
Strategy Synthesis for Autonomous
Agents Using PRISM

Ruben Giaquinta1, Ruth Hoffmann3, Murray Ireland2, Alice Miller1,
and Gethin Norman1(B)

1 School of Computing Science, University of Glasgow, Glasgow, UK
gethin.norman@glasgow.ac.uk

2 School of Engineering, University of Glasgow, Glasgow, UK
3 School of Computer Science, University of St Andrews, St Andrews, UK

Abstract. We present probabilistic models for autonomous agent search
and retrieve missions derived from Simulink models for an Unmanned
Aerial Vehicle (UAV) and show how probabilistic model checking and
the probabilistic model checker PRISM can be used for optimal controller
generation. We introduce a sequence of scenarios relevant to UAVs and
other autonomous agents such as underwater and ground vehicles. For
each scenario we demonstrate how it can be modelled using the PRISM
language, give model checking statistics and present the synthesised opti-
mal controllers. We conclude with a discussion of the limitations when
using probabilistic model checking and PRISM in this context and what
steps can be taken to overcome them. In addition, we consider how the
controllers can be returned to the UAV and adapted for use on larger
search areas.

1 Introduction

Autonomous vehicles such as unmanned aerial vehicles, autonomous underwater
vehicles and autonomous ground vehicles have widespread application in both
military and commercial contexts. Investment in autonomous systems is growing
rapidly, the UK government is investing £100 million into getting driverless cars
on the road, while the worldwide market for commercial applications of drone
technology has been valued at over $127 billion. For example, the U.S. Office of
Naval Research has demonstrated how a swarm of unmanned boats can help to
patrol harbours, the Defence Advanced Research Projects Agency has launched
a trial of the world’s largest autonomous ship and NASA has deployed Mars
Rovers which, on receipt of instructions to travel to a specific location, must
decide on a safe route.

Understandably, there are concerns about safety and reliability of
autonomous vehicles. Recently researchers exposed design flaws in drones by
deliberately hacking their software and causing them to crash [34], and US reg-
ulators discovered that a driver was killed while using the autopilot feature of
a Tesla car due to the failure of the sensor system to detect another vehicle.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 220–236, 2018.
https://doi.org/10.1007/978-3-319-77935-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_16&domain=pdf

Strategy Synthesis for Autonomous Agents Using PRISM 221

Incidents like these and the lack of design and analysis tools to prove system
compliance under all nominal and adverse operating conditions are preventing
regulatory bodies from issuing clear certification guidelines.

Autonomous agents almost always follow a variation of the same core process:
perception, cognition and actuation. Perception is achieved through the system
sensor suite, giving the agent a picture of the current environmental state. Actu-
ation governs how the agent interacts with the environment and cognition is
where the agent decides at run-time what goals to set and how to achieve them.
A critical question is how to implement this decision-making process. Current
best-practice uses a software controller that pre-determines the behaviour of the
agent under a given set of internal parameter values and environmental condi-
tions. However, can controllers be generated automatically and in such a way
as to ensure that the resulting behaviour is safe, efficient and secure under all
conceivable operational scenarios and system failures?

Guaranteeing reliability of autonomous controllers using testing alone is
infeasible, e.g. [15] concludes that autonomous vehicles would need to be driven
hundreds of billions of miles to demonstrate their reliability and calls for the
development of innovative methods for the demonstration of safety and reliabil-
ity that could reduce the infeasible burden of testing. Formal verification offers
hope in this direction having been used both for controller synthesis and for ver-
ifying the reliability and safety of autonomous controller logic. In this paper we
investigate the use of probabilistic model checking and the probabilistic model
checker PRISM for automatic controller generation. Our ultimate goal is to
develop software, based on the techniques described here that can be embedded
into controller software to generate adaptable controllers that are verified to be
optimal, safe and reliable by design. Specifically we:

1. describe PRISM models for a suite of scenarios inspired by situations faced
by a range of autonomous agents;

2. present synthesised (optimal) controllers for the different scenarios and exam-
ine their performance;

3. discuss the limitations of this approach and the next steps to overcome them.

Related Work. There has been significant recent work using Markov decision
processes, temporal logic specifications and model checking for generating con-
trollers of autonomous systems. These works differ in the temporal logic specifica-
tions used and include approaches using the branching time logic PCTL [22,36],
linear time temporal logic LTL [7,35], metric temporal logic [11], rewards [30]
and multi-objective queries [21,23]. Also, both partially observable Markov deci-
sion processes, e.g. [29,31], and stochastic games, e.g. [8,32] have been used in
conjunction with temporal logic for controller synthesis of autonomous agents.

Formal verification of robot missions is considered in [27], however here the
focus is on evaluating existing controllers. Similarly, in [6] model checking is used
to verify the decision making aspect of autonomous systems. Model checking has
also been used for analysing the behaviour of groups or swarms of autonomous
agents including: agents in a pursuer-evader [2] scenario, foraging swarms [18,24],

222 R. Giaquinta et al.

co-operative missions [13] and surveillance and convoy missions [5]. Concerning
using formal verification to obtain certification of correctness, [33] uses (non-
probabilistic) model checking to verify unmanned aircraft system controllers
against the Civil Aviation Authority’s regulations.

In previous work [12] we have presented a PRISM model of a UAV with a
fixed controller searching for objects in a defined, gridded area following a fixed
path. The real parameters are derived from a simulation model and the process
of property verification using PRISM is compared to Monte Carlo simulation.
This model is described in Scenario 1 (see Sect. 3).

