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Abstract. In Black-Box Checking (BBC) incremental hypotheses of a
system are learned in the form of finite automata. On these automata
LTL formulae are verified, or their counterexamples validated on the
actual system. We extend the LearnLib’s system-under-learning API for
sound BBC, by means of state equivalence, that contrasts the original
proposal where an upper-bound on the number of states in the system
is assumed. We will show how LearnLib’s new BBC algorithms can be
used in practice, as well as how one could experiment with different
model checkers and BBC algorithms. Using the RERS 2017 challenge we
provide experimental results on the performance of all LearnLib’s active
learning algorithms when applied in a BBC setting. The performance of
learning algorithms was unknown for this setting. We will show that the
novel incremental algorithms TTT, and ADT perform the best.

1 Introduction

There are many formal methods for analyzing the desired behavior of systems.
Examples include complex industrial critical systems, such as wafer steppers,
and X-ray diffraction machines. In these systems both liveness (something good
eventually happens), and safety (something bad never happens) are essential. It
is key for testers and developers of these systems to have easily usable tooling
available to investigate liveness and safety properties of systems. We present
an instance of such tooling known as Black-Box Checking (BBC), originally
developed by Peled et al. [23] which we implemented in the LearnLib. We show
its ease of use, why our method is sound even when not assuming an upper-
bound on the number of states in the System Under Learning (SUL), and show
how well it performs with an actual case study.

The essence of using formal methods is relating requirements on one hand,
and a system on the other. The requirements are often formulated with some
kind of temporal logic, such as Linear Temporal Logic (LTL). These formulas
then express the liveness and safety properties of the system. In formal methods
traditionally, the three main complementary methods are verification, testing,
and learning. Verification involves checking whether some abstract instance (e.g.
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in the form of an automaton) of the specification adheres to a set of requirements.
Testing involves checking whether the system conforms to an abstract instance
of the specification. If such an abstract instance is modeled as an automaton,
Model-Based Testing (MBT) [30] is typically applied. Conversely, an abstract
instance can also be learned from a system. If such an instance is in the form
of an automaton, and the system can only be accessed as a black-box, then
this procedure is called Active Automata Learning (AAL) [27]. LearnLib [12]
is a toolset that contains a wide variety of AAL algorithms. Many of these
algorithms are inspired by Angluin’s famous L∗ algorithm [1]. Figure 1 provides
an overview of the aforementioned approaches. Figure 1 also shows the concept
of an alphabet. An alphabet contains the symbols in which requirements must be
written, and in what language the system communicates with the environment.
This means that to make the system perform an action an input must be sent
that is a symbol in the alphabet. To observe the reaction of the system, the
output must also be a symbol in the alphabet.

req. automation system

alphabet

testing

learning

modeling

verification

black-box checking

Fig. 1. Formal methods

Testing, verification, and learning
can be used in a complementary fash-
ion, because all of them have their
advantages. Verification is typically
done through model checking. Model
checking has been around for several
decades and efficient model checkers
are readily available. The advantage of
testing is a highly automated approach
to check whether a system conforms
to a specific model. There are many
mature MBT tools available, such as
JTorX [3]. From a practical perspective, learning an automaton from a system
is also quite straightforward, because the only requirements are a definition of
the alphabet, and some kind of adapter between a learning algorithm and sys-
tem. These adapters are often quite easy to build. The three methods also have
disadvantages. For example when verification is performed, it is known which
requirement hold on an abstract notion of the system, but it is unknown which of
those requirements also hold on the actual system. Testing has the disadvantage
that the abstract notion (e.g. an automaton) has to be built and maintained by
hand. Writing specifications for automata can be tedious, since it is often done
with specification languages that may be unfamiliar to the developers of the sys-
tem. Verifying requirements on an automaton that is obtained through learning
is also difficult. Because it can take quite a long time before learning algorithms
produce such an automaton. Even when such an automaton is obtained, verify-
ing requirements is not straightforward, because the learned automaton can be
incorrect. Black-box checking tries to alleviate those problems. It resolves the
need for maintenance of an abstract notion of a system so that requirements can
be directly checked on a system.
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When BBC is applied to industrial cases, the guess of an upper-bound on the
number of states to have a sound BBC procedure can be either dangerous (the
guess is too low), or unpractical (the guess is too high). We resolve this by allow-
ing the LearnLib to check for state equivalence in the SUL. Our implementation
in the LearnLib is Free and Open Source, this alleviates the current scarcity of
tool support. To investigate how efficient several active learning algorithms are
for BBC, we contribute the following.

– Two variations of black-box checking algorithms.
– A novel sound black-box checking approach that uses state equivalences,

instead of an upper-bound on the number of states in the SUL.
– A modular design, allowing new model checkers to be added easily, or smarter

strategies to be implemented for detecting spurious counterexamples.
– A thorough reproducible experimental setup, with several algorithms.

The rest of the paper is structured as follows. Section 2 provides preliminary
definitions and procedures for model checking, active learning and black-box
checking. Section 3 describes how one can check whether a SUL accepts an infi-
nite lasso-shaped word, and how this is implemented in the LearnLib. In Sect. 4
we discuss related work, such as other model checkers, active learning algorithms
and the LBTest toolset. Section 5 details the result of our case study, and Sect. 6
concludes our work.

