
Optimal Storage of Combinatorial State
Spaces

Alfons Laarman(B)

Leiden University, Leiden, The Netherlands
a.w.laarman@liacs.leidenuniv.nl

Abstract. Efficiently deciding reachability for model checking problems
requires storing the entire state space. We provide an information theo-
retical lower bound for these storage requirements and demonstrate how
it can be reached using a binary tree in combination with a compact hash
table. Experiments confirm that the lower bound is reached in practice in
a majority of cases, confirming the combinatorial nature of state spaces.

1 Introduction

Model checking has proven effective for automatically verifying correctness of
protocols, controllers, schedulers and other systems. Because a model checker
tool relies on the exhaustive exploration of the system’s state space, its power
depends on efficient storage of states.

To illustrate the structure of typical states in model checking problems, con-
sider Lamport’s Bakery algorithm in Fig. 1; a mutual exclusion protocol that
mimics a bakery with numbering machine to prioritize customers. Due to limi-
tation of computing hardware, the number is not maintained globally but recon-
structed from local counters in N[i] (for each process i). For two processes, the
state vector of this program consists of the two program counters (pcs) and all
variables, i.e. 〈E[0], N [0], pc0, E[1], N [1], pc1〉.1 Their respective domains are:

〈{�,⊥} , [0 . . . 2], [0 . . . 7], {�,⊥} , [0 . . . 2], [0 . . . 7]〉.
There are 2 × 3 × 8 × 2 × 3 × 8 = 2304 possible state vectors. The task of the

model checker is determine which of those are reachable from the initial state;
here ι � 〈⊥, 0, 0,⊥, 0, 0〉. It does this using a next-state function, which in this
case implements the semantics of the Bakery algorithm to compute the successor
states of any state. For example, the successors of the initial state are:

next-state(〈⊥, 0, 0,⊥, 0, 0〉) = {〈�, 0, 1,⊥, 0, 0〉 , 〈⊥, 0, 0,�, 0, 1〉}

This work is part of the research programme VENI with
project number 639.021.649, which is (partly) financed by
the Netherlands Organisation for Scientific Research (NWO).

1
We opt to order vectors as follows: variables and program counter of Process 0 (pc0), variables
and program counter of Process 1 (pc1), etc. Section 6 discusses the effect of orderings.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 261–279, 2018.
https://doi.org/10.1007/978-3-319-77935-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_19&domain=pdf
http://orcid.org/0000-0002-2433-4174

262 A. Laarman

bool E[2] = { false, false };
int N[2] = { 0, 0 };
void process(int i) { // with process id i = 0 or 1

0: E[i] = true;
1: N[i] = 1 + max(N[0], N[1]);
2: E[i] = false;
#define j 0
3: while (E[j]) { } // Wait until thread 0 receives its number
4: while ((N[j] != 0) && ((N[j],j) < (N[i],i))) { }
#define j 1
5: while (E[j]) { } // Wait until thread 1 receives its number
6: while ((N[j] != 0) && ((N[j],j) < (N[i],i))) { }

/* begin critical section .. end critical section */
7: N[i] = 0;

}

Fig. 1. Lamport’s “Bakery” mutual exclusion protocol for two threads. The wait loop is
unrolled at Lines 4–7, where the process waits until all threads j, with smaller numbers
or with the same number but with higher priority, expressed as (N[j],j) < (N[i],i),
passed their critical section. The boolean variable E[i] associated with process i serves
to allow other threads to wait until i received a number in N[i]. For simplicity, we
assume that each line can be executed atomically.

One successor represents the case where the first process executed Line 0; its
program counter is set to 1 and E[0] is updated as a consequence. Similarly, the
other successor represents the case where the second process executed Line 0.

Algorithm 1. The reachability
procedure in a model checker.
Data: ι, next-state
Result: {error, correct}

1 V := ∅
2 Q := {ι}
3 while Q �= ∅ do
4 Q := Q \ {s} for s ∈ Q
5 V := V ∪ {s}
6 for s′ ∈ next-state(s) do
7 if s′ /∈ V then
8 if s′ ∈ Error then
9 return error

10 Q := Q ∪ {s′}

11 return correct

While exhaustively exploring all
reachable states, the model checker
searches if it can reach a state
from the set Error . For the Bak-
ery algorithm with two threads, we
have Error � {〈b0, n0, 7, b1, n1, 7〉 |
b0, b1 ∈ {�,⊥} , n0, n1 ∈ [0 . . . 2]},
i.e., all states where both processes
reside in their critical section (=
pc loc. 8). For completeness, Algo-
rithm 1 shows the basic reachabil-
ity procedure. The more states the
reachability procedure can process,
the more powerful the model checker,
i.e., the larger program instances it
can automatically verify. This num-
ber depends crucially on the size of
the visited states set V in memory. Several techniques exist to reduce V : partial
order reduction [19,26], symmetry reduction [10,30], BDDs [3,7], etc. Here we
focus on explicitly storing the states in V using state compression.

The potency of compression becomes apparent from two related observations:

Locality. Successors computed in the next-state function exhibit locality, e.g.,

next-state(〈⊥, 1, 4,⊥, 2, 6〉) = {〈⊥, 1,5,⊥, 2, 6〉 , 〈⊥, 1, 4,⊥, 2,7〉}

Optimal Storage of Combinatorial State Spaces 263

Note that only program counters change value (marked bold in successors).
Combinatorics. Similar to the set of all possible state vectors, the set of reached

state vectors is also highly combinatorial. Assuming 〈⊥, 1, 4,⊥, 2, 6〉 can be
reached from the initial state ι, we indeed saw four different vectors sharing
large sub-vectors with their predecessors (underlined here):
〈⊥, 0, 0,⊥, 0, 0〉 −→ 〈�, 0, 1,⊥, 0, 0

〉
,
〈⊥, 0, 0,�, 0, 1

〉

〈⊥, 1, 4,⊥, 2, 6〉 −→ 〈⊥, 1, 5,⊥, 2, 6
〉
,
〈⊥, 1, 4,⊥, 2, 7

〉

We hypothesize that the typical locality of the next-state function ensures
that the set of reachable states exhibits this combinatorial structure in the limit.
Therefore, storing each vector in its entirety in a hash table, would duplicate
a lot of data. By folding the reachable state vectors in a tree, however, these
shared sub-vectors only have to be stored once (more in Sect. 3).