2 Background

We now introduce Markov decision processes (MDPs) and probabilistic model
checking of MDPs in PRISM. For any finite set X, let Dist(X) denote the set
of discrete probability distributions X.

Markov Decision Processes. MDPs model discrete time systems that exhibit
both nondeterministic and probabilistic behaviour.

Definition 1. A Markov decision process (MDP) is a tuple M = (S, s̄, A, P)
where: S is a finite set of states and s̄ ∈ S is an initial state; A is a finite set
of actions; P : S × A → Dist(S) is a (partial) probabilistic transition function,
mapping state-action pairs to probability distributions over S.

In a state s of an MDP M, there is a nondeterministic choice between the available
actions in s. These available actions, denoted A(s), are the actions for which
P (s, a) is defined. If action a is selected, then the successor state is chosen
probabilistically, where the probability of moving to state s′ equals P (s, a)(s′).
An execution of an MDP is a path corresponding to a sequence of transitions of
the form π = s0

a0−→ s1
a1−→ · · · , where ai ∈ A(si) and P (si, ai)(si+1) > 0 for all

i≥0. Let FPathsM denote the finite paths of M and last(π) denote the last state
of any finite path π.

Reward structures model quantitative measures of an MDP which are accu-
mulated when an action is chosen in a state.

Definition 2. A reward structure for an MDP M = (S, s̄, A, P) is a function
of the form R : S × A → R≥0.

To reason about the behaviour of an MDP, we need to introduce the definition
of strategies (also called policies, adversaries and schedulers). A strategy resolves
the nondeterminism in an MDP by selecting the action to perform at any stage
of execution. The choice can depend on the history and can be made randomly.

Definition 3. A strategy of an MDP M is a function σ : FPathsM→Dist(A)
such that σ(π)(a) > 0 only if a ∈ A(last(π)).

Under a strategy σ of an MDP M, the nondeterminism of M is resolved, and hence
its behaviour is fully probabilistic. Formally, it corresponds to an (infinite) state
discrete time Markov chain (DTMC) and we can use a standard construction on
DTMCs [17] to build a probability measure over the infinite paths of M.

Strategy Synthesis for Autonomous Agents Using PRISM 223

Property Specifications. Two standard classes of properties for MDPs are
probabilistic and expected reachability. For a given state predicate, these corre-
spond to the probability of eventually reaching a state satisfying the predicate
and the expected reward accumulated before doing so. The value of these prop-
erties depends on the resolution of the nondeterminism, i.e. the strategy, and we
therefore consider optimal (minimum and maximum) values over all strategies.

The Probabilistic Model Checker PRISM. PRISM [19] is a probabilistic
model checker that allows for the analysis of a number of probabilistic models
including MDPs. Models in PRISM are expressed using a high level modelling
language based on the Reactive Modules formalism [1]. A model consists of a
number of interacting modules. Each module consists of a number of finite-valued
variables corresponding to the module’s state and the transitions of a module
are defined by a number of guarded commands of the form:

[<action>] <guard> → <prob> : <update> + · · · + <prob> : <update>

A command consists of an (optional) action label, guard and probabilistic choice
between updates. A guard is a predicate over variables, while an update specifies,
using primed variables, how the variables of the module are updated when the
command is taken. Interaction between modules is through guards (as guards
can refer to variables of all modules) and action labels which allow modules to
synchronise. Support for rewards are through reward items of the form:

[<action>] <guard> : <reward>;

representing the reward accumulated when taking an action in a state satisfying
the guard.

PRISM supports the computation of an optimal probabilistic and expected
reachability values, for details on how these values are computed and the tem-
poral logic that PRISM supports, see [10]. PRISM can also synthesise strategies
achieving such optimal values. Such a strategy is represented as a list of (opti-
mal) action choices for each state of the MDP under study, this list can then
be fed back into PRISM to generate the underlying DTMC, and hence allow
further analysis of the strategy. For details on strategy synthesis see [20].

3 Scenarios

We describe a number of scenarios relevant for autonomous agents and how
PRISM has been used for verification and controller synthesis. Each scenario is
inspired by realistic situations for a range of autonomous vehicle applications,
e.g. border patrol using autonomous vehicles, exploration of unexplored terrain,
and search and rescue operations. However, in each case we present a simplified
scenario involving an autonomous agent involving search within a defined area.
The PRISM model and property files for each scenario are available from [37].

224 R. Giaquinta et al.

Scenario 1: Fixed Controller. In [12] we introduced abstract PRISM models
representing an agent searching for and collecting objects randomly placed in a
grid. The models are based on a physical system, namely a quadrotor UAV in
operation inside a small, constrained environment in the University of Glasgow’s
Micro Air Systems (MAST) Laboratory, a cuboidal flight space with a motion
capture system for tracking UAVs. Continuous Simulink simulation models have
been developed so that the effect of altering various aspects (including the search
strategy) can be investigated via Monte Carlo simulation [14]. The purpose was
to investigate the viability of a framework for analysing autonomous systems
using probabilistic model checking of an abstract model where quantitative data
for abstract actions is derived from small-scale simulation models.