2 Preliminaries

The LearnLib mainly contains AAL algorithms for DFAs and Mealy machines.
We provide a definition for both, and a definition for LTSs were multiple labels
per edge are allowed. Typically, model checkers, such as LTSmin verify LTL
properties on LTSs. Hence we provide LTL semantics for LTSs, and provide
straightforward translations from DFAs and Mealy machines to LTSs. We also
provide actual implementations of these translations in the LearnLib. Further-
more, this section gives a short introduction to active learning, and black-box
checking.

Definition 1 (Edge Labeled Transition System). An edge Labeled Tran-
sition System (LTS) is defined as a tuple L = 〈S, s0, δ, L, T, λ〉, where S is a
finite nonempty set of states, s0 ∈ S is the initial state, δ : S → 2S is the
transition function, L is the set of edge labels, T is the set of edge label types,
and λ : S × S → 2T×L: is the edge labeling function. A path in L is an infinite
sequence of states beginning in s0. The set of paths is Paths(L) = {s0s1 . . . ∈
Sω | ∀i > 0: si ∈ δ(si−1)}. A trace is an infinite sequence of sets of tuples of
labels: Traces(L) = {λ(s0, s1)λ(s1, s2) . . . ∈ (2T×L)ω | s ∈ Paths(L)}.
Definition 2 (Deterministic Finite Automaton). A Deterministic Finite
Automaton (DFA) is defined as a tuple D = 〈S, s0, Σ, δ, F 〉, where S is a
finite nonempty set of states, s0 ∈ S is the initial state, Σ is a finite alpha-
bet, δ : S × Σ → S is the total transition function, F ⊆ S is the set
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of accepting states. The language of D is denoted L(D). A DFA is Prefix-
Closed iff ∀s ∈ S,∀i ∈ Σ : δ(s, i) ∈ F =⇒ s ∈ F . In other words
∀σ1 . . . σn ∈ L(D) : σ1 . . . σn−1 ∈ L(D). The LTS of a non-empty, prefix-closed
DFA D is LD = 〈F, s0, δL, Σ, {letter}, λL〉, where δL(s) =

⋃
i∈Σ δ(s, i), and

λL(s, s′) = {(letter, l) | l ∈ Σ ∧ δ(s, l) = s′}.

s0start s1

a

b

(a) DFA

s0start s1

(letter,a)

(letter,b)

(b) LTS

Fig. 2. Example DFA

Example 1 (DFA). An example prefix-closed DFA for the regular expression
(ab)∗a? is given in Fig. 2a (the trap state is implicit). The LTS is given in Fig. 2b.
The traces in the LTS are: {{(letter, a)}{(letter, b)} . . .}.

Definition 3 (Mealy Machine). A Mealy machine is defined as a tuple M =
〈S, s0, Σ,Ω, δ, λ〉, where S is a finite nonempty set of states, s0 ∈ S is the initial
state, Σ is a finite input alphabet, Ω is a finite output alphabet, δ : S × Σ → S
is the total transition function, and λ : S × Σ → Ω is the total output function.
The LTS of M is LM = 〈S, s0, δL, Σ ∪ Ω, {input, output}, λL〉, where δL(s) =⋃

i∈Σ δ(s, i), and λL(s, s′) = {{(in, i), (out, o)} | i ∈ Σ ∧ δ(s, i) = s′ ∧ o ∈
Ω ∧ λ(s, i) = o}.

s0start s1

a/1

a/2

(a) Mealy machine

s0start s1

(in,a),(out,1)

(in,a),(out,2)

start

(b) LTS

Fig. 3. Example Mealy machine

Example 2 (Mealy Machine). An example Mealy machine is given in Fig. 3a.
The LTS is given in Fig. 3b. The traces of the LTS are: {{(in, a),
(out, 1)}{(in, a), (out, 2)} . . .}.

Throughout this paper the following assumptions are made.

– All DFAs reject the empty language (because an LTS thereof is not defined).
– All DFAs are prefix-closed (Mealy machines are by definition prefix-closed).
– All DFAs and Mealy machines are minimal (automata constructed through

active learning are always minimal; our definition of prefix-closed only holds
on minimal automata).

– All SULs are deterministic.
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2.1 LTL Model Checking

An LTL formula expresses a property that should hold over all infinite runs of
a system. This means that if a system does not satisfy an LTL property, there
generally exists a counterexample that is an infinite word which exhibits a lasso
structure.