In this paper, we investigate the lower bound on the space requirements of
typical state spaces occurring in model checking. We do this by modeling the
state spaces as an information stream. The values in this stream probabilistically
depend on previously seen values, in effect modeling the locality in the next-state
function. A simple application of Shannon’s information theory yields a lower
bound for the storage requirements of our “state space stream”.

Subsequently, in Sects. 3 and 4, we investigate whether this lower bound can
be reached in practice. To this end, we provide an implementation for the vis-
ited set V . A practical compressed data structure has as additional requirement
that the query time, the time it takes to lookup and insert individual state vec-
tors, is constant (or at least poly-logarithmic) in the length of the vector. The
technique suggested by the information theoretical model, i.e., maintaining dif-
ferences between successor states, does not satisfy this requirement. Therefore,
we utilize a binary tree in combination with a compact hash table. By analyzing
the best-case compression of this structure, we show that it indeed can reach
information theoretical lower bound (at least in theory).

According to the same best-case analysis, our implementation of the ‘Com-
pact Tree’ can compress up to tens of billions of large state descriptors (of tens
to hundreds of integers) down to only one 32-bit integer per state. Extensive
experimentation in Sect. 5 with diverse input models in four different input lan-
guages shows moreover that this compression is also reached in practice, and
with little computational overhead.

2 An Information Theoretical Lower Bound

The fact that state spaces have combinatorial values is related to the fact that
state generated by a model checker exhibit locality as we discussed in Sect. 1.
We will make no assumptions on the nature of the inputs, besides the locality of
state generation. In the current section, we will derive the information entropy—
which is equal to the minimum number of bits needed for its storage—of a single
state vector using basic notions from information theory.

264 A. Laarman

Information theory abstracts away from the computational nature of a pro-
gram by considering sender and receiver as black boxes that communicate data
(signals) via a channel. The goal for the sender is to encode the data as small
as possible, such that the receiver is still able to decode it back to the original.
The encoded size depends on the amount of entropy in the data. In the most
basic case, no statistical information is known about the data: each of X possible
messages has an equal probability of taking one of its values and the entropy H
is maximal: H(X) = log2(|X|)bit, i.e., the entropy directly corresponds to using
one fixed-sized (log2(|X|)) bit pattern for each possible message.

If more is known about the statistical nature of the information coming from
the sender, the entropy is lower as more elaborate encodings can be used to
reduce the number of bits needed per piece of information. A simple example is
when we take into account the character frequency of the English language for
encoding sentences. Assuming that certain characters are much more frequent,
a code of fewer bits can be used for them, while longer codes can be reserved
for infrequent characters. To calculate the entropy in this example, we need the
probability of occurrence p(x) for each character x ∈ X in the English language.
We can deduce this from analyzing a dictionary, or better a large corpus of texts.
The entropy then becomes: H(X) =

∑
x∈X −p(x) log2(p(x))

We apply the same principle now to state vectors. As data source, we use the
next-state function to compute new states, as we saw in Sect. 1:

next-state(〈⊥, 1, 4,⊥, 2, 6〉) = {〈⊥, 1,5,⊥, 2, 6〉 , . . .}

As a simplification, let states consist of k variables. By storing full states in
the queue Q, the predecessor state is always known in the model checker’s reach-
ability procedure (see s and s′ on line 6 in Algorithm 1). Hence, we can abstract
away from the one-to-many relation of the next-state function and instead view
the arriving states as a k-periodic stream of variable assignments:

〈
v0
0 , . . . v0

k−1

〉
,
〈
v1
0 , . . . v1

k−1

〉
, · · · ,

〈
vn−1
0 , . . . vn−1

k−1

〉

It thus makes sense to describe the probability that a variable holds a certain
value with respect to the same variable in the predecessor state: For each variable
vi
j with i ≥ 0 and 0 ≤ j < k − 1, both encoder and decoder can always look at

the corresponding variable vi−1
j in the predecessor to retrieve its previous value.

Since we are interested in establishing a lower bound, we may safely under-
approximate the number of variables changing value with respect to a state’s
predecessor. It makes sense to assume that only one variable changes value,
since with zero changes, the same state is generated (requiring no “new” space
in V). Hence, we take the following relative probabilities (see example Fig. 2):

p(vi
j
= vi−1

j) =
1
k

p(vi
j = vi−1

j) =
k − 1

k

Optimal Storage of Combinatorial State Spaces 265

〈⊥, 1, 4,⊥, 2, 6〉 〈⊥, 1,5,⊥, 2, 6〉 next-state next-state next-state

p(¬4) = 1
k

p(�) = k−1
k

Fig. 2. The states generated with the next-state function seen as a stream exhibiting
locality. To derive a lower bound, we assume that locality changes only one value in
each new vector, i.e., each vector that has to be stored. As there are k variables in the
vector, the resulting probability that a variable changes is 1/k. So the chance that it
remains the same with respect to the predecessor is k−1/k.

