
Aaron Dutle
César Muñoz
Anthony Narkawicz (Eds.)

10th International Symposium, NFM 2018
Newport News, VA, USA, April 17–19, 2018
Proceedings

NASA
Formal MethodsLN

CS
 1

08
11

Fo
rm

al
 M

et
ho

ds

 123

Lecture Notes in Computer Science 10811

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7408

Aaron Dutle • César Muñoz
Anthony Narkawicz (Eds.)

NASA
Formal Methods
10th International Symposium, NFM 2018
Newport News, VA, USA, April 17–19, 2018
Proceedings

123

Editors
Aaron Dutle
NASA Langley Research Center
Hampton, VA
USA

César Muñoz
NASA Langley Research Center
Hampton, VA
USA

Anthony Narkawicz
NASA Langley Research Center
Hampton, VA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-77934-8 ISBN 978-3-319-77935-5 (eBook)
https://doi.org/10.1007/978-3-319-77935-5

Library of Congress Control Number: 2018937364

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The NASA Formal Methods (NFM) Symposium is a forum to foster collaboration
between theoreticians and practitioners from NASA, academia, and industry, with the
goal of identifying challenges and providing solutions to achieving assurance in
mission- and safety-critical systems. Examples of such systems include advanced
separation assurance algorithms for aircraft, next-generation air transportation, auton-
omous rendezvous and docking for spacecraft, autonomous on-board software for
unmanned aerial systems (UAS), UAS traffic management, autonomous robots, and
systems for fault detection, diagnosis, and prognostics. The topics covered by the
NASA Formal Methods Symposia include:

– Formal verification, including theorem proving, model checking, and static analysis
– Advances in automated theorem proving including SAT and SMT solving
– Use of formal methods in software and system testing
– Run-time verification
– Techniques and algorithms for scaling formal methods such as abstraction and

symbolic methods, compositional techniques, as well as parallel and/or distributed
techniques

– Code generation from formally verified models
– Safety cases and system safety
– Formal approaches to fault tolerance
– Theoretical advances and empirical evaluations of formal methods techniques for

safety-critical systems, including hybrid and embedded systems
– Formal methods in systems engineering and model-based development
– Formalization of mathematics and physics

This volume contains the papers presented at NFM 2018, the 10th NASA Formal
Methods Symposium, held during April 17–19, 2018 in Newport News, VA. NFM
2018 celebrated 30 years of formal methods research at NASA. Previous symposia
were held in Moffett Field, CA (2017), Minneapolis, MN (2016), Pasadena, CA (2015),
Houston, TX (2014), Moffett Field, CA (2013), Norfolk, VA (2012), Pasadena, CA
(2011), Washington, DC (2010), and Moffett Field, CA (2009). The series started as the
Langley Formal Methods Workshop, and was held under that name in 1990, 1992,
1995, 1997, 2000, and 2008.

Papers were solicited for NFM 2018 under two categories: regular papers describing
fully developed work and complete results, and short papers describing tools, experi-
ence reports, or work in progress with preliminary results. The symposium received 92
submissions for review out of which 31 were accepted for publication. These sub-
missions went through a rigorous reviewing process, where each paper was first
independently reviewed by at least three reviewers and then subsequently discussed by
the Program Committee. In addition to the refereed papers, the symposium featured

two invited presentations, one by Rick Butler of NASA Langley Research Center,
USA, and one by Gilles Dowek of Inria, CNRS, and ENS Cachan, France.

The organizers are grateful to the authors for submitting their work to NFM 2018 and
to the invited speakers for sharing their insights. NFM 2018 would not have been possible
without the collaboration of the outstanding ProgramCommittee and additional reviewers,
the support of the Steering Committee, the efforts of the staff at the NASA Langley
Research Center, and the general support of the NASA Formal Methods community.
The NFM 2018 website can be found at: https://shemesh.larc.nasa.gov/NFM2018.

April 2018 Aaron Dutle
César Muñoz

Anthony Narkawicz

VI Preface

Organization

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Mauricio Ayala-Rincon Universidade de Brasilia, Brazil
Julia Badger NASA, USA
Dirk Beyer LMU Munich, Germany
Nikolaj Bjørner Microsoft, USA
Jasmin Blanchette Vrije Universiteit Amsterdam, The Netherlands
Sylvie Boldo Inria, France
Kalou Cabrera Castillos LAAS-CNRS, France
Misty Davies NASA, USA
Catherine Dubois ENSIIE-Samovar, France
Aaron Dutle NASA, USA
Stefania Gnesi ISTI-CNR, Italy
Alberto Griggio Fondazione Bruno Kessler, Italy
George Hagen NASA, USA
John Harrison Intel, USA
Klaus Havelund NASA Jet Propulsion Laboratory, USA
Ashlie Hocking Dependable Computing, USA
Susmit Jha SRI International, USA
Rajeev Joshi NASA Jet Propulsion Laboratory, USA
Laura Kovacs Vienna University of Technology, Austria
Michael Lowry NASA, USA
Panagiotis Manolios Northeastern University, USA
Shaun McWherter NASA, USA
César Muñoz NASA, USA
Anthony Narkawicz NASA, USA
Natasha Neogi NASA, USA
Lee Pike Groq, USA
Murali Rangarajan The Boeing Company, USA
Elvinia Riccobene University of Milan, Italy
Camilo Rocha Pontificia Universidad Javeriana Cali, Colombia
Kristin Yvonne Rozier Iowa State University, USA
Sriram

Sankaranarayanan
University of Colorado Boulder, USA

Johann Schumann SGT, USA
Konrad Slind Rockwell Collins, USA
Cesare Tinelli The University of Iowa, USA
Laura Titolo National Institute of Aerospace, USA

Christoph Torens German Aerospace Center, Germany
Michael Whalen University of Minnesota, USA
Virginie Wiels ONERA, France

Additional Reviewers

Alves, Vander
Arcaini, Paolo
Basile, Davide
Bozzano, Marco
Braghin, Chiara
Brotherston, James
Byun, Taejoon
Chakarov, Aleksandar
Champion, Adrien
Chen, Xin
Chowdhury, Omar
Cohen, Cyril
Cox, Arlen
Cruanes, Simon
Dangl, Matthias
Dodds, Mike
Dureja, Rohit
Fainekos, Georgios
Fantechi, Alessandro
Feliú Gabaldon, Marco
Ferrari, Alessio
Fleury, Mathias
Fokkink, Wan
Friedberger, Karlheinz
Gallois-Wong, Diane
Ghassabani, Elaheh
Goodloe, Alwyn
Hoxha, Bardh
Hussein, Soha
Jakobs, Marie-Christine
Jones, Benjamin
Katis, Andreas

Katz, Guy
Kremer, Gereon
Lammich, Peter
Larraz, Daniel
Lemberger, Thomas
Li, Jianwen
Lüdtke, Daniel
Marché, Claude
Marechal, Alexandre
Mazzanti, Franco
Meel, Kuldeep S.
Merz, Stephan
Moscato, Mariano
Nantes-Sobrinho, Daniele
Nigam, Vivek
Panizo, Laura
Paskevich, Andrei
Pérez, Jorge A.
Ravitch, Tristian
Rioboo, Renaud
Roveri, Marco
Schirmer, Sebastian
Schopferer, Simon
Schupp, Stefan
Stewart, Danielle
Strub, Pierre-Yves
Tian, Chun
Traytel, Dmitriy
Weaver, Sean
Wendler, Philipp
Weps, Benjamin

VIII Organization

Contents

Incremental Construction of Realizable Choreographies 1
Sarah Benyagoub, Meriem Ouederni, Yamine Aït-Ameur,
and Atif Mashkoor

Formal Assurance for Cooperative Intelligent Autonomous Agents 20
Siddhartha Bhattacharyya, Thomas C. Eskridge, Natasha A. Neogi,
Marco Carvalho, and Milton Stafford

Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C 37
Allan Blanchard, Nikolai Kosmatov, and Frédéric Loulergue

An Executable Formal Framework for Safety-Critical Human Multitasking. . . 54
Giovanna Broccia, Paolo Milazzo, and Peter Csaba Ölveczky

Simpler Specifications and Easier Proofs of Distributed Algorithms
Using History Variables . 70

Saksham Chand and Yanhong A. Liu

Don’t Miss the End: Preventing Unsafe End-of-File Comparisons 87
Charles Zhuo Chen and Werner Dietl

An Efficient Rewriting Framework for Trace Coverage
of Symmetric Systems . 95

Flavio M. De Paula, Arvind Haran, and Brad Bingham

Verification of Fault-Tolerant Protocols with Sally 113
Bruno Dutertre, Dejan Jovanović, and Jorge A. Navas

Output Range Analysis for Deep Feedforward Neural Networks 121
Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan,
and Ashish Tiwari

Formal Dynamic Fault Trees Analysis Using an Integration
of Theorem Proving and Model Checking . 139

Yassmeen Elderhalli, Osman Hasan, Waqar Ahmad, and Sofiène Tahar

Twenty Percent and a Few Days – Optimising a Bitcoin Majority Attack. . . . 157
Ansgar Fehnker and Kaylash Chaudhary

An Even Better Approach – Improving the B.A.T.M.A.N. Protocol
Through Formal Modelling and Analysis . 164

Ansgar Fehnker, Kaylash Chaudhary, and Vinay Mehta

Towards a Formal Safety Framework for Trajectories 179
Marco A. Feliú and Mariano M. Moscato

Static Value Analysis of Python Programs by Abstract Interpretation. 185
Aymeric Fromherz, Abdelraouf Ouadjaout, and Antoine Miné

Model-Based Testing for General Stochastic Time. 203
Marcus Gerhold, Arnd Hartmanns, and Mariëlle Stoelinga

Strategy Synthesis for Autonomous Agents Using PRISM 220
Ruben Giaquinta, Ruth Hoffmann, Murray Ireland, Alice Miller,
and Gethin Norman

The Use of Automated Theory Formation in Support of Hazard Analysis. . . . 237
Andrew Ireland, Maria Teresa Llano, and Simon Colton

Distributed Model Checking Using PROB . 244
Philipp Körner and Jens Bendisposto

Optimal Storage of Combinatorial State Spaces. 261
Alfons Laarman

Stubborn Transaction Reduction . 280
Alfons Laarman

Certified Foata Normalization for Generalized Traces 299
Hendrik Maarand and Tarmo Uustalu

On the Timed Analysis of Big-Data Applications . 315
Francesco Marconi, Giovanni Quattrocchi, Luciano Baresi,
Marcello M. Bersani, and Matteo Rossi

Tuning Permissiveness of Active Safety Monitors
for Autonomous Systems . 333

Lola Masson, Jérémie Guiochet, Hélène Waeselynck,
Kalou Cabrera, Sofia Cassel, and Martin Törngren

Sound Black-Box Checking in the LearnLib. 349
Jeroen Meijer and Jaco van de Pol

Model-Checking Task Parallel Programs for Data-Race 367
Radha Nakade, Eric Mercer, Peter Aldous, and Jay McCarthy

Consistency of Property Specification Patterns with Boolean
and Constrained Numerical Signals . 383

Massimo Narizzano, Luca Pulina, Armando Tacchella,
and Simone Vuotto

X Contents

Automatic Generation of DO-178 Test Procedures 399
César Ochoa Escudero, Rémi Delmas, Thomas Bochot,
Matthieu David, and Virginie Wiels

Using Test Ranges to Improve Symbolic Execution. 416
Rui Qiu, Sarfraz Khurshid, Corina S. Păsăreanu,
Junye Wen, and Guowei Yang

Symbolic Execution and Reachability Analysis Using Rewriting Modulo
SMT for Spatial Concurrent Constraint Systems with Extrusion 435

Miguel Romero and Camilo Rocha

Experience Report: Application of Falsification Methods
on the UxAS System . 452

Cumhur Erkan Tuncali, Bardh Hoxha, Guohui Ding,
Georgios Fainekos, and Sriram Sankaranarayanan

MoDeS3: Model-Based Demonstrator for Smart and Safe
Cyber-Physical Systems . 460

András Vörös, Márton Búr, István Ráth, Ákos Horváth, Zoltán Micskei,
László Balogh, Bálint Hegyi, Benedek Horváth, Zsolt Mázló,
and Dániel Varró

Author Index . 469

Contents XI

Incremental Construction of Realizable
Choreographies

Sarah Benyagoub1,2, Meriem Ouederni2, Yamine Aı̈t-Ameur2(B),
and Atif Mashkoor3

1 University of Mostaganem, Mostaganem, Algeria
benyagoub.sarah@univ-mosta.dz

2 INP-ENSEEIHT/IRIT, Université de Toulouse, Toulouse, France
{ouederni,yamine}@enseeiht.fr

3 SCCH GmbH and Johannes Kepler University, Linz, Austria
atif.mashkoor@scch.at, atif.mashkoor@jku.at

Abstract. This paper proposes a correct-by-construction method to
build realizable choreographies described using conversation protocols
(CPs). We define a new language consisting of an operators set for
incremental construction of CPs. We suggest an asynchronous model
described with the Event-B method and its refinement strategy, ensur-
ing the scalability of our approach.

Keywords: Realisability · Conversation protocols
Correct-by-construction method proof and refinement · Event-B

1 Introduction

Distributed systems are pervasive in areas like embedded systems, Cyber Physi-
cal systems, medical devices and Web applications. In a top-down design of such
systems, the interaction among peers is usually defined using a global specifi-
cation called conversation protocols (CP), aka choreography in SOC [9]. These
CPs specify interactions among peers as the allowed sequences of sent messages.

A main concern, already addressed by research community, is the verifica-
tion of CP realizability i.e., verification whether there exists a set of peers whose
composition generates the same sequences of sending messages as specified by
the CP. Considering asynchronous communication, this realizability problem is
undecidable in general [8] due to possible ever-increasing queuing mechanism and
unbounded buffers. The work of [5] proposed a necessary and sufficient condition
for verifying whether a CP can be implemented by a set of peers communicat-
ing asynchronously using FIFO buffers with no buffer sizes restrictions. This

The research reported in this paper has been partly supported by the Austrian
Ministry for Transport, Innovation and Technology, the Federal Ministry of Science,
Research and Economy, and the Province of Upper Austria in the frame of the
COMET center SCCH.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 1–19, 2018.
https://doi.org/10.1007/978-3-319-77935-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_1&domain=pdf

2 S. Benyagoub et al.

work solves the realizability issue for a subclass of asynchronously communicat-
ing peers (synchronizable systems) i.e., systems composed of interacting peers
behaving equivalently either with synchronous or asynchronous communication.

A CP is realizable if there exists a set of peers implementing this CP, i.e.,
the peers send messages to each other in the same order as the CP does, and
their composition is synchronizable. In [5], checking CP realizability applies three
steps: (i) peer projection from CP; (ii) checking synchronizability; and (iii) check-
ing equivalence between CP and its distributed system obtained after projection.

The work given in [5] relies on model checking for systems with reasonable
sizes (i.e., number of states, transitions and communicating peers). This verifi-
cation procedure is global and a posteriori. It considers the whole CP and its
projection, and does not handle compositional verification.

This paper proposes a compositional and incremental formal verification pro-
cedure that scales to systems of arbitrary sizes. It promotes a top-down design of
realizable CPs following a correct-by-construction method which decreases the
complexity of the verification task and supports real-world complex systems.
We define a compositional language using an algebra of operators (sequence,
branching, and loop). From an initial basic CP, we inductively (incrementally)
build a realizable CP by composing other realizable ones, using these composi-
tion operators while preserving realizability [5] w.r.t identified conditions. The
informal definition of these operators were originally introduced in [6,7] the fea-
sibility of the approach on toy case studies is shown. [6,7] did not give the formal
proof of correctness of realizability preservation of the defined operators. Conse-
quently, in this paper, we provide a correctness support for the results sketched
in [6,7]. An inductive proof, based on realizability invariant preservation, is set
up with Event-B [2] on Rodin [19] platform. Refinement is used to decompose
this invariant in order to ease the proof and development processes. The generic
model we define is scalable and its parameters have arbitrary values (i.e., num-
bers of peers, buffer sizes, number of states and transitions can take any value
in their corresponding sets of possible values). Furthermore, this model can be
instantiated to describe any CP by incremental application of the composition
operators we defined.

In the remainder, Sect. 2 introduces the formal definitions and the back-
ground our proposal relies on. Section 3 presents the set of composition operators
together with the set of identified sufficient conditions that ensure realizability of
the built CPs. The formal Event-B development based on the refinement strat-
egy we have set up is shown in Sect. 4. Finally, Sect. 5 overviews related work
Sect. 6 concludes this work.

2 Background and Notations

2.1 Model

We use labeled transition systems (LTSs) for modeling CP and peers included
in that specification. This model defines messages order being sent in CP.

Incremental Construction of Realizable Choreographies 3

Definition 1 (Peer). A peer is an LTS P = (S, s0, Σ, T) where S is a finite
set of states, s0 ∈ S is the initial state, Σ = Σ! ∪ Σ? ∪ {τ} is a finite alphabet
partitioned into a set of send messages, receive messages, and the internal action,
and T ⊆ S × Σ × S is a transition relation.

We write m! for a send message m ∈ Σ! and m? for a receive message
m ∈ Σ?. We use the symbol τ for representing internal activities. A transition
is represented as s

l−→ s′ where l ∈ Σ. Notice that we refer to a state sf ∈ S as
final if there is no outgoing transition at that state.

Definition 2 (CP). A conversation protocol CP for a set of peers {P1, . . . ,Pn}
is a LTS CP = (SCP , s0CP , LCP , TCP) where SCP is a finite set of states and
s0CP ∈ SCP is the initial state; LCP is a set of labels where a label l ∈ LCP is
denoted mPi,Pj such that Pi and Pj are the sending and receiving peers, respec-
tively, Pi �= Pj, and m is a message on which those peers interact; finally,
TCP ⊆ SCP × LCP × SCP is the transition relation. We require that each mes-
sage has a unique sender and receiver: ∀{mPi,Pj ,m′P′

i,P′
j} ⊆ LCP : m = m′ =⇒

Pi = P ′
i ∧ Pj = P ′

j.

In the remainder of this paper, we denote a transition t ∈ TCP as s
mPi,Pj−−−−−→ s′

where s and s′ are source and target states and mPi,Pj is the transition label.
We refer to a basic CP =< SCP , s0CP , LCP , TCP > as CPb if and only if TCP =

{sCP
mPi,Pj−−−−−→ s′

CP}. We refer to the set of final states as Sf where the system can
terminate its execution. It is worth noticing that the peers’ LTSs are computed
by projection from CP as follows:

Definition 3 (Projection). Let the projection function ↓ CP which returns
the set of peers LTSs Pi = <Si, s

0
i , Σi, Ti> obtained by replacing in CP =

<SCP , s0CP , LCP , TCP> each label (Pj ,m,Pk) ∈ LCP with m! if j = i with
m? if k = i and with τ (internal action) otherwise; and finally removing the
τ -transitions by applying standard minimization algorithms [14].

Definition 4 (Synchronous System). The synchronous system denoted as
Syssync(P1, . . . ,Pn) = (Ss, s

0
s, Ls, Ts) corresponds to the product of peer LTSs

composed under synchronous communication semantics.

In this context, a communication between two peers occurs if both agree on
a synchronization label, i.e., if one peer is in a state in which a message can
be sent, then the other peer must be in a state in which that message can be
received. A peer can evolve independently from others through internal actions.

Definition 5 (Asynchronous System). In the asynchronous system denoted
as Sysasync(P1, . . . ,Pn) = (Sa, s

0
a, La, Ta), peers communication holds through

FIFO buffers. Each peer Pi is equipped with an unbounded message buffer Qi.

Where a peer can either send a message m ∈ Σ! to the tail of the receiver buffer
Qj at any state where this sent message is available, read a message m ∈ Σ? from
its buffer Qi if the message is available at the buffer head, or evolve independently
through an internal action. Reading from the buffer is non observable, and it is
presented by internal action in the asynchronous system.

4 S. Benyagoub et al.

2.2 Realizability

The definition of realizability we use in this paper is borrowed from [5]. A CP
is realizable if there exists a set of peers where their composition generates the
same sequences of sending messages as specified in CP. In [5] a defined sufficient
and necessary condition characterizes the set R ⊆ CP of realizable CPs. A
deterministic cp ∈ R is realizable iff the system obtained from the composition
of the projected peers of cp is synchronizable, well-formed, and equivalent to the
initial CP. A proof of correctness of global system realizablity using Event-B is
available in [13].

Definition 6 (Deterministic Choice). Let DC be the set of deterministic

CPs, thus ∀CP ∈ DC : ∀sCP ∈ SCP , �{sCP
mPi,Pj−−−−→ s′

CP , sCP
mPi,Pj−−−−→ s′′

CP } ⊆
TCP where s′

CP �= s′′
CP .

Definition 7 (Equivalence). CP is equivalent to Syssync(↓CP), denoted
CP ≡ Syssync(↓CP), if they have equal message sequences, i.e., trace equiva-
lence [16].

A system is synchronizable when its behavior remains the same under both
synchronous and asynchronous communication semantics.

Definition 8 (Synchronizability). Given a set of peers {P1, . . . ,Pn}, the
synchronous system Syssync(P1, . . . ,Pn) = (Ss, s

0
s, Ls, Ts), and the asynchronous

system Sysasync(P1, . . . ,Pn) = (Sa, s
0
a, La, Ta), two states r ∈ Ss and s ∈ Sa

are synchronizable if there exists a relation Sync st between states such that
Sync st(r, s) and:

– for each r
m−→ r′ ∈ Ts, there exists s

m!−−→ s′ ∈ Ta, such that Sync st(r′, s′);
– for each s

m!−−→ s′ ∈ Ta, there exists r
m−→ r′ ∈ Ts, such that Sync st(r′, s′);

– for each s
m?−−→ s′ ∈ Ta, Sync st(r, s′).

Synchronizability is the set of synchronizable systems such that Sysasync(P1,
. . . ,Pn) ∈ Synchronizability ⇔ Sync st(s0s, s

0
a).

Well-formedness states that whenever the size of a receive queue, Qi, of the
ith peer is greater than 0 (i.e., Qi is non-empty), the asynchronous system can
eventually move to a state where Qi is empty.

Definition 9 (Well-formedness). Let WF be the set of well formed sys-
tem. An asynchronous system Sysasync = (Sa, s

0
a, Σa, Ta) defined over a set of

peers {P1, . . . ,Pn} is well-formed, i.e., Sysasync ∈ WF, if and only if ∀sa =
(s1, Q1, . . . , sn, Qn) ∈ Sa, where sa is reachable from s0a = (s01, ε, . . . , s

0
n, ε),

the following holds: if there exists Qi such that | Qi |> 0, then there exists
sa ⇒∗ s′

a ⊆ Ta where s′
a = (s′

1, Q
′
1, . . . , s

′
n, Q′

n) ∈ Sa and ∀Q′
i, | Q′

i |= 0.

Note that ⇒∗ means that there exists one or more transitions in the asyn-
chronous system (Definition 5) leading into the state s′

a.

Definition 10 (Realizability). ∀CP ∈ DC : CP ∈ R ⇐⇒ (CP ≡ Syssync(↓
CP)) ∧ (Sysasync(↓ CP) ∈ Synchronizability) ∧ (Sysasync(↓ CP) ∈ WF).

Incremental Construction of Realizable Choreographies 5

3 CCP Language for Realisable CPs

In this section, we define our composition operators and identify the conditions
sufficient to build CP realizable CP s.

3.1 Composition Operators

We present the proposed composition operators ⊗(�,sfCP) (sequence), ⊗(+,sfCP)

(branching), and ⊗(�,sfCP) (iteration) where sfCP ∈ Sf
CP . Each expression of the

form ⊗(op,sfCP)
(CP ,CPb) assumes that the initial state of CPb is fused with the

final state sfCP . In the other word, CPb is appended to CP at state sfCP .

Definition 11. Sequential Composition ⊗(�,sfCP)
. Given a CP, a state sCP ∈

Sf
CP , and a CPb where TCPb

= {sCPb

lCPb−−−→ s′
CPb

}, the sequential composition
CP� = ⊗(�,sCP)(CP ,CPb) means that CPb must be executed after CP starting
from sCP , and:

– SCP� = SCP ∪ {s′
CPb

| sCPb

lCPb−−−→ s′
CPb

∈ TCPb
}

– LCP� = LCP ∪ {lCPb
}

– TCP� = TCP ∪ {sCP

lCPb−−−→ s′
CPb

}
– Sf

CP� = (Sf
CP \ {sCP}) ∪ {s′

CPb
}

Definition 12. Choice Composition ⊗(+,sfCP)
. Given a CP, a state sCP ∈ Sf

CP ,

a set {CPbi | i = [1..n], n ∈ N} such that ∀TCPbi
, TCPbi

= {sCPbi

lCPbi−−−→ s′
CPbi

},
the branching composition CP+ = ⊗(+,sCP)(CP , {CPbi}) means that CP must
be executed before {CPbi} and there is a choice between all {CPbi} at sCP , and:

– SCP+ = SCP ∪ {s′
CPb1

, . . . , sCP ′
bn

| sCPbi

lCPbi−−−→ s′
CPbi

∈ TCPbi
}

– LCP+ = LCP ∪ {lCPbi
, . . . , lCPbn

}
– TCP+ = TCP ∪ {sCP

lCPb1−−−→ s′
CPb1

, . . . , sCP

lCPbn−−−→ s′
CPbn

}
– Sf

CP+
= (Sf

CP \ {sCP}) ∪ {s′
CPb1

, . . . , s′
CPbn

}

Definition 13. Loop Composition ⊗(�,sfCP)
. Given CP, a state sCP ∈ Sf

CP ,

and a set CPb, such that TCPb
= {sCPb

lCPb−−→ sCPb
}, the loop composition CP� =

⊗(�,sfCP)
(CP ,CPb) means that CP must be executed before CP ′

b and every CPbi

can be repeated 0 or more times, and:

– SCP� = SCP

– LCP� = LCP ∪ {lCPb
}

– TCP� = TCP ∪ {sCP

lCPb1−−−→ sCP ′
b
}

– Sf
CP� = Sf

CP

6 S. Benyagoub et al.

3.2 Realizable-by-Construction CP

As mentioned in the introduction, our intention is to avoid a posteriori global
verification of realisability. We set up an incremental verification of realisability
using a correct by construction approach. Building CPs using the aforemen-
tioned operators does not guarantee its realisability. Indeed, the definitions of
the previous operators rely on syntactic conditions mainly by gluing final and
initial states of the composed CPs.

Sufficient Conditions. We identified a set of sufficient conditions (i.e., Con-
ditions 1, 2, and 3 which entail realisability when the CPs are built using the
operators we have previously defined. These conditions are based on the seman-
tics of the messages ordering and exchange.

Condition 1 (Deterministic Choice (DC)). See Definition 6.

Condition 2 (Parallel-Choice Freeness (PCF)). Let PCF be the set of

CPs free of parallel choice. Then, CP ∈ PCF iff ∀sCP ∈ SCP , �{sCP
mPi,Pj−−−−→

s′
CP , sCP

m′Pk,Pq−−−−−→ s′′
CP } ⊆ TCP such that Pi �= Pk and s′

CP �= s′′
CP .

Condition 3 (Independent Sequences Freeness (IseqF)). Let ISeqF be
the set of CPs free of independent sequences. Then, CP ∈ ISeqF iff ∀sCP ∈ SCP ,

�{sCP
mPi,Pj−−−−→ s′

CP , s′
CP

m′Pk,Pq−−−−−→ s′′
CP } ⊆ TCP such that Pi �= Pk and Pj �= Pk.

All these conditions are structural conditions defined at the CP level. They do
not involve conditions on the synchronous nor on the asynchronous projections.

Realizable-by-Construction CP Theorems. Table 1 gives the theorems
that ensure the realisability of a CP built incrementally using our composition
operators. Each theorem relies on the previously introduced sufficient conditions.

Proof Sketch. To prove the theorems of Table 1 we rely on a generic proof
pattern consisting in decomposing the realisability condition of Definition 10.
According to this definition, we need to prove equivalence (Definition 7), syn-
chronizability (Definition 8) and well formedness (WF in Definition 9).

Table 1. Theorems for realizable by construction CPs

Theorem 1 CPb ∈ R

Theorem 2 CP ∈ R∧CPb ∈ R∧CP� = ⊗
(�,s

f
CP)

(CP ,CPb) ∈ ISeqF ⇒ CP� ∈ R

Theorem 3 CP ∈ R ∧ {CPbi} ⊆ R ∧ CP+ = ⊗
(+,s

f
CP)

(CP , {CPbi}) ∧ CP+ ∈ DC

∧ CP+ ∈ ISeqF ∧ CP+ ∈ PCF ⇒ CP+ ∈ R

Theorem 4 CP ∈ R∧CPb ∈ R∧CP� = ⊗
(�,s

f
CP)

(CP ,CPb) ∈ ISeqF ⇒ CP� ∈ R

Incremental Construction of Realizable Choreographies 7

The proof is a structural induction on the defined operators. Let CPb ∈ R
and CP ∈ R be a basic realizable CP and a realizable CP respectively. We need
to prove that CPop ∈ R holds for each composition operator op ∈ {�,+ �}
when the defined sufficient condition opcond corresponding to conditions 1, 2 and
3 defined above and associated to each op holds.

When considering the equivalence, synchronisability and well formedness,
this proof uses the projection ↓ CPop of CPop. It can be formalised using the
following proof pattern.

CP ∈ R ∧ CPb ∈ R ∧ Opcond =⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CPop≡Syssync(↓CPop)

∧
Sysasync(↓CPop) ∈ Synchronizability (1)

∧
Sysasync(↓CPop) ∈ WF

Theorem 1. Any CPb is realizable.

Proof 1. CPb is made of a single transition of the form s
mPi,Pj−−−−−→ s′. Therefore,

the projection will produce two peers Pi and Pj with a single transition where
Pi sends the message m to the receiving peer Pj . This projection is realizable.

Theorem 2. Given an CP = <SCP , s0CP , LCP , TCP> and a CPb such that
CP ∈ R and CPb ∈ R, sCP ∈ Sf

CP , then CP� = ⊗(�,sCP)(CP ,CPb) ∈ R.

Proof 2. The proof is inductive. It follows the previous proof pattern. When
this pattern is instantiated for the sequence operator, we obtain.

CP ∈ R ∧ CPb ∈ R ∧ CP� ∈ ISeqF =⇒

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CP� ≡ Syssync(↓CP�) (2.a)

∧
Sysasync(↓CP�) ∈ Synchronizability (2.b) (2)

∧
Sysasync(↓CP�) ∈ WF (2.c)

Basic case. Let CP = ∅ and a CPb then CP� = ⊗(�,s0CP)
(∅,CPb) ∈ R. So

CP� = CPb . CP� ∈ R holds by Theorem 1 of Table 1.
Inductive Case. Let CP = <SCP , s0CP , LCP , TCP> and a CPb such that CP ∈
R and CPb ∈ R. Let sCP ∈ Sf

CP be the gluing state (i.e. both the final state
of CP and the initial state of CPb). Let sqi denote the ith state in the LTS
associated to peer Pq.

According to the proof schema of Eq. 2, we need to prove the Properties 2.a,
2.b and 2.c

2.a Equivalence property. By recurrence hypotheses we write CP ≡
Syssync(↓ CP), CPb ≡ Syssync(↓ CPb). Let us assume that the sufficient
condition for sequence holds i.e. CP� ∈ ISeqF . We need to prove now that
CP� ≡ Syssync(↓ CP�) (Eq. (1.a)).
Let us consider

8 S. Benyagoub et al.

• any trace TCP = {s0
mPi→Pj−−−−−→ s1, . . . , sn

m′Pk→Pq−−−−−−→ sn+1} in the realizable
CP

• and the trace TCPb
= {sb0

m′′Pt→Pz−−−−−−→ sb1} in the realizable CPb

Since the ISeqF condition holds, two cases are distinguished.
1. Either Pk = Pt, then the following suffixes of the traces occur for peers Pk = Pt,

Pq and Pz

• {. . . , skn m′!−−→ skn+1, s
k
n+1

m′′!−−−→ skn+2} ⊆ Tk

• {. . . , sqn m′?−−→ sqn+1} ⊆ Tq

• {. . . , szn m′′?−−−→ szn+1} ⊆ Tz.
2. or Pq = Pt, then the following traces occurs for peers Pq = Pt, Pk and Pz

• {. . . , skn m′!−−→ skn+1} ⊆ Tk

• {. . . , sqn m′?−−→ sqn+1, s
q
n+1

m′′!−−−→ sqn+2} ⊆ Tq

• {. . . , szn m′′?−−−→ szn+1} ⊆ Tz

Thanks to the ISeqF property, the sending-receiving transition (synchronous
transition) of CPb requires that either the sending peer or the receiving peer
of the CPb are used by the previous transition or the realizable CP . More-
over, it is always performed once the sending-receiving transitions of the syn-
chronous projection of CP are completed. The sending-receiving transition of
CPb becomes the last transition of Syssync(↓ CP�).

2.b Synchronisability condition. By the recurrence hypotheses, we write
Sysasync(↓ CP) ∈ Synchronizability, Sysasync(↓ CPb) ∈ Synchronizability.
Synchronisability is deduced from equivalence and from the ISeqF condition.
The last transition of the traces of ↓ CP� corresponds to Syssync(↓ CPb) =

{sb0
m′′
−−→ sb1} and Sysasync(↓ CPb) = {sb0

m′?−−→ sb, sb
m′′?−−−→ sb1} where Sb

is an intermediate state in the asynchronous projection In this intermediate
state, in which the queues related to the peers contain the message m′′.

2.c Well-formedness condition. Again, as recurrence hyptheses, we write
Sysasync(↓ CP) ∈ WF , Sysasync(↓ CPb) ∈ WF . This means that by hypothe-
ses, the queues are empty in the final state of Sysasync(↓ CP) since it is
realizable (thus well formed). We have to show that the queue is still empty
after running message exchanges of CPb .
When adding a sequence ⊗(�,sfCP)

(CP ,CPb) ∈ ISeqF , the sending transition
of m′′ gives Qi = ∅, Qj = ∅, Qk = ∅, Qq = ∅, Qt = ∅, Qz = {m′′}. It and
the consumption of the m′′ empties the queue Qz such that Qi = ∅, Qj =
∅, Qk = ∅, Qq = ∅, Qt = ∅, Qz = ∅.

At this level we can conclude that the defined sequence composition operator
preserves realizability.

The proofs for the choice and loop operators follow the same inductive
schema. We do not present these proofs due to space limitations. A sketch of
these proofs is given in [6].

Incremental Construction of Realizable Choreographies 9

4 CCP Model: Refinement-Based Realizability

The proofs reported in the previous section are handmade. In order to give full
confidence in our results on correct-by-construction realizability, we designed a
whole formal development of this proof using refinement. The Event-B method
has been set up as follows.

4.1 The Refinement Strategy

The refinement operator offered by the Event-B method proved efficient to han-
dle the complex proofs associated to each operators. This operator allowed us
to handle the realizability property incrementally by introducing first equiva-
lence, then synchronizability and finally well formedness in specific refinements.
Therefore, the following refinement strategy has been set up:

–Root Model. The root model defines the conversation protocols. It introduces
basic CP. Each composition operator is defined as an event which incremen-
tally builds the final CP obtained by introducing a final state. All the built
CP satisfy an invariant requiring DC (deterministic choice, Condition 1). This
model also declares a prophecy variable [1] as a state variable. This variable
defines an arbitrary numbers of exchanged messages and is used to define a
variant in order to further prove well formedness.

–First Refinement: The Synchronous Model. The second model is obtained
by refining each event (composition operator) to define the synchronous pro-
jection. A gluing invariant linking the CP to the synchronous projection is
introduced. The equivalence property is proved at this level. It is defined as
an invariant preserved by all the events encoding a composition operator.
This projection represents the synchronous system, it preserves the message
exchanges order between peers and hides the asynchronous exchanges.

–Second Refinement: The Asynchronous Model. The last model introduces
the asynchronous projection. Each event (composition operator) is refined to
handle the asynchronous communication. Synchronous and asynchronous pro-
jections are linked by another gluing invariant. Sending and receiving actions
together with queue handling actions and variant decreasing of the prophecy
variable are introduced. They are necessary to prove synchronizability and
well formedness expressed as invariants. The refinement of the synchronous
models in an asynchronous model eases the proof process.

At the last refinement, realizability is proved thanks to invariants preserva-
tion and to the inductive proof process handled by Event-B using the Rodin
platform.

Next sections sketches this development. For each refinement step, we intro-
duce the relevant definitions, axioms and theorems needed to build the model.

10 S. Benyagoub et al.

4.2 The Root Model

It describes the notion of CP and introduces the definition of each operator at
the CP level. Each introduced Event-B event corresponds to the formalisation
of one operator defined in Sect. 3.1.

Table 2. An excerpt of the LTS CONTEXT.

LTS CONTEXT
SETS PEERS, MESSAGES , CP STATES.
CONSTANTS CPs B, DC, ISeqF, NDC, . . .
AXIOMS

axm1: CPs B ⊆ CP STATES × PEERS × MESSAGES× PEERS × CP STATES×N

– Determinstic CP definition DC
axm2 Cond1: NDC ⊆ CPs B
axm3 Cond1: ∀Trans2, Trans1·(Trans1 ∈ CPs B ∧ Trans2 ∈ CPs B∧

SOURCE STATE(Trans1) = SOURCE STATE(Trans2)∧
LABEL(Trans1) = LABEL(Trans2)∧
DESTINATION STATE(Trans1) �= DESTINATION STATE(Trans2))

⇒{Trans1, Trans2} ⊆ NDC
axm4 Cond1: DC = CPs B \ NDC

– Independent sequence freeness definition ISEQF
axm5 Cond3: ISeqF ⊆ CPs B
axm6 Cond3: ∀ cp b · (cp b ∈ CPs B ∧

(PEER SOURCE(cp b) = LAST SENDER PEERS(SOURCE STATE(cp b)) ∨
PEER SOURCE(cp b) = LAST RECEIVER PEERS(SOURCE STATE(cp b))))

⇒ {cp b} ⊆ ISeqF
. . .

End

Required Properties for CPs (cf. Table 2). Table 2 presents part of the
Event-B context used at the abstract level. We introduce, using sets and con-
stants, the whole basic definitions of messages, CP states, basic CPs, etc. A set
of axioms is used to define the relevant properties of these definitions.
For example, in axiom axm1, a CP is defined as a set of transitions with a source
and target state, a message and a source and target peers. axm3 Cond1 defines
what a non deterministic CP is using the NDC set. This NDC set characterises
all the non deterministic choices in a CP. Observe that axiom axm4 Cond1
defines the DC property in Definition 10 of Sect. 2.2.

The Root Machine (cf. Table 4). This model corresponds to the definition
of the CP LTS. Each operator corresponds to one event and contributes to build
a given CP represented in the state variable BUILT CP which shall define
deterministic CP only (see invariant inv1 in Table 3).

Table 3. An excerpt of the invariants of the LTS model.

Invariants
inv1: BUILT CP ⊆ DC

. . .

Incremental Construction of Realizable Choreographies 11

The Add Seq event corresponds to the sequence operator of Definition 11 of
Sect. 3.1. Its effect is to add a given basic CP , namely Some cp b to the currently
built CP (union operation in action act1) and sets up the new final states in
action act3. This event is triggered only if the relevant conditions identified in
Sect. 3.1 holds (guards). For example, it is clearly stated that the independent
sequence property ISeqF shall hold before adding another CP in sequence.
This condition is given by guard grd3 (see Table 4).

Table 4. An excerpt of the LTS model.

INITIALISATION�
EVENTS

Add Seq �
Any Some cp b
Where

grd1: Some cp b ∈ cps b
grd2: MESSAGE(Some cp b) �= End
grd3: Some cp b ∈ ISeqF
grd4: SOURCE STATE(Some cp b) ∈ CP Final states
. . .

Then
act1: BUILT CP := BUILT CP ∪ {Some cp b}
act3: CP Final states := (CP Final states ∪

{DESTINATION STATE(Some cp b)})\
{SOURCE STATE(Some cp b)}

. . .
End

Add Choice � . . .

Add Loop � . . .

Add End � . . .
End

Up to now, no proof related to realizability is performed. We have just stated
that all the built CPs are deterministic (they belong to the DC set of CPs which
represent a condition for the ralizability property of Definition 10 in Sect. 2.2.

4.3 First Refinement: Synchronous Model

The objective of the first refinement is to build the synchronous projection corre-
sponding to Definition 4. Here again, before building this projection, some prop-
erty definitions are required, in particular for equivalence (≡), denoted EQUIV
in Event B models.

Required Properties for Synchronous Projection (cf. Table 5). The def-
inition of the state-transitions system corresponding to the synchronous pro-
jection is given by the set CPs SY NC B defined by axiom axm1 of Table 5.
Actions (send ! and receive ?) are introduced. Then, two other important axioms,
namely axm 1.a and axm 1.a1, are given to define the equivalence between a
CP and its synchronous projection. The EQUIV relation is introduced. It char-
acterises the set of CPs that are equivalent to their synchronous projection.
axm 1.a1 formalises Definition 7 of Sect. 2.2.

12 S. Benyagoub et al.

Table 5. An excerpt of the LTS SYNC CONTEXT.

LTS SYNC CONTEXT, EXTENDS LTS CONTEXT
SETS ACTIONS. CONSTANTS CPs B , EQUIV, . . .
AXIOMS

axm1: CPs SY NC B ⊆ CP STATES × ACTIONS × MESSAGES × PEERS×
PEERS × ACTIONS × MESSAGES × CP STATES × N

– Equivalence of CP and Synchronous projection
axm 1.a: EQUIV ∈ CPs B �� CPs SYNC B
axm 1.a1: EQUIV = { Trans
→ S Trans | Trans ∈ CPs B ∧ S Trans ∈ CPs SYNC B ∧

SOURCE STATE(Trans) = S SOURCE STATE(S Trans) ∧
DESTINATION STATE(Trans) = S DESTINATION STATE(S Trans) ∧
PEER SOURCE(Trans) = S PEER SOURCE(S Trans) ∧
PEER DESTINATION(Trans) = S PEER DESTINATION(S Trans) ∧
MESSAGE(Trans) = S MESSAGE(S Trans) ∧
INDEX(Trans) = S INDEX(S Trans) }

. . .
End

Table 6. An excerpt of the invariants of the LTS Synchronous model.

Invariants
inv1: BUILT SY NC ⊆ CPs SY NC B
inv 1.a: ∀Trans·∃S Trans·(Trans ∈ BUILT CP ∧ S Trans ∈ BUILT SY NC∧

BUILT CP �= ∅)⇒Trans
→ S Trans ∈ EQUIV

The Synchronous Projection (cf. Table 7). The first refinement intro-
duces the synchronous projection of the BUILT CP defined by variable
BUILT SY NC in Table 7. Table 6 introduces through invariant inv 1.a. The
equivalence (≡) property corresponding to Condition 2.a in Eq. 2. The invari-
ant requires equivalence between a CP and its synchronous projection. Invariant
inv2 of Table 6 describes the equivalence property using the EQUIV relation

Table 7. An excerpt of the LTS Synchronous model.

INITIALISATION
. . .

EVENTS

Add Seq Refines Add Seq �
Any

S Some cp b, Some cp sync b
Where

grd1: Some cp sync b ∈ cps sync b
grd3: S SOURCE STATE(Some cp sync b) ∈ CP Final states
grd4: S Some cp b ∈ ISeq
grd8: MESSAGE(S Some cp b) �= End
grd9: MESSAGE(S Some cp b) = S MESSAGE(Some cp sync b)
. . .

With Some cp b: Some cp b = S Some cp b
Then

act1: BUILT CP := BUILT CP ∪ {S Some cp b}
act2: BUILT SY NC := BUILT SY NC ∪ {Some cp sync b}

. . .
End

Incremental Construction of Realizable Choreographies 13

defined in the context of Table 5. So, one part of the realizability property (i.e.
CP ≡ Syssync) of Definition 10 is already proved at this refinement level.
The event Add Seq or sequence operator (Table 7) refines the same event of
the root model. It introduces the BUILT SY NC set corresponding to the syn-
chronous projection as given in Definition 4. Here, again, the Add Seq applies
only if the conditions in the guards hold. The With clause provides a witness to
glue Some cp b CP with its synchronous version.

4.4 Second Refinement: Asynchronous Model

The second refinement introduces the asynchronous projection with sending
and receiving peers actions. Well formedenss and synchronizability remain to
be proved in order to complete realizability preservation (Table 8).

Table 8. An excerpt of the LTS ASYNC CONTEXT.

CONTEXT LTS ASYNC CONTEXT EXTENDS LTS SYNC CONTEXT
SETS A STATES, . . . ,
CONSTANTS CPs ASYNC B, SYNCHRONISABILITY, WF, . . .
AXIOMS

axm1: CPs ASY NC B ∈ (A STATES × ETIQ × N)
 →A STATES
– Synchronisability property

axm 1.b: SYNCHRONISABILITY ∈ CPs SYNC B �� R TRACE B
axm 1.b1: SYNCHRONISABILITY = {S Trans
→ R Trans | S Trans ∈ CPs SYNC B ∧

R Trans ∈ R TRACE B ∧ S INDEX(S Trans) = R INDEX(R Trans) ∧
S SOURCE STATE(S Trans) = R SOURCE STATE(R Trans) ∧
S PEER SOURCE(S Trans) = R PEER SOURCE(R Trans) ∧
S MESSAGE(S Trans) = R MESSAGE(R Trans) ∧
S PEER DESTINATION(S Trans) = R PEER DESTINATION(R Trans) ∧
S DESTINATION STATE(S Trans) = R DESTINATION STATE(R Trans)}

– Well formedness property
axm 1.c: WF ∈ A TRACES → QUEUE
axm 1.c1: ∀ A TR,queue · (A TR ∈ A TRACES ∧ queue ∈ QUEUE ∧ queue = ∅)
⇒ A TR
→ queue ∈ WF
. . .

End

The Asynchronous Projection (cf. Tables 10 and 11). The invariants
associated to this model are presented in Table 9. In particular, the proper-
ties of synchronizability, expressed in invariant axm 1.b used in Definition 10
(Sync(Syssync , Sysasync)), and of well formedness, expressed in invariant axm 1.c
used in Definition 10 (WF (Sysasync)) are introduced in the invariant of this
refinement level. These two properties complete the proof of realizability.

At these level, each event corresponding to a composition operator is refined
by three events: one to handle sending of messages (Add Seq send) on Table 10,
one for receiving messages (Add Seq receive) and a third one (Add Seq send
receive) on Table 11 refining the abstract Add seq event.

Tables 10 and 11 define these events. Sending and receiving events are inter-
leaved in an asynchronous manner. Once a pair of send and receive events

14 S. Benyagoub et al.

Table 9. An excerpt of the invariants of the LTS Asynchronous model.

Invariants
inv1 BUILT SY NC ⊆ CP SY NC B
inv2 REDUCED TRACE ⊆ R TRACE B
inv3 A TRACE ⊆ A TRACES
inv 1.b ∀S Trans·∃R Trans·(S Trans ∈ BUILT SY NC ∧ R Trans ∈

REDUCED TRACE)⇒
S Trans
→ R Trans ∈ SYNCHRONISABILITY

inv 1.c ∀A Trans·(A Trans ∈ A TRACES ∧ MESSAGE(Last cp trans) = End∧
A TRACE �= ∅)⇒A Trans
→ queue ∈WF

inv6 BUILT ASY NC ⊆ CP ASY NC B
. . .

Table 10. An excerpt of the LTS Asynchronous model.

Event Add Seq Send �
Any

send, lts s, lts d,msg, index
Where
grd1: ∃send st src, send st dest·((lts s
→ send st src) ∈ A GS ∧ ((send st src
→
(Send
→ msg
→ lts d)
→ index)
→ send st dest) ∈ CPs ASY NC B∧ . . .
. . .
Then
act1: A TRACE := A TRACE ∪ {Reduces Trace states
→ St Num
→
Send
→ lts s
→ msg
→ lts d
→ Reduces Trace states
→
(St Num + 1)
→ A Trace index}
act2: queue, back := queue ∪ {lts d
→ msg
→ back}, back + 1
act3: A GS := A Next States({send →
} A GS
→ queue)
. . .

End

has been triggered, the event Add Seq send receive records that the emission-
reception is completed. This event increases the number of received messages
(action act5). Traces are updated accordingly by the events, they are used for
proving the invariants.

4.5 Instantiation and Axiom Validation

To illustrate our approach, we have instantiated our model on a toy example
corresponding to the CP depicted on Fig. 1. The labels of the transitions of the
form mp−→p′

denote a message m sent by peer p to the peer p′.

Fig. 1. Four messages exchanges in sequence for a electronic commerce system

The whole Event-B model has been instantiated. The context of Table 12 shows
the instantiation of the model for the CP of Fig. 1. It also shows that the axioms

Incremental Construction of Realizable Choreographies 15

Table 11. An excerpt of the LTS Asynchronous model.

Event Add Seq Receive �
Any

send, receive, lts s, lts d,msg, index
Where
grd1: queue �= ∅ ∧ lts d
→ msg
→ front ∈ queue
grd2: ∃receive st src, receive st dest·(((lts d
→ receive st src) ∈ A GS)∧
((receive st src
→ (Receive
→ msg
→ lts s)
→ index)
→ receive st dest)
∈ CPs ASY NC B ∧ . . .
. . .

Then
act1: A TRACE := A TRACE ∪ {Reduces Trace states
→ St Num
→
Receive
→ lts s
→ msg
→ lts d
→ Reduces Trace states
→ (St Num + 1)

→ A Trace index}
act2: queue := queue \ {lts d
→ msg
→ front}
. . .

End

Event Add Seq Send − Receive Refines Add Seq �
Any

A Some cp b,A Some cp sync b, Send cp async b, Receive cp async b, R trace b
Where
grd1: A MESSAGE(Send cp async b) = A MESSAGE(Receive cp async b)
grd2: ACTION(Receive cp async b) = Receive ∧ ACTION(Send cp async b) = Send
grd3: A Some cp b ∈ ISeq
grd4: MESSAGE(A Some cp b) = A MESSAGE(Send cp async b)
. . .

With S Some cp b : S Some cp b = A Some cp b,
Some cp sync b : Some cp sync b = A Some cp sync b

Then
act1: BUILT CP := BUILT CP ∪ {A Some cp b}
act2: BUILT SY NC := BUILT SY NC ∪ {A Some cp sync b}
act3: BUILT ASY NC := BUILT ASY NC ∪ {Send cp async b} ∪ {Receive cp async b}
act4: REDUCED TRACE := REDUCED TRACE ∪ {R trace b}
. . .

End
. . .

End

defined in the model are inhabited. The ProB [15] model checker associated to
Event-B on the Rodin platform has been used for automatic validation.

Other case studies borrowed from the research community dealing with real-
izability have been used to instantiate our model. These case studies use the
whole composition operators we defined.

4.6 Assessment

Table 13 gives the results of our experiments. One can observe that all the proof
obligations (POs) have been proved. A large amount of these POs has been
proved automatically using the different provers associated to the Rodin plat-
form. Interactive proofs of POs required to combine some interactive deduction
rules and the automatic provers of Rodin. Few steps were required in most of
the cases, and a maximum of 10 steps was reached.

16 S. Benyagoub et al.

Table 12. An excerpt of the LTS CONTEXT instantiation.

LTS CONTEXT instantiation EXTENDS LTS CONTEXT
CONSTANTS s0, s1, s2, s3, s4, s5, Connect, Buy, Contact, Request BBN, End, Buyer, . . .
AXIOMS

axm1: partition(PEERS,{Buyer},{e shop},{Bank},{Pend})
axm2: partition(MESSAGES,{Connect},{Buy},{Contact},{Request BBN},{End})
axm3: partition(CP STATES, {s0} ,{s1} ,{s2} ,{s3} ,{s4}, {s5})
axm4: CPs B= {s0
→ Buyer
→ Connect
→ e shop
→ s1
→ 1, . . . ,
axm5: CPs SY NC B = {s0
→ Send
→ Connect
→ e shop
→ Buyer
→ Receive
→ . . .
axm6: partition(A STATES, {B s0}, {B s1}, {B s2}, {B s3}, {e s0}, {e s1}, . . .)
axm7: CPs ASY NC B = {((B s0
→ (Send
→ Connect
→ e shop)
→ 1)
→ B s1), . . . }
axm8: A TRACES = {s
→ 0
→ Send
→ Buyer
→ Connect
→ e shop
→ s
→ 1
→ 1, . . . }
axm9: R TRACE B = {s0
→ Buyer
→ Connect
→ e shop
→ s1
→ 1, . . . }
axm10: S Next States = {{((B s0
→ (Send
→ Connect
→ e shop)
→ 1)
→ B s1) →
}

{(Buyer
→ B s0), (e shop
→ e s0), (Bank
→ Bk s0) →
}
{(Buyer
→ B s1), (e shop
→ e s0), (Bank
→ Bk s0)}, . . . }

axm11: A Next States = {{((B s0
→ (Send
→ Connect
→ e shop)
→ 1)
→ B s1) →
}
{(Buyer
→ B s0), (e shop
→ e s0), (Bank
→ Bk s0) →
} ∅
→
{(Buyer
→ B s1), (e shop
→ e s0), (Bank
→ Bk s0)}, . . . }

. . .
END

Table 13. RODIN proofs statistics

Event-B Model Interactive proofs Automatic proofs Proof obligations

Abstract context 06 (100%) 0 (0%) 06 (100%)

Synchronous context 02 (100%) 0 (0%) 02 (100%)

Asynchronous context 01 (33.33%) 02 (66.67%) 03 (100%)

Abstract model 28 (58.33%) 20 (41.67%) 48 (100%)

Synchronous model 39 (39%) 61 (61%) 100 (100%)

Asynchronous model 73 (38.83%) 115 (61.17%) 188 (100%)

Total 148 (100%) 198 (100%) 347 (100%)

5 Related Work

Several approaches addressed choreography realizability. In [10], the authors
identify three principles for global descriptions under which a sound and com-
plete end-point projection is defined. If these rules are respected, the projection
will behave as specified in the choreography. This approach is applied to BPMN
2.0 choreographies [18]. [20] propose to modify their choreography language to
include new constructs (choice and loop). During projection, particular commu-
nication is added to enforce the peers to respect the choreography specification.
In [12], the authors propose a Petri Net-based formalism for choreographies
and algorithms to check realizability and local enforceability. A choreography is
locally enforceable if interacting peers are able to satisfy a subset of the require-
ments of the choreography. To ensure this, some message exchanges in the dis-
tributed system are disabled. In [21], the authors propose automated techniques
to check the realizability of collaboration diagrams for different communication
models.

Incremental Construction of Realizable Choreographies 17

Beyond advocating a solution for enforcing realizability, our contribution dif-
fers from these approaches as follows. We focus on asynchronous communication
and choreographies involving loops. Our approach is non-intrusive; we do not add
any constraints on the choreography language or specification, and the designer
neither has to modify the original choreography specification, nor the peer mod-
els. We considerably reduce the verification complexity since there is no need
to re-build the distributed system by composition of peers to check the realiz-
ability. Instead of that, we rely on a correct-by-construction approach based on
sufficient conditions for realizability at the CP level. The technique we rely on
here shares some similarities with counterexample-guided abstraction refinement
(CEGAR) [11]. In CEGAR, an abstract system is analyzed for temporal logic
properties. If a property holds, the abstraction mechanism guarantees that the
property also holds in the concrete design. If the property does not hold, the
reason may be a too coarse approximation by the abstraction. In this case, the
counterexample generated by the model checker, is used to refine the system to
a finer abstraction and this process is iterated.

To the best of our knowledge, our approach is the first correct-by-construction
method which enables the designer to specify realizable CP avoiding behavioural
errors in the distributed systems. By doing so, we propose an a priori verification
method where the problems of state explosion and scalability are discarded.
Other proof based techniques thant Event-B like Coq [3] or Isabelle [17] could
have been used after defining the refinement operation. Our approach extensively
uses built-in refinement operation and inductive proof schemes of Event-B.

6 Conclusion

This paper presents an a priori approach to build realizable CPs based on
a correct-by-construction method. A language allowing to incrementally build
complex realizable CPs from a set of basic realizable ones is defined. It offers a set
of composition operators preserving realizability. Our proposal is proved to be
sound and correct using the proof and refinement based formal method Event-B.
Thanks to the use of arbitrary sets of values for parameters in our Event-B mod-
els, ou approach is scalable. Moreover, we have validated this model using several
case studies. According to [4], this instantiation process is defined either using
model checking to animate and test the CPs associated to each case study; or
by explicitly supplying a witness to each parameter of the events in the Event-B
model to build the CP associated to the case study.

As a short term perspective, we aim at extending our model with an operator
enabling to compose entire CPs instead of requiring incremental composition of
basic CPb. Furthermore, we intend to define a set of patterns for realizable CPs
and studying the completeness of our language in order to identify the class of
real-world asynchronously communicating systems that can be specified. Last,
we aim at providing the designers with an engine for automatic instantiation of
realizable CPs.

18 S. Benyagoub et al.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991)

2. Abrial, J.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Athalye, A.: CoqIOA: A formalization of IO automata in the Coq proof assistant,
vol. 1019, pp. 1–53 (1995)

4. Babin, G., Ait-Ameur, Y., Pantel, M.: Correct instantiation of a system reconfig-
uration pattern: a proof and refinement-based approach. In: Proceedings of HASE
2016, pp. 31–38. IEEE Computer Society (2016)

5. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of POPL 2012, pp. 191–202. ACM (2012)

6. Benyagoub, S., Ouederni, M., Ait-Ameur, Y.: Towards correct evolution of conver-
sation protocols. In: Proceedings of VECOS 2016. CEUR Workshop Proceedings,
vol. 1689, pp. 193–201. CEUR-WS.org (2016)

7. Benyagoub, S., Ouederni, M., Singh, N.K., Ait-Ameur, Y.: Correct-by-construction
evolution of realisable conversation protocols. In: Bellatreche, L., Pastor, Ó.,
Almendros Jiménez, J.M., Aı̈t-Ameur, Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp.
260–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45547-1 21

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

9. Bultan, T.: Modeling interactions of web software. In: Proceedings of IEEE WWV
2006, pp. 45–52 (2006)

10. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 2

11. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

12. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0 22

13. Farah, Z., Ait-Ameur, Y., Ouederni, M., Tari, K.: A correct-by-construction model
for asynchronously communicating systems. Int. J. STTT 19, 1–21 (2016)

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley, Boston (1979)

15. Bendisposto, J., Clark, J., Dobrikov, I., Karner, P., Krings, S., Ladenberger, L.,
Leuschel, M., Plagge, D.: Prob 2.0 tutorial. In: Proceedings of of 4th Rodin User
and Developer Workshop, TUCS (2013)

16. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

17. Müller, O., Nipkow, T.: Combining model checking and deduction for I/O-
automata. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen,
B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 1–16. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60630-0 1

18. OMG: Business Process Model and Notation (BPMN) - Version 2.0 (2011)
19. Project RODIN: Rigorous open development environment for complex systems

(2004). http://rodin-b-sharp.sourceforge.net/

https://doi.org/10.1007/978-3-319-45547-1_21
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-540-75183-0_22
https://doi.org/10.1007/3-540-60630-0_1
http://rodin-b-sharp.sourceforge.net/

Incremental Construction of Realizable Choreographies 19

20. Qiu, Z., Zhao, X., Cai, C., Yang, H.: Towards the theoretical foundation of chore-
ography. In: Proceedings of WWW 2007. ACM Press (2007)

21. Salaün, G., Bultan, T.: Realizability of choreographies using process algebra encod-
ings. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 167–
182. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00255-7 12

https://doi.org/10.1007/978-3-642-00255-7_12

Formal Assurance for Cooperative
Intelligent Autonomous Agents

Siddhartha Bhattacharyya1(B), Thomas C. Eskridge1, Natasha A. Neogi2,
Marco Carvalho1, and Milton Stafford1

1 School of Computing, Florida Institute of Technology, Melbourne, FL, USA
{sbhattacharyya,teskridge,mcarvalho,mstafford2012}@fit.edu

2 NASA Langley Research Center, Hampton, VA, USA
natasha.a.neogi@nasa.gov

Abstract. Developing trust in intelligent agents requires understand-
ing the full capabilities of the agent, including the boundaries beyond
which the agent is not designed to operate. This paper focuses on apply-
ing formal verification methods to identify these boundary conditions
in order to ensure the proper design for the effective operation of the
human-agent team. The approach involves creating an executable spec-
ification of the human-machine interaction in a cognitive architecture,
which incorporates the expression of learning behavior. The model is
then translated into a formal language, where verification and validation
activities can occur in an automated fashion. We illustrate our approach
through the design of an intelligent copilot that teams with a human in
a takeoff operation, while a contingency scenario involving an engine-
out is potentially executed. The formal verification and counterexample
generation enables increased confidence in the designed procedures and
behavior of the intelligent copilot system.

Keywords: Formal verification · Intelligent agents
Human-machine teams

1 Introduction

Autonomous systems are increasingly being designed to collaborate with humans
to accomplish safety critical tasks. These cooperative agents are typically
designed in modeling paradigms that emphasize human-machine interactions,
efficiency, learning and performance improvement. However, operators mitigate
safety and operational risks in an adaptive manner on a frequent basis, and the
system often relies on this mitigation.

Our research focuses on the development of assurance for cooperative agents
that can execute tasks autonomously, work with environmental variations and
improve their own performance and the performance of the cooperative system
overall. We translate the knowledge representations used by the cooperative
agent into a formally verifiable representation to ensure that any modification
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 20–36, 2018.
https://doi.org/10.1007/978-3-319-77935-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_2&domain=pdf

Formal Assurance for Cooperative Intelligent Autonomous Agents 21

to the agent behavior learned during operation will conform to the individual
and system-level requirements specified during design and deployment. In this
paper, we discuss an initial version of our automated translator and how this
translation is achieved through a model transformation from an agent knowledge
representation into a formally verifiable framework. Our technique provides a
proof of concept for how the formal verification of autonomous agents could be
utilized for safety critical applications.

Contribution. Frameworks for specifying autonomous cooperative agents usu-
ally lack the inherent capability for rigorous analysis, such as the formal ver-
ification and validation of safety critical properties. Our approach is novel in
that it allows for the direct use of formal tools to verify safety properties of an
autonomous agent designed in an existing cognitive architecture (Fig. 1). Thus,
the formal verification process can be integrated into the design process of the
agent. We believe this to be a unique contribution, which is, to the best of our
knowledge, not currently otherwise utilized between other common intelligent
agent frameworks (e.g., ACT-R, EPIC, PRS etc.) and formal methods (e.g.,
SMV, PVS, IC3 etc.).

We next review related work in Sect. 2. A target cognitive architecture and
formal verification framework is selected in Sect. 3. We outline an example
human-cooperative agent scenario involving an aircraft engine-out case study
in Sect. 4. A formal description of the automated translation process between
the cognitive architecture and verification formalism is provided in Sect. 5, along
with implementation particulars. Section 6 discusses the results of the verifica-
tion and validation efforts on the case study, and modifications made to the
agent as a result. Conclusions and future work are detailed in Sect. 7.

Fig. 1. System modeling and verification process

2 Related Work

Rule-based reasoning systems, or production systems, have been a popular
method in Artificial Intelligence for producing intelligent behavior that is
understandable to the program operator. Common rule based reasoning sys-
tems include the General Problem Solver (GPS) [1], the MYCIN knowledge
based inference system [2], the Adaptive Control of Thought-Rational Theory
(ACT-R) [3] and the Soar cognitive architecture [4]. Rule-based reasoning frame-
works facilitate adaptation in two ways: creating new rules and modifying

22 S. Bhattacharyya et al.

rule order. Creating new rules can occur by identifying a new set of conditions
under which an action should occur (called new rule learning) or by combin-
ing a number of rules together to form a single rule that makes execution of
the set more efficient (called chunking) [4]. Rule order can be modified through
reinforcement learning, which optimizes rule order based on a criteria such as
minimum number of rule firings to reach a goal or minimizing overall time to
execute [5]. However, none of these modeling frameworks, which support learn-
ing behaviors, possess a formal semantics, and do not naturally support formal
verification. Research efforts [6] extend ACT-R based on a discrete event sim-
ulation formalism, however, this does not encompass systems with continuous
dynamics.

Research efforts in the area of verification of adaptive architectures for auton-
omy include work done on Rainbow CMU [7], which focuses on dynamic sys-
tem adaptation via architecture models, along with potential formal guarantees.
Research conducted by Wen [8] focuses on constraining the inputs to learning
systems in order to synthesize systems that are correct by construction. Sharifloo
and Spoletini [9] describes the use of lightweight formal verification methods for
runtime assurance when a system is updated with a new component. In [10],
Curzon discusses the development of a formal user model to develop a generic
approach to cognitive architecture, but does not integrate this work with an
existing architecture. Additionally, the formal verification of an autonomous
system is discussed by O’Connor [11], and is based on the design of a mission
controller with timed automata; however this does not enable the modeling of
cognitive components. None of these efforts provide support for rigorously ana-
lyzing existing cognitive decision procedures implemented through an existing
cognitive architecture.

NASA has developed PLan Execution Interchange Language (PLEXIL) [12],
which has been successfully deployed for several autonomyapplications. PLEXIL's
operational semantics has been formally specified in the Prototype Verification
System (PVS) [13] and properties such as determinsim and compositionality
were mechanically verified in PVS [14]. Architecturally, the executable seman-
tics in PLEXIL are specified in the rewrite logic engine Maude [15] for formal
verification of the plans. Several efforts have focused on the use and analysis of
PLEXIL, such as Strauss's efforts in analysing execution semantics in Haskell [16].
Balasubramanian et al. have developed Polyglot, a Statecharts analysis framework
for PLEXIL, and are investigating formal analysis of a Statechart-based semantics
of PLEXIL [17]. Verdejo and Mart́ı-Oliet [18] have investigated the development
of tools from the operational semantics specified in Maude. In our approach we
utilize a similar paradigm of having the plans represented as rules in Soar, which
are translated into Uppaal for verification. The additional benefit provided by our
approach is that Soar has learning capabilities embedded within its architecture.
The authors have also developed a navigation agent for drones in enclosed areas via
the proposed methodology for direction selection [19]. In this paper, we extend this
previous work by designing and implementing an autonomous agent that performs
decision-making processes in the context of human teamwork. We next discuss the
modeling formalisms used to support this work.

Formal Assurance for Cooperative Intelligent Autonomous Agents 23

3 Modeling and Formal Verification

The goal of the research is to be able to model and ultimately design human
and automated agent interactions, thereby enabling a shifting locus of control
from human agents to automation in a variety of domains. This will entail
automated agents performing complex safety-critical tasks in conjunction with
human supervisors, which may result in possibly inimical emergent properties.
In order to avoid this, we wish to map cognitive task models or operations into a
formal language, where safety and liveness invariants can be verified. We consid-
ered several cognitive frameworks in order to model human interactions, as well
as several formalisms for verification purposes. We detail the process of choosing
a framework and formalism in Subsects. 3.1 and 3.2.

3.1 Cognitive Architectures and Frameworks: Soar

Cognitive architectures, which are often candidates for a general theory of cogni-
tion, can be regarded as architectures for the expression of intelligent behavior.
We surveyed several rule based reasoning systems as candidates for modeling
human-automation interactions [1–4]. Soar was selected based on its ability to
encompass multiple memory constructs (e.g., semantic, episodic, etc.) and learn-
ing mechanisms (e.g., reinforcement, chunking etc.). Furthermore, Soar produc-
tion rules are expressed in first order logic, which makes them amenable to
verification. Finally, Soar takes the form of a programmable architecture with
an embedded theory; this leads to the ability to execute Soar models on embed-
ded system platforms, which enables the study of the design problem through
the use of rapid prototyping and simulation.

Production Rules Expressed in the Soar Representation. Every Soar
production rule starts with the symbol sp, which stands for Soar production.
The remainder of the rule body is enclosed in braces. The body consists of the
rule name, followed by one or more conditions expressed in first order logic,
then the symbol →, which is followed by one or more actions (also expressed in
first order logic). In Soar, a state variable (expressed as <variable>) can have
multiple features or attributes, where features or attributes are indicated by the
symbol ˆ. An attribute can take on a value, which is stated in the string following
the attribute. So, the Soar expression: (<s> ˆ superstate nil) means that the
state variable s has a feature, called superstate, whose value is nil. An example
Soar rule is:

sp{proposeInitialiaze(state <s> −ˆname ˆsuperstate nil) →
(<s> ˆoperator <o>)(<o> ˆname initialize)}

The Soar rule proposeInitialize has the condition where the state variable
s has the attributes name (whose value is unassigned) and superstate (whose
value is nil). The Soar feature superstate is an internal mechanism that Soar can
use as part of its processing of goal-subgoal hierarchies. The condition where

24 S. Bhattacharyya et al.

the feature superstate holds the value nil, and there is no associated operator,
indicates that Soar has just been invoked and no processing has been done yet.
This subgoal hierarchy capability is not used in the example in Sect. 4, and
therefore the superstate is only used to initialize the agent that is processing.
So, in this case, the precondition is that no superstate exists and that there is no
pre-existing name for the state <s>. The right hand side (RHS) of the rule is the
post condition or action, which indicates that given the LHS is true, an operator
<o> is associated with the state <s> and that an attribute of the operator is
its name, which has a value initialize.

Soar production rules commonly execute in pairs of propose and apply rules.
The propose rule checks which Soar production rules are eligible to be executed,
and the corresponding apply rule executes one of the eligible rules. In Sects. 4
and 5, we used the Soar production system framework to encode rules describing
takeoff procedures for an automated copilot in a commercial aircraft. The Soar
framework facilitated development of the automated copilot agent. Furthermore,
the first order logic representation of the production ruleset facilitates its trans-
lation into an appropriate modeling formalism for formal verification, as detailed
in the next subsection.

3.2 Formal Languages and Verification: Uppaal

In order to choose the correct platform to translate Soar models into for the pur-
pose of verification, several formalisms such as NuSMV [20], Uppaal [21], PVS
[22] and Z3 [23] were considered carefully. We chose Uppaal [21,24,25], due to
its ability to model timing aspects that are critical for cyberphysical systems, as
well as its ability to generate and visualize counterexamples. Uppaal models are
represented by timed automata, and the compositionality enabled by the Uppaal
formalism supports model checking over networked timed automata using tem-
poral logics. This modeling paradigm allows the execution of requirements as
temporal logic queries to exhaustively check the satisfaction of relevant safety
properties. We next describe the timed automata formalism used by Uppaal.

Mathematical Representation in Uppaal. Uppaal uses timed automata
[26], a subset of hybrid automata, as a modeling formalism. One of the essential
requirements in the design of human-agent teams is to be able to model the
time associated with the execution of operations or rules. A timed automaton
is a finite automaton extended with a finite set of real-valued clocks. Clock or
other relevant variable values can be used in guards on the transitions within
the automaton. Based on the results of the guard evaluation, a transition may
be enabled or disabled. Additionally, variables can be reset and implemented as
invariants at a state. Modeling timed systems using a timed-automata approach
is symbolic rather than explicit, and allows for the consideration of a finite
subset of the infinite state space on-demand, i.e., using an equivalence relation
that depends on the safety property and the timed automaton, which is referred
to as the region automaton. There also exists a variety of tools to input and

Formal Assurance for Cooperative Intelligent Autonomous Agents 25

analyze timed automata and extensions, including the model checkers Uppaal,
and Kronos [27]. For the purpose of this paper, we represent timed automata
formally as follows.

Definition 1 Timed Automaton (TA). A timed automaton is a tuple (L, l0,
C,A,E, I), where L is a set of locations; l0 ∈ L is the initial location; C is
the set of clocks; A is a set of actions, co-actions and the internal τ -action;
E ⊆ L × A × B(C) × 2C × L is a set of edges between locations with an action,
a guard and a set of clocks to be reset; and I : L → B(C) assigns invariants to
locations.

We define a clock valuation as a function u : C → R≥0 from the set of clocks to
the non-negative reals. Let R

C be the set of all clock valuations. Let u0(x) = 0
for all x ∈ C. If we consider guards and invariants as sets of clock valuations
(with a slight relaxation of formalism), we can say u ∈ I(l) means that u satisfies
I(l). We can now define the semantics of a timed automaton as follows.

Definition 2 Timed Automaton (TA) Semantics. Let (L, l0, C,A,E, I) be
a timed automaton TA. The semantics of the TA is defined as a labelled transi-
tion system 〈S, s0,→〉, where S ⊆ L×R

C is the set of states, s0 = (l0, u0) is the
initial state, and →⊆ S × {R≥0 ∪ A} × S is the transition relation such that:

1. (l, u) d−→ (l, u + d) if ∀d′:0 ≤ d′ ≤ d ⇒ u + d′ ∈ I(l) and
2. (l, u) a−→ (l′, u′) if ∃e = (l, a, g, r, l′) ∈ E such that u ∈ g, u = [r �→ 0]u and

u′ ∈ I(l),

where for d ∈ R≥0, u + d maps each clock x in C to the value u(s) + d, and
[r �→ 0]u denotes the clock valuation which maps each clock in r to 0 and agrees
with u over C \ r.

Note that a guard g of a TA is a simple condition on the clocks that enable
the transition (or, edge e) from one location to another; the enabled transition
is not taken unless the corresponding action a occurs. Similarly, the set of reset
clocks r for the edge e specifies the clocks whose values are set to zero when
the transition on the edge executes. Thus, a timed automata is a finite directed
graph annotated with resets of, and conditions over, non-negative real valued
clocks.

Timed automata can then be composed into a network of timed automata
over a common set of clocks and actions, consisting of n timed automata TAi =
(Li, li0, C,A,Ei, Ii), 1 ≤ i ≤ n. This enables us to check reachability, safety and
liveness properties, which are expressed in temporal logic expressions, over this
network of timed automata. An execution of the TA, denoted by exec(TA) is the
sequence of consecutive transitions, while the set of execution traces of the TA
is denoted by traces(TA). We next consider a simple flight example involving
the interaction of human pilot with an autonomous copilot in a contingency
situation where an engine becomes disabled during aircraft takeoff. We shall use
this example to illustrate the process by which a Soar model is translated into
Uppaal, and then we shall attempt to verify the design of the automated copilot
model, with respect to simple safety and reachability properties.

26 S. Bhattacharyya et al.

4 Example Case Study: Engine Out Contingency During
Takeoff

The example used to illustrate this technique was that of an engine-out contin-
gency upon takeoff. Conventionally defining the term pilot flying (PF) as the agent
designated as being responsible for primary flight controls in the aircraft (e.g.,
stick and surface inputs), and pilot not flying (PNF) as the agent not responsible
for primary flight controls, has the Soar agent assuming the role of PNF. Thus,
the Soar agent monitors procedure execution for off nominal or contingency situ-
ations, as well as performs secondary actuation tasks, similar to those performed
by a copilot. However, it is important to note that the human pilot is always ulti-
mately responsible for the overall safe execution of the flight [28].

For illustrative purposes, consider the scenario of a large cargo aircraft (such
as a Boeing 737) during takeoff which experiences an engine failure, whereby
the engine is delivering insufficient power after the aircraft brakes have been
released, but before the aircraft takeoff has been successfully completed. Prior
to takeoff, the speed V 1 is calculated, which is defined by the FAA as “the
maximum speed in the takeoff at which the pilot must take the first action (e.g.,
apply brakes, reduce thrust, deploy speed brakes) to stop the airplane within the
accelerate-stop distance” [29]. Thus, V 1 is a critical engine failure recognition
speed, and can be used to determine whether or not the takeoff will continue, or
result in a rejected takeoff (RTO). V 1 is dependent on factors such as aircraft
weight, runway length, wing flap setting, engine thrust used and runway surface
contamination. If the takeoff is aborted after the aircraft has reached V 1, this
will likely result in a runway overrun, that is, the aircraft will stop at a point in
excess of the runway. Thus, V 1 is also seen as the speed beyond which the takeoff
should continue: the engine failure is then handled as an airborne emergency.

A conventional takeoff, whereby humans fill the PF and PNF roles, proceeds
as follows. Both pilots review any changes in the ATC clearance prior to initiating
the Before Takeoff (BT) checklist. All Before Takeoff checklist items must be
completed before the takeoff roll commences. Once the checklist is completed,
the Takeoff procedure is performed as detailed in Fig. 2. It can be seen that
there is a great deal of interplay between the PF and PNF, especially in terms of
affirming tasks and settings through callouts. These callouts also serve to initiate
the subsequent task in the procedure. Thus, any tasks that are delegated to
an automated PNF, performing the copilot role, must mimic this annunciation
structure, in order to preserve situation awareness in the cockpit, and foster
teamwork in the human-automation team. In the case of an engine failure at
a speed of less than V 1, but above the lower threshold speed of 80 kts, the
Contingency procedure shown in Fig. 3 is called from within the nominal Takeoff
procedure.

These two operational procedures can be used to create a Soar production
system, which models the behavior of the copilot, and can be executed, thereby
creating an automated copilot function for takeoff. This process results in the
creation of 15 Soar production rules. We now detail the process whereby the
set of Soar production rules is translated into a network of timed automata, in
Sect. 5.

Formal Assurance for Cooperative Intelligent Autonomous Agents 27

Fig. 2. Nominal takeoff procedure [30] Fig. 3. Contingency procedure for engine
out on takeoff [30]

5 Automated Translation from Cognitive Architecture
to Formal Environment

The process of translation from Soar to Uppaal captures our understanding of the
differences in the cognitive model and its formal representation. We have auto-
mated the Soar to Uppaal translation for a subset of Soar models. This includes
translation of conditions in a production rule represented with variables, opera-
tors, disjunctions, conjunctions as well as for action items adding new elements
to working memory, and creating preferences for two among twelve preferences.
Further support needs to be added for multi-attribute rules, creating the remain-
ing ten preferences and implementing translation of other action items such as
mathematical operations.

Figure 4 shows the sequential operations the translator goes through, which
are (1) lexical analysis, (2) semantic parsing, (3) symbolic and syntax analysis
and (4) generating the Uppaal .xml file.

Given the grammar describing the Soar productions, Another Tool for Lan-
guage Recognition (ANTLR) was used to parse Soar, resulting in a syntax
tree for further translation. From this tree, symbols—local variables used in
productions—are extracted to add to the Uppaal model. Each Soar production
can then be mapped to one or more Uppaal actions, which must then fire in a
sequential fashion; meanwhile each Soar syntactical element must be mapped to
the corresponding Uppaal element. Once the parser is created, it parses the Soar
file to generate the graphical tree for a Soar rule.

28 S. Bhattacharyya et al.

Fig. 4. Model transformation from Soar to Uppaal

In the Antlr grammar, the rule is parsed based on identifying if it is a Soar
rule followed by if it is a Soar production. Once it is confirmed to be a Soar
rule then the parser identifies if it is the LHS or RHS of the rule. If it is the
LHS the condition parameters and the variables are identified. If it is the RHS
of the rule, action parameters are identified along with the variables, expression
and preferences. Once the trees are generated, the Soar rule is translated into a
Timed Automaton (TA).

5.1 Automated Translation to Uppaal

In order to give a formal representation of the translation process, we consider the
restricted subset of Soar production systems whose rules are represented using
first order logic. We can then define a Soar production rule as a function of a
finite set of variables V ∈ vi, i = 1, 2, 3 . . . n, whose valuation val(V) represent
the state of the system, along with a finite set of well formed formulae (WFF)
Φ = {φ1, φ2, . . . φm}, representing the left hand side of the Soar production
rule (e.g., the preconditions), and a finite set of WFF Ψ = {ψ1, ψ2, . . . ψr},
representing the actions embodied by the right hand side of the Soar production
rule. We use the following formal definition for Soar production rules.

Definition 3. An individual rule in cognitive model CM is represented as
a tuple rname(V, Pre(Φ), Post(Ψ)) where there are i = 1...n variables, m
well formed formulae in the precondition {φ1(vj), φ2(vk), ...φm(vl)}, and r well
formed formulae in the postcondition {ψ1(vs), ψ2(vu), ...ψr(vw)}.
Each WFF (φ or ψ) may depend on a subset of the variables in V , as well as
constants. Preconditions and postconditions can be formed through the use of
first order logical operators (e.g., ∨,∧,∀ etc.) over WFF. The execution or firing
of a production rule creates an observable change in the system state, which
can be denoted by fire(rname). The goal is to map the semantics of a Soar
production rule onto the semantics of a Uppaal TA. For the translation to be
correct, we wish to have the behavior of the cognitive model be equivalent to
the behavior of the network of TAs, at least with respect to the properties being
verified. Each Soar production rule generates a TA in Uppaal, and the set of
all TAs compose into a networked TA that corresponds to the cognitive model

Formal Assurance for Cooperative Intelligent Autonomous Agents 29

embodied by the Soar production rules. However, due to the nature of timing
captured in Uppaal, we must also generate a scheduler (see Fig. 5), which forces a
production rule and its corresponding TA to fire if one is available to do so. After
any TA in the network has fired, the scheduler evaluates whether the goal state
of the cognitive model has been reached. If this is not the case, the scheduler
broadcasts the action Run Rule, which causes an automata whose preconditions
are enabled to fire. The Run Rule action also allows the TA corresponding to
the previously fired production rule to reset, rendering it immediately available
to fire at the next evaluation of the TA network.

Specifically, each individual TA corresponding to a production rule has a
Start state and a Run state, and a single clock x, whose value is given by
u(x) = val(x). Roughly speaking, the guard conditions for the TA correspond
to the preconditions of the production rule. Similarly, the actions of the TA can
be represented by the postconditions of the production rule. For example, at
the start of the TA network execution, the guard condition for the initialization
Soar production rule (Fig. 6) is the only rule that is true. This corresponds to the
Soar representation where the guard condition, superstate is equal to nil, is true
at initialization. Thus, the TA corresponding to the initialization rule executes
when the scheduler sends out the Run Rule broadcast shown in Fig. 5. During
execution of the initialization rule, the values of variables on the RHS of the rule
are updated, which changes guards for other rules to become true. After any TA
executes, the scheduler transitions to the Check state on its own guard condition,
which is a negation of the goal. If the goal is not met, the scheduler transitions
from the Check to the Run state, and broadcasts the Run Rule action to all TA,
enabling further TA execution.

Fig. 5. Generic scheduler for timed automata derived from Soar rules

We briefly describe the algorithm as follows. The algorithm takes as its
input a tuple rname(V, Pre({φ1, φ2, ...φm}), Post({ψ1, ψ2, ...ψr})), which is a
rule from the Soar CM , and translates it to a timed automaton TA =
(L, l0, C,A,E, I). The first line of the algorithm requires that all preconditions
Pre({φ1, φ2, ...φm}) and postconditions Post({ψ1, ψ2, ...ψr}) in the Soar rule be
well formed formulae. It also requires that a valuation function u(x) for the
clocks x of the TA be defined over the non-negative reals. If the conditions spec-
ified in the requirements line are met, then the second line of the algorithm states
that the property of the traces of the generated TA containing all the behaviors
exhibited by the firing of the Soar rule is ensured.

30 S. Bhattacharyya et al.

Algorithm 1. Generate (S, s0,→) for TA = (L, l0, C,A,E, I) from
rname(V, Pre({φ1, φ2, ...φm}), Post({ψ1, ψ2, ...ψr}))
Require: ∀φ(vi), ψ(vi) ∈ WFF,, u: C → R≥0

Ensure: fire(rname) ⊆ traces(TA)
l0 ← {Start}
L ← {Start, Run}
s0 ← (Start, u(x0))
S ← {Start, Run} ×u(x)
I(Start) = {True}
I(Run) = {True}
G = { }
A = {Run Rule}
for j = 1 to m do

G ← G ∧ φj

end for
for k = 1 to r do

A ← A ∧ ψj

end for
if u ∈ I(Start) and L = {Start} then

e1 = (Start, A, G, u �→ u′, Run)
end if
if u′ ∈ I(Run) and L = {Run} then

e2 = (Run, Run Rule, {}, u′ �→ u′′, Start)
end if
E = {e1, e2}
S′ u(x)∪A←−−−−− S

return TA = (L, l0, C, A, E, I)

The next eight lines of the algorithm (lines 3–10) are used to initialize the
elements of the TA and portions of its semantics, namely: (1) the set of initial
locations l0, (2) the set of locations L, (3) the set of initial states s0, (4) the set of
states S, (5) the invariant at the initial location, (6) the invariant at the location
after the TA has executed its transition, (7) the set of actions of the TA, and
(8) the set of guards for the TA. The Soar rule has two locations associated with
it: (1) Start = val(V (u)), which describes the valuation of the state variables
given in the Soar rule, before it has been fired, and (2) Run = val(V (u′)), which
describes the valuation of the state variables given in rule after it has been
fired. The state space is given by the cross production between the locations and
clocks. There are no invariants at the locations, as currently non-determinism is
handled in a sequential fashion, and the set of guards is initially set to empty.
The set of actions for each TA created from a Soar rule has the base action
Run Rule, which is generated by the global scheduler, and used to guarantee
execution. The Run Rule action is received by all TA, and it forces all enabled
TA (i.e. TAs whose guards are true, and thus, all Soar rules whose preconditions
are true) to execute.

Formal Assurance for Cooperative Intelligent Autonomous Agents 31

The first for loop (lines 11–13) is used to create the guard for the TA tran-
sition from the location Start to the location Run, and captures the condition
portion of the Soar rule, by creating a conjunction of all of the preconditions
(left-hand side) expressed by that rule. These are the preconditions that are
needed for the Soar rule to fire, and are dependent on variables such as time.
The second for loop (lines 14–16) is used to define the actions for the TA tran-
sition from the location Start to the location Run, and captures the action
portion of the Soar rule, by creating a conjunction of all of the postconditions
(right-hand side) expressed by that rule, along with the base action Run Rule.
These are the actions taken once the Soar rule fires (and the scheduler broadcast
Run Rule has been received), and act to change the state variables V , described
in the Soar rule, of the system.

The next if statement (lines 17–19) creates the edge from the Start location
to the Run location in the TA semantics. The origin and destination locations
are Start and Run respectively. The set of actions A and guards G for this
transition were defined by the previous two for loops. The clock is not reset on
the edge, and thus its valuation advances from u to u′. Note that the conditional
for forming the edge was that the initial clock valuation satisfied the invariant at
the origin location of the edge. The following if statement (lines 20–22) creates
the TA edge from the Run location to the Start location. This enables the TA to
be reset after firing by the next broadcast of the Run Rule action by the global
scheduler. Thus, this mimics the behavior that the Soar rule is immediately able
to be refired in the cognitive model. The origin and destination locations of the
edge are Run and Start respectively. The Run Rule action must be received for
the reset to occur, and thus is the only action for the edge. There are no guards
on this edge, and the clock is not reset, enabling time to progress from u′ to u′′.
Lines 23–24 form the semantics for the TA by specifying the set of edges and
transitions. Finally, in line 25, the algorithm returns the TA generated from the
Soar rule rname(V, Pre({φ1, φ2, ...φm}), Post({ψ1, ψ2, ...ψr})).

We now walk through an example of this translation process as seen in Algo-
rithm1, for the rule given in Fig. 6.

5.2 Translation Implementation

The name of the Soar rule proposeInitialize (see Fig. 6) in Uppaal is a template
name. To generate variable names, we linearize the working tree wherein each
possible traversal ending in a useful value becomes the concatenated string of
all visited identifiers during traversal (with an underscore as a delimiter). The
preconditions in this Soar rule states that it: (1) does not have a name for the
state sˆname and (2) state sˆsuperstate is nil. This is translated into the following
guard: state name == nil and state superstate == nil. The action in this Soar
rule is: state <s> ˆoperator <o> ˆname initialize. This gets translated into the
following TA action: s operator name = initialize.

The scheduler (Fig. 5) is designed to meet the following criteria: (1) It is con-
figurable to meet different cognitive architectures, (2) Precondition satisfaction
results in the selection of a rule to be executed, and (3) It tests the cognitive

32 S. Bhattacharyya et al.

sp {proposeInitialize
(state <s> ^type state -^name ^superstate nil)

-->
(<s> ^operator <o> +)(<o> ^name initialize)}

Fig. 6. Mapping Soar to Uppaal

architecture goal condition to see if the goal has been reached. After the produc-
tion rules have all been translated into timed automata, and the scheduler has
been built, verification and validation activities can occur, as explained in the
next section. Elements of non determinism due to learning (that changes rules)
is challenging to translate into Uppaal as it is implicit in Soar.

6 Verification and Validation Efforts

6.1 Simulation Efforts for Validation of the Autonomous Pilot
Agent

To test the Autonomous CoPilot Agent in a number of different scenarios, we
connected the commercial X-plane aircraft simulation [31] with a shim that reads
the relevant aircraft state variables (e.g., speed, altitude, attitude, position) and
injects them into Soar’s working memory. The state variables are updated every
200 ms. The Soar agent captures the sensor value and then executes each rule
within 100 ms. After experimenting with the simulation environment the change
in velocity was set such that it changed every 150 ms with maximum accel-
eration. With this data sensor rate we minimize discrete jumps and attain a
more or less continuous change in the value for the velocity. The rules for nom-
inal takeoff and/or engine-out takeoff monitor the state of working memory to
ensure that the appropriate actions are taken when conditions warrant. Figure 7
shows the connection between the aircraft state variables and the Java-based
Soar Pilot Agent. This simulation was used to validate the autonomous copilot
design for takeoff through multiple flown scenarios. Usability scenarios involved
injecting engine faults at various times. Soar has an input/ouput link in its work-
ing memory which serves as the interface to different input output devices. The
output branch for a Soar model has a memory element/node called speech. The
autonomous agent adds children to this node; those children have literal string
values. These values are sent to a text to speech engine as they appear thereby
mimicking the interplay between the PF and PNF. The text to speech engine
is a standalone Python application which is called by the Jsoar wrapper. These
rules that initiate verbal interaction from the autonomous copilot are translated
into Uppaal, with the verbal command translated as an update or action item
for a variable representing the verbal communication.

Formal Assurance for Cooperative Intelligent Autonomous Agents 33

Autonomous Co-Pilot Agent

APA-SOAR Shim

Working Memory

Query Results

Aircraft State

Query

Command

Fig. 7. Block diagram of the simulation configuration

6.2 Formal Verification of the Autonomous Pilot Agent

The Soar rules for the autonomous agent that modeled the procedures followed
by a copilot were translated into Uppaal. The rules executed are based on inputs
received from the flight simulator; this necessitated the creation of inputs such as
airspeed. In order to provide changes to the airspeed, a new input template was
created within the Uppaal model in which the airspeed was updated at every
step of execution. We used a first order model for vehicle velocity which we plan
to refine. This was followed by proving properties in Uppaal such as:

– Airspeed greater than 80 is followed by applying rule for airspeed alive
R1 state io input link flightdata airspeed == 80 −− >
state operator name == callaa

– All paths eventually lead to calling out Airspeed Alive
R2 A<> state operator name == callaa

– All paths eventually lead to calling out rotate
R3 A<> state operator name == callrotate

– TakeOff shall be abondoned if there is engine out and velocity is below the
threshold
R4 state abandon == true −− > applycallAbandon 0.Run

The properties were proven on two sets of models. The first model repre-
sented the nominal Takeoff without any failures. The second model represented
the procedures followed for the engine-out use case. While verifying the above
properties such as R1, R2 and R3 in Uppaal on the first model, we encountered
an out of range exception, as shown in Fig. 8. This error was generated due to the
fact that at each cycle of the execution, Soar looks for a change in state caused
either by new working memory data being input, or modifications to working
memory data caused by rule execution. When there is no change in state it is
called an Impasse, and Soar attempts to generate a sub-goal to continue to make
progress towards a solution. The creation and resolution of sub-goals requires
a hierarchical decomposition of the problem space, which is not necessary for
straightforward examples. Instead, we introduce a counting mechanism which
forces a change in state. This is effectively a busy-wait state for new data in
Soar. The output of this counting can be unbounded and was never captured
in the Soar environment, as events always occurred in the environment before
the variable would overflow. But this unbounded variable overflow was captured

34 S. Bhattacharyya et al.

while proving the property R1 in Uppaal on the nominal model. Hence, in peri-
ods where no events are taking place, it is possible for the copilot agent to time
out, in some respects.

The properties verified on the off nominal model, such as R4, prove suc-
cessfully indicating the copilot responds to the abandon event appropriately.
Presently, the use case is determinsitic so uncertainity was not included in the
model and translation, but both Soar and Uppaal allows probabilistic models,
thus there is the potential to include uncertainity in our future research efforts.
This will enable evaluating the efficiency of reordering the set of rules when a
contingency arises. This also enables us to model uncertainty due to sensor obser-
vation and modeling approximation along with reaction times taken by human
agents.

Fig. 8. Out of range error for translated Uppaal copilot agent

7 Conclusion and Future Work

Cognitive architectures have proven to be beneficial in the design of intelligent
adaptive systems, as they allow the integration of learning algorithms as plug-ins
within a defined architectural representation. Additionally, they allow represen-
tation of collaborative human-machine teaming by modeling the autonomous
agents working with humans. Presently, systems designed with these cognitive
architectures cannot be deployed for safety critical applications as the methods
to assure correctness of their behavior are inadequate. A significant contribution
of our work has been the development of an extensible framework for the design
and formal verification of systems whose intelligent attributes can be modeled in

Formal Assurance for Cooperative Intelligent Autonomous Agents 35

a cognitive architecture. We have formally described and implemented the auto-
mated model transformation that translates an intelligent agent into a formally
verifiable temporal logic based model. This translation enables formal verifi-
cation of cognitive models developed in cognitive architectures or rule based
systems such as Soar. We plan to extend this research to fully integrate multiple
learning methods that are capable of modifying rules within the system and for-
mally verifying the resulting system. We also intend to model uncertainty in the
system through the incorporation of probabilistic models. We plan to evaluate
merging Soar rules into one Uppaal template as otherwise the number of Uppaal
templates become fairly large.

References

1. Newell, A., Shaw, J.C., Simon, H.A.: Report on a general problem-solving program.
In: Proceedings of the International Conference on Information Processing, pp.
256–264 (1959)

2. Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The MYCIN Experi-
ments of the Stanford Heuristic Programming Project. The Addison-Wesley Series
in Artificial Intelligence. Addison-Wesley Longman Publishing Co., Inc., Boston
(1984)

3. Anderson, J.R., Matessa, M., Lebiere, C.: ACT-R: a theory of higher level cognition
and its relation to visual attention. Hum.-Comput. Interact. 12(4), 439–462 (1997)

4. Laird, J.E.: The SOAR Cognitive Architecture. MIT Press, Cambridge (2012)
5. Sutton, R.L., Barto, B.: Reinforcement Learning. MIT Press, Cambridge (2008)
6. Mittal, S., Douglass, S.A.: Net-centric ACT-R based cognitive architecture with

DEVS unified process. In: DEVS Symposium Spring Simulation Multiconference,
Boston (2011)

7. Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

8. Wen, M., Ehlers, R., Topcu, U.: Correct-by-synthesis reinforcement learning with
temporal logic constraints. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (2015)

9. Sharifloo, A.M., Spoletini, P.: LOVER: Light-weight fOrmal Verification of adap-
tivE systems at Run time. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS,
vol. 7684, pp. 170–187. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35861-6 11

10. Curzon, P., Ruknas, R., Blandford, A.: An approach to formal verification of human
computer interaction. Form. Asp. Comput. 19, 513–550 (2007)

11. O’Conner, M., Tangirala, S., Kumar, R., Bhattacharyya, S., Sznaier, S., Holloway,
L.: A bottom-up approach to verification of hybrid model-based hierarchical con-
trollers with application to underwater vehicles. In: Proceedings of American Con-
trol Conference (2006)

12. Rocha, C., Cadavid, H., Muñoz, C., Siminiceanu, R.: A formal interactive verifi-
cation environment for the plan execution interchange language. In: Derrick, J.,
Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 343–357.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-4 24

13. Dowek, G., Munoz, C., Pasareanu, C.: A small-step semantics of PLEXIL (2008)

https://doi.org/10.1007/978-3-642-35861-6_11
https://doi.org/10.1007/978-3-642-35861-6_11
https://doi.org/10.1007/978-3-642-30729-4_24

36 S. Bhattacharyya et al.

14. Dowek, G., Munoz, C., Pasareanu, C.: A formal analysis framework for PLEXIL.
In: Proceedings of 3rd Workshop on Planning and Plan Execution for Real-World
Systems (2007)

15. Dowek, G., Munoz, C., Rocha, C.: Rewriting logic semantics of a plan execution
language. In: EPTCS, vol. 18, pp. 77–91 (2009)

16. Strauss, P.J.: Executable semantics for PLEXIL: simulating a task-scheduling lan-
guage in Haskell. Masters thesis (2009)

17. Balasubramanian, D., Pasareanu, C., Whalen, M.W., Karsai, G., Lowry, M.R.:
Polyglot: modeling and analysis for multiple statechart formalisms. In: Dwyer,
M.B., Tip, F. (eds.) ISSTA. ACM (2011)

18. Verdejo, A., Mart́ı-Oliet, N.: Two case studies of semantics execution in Maude:
CCS and LOTOS. Formal Methods Syst. Des. 27, 113–172 (2005)

19. Eskridge, T.C., Carvalho, M.M., Bhattacharyya, S., Vogl, T.: Verifiable autonomy
final report. Technical report, Florida Institute of Technology and Rockwell Collins
(2015)

20. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

21. Uppaal website (2010). http://www.uppaal.org
22. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.: PVS: combining spec-

ification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61474-5 91

23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

24. Larsen, K.G., Pettersson, P., Yi, W.: Model-checking for real-time systems. In:
Reichel, H. (ed.) FCT 1995. LNCS, vol. 965, pp. 62–88. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60249-6 41

25. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL: a tool
suite for automatic verification of real-time systems. Theor. Comput. Sci. (1996).
RS-96-58

26. Alur, R., David, L.D.: A theory of timed automata. Theor. Comput. Sci. 126,
183–235 (1999)

27. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kro-
nos: a model-checking tool for real-time systems. In: Ravn, A.P., Rischel, H.
(eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 298–302. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055357

28. Neogi, N.A.: Capturing safety requirements to enable effective task allocation
between humans and automaton in increasingly autonomous systems. In: Proceed-
ings of the AIAA Aviation Forum. 16th AIAA Aviation Technology, Integration,
and Operations Conference (AIAA 2016-3594) (2016)

29. Code of Federal Regulations: Title 14 Aeronautics and Space. Federal Register,
May 1962. http://www.ecfr.gov/cgi-bin/text

30. The Boeing Company: Boeing 737 pilots operating handbook. Continental Airlines,
November 2002. http://air.felisnox.com/view.php?name=737.pdf

31. Official x-plane website (2016). http://www.x-plane.com

https://doi.org/10.1007/3-540-45657-0_29
http://www.uppaal.org
https://doi.org/10.1007/3-540-61474-5_91
https://doi.org/10.1007/3-540-61474-5_91
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-60249-6_41
https://doi.org/10.1007/BFb0055357
http://www.ecfr.gov/cgi-bin/text
http://air.felisnox.com/view.php?name=737.pdf
http://www.x-plane.com

Ghosts for Lists: A Critical Module
of Contiki Verified in Frama-C

Allan Blanchard1(B), Nikolai Kosmatov2, and Frédéric Loulergue3

1 Inria Lille — Nord Europe, Villeneuve d’Ascq, France
allan.blanchard@inria.fr

2 CEA, List, Software Reliability and Security Laboratory, PC 174,
Gif-sur-Yvette, France

nikolai.kosmatov@cea.fr
3 School of Informatics Computing and Cyber Systems, Northern Arizona University,

Flagstaff, USA
frederic.loulergue@nau.edu

Abstract. Internet of Things (IoT) applications are becoming increas-
ingly critical and require rigorous formal verification. In this paper we
target Contiki, a widely used open-source OS for IoT, and present a ver-
ification case study of one of its most critical modules: that of linked
lists. Its API and list representation differ from the classical linked list
implementations, and are particularly challenging for deductive verifi-
cation. The proposed verification technique relies on a parallel view of
a list through a companion ghost array. This approach makes it possi-
ble to perform most proofs automatically using the Frama-C/WP tool,
only a small number of auxiliary lemmas being proved interactively in
the Coq proof assistant. We present an elegant segment-based reasoning
over the companion array developed for the proof. Finally, we validate
the proposed specification by proving a few functions manipulating lists.