Definition 4 (LTL). Given an LTS L = 〈S, s0, δ, L, T, λ〉, LTL formulae over
L adhere to the following grammar:1 φ :: = true | φ1∧φ2 | ¬φ | Xφ | φ1Uφ2 | t =
l, where t ∈ T , and l ∈ L. Given an LTL formula φ, all infinite words that satisfy
φ are given by the set Words(φ) = {σ ∈ (2T×L)ω | σ |= φ}, where the satisfaction
relation |= ⊆ (T × L)ω × LTL is defined inductively over φ by the following
properties. Let σ = A0A1A2 . . . ∈ (2T×L)ω, and σ[j . . .] = AjAj+1Aj+2 . . .:

σ |=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

true,

φ1 ∧ φ2 iff σ |= φ1 ∧ σ |= φ2,

¬φ iff σ �|= φ,

Xφ iff σ[1 . . .] = A1A2A3 . . . |= φ,

φ1 U φ2 iff ∃j ≥ 0: σ[j . . .] |= φ2 ∧ ∀0 ≤ i < j : σ[i . . .] |= φ1,

t = l iff (t, l) ∈ A0.

Finally L |= φ ⇐⇒ Traces(L) ⊆ Words(φ).

Example 3 (LTL for DFAs). An example LTL formula that holds for the LTS
L in Fig. 2b is: φ = X(letter = b). All the words that satisfy the formula are in
Words(φ) = {{(letter, a)}{(letter, b)} . . . , {(letter, b)}{(letter, b)} . . .}. Clearly,
Traces(L) ⊆ Words(φ), so L |= φ.

An example for Mealy machines is analogous. Finally we provide a formal
definition of a lasso as follows.

Definition 5 (Lasso). Given an LTS L, a trace σ ∈ Traces(L) is a lasso if it
can be split in a finite prefix p, such that p � σ, and a finite loop q, such that
pqω = σ.

2.2 Active Learning

For our purposes, active learning is the process of learning a sequence of hypothe-
ses H1H2 . . . HF , such that their behavior converges to some target automaton
(DFA, or Mealy machine). The key components are illustrated in Fig. 4.

1 Extensions and equivalences may be defined as in [2] (such as implication: =⇒ ,
globally G, and future: F ).
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Learner

=

∈

SUL

Σ

HF

CE MQH

MQ

IO

Fig. 4. Active learning

Learner : an algorithm that can form
hypotheses based on queries and coun-
terexamples.

Equivalence oracle (=): an oracle that
decides whether two languages are equal.
The oracle decides between the language
of the current hypothesis of the learner,
and the language of the SUL. If the
languages are not equivalent the oracle
will provide a counterexample that distin-
guishes both languages. The language of
the SUL is a set of finite traces.

Membership oracle (∈): an oracle that decides whether or not a word is a member
of the language of the SUL.

SUL: In the case an active learning algorithm is applied to an actual system, a
SUL interface is used that can step through a system, to answer membership
queries. In the LearnLib, the SUL interface exposes the methods pre and post
that can reset a system (i.e. put it back to the initial state), step that stimu-
lates the system with one input symbol and returns the corresponding output,
canFork and fork that may fork a SUL, i.e. provide some copy (that behaves
identically to) a system. In active learning, this is used to pose queries in parallel.
We will show it is useful for performing state equivalence checks in BBC too.

Definition 6 (query). Given a DFA D = 〈S, s0, Σ, δ, F 〉, and a SUL, a query
is a function q : Σ∗ → B, where B = {⊥,�} denotes the set of Booleans, indi-
cating whether the input word is in the language of the SUL or not.

Example 4 (Active Learning). Given an alphabet Σ = {a, b}, and a DFA D to
be learned such that L(D) = (ab)∗a?, an active learning algorithm could first
produce the hypothesis D1 in Fig. 5a (the trap state is explicit), where the lan-
guage accepted is L(D1) = a∗. At some point the equivalence oracle generates
aa ∈ Σ∗, and performs the membership query q(aa) = ⊥. The equivalence oracle
recognizes that aa ∈ L(D1), and concludes it found a counterexample to D1. The
learner refines D1, and produces the final hypothesis in Fig. 5b. Note that this
example hides the complexity of actually refining the hypothesis. In the LearnLib
refining a hypothesis is done with the method Learner.refineHypothesis()
that accepts a query (counterexamples) and subsequently poses additional mem-
bership queries. More details on refining hypotheses are outside of the scope of
this paper; they can be found in e.g. [1,27].

Finding a counterexample to the current hypothesis by means of an equiva-
lence oracle is expensive in terms of time. In the worst-case the equivalence oracle
has to try out all words of maximum length n in Σn. Some smart equivalence
oracles (e.g. ones using the partial W-method [8]) can find a counterexample
quite quickly, if there is one. However, the number of membership queries to
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s0start s1

a

b

a

b

(a) Hypothesis 1

s0start s1

a

b

(b) Final hypothesis

Fig. 5. Active learning

find the counterexample is still orders of magnitudes larger than the size of the
hypothesis. E.g. any word of maximum length 2 that could serve as a counter
example for the first hypothesis in Example 4 is in {ε, a, b, aa, ab, ba, bb}. When
hypotheses grow larger, the set of possible counterexamples grows with an even
larger degree.

2.3 Black-Box Checking

Compared to active learning, BBC (Fig. 6) adds a procedure that checks a set
of properties {P1, . . . , Pn} on each hypothesis produced by the Learner. The
components added are as follows.