Let
〈
d0
0, . . . d

0
k−1

〉
,
〈
d1
0, . . . d

1
k−1

〉
, . . . ,

〈
dn−1
0 , . . . dn−1

k−1

〉
, be the domains of the

state slots. As a simplification, we assume that all domains have u bits, resulting
in y = 2u values. Therefore, there are y − 1 possible values for which variable vi

j

can differ from its predecessor vi−1
j . Therefore, the probability for one of these

other values x ∈ dij becomes p(x) = 1
k × 1

y−1 = 1
k(y−1) (this equal probability

distribution over the possible values results in higher entropy, but recall that we
do not make other assumptions on the nature of the inputs). Of course, there is
only one value assignment when the variable vi

j does not change, i.e., the val-
uation of the same variable in the predecessor state vi−1

j .2 This results in the
following definition of entropy per variable in the stream:

Hvar (vi
j) = −k − 1

k
log2

(
k − 1

k

)
+

y−1∑

n=1

− 1
k(y − 1)

log2

(
1

k(y − 1)

)

After some simplification, we can derive the state vector’s entropy:

Hstate(vi
0, . . . , v

i
k−1)=

k−1∑

j=0

Hvar (vi
j)=log2(y−1) + log2(k−1) + k log2

(
k

k−1

)

(1)

Theorem 1 (Information Entropy of States Exhibiting Locality). For
k > 1, the information entropy of state vectors in state spaces exhibiting locality,
abbreviated with Hstate , is bound by:

log2(y − 1) + log2(k − 1) + 1 ≤ Hstate ≤ log2(y) + log2(k) + 2 = u + log2(k) + 2

2 The assumption that predecessor is always known of course breaks down for the ini-
tial state ι. Our model does not account for the initial storage required for ι. However,
as the number of states |V | typically grows very large, this space is negligible.

266 A. Laarman

Proof. We first show that Hstate ≤ log2(y) + log2(k) + 2 = u + log2(k) + 2.
Simplification using log2(k − 1) ≤ log2(k) yields: (1 + 1

k−1)k ≤ 4. As for k = 2
(recall that k > 1), we have (1+ 1

k−1)k = 4 and, in the limit, we have limk→∞(1+
1

k−1)k = limk→∞(1 + 1
k)k = e, it can be seen that (1 + 1

k−1)k ≤ 4 holds, and
hence Hstate ≤ log2(y) + log2(k) + 2 = u + log2(k) + 2.

Now we show that log2(y − 1) + log2(k − 1) + 1 ≤ Hstate .
Simplification yields: 2 ≤ (1+ 1

k−1)k. Again for k = 2, we have (1+ 1
k−1)k = 4

and limk→∞(1 + 1
k−1)k = e, hence log2(y − 1) + log2(k − 1) + 1 ≤ Hstate . ��

Intuitively, this approximation makes sense since a single modification in each
new state vector can be encoded with solely the index of the changed variable,
in log(k) bits, plus its new value, in log(y) = u bits, plus some overhead to
accommodate cases where more than one variable changes value. This result
indicates that locality could allow us to store sets of arbitrarily long (k · u-bit)
state vectors using a small integer of less than u + log2(k) + 2 bits per vector.

In practice, this could mean that vectors of a thousand (1024) of byte-size
variables can be compressed to 20 bits each, which is only slightly more than
if these states were numbered consecutively—in which case the states would be
18 bits—but far less than 8192 bits required for storing the full state vectors.

3 An Analysis of Binary Tree Compression

The interpretation of the results in Sect. 2 suggests a trivial data structure to
reach the information theoretical lower bound: Simply store incremental differ-
ences between state vectors. However, as noted in the introduction, an incremen-
tal data structure like that does not provide the required efficiency for lookup
up operations (the reachability procedure in Algorithm 1 needs to determine
whether states have been visited before on Line 7).

The current section shows how many state vectors can be folded into a sin-
gle binary tree of hash tables to achieve sharing among subvectors, while also
achieving poly-logarithmic lookup times in the worst case. This is the first step
towards achieving the optimal compression from Sect. 2 in practice. Section 4
presents the second step. We focus here on the analysis of tree compression. For
tree algorithms, refer to [21].

The shape of the binary tree is fixed and depends only on k. Vectors are folded
in the tree until only tuples remain. These are stored in the leaves. Using hashing,
tuples receive a unique index which is propagated back upwards, forming again
new tuple in the tree nodes that can be hashed again. This process continues
until a tuple is stored in the root node, representing the entire vector.

Figure 3(a) demonstrates how the state 〈⊥, 1, 4,⊥, 2, 6〉 is folded into an
empty tree, which consists of k − 1 nodes of empty hash tables storing tuples.
The process starts at the root of the tree (a), and recursively visits children while
splitting the vector (b). When the leaves of the tree (colored gray) are reached,
they are filled with the values from the vector (c). The vectors inserted into the

Optimal Storage of Combinatorial State Spaces 267

(a) 〈⊥, 1, 4,⊥, 2, 6〉 (b) 〈⊥, 1, 4,⊥, 2, 6〉

〈⊥, 1, 4〉 〈⊥, 2, 6〉

〈⊥, 1〉 〈⊥, 2〉

(c) 〈⊥, 1, 4,⊥, 2, 6〉

4 6

⊥ 1 ⊥ 2

(d) 〈⊥, 1, 4,⊥, 2, 6〉
-1 -1

-1 4 -1 6

⊥ 1 ⊥ 2

(e) 〈⊥, 1, 5,⊥, 2, 6〉

-2 -1

-1 -1

-1 4

-1 5

-1 6

⊥ 1 ⊥ 2

(f) 〈⊥, 1, 4,⊥, 2, 7〉

-1 -2

-2 -1

-1 -1

-1 4

-1 5

-1 6

-1 7

⊥ 1 ⊥ 2

-2 -2

-1 -2

-2 -1

-1 -1

(g) 〈⊥, 1, 5,⊥, 2, 7〉

.

Fig. 3. Tree folding process for 〈⊥, 1, 4, ⊥, 2, 6〉 (in (a)–(d)), 〈⊥, 1, 5, ⊥, 2, 6〉 (in (e)),
〈⊥, 1, 5, ⊥, 2, 7〉 (in (f)) and 〈⊥, 1, 4, ⊥, 2, 7〉 (in (g)).

hash tables can be indexed (we use negative numbers to distinguish indices).
Indices are then propagated back upwards to fill the tree until the root (d).