The controller in this scenario is fixed and specifies that the agent searches
the grid in a predetermined fashion, starting at the bottom left cell of the grid,
travelling right along the bottom row to the bottom right cell, then left along
the second row, and so on. The controller also specifies that if an object is found
during search, then the agent attempts to pick up the object and, if successful,
transports it to a specified deposit site. Whenever the agent’s battery level falls
below a specified threshold, it returns to the base to recharge and once the
battery is charged resumes the search. In both cases, search resumes from the
previous cell visited, until all objects have been found or because the search can
not continue (e.g. due to an actuator fault or the mission time limit has been
reached).

We used MDP models and PRISM to analyse this scenario with a grid size of
7× 4 and either 2 or 3 objects. Although the controller is fixed, nondeterminism
is used to represent uncertainty in the environment, specifically the time taken
for the agent to execute actions, which were obtained from our small-scale sim-
ulation models. The PRISM models contain modules for the agent’s behaviour,
movement, time and battery level, and objects. To reduce the size of the state-
space, rather than encoding the random placement of the objects within the
model, we develop a model were objects have fixed coordinates and consider
each possible placement of the objects. For example, in the case of two objects
there are 378 different possible placements for the objects and each model with
fixed placement has approximately 200,000 states. To obtain quantitative ver-
ification results for the model where objects are randomly placed we perform
multiple verification runs by considering each possible placement of the objects
and take an average.

In the remainder of the section we synthesise optimal controllers for differ-
ent scenarios with respect to the mission time. We achieve this using PRISM
to encode the choices of the controller using nondeterminism. We remove the
nondeterminism corresponding to environmental factors, e.g. the time taken to
perform actions as these are not choices of the controller. By moving to stochastic
games [28] we could separate the controller’s choices from that of the environ-
ment. However, implementations of probabilistic model checking for such games,
e.g. PRISM-games [4], do not currently scale to the size of models we consider.

Strategy Synthesis for Autonomous Agents Using PRISM 225

Scenario 2: Control of Recharging. In this scenario we introduce choice as
to when the battery is recharged. More precisely, recharging is no longer enforced
when the battery reaches a pre-determined lower threshold as in Scenario 1, but
can be performed nondeterministically at any time during search. We assume
that positions of the objects are fixed and the agent explores the grid in the
pre-determined fashion described for Scenario 1 above.

Table 1. Scenario 2: performance of optimal and Scenario 1 controllers (7 × 4 grid).

Base Depot Object 1 Object 2 Expected mission

time

Expected no. of

battery charges

Probability of

mission success

Scenario 1 Optimal Scenario 1 Optimal Scenario 1 Optimal

(0,0) (2,2) (3,3) (4,3) 285.8 138.0 2.301 2.021 0.949 0.975

(0,0) (2,2) (1,1) (4,3) 252.2 147.3 2.181 1.002 0.956 0.975

(0,0) (6,3) (2,1) (4,2) 292.4 178.5 2.364 1.056 0.948 0.970

(1,2) (6,3) (3,0) (5,1) 212.4 83.93 1.015 0.203 0.962 0.987

(3,2) (6,3) (2,1) (4,2) 218.9 117.3 1.127 1.032 0.960 0.980

(6,3) (0,0) (2,1) (4,2) 221.4 119.5 1.090 1.021 0.960 0.978

We use PRISM to find the minimum expected mission time and synthesise an
optimal strategy that achieves this minimum for a suite of models involving two
objects, varying the positions of the base, depot and objects. The synthesised
strategies demonstrate that the optimal choice is to recharge when close to base,
rather than waiting for the battery level to reach a threshold level. The per-
formance of the synthesised optimal controller is compared to that of the fixed
controller used in Scenario 1 (which recharges when the battery level reaches a
threshold) in Table 1. The results demonstrate that the synthesised controller
offers a significant performance improvement over the controller of Scenario 1.
We see the expected mission time drastically reduces, the probability of a suc-
cessful mission increases and the expected number of battery recharges decreases.

Scenario 3: Control of Search. We now generalise Scenario 2 to include
control of the search path as well as recharging. Since allowing freedom of move-
ment increases the complexity of our model, we focus on the search mode of the
agent and abstract other modes (including take-off, hover and grab, see [14] for
details).

Having the positions of the objects as constants in the PRISM model is not
feasible if our aim is to generate optimal and realistic controllers as this means
that the agent knows the locations of the objects it is searching for. In such a sit-
uation, the optimal search strategy is clear: go directly to the objects and collect
them. We initially considered using partially observable MDPs (POMDPs) and
the recent extension of PRISM [26]. Using POMDPs we can hide the positions
of the objects and synthesise an optimal controller, e.g. one that minimises the

226 R. Giaquinta et al.

// number of unexplored cells
formula n = gp0+gp1+gp2+gp3+gp4+gp5+gp6+gp7+gp8+gp9+gp10+gp11 ;
// probability of finding object in an unexplored cell
formula p = objs/n;

Fig. 1. PRISM code: probability of finding an object in an unexplored cell.

