack into three layers, as shown in
Fig. 1(b), where the TUV interface in the middle decouples the application layer
at the top from the task based frameworks at the bottom which in turn hide the
technical details of parallel programming for the underlying hardware. In the
TUV model, the taskified versions of the operations are provided by the middle
layer to the application layer via ordinary subroutines while on the other side
of the middle layer, the generic tasks move back and forth to the frameworks or
their TUV compliant wrappers. Therefore, TUV at the middle layer translates
program operations to tasks and data and distributes them properly to available
task based frameworks through a generic interface.

Different task flows between the dispatcher and the task based frameworks
can be configured in the TUV model by specifying which two frameworks inter-
faces are to be interconnected via the dispatcher. For example, the task-execution
interface of one framework can be connected to the task-creation (submission)
interface of another to enable hierarchical task management in which, when tasks
get ready to execute at higher levels, they split into child tasks and are submitted
to the framework at the next level of the hierarchy. This configurable task flow
graph between the program and the wrappers allows a single program to run in
different parallel computing environments by different task based frameworks.

2.2 Implementation of the TUV Model

The TUV model provides the necessary data structures and interfaces to the
application layer for defining data and performing operations on them. These
interfaces also enable partitioning the data into parts and splitting an operation
into child tasks. Usages of data definition and partitioning interfaces by the
program are propagated to all the task based frameworks to manage their own
internal data types.

For running a program using various frameworks, the TUV model also con-
tains implemented wrappers around the SuperGlue, StarPU and DuctTeip task
based frameworks, Fig. 1(b). There are also cpuBLAS and cuBLAS wrappers
around Basic Linear Algebra Subprograms (BLAS) and Linear Algebra PACK-
age (LAPACK) libraries for CPU and GPU devices, respectively, that can be
used in the task flow graph for running the actual computations of tasks on the
corresponding devices. The tasks submitted to these two wrappers are immedi-
ately executed and their completions are reported back to the dispatcher.

Figure 1(a) shows some examples of possible and practical configurations of
task flow graphs G1–G4 for running a program whose operations on data are
totally decomposable into BLAS subroutines.

The edge from the program to the dispatcher D is common for all the graphs
and is not shown in the figure. The flow of tasks and data between the dispatcher
D and the wrappers can be configured to determine the hierarchy of data and
tasks and the corresponding responsible frameworks.
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The nodes in the graphs shown in Fig. 1(a) are the dispatcher D and the
wrappers around the task based frameworks. A directed edge from the dispatcher
D to node w denotes that the tasks coming from the program to the dispatcher
are forwarded to the wrapper w. For example, in graph G1 the cpuBLAS wrapper
(CB) is the only one connected to the dispatcher D, meaning that all the tasks
coming from the program are delivered to the CB wrapper. Since the cpuBLAS
wrapper is a single core implementation of the BLAS library, the tasks received
by CB are run immediately and hence this configuration can be used to run
the program sequentially. The edges between wrappers w1 and w2 show that
ready tasks at w1 are split into sub tasks by the dispatcher and are submitted to
w2, and task completions at w2 are reported back to w1 via the dispatcher. For
example, in graph G3, the DT , SG and CB wrappers are connected together
by directed edges that show the flow of tasks and sub tasks between pairs of
frameworks. These three wrappers are used to hierarchically break down the
tasks at different levels for distributed memory and shared memory and kernel
computations. Tasks are first submitted to DT for scheduling in the distributed
memory environment. When DT notifies the dispatcher that a task is ready to
run, the dispatcher splits the task into sub-tasks and submits them to the next
wrapper, which is SG in the G3 graph. When sub-tasks get ready at the SG
wrapper, the dispatcher is notified from where they are forwarded to the next
wrapper, CB in the graph G3.

Using configurations G1–G4, the program can run in distributed/shared
memory, and in heterogeneous (with accelerators) computing environments.
Using the G1 configuration, it can run sequentially on one CPU since tasks
submitted to the dispatcher are forwarded to and immediately executed by the
cpuBLAS wrapper. In the G2 configuration, the same program can run on multi-
core systems using the SuperGlue wrapper for managing submitted tasks on
available cores and using the BLAS library wrapper for running the tasks on
individual cores. The G3 configuration is constructed by adding the DuctTeip
wrapper on top, enables the program to run in a cluster of computing nodes
where DuctTeip is managing data and tasks in the distributed memory environ-
ments. In the G4 configuration, the program can run in a cluster of computing
nodes with heterogeneous CPU/GPU processors using StarPU for managing
tasks on both CPU and GPU.