Keywords: Linked lists · Deductive verification · Operating system
Internet of Things · Frama-C

1 Introduction

Connected devices and services, also referred to as Internet of Things (IoT), are
gaining wider and wider adoption in many security critical domains. This raises
important security challenges, which can be addressed using formal verification.

This paper focuses on Contiki [10], a popular open-source operating system
for IoT devices providing full low-power IPv6 connectivity, including 6TiSCH,
6LoWPAN, RPL, or CoAP standards. It is implemented in C with an empha-
sis on memory and power optimization, and contains a kernel linked to platform-
specific drivers at compile-time. When Contiki was created in 2002, no particular
attention was paid to security. Later, communication security was integrated, but
formal verification of code was not performed until very recent case studies [19,21].

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 37–53, 2018.
https://doi.org/10.1007/978-3-319-77935-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_3&domain=pdf
http://orcid.org/0000-0001-9301-7829

38 A. Blanchard et al.

Fig. 1. API of the list module of Contiki (for lists with one integer data field)

The goal of this work is to perform deductive verification of the linked list
module, one of the most critical modules of Contiki. It is performed using the
acsl specification language [4] and the deductive verification plugin Wp of
Frama-C [16]. Our approach is based on a parallel view of a linked list via a
companion ghost array. Such a “flattened” view of the list avoids complex induc-
tive predicates and allows for automatic proof of most properties, but requires to
maintain a strong link between the companion array and the list it models. All
proofs have been checked for several list structures. A few auxiliary lemmas have
been proved in the Coq proof assistant [24], where a significant effort has been
done to make their proofs robust and independent of the specific list structure.
Finally, we have validated the proposed specification by proving a few functions
manipulating lists.

The contributions of this work include

– formal specification of the list module1 of Contiki in the acsl specification
language and its deductive verification using the Wp plugin of Frama-C;

– a presentation of the underlying approach based on a companion ghost array;
– formal statement and proof of several lemmas useful for reasoning about this

representation;
– pointing out an (unintended?) inconsistency in precondition of one function;
– a preliminary validation of the proposed specification of the module via a

successful verification of a few annotated test functions dealing with lists.

Outline. The paper is organized as follows. Section 2 presents the specifics of
the linked list module. Section 3 describes our verification approach and results.
Section 4 provides some related work, while Sect. 5 gives the conclusion and
future work.

2 The List Module of Contiki

Required by 32 modules and invoked more than 250 times in the core of the
OS, the linked list module (list) is a crucial library in Contiki. It is used, for
1 Complete annotated code available at http://allan-blanchard.fr/code/contiki-list-

verified.zip.

http://allan-blanchard.fr/code/contiki-list-verified.zip
http://allan-blanchard.fr/code/contiki-list-verified.zip

Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C 39

instance, to implement the scheduler, where lists are used to manage timers and
processes. Its verification is thus a key step for proving many other modules of
the OS.

The API of the module is given in Fig. 1. Technically, it differs from many
common linked list implementations in several regards. First, in Contiki an exist-
ing list (illustrated by the lower part of Fig. 3) is identified or modified through
a dedicated list handler – a variable supposed to refer to the first list element –
called root in Fig. 3. Copying one linked list into another is just copying such
a list handler (cf. lines 22–23 in Fig. 1) without duplicating list elements. In a
function call, an existing list is thus passed as a function parameter via a pointer
referring to the handler (denoted in this paper by pLst and having a double
pointer type list_t), rather than just the address of the first list element (i.e.
a single pointer, contained in root) to make it possible to modify the handler
in the function.

Second, being implemented in C (that does not offer templates), Contiki
uses a generic mechanism to create a linked list for specific field datatypes using
dedicated macros. The preprocessor transforms such a macro into a new list
datatype definition. Lines 1–4 in Fig. 1 show the resulting definition for a list
with one integer field. To be applicable for various types, the common list API
treats list elements via either void* pointers or pointers to a trivial linked list
structure (having only lines 1, 2, 4), and relies on (explicit and implicit) pointer
casts. To make possible such a “blind” list manipulation using casts, the first
field in any list element structure must be the pointer to the next list element
(cf. line 2). That means that, for a user-defined type struct some_list,
when a cell of this type is transmitted to the list API, the implementation
first erases the type to void* and then casts it to struct list* to perform
list manipulations and modifications. Note that according to the C standard,
this implementation violates the strict-aliasing rule, since we modify a value
of type struct some_list through a pointer to a type struct list. So
the compilation of Contiki is configured to deactivate the assumption of strict-
aliasing compliance.

Third, Contiki does not provide dynamic memory allocation, which is
replaced by attributing (or releasing) a block in a pre-allocated array [19]. In
particular, the size of a list is always bounded by the number of such blocks, and
their manipulation does not invoke dynamic memory allocation functions.

Fourth, adding an element at the start or the end of a list is allowed even if
this element is already in the list: in this case, it will first be removed from its
previous position. Finally, the API is very rich: it can handle a list as a FIFO or
a stack (lines 14–21), and supports arbitrary removal/insertion and enumeration
(lines 24–30).

For all these reasons, the list module of Contiki appears to be a necessary
but challenging target for verification with Frama-C/Wp.

40 A. Blanchard et al.

Fig. 2. Function list_push adds given element item to the start of the list

3 The Verification Approach

This section presents our verification approach and results. Since the generic
mechanism of type manipulation lies beyond the border of undefined behavior
in C (cf. Sect. 2), formally speaking, a separate verification is necessary for any
new list structure datatype as for a different API. That is why in this verification
case study we use a precise definition of list structure. In the presentation of this
paper, we assume that the list structure is defined by lines 1–4 of Fig. 1 and use

Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C 41

Fig. 3. Parallel view of a list prefix using a companion array formally defined by the
linked_n predicate in Fig. 4

pointers to struct list in the verified functions instead of generic void*
pointers. To ensure that this choice of list structure is not a limitation of the
approach, we additionally check that our specification and proof remain valid
for other common list structures (where data fields are a pointer, or a structure
containing three coordinates of a point). All proofs remain successful for the
tested list structures.

3.1 Running Example

We will use the function list_push (see Fig. 2) to illustrate the specification
and verification of the list module in the rest of this article. This function adds a
given list element item at the beginning of the list whose list handler is referred
to by pLst. As the API must ensure that each list element appears at most once
in the list, this function first tries to remove item from the list (see line 37 of
Fig. 2). After this operation, it is guaranteed that item is not in the list. Then
the next field of item is set to point to the (previous) first element of the list,
that is, *pLst (line 47). Finally, the handler *pLst is updated to point to the
new first element item (line 51).

The annotated version of the function also takes some ghost parame-
ters (given on line 32) supposed to be ignored during compilation and exe-
cution. Note that we include here ghost parameters as regular parameters
“considered-as-ghost” by preceding them by a comment /* ghost: */ rather
than syntactically writing them as ghost parameters inside an annotation
/*@ ghost: <type><param>; */. While being part of the acsl speci-
fication language [4], ghost parameters are currently not yet supported by the
public releases of Frama-C/Wp. It means that in order to verify other modules
of the OS using lists, we currently have to modify all list function calls to add
such “considered-as-ghost” parameters. To obtain the executable code from the
annotated code, only a slight modification of code is required for the moment:
to remove these “considered-as-ghost” parameters clearly marked on a separate
line (since all other annotations are already seen as comments by a compiler).
The support of ghost parameters is in progress in the development version and
should be available in the near future. With this support, it will only be necessary
to add ghost parameters in the modules under verification using lists without
modifying the C API.

42 A. Blanchard et al.

Fig. 4. Inductive predicate linked_n creating a link between the list prefix of size
n of the linked list root and the segment of indices index..index+n-1 in the
companion array cArr, where the sublist boundary bound refers to the list element
immediately following this prefix. If the list is of size n, bound is NULL.

3.2 List Representation by a Companion Ghost Array

Our verification approach relies on a parallel view of the list via a companion
ghost array whose cells refer to the elements of the list (see Fig. 3). Basically, it
allows us to transform most of the inductive properties required during the ver-
ification into simple universally quantified formulas. Such formulas are easier to
handle by SMT solvers, and generally easier to write. The predicate linked_n
(cf. Fig. 4) inductively builds the link between a list and a segment of the com-
panion array that models it. We define a few auxiliary lemmas that help to deal
with this property without having to reason by induction (this induction being
hidden in the proofs of the lemmas, as we explain in Sect. 3.5).

More precisely, the inductive predicate linked_n establishes a relation
between the prefix of length n of the list starting at root and the segment
of size n in the companion array cArr starting from index. The relation is
established at label L, which can be omitted being by default the current pro-
gram point. The pointer bound refers to the list element immediately following
the represented sublist, that is, to the (1 +n)-th element in the list. We refer to
it as the sublist boundary. For an empty list (cf. lines 4–6), root and bound
must be equal, and the list is considered to be linked with the empty segment
of the companion array starting at any index. If the segment size (and the list
length) n is greater than 0 (cf. lines 7–12), the first element root must point
to a valid list element and this element must be registered in cArr at index.
Moreover, the remaining part of the list prefix (starting at root->next) must
in turn be linked to the array segment of size n-1 starting at index+1 with the
same boundary element bound. To verify that the list representation relation
holds, we will have to update the ghost array each time we modify the linked
list. It is done through ghost functions and instructions presented below.

Notice that the acsl annotations in this paper are slightly pretty-printed:
Z denotes the type integer of mathematical integers in acsl, while universal
and existential quantifiers are replaced by ∀ and ∃, respectively.

Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C 43

Fig. 5. Predicates relating the contents of a list between two program points L1 and
L2, expressed in terms of the companion array cArr

3.3 Formal Specification

To perform deductive verification of the list module in Frama-C/Wp, we first
provide a formal specification of the list API in the acsl specification lan-
guage [4]. Let us illustrate the formal specification for the function list_push,
whose (simplified) contract is given in Fig. 2. The parameters on line 32 are
considered to be ghost parameters.

The precondition is given by requires clauses on lines 3–9 in Fig. 2. First
(cf. line 3), both the pointer pLst to the list handler and the list element item
must be pointers to valid memory locations. The companion array is assumed
to be valid for a large range of indices as well. The representation of list pLst
by the companion array cArr is assumed on line 4. The segment of size n start-
ing at index represents here the whole list (since the list boundary is equal
to NULL). Lines 5–6 assume necessary domain constraints for n and index,
in particular, the possibility to add one more element at the end of the seg-
ment in cArr. Lines 7–8 assume that any list element appears in the list at
most once. Line 9 assumes that the ghost parameter item_index records the
position of item in cArr (and thus in the list). It is computed by the logic
function index_of whose definition is straightforward and not presented here.
This function returns the position of item in cArr if it can be found in the
segment of indices index..(index+n-1), or one past the last segment index
(index+n) otherwise. Notice that the last two properties of the list are conve-
niently expressed in terms of the companion array.

The assigns clause on line 11 specifies the variables that the function is
allowed to modify. For other postconditions, we distinguish two cases (defined
in acsl by behaviors, cf. lines 13 and 22): either item is already present in
the list or not. An assumes clause defines the domain of application of each
behavior. In both cases, the resulting list must be represented by the companion
array. However, in the first case (behavior contains_item, lines 13–19), it
must have the same size as before (cf. line 15), since we first remove the element
and then add it again at the start of the list, whereas in the second case (behavior
does_not_contain_item, lines 21–26), the resulting list will grow (cf. line

44 A. Blanchard et al.

23). In both cases, item is added at the start of the list (cf. lines 18, 25). To
express the conditions on other elements, we need two additional predicates given
in Fig. 5.

The predicate unchanged in Fig. 5 states that, between two programs points
at labels L1 and L2, in the range down..up-1 both the elements of the compan-
ion array and the contents of the corresponding list elements are the same, and
the validity of the list elements has been preserved between L1 and L2. The pred-
icate array_swipe_right states that the cells in the range down-1..up-2
at label L1 are shifted to the right to become the range down..up-1 at label
L2.

Thanks to these predicates, we can specify the remaining parts of the con-
tract. In the behavior does_not_contain_item, where item is originally
not in the list, item is simply placed at the beginning of the list. In terms of
the companion array, it is expressed as a shift of the corresponding segment to
the right (cf. line 24). In the behavior contains_item, item is removed at its
previous position item_index and added at the start of the list. In terms of the
companion array, the segment of indices item_index+1..index+n-1 remains
unchanged between the Pre state (before the call) and the Post state (after
the call, cf. line 16). However, the segment of indices index..item_index-1
at Pre is shifted to the right to the range of indices index+1..item_index
at Post (cf. line 17). This precisely describes the desired postconditions for the
list.

The postconditions on lines 19 and 26 state that the uniqueness of list ele-
ments (lines 7–8) is preserved by the function in both cases for the new com-
panion array segment representing the list (in the second case, the new segment
is one element longer).

Lines 28–29 indicate that the given behaviors are complete and disjoint:
they cover all possible cases and cannot apply at the same time. Thanks to
these annotations, the completeness and disjointness of behaviors are checked
by Frama-C/Wp.

A quite important part of the contract that we have removed in this simplified
version is separation conditions. The acsl language and the Frama-C/Wp tool
support such separation properties. Each element of the list must be spatially
separated from any other to guarantee that the list is well formed. In acsl, this
property can be expressed as follows:
1 ∀ Z y, z; index ≤ y < index + n ∧ index ≤ z < index + n ∧ y �= z ⇒
2 \separated(*(array + y), *(array + z));

Furthermore, the list elements must be separated from the companion ghost
array to guarantee that any operation on the companion array does not impact
the linked list itself and vice versa. It can be expressed as follows:
1 ∀ Z y ; index ≤ y < index + n ⇒
2 \separated(*(array + y), array + (0 .. MAX_SIZE -1));

Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C 45

Fig. 6. Ghost function array_push shifts ghost array cArr to the right

These properties2 are systematically included as preconditions and postcondi-
tions in each function contract of the API. In the precondition of list_push,
we also need to state that list elements and companion array cells are separated
from the list handler referred to by pLst and the element item to be added.
The complete version of the contracts is available online.

3.4 Ghost Functions

To maintain the list representation by the companion array, we have to update
the array each time the linked list is modified. It is done through ghost functions
and instructions. Let us illustrate it for the list_push function. First, item
is removed if needed (line 37 in Fig. 2). Line 35 defines the length rem_n of the
resulting list (and companion array segment) after this operation: n if item was
not present, and n-1 otherwise. Lines 38–39 provide two assertions on the two
segments around the deleted element: the left segment up to the initial position
item_index of item is unchanged (line 39), while the right segment – non
empty only if item was present in the list – is obtained as a left shift of a
2 Some of which will be no longer necessary when ghost parameters will be fully

supported in Frama-C.

46 A. Blanchard et al.

segment at state Pre. (The definition of a left shift is similar to the right shift
and is omitted here.) These properties come from the contract of list_remove.

Next, item has to be added at the beginning of the list. We make the choice
to keep the same starting position index for the segments that model the list
in the precondition and in the postcondition (cf. lines 4, 15 and 23). To create
some place for a new first element in the beginning of the segment, we use the
ghost function array_push (cf. line 41 in Fig. 2).

The array_push function (see Fig. 6) shifts the segment of the companion
array one cell to the right. Starting from the end of the segment (at position
i=index+n in the array), it moves the element at position i-1 to position i
(cf. lines 27–34). The boundary between the shifted and not-yet-shifted segments
is maintained in variable le. The function contact specifies the shift (cf. line 10)
and preserves the link of the list with the shifted segment (cf. lines 4, 11). Line
7 indicates the segment of the companion array that is modified. Uniqueness
properties (lines 5, 9) and separation properties (not presented in the simplified
version given in Fig. 6) should also be included in the contract (as explained in
Sect. 3.3). The loop contract (lines 18–26) is necessary to reason about segment
manipulation as we will explain in Sect. 3.5.

After the call of array_push in the ghost code on line 41 in Fig. 2, the cell
at position index in the companion array is not used. Combining the partial
left shift due to a list element removal by the call to list_remove and the
complete right shift by the call to array_push, we obtain the properties of
the assertions on lines 42–43 in Fig. 2. The interested reader will easily check
them by considering separately the case of each behavior. Moreover, we have the
representation property on line 45 for the shifted segment.

Thanks to these properties, after connecting the list element item to the
original list (line 47) and recording item in the companion array at position
index in a ghost assignment (line 48), we obtained the representation of the list
started with item by the segment of the companion array from position index
with rem_n+1 elements and with a boundary NULL. After the assignment of
the list handler *pLst on line 51, the required representation of the resulting
list by the companion array is reconstructed (cf. lines 15, 23).

These examples illustrate a benefit of the companion array for this spec-
ification – and more precisely for expressing predicates like unchanged,
array_swipe_left and array_swipe_right, and separation properties.
All these properties can be directly expressed using the companion array. It
means that we do not need induction any more to reason about them.

3.5 Auxiliary Lemmas and Proofs

Inductive properties are generally not well handled by SMT solvers since most
of the time, a proof that involves inductive properties requires reasoning by
induction. On the contrary, SMT solvers are efficient when they just have to
instantiate lemmas that directly state implications between known properties.
Thus, providing lemmas about inductive properties can significantly improve the
treatment of inductive properties in a proof by requiring reasoning by induction

Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C 47

Fig. 7. Examples of lemmas about the linked_n predicate

only in the proofs of the lemmas. We already successfully experimented a similar
approach to count values within a range of indices in an array [6].

For example, a very simple property (illustrated by Fig. 7, lines 2–6) currently
not handled by SMT solvers in our verification is the fact that if a list root is
linked to a companion array cArr at a given program point L1 (line 4), and
if the list representation (i.e. the corresponding companion array segment and
pointed list elements) has not changed between L1 and another program point
L2 (line 5), then the list root is still linked to cArr at program point L2 (line
6). For example, when we modify some element in the array, this lemma is useful
to ensure that a linked_n relation still holds for other, unmodified segments
before and after this element.

Two more subtle properties are the facts that we can split the linked_n
property at a given valid index into two segments, or conversely merge two
consecutive segments into a longer one. The linked_split_segment lemma
(cf. Fig. 7) states that if a list starting from root is linked to the segment in
cArr at index i with size n+k and reaches a given boundary bound, we can
split it into two relations: the first one linking root to the segment at position
i with n elements and reaching boundary b0, and the second linking b0 to the
segment at position i+n with k elements and reaching boundary bound, where
the intermediary boundary b0 is defined by line 12. Conversely, if we have two
consecutive linked segments in the same companion array, where the boundary
of the first segment refers to the first list element of the second list, we can
deduce the linked_n relation for a longer segment that combines them (cf.
lemma linked_merge_segment in Fig. 7).

This kind of property is, for example, useful for the verification of
the array_push function. Indeed, in the loop, when the assignment
cArr[i] = cArr[i-1] at line 28 (of Fig. 6) overwrites the cell at position

48 A. Blanchard et al.

i, we have to maintain the representation of the list prefix before this position
(line 22 of the invariant), and the split lemma allows this because we can detach
the end using it. At the same time, this assignment puts a new element just
before the beginning of the segment specified by the invariant of line 23, that
gives a new linked_n predicate, progressively built by the function. As we
know that this list element is linked to the first cell of this range, the lemma
merge allows to combine them into a longer segment.

In the current formalization, these lemmas have been proved using the Coq
proof assistant [5,24]. Most of the lemmas related to the predicate linked_n
have been proved by induction on the predicate itself or on the size n of the
list. The induction principle used is an induction principle similar to the basic
induction principle on Peano natural numbers but applied on the positive subset
of relative numbers. The axiomatic function index_of is defined on a lower
and an upper bound. It was therefore necessary to reason by induction on their
difference. One challenge for these proof scripts was to make them very robust
so they can be valid for various versions of the list structure. In particular the
unchanged predicate does not take the same number of arguments for different
versions of the list structure.

In addition to these lemmas, four assertions are not proved directly by the
SMT solvers. Two are proved in Coq: they are basically applications of lemmas,
under some conditions. Two are proved by the recently introduced Interactive
Proof Editor (TIP) of the Wp plugin. It offers a new panel that focuses on one
goal generated by Wp, and allows the user to visualize the goal to be proved.
The user can then interactively decompose a complex proof into smaller pieces by
applying tactics, and the pieces are proved by SMT solvers. In our case two asser-
tions were proved inside each branch of a conditional but were not automatically
proved just after the conditional. The proof using TIP was straightforward.

3.6 Results of the Verification

In this work, we have annotated and verified all functions of the list module,
except list_insert (as detailed below). In total, for about 176 lines of C
code in the module (excluding macros), we wrote 46 lines for ghost functions,
and about 1400 lines of annotations, including about 500 lines for contracts
and 240 lines for logic definitions and lemmas. We did not specifically try to
minimize the number of intermediate assertions: they were added to explicitly
state the expected local properties and to help the automatic proof, and some of
them could probably be removed. For this annotated version of the module, the
verification using Frama-C/Wp generates 798 goals. This number includes 108
goals for the verification of absence of runtime errors that are often responsible
for security vulnerabilities and have also been carefully checked by Frama-
C/Wp. It also includes 24 auxiliary lemmas (that is, in total only about 3.3%
of properties). The 24 lemmas are proved using Coq v.8.6.1. Out of the 774
remaining goals, almost all are automatically discharged by SMT solvers, except
for 4 goals that are proved interactively (as mentioned in Sect. 3.5). In this
work, we used Frama-C v.16 Sulfur and the solvers Alt-Ergo v.1.30 (with direct

Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C 49

translation from Wp and via Why3), as well as Z3 v.4.5 and CVC3 v.2.4.1 (via
Why3).

The verification helped to identify an inconsistency for the remaining func-
tion, list_insert (cf. lines 26–28 in Fig. 1), with respect to the assumptions
of other functions (and, in a sense, to itself). This function adds an element
new_item into a list just after a given element prev_item. If the element
prev_item is NULL, the function directly calls list_push, meaning that if
the element is already there, it is removed and then added to the start. However,
if prev_item is present in the list, the function directly adds new_item after
prev_item without removing a previous instance of new_item from the list
(if any). It shows that the uniqueness property is in general not preserved by the
function, but in some cases it is. Thus this function does not respect a contract
consistent with the other functions. We decided to ask the authors of Contiki
to clarify this potentially dangerous behavior, that could for example allow to
break the integrity of the list3. Moreover, in the entire code of Contiki, we have
found only one call to list_insert, and not a single one in the core part of
the system.

Unit tests could have permitted to identify such a bug. However, one difficulty
with tests (that is also the cause of many security bugs) is the fact that we tend
to test valid scenarios rather than invalid ones.

3.7 Validation of Specification

To get confidence in the proposed specification, we have implemented 15 simple
valid test functions4 manipulating lists, and tried to prove simple properties on
lists in them using the proposed contracts of the list module functions. The
results show that in all tests, the correct properties were successfully proved by
Wp.

We have also implemented 15 invalid tests. Each invalid function is a variant
of a valid one where we have altered the contract (including such dangerous
cases as violations of separation, or validity, or uniqueness), the ghost values or
the code itself. For those functions, the verification leads, as expected, to proof
failure.

This gives us further confidence that the proposed contracts can be success-
fully used for a larger deductive verification of Contiki. This step has also allowed
us to detect and fix some minor deficiencies in the contracts at the latest phases
of the work and can be recommended to be systematically performed for all
similar verification projects.

4 Related Work

To our knowledge, there is no other specification of a linked list API using
ghost arrays. This approach has two main advantages. First such specifications
3 The issue can be found at: https://github.com/contiki-ng/contiki-ng/issues/254.
4 Included in the online archive with the annotated code.

https://github.com/contiki-ng/contiki-ng/issues/254

50 A. Blanchard et al.

may be more readable to developers not used to formal specifications written
in a more functional style using inductive type definitions. Secondly, it makes
these specifications close to be usable in a context of dynamic verification [8],
in particular using the e-acsl plugin of Frama-C [17]. One drawback is that
the support of ghost function parameters is not yet available, and another more
important one, is that the specifications should contain assertions stating the
separation of the actual memory cells and the ghost array.

Dross and Moy [9] present the proof of an implementation of red-black trees
in SPARK that involves underlying arrays. They also rely on ghost code for the
proof, the main difference in our work is that the array we use for representation
is only part of the specification and thus the cells can be allocated independently
of this array using another policy, while they use arrays as the actual implemen-
tation of the trees. On the proof side, the main difference is that we rely on Coq
to prove simple lemmas that can be used automatically by SMT solvers, while
they use the so-called auto-active proof [18] to avoid the use of an interactive
proof assistant.

In this context, separation logic [23] is more suitable than the Hoare logic
on which the Wp plugin of Frama-C is based. Tools based on such a kind of
logic may therefore be more suitable for the verification of a linked list API, for
example VeriFast [15] or the Verified Software Toolchain [1,3]. The former has
been used in several industrial case studies [22] while the latter has been mainly
used to verify crytography related software [2,26] but also a message passing
system [20]. We are not aware of efforts dedicated to the verification of linked
list functions, but the example gallery of VeriFast5 and the VST case studies do
include linked list function specifications and verification. They are based on a
logic list data structure and an inductive predicate relating the memory and such
a logical data structure, as initially done by Reynolds [23]. Reynolds reasoned on
sequences of instructions rather than functions. He thus mostly expressed loop
invariants. This has an impact on the style of the specifications. In this case, an
existential quantification of logical data structures is convenient. VeriFast has
the concept of patterns, that are kind of free variables in preconditions, that are
bound to values during symbolic execution, and that can be used in postcondi-
tions. Reynolds’ style of specification is therefore possible in VeriFast. In the case
of acsl and JML, when specifying functions or methods, an existential quantifi-
cation in the precondition only binds a variable in the precondition: the scope
does not extend to the postcondition. Using Reynolds’ style of specification is
therefore not possible. In the case of JML, to specify Java methods on a linked
list data structure, Gladisch and Tyszberowicz [12] used a pure observer method
that takes a list object and an index, and returns the object at that index in the
list. The methods they consider are simpler than the list API of Contiki, but
essentially our ghost arrays can be seen as observations of the linked lists.

VeriFast and VST are based on concurrent separation logic [7,14]. It is diffi-
cult to compare the specifications because most VeriFast case studies take into
account concurrency. For some of the examples related to linked lists, being

5 https://people.cs.kuleuven.be/∼bart.jacobs/verifast/examples/.

https://people.cs.kuleuven.be/~bart.jacobs/verifast/examples/

Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C 51

based on separation logic does not seem to have a significant impact on the size
of specifications with respect to the specifications we have.

For the verification, Frama-C is the most automated. Moreover, in addition
to the automated and interactive provers it natively supports, it can output
verification conditions to many different provers using Why3ML [11] as an inter-
mediate verification language. This eases the verification, and makes it more
trustworthy. VeriFast is based on its embedded SMT solver Redux and can also
use Z3. VST is a framework for Coq. The specifications can be written in the
Gallina language of Coq, making them very expressive. However, even with the
dedicated tactics, proofs are less automated in VST than in Frama-C or Veri-
Fast.

One strong point of VST is that its logic is fully formalized in Coq and its
soundness has been proved in Coq. It makes it the safer framework. Both for
the Wp Plugin and VeriFast, there exist some results about the correctness of
subsets of the tools [13,25].

5 Conclusion and Future Work

The expansion of devices connected to the Internet raises many security risks.
One promising way to tackle this challenge is to use formal methods, which
is one of the goals of the EU H2020 VESSEDIA project. This paper reports
on verification of the list module of Contiki, which is one of the most critical
modules of the operating system. It requires, in the context of C language, to
deal with linked data structures and memory separation that are still hard to
handle automatically.

Our verification approach relies on a companion ghost array and some ghost
code. Although the idea of using ghost code is not new, it appears to be highly
beneficial in this context, allowing for an elegant reasoning over the companion
array and for an automatic proof of the great majority of goals: more than 96%
of goals in this case study have been proved automatically. Imposing a limit on
the size of the companion array (and therefore, the lists it models) is not a limi-
tation since list sizes in Contiki are always bounded. The verification of the list
module, intensively used by other modules of Contiki, opens the way to formal
verification of higher-level modules depending on it. All proofs of this case study
have been checked for several list structures. Moreover, we have implemented
several test functions working with lists, and validated the proposed specifica-
tion by obtaining a successful proof for correct properties, and a proof failure in
the erroneous cases.

In future work, we plan to start the verification of higher-level modules of
Contiki. This verification is planned to be done using both the deductive verifica-
tion tool Frama-C/WP and the value analysis tool Frama-C/Eva. The latter
can handle linked data-structures slightly better than the former, but again, it
is more suitable to reason about arrays. While it would have been impossible to
prove the equivalence between our array representation and the lists using Eva
(that is not really meant to treat functional properties), it can still benefit of

52 A. Blanchard et al.

this verification since we can now directly reason about arrays. Note however
that it still requires to instrument user code, and to verify that lists are only
modified through the API.

Acknowledgment. This work was partially supported by a grant from CPER DATA
and the project VESSEDIA, which has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 731453.
The authors thank the Frama-C team for providing the tools and support, as well as
Patrick Baudin, François Bobot and Löıc Correnson for many fruitful discussions and
advice. Many thanks to the anonymous referees for their helpful comments.

References

1. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19718-5 1

2. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans.
Program. Lang. Syst. 37(2), 7:1–7:31 (2015)

3. Appel, A.W., Dockins, R., Hobor, A., Beringer, L., Dodds, J., Stewart, G., Blazy,
S., Leroy, X.: Program Logics for Certified Compilers. Cambridge University Press,
Cambridge (2014)

4. Baudin, P., Cuoq, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto,
V.: ACSL: ANSI/ISO C Specification Language. http://frama-c.com/acsl.html

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

6. Blanchard, A., Kosmatov, N., Lemerre, M., Loulergue, F.: A case study on formal
verification of the anaxagoros hypervisor paging system with Frama-C. In: Núñez,
M., Güdemann, M. (eds.) FMICS 2015. LNCS, vol. 9128, pp. 15–30. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19458-5 2

7. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. ACM SIGLOG News
3(3), 47–65 (2016)

8. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. SIGSOFT Softw. Eng. Notes 31(3), 25–37 (2006)

9. Dross, C., Moy, Y.: Auto-active proof of red-black trees in SPARK. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 68–83. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 5

10. Dunkels, A., Gronvall, B., Voigt, T.: Contiki – a lightweight and flexible operating
system for tiny networked sensors. In: LCN 2014. IEEE (2004)

11. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

12. Gladisch, C., Tyszberowicz, S.: Specifying linked data structures in JML for com-
bining formal verification and testing. Sci. Comput. Program. 107–108, 19–40
(2015)

13. Herms, P., Marché, C., Monate, B.: A certified multi-prover verification condition
generator. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol.
7152, pp. 2–17. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
27705-4 2

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
http://frama-c.com/acsl.html
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-19458-5_2
https://doi.org/10.1007/978-3-319-57288-8_5
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-27705-4_2
https://doi.org/10.1007/978-3-642-27705-4_2

Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C 53

14. Hobor, A., Appel, A.W., Nardelli, F.Z.: Oracle semantics for concurrent separa-
tion logic. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 353–367.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78739-6 27

15. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 4

16. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-
C: a software analysis perspective. Form. Asp. Comput. 27(3), 573–609 (2015).
http://frama-c.com

17. Kosmatov, N., Signoles, J.: A lesson on runtime assertion checking with Frama-C.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 386–399. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1 29

18. Leino, K.R.M., Moskal, M.: Usable auto-active verification (2010). http://fm.csl.
sri.com/UV10/

19. Mangano, F., Duquennoy, S., Kosmatov, N.: Formal verification of a memory allo-
cation module of Contiki with Frama-C: a case study. In: Cuppens, F., Cuppens,
N., Lanet, J.-L., Legay, A. (eds.) CRiSIS 2016. LNCS, vol. 10158, pp. 114–120.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54876-0 9

20. Mansky, W., Appel, A.W., Nogin, A.: A verified messaging system. Proc. ACM
Program. Lang. 1(OOPSLA), 87:1–87:28 (2017)

21. Peyrard, A., Duquennoy, S., Kosmatov, N., Raza, S.: Towards formal verification
of Contiki: analysis of the AES-CCM* modules with Frama-C. In: RED-IoT 2018,
Co-located with EWSN 2018. ACM (2018, to appear)

22. Philippaerts, P., Mühlberg, J.T., Penninckx, W., Smans, J., Jacobs, B., Piessens,
F.: Software verification with VeriFast: industrial case studies. Sci. Comput. Pro-
gram. 82, 77–97 (2014)

23. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS), pp. 55–74. IEEE Computer Society (2002)

24. The Coq Development Team: The Coq proof assistant. http://coq.inria.fr
25. Vogels, F., Jacobs, B., Piessens, F.: Featherweight VeriFast. Log. Methods Comput.

Sci. 11(3), 1–57 (2015)
26. Ye, K.Q., Green, M., Sanguansin, N., Beringer, L., Petcher, A., Appel, A.W.:

Verified correctness and security of mbedTLS HMAC-DRBG. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 2007–2020.
ACM, New York (2017)

https://doi.org/10.1007/978-3-540-78739-6_27
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
http://frama-c.com
https://doi.org/10.1007/978-3-642-40787-1_29
http://fm.csl.sri.com/UV10/
http://fm.csl.sri.com/UV10/
https://doi.org/10.1007/978-3-319-54876-0_9
http://coq.inria.fr

An Executable Formal Framework
for Safety-Critical Human Multitasking

Giovanna Broccia1(B) , Paolo Milazzo1, and Peter Csaba Ölveczky2

1 Department of Computer Science, University of Pisa, Pisa, Italy
{giovanna.broccia,milazzo}@di.unipi.it

2 University of Oslo, Oslo, Norway

Abstract. When a person is concurrently interacting with different sys-
tems, the amount of cognitive resources required (cognitive load) could
be too high and might prevent some tasks from being completed. When
such human multitasking involves safety-critical tasks, for example in
an airplane, a spacecraft, or a car, failure to devote sufficient attention
to the different tasks could have serious consequences. To study this
problem, we define an executable formal model of human attention and
multitasking in Real-Time Maude. It includes a description of the human
working memory and the cognitive processes involved in the interaction
with a device. Our framework enables us to analyze human multitask-
ing through simulation, reachability analysis, and LTL and timed CTL
model checking, and we show how a number of prototypical multitasking
problems can be analyzed in Real-Time Maude. We illustrate our mod-
eling and analysis framework by studying the interaction with a GPS
navigation system while driving, and apply model checking to show that
in some cases the cognitive load of the navigation system could cause the
driver to keep the focus away from driving for too long.

1 Introduction

These days we often interact with multiple devices or computer systems at the
same time. Such human multitasking requires us to repeatedly shift attention
from task to task. If some tasks are safety-critical, then failure to perform the
tasks correctly and timely—for example due to cognitive overload or giving too
much attention to other tasks—could have catastrophic consequences.

A typical scenario of safety-critical human multitasking is when a person inter-
acts with a safety-critical device/system while using other less critical devices. For
example, pilots have to reprogram the flight management system while handling
radio communications and monitoring flight instruments [11]. Operators of criti-
cal medical devices, such as infusion pumps, often have to retrieve patient-specific
parameters by accessing the hospital database on a different device while config-
uring the safety-critical device. Finally, a driver often interacts with the GPS nav-
igation system and/or the infotainment system while driving.

Human multitasking could lead to cognitive overload (too much informa-
tion to process/remember), resulting in forgetting/mistaking critical tasks. For

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 54–69, 2018.
https://doi.org/10.1007/978-3-319-77935-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_4&domain=pdf
http://orcid.org/0000-0002-4737-5761

An Executable Formal Framework for Safety-Critical Human Multitasking 55

example, [16] reports that during a routine surgery, the ventilator helping the
patient to breathe was turned off to quickly take an X-ray without blurring the
picture. However, the X-ray jammed, the anesthesiologist went to fix the X-ray
but forgot to turn on the ventilator, leading to the patient’s death. In another
example, [8] analyzes the cause of 139 deaths when using an infusion pump,
and finds that operator distraction caused 67 deaths, whereas problems with the
device itself only caused 10 deaths. Similar figures and examples can be found
in the context of aviation [2] and car driving [10].

In addition to cognitive overload, human multitasking could also lead to
ignoring the critical tasks for too long while focusing attention on less critical
tasks. For instance, while reprogramming the flight management system, the
pilot could miss something important on the flight instruments. If the interface
of the virtual clinical folder requires the user’s attention for too long, it can cause
the operator to make some mistake in the infusion pump setup. An infotainment
system that attracts the driver’s attention for too long could cause a car accident.

There is therefore a clear need to analyze not only the functionality of single
devices (or networks of devices), but also to analyze whether a human can safely
use multiple devices/systems at the same time. Such study requires understand-
ing how the human cognitive processes work when interacting with multiple
systems and how human attention is directed at the different tasks at hand.
In particular, the main cognitive resource to be shared among concurrent tasks
is the human working memory, which is responsible for storing and processing
pieces of information necessary to perform all the concurrent tasks.

In this paper we propose a formal executable model of human multitasking
in safety-critical contexts. The model is specified in Real-Time Maude [18]. It is
a significant modification and extension of the cognitive framework proposed by
Cerone for the analysis of interactive systems [7]. As in that work, our model
includes the description of the human working memory and of the other cog-
nitive processes involved in the interaction with a device. The main difference
is that Cerone only considered the interaction with a single device, whereas we
focus on analyzing human multitasking. In contrast to [7], our framework also
captures the limitations of a human’s working memory (to enabling reasoning
about hazards caused by cognitive overload) and includes timing features (to
analyze, e.g., whether a critical task is ignored for too long).

After providing some background on human attention and multitasking and
Real-Time Maude in Sect. 2, we present our Real-Time Maude model of safety-
critical human multitasking in Sect. 3. Section 4 explains how Real-Time Maude
can be used to analyze prototypical properties in human multitasking. We illus-
trate our formal modeling and analysis framework in Sect. 5 by studying the use
of a GPS navigator while driving. We apply model checking to show that in some
cases: (i) the cognitive load of the navigator interface could cause the driver to
keep the focus away from driving for too long, and (ii) the working memory shar-
ing between concurrent tasks can lead to overloading situations causing failures
in one of the tasks. Finally, Sect. 6 discusses related work, and Sect. 7 gives some
concluding remarks.

56 G. Broccia et al.

2 Preliminaries

Human Selective Attention and Multitasking. The short-term memory
is the component in human memory that is most involved in interactions with
computers, and is then called the working memory (WM). It is a cognitive system
with a limited capacity responsible for the transient holding, processing, and
manipulation of information. Different hypotheses about the WM all agree that it
can store a limited amount of items, and that it is responsible for both processing
and storage activities. The amount of information—which can be digits, words,
or other meaningful items—that the WM can hold is 7 ± 2 items [17].

Maintaining items in the WM requires human attention. Memory items are
remembered longer if they are periodically refreshed by focusing on them. Even
when performing a single task, in order not to forget something stored in the
WM, the task has to be interleaved with memory refreshment. The most success-
ful psychological theory in terms of explaining experimental data is the Time-
Based Resource Sharing Model [3]. It introduces the notion of cognitive load (CL)
as the temporal density of attentional demands of the task being performed. The
higher the CL of a task, the more it distracts from refreshing memory. According
to [3], when the frequency of basic activities in a task is constant, the CL of the
task equals

∑
aini/T , where ni is the number of task basic activities of type i,

ai represents the difficulty of such activities, and T is the duration of the task.
Several studies show that the attentional mechanisms involved in WM

refreshment are also the basis of multitasking. In particular, [12] describes the
roles of the WM, the CL, and attention when executing a “main” task concur-
rently with a “distractor” task. It is shown that when the CL of the distractor
task increases, the interaction with the main task could be impeded.

In [5] we use the cognitive load and two other factors, the task’s criticality
level and waiting time (the time the task has been ignored by the user), to define
a measure of task attractiveness called the task rank. The higher the task rank,
the more likely the user will focus on it. Modeling attention switching based
on parameters like CL, criticality level, and waiting time agrees with current
understanding of human attention. In [5] we use this task rank to define an
algorithm for simulating human attention. We studied the case of two concurrent
tasks, and found that the task more likely to complete first is the one with the
highest cognitive load, which is consistent with relevant literature (e.g., [3,12]).

Real-Time Maude. Real-Time Maude [18] extends Maude [9] to support the
executable formal specification and analysis of real-time systems in rewriting
logic. Real-Time Maude provides a range of formal analysis methods, including
simulation, reachability analysis, and LTL and timed CTL model checking.

A Real-Time Maude module specifies a real-time rewrite theory [19] (Σ,E ∪
A, IR,TR), where:

– Σ is an algebraic signature; that is, declarations of sorts, subsorts, and func-
tion symbols, including a data type for time, which can be discrete or dense.

An Executable Formal Framework for Safety-Critical Human Multitasking 57

– (Σ,E ∪ A) is a membership equational logic theory, with E a set of (possibly
conditional) equations, written eq t = t′ and ceq t = t′ if cond , and A a
set of equational axioms such as associativity, commutativity, and identity.
(Σ,E ∪ A) specifies the system’s state space as an algebraic data type.

– IR is a set of labeled conditional rewrite rules specifying the system’s local
transitions, each of which has the form crl [l] : t => t′ if /\mj=1 uj = vj ,
where l is a label. Such a rule specifies an instantaneous transition from an
instance of t to the corresponding instance of t′, provided the condition holds.

– TR is a set of tick rewrite rules crl [l] : {t} => {t′} in time τ if cond ,
which specify that going from the entire state t to state t′ takes τ time units.

The mathematical variables in equations and rewrite rules are either declared
using the keyword vars, or are introduced on-the-fly and have the form var:sort.
We refer to [9] for more details on the syntax of Real-Time Maude.

A declaration class C | att1 : s1, . . . , attn : sn declares a class C with
attributes att1 to attn of sorts s1 to sn. An object of class C is represented as
a term < O : C | att1 : val1, ..., attn : valn > of sort Object, with O the object’s
identifier, and val1 to valn the current values of the attributes att1 to attn. The
state of an object-oriented specification is a term of sort Configuration, and is
a multiset of objects and messages. For example, the rewrite rule

crl [l] : < O1 : C | a1 : x1, a2 : O2, a3 : z, a4 : y1 >

< O2 : C | a1 : x2, a2 : O1, a3 : w, a4 : y2 >

=>

< O1 : C | a1 : x1 + w + z, a2 : O2, a3 : z, a4 : y1 >

< O2 : C | a1 : x2 + z, a2 : O1, a3 : w, a4 : y2 > if z <= w

defines a family of transitions involving two objects O1 and O2 of class C, and
updates the attribute a1 of both objects. Attributes whose values do not change
and do not affect the next state of other attributes or messages, such as a4, need
not be mentioned in a rule. Attributes that are unchanged, such as a2 and a3,
can be omitted from right-hand sides of rules.

Formal Analysis. Real-Time Maude’s timed rewrite command simulates one of
the many possible system behaviors from the initial state by rewriting the initial
state up to a certain duration. The search command

(utsearch [[n]] t =>* pattern [such that cond].)

uses a breadth-first strategy to search for (at most n) states that are reachable
from the initial state t, match the search pattern, and satisfy cond . If the arrow
=>! is used instead of =>*, then Real-Time Maude searches for reachable final
states, that is, states that cannot be further rewritten.

A command (find latest t =>* pattern [such that cond] with no time limit.)

explores all behaviors from the initial state t and finds the longest time needed
to reach the desired state (for the first time in a behavior).

Real-Time Maude is also equipped with unbounded and time-bounded linear
temporal logic model checker which analyzes whether each behavior (possible
up to some duration) satisfies a linear temporal logic formula, and with a timed
CTL model checker [15] to analyze timed temporal logic properties.

58 G. Broccia et al.

3 A Formal Model of Human Multitasking

This section presents our Real-Time Maude model of human multitasking. Due
to space restrictions, we only show parts of the specification, and refer to our
longer report [4] and the full executable specification available at http://www.
di.unipi.it/msvbio/software/HumanMultitasking.html for more detail.

We model human multitasking in an object-oriented style. The state consists
of a number of Interface objects, representing the interfaces of the devices/
systems with which a user interacts, and an object of class WorkingMemory repre-
senting the user’s working memory. Each interface object contains a Task object
defining the task that the user wants to perform on that interface.

3.1 Classes

Interfaces. We model an interface as a transition system. Since we follow a
user-centric approach, the state of the interface/system is given by what the
human perceives it to be. For example, I may perceive that an ATM is ready
to accept my debit card by seeing a welcoming message on the ATM display.
A perception/state may not last forever: after entering my card in the slot,
I will only perceive that the ATM is waiting for my PIN code for 8 min,
after which the ATM will display a “Transaction cancelled” message. The term
p for time t denotes that the user will perceive p for time t, after which the
perception becomes expired(p).

A transition of an interface has the form p1 -- action --> p2. If I per-
ceive that the machine is ready to receive my card, I can perform an action
enterCard, and the ATM will then display that I should type my PIN
code: ATMready -- enterCard --> typePIN for time 480. Interface transi-
tions are represented as a ;-separated set of single interface transitions. An
interface is represented as an object instance of the following class:

class Interface | task : Object, transitions : InterfaceTransitions,

previousAction : DefAction, currentState : InterfaceState .

where the attribute transitions denotes the transitions of the interface; task
denotes the task object (see below) representing the task that the user wants to
perform with the interface; previousAction is the previous action performed
on the interface (useful for analysis purposes); and currentState is (the user’s
perception of) the state of the device. (See [4] for the data types involved.)

Tasks. Instead of seeing a task as a sequence of basic tasks that cannot
be further decomposed, we find it more natural to consider a task to be a
sequence of subtasks, where each subtask is a sequence of basic tasks. For
example, the task of withdrawing money at an ATM may consist of the fol-
lowing sequence of subtasks: insert card; type PIN code; type amount; retrieve
card; and, finally, retrieve cash. Some of these subtasks consist of a sequence
of basic tasks: the subtask “type PIN code” consists of typing 4 digits and
then “OK,” and so does the subtask “type amount.” We therefore model a

http://www.di.unipi.it/msvbio/software/HumanMultitasking.html
http://www.di.unipi.it/msvbio/software/HumanMultitasking.html

An Executable Formal Framework for Safety-Critical Human Multitasking 59

task as a ‘::’-separated sequence of subtasks, where each subtask is modeled
as a sequence of basic tasks of the form inf 1 | p1 ==> action | inf 2 duration τ
difficulty d delay δ, where inf 1 is some knowledge, p1 is a perception (state)
of the interface, τ is the time needed to execute the task, and d is the diffi-
culty of the basic task. If my working memory contains inf 1 and I perceive p1,
then I can perform the interface transition labeled action, and as a result my
working memory forgets inf 1 and stores inf 2. A basic task may not be enabled
immediately: you cannot type your PIN code immediately after inserting your
card. The (minimum) time needed before the basic task can be executed is given
by the delay δ, which could also be the time needed to switch from one task to
another. A basic task could be

needCash | ATMready ==> enterCard | cardInMachine

duration 3 difficulty 1/8 delay 0.

That is, after performing the action enterCard you “forget” that you need cash,
and instead store in working memory that the card is in the machine.

As mentioned in Sect. 2, the next task that is given a person’s attention is a
function of: the cognitive loads of the current subtasks1, the criticality level of
each task (a person tends to focus more frequently on safety-critical tasks than
on other tasks), and the time that an enabled task has waited to be executed.
For example, driving a car has a higher criticality level than finding out where
to go, which has higher criticality level than finding a good radio station. To
compute the “rank” of each task, a task object should contain these values, and
is therefore represented as an object instance of the following class Task:

class Task | subtasks : Task, waitTime : Time, status : TaskStatus,

cognitiveLoad : Rat, criticalityLevel : PosRat .

The subtasks attribute denotes the remaining sequence of subtasks to be per-
formed; waitTime denotes how long the next basic task has been enabled;
cognitiveLoad is the cognitive load of the subtask currently executing; and
criticalityLevel is the task’s criticality level. For analysis purposes, we also
add an attribute status denoting the “status” of the task, which is either
notStarted, ongoing, abandoned, or completed.

Working Memory. The working memory is used when interacting with the inter-
faces, and can only store a limited number of information items. We model the
working memory as an object of the following class:

class WorkingMemory | memory : Memory, capacity : NzNat .

1 Since we now consider structured tasks and add delays to basic tasks, we redefine the
cognitive load of a task to be

∑ diti
ti+dlyi

, where di, ti and dly i denote the difficulty,
duration and delay of each basic task i of the current subtask. The cognitive load
of a task therefore changes every time a new subtask begins, and remains the same
throughout the execution of the subtask.

60 G. Broccia et al.

where capacity denotes the maximal number of elements that can be stored in
memory at any time. The attribute memory stores the content of the working
memory as a map I1 |-> mem1 ; ... ; In |-> memn of sort Memory, assigning
to each interface Ij the set memj of items in the memory associated to interface
Ij . An element in memj is either a cognition (see [4] for an explanation), a basic
piece of information, such as cardInMachine, or a desired goal goal(action).
The goal defines the goal of the interaction with the interface, which is to end
up performing some final action, such as takeCash.

3.2 Dynamic Behavior

We formalize human multitasking with rewrite rules that specify how attention is
directed at the different tasks, and how this affects the working memory. In short,
whenever a basic task is enabled, attention is directed toward the task/interface
with the highest task rank, and a basic task/action is performed on that interface.
The rank of a non-empty task is given the function rank defined as follows2:

eq rank(< I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2 duration

NZT difficulty PR delay T2) BTL)

:: OTHER-SUB-TASKS,

waitTime : T, cognitiveLoad : CL,

criticalityLevel : PR2 > >,

(I |-> goal(ACT) INF-SET) ; MEMORY)

= if T2 == 0 then PR2 * CL * (T + 1) else 0 fi.

A task which is not yet enabled (the remaining delay T2 of the first basic task
is greater than 0) has rank 0. The rank function refines the task rank function
in [5], and should therefore be consistent with results in psychology.

The following tick rewrite rule models the user performing a basic task (if it
does not cause memory overload, and the action performed is not the goal action)
with the interface with the highest rank of all interfaces (bestRank(...)):

crl [interacting] :

{OTHER-INTERFACES

< I : Interface | task :

< TASK : Task | subtasks : ((INF1 | P1 ==> DACT | INF2 duration NZT

difficulty PR delay 0) BASIC-TASKS)

:: OTHER-SUB-TASKS,

waitTime : T1, cognitiveLoad : CL,

criticalityLevel : PR2, status : TS >,

transitions : (P1 -- DACT --> (P2 for time TI2)) ; TRANSES,

currentState : (P1 for time TI), previousAction : DACT2 >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF1 goal(ACT) INF-SET),

capacity : CAP >}

2 We do not show the variable declarations, but follow the convention that variables
are written in all capital letters.

An Executable Formal Framework for Safety-Critical Human Multitasking 61

=>

{idle(OTHER-INTERFACES, NZT)

< I : Interface | task :

< TASK : Task | subtasks : (if BASIC-TASKS =/= nil

then (BASIC-TASKS :: OTHER-SUB-TASKS)

else OTHER-SUB-TASKS fi),

waitTime : 0,

status : (if TS == notStarted then ongoing else TS fi),

cognitiveLoad : (if BASIC-TASKS =/= nil then CL else

cogLoad(first(OTHER-SUB-TASKS)) fi) >,

currentState : (P2 for time TI2), previousAction : DACT >

< WM : WorkingMemory | memory : MEMORY ; (I |-> INF2 goal(ACT) INF-SET) >}

in time NZT

if assess(DACT2, P1) =/= danger /\ (DACT =/= ACT)

/\ card(MEMORY ; (I |-> INF2 goal(ACT) INF-SET)) <= CAP

/\ rank(< I : Interface | >,

(MEMORY ; (I |-> INF1 goal(ACT) INF-SET)))

== bestRank(< I : Interface | > OTHER-INTERFACES,

(MEMORY ; (I |-> INF1 goal(ACT) INF-SET))).

The user perceives that the state of interface I is P1. The next basic task can
be performed if information INF1 is associated with this interface in the user’s
working memory, and the interface is (perceived to be) in state P1. The user
then performs the basic task labeled DACT, which leads to a new item INF2
stored in working memory, while INF1 is forgotten. This rule is only enabled if
the remaining delay of the basic task is 0 and the user has a goal associated with
this interface. If the basic task performed is the last basic task in the subtask,
we set the value of cognitiveLoad to be the cognitive load of the next subtask.

The first conjuncts in the condition say that the rule can only be applied
when the user does not assess a danger in the current situation and when the
action performed is not the goal action. Since INF1 and/or INF2 could be the
empty element noInfo, the rule may increase the number of items stored in
working memory (when INF1 is noInfo, but INF2 is not). The third conjunct in
the condition ensures that the resulting knowledge does not exceed the capacity
of the working memory. The last conjunct ensures that the current interface
should be given attention: it has the highest rank among all the interfaces.

The duration of this tick rule is the duration NZT of the executing basic
task. During that time, every other task idles: the “perception timer” and the
remaining delay of the first basic task are decreased according to elapsed time,
and the waiting time is increased if the basic task is enabled (see [4] for details).

If performing the basic task would exceed the capacity of the memory, some
other item in the memory is nondeterministically forgotten, so that items asso-
ciated to the current interface are only forgotten if there are no items associated
to other interfaces. (This is because maintaining information in working mem-
ory requires the user’s attention, and user attention is on the current task, so it
is more natural that items of the other tasks are forgotten first.) The following
rule shows the case when an item for a different interface is erased from memory.

62 G. Broccia et al.

Since a mapping is associative and commutative, any memory item INF3 associ-
ated with any interface I2 different from I could be forgotten. This rule is very
similar to the rule above, and we only show the differences:

crl [interactingForgetSomethingOtherInterface] :

{ ... < I : Interface | task : < TASK : Task | ... > ... >

< WM : WorkingMemory | memory : (I |-> INF1 goal(ACT) INF-SET) ;

(I2 |-> INF3 INF-SET2) ; MEMORY,

capacity : CAP >}

=>

{ ... < I : Interface | task : < TASK : Task | ... > ... >

< WM : WorkingMemory | memory : (I |-> INF2 goal(ACT) INF-SET) ;

(I2 |-> INF-SET2) ; MEMORY >}

in time NZT

if ... /\ card((I |-> INF2 goal(ACT) INF-SET)

; (I2 |-> INF3 INF-SET2) ; MEMORY) > CAP /\ ...

A similar rule removes an arbitrary item from the memory associated with
the current interface if the memory does not store any item for another interface.

If each “next” basic task has a remaining delay, then time advances until the
earliest time when the delay of some basic task reaches 0:

crl [tickAllIdling] :

{ALL-INTERFACES

< WM : WorkingMemory | memory : MEMORY ; (I |-> goal(ACT) INF-SET) >}

=>

{idle(ALL-INTERFACES, MIN-DELAY)

< WM : WorkingMemory | >} in time MIN-DELAY

if MIN-DELAY := minDelay(ALL-INTERFACES).

where MIN-DELAY is a variable of a sort NzTime of non-zero time values.
The following rule concerns only the interface: sometimes the interface state

comes with a timer (e.g., the ATM only waits for a PIN code for eight minutes).
When this timer expires, an instantaneous rule changes the interface state (e.g.,
display “Ready” when the machine has waited too long for the PIN):

rl [timeout] :

{REST

< I : Interface | transitions : (expired(P1) -- DACT --> IS) ; TRANSES,

currentState : expired(P1) >}

=>

{REST < I : Interface | currentState : IS, previousAction : DACT >}.

Our report [4] explains the rewrite rules when the goal action is performed
(the status becomes completed), when the user changes her cognition (“mind”),
and when the user perceives danger (the status becomes abandoned).

An Executable Formal Framework for Safety-Critical Human Multitasking 63

4 Analyzing Safety-Critical Human Multitasking

This section explains how Real-Time Maude can be used to analyze whether a
human is able to perform a given set of tasks successfully. In particular, we focus
on the following potential problems that could happen when multitasking:

1. A critical task may be ignored for too long because attention is given to other
tasks. For example, it is not good if a driver does not give attention to driving
for 15 s because (s)he is focusing on the infotainment system.

2. A task, or a crucial action in a task, is not completed on time, since too much
attention has been given to other tasks. For example, a pilot should finish
all pre-flight tasks before taking off, and a driver should have entered the
destination in the GPS before the first major intersection is reached.

3. Other tasks’ concurrent use of working memory may cause the user to for-
get/misremember memory items that are crucial to complete a given task.

The initial state should have the form

{initializeCognLoad(

< wm : WorkingMemory | memory : interface1 |-> goal(action1) otherItems1 ; ... ;

interfacen |-> goal(actionn) otherItemsn,
capacity : capacity >

< interface1 : Interface | task :

< task1 : Task | subtasks : (b111 ... b11l
) :: ... :: (b1m1

... b1mj
),

waitTime : 0, cognitiveLoad : 0, criticalityLevel : cl1,
status : notStarted >

transitions : trans1, previousAction : noAction, currentState : perc1 >

...

< interfacen : Interface | task :

< taskn : Task | subtasks : ..., waitTime : 0, cognitiveLoad : 0,

criticalityLevel : cln, status : notStarted >

transitions : transn, previousAction : noAction, currentState : percn >)}

where: interfacek is the name of the k-th interface; taskk is the task to be per-
formed with/on interfacek; bkij

is the j-th basic task of the i-th subtask of taskk;
clk is the criticality level of taskk; transk are the transitions of interfacek; actionk

is the goal action to be achieved with interfacek; otherItemsk are other items
initially in the memory for interfacek; perck is the initial perception (“state”)
of interfacek; and capacity is the number of items that can be stored in work-
ing memory. The function initializeCognLoad initializes the cognitiveLoad
attributes by computing the cognitive load of the first subtask of each task.

The first key property to analyze is: Is it possible that an (enabled) task t
is ignored continuously for at least time Δ? This property can be analyzed in
Real-Time Maude as follows, by checking whether it is possible to reach a “bad”
state where the waitTime attribute of task t is at least Δ:3

3 The variable A:AttributeSet captures the other attributes in inner objects.

64 G. Broccia et al.

(utsearch [1] initialState =>*

{REST:Configuration < I:InterfaceId : Interface | task :

< t : Task | waitTime : T:Time, A:AttributeSet > >}

such that T:Time >= Δ.

where the variable REST:Configuration matches the other objects in the state.
The second key property is checking whether a certain task t is guaranteed

to finish before time T . This can be analyzed using Real-Time Maude’s find
latest command, by finding the longest time needed to reach status completed:

(find latest initialState =>*

{REST:Configuration < I:InterfaceId : Interface | task :

< t : Task | status : completed, A:AttributeSet > >}

with no time limit.)

We can also use the find latest command to find out the longest time
needed for a task t to complete the specific action act :

(find latest initialState =>*

{REST:Configuration < I:InterfaceId : Interface | previousAction : act >}

with no time limit.)

We can analyze whether it is guaranteed that a task t will be completed by
searching for a “bad” final state where the status of the task is not completed:

(utsearch [1] initialState =>!

{REST:Configuration < I:InterfaceId : Interface | task :

< t : Task | status : TS:TaskStatus, A:AttributeSet > >}

such that TS:TaskStatus =/= completed.)

If we want to analyze whether it is guaranteed that all tasks can be completed,
we just replace t in this command with a variable I2:TaskId.

If a safety-critical task cannot be completed, or completed in time, we can
check whether this is due to the task itself, or the presence of concurrent “dis-
tractor” tasks, by analyzing an initial state without the distractor tasks.

5 Example: Interacting with a GPS Device While Driving

This section illustrates the use of our modeling and analysis framework with an
example of a person who interacts with a GPS navigation device while driving.

We have two interfaces: the car and the navigation system. The task of driving
consists of the three subtasks (i) start driving, (ii) drive to destination, and (iii)
park and leave the car. The first subtask consists of the basic tasks of inserting
the car key, turning on the ignition, and start driving; subtask (ii) describes a
short trip during which the driver wants to perform a basic driving action at
most every three time units; and subtask (iii) consists of stopping the car and
removing the key when we have arrived at the destination. The driving task can
be formalized by the following Task object:

An Executable Formal Framework for Safety-Critical Human Multitasking 65

< driving : Task | subtasks :

((noInfo | carOff ==> insertKey | keyInserted duration 1 difficulty 3/10 delay 0)

(noInfo | carOn ==> turnKey | noInfo duration 1 difficulty 2/10 delay 0)

(noInfo | carReady ==> startDrive | noInfo duration 1 difficulty 2/10 delay 2)) ::

((noInfo | straightRoad ==> straight | noInfo duration 1 difficulty 1/10 delay 3)

(noInfo | straightRoad2 ==> straight | noInfo duration 1 difficulty 1/10 delay 3)

(noInfo | curveLeft ==> turnLeft | noInfo duration 1 difficulty 4/10 delay 3)

(noInfo | curveRight ==> turnRight | noInfo duration 1 difficulty 2/10 delay 3)

(noInfo | straightRoad3 ==> straight | noInfo duration 1 difficulty 1/10 delay 3)

(noInfo | straightRoad4 ==> straight | noInfo duration 1 difficulty 1/10 delay 3))

::

((noInfo | destination ==> stopCar | noInfo duration 2 difficulty 2/10 delay 2)

(keyInserted | carStopped ==> pickKey | noInfo duration 2 difficulty 1/10

delay 0)),

waitTime : 0, status : notStarted, criticalityLevel : 6/10, cognitiveLoad : 0 >

The interface of the car is formalized by the following Interface object:

< car : Interface | transitions :

(carOff -- insertKey --> carOn) ; (carReady -- startDrive --> straightRoad) ;

(carOn -- turnKey --> carReady) ; (straightRoad -- straight --> straightRoad2) ;

(straightRoad2 -- straight --> curveLeft) ; (curveLeft -- turnLeft --> curveRight) ;

(curveRight -- turnRight --> straightRoad3) ;

(straightRoad3 -- straight --> straightRoad4) ;

(straightRoad4 -- straight --> destination) ; (destination -- stopCar --> carStopped) ;

(carStopped -- pickKey --> carOff) ; (carReady -- noAction --> carOff),

task : ... , previousAction : noAction, currentState : carOff >

For the GPS navigator, we assume that to enter the destination the user
has to type at least partially the address. The navigator then suggests a list of
possible destinations, among which the user has to select the right one. Therefore,
the GPS task consists of three subtasks: (i) start and choose city; (ii) type the
initial k letters of the desired destination; and (iii) choose the right destination
among the options given by the GPS.

If the user types the entire address of the destination, the navigator returns
a short list of possible matches; if (s)he types fewer characters, the navigator
returns a longer list, making it harder for the user to find the right destination.
We consider two alternatives: (1) the driver types 13 characters and then searches
for the destination in a short list; and (2) the driver types just four characters
and then searches for the destination in a longer list. The GPS task for case (1)
is modeled by the following Task object:

< findDestination : Task | subtasks :

((noInfo | gpsReady ==> typeSearchMode | noInfo duration 1 difficulty 1/10

delay 0))

::

((noInfo | chooseCity ==> selectCity | noInfo duration 2 difficulty 5/10 delay 2))

::

((noInfo | typing1 ==> typeSomething | noInfo duration 1 difficulty 3/10 delay 3)

(noInfo | typing2 ==> typeSomething | noInfo duration 1 difficulty 3/10 delay 0)

66 G. Broccia et al.

...

(noInfo | typing13 ==> pushSearchBtn | noInfo duration 1 difficulty 3/10 delay 0))

::

((noInfo | searching ==> chooseAddress | noInfo duration 2 difficulty 2/10

delay 0)),

waitTime : 0, status : notStarted, criticalityLevel : 3/10, cognitiveLoad : 0 >

Case (2) is modeled similarly, but with only four typing actions before pushing
the search button. In that case, the last basic task (choosing destination from a
larger list) has duration 5 and difficulty 6

10 .
The GPS interface in case (1) is defined by the following Interface object:

< gps : Interface | transitions :

(gpsReady -- typeSearchMode --> chooseCity) ; (chooseCity -- selectCity --> typing1) ;

(typing1 -- typeSomething --> typing2) ; (typing2 -- typeSomething --> typing3) ;

...

(typing13 -- pushSearchBtn --> searching) ; (searching -- chooseAddress --> gpsReady),

task : ... , previousAction : noAction, currentState : gpsReady >

The initial state of the working memory is

< wm : WorkingMemory | capacity : 5, memory : (car |-> goal(pickKey)) ;

(gps |-> goal(chooseAddress)) >

We use the techniques in Sect. 4 to analyze our models, and first analyze
whether an enabled driving task can be ignored for more than six seconds:

Maude> (utsearch [1] {initState} =>* {< car : Interface | task :

< driving : Task | waitTime : T:Time, A:AttributeSet > >

REST:Configuration} such that T:Time > 6.)

Real-Time Maude finds no such bad state when the driver types 13 characters.
However, when the driver only types four characters, the command returns a
bad state: the driver types the last two characters and finds the destination in
the long list without turning her attention to driving in-between.

Sometimes even a brief distraction can be dangerous. For example, when the
road turns, a delay of three time units in making the turn could be dangerous.
We check the longest time needed for the driver to complete the turnLeft action:

Maude> (find latest {initState} =>*

{REST:Configuration < car : Interface | previousAction : turnLeft >}

with no time limit.)

Real-Time Maude shows that the left turn is completed at time 21. However,
the same analysis with an initial state without the GPS interface object and task
shows that an undistracted driver finishes the left turn at time 17.

An Executable Formal Framework for Safety-Critical Human Multitasking 67

Finally, to analyze potential memory overload, we modify the GPS task so
that the driver must remember the portion of address already written: a new
item is added to the working memory after every three characters typed.

We then check whether all tasks are guaranteed to be completed in this
setting, by searching for a final state in which some task is not completed:

Maude> (utsearch [1] {initState2} =>! {< I:InterfaceId : Interface | task :

< T:TaskId : Task | status : TS:TaskStatus, A:AttributeSet > >

REST:Configuration} such that TS:TaskStatus =/= completed.)

This command finds such an undesired state: keyInserted could be forgotten
when the driver must remember typing; in that case, the goal action pickKey
is not performed, and we leave the key in the car. The same command with
our “standard” model of GPS interaction does not find any final state with an
uncompleted task pending.

6 Related Work

There has been some work on applying “computational models” to study human
attention and multitasking. The ACT-R architecture, an executable rule-based
framework for modeling cognitive processes, has been applied to study, e.g.,
the effects of distraction by phone dialing while driving [20] and the sources
of errors in aviation [6]. Recent versions of ACT-R handle human attention in
accordance with the theory of concurrent multitasking proposed in [21]. The
theory describes concurrent tasks that can interleave and compete for resources.
Cognition balances task execution by favoring least recently processed tasks.

Other computational models for human multitasking include the salience,
expectancy, effort and value (SEEV) model [23] and the strategic task overload
management (STOM) model [22,24]. Both have been validated against data col-
lected by performing experiments with real users using simulators. Although
dealing with human multitasking, the SEEV and STOM models are specifically
designed to describe (sequential) visual scanning of an instrument panel, where
each instrument may serve different tasks. The multitasking paradigms under-
lying SEEV and STOM are different from the one we consider in this paper,
which is not sequential scanning but voluntary task switching [1].

The above systems (and other similar approaches) have all been developed
in the context of cognitive psychology and neuroscience research. They do not
provide what computer scientists would call a formal model, but are typically
based on some mathematical formulas and an implementation (in Lisp in the case
of ACT-R) that supports only simulation. In contrast, we provide a formal model
that can be not only simulated, but also subjected to a range of formal analyses,
including reachability analysis and timed temporal logic model checking.

On the formal methods side, Gelman et al. [13] model a pilot and the flight
management system (FMS) of a civil aircraft and use WMC simulation and SAL
model checking to study automation surprises (i.e., the system works as designed

68 G. Broccia et al.

but the pilot is unable to predict or explain the behavior of the aircraft). In [14]
the PVS theorem prover and the NuSMV model checker are used to find the
potential source of automation surprises in a flight guidance system. In contrast
to our work, the work in [13,14] does not deal with multitasking, and [14] does
not focus on the cognitive aspects of human behavior.

We discuss the differences with the formal cognitive framework proposed
in [7] in the introduction.

Finally, as mentioned in Sect. 2, in [5] we propose a task switching algorithm
for non-structured tasks that we extend in the current paper. That work does
not provide a formal model, but is used to demonstrate the agreement of our
modeling approach with relevant psychological literature.

7 Concluding Remarks

In this paper we have presented for the first time a formal executable framework
for safety-critical human multitasking. The framework enables the simulation
and model checking in Real-Time Maude of a person concurrently interacting
with multiple devices of different degrees of safety-criticality. Task switching is
modeled trough a task ranking procedure which is consistent with studies in
psychology. We have shown how Real-Time Maude can be used to automatically
analyze prototypical properties in safety-critical human multitasking, and have
illustrated our framework with a simple example.

As part of future work, we will in the near future perform experiments in
collaboration with psychologists to refine our model. We should also apply our
framework on real safety-critical case studies.

Acknowledgments. This work has been supported by the project “Metodologie
informatiche avanzate per l’analisi di dati biomedici” funded by the University of Pisa
(PRA 2017 44).

References

1. Arrington, C.M., Logan, G.D.: Voluntary task switching: chasing the elusive
homunculus. J. Exp. Psychol. Learn. Mem. Cogn. 31(4), 683–702 (2005)

2. Australian Transport Safety Bureau: Dangerous distraction. Safety Investigation
Report B2004/0324 (2005)

3. Barrouillet, P., Bernardin, S., Camos, V.: Time constraints and resource sharing
in adults’ working memory spans. J. Exp. Psychol. Gen. 133(1), 83–100 (2004)

4. Broccia, G., Milazzo, P., Ölveczky, P.: An executable formal framework for safety-
critical human multitasking (2017). Report: http://www.di.unipi.it/msvbio/
software/HumanMultitasking.html

5. Broccia, G., Milazzo, P., Ölveczky, P.C.: An algorithm for simulating human selec-
tive attention. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729,
pp. 48–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1 4

6. Byrne, M.D., Kirlik, A.: Using computational cognitive modeling to diagnose pos-
sible sources of aviation error. Int. J. Aviat. Psychol. 15(2), 135–155 (2005)

http://www.di.unipi.it/msvbio/software/HumanMultitasking.html
http://www.di.unipi.it/msvbio/software/HumanMultitasking.html
https://doi.org/10.1007/978-3-319-74781-1_4

An Executable Formal Framework for Safety-Critical Human Multitasking 69

7. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of inter-
active systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
287–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 20

8. Clark, T., et al.: Impact of clinical alarms on patient safety. Technical report,
ACCE Healthcare Technology Foundation (2006)

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

10. Dingus, T.A., Guo, F., Lee, S., Antin, J.F., Perez, M., Buchanan-King, M., Hankey,
J.: Driver crash risk factors and prevalence evaluation using naturalistic driving
data. Proc. Nat. Acad. Sci. 113(10), 2636–2641 (2016)

11. Dismukes, R., Nowinski, J.: Prospective memory, concurrent task management,
and pilot error. In: Attention: From Theory to Practice. Oxford University Press,
Oxford (2007)

12. de Fockert, J.W., Rees, G., Frith, C.D., Lavie, N.: The role of working memory in
visual selective attention. Science 291(5509), 1803–1806 (2001)

13. Gelman, G., Feigh, K.M., Rushby, J.M.: Example of a complementary use of
model checking and human performance simulation. IEEE Trans. Hum.-Mach.
Syst. 44(5), 576–590 (2014)

14. Joshi, A., Miller, S.P., Heimdahl, M.P.E.: Mode confusion analysis of a flight guid-
ance system using formal methods. In: Digital Avionics Systems Conference (DASC
2003). IEEE (2003)

15. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Sound and complete timed CTL model
checking of timed Kripke structures and real-time rewrite theories. Sci. Comput.
Program. 99, 128–192 (2015)

16. Lofsky, A.S.: Turn your alarms on! APSF Newsl.: Off. J. Anesth. Patient Saf.
Found. 19(4), 43 (2005)

17. Miller, G.A.: The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956)

18. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

19. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
High.-Order Symb. Comput. 20(1–2), 161–196 (2007)

20. Salvucci, D.D.: Predicting the effects of in-car interface use on driver performance:
an integrated model approach. Int. J. Hum. Comput. Stud. 55(1), 85–107 (2001)

21. Salvucci, D.D., Taatgen, N.A.: Threaded cognition: an integrated theory of con-
current multitasking. Psychol. Rev. 115(1), 101–130 (2008)

22. Wickens, C.D., Gutzwiller, R.S.: The status of the strategic task overload model
(STOM) for predicting multi-task management. In: Proceedings of Human Factors
and Ergonomics Society Annual Meeting, vol. 61, pp. 757–761. SAGE Publications
(2017)

23. Wickens, C.D., Sebok, A., Li, H., Sarter, N., Gacy, A.M.: Using modeling and
simulation to predict operator performance and automation-induced complacency
with robotic automation: a case study and empirical validation. Hum. Fact. 57(6),
959–975 (2015)

24. Wickens, C.D., Gutzwiller, R.S., Vieane, A., Clegg, B.A., Sebok, A., Janes, J.:
Time sharing between robotics and process control: validating a model of attention
switching. Hum. Fact. 58(2), 322–343 (2016)

https://doi.org/10.1007/978-3-319-41591-8_20
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3

Simpler Specifications and Easier Proofs
of Distributed Algorithms Using

History Variables

Saksham Chand(B) and Yanhong A. Liu

Stony Brook University, Stony Brook, NY 11794, USA
{schand,liu}@cs.stonybrook.edu

Abstract. This paper studies specifications and proofs of distributed
algorithms when only message history variables are used, using Basic
Paxos and Multi-Paxos for distributed consensus as precise case studies.
We show that not using and maintaining other state variables yields sim-
pler specifications that are more declarative and easier to understand. It
also allows easier proofs to be developed by needing fewer invariants and
facilitating proof derivations. Furthermore, the proofs are mechanically
checked more efficiently.

We show that specifications in TLA+ and proofs in TLA+ Proof Sys-
tem (TLAPS) are reduced by 25% and 27%, respectively, for Basic Paxos,
and 46% (from about 100 lines to about 50 lines) and 48% (from about
1000 lines to about 500 lines), respectively, for Multi-Paxos. Overall we
need 54% fewer manually written invariants and our proofs have 46%
fewer obligations. Our proof for Basic Paxos takes 26% less time than
Lamport et al.’s for TLAPS to check, and our proofs for Multi-Paxos are
checked by TLAPS within 1.5 min whereas prior proofs for Multi-Paxos
fail to be checked in the new version of TLAPS.

1 Introduction

Reasoning about correctness of distributed algorithms is notoriously difficult
due to a number of reasons including concurrency, asynchronous networks,
unbounded delay, and arbitrary failures. Emerging technologies like autonomous
cars are bringing vehicular clouds closer to reality [9], decentralized digital cur-
rencies are gathering more attention from academia and industry than ever [31],
and with the explosion in the number of nano- and pico- satellites being launched,
a similar trend is expected in the field of space exploration as well [29]. All of
these systems deal with critical resources like human life, currency, and intri-
cate machinery. This only amplifies the need for employing formal methods to
guarantee their correctness.

This work was supported in part by NSF grants CCF-1414078 and CCF-1248184
and ONR grant N000141512208. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect the views of these agencies.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 70–86, 2018.
https://doi.org/10.1007/978-3-319-77935-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_5&domain=pdf

Simpler Specifications and Easier Proofs of Distributed Algorithms 71

Verification of distributed algorithms continues to pose a demanding chal-
lenge to computer scientists, exacerbated by the fact that paper proofs of these
algorithms cannot be trusted [33]. The usual line of reasoning in static analysis
of such systems involves manually writing invariants and then using theorem
provers to verify that the invariants follow from the specification and that they
imply correctness.

A distributed system comprises a set of processes communicating with each
other by message passing while performing local actions that may be triggered
upon receiving a set of messages and may conclude with sending a set of mes-
sages [14,15]. As such, data processed by any distributed process fall into two
categories: (i) History Variables: Sets of all messages sent and received1 and
(ii) Derived Variables: Local data maintained for efficient computation. Derived
variables are often used to maintain results of aggregate queries over sent and
received messages.

While reading and writing pseudocode, derived variables are helpful because
instead of writing the definition of the variable everywhere, the variable is used
instead. Human readers would recall the definition and convince themselves how
the algorithm works. While this approach works well for humans, the same is
not true for provers. For specifications written with derived variables, invariants
have to be added to their proofs which, at the very least, establish that the
derived variable implements its definition.

One reason to use derived variables in formal specifications is their existence
in pseudocode. Another reason is the lack of high-level languages that provide
elegant support for quantifications, history variables, and automatic optimal
maintenance of aggregate queries over history variables. The barrier of lack of
executable language support for such richness is overcome by high-level languages
like DistAlgo [21], which provides native support for history variables, quan-
tifications, and aggregate queries. This motivated us to dispense with derived
variables, and study specifications written with only history variables and the
impact of this change on their proofs.

Note that uses of history variables provide higher-level specifications of sys-
tems in terms of what to compute, as opposed to how to compute with employing
and updating derived variables. It makes proofs easier, independent of the logics
used for doing the proofs, because important invariants are captured directly
in the specifications, rather than hidden under all the incremental updates. On
the other hand, it can make model checking much less efficient, just as it can
make straightforward execution much less efficient. This is not only because
high-level queries are time consuming, but also because maintaining history
variables can blow up the state space. This is why automatic incrementaliza-
tion [10,23,27,28] is essential for efficient implementations, including implemen-
tations of distributed algorithms [20,22]. The same transformations for incremen-
talization can drastically speed up both program execution and model checking.

1 This is different than some other references of the term history variables that include
sequences of local actions, i.e., execution history [6].

72 S. Chand and Y. A. Liu

Contributions. We first describe a systematic style to write specifications of dis-
tributed algorithms using message history variables. The only variables in these
specifications are the sets of sent and received messages. We show (i) how these
are different from the usual pseudocode, (ii) why these are sufficient for speci-
fying all distributed algorithms, and (iii) when these are better for the provers
than other specifications. A method is then explained which, given such specifi-
cations, allows us to systematically derive many important invariants which are
needed to prove correctness. This method exploits the monotonic increase of the
sets of sent and received messages—messages can only be added or read from
these sets, not updated or deleted.

We use three existing specifications and their Safety proofs as our case stud-
ies: (i) Basic Paxos for single-valued consensus by Lamport et al., distributed
as an example with the TLA+ Proof System (TLAPS) [19], (ii) Multi-Paxos for
multi-valued consensus [2], and (iii) Multi-Paxos with preemption [2]. Paxos is
chosen because it is famous for being a difficult algorithm to grasp, while at the
same time it is the core algorithm for distributed consensus—the most funda-
mental problem in distributed computing. We show that our approach led to
significantly reduced sizes of specifications and proofs, numbers of needed man-
ually written invariants, and proof checking times. Our specifications and proofs
are available at https://github.com/sachand/HistVar.

Paper Overview. Section 2 details our style of writing specifications using Basic
Paxos as an example. We then describe our strategy to systematically derive
invariants in Sect. 3 while also showing how using history variables leads to
needing fewer invariants. We discuss Multi-Paxos briefly in Sect. 4. Results com-
paring our specifications and proofs with existing work is detailed in Sect. 5.
Section 6 concludes with related work.

2 Specifications Using Message History Variables

We demonstrate our approach by developing a specification of Basic Paxos in
which we only maintain the set of sent messages. This specification is made to
correspond to the specification of Basic Paxos in TLA+ written by Lamport et
al. [19]. This is done intentionally to better understand the applicability of our
approach. We also simultaneously show Lamport’s description of the algorithm
in English [17] to aid the comparison, except we rename message types and
variable names to match those in his TLA+ specification: prepare and accept
messages are renamed 1a and 2a respectively, their responses are renamed 1b
and 2b, respectively, and variable n is renamed b and bal in different places.

Distributed consensus. The basic consensus problem, called single-value con-
sensus or single-decree consensus, is to ensure that a single value is chosen from
among the values proposed by the processes. The safety requirements for con-
sensus are [17]:

https://github.com/sachand/HistVar

Simpler Specifications and Easier Proofs of Distributed Algorithms 73

– Only a value that has been proposed may be chosen.
– Only a single value is chosen.

This is formally defined as

Safety � ∀ v1, v2 ∈ V : φ(v1) ∧ φ(v2) ⇒ v1 = v2 (1)

where V is the set of possible proposed values, and φ is a predicate that given a
value v evaluates to true iff v was chosen by the algorithm. The specification of
φ is part of the algorithm.

Basic Paxos. Paxos solves the problem of consensus. Two main roles of the
algorithm are performed by two kinds of processes:

– P is the set of proposers. These processes propose values that can be chosen.
– A is the set of acceptors. These processes vote for proposed values. A value

is chosen when there are enough votes for it.

A set Q of subsets of the acceptors, that is Q ⊆ 2A, is used as a quorum system.
It must satisfy the following properties:

– Q is a set cover for A—
⋃

Q∈QQ = A.
– Any two quorums overlap—∀Q1,Q2 ∈ Q : Q1 ∩ Q2 �= ∅.

The most commonly used quorum system takes any majority of acceptors as
an element in Q. For e.g., if A = {1, 2, 3}, then the majority based quorum set
is Q = {{1, 2}, {2, 3}, {1, 3}, {1, 2, 3}}. Quorums are needed because the system
can have arbitrary failures. If a process waits for replies from all other processes,
as in Two-Phase Commit, the system will hang in the presence of even one
failed process. In the mentioned example, the system will continue to work even
if acceptor 3 fails because at least one quorum, which is {1, 2}, is alive.

Basic Paxos solves the problem of single-value consensus. It defines predicate
φ as

φ(v) � ∃Q ∈ Q : ∀ a ∈ Q : ∃ b ∈ B : sent(“2b”, a, b, v) (2)

where B is the set of proposal numbers, also called ballot numbers, which is any
set that can be strictly totally ordered. sent(“2b”, a, b, v) means that a message
of type 2b with ballot number b and value v was sent by acceptor a (to some
set of processes). An acceptor votes by sending such a message.

Variables. Lamport et al.’s specification of Basic Paxos has four global
variables.

– msgs— history variable maintaining the set of messages that have been sent.
Processes read from or add to this set but cannot remove from it. We rename
this to sent in both ours and Lamport et al.’s specifications for clarity pur-
poses. This is the only variable maintained in our specifications.

– maxBal—for each acceptor, the highest ballot seen by it.

74 S. Chand and Y. A. Liu

Phase 1a. A proposer selects a proposal number b and sends a 1a request with number
b to a majority of acceptors.
Lamport et al.’s Using sent only
Phase1a(b ∈ B) �
∧�m ∈ sent : (m.type = “1a”) ∧ (m.bal = b)
∧Send([type �→ “1a”, bal �→ b])
∧unchanged 〈maxVBal ,maxBal ,maxVal 〉

Phase1a(b ∈ B) �

Send([type �→ “1a”, bal �→ b])

Fig. 1. Phase 1a of Basic Paxos

Phase 1b. If an acceptor receives a 1a request with number bal greater than that
of any 1a request to which it has already responded, then it responds to the request
with a promise not to accept any more proposals numbered less than bal and with the
highest-numbered proposal (if any) that it has accepted.
Lamport et al.’s Using sent only
Phase1b(a ∈ A) �
∃m ∈ sent :
∧m.type = “1a”
∧m.bal > maxBal [a]

∧Send([type �→ “1b”,
acc �→ a, bal �→ m.bal ,
maxVBal �→ maxVBal [a],
maxVal �→ maxVal [a]])

∧maxBal ′ =
[maxBal except ! [a] = m.bal]

∧unchanged 〈maxVBal ,maxVal 〉

Phase1b(a ∈ A) �
∃m ∈ sent , r ∈ max prop(a) :
∧m.type = “1a”
∧∀m2 ∈ sent : m2.type ∈ {“1b”, “2b”}∧

m2.acc = a ⇒ m.bal > m2.bal
∧Send([type �→ “1b”,

acc �→ a, bal �→ m.bal ,
maxVBal �→ r .bal ,
maxVal �→ r .val)

2bs(a) � {m ∈ sent :m.type = “2b” ∧ m.acc = a}
max prop(a) �
if 2bs(a) = ∅ then {[bal −→� 1, val ⊥→�]}
else {m ∈ 2bs(a):∀m2 ∈ 2bs(a):m.bal ≥ m2.bal}

Fig. 2. Phase 1b of Basic Paxos

– maxVBal and maxVal—for each acceptor, maxVBal is the highest ballot in
which it has voted, and maxVal is the value it voted for in that ballot.

Algorithm steps. The algorithm consists of repeatedly executing two phases.
Each phase comprises two actions, one by acceptors and one by proposers.

– Phase 1a. Figure 1 shows Lamport’s description in English followed by Lam-
port et al.’s and our specifications in TLA+. Send is an operator that adds
its argument to sent , i.e., Send(m) � sent ′ = sent ∪ {m}.
1. The first conjunct in Lamport et al.’s specification is not mentioned in

the English description and is not needed. Therefore it was removed.
2. The third conjunct is also removed because the only variable our specifi-

cation maintains is sent , which is updated by Send .

Simpler Specifications and Easier Proofs of Distributed Algorithms 75

Phase 2a. If the proposer receives a response to its 1a requests (numbered b) from
a majority of acceptors, then it sends a 2a request to each of those acceptors for
a proposal numbered b with a value v , where v is the value of the highest-numbered
proposal among the 1b responses, or is any value if the responses reported no proposals.
Lamport et. al’s Using sent only
Phase2a(b ∈ B) �
∧�m ∈ sent : m.type = “2a” ∧ m.bal = b
∧∃ v ∈ V,Q ∈ Q,S ⊆ {m ∈ sent :

m.type = “1b” ∧ m.bal = b} :
∧∀ a ∈ Q : ∃m ∈ S : m.acc = a
∧ ∨ ∀m ∈ S : m.maxVBal = −1

∨∃ c ∈ 0..(b − 1) :
∧∀m ∈ S : m.maxVBal ≤ c
∧∃m ∈ S : ∧m.maxVBal = c

∧m.maxVal = v
∧Send([type �→ “2a”, bal �→ b, val �→ v])

∧unchanged 〈maxBal ,maxVBal ,
maxVal 〉

Phase2a(b ∈ B) �
∧�m ∈ sent : m.type = “2a” ∧ m.bal = b
∧∃ v ∈ V,Q ∈ Q,S ⊆ {m ∈ sent :

m.type = “1b” ∧ m.bal = b} :
∧∀ a ∈ Q : ∃m ∈ S : m.acc = a
∧ ∨ ∀m ∈ S : m.maxVBal = −1

∨∃ c ∈ 0..(b − 1) :
∧∀m ∈ S : m.maxVBal ≤ c
∧∃m ∈ S : ∧m.maxVBal = c

∧m.maxVal = v
∧Send([type �→ “2a”, bal �→ b, val �→ v])

Fig. 3. Phase 2a of Basic Paxos

– Phase 1b. Figure 2 shows the English description and the specifications of
Phase 1b. The first two conjuncts in both specifications capture the precon-
dition in the English description. The remaining conjuncts specify the action.
1. The first conjunct states that message m received by acceptor a is of

type 1a.
2. The second conjunct ensures that the proposal number bal in the 1a

message m is higher than that of any 1a request responded to by a. In
Lamport et al.’s specification, derived variable maxBal [a] maintains the
highest proposal number that a has ever responded to, in 1b and 2b
messages, and its second conjunct uses m.bal > maxBal [a]. Using sent
only, we capture this intent more directly, as ∀m2 ∈ sent : m2.type ∈
{“1b”, “2b”} ∧ m2.acc = a ⇒ m.bal > m2.bal , because those m2’s are
the response messages that a has ever sent.

3. The third conjunct is the action of sending a promise (1b message) not to
accept any more proposals numbered less than bal and with the highest-
numbered proposal (if any) that a has accepted, i.e., has sent a 2b
message. This proposal is maintained in Lamport et al.’s specification
in derived variables maxVBal and maxVal . We specify this proposal as
max prop(a), which is either the set of proposals that have the highest
proposal number among all accepted by a or if a has not accepted any-
thing, then {[bal �→ −1, val �→ ⊥]} as the default, where −1 /∈ B and is
smaller than all ballots and ⊥ /∈ V. This corresponds to initialization in
Lamport et al.’s specification as shown in Fig. 5.

4. The remaining conjuncts in Lamport et al.’s specification maintain the
variable maxBal [a]. A compiler that implements incrementalization [23]
over queries would automatically generate and maintain such a derived
variable to optimize the corresponding query.

76 S. Chand and Y. A. Liu

– Phase 2a. Figure 3 shows Phase 2a. The specifications differ from the English
description by using a set of quorums, Q, instead of a majority. The only dif-
ference between the two specifications is the removed unchanged conjunct
when using sent only. It is important to note that the English description fails
to mention the first conjunct—a conjunct without which the specification is
unsafe. Every 2a message must have a unique ballot.
Note that the first conjunct in Lamport et. al.’s specification (and therefore
ours as well) states that none of the 2a messages sent so far has bal equal to
b. This is not directly implementable in a real system because this quantifica-
tion query requires accessing message histories of all processes. We leave this
query as is for two main reasons: (i) The focus of this paper is to demonstrate
the use of history variables against derived variables and compare them in
the light of simpler specification and verification. This removes derived vari-
ables but leaves queries on history variables unchanged even though they are
not directly implementable. (ii) There is a commonly-used, straightforward,
efficient way to implement this query - namely realizing ballot as a tuple in
N×P [16]. So a proposer only executes Phase 2a on a ballot proposed by itself
(i.e., sent a 1a message with that ballot) and, for efficient implementation,
only executes Phase 2a on the highest ballot that it has proposed.

– Phase 2b. Figure 4 shows Phase 2b. Like Phase 1b, we replace the second
conjunct with the corresponding query over sent and remove updates to the
derived variables.

Phase 2b. If an acceptor receives an 2a request for a proposal numbered bal , it accepts
the proposal unless it has already responded to a 1a request having a number greater
than bal .
Lamport et al.’s Using sent only
Phase2b(a ∈ A) �
∃m ∈ sent :
∧m.type = “2a”
∧m.bal ≥ maxBal [a]

∧Send([type �→ “2b”, acc �→ a,
bal �→ m.bal , val �→ m.val])

∧maxBal ′ = [maxBal except ! [a] = m.bal]
∧maxVBal ′ = [maxBal except ! [a] = m.bal]
∧maxVal ′ = [maxVal except ! [a] = m.val]

Phase2b(a ∈ A) �
∃m ∈ sent :
∧m.type = “2a”
∧∀m2 ∈ sent :m2.type ∈ {“1b”,“2b”}∧

m2.acc = a ⇒ m.bal ≥ m2.bal
∧Send([type �→ “2b”, acc �→ a,

bal �→ m.bal , val �→ m.val])

Fig. 4. Phase 2b of Basic Paxos

Complete algorithm specification. To complete the algorithm specification,
we define, and compare, vars, Init , Next , and Spec which are typical TLA+

operator names for the set of variables, the initial state, possible actions leading
to the next state, and the system specification, respectively, in Fig. 5.

Lamport et al.’s initialization of maxVBal and maxVal to −1 and ⊥, respec-
tively, is moved to our definition of max prop in Fig. 2. We do not need initializa-
tion of maxBal because if no 1b or 2b messages have been sent, the universally

Simpler Specifications and Easier Proofs of Distributed Algorithms 77

quantified queries over them would be vacuously true. In Lamport et al.’s spec-
ification, this is achieved by initializing maxBal to −1, which is smaller than all
ballots, and thus, the conjunct m.bal > maxBal [a] in Fig. 2 holds for the first 1a
message received.

Lamport et al.’s Using sent only
vars � 〈sent ,maxBal ,maxVBal ,maxVal 〉
Init � ∧sent = ∅

∧maxVBal = [a −→�A∈ 1]
∧maxBal = [a −→�A∈ 1]
∧maxVal = [a ⊥→�A∈]

vars � 〈sent 〉
Init � sent = ∅

Next � ∨∃ b ∈ B : Phase1a(b) ∨ Phase2a(b)
∨∃ a ∈ A : Phase1b(a) ∨ Phase2b(a)

Spec � Init ∧ �[Next]vars

Fig. 5. Complete algorithm specification

3 Invariants and Proofs Using Message History Variables

Invariants of a distributed algorithm can be categorized into the following three
kinds:

1. Type invariants. These ensure that all data processed in the algorithm is of
valid type. For example, messages of type 1a must have a field bal ∈ B. If
an action sends a 1a message with bal missing or bal /∈ B, a type invariant is
violated.

2. Message invariants. These are invariants defined on message history variables.
For example, each message of type 2a has a unique bal . This is expressed by
the invariant ∀m1,m2 ∈ sent : m1.type = “2a” ∧m2.type = “2a” ∧m1.bal =
m2.bal ⇒ m1 = m2.

3. Process invariants. These state properties about the data maintained in
derived variables. For example, in Lamport et al.’s specification, one such
invariant is that for any acceptor a, maxBal [a] ≥ maxVBal [a].

Figure 6 shows and compares all invariants used in Lamport et al.’s proof vs.
ours. The following operators are used in the invariants for brevity:

V otedForIn(a, v, b) � ∃m ∈ sent :

m.type = “2b” ∧ m.acc = a ∧ m.val = v ∧ m.bal = b

WontV oteIn(a, b) � ∀ v ∈ V : ¬ V otedForIn(a, v, b)∧ − Lamport et al.’s

maxBal[a] > b

WontV oteIn(a, b) � ∀ v ∈ V : ¬ V otedForIn(a, v, b)∧ − Using sent only

∃m ∈ sent : m.type ∈ {“1b”, “2b”} ∧ m.acc = a ∧ m.bal > b

SafeAt(v, b) � ∀ b2 ∈ 0..(b − 1) : ∃Q ∈ Q : ∀ a ∈ Q :

V otedForIn(a, v, b2) ∨ WontV oteIn(a, b2) (3)

78 S. Chand and Y. A. Liu

Lamport et al.’s proof Our proof

Type
Invariants

(I1) sent ⊆ Messages sent ⊆ Messages
(I2) maxVBal ∈ [A → B ∪ {−1}]
(I3) maxBal ∈ [A → B ∪ {−1}]
(I4) maxVal ∈ [A → V ∪ {⊥}]

Process
Invariants

∀ a ∈ A

(I5) maxBal [a] ≥ maxVBal [a]
(I6) maxVal [a] = ⊥ ⇔ maxVBal [a] = −1
(I7) maxVBal [a] ≥ 0 ⇒

VotedForIn(a,maxVal [a],maxVBal [a])
(I8) ∀ b ∈ B : b > maxVBal [a] ⇒
�v ∈ V : VotedForIn(a, v , b)

Message
Invariants

∀m∈sent

(I9) m.type=“2b”⇒m.bal ≤maxVBal [m.acc]
(I10) m.type=“1b”⇒m.bal ≤maxBal [m.acc]
(I11) m.type = “1b” ⇒ m.type = “1b” ⇒
∨ ∧ m.maxVal ∈ V ∧ m.maxVBal ∈ B

∧VotedForIn(m.acc, ∨VotedForIn(m.acc,
m.maxVal ,m.maxVBal) m.maxVal ,m.maxVBal)

∨m.maxVBal = −1 ∧ m.maxVal = ⊥ ∨m.maxVBal = −1
(I12) m.type = “1b” ⇒

∀ b2 ∈ m.maxVBal + 1..m.bal − 1 : �v ∈ V : VotedForIn(m.acc, v , b2)
(I13) m.type = “2a” ⇒ SafeAt(m.val ,m.bal)
(I14) m.type = “2a” ⇒

∀m2 ∈ sent : m2.type = “2a” ∧ m2.bal = m.bal ⇒ m2 = m
(I15) m.type = “2b” ⇒

∃m2 ∈ sent : m2.type = “2a” ∧ m2.bal = m.bal ∧ m2.val = m.val

Fig. 6. Comparison of invariants. Our proof does not need I2–I10, and needs only I1,
a simpler I11, and I12–I15.

Type invariants reduced to one. Lamport et al. define four type invariants,
one for each variable they maintain. Messages is the set of all possible valid
messages. We require only one, (I1). This invariant asserts that the type of all
sent messages is valid. (I2-4) are not applicable to our specification.

Process invariants not needed. Lamport et al. define four process invari-
ants, (I5-8), regarding variables maxVal , maxVBal , and maxBal . They are not
applicable to our specification, and need not be given in our proof.