Using a similar process, we can insert vector 〈⊥, 1,5,⊥, 2, 6〉 (e). The hash
tables in the tree nodes extended with index -2 storing -1 5 in the left child of
the root, while the root is extended with the tuple -2 -1 . Notice how sub-vector
sharing already occurs since the tuple -1 5 in the left child of the root points
again to 1 . In (f), the vector 〈⊥, 1, 4,⊥, 2, 7〉 is also added. In this case, only
the right child of the root needs to be extended, while the tuple -1 -2 is added
to the root.

With these three vectors in the tree (f), we can now easily add a new vector
〈⊥, 1, 5,⊥, 2, 7〉 by merely adding the tuple -2 -2 to the root of the tree (g). We
observe that an entire state vector (of length k in general) can be compressed to
a single tuple of integers in the root of the tree, provided that the sub-vectors
are already present in the left and the right sub-tree of the root.

The tree containing four vectors in Fig. 3 (g) uses 20 “places” (= 10 tuples in
tree nodes) to store four vectors with a total of 24 variables. The more vectors
are added, the more sharing can occur and the better the compression. We now
recall the worst-case and the best-case compression ratio for this tree database.
We make the following reasonable assumptions about their dimensions:

268 A. Laarman

– The respective database stores n = |V | state vectors of k u-bit variables.
– The size of tree tuples is 2w bits, and w bits is enough to store both a variable

valuation (in a leaf) or a tree reference (in a tree node), hence u ≤ w.
– Keys can be stored without overhead in tables.3

– k is a power of 2.4

u

u

u

u

k

n

hash table tree database

k − 1×

w w

≤ 2w (due to indexing)

Fig. 4. From left to right: a hash table and a tree table with their dimensions.

s0

.........

k

sk-1

log2(k)

k
2

k/2
√
n

k
4

k/4
√
n

n

Fig. 5. Optimal entries per tree node level.

Figure 4 provides an overview of the different data structures and the stated
assumptions about their dimensions.

To arrive at the worst-case compression scenario (Theorem 2), consider the
case where all states s ∈ V have k identical data values: V = {vk | v ∈
{1, . . . , n}}, where vk is a vector of length k: 〈v, . . . , v〉. No sharing can occur
between state vectors in the database, so for each state we store k − 1 tuples at
the tree nodes.

Theorem 2 ([4]). In the worst case, the tree database requires at most k − 1
tuple entries of 2w bits per state vector.

3 [21] explains in detail how this can be achieved.
4 Solely assumed to simplify the formulae below.

Optimal Storage of Combinatorial State Spaces 269

Table 1. Theoretical bounds for the compressed state sizes in the tree database and
in plain hash table storage. Note that while u ≤ w, often u, w are in the same ballpark.

Structure Worst case Best case

Hash table ku ku

Tree database 2kw − 2w 2w + εw

The best-case scenario (Theorem 3) is easy to comprehend from the effects
of a good combinatorial structure on the size of the parent tables in the tree. If
a certain tree table contains d tuple entries, and its sibling contains e entries,
than the parent can have up to d× e entries (all combinations, i.e. the Cartesian
product). In a tree that is perfectly balanced (d = e for all sibling tables), the
root node has n entries (1 per state), its children have

√
n entries, its children’s

children 4
√

n, etc. Figure 5 depicts this scenario.
Hence there are a total of n + 2

√
n + 4 4

√
n + . . . (log2(k)times) . . . + k/2 k/2

√
n

tuple entries. Dividing this series by n gives a series for the expected number of

tuple entries per state:
log2(k)−1∑

i=0

2i
2i√n
n . It is hard to see where this series exactly

converges, but Theorem 3 provides an upper bound. The theorem is a refinement
of the upper bound established in [4]. Note that the example above of a tree with
the four Bakery algorithm states already represents an optimal scenario, i.e., the
root table is the cross product of its children.

Theorem 3. In the best case and with k ≥ 8, the tree database requires less
than n + 2

√
n + 2 4

√
n(k − 4) tuple entries of 2w bits to store n vectors.

Proof. In the best case, the root tree table contains n entries and its children both
contain

√
n entries. The entries in the 4 children’s children of the root represent

vectors of size k/4. These 4 tree nodes contain each 4
√

n entries that each require
k/4 − 1 tuples taking the worst case according to Theorem 2 (hence also k ≥ 8).

��
Corollary 1 ([21]). In the best case, the total number of tuple entries l in all
descendants of root table is negligible (l � n), assuming a relatively large number
of vectors is stored: n � k2 � 1.

Corollary 2 ([21]). In the best case, the compressed state size approaches 2w.

Table 1 lists the achieved compressed sizes for states, as stored in a normal
hash table and a tree database. As a simplifying assumption, we take u to be
equal w, which can be the case if the tree is specifically adapted to accommodate
u bit references.

Performance. We conclude the current section with a note on the performance
of the tree database compared to a plain hash table. The tree trades ku bit vector
lookups for k − 1 of 2u-bit tuple lookups in its nodes. Apart from the additional

270 A. Laarman

data access required (ku − 2u), it seems like the increased random memory
accesses could cause poor behavior on modern CPUs. However, in the case of
good compressions, the lower tables in the tree typically contain fewer entries
which can more easily be cached, whereas effective caching of the large plain
vectors in hash table solutions is nigh impossible. Moreover, we can further use
locality to speed up tree lookups by keeping the tree of the predecessor state in
the search stack (Q), as explained in [21]. Figure 6 illustrates this.