2.3 Programming in the TUV Model

In the three layer view of the TUV model, the required programming at the
bottom layer is already done in the TUV framework and provided as wrap-
pers around some existing and frequently used task based frameworks. Further
development of wrappers can be performed by framework providers or users by
implementing the unified interface.

The programming at the middle layer, consists of implementing the trans-
lation and splitting of operations into tasks or sub tasks. This can be done by
implementing predefined interfaces (e.g., the split method of an operation
object) which will be used by the dispatcher during the program execution. User
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(a) Possible task flow graphs G1–
G4. D is the dispatcher and DT ,
SG, SP are wrappers around the
DuctTeip, SuperGlue and StarPU
frameworks, respectively; CB and
GB are wrappers around BLAS li-
braries on CPU and GPU, respec-
tively.

(b) The overview of the TUVmodel. The
TUV interface with task-based frame-
works unifies the cooperation of the Dis-
patcher and any framework run-time. A
single program in the Application Layer
can be executed in various parallel envi-
ronments using combinations of frame-
works (or their wrappers).

Fig. 1. Cooperation between TUV and the task based frameworks.

friendly functions can hide the technical details of the task and operations from
the programmer at the application layer. The programming at the application
layer consists of defining data and their partitions and calling functions provided
by the technical layer to manipulate the data.

The programming in the TUV model is exemplified by implementing a block
Cholesky matrix factorization called POTRF (POsitive definite matrix TRian-
gular Factorization) in BLAS/LAPACK terminology. The program at the appli-
cation layer (shown in Fig. 2, lines 1–16) defines the input/output matrix A and
its partitioning in two subsequent hierarchical levels (b1 and b2) with param-
eters read from the command line and passes it to the tuv cholesky function
which is implemented in the technical layer (Fig. 2, lines 18–23).

The <name>Task objects in Figs. 2 and 3 are subclasses of a generic task class
in the TUV model whose constructors accept an Operation object, a pointer
to the parent task and data arguments of the task. The created POTRFTask in
the tuv cholesky function (Fig. 2, line 21) corresponds to the operation object
upotrfo with no parent task.

The Operation objects in the TUV model are responsible for splitting an
operation into child tasks that manipulate the partitions of the parent task’s
data arguments. Figure 3 shows the split method of the upotrfo operation
which in nested loops manipulates the partitions of input argument A using the
indexing interface A(r,c) to access the partition at row r and column c of A.
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1 // unified_cholesky.cpp

2 #include "tuv.hpp"

3 int main(int argc , char **argv){

4 // TUV start

5 tuv_initialize (argc ,argv);

6
7 int N, b1 , b2;

8 // Get dimensions and partitions from command line

9 tuv_get_parameters (N,b1 ,b2);

10
11 GData A(N, N, b1 , b2);

12 tuv_cholesky(A);

13
14 // TUV waits for all tasks finished

15 tuv_finalize ();

16 }

17 /* -----------------------------*/

18 // tuv_chol.cpp

19 #include "tuv.hpp"

20 void tuv_cholesky(GData &A){

21 POTRFTask *potrf = new POTRFTask(upotrfo ,NULL ,A);

22 dispatcher ->submit_task(potrf);

23 }

24 /* -----------------------------*/

25 // cpuBLAS_wrapper.cpp

26 #include "tuv.hpp"

27 ...

28 upotrfo ::run(GTask *t){

29 GData &A = *t->args [0];

30 double *mem = A.get_memory ();

31 int info , N = A.get_rows_count ();

32
33 dpotrf(’L’,N,mem ,N,&info);

34 dispatcher ->task_finished(t);

35 }

Fig. 2. The main program in the TUV model for implementing a Cholesky factorization
of input matrix A (lines 1–16), the tuv cholesky function provided by the TUV tech-
nical layer (lines 18–23), and the run method of the upotrfo operation (lines 25–35).

Figure 4 shows a possible implementation of a dispatcher with two cascaded
wrappers, like SG and CB of G2 in Fig. 1(a). An Edge type is defined to dis-
tinguish two wrappers of T and U. An EdgeDispatch type is a dispatcher with
generic parameter of type Edge. When objects in the program calls any method
of the dispatcher, they pass in their type as the first argument. The figure shows
how calls to dispatcher’s submit method from the user program (line 18) or
from the first wrapper (line 25) can be distinguished using the type of the first
argument. The lines 32–35 of the code show how a ready to run task at the
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void upotrfo ::split(GTask *p){