(I5) Because maxBal [a] is the highest ballot ever seen by a and maxVBal [a]
is the highest ballot a has voted for, we have

maxBal[a] = max({m.bal :m ∈ sent ∧ m.type∈{“1b”,“2b”} ∧ m.acc = a})
maxV Bal[a] = max({m.bal :m ∈ sent ∧ m.type∈{“2b”} ∧ m.acc = a}) (4)

where max(S) � choose e ∈ S ∪ {−1} : ∀ f ∈ S : e ≥ f . Note that max is
not in TLA+ and has to be user-defined. Invariant (I5) is needed in Lamport
et al.’s proof but not ours because they use derived variables whereas we
specify the properties directly. For example, for Lamport et al.’s Phase 1b,

Simpler Specifications and Easier Proofs of Distributed Algorithms 79

one cannot deduce m.bal > maxVBal [a] without (I5), whereas in our Phase
1b, definitions of 2bs and max prop along with the second conjunct are enough
to deduce it.
(I6) Lamport et al.’s proof needs this invariant to prove (I11). Because the
initial values are part of Init and are not explicitly present in their Phase 1b,
this additional invariant is needed to carry this information along. We include
the initial values when specifying the action in Phase 1b and therefore do not
need such an invariant.
(I7) This invariant is obvious from the definition of VotedForIn in Eq. (3) and
property of maxVBal in Eq. (4). The premise maxVBal [a] ≥ 0 is needed by
Lamport et al.’s proof to differentiate from the initial value −1 of maxVBal [a].
(I8) This states that a has not voted for any value at a ballot greater than
maxVBal [a]. This invariant need not be manually given in our proofs because
it is implied from the definition of maxVBal [a].

Message invariants not needed or more easily proved. Before detailing
the message invariants, we present a systematic method that can derive several
useful invariants used by Lamport et al. and thus make the proofs easier. This
method is based on the following properties of our specifications and distributed
algorithms:

1. sent monotonically increases, i.e., the only operations on it are read and add.
2. Message invariants hold for each sent message of some type, i.e., they are of

the form ∀m ∈ sent : m.type = τ ⇒ Φ(m), or more conveniently if we define
sentτ = {m ∈ sent : m.type = τ}, we have ∀m ∈ sentτ : Φ(m).

3. sent = ∅ initially, so the message invariants are vacuously true in the initial
state of the system.

4. Distributed algorithms usually implement a logical clock for ordering two
arbitrary messages. In Paxos, this is done by ballots.

We demonstrate our method by deriving (I15). The method is applied for
each message type used in the algorithm. Invariant (I15) is about 2b messages.
We first identify all actions that send 2b messages and then do the following:

1. Increment. 2b messages are sent in Phase 2b as specified in Fig. 4. We first
determine the increment to sent , Δ(sent), the new messages sent in Phase
2b. We denote a message in Δ(sent) by δ for brevity. We have, from Fig. 4,

δ = [type| �→ “2b”, acc �→ a, bal �→ m.bal, val �→ m.val] (5)

2. Analyze. We deduce properties about the messages in Δ(sent). For 2b mes-
sages, we deduce the most straightforward property that connects the contents
of messages in Δ(sent) with the message m, from Fig. 4,

φ(δ) = ∃m ∈ sent : m.type = “2a” ∧ δ.bal = m.bal ∧ δ.val = m.val (6)

80 S. Chand and Y. A. Liu

3. Integrate. Because (i) sent monotonically increases, and (ii) φ is an existen-
tial quantification over sent , φ holds for all increments to sent2b . Property
(i) means that once the existential quantification in φ holds, it holds forever.
Integrating both sides of Eq. (6) in the space of 2b messages yields (I15), i.e.,

Φ(sent2b) =∀m2 ∈ sent2b : ∃m ∈ sent : m.type = “2a”∧
m2.bal = m.bal ∧ m2.val = m.val (7)

The case for φ being universally quantified over sent is discussed with invari-
ant (I12).

Other message invariants. (I9) and (I10) follow directly from Eq. (4) and need
not be manually specified for our proof. We also derive (I11), (I12), and (I14) as
describe in the following.

(I11) Like (I15), (I11) can also be systematically derived, from our Phase 1b
in Fig. 2. This invariant is less obvious when variables maxVal and maxVBal
are explicitly used and updated because (i) they are not updated in the same
action that uses them, requiring additional invariants to carry their meaning
to the proofs involving the actions that use them, and (ii) it is not immediately
clear if these variables are being updated in Lamport et al.’s Phase 2b in Fig. 4
because a 2b message is being sent or because a 2a message was received.
(I12) To derive (I11) and (I15), we focused on where the contents of the new
message come from. For (I12), we analyze why those contents were chosen.
From our Phase 1b with definitions of 2bs and max prop in Fig. 2, we have

φ(δ) =
∨ ∧∃ m ∈ sent : m.type = “2b” ∧ m.acc = δ.acc

∧ ∀m ∈ sent : m.type = “2b” ∧ m.acc = δ.acc ⇒ δ.maxVBal ≥ m.bal
∨ ∧ �m ∈ sent : m.type = “2b” ∧ m.acc = δ.acc ∧ δ.maxVBal = −1

(8)

φ has two disjuncts—the first has a universal quantification and the second
has negated existential, which is universal in disguise. If sent is universally
quantified, integration like for (I15) is not possible because the quantification
only holds at the time of the action. As new messages are sent in the future,
the universal may become violated.

The key is the phrase at the time. One way to work around the universal is
to add a time field in each message and update it in every action as a message
is sent, like using a logical clock. Then, a property like φ(δ) = ∀m ∈ sentτ :
ψ(m) can be integrated to obtain

Φ(sentτ) = ∀m2 ∈ sentτ : ∀m ∈ sent : m.time < m2.time ⇒ ψ(m) (9)

Because ballots act as the logical clock in Paxos, we do not need to specify
a separate logical clock and we can perform the above integration on Eq. (8)
to obtain the invariant (I12).

Simpler Specifications and Easier Proofs of Distributed Algorithms 81

(I14) This invariant is of the form ∀m1,m2 ∈ sentτ , t : ψ(m1, t)∧ψ(m2, t) ⇒
m1 = m2. In this case, ψ(m, t) � m.bal = t . Deriving invariants like (I14) is
nontrivial unless ψ is already known. In some cases, ψ can be guessed. The
intuition is to look for a universal quantification (or negated existential) in
the specification of an action. The ideal case is when the quantification is on
the message type being sent in the action. Potential candidates for ψ may
be hidden in such quantifications. Moreover, if message history variables are
used, these quantifications are easier to identify.

Starting with a guess of ψ, we identify the change in the counting measure
(cardinality) of the set {t : m ∈ sentτ ∧ ψ(m, t)} along with that of sentτ . In
the case of (I14), we look for Δ(|{m.bal : m ∈ sent2a}|). From our Phase 2a
in Fig. 3, we have

Δ({m.bal : m ∈ sent2a}) = {b}
φ(Δ({m.bal : m ∈ sent2a})) = �m ∈ sent : m.type = “2a” ∧ m.bal = b

(10)

Rewriting φ as {b} �⊆ {m.bal : m ∈ sent2a}, it becomes clear that Δ(|{m.bal :
m ∈ sent2a}|) = 1. Meanwhile, Δ(|{m ∈ sent2a}|) = 1. Because the counting
measure increases by the same amount for both, (I14) can be derived safely.

4 Multi-Paxos

Specification. We have developed new specifications of Multi-Paxos and Multi-
Paxos with Preemption that use only message history variables, by removing
derived variables from the specifications described in Chand et al. [2]. This is
done in a way similar to how we removed derived variables from Lamport et al.’s
specification of Basic Paxos.

The most interesting action here was preemption. With preemption, if an
acceptor receives a 1a or 2a message with bal smaller than the highest that it
has seen, it responds with a preempt message that contains the highest ballot
seen by the acceptor. Upon receiving such a message, the receiving proposer
would pick a new ballot that is higher than the ballots of all received preempt
messages.

This is a good opportunity to introduce the other message history variable,
received , the set of all messages received. It is different from sent because a
message could be delayed indefinitely before being received, if at all. In [2],
derived variable proBallot is introduced to maintain the result of this query
on received messages. We contrast this with our new specification in Fig. 7.
Receive(m) adds message m to received , i.e., Receive(m) � received ′ = received∪
{m}.

Verification. While we observed a 27% decrease in proof size for Basic Paxos,
for Multi-Paxos this decrease was 48%. Apart from the points described in
Sect. 3, an important player in this decrease was the removal of operator

82 S. Chand and Y. A. Liu

Chand et al. []2 Using sent and received

NewBallot(c ∈ B) � choose b∈B :b > c ∧
�m ∈ sent : m.type = “1a” ∧ m.bal = b

Preempt(p ∈ P) � ∃m ∈ sent :
∧m.type = “preempt” ∧ m.to = p
∧m.bal > proBallot [p]
∧ proBallot ′ = [proBallot except ! [p] =

NewBallot(m.bal)]
∧unchanged 〈sent , aVoted , aBal 〉

Phase1a(p ∈ P) �
∧ �m ∈ sent : (m.type = “1a”)∧

(m.bal = proBallot [p])
∧Send([type �→ “1a”,

from �→ p, bal �→ proBallot [p]])
∧unchanged 〈aVoted , aBal , proBallot 〉

Phase1a(p ∈ P) � ∃ b ∈ B :
∧ ∨ ∃m ∈ sent :

∧m.type = “preempt” ∧ m.to = p
∧Receive(m)
∧ ∀m2 ∈ received ′ : m2.to = p∧

m2.type = “preempt” ⇒ b > m2.bal
∨ ∧ �m ∈ sent : m.type = “1a”∧

m.from = p
∧unchanged 〈received 〉

∧Send([type �→ “1a”, from �→ p, bal �→ b])

Fig. 7. Preemption in Multi-Paxos

MaxVotedBallotInSlot from Chand et al.’s specifications. This operator was
defined as

MaxV otedBallotInSlot(D, s) � max({d.bal : d ∈ {d ∈ D : d.slot = s}})

Five lemmas were needed in Chand et al.’s proof to assert basic properties of
the operator. For example, lemma MVBISType stated that if D ⊆ [bal : B, slot :
S, val : V], then the result of the operator is in B∪{−1}. Removing these lemmas
and their proofs alone resulted in a decrease of about 100 lines (about 10%) in
proof size.

5 Results

Table 1 summarizes the results of our specifications and proofs that use only
message history variables, compared with those by Lamport et al. and Chand et
al. We observe an improvement of around 25% across all stats for Basic Paxos and
a staggering 50% for Multi-Paxos and Multi-Paxos with Preemption. Following,
we list some important results:

– The specification size decreased by 13 lines (25%) for Basic Paxos, from 52
lines for Lamport et al.’s specification to 39 lines for ours. For Multi-Paxos,
the decrease is 36 lines (46%), from 78 lines for Chand et al.’s to 42 lines for
ours, and for Multi-Paxos with Preemption, the decrease is 45 lines (46%),
from 97 to 52.

– The total number of manually written invariants decreased by 54% overall—
by 9 (60%) from 15 to 6 for Basic Paxos, by 8 (50%) from 16 to 8 for
Multi-Paxos, and by 9 (53%) from 17 to 8 for Multi-Paxos with Preemption.

Simpler Specifications and Easier Proofs of Distributed Algorithms 83

This drastic decrease is because we do not maintain the variables maxBal ,
maxVBal , and maxVal as explained in Sect. 3.

– The proof size for Basic Paxos decreased by 83 lines (27%), from 310 to
227. This decrease is attributed to the fact that our specification does not
use other state variables besides sent . This decrease is 468 lines (47%), from
988 to 520, for Multi-Paxos, and is 494 lines (48%), from 1032 to 538 for
Multi-Paxos with Preemption.

– Proof by contradiction is used twice in the proof by Lamport et al. and thrice
for the proofs in Chand et al. We were able to remove all of these because our
specification uses queries as opposed to derived variables. The motive behind
removing proofs by contradiction is to have easier to understand constructive
proofs.

– The total number of proof obligations decreased by 46% overall—by 57 (24%)
from 239 to 182 for Basic Paxos, by 450 (49%) from 918 to 468 for Multi-
Paxos, and by 468 (49%) from 959 to 491 for Multi-Paxos with Preemption.

– The proof-checking time decreased by 11 s (26%), from 42 to 31 for Basic
Paxos. For Multi-Paxos and Multi-Paxos with Preemption, TLAPS took over
3 min for the proofs in [2] and failed (due to updates in the new version of
TLAPS) to check the proofs of about 5 obligations. In contrast, our proofs
were able to be checked completely in 1.5 min or less.

6 Related Work and Conclusion

History Variables. History variables have been at the center of much debate since
they were introduced in the early 1970s [5–7]. Owicki and Gries [25] use them in
an effort to prove properties of parallel programs, criticized by Lamport in his
writings [13]. Contrary to ours, their history variables were ghost or auxiliary
variables introduced for the sole purpose of simpler proofs. Our history variables
are sent and received , whose contents are actually processed in all distributed
system implementations.

Recently, Lamport and Merz [18] present rules to add history variables,
among other auxiliary variables, to a low-level specification so that a refine-
ment mapping from a high-level one can be established. The idea is to prove
invariants in the high-level specification that serves as an abstraction of the low-
level specification. In contrast, we focus on high-level specifications because our
target executable language is DistAlgo, and efficient lower-level implementations
can be generated systematically from high-level code.

Specification and Verification. Several systems [4,8,30], models [3,24,32], and
methods [1,11,12,26] have been developed in the past to specify distributed
algorithms and mechanically check proofs of the safety and liveness properties
of the algorithms. This work is orthogonal to them in the sense that the idea of
maintaining only message history variables can be incorporated in their specifi-
cations as well.

84 S. Chand and Y. A. Liu

Table 1. Summary of results. Lam is from Lamport et al., Cha is from Chand et al. [2],
Us is ours in this paper, and Decr is percentage of decrease by ours. Specification size
and proof size are measured in lines. An obligation is a condition that TLAPS checks.
The time to check is on an Intel i7-4720HQ 2.6 GHz CPU with 16GB of memory,
running 64-bit Windows 10 Home (v1709 b16299.98) and TLAPS 1.5.4. *indicates
that the new version of TLAPS failed to check the proof and gave up on checking
after that number of seconds. †(I10)–(I12) are 1b invariants, (I13) and (I14) are 2a
invariants, and (I9) and (I15) are 2b invariants for Basic Paxos.

Metric Basic Paxos Multi-Paxos Multi-Paxos w/
Preemption

Lam Us Decr Cha Us Decr Cha Us Decr

Spec. size excl. comments 52 39 25% 78 42 46% 97 52 46%

invariants 15 6 60% 16 8 50% 17 8 53%

type invariants 4 1 75% 4 1 75% 5 1 80%

process invariants 4 0 100% 4 0 100% 4 0 100%

message invariants 7 5 29% 8 7 13% 8 7 13%

Proof size excl. comments 310 227 27% 988 520 47% 1032 538 48%

Type invariants’ proof size 22 21 5% 54 34 37% 75 38 49%

Process invariants’ proof size 27 0 100% 136 0 100% 141 0 100%

1b† invariants’ proof size 21 15 29% 133 70 47% 133 70 47%

2a† invariants’ proof size 73 57 22% 264 120 55% 269 120 55%

2b† invariants’ proof size 14 12 14% 94 73 22% 94 73 22%

proofs by contradiction 2 0 100% 3 0 100% 3 0 100%

obligations in TLAPS 239 182 24% 918 468 49% 959 491 49%

Type inv proof obligations 17 17 0% 69 52 25% 100 60 40%

Process inv proof obligations 39 0 100% 163 0 100% 173 0 100%

1b† inv proof obligations 12 10 17% 160 80 50% 160 80 50%

2a† inv proof obligations 62 52 16% 241 145 40% 249 145 42%

2b† inv proof obligations 9 9 0% 77 44 43% 77 44 43%

TLAPS check time (seconds) 42 31 26% >191* 80 >58% >208* 90 >57%

Closer to us in terms of the specification is the work by Padon et al. [26],
which does not define any variables and instead defines predicate relations
which would correspond to manipulations of our history variables. For exam-
ple, Send([type �→ “1a”, bal �→ b]) is denoted by start round msg(b). Instead of
using TLA+, the temporal logic of actions, they specify Paxos in first-order logic
to later exploit benefits of Effectively Propositional Logic, such as satisfiability
being decidable in it.

In contrast, we present a method to specify distributed algorithms using
history variables, implementable in high-level executable languages like DistAlgo,

Simpler Specifications and Easier Proofs of Distributed Algorithms 85

and then show (i) how such specifications require fewer invariants for proofs and
(ii) how several important invariants can be systematically derived.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theoret. Comput.
Sci. 82(2), 253–284 (1991)

2. Chand, S., Liu, Y.A., Stoller, S.D.: Formal verification of multi-paxos for dis-
tributed consensus. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 119–136. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 8

3. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing in distributed
systems with benign faults. Distrib. Comput. 22(1), 49–71 (2009)

4. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: The TLA+ proof system: build-
ing a heterogeneous verification platform. In: Cavalcanti, A., Deharbe, D., Gaudel,
M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, p. 44. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-14808-8 3

5. Clarke, E.M.: Proving correctness of coroutines without history variables. Acta
Inform. 13(2), 169–188 (1980)

6. Clint, M.: Program proving: coroutines. Acta inform. 2(1), 50–63 (1973)
7. Clint, M.: On the use of history variables. Acta Inform. 16(1), 15–30 (1981)
8. Drăgoi, C., Henzinger, T.A., Zufferey, D.: PSync: a partially synchronous language

for fault-tolerant distributed algorithms. ACM SIGPLAN Notices 51(1), 400–415
(2016)

9. Gerla, M., Lee, E.-K., Pau, G., Lee, U.: Internet of vehicles: from intelligent grid
to autonomous cars and vehicular clouds. In: 2014 IEEE World Forum on Internet
of Things (WF-IoT), pp. 241–246. IEEE (2014)

10. Gorbovitski, M.: A system for invariant-driven transformations. Ph.D. thesis, Com-
puter Science Department, Stony Brook University (2011)

11. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: proving practical distributed systems correct. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles, pp. 1–17. ACM
(2015)

12. Küfner, P., Nestmann, U., Rickmann, C.: Formal verification of distributed algo-
rithms. In: Baeten, J.C.M., Ball, T., de Boer, F.S. (eds.) TCS 2012. LNCS, vol.
7604, pp. 209–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33475-7 15

13. Lamport, L.: My writings : proving the correctness of multiprocess programs.
https://lamport.azurewebsites.net/pubs/pubs.html. Accessed 10 Oct 2017

14. Lamport, L.: The implementation of reliable distributed multiprocess systems.
Comput. Netw. 2(2), 95–114 (1978)

15. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
(TOPLAS) 16(3), 872–923 (1994)

16. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. (TOCS) 16(2),
133–169 (1998)

17. Lamport, L.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)
18. Lamport, L., Merz, S.: Auxiliary variables in TLA+. ArXiv e-prints, March 2017
19. Lamport, L., Merz, S., Doligez, D.: Paxos.tla. https://github.com/tlaplus/v1-

tlapm/blob/master/examples/paxos/Paxos.tla. Accessed 6 Feb 2018

https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-642-14808-8_3
https://doi.org/10.1007/978-3-642-33475-7_15
https://doi.org/10.1007/978-3-642-33475-7_15
https://lamport.azurewebsites.net/pubs/pubs.html
https://github.com/tlaplus/v1-tlapm/blob/master/examples/paxos/Paxos.tla
https://github.com/tlaplus/v1-tlapm/blob/master/examples/paxos/Paxos.tla

86 S. Chand and Y. A. Liu

20. Liu, Y.A., Brandvein, J., Stoller, S.D., Lin, B.: Demand-driven incremental object
queries. In: Proceedings of the 18th International Symposium on Principles and
Practice of Declarative Programming (PPDP), pp. 228–241. ACM (2016)

21. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to efficiency for distributed algo-
rithms. ACM Trans. Program. Lang. Syst. (TOPLAS) 39(3), 12 (2017)

22. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to efficiency for
distributed algorithms. In: Proceedings of the 27th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA),
pp. 395–410. ACM (2012)

23. Liu, Y.A.: Systematic Program Design: From Clarity To Efficiency. Cambridge
University Press, Cambridge (2013)

24. Lynch, N.A., Tuttle, M.R.: Hierarchical correctness proofs for distributed algo-
rithms. In: Proceedings of the sixth annual ACM Symposium on Principles of
distributed computing, pp. 137–151. ACM (1987)

25. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs i. Acta
Inform. 6(4), 319–340 (1976)

26. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning
about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA), 108 (2017)

27. Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst. (TOPLAS) 4(3), 402–454 (1982)

28. Rothamel, T., Liu, Y.A.: Generating incremental implementations of object-set
queries. In: Proceedings of the 7th International Conference on Generative Pro-
gramming and Component Engineering, pp. 55–66. ACM (2008)

29. Schilling, K.: Perspectives for miniaturized, distributed, networked cooperating
systems for space exploration. Robot. Auton. Syst. 90, 118–124 (2017)

30. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Program. Lang. 2(POPL), 28 (2017)

31. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016)

32. Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.: Verdi: a framework for implementing and formally verifying distributed
systems. In: ACM SIGPLAN Notices, vol. 50, pp. 357–368. ACM (2015)

33. Zave, P.: Using lightweight modeling to understand Chord. ACM SIGCOMM Com-
put. Commun. Rev. 42(2), 49–57 (2012)

Don’t Miss the End: Preventing Unsafe
End-of-File Comparisons

Charles Zhuo Chen(B) and Werner Dietl

University of Waterloo, Waterloo, Canada
{z359chen,werner.dietl}@uwaterloo.ca

Abstract. Reading from an InputStream or Reader in Java either
returns the read byte/character or −1 if the end-of-file (EOF) has been
reached. To support the additional −1 as return value, the read methods
return an int. For correct usage, the return value should be compared
to −1 before being converted to byte or char. If the conversion was
performed before the comparison, it can cause a read-until-EOF-loop to
either exit prematurely or be stuck in an infinite loop. The SEI CERT
Oracle Coding Standard for Java rule FIO08-J “Distinguish between
characters or bytes read from a stream and −1” describes this issue in
detail. This paper presents a type system that prevents unsafe EOF value
comparisons statically and is implemented for Java using the Checker
Framework. In an evaluation of 35 projects (9 million LOC) it detected
3 defects in production software, 8 bad coding practices, and no false pos-
itives. The overall annotation effort is very low. Overrides for the read

methods needed to be annotated, requiring a total of 44 annotations.
Additionally, 3 annotations for fields and method parameters needed to
be added. To the best of our knowledge this is the first open source tool
to prevent this security issue.

Keywords: Software security · Static analysis · Java type system
CERT rules · Practice

1 Introduction

Reading from an input stream is one of the most basic operations for an
application and required in many different domains. Java provides methods
InputStream.read() and Reader.read() for reading bytes or characters from
an input stream. InputStream.read()1 returns an int in the range of 0 to 255,
or −1 if the end-of-file (EOF) was reached. Similarly, Reader.read()2 returns
an int in the range of 0 to 65535, or −1 for EOF. These read methods return
an int in order to distinguish the additional −1 from the maximum byte/char
value. As the CERT FIO08-J [3] rule describes, one common usage mistake of
these read methods is the premature conversion of the read int to byte/char,
1 See https://docs.oracle.com/javase/9/docs/api/java/io/InputStream.html#read--.
2 See https://docs.oracle.com/javase/9/docs/api/java/io/Reader.html#read--.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 87–94, 2018.
https://doi.org/10.1007/978-3-319-77935-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_6&domain=pdf
https://docs.oracle.com/javase/9/docs/api/java/io/InputStream.html#read--
https://docs.oracle.com/javase/9/docs/api/java/io/Reader.html#read--

88 C. Z. Chen and W. Dietl

before comparing with −1. In Java, byte is defined as an 8 bit signed number,
char is a 16 bit unsigned Unicode character, and int is a 32 bit signed num-
ber. The narrowing conversion from the returned int to byte/char makes it
impossible to distinguish the maximum byte/char value from the EOF value
−1. Figure 1 shows a simple example of this kind of mistake. If the int returned
by Reader.read() is prematurely converted to a char, the EOF value −1 is con-
verted to 65535, resulting in an infinite loop. Similarly, if the int returned by
InputStream.read() is prematurely converted to a byte, the maximum stream
value 255 is converted to −1, resulting in the loop to exit prematurely.

StringBuffer stringBuffer = new StringBuffer();

char c;

while ((c = (char) reader.read()) != -1) {

stringBuffer.append(c);

}

Fig. 1. An example of a FIO08-J rule violation, resulting in an infinite loop.

This paper presents the EOF Value Checker, a tool that allows a conversion
from the read int to byte/char only after comparing with −1, to guarantee
the absence of ambiguously converted results. The tool is designed as a plug-
gable type system for Java and built using the Checker Framework [2]. With
the rich type rules and a standard data-flow framework provided by the Checker
Framework, this tool is implemented easily through 312 lines of Java code. This
tool guarantees that the FIO08-J rule is never violated. In an evaluation of the
tool on 35 real world projects (9 million LOC), it found 3 defects and 8 bad
coding styles that violate the FIO08-J rule, and there were zero false positives.
Only 47 manual annotations were required in this evaluation. To the best of our
knowledge, the EOF Value Checker is the first open source tool that prevents
this vulnerability. It is available freely on GitHub3.

The rest of this paper is organized as follows. Section 2 presents the EOF
Value Checker type system, Sect. 3 presents the implementation of this type
system, Sect. 4 presents the case study of applying the EOF Value Checker to 35
open source projects, and Sect. 5 reviews related work. Finally, Sect. 6 concludes.

2 Type System

This section presents a qualifier-based refinement type system that guarantees
that premature conversions from read int to byte/char never happen at run
time. Section 2.1 introduces the qualifiers and the qualifier hierarchy; Sect. 2.2
explains the type rules; Sect. 2.3 explains default qualifiers; and Sect. 2.4 explains
data-flow-sensitive qualifier refinement.

3 See https://github.com/opprop/ReadChecker.

https://github.com/opprop/ReadChecker

Don’t Miss the End: Preventing Unsafe End-of-File Comparisons 89

2.1 Type Qualifiers and Qualifier Hierarchy

The EOF Value Checker type system provides three qualifiers: @UnsafeRead,
@UnknownSafety, and @SafeRead:

– @UnsafeRead qualifies int types that represent a byte/char or the EOF
value −1 before being checked against −1.

– @SafeRead qualifies int types that represent a byte/char after being
checked against −1.

– @UnknownSafety qualifies int types without any compile time information
about their representations.

All three qualifiers are only meaningful for int types. All other types can
essentially ignore qualifiers.

The type qualifiers form a simple subtype hierarchy. Figure 2 illustrates the
subtyping among type qualifiers.

@SafeRead

@UnknownSafety

@UnsafeRead

Fig. 2. Qualifier hierarchy of the EOF Value Checker.

2.2 Type Casting Rules

The EOF Value Checker restricts the standard type rules for narrowing casts,
as shown in Fig. 3. Casts from @UnsafeRead to byte/char are forbidden and
only @UnknownSafety int and @SafeRead int can be cast to byte/char. With
the return type of the read methods annotated with @UnsafeRead, the type
cast rules ensure that the read int is compared against −1 before being cast to
byte/char.

Γ � e : Q int Q �= @UnsafeRead

Γ � (byte) e : Q byte

Γ � e : Q int Q �= @UnsafeRead

Γ � (char) e : Q char

Fig. 3. Type rules for narrowing casts. Only casts from @UnknownSafety and @SafeRead

are allowed. Casts from @UnsafeRead are forbidden. All other type rules are standard
for a pluggable type system and enforce subtype consistency between types.

90 C. Z. Chen and W. Dietl

error: @UnsafeRead int should not be casted to char.

line 3: while ((c = (char) reader.read()) != -1) {

^

Fig. 4. The type cast error issued for the example from Fig. 1.

These type cast rules will effectively prevent the read mistake by preventing
premature type casts. Figure 4 shows the type cast error issued by the EOF
Value Checker for the example shown in Fig. 1.

This type error can be fixed by comparing the read int with the EOF value
before casting it to char. Figure 5 shows the corrected source code.

StringBuffer stringBuffer = new StringBuffer();

int data;

while ((data = reader.read()) != -1) {

stringBuffer.append((char) data);

}

Fig. 5. A fix of the type cast error shown in Fig. 1.

Note that the cast to char is allowed after the comparison against −1.
The data-flow refinement, explained in Sect. 2.4, refines the type of data from
@UnsafeRead to @SafeRead after the −1 comparison, allowing the cast in the
loop body. This fixes the premature conversion without requiring any explicit
annotations in the source code.

2.3 Default Qualifiers

The type system uses default qualifiers for all type uses, minimizing the man-
ual annotation effort. Defaulting follows the CLIMB-to-top approach from
the Checker Framework4. Local variables are defaulted with the top qualifier,
@UnsafeRead, because their effective type will be determined with data-flow-
sensitive type refinement.

@UnknownSafety is the default qualifier for all other type use locations. Since
@UnknownSafety is a subtype of @UnsafeRead, this means an @UnsafeRead int
cannot be assigned to a field or passed to a method without explicit @UnsafeRead
annotation on the field/method parameter. This ensures that an @UnsafeRead
int isn’t lost through a non-local data flow.

Our case study finds that most read int are used locally. In very few cases
programs assign a read int to a field or pass them as a method parameter. In
the evaluation of 35 projects, only 1 project requires annotating 2 fields and 1
method parameter with @UnsafeRead.

4 https://checkerframework.org/manual/#climb-to-top.

https://checkerframework.org/manual/#climb-to-top

Don’t Miss the End: Preventing Unsafe End-of-File Comparisons 91

2.4 Data-Flow-Sensitive Type Refinement

The EOF Value Checker performs data-flow-sensitive type refinement to mini-
mize the annotation effort. An @UnsafeRead int can be refined to @SafeRead
if the possible run-time values of this int are guaranteed to not include −1.
Correct programs use range checks or comparisons against −1 to ensure a con-
version to byte/char is safe. These value comparisons provide static information
which the EOF Value Checker can use to ensure casts are safe. The EOF Value
Checker applies additional transfer functions on binary comparison nodes in the
control-flow graph to refine types.

For a binary comparison node, if one of the operands is @UnsafeRead int
and the other operand is a constant value, the corresponding transfer function
refines the @UnsafeRead int to @SafeRead in the branch that ensures −1 is
not a possible run-time value of the @UnsafeRead int. Figure 6 gives several
examples of the data-flow-sensitive refinement of binary comparison nodes in
the EOF Value Checker.

@UnsafeRead int data = in.read();

// Explicitly compare read result with EOF value -1.

if (data != -1) { /* refines data to @SafeRead */ }

// Only non-EOF values can flow into the block.

if (data == ’<’ || data == ’>’) { /* refines data to @SafeRead */ }

// A range check which excludes the EOF value.

if (data >= 0) { /* refines data to @SafeRead */ }

Fig. 6. Some examples of data-flow-sensitive refinement.

The EOF Value Checker does not perform any constant propagation and only
comparisons between @UnsafeRead int and literals are refined. This can cause
a false positive if an @UnsafeRead int is compared with a variable, for which a
constant propagation could determine a value. Figure 7 gives an example of this

@UnsafeRead int data = in.read();

final int MINUS1 = -1;

// Transfer functions would not refine data to @SafeRead,

// as MINUS1 is not a literal.

if (data != MINUS1) {

char c = (char) data; // A false positive warning.

}

Fig. 7. A possible false positive warning due to the absence of constant propagation.

92 C. Z. Chen and W. Dietl

kind of false positive. This could easily be improved by also applying a constant
propagation. However, in the evaluation on 35 projects, no false positives are
generated, and therefore there are no cases where a constant propagation would
help.

3 Implementation

The EOF Value Checker type system described in Sect. 2 is implemented as a
pluggable type system using the Checker Framework [2].

The type system is independent of the specific stream API. It can be instanti-
ated by annotating methods that need protection against premature conversion
as returning @UnsafeRead. The EOF Value Checker provides 32 @UnsafeRead
annotations for the read methods in the InputStream and Reader classes and
their subclasses in java.io, java.net, javax.swing, javax.sound.sampled,
javax.imageio, java.util.zip, and java.security packages. It is easy to
provide additional annotations for other APIs.

Overall the implementation effort is very low, totaling 312 lines of Java code.
The EOF Value Checker uses the standard type rules and data-flow-sensitive
type refinement from the Checker Framework. Only the type rule for casts has
been extended as shown in Fig. 3. Only three transfer functions on binary com-
parison nodes are extended to achieve the data-flow-sensitive type refinement
described in Sect. 2.4.

4 Experiments

We evaluate the EOF Value Checker on 35 open source projects. The largest
project is Apache TomEE, a lightweight JavaEE Application server framework.
The other 34 projects are from Apache Commons, a collection of reusable com-
ponents in wide use. For each project, the EOF Value Checker is ran on the Java
source files with a configuration extracted from the project build file. Figure 8
presents the experimental results.

For every resulting warning, we manually identify whether it is a real defect,
a bad coding practice, or a false positive. A real defect is to use the prematurely
converted result in a comparison to the EOF value, which might lead the reading
loop to exit prematurely or to be stuck in an infinite loop. We categorized a
warning as a bad coding practice if the prematurely converted int is used before
the int is compared to the EOF value, which can lead to invalid output.

Overall, the EOF Value Checker finds 3 defects in Apache TomEE and
Apache Commons IO and 8 bad coding practices in 3 projects. No false pos-
itives are generated for all 35 projects. The 3 defects have been reported to the
respective project maintainers. The two issues in Apache TomEE have since been
fixed.

The overall annotation effort is very low. Overrides for the read methods
need to be annotated, requiring a total of 44 annotations. Only 1 project needs
additional @UnsafeRead annotations on 2 fields and 1 method parameter.

Don’t Miss the End: Preventing Unsafe End-of-File Comparisons 93

Running the EOF Value Checker adds compile time overhead. For the largest
project, the EOF Value Checker adds 2.9 times the original compile time as
overhead. On average 2.75 times overhead is added. This overhead is expected
for a Checker Framework based type system. Future performance improvements
to the Checker Framework will also benefit the EOF Value Checker.

Project Java LOC
Manual

Annotations
Bad
Style

Defects
Time

Overhead

Apache TomEE 1178k 2 2 2 2.9
Apache Commons IO 42k 12 0 1 4.4
Apache Commons BCEL 366k 1 4 0 2.5
Apache Commons Imaging 49k 6 2 0 3.9
Apache Commons Compress 57k 15 0 0 2.9
Apache Commons CSV 9k 2 0 0 1.9
Apache Commons Fileupload 8k 1 0 0 0.9
Apache Commons Net 34k 4 0 0 1.9
Apache Commons VFS 39k 4 0 0 3.6

Fig. 8. Case study results. Only projects that have defects, bad coding practices, or
explicit annotations are listed. The time overhead is relative to the original compile
time.

5 Related Work

The Parasoft Jtest PB.LOGIC.CRRV checker is the only existing tool listed on
the CERT website for the FIO08-J rule [3]. However, this commercial product
was not available to us for evaluation.

FindBugs/SpotBugs [1] has a bug rule “RR: Method ignores results of Input-
Stream.read()” that ensures that methods check the return value of variants of
InputStream.read() that return the number of bytes read. The case for FIO08-
J is not covered. SpotBugs also has a bug rule “INT: Bad comparison of non-
negative value with negative constant or zero” that prevents the comparison of
prematurely converted chars to the EOF value −1, as unsigned chars should
not be compared to a negative value. However, neither of these rules prevents
the premature conversions and the resulting defects and bad coding practices.

None of the rules in PMD, CheckStyle, and Coverity prevent the premature
conversions.

6 Conclusions

This paper presents a qualifier-based type system that guarantees that a pre-
mature conversion from a read int to byte/char never happens at run time.
We instantiated this type system for Java’s read API: InputStream.read(),
Reader.read(), and their overrides in the JDK. We built an implementation

94 C. Z. Chen and W. Dietl

on top of the Checker Framework, which only required extending one type rule
and three transfer functions in the framework. This implementation is available
at https://github.com/opprop/ReadChecker. With only a very low annotation
burden, this tool found 3 defects, 8 bad coding practices, and generated no false
positives in 35 large, well-maintained, open source projects.

Acknowledgements. We thank the reviewers for their comments, which helped us
to improve the paper. We also thank Daniel Caccamo, Jeff Luo, and Sadaf Tajik for
feedback on drafts. This work was partially supported by the Natural Sciences and
Engineering Research Council of Canada. This material is based upon work supported
by the United States Air Force under Contract No. FA8750-15-C-0010. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the United States Air Force and
the Defense Advanced Research Projects Agency (DARPA).

References

1. Ayewah, N., Pugh, W., Morgenthaler, J.D., Penix, J., Zhou, Y.: Evaluating static
analysis defect warnings on production software. In: ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering (2007)

2. Dietl, W., Dietzel, S., Ernst, M.D., Muslu, K., Schiller, T.W.: Building and using
pluggable type-checkers. In: Software Engineering in Practice Track, International
Conference on Software Engineering (ICSE), May 2011

3. Distinguish between characters or bytes read from a stream and −1. In: [4],
November 2017. https://wiki.sei.cmu.edu/confluence/display/java/FIO08-J.
+Distinguish+between+characters+or+bytes+read+from+a+stream+and+-1.
Accessed 25 Nov 2017

4. Svoboda, D., Sutherland, D.F., Seacord, R.C., Mohindra, D., Long, F.: The CERT
Oracle Secure Coding Standard for Java. Addison-Wesley Professional, Boston
(2011)

https://github.com/opprop/ReadChecker
https://wiki.sei.cmu.edu/confluence/display/java/FIO08-J.+Distinguish+between+characters+or+bytes+read+from+a+stream+and+-1
https://wiki.sei.cmu.edu/confluence/display/java/FIO08-J.+Distinguish+between+characters+or+bytes+read+from+a+stream+and+-1

An Efficient Rewriting Framework
for Trace Coverage of Symmetric Systems

Flavio M. De Paula(B), Arvind Haran, and Brad Bingham

IBM Corporation, Austin, TX, USA
{fmdepaul,aharan,bdbingha}@us.ibm.com

Abstract. Verification coverage is an important metric in any hardware
verification effort. Coverage models are proposed as a set of events the
hardware may exhibit, intended to be possible under a test scenario. At
the system level, these events each correspond to a visited state or taken
transition in a transition system that represents the underlying hardware.
A more sophisticated approach is to check that tests exercise specific
sequences of events, corresponding to traces through the transition sys-
tem. However, such trace-based coverage models are inherently expensive
to consider in practice, as the number of traces is exponential in trace
length. We present a novel framework that combines the approaches of
conservative abstraction with rewriting to construct a concise trace-based
coverage model of a class of parameterized symmetric systems. First, we
leverage both symmetry and rewriting to construct abstractions that can
be tailored by users’ defined rewriting. Then, under this abstraction, a
coverage model for a larger system can be generated from traces for a
smaller system. This coverage model is of tractable size, is tractable to
generate, and can be used to identify coverage-holes in large systems.
Our experiments on the cache coherence protocol implementation from
the multi-billion transistors IBM POWERTM Processor demonstrate the
viability and effectiveness of this approach.

1 Introduction

Coverage analysis is a well-established verification concept on both software
and hardware communities [1]. Coverage analysis evaluates how well-exercised
a code is under some regression suite. This analysis can be syntactical (e.g.,
line-, branch-coverage) or semantical (e.g., path-coverage, functional coverage).
On complex systems, the number of coverage-points is significantly large and
extracting meaning of them becomes harder. For example, let’s say that we have
two coverage-points that were hit by a regression suite one million times and ten
million times, respectively. Does that mean that the first coverage-point needs
more testing? If so, how much more? It’s difficult to say, but one can definitely
say more tests are needed if a coverage-point was not at all hit. Thus, a large
number of coverage-points can be a double-edged sword: the more coverage-
points the better, but, at the same time, more difficult to extract meaning from
their analysis. Some of these coverage-points may not be hittable, while others
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 95–112, 2018.
https://doi.org/10.1007/978-3-319-77935-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_7&domain=pdf

96 F. M. De Paula et al.

may be redundant in some sense (e.g., one implies the other). In both cases, these
strain the verification (e.g. adding unnecessary tests, simulations cycles). How
can we reason about these? In particular, our main concern is with redundant
coverage-points.

While a large body of research exists on coverage-metrics (e.g. [2–7]), some
of which we discuss in Sect. 2, they don’t necessarily address coverage redun-
dancy (although some techniques, most notably [2,5,8], could be understood as
grouping different design states that satisfy a property into equivalent classes).

To further motivate our discussion on coverage models and informally present
our technique to rewrite redundancy, consider that a high-level specification
exists and that we are tasked to write test-cases even in the absence of a fully
defined specification. Assume, then, that armed with this specification we can
construct an automata-based model from which we can extract traces. These
traces compose our coverage-model of interest. Now, as an example, consider
a system composed of three symmetric sub-systems communicating through a
channel. These systems exchange messages among each other using some arbi-
trary protocol allowing for request, acknowledge and back-off signals to control
the dataflow among them. Let’s assume each of these systems contain a state-
machine and a buffer to hold the transmitted/received messages. When one
buffer is about to get full, a back-off signal is sent to the transmitting system to
prevent overflow. Exchanged messages can have variable length. Assume there
can only be one transmitter at a time. The other two sub-systems may be either
both receiving messages or one receiving and one in idle state.

One coverage model with emphasis on the function of the overall system
would account for every possible: permutations of transmitter, receiver and idle
sub-systems’ state; permutation of controlling signals; and, messages including
different sizes. Although the proposed coverage model captures every possible
behavior of the system, its level of detail may lead to redundancy. For instance,
at some point during the design it might be sufficient to simply know that the
system properly processes certain types of messages regardless of its size. In other
words, types of messages become one or more equivalence class (e.g., message-
transmitted, message-received-with-error) of a possibly larger set of coverage-
points. Likewise, recall that the system is symmetric, thus capturing every pos-
sible state permutation as a coverage-point may also lead to redundancy. We
address the former case by means of rewriting. The user can define rewrite-rules
that effectively construct classes of equivalent-behaviors. Each class may repre-
sent a large set of individual coverage-points on the original design. We address
the latter by means of a novel abstraction technique which leverages symme-
try and other properties found in common communicating systems (e.g., client-
server, cache-protocols) under some special restrictions (described in Sect. 5).

In our experience, combining these two key ideas, rewriting and the novel
abstraction proved to be very efficient in constructing a concise coverage
model and helpful in finding coverage-holes during the verification of the IBM
POWERTM Processor.

An Efficient Rewriting Framework for Trace Coverage of Symmetric Systems 97

The main contribution of this paper is a novel approach for trace coverage
of symmetric systems, that

– allows a small system to be used to generate a coverage model for any larger
model;

– allows user-defined rewriting, in order to tailor the technique;
– is successfully applied to the verification of the cache-coherence protocol of

an IBM POWERTM Processor;
– is extendable to several other cache-coherence protocols.

We note that this work is motivated by our case study, cache coherence at the
system level with highly abstracted states. While this work is directly applicable
to coverage for other cache protocols at this level, we note that the general frame-
work is applicable to very different problems, and may be customized according
to what interesting coverage means. This allows for users to define their own
abstraction approaches and utilize the framework, provided they fill in the the-
ory that supports Theorem 1, which establishes that traces from a small system
can be used as a coverage model for a larger system.

This paper is organized as follows: next we present work related to coverage
and symmetry reduction techniques. Section 3 gives the foundations of our for-
malism and introduces a running-example based on the MESI cache-coherence
protocol [9]. Section 4 gives the high-level view of the approach. Section 5 con-
tains the technical details of the abstraction and the main theoretical result.
After these, we present our experiments as applied to the IBM POWERTM Pro-
cessor, followed by conclusions.

2 Related Work

In the context of automata-based coverage, we can broadly group approaches
with similar goals. Some research focus on property coverage, i.e., Chockler et
al. [5], and Dwyer et al. [2]. Regardless of the chosen formalism, these work
share with ours the intent of covering an abstraction of the actual system, that
is, in their case, each property defines a class of equivalent behaviors. These
approaches, while more general in scope, are more susceptible to scalability issues
(as other formal verification frameworks). In contrast, because our approach
focuses on specific types of systems, we can take advantage of properties like
symmetry to reason about very large systems.

The work presented by Shen and Abraham [10] talks about defining coverage
models comprising of finite sequences of state transitions of an FSM extracted
from the RTL of the design. While both works use the notion of bounded-length
trace coverage, our approach operates on the protocol-level and uses a spec-
ification of the design to generate the coverage models. We then use a large
system-level simulation framework to measure trace coverage. In addition, our
key contribution is an abstraction technique that reduces the number of coverage
entries by utilizing properties of a class of symmetric systems. This allows the
practical use of trace coverage in large scale designs.

98 F. M. De Paula et al.

Finally, in regards to work related to symmetric systems, the approach pre-
sented by Chou et al. [11] for parameterized symmetric systems bears some sim-
ilarities to our approach, in that we consider abstraction of such systems. Their
state abstraction keeps a fixed number of agents modeled exactly, with transi-
tions overapproximated due to hidden “others”. In contrast, our state abstraction
approach is a “folding” that maintains only that one-or-more agent are in each
particular state. Their goal is to formally verify that a symmetric system satisfies
a parameterized state predicate by way of human-guided refinement, whereas we
aim to reason about trace coverage.

3 Preliminaries

We use the well-established MESI cache-coherence protocol as a running-example
to aid in the presentation of the more complex concepts introduced in this paper.
It considers cachelines to be shared (S) among different caches; to be exclusively
present in one cache, being modified (M) or not (E); or to be invalid (I). A
transition-system, defined next, appears in of Fig. 1a and illustrates the possible
state transitions for the MESI protocol.

Definition 1. A transition-system is a tuple (S, init , Σ,R) where

– S is the set of states,
– init ∈ S is the initial state,
– Σ is the set of symbols,
– R : (S × Σ) → S is the (partial) transition function.

We model the composed-system (CS) as symmetric copies of a transition-system.
A CS depends on a transition-system, the number of symmetric transition-
systems n (i.e., the size), and a partition of symbols into actions and reactions.

Definition 2. A composed-system is a tuple (S,q0,A,R) where:

– S = Sn is the set of composed-states (or c-states),
– q0 = (init , . . . , init) is an n-tuple and the initial c-state,
– A ⊆ Σn is the set of composed-symbols (see below),
– R : (S × A) → S is the composed transition function (see below).

For both c-state and composed-symbols, we use subscripting to refer to a
particular component, i.e. si is component i of c-state s. Composed-symbols
are restricted such that one system is the actor while all others are reactors,
according to r : Σact → Σreact, where Σact and Σreact are a partition of Σ.
That is, all elements of A are some permutation of (c, r(c), . . . , r(c)) for some
c ∈ Σact. Transition function R must have a defined mapping for elements
S × Σreact, but may be undefined for elements of S × Σact. In Fig. 1b, we have
a fragment of the CS of size 5 (the entire CS is too large to be shown). The
composed transitions are written using in-fix notation; where s a→ s′ means that
R(s,a) = s′. Composed transitions are component-wise application of R:

An Efficient Rewriting Framework for Trace Coverage of Symmetric Systems 99

Fig. 1. (a) MESI cache-protocol; (b) subgraph of the CS of size 5. Edge labels and
self-loop edges are not represented.

s a→ s′ ⇔ ∀i. R(si, ai) = s′
i.

This leads to a natural definition of a CS trace.

Definition 3. A trace of CS M is a finite, alternating string s0a0s1a1 . . . a�−1s�

of c-states and composed-symbols such that

– s0 = q0;
– si

ai→ si+1 for 0 ≤ i < �.

Let Traces(M) denote the set of traces of CS M. The length of trace w,
denoted with |w|, is the number of composed-symbols that appear in it (with
repetition). The tail of a trace t�(w) is the last character appearing in w, nec-
essarily a state; the head of a trace hd(w) is the first character appearing in w,
necessarily a state. A subtrace is a substring of a trace in Traces(M) begin-
ning and ending in a state. A c-state is reachable if it appears in some trace of
Traces(M).

Definition 4. Given set A and positive integer n, a permutation π is a bijection
An → An that reorders the components according to one-to-one function ξ :
{1, 2, . . . , n} → {1, 2, . . . , n}, where

π((a1, a2, . . . , an)) = (aξ(1), aξ(2), . . . , aξ(n)).

Definition 4 allows us to consider permutations over both elements of S

and elements of A. We extend the notion of permutation to traces: if trace
w = s0a0 . . . a�−1s�, then π(w) = π(s0)π(a0) . . . π(a�−1)π(s�). A set of traces
T is closed under permutation when for all permutations π, w ∈ T if and only
if π(w) ∈ T . The symmetry of M leads to an equivalence on traces modulo
permutation. Figure 2a depicts a CS for MESI modulo permutation. Note that
each state in this figure is a representative of a possible permutation (e.g., state
SIIII represents itself, ISIII, IISII, IIISI and IIIIS from Fig. 1b).

100 F. M. De Paula et al.

Proposition 1. Given CS M the set Traces(M) is closed under permutation.
Likewise, the subtraces of M are closed under permutation.

Now that we have defined CSs and traces, we can then present our strategy
for efficiently computing trace coverage.

4 Strategy Overview

Our goal is to reason about CS traces in a comprehensive and yet concise way.
From practice we leverage two keys insights: that regression tests are finite in
length and that many system traces share some common behavior. Then, we
compute canonical representatives for a set of traces, called an abstract trace.
The c-states are abstracted to maintain the distinct states in their composition,
but may obfuscate the count of each state; it follows that traces that are equal
up to permutation have the same representative (e.g., blue ellipses in Fig. 2b
encompassing SSIII, SSSII and SSSSI). Our presentation focus on CSs adhering
to specific rules, namely that at most two states may occur more than once
in a reachable c-state. For MESI, these states are S and I (note in Fig. 2b the
“squared” states side-by-side with the groupings they represent). These rules
are motivated by our experience with real cache protocols, and to simplify the
presentation1. The key novelty is how we combine the approaches of rewriting
and abstraction into a single framework to empower users to easily define their
coverage models.

4.1 Rewriting Systems

We leverage the concept of rewriting for computing canonical coverage-points.
Informally, a rewriting system is a set and a list of transformations on set ele-
ments. Rewriting works by the successive applications of transformations to
objects until they are no longer applicable.

The class of rewriting systems we are interested in are both terminating
and confluent, necessary and sufficient conditions for finding canonical repre-
sentatives. In our case, the set comprises of traces and the transformations are
string-replacement rules.

Definition 5. A Rewriting System (RS) is (Γ ∗, ρ):

– Γ is a finite alphabet,
– ρ ⊆ Γ ∗ × Γ ∗ is a relation on strings.

Each element (l, r) ∈ ρ is called a rewrite rule, applied as follows: for any
u, v ∈ Γ ∗, u → v iff there exists (l, r) ∈ ρ such that for some x, y ∈ Γ ∗, u = xly

and v = xry. The notation ∗→ is the reflexive and transitive closure of →.

1 Other systems that focus on different abstractions require their own tailored restric-
tions and proof of Theorem 1.

An Efficient Rewriting Framework for Trace Coverage of Symmetric Systems 101

Fig. 2. Running example illustration. Vertices in (a) and (b) are sets of c-states that are
equal up to permutation; vertices in (c) and (d) are c-states; vertices in (e) through (g)
are abstract states; vertex “User Defined” is a representative of some abstract states.
Edges of (a) through (d) are labeled not with composed-symbols, but the unique action
component. (a) A representation of the MESI CS of size 5 from Fig. 1b, (self-loops
omitted). (b) Equivalence classes created by state abstraction; abstract state SSI is a
member of Blur . (c) A representation of a set of CS traces, where each trace traverses
the cycle on SIIIS and SIISS a different number of times. (d) A set of CS traces after
stutter removal. (e) The corresponding abstract trace after state abstraction. (f) The
corresponding abstract trace after abstract trace rewriting. (g, h) Abstract traces before
and after optional user-defined rewriting that combines a sequence of abstract states
where S-state and I-state toggling occur.

102 F. M. De Paula et al.

A RS is terminating if there is no infinite sequence x0, x1, . . . such that for
all i ≥ 0, xi → xi+1. Termination can be established by finding an ordering
function (e.g., string length) that all rewrite rules obey. RS (Γ, ρ) is confluent if
for all w, x, y ∈ Γ ∗, the existence of reductions w

∗→ x and w
∗→ y implies there

exists a z ∈ Γ ∗ such that x
∗→ z and y

∗→ z.
Rewriting theory tells us that in a terminating and confluent RS (a TCRS),

any string can be reduced to a unique normal form by applying rewrite rules
until the object is irreducible [12,13].

For elements of Traces(M), we define a TCRS that removes stuttering
actions. Here, the alphabet Γ is S ∪ A, and the relation ρ is as follows.

∀s ∈ S. ∀a ∈ A. (sas, s) ∈ ρ (1)

We encapsulate this TCRS as function τn, which is used to map traces w of
M with size n to a representative trace τn(w) without stuttering. In Fig. 2c, the
last two states in this trace stutter and, thus, can be rewritten by applying Eq. 1
to arrive at Fig. 2d.

4.2 Abstraction and Coverage Model

We leverage insights from symmetric systems and rewriting into a new abstrac-
tion, composed of three steps: trace rewriting, then folding, followed by a second
trace rewriting. The added flexibility to users to define their coverage models
comes from the ability to apply rewriting on the resulting abstract traces.

Given a CS, consider Ref the CS with fixed size k and DUT , the CS for
some fixed size n > k. We will establish the property w ∈ Traces(Ref) implies
that there is a trace w′ ∈ Traces(DUT) with the same abstract representative.
This allows coverage-holes to be identified in any test subset of Traces(DUT)
by comparing their abstract representatives with those of Traces(Ref).

5 Conservative Abstraction

Here we will define α, an abstraction function on traces of M, and establish the
main result.

5.1 Abstractable Composed-Systems

In this Section, we define an abstraction on traces that applies to the CSs that
adhere to specific rules. A CS that complies with these rules is abstractable. In
essence, reachable c-states are restricted to only have two states that appear
more than once.

Partition S into two sets, X = {X1,X2, . . . , Xm} for m ≥ 1 and Y =
{Y1, Y2}. Associate with each state a ranking, where the rank ordering
 is

X1
 X2
 . . .
 Xm
 Y1
 Y2.

Noting that each transition has a distinct actor and the others are reactors, the
following characterizes CSs that may be abstracted.

An Efficient Rewriting Framework for Trace Coverage of Symmetric Systems 103

Definition 6. A CS is called abstractable if the initial state is n-tuple
(Y2, . . . , Y2) and the transitions adhere to the following rules.

1. Reactors do not increase rank.
2. If actor Y1 decreases rank to Y2, reactors do not change.
3. If any actor increases rank to some X-state, reactors must change to Y2.
4. If actor Y2 increases rank to Y1, reactors Xi for 1 ≤ i < m decrease rank;

reactor Xm does not change.

Lemma 1. If a CS is abstractable, then any reachable c-state

1. includes at most one element of X, and
2. if it includes Xi for i �= m, it includes at most i − 1 states that are Y1.

Proof (Sketch). Initial transition to a c-state including Xi has no Y1 states;
subsequent transitions increase i by at least 1 and the number of Y1 increases
by at most 1.

From the MESI running-example: X = {M,E} and Y = {S, I}. That is,
m = 2, X1 = M , X2 = E, Y1 = S and Y2 = I. Their ranking naturally follows:
M
 E
 S
 I. Therefore, Lemma 1 is saying that an abstractable state can
contain no more than one M or one E. Second, when M is present and since
m = 2, there cannot be any S. The last vertex in Fig. 2e shows such abstraction
from Fig. 2d.

5.2 Trace Abstraction

We define the abstract states as strings of length k = m + 1 where each symbol
is a state, states are listed in nonincreasing rank order, and the corresponding
c-state is reachable according to Lemma 1. That is, SA is all strings of the form
cY a

1 Y b
2 where c is any state of S, with c = Xi with i �= m implies that a <

i − 1 and c = Y2 implies that a = 0. All permutations of a c-state map to the
same abstract state, so we only consider a specific permutation without loss of
generality (see Fig. 2e).

Definition 7 (State Abstraction). For fixed n ≥ k, let φn be a function from
reachable c-states of S to SA. Let s = (s1, . . . , sn) be a c-state with states in
nonincreasing rank order. Then φn(s) is the unique element of SA according to

φn(s) =

{
s1s2 . . . sk, when all sk+1, . . . , sn are equal;
s1s2 . . . sk−1Y2, otherwise.

By construction, some elements of SA are “exact” in that they have a single
c-state in its preimage, up to permutation, for each n. We call this set Exact , and
define the remaining elements Blur as SA \ Exact . The string characterization
of Blur follows directly from Lemma 1 and Definition 7.

Proposition 2. The set Blur are the abstract states with exactly one Y2, i.e.,
{Y k−1

1 Y2, XmY k−2
1 Y2}.

104 F. M. De Paula et al.

For example, the trace in Fig. 2-e has blur states SSI and SII. Next, we define
the abstract symbols AA as the set of actor symbols Σact. Associated symbol
abstraction function maps the element of A to its component that is an action
symbol.

Definition 8 (Symbol Abstraction). For fixed n ≥ k, let ψn : A → AA map
composed-symbol a to the unique element ai ∈ Σact.

With Definitions 7 and 8 in place, we define function δn that maps traces to
abstract traces.

Definition 9 (Trace Abstraction). Given CS M and w = s0a0s1a1 . . . a�−1s� ∈
Traces(M), then δn(w) is the alternating sequence

φn(s0)ψn(a0)φn(s1)ψn(a1) . . . ψn(a�−1)φn(s�).

5.3 Abstract Trace Rewriting

Rewriting of the abstract traces is necessary to obfuscate the size of the CS, as
actor transitions between Y1 and Y2 may have no reaction, and appear as stut-
tering in the abstract trace (back-to-back SSI states in Fig. 2e). Such stuttering
subtraces must have length that is at least the size of the CS. This is troublesome
for coverage when our goal is to compare abstract traces from CSs with different
size. A TCRS (Γ, ρ) has Γ = SA ∪ AA, and

∀s ∈ Blur . ∀a ∈ AA. (sas, s) ∈ ρ. (2)

We encapsulate this rewriting system as function γ, which is used to map
abstract traces to their unique representative abstract trace, by repeated appli-
cation of the rules of ρ.

5.4 Coverage Holes

The trace representative function α is the composition of functions2 γ◦δn◦τn; we
forgo the n subscript as the size of M will be clear from context. We overload
α to apply directly to CSs, where α(M) is {α(w) | w ∈ Traces(M)}. The
following Lemma relates a transition of Ref with a corresponding subtrace of
DUT under the α mapping. We consider the specific case where a subtrace sas′

of Ref is not affected by either rewriting function. That is,

α(sas′) = γ(δk(τk(sas′))) = γ(δk(sas′))
= γ(φk(s)ψk(a)φk(s′)) = φk(s)ψk(a)φk(s′)

Lemma 2. Let s a→ s′ be a transition of Ref with α(sas′) = φk(s)ψk(a)φk(s′).
For each c-state r of DUT where φn(r) = φk(s), there exists subtrace wr such
that α(wr) = α(sas′).
2 Recall, τn is trace rewriting; δn is trace abstraction; γ is abstract trace rewriting.

An Efficient Rewriting Framework for Trace Coverage of Symmetric Systems 105

Proof (Sketch). By Proposition 1, assume without loss of generality that s and
r both have their states listed in nonincreasing order. Case 1: If φk(s) ∈ Exact ,
then r is unique up to permutation. The claim holds by taking analogous action
to a on r. Case 2: If φk(s) ∈ Blur , the abstract state necessarily changed, as
abstract rewriting did not apply. If the actor transitions from or to some Xi,
then an analogous action suffices on r. Otherwise, there is a series of actions
that transition a Y1 to Y2, or a Y2 to Y1. The resulting subtrace wr has all states
abstract to φk(s), except t�(wr), which abstracts to φk(s′).

Using Lemma 2, we prove the main result of this Section.

Theorem 1. For each w ∈ Traces(Ref), there exists w′ ∈ Traces(DUT)
such that α(w) = α(w′).

Proof. By induction on the length of w. If |w| = 0, then w = q0; α(q0) = Y k
2 .

The initial c-state q0 of DUT is (Y2, Y2, . . . , Y2), and α(q0) = Y k
2 . Therefore,

w′ = q0 satisfies the claim. For |w| > 0, assume the claim holds for all w
with length �. We consider arbitrary trace w of Ref of length � + 1. Note that
w = w̃a�s�+1, where the claim holds for length � trace w̃, and t�(w̃) = s�, and
the transition s�

a�→ s�+1 necessarily exists. We consider 3 cases on the subtrace
s�a�s�+1. Case 1: If s� = s�+1, trace rewriting will map the subtrace s�a�s�+1

to s�, i.e. the rewritings of w̃ and w are equal. Therefore α(w̃) = α(w) and the
claim holds. Case 2: Else if φk(s�) ∈ Blur and φk(s�) = φk(s�+1), abstract
trace rewriting will map the substring φk(s�)ψk(a�)φk(s�+1) to φk(s�), i.e. the
abstract rewritings of δk(w) and δk(w̃) are equal. Therefore α(w̃) = α(w) and
the claim holds. Case 3: Else, neither of the rewritings apply to the subtrace,
and α(s�a�s�+1) = φk(s�)ψk(a�)φk(s�+1). Let w̃′ be the DUT trace such that
α(w′) = α(w̃′). By Lemma 2, for each r ∈ φ−1

n (φk(s�)) there exists subtrace wr

with α(wr) = α(s�a�s�+1) and hd(wr) = r. Choosing r as t�(w̃′), compose w̃′

with wr to create requisite trace w′.

Corollary 1. Let function θ be associated with TCRS on abstract traces. For
each w ∈ Traces(Ref), there exists w′ ∈ Traces(DUT) such that θ(α(w)) =
θ(α(w′)).

For example, Fig. 2h represents a user-defined rewriting rule θ applied to
Fig. 2g. Here, the “user” is succintly capturing that at least one subsystem is
toggling between two abstract states.

6 Experiments

It follows from Theorem 1 that it suffices to reason about coverage-holes of a
potentially large DUT in terms of a much smaller α(Ref). In order to support
this claim, we present the results from a case study where we demonstrate the
applicability of our abstraction technique on an IBM POWERTM Processor. In
Sect. 6.1, we outline the MIST protocol transition-system for cache coherence.

106 F. M. De Paula et al.

Section 6.2, then showcases the viability of using α in creating an abstracted
coverage model that succinctly represents concrete traces of a CS based on MIST.
We then conclude by illustrating the effectiveness of this coverage model for the
verification of cache-coherence of an IBM POWERTM Processor.

6.1 The MIST Protocol

The MIST protocol is a simplified version of an IBM POWERTM Processor
cache-coherence protocol [14,15] that is based on the well-known MOESI proto-
col [16]. This implementation has four states: M, I, S and T3, shown in Fig. 3.

Fig. 3. Simplified IBM POWERTM Processor Cache-Coherence Protocol with 4 states:
Modified, Invalid, Shared and Tagged. Operations: Inv (invalidate), Rd (read), Wr
(write), LRU; Mode: l (local), o (other). Missing edges are self-loops.

Formally, using notation from Sect. 3, the MIST protocol has the following
transition-system

– S = {M, I,S,T},
– init = I,
– Σ = {noopx, Invx,Rdx,Wrx,LRUx}, where x ∈ {l,o}. Subscripts l and o

indicate the actor and reactor type of the action, respectively. Assume Σact

is the set of ‘actor’ type actions (subscript l). Note that for our experiments
(in Sects. 6.3, 6.4, 6.5)we choose a subset of actions of the IBM POWERTM

Processor cache coherence protocol where |Σact| = 15. In the interest of
IP non-disclosure we obscure these particular elements of Σ. However, the
elements of Σ can be mapped to the set {Inv,Rd,Wr,LRU,noop}.

– R: See Fig. 3.

The CS for the MIST protocol is parameterized by n ≥ 3, and constructed
with the preceding transition system and reaction r : r(Actl) = Acto where
Act ∈ {Inv,Rd,Wr,LRU,noop}. The MIST system is abstractable with the

3 A cacheline is in state M when it is has been modified; I when invalidated; S when
shared; and, T when the dirty cacheline is possibly being shared with other nodes
while this owner is responsible for servicing requests for sharing the cacheline.

An Efficient Rewriting Framework for Trace Coverage of Symmetric Systems 107

partition of S into two sets X = {M,T} (where X1 = M, X2 = T) and Y =
{S, I} (where Y1 = S, Y2 = I) (as defined in Sect. 5.1). For any CS based on MIST
with n ≥ 3, henceforth M, the state abstraction function, φn (from Definition 7)
defines the set of abstract states {III,SII,SSI, SSS,MII,TSI,TSS}.

Cache-coherence verification of IBM POWERTM Processor is incomplete
without stimulating the system to transition between c-states with a single owner
to c-states with multiple shared agents under different types of actions, as these
behaviors cover state spaces of the protocol that may lead to coherency issues.
Our abstraction enables us to define coverage models that help track these prop-
erties in a system of arbitrary size, but with a smaller model. Note that the
abstraction α can also be extended to commonly known cache protocols (such
as MOESI, MESI etc.) with appropriate partitions of S.

6.2 Model Viability

In order for a coverage model to be usable for IBM POWERTM Processor,
the number of coverage-points (henceforth, size of coverage model) and the time
taken to generate them needs to be tractable. In Table 1, we compare the coverage
model sizes, with and without our abstraction (α), for traces based on a MIST
experimental setup. To illustrate the complexity of trace coverage, we also show-
case the theoretical maximum size of a coverage model comprising of concrete
traces of a CS based on a MIST experimental setup (which is |Sn|×(n×|Σact|)�,
for trace-length � and allowing for initialization to arbitrary reachable states in
Sn). Note that this theoretical size is much larger than the other coverage mod-
els, since it allows for non-permissible transitions of a practical MIST-based
system (as defined in Sect. 6.1). We also only show the coverage model sizes
that do not include the noop transitions, which is the setup we use for our
case study. The coverage model definitions and abstraction techniques were pro-
totyped/implemented using custom software (written in C++, Python) that is
compatible with the IBM POWERTM Processor verification infrastructure. The
experiments were conducted on a single core Intel Xeon E312xx (Sandy Bridge)
(CPU MHz: 2899.9 Cache size: 4096 KB Memory: 106.89 GB). As we observe,
the proposed abstraction significantly reduces the coverage model size with a
tolerable overhead to the setup time for the coverage model. As always, further
optimization can be applied to improve model memory footprint and runtime
which is beyond the scope of this paper.

6.3 Effectiveness

To show that the presented technique is effective in the use for analyzing coverage
in large scale designs, we conducted two experiments involving a version of a
cache-coherence monitor (henceforth, the monitor [17]) used in IBM POWERTM

Processor verification. The monitor is part of the verification framework for IBM
POWERTM Processor and is used to perform certain (micro)architectural checks
related to cache coherence. The monitor observes RTL simulation (by means of
simulation logs) and then produces a pass or a fail result (w.r.t. its checks). The

108 F. M. De Paula et al.

Table 1. Comparing the number of coverage-points of different MIST coverage models
and time taken (in hours) to generate the coverage models. For all cases, |S| is 4 and
trace length � = 4. N/A reflects the fact that α for MIST requires n ≥ 3.

n = 2 n = 3 n = 4

No. Time No. Time No. Time

Theory ≈108 N/A ≈109 N/A ≈1010 N/A

No α 959,207 0.03 9,355,651 0.59 60,104,523 5.15

With α N/A N/A 270,814 0.86 296,270 7.16

monitor also produces, for each cache-line exercised in the simulation, a witness
trace w ∈ Traces(M). This witness trace is a representation of the behavior
monitored/checked on the cache-line. The monitor can be said to vacuously pass
if it produces a pass result but the witness trace (or its abstraction) is not
representative of the behavior simulated. The monitor is said to have covered an
abstract trace t ∈ α(Traces(M)) if there exists an input stimulus for which
the monitor produced a witness such that α(w) = t.

In order to avoid missing bugs in RTL simulation, it is important to verify
the implementation of the monitor under different behaviors over a cacheline.
Particularly, vacuous passes indicate bugs in the implementation of the monitor
that may mask some real hardware issues. To this end, the first experiment,
Sect. 6.4, evaluates the monitor with respect to a reference model (Ref) in an
unit-testing environment. That is, we want to know whether this monitor cov-
ers all the behaviors prescribed by Ref and whether coverage-holes are indeed
insightful. The second experiment, Sect. 6.5, places the monitor in a test-bench
used for the IBM POWERTM Processor and allows us to analyze the monitors
trace-coverage on inputs produced by the DUT with respect to Ref . This setup
allows us to measure what is being checked in simulation using the monitor as
well as what is being stimulated by the test cases. We discuss some insights from
the results.

6.4 Monitor-Centric Experiments

To demonstrate applicability of our technique to evaluate the monitors coverage
of operations on a cacheline, we start with a “3× 3” reference model Ref (n = 3
and � = 3). The reference model only allows valid behaviors (validity as defined
by the specification). We exhaustively generated the set, Traces(Ref), up to
length � = 3 (|Traces(Ref)| = 990, 648). We use the set α(Traces(Ref)) as
our coverage model; |α(Traces(Ref))| = 22, 158. The choice of � here reflects
the minimum number of transitions, in a n = 3 system, required to reach all
permissible concrete states from the initial state (III).

We provided simulation logs, that contain information to produce the set
Traces(Ref), to the monitor and collected coverage over our coverage model.
The method for collecting coverage, similar to [4], involves counting the number

An Efficient Rewriting Framework for Trace Coverage of Symmetric Systems 109

of times each coverage-point is observed. Setup A of Fig. 4 pictorially describes
this experiment flow. After abstraction α on the witness trace produced by the
monitor, the process queries whether the abstracted trace exists in the cover-
age model. If it does, we mark that trace as covered. Since simulation logs for
Traces(Ref) are correct by construction, we would expect the monitor to have
100% coverage. This ensures that the witness traces produced by the monitor
matches the abstract representatives of the inputs. However, we only had 35%
coverage of traces of length 3. This means that the monitor produced vacuous
pass results for the traces whose abstract representatives made up 65% of the
coverage model. One of the main problems we have identified had to do with
handling cacheline invalidation. Note that on an SMP environment, different
systems may request ownership of a cacheline, but before a system acquires it,
any outstanding shared-copy needs to be invalidated first. It turns out this fea-
tures accounts for more than 50% of the coverage model (recall that in the actual
system, we have the |Σact| = 15, several of them relates to cache-invalidation,
thus explaining the large impact on the coverage model).

More importantly this experimental setup allows us to reason about the
monitor’s trace-coverage on a sequence of operations on the cache. We were
able to observe that the monitor had limited coverage on traces of length 2 or
more that do not contain a particular subsequence cd where c, d ∈ Σact of type
Rd (we obscure the specific operations c and d for IP non-disclosure), leading to
the observation that the monitor was not handling such sequences correctly. It is
promising that even with a small model we are already able to observe important
holes in the monitor design. After fixing these problems, we were then confidently
able to use the monitor on the test-bench with the IBM POWERTM Processor.

6.5 Experiments on a Large-Scale Verification Environment

In these experiments, we leverage a framework similar to the one described by
Ludden et al. [18]. In other words, pseudorandom tests are generated [19], feeding
the DUT . The DUT comprises of several cores, a multi-level cache hierarchy,
and a data-interconnect. The communication traffic on the data-interconnect
between different cores is snooped by the monitor, to perform certain checks.

We simulate this DUT model on 500 different random test-cases. This pro-
duces simulation logs which correspond to traces of arbitrary length on each
cacheline (that is, each test-case may generate traces that exercise different
cachelines). That is, |Traces(DUT)| = 24,120 each with arbitrary length. Using
our framework (see Setup B of Fig. 4) we provided these simulation logs to the
monitor and collected coverage. The coverage model α(Traces(Ref)) in this
experimental setup is obtained by accumulating the coverage models of Ref
with n = 3, over lengths � = 1, 2, 3, 4. The resultant coverage model contains
278,715 coverage-points. We chose a shorter length for easier setup and diagno-
sis of the coverage information. Note that, the length of � can be configured as
long as the resulting coverage model contains coverage-points that conform to
the desired granularity of coverage analysis and tractability of model generation
(the theoretical coverage model size grows exponentially with �). The size of

110 F. M. De Paula et al.

the coverage model, determined by the choice of n and �, does not affect DUT
simulation time since the analysis is post-simulation. Since the coverage track-
ing infrastructure is optimized to handle large coverage models, the performance
overhead is minimal [18].

Fig. 4. Flow-diagram describing our coverage framework. Setup A is used for experi-
ments in Sect. 6.4. Setup B is used for Sect. 6.5. If the monitor passes, then the proce-
dure abstracts the witness traces and queries the pre-populated database for existence.

Given that the sample size of test-cases is only 500 (and |Traces(DUT)|
 278,715), we expect that the monitor’s coverage would be low compared to
the size of the coverage model. Analyzing the monitor’s reports, we see that the
monitor covered 437 unique entries of the coverage model. These entries map
to 20,424 traces (85% of |Traces(DUT)|). That is, these 20,424 traces can be
uniquely represented by 437 abstract traces. This represents a reduction of 46x
w.r.t. a naive coverage model comprising of unabstracted traces. How about
coverage-holes (the other 15%)? These can be broken down into two categories.
The proposed abstraction (α) does not shorten the traces of the DUT to the
length supported by the coverage model (accounting for 62%, or 2270, of them).
In other words, the length of the abstracted trace remains greater than 4 after
applying α. To avoid these types of false coverage-holes one can either use a
coverage model with a bigger length or use advanced rewriting on the abstracted
trace (see Sect. 5-Corollary 1). Finally, the remaining 38% are due to incorrect
test stimuli (that do not adhere to the specification and considered incorrect).

Our framework enables us to also make qualitative observations about the
verification stimuli. For example, none of test-cases in our sample produce a trace
containing an abstract state SSS nor TSS. This means that, there’s no single
moment where all communicating nodes share a cacheline simultaneously. The
distribution of the frequencies, that each coverage-point is hit, indicates that
the test cases were heavily biased towards certain operational sequences on the
cache (sample mean, μ ≈ 47 and standard deviation, σ ≈ 727). In addition, we
observe that in only about 4% of the traces, the DUT transitions from a single
reader/writer epoch to a multiple reader epoch (and vice versa). Certainly, these
under-exercised scenarios can lead to a design flaw. This is valuable feedback that

An Efficient Rewriting Framework for Trace Coverage of Symmetric Systems 111

verification engineers can use to recalibrate the verification environment. Note
that these types of operational sequences and their effect on the cache state are
encoded by the coverage model in a way that is independent of the size of the
DUT , leading to their reusability in the verification of larger DUT s.

7 Conclusion

We presented an abstraction approach as a novel framework for generating trace
coverage models for symmetric systems. This methodology was validated using
different sets of experiments while leveraging a large-scale verification environ-
ment. It demonstrated the method’s effectiveness even without utilizing tailored
rewriting rules. We expect that future efforts will require this flexibility, and is
a topic our next investigation.

The reasoning presented in this paper can be extended to other domains. In
particular, some communication protocols with finite communicating windows
may be very amenable to these techniques. Our formalization has a particular
view of composed-systems that are abstractable, but this was motivated pri-
marily to keep the presentation simple and concise. The abstraction involves
“folding” that maintains information about one-or-more agent being in a par-
ticular state. Other abstractions may be defined that follow this coverage-model
framework but require their own reasoning to establish Theorem1. As an exam-
ple, the state-abstraction approach that maintains a fixed number of agents [11]
would lead to a trivial proof. We look forward to generalizing the approach to
other such abstractions and variants of symmetric composed-systems.

Acknowledgement. The authors thank Viresh Paruthi and Jesse Bingham for valu-
able suggestions that helped with clarity of this paper.

References

1. Miller, J.C., Maloney, C.J.: Systematic mistake analysis of digital computer pro-
grams. Commun. ACM 6(2), 58–63 (1963)

2. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE, pp. 411–420. IEEE (1999)

3. Hong, H.S., Lee, I., Sokolsky, O., Ural, H.: A temporal logic based theory of test
coverage and generation. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS,
vol. 2280, pp. 327–341. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46002-0 23

4. Ziv, A.: Cross-product functional coverage measurement with temporal properties-
based assertions. In: DATE, p. 10834. IEEE (2003)

5. Chockler, H., Kupferman, O., Vardi, M.: Coverage metrics for formal verification.
STTT 8(4–5), 373–386 (2006)

6. Piziali, A.: Functional Verification Coverage Measurement and Analysis, 1st edn.
Springer Publishing Company Incorporated, New York (2004). https://doi.org/10.
1007/b117979

7. Czemerinski, H., Braberman, V., Uchitel, S.: Behaviour abstraction coverage as
black-box adequacy criteria. In: ICST, pp. 222–231. IEEE (2013)

https://doi.org/10.1007/3-540-46002-0_23
https://doi.org/10.1007/3-540-46002-0_23
https://doi.org/10.1007/b117979
https://doi.org/10.1007/b117979

112 F. M. De Paula et al.

8. Castillos, K.C., Dadeau, F., Julliand, J.: Coverage criteria for model-based testing
using property patterns. In: Proceedings of 9th MBT Workshop, pp. 29–43 (2014)

9. Papamarcos, M.S., Patel, J.H.: A low-overhead coherence solution for multipro-
cessors with private cache memories. In: Proceedings of 11th Annual International
Symposium on Computer Architecture, pp. 348–354. ACM, New York (1984)

10. Shen, J., Abraham, J.A.: An RTL abstraction technique for processor microarchi-
tecture validation and test generation. J. Electron. Test. 16, 67–81 (2000)

11. Chou, Ching-Tsun, Mannava, Phanindra K., Park, Seungjoon: A simple method
for parameterized verification of cache coherence protocols. In: Hu, Alan J., Mar-
tin, Andrew K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 382–398. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30494-4 27

12. Book, R.V., Otto, F.: String-Rewriting Systems. Springer, New York (1993).
https://doi.org/10.1007/978-1-4613-9771-7

13. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

14. Sinharoy, B., et al.: IBM POWER7 multicore server processor. IBM J. Res. Dev.
55(3), 191–219 (2011)

15. Starke, W.J., et al.: The cache and memory subsystems of the IBM POWER8
processor. IBM J. Res. Dev. 59(1), 3:1–3:13 (2015)

16. Cragon, H.G.: Memory Systems and Pipelined Processors. Jones and Bartlett Pub-
lishers, Burlington (1996)

17. Shimizu, K., et. al.: Verification of the cell broadband engine; processor. In: Pro-
ceedings of 43rd Annual DAC, pp. 338–343. ACM (2006)

18. Ludden, J.M., et al.: Functional verification of the POWER4 microprocessor and
POWER4 multiprocessor system. IBM J. Res. Dev. 46(1), 53–76 (2002)

19. Adir, A., et al.: Genesys-pro: innovations in test program generation for functional
processor verification. IEEE Des. Test Comput. 21(2), 84–93 (2004)

https://doi.org/10.1007/978-3-540-30494-4_27
https://doi.org/10.1007/978-1-4613-9771-7

Verification of Fault-Tolerant
Protocols with Sally

Bruno Dutertre(B), Dejan Jovanović(B), and Jorge A. Navas(B)

Computer Science Laboratory, SRI International, Menlo Park, USA
{bruno.dutertre,dejan.jovanovic,jorge.navas}@sri.com

Abstract. Sally is a model checker for infinite-state systems that imple-
ments several verification algorithms, including a variant of IC3/PDR
called Property-Directed K-induction. We present an application of Sally
to automated verification of fault-tolerant distributed algorithms.

1 Introduction

Sally is a new model checker for infinite-state systems developed by SRI Inter-
national. It is a successor of the Symbolic Analysis Laboratory (SAL) [6]. Sally
supports bounded model checking and proof by k-induction, and it implements a
novel model-checking algorithm based on IC3/PDR that can automatically dis-
cover k-inductive strengthening of a property of interest. Details of this Property-
Directed K-induction (PD-KIND) algorithm are presented in [12].

We present an application of Sally to fault-tolerant distributed algorithms.
We focus on a class of synchronous algorithms that consist of one or more rounds
of communication between N processes—some of which may be faulty—followed
by some form of averaging or voting to achieve agreement among processes. This
type of algorithm is at the core of many fault-tolerant systems used in avionics or
other control systems, including protocols for fault-tolerant sampling of sensor
data and clock-synchronization protocols. Until the advent of PDR and rela-
tives, such protocols could not be verified automatically by model checkers. The
best technique available was k-induction, which is typically not fully automatic
and requires expertise to discover auxiliary inductive invariants. We show that
PD-KIND can automatically verify complex fault-tolerant algorithms, under a
variety of fault assumptions.

2 Sally

Sally is a modular and extensible framework for prototyping and development
of model-checking algorithms. Currently, Sally implements several algorithms

This work was supported in part by NASA Cooperative Agreement NNX14AI05A
and by NSF grant 1528153. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily
reflect the views of the funding agencies.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 113–120, 2018.
https://doi.org/10.1007/978-3-319-77935-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_8&domain=pdf

114 B. Dutertre et al.

based on satisfiability modulo theories (SMT), including bounded model check-
ing and k-induction, and the novel PD-KIND algorithm [12]. PD-KIND gen-
eralizes IC3/PDR [4,10] by relying of k-induction and k-step reachability as
subprocedures, rather than ordinary one-step induction and reachability. The
PD-KIND procedure relies on backend SMT solvers to provide features such as
model-based generalization [13] and interpolants. The current implementation
combines Yices 2 [8] and MathSAT 5 [5]. Other backend solvers can also be
used for k-induction and bounded model checking. Sally is open source software
available at https://github.com/SRI-CSL/sally.

The primary input language of Sally is called MCMT (for Model Checking
Modulo Theories). This language extends the SMT-LIB 2 standard [1] with
commands for defining transition systems. SMT-LIB 2 is used to represent terms
and formulas. Transition systems are defined by specifying a state space, a set
of initial states, and a transition relation. MCMT also allows one to specify
invariant properties. Sally can parse other input languages than MCMT and
internally convert them to MCMT. All our examples are written in a subset of
the SAL language [7], converted to MCMT, then analyzed using Sally.

3 Modeling Fault-Tolerant Protocols

We use a simple modeling approach that is generally applicable to synchronous
algorithms. The system state is a finite set of arrays indexed by process identities.
Communication channels are also modeled using arrays (e.g., a channel from
process i to process j is represented as an array element c[i][j]). Each transition
of the system corresponds to one round of the algorithm: a process i updates its
local variables then send data on one or more communication channel.

To model faults, we assign a status to each process and we specify faulty
behavior as assumptions on the data transmitted by processes. A faulty process
is then assumed to execute the algorithm correctly, except when it sends data.
This approach simplifies process specifications and is sufficient for all types of
process faults [20].

3.1 Approximate Agreement

We illustrate our approach using a protocol based on the unified fault-tolerant
protocol of Miner et al. [16]. The protocol ensures approximate agreement. It
assumes inexact communication, which models errors in sensor sampling or clock
drifts. The fault model distinguishes between omissive and transmissive faults,
and between symmetric and asymmetric behavior. A symmetric omissive process
either fails to send data (on all its channels) or sends correct data. An asymmetric
omissive process may send nothing to some and correct data to other processes.
A symmetric transmissive process sends possibly incorrect data, but it sends the
same data on all its channels. An asymmetric transmissive process behaves in
an arbitrary way.

https://github.com/SRI-CSL/sally

Verification of Fault-Tolerant Protocols with Sally 115

The protocol involves N processes. Process i holds a real value v [i]. In each
round, this process broadcasts its value to the all processes,1 computes a fault-
tolerant average of the values it receives, and updates v [i] using this average.
The protocol is intended to ensure convergence: the absolute difference between
v [i] and v [j] is approximately reduced by half with each protocol round.

We model this protocol as a single state-transition system that operates on
arrays. The main state variables include an array v that stores process values,
and arrays m and c that model communication channels:

v: ARRAY PID OF DATA ,
m: ARRAY PID OF ARRAY PID OF BOOLEAN ,
c: ARRAY PID OF ARRAY PID OF DATA ,

Variable m[j][i] indicates that the message from i to j is missing. If m[j][i]
is true, then c[j][i] is ignored, otherwise c[j][i] is the value that j receives
from i. We formalize the fault model as constraints on m’[j][i] and c’[j][i]
based on the status of process i. These constraints are as follows:2

(FORALL (i: PID): status[i] = Good =>

(FORALL (j: PID): NOT m’[j][i] AND received(v[i], c’[j][i])))

(FORALL (i: PID): status[i] = SymmetricOmissive =>

(FORALL (j: PID): m’[j][i]) OR (FORALL (j: PID): received(v[i], c’[j][i])))

(FORALL (i: PID): status[i] = AsymmetricOmissive =>

(FORALL (j: PID): m’[j][i] OR received(v[i], c’[j][i])))

(FORALL (i: PID): status[i] = SymmetricTransmissive =>

(FORALL (j: PID): m’[j][i])

OR (FORALL (j, k: PID): c’[j][i] - c’[k][i] <= 2 * epsilon))

The parameter ε is a bound on communication error; if a process sends a
value x then the recipient reads a value in the interval [x− ε, x+ ε]. In the above
rules, this communication error is specified by predicate received:

received(x: DATA , y: DATA): BOOLEAN = x - epsilon <= y AND y <= x + epsilon;

A non-trivial part of the model is the definition of the fault-tolerant average.
We use a form of mid-value select, parameterized by an constant τ : when a
process i receives n ≤ N values in round k, it sorts these values in increasing
order to form a sequence of reals x1, . . . , xn. The mid-value select is the average
of xτ+1 and xn−τ . (If n < τ , a default value is chosen.) In practice, the parameter
τ is equal to the number of asymmetric faults to tolerate, and must be chosen
so that n > 2τ .

We do not want to write a sorting algorithm in SAL, as translation to MCMT
requires all functions applications to be inlined. For any sorting algorithm, this
unrolling inevitably would cause an exponential blowup. Instead, we use a spec-
ification trick. We introduce two auxiliary state variables p and n:

p: ARRAY PID OF ARRAY PID OF PID ,
n: ARRAY PID OF [0 .. N],

1 To avoid special cases, we assume that i is included in the set of recipients.
2 The actual SAL syntax is less readable but equivalent.

116 B. Dutertre et al.

For a process i, n[i] denotes the number of messages received by i, and p[i]
is a permutation of the indices in {1, . . . , N} that enumerates the n received
values in increasing order. We specify these relations as shown in Fig. 1. This
essentially states the post-condition of the sorting algorithm we need. The input
is an array v of N values and an array m of Boolean flags; where m[i] true means
that v[i] is missing. The output includes a variable n that counts the number of
non-missing elements, and a permutation p that sorts the non-missing elements
in increasing order. From p, n, and v, we can easily define the mid-value select.

Fig. 1. Sorting and filter predicate

The final step is to specify the convergence property. The values v[i]s are
initially within some distance Δ of each other and get closer and closer with
each protocol round. Because of the communication error, the best bound one can
achieve is 2ε. The protocol converges towards this bound at an exponential rate.
A more precise specification is shown in Fig. 2. We add a state variable delta
to our state-transition system to store the bound. The variable is initialized to
an arbitrary bound larger than 2ε, then it is updated with every protocol round
as shown in the figure. Our goal is to show that the convergence property is
invariant: the difference between v[i] and v[j] is bounded by delta.

Fig. 2. Convergence and approximate agreement property

3.2 Verification Results

We have analyzed the approximate agreement protocol under four scenarios,
and for different values of N . Each scenario makes different fault assumptions:

Verification of Fault-Tolerant Protocols with Sally 117

no faults (Scenario 0); one symmetric transmissive and one asymmetric omissive
faults (Scenario 1); one asymmetric transmissive and one asymmetric omissive
faults (Scenario 2); and one asymmetric transmissive, one asymmetric omissive,
and one symmetric omissive faults (Scenario 3). The results are summarized
in Table 1. The left part shows the results and runtime of Sally’s k-induction
engine. The right-hand side shows results and runtimes of Sally’s PD-KIND.
The k-induction engine iteratively tries k-induction for k from 1 to 10.

Table 1. Analysis results. Each entry reports the result and runtime of an experiment.
v means valid (the property was proved), i means invalid (a counterexample was pro-
duced), u means unknown (k-induction was inconclusive), t means timeout. Runtimes
are CPU time in seconds. The timeout is 5000 s.

The convergence property is not k-inductive, so k-induction cannot prove it.
On the other hand, for instances where the property does not hold, then the
K-induction engine finds a counterexample very quickly. PD-KIND works much
better. On all instances where the property holds, it can automatically prove it.
On all instances where the property is false, it can find a counterexample. The
verification cost tends to be higher with more complex fault models. Because
the algorithm is quite complex, scalability is an issue. The runtime grows very
quickly as N increases, both for the PD-KIND and k-induction engines. We
believe the complexity of the averaging function is the main bottleneck for this
example.

We have verified simpler fault-tolerant algorithm such as OM1, which uses
majority voting. Our formalization is based on the Boyer-Moore algorithm [3].
Table 2 shows runtimes for a variant of OM1 that uses N processes and M relays.
We used Sally to prove the two classic properties of OM1—agreement (P1) and
validity (P2)—in a scenario with one Byzantine-faulty relay. It turns out that
both properties are k-inductive. As shown in the table, the k-induction engine
proves the properties in a few seconds at most. PD-KIND also works for these
examples, but it is much slower. For example, proving agreement for N = 5 and
M = 20 takes about 4 sec for k-induction and more than 20 min for PD-KIND.

4 Related Work

Developing correct distributed algorithms is notoriously hard; making sure that
these algorithms tolerate failures is even harder. Since the 1980s, formal methods

118 B. Dutertre et al.

Table 2. Runtimes on variants of the OM1 protocol (seconds of CPU time).

M

N 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 3 0.04 0.05 0.06 0.08 0.09 0.11 0.21 0.18 0.24 0.32 0.46 0.43 0.53 0.85 0.85 0.91

4 0.06 0.08 0.13 0.16 0.21 0.22 0.30 0.41 0.56 0.61 0.74 0.67 1.04 0.94 1.47 1.66

5 0.09 0.15 0.21 0.27 0.37 0.54 0.79 0.77 0.86 1.11 1.08 1.31 1.87 2.55 3.11 3.36

P2 3 0.03 0.04 0.06 0.08 0.11 0.13 0.14 0.18 0.30 0.36 0.44 0.48 0.59 0.85 0.94 1.04

4 0.06 0.10 0.13 0.16 0.30 0.28 0.40 0.35 0.47 0.78 1.02 0.83 1.02 1.17 1.77 1.61

5 0.09 0.13 0.20 0.38 0.37 0.47 0.49 0.70 0.88 1.20 1.14 1.65 2.02 2.28 2.73 3.38

have been used to precisely model and mathematically prove the correctness of
such fault-tolerant algorithms. Most of this work use interactive theorem provers
(e.g., [15,17,18,21]). More recently, Padon et al. use a semi-automated proof
method based encoding protocol rules into a decidable logic [19].

Model checking using abstraction technique has also been applied to this
domain. Konnov and his colleagues show how a threshold-based algorithms can
be modeled using counter systems, and develop verification algorithms for these
systems [11,14]. An earlier example by Fisman et al. [9] uses another abstraction
technique and applies regular model checking [2]. These abstraction methods
are limited to special classes of protocols. The type of algorithms that we have
presented manipulate numerical data and rely on non-trivial computation, and
do not belong to these classes. When abstractions are not applicable, proofs using
k-induction are possible but such proofs can be difficult, and require expertise
to identify key auxiliary invariants.

5 Conclusion

Until recently, automated verification of complex fault-tolerant algorithms was
impossible. One either had to resort to interactive theorem proving—which
is slow and requires expertise—or rely on semi-automated method such as k-
induction. New model-checking algorithms based on IC3/PDR have changed
the picture; it is now feasible to verify a rich class of fault-tolerant protocols in
a fully automated manner. Remaining challenges include improving scalability
of these methods and extending them to richer logical theories.

References

1. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-LIB standard: Version 2.0
2. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:

Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 31

3. Boyer, R.S., Moore, J.S.: MJRTY-a fast majority vote algorithm. In: Boyer, R.S.
(ed.) Automated Reasoning: Essays in Honor of Woody Blesdoe, vol. 1, pp. 105–
117. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3488-0 5

https://doi.org/10.1007/10722167_31
https://doi.org/10.1007/978-94-011-3488-0_5

Verification of Fault-Tolerant Protocols with Sally 119

4. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

5. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

6. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 45

7. de Moura, L., Owre, S., Shankar, N.: The SAL language manual. Technical Report
SRI-CSL-01-02, Computer Science Laboratory, SRI International (2003)

8. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

9. Fisman, D., Kupferman, O., Lustig, Y.: On verifying fault tolerance of distributed
protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 315–331. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78800-3 22

10. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

11. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp.
201–209 (2013)

12. Jovanović, D., Dutertre, B.: Property-directed k-induction. In: FMCAD, pp. 85–92
(2016)

13. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

14. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction: param-
eterized model checking of threshold-based distributed algorithms. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 6

15. Lincoln, P., Rushby, J.: Formal verification of an interactive consistency algorithm
for the Draper FTP architecture under a hybrid fault model. In: COMPASS, pp.
107–120 (1994)

16. Miner, P., Geser, A., Pike, L., Maddalon, J.: A unified fault-tolerance protocol. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
167–182. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 13

17. Miner, P.S.: Verification of fault-tolerant clock synchronization systems. NASA
Technical Paper 3349 (1993)

18. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-
tolerant architectures: prolegomena to the design of PVS. IEEE Trans. Softw.
Eng. 21(2), 107–125 (1995)

19. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reasoning
about distributed protocols. In: OOPSLA, vol. 1, pp. 108:1–108:31 (2017)

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-540-27813-9_45
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-540-78800-3_22
https://doi.org/10.1007/978-3-540-78800-3_22
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-319-21690-4_6
https://doi.org/10.1007/978-3-540-30206-3_13
https://doi.org/10.1007/978-3-540-30206-3_13

120 B. Dutertre et al.

20. Pike, L., Maddalon, J., Miner, P., Geser, A.: Abstractions for fault-tolerant dis-
tributed system verification. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds.)
TPHOLs 2004. LNCS, vol. 3223, pp. 257–270. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30142-4 19

21. Wilcox, J.R., Woos, D., Pancheckha, P., Tatlock, Z., Wang, X., Ernst, M.D., Ander-
son, T.: Verdi: a framework for implementing and formally verifying distributed
systems. In: PLDI, pp. 357–368 (2015)

https://doi.org/10.1007/978-3-540-30142-4_19
https://doi.org/10.1007/978-3-540-30142-4_19

Output Range Analysis for Deep
Feedforward Neural Networks

Souradeep Dutta1 , Susmit Jha2 , Sriram Sankaranarayanan1(B) ,
and Ashish Tiwari2

1 University of Colorado, Boulder, USA
{souradeep.dutta,sriram.sankaranarayanan}@colorado.edu

2 SRI International, Menlo Park, USA
{susmit.jha,tiwari}@csl.sri.com

Abstract. Given a neural network (NN) and a set of possible inputs to
the network described by polyhedral constraints, we aim to compute a
safe over-approximation of the set of possible output values. This oper-
ation is a fundamental primitive enabling the formal analysis of neu-
ral networks that are extensively used in a variety of machine learning
tasks such as perception and control of autonomous systems. Increas-
ingly, they are deployed in high-assurance applications, leading to a
compelling use case for formal verification approaches. In this paper,
we present an efficient range estimation algorithm that iterates between
an expensive global combinatorial search using mixed-integer linear pro-
gramming problems, and a relatively inexpensive local optimization that
repeatedly seeks a local optimum of the function represented by the NN.
We implement our approach and compare it with Reluplex, a recently
proposed solver for deep neural networks. We demonstrate applications
of our approach to computing flowpipes for neural network-based feed-
back controllers. We show that the use of local search in conjunction
with mixed-integer linear programming solvers effectively reduces the
combinatorial search over possible combinations of active neurons in the
network by pruning away suboptimal nodes.

1 Introduction

Deep neural networks have emerged as a versatile and popular representation
for machine learning models. This is due to their ability to approximate com-
plex functions, as well as the availability of efficient methods for learning these
from large data sets. The black box nature of NN models and the absence of
effective methods for their analysis has confined their use in systems with low
integrity requirements. However, more recently, deep NNs are also being adopted
in high-assurance systems, such as automated control and perception pipeline of
autonomous vehicles [13] or aircraft collision avoidance [12]. While traditional
system design approaches include rigorous system verification and analysis tech-
niques to ensure the correctness of systems deployed in safety-critical applica-
tions [1], the inclusion of complex machine learning models in the form of deep
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 121–138, 2018.
https://doi.org/10.1007/978-3-319-77935-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_9&domain=pdf
http://orcid.org/0000-0003-2706-2095
http://orcid.org/0000-0001-5983-9095
http://orcid.org/0000-0001-7315-4340
http://orcid.org/0000-0002-5153-2686

122 S. Dutta et al.

NNs has created a new challenge to verify these models. In this paper, we focus
on the range estimation problem, wherein, given a neural network N and a poly-
hedron φ(x) representing a set of inputs to the network, we wish to estimate
a range, denoted as range(li, φ), for each of the network’s output li that sub-
sumes all possible outputs and is tight within a given tolerance δ. We restrict
our attention to feedforward deep NNs. While we focus on NNs that use rectified
linear units (ReLUs) [17] as activation functions, we also discuss extensions to
other activation functions through piecewise linear approximations.

Our approach is based on augmenting a mixed-integer linear programming
(MILP) solver. First of all, we use a sound piecewise linearization of the nonlinear
activation function to define an encoding of the neural network semantics into
mixed-integer constraints involving real-valued variables and binary variables
that arise from the (piecewise) linearized activation functions. The encoding
into MILP is a standard approach to handling piecewise linear functions [28]. As
such, the input constraints φ(x) are added to the MILP and next, the output
variable is separately maximized and minimized to infer a range. Our approach
combines the MILP solver with a local search that exploits the local continu-
ity and differentiability properties of the function represented by the network.
These properties are not implicit in the MILP encoding that typically relies on
a branch-and-cut approach to solve the problem at hand. On the other hand,
local search alone may get “stuck” in local minima. Our approach handles local
minima by using the MILP solver to search for a solution that is “better” than
the current local minimum or conclude that no such solution exists. Thus, by
alternating between inexpensive local search iterations and relatively expensive
MILP solver calls, we seek an approach that can exploit local properties of the
neural network function but at the same time avoid the problem of local minima.