// move east
[east] s=0 & gp=0 & gp0=0 & posx<X → (posx ′=posx+1);
[east] s=0 & gp=0 & gp0=1 & posx<X & p≤1 → p : (s′=1)&(posx ′=posx+1)&(gp0 ′=0)

+ 1−p : (posx ′=posx+1)&(gp0 ′=0);
// move west
[west] s=0 & gp=0 & gp0=0 & posx>0 → (posx ′=posx−1);
[west] s=0 & gp=0 & gp0=1 & posx>0 & p≤1 → p : (s′=1)&(posx ′=posx−1)&(gp0 ′=0)

+ 1−p : (posx ′=posx−1)&(gp0 ′=0);
// move north
[north] s=0 & gp=0 & gp0=0 & posy<Y → (posy′=posy+1);
[north] s=0 & gp=0 & gp0=1 & posy<Y & p≤1 → p : (s′=1)&(posy′=posy+1)&(gp0 ′=0)

+ 1−p : (posy′=posy+1)&(gp0 ′=0);
// move south
[south] s=0 & gp=0 & gp0=0 & posy>0 → (posy′=posy−1);
[south] s=0 & gp=0 & gp0=1 & posy>0 & p≤1 → p : (s′=1)&(posy′=posy−1)&(gp0 ′=0)

+ 1−p : (posy′=posy−1)&(gp0 ′=0);

Fig. 2. PRISM commands: searching cell with gridpoint 0.

expected mission time. However, we found the prototype implementation did
not scale as it implements only basic analysis techniques.

Subsequently we investigated modelling hidden objects with MDPs. This was
found to be feasible by monitoring the unexplored cells and using the fact that
the probability of an object being found in a cell that has not been explored is
obj/n were obj is the number of objects still to be found and n the number of
unexplored cells. In an M × N grid we associate the cell with coordinates (x, y)
the integer (or gridpoint) x+y ·M . Before we give the PRISM code for an agent
searching, we list the variables, formulae and constants used in the code:

– variable s is the state of the agent taking value 0 when searching and 1 when
an object has been found;

– variables posx and posy are the current coordinates of the agent and formula
gp returns the corresponding gridpoint;

– constants X and Y represent the grid size, where X = M −1 and Y = N −1;
– variable gpi for 0 ≤ i ≤ (X +1)×(Y +1)−1 equals 1 when cell with gridpoint

i has not been visited, and 0 otherwise;
– variable objs represents the number of objects yet to be found.

We assume the base and depot are fixed and located at position (0, 0).
Figures 1 and 2 give the PRISM code extracts relevant for finding an object

for a grid with 12 cells when the agent is searching the cell with gridpoint 0. To
search the cell the agent needs to be searching and located in the cell (s = 0
and gp = 0). If the cell has already been searched (gp0 = 0), then there is just
a nondeterministic choice as to which direction to move. If the cell has not been

Strategy Synthesis for Autonomous Agents Using PRISM 227

Table 2. Scenario 3: model checking results.

Grid size No. of
objects

Battery
capacity

States Transitions Min expected
mission time

Verification
time (s)

4 × 4 1 24 403,298 1,016,387 24.00 1.248

4 × 4 2 24 860,689 2,212,391 38.60 2.840

5 × 4 1 28 5,332,892 13,942,821 29.20 14.94

5 × 4 2 28 11,841,031 31,526,709 46.27 38.77

6 × 4 1 32 64,541,199 172,990,992 34.33 197.4

6 × 4 2 32 149,723,921 408,008,297 53.94 514.5

Fig. 3. Scenario 3: optimal controllers for 4 × 4 grid, battery capacities 24 and 28.

searched (gp0 = 1), then each choice includes the probability of finding an object
using the formula in Fig. 1. The guard p ≤ 1 prevents PRISM reporting modelling
errors due to potentially negative probabilities. Boundaries are encoded in guards
rather than using knowledge of the grid, e.g. it is not possible to move south or
west in gridpoint 0, to allow automated model generation for different grids.

After an object has been found (s = 1), the agent deposits it at the base
and resumes search if there are more objects to find. Returning to base either
to deposit or recharge is encoded by a single transition with time and battery
consumption updated assuming the controller takes a shortest path to the base.
This modelling choice is to reduce the state space. Also to reduce the state space,
we add conditions to guards in the battery module to prevent the agent moving
to a position from which it cannot get to base with the remaining battery power.
For example, for a 5 × 4 grid, two objects and a battery capacity of 28, together
these modelling choices reduce the state space from 24,323,956 to 11,841,031.

We synthesised optimal strategies for the minimum expected mission time
for grids of varying sizes and number of objects. Table 2 presents model checking
results in which we have chosen the minimum battery size that allows for a
successful mission for the given grid. Figures 3(a)–(b) and 4(a)–(b) present the
optimal strategies when searching for a single object. The figures give the optimal
search paths which require returning to base during the search to recharge the
battery. By increasing the capacity of the battery, the optimal strategy does
not need to recharge. Figures 3(c) and 4(c) present optimal strategies for this

228 R. Giaquinta et al.

situation. In each case, the time to return to base when the object is found must
be taken into consideration as opposed to only the time it takes to search.

Scenario 4: Control of Sensors. In this scenario we extend the power of the
controller: as well as choosing the search path and when to recharge it can decide
whether the search sensors are in a low or high power mode. In the high power
mode the agent can search a cell, while in the low power mode it is only possible
to traverse the cell. The high power mode for search is expensive in terms of time
and battery use and can be unnecessary, e.g. when travelling over previously
explored cells or returning to base to deposit or recharge. Again we assume the
base and depot are fixed and located at position (0, 0). The PRISM model for
this scenario extends that for Scenario 3 as follows. A variable c is added to
the agent module, taking value 0 and 1 when its sensors are in low and high
power modes respectively. The (nondeterministic) choices of the controller are
then extended such that when deciding the direction of movement it also decides
the power mode of the sensors for traversing the next cell. To aid analysis of the
synthesised strategies, the action labels for direction of search include the power
mode of the sensors, e.g. south1 corresponds to moving south and selecting high
power mode and west0 to moving west and selecting low power mode.