Learner ∈

∅

⊆|=

Σ

P1 . . . Pn

MQ

H

CEs

CE

MQ

MQ

CEs

⊥

Fig. 6. Black-box checking extension

Model checker (|=): an algorithm that
checks whether an hypothesis satisfies a
property. If the hypothesis does not sat-
isfy the property it provides some coun-
terexamples to the property. The lan-
guage of the counterexamples is a subset
of the language of the checked hypothesis.

Emptiness oracle (∅): an oracle that
decides whether the intersection of two
languages is empty. The oracle decides
between the language of the counterex-
amples given by the model checker, and
the language of the SUL. If the intersec-
tion is not empty it will provide a coun-
terexample, which is a word in the intersection and as such, a counterexample
to the property checked by the model checker.

Inclusion oracle (⊆): an oracle that decides whether one language is included in
another. The oracle decides whether the language of the counterexamples given
by the model checker is included in the language of the SUL. If the language is
not included, the oracle will provide a counterexample such that it is a word not
in the language of the SUL, and thus a counterexample to the current hypoth-
esis. One can view the combination of the model checker, emptiness oracle, and
inclusion oracle as a black-box oracle.
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In traditional active learning there are two kinds of sets of membership
queries; learning queries (done by the learner) and equivalence queries (done
by the equivalence oracle). With BBC there are two more types of queries;
inclusion queries (done by the inclusion oracle), and emptiness queries (done
by the emptiness oracle). The decision between performing inclusion queries,
and emptiness queries depends on whether the property can be falsified with
the current hypothesis. We generalize both to model checking queries. The key
observation why adding properties to verify to the learning algorithm can be
useful, follows from the observation that black-box checking queries are very
cheap compared to equivalence queries. Given an alphabet Σ, a naive equiva-
lence oracle has to perform arbitrary membership queries for words in Σ∗, while
the black-box oracle has to perform only membership queries for a subset of the
language of the current hypothesis.

Given that black-box checking queries are much cheaper than equivalence
queries a sketch of the black-box checking algorithm (Figs. 5 and 6) is as follows.
Initially (①) the learner constructs an hypothesis using membership queries (②).
This hypothesis is, together with a set of properties, given to the model checker
(➋). If the model checker finds counterexamples for a property and the cur-
rent hypothesis, the counterexamples are given to the emptiness oracle (➌). The
emptiness oracle performs membership queries (➍) to try to find a counterex-
ample from the model checker that is not spurious. If a real counterexample
for a property is found, it is reported to the user (➎), and the property is not
considered for future hypotheses. Otherwise, there could be a spurious one, and
thus the set of counterexamples are given to the inclusion oracle. The inclusion
oracle performs membership queries (➏) to find a counterexample for the current
hypothesis (➐), the learner performs membership queries (②) to complete the
next hypothesis. If the hypothesis is refined, the black-box oracle repeats steps
(➋, . . . , ➐) until the model checker can not find any new counterexample. In the
latter case we enter the traditional active learning loop (Fig. 4): the equivalence
oracle tries to find a counterexample for the current hypothesis (③) using mem-
bership queries (④). If a counterexample is found (⑤) the learner will construct
the next hypothesis using membership queries (②) and the black-box oracle is
put back to work. If the equivalence does not find a counterexample (④) the final
hypothesis is reported to the user. Note that a black-box oracle can be imple-
mented in two ways. The black-box oracle can first try to find a counterexample
for every property before finding a refinement for the current hypothesis. The
second implementation finds a counterexample for a single property and if such
a counterexample does not exist, find a counterexample for the current hypothe-
sis, before checking the next property. One may favor the first implementation if
there is a high chance a property can be disproved with the current hypothesis,
or refining the current hypothesis becomes quite expensive.

Example 5 (Black-Box Checking). Consider again the first hypothesis D, pro-
duced by an active learning algorithm from Fig. 5a, that accepts the language
a∗, and the LTL formula φ = X(letter = b), from Example 3. An LTL model
checker checks whether D |= φ. The model checker concludes D does not model
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φ, and produces the lasso aω as a counterexample. The model checker unrolls
the loop of the lasso an arbitrary number of 3 times, and provides the sin-
gleton language L(CEs) = {aaa} to the emptiness oracle (∅). The emptiness
oracle checks whether the intersection of the language of the SUL (L(SUL)),
and L(CEs) is empty. To this end, a membership query q(aaa) = ⊥ is per-
formed. This means indeed L(SUL) ∩ L(CEs) = ∅ and the property can not
be falsified. Next, L(CEs) is given to the inclusion oracle (⊆) that checks
L(CEs) ⊆ L(SUL). To this end the inclusion oracle performs the same member-
ship query q(aaa) = ⊥. The inclusion oracle concludes that L(CEs) �⊆ L(SUL),
and thus provides aaa �∈ L(SUL) as a counterexample to the learner. The essence
of this example is that Fig. 5a, can be refined without performing any equivalence
query. This example (like Example 4) hides to complexity of refining a hypoth-
esis too. Refining a hypothesis in the LearnLib in the context of BBC can also
be done with Learner.refineHypothesis().

3 Sound Black-Box Checking

The main contribution is (1.) the concept of sound BBC, that involves checking
whether a SUL accepts a lasso-shaped infinite word, and (2.) an overview of the
implementation in the LearnLib.