〈⊥, 1, 4,⊥, 2, 6〉 〈⊥, 1,5,⊥, 2, 6〉
-1 -1

-1 4 -1 6

⊥ 1 ⊥ 2

〈⊥, 1, 4〉 〈⊥, 2, 6〉

〈⊥, 1〉 〈⊥, 2〉

-2 -1

-1 -1

-1 4

-1 5
×

×

Fig. 6. Incremental insertion of state 〈⊥, 1,5, ⊥, 2, 6〉. Only a small part of the tree
needs to be updated (dashed boxes), because the predecessor state 〈⊥, 1, 4, ⊥, 2, 6〉 is
used to lookup unchanged parts (the crosses in the tree of the successor state).

4 A Novel Compact Tree

The current section shows how a normal tree database can be extended to reach
the information theoretical optimum using a compact hash table.

Hash Tables and Compact Hash Tables. A hash table stores a subset of
a large universe U of keys and provides the means to lookup individual keys
in constant time. It uses a hash function to calculate an address h from the
unique key. The entire key is then stored at its hash or home location in a table
T (an array of buckets): T [h] ← key . Because typically |U | � |T |, multiple
keys may have the same hash location. These so-called collisions are handled by
calculating alternate hash locations and inserting the key there if empty. This
process is known as probing. For this reason, the entire key needs to be stored
in it; to distinguish which key is currently mapped to a bucket of T .

Observe, however, that in the case that |U | ≤ |T |, the table can be replaced
with a perfect hash function and a bit array. Compact hashing [8] generalizes this
idea for the case |U | > |T | (the table size is relatively close to the size of the uni-
verse). The compact table first splits a key k into a quotient q(k) and a remainder
rem(k), using a reversible operation, e.g., q(k) = k% |T | and rem(k) = k/ |T |.
When the key is x = �log2(|U |)� bits, the quotient m = �log2(|T |)� bits and the
remainder r = x − m bits. The quotient is used for addressing in T (like in a nor-
mal hash table). Now only the remainder is stored in the bucket. The complete key
can now be reconstructed from the value in T and the home location of the key.

Optimal Storage of Combinatorial State Spaces 271

Keys K
|K| ≤ |T | ≤ |U |

Universe U
|U | = 2x

k1

k2

k3

k4

r1

r3

r4

r2

q(k1)

q(k2)

q(k3)

q(k4)

∀i : ri = rem(ki)

∀i : ki = ri · |T | + q(ki)

Cleary table T

b = r + 3

2m

Fig. 7. Cleary table T storing keys K from universe U with three admin. bits/bucket.
(We omit that keys should be hashed, with invertible function, for good distribution.)

If, due to collisions, the key is not stored at its home location, additional infor-
mation is needed. Cleary [8] solved this problem with little overhead by imposing
an order on the keys in T and introducing three administration bits per bucket.
For details, see [8,12,28]. Because of the administration bits, the bucket size b of
compact hash tables is b = r + 3 bits. The ratio b/x can approach zero arbitrarily
close, yielding good compression. For instance, a compact table only needs 5 bits
per bucket to store 230 32-bit keys (Fig. 7).

Compact Tree Database. To create a compact tree database, we replace the
hash tables in the tree nodes with compact hash tables.

Let the tree references again be w bits; Tuples in a tree node table are 2w
bits. The tree node table’s universe therefore contains 22w tuples. However, tree
node tables cannot contain more than 2w entries, otherwise the entries cannot
be referenced (with w-bit indices) by parent tree node tables. As the tree’s root
table has no parent, it can contain up to 22w entries. Let o be the overcommit
of the tree root table Troot , i.e., log2(|Troot |) = 2w+o for 0 ≤ o ≤ w.

Overcommitting the root table in the tree can yield better reductions as we
will see. However, it also limits the subsets of the state universe that the tree can
store. Close-to-worst-case subsets might be rejected as the left or right child (2w

tuples max) of the root can grow full before the root does (2w+o tuples max).
We will only focus on replacing the root table with a compact hash table as it

dominates the tree’s memory usage in the optimal case according to Corollary 1.
The following parameters follow for using a compact hash tables for Troot :

– x = 2w, (universe bits)
– m = w + o, (quotient bits)
– r = 2w − w − o = w − o, and (remainder bits)
– b = 2w − w − o + 3 = w − o + 3. (bucket bits)

272 A. Laarman

Let the Compact Tree Database be a Tree Database with the root table
replaced by a compact hash table with the dimensions provided above, ergo:
n = |V | = |Troot | = 2w+o = 2m. Theorem 4 gives its best-case memory usage.

Theorem 4 (Compact Tree Best-Case). In the best case and with k ≥ 8,
the compact tree database requires less than CT opt � (w − o + 3)n + 4w

√
n +

4w 4
√

n(k − 4) bits to store n vectors.

Proof. According to Theorem 3, there are at most n + 2
√

n + 2 4
√

n(k − 4) tuples
in a tree with optimal storage. The root table contains n of these tuples, its
descendants use at most 2

√
n + 2 4

√
n(k − 4) bits. The n tuples in the root table

can now be stored using w−o+3 bits in the compact hash table buckets instead
of 2w bits, hence the root table uses n(w − o + 3) bits. ��

Finally, Theorem5 relates the compact tree compression results to our infor-
mation theoretical model in Sect. 2, under the reasonable assumptions that
8 ≤ k ≤ 4

√
n + 4. As a consequence, when the overcommit (o − 7 bits) fills

the gap of w − u bits between the sizes of references in the tree (w bits) and
the sizes of variables (u bits), the optimal compression of the compact tree is
approached. If o−7 > w−u, the compact tree can even surpass the compression
predicted by our information theoretical model. This is not surprising as the tree
with k = 2 reduces to a compact hash table, for which a different information
theoretical model holds [12,27].

Theorem 5. Let CT opt be the best-case compact-tree compressed vector sizes.
We have CT opt ≤ w−o+7

u Hstate provided 8 ≤ k ≤ 4
√

n + 4.