Fig. 4. Scenario 3: optimal controllers for 5 × 4 grid, battery capacities 28 and 32.

The PRISM code extract in Fig. 5 gives commands for moving east from cell
with gridpoint 0 based on those in Fig. 2 for Scenario 3. The first two commands
consider the case where the agents sensors are in high power mode (c = 1) and
the cell is unexplored. In both cases, since the sensors are in high power mode and
the cell is unexplored, the probability of finding an object is as for Scenario 3. The
difference is that in the first command the sensors are switched to lower power
mode, while in the second the sensors remain in high power mode. The third and
fourth commands represent the case when the sensors are in lower power mode
and the cell is unexplored. Since the sensors are in lower power mode, the cell
remains unexplored and there is no chance of finding the object. The final two
commands consider the case where the cell has been previously explored. The
PRISM model is also updated so that the time passage and battery consumption
reflects the sensor’s current power mode.

Strategy Synthesis for Autonomous Agents Using PRISM 229

// sensors in high power mode and cell unexplored
[east0] s=0 & c=1 & gp=0 & gp0=1 & posx<X &p≤1 →

p : (s′=1)&(posx ′=posx+1)&(gp0 ′=0)&(c′=0) + 1−p : (posx ′=posx+1)&(gp0 ′=0)&(c′=0);
[east1] s=0 & c=1 & gp=0 & gp0=1 & posx<X &p≤1 →

p : (s′=1)&(posx ′=posx+1)&(gp0 ′=0)&(c′=1) + 1−p : (posx ′=posx+1)&(gp0 ′=0)&(c′=1);
// sensors in lower power mode and cell unexplored
[east0] s=0 & c=0 & gp=0 & gp0=1 & posx<X → (posx ′=posx+1)&(c′=0);
[east1] s=0 & c=0 & gp=0 & gp0=1 & posx<X → (posx ′=posx+1)&(c′=1);
// cell already explored (does not matter the sensors power mode)
[east0] s=0 & gp=0 & gp0=0 & posx<X → (posx ′=posx+1) & (c′=0);
[east1] s=0 & gp=0 & gp0=0 & posx<X → (posx ′=posx+1) & (c′=1);

Fig. 5. PRISM commands: searching cell 0, moving east and switching sensors off/on.

Table 3. Scenario 4: model checking results.

Grid size No. of
objects

Battery
capacity

States Transitions Min expected
mission time

Verification
time (s)

3 × 3 1 12 53,367 222,557 12.78 0.206

3 × 3 1 16 80,107 351,209 12.11 0.272

3 × 3 2 12 103,063 435,302 19.83 0.365

3 × 3 2 16 154,911 687,246 18.88 0.420

4 × 4 1 18 18,445,790 90,303,355 21.88 58.58

4 × 4 1 24 27,587,864 139,945,165 20.50 83.60

4 × 4 2 18 36,379,747 180,055,826 32.22 124.8

4 × 4 2 24 54,464,317 279,117,740 30.60 181.9

Fig. 6. Scenario 4: optimal controller for 4×4 grid, battery capacity 18 and one object.

Table 3 presents model checking results for this scenario including both those
for the battery capacity from Scenario 3 (see Table 2) and for the minimum bat-
tery capacity required for a successful mission. Comparing with Table 2, allowing
low and high power modes reduces the mission time, allows the mission to be
completed with a smaller battery capacity and reduces recharging.

Comparing optimal strategies for Scenario 3 in Figs. 3 and 4 and those for
Scenario 4 with the same battery capacity, the only difference is the low power
mode is used when revisiting a cell. In Fig. 6 we present an optimal strategy for a
4×4 grid and battery capacity of 18. In this case, it is not feasible to complete the
mission without using the lower power mode. Smaller arrows represent when the

230 R. Giaquinta et al.

sensors are in lower power mode. The move south during the third path before
searching the final cell (3, 3) might not appear optimal. However, immediately
before this step there is an equal chance of finding the object in the two remaining
unexplored cells (2, 2) and (3, 3). By moving south after searching (2, 3) the time
of returning to base is reduced when the object is found, at the cost of increasing
the time to reach and search (3, 3) when the object is not found. In fact it is
the case that initially moving east from (2, 2) also yield an optimal strategy, but
was not the strategy synthesised by PRISM.

Scenario 5: Control of Multiple Agents. We now consider the case where
there are multiple agents working together. We extend the PRISM model for
Scenario 4 by having modules for two agents. In addition, since more than one
cell can be explored at the same time, to simplify the PRISM code each cell
is modelled as a separate module. The probability of finding an object is now
dependent on both agents, and therefore we model this in a separate module.