3.1 Validating Lassos with State Equivalence

Making the BBC procedure sound involves checking whether infinite lasso-
shaped words given as counterexamples by the model checker are accepted by
the SUL. Obviously in practice checking whether a SUL accepts an infinite word
is impossible. However, this can be resolved if one considers what goes on inside
a black-box system. We need to check if the SUL also exhibits a particular lasso
through its state space when stimulated with a finite word (that also produces
the same output as given by the model checker). This can be achieved by observ-
ing particular states the SUL evolves through when stimulated. Note that this
view of a SUL is still quite a black-box view; we only record the states, we do
not enforce the SUL to move to a particular state. We introduce a new notion
of a query, namely an ω-query, which in addition to the input word and output
of the SUL also contains which states need to be recorded, and which states
where actually visited. Compared with traditional BBC, sound BBC requires
an emptiness oracle for lassos, denoted ∅ω, and a membership oracle for lassos,
denoted ∈ω.

Definition 7 (w-query). Given a DFA D = 〈S, s0, Σ, δ, F 〉, and another set of
states Z from the SUL, an w-query is a function qω : Σ∗ × 2N → B × Z∗, where
B = {⊥,�} denotes the set of Booleans, indicating whether the input word is
in the language of the SUL or not, 2N the set of possible symbol indices after
which a state has to be recorded, and Z∗ a sequence of possible recorded states.
A definition for an ω-query for Mealy machines is analogous.
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Example 6 (ω-query). An example property that does not hold for the final DFA
D in Fig. 5b is φ = (letter = b). Whenever a model checker determines whether
D |= φ, it may give the lasso l = a(ba)ω as a potential counterexample for φ.
The language L(CEs) = {l} is given to the lasso emptiness oracle ∅ω, which
will unroll the loop of the lasso an arbitrary number of 3 times, and asks the
omega membership oracle (∈ω) for qω(abababa, {1, 3, 5}) = (�, s1s1s1). Here it is
clear the SUL cycles through state s1, and thus accepts the infinite lasso-shaped
word l.

In general, determining whether a state sequence is a closed loop can be
done with Definition 8 (we record states at the beginning of each loop iteration).
This definition allows us to check whether a SUL accepts a lasso in the most
general way. E.g. to check whether a SUL accepts lasso p(q1q2 . . . qn)ω in a finite
number of steps, we also check if the SUL accepts structurally different shaped
(but equivalent) lassos, such as pq1(q2 . . . qnq1)ω, p(q1q2 . . . qnq1q2 . . . qn)ω etc.

Definition 8 (closed-loop). Given an ω-query qω(pqn, I) = {�, s}, a state
sequence s = s0s1 . . . sn is a closed-loop iff n > 0, and ∃0 ≤ i < j ≤ n : si = sj,
and I = {|p|, |p| + |q|, . . . , |p| + |q| · n}.

3.2 Implementation in the LearnLib

We extend the interface of the LearnLib following Fig. 6, with a new type of
query, and more oracles. The purpose of queries is to have a well defined way
of exchanging information between the learner and the SUL. Oracles find coun-
terexamples to claims, that may in practice, be undecidable to do.
SUL: The SUL interface is extended with methods boolean canRetrieveState()
indicating whether states can actually be observed in the SUL, if this is not
possible then sound BBC is not possible, Object getState() returning the
current state of the SUL, boolean deepCopies() indicating whether the object
returned by getState() is a deep copy.
ModelChecker: A ModelChecker may find a counterexample to a property and
hypothesis. A counterexample is a subset of the language of the hypothesis.
LTSmin [4,15] is an available implementation of a ModelChecker for LTL in the
LearnLib.
OmegaQuery: An OmegaQuery is a specialization of a Query. An answered Query
contains information about whether a word is in the language of the SUL. An
OmegaQuery specializes this behavior to infinite words.
OmegaMembershipOracle: An oracle that decides whether an infinite word is in
the language of the SUL. To this end it poses OmegaQueries. There are several
implementations available; one that simulates DFAs and Mealy machines, and
one that wraps around a SUL.
EmptinessOracle: An EmptinessOracle generates words that are in a given
automaton, and tests whether those words are also in the SUL. The current
implementation, generates words in a breadth-first manner. A limit can be
placed on the maximum number of words. An EmptinessOracle is used to
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check whether any word in the language given as a counterexample by the
ModelChecker is present in the SUL. A specialization of an EmptinessOracle
is a LassoEmptinessOracle that uses OmegaQueries to check whether infinite
lasso-shaped words are not in the SUL.
InclusionOracle: Similar to the EmptinessOracle; it generates a limited num-
ber of words in a breadth-first manner, but checks whether words are in the
language of the SUL. Note that both of these oracles may perform the same
queries; this is a practical issue and is usually resolved by using a SULCache so
that in case of a cache-hit the SUL is not stimulated. The InclusionOracle,
and EmptinessOracle may have different strategies (BFS vs. DFS), and hence
are not merged together into a single oracle. Separation of concerns (finding
a counterexample to the current hypothesis, vs. finding a counterexample to a
property), is also considered a good design principle.
BlackBoxProperty: a BlackBoxProperty is a property for a black-box system. It
may be disproved, or used to find a counterexample to the current hypothesis. To
these ends, it requires a ModelChecker, EmptinessOracle, InclusionOracle,
and the property itself, such as an LTL formula. Note that LTL counterex-
amples for safety properties not necessarily exhibit a lasso structure. A future
improvement could exploit this and hence the EmptinessOracle is given to
BlackBoxProperty, and not to a BlackBoxOracle.
BlackBoxOracle: an oracle that disproves a set of BlackBoxProperties,
or find a counterexample to the current hypothesis in the same set of
BlackBoxProperties. Currently, there are two implementations available. One
implementation iterates over the set of properties that are still unknown, and
tries to disprove any of them before refining the current hypothesis. The other
implementation iterates over the set of properties that are still unknown, and
before disproving a next property it first tries to refine the current hypoth-
esis with the current property. Both implementations at their core compute
a least fixed-point of a set of properties they can not disprove. The lat-
ter implementation is used in the experiments later. In the case where an
OmegaMembershipOracle wraps around a SUL there are two implementations
available, based on the implementation of SUL.deepCopies(). If a SUL does not
make a deep copy of the state of the SUL it could be the case that if SUL.step()
is executed, a previously obtained state with SUL.getState() would also be
modified, e.g. the assertion in the Java snippet