Proof. According to Theorem 1, nHstate ≤ un + log2(k)n + 2n bits. According
to Theorem 4, the compact tree database uses at most CT opt � (w − o + 3)n +
4w

√
n + 4w 4

√
n(k − 4) bits in the best case and with k ≥ 8.

We show that CT opt ≤ cHstate using lower bound Theorem1 and derive c.
After simplification using (u−1) ≤ log2(y−1) and 0 ≤ log2(k−1), we obtain:

4w/
√

n+4w(k−4)/n3/4 ≤ cu−w+o−3. As the premise ensures that n ≥ (k−4)4,
this can be further simplified to 4w/

√
n+4w 4

√
n/n3/4 ≤ cu−w + o− 3 and then

to 8w/
√

n ≤ cu − w + o − 3.
In an intermediate step, we show that w/

√
n ≤ 1/2 under the premises

n ≥ (k − 4)4 and k ≥ 8. We have w ≤ log2(n) in order to accommodate the
worst-case compression (see Theorem 2 in Sect. 4). Therefore, we can also prove
log2(n)/

√
n ≤ 1/2. Implied by the two earlier assumptions from the premise, we

have n ≥ 256 for which the inequality indeed holds.
With w/

√
n ≤ 1/2, the above gives 4 ≤ cu − w + o − 3 and w−o+7

u ≤ c.
Therefore, we obtain CT opt ≤ w−o+7

u Hstate , provided that n ≥ (k − 4)4. ��

5 Experiments

We implemented the Compact Tree in the model checker LTSmin [22]. This
implementation is based on two concurrent data structures: a tree database [21]

Optimal Storage of Combinatorial State Spaces 273

and a compact hash table [28], based on Cleary’s approach [8]. The parameters
of the Compact Tree Table in this implementation are (for details see [23]):

– w = 30 bits (The internal tree references are 30 bit)
– u = 30 bits (The state variables can be 30-bit integers, often less is used)
– o = 2 bits (The root table fits a maximum of 232 elements)

LTSmin is a language-independent model checker based on a partitioned
next-state interface [18]. We exploit this property to investigate the compression
ratios of the Compact Tree for four different input types: DVE models written
for the DiVinE model checker [1], Promela models written for the spin model
checker [15], process algebra models written for the mCRL2 model checker [9],
and Petri net models from the MCC contest [20]. Table 2 provides an overview
of the models in each of these input formats and a justification for the selection
criterion used. In total, over 400 models were used in these benchmarks.

Table 2. Input languages and model selection criteria

DVE All 267 benchmarks from the BEEM database [24] that completed within
one hour in (sequential) LTSmin are selected. (This selection criterium is
more stringent than for the other languages, because the set of models is
large and the presence of differently sized versions of the same type of
model still ensures that the selection is varied.)

Promela All models currently supported by LTSmin [2] with the same state count
as in spin are selected. This includes case studies of the GARP, the i-,
x509 and BRP protocols

Petri net All models from the MCC 2016 competition [20] that are also considered
by Jensen et al. [16] and complete within 10 h in (sequential) LTSmin.
(Again this ensures a varied selection, since Jensen et al. [16] only feature
instances that resulted in best-case, worst-case and average-case
compression using a Trie data structure.)

mCRL2 We selected all industrial case studies from the mCRL2 toolset that
completed within 10 h in (sequential) LTSmin

All experiments ran on a machine with 128 GB memory and 48 cores: four
AMD OpteronTM 6168 processors with 12 cores each.

Compression Ratio. Compressed state sizes of our implementation can
roughly approach w−2+3 = 31 bits or ±4 Bytes by Corollary 1 and Theorem 4.
We first investigate whether this compression is actually reached in practice.
Figure 8 plots the compressed sizes of the state vectors against the length of the
uncompressed vector. We see that for some models the optimal compression is
indeed reached. The average compression is 7.88 Bytes per state. The fact that
there is little correlation with the vector length confirms that the compressed
size indeed tends to be constant and vectors of up to 1000 Bytes are compressed

274 A. Laarman

to just above 4 Bytes. Figure 9 furthermore reveals that good compression corre-
lates positively with the state space size, which can be expected as the tree can
exhibit more sharing.

Only for Petri nets and for DVE models, we find models that exhibit worse
compression (between 10 and 15 Bytes per state) even when the state space
is large. However, we observed that in these cases, the vector length k is also
large, e.g., the two Petri net instances with a compressed size of around 12 have
k > 400. Based on some earlier informal experiments, we believe that with some
variable reordering, these compression might very well be improved to reach the
optimum. Thus far, however, we were unable to derive a reordering heuristic
that consistently improves the compression.

Runtime Performance and Parallel Scalability. In the introduction, we
mentioned the requirement that a database visited set ideally features constant
lookup times, like in a normal hash table. To this end, we compare the runtime of
the DVE models with the spin model checker; a model checker known for its fast
state generator.5 Figure 10 confirms that the runtimes of LTSmin with Compact
Tree are sequentially on par with those of spin, and often even better. We
attribute this performance mainly to the incremental vector insertion discussed
in Sect. 3 (see Fig. 6). Based on the MCC 2016 [20] results, we believe that
LTSmin’s performance is on par with other Petri net tools as well.

20 50 100 200 500 1000

5
10

15
20

25

State length (Bytes)

By
te

s/
st

at
e

(C
om

pa
ct

 T
re

e)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
avg=6.89
min=4B

Fig. 8. Compressed sizes in Compact
Tree for all benchmarks against the length
k of the uncompressed state vector.

1e+04 1e+06 1e+08 1e+10

5
10

15
20

25

Number of states

By
te

s/
st

at
e

(C
om

pa
ct

 T
re

e)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
avg=6.89
min=4B

Fig. 9. Compressed sizes in Compact
Tree for all benchmarks against the size
n of state space.