The range estimation problem has several applications. For instance, a safety
focused application of the range estimation problem arises when we have deep
neural networks implementing a controller. In this case, the range estimation
problem enables us to prove bounds on the output of the NN controller. This
is important because out-of-bounds outputs can drive the physical system into
undesirable configurations, such as the locking of robotic arm, or command a
car’s throttle beyond its rated limits. Finding these errors through verification
will enable design-time detection of potential failures instead of relying on run-
time monitoring which can have significant overhead and also may not allow
graceful recovery. Additionally, range analysis can be useful in proving the safety
of a closed loop system by integrating the action of a neural network controller
with that of a plant model. In this paper, we focus on the application of range
estimation problem to proving safety of several neural network plant models
along with neural network feedback controllers. Other applications include prov-
ing the robustness of classifiers by showing that all possible input perturbations
within some range do not change the output classification of the network.

Related Work. The importance of analytical certification methods for neu-
ral networks has been well-recognized in literature. Neural networks have been

Output Range Analysis for Deep Feedforward Neural Networks 123

observed to be very sensitive to slight perturbations in their inputs producing
incorrect outputs [21,26]. This creates a pressing need for techniques to provide
formal guarantees on the neural networks. The verification of neural networks is
a hard problem, and even proving simple properties about them is known to be
NP-complete [14]. The complexity of verifying neural networks arises primarily
from two sources: the nonlinear activation functions used in the network as ele-
mentary neural units and the structural complexity that can be measured using
depth and size of the network. Kurd [16] presented one of the first categorization
of verification goals for NNs used in safety-critical applications. The proposed
approach here targets a subset of these goals, G4 and G5, which aim at ensuring
robustness of NNs to disturbances in inputs, and ensuring the output of NNs
are not hazardous.

Recently, there has been a surge of interest in formal verification tools
for neural networks [8,10,14,18,22,23,25,30,31]. A detailed discussion of these
approaches to neural networks with piecewise linear activation functions, and
empirical evaluations over benchmark networks has been carried out by Bunel
et al. [5]. Our approach relies on a piecewise linearization of the nonlinear acti-
vation function. This idea has been studied in the past, notably by Pulina
et al. [22,23]. The key differences include: (a) our approach do not perform a
refinement operation. As such, no refinement is needed for networks with piece-
wise linear activation functions, since the activation functions are encoded pre-
cisely. For other kinds of functions such as sigmoid or tanh, a refinement may
be needed to improve the inferred ranges, but is not considered in our work.
(b) We do not rely on existing Satisfiability-Modulo Theory (SMT) solvers [2].
Instead, our approach uses a mixed-integer linear programming (MILP) solver
in combination with a local search. Recently, Lomuscio and Maganti present an
approach that encodes neural networks into MILP constraints [18]. A similar
encoding is also presented by Tjeng and Tedrake [27] for verifying robustness
of neural network classifiers under a class of perturbations. These encodings are
similar to ours. The optimization problems are solved directly using an off-the-
shelf MILP solver [4,28]. Additionally, our approach augments the MILP solver
with a local search scheme. We note that the use of local search can potentially
speed up our approach, since neural networks represent continuous, piecewise-
differentiable functions. On the flip side, these functions may have a large number
of local minima/maxima. Nevertheless, depending on the network, the function
it approximates and the input range, the local search used in conjunction with
a MILP solver can yield rapid improvements to the objective function.

Augmenting existing LP solvers has been at the center of two recent
approaches to the problem. The Reluplex approach by Katz et al. focuses on
ReLU feed-forward networks [14]. Their work augments the Simplex algorithm
with special functions and rules that handle the constraints involving ReLU
activation functions. The linear programming used for comparison in Reluplex
performs significantly less efficiently according to the experiments reported in
this paper [14]. Note, however, that the scenarios used by Katz et al. are different
from those studied here, and were not publicly available for comparison at the

124 S. Dutta et al.

time of writing. Ehlers augments a LP solver with a SAT solver that maintains
partial assignments to decide the linear region for each individual neuron. The
solver is instantiated using facts inferred from a convexification of the activa-
tion function [8], much in the style of conflict clauses and lemmas used by SAT
solvers. In fact, many ideas used by Ehlers can be potentially used to comple-
ment our approach in the form of cuts that are specific to neural networks. Such
specialized cuts are very commonly used in MILP solvers.

A related goal of finding adversarial inputs for deep NNs has received a lot of
attention, and can be viewed as a testing approach to NNs instead of verification
method discussed in this paper. A linear programming based approach for finding
adversarial inputs is presented in [3]. A related approach for finding adversarial
inputs using SMT solvers that relies on a layer-by-layer analysis is presented in
[10]. Simulation-based approaches [30] for neural network verification have also
been proposed in literature. This relies on turning the reachable set estimation
problem into a neural network maximal sensitivity computation, and solving it
using a sequence of convex optimization problems. In contrast, our proposed
approach combines numerical gradient-based optimization with mixed-integer
linear programming for more efficient verification.

Contributions. We present a novel algorithm for propagating convex polyhe-
dral inputs through a feedforward deep neural network with ReLU activation
units to establish ranges for the outputs of the network. We have implemented
our approach in a tool called sherlock [6]. We compare sherlock with a
recently proposed deep NN verification engine - Reluplex [14]. We demonstrate
the application of sherlock to establish output range of deep NN controllers.
Our approach seems to scale consistently to neural networks having 100 neurons
to as many as over 6000 neurons.

2 Preliminaries

We present the preliminary notions including deep neural networks, polyhedra,
and mixed integer linear programs.

We will study feed forward neural networks (NN) throughout this paper
with n > 0 inputs and m > 0 outputs. For simplicity, we will present our
techniques primarily for the single output case (m = 1), explaining how they
can be extended to networks with multiple outputs.

Let x ∈ R
n denote the inputs and y ∈ R be the output of the network.

Structurally, a NN N consists of k > 0 hidden layers, wherein we assume that
each layer has the same number of neurons N > 0. We use Nij to denote the jth

neuron of the ith layer for j ∈ {1, . . . , N} and i ∈ {1, . . . , k}.

Definition 1 (Neural Network). A k layer neural network with N neurons
per hidden layer is described by matrices: (W0,b0), . . . , (Wk−1,bk−1), (Wk,bk),
wherein (a) W0,b0 are N×n and N×1 matrices denoting the weights connecting
the inputs to the first hidden layer, (b) Wi,bi for i ∈ [1, k − 1] connect layer i
to layer i + 1 and (c) Wk,bk connect the last layer k to the output.

Output Range Analysis for Deep Feedforward Neural Networks 125

Each neuron is defined using its activation function σ linking its input value
to the output value. Although this can be any function, there are a few common
activation functions:

1. ReLU: The ReLU unit is defined by the activation function σ(z) : max(z, 0).
2. Sigmoid: The sigmoid unit is defined by the activation function σ(z) : 1

1+e−z .
3. Tanh: The activation function for this unit is σ(z) : tanh(z).

x

(x)

-9 -6 -3 0 3 6 9
-1

1
tanh(z)

sigmoid(z)

ReLU(z)

Fig. 1. Activation functions commonly used in neural networks.

Figure 1 shows these functions graphically. We will assume that all the neu-
rons of the network N have the same activation function σ. Furthermore, we
assume that σ is a continuous function and differentiable almost everywhere.

Given a neural network N as described above, the function F : Rn → R

computed by the neural network is given by the composition F := Fk ◦ · · · ◦ F0

wherein Fi(z) : σ(Wiz + bi) is the function computed by the ith hidden layer,
F0 the function linking the inputs to the first layer, and Fk linking the last layer
to the output.

For a fixed input x, it is easily seen that the function F computed by a
NN N is continuous and nonlinear, due to the activation function σ. For the
case of neural networks with ReLU units, this function is piecewise affine, and
differentiable almost everywhere in R

n. For smooth activation functions such as
tanh and sigmoid, the function is differentiable as well. If it exists, we denote
the gradient of this function ∇F : (∂x1F, . . . , ∂xn

F). Computing the gradient
can be performed efficiently (as described subsequently).

2.1 Mixed Integer Linear Programs

Throughout this paper, we will formulate linear optimization problems with inte-
ger variables. We briefly recall these optimization problems, their computational
complexity and solution techniques used in practice.

Definition 2 (Mixed Integer Program). A mixed integer linear program
(MILP) involves a set of real-valued variables x and integer valued variables w
of the following form:

126 S. Dutta et al.

max aTx + bTw
s.t. Ax + Bw ≤ c

x ∈ R
n, w ∈ Z

m

The problem is called a linear program (LP) if there are no integer variables
w. The special case wherein w ∈ {0, 1}m is called a binary MILP. Finally, the
case without an explicit objective function is called an MILP feasibility problem.

It is well known that MILPs are NP-hard problems: the best known algo-
rithms, thus far, have exponential time worst case complexity. We will later
briefly review the popular branch-and-cut class of algorithms for solving MILPs
at a high level. These algorithms along with the associated heuristics underlie
highly successful, commercial MILP solvers such as Gurobi [9] and CPLEX [11].

3 Problem Definition and MILP Encoding

Let N be a neural network with inputs x ∈ R
n, output y ∈ R and weights

(W0,b0), . . ., (Wk,bk), activation function σ for each neuron unit, defining the
function FN : Rn → R.

Definition 3 (Range Estimation Problem). The problem is defined as fol-
lows:

– Inputs: Neural network N , and input constraints P : Ax ≤ b that is com-
pact: i.e., closed and bounded in R

n. A tolerance parameter is a real number
δ > 0.

– Output: An interval [�, u] such that (∀ x ∈ P) FN (x) ∈ [�, u]. I.e., [�, u]
contains the range of FN over inputs x ∈ P . Furthermore, the interval is
δ-tight:

u − δ ≤ max
x∈P

FN (x) and � + δ ≥ min
x∈P

FN (x).

Without loss of generality, we will focus on estimating the upper bound u.
The case for the lower bound will be entirely analogous.

3.1 MILP Encoding

We will first describe the MILP encoding when σ is defined by a ReLU unit. The
treatment of more general activation functions will be described subsequently.
The real-valued variables of the MILP are as follows:

1. x ∈ R
n: the inputs to the network with n variables.

2. z1, . . . , zk−1, the outputs of the hidden layer. Each zi ∈ R
N .

3. y ∈ R: the overall output of the network.

Additionally, we introduce binary (0/1) variables t1, . . . , tk−1, wherein each
vector ti ∈ Z

N (the same size as zi). These variables will be used to model the
piecewise behavior of the ReLU units.

Output Range Analysis for Deep Feedforward Neural Networks 127

Next, we encode the constraints. The first set of constraints ensure that
x ∈ P . Suppose P is defined as Ax ≤ b then we simply add the constraints
C0 : Ax ≤ b.

For each hidden layer i, we require that zi+1 = σ(Wizi + bi). Since σ is not
linear, we use the binary variables ti+1 to encode the same behavior:

Ci+1 :

⎧
⎪⎪⎨

⎪⎪⎩

zi+1 ≥ Wizi + bi,
zi+1 ≤ Wizi + bi + Mti+1,
zi+1 ≥ 0,
zi+1 ≤ M(1 − ti+1)

Note that for the first hidden layer, we simply substitute x for z0. This
trick of using binary variables to encode piecewise linear function is standard
in optimization [28, Chap. 22.4] [29, Chap. 9]. Here M needs to be larger than
the maximum possible output at any node. We can derive fast estimates for M
through interval analysis by using the norms ||Wi||∞ and the bounding box of
the input polyhedron.

The output y is constrained as: Ck+1 : y = Wkzk + bk.
The MILP, obtained by combining these constraints, is of the form:

max y s.t. constraints C0, . . . , Ck+1(see above)
x, z1, . . . , zk, y ∈ R

kN+n+1

t1, . . . , tk−1 ∈ Z
(k−1)N

(3.1)

Theorem 1. The MILP encoding in (3.1) is always feasible and bounded. Its
optimal solution u∗ corresponds to an input to the network x∗ ∈ P such that
y = FN (x) = u∗. Furthermore, for all x ∈ P , FN (x) ≤ u∗.

Encoding Other Activation Functions: We will now describe the encoding for
more general activation functions including tanh and sigmoid functions. Unlike
a ReLU unit, that is described by a two piecewise linear function, approximat-
ing these functions may require three or more linear “pieces”. Furthermore, we
would like our approximation to include an error estimate that bounds away the
differences between the original function and its piecewise approximation.

We will encode the constraint y = σ(x) for a single neuron with x ∈
[−Mx,Mx]. The activation function y : σ(x) is approximated by a piecewise
linear function:

ŷ :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a0x + b0 + [−ε0, ε0] −Mx ≤ x ≤ x1

· · · · · ·
aix + bi + [−εi, εi] xi ≤ x ≤ xi+1

· · · · · ·
akx + bk + [−εk, εk] xk ≤ x ≤ Mx

x

σ(x)

-4 -2 0 2 4

128 S. Dutta et al.

Also, the output y is bounded inside the range [−My,My]. This bound is
inferred by bounding σ(x) over inputs [−Mx,Mx]. The bound Mx is estimated
conservatively for a given network through interval analysis.

To encode the constraint y = σ(x) as an MILP, we now introduce binary
variables t0, . . . , tk ∈ {0, 1}k+1, wherein ti = 1 encodes the case when xi ≤ x ≤
xi+1. For convenience, set x0 = −Mx and xk+1 = Mx.

We encode that at most one of the cases can apply for any given x.

t0 + · · · + tk = 1

Next, ti = 1 must imply xi ≤ x ≤ xi+1:

xi − 2(1 − ti)Mx ≤ x ≤ xi+1 + 2(1 − ti)Mx

Thus, if ti = 1 then the bounds are simply xi ≤ x ≤ xi+1. For ti = 0, we get
xi − 2Mx ≤ x ≤ xi+1 + 2Mx, which follows from −Mx ≤ x ≤ Mx.

The output y is related to the inputs as

aix + bi − εi − 2(1 − ti)My ≤ y ≤ aix + bi + εi + 2(1 − ti)My.

Given the encoding for a single unit, we can now write down constraints for
encoding an entire neural network with these activation units as an MILP, as
shown earlier for ReLU units.

Solving Monolithic MILP (Branch-and-Cut Algorithm): Once the MILP is for-
mulated, the overall problem can be handed off to a generic MILP solver, which
yields an optimal solution. Most high performance MILP solvers are based on a
branch-and-cut approach that will be briefly described here [20].

100

80 98

77 68 87

75 75 85

70 73 65 80

branch

branch

cut

branch

cut

branch

cut branch

Fig. 2. A tree representation of a
branch-and-cut solver execution: each
node shows the optimal value of the LP
relaxation, if feasible. The leaves are
color coded as yellow: infeasible, blue:
feasible solution for MILP found, red:
suboptimal to already discovered feasi-
ble solution. (Color figure online)

First, the approach solves the LP
relaxation of the problem in (3.1) by
temporarily treating the binary variables
t1, . . . , tk as real-valued. The optimal
solution of the relaxation is an upper
bound to that of the original MILP. The
two solutions are equal if the LP solver
yields binary values for t1, . . . , tk. How-
ever, failing this, the algorithm has two
choices to eliminate the invalid fractional
solution:

(a) Choose a fractional variable ti,j ,
and branch into two subproblems by
adding the constraint ti,j = 0 to one
problem, and ti,j = 1 to the other.

(b) Add some valid inequalities (cutting
planes) that remove the current frac-
tional solutions but preserve all inte-
ger solutions to the problem.

Output Range Analysis for Deep Feedforward Neural Networks 129

In effect, the overall execution of a branch-and-cut solver resembles a tree.
Each node represents an MILP instance with the root being the original instance.
Figure 2 depicts such a tree visually providing some representative values for the
solution of the LP relaxation at each node. The leaves may represent many
possibilities:

1. The LP relaxation yields an integral solution. In this case, we use this solution
to potentially update the best solution encountered thus far, denoted zmax.
The leaves colored blue in Fig. 2 depict such nodes.

2. The LP relaxation is infeasible, eg., the yellow leaf in Fig. 2.
3. The LP relaxation’s objective is less than or equal to zmax, the best feasible

solution seen thus far. The leaves colored red in Fig. 2 depict this possibility.

Therefore, the key to solving MILPs fast lies in discovering feasible MILP
solutions, early on, whose objective function values are as large as possible. In
the subsequent section, we will describe how a local search procedure can be
used to improve feasible solutions found by the solver (blue leaves in Fig. 2).

4 Combining MILP Solvers with Local Search

In this section, we will describe how local search can be used alongside an MILP
solver to yield a more efficient solver for the range estimation problem. The key
idea is to use local search on a connected subspace of the search space to improve
any solution found by the global non-convex optimizer (MILP in our case).

4.1 Overall Approach

The overall approach is shown in Algorithm1. It consists of two major compo-
nents: A local search represented by the call to LocalSearch in line 7 and the
call to SolveMILPUptoThreshold in line 9.

Local search uses gradient ascent over the neural network, starting from the
current input x ∈ P with u : FN (x) to yield a new input x̂ with û : FN (x̂), such
that û ≥ u.

The MILP solver works over the MILP encoding (3.1), formulated in line 4.
However, instead of solving the entire problem in one shot, the solver is provided
a target threshold u as input. It searches for a feasible solution whose objective
is at least u, and stops as soon as it finds one. Otherwise, it declares that no
such solution is possible.

Packages such as Gurobi support such a functionality using the branch-and-
cut solver by incrementally maintaining the current search tree. When called
upon to find a solution that exceeds a given threshold, the solver performs suf-
ficiently many steps of the branch-and-cut algorithm to either find a feasible
solution that is above the requested threshold, or solve the problem to comple-
tion without finding such a solution. The approach shown in Algorithm1 simply
alternates between the local solver (line 7) and the MILP solver (line 9), while
incrementing the current threshold by δ, the tolerance parameter (line 8). We

130 S. Dutta et al.

Algorithm 1. Maximum value u for a neural network N over x ∈ P with
tolerance δ > 0.
1: procedure FindUpperBound(N , P , δ)
2: x ← Sample(P) � Sample an input at random
3: u ← EvalNetwork(N ,x)
4: I ← FormulateMILPEncoding(N , P) � See (3.1)
5: terminate ← false
6: while not terminate do
7: (x̂, û) ← LocalSearch(N , x, P) � Note: û = FN (x̂)
8: u ← û + δ
9: (x′, u′, feas) ← SolveMILPUptoThreshold(I, u) � Note: If feas then

u′ = FN (x′).
10: if feas then
11: (x, u) ← (x′, u′)
12: else
13: terminate ← true
14: return u � return the upper bound u.

assume that the procedures LocalSearch and SolveMILPUptoThreshold
satisfy the following properties:

– (P1) Given x ∈ P , LocalSearch returns x̂ ∈ P such that FN (x̂) ≥ FN (x).
– (P2) Given the encoding I and the threshold u, the SolveMILPUp-

toThreshold procedure either declares feasible along with x′ ∈ P such
that u′ = FN (x′) ≥ u, or declares not feasible if no x′ ∈ P satisfies
FN (x′) ≥ u.

We recall the basic assumptions thus far: (a) P is compact, (b) δ > 0 and (c)
properties P1, P2 apply to the LocalSearch and SolveMILPUptoThresh-
old procedures. Let us denote the ideal upper bound by u∗ : maxx∈P FN (x).

Theorem 2. Algorithm1 always terminates. Furthermore, the output u satisfies
u ≥ u∗ and u ≤ u∗ + δ.

Proof. Since P is compact and FN is a continuous function. Therefore, the max-
imum u∗ is always attained for some x∗ ∈ P .

The value of u increases by at least δ each time we execute the loop body
of the While loop in line 6. Furthermore, letting u0 be the value of u attained
by the sample obtained in line 2, we can upper bound the number of steps by⌈
(u∗−u0)

δ

⌉
. This proves termination.

We note that the procedure terminates only if SolveMILPUptoThreshold
returns infeasible. Therefore, appealing to property P2, we note that (∀ x ∈
P) FN (x) ≤ u. Or in other words, u∗ ≤ u.

Let un denote the value û returned by LocalSearch in the final iteration of
the loop and let the corresponding input be xn, so that FN (xn) = un. We have
un ≤ u∗ ≤ u. However, un = u − δ. Therefore, u ≤ u∗ + δ.

Output Range Analysis for Deep Feedforward Neural Networks 131

4.2 Local Search Improvement

The local search uses a gradient ascent algorithm, starting from an input point
x0 ∈ P and u = FN (x0), iterating through a sequence of points (x0, u0), . . .,
(xn, un), such that xi ∈ P and u0 < · · · < un. The new iterate xi+1 is obtained
from xi, in general, as follows:

1. Compute the gradient pi : ∇FN (xi).
2. Find a new point xi+1 := xi + sipi for a step size si > 0.

Gradient Calculation: Technically, the gradient of FN (x) need not exist for each
input x if σ is a ReLU function. However, this happens for a set of points of
measure 0, and is dealt with by using a smoothed version of the function σ
defining the ReLU units.

The computation of the gradient uses the chain rule to obtain the gradient as
a product of matrices: p : J0 ×J1 ×· · ·×Jk, wherein Ji represents the Jacobian
matrix of partial derivatives of the output of the (i+1)th layer zi+1 with respect
to those of the ith layer zi. Since zi+1 = σ(Wizi + bi) we can compute the
gradient Ji using the chain rule. In practice, the gradient calculation can be
piggybacked with function evaluation FN (x) so that function evaluation returns
both the output u and the gradient ∇FN (x).

Step Size Calculation: First order optimization approaches present numerous
rules such as the Armijo step sizing rules for calculating the step size [19]. Using
these rules, we can use an off-the-shelf solver to compute a local maximum of FN .

Locally Active Regions: Rather than perform steps using a step-sizing rule, we
can perform longer steps for the special case of piecewise linear activation func-
tions by defining a locally active region for the input x. For the remainder of the
discussion, we assume that σ is a piecewise linear function.

We first describe the concept for a ReLU unit A ReLU unit is active if its
input x ≥ 0, and inactive otherwise.

Definition 4 (Locally Active Region (ReLU)). For an input x to the neu-
ral network N , the locally active region L (x) describes the set of all inputs x′

such that x′ activates exactly the same ReLU units as x.

The concept of locally active region can be generalized to any piecewise linear
function σ that has J > 0 pieces, say X1, . . . , XJ , where

⋃
i Xi is the input space

and σ is linear on the input subspace Xi. For such a piecewise linear function σ,
the locally active region corresponding to an input x, L (x), is the set Xi such
that x ∈ Xi.

Given the definition of a locally active region, we obtain the following prop-
erty for piecewise linear activation functions.

Lemma 1. For all x′ ∈ L (x), we have ∇FN (x) = ∇FN (x′). Furthermore, for
a ReLU neural net, the region L (x) is described by a polyhedron with possibly
strict inequality constraints.

132 S. Dutta et al.

Let L (xi) denote the closure of the local active set obtained by converting
the strict constraints (with >) to their non-strict versions (with ≥). Therefore,
the local maximum is simply obtained by solving the following LP.

max pT
i x s.t. x ∈ L (xi) ∩ P,where pi : ∇FN (xi).

The solution of the LP above (xi+1) yields the next iterate for local search. Note
that this solution xi+1 will typically be at the boundary of L (xi). We randomly
perturb this solution (or small numerical errors in the solver achieve the same
effect) so that ∇FN (xi+1)
= ∇FN (xi).

Termination: The local search is terminated when each step no longer provides
a sufficient increase, or alternatively the length of each step is deemed too small.
These are controlled by user specified thresholds in practice. Another termina-
tion criterion simply stops the local search when a preset maximum number of
iterations is exceeded. In our implementation, all three criteria are used.

Lemma 2. Given a starting input x0 ∈ P , the LocalSearch procedure returns
a new x′ ∈ P , such that FN (x′) ≥ FN (x).

Analysis: For a given neural network N and its corresponding MILP instance I,
let us compare the number of nodes N1 explored by a monolithic solution to the
MILP instance with the total number of nodes N2 explored collectively by the
calls to the SolveMILPUptoThreshold routine in Algorithm1. Additionally,
let Kl denote the number of LocalSearch calls made by this algorithm. We
expect each call to the local search to provide an improved feasible solution to
the MILP solver, enabling it to potentially prune more nodes during its search.
Therefore, the addition of local search is advantageous whenever

N1Tlp > N2Tlp + KlTloc,

wherein Tlp is the average time taken to solve an LP relaxation (assumed to be
the same) and Tloc is the average time for a local search.

A precise analysis is complicated since the future heuristic choices made by
the solver can be different, due to the newly added local search iteration. Thus,
we resort to an empirical comparison of the original monolithic MILP versus the
solution procedure that uses the local search iterations.

5 Application: Reachability Analysis

Neural networks are increasingly used as models of physical dynamics and feed-
back control laws to achieve objectives such as safety, reachability and stabil-
ity [13]. However, doing so in a verified manner is a challenging problem. We
illustrate the computation reachable set over-approximations for such systems
over a finite time horizon in order to prove bounded time temporal properties.

Output Range Analysis for Deep Feedforward Neural Networks 133

x(j)0
N f x1 N f xk−1 N f xk

Nh Nh Nh
u0 u1 uk−1

Fig. 3. Unwinding of the closed loop model with plant Nf and controller Nh, used to
estimate reachable sets.

Figure 3 shows the unwinding of the plant network Nf and the controller Nh,
for N > 0 steps. Estimating an over-approximation of the reachable state xN at
time N reduces to solving an output range analysis problem over the unwound
network.

We trained a NN to control a nonlinear plant model (Example 17 from [24])
whose dynamics are describe by the ODE: ẋ = −x3 + y, ẏ = y3 + z, ż = u.
We approximated the discrete time dynamics of the non linear system using a 4
input, 3 output neural network with 1 hidden layers having 300 neurons. This
approximation ensures that unwinding, as shown in Fig. 3, results in a neural
network.

Next, we devise a model predictive control (MPC) scheme to stabilize this
system to the origin, and train the NN by sampling inputs from the state space

Fig. 4. Evolution of reach sets for the neural network feedback system.

134 S. Dutta et al.

X : [−0.5, 0.5]3 and using the MPC to provide the corresponding control. We
trained a 3 input, 1 output network, with 5 hidden layers, with the first layer
having 100 neurons and the remaining 4 layers to saturate out the control output
range.

For illustrative purpose, we compute the reach sets starting from the initial
set, [0.3, 0.35] × [−0.35,−0.3] × [0.35, 0.4], and compute the evolution as shown
in Fig. 4. Note that, we stop the computation of reach sets once the sets are con-
tained within the target box given by: [−0.05, 0.05]×[−0.05, 0.05]×[−0.05, 0.05].
The reach sets have been superimposed on numerous concrete system
trajectories.

6 Experimental Evaluation

We have implemented the ideas described thus far in a C++-based tool called
sherlock. sherlock combines local search with the commercial parallel MILP
solver Gurobi, freely available for academic use [9]. Currently, our implementa-
tion supports neural networks with ReLU units. We hope to extend this to other
activation functions, as described in the paper.

An interval analysis was used to set the M parameter in the MILP encoding.
The tolerance parameter δ in Algorithm 1, was set to 5 × 10−2 for all the test
cases.

For comparison with Reluplex, we used the implementation available online
[15]. However, at its core, Reluplex solves a satisfiability problem that checks
if the output y lies inside a given range for constraints P over the inputs to
the network. To facilitate comparisons, we simply use Reluplex to check if the
output range computed by our approach is a valid over-approximation.

We consider a set of 16 microbenchmarks that consist of neural networks
obtained from two different sources discussed below.

1. Known Analytical Functions: We formulated four simple analytical functions
y = f(x) as shown in Fig. 5 controlling for the number of local minima seen
over the chosen input range for each function. We then trained a neural
network model based on input output samples (xi, f(xi))N

i=1 for each function.
The result yielded networks N0–N4 along with the input constraints.

2. Unwindings of closed loop systems: We formulated 12 examples that come
from the “unwinding” of a closed loop controller and plant models. The plant
models are obtained from our previous work on controller synthesis [24]. The
process of training the controller network is discussed elsewhere [7].

Table 1 summarizes the comparison of sherlock against a “monolithic”
MILP approach and the Reluplex solver. Since gurobi supports parallel branch-
and-bound as a default, we report on the comparison over multicore (23 parallel
cores) as well as single core deployments. Note that the comparison uses the
total CPU time rather than wall clock time.

sherlock on the multicore deployment is faster on all save one of the bench-
marks in terms of CPU time. However, comparing the number of nodes explored,

Output Range Analysis for Deep Feedforward Neural Networks 135

Fig. 5. Plots of the first 4 benchmark functions used to train the neural networks shown
in Table 1.

we observe that sherlock explores fewer nodes in just 7 out of the 16 cases. We
attribute this to the more complex nature of parallel branch-and-cut heuristics,
wherein parallel threads may explore more nodes than strictly necessary. For the
single core deployment, we note that the total CPU time is strongly correlated
with the number of nodes explored. Here, sherlock outperforms the monolithic
MILP on the six largest examples with over 1000 neurons (N10–N15) in terms
of time and number of nodes explored. For the smaller examples, the monolithic
solver outperforms our approach, but the running times remain small for both
approaches. For two of the networks, (N7 and N15), our starting sample followed
by a local search resulted in the global maximum, which was certified by the LP
relaxation. This leads to a node count of 1.

Comparing with Reluplex, we note that Reluplex was able to verify the bound
in 6 instances but at a larger time cost than sherlock or the monolithic MILP
approach. For 10 out of 16 instances, the solver terminates due to an internal
error.

136 S. Dutta et al.

Table 1. Performance results on networks trained on functions with known maxima
and minima. Legend: x number of inputs, k number of layers, N : total number of
neurons, T : CPU time taken, Nc: number of nodes explored. All the tests were run on
a Linux server running Ubuntu 17.04 with 24 cores, and 64 GB RAM (DNC: Did Not
Complete)

23 cores single core
SHERLOCK Monolithic SHERLOCK Monolithic Reluplex

ID x k N T Nc T Nc T Nc T Nc T
N0 2 1 100 1s 94 2.3s 24 0.4s 44 0.3s 25 9.0

N1 2 1 200 2.2s 166 3.6s 29 0.9s 71 0.8s 38 1m50s

N2 2 1 500 7.8s 961 12.6s 236 2s 138 2.9s 257 15m59s

N3 2 1 500 1.5s 189 0.5s 43 0.6s 95 0.2s 53 12m25s

N4 2 1 1000 3m52s 32E3 3m52s 3E3 1m20s 4.8E3 35.6s 5.3E3 1h06m

N5 3 7 425 4s 6 6.1s 2 1.7s 2 0.9s 2 DNC

N6 3 4 762 3m47s 3.3E3 4m41s 3.6E3 37.8s 685 56.4s 2.2E3 DNC

N7 4 7 731 3.7s 1 7.7s 2 3.9s 1 3.1s 2 1h35m

N8 3 8 478 6.5s 3 40.8s 2 3.6s 3 3.3s 2 DNC

N9 3 8 778 18.3s 114 1m11s 2 12.5s 12 4.3s 73 DNC

N10 3 26 2340 50m18s 4.6E4 1h26m 6E4 17m12s 2.4E4 18m58s 1.9E4 DNC

N11 3 9 1527 5m44s 450 55m12s 6.4E3 56.4s 483 130.7s 560 DNC

N12 3 14 2292 24m17s 1.8E3 3h46m 2.4E4 8m11s 2.3E3 1h01m 1.6E4 DNC

N13 3 19 3057 4h10m 2.2E4 61h08m 6.6E4 1h7m 1.5E4 15h1m 1.5E5 DNC

N14 3 24 3822 72h39m 8.4E4 111h35m 1.1E5 5h57m 3E4 timeout - DNC

N15 3 127 6845 2m51s 1 timeout - 3m27s 1 timeout - DNC

7 Conclusion

We presented a combination of local and global search for estimating the output
ranges of neural networks given constraints on the input. Our approach has
been implemented inside the tool sherlock and we compared our results with
those obtained using the solver Reluplex. We also demonstrated the application
of our approach to verification of NN-based control systems. Our approach can
potentially be applied to verify controllers learned by reinforcement learning
techniques.

Our main insight here is to supplement search over a nonconvex space by
using local search over known convex subspaces. This idea is generally applicable.
In this paper, we showed how this idea can be applied to range estimation of
neural networks. The convex subspaces are obtained by fixing the subset of active
neurons.

Output Range Analysis for Deep Feedforward Neural Networks 137

In the future, we wish to improve sherlock in many directions, including
the treatment of recurrent neural networks, handling activation functions beyond
ReLU units and providing faster alternatives to MILP for global search.

Acknowledgments. We gratefully acknowledge inputs from Sergio Mover and Marco
Gario for their helpful comments on an earlier version of this paper. This work was
funded in part by the US National Science Foundation (NSF) under award num-
bers CNS-1646556, CNS-1750009, CNS-1740079 and US ARL Cooperative Agreement
W911NF-17-2-0196. All opinions expressed are those of the authors and not necessarily
of the US NSF or ARL.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. Handb. Satisfiability 185, 825–885 (2009)

3. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., Criminisi, A.:
Measuring neural net robustness with constraints. In: Advances in Neural Infor-
mation Processing Systems, pp. 2613–2621 (2016)

4. Bixby, R.E.: A brief history of linear and mixed-integer programming computation.
Documenta Mathematica 107–121 (2012)

5. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Piecewise linear
neural network verification: a comparative study. CoRR, abs/1711.00455 (2017)

6. Dutta, S.: Sherlock: an output range analysis tool for neural networks. https://
github.com/souradeep-111/sherlock

7. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Verified inference of feedback
control systems using feedforward neural networks. Draft (2017). Available upon
request

8. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

9. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2016)
10. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural

networks. CoRR, abs/1610.06940 (2016)
11. IBM ILOG Inc.: CPLEX MILP Solver (1992)
12. Julian, K., Kochenderfer, M.J.: Neural network guidance for UAVs. In: AIAA Guid-

ance Navigation and Control Conference (GNC) (2017)
13. Kahn, G., Zhang, T., Levine, S., Abbeel, P.: Plato: policy learning using adaptive

trajectory optimization. arXiv preprint arXiv:1603.00622 (2016)
14. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an

efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

15. Katz, et al.: Reluplex: CAV 2017 prototype (2017). https://github.com/guykatzz/
ReluplexCav2017

16. Kurd, Z., Kelly, T.: Establishing safety criteria for artificial neural networks. In:
Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS (LNAI), vol. 2773, pp.
163–169. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45224-
9 24

https://github.com/souradeep-111/sherlock
https://github.com/souradeep-111/sherlock
https://doi.org/10.1007/978-3-319-68167-2_19
http://arxiv.org/abs/1603.00622
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://github.com/guykatzz/ReluplexCav2017
https://github.com/guykatzz/ReluplexCav2017
https://doi.org/10.1007/978-3-540-45224-9_24
https://doi.org/10.1007/978-3-540-45224-9_24

138 S. Dutta et al.

17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

18. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks. CoRR, abs/1706.07351 (2017)

19. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, Hoboken (1969)
20. Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization prob-

lems. In: Handbook of Applied Optimization, pp. 65–77 (2002)
21. Papernot, N., McDaniel, P.D., Goodfellow, I.J., Jha, S., Celik, Z.B., Swami, A.:

Practical black-box attacks against deep learning systems using adversarial exam-
ples. CoRR, abs/1602.02697 (2016)

22. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

23. Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. AI
Commun. 25(2), 117–135 (2012)

24. Sassi, M.A.B., Bartocci, E., Sankaranarayanan, S.: A linear programming-based
iterative approach to stabilizing polynomial dynamics. In: Proceedings of IFAC
2017. Elsevier, Amsterdam (2017)

25. Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards verification of arti-
ficial neural networks. In: MBMV Workshop, pp. 30–40 (2015)

26. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. CoRR, abs/1312.6199 (2013)

27. Tjeng, V., Tedrake, R.: Verifying neural networks with mixed integer programming.
CoRR, abs/1711.07356 (2017)

28. Vanderbei, R.J.: Linear Programming: Foundations & Extensions, Second edn.
Springer, Heidelberg (2001). Cf. http://www.princeton.edu/∼rvdb/LPbook/

29. Williams, H.P.: Model Building in Mathematical Programming, 5th edn. Wiley,
Hoboken (2013)

30. Xiang, W., Tran, H.-D., Johnson, T.T.: Output reachable set estimation and ver-
ification for multi-layer neural networks. CoRR, abs/1708.03322 (2017)

31. Xiang, W., Tran, H.-D., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation
and verification for a class of piecewise linear systems with neural network con-
trollers (2018). To Appear in the American Control Conference (ACC), Invited
Session on Formal Methods in Controller Synthesis

https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
http://www.princeton.edu/~rvdb/LPbook/

Formal Dynamic Fault Trees Analysis
Using an Integration of Theorem Proving

and Model Checking

Yassmeen Elderhalli(B) , Osman Hasan , Waqar Ahmad ,
and Sofiène Tahar

Electrical and Computer Engineering, Concordia University, Montréal, Canada
{y elderh,o hasan,waqar,tahar}@ece.concordia.ca

Abstract. Dynamic fault trees (DFTs) have emerged as an important
tool for capturing the dynamic behavior of system failure. These DFTs
are analyzed qualitatively and quantitatively using stochastic or alge-
braic methods. Model checking has been proposed to conduct the failure
analysis of systems using DFTs. However, it has not been used for DFT
qualitative analysis. Moreover, its analysis time grows exponentially with
the number of states and its reduction algorithms are usually not for-
mally verified. To overcome these limitations, we propose a methodology
to perform the formal analysis of DFTs using an integration of theorem
proving and model checking. We formalize the DFT gates in higher-order
logic and formally verify many algebraic simplification properties using
theorem proving. Based on this, we prove the equivalence between raw
DFTs and their reduced forms to enable the formal qualitative analysis
(determine the cut sets and sequences) of DFTs with theorem proving.
We then use model checking to perform the quantitative analysis (com-
pute probabilities of failure) of the formally verified reduced DFT. We
applied our methodology on five benchmarks and the results show that
the formally verified reduced DFT was analyzed using model checking
with up to six times less states and up to 133000 times faster.

Keywords: Dynamic fault trees · Theorem proving · Model checking
HOL4 · STORM

1 Introduction

A Fault Tree (FT) [1] is a graphical representation of the causes of failure of a
system that is usually represented as the top event of the fault tree. FTs can
be categorized as Static Fault Trees (SFT) and Dynamic Fault Trees (DFT)
[1]. In an SFT, the structure function (expression) of the top event describes
the failure relationship between the basic events of the tree using FT gates, like
AND and OR, without considering the sequence of failure of these events. DFTs,
on the other hand, model the failure behavior of the system using dynamic FT
gates, like the spare gate, which can capture the dependent behavior of the basic
events along with the static gates. DFTs model a more realistic representation
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 139–156, 2018.
https://doi.org/10.1007/978-3-319-77935-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_10&domain=pdf
http://orcid.org/0000-0003-4437-2933
http://orcid.org/0000-0003-2562-2669
http://orcid.org/0000-0003-2787-4704
http://orcid.org/0000-0002-5537-104X

140 Y. Elderhalli et al.

of systems compared to SFTs. For example, the spare DFT gate can model the
failure of car tires and their spares, which cannot be modeled using SFT gates.

Fault Tree Analysis (FTA) [1] has become an essential part of the design pro-
cess of safety-critical systems, where the causes of failure and their probabilities
should be considered at an early stage. There are two main phases for FTA, the
qualitative analysis and the quantitative analysis [2]. In the qualitative analysis,
the cut sets and cut sequences are determined, which, respectively, represent
combinations and sequences of basic events of the DFT that cause a system fail-
ure [1]. The quantitative analysis provides numeric results about the probability
of failure of the top event and the mean-time-to-failure (MTTF) among other
metrics [1]. Dynamic FTA is commonly carried out using algebraic [3] or Markov
chain based approaches [2]. In the former, an algebra similar to the Boolean alge-
bra is used to determine the structure function of the top event, which can be
simplified to determine a reduced form of the cut sets and sequences. The proba-
bilistic analysis of the DFT can then be performed based on the reduced form of
the generated structure function by considering the probability of failure of the
basic events. For the Markov chain based analysis, the FT is first converted to
its equivalent Markov chain and then the probability of failure of the top event
is determined by analyzing the generated Markov chain. The resultant Markov
chain can be very large, while dealing with complex systems, which limits the
usage of Markov chains in DFT analysis.

Traditionally, the dynamic FTA is performed using paper-and-pencil proof
methods or computer simulation. While the former is error prone, specially
for large systems, the latter provides a more scalable alternative. However, the
results of simulation cannot be termed as accurate due to the involvement of sev-
eral approximations in the underlying computation algorithms and the sampling
based nature of this method. Given the dire need of accuracy in the failure anal-
ysis of safety-critical systems, formal methods have also been recently explored
for DFT analysis. For example, the STORM probabilistic model checker [4] has
been used to analyze DFTs based on Markov chain analysis [5]. However, prob-
abilistic model checking has not been used in the formal qualitative analysis of
DFTs. Moreover, it cannot support the analysis of large systems unless a reduc-
tion algorithm is invoked, and the implementation of such reduction is usually
not formally verified. Therefore, one cannot ascertain that the analysis results
after reduction are accurate or correspond to the original system. On the other
hand, while in theory higher-order logic (HOL) theorem proving can cater for
the above shortcomings, its support for FTA has been limited to SFTs [6].

In this paper, we propose to overcome the above-mentioned limitations of
formal DFT analysis by using an integration of model checking and theorem
proving. Firstly, we use theorem proving for modeling DFTs and verifying the
equivalence between the original and the reduced form of the DFT. The for-
mally verified reduced DFT can then be used for qualitative analysis (determin-
ing the cut sets and sequences) as well as for quantitative analysis using model
checking. Thus, our proposed methodology tends to provide more sound results
than sole model checking based analysis thanks to the involvement of a theorem

Formal DFTs Analysis Using an Integration of Theorem Proving 141

prover in the verification of the reduced model. Moreover, it caters for the state-
space based issues of model checking by providing it with a reduced DFT model
of a given system for the quantitative analysis. In order to illustrate the uti-
lization and effectiveness of our proposed methodology, we analyzed five DFT
benchmarks, namely: a Hypothetical Example Computer System (HECS) [2],
a Hypothetical Cardiac Assist System (HCAS) [3,7], a scaled cascaded PAND
DFT [7,8], a multiprocessor computing system [7,9] and a variant of the Active
Heat Rejection System (AHRS) [10]. The reduced DFTs and their reduced cut
sequences are formally verified using the HOL4 theorem prover [11]. We use the
STORM model checker to formally analyze the original as well as the reduced
DFT. The results show that using the verified reduced DFT for the quantitative
analysis allows us to reduce both the number of generated states by the model
checker by up to 6 times and the time required to perform the analysis up to
133000 times faster.

2 Related Work

DFT analysis has been done using various tools and techniques [1]. For exam-
ple, Markov chains have been extensively used for the modeling and analysis of
DFTs [2]. The scalability of Markov chains in analyzing large DFTs is achieved
by using a modularization approach [12], where the DFT is divided into two
parts: static and dynamic. The static subtree is analyzed using ordinary SFT
analysis methods, such as Binary Decision Diagrams (BDD) [1], and the dynamic
subtree is analyzed using Markov chains. This kind of modularization approach
is available in the Galileo tool [13]. In [7], the authors use a compositional aggre-
gation technique to develop Input-Output Interactive Markov Chains (I/O-IMC)
to analyse DFTs. This approach is implemented in the DFTCalc tool [14]. The
algebraic approach has also been extensively used in the analysis of DFTs [3],
where the top event of the DFT can be expressed and reduced in a manner
similar to the ordinary Boolean algebra. The reliability of the system expressed
algebraically can be evaluated based on the algebraic expression of the top event
[8]. The main problem with the Markov chain analysis is the large generated
state space when analyzing complex systems, which requires high resources in
terms of memory and CPU time. Moreover, simulation is usually utilized in the
analysis process, which does not provide accurate results. Although modulariza-
tion tends to overcome the large state-space problem with Markov chains, we
cannot obtain a verified reduced form of the cut sequences of the DFT. The
algebraic approach provides a framework for performing both the reduction and
the analysis of the DFT. However, the foundations of this approach have not
been formalized, which implies that the results of the analysis should not be
relied upon especially in safety-critical systems.

Formal methods can overcome the above-mentioned inaccuracy limitations
of traditional DFT analysis techniques. Probabilistic model checkers, such as
STORM [4], have been used for the analysis of DFTs. The main idea behind this
approach is to automatically convert the DFT of a given system into its corre-

142 Y. Elderhalli et al.

sponding Markovian model and then analyze the safety characteristics quanti-
tatively of the given system using the model checker [15]. The STORM model
checker accepts the DFT to be analyzed in the Galileo format [13] and generates
a failure automata of the tree. This approach allows us to verify failure proper-
ties, like probability of failure, in an automatic manner. However, the approach
suffers from scalability issues due to the inherent state-space explosion prob-
lem of model checking for large systems. Moreover, the implementation of the
reduction algorithms used in model checkers are generally not formally verified.
Finally, model checkers have only been used in the context of probabilistic anal-
ysis of DFTs and not for the qualitative analysis, as the cut sequences in the
qualitative analysis cannot be provided unless the state machine is traversed to
the fail state, which is difficult to achieve for large state machines.

Exploiting the expressiveness of higher-order logic (HOL) and the soundness
of theorem proving, Ahmad and Hasan [6,16] formalized SFTs in HOL4 and eval-
uated the probability of failure based on the Probabilistic Inclusion-Exclusion
principle. However, the main problem in theorem proving lies in the fact that it
is interactive, i.e., it needs user guidance in the proof process. Moreover, to the
best of our knowledge, no higher-order-logic formalization of DFTs is available
in the literature so far and thus it is not a straightforward task to conduct the
DFT analysis using a theorem prover as of now.

It can be noted that both model checking and HOL theorem proving exhibit
complementary characteristics, i.e., model checking is automatic but cannot deal
with large systems and does not provide qualitative analysis of DFTs, while HOL
theorem proving allows us to verify universally quantified generic mathematical
expressions but at the cost of user interventions. In this paper, we leverage upon
the complementary nature of these approaches to present an integrated method-
ology that provides the expressiveness of higher-order logic and the existing
support for automated probabilistic analysis of DFTs using model checking. The
main idea is to use theorem proving to formally verify the equivalence between
the original and the reduced DFT and then use a probabilistic model checker
to conduct a quantitative analysis on the reduced DFT. As a result, a formally
verified reduced form of the cut sequences is obtained. In addition, both the
generated state machine and the analysis time are reduced.

3 Proposed Methodology

Our proposed methodology of the formal DFT analysis is depicted in Fig. 1.
It provides both formal DFT qualitative analysis using theorem proving and
quantitative analysis using model checking. The DFT analysis starts by having
a system description. The failure behavior of this system is then modeled as
a DFT, which can be reduced based on the algebraic approach [3]. The idea
of this algebraic approach is to deal with the events, which can represent the
basic events or outputs, according to their time of failure (d). For example,
d(X) represents the time of failure of an event X. In the algebraic approach,
temporal operators (Simultaneous (Δ), Before (�) and Inclusive Before (�))

Formal DFTs Analysis Using an Integration of Theorem Proving 143

are defined to model the dynamic gates. Based on these temporal operators,
several simplification theorems exist to perform the required reduction. This
reduction process can be erroneous if it is performed manually using paper-and-
pencil. Moreover, reduction algorithms may also provide wrong results if they
are not formally verified. In order to formally check the equivalence between
the original model and the reduced one, we developed a library of formalized
dynamic gates in HOL and verified their corresponding simplification theorems
[17]. These foundations allow us to develop a formal model for any DFT using
the formal gate definitions. Based on the verified simplification theorems, we
can then verify the equivalence between the formally specified original and the
reduced DFT models using a theorem prover. The formally verified reduced DFT
can then be utilized to perform the qualitative analysis of the reduced model in
the theorem prover as well as its quantitative analysis by using a model checker.

Fig. 1. Overview of proposed methodology

The qualitative analysis represents an important and crucial step in DFT
analysis, since it allows to identify the sources of failure of the system without the
availability of any information or actual numbers about the failure probabilities
of the basic events. In SFTs, the qualitative analysis is performed by finding
the cut sets, which are the combination of events that causes system failure
without providing any information about the required sequence that will cause
the failure. The temporal behavior of dynamic gates allows representing the
failure dependencies and sequences in a system. Due to this temporal behavior
of the dynamic gates, just finding the cut sets does not capture the sequence of
failure of events that can cause the system failure. The cut sequences on the other
hand capture not only the combination of basic events but also the sequence of
events that can cause the system failure. In the proposed methodology, we utilize
a HOL theorem prover to verify a reduced expression of the structure function
of the top event, which ensures that the reduction process is correct. Using this

144 Y. Elderhalli et al.

reduced structure function, a formally verified reduced form of the cut sequences
can also be determined.

The reduced form of the structure function of the top event can now be
used in a probabilistic model checker to do the quantitative analysis of the given
system. Because of the reduced model, we get a reduction in the analysis time and
number of states. In this paper, the STORM model checker is used to perform
the probabilistic analysis of the DFT. Several input languages are supported by
this model checker including the Galileo format for DFT. Both the probability
of failure of the top event as well as the mean time to failure can be computed
using STORM. It is worth mentioning that since the analyzed model of the
DFT is a Markov Automata (MA) (in case of non-deterministic behavior) or a
Continuous Time Markov Chain (CTMC), only exponential failure distributions
are supported by the proposed methodology.

4 Formalization of Dynamic Fault Trees in HOL

In this section, we present the formal definitions of the identity elements, the
temporal operators and the dynamic gates. It is assumed that a fault is repre-
sented using an event. The occurrence of a fault indicates that the corresponding
failure event is true. It is also assumed that the events are non-repairable.

4.1 Identity Elements

Two identity elements are defined, namely the ALWAYS and the NEVER ele-
ments. The ALWAYS identity element represents an event with a failure time
equal to 0. The NEVER element represents an event that never occurs. These
two elements are defined based on their time of failure in HOL as follows:

Definition 1. ALWAYS element
� ALWAYS = (0 : extreal)

Definition 2. NEVER element
� NEVER = PosInf

where extreal is the HOL data-type for extended real numbers, which are
real numbers including positive infinity (+∞) and negative infinity (−∞). The
PosInf is a HOL symbol representing (+∞).

4.2 Temporal Operators

We also formalize three temporal operators in order to model the dynamic behav-
ior of the DFT: Simultaneous (Δ), Before (�) and Inclusive Before (�). The
Simultaneous operator has two input events, representing basic events or sub-
trees. The time of occurrence (failure) of the output event of this operator is

Formal DFTs Analysis Using an Integration of Theorem Proving 145

equal to the time of occurrence of the first or the second input event considering
that both input events occur at the same time:

d(AΔB) =

{
d(A), d(A) = d(B)
+∞, d(A) �= d(B)

(1)

For any two basic events, if the failure distribution of the random variables
associated with these basic events is continuous, then they cannot have the same
time of failure [3], and hence the result of the Simultaneous operator between
them is NEVER.

d(AΔB) = NEV ER (2)

where A and B are basic events with random variables that exhibit continuous
failure distributions.

The Before operator accepts two input events, which can be basic events or
two subtrees. The time of occurrence of the output event of this operator is equal
to the time of occurrence of the first input event if the first input event (from
left) occurs before the second input event (right), otherwise the output never
fails:

d(A � B) =

{
d(A), d(A) < d(B)
+∞, d(A) ≥ d(B)

(3)

The Inclusive Before combines the behavior of both the Simultaneous and Before
operators, i.e., if the first input event (left) occurs before or at the same time as
the second input event (right), then the output event occurs with a time equal
to the time of occurrence of the first input event:

d(A � B) =

{
d(A), d(A) ≤ d(B)
+∞, d(A) > d(B)

(4)

We formalize these temporal operators in HOL as follows:

Definition 3. Simultaneous Operator
� ∀ (A : extreal) B. D SIMULT A B = if (A = B) then A else PosInf

Definition 4. Before Operator
� ∀ (A : extreal) B. D BEFORE A B = if (A < B) then A else PosInf

Definition 5. Inclusive Before Operator
� ∀ (A : extreal) B. D INCLUSIVE BEFORE A B = if (A ≤ B) then A else PosInf

where A and B represent the time of failure of the events A and B, respectively.

4.3 Fault Tree Gates

Figure 2 shows the main FT gates [2]; dynamic gates as well as the static ones.
Although, the AND (·) and OR (+) gates, shown in Figs. 2a and b, are considered
as static operators or gates, their behavior can be represented using the time of

146 Y. Elderhalli et al.

(a) AND (b) OR (c) PAND (d) FDEP (e) Spare

Fig. 2. Fault tree gates

occurrence of the input events. For example, the output event of an AND gate
occurs if and only if all its input events occur. This implies that the output of
the AND gate occurs with the occurrence of the last input event, which means
that the time of occurrence of the output event equals the maximum time of
occurrence of the input events. The OR gate is defined in a similar manner with
the only difference that the output event occurs with the occurrence of the first
input event, i.e., the minimum time of occurrence of the inputs:

d(A · B) = max(d(A), d(B)) (5)

d(A + B) = min(d(A), d(B)) (6)

We model the behavior of these gates in HOL as follows:

Definition 6. AND gate (operator)
� ∀ (A : extreal) B. D AND A B = max A B

Definition 7. OR gate (operator)
� ∀ (A : extreal) B. D OR A B = min A B

where max and min are HOL functions that return the maximum and the mini-
mum values of their arguments, respectively.

The Priority-AND (PAND) gate is a special case of the AND gate, where
the output occurs when all the input events occur in a sequence, conventionally
from left to right. For the PAND gate, shown in Fig. 2c, the output Q occurs if
A and B occur and A occurs before or with B. The behavior of the PAND gate
can be represented using the time of failure as:

d(Q) =

{
d(B), d(A) ≤ d(B)
+∞, d(A) > d(B)

(7)

The behavior of the PAND can be expressed using the temporal operators as:

Q = B · (A � B) (8)

Formal DFTs Analysis Using an Integration of Theorem Proving 147

We define the PAND gate in HOL as:

Definition 8. PAND gate
� ∀ (A : extreal) B. PAND A B = if (A ≤ B) then B else PosInf

We verify in HOL that the PAND exhibits the behavior given in Eq. 8:

Theorem 1. � ∀ A B. PAND A B = D AND B (D INCLUSIVE BEFORE A B)

The Functional DEPendency gate (FDEP), shown in Fig. 2d, is used when
there is a failure dependency between the input events or sub-trees, i.e., the
occurrence of one input (or a sub-tree) can trigger the occurrence of other input
events (or subtrees) in the fault tree. For example, in Fig. 2d, the occurrence of
T triggers the occurrence of A. This states that A occurs in two different ways:
firstly, when A occurs by itself and secondly, when the trigger T occurs. This
implies that the time of failure of AT (triggered A) equals the minimum time of
occurrences of T and A:

d(AT) = min(d(A), d(T)) (9)

We define the FDEP gate in HOL as:

Definition 9. FDEP gate
� ∀ (A : extreal) T. FDEP A T = min A T

where T is the occurrence time of the trigger. We also verify in HOL that the
FDEP gate is equivalent to an OR gate as follows:

Theorem 2. � ∀ A T. FDEP A T = D OR A T

The spare gate, shown in Fig. 2e, represents a dynamic behavior that occurs
in many real world systems, where we usually have a main part and some spare
parts. The spare parts are utilized when the main part fails. The spare gate,
shown in Fig. 2e, has a main input (A) and a spare input (B). After the failure of
input A, the spare input B is activated. The output of the spare gate fails if both
the main input and the spare fail. The spare gate can have several spare inputs,
and the output fails after the failure of the main input and all the spares. The
spare gate has three variants depending on the failure behavior of the spare part:
hot spare gate (HSP), cold spare gate (CSP) or warm spare gate (WSP). In the
HSP, the probability of failure for the spare is the same in both the dormant and
the active states. For the CSP, the spare part cannot fail unless it is activated.
The WSP is the general case, where the spare part can fail in the dormant state
as well as in the active state, but the failure distribution of the spare in its
dormant state is different from the one in the active mode, and it is usually
attenuated by a dormancy factor. In order to be able to distinguish between the
different states of the spare input, two different variables are assigned to each
state. For example, for the spare gate, shown in Fig. 2e, B will be represented
using two variables; Bd for the dormant state and Ba for the active state.

148 Y. Elderhalli et al.

The input events of the spare gate cannot occur at the same time if they are
basic events. However, if these events are subtrees then they can occur at the
same time. For a two input warm spare gate, with A as the primary input and
B as the spare input, the output event occurs in two ways; firstly, if B fails in its
dormant state (inactive) then A fails with no spare to replace it. The second way
is when A fails first then B (the spare part) is activated and then B fails in its
active state. For the general case, when the input events can occur at the same
time (if they are subtrees or depend on a common trigger), an additional option
for the failure of the spare gate is added considering the two input events occur
at the same time. The general form of the warm spare gate can be expressed
mathematically as:

Q = A.(Bd � A) + Ba.(A � Ba) + AΔBa + AΔBd (10)

We formally define the WSP in HOL as:

Definition 10. Warm Spare Gate
� ∀ A B a B d.

WSP A B a B d =
D OR(D OR (D OR (D AND A (D BEFORE B d A))

(D AND B a (D BEFORE A B a))) (D SIMULT A B a)) (D SIMULT A B d)

The time of failure of the CSP gate with primary input A and cold spare B
can be defined as:

d(Q) =

{
d(B), d(A) < d(B)
+∞, d(A) ≥ d(B)

(11)

The above equation describes that the output event of the CSP occurs if the
primary input fails and then the spare fails while in its active state. We define
the CSP in HOL as:

Definition 11. Cold Spare Gate
� ∀ (A : extreal) B. CSP A B = if (A < B) then B else PosInf

We formally verify in HOL that the CSP gate is a special case of WSP, where
the spare part cannot fail in its dormant state.

Theorem 3. � ∀ A B a B d.
ALL DISTINCT [A; B a] ∧ COLD SPARE B d ⇒ (WSP A B a B d = CSP A B a)

where the predicate ALL DISTINCT ensures that A and B a are not equal,
implying that they cannot fail at the same time, and COLD SPARE B d makes
sure that the spare B is a cold spare, i.e., it cannot fail in its dormant mode
(B d).

The failure distribution of the spare part in the HSP remains the same in
both states, i.e., the dormant and the active states. The output of the HSP fails
when both the primary and the spare inputs fail, and the sequence of failures

Formal DFTs Analysis Using an Integration of Theorem Proving 149

does not matter, as the spare part has only one failure distribution. The HSP
can be expressed mathematically as:

d(Q) = max(d(A), d(B)) (12)

where A is the primary input and B is the spare. It is formally defined in HOL
as:

Definition 12. Hot Spare Gate
� ∀ (A : extreal) B. HSP A B = max A B

We formally verify in HOL that if both the dormant and the active states of the
spare are equal, then the WSP is equivalent to the HSP:

Theorem 4. � ∀ A B a B d. (B a = B d) ⇒ (WSP A B a B d = HSP A B a)

It is important to mention that more than one spare gate can share the same
spare input. In this case, there is a possibility that one of the primary inputs is
replaced by the spare, while the other input does not have a spare in case it fails.
The outputs of the spare gates, shown in Fig. 3, are expressed mathematically
as follows (assuming that A, B and C are basic events):

Fig. 3. Spare gates with shared spare

Q1 = A.(Cd � A) + Ca.(A � Ca) + A.(B � A) (13)

Q2 = B.(Cd � B) + Ca.(B � Ca) + B.(A � B) (14)

The last term in Eq. 13 (A.(B � A)) indicates that if B occurs before A, then
the spare part C is used by the second spare gate. This implies that no spare is
available for the first spare gate, which causes the failure of the output of the
first spare gate if A occurs. We formalize the output Q1 of the first spare gate
in HOL as:

Definition 13. Shared Spare
� ∀ A B C a C d.

shared spare A B C a C d =
D OR (D OR (D AND A (D BEFORE C d A)) (D AND C a (D BEFORE A C a)))

(D AND A (D BEFORE B A)))

150 Y. Elderhalli et al.

4.4 Formal Verification of the Simplification Theorems

As with classical Boolean algebra, many simplification theorems also exist for
DFT operators, which can be used to simplify the structure function of the
DFT [3]. We formally verified over 80 simplification theorems for the operators,
defined in the previous subsection, including commutativity, associativity and
idempotence of the AND, OR and Simultaneous operators, in addition to more
complex theorems that include a combination of temporal operators. The verifi-
cation process of these theorems was mainly based on the properties of extended
real numbers, since the DFT operators are defined based on the time of failure of
the events, defined using the extreal data-type in HOL. During the verification
process, most sub-goals were automatically verified using tactics that utilize the-
orems from the extreal HOL theory. Some of these formally verified theorems
are listed in Table 1. The complete list of formally verified theorems and more
details about their verification can be found in [18].

Table 1. Some formally verified simplification theorems

DFT Algebra Theorems HOL Theorems
A+B=B+A � ∀ A B. D OR A B = D OR B A

A.B=B.A � ∀ A B. D AND A B = D AND B A

A+A=A � ∀ A. D OR A A = A

A.NEV ER=NEV ER � ∀ A. D AND A NEVER = NEVER

AΔB=BΔA � ∀ A B. D SIMULT A B = D SIMULT B A

(A�B).(B�A)=NEV ER
� ∀ A B. D AND (D BEFORE A B)
(D BEFORE B A) = NEVER

A�(B+C)=(A�B).(A�C)
� ∀ A B C. D BEFORE A (D OR B C) =
D AND (D BEFORE A B)(D BEFORE A C)

(A�B).(B�A)=AΔB
� ∀ A B. D AND (D INCLUSIVE BEFORE A B)
(D INCLUSIVE BEFORE B A) = D SIMULT A B

(A�B)+(AΔB)=A�B
� ∀ A B. D OR (D INCLUSIVE BEFORE A B)
(D SIMULT A B) = D INCLUSIVE BEFORE A B

(A�B)+(AΔB)+(A.(B�A))=A
� ∀ A B. D OR (D OR (D BEFORE A B)
(D SIMULT A B))(D AND A D BEFORE B A)) = A

Figure 4 shows an example of a simple DFT [8]. This DFT consists of two cas-
caded PAND gates with three basic events; A, B and C. The temporal operators
can be used to express the behavior of the PAND gate as follows [8]:

Q = C.(B � C).(A � (C.(B � C))) (15)

Using this expression, we cannot determine the required sequence of failure for
the basic events that will cause the system failure, since the basic events are
repeated in the expression. Using the algebraic simplification theorems, this
structure function can be reduced to [8]:

Q = C.(B � C).(A � C) (16)

Formal DFTs Analysis Using an Integration of Theorem Proving 151

Fig. 4. Simple DFT example

We verified this reduction using HOL4, which implies that this reduction process
is correct and the new reduced DFT expression reflects the behavior of the
original DFT.

� ∀ A B C.
ALL DISTINCT [A; B; C] ⇒

(PAND A (PAND B C) =
D AND C (D AND (D BEFORE A C) (D BEFORE B C)))

From this reduced expression, we can identify that two different sequences
can cause the system failure; [A, B, C] or [B, A, C].

Q = C . (A � C) . (B � A) + C . (B � C) . (A � B) (17)

This reduced form of the structure function is verified in HOL to be equal to the
top event of the original tree as:

� ∀ A B C.
ALL DISTINCT [A; B; C] ⇒

(PAND A (PAND B C) =
D OR(D AND C (D AND (D BEFORE A C) (D BEFORE B A)))

(D AND C (D AND (D BEFORE B C) (D BEFORE A B))))

Since we have formally verified that the structure function is composed of the
above-mentioned two sequences, we can conclude that the system will fail if any
of these sequences occurs. In order to prevent or reduce the probability of failure
of the top event, we should prevent the occurrence of these sequences, i.e., we
should prevent the failure of A and B before C. This means that using the first
part of our proposed methodology, we have been able to obtain a verified reduced
form of the top event as well as a verified reduced form of the cut sequences.

5 Experimental Results

In order to illustrate the effectiveness of our proposed methodology, we conducted
the formal DFT analysis of five benchmarks. The first benchmark, depicted in
Fig. 5, is a scaled version of the original cascaded PAND DFT [7,8] with repeated

152 Y. Elderhalli et al.

Fig. 5. Scaled cascaded PAND DFT

events. It has two similar subtrees with different basic events and a top event
that fails whenever one of these subtrees fails. The second DFT is a modified
and abstracted version of the Active Heat Rejection System (AHRS) [10], which
consists of two thermal rejection units A and B. The failure of any of these
two units leads to the failure of the whole system. Each main input (A or B)
has two spare parts, and the unit fails with the failure of the main input and
the spare inputs. All the inputs are functionally dependent on the power supply.
The third benchmark represents a Multiprocessor Computer System (MCS) [7,9]
with two redundant computers, having a processor, a disk and a memory unit.
Each disk has its own spare and the two memory units share the same spare.
The two processors are functionally dependent on the power supply. The fourth
benchmark is a Hypotheical Example Computer System (HECS) [2] consisting
of two processors with a cold spare, five memory units, which are functionally
dependent on two memory interface units and two system buses. The failure of
the system also depends on the application subsystem, which in turn depends
on the software, the hardware and the human operator. The last benchmark
is a Hypothetical Cardiac Assist System (HCAS) [3,7], which consists of two
bumps with a shared spare, two motors and a CPU with a spare. Both CPUs
are functionally dependent on a trigger, which represents the crossbar switch and
the system supervisor. In the sequel, we describe the formal analysis of the first
benchmark. Details of the rest of the benchmarks as well as the HOL4 scripts
and STORM models are available at [17,18].

Formal DFTs Analysis Using an Integration of Theorem Proving 153

5.1 Formal Verification of the Reduced Cascaded PAND DFT

The first step in the proposed methodology is to create a formal model for both
the original DFT and the reduced one. Then, the equivalence property between
them is formally verified in HOL. This is followed by determining the cut sets and
sequences. The top event (Q1) of the system, shown in Fig. 5, is reduced using
the simplification theorems and this reduction is verified in HOL as follows [18]:

Theorem 5. � ∀ A1 B1 C1 D1 E1 W1 G1 H1 I1 J1 K1 L1 N1 O1 P1 A2 B2 C2 D2 E2

W2 G2 H2 I2 J2 K2 L2 N2 O2 P2. ALL DISTINCT [A1; B1; C1; D1; E1; W1; G1; H1;

I1; J1; K1; L1; N1; O1; P1; A2; B2; C2; D2; E2; W2; G2; H2; I2; J2; K2; L2; N2; O2; P2] ⇒
(Q1=(I1+J1+K1+L1).(A1�(I1+J1+K1+L1)).((B1.C1.D1.E1.W1.G1.H1)�(I1+J1+K1+L1))

+(I2+J2+K2+L2).(A2�(I2+J2+K2+L2)).((B2.C2.D2.E2.W2.G2.H2)�(I2+J2+K2+L2)))

The predicate ALL DISTINCT ensures that the basic events cannot occur at the
same time. This condition was found to be a prerequisite for the above-mentioned
consequence. We can observe from the above theorem that the basic events (N1,
O1, P1, N2, O2, P2) have no effect on the failure of the top event since they
are eliminated in the reduction. Considering the cut sets and sequences, the top
event can fail in two cases. The first case corresponds to the first product in
the structure function, which implies that the output event occurs if any one of
the basic events (I1, J1, K1, L1) occurs and A1 occurs before all of them and
the inputs (B1, C1, D1, E1, W1, G1, H1) occur before the inputs (I1, J1, K1,
L1). The second case represents the second product of the second subtree, which
is similar to the first product but with different basic events. Since the Galileo
format (which is used to model a DFT in STORM) supports only DFT gates
and not operators, it is required that the reduced form is represented using DFT
gates only. This representation is verified in HOL as follows:

Theorem 6. � ∀ A1 B1 C1 D1 E1 W1 G1 H1 I1 J1 K1 L1 N1 O1 P1 A2 B2 C2 D2 E2

W2 G2 H2 I2 J2 K2 L2 N2 O2 P2. ALL DISTINCT [A1; B1; C1; D1; E1; W1; G1; H1;

I1; J1; K1; L1; N1; O1; P1; A2; B2; C2; D2; E2; W2; G2; H2; I2; J2; K2; L2; N2; O2; P2] ⇒
(Q1= PAND A1 (I1+J1+K1+L1). PAND (B1.C1.D1.E1.W1.G1.H1) (I1+J1+K1+L1)+

PAND A2(I2+J2+K2+L2). PAND (B2.C2.D2.E2.W2.G2.H2) (I2+J2+K2+L2)

5.2 Quantitative Analysis Results Using STORM

The quantitative analysis for the five benchmarks was conducted using STORM
on a Linux machine with i7 2.4 GHZ quad core CPU and 4 GB of RAM. The
efficiency of the proposed methodology is highlighted by analyzing the original
DFTs and the reduced ones. In addition, the probability of failure for each DFT
is evaluated for different time bounds, e.g. the probability of failure after 100
working time units. A summary of the analysis results are given in Table 2. It
can be noticed that the number of states is reduced as well as the total analy-
sis time. For the first benchmark, the analysis time is reduced due to the huge

154 Y. Elderhalli et al.

reduction in the number of states. As mentioned earlier, many basic events are
eliminated using the algebraic reduction theorems, which in turn reduced the
total analysis time as well as the number of states. The reduction in the analy-
sis time is also evident in the rest of the benchmarks, as given in Table 2. This
is mainly because of two reasons, firstly, the number of states is reduced, and
secondly, the original DFT is modeled as a Markov Automata (MA) as there is
a non-deterministic behavior, while the reduced DFT is modeled as a Contin-
uous Time Markov Chain (CTMC). This implies that in the reduced DFT the
non-deterministic behavior caused by the failure dependency does not exist any
more, as the reduction process depends on the time of failure of the gates, which
allows solving the previously unresolved problems. We used STORM command
(firstdep) to resolve the non-deterministic behavior in the original DFT to gen-
erate a CTMC instead of a MA. The results in Table 3 show that the number
of states for the reduced DFTs is generally less than that of the original DFT
with resolved dependencies, except for the HECS DFT, which requires further
investigation. This emphasizes on the importance of the proposed methodology
not only in providing a formal qualitative analysis but also in reducing the quan-
titative analysis cost in terms of time and memory, i.e., number of states. We
believe that the proposed methodology can be implemented with any theorem
prover that supports extended real data-type and with any probabilistic model
checker that supports DFT analysis. In addition, we believe that applying this
methodology to any DFT will reduce the analysis time as well as the number
of states specially if the DFT has a non-deterministic behavior. This method-
ology can be enhanced if the model checker supports the temporal operators in
addition to the supported FT gates. This means that we can use the result of
the reduction directly without rewriting it in terms of FT gates. Moreover, the
transformation process of the verified reduced DFT expression from the theorem
prover script to its corresponding Galileo format can be automated to facilitate
the overall analysis.

Table 2. STORM analysis results (before and after reduction)

DFT Time Before Reduction After Reduction

Bound #States Analysis Probability #States Analysis Probability
T ime(sec) ofFailure T ime(sec) ofFailure

CPAND 1000 148226 (CTMC) 7.488 1.464103531e-4 66050 (CTMC) 3.032 1.464103348e-4

ARHS 10 74 (MA) 169.81 0.00995049462 10 (CTMC) 0.067 0.009950461197
100 74 (MA) * ** 10 (CTMC) 0.067 0.0954423939

MCS 10 89 (MA) 139.7 0.01196434683 29 (CTMC) 0.061 0.01196434516
100 89 (MA) * ** 29 (CTMC) 0.060 0.1166464887

HECS 10 1051 (MA) 16359.83 0.01710278909 505 (CMTC) 0.123 0.01710276373
100 1051 (MA) * ** 505 (CMTC) 0.123 0.1762782397

HCAS 10 181 (MA) 275.31 2.000104327e-5 37 (CTMC) 0.070 2.99929683e-5
100 181 (MA) * ** 37 (CTMC) 0.071 0.000300083976

∗The analysis did not finish within 4 h.
∗∗ No probabilities are recorded (analysis did not finish).

Formal DFTs Analysis Using an Integration of Theorem Proving 155

Table 3. STORM analysis results with resolved dependencies

DFT Time Dependency resolved in STORM Algebraic Reduction

Bound #States Analysis Probability #States Analysis Probility
T ime(sec) ofFailure T ime(sec) ofFailure

ARHS 10 10(CTMC) 0.068 0.009960461197 10 (CTMC) 0.067 0.009950461197
100 10 (CTMC) 0.1 0.09544239393 10 (CTMC) 0.067 0.0954423939

MCS 10 45 (CMTC) 0.064 0.01196434516 29 (CTMC) 0.061 0.01196434516
100 45(CMTC) 0.064 0.1166464887 29 (CTMC) 0.060 0.1166464887

HECS 10 379 (CTMC) 0.118 0.01710276373 505 (CMTC) 0.123 0.01710276373
100 379 (CTMC) 0.121 0.1762782397 505 (CMTC) 0.123 0.1762782397

HCAS

10 73 (CTMC) 0.076 1.999530855e-5 37 (CTMC) 0.070 2.99929683e-5
100 73 (CTMC) 0.076 0.0002001091927 37 (CTMC) 0.071 0.000300083976
100000 73 (CTMC) 0.077 0.2772192934* 37 (CTMC) 0.074 0.3460009685*

∗The reported probability for the reduced DFT is closer to the probability
reported in [3] for the same input failure distribution.

6 Conclusion

In this paper, we proposed a formal dynamic fault tree analysis methodology
integrating theorem proving and model checking approaches. We first formal-
ized the dynamic fault tree gates and operators in HOL theorem proving based
on the time of failure of each gate. Using this formalization and the extreal
library in HOL4, we also proved over 80 simplification theorems that can be
used to verify the reduction of any DFT. We used these theorems to verify the
equivalence of the raw and reduced DFTs using theorem proving. In addition,
we provided a formally verified qualitative analysis of the structure function in
the form of reduced cut sets and sequences, which, to the best of our knowl-
edge, is another novel contribution. The quantitative analysis of the reduced
structure function is performed using the STORM model checker. This ensures
that the model checking results correspond to the original DFT, since we use
the formally verified reduced DFT model for the quantitative analysis. Both the
qualitative and quantitative analyses were conducted on five benchmark DFTs,
providing formally verified reduced cut sets and sequences, as well as the corre-
sponding probabilities of failure. In addition, the model checking results indicate
that using the reduced DFT in the analysis has a positive impact on its cost in
terms of both time and number of states. As a future work, we plan to provide
the quantitative analysis of DFTs within HOL, which will allow us to have a
complete framework for formal DFT analyses using theorem proving.

References

1. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

2. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.:
Fault tree handbook with aerospace applications. NASA Office of Safety and Mis-
sion Assurance (2002)

156 Y. Elderhalli et al.

3. Merle, G.: Algebraic Modelling of Dynamic Fault Trees, Contribution to Qualita-
tive and Quantitative Analysis. Ph.D. thesis, ENS, France (2010)

4. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

5. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inf. 14, 370–379 (2017). https://doi.org/
10.1109/TII.2017.2710316

6. Ahmad, W., Hasan, O.: Towards formal fault tree analysis using theorem proving.
In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015.
LNCS (LNAI), vol. 9150, pp. 39–54. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-20615-8 3

7. Boudali, H., Crouzen, P., Stoelinga, M.: A compositional semantics for dynamic
fault trees in terms of interactive Markov chains. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 441–456.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75596-8 31

8. Merle, G., Roussel, J.M., Lesage, J.J., Bobbio, A.: Probabilistic algebraic analysis
of fault trees with priority dynamic gates and repeated events. IEEE Trans. Reliab.
59(1), 250–261 (2010)

9. Malhotra, M., Trivedi, K.S.: Dependability modeling using petri-nets. IEEE Trans.
Reliab. 44(3), 428–440 (1995)

10. Boudali, H., Dugan, J.: A new Bayesian network approach to solve dynamic fault
trees. In: IEEE Reliability and Maintainability Symposium, pp. 451–456 (2005)

11. HOL4 (2017). hol.sourceforge.net
12. Pullum, L., Dugan, J.: Fault tree models for the analysis of complex computer-

based systems. In: IEEE Reliability and Maintainability Symposium, pp. 200–207
(1996)

13. Galileo. www.cse.msu.edu/∼cse870/Materials/FaultTolerant/manual-galileo.htm
14. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a

tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.)
SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40793-2 27

15. Ghadhab, M., Junges, S., Katoen, J.-P., Kuntz, M., Volk, M.: Model-based safety
analysis for vehicle guidance systems. In: Tonetta, S., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2017. LNCS, vol. 10488, pp. 3–19. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66266-4 1

16. Ahmad, W., Hasan, O.: Formalization of fault trees in higher-order logic: a deep
embedding approach. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016.
LNCS, vol. 9984, pp. 264–279. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47677-3 17

17. Elderhalli, Y.: DFT Formal Analysis: HOL4 Script and Storm Benchmarks (2017).
http://hvg.ece.concordia.ca/Publications/TECH REP/DFT TR17

18. Elderhalli, Y., Hasan, O., Ahmad, W., Tahar, S.: Dynamic Fault Trees Analysis
using an Integration of Theorem Proving and Model Checking. Technical report,
Concordia University, Canada (2017). https://arxiv.org/abs/1712.02872

https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1109/TII.2017.2710316
https://doi.org/10.1007/978-3-319-20615-8_3
https://doi.org/10.1007/978-3-319-20615-8_3
https://doi.org/10.1007/978-3-540-75596-8_31
https://sourceforge.net/
www.cse.msu.edu/~cse870/Materials/FaultTolerant/manual-galileo.htm
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-319-66266-4_1
https://doi.org/10.1007/978-3-319-47677-3_17
https://doi.org/10.1007/978-3-319-47677-3_17
http://hvg.ece.concordia.ca/Publications/TECH_REP/DFT_TR17
https://arxiv.org/abs/1712.02872

Twenty Percent and a Few
Days – Optimising a Bitcoin

Majority Attack

Ansgar Fehnker1(B) and Kaylash Chaudhary2

1 Formal Methods and Tools Group, University Twente,
Enschede, The Netherlands
ansgar.fehnker@utwente.nl

2 School of Computing, Information, and Mathematical Sciences,
University of the South Pacific, Suva, Fiji

Abstract. Bitcoin is a distributed online payment system that organises
transactions into blocks. The size of blocks is limited to 1 megabyte,
which also limits the number of transactions per second that can be
confirmed. This year several attempts have been made to create a fork
or a split that removes this restriction. One such alternative is Bitcoin
Unlimited (BTU). Proponents of BTU have suggested to use a type of
majority attack to force other Bitcoin miners to adopt BTU.

In this paper we model this attack in Uppaal, and analyse how long it
will take for an attack to succeed, depending on the share the attacker has
of the total network, and the so-called confirmation depth. The analysis
shows that with a share of 20% an attack will be successful within a few
days. This paper also looks at the effect of increasing the confirmation
depth as a countermeasure.

1 Introduction

In circulation since 2009 [9], Bitcoin is the most popular digital currency. Bitcoin
is managed by a peer-to-peer network. Every peer keeps a record of all trans-
actions in a public ledger. Transactions are organised into separate blocks, all
of which are linked to their immediate predecessor, forming a chain. The proto-
col uses a proof-of-work solution to induce a unique order on blocks, a process
known as mining. As the difficulty of mining increased over the years, peers
started working together in so-called pools.

Bitcoin has a block limit of 1 megabyte, which limits the number of con-
firmations to 3 transactions per second. This year has seen coin splits such as
Bitcoin Cash, or forks, such as SegWit, aimed at this limitation. Proponents
of one alternative, Bitcoin Unlimited (BTU), have suggested to use a type of
majority attack to force adoption of BTU [11]. We will refer to this attack as
the Andresen attack, after the former lead developer of Bitcoin who proposed
the attack. Current lead developers of Bitcoin have argued that an attack on the
main fork is a waste of computing resources [10]. That assessment will however
depend on how many computing resources are required, and for how long.
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 157–163, 2018.
https://doi.org/10.1007/978-3-319-77935-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_11&domain=pdf

158 A. Fehnker and K. Chaudhary

This paper uses statistical model checking with Uppaal [7] to analyse the
success chance, depending on the size of a mining pool. We use a parameter
sweep to identify an optimised strategy, and then use this strategy for further
analysis of potential counter measures.

Beukema [3] developed a formal model for double spending and corrupt peers.
Andrychowicz et. al. modeled Bitcoin contracts with timed automata [2], and
verified that an honest party can not lose Bitcoins. Herrmann considered the
implementation, evaluation and detection of double-spending attacks [8]. This
related work did not include blockchain forking, which is the focus of [6].

TX123

Inputs

TX119#0

Outputs

200k, Kaylash
100k, Vinay

TX121

Inputs

TX117#1

TX118#0

Outputs

50k, Kaylash

TX124

Inputs

TX121#0

TX123#0

Outputs

220k, Vinay

30k, Kaylash

TX126

Inputs

TX123#1

Outputs

50k, Vinay
50k, Tom

TX129

Inputs

TX126#1

Outputs

30k, Vinay

20k, Kaylash TX131

Inputs

TX126#1

Outputs

50k, Tom

TX133

Inputs

TX124#0

TX129#0

TX126#0

Outputs

300k, Kaylash

Fig. 1. Transaction graph

2 The Bitcoin Protocol

Bitcoin is a decentralised peer-to-peer electronic cash system, without central
trusted authority [9]. Public/private key cryptography ensures the validity of
transitions, while a so-called mining process determines the order of transactions.

Transactions. There are two types of transactions: coin-base and regular trans-
actions. In this paper we consider regular transactions, transferring existing Bit-
coins from one user to another.

Each transaction has one or more transaction inputs and one or more outputs.
An input is a reference to an output of a previous transaction. It proves that the
senders possess the Bitcoins they claim to have. The transaction output specifies
an amount and a recipient.

Figure 1 gives an example of a transaction graph. Transaction TX124 has two
inputs; transactions to user Kaylash worth 250k, and two outputs: 220k to user
Vinay, and 30k to user Kaylash1. The first output is in turn an input of transaction
TX133, and thus spent. The second has not been used and is thus unspent.

1 The amount is expressed in Satoshi (1 BTC is 100 000 000 Satoshi).

Twenty Percent and a Few Days – Optimising a Bitcoin Majority Attack 159

To guard against double spending each output can only be used once. TX129
and TX131 cannot both be part of the transition graph, since both spend the
second output of TX126. To impose an order on transactions – to decide which
transaction came first – the Bitcoin uses a so-called blockchain.

Blockchain. A block contains a set of transactions, a header, and the hash of
the predecessor block. Transactions in the same block are considered to have
happened at the same time. Transactions in different blocks are ordered using
the predecessor relation between blocks. Transactions are only confirmed if they
appear in some block; unconfirmed transactions are kept in the transaction pool.
A peer selects transactions from the transaction pool for a new block at the end
of the block chain, provided it completes a so-called proof-of-work.

Block 0000 B2FE

Nonce 23F4 2DB2

Pre 0000 22A0

TXs TX120, TX121,
TX123

Block 0000 AB45

Nonce BF1A 6FB7

Pre 0000 B2FE

TXs TX122, TX124,
TX126

Block 0000 828D

Nonce 5ABF 48AB

Pre 0000 AB45

TXs TX125, TX128,
TX129

Block 0000 16AD

Nonce C4D3 3ABA

Pre 0000 828D

TXs TX130, TX133,
TX134

Block 0000 DA01

Nonce 5ABF 48AB

Pre 0000 AB45

TXs TX127, TX131,
TX132

Fig. 2. Blockchain

For the proof-of-work the node randomly selects a nonce, which will become
part of the block header. The hash of the block (including this nonce) is calcu-
lated and the result is compared with the target value, set by the Bicoin network.
If the hash is lower than the target value, the proof-of-work is completed; oth-
erwise the node repeats this process. Once a nonce is found, the block becomes
valid and is broadcasted to the network. This process is called mining.

With different miners working on different blocks, the blockchain may have
forks, i.e. that two blocks are created and broadcasted over the network simul-
taneously. Some peers might receive the first block first, and others the second.
Peers continue with the block they received first.

Transactions in the longest chain are considered confirmed. Other transac-
tions are added back to the transaction pool, and can be used to build new
blocks. Miners will usually extend the longest chain, because they will only be
rewarded for blocks in the longest chain. There is a non-negligible probability
that a fork of the longest chain will become the longest. The distance of a block
to the end of the chain is called the confirmation depth. It is advised to only
consider transactions in blocks with confirmation depth 6 or more settled [4].

Figure 2 depicts a blockchain that includes the transaction of Fig. 1. Transac-
tion TX126 is included in Block 0000 AB45, and TX129, which uses an output

160 A. Fehnker and K. Chaudhary

of 50k for Tom from TX126, is in Block 0000 828D. TX131 cannot be included
in this block, or any of its successors, since any output can only be used once.
TX131 could however be included in a fork of Block 0000 AB45. If this fork
becomes the longest, TX131 would be considered valid, instead of TX129. The
50k would have gone to Tom, instead of Vinay and Kaylash. However, for this
to happen the miners would have to outcompete the rest of the network which
will extend the longest chain ending in Block 0000 16AD.

Hash-Rate. The network hash-rate (hashes per second) is a measure for the
processing power of the Bitcoin network. The target value is adapted every 2016
blocks, to achieve a desired confirmation time. In 2017 the confirmation time
was about 12 min [1].

The hash-rate of a pool is relative to hash-rate of the network. A hash-rate of
r ∈ [0, 1], means that the pool alone would find 1 block in 12/rmin. At the time
of writing, November 2017, the largest pool AntPool had a hash-rate of 18%.
These numbers are subject to fluctuation; in 2014 pool Ghash.io came close to
a hash rate of 50% [5].

Andresen Attack. Andresen proposed that BTU miners could create a fork, mine
it in secret until it reaches a length of 11, and then publish the fork at once [11].
Previously confirmed transactions in the honest fork would become unconfirmed,
and Bitcoin miners would loose their reward for extending the previously longest
fork. The aim is to undermine the trust in classic Bitcoin. The next sections
investigate at what hash-rate of the malicious pool this attack becomes feasible.

3 Model and Strategies

The attack is modelled as a race between the honest pool and the malicious pool.
This model is simplified by the fact the malicious pool will work exclusively on its
fork, while the honest pools work exclusively on their fork, the publicly known
blockchain. The model does not have to take into account network delays or
concurrent mining on the same fork.

The model, to the right, contains two integer variables, chainH and chainM,
to measure the length of the honest and malicious fork. Both pools announce
solutions on channel shareSolution, with rate1:rate2.

Honest Malicious

If the malicious pools detects
that the honest pool found a
block it either continues the
current attack, i.e. with the
current fork, or abandons this
attempt, and starts a new fork.
Continuing is modelled as incre-
menting chainH. Starting a new
fork is modelled by resetting
chainH and chainM to zero.

Twenty Percent and a Few Days – Optimising a Bitcoin Majority Attack 161

The strategy deciding to continue or abandon an attack is defined by an array
int threshold[7]. The race will continue if chainH < threshold[chainM],
and will be abandoned otherwise. The attack is successful if the malicious fork
reaches the confirmation depth 6, and if at the same time the length of the
malicious fork exceeds the length of the honest fork. This is expressed as the
following Uppaal property:

Pr[<=1000000] (<> chainM>=6 and chainM>chainH) (1)

4 Analysis

The analysis systematically sweeps through parameters for int threshold[7].
It considers values from 0 to 10, with a difference of at most 4 between chainM
and threshold[chainM]. This leaves 12597 arrays to consider for an optimised
strategy. The analysis computed the expected attack duration for hash-rates
from 10% to 50% for each of these 12597 candidates. It identified an optimised
strategy, defined by threshold array [0, 2, 4, 5, 7, 8, 9], which is the rounded aver-
age of the top 1% of parameter values. This strategy means that the malicious
pool should continue with the current attempt, even if it trails in the race, as
long as it found a few blocks itself.

Fig. 3. Duration of an attack for differ-
ent hash-rates for the default and opti-
mised strategy.

Fig. 4. Duration of attack for different
confirmation depths. Results for 20%
hash-rate.

Figure 3 compares the duration of the optimised strategy with the default
strategy that abandons an attempt if the honest fork exceeds the malicious
fork (array [0, 1, 2, 3, 4, 5, 6]). At a hash-rate of 10% the optimised strategy has
an expected duration of 100203 min (69d:14h:03m), at hash-rate 20% this is
3582 min (2d:11h:42m). The default strategy is expected to take 134023 min
(93d:1h:43m) and 5403 min (3d:18h:03m) respectively. At a hash-rate of 20% (or
more) the Andresen attack appears to be feasible.

162 A. Fehnker and K. Chaudhary

One counter measure would be to increase the confirmation depth. Figure 4
shows for a hash-rate of 20% that increasing the confirmation size by one
increases the estimated duration on average by 77%. Note that the scale is
logarithmic. For confirmation depth 10 this means that the expected duration
is 29600 minutes (20d:10h:20m), and for depth 11 – as mentioned initially by
Andresen – it increases to 60024 minutes (41d:16h:24m). Increasing confirma-
tion depth increases the time to confirm transactions. A confirmation depth of
10 instead of 6, for example, means that it will cost 80% more time.

All results have been computed with Uppaal 4.1.19, at confidence level 0.99.

5 Conclusion

Analysis with Uppaal SMC of the Andersen attack shows that it does not require
the majority hash-rate to succeed. A hash-rate of 20% would yield a success
within a few days, sufficient to construct a malicious fork of length 6, something
that would be unprecedented. Since the malicious pool tries to catch up from
behind if it trails, the malicious fork will even have length 7 or more in 11%
of the cases. Classic Bitcoin miners could adopt a larger confirmation depth,
but that would affect the entire network and the efficiency of the currency as a
whole. To mount a counterattack classic miners would actually have to adopt
BTU, which is the declared aim of the initial attack.

The analysis does not depend on particularities of BTU. Similar considera-
tions can be made for other coin forks. Bitcoin protocol developer Mark Corallo
argued in [10] that an attack on the main fork is unlikely, given that resources
could be better used for mining the main fork. Considering that some of the
players have or are near the required hash-rate, and that optimising the strategy
reduces the cost of an attack significantly, may change this economic argument.
The cost of an attack may weigh up against long term benefits of setting a new
standard, or short term benefits of intentionally upsetting the market.

Uppaal SMC’s input language made it easy to model the attack, and its spec-
ification language was sufficiently expressive to analyse the model. Using these
we were able to do a parameter sweep to optimise a strategy for the Andresen
attack. The optimised strategy significantly reduces the expected duration of an
attack, and thus resources required for it. The model, with additional analysis
results are made available on http://wwwhome.ewi.utwente.nl/∼fehnkera/V17/.

References

1. Bitcoin charts (2017). https://blockchain.info/charts
2. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Modeling bit-

coin contracts by timed automata. In: Legay, A., Bozga, M. (eds.) FORMATS
2014. LNCS, vol. 8711, pp. 7–22. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10512-3 2

3. Beukema, W.: Formalising the bitcoin protocol. In: 21th Twente Student Confer-
ence on IT (2014)

http://wwwhome.ewi.utwente.nl/~fehnkera/V17/
https://blockchain.info/charts
https://doi.org/10.1007/978-3-319-10512-3_2
https://doi.org/10.1007/978-3-319-10512-3_2

Twenty Percent and a Few Days – Optimising a Bitcoin Majority Attack 163

4. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.:
Research perspectives and challenges for bitcoin and cryptocurrencies. IACR Cryp-
tology ePrint Archive 2015, 261 (2015)

5. Cawrey, D.: Are 51% Attacks a Real Threat to Bitcoin? CoinDesk, June 2014.
https://www.coindesk.com/51-attacks-real-threat-Bitcoin/

6. Chaudhary, K., Fehnker, A., van de Pol, J., Stoelinga, M.: Modeling and verification
of the bitcoin protocol. In: MARS 2015. EPTCS (2015)

7. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: STTT. Uppaal
SMC tutorial 17(4), 397–415 (2015)

8. Herrmann, M.: Implementation, evaluation and detection of a doublespend-attack
on Bitcoin. Master’s thesis, Master Thesis ETH Zürich, April 2012

9. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2009). http://www.
Bitcoin.org

10. Shin, L.: What Will Happen At The Time Of The Bitcoin Hard Fork? Forbes,
October 2017. https://www.forbes.com/sites/laurashin/2017/10/31/what-will-
happen-at-the-time-of-the-bitcoin-hard-fork/

11. Van Wirdum, A.: Bitcoin Unlimited Miners May Be Preparing a 51% Attack
on Bitcoin. Bitcoin Magazine, March 2017. https://Bitcoinmagazine.com/articles/
Bitcoin-unlimited-miners-may-be-preparing-51-attack-Bitcoin/

https://www.coindesk.com/51-attacks-real-threat-Bitcoin/
http://www.Bitcoin.org
http://www.Bitcoin.org
https://www.forbes.com/sites/laurashin/2017/10/31/what-will-happen-at-the-time-of-the-bitcoin-hard-fork/
https://www.forbes.com/sites/laurashin/2017/10/31/what-will-happen-at-the-time-of-the-bitcoin-hard-fork/
https://Bitcoinmagazine.com/articles/Bitcoin-unlimited-miners-may-be-preparing-51-attack-Bitcoin/
https://Bitcoinmagazine.com/articles/Bitcoin-unlimited-miners-may-be-preparing-51-attack-Bitcoin/

An Even Better Approach – Improving
the B.A.T.M.A.N. Protocol Through

Formal Modelling and Analysis

Ansgar Fehnker1(B) , Kaylash Chaudhary2, and Vinay Mehta2

1 Formal Methods and Tools Group, University Twente, Enschede, The Netherlands
ansgar.fehnker@utwente.nl

2 School of Computing, Information, and Mathematical Sciences,

University of the South Pacific, Suva, Fiji

Abstract. This paper considers a network routing protocol known as
Better Approach to Mobile Adhoc Networks (B.A.T.M.A.N.). The pro-
tocol has two aims: first, discovery of all bidirectional links, and second,
identification of the best-next-hop to the other nodes. A key mechanism
of the protocol is to flood the network at regular intervals with so-called
originator messages.

In previous work we formalised the B.A.T.M.A.N. protocol in Uppaal
and found several ambiguities and inconsistencies [2]. More importantly,
explicit choices in the RFC had, unfortunately, a negative impact on
route discovery. This previous work compared a literal model based of
the RFC with an incremental improvement. This paper goes one step
further and proposes an alternative that departs from the RFC. We com-
pare the performance using simulations in Uppaal, for static as well as
dynamic topologies. The analysis shows that the proposed alternative
reduces the number of suboptimal routes significantly, and recovers bet-
ter from routing errors that are introduced by mobility.

1 Introduction

The German “Freifunk” community developed the network routing protocol Bet-
ter Approach to Mobile Adhoc Networks (B.A.T.M.A.N.) as an alternative to
OLSR. B.A.T.M.A.N. is a proactive protocol for detecting bidirectional links
and identifying the best-next-hop to all other nodes. Each node floods the net-
work at regular intervals with so-called originator messages and records infor-
mation on received originator messages in a so-called sliding window.

Previous work [2] revealed that the RFC [13] contained several ambiguities
and inconsistencies, as well as a few explicit choices that had a negative impact
on the route discovery process. The analysis in [2] used model checking and
simulation of a static network to investigate occurrence of suboptimal routes.

This paper goes one step further and proposes a model that departs from
the RFC. It proposes a new sliding window that stores the time-to-live values

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 164–178, 2018.
https://doi.org/10.1007/978-3-319-77935-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_12&domain=pdf
http://orcid.org/0000-0002-5326-3432

An Even Better Approach – Improving the B.A.T.M.A.N. Protocol 165

of received messages. This information is then used to identify the best-next-
hop. The alternative model (1) redefines the “best-next-hop” to also include
alternative routes, (2) updates the sliding window if it finds a better route, (3)
forwards only messages that are evidence of improved routes, and (4) compares
the time-to-live only of messages that have the same sequence number. The
model in [2] only addressed the first point fully, the next two partially, and the
last one not at all. The analysis in [2] considered only static topologies, while
this paper also analyses the performance in the presence of a mobile node.

The performance of B.A.T.M.A.N. has been analysed in a real environ-
ment in [11,14]. A simulation of a real environment has been used to analyse
B.A.T.M.A.N. in [8,12]. Furlan simulated the performance of B.A.T.M.A.N.
for a select type of network topologies [6]. These studies have in common that
they consider a particular implementation with specific hardware in a specific
environment and do not analyse the routing algorithm in isolation. This paper
instead uses a formal timed automaton model of the protocol and its proposed
alternative. This allows us to study the protocol in isolation, including non-
deterministic timing, interleaving of message processing in concurrent nodes,
and a probabilistic model of mobility.

A formal analysis of B.A.T.M.A.N. was conducted by Cigno and Furlan
in [7]. This analysis discovered that routing loops are possible, and it proposed
improvements that ensure loop freedom. This work was complemented by sim-
ulation studies and real measurements. While this work does not use model
checking per se, it presents a formal model to study routing loops. In com-
parison, this paper presents a formal Uppaal model, and uses verification and
simulation to study the quality of route discovery. Uppaal has been used pre-
viously to study other protocols, such as LUNAR, OLSR, DYMO, AODV, and
LMAC [1,4,5,10,15].

Section 2 describes the B.A.T.M.A.N. routing protocol and the two different
models. Section 3 describes the Uppaal model, and Sect. 4 the results of the
performance analysis. Section 5 concludes the paper.

2 The B.A.T.M.A.N. Protocol

The German “Freifunk” community has developed the network routing protocol
known as Better Approach to Mobile Adhoc Network [13]1 as an alternative to
OLSR (Optimized Link State Routing Protocol) [3]. Instead of having each node
compute routing tables that capture the complete network topology as OLSR
does, B.A.T.M.A.N. nodes maintain only information on neighboring nodes.
This information is used to identify the best-next-hop [9].

Each node broadcasts at regular intervals originator messages (OGMs).
These are forwarded to neighbouring nodes, if they meet certain conditions,
which will be discussed later. Each node keeps a record of received OGMs, first
to correctly identify all available bidirectional links, and then to find the best-
next-hop to a destination. The protocol is phrased in terms of the origin of the
1 The RFC abbreviates the protocol as B.A.T.M.A.N., including the dots.

166 A. Fehnker et al.

OGMs; once routes have established these originators will be the destination for
packets. It is a desired property that the so-called best-next-hops will indeed
realize the best route, and that the protocol recovers quickly from topology
changes.