Object o1 = SUL.getState(); int hc = o1.hashCode(); SUL.step();
assert o1.hashCode()== hc;

may not hold. To resolve this; if SUL.deepCopies() does not hold, then
SUL.forkable() must hold. Two instances of a SUL are used, i.e. one regu-
lar instance, and a forked instance to compare two states. More specifically
an OmegaMembershipOracle that wraps around a SUL that does not make deep
copies of states in fact uses hash codes of states, and if the hash codes of two
states are equal, the OmegaMembershipOracle will step one instance of the SUL
through the access sequence of one state, and the forked instance of the SUL
through the access sequence of the second state.
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In case SUL.deepCopies() does hold, checking equality of two states is
straightforward; one can simply invoke Object.equals() on the two states.
Listing 1.1 shows how the running example can be implemented in the LearnLib.
Note that we show how a membership oracle can answer queries by simulating
a DFA. In Sect. 5 we show how one can learn a Mealy machine by implementing
LearnLib’s SUL interface.

Listing 1.1. Black-box checking in the LearnLib
// de f i n e the alphabet
Alphabet sigma = Alphabets . cha ra c t e r s ( ’ a ’ , ’ b ’ ) ;
// c r ea t e the running example DFA
DFA dfa = AutomatonBuilders .newDFA( sigma ) .

w i t h I n i t i a l ( ”q0” ) . withAccepting ( ”q0” ) . withAccepting ( ”q1” ) .
from ( ”q0” ) . on ( ’ a ’ ) . to ( ”q1” ) . from ( ”q1” ) . on ( ’b ’ ) . to ( ”q0” ) . c r e a t e ( ) ;

// c r ea t e an omega membership orac l e , that s imu la t e s the DFA
DFAOmegaMembershipOracle oMO = new DFASimulatorOmegaOracle ( dfa ) ;
// c r e a t e a r egu l a r membership o r a c l e
DFAMembershipOracle mO = oMO. getDFAMembershipOracle ( ) ;
// c r ea t e an equ iva l ence o r a c l e that uses the p a r t i a l W−method
DFAEquivalenceOracle eqO = new DFAWpMethodEQOracle (3 , mO) ;
// c r ea t e a TTT l e a rn e r
DFALearner l e a r n e r = new TTTLearnerDFA( sigma , mO, LINEAR FWD) ;
// c r ea t e a par s e r that t r a n s l a t e s data between LTSmin and the LearnLib
Function<Str ing , Character> edgeParser = s −> s . charAt (0) ;
// c r ea t e an LTSmin model checker
DFAModelCheckerLasso modelChecker = new

LTSminLTLDFABuilder ( ) . wi thStr ing2Input ( edgeParser ) . c r e a t e ( ) ;
// c r ea t e an emptiness o r a c l e f o r l a s s o s
DFALassoEmptinessOracle emO = new DFALassoDFAEmptinessOracle (oMO) ;
// c r ea t e an i n c l u s i o n o r a c l e
DFAInclusionOracle inO = new DFABreadthFirstInc lus ionOracle (1 , mO) ;
// c r ea t e the black−box property from the running example
DFABlackBoxProperty l t l = new DFABBPropertyDFALasso (modelChecker , emO,

inO , ”X l e t t e r==\”b\”” ) ;
// c r ea t e the black−box o r a c l e with the s i n g l e t on s e t o f p r op e r t i e s
DFABlackBoxOracle bBO = new CExFirstDFABBOracle ( l t l ) ;
// c r ea t e a black−box checking experiment
DFABBCExperiment e = new DFABBCExperiment( l ea rne r , eqO , sigma , bBO) ;
// run the experiment
e . run ( ) ;
// a s s e r t we have the c o r r e c t r e s u l t
a s s e r t f indSeparatingWord ( dfa , e . ge tF ina lHypothes i s ( ) , sigma ) == nu l l ;