5 The DVE models are translated to Promela and we only selected those (76/267)
which preserved state count. This comparison can be examined interactively at
http://fmt.ewi.utwente.nl/tools/ltsmin/performance/ (select LTSmin-cleary-dfs).

http://fmt.ewi.utwente.nl/tools/ltsmin/performance/

Optimal Storage of Combinatorial State Spaces 275

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3

SPIN (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

dve
promela
equilibrium

Fig. 10. Sequential runtimes of LTSmin
with Compact Tree and spin with opti-
mal settings (as reported in [2]) on (trans-
lated) DVE models and Promela models.

1e−02 1e+00 1e+02 1e+04

1e
−0

2
1e

+0
0

1e
+0

2
1e

+0
4

Compact Tree 1x (sec)

C
on

cu
rre

nt
 C

om
pa

ct
 T

re
e

48
x

(s
ec

)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
48x speedup
equilibrium

Fig. 11. Runtimes, sequentially and with
48 threads, of LTSmin with compact tree
on all models: DVE, Promela, process
algebra and Petri nets.

The measured performance first of all confirms that the Compact Tree satis-
fies its requirements. Secondly, it provides a good basis for the analysis of parallel
scalability (if we had chosen to implement the Compact Tree in a slow scripting
language, the slowdown would yield “free” speedup). Figure 11 compares the
sequential runtimes to the runtimes with 48 threads. The measured speedup
often surpasses 40x, especially when the runtimes are longer and there is more
work to parallelize. Speedups are good regardless of input language.

Comparison with Other Data Structures. spin’s collapse compression uses
the structure in the model to fold vectors, similar as in tree compression. The
lower bounds reported in the current paper cannot be reached with collapse
due to the n-ary tree and the two levels. Figures 12 and 13 show additional
experiments that show an order of magnitude difference in practice.

Jensen et al. [16] propose a Trie for storing state vectors. Tries compress
vectors by ensuring sharing between prefixes. BDDs [6] also store state vectors
efficiently, however, Jensen et al. [17] figure them too slow for state space explo-
ration. We compared both Tries and BDDs with the Compact Tree and found
that (1) the Trie’s compression is less than the Compact Tree though sometimes
faster (Figs. 14 and 15), and (2) that BDD’s are not always prohibitively expen-
sive with LTSmin (because it learns the transition relation [18]), but nonetheless
hard to compare to Tree Compression (Figs. 17 and 16).

276 A. Laarman

●

● ● ● ●●

●

●

●
●

●●
●

●

●

●
●

●● ●

●

●

●●

●

● ● ●

●

●

●●
●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●
●

● ● ●

●

● ● ● ●

1e+03 1e+05 1e+07

0
50

10
0

15
0

Number of states

C
om

pr
es

si
on

 (B
yt

es
 /

st
at

e)

● SPIN
Tree

Fig. 12. Compressed sizes per state of
LTSmin with Compact Tree and spin
with collapse compression [14] on DVE
models.

5e−01 5e+00 5e+01 5e+02 5e+03

1e
−0

3
1e

−0
1

1e
+0

1

SPIN (MB)
C

om
pa

ct
 T

re
e

(M
B)

Fig. 13. Absolute memory use of LTSmin
with Compact Tree and spin with collapse
compression [14] on DVE models.

●

●● ●

●

●

●

●

●

●●

●

●

●
●

1e+06 5e+06 2e+07 1e+08

20
40

60
80

Number of states

C
om

pr
es

si
on

 (B
yt

es
 /

st
at

e)

● Trie
Compact Tree (petrinet)

Fig. 14. Memory use per state of LTSmin
with Compact Tree and Trie from [16] on
Petri net models.

50 200 500 2000 10000

50
20

0
50

0
20

00
10

00
0

Trie (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

petrinet
equilibrium

Fig. 15. Runtime (sequential) of LTSmin
with Compact Tree and Trie from [16] on
Petri net models.

Optimal Storage of Combinatorial State Spaces 277

●●

●

●

●●

●

1e−01 1e+01 1e+03

1e
−0

1
1e

+0
1

1e
+0

3

LTSmin with BDD (Bytes per state)

C
om

pa
ct

 T
re

e
(B

yt
es

 p
er

 s
ta

te
) ●

dve
mcrl2
petrinet
promela
min=4B
equilibrium

Fig. 16. Memory use per state of LTSmin
with Compact Tree and BDD [3] on
mCRL2, Promela and Petri net models.

●●

●

●

●

●
●

1e−01 1e+01 1e+03

1e
−0

1
1e

+0
1

1e
+0

3

LTSmin with BDD (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

●

dve
mcrl2
petrinet
promela
timeout (10h)
equil.

Fig. 17. Runtime (sequential) of LTSmin
with Compact Tree and BDD [3] on
mCRL2, Promela and Petri net models.

6 Discussion and Conclusion

The tree compression method discussed here is a more general variant of recur-
sive indexing [14], which only breaks down processes into separate tables. Hash
compaction [25] compresses states to an integer-sized hash, but this lossy tech-
nique becomes redundant with the compact tree database. Bloom filters [13]
still present a worthwhile lossy alternative using only a few bits per state, but
of course abandon soundness when applied in model checking.

Evangelista et al. [11] report on a hash table storing incremental differences of
successor states (similar to the incremental data structure discussed in Sect. 3).
Their partial vectors take 2u + log(E) bits, where E is the set of (deterministic)
actions in the model. Defying our requirement of poly-logarithmic for lookups,
Evangelista et al. reconstruct full states by reconstructing all ancestors.

A Binary Decision Diagram (BDD) [6] can store an astronomically sized
state set using only constant memory (the true leaf). Our information theoretical
model suggests however that compressed sizes are merely linear in the number
of states (and constant in the length of the state vector). We can explain this
with the fact that we only assume locality about inputs. Compression in BDDs,
on the other hand, depends on the entire state space. Therefore, we would have
to assume structural, global properties to describe the non-linear compression of
BDDs (e.g. the input’s decomposition into processes, symmetries, etc.).