// module for agent1
module agent1

pos1x : [0..X] init basex ; // x coordinate of agent1
pos1y : [0..Y] init basey; // y coordinate of agent1
// search (remain on grid and have sufficient battery)
[search] u1=0 & u2=0 & pos1x<X & move east → (pos1x ′=pos1x+1); // east
[search] u1=0 & u2=0 & pos1x>0 & move west → (pos1x ′=pos1x−1); // west
[search] u1=0 & u2=0 & pos1y<Y & move north → (pos1y′=pos1y+1); // north
[search] u1=0 & u2=0 & pos1y>0 & move south → (pos1y′=pos1y−1); // south
// found object and not at base (go back to base)
[end] (u1=1|u2=1) & !(agent1=base) → (pos1x ′ = basex) & (pos1y′ = basey);
// mission complete
[end] (u1=1|u2=1) & agent1=base → true;

endmodule
// agent2 (rename agent1)
module agent2 = agent1 [pos1x=pos2x , pos1y=pos2y, b1=b2] endmodule

Fig. 7. PRISM code: modules for agent1 and agent2 of Scenario 5.

The agent modules are presented in Fig. 7. Variables pos1x and pos1y repre-
sent the position of the first agent and pos2x and pos2y the second. Constants
basex and basey give the position of the base and formula base the correspond-
ing gridpoint. The search commands from the previous scenarios are modified
and now synchronise on the action search with the gridpoint modules. Each
command checks the variables u1 and u2 which indicate if an object has been
found (see Fig. 7), since once the object is found, the agents return to base as the
mission is complete. As the direction of movement is not encoded in the action
search, preventing an agent moving in directions from which it cannot return
to base with its remaining battery power is encoded in formulae move east,
move west, move north and move south instead of the battery module.

For each cell in the grid there is a corresponding gridpoint module. The
gridpoint modules for a 3×3 grid are presented in Fig. 8. By using the constants

Strategy Synthesis for Autonomous Agents Using PRISM 231

// constants used for renaming gridpoints
const int k0 = 0;

...

const int k8 = 8;
// module for gridpoint 0
module gridpoint0

gp0 : [0..1] init 1; // status of gridpoint0 (0 - explored and 1 - unexplored)
// one of the agents searches the cell
[search] (agent1=k0 |agent2=k0) & (gp0=1) → (gp0 ′=0);
// cell already searched or not being searched
[search] !((agent1=k0 |agent2=k0) & (gp0=1)) → true;

endmodule
// construct further gridpoints by renaming gridpoint0
module gridpoint1 = gridpoint0 [gp0=gp1 , k0=k1] endmodule

...

module gridpoint8 = gridpoint0 [gp0=gp8 , k0=k8] endmodule

Fig. 8. PRISM code: module for gridpoints of Scenario 5.

// current gridpoint of agent1 and agent2 (derived from coordinates)
formula agent1 = pos1x+pos1y∗(X+1);
formula agent2 = pos2x+pos2y∗(X+1);
// retrieval probabilities module
module probabilities

u1 : [0..1] init 0; // agent1 finds the object
u2 : [0..1] init 0; // agent2 finds the object
// agent1 and agent2 are searching different unexplored cells
[search] s1=1 & s2=1 & agent1 !=agent2 & 2∗p≤1 → p : (u1 ′=1)

+ p : (u2 ′=1) + 1−2∗p : true;
// agent1 and agent2 searching the same unexplored cell
// suppose each has the same chance of finding the object
[search] s1=1 & s2=1 & agent1=agent2 & p≤1 → p/2 : (u1 ′=1)

+ p/2 : (u2 ′=1) + 1−p : true;
// agent1 is searching unexplored cell while agent2 is not
[search] s1=1 & s2=0 → p : (u1 ′=1) + 1−p : true;
// agent2 is searching unexplored cell while agent1 is not
[search] s1=0 & s2=1 → p : (u2 ′=1) + 1−p : true;
// neither agent searching an unexplored cell
[search] s1=0 & s2=0 → true;

endmodule

Fig. 9. PRISM code: retrieval probabilities module of Scenario 5.

ki we only need to explicitly construct the first gridpoint module and then use
renaming. In the module for the first gridpoint (see Fig. 8), variable gp0 is 1
when the cell is unexplored and 0 otherwise.

As stated above the probability of an agent finding an object is now a separate
module, presented in Fig. 9. As before, the probability of an unexplored cell
containing an object equals 1/n where n is the number of unexplored cells (see
Fig. 1). Formulae s1 and s2 evaluate to 1 if agent1 and agent2 are searching
unexplored cells respectively. If the agents are searching different unexplored
cells, then each agent has a chance of finding the object, but both cannot find
the object as the object cannot be in two places at once.

232 R. Giaquinta et al.

Table 4. Scenarios 5 and 6: model checking results.

Grid
size

Battery
capacity

States Transitions Min expected
mission time

Verification
time (s)

Scenario 5 3× 3 16 53, 832 249, 588 12.00 0.285

4× 4 24 15, 555, 103 91, 859, 618 17.50 52.53

5× 4 28 293, 118, 691 1, 861, 895, 602 20.40 1,069

Scenario 6 3× 3 16 153, 063 910, 392 11.93 0.701

4× 4 24 38, 165, 612 255, 234, 876 17.46 148.0

5× 4 28 691, 136, 157 4, 826, 058, 012 20.36 14,671

Fig. 10. Scenario 5: optimal controller for 3 × 3 grid, battery capacity 16 and one
object.