4 Related Work

Related work in context of this work can be found in three main areas. First,
there is a tool that already does BBC, called LBTest [21]. Second, other than
the LearnLib there is another active learning framework called libalf [5]. Third,
aside from LTSmin there are other model checkers such as NuSMV [6], and
SPIN [9]. Currently, LBTest is not Free and Open Source Software (FOSS). The
LearnLib on the other hand is licensed under the Apache 2 license and thus
freely available, even for commercial use. This argument is important because
BBC is very successful when applied to industrial critical systems [17,19]. Our
new implementation in the LearnLib is also licensed under the Apache 2 license.
Our reasoning for implementing BBC in the LearnLib, and not libalf is that
LearnLib is actively maintained, while libalf is not.
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We choose to select the LTSmin [15] model checker, because LTSmin, similar
to the LearnLib has a liberal BSD license, and is still actively maintained. Com-
pared to NuSMV, LTSmin has an explicit-state model checker, while NuSMV is
a symbolic model checker using BDDs. In principle NuSMV would also suffice as
a model checker in this work. We have designed our BBC approach in such a way
that in the future integrating NuSMV with the LearnLib is easy. Another pop-
ular model checker is SPIN. The disadvantage of using the SPIN model checker
is that the counterexamples it produces are state-based, while active learning
algorithms require action-based counterexamples [26].

BBC is not new to the LearnLib, several years ago a similar study was per-
formed, named dynamic testing [24]. Recently new active learning algorithms
such as ADT [7], and TTT [13] have been added to the LearnLib, and their
performance in the context of BBC is still unknown. Both ADT, and TTT may
very well compare to the main learning algorithm Incremental Kripke Learn-
ing (IKL) [20] in LBTest, which is a so-called incremental learning algorithm.
Incremental learning algorithms try to produce new hypotheses more quickly, in
order to reduce the number of learning queries. Traditional active learning algo-
rithms, such as L* produce fewer hypotheses, where each new hypothesis requires
more learning queries. The latter makes sense in the context of active learning,
because this minimizes the number of equivalence queries necessary. In the con-
text of active learning incremental learning algorithms may actually degrade
performance; while they may perform well in the number of learning queries,
they may require more equivalence queries to refine the hypotheses, resulting in
longer run times, see [11, Sect. 5.5]. In BBC model checking queries can be used
to refine hypotheses. Model checking queries are negligible compared to equiv-
alence queries [20], making the ADT, and TTT algorithms excellent candidates
for a BBC study.

5 Results

BBC in the presence of a good amount of LTL formulae can greatly reduce
the number of learning queries, and equivalence queries required to disprove
the LTL formulae compared to active learning. Note that, although BBC intro-
duces additional model checking queries (performed by the equivalence oracle,
or inclusion oracle), these model checking queries are dwarfed by the amount
of equivalence queries (and even learning queries). We will thus refrain from
reporting the amount model checking queries here (they can be found online2,
alongside reproduction instructions). What we will show is the following.

– How many learning queries, and equivalence queries it takes to disprove as
many LTL formulae as possible in the traditional active learning setting. This
means evaluating all LTL formulae after active learning algorithms produce
the final hypothesis.

2 https://github.com/Meijuh/NFM2018BBC.

https://github.com/Meijuh/NFM2018BBC
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– The amount of learning queries, and equivalence queries in the BBC setting
to disprove as many LTL formulae as possible.

Currently there are eight active learning algorithms implemented in the Learn-
Lib for Mealy machines, which are as follows: ADT [7], DHC [22], Discrimina-
tion Tree [10], L* [1], Kearns and Vazirani [16], Maler and Pnueli [18], Rivest
and Schapire [25], and TTT [13]. To investigate the performance of these algo-
rithms in a BBC setting we take problem instances, and LTL formulae from the
2017 RERS challenge. The Rigorous Examination of Reactive Systems (RERS)
challenge3 is a yearly recurring verification challenge [14]. There are two main
categories. In one category one has to solve properties for problems which are
parallel in nature [29]. The other category involves sequential problems [28].
The RERS sequential problems are provided in Java (among others); the Java
problem structure is given in Listing 1.2.

Listing 1.2. RERS structure
@EqualsAndHashCode ( exc lude =

{” inputs ”})
pub l i c c l a s s Problem {

. . .
pub l i c S t r ing [ ] inputs =

{”B” , ”E” , ”C” , ”A” , ”D” } ;

p r i va t e i n t a175 = 6 ;
p r i va t e i n t a52 = 9 ;
p r i va t e i n t a176 = 7 ;
p r i va t e St r ing a166 = ”e” ;
p r i va t e St r ing a167 = ”e” ;
p r i va t e St r ing a62 = ” f ” ;

pub l i c S t r ing
ca lcu lateOutput ( St r ing
i ){ }

pub l i c void r e s e t ( ) { }
. . .