Formalisation of the RFC in [2] as an Uppaal model revealed a number of
ambiguities, for example the distinction between a new OGM and an OGM that
is not a duplicate. To resolve these ambiguities, that paper used a model for
a small network and verified a few basic properties, such as successful route
discovery. None of the choices that had to be made to resolve those ambiguities
was surprising, and any implementation of B.A.T.M.A.N. will likely resolve
these in a similar way.

However, the formalisation also revealed that RFC also contained few explicit
choices that arguably undermine the route discovery process. This means the
RFC explicitly defines a rule or process that is arguably counterproductive. To
investigate the effect of those choices this paper will present a Literal model that
adheres to the RFC, and an Alternative Model that strives to improve on the
route discovery process. We will present both models alongside each other.

The RFC defines the message format of OGMs, a sliding window to record
OGMs, rules for processing of OGMs, and the processes to update the sliding
window, ranking the neighbors, and for assembling OGMs that need to be for-
warded. Table 1 summarizes these rules and processes for both the Literal model
and Alternative Model.

2.1 Literal Model

An OGM contains an originator ID (OID), a sender ID (SID), a sequence num-
ber, a time-to-live (TTL), and two flags: the uni-directional link flag, and the
direct-link-flag. The TTL is used as a measure for the distance travelled. The last
two flags are used for the bidirectional-link check. We omit further discussion of
the bidirectional-link check and assume that it works as desired. It is mentioned
here, since the RFC intertwines it with route discovery. For more details see [2].

Each node maintains a sliding window to record OGMs. It specifies for each
originator a range of recent sequence numbers. The window is used to record
for each sender if it has sent a qualifying OGM with an in-window sequence
number. If an OGM with a newer sequence number is processed, the range will
move accordingly. In addition, each node keeps for each originator the last TTL
as a measure of the distance to the originator, which will be updated each time
an OGM is recorded.

The RFC defines the best-next-hop as the sender with the most recorded
OGMs within the sliding window. It specifies that at any time there is only one
designated best-neighbor, even if multiple nodes have the same ranking. This
designation will only change if another node surpasses the ranking of currently
designated best-next-hop.

The condition for forwarding an OGM in the literal model (Table 1) is meant
to ensure that only OGMs that arrive via a best route are rebroadcasted, and
that they neither are a duplicate, nor have been forwarded before. If a neighbor

An Even Better Approach – Improving the B.A.T.M.A.N. Protocol 167

Table 1. Comparison of literal and alternative B.A.T.M.A.N. models.

Literal Model Alternative Model

Generate
OGM

Generate OGMs at regular intervals. Increment the sequence
number modulo upper bound, set sender ID and OID to own
ID, TTL to maximum, and the other flags to false.

Sl
id
in
g
W

in
do

w

Record A mapping for each sender
from in-window sequence
numbers to a Boolean.

A mapping for each sender
from in-window sequence
numbers to TTL.

Ranking Rank by most in-window se-
quence numbers.

Rank by most best TTL per
in-window sequence number.

Best-next-
hop

Designate one best-next hop.
Change only when required.

Treat all currently top ranked
nodes as best-next-hops.

U
pd

at
e

Condition Link to sender is bidirectional,
and OGM has a newer se-

quence number.

Link to sender is bidirectional,
and OGM has a newer sequence

number,
or, the sequence number is

in-window
and the TTL is bet-

ter than or equal
to the best TTL
for that sequence
number.

Process Shift the window if the se-
quence number is newer.
Record the in-window se-
quence number, and update
the last TTL.

Shift the window if the se-
quence number is newer.
Record the TTL for in-window
sequence number.

Fo
rw

ar
di
ng

Condition Link to sender is bidirectional,
and sender is the best-next-

hop,
and the TTL is larger than 2,
and the OGM is not a dupli-

cate
or has same TTL as the

last recorded TTL.

Link to sender is bidirectional,
and sender is the best-next-hop,
and the TTL is larger than 2,
and sequence number is newer,

or it is in-window
and the TTL is strictly

better than the
best TTL for that
sequence number.

Process Set sender ID to own ID, decrement TTL, set isDirect to true if
previous sender is equal to originator, set isUniDirectional to true
if the link to sender is unidirectional.

168 A. Fehnker et al.

OID
Last
TTL

OID
Last
TTL

13 14 15 0 1 13 14 15 0 1
B 1 1 1 B 1 1 1
C 1 C 1
D 1 D 1

6 7 8 9 10 7 8 9 10 11
B 1 1 B 1 1
C 1 C 1
D 1 1 D 1 1

2 3 4 5 6 2 3 4 5 6
B 1 1 1 B 1 1
C C 1
D 1 1 D 1 1

SID
Sequence Numbers

Sequence Numbers
SID

SLIDING WINDOW

B 10

Sequence Numbers

Sequence Numbers

D

C 8

7

SID

SID

SLIDING WINDOW

SID
Sequence Numbers

B 10

C 7

SID
Sequence Numbers

D 7

Fig. 1. Sliding window for Node A in the literal model, before and after an update.

rebroadcasts an OGMs that the node has sent previously, it will have a different
(lower) TTL than the original.

Note that the rules for updating the sliding window and for forwarding OGMs
are not mutually exclusive; some OGMs may be only used for the update, some
may only be forwarded, and others for both. If none of these rules apply, and
none of the bidirectional link rules, the OGM will be silently dropped.

Example. Figure 1 gives an example of a sliding window for a node A in a
network with four nodes. For each originator, nodes B to D, it records which
node forwarded an OGM from that originator. For example, the sliding window
(before the update) recorded that node C forwarded an OGM from node B with
sequence number 13 to node A. For originator B we have that 3 out of 5 OGMs
in the sliding window were submitted by B – more than from C and D, hence B
is the designated best-next-hop. For originator C, nodes B and D have both sent
2 in-window OGMs. The protocols designates one of them as best-next-hop and
only changes it if another node actually surpassed the ranking of the currently
designated best-next-hop.

If an OGM with a newer sequence number is processed, the range will move
accordingly. For example, if node A receives from node D an OGM with OID
C, TTL 7, and sequence number 11, it will move the window from sequence
numbers 6 to 10, to sequence numbers 7 to 11. All entries will be shifted, and
D will be recorded as having sent an OGM, and the last TTL will be set to 7
(Fig. 1 after). If it receives another OGM with OID C and sequence number 11,
but from node B, it will not be recorded since it is a duplicate.

The decision whether to forward an OGM also takes into account whether
the best-next-hop sent it. An OGM will only be forwarded if it was sent by
the designated best-next-hop. For example, assume that node B is the current
best-next-hop for OID C, for Fig. 1 before the update. If node A receives from
node D an OGM with OID C, TTL 7, and sequence number 11, it will update
the window as explained in the previous paragraph. However, it will not forward
it, since it was sent by node D, which is not the designated best-next-hop. The

An Even Better Approach – Improving the B.A.T.M.A.N. Protocol 169

intention is to not forward OGMs that were received via sub-optimal routes,
in this case however it drops an OGM received from a node that has the same
ranking as the designated best-next-hop.

The decision whether to forward an OGM also takes into account the TTL.
An OGM with a TTL of value 2 will be dropped.2 The purpose of this rules is
to limit the number of hops an OGM travels. The TTL is however also used to
compare an OGM, with the last TTL. Suppose, we continue the above scenario,
and node B sends an OGM to node A with OID C, sequence number 11 and
TTL 8. It was sent from the best-next-hop, however, the OGM is a duplicate
and the TTL is different from the last TTL. Hence it will not be forwarded.
This even though the TTL is higher than the last TTL, i.e. the OGM actually
travelled a shorter distance than the last recorded OGM.

2.2 Alternative Model

The alternative model retains the basic structure, but redefines the rules to
improve the route discovery process. The essential difference is that this model
records the TTL of each in-window OGM, not just of the last. Figure 2 gives
an example of routing information maintained by the alternative model. Table 1
gives a summary of the important changes.

The alternative model ranks the senders by how many OGMs had a maximal
TTL for any given in-window sequence number. All nodes that lead the ranking
are considered a best-next-hop. Furthermore, the alternative model extends the
condition for updating. It also records an OGM if it has an TTL that is better
or equal to the currently best TTL for that sequence number. This means it also
records OGMs that arrive via alternative routes that are as good or better.

Furthermore, the alternative model redefines the condition for forwarding.
It will rebroadcast an OGM only if it has a better (thus different) TTL than
previously received OGMs with that sequence number. Unlike the literal model
it will not forward OGMs that have the same TTL. However, unlike that model,
it will forward only those with a strictly better TTL.

Note also that the literal model compares any TTL with the last TTL, regard-
less of sequence number. This can be problematic if messages do not arrive in
order, and the best TTL may have changed in the meanwhile. The alternative
model only compares TTL from OGMs with the same sequence number. It is
still possible that messages do not arrive in order, but the effect of topology
changes are confined to one sequence number.

To summarize: The alternative model (1) redefines the “best-next-hop” to
also include alternative routes, (2) updates the sliding window if it finds better
routes, (3) forwards only messages that are evidence of improved routes, and (4)
only compares the time-to-live of messages that have the same sequence number.

2 The RFC states that the OGM should be dropped if the TTL after decrementing
becomes 1.

170 A. Fehnker et al.

OID OID

13 14 15 0 1 13 14 15 0 1
B 10 10 10 B 10 10 10
C 8 C 8
D 8 8 D 8 9

6 7 8 9 10 7 8 9 10 11
B 8 8 8 8 B 8 8 8 8
C 10 C 10
D 8 8 9 D 8 9 7

2 3 4 5 6 2 3 4 5 6
B 8 7 7 B 8 7 7
C 8 C 8
D 10 10 D 10 10

C

SID
Sequence Numbers

D

SID
Sequence Numbers

D

Sequence Numbers

SID

SID

C

Sequence Numbers

SID
Sequence Numbers

B

SLIDING WINDOW

SID
Sequence Numbers

B

Alternative Model - Before Alternative Model - After
SLIDING WINDOW

Fig. 2. Sliding window for Node A in the literal model, before and after an update.

Example. Figure 2 gives an example of a sliding window for node A. Before the
update, both nodes B and D are considered best-next-hops for OID C, since
they both are have the highest TTL for 3 out of the last 5 sequence numbers.

Suppose node A receives an OGM from node D with OID C, TTL 7, and
sequence number 11. The sliding-window will move, and sequence number 7 will
be recorded. The OGM will also be forwarded, since it is a new OGM, and node
D is a best-next-hop. Suppose further that node B forwards another OGM to
node A, with OID C and sequence number 11, now with TTL 8. This OGM will
also be recorded and forwarded, since it improves on the previous OGM with
sequence number 11. Node B will now be the next-best-hop; it has three times
the best TTL, node D only twice, and node C only once.

The next sections analyse the effect of these changes on the performance, in
particular on the number of suboptimal routes and on the recovery from route
errors due to mobility.

3 Uppaal Model

For the performance analysis we use a timed (and probabilistic) Uppaal model.
It uses a single template for all nodes in the network, and the entire network is
a composition of N nodes.

The node template has four control locations. The first is a committed initial
location, the second, labelled Empty, models a node that has no OGM in its
message buffer, the third, labelled Processing, models a node that has OGMs
in its buffer, and, finally, another committed location. This location is entered
after processing of an OGM, and is used to check if the buffer is empty or
not. The edge from the initial location to location empty initialises the sliding
windows and other local variables.

From location Processing there are 7 outgoing edges. They model sending
and receiving of OGMs, and the processing of the OGMs:

An Even Better Approach – Improving the B.A.T.M.A.N. Protocol 171

Fig. 3. Timed model for simulation

– An edge that synchronizes on channel SendOGM[oid]!. This transaction cre-
ates an OGM, and copies it to the shared global variable ogmGlobal.

– An edge that synchronizes on channel SendOGM[sid]?, where sid is a valid
sender ID. The guard topology[sid] ensures that sender and receiver are
connected. This transaction calls a function receiveOGM(), which copies the
OGM from global variable ogmGlobal, and appends it to the local buffer
ogmLocal.

– Five edges that model the processing of OGMs in the buffer. The different
rules and processes refer to sections in the RFC.
• Rule 5.2.4 and Process 5.3 relate to the bidirectional-link check.
• Rule 5.2.6 and Process 5.4 relate to updating the sliding window.
• Rule 5.2.7 and Process 5.5 relate to forwarding OGMs.

If Rule 5.2.7 applies, the edge will synchronize on channel SendOGM[oid]!, i.e.
it forwards an OGM. All others are labelled with broadcast channel tau[id].
These edges model a local update of the routing information. The label allows

172 A. Fehnker et al.

us to give those transition a higher priority – to reduce the number of states
– while it will not affect the routes that will be discovered.

The model uses clock ogmTime to ensure that any node sends an OGM once
between MIN OGMTIME and MAX OGMTIME. The transition that models creation
and sending of new OGMs includes guard ogmTime>=MIN OGMTIME, and all non-
committed control locations invariant ogmTime<=MAX OGMTIME.

The model uses clock responseTime to ensure that a node rebroadcasts
within MAX RESPONSE time units, while there is an OGM in the buffer. The model
includes two control locations, Empty for when the buffer is empty, Processing
for when the node processes OGMs. In the latter location there is the additional
invariant responseTime<=MAX RESPONSE, which enforces a timely response.

The model also includes a number of auxiliary functions to support analysis of
the performance by simulation, such as function countRouteMismatch() which
counts how many “best-next-hops” are actually suboptimal.

The model for a network with a dynamic topology includes one more template
that modifies the topology at random, based on an underlying random walk
model, as described in [5].

This basic structure is the same for the literal and the alternative model.
The differences given in Table 1 is implemented by different implementations of
the functions that check conditions and perform updates.

4 Simulation Results

This section compares the two models using simula-
tion with Uppaal. This comparison considers first a
static topology to evaluate the speed of route discovery
and incidences of suboptimal routes. It then considers
a dynamic topology with one moving node for compar-
ing the performance when links are deleted or added.
The simulations use a 4 by 4 grid plus one additional
central nodes, as depicted to the right. Unlike a lin-
ear topology or a fully connected graph, this setup has
many potential sub-optimal routes.

Processing of OGMs takes at most 1 time unit, new OGMs are created once
between 19 and 20 time units, and each simulation stops after 1000 time units.
The size of the sliding window is 5. We use an Intel i5-5200 CPU 2.2 Ghz pro-
cessor with 8 GB RAM running Uppaal 4.1.19. A single simulation of the model
with dynamic topology takes about 1200 s. All results are for 100 runs.

Route Discovery. Figure 4 depicts the results route discovery for a static topol-
ogy. It shows for how many node/originator pairs no route, i.e. no best-next hop
has been identified, and also for how many pairs a potential best-next-hop is
missing. The latter applies if more than one optimal route to the originator
exists.

An Even Better Approach – Improving the B.A.T.M.A.N. Protocol 173

Fig. 4. Results on route discovery and route mistakes for static topology. Averages
over 100 runs.

Both versions discover within 120 time units at least one route for each
node/originator pair. It takes 6 rounds of OGMs, which corresponds to the
network diameter 6. The literal model converges to 164 missing routes. It finds
no additional routes, since, by design, only one best-next-hop is designated. In
the alternative this number will decline to almost zero, except for the disturbance
introduced by new OGMs every 20 time units.

More telling are the route mistakes, i.e. the number of suboptimal routes.
The literal model number converges to an average of 1.5 suboptimal routes at
time 1000, while the alternative model converges to none. Note that the literal
model chooses only one best-next-hop; if that hop is suboptimal it has no optimal
alternative.

Error Recovery. Figure 5 shows results for a dynamic topology. The central
node is mobile, which means moves freely in the entire 4-by-4 grid, adding and
deleting links with a probability that depends on the current topology. The
underlying model for mobility is a random walk, as described in [5]. There will
be one change to the topology every 100 time units. Figure 5 gives the number of
suboptimal routes and the number of route errors. The latter are best-next-hops

174 A. Fehnker et al.

Fig. 5. Results on route mistakes and route error for dynamic topology. Averages over
100 runs.

that are actually not even directly connected to the node. Route errors happen
when a link is deleted due to mobility. The results show that the alternative
model will recover faster from suboptimal routes and route errors.

Figure 5 combines adding and deleting nodes in one graph. Over the 100
runs a link was added 411 times and deleted 489 times, but in Fig. 5 they are
aggregated the same way. The difference between the route errors in the interval
100 to 200 compared to the interval 200 to 300 is explained by the fact that –
due to the geometry of the topology – the mobile node will more often delete a
link at time 100, and more often add a link at time 200.

To isolate the effects of link addition and deletion, we looked at whether at a
beginning of a 100 times unit interval a link was added or deleted, and aggregated
those results separately. Figure 6 separates the results for adding and deleting
links, for a clearer picture. The results show that the alternative model has higher
initial values for suboptimal routes and route errors. This is because of multiple
best-next-hops in the alternative model. It identifies on average 60% more. If
a link changes, it affects more best-next-hops. On the other hand it also offers
more alternatives, which allows it to recover faster.

An Even Better Approach – Improving the B.A.T.M.A.N. Protocol 175

Fig. 6. Recovery after link deletion or addition. Values are averages.

Figure 6 shows that the alternative model recovers faster from route errors
when a link is deleted, and converges faster to fewer suboptimal routes when
a link is added. The small number of route errors for an added link is noise
remaining from earlier deletions. Adding a link may introduce suboptimal routes,
but not route errors.

OGM Classification. The previous results compare the performance of both
models in terms of route mistakes and errors. Another measure is to see how
many OGMs are created, forwarded and recorded. Figure 7 compares how
received OGM were classified; whether to perform a bidirectional link check
(BLC), update the sliding window (UPD), forward the OGM (FWD), update
and forward (UPD+FWD), or drop it. The result for the static and dynamic
topology are very similar. The alternative model drops fewer OGMs (−10%),
updates the sliding window more often (+15%), and forwards about the same
percentage (28%). However, the alternative model nodes processes overall 10%
more OGMs.

A cursory reading of these results suggest that the OGMs that are for-
warded, or forwarded and updated by the literal model are the same type of
messages that are forwarded and updated by the alternative model. After all,
the share of forwarded messages (FWD) and of the forward and updated mes-
sages (UPD+FWD) in the literal model adds up to the same share of messages
that are forwarded in the alternative model. The following analysis, however,
shows that this cursory comparison of how the two models classify OGMs is
incorrect.

For a more detailed look how the changes in the alternative model change the
way OGMs are classified and processed, we ran the literal model in parallel with

176 A. Fehnker et al.

Fig. 7. Classification of received OGMs. Averages over 100 runs.

Fig. 8. Classification of OGMs generated in literal model by alternative model rules
(left), and vice versa (right).

the classification of the alternative model. The literal model determines which
OGMs to forward according to its rules, while the alternative classification logs
whether it would have forwarded or dropped the OGM. And vice versa, i.e. the
alternative model was run, with the literal model in parallel for logging. Figure 8
compares how OGMs are classified for the dynamic topology.

The analysis shows that the alternative model would use many OGMs that
are dropped in the literal model for an update. Furthermore, it would not forward
any of the OGMs that the literal model forwards without update. This includes
OGMs with an TTL equal to the last TTL. Conversely, the literal model would
drop many OGMs that the alternative model uses for an update, and it would
not forward most OGMs that the alternative model forwards. This includes the
OGMs with a better TTL, and thus a better distance. This cross comparison of
the classification of OGMs confirms that the literal and alternative version do
forward very different sets of OGMs.

An Even Better Approach – Improving the B.A.T.M.A.N. Protocol 177

5 Conclusion

Formalisation of the B.A.T.M.A.N. protocol revealed several explicit choices
that have a negative impact on the route discovery process [2]. This paper pro-
poses an alternative model that departs from the RFC. It includes a sliding
window that records the TTL of in-window OGMs. The alternative model then
(1) redefines the “best-next-hop” to also include alternative routes, (2) updates
the sliding window if better routes are found, (3) forwards only messages that are
evidence of improved routes, and (4) compares the time-to-live only of messages
that have the same sequence number.

These changes allow to reformulate the rules and updates in terms of the
TTL of an OGM, i.e. in terms of the distance travelled. The paper presented
simulation results for Uppaal models that demonstrate that these changes lead
to better route discovery and improved error recovery. This comes at an expense
of some additional overhead. The alternative model processes in our simulation
experiment about 10% more OGMs.

Future work should investigate how the proposed alternative by Cigno and
Furlan [7] could be combined with our alternative model, and how to add these
to the latest implementations of B.A.T.M.A.N. This would enable simulation
on a classical network simulator and, of course, on a real test bed.

This paper could not present the model in detail. For a more thorough dis-
cussion of the formalisation of B.A.T.M.A.N. see [2]. A copy of the models can
be downloaded from http://wwwhome.ewi.utwente.nl/∼fehnkera/S17/.

References

1. Bulychev, P., David, A., Larsen, K.G., Mikučionis, M., Poulsen, D.B., Legay, A.,
Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata. In:
Proceedings 10th Workshop on Quantitative Aspects of Programming Languages
and Systems, EPTCS (2012). https://doi.org/10.4204/EPTCS.85.1

2. Chaudhary, K., Fehnker, A., Mehta, V.: Modelling, verification, and comparative
performance analysis of the B.A.T.M.A.N. protocol. In: Models for Formal Analysis
of Real Systems (MARS 2017). EPTCS (2017). https://doi.org/10.4204/EPTCS.
244.3

3. Clausen, T., Jacquet, P.: Optimized Link State Routing Protocol (OLSR). Network
Working Group. http://www.tools.ietf.org/html/rfc3626

4. Fehnker, A., van Glabbeek, R., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
Automated analysis of AODV using UPPAAL. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 173–187. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28756-5 13

5. Fehnker, A., Höfner, P., Kamali, M., Mehta, V.: Topology-based mobility models
for wireless networks. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 389–404. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40196-1 32

6. Furlan, D.: Analysis of the overhead of B.A.T.M.A.N. routing protocol in regu-
lar torus topologies. Technical report, University of Trento, Italy (2011). https://
downloads.open-mesh.org/batman/papers/OGMoverhead.pdf

http://wwwhome.ewi.utwente.nl/~fehnkera/S17/
https://doi.org/10.4204/EPTCS.85.1
https://doi.org/10.4204/EPTCS.244.3
https://doi.org/10.4204/EPTCS.244.3
http://www.tools.ietf.org/html/rfc3626
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-28756-5_13
https://doi.org/10.1007/978-3-642-40196-1_32
https://doi.org/10.1007/978-3-642-40196-1_32
https://downloads.open-mesh.org/batman/papers/OGMoverhead.pdf
https://downloads.open-mesh.org/batman/papers/OGMoverhead.pdf

178 A. Fehnker et al.

7. Furlan, D.: Improving BATMAN routing stability and performance. Master’s
thesis, University of Trento (2011). https://downloads.open-mesh.org/batman/
papers/Improving BATMAN Routing Stability and Performance.pdf

8. Hardes, T.: Performance analysis and simulation of a Freifunk Mesh network in
Paderborn using B.A.T.M.A.N. advanced. Master’s thesis, University of Paderborn
(2015). http://thardes.de/wp-content/uploads/2016/03/thesis.pdf

9. Huhtonen, A.: Comparing AODV and OLSR routing protocols (2004). http://
www.tml.tkk.fi/Studies/T-110.551/2004/papers/Huhtonen.pdf

10. Kamali, M., Höfner, P., Kamali, M., Petre, L.: Formal analysis of proactive, dis-
tributed routing. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276,
pp. 175–189. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-
0 13

11. Kulla, E., Hiyama, M., Ikeda, M., Barolli, L.: Performance comparison of OLSR
and BATMAN routing protocols by a MANET testbed in stairs environment.
Comput. Math. Appl. 63(2), 339–349 (2012)

12. Marinis Artelaris, S.: Performance evaluation of routing protocols for wire-
less mesh networks (2016). http://lnu.diva-portal.org/smash/get/diva2:903013/
FULLTEXT01.pdf

13. Neumann, A., Aichele, C., Lindner, M., Wunderlich, S.: Better approach to mobile
ad-hoc networking (B.A.T.M.A.N.). IETF Draft (2008). https://tools.ietf.org/
html/draft-wunderlich-openmesh-manet-routing-00

14. Wang, J.C.P., Hagelstein, B., Abolhasan, M.: Experimental evaluation of IEEE
802.11s path selection protocols in a mesh testbed. In: 2010 4th International
Conference on Signal Processing and Communication Systems (2010). https://doi.
org/10.1109/ICSPCS.2010.5709664

15. Wibling, O., Parrow, J., Pears, A.: Automatized verification of ad hoc routing
protocols. In: de Frutos-Escrig, D., Núñez, M. (eds.) FORTE 2004. LNCS, vol.
3235, pp. 343–358. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-30232-2 22

https://downloads.open-mesh.org/batman/papers/Improving BATMAN Routing Stability and Performance.pdf
https://downloads.open-mesh.org/batman/papers/Improving BATMAN Routing Stability and Performance.pdf
http://thardes.de/wp-content/uploads/2016/03/thesis.pdf
http://www.tml.tkk.fi/Studies/T-110.551/2004/papers/Huhtonen.pdf
http://www.tml.tkk.fi/Studies/T-110.551/2004/papers/Huhtonen.pdf
https://doi.org/10.1007/978-3-319-22969-0_13
https://doi.org/10.1007/978-3-319-22969-0_13
http://lnu.diva-portal.org/smash/get/diva2:903013/FULLTEXT01.pdf
http://lnu.diva-portal.org/smash/get/diva2:903013/FULLTEXT01.pdf
https://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
https://tools.ietf.org/html/draft-wunderlich-openmesh-manet-routing-00
https://doi.org/10.1109/ICSPCS.2010.5709664
https://doi.org/10.1109/ICSPCS.2010.5709664
https://doi.org/10.1007/978-3-540-30232-2_22
https://doi.org/10.1007/978-3-540-30232-2_22

Towards a Formal Safety Framework
for Trajectories

Marco A. Feliú(B) and Mariano M. Moscato

National Institute of Aerospace, Hampton, USA
{marco.feliu,mariano.moscato}@nianet.org

Abstract. Trajectory generation is at the heart of an autonomous
Unmanned Aerial Vehicle (UAV). Given a navigation context, the UAV
has to conceive a trajectory that fulfills its mission goal while avoiding
collisions with obstacles and surrounding traffic. This intended trajectory
is an idealization of the various actual physical trajectories that the UAV
may perform during flight. The validation of actual physical trajectories
with respect to their intended counterparts is challenging due to the
interaction over time of several uncontrolled factors such as the environ-
mental conditions, measurement errors and the cyber-physical compo-
nents of the UAV. For this reason, the most common validation technique
for trajectory generators is flight simulation, which is not exhaustive and
thus cannot prove the actual absence of collisions.

This paper presents a preliminary formal framework to reason about
the safety of UAV trajectories with respect to static-obstacle collision
avoidance taking account of the uncertainties derived from uncontrolled
factors. The proposed framework was formally verified in a mechanical
theorem prover. Its application as an oracle for black-box testing valida-
tion of trajectory generators is also proposed. Such testing strategy would
allow the safety evaluation of trajectories while removing the need for
simulation procedures, thus reducing the cost of the validation process.

1 Introduction

Cyber-physical systems and, in particular, autonomous Unmanned Aerial Vehi-
cle (UAV) are especially hard to analyze. This is because their behavior depends
not only on the (correct) interaction of digital and analog components intended
to control the system but also on uncontrolled factors. These factors can be
either external, for example, the weather conditions affecting the operation of a
UAV, as well as internal, such as the uncertainty inherent to the physical aspect
of the actuators of a vehicle.

The more widespread evaluation procedures for this kind of systems are sim-
ulation and flight testing. Flight testing provides actual information about the
real behaviour of the system as a whole. But this information is limited to flying
contexts that can be artificially reproduced and it is obtained at a great cost.
This is the reason why simulation is the most widely used approach to valida-
tion of cyber-physical systems since it can approximate real behavior under any
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 179–184, 2018.
https://doi.org/10.1007/978-3-319-77935-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_13&domain=pdf

180 M. A. Feliú and M. M. Moscato

specific condition at a significative lower cost and without risks. However, none
of these techniques is exhaustive in the sense that they cannot prove properties
about the behavior of a UAV.

There are two reasons causing the lack of exhaustiveness of simulation and
flight testing. One reason is the set of inputs of the systems that will be con-
sidered during the validation procedure; since the number of combinations of
missions and navigation contexts of a UAV is potentially infinite, it is impossi-
ble to reproduce and check all those scenarios. The other reason is the implicit
uncertainty of the system performance and the environment in a real setting of
the UAV. Since navigation conditions can change instantly during flight and the
system itself can behave imprecisely in terms of timing, measurements or actions,
it is impossible to reproduce and check all these uncertainty scenarios either. The
present work aims to undertake this second aspect of the completeness of the
validation process.

This paper introduces a formal framework for reasoning about the collision
safety of UAV trajectories in the presence of uncertainty. This framework allows
reasoning about all the possible scenarios induced by the uncertainty of the envi-
ronment and the vehicle when the system is following an intended trajectory in
a given geographical setting. It does so by overapproximating all the uncertainty
scenarios using the formal concept of a tube centered in the intended trajectory.
The proposed framework is being developed using the Prototype Verification
System (PVS) [5]. In addition, this paper explains how to apply this framework
to the collision-safety validation of a UAV trajectory generator by means of
black-box testing [2]. To this end, an application of the framework to the concept
of a formally verified safety checker that can be used as an oracle during the
testing process is proposed.

2 The Framework

The proposed framework is built on some fundamental concepts that are pro-
gressively introduced in this section.

Trajectories, Control, and Uncertainty. The framework proposed in this
paper allows one to reason about all the possible scenarios induced by the uncer-
tainty of the environment and the vehicle when the system is performing a tra-
jectory. In order to do so, it has to link two related concepts, namely intended
trajectories and physical trajectories, by means of the notions of control and
uncertainty.

Definition 1 (Intended Trajectory). An intended trajectory is the repre-
sentation of a trajectory that the UAV has planned to perform in order to fulfill
its mission or to avoid a collision.

For example, suppose that a given mission consists in following a flight plan
with two waypoints A and B. In this work, the term flight plan is understood in

Towards a Formal Safety Framework for Trajectories 181

its higher-level meaning: an ordered succession of spacial points, usually called
waypoints. When the UAV arrives at point A, it may compute an intended tra-
jectory in the form of a straight line from A to B. An intended trajectory is ideal
in the sense that the path by it described might be impossible to be strictly fol-
lowed by the actual UAV. This difficulty arises from the physical limitations of
the vehicle and the uncertainty provoked by its interaction with the environment.
Then, such ideal trajectory acts indeed as a reference.

Definition 2 (Physical Trajectory). A physical trajectory is an actual tra-
jectory that a UAV can perform in the real world when it is following an intended
trajectory.

Physical trajectories depend on various factors, namely:

– the control of the vehicle, depending on the actions taken by the control,
the physical trajectory will be closer or further from the ideal one;

– the maneuverability of the vehicle, the shape of the physical trajectory
will vary according to the kind of maneuvers that the vehicle can perform;

– the uncertainty of the vehicle behavior, the vehicle may make wrong
measurements of the environment or perform imprecise maneuvers, thus act-
ing slightly different from what is expected;

– the uncertainty of the environment, wind or other atmospheric condi-
tions may vary the physical trajectory described by the vehicle.

The proposed framework formalizes the relationship between intended and
physical trajectories by means of the notion of control of the UAV. This control
works by commanding maneuvers at a given rate in order to allow the vehicle
to follow an intended trajectory while describing a physical trajectory that does
not deviate unnecessarily from the intended one.

Definition 3 (Control). A function ControlΔt(trI , p) represents the control
of the vehicle. It specifies the actions to be applied by the vehicle actuators in
order to move the aircraft from p, the current position of the vehicle, to the next
waypoint according to the intended trajectory trI , assuming that the control will
be able to perform the next action at a rate determined by a lapse Δt.

This framework aims at over approximating all possible physical trajectories
for a given intended trajectory. In order to define a complete set of possible
physical trajectories induced by a control, it is necessary to bound the uncertainty
of the UAV components and its environment. Let U represent this bound.

Definition 4 (AllPhysicalTrajectories). Given a function ControlΔt, the
function AllPhysicalTrajectoriesUControlΔt

(trI) denotes the collection of all pos-
sible trajectories resulting from the application of actions decided by the control
every time steps not greater than Δt units of time under the uncertainty U .

The over approximation of all the potential movement of the UAV is defined
as the maximum distance from the intended trajectory at which all the physical
trajectories can be.

182 M. A. Feliú and M. M. Moscato

Definition 5 (FollowsAtMaximumDistance). Given a function ControlΔt,
the predicate FollowsAtMaximumDistanceUControlΔt

(trI ,d) checks that the con-
trol function is able to maintain the vehicle at most at a distance d of the intended
trajectory trI under the uncertainty U .

As a consequence, if a control fulfills the FollowsAtMaximumDistance
property for a given distance, an over approximation can be built as a tube.

Definition 6 (Tube). Given an intended trajectory tr and a distance d, a
tube(tr, d) is the set of points in space whose distance to tr is no larger than d.

As shown below, the obstacle-collision-avoidance safety of the tube implies the
obstacle-collision-avoidance safety of all physical trajectories.

Obstacle-Collision-Avoidance Safety. The proposed framework has been
developed to ensure the obstacle-collision-avoidance safety of UAV trajectories
by formalizing the notions of obstacle and avoidance:

Definition 7 (Obstacle). An obstacle O is any geometrical volume.

Definition 8 (Avoids). Given a trajectory tr and a set of obstacles Os, the
predicate Avoids(tr, Os) states that the trajectory tr does not collide with any
obstacle in Os.

Since this framework aims at reasoning with over approximations of physical
trajectories, a notion of intersection with obstacles is needed for them as well.

Definition 9 (Intersects). Given a tube t and set of obstacles Os, the predi-
cate Intersects(t, Os) states that the tube intersects some obstacle in Os.

Using the presented notions, it is possible to reason about the obstacle-
collision avoidance of physical trajectories from an over approximation.

Theorem 1 (Intended Trajectory Collision Safety). Given an intended
trajectory trI , a control ControlΔt, and a set of obstacles Os,

(∃d : FollowsAtMaximumDistanceUControlΔt
(trI , d)

∧¬Intersects(tube(trI , d), Os))
⇒

(∀ trP : trP ∈ AllPhysicalTrajectoriesUControlΔt
(trI)

⇒Avoids(trP , Os))

This theorem reduces the obstacle-avoidance problem to the geometric prob-
lem of an intersection of shapes. The intended trajectory is considered safe if
there exists a tube, enclosing all its possible physical trajectories, that does not
intersect with any of the predefined obstacles. This theorem is the basis for the
trajectory validation strategy presented in the next section.

Towards a Formal Safety Framework for Trajectories 183

3 Trajectory Validation Strategy

The trajectory validation strategy is schematized in Fig. 1. The idea is to have
a safety oracle that can decide on the obstacle-collision-avoidance safety of
intended trajectories. This oracle first computes an over approximation of all
the possible physical trajectories that could be generated by a UAV while fol-
lowing the intended trajectory to be checked, assuming a specific control and
uncertainty bounds. Then, the oracle checks if the over approximation inter-
sects with any of the obstacles. If the over approximation does not intersect any
obstacle, the oracle can ensure that the intended trajectory is safe. Otherwise,
the oracle is not able to assure the safety of the input trajectory.

Fig. 1. Schematic diagram of the validation strategy.

Theorem 1 supports the use of the oracle in this strategy. If an oracle is
verified to compute approximations satisfying the antecedent of this theorem, its
soundness as a validator is guaranteed. However, a useful oracle for validation
must have two additional properties: effectiveness and precision. A practical
oracle should be effective in the sense of being able to decide the safety of a
given trajectory consuming a limited and reasonable amount of time and memory
space. Moreover, a useful oracle will be precise in the sense of computing the
smallest possible over approximations, so that it can decide on a greater number
of intended trajectories.

Currently, a simplified kinematic model for physics and control has been for-
malized. In this model, intended trajectories are represented with lists of points,
while physical trajectories are functions of time into points. In addition, physical
trajectories are allowed to change their velocity instantaneously, representing the
uncertainty of the interaction between the UAV and its environment. Finally, in
this model, the control assumes uncertainty in its inputs (position and speed)
when choosing a movement action.

184 M. A. Feliú and M. M. Moscato

4 Conclusion and Future Work

This paper reports an ongoing effort on the development of a formal frame-
work to reason about the collision safety of trajectories with uncertainty, and its
application to a validation strategy for trajectories.

The framework currently relies on some properties of the UAV control and
a coarse-grained notion of uncertainty. Hence, a limitation of the current frame-
work is the need of two formal descriptions: the control of the UAV and the
uncertainty of the environmental conditions and their interaction with the air-
craft. In the future, it is planned to focus on these limitations. For the control,
it is planned to formalize a scheme of over approximations of the control itself,
to provide a cost-effective way of reasoning on real-life examples of such com-
ponents. The model of uncertainty will be refined in order to account for more
low-level details and interactions between them and the context of the UAV.
Another future improvement is the more realistic description of the physical
behavior of the UAV. This will produce more precise over approximations mak-
ing the validation strategy more effective. Furthermore, the ideas behind this
framework are compatible with existing approaches to formally represent trajec-
tories or to reason about them, such as [1,4], thus opening future improvement
opportunities.

The framework does not consider traffic-collision safety in its current state.
The integration of this or other avoidance-related properties into the framework
is also future work. The intuition is that tubes may be computed for traffic
vehicles and, together with the ownship tube, they can be checked for intersection
in a 4-dimensional space.

This formal framework is being developed for the validation of the trajectory
generator module of the High-Integrity version of the Safe Autonomy Flexible
Innovation Testbed (SAFITTM) [3]. The preliminary specification of the frame-
work has been implemented in PVS [5]. The full validation strategy implemen-
tation is an ongoing work.

References

1. Hagen, G., Guerreiro, N.M., Maddalon, J.M., Butler, R.W.: An efficient universal
trajectory language. Technical report TM-2017-219669, NASA (2017)

2. Howden, W.E.: Introduction to the theory of testing. In: Tutorial: Software Testing
and Validation Techniques, pp. 16–19 (1978)

3. Johnson, S.C., Petzen, A., Tokotch, D.: Exploration of detect-and-avoid and well-
clear requirements for small UAS maneuvering in an urban environment. In: Amer-
ican Institute of Aeronautics and Astronautics, 28 November 2017 (2017). https://
doi.org/10.2514/6.2017-3074

4. Narkawicz, A., Muñoz, C.: Formal verification of conflict detection algorithms for
arbitrary trajectories. Reliab. Comput. 17, 209–237 (2012)

5. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55602-8 217

https://doi.org/10.2514/6.2017-3074
https://doi.org/10.2514/6.2017-3074
https://doi.org/10.1007/3-540-55602-8_217

Static Value Analysis of Python
Programs by Abstract Interpretation

Aymeric Fromherz1,2, Abdelraouf Ouadjaout2 , and Antoine Miné2(B)

1 Carnegie Mellon University, Pittsburgh, USA
afromher@andrew.cmu.edu

2 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6,
75005 Paris, France

{abdelraouf.ouadjaout,antoine.mine}@lip6.fr

Abstract. We propose a static analysis by abstract interpretation for a
significant subset of Python to infer variable values, run-time errors, and
uncaught exceptions. Python is a high-level language with dynamic typ-
ing, a class-based object system, complex control structures such as gen-
erators, and a large library of builtin objects. This makes static reasoning
on Python programs challenging. The control flow is highly dependent
on the type of values, which we thus infer accurately.

As Python lacks a formal specification, we first present a concrete col-
lecting semantics of reachable program states. We then propose a non-
relational flow-sensitive type and value analysis based on simple abstract
domains for each type, and handle non-local control such as exceptions
through continuations. We show how to infer relational numeric invari-
ants by leveraging the type information we gather. Finally, we propose
a relational abstraction of generators to count the number of available
elements and prove that no StopIteration exception is raised.

Our prototype implementation is heavily in development; it does not
support some Python features, such as recursion nor the compile builtin,
and it handles only a small part of the builtin objects and standard
library. Nevertheless, we are able to present preliminary experimental
results on analyzing actual, if small, Python code from a benchmarking
application and a regression test suite.

1 Introduction

Sound static analyzers based on abstract interpretation [7] have been successful
in formally checking correctness properties of programs. Academic and indus-
trial successes include, for instance, Polyspace Verifier, Astrée [5], Sparrow [18],
and Julia [26]. The major part of these analyzers target solely statically typed
languages, such as C, Java, or C#. With the rise of web applications, the static
analysis of JavaScript programs has started to gain some attention [2,14,15].
The more dynamic nature of the language makes this task challenging. In this

This work is partially supported by the European Research Council under Consol-
idator Grant Agreement 681393 – MOPSA.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 185–202, 2018.
https://doi.org/10.1007/978-3-319-77935-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_14&domain=pdf
http://orcid.org/0000-0001-7248-5914

186 A. Fromherz et al.

article, we look at another dynamic language, Python [21], that, we feel, has
been largely neglected by the static analysis community.

Python is a relatively recent programming language, introduced in 1991,
which has gained a lot of popularity due to its readable syntax, ease of pro-
gramming, interactive toplevel, and large library support. It is used notably in
education and science, for beginners and non-computer scientists, as a scripting
and prototyping language. It is an interpreted language with dynamic features,
including dynamic typing (variables are not typed, and can hold values of any
type), a class system supporting object run-time alteration (adding fields beyond
what is declared in the object class, and possibly altering the class hierarchy),
overloading for methods but also builtin language operators (such as +), reflec-
tion, closures, and an eval keyword. While these dynamic features are a popular
aspect of the language, and are effectively relied on in Python programs [1], they
make reasoning on Python programs and ensuring the absence of run-time errors
very difficult at compile-time. This has motivated the design of Python subsets
and variants with more static typing [3], but that does not help with the large
majority of existing Python code that does not obey these restrictions.

We design instead a specific analysis for Python that embraces fully the
dynamic aspects of the language—we nevertheless draw the line and reject pro-
grams featuring code generation, calling eval or compile builtins, or importing
modules from locations that are not statically known. Our abstract interpreter
infers the possible values of program variables in a flow-sensitive way. This infor-
mation allows us to derive the possible types of each variable at each program
point, and hence deduce the control flow for the next instruction. Our analysis
then detects soundly all possible run-time errors, that is, uncaught exceptions.

Formal semantics. Following the standard abstract interpretation road-map,
we define a concrete collecting semantics, and then derive an effective ana-
lyzer by abstraction. An additional difficulty of Python is the lack of formal
specification—unlike, for instance, JavaScript, that features an English specifi-
cation [9] that provides a sound basis for formal specifications [6]. The Python
language is defined by its reference manual [21], which leaves room for ambigu-
ity and permits implementation freedom. We base our own semantics on earlier
formalization efforts [20], on the reference manual [21], and on the CPython refer-
ence implementation. We innovate by defining the semantics as an input-output
function on environments, by induction on the syntax with explicit fixpoints for
loops, which lends itself well to the design of an abstract interpreter.

Value and type analysis. The core component of our analyzer employs non-
relational abstractions, assigning an abstract set of values to each variable. Fol-
lowing the JavaScript analysis by Jensen et al. [14], each variable is given a
tuple of abstract values to account for values of all possible types. We employ
standard numeric domains, as well as field-sensitive representations for objects
abstracted by allocation site, and simple abstractions of builtin Python types
(e.g., strings are represented as finite concrete sets or �; lists are represented as
a summary object and a length information, etc.). Consider, for instance, that
the function init in Fig. 1a is called with a function object argument f and an

Static Value Analysis of Python Programs by Abstract Interpretation 187

Fig. 1. Python programs illustrating challenging static analysis situations.

optional argument n with a default None value. Our value analysis will infer that
n is never None when range(n) is evaluated, so that no exception is raised at
this point. Additionally, attribute, method, and operator resolution is handled
easily by extracting type information from the value abstraction. Another com-
plication we handle is that attributes and methods can be added dynamically to
an object beyond what is statically declared in its class.

Relational numeric analysis. Additionally, we show how we can go beyond non-
relational abstractions and leverage numeric relational domains, such as polyhe-
dra [8], which are invaluable to program analysis—notably to infer non-trivial
inductive loop invariants. We rely on a reduction with the non-relational domains
to deduce variables that are purely numeric at each program point and can thus
be fed to a relational domain. When applying our relational analysis on the pre-
vious example shown in Fig. 1a, we are able to prove the assertion at line 6, while
the non-relational value analysis will raise a false alarm.

Generators. A unique characteristic of Python is the pervasive use of generators,
a limited form of co-routines that permeate the standard library. The example
in Fig. 1b creates a generator gen that returns a new value in 0, 1, . . . , 9 at each
call to next. More precisely, each call to next resumes the execution of the
iterator, until it calls yield and the control is returned to the caller, until the
next call to next, etc. We develop specific abstractions to model generators, and
use a continuation-based iterator to analyze complex, non-local inter-procedural
control in an abstract interpreter by induction on the syntax. Combined with
relational invariants, the analyzer is able to prove that there are less calls to
next than to yield, so that a StopIteration exception is never raised.

Implementation. We have implemented a prototype analyzer and run it on a
small set of Python benchmarks. The output of the analysis is a superset of all
the possible variable values at each program point as well as the set of uncaught
exceptions. Note that Python is a large language with many builtin types, prim-
itives, and standard support libraries. We currently support a selected represen-
tative set of primitives, that are sufficient to analyze our benchmarks.

Focus and limitations. Although we believe that our design is sound and scalable,
it currently employs some very naive abstractions with respect to the state of

188 A. Fromherz et al.

the art. Our almost-concrete string abstraction could be replaced with the com-
plex abstractions designed by Amadini et al. for JavaScript [2]. Likewise, object
abstractions have been studied extensively, especially for the analysis of Java,
and we could replace our simple allocation-site abstraction based on recency
abstraction [4] with more efficient ones, such as object-sensitive abstractions
[24].

Python instructions involving dynamic code generation or retrieval, including
eval and compile, are not supported—although existing work on JavaScript [13]
could help. Likewise, we do not support recursive procedures, which are not much
employed in Python—classic interprocedural analysis techniques [23] could also
apply. Integrating and evaluating these previous works in the context of Python
analysis is left as future work. We chose instead to focus our research on novel
aspects of the analysis of Python: the integration of relational abstract domains,
and the support for generators, which were not considered in previous works.

Finally, the currently scarce support for Python builtins and libraries severely
limits the practical usability of our prototype on realistic Python code. We are
more interested at the moment in developing relational analyses that go beyond,
in term of expressiveness, current analyses for dynamic languages, than sup-
porting imprecisely the entirety of the language primitives. We also note that,
to our knowledge, none of the proposed formal semantics of Python [11,19,20,22]
were mature enough to analyze actual Python programs without rewriting them,
while we are at least able to analyze small benchmarks and tests unmodified.

Organization. The rest of the article is organized as follows: Sect. 2 presents
the syntax and concrete collecting semantics of our normalized Python subset;
Sect. 3 presents a non-relational analysis based on replacing the concrete domain
with abstract value domains, as well as a relational abstraction; Sect. 4 presents
our generator analysis; Sect. 5 presents our implementation and experimental
results. Finally, Sect. 6 discusses related work and Sect. 7 concludes.

2 The Mini-Python Language

The language we analyze is a significant subset of Python 3.6, using a simpli-
fied syntax removing redundant constructions and syntactic sugar, that we call
Mini-Python. Some features that are supported by our implementation are not
described here for simplicity: slices, for loops, and import directives. Some other
omitted features are not supported at the moment: eval and compile, recursion,
coroutines (although we do support generators).

2.1 Syntax

Following the Python language reference [21], we distinguish between expres-
sions, that return a value, and statements, that do not.

Expressions. Expressions, presented in Fig. 2, include constants of various types:
integers (in Z), booleans (True, False), strings. None and NotImpl are types with

Static Value Analysis of Python Programs by Abstract Interpretation 189

Fig. 2. Mini-Python expressions.

Fig. 3. Mini-Python statements.

a single inhabitant each, also denoted as None and NotImpl. They represent
respectively the absence of a value and of a special method (such as add ,
modeling +). Undef denotes the value of uninitialized variables. Expressions
also include literal tuples (e1, . . . , en), object attributes e.string , identifiers for
variables, functions, and classes, an element of a collection e1[e2] and, finally, a
call e(e1, . . . , en) to any callable object: function, generator, class constructor.

Statements. Figure 3 presents the syntax of statements. Most are standard:
atomic statements such as expression evaluation, assignment e1 ← e2, attribute
update e1.string ← e2; control instructions such as return e, break, continue,
tests if then else(c, t, e), and loops while(c, b). Exceptions are raised through
raise e and caught through try except else(e, clauses, else), where clauses
is a list of pairs (name, body) assigning a body to specific exception classes,
and else to execute when no exception is raised. Generators generate a
value using yieldi e, while the next element of a generator is queried with
next o, passing the generator object o as argument—o. next () in Python.
Each yieldi e statement is subscripted with a unique syntactic token i ∈
N, used later in the semantic state of generator instances to remember to
which yield instruction we should jump back when next o is called. Finally,
fun(name, args, body) declares a function with a name, a list of formal argu-
ments, and a body; gen(name, args, body) declares a generator similarly; and
class(name, bases, body) declares a new class with the given name, inheriting
from a list of base classes, and with the given body. Such declarations can appear
in any statement, possibly nested in conditionals, loops, or other declarations.

190 A. Fromherz et al.

Definitions occur at run-time: the act of executing a definition statement creates
a new binding in the environment.

There is a unified namespace for variable names, function names, and class
names and we assume that all identifiers in the program are unique. We also
restrict the language to recursion-free programs. We will be able to encode envi-
ronments as maps from names to values without ambiguity. Python features
unintuitive scoping rules: due to the lack of variable declarations, any assigned
variable automatically gets function scope, even if it is used before it is first
assigned. We hoist declarations at the function scope level, explicitly assigning
them to Undef. The analysis is then able to detect UnboundLocalError excep-
tions due to using uninitialized variables, which is a major issue in Python.

2.2 Concrete Collecting Semantics

We define a concrete collecting semantics by induction on the syntax, as a func-
tion mapping sets of environments to sets of environments. To handle non-local
control flow, such as break and return, we add a continuation layer to envi-
ronments. The case of generators is more involved; its description is deferred to
Sect. 4. As Python is a large language, we only present here the semantics of a
selection of statements that we feel illustrate the specific difficulties of Python
semantics and our solutions.

Program environments and values. We denote as Id the (finite) set of identifiers
used in the program and as Addr an infinite set of memory addresses. As usual,
a memory state is a pair m = (ε,Σ) ∈ E × H, where the environment ε ∈ E is
a partial function assigning a value to existing variables, while the heap Σ ∈ H
maps currently allocated addresses to objects. Values, in Val, can be atomic,
such as integers, strings or constants, or addresses of objects, which live in Obj:

E def= Id ⇀ Val
H def= Addr ⇀ Obj
Obj def= string ⇀ Val
Val def= Z ∪ string ∪ {True, False, None, NotImpl, Undef} ∪ Addr

Objects map (finitely many) attributes to values. Following Python, we model
complex values, including lists, functions, generators, classes, and methods, as
objects: List,Fun,Gen,Class,Method ⊆ Obj. Their special semantic proper-
ties are derived from the presence of some attributes. For instance: a list l ∈ List
has a length l.length ∈ Z. We assume that identifiers are strings, Id ⊆ string ,
which can be exploited to reify environments ε ∈ E as objects: ε ∈ Obj.

States and continuations. To implement non-local control-flow in our input-
output semantic, we employ continuations: a semantic state contains not only the
current memory state (ε,Σ), but also memory states at previously encountered
jump points, that are meant to flow into the current state when encountering the
corresponding jump target. This technique has been used, for instance, in Astrée
[5], to model break and return in C. For Python, we consider the following flow

Static Value Analysis of Python Programs by Abstract Interpretation 191

Fig. 4. Semantics of a few Mini-Python expressions.

tokens: F def= { cur , ret , brk , cont , exn }, where cur is the current flow, on which
most instructions operate; ret , brk , cont , exn collect the set of states jumping
respectively from a return, a break, a continue, or a raise statement to the
end of, respectively the current function, loop, loop iteration, or try statement.
Our semantics manipulates collections of memory states attached to flow tokens.
The concrete domain is thus D def= P(F × E × H).

Semantics. Expressions return a value, but can also have side effects—including
changing the control flow in case an exception is raised. The semantics E� e � :
P(F × E × H) → P(F × E × H × Val) of an expression e in some states thus
returns a set of states with a value attached. Many expressions map each state
to a single state and value, in which case we define E� e � as a function (F × E ×
H) → (F × E × H ×Val) and leave implicit the lifting to sets of states. Figure 4

192 A. Fromherz et al.

Fig. 5. Semantics of a few Mini-Python statements.

gives a representative sample of such expression semantics. Expressions are only
evaluated for the current flow cur , while states attached to other flows “pass
through” the evaluation unchanged—they return a None value which is not used.
The case of identifiers E� id � illustrates the generation of an exception when the
variable has not been found or not been initialized: NameError() is a constructor
that allocates a new object of class NameError and returns its address, while the
helper function NameError(f, ε,Σ) binds this new object to the special global
variable exn var denoting the currently raised exception, and shifts the flow
token to exn to instruct the semantics to ignore the effect of instructions on this
environment until an except statement is encountered; UnboundLocalError and
TypeError behave similarly. The case of the addition + is far more complex,
and a good illustration of the complexity of the language—most operators are
as complex, and yet sufficiently different from one another to defeat attempts to
factor their definitions. We start by evaluating the arguments from left to right.
We then execute the add method from the left argument, if it exists—which is
detected using has field(v, attr , Σ). If it does not exist, or if it returns NotImpl,
we call the radd method from the right argument. Note the systematic check
that the flow token is still cur : a change of flow token denotes an exception that
causes the operator to abort while returning the latest environment.

We denote as S� s �: P(F × E × H) → P(F × E × H) the semantics of a
statement s. Using sets of environments allows us to easily chain statements,
so that we define S� s1; s2 �

def= S� s2 � ◦S� s1 �. Figure 5 gives the semantics of
a few statements that illustrate the use of non-local control flow. As usual, a
test filters its environments to keep only those satisfying the condition, or its
negation, to execute the respective branch, and merges them with a union. Filters
use is true (omitted for concision) to compute truth values; similarly to +, it
successively tries to call the special methods bool and len , and returns True
if none of these methods are implemented. The semantics of loops computes,
as usual, a least fixpoint. Its definition is complicated by non-local control: a

Static Value Analysis of Python Programs by Abstract Interpretation 193

break instruction shifts the current environment into a brk continuation, which
is consumed by the loop semantics to compute the actual exiting environments.
The case of continue and return, as well as exception handling, is similar.

3 Value Abstraction

We now present our static analysis of Python. Following the Abstract Interpreta-
tion framework, it is designed by abstraction of the concrete semantics from the
previous section. The result is an interpreter by induction on the syntax follow-
ing closely the concrete semantics, using standard non-relational and relational
domains, and modeling control flow through partitioning by flow tokens.

3.1 Non-relational Abstraction

We first consider non-relational abstractions: each variable is assigned an
abstract value in Val� representing a set of possible concrete values. Follow-
ing [14], we abstract separately each type of values in its abstract domain, while
their product Val� can represent sets of heterogeneous values:

Val� def= Undef� × None� × NotImpl� × Bool� × Num� × String� × P(Addr�)

For finite types, each domain tracks the presence of each possible value.
For instance, Undef� def= {⊥, Undef}, where ⊥ denotes the definite absence
of Undef, while Undef denotes the possible presence of Undef; None� and
NotImpl� are similar, while Bool� def= {⊥, True, False,�}. Our string domain
is simply the finite sets of strings, plus a � element to denote any string:
String� def= Pfinite(string) ∪ {�}. More clever abstractions, such as [2], will be
considered in future work. We can use any non-relational domain for Num�,
and our implementation uses integer and float intervals. To finitely represent
the heap, we use a classic allocation-site abstraction of Addr into a finite set
Addr� of abstract addresses—our implementation actually uses recency abstrac-
tion [4], which we omit in our formalization for simplicity. An abstract tuple
V = (VUndef , . . . , VString , VAddr) ∈ Val� then represents the join of elements
from the type-based abstractions:

γVal(V) def= γUndef (VUndef) ∪ · · · ∪ γString(VString) ∪ (∪a∈VAddr
γAddr(a))

The definition of the join ∪�
Val, subset ⊆�

Val, and widening �Val operators on
this abstract domain is pointwise and straightforward.

Given abstract values Val� and addresses Addr�, environments ε� map vari-
ables to values, and stores Σ� map addresses to objects, as in the concrete:

ε� ∈ E� def= Id ⇀ Val�

Σ� ∈ H� def= Addr� ⇀ Obj�

where Obj� def= (string ⇀ Val�) × P(string)

194 A. Fromherz et al.

Fig. 6. Abstract semantics of a few Mini-Python constructions.

Due to address abstraction, an abstract object may represent a set of concrete
objects with different attributes. Abstract objects are pairs (attr ,must) ∈ Obj�,
where attr maps all possible object attributes to their values, while must is the
subset of attributes from dom(attr) that are guaranteed to exist in all objects:

γObj(attr ,must) def= { o ∈ Obj | must ⊆ dom(o) ⊆ dom(attr) ∧
∀i ∈ dom(o) : o(i) ∈ γVal(attr(i)) }

The must information is important to precisely rule out AttributeError excep-
tions.

Finally, we partition abstract states with respect to flow tokens in F . Hence,
an abstract element lives in D� def= F → (E� × H�), with concretization:

γ(X�) def= { (f, ε,Σ) | (ε,Σ) ∈ γM(X�(f)) }
where γM(ε�, Σ�) def= { (ε,Σ) | dom(Σ) ⊆ (∪a�∈dom(Σ�) γAddr(a�)) ∧

∀i : ε(i) ∈ γVal(ε�(i)) ∧
a ∈ γAddr(a�) =⇒ Σ(a) ∈ γObj(Σ�(a�)) }

The join ∪� on abstract states is pointwise. Note that it joins the must
attribute information for objects with an intersection ∩:

X�
1 ∪� X�

2
def= λF ∈ F . X�

1(F) ∪�
M X�

2(F)
where (ε�

1, Σ
�
1) ∪�

M (ε�
2, Σ

�
2)

def= (λi. ε�
1(i) ∪�

Val ε�
2(i), λa�. Σ�

1(a
�) ∪�

Obj Σ�
2(a

�))
and (a1,m1) ∪�

Obj (a2,m2)
def= (λs. a1(s) ∪�

Val a2(s),m1 ∩ m2)

Figure 6 gives the abstract semantics for a few Mini-Python constructions. It
is similar to the concrete one, up to the partitioning with respect to flow tokens.
For instance, a break statement merges with a join ∪�

M the current flow with
that of the accumulated break flows, and empties the current flow. Similarly,
the loop incorporates back the continue flow at the loop head, and the break
flow at its end, after which the continue and break flow from any enclosing loop
is restored. Additionally, it replaces the least-fixpoint with a limit lim of the
iteration accelerated with a widening �, which applies �Val pointwise.

3.2 Relational Abstraction

We now present how we leverage relational numeric domains in a dynamically
typed language to improve the analysis precision. The intuition is to maintain

Static Value Analysis of Python Programs by Abstract Interpretation 195

Fig. 7. Abstract relational semantics of atomic statements.

relations among pure numeric variables only. We exploit, in a reduced product,
the type information provided by D� to update the relational invariant dynam-
ically when the type of a variable changes. Let us assume that we are given a
numeric abstract domain N �, such as octagons [17] or polyhedra [8], provided
with classic operators, such as a concretization γN ∈ N � → P(Id ⇀ Z), transfer
functions S�

N � stmt � ∈ N � → N �, and condition filters filter �
N (e) ∈ N � → N �.

We define our relation-aware domain as D#
R

def= F → (
(E# × H#) × N#

)
with

the following concretization:

γR(X�) def= { (f, ε,Σ) | let ((ε�, Σ�), ν�) = X�(f) in (ε,Σ) ∈ γM(ε�, Σ�) ∧
∃ν ∈ γN (ν�),∀id ∈ dom(ν) : ε(id) = ν(id) }

The concretization performs a reduction between the relational and non-
relational environments. The reduction with the heap objects is similar but it is
omitted here for simplicity.

Some transfer functions in D�
R are given in Fig. 7. They show the interaction

between D� and N �. After an assignment, the type of the lhs variable is checked
by the non-relational domain. If its value is necessarily numeric, the statement
is also applied in the numeric environment ν�; otherwise the variable is removed
from ν�. When applying a filter, mixed-type variables can be constrained to
become pure numeric variables. The pre-condition numeric environment ν�

0 has
no information on them, and they are thus created and initialized with interval
information extracted from the non-relational environment ε�

0.

196 A. Fromherz et al.

We illustrate these abstractions through our motivating example from Fig. 1a.
Assume that the function init is called with the abstract environment {(cur , ε�

= 〈n �→ (None ∨ [10, 100]), . . . 〉), ν� = �N , Σ�)}. In the else branch at line 3,
ε� is filtered and n becomes numeric, which allows ν� to be refined with the
invariant 10 ≤ n ≤ 100. An expressive enough domain can then prove 0 ≤ i =
len(l) < n at line 5 inside the loop, so that the assert statement at line 6 is
satisfied.

4 Generator Analysis

Generators allow a called function to suspend itself with a yield statement,
storing its state into an object, and resume its execution later with a next. We
now show how to leverage our continuation-based semantics to analyze them.

Fig. 8. Concrete semantics of generators in Mini-Python.

4.1 Concrete Semantics

We extend flow tokens to represent continuations able to jump between next

and yield instructions: Fg
def= F ∪ {next(i), yield(i) | i ∈ N }, where i

represents a syntactic label to identify statements. A generator is an object
g = Gen(cont , frame, body , vars) ∈ Gen ⊆ Obj which is given, upon creation,
a body to execute and its set vars ⊆ Id of local variables. It also maintains
some state information: a map frame ∈ vars → Val from local variables to

Static Value Analysis of Python Programs by Abstract Interpretation 197

Fig. 9. Abstract semantics of yield.

Fig. 10. Generator example (a) and its instrumented version with counters (b).

values, stored at yield statements and restored at the following next, and the
location cont ∈ C where to resume execution upon the following next, where
C

def= N ∪ {start, end} denotes either the beginning (start) of the generator
before the first next, or a yieldi statement (i ∈ N), or the end (end) of the
generator—meaning that a call to next raises a StopIteration exception.

The concrete semantics of next and yield is given in Fig. 8. Each call to
next executes the generator body from the beginning but sets the flow token
to next(i): it instructs the interpreter to ignore the effect of statements until
reaching the corresponding yieldi, effectively modeling a jump to the correct
location. The yieldi e statement uses a yield(i) flow token to skip remaining
statements and return to the calling next. A global yield var variable is used
to transfer the value of e to next, while ε|var and ε|Id\var extract the values of
the local variables at yield and freeze them into the frame attribute of the
generator. They are restored into the environment at the following next.

4.2 Abstractions

Value abstraction. The concrete modeling of generators can be reduced to simple
kinds of operations: flow token updates, and copies between local variables and
entries in the generator frame, which can be seen as object attributes. Section 3
showed how to abstract these operators, and it is thus easy to enrich it to sup-
port generators without the need to enrich the abstract domains at all. This is
illustrated in Fig. 9 for the yield statement—the case of next is similar.

This abstraction is sufficient to infer valuable information on the type, value,
and even numeric relations between the local variables of a generator. However,

198 A. Fromherz et al.

it does not always precisely match the flow of control between yield and next
instructions, leading to spurious exceptions. Consider the example in Fig. 10a. An
interval analysis with widening will correctly infer that i ∈ [0, 9] and j ∈ [0, 4].
However, the abstraction states that all calls to next can jump back to the
yield statement, whatever the number of iterations of the loop indexed by i.
In particular, at iteration 10, the generator exits the loop, causing a (spurious)
StopIteration exception.

Counting abstraction. We solve this precision issue by automatically instrument-
ing programs to keep track of the number of calls to next and yield through a
counter. We show in Fig. 10b a version with this counter explicit.1 We maintain
the counter in both the frame of the caller and the frame of the generator—which
is stored in its frame attribute. Using a relational domain, such as octagons,
allows the analysis to establish both equalities %counter = i + 1 at line 3, and
%counter = j + 1 at line 7. As j ∈ [0, 3], we deduce that i ∈ [0, 3] as well, i.e.,
we never actually exit the loop at line 2 and never raise a StopIteration excep-
tion. Through the counter, relations between a generator and its caller can be
established.

5 Experimental Evaluation

We have implemented our method in a prototype static analyzer in OCaml and
tested it on two categories of benchmarks. Firstly, regression tests from the offi-
cial Python 3.6.3 distribution were used to assess the correctness of the imple-
mentation. Secondly, to evaluate precision and efficiency, we have considered
programs from the Python Performance Benchmark Suite,2 which employ more
realistic and challenging constructions. Our analyzer reports all uncaught excep-
tions: type errors, name errors, unbound locals, stop iterations, failed assertions.

Regression tests. The official regression tests suite consists in a large number of
test programs (nearly 500) covering the builtins of the language and the standard
libraries. Since our prototype supports only a subset of Python builtins, we have
selected only the handful of tests that target the implemented features. The
results of the analysis are presented in Table 1.

For each program, we compute the analysis time (in milliseconds) and the
number of unit test methods that (i) were proven correct, (ii) raised exceptions
and assertion violations, (iii) were not completely analyzed due to the presence of
unsupported language features. We investigated the failed tests to check whether
the alarms are real or spurious. The obtained outcomes for each regression test
are shown in columns 5 to 8. The last column gives the percentage of test meth-
ods that we were able to analyze completely. No alarm was detected, which
argues in favor of our analyzer faithfully modeling the language semantics, as
the tests do not raise errors when executed by the Python interpreter either, and
1 A global variable is used for illustration purposes. In practice, a counter is an

attribute attached to the generator instance.
2 https://github.com/python/performance.

https://github.com/python/performance

Static Value Analysis of Python Programs by Abstract Interpretation 199

Table 1. Experimental results on regression tests. Result categories: ✓ test passed
with no false alarm, ✗ test failed with no false alarm, ? test failed with false alarms, ✱

test containing unsupported builtins.

Program Lines Analysis time Tests ✓ ✗ ? ✱ Coverage

test augassign 273 645ms 7 4 0 2 1 85.71%

test baseexception 141 20ms 10 6 0 0 4 60.00%

test bool 294 47ms 26 12 0 0 14 46.15%

test builtin 454 360ms 21 3 0 0 18 14.29%

test contains 77 418ms 4 1 0 0 3 25.00%

test int literal 91 29ms 6 6 0 0 0 100.00%

test int 218 88ms 8 3 0 0 5 37.50%

test list 106 88ms 9 3 0 0 6 33.33%

test unary 39 11ms 6 2 0 0 4 33.33%

they generally test a single execution. Also, the precision of our prototype ana-
lyzer is reflected by the low false alarm rate: only 2 unit tests among 97 resulted
in spurious violations of assert statements. Finally, due to the incomplete sup-
port for builtins, the analyzer was unable to analyze some methods, resulting
in low coverage ratios in many cases. However, the analyzer is still under devel-
opment and features a modular architecture that allows adding missing builtins
abstractions easily, without requiring the modification of existing code.

Relational tests. We have analyzed three programs from the Python Performance
Benchmark Suite: float, fannkuch, and nbody (around 270 lines of Python
in total) and we varied the underlying numeric domains to show the impact of
relational information on the analysis. Firstly, the analysis of these programs
using the interval domain terminated in less than 3 s: float was proven correct
but fannkuch and nbody resulted in a total of 5 false alarms. Using octagons, the
analysis time increased to 10 min10 s, but the number of false alarms was reduced
to 3. Finally, an analysis with the polyhedra domain was able to prove the
correctness of both float and fannkuch under 5 s, but the analysis of nbody did
not terminate before a timeout of 30 min. The scalability is limited because each
relational abstract element currently contains all variables and object attributes;
classic packing techniques [5] would help us improve this situation.

6 Related Work

Several works aim at restricting Python towards more static typing, as Mypy or
RPython [3], to ease program verification. While this would help design future
programs, a static analyzer for existing code is still invaluable. Note also that
Python features static analyzer tools, such as Pylint that, while helping the user,
are not based on a formal semantics and do not attempt to be sound.

200 A. Fromherz et al.

While [22] proposed a semantics for an object-free Python, the first realistic
formal semantics of Python was proposed by Smeding [25] in 2009 for Python 2.5
in Haskell, followed by [20] for Python 3.2 in Racket, and [11] for Python 3.3 in K,
inspired from related work on JavaScript [10]. They present small-step executable
operational semantics that aim at being tested against CPython’s own regression
tests, although experiments were limited by the lack of support for advanced
language features and libraries used by the tests—an issue from which we also
suffer. Poli [19] presents the first attempt at deriving an abstract semantics,
but remains uninstantiated as no abstract value domains are provided. Hassan
[12] proposes a static typing using SMT solvers, but require variables to have a
single type in the program, a limitation that we overcome. We provide the first
complete and implemented abstract interpreter for (a subset of) Python. Unlike
previous works, we opted for a big-step semantics, which maps conveniently to
an abstract interpreter by induction on the syntax. Continuations have been
employed before in abstract interpreters to model control flow, as in Astrée for
C [5]; we go one step further by handling exceptions and generators.

We find the works closest to ours in the abstract interpretation of JavaScript.
Our non-relational abstraction resembles that of Jensen et al. [14] and later [15].
We go one step further by leveraging relational abstractions as well, which were
absent in previous works up to our knowledge. Certain non-relational domains
differ due to the different nature of the language and properties we seek, notably
our need to under-approximate sets of strings to precisely detect AttributeError
exceptions. Nevertheless, we could benefit from more advanced string domains
as proposed in [16]. Likewise, the analysis of practical uses of eval in JavaScript
[13] could be the basis to support the equivalent construction in Python.

7 Conclusion

We have presented the first static analysis for a realistic subset of Python, able
to infer the types and values of variables, and the exceptions that can be raised.
In addition to its novel language target, its main characteristics are the ability to
infer numeric relations despite dynamic typing, and the support for generators.
Our implementation is currently limited to a small subset of Python builtins and
standard libraries; nevertheless, it is sufficient to analyze a few small Python
programs from actual tests and benchmarking suites, without modification.

Our prototype is a work in progress. Planned work include completing the
support for builtins and libraries to be able to analyze Python applications. We
also wish to enrich the abstractions used in our analyzer, targeting in particular
abstractions proposed for JavaScript [2,13,14] and Java [24]. The static analysis
of dynamic languages, and in particular of Python, is still a new field. There is
much to do to raise its effectiveness to that of the analysis of static languages,
such as C.

Static Value Analysis of Python Programs by Abstract Interpretation 201

References

1. Åkerblom, B., Stendahl, J., Tumlin, M., Wrigstad, T.: Tracing dynamic features
in python programs. In: Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pp. 292–295. ACM (2014)

2. Amadini, R., et al.: Combining string abstract domains for JavaScript analysis: an
evaluation. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp.
41–57. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 3

3. Ancona, D., Ancona, M., Cuni, A., Matsakis, N.D.: RPython: a step towards rec-
onciling dynamically and statically typed OO languages. In: Proceedings of the
2007 Symposium on Dynamic Languages, DLS 2007, pp. 53–64. ACM (2007)

4. Balakrishnan, G., Reps, T.: Recency-abstraction for heap-allocated storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006).
https://doi.org/10.1007/11823230 15

5. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival,
X.: Static analysis and verification of aerospace software by abstract interpreta-
tion. In: AIAA Infotech@Aerospace, number 2010–3385 in AIAA, pp. 1–38. AIAA
(American Institute of Aeronautics and Astronautics), April 2010

6. Bodin, M., Chargueraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene,
D., Schmitt, A., Smith, G.: A trusted mechanised JavaScript specification. SIG-
PLAN Not. 49(1), 87–100 (2014)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM Symposium on Principles of Programming Languages (POPL
1977), pp. 238–252. ACM, January 1977

8. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Conference Record of the 5th Annual ACM SIGPLAN/SIGACT
Symposium on Principles of Programming Languages (POPL 1978), pp. 84–97.
ACM (1978)

9. Standard ECMA-262. ECMAScript 2017 Language Specification, 8th edn, June
2017

10. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14107-2 7

11. Guth, D.: A formal semantics of Python 3.3. Master’s thesis, University of Illinois
at Urbana-Champaign, July 2013

12. Hassan, M.: SMT-based static type inference for Python 3. Bachelor thesis, ETH
Zürich, Department of Computer Science (2017)

13. Jensen, S.H., Jonsson, P.A., Møller, A.: Remedying the eval that men do. In: Pro-
ceedings of the 2012 International Symposium on Software Testing and Analysis,
ISSTA 2012, pp. 34–44. ACM (2012)

14. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 17

15. Kashyap, V., Dewey, K., Kuefner, E.A., Wagner, J., Gibbons, K., Sarracino, J.,
Wiedermann, B., Hardekopf, B.: JSAI: a static analysis platform for JavaScript. In:
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pp. 121–132. ACM (2014)

16. Madsen, M., Andreasen, E.: String analysis for dynamic field access. In: Cohen, A.
(ed.) CC 2014. LNCS, vol. 8409, pp. 197–217. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54807-9 12

https://doi.org/10.1007/978-3-662-54577-5_3
https://doi.org/10.1007/11823230_15
https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1007/978-3-642-03237-0_17
https://doi.org/10.1007/978-3-642-54807-9_12
https://doi.org/10.1007/978-3-642-54807-9_12

202 A. Fromherz et al.

17. Miné, A.: The octagon abstract domain. Higher Order Symbol. Comput. 19(1),
31–100 (2006)

18. Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of sparse
global analyses for C-like languages. SIGPLAN Not. 47(6), 229–238 (2012)

19. Poli, F.: A small step abstract interpreter for (desugared) Python. Master’s thesis,
Università degli Studi di Padova, Dipartimento di Matematica (2016)

20. Politz, J.G., Martinez, A., Milano, M., Warren, S., Patterson, D., Li, J., Chitipothu,
A., Krishnamurthi, S.: Python: the full monty. SIGPLAN Not. 48(10), 217–232
(2013)

21. Python Software Foundation. The Python language reference, 3.6 edn (2017).
https://docs.python.org/3.6/reference

22. Ranson, J.F., Hamilton, H.J., Fong, P.W.L.: A semantics of Python in
Isabelle/HOL. Technical report, Department of Computer Science, University of
Regina, December 2008

23. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications, pp. 189–234. Prentice-Hall,
Upper Saddle River (1981)

24. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick your contexts well: understand-
ing object-sensitivity. SIGPLAN Not. 46(1), 17–30 (2011)

25. Smeding, G.J.: An executable operational semantics for Python. Master’s thesis,
Universiteit Utrecht (2009)

26. Spoto, F.: Julia: a generic static analyser for the Java bytecode. In: Proceedings
of the 7th Workshop on Formal Techniques for Java-like Programs (FTfJP 2005),
p. 17, July 2005

https://docs.python.org/3.6/reference

Model-Based Testing for General
Stochastic Time

Marcus Gerhold(B) , Arnd Hartmanns , and Mariëlle Stoelinga

University of Twente, Enschede, The Netherlands
{m.gerhold,a.hartmanns}@utwente.nl, marielle@cs.utwente.nl

Abstract. Many systems are inherently stochastic: they interact with
unpredictable environments or use randomised algorithms. Then classical
model-based testing is insufficient: it only covers functional correctness.
In this paper, we present a new model-based testing framework that addi-
tionally covers the stochastic aspects in hard and soft real-time systems.
Using the theory of stochastic automata for specifications, test cases
and a formal notion of conformance, it provides clean mechanisms to
represent underspecification, randomisation, and stochastic timing. Sup-
porting arbitrary continuous and discrete probability distributions, the
framework generalises previous work based on purely Markovian models.
We cleanly define its theoretical foundations, and then outline a practical
algorithm for statistical conformance testing based on the Kolmogorov-
Smirnov test. We exemplify the framework’s capabilities and tradeoffs
by testing timing aspects of the Bluetooth device discovery protocol.

1 Introduction

Model-based testing (MBT) [29] is a technique to automatically generate, exe-
cute and evaluate test suites on black-box implementations under test (IUT).
The theoretical ingredients of an MBT framework are a formal model that speci-
fies the desired system behaviour, usually in terms of (some extension of) input-
output transition systems; a notion of conformance that specifies when an IUT
is considered a valid implementation of the model; and a precise definition of
what a test case is. For the framework to be applicable in practice, we also need
algorithms to derive test cases from the model, execute them on the IUT, and
evaluate the results, i.e. decide conformance. They need to be sound (i.e. every
implementation that fails a test case does not conform to the model), and ideally
also complete (i.e. for every non-conforming implementation, there theoretically
exists a failing test case). MBT is attractive due to its high degree of automa-
tion: given a model, the otherwise labour-intensive and error-prone derivation,
execution and evaluation steps can be performed in a fully automatic way.

Model-based testing originally gained prominence for input-output transition
systems (IOTS) using the ioco relation for input-output conformance [28]. IOTS
partition the observable actions of the IUT (and thus of the model and test cases)

This work is supported by projects 3TU.BSR, NWO BEAT and NWO SUMBAT.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 203–219, 2018.
https://doi.org/10.1007/978-3-319-77935-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_15&domain=pdf
http://orcid.org/0000-0002-2655-9617
http://orcid.org/0000-0003-3268-8674
http://orcid.org/0000-0001-6793-8165

204 M. Gerhold et al.

into inputs (or stimuli) that can be provided at any time, e.g. pressing a button
or receiving a network message, and outputs that are signals or activities that the
environment can observe, e.g. delivering a product or sending a network message.
IOTS models may include nondeterministic choices, allowing underspecification:
the IUT may implement any or all of the modelled alternatives. MBT with
IOTS tests for functional correctness: the IUT only exhibits behaviours allowed
by the model. In the presence of nondeterminism, the IUT is allowed to use any
deterministic or randomised policy to decide between the specified alternatives.

Stochastic behaviour and requirements are an important aspect of today’s
complex systems: network protocols extensively rely on randomised algorithms,
cloud providers commit to service level agreements, probabilistic robotics [26]
allows the automation of complex tasks via simple randomised strategies (as seen
in e.g. vacuuming and lawn mowing robots), and we see a proliferation of prob-
abilistic programming languages [15]. Stochastic systems must satisfy stochas-
tic requirements. Consider the example of exponential backoff in Ethernet: an
adapter that, after a collision, sometimes retransmits earlier than prescribed by
the standard may not impact the overall functioning of the network, but may well
gain an unfair advantage in throughput at the expense of overall network perfor-
mance. In the case of cloud providers, the service level agreements are inherently
stochastic when guaranteeing a certain availability (i.e. average uptime) or a cer-
tain distribution of maximum response times for different tasks. This has given
rise to extensive research in stochastic model checking techniques [18]. However,
in practice, testing remains the dominant technique to evaluate and certify sys-
tems outside of a limited area of highly safety-critical applications.

In this paper, we present a new MBT framework based on input-output
stochastic automata (IOSA) [9], which are transition systems augmented with
discrete probabilistic choices and timers whose expiration is governed by general
probability distributions. By using IOSA models, we can quantitatively specify
stochastic aspects of a system, in particular w.r.t. timing. We support discrete as
well as continuous probability distributions, so our framework is suitable for both
hard and soft real-time requirements. Since IOSA extend transition systems, non-
determinism is available for underspecification as usual. Test cases are IOSA, too,
so they can naturally include waiting. We formally define the notions of stochas-
tic ioco (sa-ioco), and of test cases as a restriction of IOSA (Sect. 3). We then
outline practical algorithms for test generation and sa-ioco conformance testing
(Sect. 4). The latter combines per-trace functional verdicts as in standard ioco
with a statistical evaluation that builds upon the Kolmogorov-Smirnov test [17].
While our theory of IOSA and sa-ioco is very general w.r.t. supported proba-
bility distributions and nondeterminism, we need to assume some restrictions to
arrive at practically feasible algorithms. We finally exemplify our framework’s
capabilities and its inherent tradeoffs by testing timing aspects of different imple-
mentation variants of the Bluetooth device discovery protocol (Sect. 5).

Related Work. Our new sa-ioco framework generalises two previous stochas-
tic MBT approaches: the pioco framework [13] for probabilistic automata (or
Markov decision processes) and marioco [14] for Markov automata (MA [12],

Model-Based Testing for General Stochastic Time 205

which extend continuous-time Markov chains with nondeterminism). The for-
mer only supports discrete probabilistic choices and has no notion of time at all.
The latter operates under the assumption that all timing is memoryless, i.e. all
delays are exponentially distributed and fully characterised by means.

Early influential work had only deterministic time [3,19,21], later extended
with timeouts/quiescence [4]. Probabilistic testing preorders and equivalences are
well-studied [7,10,24]. Probabilistic bisimulation via hypothesis testing was first
introduced in [20]. Our work is largely influenced by [5], which introduced a way
to compare trace frequencies with collected samples. Closely related is work on
stochastic finite state machines [16,23]: stochastic delays are specified similarly,
but discrete probability distributions over target states are not included.

2 Background

Notation. R
+ and R

+
0 are the positive and non-negative real numbers. For a given

set Ω, its powerset is P(Ω). A multiset is written as {| . . . |}. Dist(Ω) is the set
of probability distributions over Ω: functions μ ∈ Ω → [0, 1] s.t. support(μ) def=
{ω ∈ Ω | μ(ω) > 0 } is countable and

∑
ω∈support(μ) μ(ω) = 1. Ω is measurable

if it is endowed with a σ-algebra σ(Ω): a collection of measurable subsets of Ω.
A probability measure over Ω is a function μ ∈ σ(Ω) → [0, 1] s.t. μ(Ω) = 1 and
μ(∪i∈I Bi) =

∑
i∈I μ(Bi) for any countable index set I and pairwise disjoint

measurable sets Bi ⊆ Ω. Prob(Ω) is the set of probability measures over Ω.
Each μ ∈ Dist(Ω) induces a probability measure. Let Val def= V → R

+
0 be the

set of valuations for an (implicit) set V of (non-negative real-valued) variables.
0 ∈ Val assigns value zero to all variables. For X ⊆ V and v ∈ Val , we write
v[X] for the valuation defined by v[X](x) = 0 if x ∈ X and v[X](y) = v(y)
otherwise. For t ∈ R

+
0 , v + t is the defined by (v + t)(x) = v(x) + t for all x ∈ V .

Stochastic automata extend Markov decision processes with stochastic clocks:
real-valued variables that increase synchronously with rate 1 over time and expire
some random amount of time after they have been restarted. We define SA with
input/output actions along the lines of [9]:

Definition 1. An input-output stochastic automaton (IOSA) is a 6-tuple I =
〈Loc, C,A, E, F, �init 〉 where Loc is a countable set of locations, C is a finite set
of clocks, A = AI � AO is the finite action alphabet partitioned into inputs
in AI (marked by a ? suffix) and outputs in AO (marked by a ! suffix), E ∈
Loc → P(Edges) with Edges def= P(C)×A�{ τ, δ }×Dist(T) and T def= P(C)×Loc
is the edge function mapping each location to a finite set of edges that in turn
consist of a guard set, a label that may be the internal action τ or quiescence δ,
and a distribution over targets in T consisting of a restart set of clocks and
target locations, F ∈ C → Prob(R+

0) is the delay measure function that maps
each clock to a probability measure, and �init ∈ Loc is the initial location. I is
input-enabled if ∀ � ∈ Loc, a ∈ AI ∃μ : 〈∅, a, μ〉 ∈ E(�). I is closed if AI = ∅.

206 M. Gerhold et al.

We also write � G,a−−→E μ for 〈G, a, μ〉 ∈ E(�). Whenever an IOSA Ii or Si

(where index i may be absent) is given in the remainder of this paper, it has the
form 〈Loci, Ci,Ai, Ei, Fi, �initi〉 unless noted otherwise. Intuitively, a stochastic
automaton starts its execution in the initial location with all clocks expired. An
edge � G,a−−→E μ may be taken only if all clocks in its guard set G are expired. If
any output edge (i.e. with a ∈ AO) is enabled, some edge must be taken (i.e. all
outputs are urgent). When an edge is taken, (1) its action is a, (2) we select a
target 〈R, �′〉 ∈ T randomly according to μ, (3) all clocks in R are restarted and
other expired clocks remain expired, and (4) we move to successor location �′.
There, another edge may be taken immediately or we may need to wait until
some further clocks expire, and so on. When a clock c is restarted, the time until
it expires is chosen randomly according to the probability measure F (c).

Fig. 1. File server specification. Fig. 2. File server implementation.

Example 1. Figure 1 shows an example IOSA specifying the behaviour of a file
server with archival storage. We omit empty restart sets and the empty guard sets
of inputs. Upon receiving a request in the initial location �1, an implementation
may either move to �2 or �3. The latter represents the case of a file in archive:
the server must immediately deliver a wait! notification and then attempt to
retrieve the file from the archive. Clocks y and z are restarted, and used to specify
that retrieving the file shall take on average 1

3 of a time unit, exponentially
distributed, but no more than 5 time units. In location �4, there is thus a race
between retrieving the file and a deterministic timeout. In case of timeout, an
error message (action err!) is returned; otherwise, the file can be delivered as
usual from location �2. Clock x is used to specify the transmission time of the
file: it shall be uniformly distributed between 0 and 1 time units.

In Fig. 2, we show an implementation of this specification. 1 out of 10 files
randomly requires to be fetched from the archive. This is allowed by the spec-
ification: it is one particular (randomised) resolution of the nondeterministic
choice, i.e. underspecification, defined in �1. The implementation also manages
to transmit files from archive directly while fetching them, as evidenced by the
direct edge from �4 back to �1 labelled file!. This violates the timing prescribed
by the specification, and must be detected by an MBT procedure for IOSA.

Model-Based Testing for General Stochastic Time 207

Definition 2. Given IOSA I1, I2 with C1∩C2 = ∅, and M ⊆ A1×A2, their par-
allel composition is I1 ‖I2

def= 〈Loc1×Loc2, C1∪C2,A‖, E‖, F1∪F2, 〈�init1 , �init2〉〉
where A‖

def= AI
‖ �AO

‖ with outputs AO
‖ = AO

1 ∪AO
2 and inputs AI

‖ =
(
AI

1 ∪ AI
2

)
\

(
{ aI ∈ AI

1 | ∃ aO ∈ AO
2 : 〈aI , aO〉 ∈ M }∪{ aI ∈ AI

2 | ∃ aO ∈ AO
1 : 〈aO, aI〉 ∈ M }

)

and E‖ is the smallest edge function satisfying the inference rules
�1

G,a−−→E1 μ a = τ ∨ � a2 ∈ A2 : 〈a, a2〉 ∈ M

〈�1, �2〉 G,a−−→E‖ { 〈R, 〈�′
1, �2〉〉 �→ μ(〈R, �′

1〉) | R ⊆ C, �′
1 ∈ Loc1 }

(indep1)

�1
G1,a1−−−−→E1 μ1 �2

G2,a2−−−−→E2 μ2 a1 ∈ AO
1 ∧ 〈a1, a2〉 ∈ M

〈�1, �2〉 G1∪G2,a1−−−−−−→E‖ { 〈R1 ∪ R2, 〈�′
1, �

′
2〉〉 �→ μ(〈R1, �

′
1〉) · μ(〈R2, �

′
2〉) }

(sync1)

plus symmetric rules indep2 and sync2 for the corresponding steps of I2.

We use the convention that two actions a1 and a2 match, i.e. 〈a1, a2〉 ∈ M , if
they are the same except for the suffix (e.g. a! matches a? but not b? or a!).

Definition 3. The states of IOSA I are S def= Loc×Val×Val. Each 〈�, v, x〉 ∈ S
consists of the current location � and the values v and expiration times x of all
clocks. The set of paths of I is PathsI

def= S×(R+
0 ×Edges×P(C)×S)ω where the

first state is 〈�init ,0,0〉. PathsfinI is the set of all finite paths. For π ∈ PathsfinI ,
last(π) is its last state, and its length is the number of edges with actions �= τ .

Definition 4. A scheduler of a closed IOSA I is a measurable function S ∈
Sched(I) def= PathsfinI → Dist(Edges ∪ {⊥}) such that S(π)(〈G, a, μ〉) > 0
with last(π) = 〈�, v, x〉 implies � G,a−−→ μ and Ex(G, v + t, x) where t ∈ R

+
0 is

the minimal delay for which � t′ ∈ [0, t[:
∨

�
G′,a′−−−→μ′ Ex(G, v + t′, x). We define

Ex(G, v, x) def= ∀ c ∈ G : v(c) ≥ x(c), i.e. all clocks in G are expired. S(π)(⊥) is
the probability to halt. S is of length k ∈ N if S(π)(⊥) = 1 for all paths π of
length ≥ k. Sched(I, k) is the set of all schedulers of I of length k.

A scheduler can only choose between the edges enabled at the points where any
edge just became enabled in a closed IOSA. It removes all nondeterminism. The
probability of each step on a path is then given by the step probability function:

Definition 5. Given IOSA I and S ∈ Sched(I), the step probability function
PrS ∈ PathsfinI → Prob({⊥} ∪ (R+

0 × Edges × P(C) × S))
is defined by PrS(π)(⊥) = S(π)(⊥) and, for π with last(π) = 〈�, v, x〉,
PrS(π)([t1, t2] × EPr × CPr × SPr) =
1t∈[t1,t2] ·

∑
e=〈G,a,μ〉∈EPr

S(π)(e)·
∑

C∈CPr ,�′∈Loc μ(〈C, �′〉)·
∫

〈�′,v′,x′〉∈SPr
Xx

C(v′, x′)
where t is the minimal delay in � as in Definition 4 and

Xx
C(v′, x′) = 1v′=(v+t)[C]

∏
c∈C

⎧
⎪⎨

⎪⎩

1 if c /∈ C ∧ x(c) = x′(c)
0 if c /∈ C ∧ x(c) �= x′(c)
F (c)(t2) − F (c)(t1) if c ∈ C.

The step probability function induces a probability measure over PathsI . As is
usual, we restrict to schedulers that let time diverge with probability 1.

208 M. Gerhold et al.

A path lets us follow exactly how an IOSA was traversed. Traces represent
the knowledge of external observers. In particular, they cannot see the values of
individual clocks, but only the time passed since the run started. Formally:

Definition 6. The trace of a (finite) path π is its projection tr(π) to the delays
in R

+
0 and the actions in A. τ -steps are omitted and their delays are added to

that of the next visible action. The set of traces of I is TracesI . An abstract
trace in AbsTracesI is a sequence Σ = I1 a1 I2 a2 . . . with the Ii closed intervals
over R

+
0 . Finite (abstract) traces are defined analogously. Tracesmax

I is the set of
maximal finite traces for I with terminal locations. σ represents the set of traces
{ t1 a1 . . . | ti ∈ Ii }. We identify trace t1 a1 . . . with abstract trace [0, t1] a1

We can define the trace distribution for an IOSA I and a scheduler as the prob-
ability measure over traces (using abstract traces to construct the corresponding
σ-algebra) induced by the probability measure over paths in the usual way. The
set of all finite trace distributions is Trd(I). It induces an equivalence relation
≡TD : two IOSA I and S are trace distribution equivalent, written I ≡TD S, if
and only if Trd(I) = Trd(S). A trace distribution is of length k ∈ N if it is based
on a scheduler of length k. The set of all such trace distributions is Trd(I, k).

3 Stochastic Testing Theory

We define the theoretical concepts of our MBT framework: test cases, the sa-ioco
conformance relation, the evaluation of test executions, and correctness notions.
The specifications S are IOSA as in Definition 1, and we equally assume the IUT
to be an input-enabled IOSA I with the same alphabet as S.

3.1 Test Cases

A test case describes the possible behaviour of a tester. The advantage of MBT
over manual testing is that test cases can be automatically generated from the
specification, and automatically executed on an implementation. In each step of
the execution, the tester may either (1) send an input to the IUT, (2) wait to
observe output, or (3) stop testing. A single test may provide multiple options,
giving rise to multiple concrete testing sequences. It may also prescribe different
reactions to different outputs. Formally, test cases for a specification S are IOSA
whose inputs are the outputs of S and vice-versa. The parallel composition
of either S or I with a test case thus results in a closed IOSA. By including
discrete probability distributions on edges, IOSA allow making the probabilities
of the three choices (input, wait, stop) explicit1. Moreover, we can use clocks for
explicit waiting times in test cases. Sending input can hence be delayed, which
is especially beneficial to test race conditions. A test can also react to no output
being supplied, modelled by quiescence δ, and check if that was expected.

1 Tests are often implicitly generated probabilistically in classic ioco settings, too,
without the support to make this explicit in the underlying theory. We fill this gap.

Model-Based Testing for General Stochastic Time 209

Definition 7. A test T for a specification S with alphabet AI �AO is an IOSA
〈Loc, C,AO � AI , E, F, �init 〉 that has the specification’s outputs as inputs and
vice-versa, and that is a finite, internally deterministic, acyclic and connected
tree such that for every location � ∈ Loc, we either have E(�) = ∅ (stop testing),
or ∀ � G,a−−→ μ : a = τ (an internal decision), or if ∃ � G,a−−→ μ : a ∈ AI ∪ { δ } (we
can send an input or observe quiescence) then: ∀ aO ∈ AO : ∃G′, μ′ : � G′,aO−−−−→ μ′

(all outputs can be received) and ∀ � G′,a′
−−−→ μ′ : a′ ∈ AO ∨ a′ = a (we cannot send

a different input or observe quiescence in addition to an input). Whenever T
sends an input, this input must be present in S, too, i.e.

∀σ ∈ TracesfinT with σ = σ1 t a σ2 and a ∈ AI : σ1 t a ∈ TracesfinS .

3.2 Stochastic Input-Output Conformance and Annotations

Trace distribution equivalence ≡TD is the probabilistic counterpart of trace
equivalence for transition systems: it shows that there is a way for the traces
of two different models, e.g. the IOSA S and I, to all have the same probability
via some resolution of nondeterminism. However, trace equivalence or inclusion
is too fine as a conformance relation for testing [27]. The ioco relation [28] for
functional conformance solves the problem of fineness by allowing underspeci-
fication of functional behaviour: an implementation I is ioco-conforming to a
specification S if every experiment derived from S executed on I leads to an
output that was foreseen in S. Formally:

I �ioco S ⇔ ∀σ ∈ TracesfinS : outI(σ) ⊆ outS(σ)

where outI(σ) is the set of outputs in I that is enabled after the trace σ.

Stochastic ioco. To extend ioco testing to IOSA, we need an auxiliary concept
that mirrors trace prefixes stochastically: Given a trace distribution D of length
k, and a trace distribution D′ of length greater or equal than k, we say D is a
prefix of D′, written D �k D′, if both assign the same probability to all abstract
traces of length k. We can then define:

Definition 8. Let S and I be two IOSA. We say I is sa-ioco-conforming to S,
written I �sa

ioco S, if and only if for all tests T for S we have I ‖T �TD S ‖T .

Intuitively, I is conforming if, no matter how it resolves nondeterminism (i.e.
underspecification) under a concrete test, S can mimic its behaviour by resolving
nondeterminism for the same test, such that all traces have the same probability.

The original ioco relation takes an experiment derived from the specification
and executes it on the implementation. While Definition 8 does not directly mir-
ror this, the property implicitly carries over from the parallel composition with
tests specifically designed for specifications: an input is provided to the IUT if
that input is present in the specification model only.

Open schedulers. The above difference in approach between ioco and sa-ioco
is due to schedulers and their resulting trace distributions being solely defined
for closed systems in our work (cf. Definition 4). An alternative is to also define

210 M. Gerhold et al.

them for open systems. However, where schedulers for closed systems choose
discretely between possible actions, their counterparts for open systems addi-
tionally schedule over continuous time, i.e. when an action is to be taken. This
poses an additional layer of difficulty in tracing which scheduler was likely used
to resolve nondeterminism, which we need to do in our a posteriori statistical
analysis of the testing results (see Sect. 3.3).

Moreover, it is known [1,6,25] that trace distributions of probabilistic sys-
tems under “open” schedulers are not compositional in general, i.e. A �TD B
does not imply A ‖ C �TD B ‖ C. This would mean that, even when an imple-
mentation conforms to a specification, the execution of a probabilistic test case
might tamper with the observable probabilities and yield an untrustworthy ver-
dict. A general counterexample for the above implication is presented in [25],
where however there is no requirement on input-enabledness of the composable
systems. Our framework requires both implementation and test case to be input-
enabled, cf. Definitions 7 and 8. The authors of [1] provide a counterexample for
synchronous systems even in the presence of input-enabledness. Our framework
works with input-enabled asynchronous systems; we thus believe that sa-ioco
could also be defined in a way that more closely resembles the original defini-
tion of ioco by using open schedulers, but care has to be taken in defining those
schedulers in the right way. We thus designed sa-ioco conservatively such that
it is only based on trace semantics of closed systems, while still maintaining the
possibility of underspecification as in ioco due to the way tests are used.

Annotations. To assess whether observed behaviour is functionally correct, each
complete trace of a test is annotated with a verdict: all leaf locations of test
cases are labelled with either pass or fail . We annotate exactly the traces that
are present in the specification with the pass verdict; formally:

Definition 9. Given a test T for specification S, its test annotation is the func-
tion ann ∈ Tracesmax

T → {pass, fail} such that ann(σ) = fail if and only if ∃
 ∈
TracesfinS , t ∈ R

+
0 , a ∈ AO :
 t a is a prefix of σ ∧
 t a /∈ TracesfinS .

Annotations decide functional correctness only. The correctness of discrete prob-
ability choices and stochastic clocks is assessed in a separate second step.

Example 2. Figure 3 presents three test cases for the file server specification of
Ex. 1. T1 uses the quiescence observation δ to assure no output is given in the
initial state. T2 tests for eventual delivery of the file, which may be in archive,
requiring the intermediate wait! notification, or may be sent directly. T3 utilises
a clock on the abort! transition: it waits for some time (depending on what T3

specifies for F (x)) before sending the input. This highlights the ability to test
for race conditions, or for the possibility of a file arrival before a specified time.