Table 4 presents model checking results for Scenario 5. As expected we see
that searching with two agents can reduce the mission time over a single agent
(see Table 2). Figures 10 and 11 present optimal strategies for grids of size 3 × 3
and 4× 4. The optimal strategies are represented by the paths of the two agents
before the object is found. As for the previous scenarios, as soon as the object
is found the agents return directly to base. In both cases it is feasible for the
agents to search the grid without recharging their batteries. However, this is
not optimal due to the time required to return to base after finding the object.
Neither the second path of agent2 in Fig. 10 nor the second path of agent1 in
Fig. 11 contribute to the search. In both situations after recharging, there is only
one cell to search ((2, 2) and (3, 3) respectively) and there is no gain in sending
more than one of the agents to search this cell.

Scenario 6: Control of Multiple Agents with Idle Mode. As just discussed
for Scenario 5, in certain situations there is no gain in both agents searching. For
this reason in this scenario we add the ability for the controller to search using
only one agent while the other idles at the base. Although this cannot reduce
the mission time it can reduce power consumption and wear and tear.

Idling is introduced to the PRISM models through additional variables and
the reward structure for time passage is updated to reduce the reward gained
when an agent idles (see [37]). The optimal strategy will then choose idling over
unnecessary movement, however as the reward is not reduced significantly it will
use both agents to search when this can save time.

Strategy Synthesis for Autonomous Agents Using PRISM 233

Fig. 11. Scenario 5: optimal controller for 4 × 4 grid, battery capacity 24 and one
object.

Table 4 includes model checking results for Scenario 6 (and 5). The reduced
mission time from Scenario 5 to 6 is due to the change made to the reward
structure and the generated optimal strategies yield the same expected mission
time as those synthesised for Scenario 5. Figure 12 presents optimal strategies
for a grid of size 3× 3. This strategy is very different from that for Scenario 5 as
in this case agent1 searches the majority of the grid, while agent2 searches only
a small portion and returns to base and idles while agent1 completes its search.
For the 4×4 grid the optimal strategy is initially the same as for Scenario 5 (see
Fig. 11). However, in the second phase of the search there is no path for agent1,
instead it idles at base while agent2 searches the remaining cell.

Fig. 12. Scenario 6: optimal strategy for 3×3 grid, battery capacity 16 and one object.

4 Conclusions and Future Work

We have demonstrated that probabilistic model checking and PRISM can be used
for the synthesis of controllers for autonomous agents. However, there are clearly
scalability issues as the models generated can have hundreds of millions of states
for simple scenarios. Therefore, to analyse real-world applications, abstraction
(and refinement) techniques are required. In particular, we will investigate using
the game-based abstraction approach of [16] in this context, as well as symmetry
reduction techniques [25] as there is symmetry both in the environment, e.g. in
a grid structure, and between agents. Regarding the formal models and spec-
ifications, improving the efficiency of the POMDP implementation [26] could
have significant modelling benefits, as in real applications control decisions must

234 R. Giaquinta et al.

be based only on the information from sensors, and therefore only on a partial
view of the environment. Stochastic games are also required to model and sep-
arate the nondeterminism present in the environment from the choices of the
controller. Combining these aspects will require the analysis of partially observ-
able stochastic games which are harder to solve than POMDPs [3]. PRISM has
support for multi-objective queries [9] and this will allow the synthesis of more
specific controllers, e.g. that optimise the mission time while limiting both power
consumption and failure, and ensuring safety requirements.

As for using PRISM for the analysis, the current way optimal strategies are
exported can be improved. In particular, having a graphical representation would
have simplified the analysis. In addition, allowing the analysis of a synthesised
strategy directly would have saved considerable effort. Currently, to do this,
the strategy has to be exported to a file and then imported back into PRISM
(together with the state space and reward structures).

The PRISM models were developed from Simulink models [14]. PRISM gen-
erates the synthesised controllers as a lists of reachable states and optimal action
choices for the states, this output from PRISM can be easily fed back into the
search module of the Simulink models. Currently we are adapting the models
for a larger search area consisting of adjoined discrete, symmetric regions. The
same controller can then be used (modulo a symmetry transformation) on each
region in turn until all objects have been located. At present the creation of
UAV software from the Simulink code is automatic, future work will involve the
direct embedding of the PRISM generated controllers into the UAV software.

Acknowledgements. This work was supported by EPSRC grant EC/P51133X/1.
We would like to thank Dave Anderson and Euan McGookin for discussions on the
autonomous systems that inspired this paper.

References

1. Alur, R., Henzinger, T.: Reactive modules. FMSD 15, 7–48 (1999)
2. Bohn, C.: Heuristics for designing the control of a UAV fleet with model checking.

In: Grundel, D., Murphey, R., Pardalos, P., Prokopyev, O. (eds.) Cooperative Sys-
tems. Lecture Notes in Economics and Mathematical Systems, vol. 588, pp. 21–36.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-48271-0 2

3. Chatterjee, K., Doyen, L.: Partial-observation stochastic games: how to win when
belief fails. ACM Trans. Comput. Log. 15, 16 (2014)

4. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 13

5. Choi, J.: Model checking for decision making behaviour of heterogeneous multi-
agent autonomous system. Ph.D. thesis, Cranfield University (2012)

6. Dennis, L., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.: Practical verification of
decision-making in agent-based autonomous systems. ASE 23(3), 305–359 (2016)

7. Ding, X., Smith, S., Belta, C., Rus, D.: Optimal control of Markov decision pro-
cesses with linear temporal logic constraints. IEEE Trans. Autom. Control 59,
1244–1257 (2014)

https://doi.org/10.1007/978-3-540-48271-0_2
https://doi.org/10.1007/978-3-642-36742-7_13