One can see that it is straight-
forward to actively learn a Mealy
machine from a Problem instance.
The alphabet is specified with the
field String[] inputs. The state of
a problem instance is determined by
the valuations of some instance vari-
ables (a175, a52, a176, a166, a167,
and a62). An input can be given
to the calculateOutput method,
which returns an output. The problem
instance can be reset with the reset()
method. A SUL implementation of a
RERS Problem is easy: SUL.post()
invokes Problem.reset(), SUL.step()
invokes Problem.calculateOutput().
To achieve sound BBC, we must be able to retrieve the current state of a Problem
instance. We choose not to make deep copies of a state of a Problem, hence
SUL.deepCopies() does not hold. This means an OmegaMembershipOracle,
must use Object.hashCode(), and Object.equals(). These methods can
be easily generated with project Lombok4, by annotating a class with
@EqualsAndHashCode. Lastly, the SUL can be forked by creating a new SUL
instance, with a new Problem instance.

We benchmark the LearnLib active learning algorithms with nine different
RERS problems from the 2017 RERS challenge in a BBC setting. Each prob-
lem comes with 100 different LTL formulae, where typically approximately half
of the formulae hold, and the other half does not hold. When active learning
algorithms are able to learn the complete Mealy machine, this Mealy machine
will be minimal. In case of the RERS problems the size of those Mealy machine

3 http://rers-challenge.org.
4 https://projectlombok.org.

http://rers-challenge.org
https://projectlombok.org
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Fig. 7. Experimental results (Color figure online)

range from tens of states to several thousands. Additionally this requires a few
hundred to several thousand learning queries, and several thousand to millions
equivalence queries. In Fig. 7 the top graph shows the legend. The second graph
shows the number of learning queries for the smallest RERS problem, and the
third graph the number of equivalence queries. The last graph shows the num-
ber of learning queries for the largest RERS problem. The x-axes show on a
logarithmic scale the number of queries required to disprove a certain number
of properties. The y-axes show the amount of properties that are disproved. A
dashed line shows the relation between queries and falsified properties in an
active learning setting, while a normal line shows the relation in a BBC set-
ting. The further a line appears to the left; the better the algorithm. A dashed
line is always purely vertical, because active learning algorithms do not disprove
properties on-the-fly (i.e. the same number of queries is required to disprove all
properties). In the case of BBC (uninterrupted lines) properties are disproved
on-the-fly. This means fewer queries may be required to disprove the first proper-
ties. One can also see that in some cases an uninterrupted line, and dashed line of
the same color are not equally high. This means that within the used timeout of
1 h active learning did not construct the complete hypothesis, and thus disproves
fewer properties. Interestingly, almost all algorithms use fewer learning queries
when used in the context of BBC. And even more interesting, some algorithms
only use equivalence queries to disprove the last few properties. Obviously this
is a great result. Figure 7 also shows that (as suspected) the incremental TTT,
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and ADT algorithms produce more equivalence queries compared to a classic
algorithm like Rivest and Schapire. The performance of the eight algorithms is
quite consistent throughout the larger problem instances. The ADT algorithm
seems to perform really well, but the TTT is quite competitive too, this can be
seen especially in the largest RERS problem. Also the last graph5 shows that
TTT seems to need fewer learning queries, but ADT seems to be able to dis-
prove more properties within 1 h. The great performance of ADT is particularly
interesting since it is only developed recently. The ADT algorithm is developed
to reduce the number of resets of the SUL. Now it seems to be the best choice
for BBC too among the benchmarked algorithms and RERS problem instances.

6 Conclusion

We have presented a black-box checking implementation for the LearnLib. This
includes a novel sound approach for liveness LTL properties, where we can check
if a system-under-learning accepts an infinite lasso-shaped word. This contrasts
the original proposal where an (hard to guess) upper-bound on the number of
states of the system-under-learning is assumed. Our implementation is available
under a liberal free and open source license, such that it can be put to practice
quite easily. Our results (Fig. 7) show that recently added ADT, and TTT active
learning algorithms perform the best in a black-box checking setting. In contrast
to some other learning algorithms in the LearnLib, ADT, and TTT are incre-
mental learning algorithms, meaning they construct more hypotheses while using
less learning queries. In an active learning setting this may degrade performance,
because more equivalence queries are required. In a black-box checking setting
this appeared to be an advantage, because model checking queries replace expen-
sive equivalence queries. Further work may show how ADT, and TTT compare
with the IKL algorithm in LBTest. Software testers now have a free ease-of-
use sound black-box checking implementation available for industrial use cases.
Future work may show whether additional model checkers such as NuSMV pro-
vide comparable results, or if there exist different valuable strategies for finding
(spurious) counterexamples to properties. In our case study we applied a per-
fect state equivalence function to the RERS problems, it would be interesting
to apply our approach to cases where only part of the state can be observed, or
when the SUL is hardware, instead of software.

Acknowledgements. We want to thank the developers of the AutomataLib, and the
LearnLib; without the extraordinary design of those tools, this work would not have
been possible. Furthermore, we would like to thank Frits Vaandrager for his useful
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5 Maler and Pnueli is not shown, because it was not able to disprove a single property.
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