// unpack arguments of t to A

GData &A = p->args [0];

int n = A.row_part_num ();

for(int i = 0; i<n; i++){

for(int j = 0; j<i; j++){

// submit task for Aii = AijA
T
ij

SYRKTask *syrk = new SYRKTask(usyrko ,p,A(i,j),A(i,i));

dispatcher ->submit_task(syrk);

for(int k = i+1; k<n; k++){

// submit task for Aki = Aki +AkjAij

GEMMTask *gemm = new

GEMMTask(ugemmo ,p,A(k,j),A(i,j),A(k,i));

dispatcher ->submit_task(gemm);

}

}

// submit task for Aii → LLT

POTRFTask *potrf = new POTRFTask(upotrfo ,p,A(i,i));

dispatcher ->submit_task(potrf);

for(int j = i+1; j<n; j++){

// submit task for Aji = A−1
ii Aji

TRSMTask *trsm = new TRSMTask(utrsmo ,p,A(i,i),A(j,i));

dispatcher ->submit_task(trsm);

}

}

}

Fig. 3. The splitting method of the POTRF operation object in the TUV programming
model where child tasks (SYRK, GEMM, POTRF and TRSM) for the parent task p are
created and submitted to the dispatcher with their corresponding u<name>o operation
objects.

first wrapper can be split into sub-tasks by calling the split method of the
operation object of the task. Similarly, the lines 38–45 show how a parent task
at the level of the first wrapper is notified when all its children at the level
of the second wrapper are finished. Therefore combining frameworks (or their
wrappers) is simply providing a dispatcher object that forwards calls and noti-
fications in this way. Thanks to the template programming in C++ and using
static binding methods at compilation time, there is no run-time performance
cost in using this approach for dispatching tasks between frameworks.

At the lowest level of the task hierarchy, when a task is submitted by the dis-
patcher to the <cpu/cu>BLAS wrappers, the run method of the task’s operation
is invoked where the BLAS/LAPACK routine is immediately called and task
completion is reported back to the dispatcher, as shown in Fig. 2 lines 25–35.
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1 /* -----------Edge ----------------------------------*/

2 template < typename T, typename U >

3 class Edge{

4 public:

5 typedef T First;

6 typedef U Second;

7 };

8 /* ----------Edge Dispatch ---------------------------*/

9 template < typename E >

10 class EdgeDispatch{

11 public:

12 typedef typename Edge <typename E::First ,

13 typename E::Second >:: First first;

14 typedef typename Edge <typename E::First ,

15 typename E::Second >:: Second second;

16 /* -----------------------------------------------------*/

17 template <typename T,typename P>

18 static void submit(UserProgram &, Task <T,P>*t){

19 //Tasks from the user -program are forwarded

20 //to the first wrapper

21 E::First :: submit(t);

22 }

23 /* -----------------------------------------------------*/

24 template <typename T,typename P>

25 static void submit(first &f, Task <T,P>*t){

26 //Tasks from the first wrapper are forwarded

27 //to the second wrapper

28 E:: Second :: submit(t);

29 }

30 /* -----------------------------------------------------*/

31 template <typename T,typename P>

32 static void ready(first &f,Task <T,P>*t){

33 // Ready -to-run tasks are split into sub -tasks

34 t->operation ->split(t);

35 }

36 /* -----------------------------------------------------*/

37 template <typename T,typename P>

38 static void finished(second &s,Task <T,P>*t){

39 // Finishing a task at the second wrapper may

40 // result in finishing a parent task in the

41 // first wrapper , if all of its children are

42 // finished

43 if ( t->allChildrenFinished () )

44 E:: First :: finished(t->get_parent ());

45 }

46 };

Fig. 4. A C++ source code that shows one possible implementation of the Dispatcher
(EdgeDispatch) when two wrappers are cascaded, as in graph G2 in Fig. 1(a). An Edge

type is used for distinguishing first and second wrappers. The first argument of each
method from the dispatcher is the type of the caller. The workflow between wrappers
can be implemented by connecting one call from a wrapper to a call to the other one.
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3 Experiments

To demonstrate the productivity gained by the TUV programming model, the
Cholesky matrix factorization algorithm is implemented and executed with dif-
ferent matrix sizes on different parallel computing resources. In these exper-
iments the program at the application layer is written once and executed in
different configurations for different underlying parallel hardware.

These programs were executed in the HPC2N computer cluster Kebnekaise
using 32 nodes, each with two Intel Xeon E5-2690v4 CPU with 14 cores and
with two NVIDIA K80 with 4992 cores. The programs are all written in C++,
compiled with Intel compiler 17.0.1 and Intel MPI version 2017 Update 1 and
use Intel MKL for BLAS/LAPACK routines.