3.3 Test Execution and Sampling

We test stochastic systems: executing a test case T once is insufficient to establish
sa-ioco conformance. We need many executions for an overall statistical verdict

Model-Based Testing for General Stochastic Time 211

Fig. 3. Three test cases T1, T2, T3 for the file server specification.

about the stochastic behaviour in addition to the functional verdict obtained
from the annotation on each execution. As establishing the functional verdict is
the same as in standard ioco testing, we focus on the statistical evaluation here.

Sampling. We perform a statistical hypothesis test on the implementation based
on the outcome of a push-button experiment in the sense of [22]. Before the
experiment, we fix the parameters for sample length k ∈ N (the length of the
individual test executions), sample width m ∈ N (how many test executions to
observe), and level of significance α ∈ (0, 1). The latter is a limit for the statistical
error of first kind, i.e. the probability of rejecting a correct implementation.
The statistical analysis is performed after collecting the sample for the chosen
parameters, while functional correctness is checked during the sampling process.

Frequencies. Our goal is to determine the deviation of a sample of traces O =
{σ1, . . . , σm } taken from I ‖ T vs. the results expected for S ‖ T . If it is too
large, O was likely not generated by an IOSA conforming to S and we reject I. If
the deviation is within bounds depending on k, m and α, we have no evidence to
suspect an underlying IOSA other than S and accept I as a conforming IUT. We
compare the frequencies of traces in O with their probabilities according to S ‖T .
Since I is a concrete implementation, the scheduler is the same for all executions,
resulting in trace distribution D for I ‖T and the probability of abstract trace
Σ is given directly by D(Σ). We define freqO(Σ) def= |{|σ ∈ O | σ ∈ Σ |}|/m, i.e.
the fraction of traces in O that are in Σ. I is rejected on statistical evidence if
the distance of the two measures D and freqO exceeds a threshold based on α.

Acceptable outcomes. We accept a sample O if freqO lies within some radius, say
rα, around D. To minimise the error of false acceptance, we choose the smallest
rα that guarantees that the error of false rejection is not greater than α, i.e.

rα
def= inf { r ∈ R

+ | D(freq−1(Br(D))) > 1 − α }, (1)

212 M. Gerhold et al.

where By(x) is the closed ball centred at x ∈ X with radius y ∈ R
+ and X a

metric space. The set of all measures defines a metric space together with the
total variation distance of measures dist(u, v) def= supσ∈(R+

0 ×A)k |u(σ) − v(σ)|.

Definition 10. For k, m ∈ N and I ‖ T , the observations under a trace distri-
bution D ∈ Trd(I ‖ T , k) of level of significance α ∈ (0, 1) are given by the set

Obs(D,α, k,m) = {O ∈ (R+
0 × A)k×m | dist(freqO,D) ≤ rα }.

The set of observations of I ‖ T with α ∈ (0, 1) is then given by the union over
all trace distributions of length k, and is denoted Obs(I ‖ T , α, k,m).

These sets limit the statistical error of first and second kind as follows: if a
sample was generated under a trace distribution of I ‖T or a trace distribution
equivalent IOSA, we accept it with probability higher than 1 − α; and for all
samples generated under a trace distribution by non-equivalent IOSA, the chance
of erroneously accepting it is smaller than some βm, where βm is unknown but
minimal by construction, cf. (1). Note that βm → 0 as m → ∞, i.e. the error of
accepting an erroneous sample decreases as sample size increases.

3.4 Test Evaluation and Correctness

Definition 11. Given an IOSA S, an annotated test case T , k and m ∈ N, and
a level of significance α ∈ (0, 1), we define (1) the functional verdict as given
by vfunc ∈ IOSA2 → { pass, fail } where vfunc(I, T) = pass if and only if ∀σ ∈
Tracesmax

I‖T ∩Tracesmax
T : ann(σ) = pass, and (2) the statistical verdict as given by

vprob ∈ IOSA2 → { pass, fail } where vprob(I, T) = pass iff ∃D ∈ Trd(S ‖ T , k)
s.t.

D(Obs(I ‖T , α, k,m) ∩ TracesS‖T) > 1 − α.
I passes a test suite if vprob(I, T) = vfunc(I, T) = pass for all annotated test
cases T of the test suite.

The above definition connects the previous two subsections to implement a cor-
rect MBT procedure for the sa-ioco relation introduced in Sect. 3.2. Correctness
comprises soundness and completeness (or exhaustiveness): the first means that
every conforming implementation passes a test, whereas the latter implies that
there is a test case to expose every erroneous (i.e. nonconforming) implemen-
tation. A test suite can only be considered correct with a guaranteed (high)
probability 1 − α (as inherent in Definition 11).

Definition 12. Let S be a specification IOSA. Then a test case T is sound for
S with respect to sa-ioco for every α ∈ (0, 1) iff for every input enabled IOSA I
we have that I �sa

ioco S implies vfunc(I, T) = vprob(I, T) = pass.

Completeness of a test suite is inherently a theoretical result. Infinite behaviour
of the IUT, for instance caused by loops, hypothetically requires a test suite
of infinite size. Moreover, there remains a possibility of accepting an erroneous
implementation by chance, i.e. making an error of second kind. However, the
latter is bounded from above and decreases with increasing sample size.

Model-Based Testing for General Stochastic Time 213

Definition 13. Let S be a specification IOSA. Then a test suite is called com-
plete for S with respect to sa-ioco for every α ∈ (0, 1) iff for every input-enabled
IOSA I we have that I ��sa

ioco S implies the existence of a test T in the test suite
such that vfunc(I, T) = fail or vprob(S, T) = fail .

4 Implementing Stochastic Testing

The previous section laid the theoretical foundations of our new IOSA-based
testing framework. Several aspects were specified very abstractly, for which we
now provide practical procedures. There are already several ways to generate,
annotate and execute test cases in batch or on-the-fly in the classic ioco set-
ting [28], which can be transferred to our framework. The statistical analysis of
gathered sample data in MBT, on the other hand, is largely unexplored since
few frameworks include probabilities or even stochastic timing. Determining ver-
dicts according to Definition 11 requires concrete procedures to implement the
statistical tests described in Sect. 3.3 with level of significance α. We now present
practical methods to evaluate test cases in line with this theory. In particular,
we need to find a scheduler for S that makes the observed traces O most likely,
and test that the stochastic timing requirements are implemented correctly.

4.1 Goodness of Fit

Since our models neither comprise only one specific distribution, nor one specific
parameter to test for, we resort to nonparametric goodness of fit tests. Non-
parametric statistical procedures allow to test hypotheses that were designed for
ordinal or nominal data [17], matching our intention of (1) testing the overall dis-
tribution of trace frequencies in a sample O = {σ1, . . . , σm }, and (2) validating
that the observed delays were drawn from the specified clocks and distributions.
We use Pearson’s χ2 test for (1) and multiple Kolmogorov-Smirnov tests for (2).

Pearson’s χ2 test [17] compares empirical sample data to its expectations. It
allows us to check the hypothesis that observed data indeed originates from
a specified distribution. The cumulative sum of squared errors is compared to
a critical value, and the hypothesis is rejected if the empiric value exceeds the
threshold. We can thus check whether trace frequencies correspond to a specifica-
tion under a certain trace distribution. For a finite trace σ = t1 a1 t2 a2 . . . tk ak,
we define its timed closure as σ̄ def= R

+ a1 . . . R+ ak. Applying Pearson’s χ2 is
done in general via χ2 =

∑n
i=1 |obsi − expi|

2
/expi, i.e. in our case

χ2 def=
∑

σ̄∈{σ̄|σ∈O}
(|{| �̄|�∈O∧�̄=σ̄ |}|/m−D(σ̄))2

D(σ̄) . (2)

We need to find a D that gives a high likelihood to a sample, i.e. such that
χ2 < χ2

crit , where χ2
crit depends on α and the degrees of freedom. The latter is

given by the number of different timed closures in O minus 1. The critical values
can be calculated or found in standard tables.

Recall that a trace distribution is based on a scheduler that resolves non-
deterministic choices randomly. This turns (2) into a satisfaction problem of a

214 M. Gerhold et al.

probability vector p over a rational function f(p)/g(p), where f and g are poly-
nomials. Finding a resolution such that χ2 < χ2

crit ensures that the error of
rejecting a correct IUT is at most α. This can be done via SMT solving.

The Kolmogorov-Smirnov test. While Pearson’s χ2 test assesses the existence
of a scheduler that explains the observed trace frequencies, it does not take
into account the observed delays. For this purpose, we use the non-parametric
Kolmogorov-Smirnov test [17] (the KS test). It assesses whether observed data
matches a hypothesised continuous probability measure. We thus restrict the
practical application of our approach to IOSA where the F (c) for all clocks c are
continuous distributions. Let t1, . . . , tn be the delays observed for a certain edge
over multiple traces in ascending order and Fn be the resulting step function, i.e.
the right-continuous function Fn defined by Fn(t) = 0 for t < t1, Fn(t) = ni/n
for ti ≤ t < ti+1, and Fn(t) = 1 for t ≥ tn where ni is the number of tj that are
smaller or equal to ti. Further, let c be a clock with CDF Fc. Then the n-th KS
statistic is given by

Kn
def= supt∈R

+
0

|Fc (t) − Fn (t)| . (3)

If the sample values t1, . . . , tn are truly drawn from the CDF Fx, then Kn → 0
almost surely as n → ∞ by the Glivenko-Cantelli theorem. Hence, for given α
and sample size n, we accept the hypothesis that the ti were drawn from Fx

iff Kn ≤ Kcrit/
√

n, where Kcrit is a critical value given by the Kolmogorov
distribution. Again, the critical values can be calculated or found in tables.

Example 3. The left-hand side of Fig. 4 shows a tiny example specification IOSA
with clocks x and y. The expiration times of both are uniformly distributed with
different parameters. The right-hand side depicts a sample from this IOSA. There
are two steps to assess whether the observed data is a truthful sample of the
specification with a confidence of α = 0.05: (1) find a trace distribution that
minimises the χ2 statistic and (2) evaluate two KS tests to assess whether the
observed time data is a truthful sample of Uni[0, 2] and Uni[0, 3], respectively.

Fig. 4. Tiny example implementation IOSA and sample observation.

There are two classes of traces solely based on the action signature: ID
1–8 with a! and ID 9–14 with b!. Let p be the probability that a sched-
uler assigns to taking the left branch in �0 and 1 − p that assigned to tak-
ing the right branch. Drawing a sample of size m, we expect p · m times
a! and (1 − p) · m times b!. The empirical χ2 value therefore calculates as

Model-Based Testing for General Stochastic Time 215

χ2 = (8 − 14 · p)2/(14 · p) + (6 − 14 · (1 − p))2/(14 · (1 − p)), which is minimal
for p = 8/14. Since it is smaller than χ2

crit = 3.84, we found a scheduler that
explains the observed frequencies.

Let t1 = 0.26, . . . , t8 = 1.97 be the data associated with clock x and t′1 =
0.29, . . . , t′6 = 2.74 be the data associated with clock y. D8 = 0.145 is the
maximal distance between the empirical step function of the ti and Uni[0, 2].
The critical value of the Kolmogorov distribution for n = 8 and α = 0.05 is
Kcrit = 0.46. Hence, the inferred measure is sufficiently close to the specification.
The KS test for t′i and Uni[0, 3] can be performed analogously.

The acceptance of both the χ2 and the KS test results in the overall statistical
acceptance of the implementation based on the sample data at α = 0.05.

Our intention is to provide general and universally applicable statistical tests.
The KS test is conservative for general distributions, but can be made precise [8].
More specialised and thus efficient tests exist for specific distributions, e.g. the
Lilliefors test [17] for Gaussian distributions, and parametric tests are generally
preferred due to higher power at equal sample size. The KS test requires a com-
parably large sample size, and e.g. the Anderson-Darling test is an alternative.

Error propagation. A level of significance α ∈ (0, 1) limits type 1 error by α.
Performing several statistical experiments inflates this probability: if one exper-
iment is performed at α = 0.05, there is a 5% probability to incorrectly reject a
true hypothesis. Performing 100 experiments, we expect to see a type 1 error 5
times. If all experiments are independent, the chance is thus 99.4%. This is the
family-wise error rate (FWER). There are two approaches to control the FWER:
single step and sequential adjustments. The most prevalent example for the first
is Bonferroni correction, while a prototype of the latter is Holm’s method. Both
methods aim at limiting the global type I error in the statistical testing process.

4.2 Algorithm Outline

The overall practical procedure to perform MBT for sa-ioco is then as follows:

1. Generate an annotated test case T of length k for the specification IOSA S.
2. Execute T on the IUT I m times. If the fail functional verdict is encountered

in any of the m test executions then fail I for functional reasons.
3. Calculate the number of KS tests and e.g. adjust α to avoid error propagation.
4. Use SMT solving to find a scheduler s.t. the χ2 statistic of the sample is below

the critical value. If no scheduler is found, fail I for probabilistic reasons.
5. Group all time stamps assigned to the same clock and perform a KS test for

each clock. If any of them fails, reject I for probabilistic reasons.
6. Otherwise, accept I as conforming to S according to T .

Threats to validity. Step 5 has the potential to vastly grow in complexity if traces
cannot be uniquely identified in the specification model. Recall Fig. 4 and assume
a! = b!: it is now infeasible to differentiate between time values belonging to the
left and to the right branch. To avoid this, we have to avoid this scenario at the
time of modelling, or check all possible combinations of time value assignments.

216 M. Gerhold et al.

5 Experiments

Bluetooth is a wireless communication protocol for low-power devices commu-
nicating over short distances. Its devices organise in small networks consisting
of one master and up to seven slave devices. In this initialisation period, Blue-
tooth uses a frequency hopping scheme to cope with inferences. To illustrate our
framework, we study the initialisation for one master and one slave device. It
is inherently stochastic due to the initially random unsynchronised state of the
devices. We give a high level overview and refer the reader to [11] for a detailed
description and formal analysis of the protocol in a more general scenario.

Fig. 5. Experimental setup.

Device discovery protocol. Master and slave try to connect via 32 prescribed fre-
quencies. Both have a 28-bit clock that ticks every 312.5µs. The master broad-
casts on two frequencies for two consecutive ticks, followed by a two-tick listening
period on the same frequencies, which are selected according to

freq = [CLK16−12 + off + (CLK 4−2,0 − CLK 16−12) mod 16] mod 32
where CLK i−j marks the bits i, . . . , j of the clock and off ∈ N is an offset. The
master switches between two tracks every 2.56 s. When the 12th bit of the clock
changes, i.e. every 1.28 s, a frequency is swapped between the tracks. We use
off = 1 for track 1 and off = 17 for track 2, i.e. the tracks initially comprise
frequencies 1-16 and 17-32. The slave scans the 32 frequencies and is either in
sleeping or listening state. The Bluetooth standard leaves some flexibility w.r.t.
the length of the former. For our study, the slave listens for 11.25ms every 0.64 s
and sleeps for the remaining time. It picks the next frequency after 1.28 s, enough
for the master to repeatedly cycle through 16 frequencies.

Experimental setup. Our toolchain is depicted in Fig. 5. The IUT is tested on-
the-fly via the MBT tool JTorX [2], which generates tests w.r.t. a transition
system abstraction of our IOSA specification modelling the protocol described
above. JTorX returns the functional fail verdict if unforeseen output or a timeout
(quiescence) is observed at any time throughout the test process. We chose a
timeout of approx. 5.2 s in accordance with the specification. JTorX’s log files
comprise the sample. We implemented the protocol and three mutants in Java 7:

Model-Based Testing for General Stochastic Time 217

M1 Master mutant M1 never switches tracks 1 and 2, slowing the coverage of
frequencies: new frequencies are only added in the swap every 1.28 s.

M2 Master mutant M2 never swaps frequencies, only switching between tracks
1 and 2. The expected time to connect will therefore be around 2.56 s.

S1 Slave mutant S1 has its listening period halved: it is only in a receiving
state for 5.65ms every 0.64 s.

In all cases, we expect an increase in average waiting time until connection
establishment. We anticipate that the increase leads to functional fail verdicts
due to timeouts or to stochastic fail verdicts based on differing connection time
distributions compared to the specification. We collected m = 100, m = 1000
and m = 10000 test executions for each implementation, and used α = 0.05.

Table 1. Verdicts and Kolmogorov-Smirnov test results for Bluetooth initialisation.

Correct Mutants

M‖S M1 ‖S M2 ‖S M‖S1

k = 2 Accept Reject Accept Accept

m = 100 Dm = 0.065 — Dm = 0.110 Dm = 0.065

Dcrit = 0.136 Dcrit = 0.136 Dcrit = 0.136

Timeouts 0 40 0 0

k = 2 Accept Reject Reject Accept

m = 1000 Dm = 0.028 — Dm = 0.05 Dm = 0.020

Dcrit = 0.045 Dcrit = 0.045 Dcrit = 0.045

Timeouts 0 399 0 0

k = 2 Accept Reject Reject Reject

m = 10000 Dm = 0.006 — Dm = 0.043 Dm = 0.0193

Dcrit = 0.019 Dcrit = 0.019 Dcrit = 0.0192

Timeouts 0 3726 0 0

Results. Table 1 shows the verdicts and the observed KS statistics Dm alongside
the corresponding critical values Dcrit for our experiments. Statistical verdict
Accept was given if Dm < Dcrit , and Reject otherwise. Note that the critical
values depend on the level of significance α and the sample size m. The correct
implementation was accepted in all three experiments. During the sampling of
M1, we observed several timeouts leading to a functional fail verdict. It would
also also have failed the KS test in all three experiments. M2 passed the test
for m = 100, but was rejected with increased sample size. S1 is the most subtle
of the three mutants: it was only rejected with m = 10000 at a narrow margin.

6 Conclusion

We presented an MBT setup based on stochastic automata that combines prob-
abilistic choices and continuous stochastic time. We instantiated the theoretical

218 M. Gerhold et al.

framework with a concrete procedure using two statistical tests and explored its
applicability on a communication protocol case study.

References

1. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional methods for probabilistic
systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
351–365. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-0 24

2. Belinfante, A.: JTorX: a tool for on-line model-driven test derivation and execution.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 266–270.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 21

3. Bohnenkamp, H., Belinfante, A.: Timed testing with TorX. In: Fitzgerald, J.,
Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 173–188. Springer,
Heidelberg (2005). https://doi.org/10.1007/11526841 13

4. Briones, L.B., Brinksma, E.: A test generation framework for quiescent real-time
systems. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
64–78. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4 5

5. Cheung, L., Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic
processes. J. ACM 54(6), 29 (2007)

6. Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched PIOA: parallel com-
position via distributed scheduling. Theor. Comput. Sci. 365(1), 83–108 (2006)

7. Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilis-
tic processes. Inf. Comput. 154(2), 93–148 (1999)

8. Conover, W.J.: A Kolmogorov goodness-of-fit test for discontinuous distributions.
J. Am. Stat. Assoc. 67(339), 591–596 (1972)

9. D’Argenio, P.R., Lee, M.D., Monti, R.E.: Input/output stochastic automata. In:
Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 53–68.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 4

10. Deng, Y., Hennessy, M., van Glabbeek, R.J., Morgan, C.: Characterising testing
preorders for finite probabilistic processes. CoRR (2008)

11. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A formal analysis of blue-
tooth device discovery. STTT 8(6), 621–632 (2006)

12. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351. IEEE Computer Society (2010)

13. Gerhold, M., Stoelinga, M.: Model-based testing of probabilistic systems. In:
Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 251–268.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 15

14. Gerhold, M., Stoelinga, M.: Model-based testing of probabilistic systems with
stochastic time. In: Gabmeyer, S., Johnsen, E.B. (eds.) TAP 2017. LNCS, vol.
10375, pp. 77–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
61467-0 5

15. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: FOSE, pp. 167–181. ACM (2014)

16. Hierons, R.M., Merayo, M.G., Núñez, M.: Testing from a stochastic timed system
with a fault model. J. Log. Algebr. Program. 78(2), 98–115 (2009)

17. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods.
Wiley, Hoboken (2013)

18. Katoen, J.P.: The probabilistic model checking landscape. In: LICS. ACM (2016)

https://doi.org/10.1007/3-540-44685-0_24
https://doi.org/10.1007/978-3-642-12002-2_21
https://doi.org/10.1007/11526841_13
https://doi.org/10.1007/978-3-540-31848-4_5
https://doi.org/10.1007/978-3-319-44878-7_4
https://doi.org/10.1007/978-3-662-49665-7_15
https://doi.org/10.1007/978-3-319-61467-0_5
https://doi.org/10.1007/978-3-319-61467-0_5

Model-Based Testing for General Stochastic Time 219

19. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Form. Meth-
ods Syst. Des. 34(3), 238–304 (2009)

20. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. ACM (1989)
21. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using

Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31848-4 6

22. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

23. Núñez, M., Rodŕıguez, I.: Towards testing stochastic timed systems. In: König,
H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 335–350.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39979-7 22

24. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Cambridge, MA, USA (1995)

25. Stoelinga, M.: Alea jacta est: verification of probabilistic, real-time and parametric
systems. Ph.D. thesis, Radboud University of Nijmegen (2002)

26. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT press, Cambridge
(2005)

27. Tretmans, J.: Conformance testing with labelled transition systems: implementa-
tion relations and test generation. Comput. Netw. ISDN Syst. 29(1), 49–79 (1996)

28. Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1–38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8 1

29. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

https://doi.org/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/978-3-540-39979-7_22
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

Strategy Synthesis for Autonomous
Agents Using PRISM

Ruben Giaquinta1, Ruth Hoffmann3, Murray Ireland2, Alice Miller1,
and Gethin Norman1(B)

1 School of Computing Science, University of Glasgow, Glasgow, UK
gethin.norman@glasgow.ac.uk

2 School of Engineering, University of Glasgow, Glasgow, UK
3 School of Computer Science, University of St Andrews, St Andrews, UK

Abstract. We present probabilistic models for autonomous agent search
and retrieve missions derived from Simulink models for an Unmanned
Aerial Vehicle (UAV) and show how probabilistic model checking and
the probabilistic model checker PRISM can be used for optimal controller
generation. We introduce a sequence of scenarios relevant to UAVs and
other autonomous agents such as underwater and ground vehicles. For
each scenario we demonstrate how it can be modelled using the PRISM
language, give model checking statistics and present the synthesised opti-
mal controllers. We conclude with a discussion of the limitations when
using probabilistic model checking and PRISM in this context and what
steps can be taken to overcome them. In addition, we consider how the
controllers can be returned to the UAV and adapted for use on larger
search areas.

1 Introduction

Autonomous vehicles such as unmanned aerial vehicles, autonomous underwater
vehicles and autonomous ground vehicles have widespread application in both
military and commercial contexts. Investment in autonomous systems is growing
rapidly, the UK government is investing £100 million into getting driverless cars
on the road, while the worldwide market for commercial applications of drone
technology has been valued at over $127 billion. For example, the U.S. Office of
Naval Research has demonstrated how a swarm of unmanned boats can help to
patrol harbours, the Defence Advanced Research Projects Agency has launched
a trial of the world’s largest autonomous ship and NASA has deployed Mars
Rovers which, on receipt of instructions to travel to a specific location, must
decide on a safe route.

Understandably, there are concerns about safety and reliability of
autonomous vehicles. Recently researchers exposed design flaws in drones by
deliberately hacking their software and causing them to crash [34], and US reg-
ulators discovered that a driver was killed while using the autopilot feature of
a Tesla car due to the failure of the sensor system to detect another vehicle.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 220–236, 2018.
https://doi.org/10.1007/978-3-319-77935-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_16&domain=pdf

Strategy Synthesis for Autonomous Agents Using PRISM 221

Incidents like these and the lack of design and analysis tools to prove system
compliance under all nominal and adverse operating conditions are preventing
regulatory bodies from issuing clear certification guidelines.

Autonomous agents almost always follow a variation of the same core process:
perception, cognition and actuation. Perception is achieved through the system
sensor suite, giving the agent a picture of the current environmental state. Actu-
ation governs how the agent interacts with the environment and cognition is
where the agent decides at run-time what goals to set and how to achieve them.
A critical question is how to implement this decision-making process. Current
best-practice uses a software controller that pre-determines the behaviour of the
agent under a given set of internal parameter values and environmental condi-
tions. However, can controllers be generated automatically and in such a way
as to ensure that the resulting behaviour is safe, efficient and secure under all
conceivable operational scenarios and system failures?

Guaranteeing reliability of autonomous controllers using testing alone is
infeasible, e.g. [15] concludes that autonomous vehicles would need to be driven
hundreds of billions of miles to demonstrate their reliability and calls for the
development of innovative methods for the demonstration of safety and reliabil-
ity that could reduce the infeasible burden of testing. Formal verification offers
hope in this direction having been used both for controller synthesis and for ver-
ifying the reliability and safety of autonomous controller logic. In this paper we
investigate the use of probabilistic model checking and the probabilistic model
checker PRISM for automatic controller generation. Our ultimate goal is to
develop software, based on the techniques described here that can be embedded
into controller software to generate adaptable controllers that are verified to be
optimal, safe and reliable by design. Specifically we:

1. describe PRISM models for a suite of scenarios inspired by situations faced
by a range of autonomous agents;

2. present synthesised (optimal) controllers for the different scenarios and exam-
ine their performance;

3. discuss the limitations of this approach and the next steps to overcome them.

Related Work. There has been significant recent work using Markov decision
processes, temporal logic specifications and model checking for generating con-
trollers of autonomous systems. These works differ in the temporal logic specifica-
tions used and include approaches using the branching time logic PCTL [22,36],
linear time temporal logic LTL [7,35], metric temporal logic [11], rewards [30]
and multi-objective queries [21,23]. Also, both partially observable Markov deci-
sion processes, e.g. [29,31], and stochastic games, e.g. [8,32] have been used in
conjunction with temporal logic for controller synthesis of autonomous agents.

Formal verification of robot missions is considered in [27], however here the
focus is on evaluating existing controllers. Similarly, in [6] model checking is used
to verify the decision making aspect of autonomous systems. Model checking has
also been used for analysing the behaviour of groups or swarms of autonomous
agents including: agents in a pursuer-evader [2] scenario, foraging swarms [18,24],

222 R. Giaquinta et al.

co-operative missions [13] and surveillance and convoy missions [5]. Concerning
using formal verification to obtain certification of correctness, [33] uses (non-
probabilistic) model checking to verify unmanned aircraft system controllers
against the Civil Aviation Authority’s regulations.

In previous work [12] we have presented a PRISM model of a UAV with a
fixed controller searching for objects in a defined, gridded area following a fixed
path. The real parameters are derived from a simulation model and the process
of property verification using PRISM is compared to Monte Carlo simulation.
This model is described in Scenario 1 (see Sect. 3).

2 Background

We now introduce Markov decision processes (MDPs) and probabilistic model
checking of MDPs in PRISM. For any finite set X, let Dist(X) denote the set
of discrete probability distributions X.

Markov Decision Processes. MDPs model discrete time systems that exhibit
both nondeterministic and probabilistic behaviour.

Definition 1. A Markov decision process (MDP) is a tuple M = (S, s̄, A, P)
where: S is a finite set of states and s̄ ∈ S is an initial state; A is a finite set
of actions; P : S × A → Dist(S) is a (partial) probabilistic transition function,
mapping state-action pairs to probability distributions over S.

In a state s of an MDP M, there is a nondeterministic choice between the available
actions in s. These available actions, denoted A(s), are the actions for which
P (s, a) is defined. If action a is selected, then the successor state is chosen
probabilistically, where the probability of moving to state s′ equals P (s, a)(s′).
An execution of an MDP is a path corresponding to a sequence of transitions of
the form π = s0

a0−→ s1
a1−→ · · · , where ai ∈ A(si) and P (si, ai)(si+1) > 0 for all

i≥0. Let FPathsM denote the finite paths of M and last(π) denote the last state
of any finite path π.

Reward structures model quantitative measures of an MDP which are accu-
mulated when an action is chosen in a state.

Definition 2. A reward structure for an MDP M = (S, s̄, A, P) is a function
of the form R : S × A → R≥0.

To reason about the behaviour of an MDP, we need to introduce the definition
of strategies (also called policies, adversaries and schedulers). A strategy resolves
the nondeterminism in an MDP by selecting the action to perform at any stage
of execution. The choice can depend on the history and can be made randomly.

Definition 3. A strategy of an MDP M is a function σ : FPathsM→Dist(A)
such that σ(π)(a) > 0 only if a ∈ A(last(π)).

Under a strategy σ of an MDP M, the nondeterminism of M is resolved, and hence
its behaviour is fully probabilistic. Formally, it corresponds to an (infinite) state
discrete time Markov chain (DTMC) and we can use a standard construction on
DTMCs [17] to build a probability measure over the infinite paths of M.

Strategy Synthesis for Autonomous Agents Using PRISM 223

Property Specifications. Two standard classes of properties for MDPs are
probabilistic and expected reachability. For a given state predicate, these corre-
spond to the probability of eventually reaching a state satisfying the predicate
and the expected reward accumulated before doing so. The value of these prop-
erties depends on the resolution of the nondeterminism, i.e. the strategy, and we
therefore consider optimal (minimum and maximum) values over all strategies.

The Probabilistic Model Checker PRISM. PRISM [19] is a probabilistic
model checker that allows for the analysis of a number of probabilistic models
including MDPs. Models in PRISM are expressed using a high level modelling
language based on the Reactive Modules formalism [1]. A model consists of a
number of interacting modules. Each module consists of a number of finite-valued
variables corresponding to the module’s state and the transitions of a module
are defined by a number of guarded commands of the form:

[<action>] <guard> → <prob> : <update> + · · · + <prob> : <update>

A command consists of an (optional) action label, guard and probabilistic choice
between updates. A guard is a predicate over variables, while an update specifies,
using primed variables, how the variables of the module are updated when the
command is taken. Interaction between modules is through guards (as guards
can refer to variables of all modules) and action labels which allow modules to
synchronise. Support for rewards are through reward items of the form:

[<action>] <guard> : <reward>;

representing the reward accumulated when taking an action in a state satisfying
the guard.

PRISM supports the computation of an optimal probabilistic and expected
reachability values, for details on how these values are computed and the tem-
poral logic that PRISM supports, see [10]. PRISM can also synthesise strategies
achieving such optimal values. Such a strategy is represented as a list of (opti-
mal) action choices for each state of the MDP under study, this list can then
be fed back into PRISM to generate the underlying DTMC, and hence allow
further analysis of the strategy. For details on strategy synthesis see [20].

3 Scenarios

We describe a number of scenarios relevant for autonomous agents and how
PRISM has been used for verification and controller synthesis. Each scenario is
inspired by realistic situations for a range of autonomous vehicle applications,
e.g. border patrol using autonomous vehicles, exploration of unexplored terrain,
and search and rescue operations. However, in each case we present a simplified
scenario involving an autonomous agent involving search within a defined area.
The PRISM model and property files for each scenario are available from [37].

224 R. Giaquinta et al.

Scenario 1: Fixed Controller. In [12] we introduced abstract PRISM models
representing an agent searching for and collecting objects randomly placed in a
grid. The models are based on a physical system, namely a quadrotor UAV in
operation inside a small, constrained environment in the University of Glasgow’s
Micro Air Systems (MAST) Laboratory, a cuboidal flight space with a motion
capture system for tracking UAVs. Continuous Simulink simulation models have
been developed so that the effect of altering various aspects (including the search
strategy) can be investigated via Monte Carlo simulation [14]. The purpose was
to investigate the viability of a framework for analysing autonomous systems
using probabilistic model checking of an abstract model where quantitative data
for abstract actions is derived from small-scale simulation models.

The controller in this scenario is fixed and specifies that the agent searches
the grid in a predetermined fashion, starting at the bottom left cell of the grid,
travelling right along the bottom row to the bottom right cell, then left along
the second row, and so on. The controller also specifies that if an object is found
during search, then the agent attempts to pick up the object and, if successful,
transports it to a specified deposit site. Whenever the agent’s battery level falls
below a specified threshold, it returns to the base to recharge and once the
battery is charged resumes the search. In both cases, search resumes from the
previous cell visited, until all objects have been found or because the search can
not continue (e.g. due to an actuator fault or the mission time limit has been
reached).

We used MDP models and PRISM to analyse this scenario with a grid size of
7× 4 and either 2 or 3 objects. Although the controller is fixed, nondeterminism
is used to represent uncertainty in the environment, specifically the time taken
for the agent to execute actions, which were obtained from our small-scale sim-
ulation models. The PRISM models contain modules for the agent’s behaviour,
movement, time and battery level, and objects. To reduce the size of the state-
space, rather than encoding the random placement of the objects within the
model, we develop a model were objects have fixed coordinates and consider
each possible placement of the objects. For example, in the case of two objects
there are 378 different possible placements for the objects and each model with
fixed placement has approximately 200,000 states. To obtain quantitative ver-
ification results for the model where objects are randomly placed we perform
multiple verification runs by considering each possible placement of the objects
and take an average.

In the remainder of the section we synthesise optimal controllers for differ-
ent scenarios with respect to the mission time. We achieve this using PRISM
to encode the choices of the controller using nondeterminism. We remove the
nondeterminism corresponding to environmental factors, e.g. the time taken to
perform actions as these are not choices of the controller. By moving to stochastic
games [28] we could separate the controller’s choices from that of the environ-
ment. However, implementations of probabilistic model checking for such games,
e.g. PRISM-games [4], do not currently scale to the size of models we consider.

Strategy Synthesis for Autonomous Agents Using PRISM 225

Scenario 2: Control of Recharging. In this scenario we introduce choice as
to when the battery is recharged. More precisely, recharging is no longer enforced
when the battery reaches a pre-determined lower threshold as in Scenario 1, but
can be performed nondeterministically at any time during search. We assume
that positions of the objects are fixed and the agent explores the grid in the
pre-determined fashion described for Scenario 1 above.

Table 1. Scenario 2: performance of optimal and Scenario 1 controllers (7 × 4 grid).

Base Depot Object 1 Object 2 Expected mission

time

Expected no. of

battery charges

Probability of

mission success

Scenario 1 Optimal Scenario 1 Optimal Scenario 1 Optimal

(0,0) (2,2) (3,3) (4,3) 285.8 138.0 2.301 2.021 0.949 0.975

(0,0) (2,2) (1,1) (4,3) 252.2 147.3 2.181 1.002 0.956 0.975

(0,0) (6,3) (2,1) (4,2) 292.4 178.5 2.364 1.056 0.948 0.970

(1,2) (6,3) (3,0) (5,1) 212.4 83.93 1.015 0.203 0.962 0.987

(3,2) (6,3) (2,1) (4,2) 218.9 117.3 1.127 1.032 0.960 0.980

(6,3) (0,0) (2,1) (4,2) 221.4 119.5 1.090 1.021 0.960 0.978

We use PRISM to find the minimum expected mission time and synthesise an
optimal strategy that achieves this minimum for a suite of models involving two
objects, varying the positions of the base, depot and objects. The synthesised
strategies demonstrate that the optimal choice is to recharge when close to base,
rather than waiting for the battery level to reach a threshold level. The per-
formance of the synthesised optimal controller is compared to that of the fixed
controller used in Scenario 1 (which recharges when the battery level reaches a
threshold) in Table 1. The results demonstrate that the synthesised controller
offers a significant performance improvement over the controller of Scenario 1.
We see the expected mission time drastically reduces, the probability of a suc-
cessful mission increases and the expected number of battery recharges decreases.

Scenario 3: Control of Search. We now generalise Scenario 2 to include
control of the search path as well as recharging. Since allowing freedom of move-
ment increases the complexity of our model, we focus on the search mode of the
agent and abstract other modes (including take-off, hover and grab, see [14] for
details).

Having the positions of the objects as constants in the PRISM model is not
feasible if our aim is to generate optimal and realistic controllers as this means
that the agent knows the locations of the objects it is searching for. In such a sit-
uation, the optimal search strategy is clear: go directly to the objects and collect
them. We initially considered using partially observable MDPs (POMDPs) and
the recent extension of PRISM [26]. Using POMDPs we can hide the positions
of the objects and synthesise an optimal controller, e.g. one that minimises the

226 R. Giaquinta et al.

// number of unexplored cells
formula n = gp0+gp1+gp2+gp3+gp4+gp5+gp6+gp7+gp8+gp9+gp10+gp11 ;
// probability of finding object in an unexplored cell
formula p = objs/n;

Fig. 1. PRISM code: probability of finding an object in an unexplored cell.

// move east
[east] s=0 & gp=0 & gp0=0 & posx<X → (posx ′=posx+1);
[east] s=0 & gp=0 & gp0=1 & posx<X & p≤1 → p : (s′=1)&(posx ′=posx+1)&(gp0 ′=0)

+ 1−p : (posx ′=posx+1)&(gp0 ′=0);
// move west
[west] s=0 & gp=0 & gp0=0 & posx>0 → (posx ′=posx−1);
[west] s=0 & gp=0 & gp0=1 & posx>0 & p≤1 → p : (s′=1)&(posx ′=posx−1)&(gp0 ′=0)

+ 1−p : (posx ′=posx−1)&(gp0 ′=0);
// move north
[north] s=0 & gp=0 & gp0=0 & posy<Y → (posy′=posy+1);
[north] s=0 & gp=0 & gp0=1 & posy<Y & p≤1 → p : (s′=1)&(posy′=posy+1)&(gp0 ′=0)

+ 1−p : (posy′=posy+1)&(gp0 ′=0);
// move south
[south] s=0 & gp=0 & gp0=0 & posy>0 → (posy′=posy−1);
[south] s=0 & gp=0 & gp0=1 & posy>0 & p≤1 → p : (s′=1)&(posy′=posy−1)&(gp0 ′=0)

+ 1−p : (posy′=posy−1)&(gp0 ′=0);

Fig. 2. PRISM commands: searching cell with gridpoint 0.

expected mission time. However, we found the prototype implementation did
not scale as it implements only basic analysis techniques.

Subsequently we investigated modelling hidden objects with MDPs. This was
found to be feasible by monitoring the unexplored cells and using the fact that
the probability of an object being found in a cell that has not been explored is
obj/n were obj is the number of objects still to be found and n the number of
unexplored cells. In an M × N grid we associate the cell with coordinates (x, y)
the integer (or gridpoint) x+y ·M . Before we give the PRISM code for an agent
searching, we list the variables, formulae and constants used in the code:

– variable s is the state of the agent taking value 0 when searching and 1 when
an object has been found;

– variables posx and posy are the current coordinates of the agent and formula
gp returns the corresponding gridpoint;

– constants X and Y represent the grid size, where X = M −1 and Y = N −1;
– variable gpi for 0 ≤ i ≤ (X +1)×(Y +1)−1 equals 1 when cell with gridpoint

i has not been visited, and 0 otherwise;
– variable objs represents the number of objects yet to be found.

We assume the base and depot are fixed and located at position (0, 0).
Figures 1 and 2 give the PRISM code extracts relevant for finding an object

for a grid with 12 cells when the agent is searching the cell with gridpoint 0. To
search the cell the agent needs to be searching and located in the cell (s = 0
and gp = 0). If the cell has already been searched (gp0 = 0), then there is just
a nondeterministic choice as to which direction to move. If the cell has not been

Strategy Synthesis for Autonomous Agents Using PRISM 227

Table 2. Scenario 3: model checking results.

Grid size No. of
objects

Battery
capacity

States Transitions Min expected
mission time

Verification
time (s)

4 × 4 1 24 403,298 1,016,387 24.00 1.248

4 × 4 2 24 860,689 2,212,391 38.60 2.840

5 × 4 1 28 5,332,892 13,942,821 29.20 14.94

5 × 4 2 28 11,841,031 31,526,709 46.27 38.77

6 × 4 1 32 64,541,199 172,990,992 34.33 197.4

6 × 4 2 32 149,723,921 408,008,297 53.94 514.5

Fig. 3. Scenario 3: optimal controllers for 4 × 4 grid, battery capacities 24 and 28.

searched (gp0 = 1), then each choice includes the probability of finding an object
using the formula in Fig. 1. The guard p ≤ 1 prevents PRISM reporting modelling
errors due to potentially negative probabilities. Boundaries are encoded in guards
rather than using knowledge of the grid, e.g. it is not possible to move south or
west in gridpoint 0, to allow automated model generation for different grids.

After an object has been found (s = 1), the agent deposits it at the base
and resumes search if there are more objects to find. Returning to base either
to deposit or recharge is encoded by a single transition with time and battery
consumption updated assuming the controller takes a shortest path to the base.
This modelling choice is to reduce the state space. Also to reduce the state space,
we add conditions to guards in the battery module to prevent the agent moving
to a position from which it cannot get to base with the remaining battery power.
For example, for a 5 × 4 grid, two objects and a battery capacity of 28, together
these modelling choices reduce the state space from 24,323,956 to 11,841,031.

We synthesised optimal strategies for the minimum expected mission time
for grids of varying sizes and number of objects. Table 2 presents model checking
results in which we have chosen the minimum battery size that allows for a
successful mission for the given grid. Figures 3(a)–(b) and 4(a)–(b) present the
optimal strategies when searching for a single object. The figures give the optimal
search paths which require returning to base during the search to recharge the
battery. By increasing the capacity of the battery, the optimal strategy does
not need to recharge. Figures 3(c) and 4(c) present optimal strategies for this

228 R. Giaquinta et al.

situation. In each case, the time to return to base when the object is found must
be taken into consideration as opposed to only the time it takes to search.

Scenario 4: Control of Sensors. In this scenario we extend the power of the
controller: as well as choosing the search path and when to recharge it can decide
whether the search sensors are in a low or high power mode. In the high power
mode the agent can search a cell, while in the low power mode it is only possible
to traverse the cell. The high power mode for search is expensive in terms of time
and battery use and can be unnecessary, e.g. when travelling over previously
explored cells or returning to base to deposit or recharge. Again we assume the
base and depot are fixed and located at position (0, 0). The PRISM model for
this scenario extends that for Scenario 3 as follows. A variable c is added to
the agent module, taking value 0 and 1 when its sensors are in low and high
power modes respectively. The (nondeterministic) choices of the controller are
then extended such that when deciding the direction of movement it also decides
the power mode of the sensors for traversing the next cell. To aid analysis of the
synthesised strategies, the action labels for direction of search include the power
mode of the sensors, e.g. south1 corresponds to moving south and selecting high
power mode and west0 to moving west and selecting low power mode.

Fig. 4. Scenario 3: optimal controllers for 5 × 4 grid, battery capacities 28 and 32.

The PRISM code extract in Fig. 5 gives commands for moving east from cell
with gridpoint 0 based on those in Fig. 2 for Scenario 3. The first two commands
consider the case where the agents sensors are in high power mode (c = 1) and
the cell is unexplored. In both cases, since the sensors are in high power mode and
the cell is unexplored, the probability of finding an object is as for Scenario 3. The
difference is that in the first command the sensors are switched to lower power
mode, while in the second the sensors remain in high power mode. The third and
fourth commands represent the case when the sensors are in lower power mode
and the cell is unexplored. Since the sensors are in lower power mode, the cell
remains unexplored and there is no chance of finding the object. The final two
commands consider the case where the cell has been previously explored. The
PRISM model is also updated so that the time passage and battery consumption
reflects the sensor’s current power mode.

Strategy Synthesis for Autonomous Agents Using PRISM 229

// sensors in high power mode and cell unexplored
[east0] s=0 & c=1 & gp=0 & gp0=1 & posx<X &p≤1 →

p : (s′=1)&(posx ′=posx+1)&(gp0 ′=0)&(c′=0) + 1−p : (posx ′=posx+1)&(gp0 ′=0)&(c′=0);
[east1] s=0 & c=1 & gp=0 & gp0=1 & posx<X &p≤1 →

p : (s′=1)&(posx ′=posx+1)&(gp0 ′=0)&(c′=1) + 1−p : (posx ′=posx+1)&(gp0 ′=0)&(c′=1);
// sensors in lower power mode and cell unexplored
[east0] s=0 & c=0 & gp=0 & gp0=1 & posx<X → (posx ′=posx+1)&(c′=0);
[east1] s=0 & c=0 & gp=0 & gp0=1 & posx<X → (posx ′=posx+1)&(c′=1);
// cell already explored (does not matter the sensors power mode)
[east0] s=0 & gp=0 & gp0=0 & posx<X → (posx ′=posx+1) & (c′=0);
[east1] s=0 & gp=0 & gp0=0 & posx<X → (posx ′=posx+1) & (c′=1);

Fig. 5. PRISM commands: searching cell 0, moving east and switching sensors off/on.

Table 3. Scenario 4: model checking results.

Grid size No. of
objects

Battery
capacity

States Transitions Min expected
mission time

Verification
time (s)

3 × 3 1 12 53,367 222,557 12.78 0.206

3 × 3 1 16 80,107 351,209 12.11 0.272

3 × 3 2 12 103,063 435,302 19.83 0.365

3 × 3 2 16 154,911 687,246 18.88 0.420

4 × 4 1 18 18,445,790 90,303,355 21.88 58.58

4 × 4 1 24 27,587,864 139,945,165 20.50 83.60

4 × 4 2 18 36,379,747 180,055,826 32.22 124.8

4 × 4 2 24 54,464,317 279,117,740 30.60 181.9

Fig. 6. Scenario 4: optimal controller for 4×4 grid, battery capacity 18 and one object.

Table 3 presents model checking results for this scenario including both those
for the battery capacity from Scenario 3 (see Table 2) and for the minimum bat-
tery capacity required for a successful mission. Comparing with Table 2, allowing
low and high power modes reduces the mission time, allows the mission to be
completed with a smaller battery capacity and reduces recharging.

Comparing optimal strategies for Scenario 3 in Figs. 3 and 4 and those for
Scenario 4 with the same battery capacity, the only difference is the low power
mode is used when revisiting a cell. In Fig. 6 we present an optimal strategy for a
4×4 grid and battery capacity of 18. In this case, it is not feasible to complete the
mission without using the lower power mode. Smaller arrows represent when the

230 R. Giaquinta et al.

sensors are in lower power mode. The move south during the third path before
searching the final cell (3, 3) might not appear optimal. However, immediately
before this step there is an equal chance of finding the object in the two remaining
unexplored cells (2, 2) and (3, 3). By moving south after searching (2, 3) the time
of returning to base is reduced when the object is found, at the cost of increasing
the time to reach and search (3, 3) when the object is not found. In fact it is
the case that initially moving east from (2, 2) also yield an optimal strategy, but
was not the strategy synthesised by PRISM.

Scenario 5: Control of Multiple Agents. We now consider the case where
there are multiple agents working together. We extend the PRISM model for
Scenario 4 by having modules for two agents. In addition, since more than one
cell can be explored at the same time, to simplify the PRISM code each cell
is modelled as a separate module. The probability of finding an object is now
dependent on both agents, and therefore we model this in a separate module.

// module for agent1
module agent1

pos1x : [0..X] init basex ; // x coordinate of agent1
pos1y : [0..Y] init basey; // y coordinate of agent1
// search (remain on grid and have sufficient battery)
[search] u1=0 & u2=0 & pos1x<X & move east → (pos1x ′=pos1x+1); // east
[search] u1=0 & u2=0 & pos1x>0 & move west → (pos1x ′=pos1x−1); // west
[search] u1=0 & u2=0 & pos1y<Y & move north → (pos1y′=pos1y+1); // north
[search] u1=0 & u2=0 & pos1y>0 & move south → (pos1y′=pos1y−1); // south
// found object and not at base (go back to base)
[end] (u1=1|u2=1) & !(agent1=base) → (pos1x ′ = basex) & (pos1y′ = basey);
// mission complete
[end] (u1=1|u2=1) & agent1=base → true;

endmodule
// agent2 (rename agent1)
module agent2 = agent1 [pos1x=pos2x , pos1y=pos2y, b1=b2] endmodule

Fig. 7. PRISM code: modules for agent1 and agent2 of Scenario 5.

The agent modules are presented in Fig. 7. Variables pos1x and pos1y repre-
sent the position of the first agent and pos2x and pos2y the second. Constants
basex and basey give the position of the base and formula base the correspond-
ing gridpoint. The search commands from the previous scenarios are modified
and now synchronise on the action search with the gridpoint modules. Each
command checks the variables u1 and u2 which indicate if an object has been
found (see Fig. 7), since once the object is found, the agents return to base as the
mission is complete. As the direction of movement is not encoded in the action
search, preventing an agent moving in directions from which it cannot return
to base with its remaining battery power is encoded in formulae move east,
move west, move north and move south instead of the battery module.

For each cell in the grid there is a corresponding gridpoint module. The
gridpoint modules for a 3×3 grid are presented in Fig. 8. By using the constants

Strategy Synthesis for Autonomous Agents Using PRISM 231

// constants used for renaming gridpoints
const int k0 = 0;

...

const int k8 = 8;
// module for gridpoint 0
module gridpoint0

gp0 : [0..1] init 1; // status of gridpoint0 (0 - explored and 1 - unexplored)
// one of the agents searches the cell
[search] (agent1=k0 |agent2=k0) & (gp0=1) → (gp0 ′=0);
// cell already searched or not being searched
[search] !((agent1=k0 |agent2=k0) & (gp0=1)) → true;

endmodule
// construct further gridpoints by renaming gridpoint0
module gridpoint1 = gridpoint0 [gp0=gp1 , k0=k1] endmodule

...

module gridpoint8 = gridpoint0 [gp0=gp8 , k0=k8] endmodule

Fig. 8. PRISM code: module for gridpoints of Scenario 5.

// current gridpoint of agent1 and agent2 (derived from coordinates)
formula agent1 = pos1x+pos1y∗(X+1);
formula agent2 = pos2x+pos2y∗(X+1);
// retrieval probabilities module
module probabilities

u1 : [0..1] init 0; // agent1 finds the object
u2 : [0..1] init 0; // agent2 finds the object
// agent1 and agent2 are searching different unexplored cells
[search] s1=1 & s2=1 & agent1 !=agent2 & 2∗p≤1 → p : (u1 ′=1)

+ p : (u2 ′=1) + 1−2∗p : true;
// agent1 and agent2 searching the same unexplored cell
// suppose each has the same chance of finding the object
[search] s1=1 & s2=1 & agent1=agent2 & p≤1 → p/2 : (u1 ′=1)

+ p/2 : (u2 ′=1) + 1−p : true;
// agent1 is searching unexplored cell while agent2 is not
[search] s1=1 & s2=0 → p : (u1 ′=1) + 1−p : true;
// agent2 is searching unexplored cell while agent1 is not
[search] s1=0 & s2=1 → p : (u2 ′=1) + 1−p : true;
// neither agent searching an unexplored cell
[search] s1=0 & s2=0 → true;

endmodule

Fig. 9. PRISM code: retrieval probabilities module of Scenario 5.

ki we only need to explicitly construct the first gridpoint module and then use
renaming. In the module for the first gridpoint (see Fig. 8), variable gp0 is 1
when the cell is unexplored and 0 otherwise.

As stated above the probability of an agent finding an object is now a separate
module, presented in Fig. 9. As before, the probability of an unexplored cell
containing an object equals 1/n where n is the number of unexplored cells (see
Fig. 1). Formulae s1 and s2 evaluate to 1 if agent1 and agent2 are searching
unexplored cells respectively. If the agents are searching different unexplored
cells, then each agent has a chance of finding the object, but both cannot find
the object as the object cannot be in two places at once.

232 R. Giaquinta et al.

Table 4. Scenarios 5 and 6: model checking results.

Grid
size

Battery
capacity

States Transitions Min expected
mission time

Verification
time (s)

Scenario 5 3× 3 16 53, 832 249, 588 12.00 0.285

4× 4 24 15, 555, 103 91, 859, 618 17.50 52.53

5× 4 28 293, 118, 691 1, 861, 895, 602 20.40 1,069

Scenario 6 3× 3 16 153, 063 910, 392 11.93 0.701

4× 4 24 38, 165, 612 255, 234, 876 17.46 148.0

5× 4 28 691, 136, 157 4, 826, 058, 012 20.36 14,671

Fig. 10. Scenario 5: optimal controller for 3 × 3 grid, battery capacity 16 and one
object.

Table 4 presents model checking results for Scenario 5. As expected we see
that searching with two agents can reduce the mission time over a single agent
(see Table 2). Figures 10 and 11 present optimal strategies for grids of size 3 × 3
and 4× 4. The optimal strategies are represented by the paths of the two agents
before the object is found. As for the previous scenarios, as soon as the object
is found the agents return directly to base. In both cases it is feasible for the
agents to search the grid without recharging their batteries. However, this is
not optimal due to the time required to return to base after finding the object.
Neither the second path of agent2 in Fig. 10 nor the second path of agent1 in
Fig. 11 contribute to the search. In both situations after recharging, there is only
one cell to search ((2, 2) and (3, 3) respectively) and there is no gain in sending
more than one of the agents to search this cell.

Scenario 6: Control of Multiple Agents with Idle Mode. As just discussed
for Scenario 5, in certain situations there is no gain in both agents searching. For
this reason in this scenario we add the ability for the controller to search using
only one agent while the other idles at the base. Although this cannot reduce
the mission time it can reduce power consumption and wear and tear.

Idling is introduced to the PRISM models through additional variables and
the reward structure for time passage is updated to reduce the reward gained
when an agent idles (see [37]). The optimal strategy will then choose idling over
unnecessary movement, however as the reward is not reduced significantly it will
use both agents to search when this can save time.

Strategy Synthesis for Autonomous Agents Using PRISM 233

Fig. 11. Scenario 5: optimal controller for 4 × 4 grid, battery capacity 24 and one
object.

Table 4 includes model checking results for Scenario 6 (and 5). The reduced
mission time from Scenario 5 to 6 is due to the change made to the reward
structure and the generated optimal strategies yield the same expected mission
time as those synthesised for Scenario 5. Figure 12 presents optimal strategies
for a grid of size 3× 3. This strategy is very different from that for Scenario 5 as
in this case agent1 searches the majority of the grid, while agent2 searches only
a small portion and returns to base and idles while agent1 completes its search.
For the 4×4 grid the optimal strategy is initially the same as for Scenario 5 (see
Fig. 11). However, in the second phase of the search there is no path for agent1,
instead it idles at base while agent2 searches the remaining cell.

Fig. 12. Scenario 6: optimal strategy for 3×3 grid, battery capacity 16 and one object.

4 Conclusions and Future Work

We have demonstrated that probabilistic model checking and PRISM can be used
for the synthesis of controllers for autonomous agents. However, there are clearly
scalability issues as the models generated can have hundreds of millions of states
for simple scenarios. Therefore, to analyse real-world applications, abstraction
(and refinement) techniques are required. In particular, we will investigate using
the game-based abstraction approach of [16] in this context, as well as symmetry
reduction techniques [25] as there is symmetry both in the environment, e.g. in
a grid structure, and between agents. Regarding the formal models and spec-
ifications, improving the efficiency of the POMDP implementation [26] could
have significant modelling benefits, as in real applications control decisions must

234 R. Giaquinta et al.

be based only on the information from sensors, and therefore only on a partial
view of the environment. Stochastic games are also required to model and sep-
arate the nondeterminism present in the environment from the choices of the
controller. Combining these aspects will require the analysis of partially observ-
able stochastic games which are harder to solve than POMDPs [3]. PRISM has
support for multi-objective queries [9] and this will allow the synthesis of more
specific controllers, e.g. that optimise the mission time while limiting both power
consumption and failure, and ensuring safety requirements.

As for using PRISM for the analysis, the current way optimal strategies are
exported can be improved. In particular, having a graphical representation would
have simplified the analysis. In addition, allowing the analysis of a synthesised
strategy directly would have saved considerable effort. Currently, to do this,
the strategy has to be exported to a file and then imported back into PRISM
(together with the state space and reward structures).

The PRISM models were developed from Simulink models [14]. PRISM gen-
erates the synthesised controllers as a lists of reachable states and optimal action
choices for the states, this output from PRISM can be easily fed back into the
search module of the Simulink models. Currently we are adapting the models
for a larger search area consisting of adjoined discrete, symmetric regions. The
same controller can then be used (modulo a symmetry transformation) on each
region in turn until all objects have been located. At present the creation of
UAV software from the Simulink code is automatic, future work will involve the
direct embedding of the PRISM generated controllers into the UAV software.

Acknowledgements. This work was supported by EPSRC grant EC/P51133X/1.
We would like to thank Dave Anderson and Euan McGookin for discussions on the
autonomous systems that inspired this paper.

References

1. Alur, R., Henzinger, T.: Reactive modules. FMSD 15, 7–48 (1999)
2. Bohn, C.: Heuristics for designing the control of a UAV fleet with model checking.

In: Grundel, D., Murphey, R., Pardalos, P., Prokopyev, O. (eds.) Cooperative Sys-
tems. Lecture Notes in Economics and Mathematical Systems, vol. 588, pp. 21–36.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-48271-0 2

3. Chatterjee, K., Doyen, L.: Partial-observation stochastic games: how to win when
belief fails. ACM Trans. Comput. Log. 15, 16 (2014)

4. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 13

5. Choi, J.: Model checking for decision making behaviour of heterogeneous multi-
agent autonomous system. Ph.D. thesis, Cranfield University (2012)

6. Dennis, L., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.: Practical verification of
decision-making in agent-based autonomous systems. ASE 23(3), 305–359 (2016)

7. Ding, X., Smith, S., Belta, C., Rus, D.: Optimal control of Markov decision pro-
cesses with linear temporal logic constraints. IEEE Trans. Autom. Control 59,
1244–1257 (2014)

https://doi.org/10.1007/978-3-540-48271-0_2
https://doi.org/10.1007/978-3-642-36742-7_13

Strategy Synthesis for Autonomous Agents Using PRISM 235

8. Draeger, K., Forejt, V., Kwiatkowska, M., Parker, D., Ujma, M.: Permissive con-
troller synthesis for probabilistic systems. LMCS 11(2), 1–34 (2015)

9. Etessami, K., Kwiatkowska, M., Vardi, M., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. LMCS 4, 1–21 (2008)

10. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21455-4 3

11. Fu, J., Topcu, U.: Computational methods for stochastic control with metric inter-
val temporal logic specifications. In: Proceedings of CDC 2015 (2015)

12. Hoffmann, R., Ireland, M., Miller, A., Norman, G., Veres, S.: Autonomous agent
behaviour modelled in PRISM – a case study. In: Bošnački, D., Wijs, A. (eds.)
SPIN 2016. LNCS, vol. 9641, pp. 104–110. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-32582-8 7

13. Humphrey, L.: Model checking for verification in UAV cooperative control appli-
cations. In: Fahroo, F., Wang, L., Yin, G. (eds.) Recent Advances in Research
on Unmanned Aerial Vehicles. LNCIS, vol. 444, pp. 69–117. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37694-8 4

14. Ireland, M., Hoffmann, R., Miller, A., Norman, G., Veres, S.: A continuous-time
model of an autonomous aerial vehicle to inform and validate formal verification
methods. http://arxiv.org/abs/1609.00177v1

15. Kalra, N., Paddock, S.: Driving to safety: how many miles of driving would it take
to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Policy Pract.
94, 182–193 (2016)

16. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. FMSD 36, 246–
280 (2010)

17. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. Springer, New
York (1976). https://doi.org/10.1007/978-1-4684-9455-6

18. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-
tic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

20. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 5–22. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02444-
8 2

21. Lacerda, B., Parker, D., Hawes, N.: Multi-objective policy generation for mobile
robots under probabilistic time-bounded guarantees. In: Proceedings of ICAPS
2017 (2017)

22. Lahijanian, M., Andersson, S., Belta, C.: Formal verification and synthesis for
discrete-time stochastic systems. IEEE Trans. Autom. Control 60, 2031–2045
(2015)

23. Lahijanian, M., Kwiatkowska, M.: Specification revision for Markov decision pro-
cesses with optimal trade-off. In: Proceedings of CDC 2016. IEEE (2016)

24. Liu, W., Winfield, A., Sa, J.: Modelling swarm robotic systems: a case study in
collective foraging. In: Proceedings of TAROS 2007 (2007)

25. Miller, A., Donaldson, A., Calder, M.: Symmetry in temporal logic model checking.
Comput. Surve. 36, 8 (2006)

https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/978-3-319-32582-8_7
https://doi.org/10.1007/978-3-319-32582-8_7
https://doi.org/10.1007/978-3-642-37694-8_4
http://arxiv.org/abs/1609.00177v1
https://doi.org/10.1007/978-1-4684-9455-6
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-02444-8_2
https://doi.org/10.1007/978-3-319-02444-8_2

236 R. Giaquinta et al.

26. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53, 354–402 (2017)

27. O’Brien, M., Arkin, R.C., Harrington, D., Lyons, D., Jiang, S.: Automatic veri-
fication of autonomous robot missions. In: Brugali, D., Broenink, J.F., Kroeger,
T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI), vol. 8810, pp. 462–473.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11900-7 39

28. Shapley, L.: Stochastic games. Proc. Natl. Acad. Sci. 39, 1095–1100 (1953)
29. Sharan, R.: Formal methods for control synthesis in partially observed environ-

ments: application to autonomous robotic manipulation. Ph.D. thesis, California
Institute of Technology (2014)

30. Soudjani, S., Majumdar, R.: Controller synthesis for reward collecting Markov
processes in continuous space. In: Proceedings of HSCC 2017. ACM (2017)

31. Svoreňová, M., Chmeĺık, M., Leahy, K., Eniser, H., Chatterjee, K., Černá, I., Belta,
C.: Temporal logic motion planning using POMDPs with parity objectives: case
study paper. In: Proceedings of HSCC 2015. ACM (2015)

32. Svoreňová, M., Křet́ınský, J., Chmeĺık, M., Chatterjee, K., Cerna, I., Belta, C.:
Temporal logic control for stochastic linear systems using abstraction refinement
of probabilistic games. In: Proceedings of HSCC 2015. ACM (2015)

33. Webster, M., Fisher, M., Cameron, N., Jump, M.: Formal methods for the certifi-
cation of autonomous unmanned aircraft systems. In: Flammini, F., Bologna, S.,
Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 228–242. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24270-0 17

34. Wilson, J.: Drones hacked and crashed by research team to expose design flaws.
Engineering and Technology (2016)

35. Wolff, E., Topcu, U., Murray, R.: Robust control of uncertain Markov decision
processes with temporal logic specifications. In: Proceedings of CSC 2012. IEEE
(2012)

36. Yoo, C., Finch, R., Sukkarieh, S.: Provably-correct stochastic motion planning with
safety constraints. In: Proceedings of ICRA 2013. IEEE (2013)

37. http://www.prismmodelchecker.org/files/nfm18/

https://doi.org/10.1007/978-3-319-11900-7_39
https://doi.org/10.1007/978-3-642-24270-0_17
http://www.prismmodelchecker.org/files/nfm18/

The Use of Automated Theory Formation
in Support of Hazard Analysis

Andrew Ireland1(B), Maria Teresa Llano2, and Simon Colton2,3

1 School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh, UK

a.ireland@hw.ac.uk
2 Department of Computing, Goldsmiths, University London, London, UK

{m.llano,s.colton}@gold.ac.uk
3 Games Academy, Falmouth University, Falmouth, Cornwall, UK

Abstract. Model checking and simulation are powerful techniques for
developing and verifying the design of reactive systems. Here we propose
the use of a complementary technique – automated theory formation.
In particular, we report on an experiment in which we used a general
purpose automated theory formation tool, HR, to explore properties of
a model written in Promela. Our use of HR is constrained by meta-
knowledge about the model that is relevant to hazard analysis. Moreover,
we argue that such meta-knowledge will enable us to explore how safety
properties could be violated.

Keywords: Formal methods · Verification · Hazard analysis

1 Introduction

Typically we have in mind a set of desired properties when we begin to develop
a formal design model. Once constructed we verify our design model against
the given properties. Here we propose a complementary approach to how the
properties of a formal design model are obtained and used post-verification. Our
starting point is SPIN and the Promela modelling language [6]. Firstly, we pro-
pose the use of a general purpose automated theory formation tool, HR1 [2], to
search for properties within Promela simulation traces. While such an approach
will find properties that we expect of our models, it may also find properties of
interest that we did not anticipate. Secondly, we propose an approach for dis-
covering how a formally verified design could fail. That is, a formal counter-part
to step 2 of Leveson’s STPA hazard analysis technique [8] where one considers
how dysfunctional behaviour could emerge. Both aspects of our proposal rely on

The work reported here is funded by EPSRC Platform Grant EP/N014758/1. We
thank the three anonymous NFM 2018 reviewers for their constructive feedback.

1 HR is derived from the initials of the mathematicians Godfrey Harold Hardy and
Srinivasa Aiyangar Ramanujan.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 237–243, 2018.
https://doi.org/10.1007/978-3-319-77935-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_17&domain=pdf

238 A. Ireland et al.

meta-knowledge to constrain the search for properties as well as dysfunctional
behaviours. While meta-knowledge places an additional burden on the designer,
we believe that it will deliver benefits during hazard analysis.

2 Background

HR was originally implemented as a system for automated theory formation
(ATF) in domains of pure mathematics [2,4], e.g. the invention of integer
sequences [3] and large-scale algebraic classification [11]. HR has also been used
within the context of formal methods, specifically in discovering invariants from
Event-B [1] animation traces [9]. HR forms theories about a domain through
an iterative application of general purpose production rules (PRs) for concept
invention. Each PR works by performing operations on the content of one or two
input data tables – where a data table represents a concept by means of a set
of examples. An application of a PR produces a new table, i.e. a new concept.
HR then searches for relationships between the new concept and the concepts
already in the theory. Specifically, it is looking to see if the new concept is: (i)
equivalent to an existing concept; (ii) subsumed by or subsumes an existing con-
cept; or (iii) empty. These relationships take the form of equivalence, implication,
or non-existence conjectures, respectively.

To illustrate, we show in Fig. 1 the data tables used by HR to produce the
concept of prime numbers. Thousands of PR applications occur during the ATF
process, here we focus only on the specific PR applications that lead to the
concept of prime numbers. Firstly, HR is given the concept of a divisor, as
shown partially in Fig. 1 for integers from 1 to 10 (b|a where b is a divisor of a).
Secondly HR would apply the size PR with the parameterisation <1> to count
the number of tuples of each entry in column 1 (the Tau function table). HR
then takes in this new concept and applies the split PR with the parameterisation
<2 = 2> to extract the entries in the previous data table whose value in the
second column is 2. The resulting table defines the concept of a prime number.

Assuming the concept of non-square numbers has been formed previously by
HR, with a data table formed by the examples {2, 3, 5, 6, 7, 8, 10} and the logical
construction [a] : ¬(∃ b.(b|a & b ∗ b = a)). HR would then detect that the data
table for the concept of non-square numbers subsumes the data table for the
concept of prime numbers. That is, it sees that all of its prime numbers are also
non-squares, and so conjectures that this is true for all prime numbers as follows:

2 = |{b : b|a}|
︸ ︷︷ ︸

→ ¬(∃ b.(b|a & b ∗ b = a))
︸ ︷︷ ︸

prime number non-square number

Because of the empirical nature of this process, false conjectures may be
generated. Third party formal reasoning tools are employed to identify such
false conjectures. Conversely, sometimes when developing a theory, conjectures
which do not fully satisfy all the given examples may still be of interest. HR has
a feature that allows such near conjectures to be identified, i.e. a user supplies a
lower bound (percentage) on the number of examples that must be satisfied for
a conjecture to be of interest.

The Use of Automated Theory Formation in Support of Hazard Analysis 239

Divisors

integer
divisor
b|a

1 1
2 1
2 2
. .
10 1
10 2
10 5
10 10

size < 1 >
=⇒

Tau function

integer
number of
divisors
|{b : b|a}|

1 1
2 2
3 2
. .
9 3
10 4

split< 2=2 >
=⇒

Primes
2 = |{b : b|a}|

integer
2
3
5
7

Fig. 1. Steps applied by HR to produce the concept of prime numbers.

3 Experiments with a Simple Design Model

For the purposes of our experiment we use a model of a laser control system. The
laser is housed within a protective container which we refer to as the Laser unit.
Access to the laser is via a door which is directly controlled by an Operator.
In order to switch on the laser the Operator uses a Control unit. As well as
controlling the power supply to the laser, Control also illuminates a warning
light when the power is on. The model is both deliberately simple and poorly
designed from the perspective of safety. Our Promela model of the system is
shown in Fig. 2. There are two use cases an Operator can perform:

PowerOn: The Operator closes the Laser unit door then selects the power to
be switched on. Control reacts by illuminating the power-on-light and then
requests for power to be supplied to the Laser. The Laser unit then switches
on the power and sends confirmation to Control.

PowerOff: The Operator selects the power to be switched off. Control reacts
by requesting the Laser unit to stop supplying power to the laser. Once the
Laser unit confirms the power is off, Control then switches off the power-
on-light and the Operator opens the Laser unit door.

3.1 Applying HR to the Laser Control System

In our experiment, the state variables that occur within the Promela model
provide the basic concepts that are given to HR. As highlighted above, the
simulation traces produced by SPIN represent the examples that HR requires
in order to form conjectures. False conjectures can be identified using the SPIN
model checker. One of the contributions of this work is an extension to HR
that enabled it to discover temporal properties. Technically, response properties
provided the greatest challenge and involved HR forming conjectures by relating
two concepts as follows: if there is a state Si for which the first concept has an
example in the trace, then there is a state Sj for which the second concept has

240 A. Ireland et al.

bool opr_select_power_on = false;

bool opr_door_closed = false;

bool ctr_request_power_on = false;

bool ctr_power_on_light = false;

bool lsr_power_on = false;

bool lsr_confirm_power_off = true;

active proctype Operator(){

do

:: !opr_door_closed ->

opr_door_closed = true; opr_select_power_on = true; ctr_power_on_light;

:: opr_select_power_on ->

opr_select_power_on = false; !ctr_power_on_light; opr_door_closed = false;

od;}

active proctype Control(){

do

:: opr_select_power_on ->

ctr_power_on_light = true; ctr_request_power_on = true;

!lsr_confirm_power_off; !opr_select_power_on; ctr_request_power_on = false;

lsr_confirm_power_off; ctr_power_on_light = false;

od;}

active proctype Laser(){

do

:: ctr_request_power_on ->

lsr_confirm_power_off = false; lsr_power_on = true; !ctr_request_power_on;

lsr_power_on = false; lsr_confirm_power_off = true;

od;}

Note that state variables associated with the Operator are prefixed by opr.
Similarly, the prefixes ctr and lsr are associated with the Control and Laser

units respectively.

Fig. 2. A Simple Laser Control System.

an example in the trace and j ≥ i; i.e. whenever the first concept happens, the
second concept happens eventually. These conjectures are written in HR as:

∀si . state (si) ∧ concept1 (si, . . .) → ∃sj . state (sj) ∧ concept2 (sj , . . .) ∧ j ≥ i

where, state(sx) refers to a step in the simulation trace occurring in time x, and
concept(sy, . . .) represent a tuple with the value of a concept in state sy. Given
that a simulation trace provides only a partial exploration of the state space,
we have also extended HR to generate near-response conjectures – a natural
generalization of the near-conjecture notion outlined in Sect. 2. In this way, we
reduce the chances of missing properties that are rejected because a response
property is violated by virtue of the finiteness of the traces given to HR.

The Use of Automated Theory Formation in Support of Hazard Analysis 241

3.2 Discovering Properties in Support of Hazard Analysis

HR will generate thousands of conjectures for a given simulation trace. As noted
above we rely upon the designer to provide meta-knowledge about their mod-
els so that HR can constrain its search for interesting properties. Here we con-
sider three kinds of meta-knowledge: Promela statements that represent: hazards,
defences and biddable actions:

〈hazard〉 = {lsr power on}
〈defence〉 = {opr door closed}

〈biddable〉 = {opr door closed, opr select power on}

Note that we adopt Reason’s [10] use of “defence” to denote mechanisms which
prevent hazardous situations arising while “biddable”, inspired by Jackson’s
work on Problem Frames [7], denotes actions performed by a human. In gen-
eral we envisage an extensible meta-language for annotating model elements
with respect to the role they play within a design and its context. Armed with
this meta-knowledge we focus the search on three generic temporal properties.

Firstly, we search for safety conjectures of the form:

�(〈hazard〉 → 〈defence〉) (1)

That is, wherever a hazardous state is identified, as defined by the designer, then
it must follow that a defence also holds. For our laser example HR generates 1565
implication conjectures. Using (1), and the meta-knowledge associated with the
model, these are reduced to one conjecture:

�(lsr power on → opr door closed) (2)

This suggests that while power is being supplied to the laser there is only one
defence in-place. Moreover, the defence opr door closed is also a member of the
biddable set, i.e. the sole defence mechanism relies upon a human operator. Bid-
dable operations are typically more vulnerable than say electrical or mechanical
mechanisms involving redundancy. We will return to this point in Sect. 3.3.
While (2) could have been anticipated by a designer, we would argue that the
following properties are less obvious:

� (lsr power on → ctr power on light) (3)
� (lsr power on →!lsr confirm power off) (4)

Note the violation of (3) would not directly effect the safety of the system. How-
ever, if the power-on-light is not illuminated when the power is on then poten-
tially the Operator could believe that it is safe to open the door, i.e. the violation
of (3) could lead to the violation of (2). Property (4) ensures that Control is
correctly informed of the laser’s status while power is being supplied. A violation
of (4) would lead to Control incorrectly switching off the power-on-light with
the potential violation of the high-level safety property described above. It is

242 A. Ireland et al.

worth noting that HR may find non-existence conjectures corresponding to (1)
for a given model. The presence of such non-existence conjectures would provide
a warning to the designer about the lack of defences within their model.

A second form of safety conjecture takes the form:

� ! (〈hazard〉 ∧ !〈defence〉) (5)

Here we constrain HR to find conjectures where a hazard and the negation of
a defence hold. Corresponding non-existence conjectures will strongly suggest
safety properties. Here HR generates 20 non-existence conjectures. We follow a
similar heuristic process as performed with the previous safety constraint. Firstly,
we instruct HR to identify the non-existence conjectures that involve hazardous
states. This narrows down the search to 10 conjectures. Next, we direct HR to
further focus on conjectures that involve the negation of a defence, resulting in
5 conjectures. We end by removing non-existence conjectures that involve states
that do not belong to the hazard or defence sets. The following instantiation of
(5) is identified:

� ! (lsr power on∧ !opr door closed)

Thirdly we search for response conjectures of the form:

�(〈biddable〉 → ♦〈hazard〉) (6)

For our model of the laser control system, HR generates 22950 response conjec-
tures and 18228 near-response conjectures (with lower threshold of 95%). Two
near-response instantiations of (6) are given below with the percentage match:

�(opr select power on → ♦lsr power on) 99.43%
�(opr door closed → ♦lsr power on) 97.93%

3.3 Breaking Properties

We now go beyond conventional verification, and consider how safety properties
could be violated. Specifically, we focus on the safety property (2). There are
a number of scenarios which could lead to the violation of (2). We consider
here the simplest of scenarios. Given that opr door closed is a member of both
the 〈defence〉 and 〈biddable〉 sets, then this is strongly suggestive of exploring
a dysfunctional variate of the model in which opr door closed does not hold
when it is supposed to hold. This dysfunctional behaviour can be included within
the model by the addition of the following case to the definition of Operator:

:: !opr_door_closed ->
opr_select_power_on = true; ctr_power_on_light;

The Use of Automated Theory Formation in Support of Hazard Analysis 243

SPIN will show that (2) is violated by the modified model. It is then the task
of the designer to refine their design so as to mitigate for such an Operator
error. In practice, scenarios that lead to single points of failure are typically
not so simple. Part of our ongoing work is to further develop the idea outlined
here. Specifically dealing with models where there are multiple defences and the
application of a defence involves a chain of events.

4 Future Work and Conclusion

The experiments reported here demonstrate the potential for using meta-
knowledge to guide HR in searching for properties relevant to hazard analysis.
The version of HR we used is HR2. Running on a Macbook Pro (OS X Maver-
icks, processor 2.6 GHz Intel Core i5), HR2 could only deal with traces of 300
steps. As part of future work we aim to move to HR3 [5], which is significantly
faster and more memory-efficient. This opens up the possibility of working with
much larger datasets and exploring real-time theory formation. We chose to use
HR2 for our initial experiments because of its GUI and support for browsing the
results of the theory formation process. Such features will be added to HR3. The
experiments reported here have also highlighted the need for a mechanism that
will allow users to more easily tailor the conjecture making phase. Longer-term
we envisage a computer-based design assistant, built upon HR3, which would run
alongside a formal verification tool such as SPIN. The aim of such an assistant
would be to help the designer explore the design space, as well as play a use-
ful role during hazard analysis. What we propose compliments current practice,
with the potential for identifying concerns which may otherwise be overlooked.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Colton, S.: Automated Theory Formation in Pure Mathematics. Springer,
Heidelberg (2002). https://doi.org/10.1007/978-1-4471-0147-5

3. Colton, S., Bundy, A., Walsh, T.: Automatic invention of integer sequences. In:
Proceedings of AAAI (2000)

4. Colton, S., Muggleton, S.: Mathematical applications of inductive logic program-
ming. Mach. Learn. 64, 25–64 (2006)

5. Colton, S., Ramezani, R., Llano, T.: The HR3 discovery system: design decisions
and implementation details. In: Proceedings of the AISB Symposium on Compu-
tational Scientific Discovery (2014)

6. Holzmann, G.J.: The SPIN Model Checker. Pearson Education, London (2003)
7. Jackson, M.: Problem Frames: Analysing and Structuring Software Development

Problems. Addison-Wesley, Boston (2001)
8. Leveson, N.G.: Engineering a Safer World. MIT, Cambridge (2011)
9. Llano, M.T., Ireland, A., Pease, A.: Discovery of invariants through automated

theory formation. Formal Aspects Comput. 26, 203–249 (2011)
10. Reason, J.: Organizational Accidents Revisited. Ashgate, Farnham (2016)
11. Sorge, V., Meier, A., McCasland, R., Colton, S.: Automatic construction and ver-

ification of isotopy invariants. J. Autom. Reason. 40(2–3), 221–243 (2008)

https://doi.org/10.1007/978-1-4471-0147-5

Distributed Model Checking Using ProB

Philipp Körner(B) and Jens Bendisposto

Institut für Informatik, Universität Düsseldorf,
Universitätsstr. 1, 40225 Düsseldorf, Germany

p.koerner@uni-duesseldorf.de, bendisposto@cs.uni-duesseldorf.de

Abstract. Model checking larger specifications can take a lot of time,
from several minutes up to weeks. Naturally, this renders the develop-
ment of a correct specification very cumbersome. If the model offers
enough non-determinism, however, we can distribute the workload onto
multiple computers in order to reduce the runtime.

In this paper, we present distb, a distributed version of ProB’s model
checker. Furthermore, we show possible speed-ups for real-life formal
models on both a single workstation and a high-performance cluster.

1 Introduction

One way to verify software is explicit model checking, which checks a set of
(invariant) predicates in every reachable state of a formal model. A simple model
checking algorithm is shown in Algorithm1: starting with a set of initial states,
a directed graph is created according to the operations (aka state transitions)
that the specification allows. It is checked whether a given property holds for
each state, e.g., that there is no deadlock or that all invariant predicates are
satisfied. Usually, open (aka unexplored) states are stored in a state queue and a
set of visited nodes is stored in order to avoid checking the same state multiple
times.

A big challenge however is the state space explosion problem: if we add more
variables and operations to the model, the amount of states that need to be
considered might grow exponentially.

One way to engage this issue is to add computational power and distributing
the calculation of successor states and verification of invariants. Many formal
models behave nondeterministically or have multiple initializations. If there is
more than one state in the state queue, they can be distributed on multiple CPU
cores or even workstations.

In this paper, we present the extension distb of ProB [21] that started as a
distribution framework for Prolog but was tailored to overcome several challenges
in the context of model checking. Now, distb allows checking industrial-sized
specifications in a few hours that were impossible to check with vanilla ProB.
distb is available for Linux and Mac OS X, but not for MS Windows. We focus
on distb’s application for B [2] and Event-B [1].

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 244–260, 2018.
https://doi.org/10.1007/978-3-319-77935-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_18&domain=pdf
http://orcid.org/0000-0001-7256-9560

Distributed Model Checking Using ProB 245

Algorithm 1. Explicit State Model Checking Algorithm
Require: formal specification and function desired-property

results := ∅

queue := get-initial-states(specification)
seen := set(queue)
while queue �= ∅ do

state := pop(queue)
invariant-ok := check -invariant(specification, state)
successors := compute-successors(specification, state)
results := results ∪ desired-property(invariant-ok , successors)
for s ∈ successors \ seen do

enqueue(queue, s)
end for
seen := seen ∪ successors

end while
return results

1.1 B and ProB

The B specification language (which we will simply refer to as “B”) is part of
the B-Method [2] developed by Jean-Raymond Abrial. The B-Method favors
a “correct-by-construction” approach, where an abstract model is iteratively
refined in order to end with a concrete implementation. B and its successor
Event-B both work on a high level of abstraction and are based on set theory
and first-order logic.

ProB [21] is an animator and model checker, initially for B, but now is
capable of handling several formalisms, including Event-B, CSP-M, TLA+ and
Z. At its core, ProB implements a constraint solver to solve predicates in order
to compute state transitions. ProB is implemented in SICStus Prolog [8].

2 Architecture Overview

distb is a distribution framework for Prolog, based on previous work in [6]. We
focus on its application for ProB, i.e., distributed model checking. While ProB
is able to verify temporal formulas, e.g., LTL, distb is only able distribute invari-
ant, deadlock and assertion checking. It is implemented in C with a small Prolog
wrapper using SICStus Prolog’s foreign function interface. We also make use
of the ZeroMQ library [14] which offers distributed messaging. While distb can
handle any kind of computation task, we assume that they are tasks to verify a
given state’s compliance to an invariant and computation of its successor states.

Starting with a root state, more states are generated and checked as the model
checking process carries on. distb avoids to work on the same state multiple times
as much as possible by storing hash codes of enqueued and processed states.

For distb, we opted for a master-worker architecture in order to match com-
munication patterns offered by ZeroMQ. An architecture without a dedicated

246 P. Körner and J. Bendisposto

Workstation A Workstation B

MasterProxy

Worker Worker

Proxy Worker

Worker Worker

Fig. 1. Typical setup in a distributed setting.

master, e.g., using MPI, is possible but also more complex. In the following, we
give a simplified summary of each component’s tasks. We go into more detail in
Sect. 3.

The Master oversees the entire model checking process. It monitors the distri-
bution of work items and coordinates transfers between workstations. Further-
more, it collects and publishes checked and enqueued states. Once all states are
checked, it sends a termination signal. In order to deal with infinite state spaces,
the user may also limit the number of states.

A Proxy has some similar features to the master. Multiple proxies might be
launched on the same workstation, but in most setups one proxy per machine
suffices. Each worker on a workstation connects to exactly one proxy on the same
computer. This is done by providing the same proxy ID to both the proxy and its
workers. The proxy monitors the exact queue sizes and initiates transfers of work
items between its assigned workers. Additionally, the proxy keeps the shared set
of known and enqueued states, represented as a hash trie, up to date with the
information provided by the master. The hash trie will be presented in Sect. 3.4
in detail. Moreover, it translates commands sent by the master into commands
for the workers, e.g., sending work items to a worker assigned to another proxy,
and forwards messages from its workers to the master.

A Worker, lastly, is the only component performing any work directly related to
model checking. Each worker holds a local queue of states. Once it is not empty,
a state is dequeued and checked (i.e., the invariant predicates are verified). Fur-
thermore, the successors of this state are calculated and enqueued. Afterwards, a
worker sends a package to the proxy, containing information about the processed
state, its successors and additional statistics. Workers also periodically listen for
commands sent by the proxy.

Each model checking process requires a single master. Each participating
workstation should run at least one proxy. In order to initiate the calculation,
at least one worker is required. A typical setup of a model checking process is
shown in Fig. 1. There, we use two workstation, running two and three workers,

Distributed Model Checking Using ProB 247

respectively. Arrows between components mean that there is direct communi-
cation between them, e.g., the master directly communicates with the proxies
but not with workers. The dashed arrow, however, indicates that there might
be direct communication, but the socket is closed after receiving an answer, i.e.,
workers communicate with each other at some time, but maintain no steady
datastream they rely on.

3 Implementation

There are many subtle details challenging the implementation of distb. In the
following, we state encountered problems as well as our proposals for solutions.

3.1 Socket Patterns and Messages

distb uses ZeroMQ [14] to distribute the model checking work. ZeroMQ offers
many useful communication patterns via different ZeroMQ socket types. We
make use of the following three patterns:

– Publish-subscribe (PUB-SUB) allows sending messages from multiple sources
to many subscribers, e.g., the master publishes commands to all proxies.

– Push-pull (PUSH-PULL) allows sending messages from many nodes to a sink
(PULL socket). distb only uses one sink per connection, so, e.g., all proxies
send (“push”) their results to a single master.

– Request-reply (REQ-REP) is the only bi-directional message pattern we
employ. After a request is received, the reply will automatically be routed to
the requesting component, e.g., a worker might send a request to share work
with another worker, which in turn sends an acknowledgment as a reply.

In Table 1, we show which socket pattern is used between which components
and what data is exchanged. Proxies request an ID from the master and workers
request an ID from the proxy they connect to. These IDs are used in order to
uniquely identify a component in certain commands, e.g., work balancing.

Sending states over network should be avoided due to bandwidth constraints.
Instead, only hash codes of newly enqueued and checked states are transmitted
(cf. Sect. 3.4). Workers push hash codes to their assigned proxy, which in turn
pushes them to the master. The master distributes hash codes to all proxies.

All workers bind a TCP socket and always are able to receive work. Analo-
gously, each component can connect to this socket in order to offer work. This
way, workers share their queues with each other and the master can send work
items from its own queue, e.g., the initial state.

3.2 When is a Model Suitable for Distributed Model Checking?

distb is not a suitable tool for model checking all formal models. Naturally, distb
cannot scale at all for sequential models, e.g., a simple counter with a single

248 P. Körner and J. Bendisposto

Table 1. Socket types in distb

Master Proxy Worker Messages and usage

REP REQ ID distribution

REP REQ

PULL PUSH Hash codes and results (e.g., deadlock, invariant
violation)

PULL PUSH

PUB SUB, PUB Hash code propagation, sending commands (e.g.,
initiating global transfers, termination)

PUB SUB Sending commands (e.g., global transfers, local
transfers, termination)

REP Receiving work

REQ REQ REQ Sending work; connection is closed after transfer

initialization. There, the branching factor is one, i.e., each state only has one
successor and there is only a single open node at most. In order to achieve best
speed-ups, the state space should branch out in such way that many open nodes
are available at all times.

As usual in distributed programming, adding more workers does not neces-
sarily imply a bigger speed-up, e.g., using more workers than states in the state
space does not provide any benefits. If some worker processes do not receive
any work and stay idle, they might slow down the process overall due to the
additional communication overhead involved.

Models that can be checked in very little time usually neither benefit from
nor are hindered by adding more workers. If a state space is very large, distb
may currently run out of memory quickly because all states are kept in main
memory. Writing most states to disk and reading them back over time helps in
order to delay this, usually by orders of magnitude. Obviously, a complete check
of infinite models is unachievable in explicit state model checking. Instead, the
number of states that should be considered has to be limited.

As it will be explained in more detail in Sect. 3.3, all states are serialized and
deserialized. This additional overhead usually causes distb with a single worker
to run slower than ProB. Thus, an optimal model for distb would feature only a
small amount of variables which neither contain large nor nested data structures
in order to minimize this overhead.

3.3 Passing States to C

ProB is implemented in Prolog and, thus, represents states as ordinary Prolog
terms. However, terms passed into SICStus’ foreign function interface only have
a limited lifetime, i.e., exactly until the call that constructed the term returns.
Afterwards, the memory on the stack is freed again. Creating a copy is not
possible because it would end up on the same stack. If a reference to the list

Distributed Model Checking Using ProB 249

of successor states was used as a return value, we could neither make use of
SICStus’ garbage collector nor free the memory ourselves.

Instead, we use an undocumented module named fastrw which offers a pred-
icate fast buf write in order to serialize and another predicate fast buf read
to deserialize a Prolog term. Both of these predicates work on a blob (binary
large object) in a local buffer. However, this buffer can be accessed and dupli-
cated with a simple call to memcpy.

Queue items reference such a blob as well as its size. Thus, when we call
the function that processes a state, it has to fast buf read the state and
fast buf write the successors. This blob also can be sent between multiple
instances of SICStus.

We found that the overhead of serializing and deserializing states repeatedly
is measurable and accumulates over time. However, the processing function of
ProB usually is way slower in comparison. So far, we found no major issue and
accepted the performance hit.

3.4 Visited States

In order to store whether states have been enqueued or checked already, we need
a data structure that maps a state to the constants ENQUEUED and PROCESSED.
However, keeping all seen states in memory is costly: each of them can be several
megabytes in size. If a state space consists of only some thousand or a million
of such states, it would be impossible to keep all of them in the main memory
of an ordinary workstation. Thus, instead of the state itself we store its hash
code. By default, a 160 bit SHA-1 hash is used. If we encounter states with the
same hash code, we assume that the states are the same state. This can lead
to unsoundness of the model checking if two different states produce the same
hash value. An approximation for the probability p of a hash collision, given the
number of possible keys d, and the number of stored keys n is [23]

p ≈ 1 − e
−n

(
n − 1
2d

)
≈ 1 − e

−
⎛
⎝n2

2d

⎞
⎠

Since SHA-1 produces 160 bit hash values, the approximate collision probability
for a billion elements is less than 2−100. For a trillion states it is less than 2−80.
This trade-off lets us store an efficient fingerprint of the state but the chance of
a collision for models that we can handle is about non-existent. Of course, it is
possible to change the hash function to one that calculates a larger digest.

A good loading factor of a regular hash map however should be below ten
per cent. This means that there still is a lot of overhead: more than nine times
the payload if we inline the hash code as key or about more than four times the
payload if we store 8 byte pointers instead of 20 byte hash codes. We found a
more memory-efficient solution by adapting a variation of Phil Bagwell’s Hash
Array Mapped Tries [3]. We use a Trie (also referred to as a prefix tree) to store
the states. We will refer to our implementation as digest trie. Knuth [16] defines
tries as follows:

250 P. Körner and J. Bendisposto

s

say

a

st

sting

i

stay

a

t

s

t

ten

e

til

i

ton

o

t

(a) Trie Containing the Words say, strong,
stay, ten, til, ton

s

sa

sad

d

say

y

a

st

sting

i

stay

a

t

s

t

ten

e

til

i

ton

o

t

(b) Inserting sad

Fig. 2. An example for an 26-ary trie

“A trie is essentially an M-ary tree, whose nodes are M-place vectors
with components corresponding to digits or characters. Each node on level
� represents the set of all keys that begin with a certain sequence of �
characters; the node specifies an M-way branch, depending on the (� + 1)st
character.”

An example for a 26-ary trie1 is shown in Fig. 2. Each branch represents a
letter in the alphabet. We omit branches that have no successors. Then, looking
up a word is simply following each letter until a leaf is reached and comparing
the search term with the word found this way. For the word sting in Fig. 2a, one
follows the branches s, t and i in this order and finds the word sting. Looking
up stand fails because after following s, t and a, only stay is stored.

Inserting might be possible by simply adding a branch to the trie. A more
complicated example is given in Fig. 2b, where we insert the word sad. An addi-
tional internal node needs to be added because the stored prefix sa for the
contained word say collides with a prefix of sad.

The digest trie in distb is a 32-ary trie. In order to determine the next branch
in the tree, 5 bits of the hash code are used. We try to ensure that the prefix tree
has a relatively small depth in order to ensure a more performant lookup. Thus,
the cryptographic hash function SHA-1 is used because its values are usually
uniformly distributed.

Shared Digest Trie. In a naive implementation, each worker stores a copy
of the digest trie. Duplicating the digest trie for multiple workers on the same
workstation is very costly: a single copy usually takes up multiple gigabytes
for larger models. Thus, we implemented a version [17] that resides in shared
memory. While there has been work on a lock-free version of concurrent hash
1 Strictly spoken, it should be a 27-ary trie including an end-of-word symbol in order

to store both a word and one of its prefixes. Since the data we store has a fixed
length, we omit this detail.

Distributed Model Checking Using ProB 251

tries [22], the presence of a garbage collector for the shared memory is assumed.
Our version of a shared digest trie allows multiple writers and readers to modify
or read certain parts of the data structure concurrently. We use multiple locks
to block access to certain parts of the trie.

The tree is partitioned into three different types of shared memory segments:

– meta information about the trie, i.e., how many internal nodes and hash codes
are allocated as well as how many hash codes are marked as checked,

– an array of key-value pairs and
– an array of internal nodes of the trie.

While the first segment statically is of a fixed size, the other ones grow in size
while the model checking process is running. Because resizing of shared memory
segments is not possible in a UNIX-portable manner, we simply allocate more
segments of a fixed size as needed.

Access to each of these segments is restricted differently: since the meta
information only is accessed by the proxies and master, we use a single semaphore
in order to coordinate read and write access.

For the key-value pairs, we use two semaphores: the first one is a counting
semaphore allowing up to ten concurrent readers. This limit is chosen arbitrarily
but matches current CPUs. The second one is a semaphore that manages write
access. In order to gain write access, a process has to acquire the single write
lock first before acquiring all read locks. Because there only is one write lock
and all read locks are released eventually, deadlocks cannot occur.

Lastly, we use more fine-grained locking on the internal nodes. Each of the 32
sub-trees below the root node has such a combination of one counting semaphore
to manage read access and one semaphore that manages write access. This means
that each sub-tree can be read and written separately at the same time.

This technique has proven to be the best of multiple strategies we bench-
marked in [17]. However, we argue that the amount of time spent processing a
state is drastically larger than the amount of time spent in the hash trie. For
our needs, any working locking strategy is good enough.

Note that the digest trie is used to store the set of known states, which is
strictly growing. In particular, a delete operation is neither required nor imple-
mented. Hash codes are written into the corresponding segment entirely before
they are referenced in an inner node. Updating the status of the corresponding
state (i.e., enqueued to checked) does not modify the hash code but only changes
one bit. Thus, inconsistent reads of hash codes are impossible. In the worst case,
a state cannot be found while it is added to the trie and is enqueued or checked
again, which is sound behavior.

3.5 Work Sharing

When the model checking process begins, all workers start with an empty queue.
The master will send the initial state to the first worker that is announced by a
proxy. Once a worker accumulates enough work items, it is able to share some

252 P. Körner and J. Bendisposto

of them. Of course, work queues may run empty during the process as well.
Distributed model checking scales best when many queues are filled.

There are several strategies in order to distribute work: in some cases, the state
space can statically be partitioned into (almost) disjunct parts. However, we do
not do any static computations beforehand. A modulo-based approach assigns a
state to a worker by calculating id = hash(state) mod amount(workers). One
drawback of this approach is that many states have to be transferred between dif-
ferent workstations. As states can be several hundred megabytes in size, this would
be too costly. Additionally, the amount of workers must not change. However, we
want to be able to add and remove workstations on the fly depending on how well
the model scales.

In order to oversee the work sharing, workers firstly send their queue sizes
to their corresponding proxy. The proxy uses a queue threshold to classify queue
sizes into one of three categories.

– The queue is empty and the worker should receive work items.
– The queue is not empty but below the queue threshold, usually a small value

between 10 and 100 items. This worker should neither share nor receive work
items. This is used in order to avoid many transfers at the beginning and end
of the model checking process, when most queues are empty.

– The queue is above the queue threshold. This worker should share some of
their work items if another one is empty.

This information is forwarded to the master as a queue fingerprint. In partic-
ular, exact queue sizes are not sent. An update is sent only when the fingerprint
changes in order to reduce network traffic.

Proxies can initiate transfers between workers on the same workstation. Then,
they flag the amount of workers as “in transfer” in their queue fingerprint. The
master initiates transfers between workers on different workstations. However,
local transfers are always favored over cross-workstation transfers.

For both kinds of the transfers, the worker that should share its queue is
sent the IP address and port of the empty worker. Then, the sharing worker
connects to the endpoint, sends part of their queue and disconnects after an
acknowledgment. All workers bind a separate TCP socket in order to receive
work.

3.6 Proxy

The proxy was, admittedly, introduced as a hack. As shown in Sect. 3.1, we
use multiple sockets per component for different types of data flow. For smaller
setups, it was possible to maintain multiple connections between the master
and each worker. However, each socket requires a unique file handle. On many
(shared) computation clusters, the amount of file handles per process is limited.

Nonetheless, we needed a component that runs once per workstation anyway:
one that initially sets up the shared memory and blocks access until an initial
consistent state is reached. As it turned out, having a single writer in a shared
memory setting avoids many concurrency issues as well.

Distributed Model Checking Using ProB 253

Furthermore, the proxy is able to take some responsibilities that can be
done on the same workstation. An example is local balancing. Another is to
handle information sent by the worker, e.g., queue size and logging into a shared
resource. This eliminates some unnecessary network traffic entirely.

3.7 Bandwidth Reduction

For some models, the distributed model checking scales wonderfully. This means,
we can utilize hundreds of CPU cores which are under load and produce an enor-
mous amount hash codes in a given time interval. We found that for some mod-
els, the master’s bandwidth does not suffice in order to provide each workstation
with the hash updates.

This renders the master’s bandwidth to be the bottleneck of the computation
resulting in many duplicates, meaning lots of useless work is done. Even though
the model offers more potential for scaling, the entire process slows down if we
add workers.

Inspired by streaming techniques in P2P networks, we implemented an appli-
cation level multicast [25] for the hash codes. An example for a small setup
consisting of eight workstations, each running a proxy, is shown in Fig. 3: there,
the master only publishes hash codes to two proxies, which in turn propagate
the information to two additional proxies each. Leaf nodes do not publish any
information.

When a proxy joins the calculation, they are assigned a parent in the tree.
Assume the n-th proxy connects to the master. Then, the master will include
the endpoint of the �(n−1)/2�-th proxy in the ID message and the joining proxy
will connect its subscribing socket there. In case the calculated number is zero,
the endpoint of the master’s hash publishing socket is provided instead.

By default, every proxy tries to publish hash codes. If there are no subscribers,
ZeroMQ automatically drops the message. This allows the master to save band-
width and to scale independently of the amount of participating workstations.
The trade-off is increased latency of the hash code propagation. However, since
we assume that we distribute the calculation in a local area network or cluster,
the impact is neglectable.

Master

Proxy1 Proxy2

Proxy3 Proxy4 Proxy5 Proxy6

Proxy7 Proxy8

Fig. 3. Hash code streaming tree. Arrows describe a “publishes to” relationship.