Strategy Synthesis for Autonomous Agents Using PRISM 235

8. Draeger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive con-
troller synthesis for probabilistic systems. LMCS 11(2), 1–34 (2015)

9. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. LMCS 4, 1–21 (2008)

10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

11. Fu, J., Topcu, U.: Computational methods for stochastic control with metric inter-
val temporal logic specifications. In: Proceedings of CDC 2015 (2015)

12. Hoffmann, R., Ireland, M., Miller, A., Norman, G., Veres, S.: Autonomous agent
behaviour modelled in PRISM – a case study. In: Bošnački, D., Wijs, A. (eds.)
SPIN 2016. LNCS, vol. 9641, pp. 104–110. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-32582-8 7

13. Humphrey, L.: Model checking for verification in UAV cooperative control appli-
cations. In: Fahroo, F., Wang, L., Yin, G. (eds.) Recent Advances in Research
on Unmanned Aerial Vehicles. LNCIS, vol. 444, pp. 69–117. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37694-8 4

14. Ireland, M., Hoffmann, R., Miller, A., Norman, G., Veres, S.: A continuous-time
model of an autonomous aerial vehicle to inform and validate formal verification
methods. http://arxiv.org/abs/1609.00177v1

15. Kalra, N., Paddock, S.: Driving to safety: how many miles of driving would it take
to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Policy Pract.
94, 182–193 (2016)

16. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. FMSD 36, 246–
280 (2010)

17. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer, New
York (1976). https://doi.org/10.1007/978-1-4684-9455-6

18. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-
tic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

20. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 5–22. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-
8 2

21. Lacerda, B., Parker, D., Hawes, N.: Multi-objective policy generation for mobile
robots under probabilistic time-bounded guarantees. In: Proceedings of ICAPS
2017 (2017)

22. Lahijanian, M., Andersson, S., Belta, C.: Formal verification and synthesis for
discrete-time stochastic systems. IEEE Trans. Autom. Control 60, 2031–2045
(2015)

23. Lahijanian, M., Kwiatkowska, M.: Specification revision for Markov decision pro-
cesses with optimal trade-off. In: Proceedings of CDC 2016. IEEE (2016)

24. Liu, W., Winfield, A., Sa, J.: Modelling swarm robotic systems: a case study in
collective foraging. In: Proceedings of TAROS 2007 (2007)

25. Miller, A., Donaldson, A., Calder, M.: Symmetry in temporal logic model checking.
Comput. Surve. 36, 8 (2006)

https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-319-32582-8_7
https://doi.org/10.1007/978-3-319-32582-8_7
https://doi.org/10.1007/978-3-642-37694-8_4
http://arxiv.org/abs/1609.00177v1
https://doi.org/10.1007/978-1-4684-9455-6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-02444-8_2
https://doi.org/10.1007/978-3-319-02444-8_2

236 R. Giaquinta et al.

26. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53, 354–402 (2017)

27. O’Brien, M., Arkin, R.C., Harrington, D., Lyons, D., Jiang, S.: Automatic veri-
fication of autonomous robot missions. In: Brugali, D., Broenink, J.F., Kroeger,
T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 462–473.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-7 39

28. Shapley, L.: Stochastic games. Proc. Natl. Acad. Sci. 39, 1095–1100 (1953)
29. Sharan, R.: Formal methods for control synthesis in partially observed environ-

ments: application to autonomous robotic manipulation. Ph.D. thesis, California
Institute of Technology (2014)

30. Soudjani, S., Majumdar, R.: Controller synthesis for reward collecting Markov
processes in continuous space. In: Proceedings of HSCC 2017. ACM (2017)

31. Svoreňová, M., Chmeĺık, M., Leahy, K., Eniser, H., Chatterjee, K., Černá, I., Belta,
C.: Temporal logic motion planning using POMDPs with parity objectives: case
study paper. In: Proceedings of HSCC 2015. ACM (2015)

32. Svoreňová, M., Křet́ınský, J., Chmeĺık, M., Chatterjee, K., Cerna, I., Belta, C.:
Temporal logic control for stochastic linear systems using abstraction refinement
of probabilistic games. In: Proceedings of HSCC 2015. ACM (2015)

33. Webster, M., Fisher, M., Cameron, N., Jump, M.: Formal methods for the certifi-
cation of autonomous unmanned aircraft systems. In: Flammini, F., Bologna, S.,
Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 228–242. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24270-0 17

34. Wilson, J.: Drones hacked and crashed by research team to expose design flaws.
Engineering and Technology (2016)

35. Wolff, E., Topcu, U., Murray, R.: Robust control of uncertain Markov decision
processes with temporal logic specifications. In: Proceedings of CSC 2012. IEEE
(2012)

36. Yoo, C., Finch, R., Sukkarieh, S.: Provably-correct stochastic motion planning with
safety constraints. In: Proceedings of ICRA 2013. IEEE (2013)

37. http://www.prismmodelchecker.org/files/nfm18/

https://doi.org/10.1007/978-3-319-11900-7_39
https://doi.org/10.1007/978-3-642-24270-0_17
http://www.prismmodelchecker.org/files/nfm18/

	Strategy Synthesis for Autonomous Agents Using PRISM
	1 Introduction
	2 Background
	3 Scenarios
	4 Conclusions and Future Work
	References