Much like in BDDs [5], the variable ordering influences the number of nodes
in a tree table and thus the compression, as mentioned in Sect. 1. Consider the
vector set {i ,i ,j ,j | i, j ∈ [1 . . . N]}: Only the root node in a compact tree will
contain N2 entries, while the leaf nodes contain N entries. On the other hand, we
have no such luck for the set {i ,j ,i ,j | i, j ∈ [1 . . . N]}. Preliminary research [29]

278 A. Laarman

revealed that the tree’s optimum can be reached in most cases for DVE models,
but we were unable to find a heuristic to consistently realize this.

Acknowledgements. The author thanks Yakir Vizel for promptly pointing out the
natural number as a limit and Tim van Erven for a fruitful discussion.

References

1. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai,
P., Štill, V.: Model checking of C and C++ with DIVINE 4. In: D’Souza, D.,
Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 201–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 14

2. van der Berg, F., Laarman, A.: SpinS: extending LTSmin with Promela through
SpinJa. ENTCS 296, 95–105 (2013)

3. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 31

4. Blom, S., Lisser, B., van de Pol, J., Weber, M.: A database approach to distributed
state space generation. ENTCS 198(1), 17–32 (2008)

5. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput. 45, 993–1002 (1996)

6. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS, pp. 428–439 (1990)

8. Cleary, J.G.: Compact hash tables using bidirectional linear probing. IEEE Trans.
Comput. C-33(9), 828–834 (1984)

9. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
199–213. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 15

10. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31980-1 25

11. Evangelista, S., Kristensen, L.M., Petrucci, L.: Multi-threaded explicit state space
exploration with state reconstruction. In: Van Hung, D., Ogawa, M. (eds.) ATVA
2013. LNCS, vol. 8172, pp. 208–223. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-02444-8 16

12. Geldenhuys, J., Valmari, A.: A nearly memory-optimal data structure for sets and
mappings. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp.
136–150. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 9

13. Holzmann, G.J.: An analysis of bitstate hashing. In: Dembiński, P., Średniawa, M.
(eds.) PSTV 1995. IFIPAICT, pp. 301–314. Springer, Boston (1996). https://doi.
org/10.1007/978-0-387-34892-6 19

14. Holzmann, G.J.: State compression in SPIN: recursive indexing and compression
training runs. In: Proceedings of 3rd International SPIN Workshop (1997)

15. Holzmann, G.J.: The model checker SPIN. IEEE TSE 23, 279–295 (1997)

https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-540-31980-1_25
https://doi.org/10.1007/978-3-319-02444-8_16
https://doi.org/10.1007/978-3-319-02444-8_16
https://doi.org/10.1007/3-540-44829-2_9
https://doi.org/10.1007/978-0-387-34892-6_19
https://doi.org/10.1007/978-0-387-34892-6_19

Optimal Storage of Combinatorial State Spaces 279

16. Jensen, P.G., Larsen, K.G., Srba, J.: PTrie: data structure for compressing and
storing sets via prefix sharing. In: Hung, D., Kapur, D. (eds.) ICTAC 2017. LNCS,
vol. 10580, pp. 248–265. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-67729-3 15

17. Jensen, P.G., Larsen, K.G., Srba, J., Sørensen, M.G., Taankvist, J.H.: Memory
efficient data structures for explicit verification of timed systems. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 307–312. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06200-6 26

18. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

19. Katz, S., Peled, D.: An efficient verification method for parallel and distributed
programs. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1988.
LNCS, vol. 354, pp. 489–507. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0013032

20. Kordon, F., et al.: Complete results for the 2016 edition of the model checking
contest, June 2016. http://mcc.lip6.fr/2016/results.php

21. Laarman, A., van de Pol, J., Weber, M.: Parallel recursive state compression for
free. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp. 38–56.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22306-8 4

22. Laarman, A., van de Pol, J., Weber, M.: Multi-core LTSmin: marrying modularity
and scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 40

23. Laarman, A.: Scalable multi-core model checking. Ph.D. thesis, UTwente (2014)
24. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,

Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6 17

25. Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60385-9 13

26. Valmari, A.: Error detection by reduced reachability graph generation. In: APN,
pp. 95–112 (1988)

27. Valmari, A.: What the small Rubik’s cube taught me about data structures, infor-
mation theory, and randomisation. STTT 8(3), 180–194 (2006)

28. van der Vegt, S., Laarman, A.: A parallel compact hash table. In: Kotásek, Z.,
Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011.
LNCS, vol. 7119, pp. 191–204. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-25929-6 18

29. de Vries, S.H.S.: Optimizing state vector compression for program verification by
reordering program variables. In: 21st Twente SConIT, vol. 21, 23 June 2014

30. Wahl, T., Donaldson, A.: Replication and abstraction: symmetry in automated
formal verification. Symmetry 2(2), 799–847 (2010)

https://doi.org/10.1007/978-3-319-67729-3_15
https://doi.org/10.1007/978-3-319-67729-3_15
https://doi.org/10.1007/978-3-319-06200-6_26
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/BFb0013032
https://doi.org/10.1007/BFb0013032
http://mcc.lip6.fr/2016/results.php
https://doi.org/10.1007/978-3-642-22306-8_4
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/3-540-60385-9_13
https://doi.org/10.1007/978-3-642-25929-6_18
https://doi.org/10.1007/978-3-642-25929-6_18

	Optimal Storage of Combinatorial State Spaces
	1 Introduction
	2 An Information Theoretical Lower Bound
	3 An Analysis of Binary Tree Compression
	4 A Novel Compact Tree
	5 Experiments
	6 Discussion and Conclusion
	References