254 P. Körner and J. Bendisposto

Additionally, in order to reduce overhead introduced by ZeroMQ messages,
proxies put the hash codes they receive from workers immediately, the master
may bundle multiple messages before propagating. The interval can be specified
by the user. Our benchmarks ran with the default value that propagates hashes
once every 25 ms. We found it works fairly well for all the models we tested.
For models where states take a long time to check, this interval should be set
to zero so that all currently available hash codes are propagated immediately in
order to avoid checking states multiple times. In a setting where some duplicate
checks are acceptable, e.g., when processing a single state is very fast, it might
be increased even further. In general, this value should be fine-tuned according
to the model.

4 Evaluation

In this section, we evaluate the performance of distb in two settings. Firstly,
we consider a high-performance cluster where we can use multiple computation
nodes and many hundred CPUs. All nodes used in this cluster have two Intel
Xeon IvyBridge E5-2697, each of them consisting of 12 cores running at 2,70 GHz,
offering up to 24 CPU cores per node. We reserved 100 GB RAM on each node.
For network communication, we used standard 1 Gbit/s Ethernet. Each node
runs a Red Hat 6.6 Linux. Secondly, we run the same version of distb on a single
notebook with an Intel i7-7700HQ quad-core CPU and 16 GB RAM.

On the cluster, we run models that have a larger runtime, the smallest model
takes about 30 min to model check with ProB. We could not check the largest
model with ProB entirely thus far, although it checked half the state space in
about three days.

When comparing the performance of distb with ProB, one has to keep in
mind that distb suffers additionally to the distribution overhead from the fact
that it has to serialize and deserialize all states. For larger states, this can be
as expensive as verifying the invariant and calculating the successors. Thus, for
some models, running distb with a single worker is much slower than ProB.

On the other hand, ProB usually does a little extra work compared to
distb, e.g., it maintains the entire state space. Additionally, due to the different
data structure, the lookup of seen states might be faster in distb. Thus, if the
serialization is very fast, distb might be a bit faster than ProB. We have also
noticed that if we add additional load to the CPU while running ProB, ProB
speeds up a bit. A reason could be that Turbo Boost only gets activated if enough
CPU load is present.

Speed-ups will always be given relative to ProB. For runtimes and speed-
ups, we use the median value of ten repetitions. All models and their description
are available at https://github.com/pkoerner/distb.

From Fig. 4 and Table 2, we can see that for suitable models with very long
runtimes, like Train and earley, distb scales almost linearly even for hundreds
of workers. Two smaller models that were developed by Space Systems Finland,
MPM and obsw [9], take about half an hour with ProB and can be checked in
less than half a minute given enough workers.

https://github.com/pkoerner/distb

Distributed Model Checking Using ProB 255

0 100 200 300 400
0

100

200

300

400

Workers

Sp
ee
d-
up

Speedups (Cluster)

earley
obsw
Train
Hanoi
MPM

1 2 3 4 5 6

1

2

3

4

5

6

Workers

Sp
ee
d-
up

Speedups (Notebook)

Landing Gear
Hanoi (10 discs)

RETHER
CAN BUS

Fig. 4. Speed-ups in different configurations

Table 2. Runtimes (in seconds) and speed-ups on the high-performance cluster. †:
estimated runtime, ‡: limited amount of initializations

earley

(472886 states)

Workers ProB 1 10 50 100 200 300 400

Runtime 25025.94 25280.63 2538.97 521.46 270.65 143.61 105.73 85.60

Speed-up 1.00 0.99 9.86 47.99 92.47 174.26 236.70 292.36

obsw [9]

(589279 states)

Workers ProB 1 10 50 100 200 300 400

Runtime 2206.54 2021.54 212.96 45.82 26.84 23.40 52.75 118.45

Speed-up 1.00 1.09 10.36 48.16 82.20 94.30 41.83 18.63

Train [1]

(61648077 states)

Workers ProB 10 50 100 200 300 400 500

Runtime 518400.00 † 58107.65 11649.45 5812.45 2942.85 1998.64 1524.78 1230.52

Speed-up 1.00 8.92 44.50 89.19 176.16 259.38 339.98 421.29

Hanoi

(14348909 states)

Workers ProB 1 10 50 100

Runtime 17383.32 14107.04 1475.26 463.13 680.33

Speed-up 1.00 1.23 11.78 37.53 25.55

MPM [9]

(336649‡ states)

Workers ProB 1 10 50 100 200 300 400

Runtime 1621.30 2114.86 209.26 45.27 25.08 15.78 13.26 21.93

Speed-up 1.00 0.77 7.75 35.82 64.65 102.74 122.29 73.93

However, note that performance degrades in distb when too many workers
are added. In our log files, we can see that messages get delayed for several
seconds in the network. This could be caused by congestion of the internal switch
that only has 20 Gbit/s throughput. Note that we ran multiple benchmarks in
parallel and other users were active on the cluster at the same time. This would
also explain the high variance in runtime we noted for these benchmarks, e.g.,
running the obsw model with 400 workers took between 39 s and 3.5 min, whereas
the runtimes for 100 workers all were within 5 s.

We included a model of the Tower of Hanoi with 15 discs in our benchmarks
because it has a particular property: the queue size blows up exponentially over
time but collapses down to one possible state regularly, when there is only a new

256 P. Körner and J. Bendisposto

single possible new position for the smallest disc. Most of the time, the overall
queue size is relatively small and we did not expect distb to scale very well.

When we run smaller benchmarks on a quad-core notebook, distb usually
scales linearly for three workers as can be seen in Fig. 4 and Table 3. This is due
to the fourth core running both the proxy and master process. In particular, the
proxy employs busy polling in order to react on input from multiple sources as
soon as possible while the core logic still runs in a single thread. If more workers
are added, minor additional speed-ups are gained due to hyper-threading.

As expected, the Tower of Hanoi model scales worst because it is the least
suitable model for distribution of the ones benchmarked.

Table 3. Runtimes (in seconds) and speed-ups on a regular notebook.

Landing Gear (refinement 5) [11]
(43307 states)

Workers ProB 1 2 3 4 5 6

Runtime 30.11 25.65 13.46 9.95 9.61 9.26 9.17

Speed-up 1.00 1.17 2.24 3.03 3.13 3.25 3.28

Hanoi (10 discs)
(59051 states)

Workers ProB 1 2 3 4 5 6

Runtime 33.97 38.15 19.75 14.63 13.96 13.27 12.93

Speed-up 1.00 0.89 1.72 2.32 2.43 2.56 2.63

RETHER protocol [24]
(42254 states)

Workers ProB 1 2 3 4 5 6

Runtime 40.36 45.26 23.19 16.56 15.57 14.05 13.84

Speed-up 1.00 0.89 1.74 2.44 2.59 2.87 2.92

CAN BUS (John Colley)
(132600 states)

Workers ProB 1 2 3 4 5 6

Runtime 73.85 64.20 33.54 24.46 22.53 21.78 21.13

Speed-up 1.00 1.15 2.20 3.02 3.28 3.39 3.50

5 Related Work

Distributed model checking using ProB was also made available by integrating
it with LTSmin [4,7]. For LTSmin, states are split into several chunks, each
containing only a single variable. This is done by multiple calls into the fastrw
library (cf. Sect. 3.3 for more details). Thus, LTSmin inherently runs slower
without further optimizations.

However, LTSmin offers a sophisticated caching mechanism: for each opera-
tion, states are projected into short states containing only the relevant variables.
Then, ProB is only called if one of these variables changed. Otherwise, succes-
sor states are recombined from the cached value and the old state. For many
models, this approach is very fast compared to ProB, trading reduced runtime
for increased memory consumption. In a distributed setting, this concept does
not scale as well as distb, because each worker maintains a separate cache. A
preliminary evaluation of LTSmin’s scaling behavior on a single machine can be
found in [18].

Furthermore, the distributed version of LTSmin allows checking LTL formu-
las with ProB, which distb is not yet capable of.

Distributed Model Checking Using ProB 257

TLC is a model checker implemented in Java that offers both a parallel and
distributed mode in order to check TLA+ specifications [26]. Usually, all workers
on a single workstation run inside the same JVM which allows sharing work
with good performance. Furthermore, TLC offers a checkpointing mechanism
that allows recovering progress after a graceful termination of the tool or after a
crash. For its seen set, TLC stores hash codes only as well, however they are only
32-bits in size. Using the approximation from Sect. 3.4, the chance that no hash
collision exists for one million states is less than 10−50. This almost guarantees
that an unchecked state is discarded. Thus, we argue that such small fingerprints
should not be used in order to verify larger state spaces.

While TLA+ is a high-level formalism like B and Event-B, the input language
for SPIN [15] is very low-level and its distributed version [19] tackles different
issues. The main reason for distribution was not because of time but memory
constraints: most of the main memory was used up by the hash table containing
the visited states. The motivation was to distribute this hash table and, at this
opportunity, to make use of additional computational power. Thus, the state
space is partitioned beforehand in a way that relies on certain features of its
input language.

When comparing SPIN with ProB, we notice that SPIN is able to deal
with billions of states quite easily whereas ProB cannot cope with models that
consist of more than a couple of million states. In [20], Leuschel has argued
that these numbers are really difficult to compare due to the different level of
abstractions. While the input language for SPIN is almost C like, the classical
B language is almost pure mathematics. The high level of abstraction in B can
lead to a significant reduction in the number of states because a single state at
a high level of abstraction can represent hundreds or even thousand states in a
low level language.

For distributed model checking, this has several consequences: firstly, distb
usually is able to keep the entirety of the digest trie in main memory of each
workstation. Secondly, ProB’s states usually are larger and keeping all of them
in main memory of a single workstation would be a hard issue. However, reading
them from disk in sequence – like a queue – is relatively fast compared to random
access of a hash map. Furthermore, states are inherently distributed on several
workstations in the first place. Lastly, the computation of successors of a state
takes a lot more time in ProB than in SPIN. Thus, the entire distribution
overhead is rather small in comparison and allows more potential for scaling
more easily.

6 Conclusion and Future Work

For suitable models, distb is able to achieve hundred-fold speed-ups compared
to ProB. This renders it possible to model check medium-sized models in less
than a minute instead of an hour. Furthermore, it allows model checking large
specification that could not be handled by ProB before. We think for larger
models like the Train benchmark, even better speed-ups are achievable, yet

258 P. Körner and J. Bendisposto

would require InfiniBand instead of standard Ethernet. While the speed-ups we
could achieve are very satisfactory, there still remains a list of features that are
nice to have.

Storing states in their binary representation is costly. While SICStus Prolog
reuses, e.g., atomic terms, and avoids their duplication, their blobs offer no
structural sharing at all. Thus, keeping all blobs in memory often is not feasible
for large models. In order to tackle this issue, we are currently evaluating storing
these blobs on disk by making use of Google’s database LevelDB [10]. Reading
from and writing to a HDD usually suffers from huge performance costs due
to latency. Therefore, a user can specify an upper bound for the amount of
blobs which are kept in memory. Once this upper bound is reached, additional
states are written to disk asynchronously. Once no states reside in memory, the
specified amount of states is read back from disk. This way, even large amounts
of states can be queued without taking a major performance loss.

This should allow us to be able to check several billion B states of a very
large model, a number we could not achieve thus far. Before, we were able to
check about 160 million states of a Hanoi model but simply ran out of memory.

Additionally, we will try to reduce the serialization overhead. Many large
models feature large constant values, e.g., a topology for a railway interlocking.
Serialization and deserialization could be avoided if the value is replaced by a
simple integer “handle”. The master could calculate all possible assignments
for constants beforehand and provide a mapping from an integer to a set of
constants to all workers. It will ensure that all workers share the same mapping
which might not be the case due to, e.g., random enumeration.

Furthermore, we noticed that adding idle workers often slows down distb. We
plan to add logic to the master or even a different tool that monitors queue sizes
as well as progress that decides whether to hot-join additional workstations or to
remove some of them from the calculation. Some models like the Hanoi example
could benefit, where at the beginning most queues are empty but grow to large
sizes as the model check progresses. This could be used, e.g., in a cloud settings
where computational power can be added but, in order to reduce costs, may also
be shut down if not needed.

Finally, distb does not make use of information about discharged proofs as
described in [5]. Workers could send information which transition was used addi-
tionally to the hash code or only make use of it itself. This might lead to addi-
tional speed-ups because some invariants do not need to be verified at runtime
if already proven beforehand.

Nonetheless, it would be interesting to compare the performance and scaling
of distb with other state-of-the-art distributed model checkers, e.g., LTSmin,
TLC or SPIN. However, a fair comparison with SPIN would be hard because
of different levels of abstraction. LTSmin’s integration with ProB is usually
inherently slower due to additional serialization and communication overhead. If
caching is enabled, LTSmin is usually faster but does not scale as good due to
the fact that additional workers maintain their own caches. A proper comparison
with TLC is feasible because it is possible to translate models freely between
TLA+ and B [12,13].

Distributed Model Checking Using ProB 259

Acknowledgement. Computational support and infrastructure was provided by the
“Centre for Information and Media Technology” (ZIM) at the University of Düsseldorf
(Germany).

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.
Cambridge University Press, Cambridge (2010)

2. Abrial, J.-R., Lee, M.K.O., Neilson, D.S., Scharbach, P.N., Sørensen, I.H.: The B-
method. In: Prehn, S., Toetenel, H. (eds.) VDM 1991. LNCS, vol. 552, pp. 398–405.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0020001

3. Bagwell, P.: Ideal Hash Trees. Es Grands Champs, vol. 1195 (2001)
4. Bendisposto, J., Körner, P., Leuschel, M., Meijer, J., van de Pol, J., Treharne, H.,

Whitefield, J.: Symbolic reachability analysis of B through ProB and LTSmin.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 275–291.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 18

5. Bendisposto, J., Leuschel, M.: Proof assisted model checking for B. In: Breitman,
K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 504–520. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10373-5 26

6. Bendisposto, J.M.: Directed and distributed model checking of B-specifications.
Ph.D. thesis, Universitäts- und Landesbibliothek der Heinrich-Heine-Universität
Düsseldorf (2015)

7. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 31

8. Carlsson, M., Widen, J., Andersson, J., Andersson, S., Boortz, K., Nilsson, H.,
Sjöland, T.: SICStus Prolog User’s Manual, vol. 3. Swedish Institute of Computer
Science Kista, Sweden (1988)

9. DEPLOY Deliverable: D20-Report on Pilot Deployment in the Space Sector.
FP7 ICT DEPLOY Project, January 2010. http://www.deploy-project.eu/html/
deliverables.html

10. Ghemawat, S., Dean, J.: LevelDB (2011). https://github.com/google/leveldb
11. Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J., Leuschel, M.: Valida-

tion of the ABZ landing gear system using ProB. In: Boniol, F., Wiels, V., Ait
Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 66–79. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 5

12. Hansen, D., Leuschel, M.: Translating TLA+ to B for validation with ProB. In:
Derrick, J., Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321,
pp. 24–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-
4 3

13. Hansen, D., Leuschel, M.: Translating B to TLA+ for validation with TLC. In: Ait
Ameur, Y., Schewe, K.D. (eds.) ABZ 2014. LNCS, vol. 8477, pp. 40–55. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 4

14. Hintjens, P.: ZeroMQ: Messaging for Many Applications. O’Reilly Media Inc.,
Newton (2013)

15. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

16. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. III.
Addison-Wesley, Boston (1973)

https://doi.org/10.1007/BFb0020001
https://doi.org/10.1007/978-3-319-33693-0_18
https://doi.org/10.1007/978-3-642-10373-5_26
https://doi.org/10.1007/978-3-642-14295-6_31
http://www.deploy-project.eu/html/deliverables.html
http://www.deploy-project.eu/html/deliverables.html
https://github.com/google/leveldb
https://doi.org/10.1007/978-3-319-07512-9_5
https://doi.org/10.1007/978-3-642-30729-4_3
https://doi.org/10.1007/978-3-642-30729-4_3
https://doi.org/10.1007/978-3-662-43652-3_4

260 P. Körner and J. Bendisposto

17. Körner, P.: Improving distributed model checking in ProB. Bachelor’s thesis, Hein-
rich Heine Universität Düsseldorf, August 2014

18. Körner, P.: An integration of ProB and LTSmin. Master’s thesis, Heinrich Heine
Universität Düsseldorf, February 2017

19. Lerda, F., Sisto, R.: Distributed-memory model checking with SPIN. In: Dams, D.,
Gerth, R., Leue, S., Massink, M. (eds.) SPIN 1999. LNCS, vol. 1680, pp. 22–39.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48234-2 3

20. Leuschel, M.: The high road to formal validation: model checking high-level versus
low-level specifications. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 4–23. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87603-8 2

21. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

22. Prokopec, A., Bagwell, P., Odersky, M.: Cache-aware lock-free concurrent hash
tries. arXiv preprint arXiv:1709.06056 (2017)

23. Sayrafiezadeh, M.: The birthday problem revisited. Math. Mag. 67(3), 220–223
(1994)

24. Venkatramani, C., Chiueh, T.-C.: Design, implementation, and evaluation of a
software-based real-time ethernet protocol. ACM SIGCOMM Comput. Commun.
Rev. 25(4), 27–37 (1995)

25. Yeo, C.K., Lee, B.-S., Er, M.: A survey of application level multicast techniques.
Comput. Commun. 27(15), 1547–1568 (2004)

26. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/3-540-48234-2_3
https://doi.org/10.1007/978-3-540-87603-8_2
https://doi.org/10.1007/978-3-540-87603-8_2
https://doi.org/10.1007/978-3-540-45236-2_46
http://arxiv.org/abs/1709.06056
https://doi.org/10.1007/3-540-48153-2_6

Optimal Storage of Combinatorial State
Spaces

Alfons Laarman(B)

Leiden University, Leiden, The Netherlands
a.w.laarman@liacs.leidenuniv.nl

Abstract. Efficiently deciding reachability for model checking problems
requires storing the entire state space. We provide an information theo-
retical lower bound for these storage requirements and demonstrate how
it can be reached using a binary tree in combination with a compact hash
table. Experiments confirm that the lower bound is reached in practice in
a majority of cases, confirming the combinatorial nature of state spaces.

1 Introduction

Model checking has proven effective for automatically verifying correctness of
protocols, controllers, schedulers and other systems. Because a model checker
tool relies on the exhaustive exploration of the system’s state space, its power
depends on efficient storage of states.

To illustrate the structure of typical states in model checking problems, con-
sider Lamport’s Bakery algorithm in Fig. 1; a mutual exclusion protocol that
mimics a bakery with numbering machine to prioritize customers. Due to limi-
tation of computing hardware, the number is not maintained globally but recon-
structed from local counters in N[i] (for each process i). For two processes, the
state vector of this program consists of the two program counters (pcs) and all
variables, i.e. 〈E[0], N [0], pc0, E[1], N [1], pc1〉.1 Their respective domains are:

〈{�,⊥} , [0 . . . 2], [0 . . . 7], {�,⊥} , [0 . . . 2], [0 . . . 7]〉.
There are 2 × 3 × 8 × 2 × 3 × 8 = 2304 possible state vectors. The task of the

model checker is determine which of those are reachable from the initial state;
here ι � 〈⊥, 0, 0,⊥, 0, 0〉. It does this using a next-state function, which in this
case implements the semantics of the Bakery algorithm to compute the successor
states of any state. For example, the successors of the initial state are:

next-state(〈⊥, 0, 0,⊥, 0, 0〉) = {〈�, 0, 1,⊥, 0, 0〉 , 〈⊥, 0, 0,�, 0, 1〉}

This work is part of the research programme VENI with
project number 639.021.649, which is (partly) financed by
the Netherlands Organisation for Scientific Research (NWO).

1
We opt to order vectors as follows: variables and program counter of Process 0 (pc0), variables
and program counter of Process 1 (pc1), etc. Section 6 discusses the effect of orderings.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 261–279, 2018.
https://doi.org/10.1007/978-3-319-77935-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_19&domain=pdf
http://orcid.org/0000-0002-2433-4174

262 A. Laarman

bool E[2] = { false, false };
int N[2] = { 0, 0 };
void process(int i) { // with process id i = 0 or 1

0: E[i] = true;
1: N[i] = 1 + max(N[0], N[1]);
2: E[i] = false;
#define j 0
3: while (E[j]) { } // Wait until thread 0 receives its number
4: while ((N[j] != 0) && ((N[j],j) < (N[i],i))) { }
#define j 1
5: while (E[j]) { } // Wait until thread 1 receives its number
6: while ((N[j] != 0) && ((N[j],j) < (N[i],i))) { }

/* begin critical section .. end critical section */
7: N[i] = 0;

}

Fig. 1. Lamport’s “Bakery” mutual exclusion protocol for two threads. The wait loop is
unrolled at Lines 4–7, where the process waits until all threads j, with smaller numbers
or with the same number but with higher priority, expressed as (N[j],j) < (N[i],i),
passed their critical section. The boolean variable E[i] associated with process i serves
to allow other threads to wait until i received a number in N[i]. For simplicity, we
assume that each line can be executed atomically.

One successor represents the case where the first process executed Line 0; its
program counter is set to 1 and E[0] is updated as a consequence. Similarly, the
other successor represents the case where the second process executed Line 0.

Algorithm 1. The reachability
procedure in a model checker.
Data: ι, next-state
Result: {error, correct}

1 V := ∅
2 Q := {ι}
3 while Q �= ∅ do
4 Q := Q \ {s} for s ∈ Q
5 V := V ∪ {s}
6 for s′ ∈ next-state(s) do
7 if s′ /∈ V then
8 if s′ ∈ Error then
9 return error

10 Q := Q ∪ {s′}

11 return correct

While exhaustively exploring all
reachable states, the model checker
searches if it can reach a state
from the set Error . For the Bak-
ery algorithm with two threads, we
have Error � {〈b0, n0, 7, b1, n1, 7〉 |
b0, b1 ∈ {�,⊥} , n0, n1 ∈ [0 . . . 2]},
i.e., all states where both processes
reside in their critical section (=
pc loc. 8). For completeness, Algo-
rithm 1 shows the basic reachabil-
ity procedure. The more states the
reachability procedure can process,
the more powerful the model checker,
i.e., the larger program instances it
can automatically verify. This num-
ber depends crucially on the size of
the visited states set V in memory. Several techniques exist to reduce V : partial
order reduction [19,26], symmetry reduction [10,30], BDDs [3,7], etc. Here we
focus on explicitly storing the states in V using state compression.

The potency of compression becomes apparent from two related observations:

Locality. Successors computed in the next-state function exhibit locality, e.g.,

next-state(〈⊥, 1, 4,⊥, 2, 6〉) = {〈⊥, 1,5,⊥, 2, 6〉 , 〈⊥, 1, 4,⊥, 2,7〉}

Optimal Storage of Combinatorial State Spaces 263

Note that only program counters change value (marked bold in successors).
Combinatorics. Similar to the set of all possible state vectors, the set of reached

state vectors is also highly combinatorial. Assuming 〈⊥, 1, 4,⊥, 2, 6〉 can be
reached from the initial state ι, we indeed saw four different vectors sharing
large sub-vectors with their predecessors (underlined here):
〈⊥, 0, 0,⊥, 0, 0〉 −→ 〈�, 0, 1,⊥, 0, 0

〉
,
〈⊥, 0, 0,�, 0, 1

〉

〈⊥, 1, 4,⊥, 2, 6〉 −→ 〈⊥, 1, 5,⊥, 2, 6
〉
,
〈⊥, 1, 4,⊥, 2, 7

〉

We hypothesize that the typical locality of the next-state function ensures
that the set of reachable states exhibits this combinatorial structure in the limit.
Therefore, storing each vector in its entirety in a hash table, would duplicate
a lot of data. By folding the reachable state vectors in a tree, however, these
shared sub-vectors only have to be stored once (more in Sect. 3).

In this paper, we investigate the lower bound on the space requirements of
typical state spaces occurring in model checking. We do this by modeling the
state spaces as an information stream. The values in this stream probabilistically
depend on previously seen values, in effect modeling the locality in the next-state
function. A simple application of Shannon’s information theory yields a lower
bound for the storage requirements of our “state space stream”.

Subsequently, in Sects. 3 and 4, we investigate whether this lower bound can
be reached in practice. To this end, we provide an implementation for the vis-
ited set V . A practical compressed data structure has as additional requirement
that the query time, the time it takes to lookup and insert individual state vec-
tors, is constant (or at least poly-logarithmic) in the length of the vector. The
technique suggested by the information theoretical model, i.e., maintaining dif-
ferences between successor states, does not satisfy this requirement. Therefore,
we utilize a binary tree in combination with a compact hash table. By analyzing
the best-case compression of this structure, we show that it indeed can reach
information theoretical lower bound (at least in theory).

According to the same best-case analysis, our implementation of the ‘Com-
pact Tree’ can compress up to tens of billions of large state descriptors (of tens
to hundreds of integers) down to only one 32-bit integer per state. Extensive
experimentation in Sect. 5 with diverse input models in four different input lan-
guages shows moreover that this compression is also reached in practice, and
with little computational overhead.

2 An Information Theoretical Lower Bound

The fact that state spaces have combinatorial values is related to the fact that
state generated by a model checker exhibit locality as we discussed in Sect. 1.
We will make no assumptions on the nature of the inputs, besides the locality of
state generation. In the current section, we will derive the information entropy—
which is equal to the minimum number of bits needed for its storage—of a single
state vector using basic notions from information theory.

264 A. Laarman

Information theory abstracts away from the computational nature of a pro-
gram by considering sender and receiver as black boxes that communicate data
(signals) via a channel. The goal for the sender is to encode the data as small
as possible, such that the receiver is still able to decode it back to the original.
The encoded size depends on the amount of entropy in the data. In the most
basic case, no statistical information is known about the data: each of X possible
messages has an equal probability of taking one of its values and the entropy H
is maximal: H(X) = log2(|X|)bit, i.e., the entropy directly corresponds to using
one fixed-sized (log2(|X|)) bit pattern for each possible message.

If more is known about the statistical nature of the information coming from
the sender, the entropy is lower as more elaborate encodings can be used to
reduce the number of bits needed per piece of information. A simple example is
when we take into account the character frequency of the English language for
encoding sentences. Assuming that certain characters are much more frequent,
a code of fewer bits can be used for them, while longer codes can be reserved
for infrequent characters. To calculate the entropy in this example, we need the
probability of occurrence p(x) for each character x ∈ X in the English language.
We can deduce this from analyzing a dictionary, or better a large corpus of texts.
The entropy then becomes: H(X) =

∑
x∈X −p(x) log2(p(x))

We apply the same principle now to state vectors. As data source, we use the
next-state function to compute new states, as we saw in Sect. 1:

next-state(〈⊥, 1, 4,⊥, 2, 6〉) = {〈⊥, 1,5,⊥, 2, 6〉 , . . .}

As a simplification, let states consist of k variables. By storing full states in
the queue Q, the predecessor state is always known in the model checker’s reach-
ability procedure (see s and s′ on line 6 in Algorithm 1). Hence, we can abstract
away from the one-to-many relation of the next-state function and instead view
the arriving states as a k-periodic stream of variable assignments:

〈
v0
0 , . . . v0

k−1

〉
,
〈
v1
0 , . . . v1

k−1

〉
, · · · ,

〈
vn−1
0 , . . . vn−1

k−1

〉

It thus makes sense to describe the probability that a variable holds a certain
value with respect to the same variable in the predecessor state: For each variable
vi
j with i ≥ 0 and 0 ≤ j < k − 1, both encoder and decoder can always look at

the corresponding variable vi−1
j in the predecessor to retrieve its previous value.

Since we are interested in establishing a lower bound, we may safely under-
approximate the number of variables changing value with respect to a state’s
predecessor. It makes sense to assume that only one variable changes value,
since with zero changes, the same state is generated (requiring no “new” space
in V). Hence, we take the following relative probabilities (see example Fig. 2):

p(vi
j
= vi−1

j) =
1
k

p(vi
j = vi−1

j) =
k − 1

k

Optimal Storage of Combinatorial State Spaces 265

〈⊥, 1, 4,⊥, 2, 6〉 〈⊥, 1,5,⊥, 2, 6〉 next-state next-state next-state

p(¬4) = 1
k

p(�) = k−1
k

Fig. 2. The states generated with the next-state function seen as a stream exhibiting
locality. To derive a lower bound, we assume that locality changes only one value in
each new vector, i.e., each vector that has to be stored. As there are k variables in the
vector, the resulting probability that a variable changes is 1/k. So the chance that it
remains the same with respect to the predecessor is k−1/k.

Let
〈
d0
0, . . . d

0
k−1

〉
,
〈
d1
0, . . . d

1
k−1

〉
, . . . ,

〈
dn−1
0 , . . . dn−1

k−1

〉
, be the domains of the

state slots. As a simplification, we assume that all domains have u bits, resulting
in y = 2u values. Therefore, there are y − 1 possible values for which variable vi

j

can differ from its predecessor vi−1
j . Therefore, the probability for one of these

other values x ∈ dij becomes p(x) = 1
k × 1

y−1 = 1
k(y−1) (this equal probability

distribution over the possible values results in higher entropy, but recall that we
do not make other assumptions on the nature of the inputs). Of course, there is
only one value assignment when the variable vi

j does not change, i.e., the val-
uation of the same variable in the predecessor state vi−1

j .2 This results in the
following definition of entropy per variable in the stream:

Hvar (vi
j) = −k − 1

k
log2

(
k − 1

k

)
+

y−1∑

n=1

− 1
k(y − 1)

log2

(
1

k(y − 1)

)

After some simplification, we can derive the state vector’s entropy:

Hstate(vi
0, . . . , v

i
k−1)=

k−1∑

j=0

Hvar (vi
j)=log2(y−1) + log2(k−1) + k log2

(
k

k−1

)

(1)

Theorem 1 (Information Entropy of States Exhibiting Locality). For
k > 1, the information entropy of state vectors in state spaces exhibiting locality,
abbreviated with Hstate , is bound by:

log2(y − 1) + log2(k − 1) + 1 ≤ Hstate ≤ log2(y) + log2(k) + 2 = u + log2(k) + 2

2 The assumption that predecessor is always known of course breaks down for the ini-
tial state ι. Our model does not account for the initial storage required for ι. However,
as the number of states |V | typically grows very large, this space is negligible.

266 A. Laarman

Proof. We first show that Hstate ≤ log2(y) + log2(k) + 2 = u + log2(k) + 2.
Simplification using log2(k − 1) ≤ log2(k) yields: (1 + 1

k−1)k ≤ 4. As for k = 2
(recall that k > 1), we have (1+ 1

k−1)k = 4 and, in the limit, we have limk→∞(1+
1

k−1)k = limk→∞(1 + 1
k)k = e, it can be seen that (1 + 1

k−1)k ≤ 4 holds, and
hence Hstate ≤ log2(y) + log2(k) + 2 = u + log2(k) + 2.

Now we show that log2(y − 1) + log2(k − 1) + 1 ≤ Hstate .
Simplification yields: 2 ≤ (1+ 1

k−1)k. Again for k = 2, we have (1+ 1
k−1)k = 4

and limk→∞(1 + 1
k−1)k = e, hence log2(y − 1) + log2(k − 1) + 1 ≤ Hstate . ��

Intuitively, this approximation makes sense since a single modification in each
new state vector can be encoded with solely the index of the changed variable,
in log(k) bits, plus its new value, in log(y) = u bits, plus some overhead to
accommodate cases where more than one variable changes value. This result
indicates that locality could allow us to store sets of arbitrarily long (k · u-bit)
state vectors using a small integer of less than u + log2(k) + 2 bits per vector.

In practice, this could mean that vectors of a thousand (1024) of byte-size
variables can be compressed to 20 bits each, which is only slightly more than
if these states were numbered consecutively—in which case the states would be
18 bits—but far less than 8192 bits required for storing the full state vectors.

3 An Analysis of Binary Tree Compression

The interpretation of the results in Sect. 2 suggests a trivial data structure to
reach the information theoretical lower bound: Simply store incremental differ-
ences between state vectors. However, as noted in the introduction, an incremen-
tal data structure like that does not provide the required efficiency for lookup
up operations (the reachability procedure in Algorithm 1 needs to determine
whether states have been visited before on Line 7).

The current section shows how many state vectors can be folded into a sin-
gle binary tree of hash tables to achieve sharing among subvectors, while also
achieving poly-logarithmic lookup times in the worst case. This is the first step
towards achieving the optimal compression from Sect. 2 in practice. Section 4
presents the second step. We focus here on the analysis of tree compression. For
tree algorithms, refer to [21].

The shape of the binary tree is fixed and depends only on k. Vectors are folded
in the tree until only tuples remain. These are stored in the leaves. Using hashing,
tuples receive a unique index which is propagated back upwards, forming again
new tuple in the tree nodes that can be hashed again. This process continues
until a tuple is stored in the root node, representing the entire vector.

Figure 3(a) demonstrates how the state 〈⊥, 1, 4,⊥, 2, 6〉 is folded into an
empty tree, which consists of k − 1 nodes of empty hash tables storing tuples.
The process starts at the root of the tree (a), and recursively visits children while
splitting the vector (b). When the leaves of the tree (colored gray) are reached,
they are filled with the values from the vector (c). The vectors inserted into the

Optimal Storage of Combinatorial State Spaces 267

(a) 〈⊥, 1, 4,⊥, 2, 6〉 (b) 〈⊥, 1, 4,⊥, 2, 6〉

〈⊥, 1, 4〉 〈⊥, 2, 6〉

〈⊥, 1〉 〈⊥, 2〉

(c) 〈⊥, 1, 4,⊥, 2, 6〉

4 6

⊥ 1 ⊥ 2

(d) 〈⊥, 1, 4,⊥, 2, 6〉
-1 -1

-1 4 -1 6

⊥ 1 ⊥ 2

(e) 〈⊥, 1, 5,⊥, 2, 6〉

-2 -1

-1 -1

-1 4

-1 5

-1 6

⊥ 1 ⊥ 2

(f) 〈⊥, 1, 4,⊥, 2, 7〉

-1 -2

-2 -1

-1 -1

-1 4

-1 5

-1 6

-1 7

⊥ 1 ⊥ 2

-2 -2

-1 -2

-2 -1

-1 -1

(g) 〈⊥, 1, 5,⊥, 2, 7〉

.

Fig. 3. Tree folding process for 〈⊥, 1, 4, ⊥, 2, 6〉 (in (a)–(d)), 〈⊥, 1, 5, ⊥, 2, 6〉 (in (e)),
〈⊥, 1, 5, ⊥, 2, 7〉 (in (f)) and 〈⊥, 1, 4, ⊥, 2, 7〉 (in (g)).

hash tables can be indexed (we use negative numbers to distinguish indices).
Indices are then propagated back upwards to fill the tree until the root (d).

Using a similar process, we can insert vector 〈⊥, 1,5,⊥, 2, 6〉 (e). The hash
tables in the tree nodes extended with index -2 storing -1 5 in the left child of
the root, while the root is extended with the tuple -2 -1 . Notice how sub-vector
sharing already occurs since the tuple -1 5 in the left child of the root points
again to 1 . In (f), the vector 〈⊥, 1, 4,⊥, 2, 7〉 is also added. In this case, only
the right child of the root needs to be extended, while the tuple -1 -2 is added
to the root.

With these three vectors in the tree (f), we can now easily add a new vector
〈⊥, 1, 5,⊥, 2, 7〉 by merely adding the tuple -2 -2 to the root of the tree (g). We
observe that an entire state vector (of length k in general) can be compressed to
a single tuple of integers in the root of the tree, provided that the sub-vectors
are already present in the left and the right sub-tree of the root.

The tree containing four vectors in Fig. 3 (g) uses 20 “places” (= 10 tuples in
tree nodes) to store four vectors with a total of 24 variables. The more vectors
are added, the more sharing can occur and the better the compression. We now
recall the worst-case and the best-case compression ratio for this tree database.
We make the following reasonable assumptions about their dimensions:

268 A. Laarman

– The respective database stores n = |V | state vectors of k u-bit variables.
– The size of tree tuples is 2w bits, and w bits is enough to store both a variable

valuation (in a leaf) or a tree reference (in a tree node), hence u ≤ w.
– Keys can be stored without overhead in tables.3

– k is a power of 2.4

u

u

u

u

k

n

hash table tree database

k − 1×

w w

≤ 2w (due to indexing)

Fig. 4. From left to right: a hash table and a tree table with their dimensions.

s0

.........

k

sk-1

log2(k)

k
2

k/2
√
n

k
4

k/4
√
n

n

Fig. 5. Optimal entries per tree node level.

Figure 4 provides an overview of the different data structures and the stated
assumptions about their dimensions.

To arrive at the worst-case compression scenario (Theorem 2), consider the
case where all states s ∈ V have k identical data values: V = {vk | v ∈
{1, . . . , n}}, where vk is a vector of length k: 〈v, . . . , v〉. No sharing can occur
between state vectors in the database, so for each state we store k − 1 tuples at
the tree nodes.

Theorem 2 ([4]). In the worst case, the tree database requires at most k − 1
tuple entries of 2w bits per state vector.

3 [21] explains in detail how this can be achieved.
4 Solely assumed to simplify the formulae below.

Optimal Storage of Combinatorial State Spaces 269

Table 1. Theoretical bounds for the compressed state sizes in the tree database and
in plain hash table storage. Note that while u ≤ w, often u, w are in the same ballpark.

Structure Worst case Best case

Hash table ku ku

Tree database 2kw − 2w 2w + εw

The best-case scenario (Theorem 3) is easy to comprehend from the effects
of a good combinatorial structure on the size of the parent tables in the tree. If
a certain tree table contains d tuple entries, and its sibling contains e entries,
than the parent can have up to d× e entries (all combinations, i.e. the Cartesian
product). In a tree that is perfectly balanced (d = e for all sibling tables), the
root node has n entries (1 per state), its children have

√
n entries, its children’s

children 4
√

n, etc. Figure 5 depicts this scenario.
Hence there are a total of n + 2

√
n + 4 4

√
n + . . . (log2(k)times) . . . + k/2 k/2

√
n

tuple entries. Dividing this series by n gives a series for the expected number of

tuple entries per state:
log2(k)−1∑

i=0

2i
2i√n
n . It is hard to see where this series exactly

converges, but Theorem 3 provides an upper bound. The theorem is a refinement
of the upper bound established in [4]. Note that the example above of a tree with
the four Bakery algorithm states already represents an optimal scenario, i.e., the
root table is the cross product of its children.

Theorem 3. In the best case and with k ≥ 8, the tree database requires less
than n + 2

√
n + 2 4

√
n(k − 4) tuple entries of 2w bits to store n vectors.

Proof. In the best case, the root tree table contains n entries and its children both
contain

√
n entries. The entries in the 4 children’s children of the root represent

vectors of size k/4. These 4 tree nodes contain each 4
√

n entries that each require
k/4 − 1 tuples taking the worst case according to Theorem 2 (hence also k ≥ 8).

��
Corollary 1 ([21]). In the best case, the total number of tuple entries l in all
descendants of root table is negligible (l � n), assuming a relatively large number
of vectors is stored: n � k2 � 1.

Corollary 2 ([21]). In the best case, the compressed state size approaches 2w.

Table 1 lists the achieved compressed sizes for states, as stored in a normal
hash table and a tree database. As a simplifying assumption, we take u to be
equal w, which can be the case if the tree is specifically adapted to accommodate
u bit references.

Performance. We conclude the current section with a note on the performance
of the tree database compared to a plain hash table. The tree trades ku bit vector
lookups for k − 1 of 2u-bit tuple lookups in its nodes. Apart from the additional

270 A. Laarman

data access required (ku − 2u), it seems like the increased random memory
accesses could cause poor behavior on modern CPUs. However, in the case of
good compressions, the lower tables in the tree typically contain fewer entries
which can more easily be cached, whereas effective caching of the large plain
vectors in hash table solutions is nigh impossible. Moreover, we can further use
locality to speed up tree lookups by keeping the tree of the predecessor state in
the search stack (Q), as explained in [21]. Figure 6 illustrates this.

〈⊥, 1, 4,⊥, 2, 6〉 〈⊥, 1,5,⊥, 2, 6〉
-1 -1

-1 4 -1 6

⊥ 1 ⊥ 2

〈⊥, 1, 4〉 〈⊥, 2, 6〉

〈⊥, 1〉 〈⊥, 2〉

-2 -1

-1 -1

-1 4

-1 5
×

×

Fig. 6. Incremental insertion of state 〈⊥, 1,5, ⊥, 2, 6〉. Only a small part of the tree
needs to be updated (dashed boxes), because the predecessor state 〈⊥, 1, 4, ⊥, 2, 6〉 is
used to lookup unchanged parts (the crosses in the tree of the successor state).

4 A Novel Compact Tree

The current section shows how a normal tree database can be extended to reach
the information theoretical optimum using a compact hash table.

Hash Tables and Compact Hash Tables. A hash table stores a subset of
a large universe U of keys and provides the means to lookup individual keys
in constant time. It uses a hash function to calculate an address h from the
unique key. The entire key is then stored at its hash or home location in a table
T (an array of buckets): T [h] ← key . Because typically |U | � |T |, multiple
keys may have the same hash location. These so-called collisions are handled by
calculating alternate hash locations and inserting the key there if empty. This
process is known as probing. For this reason, the entire key needs to be stored
in it; to distinguish which key is currently mapped to a bucket of T .

Observe, however, that in the case that |U | ≤ |T |, the table can be replaced
with a perfect hash function and a bit array. Compact hashing [8] generalizes this
idea for the case |U | > |T | (the table size is relatively close to the size of the uni-
verse). The compact table first splits a key k into a quotient q(k) and a remainder
rem(k), using a reversible operation, e.g., q(k) = k% |T | and rem(k) = k/ |T |.
When the key is x = �log2(|U |)� bits, the quotient m = �log2(|T |)� bits and the
remainder r = x − m bits. The quotient is used for addressing in T (like in a nor-
mal hash table). Now only the remainder is stored in the bucket. The complete key
can now be reconstructed from the value in T and the home location of the key.

Optimal Storage of Combinatorial State Spaces 271

Keys K
|K| ≤ |T | ≤ |U |

Universe U
|U | = 2x

k1

k2

k3

k4

r1

r3

r4

r2

q(k1)

q(k2)

q(k3)

q(k4)

∀i : ri = rem(ki)

∀i : ki = ri · |T | + q(ki)

Cleary table T

b = r + 3

2m

Fig. 7. Cleary table T storing keys K from universe U with three admin. bits/bucket.
(We omit that keys should be hashed, with invertible function, for good distribution.)

If, due to collisions, the key is not stored at its home location, additional infor-
mation is needed. Cleary [8] solved this problem with little overhead by imposing
an order on the keys in T and introducing three administration bits per bucket.
For details, see [8,12,28]. Because of the administration bits, the bucket size b of
compact hash tables is b = r + 3 bits. The ratio b/x can approach zero arbitrarily
close, yielding good compression. For instance, a compact table only needs 5 bits
per bucket to store 230 32-bit keys (Fig. 7).

Compact Tree Database. To create a compact tree database, we replace the
hash tables in the tree nodes with compact hash tables.

Let the tree references again be w bits; Tuples in a tree node table are 2w
bits. The tree node table’s universe therefore contains 22w tuples. However, tree
node tables cannot contain more than 2w entries, otherwise the entries cannot
be referenced (with w-bit indices) by parent tree node tables. As the tree’s root
table has no parent, it can contain up to 22w entries. Let o be the overcommit
of the tree root table Troot , i.e., log2(|Troot |) = 2w+o for 0 ≤ o ≤ w.

Overcommitting the root table in the tree can yield better reductions as we
will see. However, it also limits the subsets of the state universe that the tree can
store. Close-to-worst-case subsets might be rejected as the left or right child (2w

tuples max) of the root can grow full before the root does (2w+o tuples max).
We will only focus on replacing the root table with a compact hash table as it

dominates the tree’s memory usage in the optimal case according to Corollary 1.
The following parameters follow for using a compact hash tables for Troot :

– x = 2w, (universe bits)
– m = w + o, (quotient bits)
– r = 2w − w − o = w − o, and (remainder bits)
– b = 2w − w − o + 3 = w − o + 3. (bucket bits)

272 A. Laarman

Let the Compact Tree Database be a Tree Database with the root table
replaced by a compact hash table with the dimensions provided above, ergo:
n = |V | = |Troot | = 2w+o = 2m. Theorem 4 gives its best-case memory usage.

Theorem 4 (Compact Tree Best-Case). In the best case and with k ≥ 8,
the compact tree database requires less than CT opt � (w − o + 3)n + 4w

√
n +

4w 4
√

n(k − 4) bits to store n vectors.

Proof. According to Theorem 3, there are at most n + 2
√

n + 2 4
√

n(k − 4) tuples
in a tree with optimal storage. The root table contains n of these tuples, its
descendants use at most 2

√
n + 2 4

√
n(k − 4) bits. The n tuples in the root table

can now be stored using w−o+3 bits in the compact hash table buckets instead
of 2w bits, hence the root table uses n(w − o + 3) bits. ��

Finally, Theorem5 relates the compact tree compression results to our infor-
mation theoretical model in Sect. 2, under the reasonable assumptions that
8 ≤ k ≤ 4

√
n + 4. As a consequence, when the overcommit (o − 7 bits) fills

the gap of w − u bits between the sizes of references in the tree (w bits) and
the sizes of variables (u bits), the optimal compression of the compact tree is
approached. If o−7 > w−u, the compact tree can even surpass the compression
predicted by our information theoretical model. This is not surprising as the tree
with k = 2 reduces to a compact hash table, for which a different information
theoretical model holds [12,27].

Theorem 5. Let CT opt be the best-case compact-tree compressed vector sizes.
We have CT opt ≤ w−o+7

u Hstate provided 8 ≤ k ≤ 4
√

n + 4.

Proof. According to Theorem 1, nHstate ≤ un + log2(k)n + 2n bits. According
to Theorem 4, the compact tree database uses at most CT opt � (w − o + 3)n +
4w

√
n + 4w 4

√
n(k − 4) bits in the best case and with k ≥ 8.

We show that CT opt ≤ cHstate using lower bound Theorem1 and derive c.
After simplification using (u−1) ≤ log2(y−1) and 0 ≤ log2(k−1), we obtain:

4w/
√

n+4w(k−4)/n3/4 ≤ cu−w+o−3. As the premise ensures that n ≥ (k−4)4,
this can be further simplified to 4w/

√
n+4w 4

√
n/n3/4 ≤ cu−w + o− 3 and then

to 8w/
√

n ≤ cu − w + o − 3.
In an intermediate step, we show that w/

√
n ≤ 1/2 under the premises

n ≥ (k − 4)4 and k ≥ 8. We have w ≤ log2(n) in order to accommodate the
worst-case compression (see Theorem 2 in Sect. 4). Therefore, we can also prove
log2(n)/

√
n ≤ 1/2. Implied by the two earlier assumptions from the premise, we

have n ≥ 256 for which the inequality indeed holds.
With w/

√
n ≤ 1/2, the above gives 4 ≤ cu − w + o − 3 and w−o+7

u ≤ c.
Therefore, we obtain CT opt ≤ w−o+7

u Hstate , provided that n ≥ (k − 4)4. ��

5 Experiments

We implemented the Compact Tree in the model checker LTSmin [22]. This
implementation is based on two concurrent data structures: a tree database [21]

Optimal Storage of Combinatorial State Spaces 273

and a compact hash table [28], based on Cleary’s approach [8]. The parameters
of the Compact Tree Table in this implementation are (for details see [23]):

– w = 30 bits (The internal tree references are 30 bit)
– u = 30 bits (The state variables can be 30-bit integers, often less is used)
– o = 2 bits (The root table fits a maximum of 232 elements)

LTSmin is a language-independent model checker based on a partitioned
next-state interface [18]. We exploit this property to investigate the compression
ratios of the Compact Tree for four different input types: DVE models written
for the DiVinE model checker [1], Promela models written for the spin model
checker [15], process algebra models written for the mCRL2 model checker [9],
and Petri net models from the MCC contest [20]. Table 2 provides an overview
of the models in each of these input formats and a justification for the selection
criterion used. In total, over 400 models were used in these benchmarks.

Table 2. Input languages and model selection criteria

DVE All 267 benchmarks from the BEEM database [24] that completed within
one hour in (sequential) LTSmin are selected. (This selection criterium is
more stringent than for the other languages, because the set of models is
large and the presence of differently sized versions of the same type of
model still ensures that the selection is varied.)

Promela All models currently supported by LTSmin [2] with the same state count
as in spin are selected. This includes case studies of the GARP, the i-,
x509 and BRP protocols

Petri net All models from the MCC 2016 competition [20] that are also considered
by Jensen et al. [16] and complete within 10 h in (sequential) LTSmin.
(Again this ensures a varied selection, since Jensen et al. [16] only feature
instances that resulted in best-case, worst-case and average-case
compression using a Trie data structure.)

mCRL2 We selected all industrial case studies from the mCRL2 toolset that
completed within 10 h in (sequential) LTSmin

All experiments ran on a machine with 128 GB memory and 48 cores: four
AMD OpteronTM 6168 processors with 12 cores each.

Compression Ratio. Compressed state sizes of our implementation can
roughly approach w−2+3 = 31 bits or ±4 Bytes by Corollary 1 and Theorem 4.
We first investigate whether this compression is actually reached in practice.
Figure 8 plots the compressed sizes of the state vectors against the length of the
uncompressed vector. We see that for some models the optimal compression is
indeed reached. The average compression is 7.88 Bytes per state. The fact that
there is little correlation with the vector length confirms that the compressed
size indeed tends to be constant and vectors of up to 1000 Bytes are compressed

274 A. Laarman

to just above 4 Bytes. Figure 9 furthermore reveals that good compression corre-
lates positively with the state space size, which can be expected as the tree can
exhibit more sharing.

Only for Petri nets and for DVE models, we find models that exhibit worse
compression (between 10 and 15 Bytes per state) even when the state space
is large. However, we observed that in these cases, the vector length k is also
large, e.g., the two Petri net instances with a compressed size of around 12 have
k > 400. Based on some earlier informal experiments, we believe that with some
variable reordering, these compression might very well be improved to reach the
optimum. Thus far, however, we were unable to derive a reordering heuristic
that consistently improves the compression.

Runtime Performance and Parallel Scalability. In the introduction, we
mentioned the requirement that a database visited set ideally features constant
lookup times, like in a normal hash table. To this end, we compare the runtime of
the DVE models with the spin model checker; a model checker known for its fast
state generator.5 Figure 10 confirms that the runtimes of LTSmin with Compact
Tree are sequentially on par with those of spin, and often even better. We
attribute this performance mainly to the incremental vector insertion discussed
in Sect. 3 (see Fig. 6). Based on the MCC 2016 [20] results, we believe that
LTSmin’s performance is on par with other Petri net tools as well.

20 50 100 200 500 1000

5
10

15
20

25

State length (Bytes)

By
te

s/
st

at
e

(C
om

pa
ct

 T
re

e)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
avg=6.89
min=4B

Fig. 8. Compressed sizes in Compact
Tree for all benchmarks against the length
k of the uncompressed state vector.

1e+04 1e+06 1e+08 1e+10

5
10

15
20

25

Number of states

By
te

s/
st

at
e

(C
om

pa
ct

 T
re

e)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
avg=6.89
min=4B

Fig. 9. Compressed sizes in Compact
Tree for all benchmarks against the size
n of state space.

5 The DVE models are translated to Promela and we only selected those (76/267)
which preserved state count. This comparison can be examined interactively at
http://fmt.ewi.utwente.nl/tools/ltsmin/performance/ (select LTSmin-cleary-dfs).

http://fmt.ewi.utwente.nl/tools/ltsmin/performance/

Optimal Storage of Combinatorial State Spaces 275

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−0

1
1e

+0
0

1e
+0

1
1e

+0
2

1e
+0

3

SPIN (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

dve
promela
equilibrium

Fig. 10. Sequential runtimes of LTSmin
with Compact Tree and spin with opti-
mal settings (as reported in [2]) on (trans-
lated) DVE models and Promela models.

1e−02 1e+00 1e+02 1e+04

1e
−0

2
1e

+0
0

1e
+0

2
1e

+0
4

Compact Tree 1x (sec)

C
on

cu
rre

nt
 C

om
pa

ct
 T

re
e

48
x

(s
ec

)

●

●

●

●

●

●

●

dve
mcrl2
petrinet
promela
48x speedup
equilibrium

Fig. 11. Runtimes, sequentially and with
48 threads, of LTSmin with compact tree
on all models: DVE, Promela, process
algebra and Petri nets.

The measured performance first of all confirms that the Compact Tree satis-
fies its requirements. Secondly, it provides a good basis for the analysis of parallel
scalability (if we had chosen to implement the Compact Tree in a slow scripting
language, the slowdown would yield “free” speedup). Figure 11 compares the
sequential runtimes to the runtimes with 48 threads. The measured speedup
often surpasses 40x, especially when the runtimes are longer and there is more
work to parallelize. Speedups are good regardless of input language.

Comparison with Other Data Structures. spin’s collapse compression uses
the structure in the model to fold vectors, similar as in tree compression. The
lower bounds reported in the current paper cannot be reached with collapse
due to the n-ary tree and the two levels. Figures 12 and 13 show additional
experiments that show an order of magnitude difference in practice.

Jensen et al. [16] propose a Trie for storing state vectors. Tries compress
vectors by ensuring sharing between prefixes. BDDs [6] also store state vectors
efficiently, however, Jensen et al. [17] figure them too slow for state space explo-
ration. We compared both Tries and BDDs with the Compact Tree and found
that (1) the Trie’s compression is less than the Compact Tree though sometimes
faster (Figs. 14 and 15), and (2) that BDD’s are not always prohibitively expen-
sive with LTSmin (because it learns the transition relation [18]), but nonetheless
hard to compare to Tree Compression (Figs. 17 and 16).

276 A. Laarman

●

● ● ● ●●

●

●

●
●

●●
●

●

●

●
●

●● ●

●

●

●●

●

● ● ●

●

●

●●
●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●
●

● ● ●

●

● ● ● ●

1e+03 1e+05 1e+07

0
50

10
0

15
0

Number of states

C
om

pr
es

si
on

 (B
yt

es
 /

st
at

e)

● SPIN
Tree

Fig. 12. Compressed sizes per state of
LTSmin with Compact Tree and spin
with collapse compression [14] on DVE
models.

5e−01 5e+00 5e+01 5e+02 5e+03

1e
−0

3
1e

−0
1

1e
+0

1

SPIN (MB)
C

om
pa

ct
 T

re
e

(M
B)

Fig. 13. Absolute memory use of LTSmin
with Compact Tree and spin with collapse
compression [14] on DVE models.

●

●● ●

●

●

●

●

●

●●

●

●

●
●

1e+06 5e+06 2e+07 1e+08

20
40

60
80

Number of states

C
om

pr
es

si
on

 (B
yt

es
 /

st
at

e)

● Trie
Compact Tree (petrinet)

Fig. 14. Memory use per state of LTSmin
with Compact Tree and Trie from [16] on
Petri net models.

50 200 500 2000 10000

50
20

0
50

0
20

00
10

00
0

Trie (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

petrinet
equilibrium

Fig. 15. Runtime (sequential) of LTSmin
with Compact Tree and Trie from [16] on
Petri net models.

Optimal Storage of Combinatorial State Spaces 277

●●

●

●

●●

●

1e−01 1e+01 1e+03

1e
−0

1
1e

+0
1

1e
+0

3

LTSmin with BDD (Bytes per state)

C
om

pa
ct

 T
re

e
(B

yt
es

 p
er

 s
ta

te
) ●

dve
mcrl2
petrinet
promela
min=4B
equilibrium

Fig. 16. Memory use per state of LTSmin
with Compact Tree and BDD [3] on
mCRL2, Promela and Petri net models.

●●

●

●

●

●
●

1e−01 1e+01 1e+03

1e
−0

1
1e

+0
1

1e
+0

3

LTSmin with BDD (sec)

C
om

pa
ct

 T
re

e
(s

ec
)

●

dve
mcrl2
petrinet
promela
timeout (10h)
equil.

Fig. 17. Runtime (sequential) of LTSmin
with Compact Tree and BDD [3] on
mCRL2, Promela and Petri net models.

6 Discussion and Conclusion

The tree compression method discussed here is a more general variant of recur-
sive indexing [14], which only breaks down processes into separate tables. Hash
compaction [25] compresses states to an integer-sized hash, but this lossy tech-
nique becomes redundant with the compact tree database. Bloom filters [13]
still present a worthwhile lossy alternative using only a few bits per state, but
of course abandon soundness when applied in model checking.

Evangelista et al. [11] report on a hash table storing incremental differences of
successor states (similar to the incremental data structure discussed in Sect. 3).
Their partial vectors take 2u + log(E) bits, where E is the set of (deterministic)
actions in the model. Defying our requirement of poly-logarithmic for lookups,
Evangelista et al. reconstruct full states by reconstructing all ancestors.

A Binary Decision Diagram (BDD) [6] can store an astronomically sized
state set using only constant memory (the true leaf). Our information theoretical
model suggests however that compressed sizes are merely linear in the number
of states (and constant in the length of the state vector). We can explain this
with the fact that we only assume locality about inputs. Compression in BDDs,
on the other hand, depends on the entire state space. Therefore, we would have
to assume structural, global properties to describe the non-linear compression of
BDDs (e.g. the input’s decomposition into processes, symmetries, etc.).

Much like in BDDs [5], the variable ordering influences the number of nodes
in a tree table and thus the compression, as mentioned in Sect. 1. Consider the
vector set {i ,i ,j ,j | i, j ∈ [1 . . . N]}: Only the root node in a compact tree will
contain N2 entries, while the leaf nodes contain N entries. On the other hand, we
have no such luck for the set {i ,j ,i ,j | i, j ∈ [1 . . . N]}. Preliminary research [29]

278 A. Laarman

revealed that the tree’s optimum can be reached in most cases for DVE models,
but we were unable to find a heuristic to consistently realize this.

Acknowledgements. The author thanks Yakir Vizel for promptly pointing out the
natural number as a limit and Tim van Erven for a fruitful discussion.

References

1. Baranová, Z., Barnat, J., Kejstová, K., Kučera, T., Lauko, H., Mrázek, J., Ročkai,
P., Štill, V.: Model checking of C and C++ with DIVINE 4. In: D’Souza, D.,
Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 201–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 14

2. van der Berg, F., Laarman, A.: SpinS: extending LTSmin with Promela through
SpinJa. ENTCS 296, 95–105 (2013)

3. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 31

4. Blom, S., Lisser, B., van de Pol, J., Weber, M.: A database approach to distributed
state space generation. ENTCS 198(1), 17–32 (2008)

5. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete.
IEEE Trans. Comput. 45, 993–1002 (1996)

6. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

7. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS, pp. 428–439 (1990)

8. Cleary, J.G.: Compact hash tables using bidirectional linear probing. IEEE Trans.
Comput. C-33(9), 828–834 (1984)

9. Cranen, S., Groote, J.F., Keiren, J.J.A., Stappers, F.P.M., de Vink, E.P., Wes-
selink, W., Willemse, T.A.C.: An overview of the mCRL2 toolset and its recent
advances. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
199–213. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-
7 15

10. Emerson, E.A., Wahl, T.: Dynamic symmetry reduction. In: Halbwachs, N., Zuck,
L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 382–396. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-31980-1 25

11. Evangelista, S., Kristensen, L.M., Petrucci, L.: Multi-threaded explicit state space
exploration with state reconstruction. In: Van Hung, D., Ogawa, M. (eds.) ATVA
2013. LNCS, vol. 8172, pp. 208–223. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-02444-8 16

12. Geldenhuys, J., Valmari, A.: A nearly memory-optimal data structure for sets and
mappings. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp.
136–150. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 9

13. Holzmann, G.J.: An analysis of bitstate hashing. In: Dembiński, P., Średniawa, M.
(eds.) PSTV 1995. IFIPAICT, pp. 301–314. Springer, Boston (1996). https://doi.
org/10.1007/978-0-387-34892-6 19

14. Holzmann, G.J.: State compression in SPIN: recursive indexing and compression
training runs. In: Proceedings of 3rd International SPIN Workshop (1997)

15. Holzmann, G.J.: The model checker SPIN. IEEE TSE 23, 279–295 (1997)

https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-642-14295-6_31
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-540-31980-1_25
https://doi.org/10.1007/978-3-319-02444-8_16
https://doi.org/10.1007/978-3-319-02444-8_16
https://doi.org/10.1007/3-540-44829-2_9
https://doi.org/10.1007/978-0-387-34892-6_19
https://doi.org/10.1007/978-0-387-34892-6_19

Optimal Storage of Combinatorial State Spaces 279

16. Jensen, P.G., Larsen, K.G., Srba, J.: PTrie: data structure for compressing and
storing sets via prefix sharing. In: Hung, D., Kapur, D. (eds.) ICTAC 2017. LNCS,
vol. 10580, pp. 248–265. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-67729-3 15

17. Jensen, P.G., Larsen, K.G., Srba, J., Sørensen, M.G., Taankvist, J.H.: Memory
efficient data structures for explicit verification of timed systems. In: Badger, J.M.,
Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 307–312. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06200-6 26

18. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

19. Katz, S., Peled, D.: An efficient verification method for parallel and distributed
programs. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1988.
LNCS, vol. 354, pp. 489–507. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0013032

20. Kordon, F., et al.: Complete results for the 2016 edition of the model checking
contest, June 2016. http://mcc.lip6.fr/2016/results.php

21. Laarman, A., van de Pol, J., Weber, M.: Parallel recursive state compression for
free. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS, vol. 6823, pp. 38–56.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22306-8 4

22. Laarman, A., van de Pol, J., Weber, M.: Multi-core LTSmin: marrying modularity
and scalability. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 506–511. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 40

23. Laarman, A.: Scalable multi-core model checking. Ph.D. thesis, UTwente (2014)
24. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,

Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6 17

25. Stern, U., Dill, D.L.: Improved probabilistic verification by hash compaction. In:
Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987, pp. 206–224.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60385-9 13

26. Valmari, A.: Error detection by reduced reachability graph generation. In: APN,
pp. 95–112 (1988)

27. Valmari, A.: What the small Rubik’s cube taught me about data structures, infor-
mation theory, and randomisation. STTT 8(3), 180–194 (2006)

28. van der Vegt, S., Laarman, A.: A parallel compact hash table. In: Kotásek, Z.,
Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.) MEMICS 2011.
LNCS, vol. 7119, pp. 191–204. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-25929-6 18

29. de Vries, S.H.S.: Optimizing state vector compression for program verification by
reordering program variables. In: 21st Twente SConIT, vol. 21, 23 June 2014

30. Wahl, T., Donaldson, A.: Replication and abstraction: symmetry in automated
formal verification. Symmetry 2(2), 799–847 (2010)

https://doi.org/10.1007/978-3-319-67729-3_15
https://doi.org/10.1007/978-3-319-67729-3_15
https://doi.org/10.1007/978-3-319-06200-6_26
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/BFb0013032
https://doi.org/10.1007/BFb0013032
http://mcc.lip6.fr/2016/results.php
https://doi.org/10.1007/978-3-642-22306-8_4
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-642-20398-5_40
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/3-540-60385-9_13
https://doi.org/10.1007/978-3-642-25929-6_18
https://doi.org/10.1007/978-3-642-25929-6_18

Stubborn Transaction Reduction

Alfons Laarman(B)

Leiden University, Leiden, The Netherlands
a.w.laarman@liacs.leidenuniv.nl

Abstract. The exponential explosion of parallel interleavings remains a
fundamental challenge to model checking of concurrent programs. Both
partial-order reduction (POR) and transaction reduction (TR) decrease
the number of interleavings in a concurrent system. Unlike POR, trans-
actions also reduce the number of intermediate states. Modern POR
techniques, on the other hand, offer more dynamic ways of identifying
commutative behavior, a crucial task for obtaining good reductions.

We show that transaction reduction can use the same dynamic com-
mutativity as found in stubborn set POR. We also compare reductions
obtained by POR and TR, demonstrating with several examples that
these techniques complement each other. With an implementation of
the dynamic transactions in the model checker LTSmin, we compare its
effectiveness with the original static TR and two POR approaches. Sev-
eral inputs, including realistic case studies, demonstrate that the new
dynamic TR can surpass POR in practice.

1 Introduction

POR [20,33,46] yields state space reductions by selecting a subset Pσ of the
enabled actions Eσ at each state σ; the other enabled actions Eσ \ Pσ are
pruned. For instance, reductions preserving deadlocks (states without outgoing
transitions) can be obtained by ensuring the following properties for the set Pσ

⊆ Eσ ⊆ A, where A is the set of all actions:
σ σ1 σn−1 σn

β1−→ . . . βn−→

σ′ σ′
1 σ′

n−1 σ′
n

β1−→ . . . βn−→

α
−→ α
−→ α
−→ α
−→– In any state σn reachable from σ via pruned actions

β1, . . . , βn ∈ A \ Pσ, all actions α ∈ Pσ commute
with the pruned actions β1, . . . , βn and

– at least one action α ∈ Pσ remains enabled in σn.

The first property ensures that the pruned actions β1, . . . , βn are still enabled
after α and lead to the same state (σ′

n), i.e., the order of executing β1, . . . , βn

and α is irrelevant. The second avoids that deadlocks are missed when pruning

This work is partially supported by the Austrian National Research Network S11403-
N23 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and
Technology Fund (WWTF) through grant VRG11-005.
This work is part of the research programme VENI with
project number 639.021.649, which is (partly) financed by
the Netherlands Organisation for Scientific Research (NWO).

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 280–298, 2018.
https://doi.org/10.1007/978-3-319-77935-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_20&domain=pdf
http://orcid.org/0000-0002-2433-4174

Stubborn Transaction Reduction 281

states σ1, . . . , σn. To compute the POR set Pσ without computing pruned states
σ1, . . . , σn (which would defeat the purpose of the reduction it is trying to attain
in the first place), Stubborn POR uses static analysis to ‘predict’ the future from
σ, i.e., to over-estimate the σ-reachable actions A \ Pσ, e.g.: β1, .., βn.

Lipton or transaction reduction (TR) [38], on the other hand, identifies
sequential blocks in the actions Ai of each thread i that can be grouped into
transactions. A transaction α1..αk..αn ∈ A∗

i is replaced with an atomic action α
which is its sequential composition, i.e. α = α1◦ ..◦αk ◦ ..◦αn. Consequently, any
trace σ1

α1−→ σ2
α2−→ . . .

αk−→ . . .
αn−1−→ σn

αn−→ σn+1 is replaced by σ1
α−→ σn+1,

making state σ2, . . . , σn internal. Thereby, internal states disallow all interleav-
ings of other threads j �= i, i.e., remote actions Aj are not fired at these states.
Similar to POR, this pruning can reduce reachable states. Additionally, internal
states can also be discarded when irrelevant to the model checking problem.

In the database terminology of origin [40], a transaction must consist of:

– A pre-phase, containing actions α1..αk−1 that may gather required resources,
– a single commit action αk possibly interfering with remote actions, and
– a post-phase αk+1..αn, possibly releasing resources (e.g. via unlocking them).

In the pre- and post-phase, the actions (of a thread i) must commute with all
remote behavior, i.e. all actions Aj of all other threads j �= i in the system.

TR does not dynamically ‘predict’ the possible future remote actions, like
POR does. This makes the commutativity requirement needlessly stringent, as
the following example shows: Consider program1 consisting of two threads. All
actions of one thread commute with all actions of the other because only local
variables are accessed. Figure 1 (left) shows the POR and TR of this system.

program1 := if (fork()) {a = 0; b = 2; } else { x = 1; y = 2; }
program2 := a = b = x = y = 0; if (fork()) { program1; }

Now assume that a parallel assignment is added as initialization code yield-
ing program2 above. Figure 1 (right) shows again the reductions. Suddenly, all
actions of both threads become dependent on the initialization, i.e. neither action

a=
0;

x=1;

b=
2;

x=1; a=
0;

y=2;

b=
2;

y=2;
x=1; a=

0;

b=
2;

y=2;

a=
0;
b=
2;

x=1;y=2;

a=
0;
b=
2;

x=1;y=2;

a=
0;

x=1;

b=
2;

x=1; a=
0;

y=2;

b=
2;

y=2;
x=1; a=

0;

b=
2;

y=2;

a=b=x=y=0;

Fig. 1. Transition systems of program1 (left) and program2 (right). Thick lines show
optimal (Stubborn set) POR. Curly lines show a TR (not drawn in the right figure).

282 A. Laarman

a = 0; nor action b = 2; commute with actions of other threads, spoiling the
formation of a transaction atomic{a = 0; b = 2;} (idem for atomic{x = 1; y
= 2;}). Therefore, TR does not yield any reduction anymore (not drawn). Stub-
born set POR [45], however, still reduces program2 like program1, because, using
static analysis, it ‘sees’ that the initialization cannot be fired again.1

In the current paper, we show how TR can be made dynamic in the same
sense as stubborn set POR [46], so that the previous example again yields the
maximal reduction. Our work is based on the prequel [25], where we instrument
programs in order to obtain dynamic TR for symbolic model checking. While [25]
premiered dynamically growing and shrinking transactions, its focus on symbolic
model checking complicates a direct comparison with other dynamic techniques
such as POR. The current paper therefore extends this technique to enumerative
model checking, which allows us to get rid of the heuristic conditions from [25]
by replacing them with the more general stubborn set POR method. While we
can reduce the results in the current paper to the reduction theorem of [25],
the new focus on enumerative model checking provides opportunities to tailor
reductions on a per-state basis and investigate TR more thoroughly.2 This leads
to various contributions:

1. A ‘Stubborn’ TR algorithm (STR) more dynamic/general than TR in [25].
2. An open source implementation of (stubborn) TR in the model checker

LTSmin.
3. Experiments comparing TR and POR for the first time in Sect. 5.

Moreover, in Sect. 4, we show analytically that unlike stubborn POR:

1. Computing optimal stubborn TR is tractable and reduction is not heuristic.
2. Stubborn TR can exploit right-commutativity and prune (irrelevant) dead-

locks (while still preserving invariants as per Theorem 4).

On the other hand, stubborn POR is still more effective for checking for absence
of deadlocks and reducing massively parallel systems. Various open problems,
including the combination of TR and POR, leave room for improvement.

Proofs of theorems can be found in the eponymous technical report on Arxiv.

2 Preliminaries

Concurrent transition systems. We assume a general process-based semantic
model that can accommodate various languages. A concurrent transition system
(CTS) for a finite set of processes P is tuple ts � 〈S, T,A, σ0〉 with finitely
many actions A �

⊎
i∈P Ai. Transitions are relations between states and actions:

1 program2 is a simple example. Yet various programming patterns lead to sim-
ilar behavior, e.g.: lazy initialization, atomic data structure updates and load
balancing [25].

2 Symbolic approaches can be viewed as reasoning over sets of states, and therefore
cannot easily support fine-grained per-state POR/TR analyses.

Stubborn Transaction Reduction 283

T ⊆ S × A × S. We write αi for α ∈ Ai, σ
α−→i σ′ for 〈σ, αi, σ

′〉 ∈ T , Ti for
T ∩ (S ×Ai ×S), Tα for T ∩ (S ×{α}×S), α−→ for {〈σ, σ′〉 | 〈σ, α, σ′〉 ∈ T}, and
−→i for {〈σ, σ′〉 | 〈σ, α, σ′〉 ∈ Ti}.

State space exploration can be used to show invariance of a property ϕ, e.g.,
expressing mutual exclusion, written: R(ts) |= ϕ. This is done by finding all
reachable states σ, i.e., R(ts) � {σ | σ0 →∗ σ}, and show that σ ∈ ϕ.

Notation. We let en(σ) be the set of actions enabled at σ: {α | ∃〈σ, α, σ′〉 ∈ T}
and en(σ) � A\en(σ). We let R◦Q and RQ denote the sequential composition of
two binary relations R and Q, defined as: {(x, z) | ∃y : (x, y) ∈ R∧(y, z) ∈ Q} . Let
R ⊆ S ×S and X ⊆ S. Then left restriction of R to X is X ‖R � R ∩ (X ×S)
and right restriction is R ‖X � R ∩ (S ×X). The complement of X is denoted
X � S \ X (the universe of all states remains implicit in this notation). The
inverse of R is R−1 � {〈x, y〉 | 〈y, x〉 ∈ R}.

POR relations. Dependence is a well-known relation used in POR. Two actions
α1, α2 are dependent if there is a state where they do not commute, hence we
first define commutativity. Let c � {σ | ∃〈σ, α1, σ

′〉, 〈σ, α2, σ
′′〉 ∈ T}. Now:

α1−→↔
��

α2−→ � c ‖α1−→ ◦ α2−→ = c ‖α2−→ ◦ α1−→ (α1, α2 strongly-commute)
α1−→��

α2−→ � α1−→ ◦ α2−→ = α2−→ ◦ α1−→ (α1, α2 commute, also α1 �� α2)
α1−→→

��
α2−→ � α1−→ ◦ α2−→ ⊆ α2−→ ◦ α1−→ (α1 right-commutes with α2)

α1−→←
��

α2−→ � α1−→ ◦ α2−→ ⊇ α2−→ ◦ α1−→ (α1 left-commutes with α2)

σ1

σ2 σ3

α
1

−→

α2−→
⇒ ∃σ4 :∀σ1, σ2, σ3 :

σ1 σ4

σ3

α
1

−→

α2−→

σ2

α
1

−→

α2−→
(1)

σ1

σ2

σ3

α
1

−→

α2−→
∀σ1, σ2, σ3 : ⇒ ∃σ4 :

σ1
α2−→

α
1

−→

σ3

σ2 σ4

α
1

−→

α2−→
(2)

Left/right commutativity allows actions to be prioritized/delayed over other
actions without affecting the end state. Equation 1 illustrates this by quantifying
of the states: Action α1 right-commutes with α2, and vice verse α2 left-commutes
with α1. Full commutativity (��) always allows both delay and prioritization
for any serial execution of α1, α2, while strong commutativity only demands
full commutativity when both actions are simultaneously enabled, as shown in
Eq. 2 for deterministic actions α1/α2 (Eq. 2 is only for an intuition and does not
illustrate the non-deterministic case, which is covered by

↔
��). Left/right/strong

dependence implies lack of left/right/strong commutativity, e.g.: α1 ��� α2.
Note that typically: ∀i, α, β ∈ Ai : α ��� β due to e.g. a shared program

counter. Also note that if α1
→
�� α2, then α1 never enables α2, while strong

commutativity implies that neither α disables β, nor vice versa.
A lock (/unlock) operation right (/left)-commutes with other locks and

unlocks. Indeed, a lock never enables another lock or unlock. Neither do unlocks
ever disable other unlocks or locks. In the absence of an unlock however, a lock
also attains left-commutativity as it is mutually disabled by other locks. Because
of the same disabling property, two locks however do not strongly commute.

284 A. Laarman

Finally, a necessary enabling set (NES) of an action α and a state σ1 is a set
of actions that must be executed for α to become enabled, formally:
∀E ∈ nesσ1(α), σ1

α1,..,αn−−−−−→ σ2 : α ∈ en(σ1) ∧ α ∈ en(σ2) ⇒ E ∩ {α1, .., αn} �= ∅.
An example of an action α with two NESs E1, E2 ∈ nesσ(α) is a command
guarded by g in an imperative language: When α ∈ en(σ), then either its guard
g does not hold in σ, and E1 consists of all actions enabling g, or its program
counter is not activated in σ, and E2 consists of all actions that label the edges
immediately before α in the CFG of the process that α is part of.

POR. POR uses the above relations to find a subset of enabled actions por(σ) ⊆
en(σ) sufficient for preserving the property of interest. Commutativity is used
to ensure that the sets por(σ) and en(σ) \ por(σ) commute, while the NES is
used to ensure that this mutual commutativity holds in all future behavior. The
next section explains how stubborn set POR achieves this.

POR gives rise to a CTS t̃s � 〈S, T̃ , A, σ0〉, T̃ � {〈σ, α, σ′〉 ∈ T | α ∈
por(σ)}, abbreviated σ

α��� σ′. It is indeed reduced, since we have R(t̃s) ⊆
R(ts).

Transaction reduction. (Static) transaction reduction was devised by Lip-
ton [38]. It merges multiple sequential statements into one atomic operation,
thereby radically reducing the reachable states. An action α is called a right/left
mover if and only if it commutes with actions from all other threads j �= i:

α−→i
→
��

⋃

j 	=i

−→j (α is a right mover) α−→i
←
��

⋃

j 	=i

−→j (α is a left mover)

Both-movers are transitions that are both left and right movers, whereas non-
movers are neither. The sequential composition of two movers is also a corre-
sponding mover, and vice versa. Moreover, one may always safely classify an
action as a non-mover, although having more movers yields better reductions.

Examples of right-movers are locks, P-semaphores and synchronizing queue
operations. Their counterparts; unlock, V-semaphore and enqueue ops, are left-
movers. Their behavior is discussed above using locks and unlocks as an example.

Lipton reduction only preserves halting. We present Lamport’s [37] version,
which preserves safety properties such as �ϕ, i.e. ϕ is an invariant. Any sequence
α1, . . . , αn can be reduced to a single action α s.t. α−→i=

α1−→i ◦ . . . ◦ αn−→i (i.e. a
compound statement with the same local behavior), if for some 1 ≤ k < n:

L1 actions before the commit αk are right movers: α1−→i ◦ . . . ◦ αk−1−→i
→
�� −→	=i,

L2 actions after the commit αk are left movers:
αk+1−→i ◦ . . . ◦ αn−→i

←
�� −→	=i,

L3 actions after α1 do not block: ∀σ ∃σ′ : σ
α1−→i ◦ . . . ◦ αn−→i σ′, and

L4 ϕ is not disabled by α1−→i ◦ . . . ◦ αk−1−→i , nor enabled by
αk+1−→i ◦ . . . ◦ αn−→i.

Stubborn Transaction Reduction 285

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8
β1 α1 β2 β3 α2 β4 α3

σ1 σ2 σ′
3 σ4 σ5 σ6 σ7 σ8

β1 β2 α1 β3 α2 β4 α3

σ1 σ2 σ′
3 σ′

4 σ5 σ6 σ7 σ8
β1 β2 β3 α1 α2 β4 α3

σ1 σ2 σ′
3 σ′

4 σ′
7 σ8

β1 β2 β3 α1 ◦ α2 ◦ α3 β4

The example (right) shows the evolution
of a trace when a reduction with n=3, k =2
is applied. Actions β1, . . . , β4 are remote. The
pre-action α1 is first moved towards the com-
mit action α2. Then the same is done with the
post-action α3. L1 resp. L2 guarantee that
the trace’s end state σ8 remains invariant, L3 guarantees its existence and L4
guarantees that e.g. σ4 /∈ ϕ ⇒ σ′

3 /∈ ϕ and σ6 /∈ ϕ ⇒ σ′
7 /∈ ϕ (preserving invari-

ant violations ¬ϕ in the reduced system without σ4 and σ6). The subsequent
section provides a dynamic variant of TR.

3 Stubborn Transaction Reduction

The current section gradually introduces stubborn transaction reduction. First,
we introduce a stubborn set definition that is parametrized with different com-
mutativity relations. In order to have enough luggage to compare POR to TR in
Sect. 4, we elaborate here on various aspects of stubborn POR and compare our
definitions to the original stubborn set definitions. We then provide a definition
for dynamic left and right movers, based on the stubborn set parametrized with
left and right commutativity. Finally, we provide a definition of a transaction
system, show how it is reduced and provide an algorithm to do so. This demon-
strates that TR can be made dynamic in the same sense as stubborn sets are
dynamic. We focus in the current paper on the preservation of invariants. But
since deadlock preservation is an integral part of POR, it is addressed as well.

3.1 Parametrized Stubborn Sets

We use stubborn sets as they have advantages compared to other traditional
POR techniques [52, Sect. 4]. We first focus on a basic definition of the stubborn
set that only preserves deadlocks. The following version is parametrized (with �).

Definition 1 (�-stubborn sets). Let � ∈ {�,�,↔}. A set B ⊆ A is �-
stubborn in the state σ, written st�

σ(B), if:

D0 en(σ) �= ∅ ⇒ B ∩ en(σ) �= ∅ (include an enabled action, if one exists)
D1 ∀α ∈ B ∩ en(σ) : ∃E ∈ nesσ(α) : E ⊆ B (for disabled α include a NES)

D2 ∀α ∈ B ∩ en(σ), β
�

��� α : β ∈ B (for enabled α include �-dependent actions)

Notice that a stubborn set B includes actions disabled in σ to reason over
future behavior with D1: Actions α ∈ B commute with β ∈ en(σ) \ B by D2,

but also with β′ ∈ en(σ′) for σ
β−→ σ′, since D1 ensures that β cannot enable

any γ ∈ B (ergo β′ /∈ B). Theorem 1 formalizes this. From B, the reduced system
is obtained by taking por(σ) � en(σ) ∩ B: It preserves deadlocks. But not all
�-parametrizations lead to correct reductions w.r.t. deadlock preservation. We
therefore briefly relate our definition to the original stubborn set definitions. The
above definition yields three interpretations of a set B ⊆ A for a state σ.

286 A. Laarman

– If st↔
σ (B), then B coincides with the original strong stubborn set [45,46].

– If st←
σ (B), then B approaches the weak stubborn set in [35], a simplified

version of [47], except that it lacks a necessary key action (from [47, Defini-
tion 1.17]).3

– If st→
σ (B), then B also may yield an invalid POR, as it would consider two

locking operations independent and thus potentially miss a deadlock.

This indicates that POR, unlike TR, cannot benefit from right-
commutativity. The consequences of this difference are further discussed in
Sect. 4. The strong version of our bare-bone stubborn set definition, on the other
hand, is equivalent to the one presented [47] and thus preserves the ‘stubborn-
ness’ property (Theorem 1). If we define semi-stubbornness, written sst�

σ, like
stubbornness minus the D0 requirement, then we can prove a similar theorem
for semi-stubborn sets (Theorem 2).4 This ‘stubbornness’ of semi-� and semi-�
stubborn sets is used below to define dynamic movers. First, we briefly return
our attention to stubborn POR, recalling how it preserves properties beyond
deadlocks and the computation of stσ.

Theorem 1 ([47]). If B ⊆ A, st↔
σ (B) and σ

β−→ σ′ for β /∈ B, then st↔
σ′ (B).

Theorem 2. If B ⊆ A, sst�
σ(B) and σ

β−→ σ′ for β /∈ B, then sst�
σ′(B) for

� ∈ {�,↔}, as well as for � ∈ {�} provided that β does not disable a stubborn
action, i.e., en(σ) ∩ B ⊆ en(σ′) ∩ B.

Stubborn sets for safety properties. To preserve a safety property such as
�ϕ (i.e. ϕ is invariant), a stubborn set B (st↔

σ (B) = true) needs to satisfy two
additional requirements [48] called S for safety and V for visibility. To express
V, we denote actions enabling ϕ with Aϕ

⊕ and those disabling the proposition
with Aϕ

�. Those combined form the visible actions: Aϕ
vis � Aϕ

� ∪ Aϕ
⊕. For S,

recall that σ
α��� σ′ is a reduced transition. Ignoring states disrespect S.

S ∀β∈en(σ) : ∃σ′ : σ ���∗σ′ ∧ β∈por(σ′) (never keep ignoring pruned actions)
V B ∩ en(σ) ∩ Aϕ

vis �= ∅ ⇒ Aϕ
vis ⊆ B (either all or no visible, enabled actions)

Computing stubborn sets and heuritics. POR is not deterministic as we
may compute many different valid stubborn sets for the same state and we can
3 D0 is generally not preserved with left-commutativity (� =←), as β /∈ B may

disable α ∈ B. Consequently, β may lead to a deadlock. Because POR prunes all
β /∈ B, st←

σ (B) is not a valid reduction (it may prune deadlocks). The key action
repairs this by demanding at least one key action α, which strongly commutes, i.e.,

∀β ∈ B : α
↔
�� β, which by virtue of strong commutativity cannot be disabled by any

β /∈ B.
4 We will show that semi-stubbornness, i.e., sst�

σ (B) (without key), is sufficient for
stubborn TR, which may therefore prune deadlocks. Contrarily, invariant-preserving
stubborn POR is strictly stronger than the basic stubborn set (see below), and hence
also preserves all deadlocks. (This is relevant for the POR/TR comparison in Sect. 4.)
.

Stubborn Transaction Reduction 287

even select different ignoring states to enforce the S proviso (i.e. the state σ′ in
the S condition). A general approach to obtain good reductions is to compute
a stubborn set with the fewest enabled actions, so that the por(σ) set is the
smallest and the most actions are pruned in σ. However, this does not necessarily
lead to the best reductions as observed several times [48,53,56]. Nonetheless, this
is the best heuristic currently available, and it generally yields good results [35].

The ∀∃-recursive structure of Definition 1 indicates that establishing the
smallest stubborn set is an NP-complete problem, which indeed it is [49]. Various
algorithms exist to heuristically compute small stubborn sets [35,55]. Only the
deletion algorithm [55] provides guarantees on the returned sets (that no strict
subset of the return set is also stubborn). On the other hand, the guard-based
approach [35] has been shown to deliver good reductions in reasonable time.

To implement the S proviso, Valmari [47] provides an algorithm [47, Alg. 1.18]
that yields the fewest possible ignoring states, runs in linear time and can even
be performed on-the-fly, i.e. while generating the reduced transition system. It
is based on Tarjan’s strongly connected component (SCC) algorithm [44].

The above methods are relevant for stubborn TR as STR also needs to com-
pute (�-)stubborn sets and avoid ignoring states (recall L3 from Sect. 2).

3.2 Reduced Transaction Systems

TR merges sequential actions into (atomic) transactions and in the process
removes interleavings (at the states internal to the transaction) just like POR.
We present a dynamic TR that decides to prolong transactions on a per-
state basis. We use stubborn sets to identify left and right moving actions in
each state. Unlike stubborn set POR, and much like ample-set POR [33], we
rely on the process-based action decomposition to identify sequential parts of
the system.

Recall that actions in the pre-phase should commute to the right and actions
in the post-phase should commute to the left with other threads. We use the
notion of stubborn sets to define dynamic left and right movers in Eqs. 3 and
4 for 〈σ, α, σ′〉 ∈ Ti. Both mover definitions are based on semi-stubborn sets.
Dynamic left movers are state-based requiring all outgoing local transitions to
“move”, whereas right movers are action-based allowing different reductions for
various non-deterministic paths. The other technicalities of the definitions stem
from the different premises of left and right movability (see Sect. 2). Finally, both
dynamic movers exhibit a crucial monotonicity property, similar to previously
introduced ‘stubbornness’, as expressed by Lemmas 1 and 2.

M�

i (σ) � ∃B : sst�

σ (B), B ∩ en(σ) = Ai ∩ en(σ) (3)
M�

i (σ, α, σ′)� ∃B : sst�

σ (B), α ∈ B, B ∩ en(σ′) ⊆ Ai, B ∩ en(σ) = {α} (4)

Lemma 1. The dynamic left-moving property is never remotely disabled, i.e.:
if M�

i (σ1) ∧ i �= j ∧ σ1
β−→j σ2, then M�

i (σ2).

288 A. Laarman

Lemma 2. Dynamic right-movers retain dynamic moveability after moving,
i.e.: if M�

i (σ1, α, σ2) ∧ σ1
α−→i σ2

β−→j σ3 for i �= j, then ∃σ1
β−→j

σ4 : M�

i (σ4, α, σ3).

To establish stubborn TR, Definition 2 first annotates the transition system
ts with thread-local phase information, i.e. one phase variable for each thread
that is only modified by that thread. Phases are denoted with Ext (for transaction
external states), Pre (for for states in the pre-phase) and Post (for states in the
post phase). Because phases now depend on the commutativity established via
dynamic movers Eqs. 3 and 4, the reduction (not included in the definition, but
discussed below it) becomes dynamic. Lemma 3 follows easily as the definition
does not yet enforce the reduction, but mostly ‘decorates’ the transition system.

Definition 2 (Transaction system). Let H � {Ext,Pre,Post}P be an array
of local phases. The transaction system is CTS ts′ � 〈S′, T ′, A, σ′

0〉 such that:

S′ � S × H, σ′
0 � 〈σ0,Ext

P 〉
T ′

i � {〈〈σ, h〉, α, 〈σ′, h′〉〉 ∈ S′ × A × S′ | (σ, α, σ′) ∈ Ti, ∀j �= i : h′
j = hj ,

Pre iff hi �= Post ∧ M�

i (σ, α, σ′) ∧ α /∈ Aϕ
� (5)

h′
i=

⎧
⎪⎨

⎪⎩
Post if M�

i (σ′) ∧ en(σ′) ∩ Ai ∩ Aϕ
⊕ = ∅ (6)

Ext otherwise (or as alternative when Eq. 6 holds) (7)
}

Lemma 3. Definition 2 preserves invariants: R(ts) |= �ϕ ⇔ R(ts′) |= �ϕ.

The conditions in Eqs. 6 and 7 overlap on purpose, allowing us to enforce
termination below. The transaction system effectively partitions the state
spaces on the phase for each thread i, i.e. Exti = Posti ∪ Prei with Exti �
{〈σ, h〉 | hi = Ext} , etc. The definition of T ′

i further ensures three properties:

A. Posti states do not transit to Prei states as hi = Post ⇒ h′
i �= Pre by Eq. 5.

B. Transitions ending in Prei are dynamic right movers not disabling ϕ by Eq. 5.
C. Transitions starting in Posti are dynamic left movers not enabling ϕ by Eq. 6.

Thereby T ′
i implements the (syntactic) constraints from Lipton’s TR (see

Sect. 2) dynamically in the transition system, except for L3. Let −→′
i �

{〈q, q′〉 | 〈q, α, q′〉 ∈ T ′
i}. Next, Theorem 3 defines the reduced transaction sys-

tem (RTS), based primarily on the ↪→ transition relation that only allows a
thread i to transit when all other threads are in an external state, thus eliminat-
ing interleavings (� additionally skips internal states). The theorem concludes
that invariants are preserved given that a termination criterium weaker than L3
is met: All Posti must reach an Exti state. Monotonicity of dynamic movers
plays a key role in its proof.

Stubborn Transaction Reduction 289

Algorithm 1. Algorithm reducing a CTS to an RTS using T ′
i from Definition 2.

1: V1, V2, Q1, Q2 : S′

2: proc Search(ts � 〈S, T, A, σ0〉)
3: Q1 :=

{
〈σ0, ExtP 〉

}

4: V1 := ∅
5: while Q1 	= ∅ do

6: Q1 := Q1 \ {〈σ, h〉} for 〈σ, h〉 ∈ Q1

7: V1 := V1 ∪ {〈σ, h〉}
8: assert(∀i : hi = Ext)

9: for i ∈ P do

10: Transaction(T, 〈σ, h〉, i)
11: assert(V1 = R(�ts))
12: function SCCroot(q, i)

13: return q is a root of bottom SCC C

s.t. C ⊆ Posti ∧ C ⊆ V2.

14: proc Transaction(T , 〈σ, h〉, i)

15: Q2 := {〈σ, h〉}
16: V2 := ∅
17: while Q2 	= ∅ do

18: Q2 := Q2 \ {〈σ, h〉} for 〈σ, h〉 ∈ Q2

19: V2 := V2 ∪ {〈σ, h〉}
20: for 〈σ, α, σ′〉 ∈ Ti do

21: let h′ s.t. 〈〈σ, h〉, α, 〈σ′, h′〉〉 ∈ T ′
i

22: if SCCroot(〈σ′, h′〉, i) then

23: h′
i := Ext

24: if 〈σ′, h′〉 	� V1 ∪ V2 ∪ Q1 ∪ Q2 then

25: Q2 := Q2 ∪ {〈σ′, h′〉}

26: if h′
i = Ext ∧ 〈σ′, h′〉 /∈ V1 ∪ Q1 then

27: Q1 := Q1 ∪ {〈σ′, h′〉}

Theorem 3 (Reduced Transaction System (RTS)). We define for all i:

↪→i � (∪j 	=iExtj) ‖−→′
i (i only transits when all j are external)

�i � Exti ‖(↪→i ‖Exti)∗ ↪→i ‖Exti(skip internal states transition relation)

The RTS is a CST �
ts �〈S′, {〈q, αi, q

′〉 | q
αi�i q′}, A, σ′

0〉. Now, provided that
∀σ ∈ Posti : ∃σ′ ∈ Exti : σ ↪→∗

i σ′, we have R(ts′) |= �ϕ ⇐⇒ R(�
ts) |= �ϕ.

The following algorithm generates the RTS �ts of Theorem 3 from a ts. The
state space search is split into two: One main search, which only processes exter-
nal states (

⋂
i Exti), and an additional search (Transaction) which explores the

transaction for a single thread i. Only when the transaction search encounters
an external state, it is propagated back to the queue Q1 of the main search, pro-
vided it is new there (not yet in V1, which is checked at Line 26). The transaction
search terminates early when an internal state q is found to be subsumed by an
external state already encountered in the outer search (see the q �� V1 check at
Line 24). Subsumption is induced by the following order on phases, which is lifted
to states and sets of states X ⊆ S′: Pre � Post � Ext with a � b ⇔ a = b∨a � b,
〈σ,h〉�〈σ′,h′〉 ⇔ σ = σ′ ∧∀i : hi �h′

i, and q�X ⇔ ∀q′∈X : q�q′ (for q = 〈σ,h〉).
Termination detection is implemented using Tarjan’s SCC algorithm as

in [47]. We chose not to obfuscate the search with the rather intricate details of
that algorithm. Instead, we assume that there is a function SCCRoot which
identifies a unique root state in each bottom SCC composed solely of post-states.
This state is then made external on Line 23 fulfilling the premise of Theorem 3
(∀σ ∈ Posti : ∃σ′ ∈ Exti : σ ↪→∗

i σ′). Combined with Lemma 3 this yields Theo-
rem 4.

Theorem 4. Algorithm1 computes R(�ts) s.t. R(ts) |= �ϕ ⇐⇒ R(�ts) |= �ϕ.

Finally, while the transaction system exponentially blows up the number
of syntactic states (�= reachable states) by adding local phase variables, the
reduction completely hides this complexity as Theorem 5 shows. Therefore, as
soon as the reduction succeeds in removing a single state, we have by definition

290 A. Laarman

that |R(ts)| < |R(�ts)|. Theorem 5 also allows us to simplify the algorithm by
storing transition system states S instead of transaction system states S′ in V1

and Q1.

Theorem 5. Let N � ∩iExti. We have |N | = |S| and R(�ts) ⊆ R(ts).

4 Comparison Between TR and POR

Stubborn TR (STR) is dynamic in the same sense as stubborn POR, allowing
for a better comparison of the two. To this end, we discuss various example types
of systems that either TR or POR excel at. As a basis, consider a completely
independent system with p threads of n − 1 operations each. Its state space has
np states. TR can reduce a state space to 2p states whereas POR yields n ∗ p
states. The question is however also which kinds of systems are realistic and
whether the reductions can be computed precisely and efficiently.

High parallelism vs Long sequences of local transitions. POR has an
advantage when p � n being able to yield exponential reductions. Though e.g.
thread-modular verification [11,39] may become more attractive in those cases.
Software verification often has to deal with many sequential actions benefitting
STR, especially when VM languages such as LLVM are used [24].

l0

l1
..

l9

..

Non-determinism. In the pre-phase, TR is able to individually
reduce mutually non-deterministic transitions of one thread due
to Eq. 5, which contrary to Eq. 6 considers individual actions of a
thread. Consider the example on the right. It represents a system
with nine non-determinisitic steps in a loop. Assume one of them
never commutes, but the others commute to the right. Stubborn TR is able
to reduce all paths through the loop over only the right-movers, even if they
constantly yield new states (and interleavings).

x=
1;

P(m);

V(
m)
; P(m); x=

1;
x=2;

V(
m)
; x=2;

P(m); x=
1;

V(
m)
;x=2;

P(
m)
;

P(
m)
;

P(
m)
;

P(m);

x=2;

V(m);

V(m);

V(m);

V(m);

l(
m)
;

x=
1;

V(
m)
;

P(
m)
;x
=1
;V
(m
);

P(
m)
;x
=1
;V
(m
);

P(m);x=2;V(m);

P(m);x=2;V(m);

Fig. 2. State space of P(m); x=1;

V(m); ‖ P(m); x=2; V(m); and POR
(thick lines) and TR (dashed lines).

Left and right movers. While stubborn
POR can handle left-commutativity using
additional restrictions, STR can benefit
from right-commutativity in the pre-phase
and from left-commutativity in the post-
phase. E.g., P/V-semaphores are right/left-
movers (see Sect. 2). Figure 2 shows a sys-
tem with ideal reduction using TR, and
none with stubborn set POR.

Table 1 provides various synchronization
constructs and their movability. Thread cre-
ate & join have not been classified before.

Deadlocks. POR preserves all deadlocks,
even when irrelevant to the property. TR
does not preserve deadlocks at all, poten-
tially allowing for better reductions pre-
serving invariants. The following example deadlocks because of an invalid

Stubborn Transaction Reduction 291

Table 1. Movability of commonly used synchronization mechanisms

pthread create As this can be modeled with a mutex that is guarding the thread’s code and is

initially set to locked, the create-call is an unlock and thus a left-mover

pthread join Using locking similar to create, join becomes a lock and thus a right-mover

Re-entrant locks Right/left movers [13]

Wait/notify/notifyAll Can all three be split into right and left moving parts [13]

locking order. TR can still reduce the example to four states, creating max-
imal transactions. On the other hand, POR must explore the deadlock.

l(m1);l(m2); x=1; u(m1);u(m2); ‖ l(m2);l(m1); x=2; u(m1);u(m2);

Processes. STR retains the process-based definition from its ancestors [38],
while stubborn POR can go beyond process boundaries to improve reductions
and even supports process algebras [35,51]. In early attempts to solve the open
problem of a process-less STR definition, we observed that inclusion of all actions
in a transaction could cause the entire state space search to move to the Search-
Transaction function.

Tractability and heuristics. The STR algorithm can fix the set of stubborn
transitions to those in the same thread (see definitions of M�

α). This can be
exploited in the deletion algorithm by fixing the relevant transitions (see the
incomplete minimization approach [55]). If the algorithm returns a set with
other transitions, then we know that no transaction reduction is possible as
the returned set is subset-minimal [35, Th. 1]. The deletion algorithm runs in
polynomial time (in the order of |A|4 [48]), hence also stubborn TR also does
(on a per-state basis). Stubborn set POR, however, is NP-complete as it has
to consider all subsets of actions. Moreover, a small stubborn set is merely a
heuristic for optimal reductions [49] as discussed in Sect. 3.1.