The Cholesky factorization program is executed in multi-core, with or with-
out GPUs, and multi-node computing environments. The SuperGlue, DuctTeip
and StarPU frameworks are used with the TUV and the non-TUV models to
compare performance when running the program in these environments, see
Figs. 5 and 6. The StarPU implementation of the Cholesky factorization is taken
from the version 1.2.0 of the installation package source code where explicit
dependencies are used for tasks (by explicitly setting a task dependency to spe-
cific tags instead of data handles) and the input matrix is partitioned at two
hierarchical levels. The dmdar scheduler is used and the experimental results are
gathered after executing a few calibration runs. When StarPU is used within
the TUV interface, the implicit dependencies and flat data (no hierarchy) is
used. The DuctTeip implementation, uses implicit dependencies between tasks
by tracking the accesses to the input and output data arguments of each task,
and the data is partitioned at two hierarchical levels.

The DuctTeip, SuperGlue and StarPU frameworks are selected for experi-
ments because they use different approaches and implement different types of
parallelisms. DuctTeip has no support for multi-core and GPU systems, Super-
Glue only supports multi-core environments and StarPU supports multi-core,
distributed and GPU parallelism but uses different approaches.

In Fig. 5 different configurations (C1–C6) of frameworks are used for run-
ning the Cholesky factorization program in one computing node of multi-cores
with/without GPUs. In the configurations C1–C3 matrices up to 30000× 30000
elements are factorized using the StarPU framework without TUV interface (C1),
the StarPU wrapper within TUV (C2) and the SuperGlue wrapper within TUV
(C3). For factorizing larger matrices in one computing node, parts of the com-
putations are executed in the GPUs by using the StarPU framework without
TUV interface (C4), the StarPU wrapper within TUV (C5) and the DuctTeip
wrapper and StarPU wrapper within TUV (C6).

The differences in performance of the configurations in the experiments can
be explained in this way. In C1, explicit dependencies are used and the matrix
is partitioned recursively during the runtime. In C2, StarPU within TUV uses
implicit dependencies and fixed partitioning of the matrix. The SuperGlue frame-
work was shown in [26] to have a low overhead compared with other frameworks,
hence the performance results using SuperGlue (C3) at the shared memory level
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Fig. 5. Executing the Cholesky factorization in one computing node with or without
GPU.

Fig. 6. Relative performance of distributed Cholesky factorization using TUV imple-
mentations vs StarPU only.
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tend to be competitive compared with other configurations. The C4 configura-
tion is the same as C1 but with GPU enabled. Configuration C4 can factorize
much larger matrices than C5 thanks to the recursive and hierarchical partition-
ing of the matrix. By adding hierarchical partitioning through DuctTeip to C5,
C6 can produce the same throughput as C4.

In Fig. 6, the performance of different frameworks is compared for Cholesky
factorization of matrices in a distributed memory environment. The factorization
is performed by the StarPU framework (C7), the DuctTeip and StarPU wrap-
pers within TUV (C8) and the DuctTeip and SuperGlue wrappers within TUV
(C9). In configuration C7, the StarPU framework does not employ hierarchical
partitioning of the data. The MPI support is used for submitting and running
tasks in the distributed memory environment. In C8, DuctTeip is used with hier-
archical data partitioning for the distributed memory environment and StarPU
is used for running the sub tasks on the multiple cores within a computing node.
In C9, SuperGlue is used instead of StarPU in C8 for running sub tasks. The
hierarchical data partitioning and the efficient communication techniques used
in DuctTeip [29], explain the performance difference between C7 and C8. Using
the low overhead task scheduling of SuperGlue in C9, higher performance than
C8 is obtained.

These experiments demonstrate that using the TUV model, a single pro-
gram at the application layer written once can run in several parallel computing
environments. Not only is it independent of any individual framework, but it
can also attain the most favorable throughput from a customizable mixture of
available frameworks. In other words, a program can always attain the highest
achievable performance by different mixtures of frameworks which individually
are improving their efficiency from time to time.

4 Conclusions

We have designed, implemented and verified the TUV model that unifies the
cooperation interface between task based frameworks. This interface decouples
the frameworks from the program that uses them which enables the program
to run in different parallel computing environment, allows independent software
development at technical layers and makes the program tolerant to the future
changes in the underlying hardware. The configurable task flows in the TUV
model allows a program to use a mixture of different frameworks to meet various
needs of computations on different computing resources.

We have shown by experiments that when the performance requirements of
a program are not satisfied with a single framework, the desired functionalities
can be picked up from different frameworks and provided to the program. This
enables a program to always achieve the best performance when the frameworks
change during the time due to new features, improved performance, supporting
a new hardware or implementing new approaches. Decoupling the program from
the frameworks, like any other software library, makes the framework develop-
ment independent of the application programs that enables them to freely use
new techniques and rapidly adapt to new technologies.
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