Known unknowns. We did not consider other properties such as full safety,
LTL and CTL. For CTL, POR can no longer reduce to non-trivial subsets
because of the CTL proviso [17] (see [51] for support of non-deterministic tran-
sitions, like in stubborn TR). TR for CTL is an open problem.

While TR can split visibility in enabling (in the pre-phase) and disabling
(in the post-phase), POR must consider both combined. POR moreover must
compute the ignoring proviso over the entire state space while TR only needs to
consider post-phases and thread-local steps.

The ignoring proviso [5,10,50] in POR tightly couples the possible reduc-
tions per state to the role the state plays in the entire reachability graph. This
lack of locality adds an extra obstacle to the parallelization of the model check-
ing procedure. Early results make compromises in the obtained reductions [4].
Recent results show that reductions do not have to be affected negatively even
with high amounts of parallelism [36], however these results have not yet been
achieved for distributed systems. TR reduction on the other hand, offers plenty
of parallelization opportunities, as each state in the out search can be handed
off to a separate process.

292 A. Laarman

5 Experiments

We implemented stubborn transaction reduction (STR) of Algorithm1 in the
open source model checker LTSmin5 [31], using a modified deletion algorithm to
establish optimal stubborn sets in polynomial time (as discussed in Sect. 4). The
implementation can be found on GitHub.6 LTSmin has a front-end for promela
models, which is on par with the SPIN model checker [26] performance-wise [54].
Unlike SPIN, LTSmin does not implement dynamic commutativity specifically
for queues [27], but because it splits queue actions into a separate action for each
cell [54], a similar result is achieved by virtue of the stubborn set condition D1
in Sect. 3.1. This benefits both its POR and STR implementation.

Table 2. Models and their verification times in
LTSmin. Time in sec. and memory use in MB.
State/transition counts are the same in both
LTSmin and SPIN.

SPIN/LTSmin LTSmin

states transitions time mem

Peterson5 829909270 3788955584 4201. 6556.

GARP 48363145 247135869 88.34 369.8

i-Prot.2 13168183 44202271 22.99 102.8

i-Prot.0 9798465 45932747 19.58 75.2

Peterson4 3624214 13150952 7.36 28.5

BRP 2812740 6166206 4.59 26.4

MSQ 994819 3198531 4.41 12.1

i-Prot.3 327358 978579 0.79 2.8

i-Prot.4 78977 169177 0.19 0.8

Small1 36970 163058 0.14 0.3

X.509 9028 35999 0.03 0.1

Small2 7496 32276 0.08 0.1

SMCS 2909 10627 0.01 0.1

We compare STR against
(static) TR from Sect. 2. We
also compare STR against
the stubborn set POR in
LTSmin, which was shown
to consistently outperform
SPIN’s ample set [27] imple-
mentation in terms of reduc-
tions, but with worse run-
times due to the more elab-
orate stubborn set algorithms
(a factor 2–4) [35]. (We can-
not compare with [25] due
to the different input formats
of VVT [24] and LTSmin.)
Table 2 shows the models that
we considered and their nor-
mal (unreduced) verification
times in LTSmin. We took
all models from [35] that
contained an assertion. The
inputs include mutual exclu-
sion algorithms (peterson),
protocol implementations (i-protocol, BRP, GARP, X509), a lockless queue
(MSQ) and controllers (SMCS, SMALL1, SMALL2).

LTSmin runs with STR were configured according to the command line:
prom2lts-mc --por=str --timeout=3600 -n --action=assert m.spins

The option --por=tr enables the static TR instead. We also run all models in
SPIN in order to compare against the ample set’s performance. SPIN runs were
configured according to the following command lines:
cc -O3 -DNOFAIR -DREDUCE -DNOBOUNDCHECK -DNOCOLLAPSE -DSAFETY -DMEMLIM=100000 -o pan pan.c

./pan -m10000000 -c0 -n -w20

5 http://fmt.cs.utwente.nl/tools/ltsmin/.
6 https://github.com/alaarman/ltsmin/commits/tr.

http://fmt.cs.utwente.nl/tools/ltsmin/
https://github.com/alaarman/ltsmin/commits/tr

Stubborn Transaction Reduction 293

Table 3. Reduction runs of TR, Stubborn TR (STR) and Stubborn POR (SPOR).
Reductions of states |S| and transitions |T | are given in percentages (reduced state
space/original state space), runtimes in sec. and memory use in MB. The lowest reduc-
tions (in number of states) and the runtimes are highlighted in bold.

TR (LTSmin) STR (LTSmin) SPOR (LTSmin) Ampe set (SPIN)

|S| |T | time mem |S| |T | time mem |S| |T | time m |S| |T | time mem

Peterson5 0.5 0.3 6.11 33.0 0.4 0.3 74.01 29.5 3.1 0.9 316.10 209.8 5.2 1.9 42.30 2463.

GARP 100 100 266.21 369.8 1.4 1.5 776.53 5.2 3.6 1.5 19.83 13.5 7.6 3.7 6.27 289.1

i-Prot.2 2.1 2.4 3.46 2.2 2.1 2.4 4.87 2.2 20.2 11.9 13.32 21.7 26.1 17.6 4.33 246.9

i-Prot.0 100 100 56.71 75.2 12.8 12.5 148.78 9.7 32.1 17.2 214.93 24.3 15.7 10.5 2.56 132.2

Peterson4 1.3 1.0 0.36 0.5 1.3 1.0 0.85 0.5 7.3 2.7 4.24 2.4 14.7 6.8 0.24 28.9

BRP 100 100 9.59 26.4 47.6 36.9 6.38 12.6 100 100 90.31 26.4 9.2 6.0 0.18 22.2

MSQ 66.0 65.0 5.5 8.2 22.9 21.5 14.90 3.0 52.1 29.1 12.14 6.5 80.4 46.6 1.03 200.9

i-Prot.3 8.0 7.4 0.19 0.2 8.0 7.4 0.24 0.2 20.7 10.4 0.94 0.6 27.0 16.5 0.06 5.8

i-Prot.4 25.1 27.2 0.14 0.2 25.0 27.1 0.18 0.2 45.2 31.5 0.54 0.4 50.4 37.1 0.03 2.8

Small1 8.9 18.0 0.03 n/a 6.7 13.6 0.07 n/a 31.2 17.7 0.18 0.1 48.4 45.1 0.01 0.9

X.509 93.8 94.1 0.07 0.1 19.3 16.7 0.06 n/a 7.8 3.7 0.03 n/a 67.5 34.3 0.01 1.1

Small2 11.6 21.0 0.01 n/a 8.7 15.8 0.01 n/a 35.0 19.8 0.04 n/a 48.3 43.8 0.01 0.4

SMCS 100 100 0.05 0.1 26.1 19.6 0.09 n/a 12.5 5.3 0.03 n/a 41.1 19.6 0.01 0.7

Table 3 shows the benchmark results. We observe that STR often surpasses
POR (stubborn and ample sets) in terms of reductions. Its runtimes however
are inferior to those of the ample set in SPIN. This is likely because we use the
precise deletion algorithm, which decides the optimal reduction for STR: STR is
the only algorithm of the four that does not use heuristics. The higher runtimes
of STR are often compensated by the better reductions it obtains.

Only three models demonstrate that POR can yield better reductions (BRP,
smcs and X.509). This is perhaps not surprising as these models do not have
massive parallelism (see Sect. 4). It is however interesting to note that GARP
contains seven threads. We attribute the good reductions of STR mostly to its
ability to skip internal states. SPIN’s ample set only reduces the BRP better
than LTSmin’s stubborn POR and STR. In this case, we found that LTSmin
too eagerly identifies half of the actions of both models as visible.

Validation. Validation of TR is harder than of POR. For POR, we usually
count deadlocks, as all are preserved, but TR might actually prune deadlocks
and error states (while preserving the invariant as per Theorem4). We therefore
tested correctness of our implementation by implementing methods that check
the validity of the returned semi-sturbborn sets. Additionally, we maintained
counters for the length of the returned transactions and inspected the inputs to
confirm validity of the longest transactions.

6 Related Work

Lipton’s reduction was refined multiple times [6,7,21,37,43]. Flanagan et
al. [11,15] and Qadeer et al. [13,14,16] have most recently developed trans-
actions and found various applications. The reduction theorem used to prove

294 A. Laarman

the theorems in the current paper comes from our previous work [25], which in
turn is a generalized version of [13]. Our generalization allows the direct support
of dynamic transactions as already demonstrated for symbolic model checking
with IC3 in [25]. Despite a weaker theorem, Qadeer and Flanagan [13] can also
dynamically grow transactions by doing iterative refinement over the state space
exploration. This contrasts our approach, which instead allows on-the-fly adap-
tation of movability (within a single exploration). Moreover, [13] bases dynamic
behavior on exclusive access to variables, whereas our technique can handle any
kind of dependency captured by the general stubborn set POR relations.

Cartesian POR [23] is a form of Lipton reduction that builds transactions
during the exploration, but does not exploit left/right commutativity. The leap
set method [42] treats disjoint reduced sets in the same state as truly concurrent
and executes them as such: The product of the different disjoint sets is executed
from the state, which entails that sequences of actions are executed from the
state. This is where the similarity with the TR ends, because in TR the sequences
are formed by sequential actions, whereas in leap sets they consist of concurrent
actions, e.g., actions from different processes. Recently, trace theory has been
generalized to include ‘steps’ by Ryszard et al. [28]. We believe that this work
could form a basis to study leap sets and TR in more detail.

Various classical POR works were mentioned, e.g. [20,33,46]. How ‘persis-
tent sets’ [20]/‘ample sets’ [33] relate to stubborn set POR is explained in [52,
Sect. 4]. Sleep sets [19] form an orthogonal approach, but in isolation only reduce
the number of transitions. Dwyer et al. [8] propose dynamic techniques for object-
oriented programs. Completely dynamic approaches exist [12,32]. Recently, even
optimal solutions were found [1,2,41]. These approaches are typically state-
less however, although still succeed in pruning converging paths sometimes
(e.g., [41]). Others aim at making dependency more dynamic [18,27,34].

Symbolic POR can be more static for reasons discussed in Footnote 2, e.g., [3].
Therefore, Grumberg et al. [22] present underapproximation-widening, which
iteratively refines an under-approximated encoding of the system. In their imple-
mentation, interleavings are constrained to achieve the under-approximation.
Because refinement is done based on verification proofs, irrelevant interleav-
ings will never be considered. Other relevant dynamic approaches are peephole
and monotonic POR by Wang et al. [30,57]. Like sleep sets [20], however, these
methods only reduce the number of transitions. While a reducing transitions can
speed up symbolic approaches by constraining the transition relation, it is not
useful for enumerative model checking, which is strongly limited by the amount
of unique states that need to be stored in memory.

Kahlon et al. [29] do not implement transactions, but encode POR for sym-
bolic model checking using SAT. The “sensitivity” to locks of their algorithm
can be captured in traditional stubborn sets as well by viewing locks as normal
“objects” (variables) with guards, resulting in the subsumption of the “might-
be-the-first-to-interfere-modulo-lock-acquisition” relation [29] by the “might-be-
the-first-to-interfere” relation [29], originally from [20].

Stubborn Transaction Reduction 295

Elmas et al. [9] propose dynamic reductions for type systems, where the
invariant is used to weaken the mover definition. They also support both right
and left movers, but do automated theorem proving instead of model checking.

7 Conclusion

We presented a more dynamic version of transaction reduction (TR) based on
techniques from stubborn set POR. We analyzed several scenarios for which
either of the two approaches has an advantage and also experimentally compared
both techniques. We conclude that TR is a valuable alternative to POR at least
for systems with a relatively low amount of parallelism.

Both in theory and practice, TR showed advantages to POR, but vice versa as
well. Most strikingly, TR is able to exploit various synchronization mechanisms
in typical parallel programs because of their left and right commutativity. While
not preserving deadlocks, its reductions can benefit from omitting them. These
observations are supported by experiments that show better reductions than
a comparably dynamic POR approach for systems with up to 7 threads. We
observe that the combination POR and TR is an open problem.

References

1. Abdulla, P., Aronis, S., Jonsson, B., Sagonas, K.: Optimal dynamic partial order
reduction. In: POPL, pp. 373–384. ACM (2014)

2. Albert, E., Arenas, P., de la Banda, M.G., Gómez-Zamalloa, M., Stuckey, P.J.:
Context-sensitive dynamic partial order reduction. In: Majumdar, R., Kunčak, V.
(eds.) CAV 2017. LNCS, vol. 10426, pp. 526–543. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 26

3. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-
order reduction in symbolic state space exploration. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997). https://doi.org/
10.1007/3-540-63166-6 34

4. Barnat, J., Brim, L., Ročkai, P.: Parallel partial order reduction with topological
sort proviso. In: SEFM, pp. 222–231. IEEE (2010)

5. Bošnački, D., Holzmann, G.J.: Improving spin’s partial-order reduction for
breadth-first search. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 91–
105. Springer, Heidelberg (2005). https://doi.org/10.1007/11537328 10

6. Cohen, E., Lamport, L.: Reduction in TLA. In: Sangiorgi, D., de Simone, R.
(eds.) CONCUR 1998. LNCS, vol. 1466, pp. 317–331. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055631

7. Doeppner Jr., T.W.: Parallel program correctness through refinement. In: POPL,
pp. 155–169. ACM (1977)

8. Dwyer, M., et al.: Exploiting object escape and locking information in partial-
order reductions for concurrent object-oriented programs. FMSD 25(2–3), 199–240
(2004)

9. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL, pp.
2–15. ACM (2009)

https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/978-3-319-63387-9_26
https://doi.org/10.1007/3-540-63166-6_34
https://doi.org/10.1007/3-540-63166-6_34
https://doi.org/10.1007/11537328_10
https://doi.org/10.1007/BFb0055631

296 A. Laarman

10. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduc-
tion. STTT 12, 155–170 (2010)

11. Flanagan, C., Freund, S.N., Qadeer, S.: Thread-modular verification for shared-
memory programs. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp.
262–277. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45927-8 19

12. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL, vol. 40, no. 1, pp. 110–121. ACM (2005)

13. Flanagan, C., Qadeer, S.: Transactions for software model checking. ENTCS 89(3),
518–539 (2003)

14. Flanagan, C., Qadeer, S.: A type and effect system for atomicity. In: PLDI, pp.
338–349. ACM (2003)

15. Flanagan, C., Qadeer, S.: Types for atomicity. In: SIGPLAN Notices, vol. 38(3),
pp. 1–12, January 2003

16. Freund, S.N., Qadeer, S.: Checking concise specifications for multithreaded soft-
ware. J. Object Technol. 3, 81–101 (2004)

17. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. In: TCS, pp. 130–139. IEEE (1995)

18. Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verifica-
tion methods (extended abstract). In: Courcoubetis, C. (ed.) CAV 1993. LNCS,
vol. 697, pp. 438–449. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
56922-7 36

19. Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of dead-
lock freedom and safety properties. FMSD 2, 149–164 (1993)

20. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60761-7

21. Gribomont, E.P.: Atomicity refinement and trace reduction theorems. In: Alur,
R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 311–322. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 79

22. Grumberg, O., et al.: Proof-guided underapproximation-widening for multi-process
systems. In: POPL, pp. 122–131. ACM (2005)

23. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction.
In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73370-6 8

24. Günther, H., Laarman, A., Weissenbacher, G.: Vienna verification tool: IC3 for
parallel software. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 954–957. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 69

25. Günther, H., Laarman, A., Sokolova, A., Weissenbacher, G.: Dynamic reductions
for model checking concurrent software. In: Bouajjani, A., Monniaux, D. (eds.)
VMCAI 2017. LNCS, vol. 10145, pp. 246–265. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-52234-0 14

26. Holzmann, G.J.: The model checker SPIN. IEEE TSE 23, 279–295 (1997)
27. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: IFIP WG6.1

ICFDT VII, pp. 197–211. Chapman & Hall Ltd. (1995)
28. Janicki, R., Kleijn, J., Koutny, M., Mikulski, �L.: Step traces. Acta Inform. 53(1),

35–65 (2016)
29. Kahlon, V., Gupta, A., Sinha, N.: Symbolic model checking of concurrent programs

using partial orders and on-the-fly transactions. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 286–299. Springer, Heidelberg (2006). https://doi.org/
10.1007/11817963 28

https://doi.org/10.1007/3-540-45927-8_19
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1007/3-540-56922-7_36
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-61474-5_79
https://doi.org/10.1007/978-3-540-73370-6_8
https://doi.org/10.1007/978-3-662-49674-9_69
https://doi.org/10.1007/978-3-662-49674-9_69
https://doi.org/10.1007/978-3-319-52234-0_14
https://doi.org/10.1007/978-3-319-52234-0_14
https://doi.org/10.1007/11817963_28
https://doi.org/10.1007/11817963_28

Stubborn Transaction Reduction 297

30. Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: an optimal
symbolic partial order reduction technique. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 398–413. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 31

31. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

32. Kastenberg, H., Rensink, A.: Dynamic partial order reduction using probe sets. In:
van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 233–247.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 21

33. Katz, S., Peled, D.: An efficient verification method for parallel and distributed
programs. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1988.
LNCS, vol. 354, pp. 489–507. Springer, Heidelberg (1989). https://doi.org/10.1007/
BFb0013032

34. Katz, S., Peled, D.: Defining conditional independence using collapses. Theor. Com-
put. Sci. 101(2), 337–359 (1992)

35. Laarman, A.W., Pater, E., van de Pol, J.C., Hansen, H.: Guard-based partial-order
reduction. In: STTT, pp. 1–22 (2014)

36. Laarman, A., Wijs, A.: Partial-order reduction for multi-core LTL model checking.
In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 267–283. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13338-6 20

37. Lamport, L., Schneider, F.B.: Pretending atomicity. Technical report, Cornell Uni-
versity (1989)

38. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975)

39. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular verification is Cartesian
abstract interpretation. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC
2006. LNCS, vol. 4281, pp. 183–197. Springer, Heidelberg (2006). https://doi.org/
10.1007/11921240 13

40. Papadimitriou, C.: The Theory of Database Concurrency control. Principles of
Computer Science Series. Computer Science Press, Rockville (1986)

41. Rodŕıguez, C., et al.: Unfolding-based partial order reduction. In: CONCUR.
LIPIcs, vol. 42, pp. 456–469. Leibniz-Zentrum fuer Informatik (2015)

42. Van Der Schoot, H., Ural, H.: An improvement of partial-order verification. Softw.
Test. Verif. Reliab. 8(2), 83–102 (1998)

43. Stoller, S.D., Cohen, E.: Optimistic synchronization-based state-space reduction.
In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 489–504.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 36

44. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

45. Valmari, A.: Error detection by reduced reachability graph generation. In: APN,
pp. 95–112 (1988)

46. Valmari, A.: Eliminating redundant interleavings during concurrent program verifi-
cation. In: Odijk, E., Rem, M., Syre, J.-C. (eds.) PARLE 1989. LNCS, vol. 366, pp.
89–103. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51285-3 35

47. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G.
(ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-53863-1 36

https://doi.org/10.1007/978-3-642-02658-4_31
https://doi.org/10.1007/978-3-642-02658-4_31
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-540-85361-9_21
https://doi.org/10.1007/BFb0013032
https://doi.org/10.1007/BFb0013032
https://doi.org/10.1007/978-3-319-13338-6_20
https://doi.org/10.1007/11921240_13
https://doi.org/10.1007/11921240_13
https://doi.org/10.1007/3-540-36577-X_36
https://doi.org/10.1007/3-540-51285-3_35
https://doi.org/10.1007/3-540-53863-1_36

298 A. Laarman

48. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

49. Valmari, A., Hansen, H.: Can stubborn sets be optimal? In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 43–62. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13675-7 5

50. Valmari, A.: A stubborn attack on state explosion. In: Clarke, E.M., Kurshan,
R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 156–165. Springer, Heidelberg (1991).
https://doi.org/10.1007/BFb0023729

51. Valmari, A.: Stubborn set methods for process algebras. In: DIMACS POMIV,
POMIV 1996, pp. 213–231. AMS Press, Inc., New York (1997)

52. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Petri Nets and
Software Engineering 2016, CEUR-WS, pp. 213–232. CEUR (2016)

53. Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bošnački, D., Wijs, A.
(eds.) SPIN 2016. LNCS, vol. 9641, pp. 225–243. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-32582-8 16

54. van der Berg, F., Laarman, A.: SpinS: extending LTSmin with Promela through
SpinJa. ENTCS 296, 95–105 (2013)

55. Varpaaniemi, K.: Finding small stubborn sets automatically. In: ISCIS, vol. I, pp.
133–142. Middle East Technical University, Ankara, Turkey (1996)

56. Varpaaniemi, K.: On the stubborn set method in reduced state space generation.
Ph.D. thesis, Helsinki University of Technology (1998)

57. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382–396.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 29

https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-642-13675-7_5
https://doi.org/10.1007/BFb0023729
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-319-32582-8_16
https://doi.org/10.1007/978-3-540-78800-3_29

Certified Foata Normalization
for Generalized Traces

Hendrik Maarand1(B) and Tarmo Uustalu2,1

1 Department of Software Science, Tallinn University of Technology,
Akadeemia tee 21B, 12618 Tallinn, Estonia

hendrik@cs.ioc.ee
2 School of Computer Science, Reykjavik University,

Menntavegi 1, 101 Reykjavik, Iceland
tarmo@ru.is

Abstract. Mazurkiewicz traces are a well-known model of concurrency
with a notion of equivalence for interleaving executions. Interleaving exe-
cutions of a concurrent system are represented as strings over an alpha-
bet equipped with an independence relation, and two strings are taken
to be equivalent if they can be transformed into each other by repeat-
edly commuting independent consecutive letters. Analyzing all behaviors
of the system can be reduced to analyzing one canonical representative
from each equivalence class; normal forms such as the Foata normal form
can be used for this purpose. In some applications, it is useful to have
commutability of two adjacent letters in a string depend on their left
context. We develop Foata normal forms and normalization for Sassone
et al.’s context-dependent generalization of traces, formalize this devel-
opment in the dependently typed programming language Agda and show
generalized Foata normalization in action on an example from relaxed
shared-memory concurrency (local reads in TSO).

1 Introduction

Strings over an alphabet are a simple model of concurrent program behavior
presuming that events from different threads are interleaved in an execution of a
program. Mazurkiewicz traces [11] are an improvement over strings; a trace corre-
sponds to a set of interleaving executions that can be considered to be equivalent.
Traces are equivalence classes of strings. Two strings are taken to be equivalent
if they can be transformed to each other by a finite number of commutations
of adjacent letters. Commutation is allowed for letters in a given irreflexive and
symmetric binary relation, called the independence relation. Traces therefore
enable distinguishing concurrent events and causally related events.

While traces are sets of strings, in practice it is desirable to deal with single
strings representing these sets canonically. Ideally, such representatives should
be strings in some kind of normal form, with normality defined by a decidable
predicate. In every trace, there should be exactly one normal form. In particular,
given a string, it should be possible to compute its normal form, i.e., the normal
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 299–314, 2018.
https://doi.org/10.1007/978-3-319-77935-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_21&domain=pdf

300 H. Maarand and T. Uustalu

form in its equivalence class. One natural such normal form is the Foata normal
form, corresponding to maximally parallel executions; the Foata normal form is
well known and understood. (Another such normal form is the lexicographic nor-
mal form; yet another is dependence graphs.) The possibility to reduce exploring
the full set of executions of a program to exploring the executions in normal form
is important in practice. It is often referred to as partial-order reduction.

In some concurrency applications, one needs to depart from standard trace
theory by making commutability of two adjacent letters in a string depend on
their position in it, specifically their left context. The idea is that this context or
history functions as a kind of state, affecting commutability. For this generaliza-
tion, the independence relation is made dependent on a string parameter for the
context. To behave reasonably, it has to meet some well-behavedness conditions.
Above all, it must be consistent, i.e., stable under equivalence of contexts, but
usually more is required. The exact necessary conditions depend on the appli-
cation at hand; different sets of conditions have been considered by different
authors.

It is natural to ask whether Foata normalization can work also for generalized
traces. In this paper, we study and answer this question. On the first look, the
prospects for a positive answer are unclear, as the situation is subtler than for
standard traces. It is not immediate that the concept of a Foata normal form
is reasonable at all—the order of letters in a step should not matter, but their
contexts depend on it—or that the normalization function can be defined as in
the standard case as one traversal of the given string—a priori, independence
or dependence between letters in a string might not remain invariant under
inserting an additional letter. But, as it turns out, everything works out well,
if one assumes consistency and the coherence conditions introduced by Sassone
et al. [15]. Still the definitions and proofs require considerably more care than in
the standard case. Especially the proofs become quite subtle, it is easy to make
mistakes. This makes context-dependent Foata normalization a good exercise in
certified programs and proofs. We conducted this exercise in the dependently
typed programming language Agda [12].

The contribution of this paper thus consists in developing the theory of gen-
eralized Foata normalization and formalizing it. We also demonstrate the use-
fulness of this generalization. The reporting is organized as follows. We first
introduce both standard Mazurkiewicz traces and Foata normal forms and nor-
malization as well as the context-dependent generalization using mathematical
notation on a high level in Sect. 2. Then, in Sect. 3, we describe the formalization
of the generalization in Agda, disclosing a fair degree of detail of not only the def-
initions, but also the proofs. In Sect. 4, we demonstrate that context-dependent
independence arises naturally in relaxed shared-memory concurrency. Then we
briefly discuss related work and conclude.

Our Agda formalization is at http://cs.ioc.ee/~hendrik/code/generalized-
traces/agda.zip. The code works with Agda version 2.5.2 and Agda standard
library version 0.13. It consists of approx. 3800 lines of code whereof standard
traces take approx. 1100 lines, generalized traces approx. 1300 lines and the rest

http://cs.ioc.ee/~hendrik/code/generalized-traces/agda.zip
http://cs.ioc.ee/~hendrik/code/generalized-traces/agda.zip

Certified Foata Normalization for Generalized Traces 301

is utility code for cons/snoc list manipulation and similar purposes. The formal-
ization of generalized traces does not depend on the formalization of standard
traces.

We assume no knowledge of trace theory from the reader, introducing all
relevant concepts and facts. When describing our formal development, we show
snippets of Agda code, but we also comment them.

2 Traces, Foata Normal Forms and Normalization

Traces are equivalence classes of strings with respect to a congruence relation
that allows to commute certain pairs of letters. More precisely, an alphabet Σ is
a (non-empty) set whose elements we call letters; letters model events. A string
is a list of letters, i.e., an element of Σ∗, the free monoid on Σ. Strings are
used to model executions of programs. An independence relation I ⊆ Σ × Σ is
an irreflexive and symmetric binary relation. Its complement D = (Σ × Σ) \ I,
which is reflexive and symmetric, is called the dependence relation. Intuitively,
if aIb, then the strings uabv and ubav represent the “same” execution. We define
∼ ⊆ Σ∗ × Σ∗ to be the least relation such that aIb implies uabv ∼ ubav and
define (Mazurkiewicz) equivalence ∼∗ to be its reflexive-transitive closure. A
(Mazurkiewicz) trace is an equivalence class of strings wrt. ∼∗, i.e., an element
of the quotient set Σ∗/∼∗, which is the free partially commutative monoid.

For example, if Σ = {a, b, c, d} and I is the least symmetric relation satisfying
aIb, aId, bId, cId, then the strings abcd and bdac are equivalent, since abcd ∼
bacd ∼ badc ∼ bdac, but acbd is not equivalent to them. The strings abcd,
abdc, adbc, bacd, badc, bdac, dabc, dbac form one equivalence class of strings or
trace. Another is {acbd, acdb, adcb, dacb}. Altogether, there are only four traces
containing each letter of Σ exactly once.

A (Foata) step is a non-empty set s of pairwise independent letters, i.e., for
any different a, b ∈ s, we require aIb. If we are given a strict total order, i.e., a
transitive and asymmetric relation, ≺ ⊆ Σ × Σ on letters, then we can equiv-
alently define that a step is a ≺-sorted non-empty list of pairwise independent
letters. A (Foata) normal form n : Nf is a list s0 . . . sm−1 of steps such that, for
any i < m, unless i = 0, for any b ∈ si, there is a ∈ si−1 such that aDb.

To continue the example above, suppose that ≺ is given by a ≺ b ≺ c ≺ d. We
then have that (abd)(c) is a normal form, since a, b, d are pairwise independent
and c is dependent with, for instance, b. However, (a)(c)(bd) is not a normal
form: we have bId, aDc, cDb, but cDd does not hold.

Viewing steps as non-empty lists, we have a straightforward embedding emb :
Nf → Σ∗ of normal forms into strings given by concatenation.

Assuming I and ≺ to be decidable, every trace has a unique normal form,
i.e., we have a function norm : Σ∗ → Nf such that u ∼∗ emb (norm u) (existence
of a normal form), u ∼∗ v implies norm u = norm v (soundness of norm) and
n = norm (emb n) (stability of norm). Existence straightforwardly gives that
norm u = norm v implies u ∼∗ v (completeness of norm). From soundness and
stability, it follows that u ∼∗ emb n implies norm u = n (uniqueness of a normal
form).

302 H. Maarand and T. Uustalu

The function norm is defined quite naturally. It takes a string u and traverses
it from the left to the right, maintaining the normal form of the prefix already
seen. If the normal form of this prefix is s0 . . . sm−1, then the function finds the
greatest i ≤ m such that the next letter a is dependent with some letter in si−1

unless i = 0, and inserts a into step si, if i < m (commuting past all steps whose
all letters it is independent with), or adds a new singleton step sm consisting
initially of a only, if i = m. Intuitively, the given string is thus rearranged into
a maximally parallel form.

In our example, the string acbd is normalized as follows. We first make a
normal form consisting of a single step (a). Letter c is dependent with a, thus
cannot be added to this step, so we start a new step: (a)(c). Letter b is dependent
with c, so we start a new step again: (a)(c)(b). Letter d is independent with all
of b, c, a, so we insert it into the first step: (ad)(c)(b).

In generalized traces, the commutability of two adjacent letters depends on
their left context, corresponding to the execution so far. The independence rela-
tion is parameterized by a string for this context. More precisely, independence
is an assignment of an irreflexive and symmetric relation Iu ⊆ Σ × Σ to every
string u. This family of relations must be consistent, i.e., stable under equiva-
lence in the sense that u ∼∗ v and aIub imply aIvb. Sassone et al. [15] require
also the following coherence conditions:

1. aIub and bIuac and aIubc imply aIuc,
2. aIub and bIuc imply (aIuc iff aIubc).

Consistency is a very basic hygiene condition. The coherence conditions are
more difficult to make sense of and memorize. They also have many similar-
looking consequences. One way to see the coherence conditions is to say that
they are the smallest set of conditions guaranteeing that any choice of three
conditions, one from each of the following three pairs, implies the other three
conditions: (aIub, aIucb), (bIuc, bIuac), (aIuc, aIubc). This is with the exception
of the choice of the second condition from each pair; from these three conditions
one cannot conclude anything. For example, aIub and bIuac and aIubc imply not
only aIuc and bIuc (both by 1.), but also aIucb (follows from those by 2.⇒).

To illustrate generalized traces, let us modify our example. We take I now to
be the least consistent, coherent family of symmetric relations such that aI[]b,
aI[]d, bIad, bIacd, cIabd. (We write [] for the empty string.) Explicitly, this means
that we also have bI[]d (by 2.⇐), aIdb, aIbd (by 2.⇒) and cIbad (by consistency).
Now abcd has the same equivalence class as before, but acbd is only equivalent
to acdb, leaving adcb and dacb in a different equivalence class.

We would like to scale Foata normalization to generalized traces. Our adjust-
ment of the definition of a Foata normal form is as follows. A (Foata) normal
form is a list s0 . . . sm−1 of non-empty lists of letters (steps) such that, for all
i < m,

– for any a, b ∈ si, if a
= b, then aIs0...si−1b,
– unless i = 0, for any b ∈ si, there is a ∈ si−1 such that aDs0...si−2b,
– si is ≺-sorted.

Certified Foata Normalization for Generalized Traces 303

Note that in the above conditions dependence or independence is stated wrt.
contexts of whole steps rather than contexts of individual letters in a step. This
is motivated by the intuition that the letters in a step should be concurrent and
their order of appearance in the step should be incidental (depending on the
chosen total strict order on the alphabet, which should be immaterial).

We thus have a sensible-looking definition, but does it work? And can the
normalization function be defined in the same way as for standard traces? In
the next section, we will show this to be the case, by describing our formal-
ized development that includes proofs. The coherence conditions turn out to
be instrumental in ensuring that we are indeed entitled to check coherence for
contexts of steps in normal forms rather than contexts of individual letters.

In our example, the equivalence class of abcd consists of 8 strings, with
(abd)(c) the normal form, as before. The equivalence class of acbd is {acbd, acdb},
with (a)(c)(bd) the normal form. The equivalence class of adcb is {adcb, dacb},
with (ad)(c)(b) the normal form.

The significance of coherence can be demonstrated already on this small
example. If we had bD[]d instead of bI[]d (violating 2.⇐), then (abd)(c) would
cease to be a normal form under our chosen definition of normal forms. Instead,
both (ab)(cd) and (ad)(b)(c) would be normal forms, although abcd ∼ abdc ∼
adbc, so normal forms would not be unique. (Our chosen normalization function
would return (ab)(cd) for abcd and abdc, (ad)(b)(c) for adbc.) If we had aDdb
and aDbd instead of aIdb and aIbd (violating 2.⇒), then the strings bdac and
dbac would only be equivalent to each other and without a normal form under
our chosen definition of normal forms. (Our chosen normalization function would
return (abd)(c) for bdac and dbac, which is not a normal form of these strings.)

3 Formalization

We will now present an overview of our Agda formalization of generalized traces,
Foata normal forms and normalization. Showing Agda code, we will use some
unofficial shortcuts to enhance readability; above all, we will typically omit
implicit arguments in type signatures. While we will describe the definition of
the normalization function in detail, for lemmas of the correctness proof, we will
only give the type (the statement) and omit the proof.

3.1 Traces

We start our formalization from an alphabet A that we assume to be given,
therefore we have defined it as a module parameter in Agda.

A : Set

The next component is that of a string (or word) over the alphabet A.

String = List A

String> = List> A

304 H. Maarand and T. Uustalu

We work with two versions of strings—cons-lists and snoc-lists of letters—since,
in some situations, we prefer to access the letters from the left end and in some
situations from the right end. In fact, we will see that our normalization function
manipulates a zipper: it traverses the input string (a cons-list) from the left and
inserts every letter into the accumulated normal form, which is a snoc-list (of
steps). List> is the type of snoc-lists. We have marked the usual list operations
on snoc-lists with a trailing > to emphasize that they are for lists where the
head element is on the right. Conversions between cons-lists and snoc-lists are
denoted c2s and s2c.

We also assume a context-dependent independence relation on A that is both
irreflexive and symmetric.

I[]_ : A → String> → A → Set

I-irr : ∀ c → Irreflexive _I[c]_

I-sym : ∀ c → Symmetric _I[c]_

The underscores in mixfix operator identifiers mark the places where the argu-
ments will go, in the order given in the type signature. a I[c] b means that, in
the context c (which is a String>), the letters a and b are independent. We model
the context as a snoc-list since most of the time we need to access the right end
of the context. We define the context-dependent dependence relation a D[c] b

as the negation (complement) of independence.
We say that two strings are one-step convertible if they differ only by the

ordering of a pair of adjacent independent letters.

data _∼[_]_ : String → String> → String → Set where

swap : a I[c ++> c2s u] b → (u ++ a :: b :: v) ∼[c] (u ++ b :: a :: v)

Note that the letters a and b are independent in the context c plus u, which
is the common prefix of the two strings. We now take the reflexive-transitive
closure of this one-step convertibility relation.

data _∼[_]*_ : String → String> → String → Set where

refl* : u ∼= v → u ∼[c]* v

swap-trans* : u ∼[c] t → t ∼[c]* v → u ∼[c]* v

Note that the context c is fixed in the case of swap-trans*, which means that, in
u ∼[c]* v, the strings that are actually considered equivalent are c plus u and
c plus v, but the context c stays the same and no exchanges can be done in the
context.

We are often working with strings in the empty context (we are looking at
whole strings). For this case, we define the following abbreviations.

u ∼ v = u ∼[[]] v

u ∼* v = u ∼[[]]* v

Certified Foata Normalization for Generalized Traces 305

3.2 Normal Forms

We represent a Foata normal form as a snoc-list of steps and a step as a snoc-list
of letters.

Step = List> A

Foata = List> Step

These are the datatypes for “raw” steps and normal forms, we have not yet
imposed the relevant well-formedness conditions. The embedding function is
defined by flattening the two-layer snoc-list and converting the result to a cons-
list.

emb : Foata → String

emb ss = s2c (concat> ss)

To define the well-formedness predicate for Step, we assume that our given
alphabet A has a strict total order _<_ defined on it. We also lift the independence
relation from a binary relation on letters to a relation between a step and a letter.

< : A → A → Set

sto< : StrictTotalOrder _<_

�I[]_ : Step → String> → A → Set

s �I[c] a = All> (λ b → b I[c] a) s

All> P xs means that the predicate P holds on every element of the snoc-list xs.

data StepOk : String> → Step → Set where

sngl : (a : A) → StepOk c [a]>

snoc : StepOk c (s ::> a') → (a : A) → a' < a → (s ::> a') �I[c] a

→ StepOk c (s ::> a' ::> a)

A well-formed step is either a singleton (in a context c) or it consists of a well-
formed step to which a new letter is added on the right, which has to be greater
than the previous rightmost letter. Also, the old step and the new letter must
be independent.

A small remark here is that StepOk c s is not necessarily a proposition (there
can be more than one inhabitant of this type). If we were in a situation where
we have p, q : StepOk c s and we had to show p ∼= q, we would have two options.
Either we would have to assume that a < b and a I[c] b are propositions
(for any a, b and c) or we would have to change the definition of StepOk to use
propositional truncation when using _<_ and _I[_]_ (to have a normalization
function, we must assume that both of these predicates are decidable, and this
gives us effective truncation as a byproduct).

To define the well-formedness predicate for Foata, we first lift the dependence
relation to a relation between a step and a letter (to describe when a letter is
“supported” by a step). We also extend this to normal forms.

�D[]_ : Step → String> → A → Set

s �D[c] a = Any> (λ b → b D[c] a) s

306 H. Maarand and T. Uustalu

�D' : Foata → A → Set

[] �D' a = �
(ss ::> s) �D' a = s �D[concat> ss] a

Any> P xs is the type of existence of an element x in xs such that P x holds.
� is the unit type (the trivially true proposition). Note the context used in the
non-empty case of �D’.

data FoataOk : Foata → Set where

empty : FoataOk []

step : FoataOk ss → StepOk (concat> ss) s → All> (λ a → ss �D' a) s

→ FoataOk (ss ::> s)

A well-formed normal form can either be empty or it can consist of a well-formed
normal form to which a step is added that must be well-formed in the context
of this normal form. An additional condition for the result to be well-formed is
that every letter in the new step is supported by the preceding normal form.

Similarly to StepOk, FoataOk is not a proposition. Even if we redefine StepOk

so that it becomes a proposition, we still have the proof that the letters of
the new step are supported by the normal form in the step case. If there are
multiple candidates to support a letter in the new step, then we should give
a canonical way to pick one of them. For example, we could always pick the
rightmost dependent letter from the previous step as the support. Another option
is again to use propositional truncation.

3.3 Normalization

We define a function find>, which given a decidable predicate and a list, splits
the input list into two lists so that all of the elements in the second list (on the
right) satisfy the predicate and the rightmost element in the first list violates
the predicate, or the first list is empty. Note that the decidable predicate P here
is context-dependent (it looks at both the head and tail of the snoc-list).

find> : (∀ xs x → Dec (P xs x)) → List> X → List> X × List> X

find> d? [] = [] , []

find> d? (xs ::> x) with d? xs x

find> d? (xs ::> x) | yes p = let ys , zs = find> d? xs in ys , zs ::> x

find> d? (xs ::> x) | no ¬p = xs ::> x , []

If we have a step and a letter that should be added to that step, then we
can accomplish this by finding the right place for the new letter according to the
ordering _<_. We assume decidability of _<_.

<? : (a b : A) → Dec (a < b)

push : Step → A → Step

push s a = let ls , rs = find> (λ _ b → a <? b) s in ls ::> a ++> rs

Certified Foata Normalization for Generalized Traces 307

The properties of find> give us that all letters in rs are greater than a and the
rightmost letter in ls is less than a or ls is empty. If s happened to be a well-
formed step, then so are also both ls and rs. Given a normal form and a letter,
we need to figure out the correct step for that letter and push it into that step.
We assume decidability of _I[_]_.

I[]?_ : (a : A) → (c : String>) → (b : A) → Dec (a I[c] b)

insert : Foata → A → Foata

insert ss a with find> (λ xs x → x �I[concat> xs]? a) ss

insert ss a | ls , [] = ls ::> [a]>

insert ss a | ls , rs ::> r = let s , rs' = first rs r in ls ::> push s a ++> rs'

Here, we use find> to split the normal form ss into two parts ls and rs so that
a and all of the steps in rs are independent and a and the last step in ls are
dependent or ls is empty. Note that while a and the steps in rs are independent,
the contexts for those steps (and independence relations) are different. We pat-
tern match on rs to decide whether to add a new step or not. If rs is empty,
then ss already supports a and we must add a new step, otherwise, we push a to
the leftmost step in rs. Here, _�I[_]?_ lifts _I[_]?_ from deciding independence
of letters to deciding independence of a step and a letter.

With insert in place, we can now define a normalization function that tra-
verses the string from the left to the right and inserts each letter into the correct
position in the accumulated normal form.

norm' : Foata → String → Foata

norm' ss [] = ss

norm' ss (a :: t) = norm' (insert ss a) t

norm : String → Foata

norm t = norm' [] t

This is our normalization function, but it produces “raw” normal forms. We
will now show that the functions we defined are “good” in the sense that they
produce good output from good input. We begin with push.

pushOk : StepOk c s → (a : A) → s �I[c] a → StepOk c (push s a)

Given that s is a well-formed step and s and a are independent, the result of
push s a is also a well-formed step. To construct StepOk c (push s a), we need to
show that the letters in push s a are ordered and independent. They are ordered
since the letters in s are ordered and push uses find> to find a position in the
list which respects the ordering. The letters are independent since the letters in
s are independent and a and s are independent, which means that a and any
subset of s (including the results of find>) are independent. The context c stays
fixed inside a step.

We now continue with insert and show that it produces a well-formed normal
form when given a well-formed normal form and a letter.

insertOk : FoataOk ss → (a : A) → FoataOk (insert ss a)

308 H. Maarand and T. Uustalu

Compared to pushOk, things get much more involved here. Namely, when we insert
a letter into a normal form, we are modifying a step somewhere in the middle of
the normal form. As a result, the contexts for the invariants of the steps to the
right of the modified step have changed.

For example, if we have a normal form stuv consisting of the steps s, t, u and
v, then inserting a into stuv that will go into the step t changes the following.
The letters in u must now be independent in the context s(push t a) instead of st

and the letters in v must now be independent in the context s(push t a)u. Also,
every letter of v must now have support from a letter in u in the context s(push

t a) instead of st. One consequence of the consistency and coherence axioms is
that when we do an insert, then we do not need to renormalize the part of the
normal form for which the context changed, we can prove that the invariants
still hold.

I-cons : c ∼* c' → a I[c2s c] b → a I[c2s c'] b

I-co1 : a I[c] b → a I[c ::> b] d → d I[c ::> a] b → a I[c] d

I-co2-e : a I[c] b → b I[c] d → a I[c] d → a I[c ::> b] d

I-co2-r : a I[c] b → b I[c] d → a I[c ::> b] d → a I[c] d

During an insert, we need to make sure that every step that we overtake with
the new letter still satisfies the invariants, pairwise independence and support.

For pairwise independence, we need to repeatedly apply the I-co2-e axiom.
To move a letter b past a step s, we must have s �I[c] b. Since s is a (valid)
step, it must be that the letters in s are pairwise independent. This means that,
for every a and d in s, we have that a I[c] b, d I[c] b and a I[c] d, which
gives a I[c ::> b] d. Consequently, the letters in s are still pairwise independent
after extending the context with b.

For support, we think of the situation where we have a context (normal form)
c and steps s and s’ such that, for every d from s’, we have an a from s so that
a D[c] d. This stops d from being moved into the earlier step s. To move b past
s and s’ into the context c, it must be that s �I[c] b and s’ �I[c ++> s] b,
which also gives that a I[c] b and d I[c ++> s] b. This starts to resemble the
contraposition of I-co1:

D-co1 : a I[c] b → a D[c] d → d I[c ::> a] b → a D[c ::> b] d

What we are missing from D-co1 is d I[c ::> a] b, but we have d I[c ++> s] b

and we also know that a is from s. We can prove the following lemma about
extending the context of support:

PW : (X → X → Set) → List> X → Set

PW P [] = �
PW P (xs ::> x) = PW P xs × All> (λ x' → P x' x) xs

�D-ext-lem : d I[c ++> s] b → PW _I[c]_ (s ::> b)

→ s �D[c] d → s �I[c ::> b] d → ⊥
This expresses the fact that, under suitable conditions, it cannot be that d is
supported by (the step) s in the context c but is not supported by s in the
extended context c ::> b. The first condition is that the letters b (that we add

Certified Foata Normalization for Generalized Traces 309

to the context) and d are independent (in the context c plus s). We also require
that s can be viewed as a step (its letters are pairwise independent) and that the
letter b and the step s are independent. The last two conditions are expressed
by PW _I[c]_ (s ::> b), which says that the predicate _I[c]_ holds pairwise
between the letters in s ::> b.

s �D[c] d and s �I[c ::> b] d give us that there is a letter a in s such that
a D[c] d and a I[c ::> b] d. We can apply contraposition of I-co2-r to get
that both of a I[c] b and d I[c] b cannot hold. From PW _I[c]_ (s ::> b),
we get a I[c] b, which means that d D[c] b must hold. We derive a version
of I-co1 where one of the letters has been replaced with a step.
�I-co1 : s �I[c] b → d I[c ++> s] b → s �I[c ::> b] d → PW _I[c]_ s

→ d I[c] b

All of the arguments of this rule match the I-arguments of �D-ext-lem, so we can
derive d I[c] b. This cannot be since we previously derived d D[c] b.

�D-ext-lem allows us to extend the context with a suitable letter, but we also
need to “slide” the new letter to the position where insert would take it.

slide-step : PW _I[c]_ (s ::> b) → s2c (c ++> s ::> b) ∼* s2c (c ::> b ++> s)

This says that, if we have a letter b and step s that are independent, then we can
slide b past s and the resulting string is equivalent to the one we started with.
By repeatedly applying slide-step, we can move a letter past multiple steps and
still preserve equivalence. This allows us to prove that insert is good. It follows
that norm is also good:

normOk' : FoataOk ss → (t : String) → FoataOk (norm' ss t)

normOk : (t : String) → FoataOk (norm t)

3.4 Properties

We will now proceed to soundness and completeness of our normalization algo-
rithm. The first lemma is about insert and it says that inserting a letter into a
normal form and then embedding into a string is equivalent to first embedding
the normal form into a string and adding the letter to the end.

insert-lem : FoataOk ss → (a : A) → emb (insert ss a) ∼* (emb ss ++ [a])

This lemma is essentially slide-step lifted to the case of multiple steps and defined
in terms of insert. This gives us the necessary tools to prove the existence of
normal forms, which will then lead to completeness.

nf-exists' : FoataOk ss → (t : String) → emb (norm' ss t) ∼* (emb ss ++ t)

nf-exists : (t : String) → emb (norm t) ∼* t

completeness : norm u ∼= norm v → u ∼* v

To prove soundness, we first show that our normalization operation commutes
for independent letters. We start with push.

310 H. Maarand and T. Uustalu

push-commutes : StepOk c s → a I[c ++> s] b → s �I[c] a → s �I[c] b

→ push (push s a) b ∼= push (push s b) a

This says that, if we have a well-formed step s and two letters a and b that are
independent and that fit into s (a, b and s are independent), then it does not
matter in which order we push them into the step. Since we have a strict total
order on the alphabet and the letters in a valid step must be ordered, there is
only one way to put a and b into s such that the result is ordered. We continue
with a similar lemma about insert.

insert-commutes : FoataOk ss → a I[concat> ss] b

→ insert (insert ss a) b ∼= insert (insert ss b) a

This says that, if we have a normal form ss and two letters that are independent
in the context of that normal form, then it does not matter in which order we
insert them. We prove this by case analysis on the steps that a and b go to.

If both of these letters are supported by ss, then we must add a new step and
show that it does not matter whether we add a new step by a singleton a or b. It
may be that one of the letters fits into the existing steps and the other does not,
in which case we have to show that, even if we add a new step, the other letter
will still go past it (as the letters are independent) and that we need to add a
new step even if we insert the other letter before. The last option is that both
of them fit into the existing steps. If both of them go to the same step, then we
apply push-commutes. Otherwise, we need to show that a letter goes to the same
step whether we insert the other letter or not. We make use of some lemmas to
consider an insert operation as a push. For example:

insert-last : ss �D' a → s �I[concat> ss] a

→ insert (ss ::> s) a ∼= ss ::> push s a

Here we have that a is supported by ss, which means that insert cannot take
this letter any further. We also have that a can be pushed into s since they are
independent. This gives us that, in this situation, insert (ss ::> s) a is the same
as ss ::> push s a. These tools allow us to prove that insert commutes. The fact
that norm’ commutes follows immediately.

norm'-commutes : FoataOk ss → a I[concat> ss] b

→ norm' ss (a :: b :: []) ∼= norm' ss (b :: a :: [])

We are now ready to prove soundness of the normalization algorithm. We
first show that norm’ is sound for strings that are one-step convertible.

sound∼ : FoataOk ss → t ∼[concat> ss] t' → norm' ss t ∼= norm' ss t'

It is important to note that t and t’ are convertible in the possibly non-empty
context concat> ss. The proof basically splits t and t’ into pieces, so that we
can focus on the pair of letters that make the two strings different and apply
norm’-commutes. A useful lemma at this point is norm’-append that exposes the
compositional nature of our normalization algorithm.

norm'-append : (t t' : String) → norm' ss (t ++ t') ∼= norm' (norm' ss t) t'

Certified Foata Normalization for Generalized Traces 311

We lift sound∼ to its reflexive-transitive closure. This also gives that norm is sound.

sound* : FoataOk ss → t ∼[concat> ss]* t' → norm' ss t ∼= norm' ss t'

soundness : t ∼* t' → norm t ∼= norm t'

We can now decide equivalence of two strings by first normalizing the strings
and then checking if the normal forms are equal. If they are, then completeness

says that the strings are equivalent, and, if the normal forms are not equal,
then soundness says that the strings cannot be equivalent. To do this, we assume
decidable equality on the alphabet.

∼=? : (a b : A) → Dec (a ∼= b)

equivalent? : (u v : String) → Dec (u ∼* v)

We also have that normal forms are stable, meaning that, if we (re-)normalize
the embedding of a normal form, then we get back the same normal form.

stability : FoataOk ss → norm (emb ss) ∼= ss

We also get uniqueness of normal forms, meaning that, if we have two normal
forms whose embeddings are equivalent, and thus come from the same equiva-
lence class, then they must be equal.

nf-unique : FoataOk ss → FoataOk ss' → emb ss ∼* emb ss' → ss ∼= ss'

4 Example: Local Reads in TSO

Here we will give a small example where generalized traces are needed to describe
the behaviour of a concurrent system reasonably precisely. The example comes
from shared-variable concurrency in a system with write buffers which corre-
sponds to the Total Store Order (TSO) relaxed memory model from the SPARC
hierarchy [16].

The machine that we are going to model consists of processors and shared
memory where each processor has local registers and a single write buffer. A pro-
gram is a list of read and write instructions. The execution of a write instruction
generates two events. First, the write is added to the buffer (the main event).
Later, it is flushed to memory (the shadow event). The processor sees the mem-
ory “through” the buffer: if there are any writes to the variable x in the buffer,
then the processor sees the value of the last write to x as the value of x, otherwise,
it sees the value currently in memory.

We can represent program executions on this machine as words over the
alphabet of events. We can also consider a dependence relation on this alphabet.
Two events from different processors are dependent when they access the same
memory location and at least one of them is a write. Two events from the same
processor are dependent, if they are both main events (we respect the program
order) or both shadow events (the buffer is first-in-first-out) or they are a cor-
responding pair of a main and a shadow event (a shadow event cannot happen
before its cause, the main event).

312 H. Maarand and T. Uustalu

Let us consider the following program where two processors write to variable
x and one of them also reads from x.

Our first scenario considers the execution acc′ba ′, which has the same mean-
ing as acbc′a ′. This is because, in both of these executions, b happens before
a′, so there is a write in the buffer and b reads its value from that. Whether c′

happens before or after b, does not matter. It seems reasonable in this situation
to say that b and c′ are independent.

The second scenario considers the execution aca ′bc′, which has a different
meaning than aca ′c′b. This is because b happens after a′ and thus b reads its
value from memory since the buffer is empty. In the first execution, b reads the
value written by a′, and, in the other execution, it reads the value written by c′.
Here, we would like to say that b and c′ are dependent.

If we were to model this program using standard traces, we would have
to set b and c′ to be dependent; otherwise, the two executions of the second
scenario would be considered equivalent, but they have different behaviour in
the sense of taking the same initial state to different final states. This forced
choice, however, distinguishes the two executions of the first scenario that behave
the same way. This is an imprecision, we have more equivalence classes than
desirable. Generalized traces allow us to say that b and c′ are dependent only if
there are no writes to x by the first processor in the buffer. This is information
that can be read off the given context. The context should not contain a without
also a′ somewhere to its right, so, for example, the empty context and aa ′ make
b and c′ dependent, but ac does not.

5 Related Work

Traces were introduced into concurrency theory by Mazurkiewicz [11], but they
originate from the enumerative combinatorics work by Cartier and Foata [3].
In particular, Foata normalization is from that work. Foata normalization is
described in many of the standard expositions of trace theory, e.g., [1,5].

Generalizing traces for context-dependent independence has been considered
by several authors, but with different well-behavedness conditions on indepen-
dence. Sassone et al. [15] introduced context-dependent independence as we have
considered it in this paper. Katz and Peled [9] introduced state-dependent inde-
pendence, considering a coherence condition that in our setting would amount
to aIub and bIuac implying (aIuc iff aIubc). This condition is equivalent to the
conjunction of conditions 1. and 2.⇒ of Sassone et al. Droste [6], in a work on
concurrent automata, again with state-dependent independence, required what
would in our setting amount to aIub, bIuc, aIubc implying aIucb, bIuac, aIuc,
i.e., condition 2.⇐ and a little more. Hoogers et al. [8] developed local traces
where independence relates lists of steps to steps. This is a different setup where

Certified Foata Normalization for Generalized Traces 313

coherence conditions like those of Sassone et al. do not arise, because one only
works with contexts of steps, not contexts of individual letters.

Partial-order reduction and use of representatives in model-checking, origi-
nally proposed by Godefroid [7] and Peled [14], are in wide use. Dynamic partial-
order reduction for stateless model-checking of relaxed memory concurrent pro-
grams in particular has been considered by Abdulla et al. [2] and Zhang et al. [17].
In our own previous work [10], we used Foata normal forms for generalized traces
for generating representative executions of all four memory models of the SPARC
hierarchy.

Chou and Peled [4] have formalized standard Mazurkiewicz traces in the
context of formally verifying a partial-order reduction technique in HOL. Owens
et al. [13], who formalized TSO in HOL4, pioneered formalization of semantic
accounts of relaxed memory models with proof assistants.

6 Conclusion and Future Work

We believe it to be important to exercise care when choosing the semantic domain
for behaviors for a class of concurrent systems. Descriptions of behaviors in terms
of an apparently more involved abstraction can sometimes be more precise, yet
still analyzable with less effort. In this paper, we presented certified Foata nor-
malization of generalized Mazurkiewicz traces. The example from Sect. 4 demon-
strates that standard Mazurkiewicz traces are not flexible enough and general-
ized traces can lead to fewer equivalence classes. That is good in any situation
where one needs to exhaustively check an equivalence-invariant property on all
equivalence classes.

In this paper, we looked at Foata normal forms. Another well-known normal
form of traces is the lexicographic normal form. It would be interesting to see how
this works with generalized traces. We also wonder whether something similar is
possible for yet more flexible notions such as various specializations of pomsets.
We are currently working on a generic framework for semantics and analysis for
relaxed memory concurrency that has normal-forms based dynamic partial-order
reduction built into its core and thus only deals with normal forms.

Acknowledgements. This work was supported by the ERDF funded Estonian
national CoE project EXCITE and the Estonian Ministry of Education and Research
institutional research grant IUT-3313.

References

1. Aalbersberg, I.J.J., Rozenberg, G.: Theory of traces. Theor. Comput. Sci. 60(1),
1–82 (1988)

2. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0_28

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28

314 H. Maarand and T. Uustalu

3. Cartier, P., Foata, D.: Problemes combinatoires de commutation et réarrange-
ments. LNM, vol. 85. Springer, Heidelberg (1969). https://doi.org/10.1007/
BFb0079468

4. Chou, C.-T., Peled, D.: Formal verification of a partial-order reduction technique
for model checking. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol.
1055, pp. 241–257. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
61042-1_48

5. Diekert, V., Métivier, T.: Partial commutation and traces. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages: Beyond Words, vol. 3, pp. 457–553.
Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_8

6. Droste, M.: Concurrency, automata and domains. In: Paterson, M.S. (ed.) ICALP
1990. LNCS, vol. 443, pp. 195–208. Springer, Heidelberg (1990). https://doi.org/
10.1007/BFb0032032

7. Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023731

8. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: A trace semantics for Petri nets.
Inf. Comput. 117(1), 98–114 (1995)

9. Katz, S., Peled, D.: Defining conditional independence using collapses. Theoret.
Comput. Sci. 101(2), 337–359 (1995)

10. Maarand, H., Uustalu, T.: Generating representative executions. In: Vasconcelos,
V.T., Haller, P. (eds.) Proceedings of 10th Workshop on Programming Language
Approaches to Concurrency and Communication-Centric Software, PLACES 2017.
Electronic Processing Theoretical Computer Science, vol. 246, pp. 39–48. Open
Publishing Association, Sydney (2017)

11. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI
Report PB-78, Aarhus University (1977)

12. Norell, U.: Dependently typed programming in Agda. In: Koopman, P., Plasmei-
jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04652-0_5

13. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 391–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9_27

14. Peled, D.: All from one, one for all: on model checking using representatives. In:
Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-56922-7_34

15. Sassone, V., Nielsen, M., Winskel, G.: Deterministic behavioural models for concur-
rency. In: Borzyszkowski, A.M., Sokołowski, S. (eds.) MFCS 1993. LNCS, vol. 711,
pp. 682–692. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57182-
5_59

16. SPARC International Inc.: The SPARC Architecture Manual, Version 9. Prentice
Hall, Englewood Cliffs (1994). (Ed. by D.L. Weaver and T. Germond)

17. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed
memory models. In: Proceedings of 36th ACM SIGPLAN Conference on Principles
of Language Design and Implementation, PLDI 2015, pp. 250–259. ACM, New York
(2015)

https://doi.org/10.1007/BFb0079468
https://doi.org/10.1007/BFb0079468
https://doi.org/10.1007/3-540-61042-1_48
https://doi.org/10.1007/3-540-61042-1_48
https://doi.org/10.1007/978-3-642-59126-6_8
https://doi.org/10.1007/BFb0032032
https://doi.org/10.1007/BFb0032032
https://doi.org/10.1007/BFb0023731
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/3-540-56922-7_34
https://doi.org/10.1007/3-540-57182-5_59
https://doi.org/10.1007/3-540-57182-5_59

On the Timed Analysis of Big-Data
Applications

Francesco Marconi(B) , Giovanni Quattrocchi, Luciano Baresi,
Marcello M. Bersani, and Matteo Rossi

DEIB, Politecnico di Milano, Milan, Italy
{francesco.marconi,giovanni.quattrocchi,luciano.baresi,

marcellomaria.bersani,matteo.rossi}@polimi.it

Abstract. Apache Spark is one of the best-known frameworks for exe-
cuting big-data batch applications over a cluster of (virtual) machines.
Defining the cluster (i.e., the number of machines and CPUs) to attain
guarantees on the execution times (deadlines) of the application is indeed
a trade-off between the cost of the infrastructure and the time needed
to execute the application. Sizing the computational resources, in order
to prevent cost overruns, can benefit from the use of formal models as a
means to capture the execution time of applications.

Our model of Spark applications, based on the CLTLoc logic, is
defined by considering the directed acyclic graph around which Spark
programs are organized, the number of available CPUs, the number of
tasks elaborated by the application, and the average execution times
of tasks. If the outcome of the analysis is positive, then the execution is
feasible—that is, it can be completed within a given time span. The anal-
ysis tool has been implemented on top of the Zot formal verification tool.
A preliminary evaluation shows that our model is sufficiently accurate:
the formal analysis identifies execution times that are close (the error is
less than 10%) to those obtained by actually running the applications.

Keywords: Big-Data Applications · Metric temporal logic
Formal verification · Apache Spark

1 Introduction

Many software systems produce huge quantities of data and their process-
ing has been studied widely over the last years. Frameworks like Hadoop
(hadoop.apache.org), Spark (spark.apache.org), and Flink (flink.apache.org),
have been proposed to automate and ease the computation. These frameworks
allow users to carry out batch processing over a cluster of (virtual) servers. The
actual size of supplied data and the number of machines used impact the exe-
cution time by which the framework provides results. Unfortunately, the actual
execution time is only known at the end of the computation, and estimations
are mainly based on experience and domain-knowledge. In this context, guaran-
tees over the quality of service are often stated as deadlines—i.e., the maximum
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 315–332, 2018.
https://doi.org/10.1007/978-3-319-77935-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_22&domain=pdf
http://orcid.org/0000-0002-9397-3543
http://orcid.org/0000-0002-9193-9560
http://hadoop.apache.org
http://spark.apache.org
http://flink.apache.org

316 F. Marconi et al.

acceptable response times for single executions of the applications. The avail-
ability of tools that can foresee execution times, and thus help sizing the cluster,
would greatly ease the adoption of these frameworks in contexts where time and
costs are key drivers: the higher the cost (hence the more machines are available),
the lower the overall response time.

The work presented in this paper is part of a larger research on a model-
driven approach to the formal verification of Big Data frameworks carried out
within the DICE project (www.dice-h2020.eu). In [15] we tackled the formal
verification of data streaming applications based on the Storm framework. This
paper focuses instead on Apache Spark, one of the best known frameworks for
batch processing. Spark programs are internally represented as directed acyclic
graphs (DAG) of operations. We propose the definition of formal models of
Spark programs based on the CLTLoc [6] logic to allow for the validation of the
required resources (virtual machines and CPU cores) given a deadline. A suitable
formalization of the problem requires that the execution times of the different
tasks—that is, of the different computation units—are properly modeled. Hence,
we based the formal model on CLTLoc, a metric temporal logic over dense
time that extends LTL with atomic constraints on clock variables. CLTLoc is
supported by formal verification tools which allow users to analyze formulae in
an automated manner [3,6]. CLTLoc was also used—and extended—to model
Storm topologies in [15]; this unified modeling and verification approach opens
the possibility to analyze applications that are built upon heterogeneous building
blocks, some tailored to stream processing, and others to batch processing.

The proposed solution builds the DAG-based representation of the program
and automatically translates it into the corresponding CLTLoc model. The user
then must provide the deadline, the number of available CPUs, the number
of tasks elaborated by the application, and the average execution time of the
different task types (e.g., obtained by profiling the program of interest). If the
outcome of the analysis is positive, then the execution is feasible—that is, it can
be completed by the given deadline. The prototype tool is implemented on top
of Zot1, our verification tool for solving the bounded satisfiability problem for
CLTLoc, and a first evaluation witnesses good prediction capabilities with an
error that is usually less than 10%.

The rest of the paper is organized as follows: Sect. 2 introduces Spark and
the CLTLoc logic; Sect. 3 presents the formal model; Sect. 4 discusses an experi-
mental evaluation of the approach; Sect. 5 surveys related solutions, and Sect. 6
concludes.

2 Background

2.1 Apache Spark Framework

Spark is usually deployed on a cluster of servers and exploits a master/worker
architecture. The master schedules operations for execution in the cluster by

1 github.com/fm-polimi/zot.

http://www.dice-h2020.eu
https://github.com/fm-polimi/zot

On the Timed Analysis of Big-Data Applications 317

Fig. 1. Example of Spark application.

assigning part of the computation to each worker. The main programming
abstraction in Spark is the RDD (resilient distributed dataset), i.e., immutable
and fault-tolerant collections of homogeneous objects. An RDD is distributely
stored into workers by means of multiple redundant partitions to facilitate par-
allel computation. The act of a worker to read from another worker’s memory
or storage is called data shuffling. RDDs can be persisted in memory to improve
performance through reuse. This makes Spark particularly efficient when exe-
cuting iterative algorithms (e.g., machine learning and graph computations).

RDDs support two kinds of operations: transformations (e.g., map, filter)
create new RDDs, while actions (e.g., count, collect) perform computations to
generate values. The former are lazy : they are chained together for optimiza-
tion purposes, and are performed only when an action is encountered. Spark
distinguishes between narrow and wide transformations, where the former do
not reshuffle data (e.g., map, filter), whereas the latter do (e.g., reduceByKey).

To fully comprehend how Spark works one must first understand how the
logic of a particular application is broken down into parallelized tasks. Figure 1a
shows the code (in Scala) of an example Spark application that performs a simple
aggregation over a dataset read from a text file containing in each line a vowel,
a number and a Boolean separated by colons. The goal of the program is to sum
the numbers that are labeled with the same vowel which are also not marked as
false. To do that the program chains different operations: (i) a map transforms
each line in an array of strings by splitting it when a colon is encountered; (ii)
a filter discards the unnecessary lines (those labeled with false); (iii) a second
map converts the remaining arrays into key-value pairs, each one composed of
a vowel (the key) and a number (the value); (iv) a reduceByKey is used to sum

318 F. Marconi et al.

the numbers that share the same key; finally (v) the dataset is returned using
function collect. Figure 1c shows how an example dataset is transformed at each
step. As soon as an application is submitted to Spark it is divided into multiple
jobs. A job is a group of operations delimited by the presence of Spark actions
within the code. When a job is scheduled for execution, a directed acyclic graph
(DAG) of stages is created. Stages are delimited by operations that would require
data shuffling, thus breaking data locality. Spark DAGs define the order among
the stages of a job: two stages are connected if the second stage must read the
data produced by the first, thus a stage can be executed if and only if all of
its predecessors are completed. Once a stage is scheduled by the master, Spark
defines the set of parallel tasks that need to be executed for the stage. A task
executes all the trasformations that compose a stage over a single partition of
its input RDD. Tasks are executed in parallel by workers and are considered
units of computation. Therefore, each task is executed by a single core and it is
scheduled only when a core of a worker becomes free.

Figure 1b shows how logically the example program of Fig. 1a is executed by
Spark. Each rectangle inside a stage is an RDD that is produced by perform-
ing the associated operation; the arrows define the ordering relation between
stages Stage0 and Stage1 (i.e., a DAG made of two nodes executed in sequence).
Due to the lazy evaluation of transformations nothing happens until collect is
executed; at that moment Spark allocates a job by creating a DAG of stages.
Because map and filter do not require data shuffling, the first four operations
are grouped in a single stage (Stage0). Conversely, reduceByKey requires an
exchange of data among workers since tuples with the same key are not guar-
anteed to be all in the same data partition. For this reason Stage1 is created.
Stage1 depends on Stage0 and so it can be scheduled only when the first has
completed its execution.

2.2 Constraint LTL over-clocks

The temporal logic model of Sect. 3 is expressed in terms of the CLTLoc logic [6]
augmented with discrete counters, an extension of LTL allowing clock variables
and arithmetical variables to occur in atomic formulae.

Atomic formulae over (R, {<,=}) contain arithmetical variables, called clock
variables (or simply clocks), which behave as clocks of Timed Automata [2]. A
clock x measures the time elapsed since the last “reset” of x, which occurs when
x = 0 holds. Since the values of clocks can be compared with constants in formu-
lae of the form x ∼ c (where c ∈ N and ∼∈ {<,=}), clocks are used to constrain
the time elapsing between the events that characterize Spark computations.

Atomic formulae over (N, {<,=},+, 0, 1) predicate over arithmetical vari-
ables, called counters, that have no semantic restrictions. For instance, an atomic
formula is y + z < 4, where both y and z are in N. A counter stores a value that
can be incremented, decremented and tested against a constant value. The logic
exploits a special modality X applied to counters, that has been already intro-
duced in [11], with the following meaning: if y is a counter, Xy is the value of y in
the next position of time. Using modality X the increment of y by 1 is expressed

On the Timed Analysis of Big-Data Applications 319

by the formula Xy = y + 1 whereas y = Xy + 1 indicates a decrement of y by 1.
Counters are used in the model of Sect. 3 to represent the amount of tasks that
are elaborated by Spark applications.

Let V be a finite set of variables over N, C a finite set of clock variables
over R and AP a finite set of atomic propositions. Atomic formulae θ over V
are quantifier-free Presburger formulae over terms α of the form y or Xy, with
y ∈ V . CLTLoc formulae φ with counters are defined as:

φ := p | x ∼ c | θ | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ

where p ∈ AP , x ∈ C, c ∈ N, ∼∈ {<,=}, and X, Y, U and S are the usual
“next”, “previous”, “until” and “since” operators of LTL. Operators F (“eventu-
ally”), G (“globally”), and P (“previously”) are defined through the customary
abbreviations: Fφ = �Uφ, Gφ = ¬F¬φ, and Pφ = �Sφ.

An interpretation of a formula is a pair (π, σ), where π : N → ℘(AP), and
σ : N×{C∪V } → R is a mapping associating every variable in C∪V with a value
in R, but restricting values of the elements in V to N. The semantics of CLTLoc
is defined as for LTL, except for formulae x ∼ c and θ. Let AV be the ordered
set of all terms of the form y and Xy, with y ∈ V , and let n be its cardinality;
for each αj ∈ AV , its depth |αj | is such that |αj | = 0 if αj = y, and |αj | = 1 if
αi = Xy for some y ∈ V . Given a mapping v : AV → N, θ[v(α0), . . . , v(αn−1)]
is the valuation of θ through v, which is obtained by replacing each term αj

occurring in θ with value v(αj). If θ[v(α0), . . . , v(αn−1)] holds, we write v |= θ.
Let t(αj) = y if αj is either y or Xy. The following properties hold for each
i ∈ N:

(π, σ), i |= x ∼ c iff σ(i, x) ∼ c
(π, σ), i |= θ iff θ[σ(i + |α0|, t(α0)), . . . , σ(i + |αn−1|, t(αn−1))]

If φ is a formula, interpretation (π, σ) is a model for φ if (π, σ), 0 |= φ holds.
The satisfiability problem CLTLoc is decidable [6] and can be practically

computed through a Bounded Satisfiability Checking approach [3,6]. Conversely,
CLTLoc with Presburger arithmetics is undecidable, since so is its subset with-
out clocks, CLTL [11], as the unboundedness of the domain of the counters and
modality X allow the logic to encode the computations of 2-counter machines.
Even if our formal model of Spark computations is based on CLTLoc with coun-
ters, the value of arithmetical variables occurring therein is bounded by some
value that depends on the problem instance (see Sect. 3). Therefore, the tech-
nique introduced in [3,6] can still be exploited to solve the satisfiability problem
for any instance of the model.

3 Modeling Spark Applications

This section presents the formal definition of the problem that we consider for
the analysis of Spark applications and the temporal model that has been devised
to solve it. Some assumptions are needed to abstract the Spark computation
from details that are related to the physical infrastructure running the Spark
framework and that depend on implementation aspects of the applications.

320 F. Marconi et al.

Assumptions and Level of Abstraction. We make the following assump-
tions.

The cluster running the Spark application is composed of homogeneous machines.
The workload of the cluster executing the application is not subject to oscil-
lations that might alter the execution of the running jobs; hence, the perfor-
mance of the cluster is stable and does not vary over time. The number of
nodes in the cluster and the network latency are not explicitly represented
in the model. However, they are strictly correlated as the more nodes are
in the cluster, the higher the latency will be. For this reason, we decided to
synthesize their effect as a single term to be included as an overhead to the
task durations.

Some features of the runtime environment of Spark are simplified; for instance,
the interaction among master and workers is not taken into account. The
latency generated by the execution of services managing tasks is considered
negligible with respect to the total execution time of the application.

The input dataset provided to the application is homogeneous ; that is, the possi-
ble skewness of data is not taken into account. All tasks constituting a stage
have durations that can vary non-deterministically by at most a fraction of a
nominal value.

The number of CPU cores that are available to the application is known before
starting the execution of the job and it does not vary over the computation.

The functional aspects of executed operations are not directly considered in the
model; only their effect in terms of temporal behavior is represented.

The model is focused on the execution DAG underlying the application and it
is based on an abstraction of the temporal behavior of stages and the tasks they
are composed of. As explained in Sect. 2.1, the sequence of operations included in
each stage is applied (possibly in parallel) on all partitions of the input dataset
of the stage by means of a set of homogeneous tasks.

Problem Statement. Let D be a DAG (S,E) where S is a finite set of N
stages {S0, . . . , SN−1} and E is a subset of S × S representing the precedence
relation among stages. Let T̄i be a finite set of homogeneous tasks associated
with Si such that any pair of tasks (T̄i, T̄i′) are disjoint for any 0 ≤ i, i′ < N
(with i 	= i′) and let T̄ be the set

⋃
i T̄i. Hereafter, variables i, j are such that

0 ≤ i < N and 0 ≤ j < K hold.
An execution η of D with tasks in T̄ is a finite sequence of K tuples

t0, t1, . . . , tK−1 of the form tj = (T j
0 , . . . , T j

N−1), called execution steps, where
each set of active tasks T j

i is a—possibly empty—subset of T̄i satisfying the fol-
lowing constraints: (i) for every stage Si, each task in T̄i appears in the execution
sequence exactly once; also, if some task of T̄i occurs at step j, then all tasks
associated with all stages S′

i preceding Si with respect to E occur before j; (ii)
for each step there is at least one set of active tasks. A non-empty set T j

i of tasks
is called a batch of active tasks.

On the Timed Analysis of Big-Data Applications 321

For any stage Si in S, let τi be a strictly positive constant in R defining the
time needed to compute a generic task of Ti. Let I and I ′ be two convex and
bounded sets in R. We say that I precedes I ′ when all the elements in I are
strictly smaller than all the elements in I ′. Given an execution η for D, define
function active(t) specifying the set of active tasks of T̄ at any time instant t,
such that for every t ∈ R: (i) if a batch T j

i is active at t, then there is an interval
I of τi time units, including t, where T j

i is active and no task of T j
i is active in

any time instant t′ not belonging to I; (ii) every batch T j
i is eventually active;

(iii) if batch T j
i occurs before batch T j′

i in η (i.e., j < j′), then the interval of
time where T j

i is active precedes the interval of time where T j′
i is active.

Given an integer p > 0, an execution η = t0, t1, . . . , tK−1 for D is feasible if
|active(t)| ≤ p, for all t ≥ 0. The time span ts(η) of η is defined as the maximum
time instant where at least one task in active.

The feasibility problem for a Spark application is defined as follows. Let D
be a DAG (S,E) of N stages, let T̄i, τi and p be defined as before and let d be a
strictly positive integer. A solution of the feasibility problem for D with tasks in
T̄ is a feasible execution η = t0, t1, . . . , tK−1 such that ts(η) < d. Let FD be the
set of values {d : ∃η ts(η) < d} of the feasible deadlines, i.e., the set of all the
possible deadlines d such that there exists a feasible execution whose duration
is less than d. The minimum feasible deadline (mfd) is the minimum of FD .

Figure 2 shows a possible execution η for the DAG depicted in Fig. 2b whose
stages S1, S2 and S3 execute, respectively, 10, 21 and 15 tasks, grouped into the
sets T̄1, T̄2 and T̄3. Every rectangle represent a batch of running tasks and the
number written therein is the size of the batch, i.e., the cardinality |T j

i |. Stage
1 and 3 consists of two batches while Stage 2 is executed by means of 4 batches.
The number of cores p is equal to 10, hence, in every time instant, the number
of running tasks is limited by 10. Assuming that the time delay between T 1

1 and
T 2
1 is 1.3 time units (τ2 is 1 time unit), then the duration of the computation

ts(η) is 26.3 time units.

6 4

4 3
10

4

S1

S2

S3 8 7

time

T 2
2

T 1
2

T 3
2

T 4
2

T 1
1

T 2
1

T 1
3 T 2

3

(a) Execution

S1 S2

S3
|T̄3| = 15

τ3 = 2

|T̄2| = 21

τ2 = 1
|T̄1| = 10
τ1 = 3

(b) DAG

Fig. 2. Possible execution (2a) of the DAG in (2b).

322 F. Marconi et al.

endT1 endT1startT1 startT1

runT1 runT1

runTC1 = 6 runTC1 = 4

startS endS

Fig. 3. Atomic propositions and discrete variables used to model the running batches
and the overall computation of stage S1

Temporal Logic Model of Spark Applications. Consider a Spark execution
DAG (S,E). Suppose that the application is running on a cluster with p available
cores, and each stage Si is executed by running |T̄i| tasks. To represent the set
of possible executions of the system, the CLTLoc model makes use of finite sets
of atomic propositions, of discrete counters and of clocks. Atomic propositions
are used to model the current status of stages and their tasks (i. e., whether
they are started, running or completed), whereas the counters are used to keep
track of the number of CPU cores that are either available, or are allocated to
run the active tasks. Finally, the temporal constraints on the different tasks are
expressed thanks to clocks.

Figure 3 shows the atomic propositions that are used to model the compu-
tation of the stage S1, that is part of the DAG in Fig. 2b, according to the
execution shown in Fig. 2a. Atoms startS1 and endS1 indicate the beginning
and the end of the computation entailed by stage S1, that is, the time instant
where the first batch starts and the time instant where the last batch terminates.
Batches of tasks are represented by means of startT1, endT1 and runTC1 that
indicate, respectively, the beginning and the end of a batch and that the batch
is currently active. The value of variable runTC1 is the number of tasks that are
currently in execution, hence it corresponds to the value |T j

1 |, for j ∈ {1, 2},
representing the cardinality of the active batch.

Corresponding to the three kinds of variables mentioned above, three groups
of formulae can be identified in the model: those capturing the evolution of the
state of stages and tasks; those constraining the number of tasks in execution
with respect to the available cores; and the set of constraints on clocks. The
three groups of formulae are presented in the rest of this section. Notice that all
formulae presented in this section are implicitly universally quantified over time
through the G temporal operator.

State formulae for stages. A stage Si can be either running (i. e., the atomic
proposition runSi holds) or not running. A stage becomes running—i.e., startSi

holds—when there is at least one task that starts the execution and no task has
been executed so far. If no tasks were executed then the number of tasks still
to be processed, represented by discrete integer variable remTCi, is equal to the
total number of tasks that the stage has to elaborate (||T̄i||). This situation is
modeled through the following Formula (1).

On the Timed Analysis of Big-Data Applications 323

¬runTi¬runTi processingTiprocessingTistartTistartTi endTiendTi

runTirunTi

Fig. 4. Finite state machine representing the state evolution of a set of tasks.

∧

Si∈S

(startTi ∧ remTCi = ||T̄i|| ⇐⇒ startSi) (1)

A stage terminates—i.e., endSi holds—when there are no more tasks to be
processed—i. e., when remTCi is equal to 0. This is defined by Formula (2) below.

∧

Si∈S

(endTi ∧ remTCi = 0 ⇐⇒ endSi) (2)

A stage is completed (i.e., completedSi holds) when it has been terminated
in the past (i.e., there is a position before the current one where endSi held); it
is enabled (i.e., enabledSi holds) when all the predecessor stages Sj , such that
(Si, Sj) belongs to E, have been completed.

∧

Si∈S

(completedSi ⇐⇒ P(endSi)) (3)

∧

Si∈S

(enabledSi ⇐⇒
∧

Sj∈S, (Si,Sj)∈E

completedSj) (4)

State formulae for tasks. The behaviour of each batch of tasks is summarized in
Fig. 4. Initially, for each stage Si, the corresponding batch of tasks is not running
(¬runTi holds). In order for the batch to start processing (runTi becomes true),
the stage must be enabled (i. e., enabledSi holds), and some conditions on the
resources (which are explained later, when describing counter-related formulae)
must hold. Every execution of a batch is characterized by an initial state (in
which startTi holds) and a final state (in which endTi holds). processingTi
is true in all time instants strictly included between the start and the end of a
batch processing, and corresponds to runTi ∧¬startTi ∧¬endTi. This execution
cycle can be repeated many times depending on the available resources and the
number of tasks to be executed. Being the batches of a stage sequential, they
never overlap. Hence, atoms runTi, startTi and endTi are used to model any
active batch T j

i , as they can be safely reused to model all the batches required
to complete a stage. For brevity, the CLTLoc formulae capturing the behavior
of the state machine of Fig. 4 are not shown here.

Counter-related Formulae. Counter variables are used to define the constraints
on system resources and the evolution of the tasks that are executed within the
stage. For example, Formula (5) translates the constraint |active(t)| < p, for any

324 F. Marconi et al.

t, given in the problem statement. It limits the number of cores that are allocated
to execute the active tasks. In particular, the sum of the number of available
(avaCC) and allocated cores is always equal to p, the number of cores that is
assigned to the job. The number of the remaining tasks of a stage decreases
during its execution: Formula (6) imposes that the next value of remTCi (i.e.,
XremTCi) is not greater than the value of remTCi in the current position.

∑

Si∈S

(runTCi) + avaCC = p (5)

∧

Si∈S

(remTCi ≥ XremTCi) (6)

The following formulae link the truth value of the events startTi and endTi

with the value of counters runTCi and remTCi. Formula (7) correlates variable
runTCi with proposition runT by imposing that a batch is running (i.e., runT
holds) when the value of runTCi of active tasks is strictly positive. The two formu-
lae (8) and (9) determine the value of runTCi and remTCi during the execution of
the batch. Since the model is not designed to represent core re-balancing oper-
ations, the formulae enforce a variation of runTCi or remTCi to occur when a
batch starts or terminates. In particular, Formula (8) imposes that a variation
of the value of runTCi between two adjacent positions is a sufficient condition to
make startTi or endTi true. Therefore, between startTi and endTi runTCi can-
not vary. Similarly, Formula (9) imposes that a variation of the value of remTCi

is the sufficient condition to activate the execution of a batch (i.e., startTi

holds). Finally, Formula (10) defines the relation between the variables runTCi

and remTCi. It states that, if the execution of a batch of tasks is starting, the
number runTCi of running tasks in the batch is the difference of the (number
of) remaining tasks at the beginning of the batch (i.e., value remTCi) and the
remaining tasks in the preceding position (i.e., value YremTCi).

∧

Si∈S

(runTi ⇔ runTCi > 0) (7)

∧

Si∈S

((runTCi 	= XrunTCi) ⇒ (XstartTi ∨ endTi)) (8)

∧

Si∈S

(remTCi 	= XremTCi ⇒ XstartTi) (9)

∧

Si∈S

(startTi ⇒ (runTCi = YremTCi − remTCi)) (10)

Constraints on clocks. To represent the durations of events in the model, a clock
variable clockrunTi has been defined for each stage Si. Specifically, clockrunTi
measures the duration of the runTi phases for each batch of tasks of stage Si.
The following formula defines the reset conditions for the clocks: clockrunTi is
reset every time a new batch of tasks starts running for stage Si.

On the Timed Analysis of Big-Data Applications 325

∧

Si∈S

((clockrunTi = 0) ⇐⇒ (orig ∨ startTi)) (11)

Formula (12) limits the duration of the execution of a batch of tasks by impos-
ing that the termination of the batch occurs when the value of clock clockrunTi
is in interval [τi − ε, τi + ε], where τi is the average task duration of stage Si

which is given as a parameter to the model, and ε is a constant defining the vari-
ability in the processing duration with respect to τi. If there is a batch currently
running (i.e., runTi holds) then runTi holds until an instant when the value of
clock clockrunTi is in [τi − ε, τi + ε] and endTi is true.

∧

Si∈S

(
runTi ⇒
(runTi ∧ ¬endTi)U((clockrunTi ≥ τi − ε) ∧ (clockrunTi ≤ τi + ε) ∧ endTi)

)
(12)

Initialization. The initial condition of any modeled Spark application obeys the
following constraints: (i) no tasks are running in the origin; (ii) for each stage Si,
the number of remaining tasks is |T̄i|; (iii) the number of available cores avaCC
is the total number of cores p.

4 Implementation and Validation of the Model

The goals of this section are twofold. First, it briefly introduces the prototype tool
that automatically generates CLTLoc formal models from high-level descriptions
of Spark DAGs. Second, it presents a set of experiments carried out with real-life
Spark applications to evaluate the effectiveness of the approach. The validation
focuses on understanding the accuracy with which the model is able to identify
the actual deadline that can be met by an implemented application.

The implemented prototype tool, D-VerT2, takes as input a configuration file
describing the Spark application to be analyzed, and uses a templating mecha-
nism to automatically generate the corresponding formulae. The configuration
file contains all the relevant information for running the analysis: the structure of
the DAG, the number of tasks and the duration τi for each stage i, the deadline
against which the feasibility analysis has to be performed, the number of cores
in the cluster and the number of time positions to be considered for running
the verification. DAG structure and timing information can be either manually
provided or automatically generated by means of a benchmarking tool3 which,
as explained later in this section, allows for the profiling of running applications
and provides an estimation of the timing characteristics for different settings.

D-VerT produces the corresponding instance of the formal model of Sect. 3
in the input format of the Zot verification tool, which is able to analyze CLTLoc
formulae, and feeds the model to Zot. It then collects the outcome of the formal
analysis and provides, when possible, a graphical representation of the results
2 github.com/dice-project/DICE-Verification.
3 github.com/franco-maroni/xSpark-bench.

https://github.com/dice-project/DICE-Verification
https://github.com/franco-maroni/xSpark-bench

326 F. Marconi et al.

(a) Sort-by-Key (b) PageRank (c) KMeans

Fig. 5. DAGs of selected applications.

for better readability. The use of a declarative, logic-based modeling approach
facilitates this automatic process, since the formulae are easily generalizable to
any kind of DAG structure. Further details on the D-VerT toolchain can be
found in [5].

We selected three well-known applications to perform the analysis and eval-
uate it against realistic use cases: the simple SortByKey operation; the graph
processing algorithm PageRank [8]; and the clustering procedure K-Means [14].
As depicted in Fig. 5, the execution DAG of the three use cases have different
size and level of complexity. To evaluate the model with respect to a variety
of scenarios, for each one of these applications we selected six different settings
in terms of both the configuration of the underlying cluster (i. e., two differ-
ent numbers of available cores for each cluster node), and the configuration of
the single application (i. e., three different dimensions of the input dataset and
same number of partitions used for each stage). Next, we performed a profil-
ing activity that consisted in launching several times the different applications
using two different versions of Spark: one, called from now on sequential Spark,
was slightly modified by us and the other was the regular version of Spark (i.e.,
vanilla Spark). For both cases we collected the timing information of all the
stages and tasks. Our modifications in sequential Spark force the scheduler to
launch all the stages sequentially (i. e., no more than one stage can be simultane-
ously in execution), allowing us to cleanly isolate the durations of each stage and
its tasks, without the noise introduced by the concurrent execution of multiple
stages. These durations were used to automatically generate the configuration
files, therefore to instantiate the formal model in its different settings. On the
other hand, the average execution times of the entire applications collected on
vanilla Spark (from now on avg(texec)), were used as the reference against which

On the Timed Analysis of Big-Data Applications 327

mfdmfdavg(texec)avg(texec)

Fig. 6. Times and outcomes of the verification tasks on the SortByKey use case (22
cores, 100 tasks and 300M input records) by providing different deadlines.

to compare the results of the analysis. We performed various verification tasks
on each instance of the formal model to identify, for each configuration, the esti-
mated set of feasible deadlines FD. Once the set was identified, we compared
the minimum feasible deadline (mfd) found with the corresponding avg(texec),
and we used the difference between them to evaluate the accuracy of the model
(expressed as the percentage error err).

The first use case we considered is SortByKey . After an extensive analysis by
means of multiple verification runs (each of them with a different deadline), we
were able to identify the feasibility sets and the minimum feasible deadline, con-
sidering the granularity of the milliseconds. Figure 6 shows a comprehensive view
of the verification tasks, performed on a single setting of the use case, with their
outcomes (feasible/unfeasible) and the corresponding verification times. The mfd
found was 84120 ms, therefore all the deadlines higher than that are feasible. On
the other hand, deadlines of 84119 and below resulted unfeasible. Since, for this
setting, avg(texec) was 82133 ms, the percentage error err is about 2.4%. This
analysis highlighted a strong dependency of the verification time on the close-
ness of the analyzed deadline to the minimum feasible deadline. As reported
in Fig. 6, verification time is in the order of the seconds for all deadlines lower
than 75000 ms or greater than or equal to 84120 ms (mfd), whereas it grows
exponentially for increasing deadline values between 75000 ms and 84119 ms,
peaking at around 78 h for 84117 ms. The notable growth is therefore registered
for those deadlines that resulted unfeasible, but close to mfd . This pattern has
been observed also for the other, more complex, applications we analyzed. How-
ever, since the verification times grow significantly with the size of the DAG (the
analysis for feasible deadlines is generally completed in the order of minutes for
PageRank and in the order of hours for K-Means) the time needed to perform
the verification of some unfeasible deadlines becomes unmanageable in practice.
Therefore, since there is such a pronounced difference between the times for fea-

328 F. Marconi et al.

Table 1. Experimental results (full experimental data available at 10.5281/zenodo.
1162853).

app cores tasks recordsin avg(texec) (ms) mfd (ms) err

SortByKey 12 100 260M 88386 91384 3.3%

280M 100769 98420 2%

300M 107054 105443 1.5%

22 100 260M 74919 72904 2.6%

280M 77884 78500 0.7%

300M 82133 84120 2.4%

PageRank 28 128 200M 60028 62500 4%

300M 87787 94000 7%

400M 116810 120000 2%

48 128 200M 48805 47000 3.6%

300M 66636 65100 2.3%

400M 88320 86000 2.6%

K-Means 24 18 80M 77651 79000 1.7%

120M 103492 107000 3%

160M 131600 140000 6%

32 24 80M 64565 63000 2%

120M 81299 82000 1%

160M 101483 103000 1%

sible results and the times for unfeasible deadlines in the neighborhood of mfd ,
we pursued the following heuristic approach: for each configuration we started
by running the analysis for trivially feasible deadlines and then proceeded “back-
wards” (i. e., by lowering the deadline) until a strong discontinuity was found in
the verification time. Based on the times registered for each feasible deadline,
we defined some timeouts and concluded that a given deadline was reasonably
not feasible if no result was returned by the tool within those timeouts. Table 1
shows the experimental findings of the validation activity for the three appli-
cations. Each row represents a different application setting, characterized by a
specific number of cores in the cluster, a number of tasks (i. e., partitions) for
each stage, and a dimension of the input dataset in terms of number of records
(recordsin). The measures of interests are the previously defined avg(texec), mfd
and the related percentage error err .

Results show that adherence of the model to the actual execution times with
vanilla Spark (i. e., of mfd to avg(texec)) is not particularly affected by changes
in the use case type and configuration. In fact, err is at most 4% across all 6
settings of SortByKey , at most 7% for PageRank and at most 6% for K-Means.

https://doi.org/10.5281/zenodo.1162853
https://doi.org/10.5281/zenodo.1162853

On the Timed Analysis of Big-Data Applications 329

5 Related Works

To the best of our knowledge, no approaches exist in literature for the formal
verification of Spark applications. For this reason, we cannot directly compare
against other works having the same focus. In the following, we present other
techniques, in some cases applied to distributed systems, that tackle problems
somewhat similar to ours, starting with general scheduling problems.

The analysis of temporal properties of scheduling algorithms and of dis-
tributed systems has been addressed with positive outcomes by using Timed
Automata (TA, [2]) and Hybrid Automata (HA, [12]). In [10], TA are used for
the analysis of the task scheduling of Ada programs, in systems equipped with
one CPU that executes both the scheduler and the Ada code. Unlike in stan-
dard schedulability analysis (e.g., [16]), the use of TA—and, similarly, the use
of CLTLoc in the present work—allows for capturing relevant properties of real
implementations (e.g., resource constraints), and for the relaxing of some restric-
tions on the software structure, that are needed for the analysis. A timed analysis
for distributed systems has been addressed in [7] by means of HA. HA model the
execution of concurrent tasks on the available CPUs and the precedence relation
among the tasks, which is specified by a graph of dependencies. The tasks are
indivisible units of work with a fixed duration, they have a scheduling priority
and can be preempted. [13] also uses TA to model distributed real-time appli-
cations. A distributed application in [13] consists of several concurrent tasks,
each one running on a single processor and communicating with the others via
a network. TA are used to model the interaction among the tasks, the network
(sender and receiver component) and the arbiter of the communication channel.
Both the schedulability of the tasks and the application response-time are ana-
lyzed by using a state-of-the art model-checker for TA and for HA. Our model
considers DAG of stages similar to the graph of dependencies in [7]. However,
whereas tasks in [7,13] are atomic and are executed on a single CPU each, the
execution of a Spark stage can be spread over different CPUs, complicating the
model.

Operations Research (OR) offers a wide range of techniques for schedul-
ing and planning problems. TA and their extensions are very effective tools
to tackle non-standard problems that cannot be solved by using standard OR
techniques. [4] presents Priced TA (PTA), which extend TA with costs and are
suitable for modeling scheduling problems with optimal goals. PTA allow for
computing the minimum optimal cost of reaching a target configuration. Three
standard problems of OR are dealt with PTA and the experimental results, com-
paring the standard MILP-based approaches with the PTA algorithm, indicate
that PTA are competitive and, in some cases, faster. The Job-shop problem,
that [4] addresses by means of PTA, and the extension with bounded delay
uncertainty are addressed in [1] by using standard TA. The experimental results
again demonstrate that the TA-based procedures applied to the problem can
provide better outcomes, that is, more efficient schedules, than those produced
with standard OR algorithms.

330 F. Marconi et al.

As shown in [6], CLTLoc has the same expressive power as TA. Hence, in
principle any problem solved through TA can also be solved through CLTLoc,
and vice-versa. The CLTLoc-based approach that we pursue in this work allows
for a high degree of modularity in the generation of the formal model from its
high-level description, as it is easy to focus on the various aspects of the model
(e.g., precedences among stages, timing and resource constraints) one at a time—
each aspect corresponding to a different set of logic constraints. In addition, as
mentioned in Sect. 1, CLTLoc is the basis for a unifying approach to the modeling
of Big Data frameworks which tackles applications of different natures (stream
vs. batch processing).

In the domain of the analysis of Big Data frameworks, simulation, rather than
formal verification is usually the approach of choice. For example, [17] consid-
ers the problem of computing the response-time of a Spark application through
simulation of a Stochastic Petri Net (SPN) model. The experimental results
demonstrate that the error affecting the simulation is low (less than 10%) when
the simulated application has a high number of tasks and cores (e.g., more than
12 cores and 200 tasks). For some configurations, however, an error bigger that
30% is possible. In [9] an ad-hoc fast event driven simulator, called dagSIM,
has been used to simulate applications modeled as DAGs of nodes represent-
ing the execution of batches of tasks whose average duration is described with a
stochastic distribution. DagSIM predicts the application response time by means
of a resolution procedure which is faster than the one based on SPN. However,
simulation-based approaches—unlike verification-based ones—cannot offer guar-
antees about the feasibility or not of a desired deadline, and in particular they
cannot be used to determine the unfeasbility of a deadline.

As already mentioned in the introduction, an analogous—temporal logic-
based—approach was followed in [15] for the analysis of Storm applications.
This work and [15] are based on the same automated mechanism implemented
in the D-VerT tool. However, the formal model presented in [15] represents a
different computation paradigm, namely, the stream processing, by means of
CLTLoc extended with discrete unbounded counters. The analyses performed in
the two works are different as well: [15] aims at finding ultimately periodic traces
witnessing the presence of bottlenecks in the application, while this work focuses
on finding finite traces proving the feasibility of given deadlines.

6 Conclusion

This work proposed an approach and a prototype tool to formally verify the
feasibility of satisfying constraints over the response time of Spark applications
given a fixed amount of computational resources. An experimental evaluation
shows promising results in terms of accuracy of the model with respect to real
Spark executions on different use cases and settings.

On the Timed Analysis of Big-Data Applications 331

Possible future works include: (i)undertaking a thorough analysis of the com-
plexity of the model and its effects on the verification times; (ii) improvements of
the verification performance by optimizing the formal model; (iii) a refinement
of the profiling phase aimed at providing good estimates of the execution times
against changes in the number of cores and partitions of the input dataset.

Acknowledgment. This work has been partially supported by the DICE project
(Horizon 2020 project no. 644869) and by the GAUSS national research project (MIUR,
PRIN 2015, Contract 2015KWREMX).

References

1. Abdeddaim, Y., Asarin, E., Maler, O.: Scheduling with timed automata. Theoret.
Comput. Sci. 354(2), 272–300 (2006)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

3. Baresi, L., Pourhashem Kallehbasti, M.M., Rossi, M.: How bit-vector logic can help
improve the verification of LTL specifications over infinite domains. In: Proceedings
of 31st Annual ACM Symposium on Applied Computing, pp. 1666–1673 (2016)

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced
timed automata. SIGMETRICS Perform. Eval. Rev. 32(4), 34–40 (2005)

5. Bersani, M., Erascu, M., Marconi, F., Rossi, M.: DICE verification tool - final
version. Technical report, DICE Consortium (2017). www.dice-h2020.eu

6. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

7. Bradley, S., Henderson, W., Kendall, D.: Using timed automata for response time
analysis of distributed real-time systems. In: 24th IFAC/IFIP Workshop on Real-
Time Programming, pp. 143–148 (1999)

8. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In:
Proceedings of International World-Wide Web Conference (WWW), pp. 107–117
(1998)

9. Brito, A., Ardagna, D., Blanquer, I., Evangelinou, A., Barbierato, E., Gribaudo,
M., Almeida, J., Couto, A.P., Braga, T.: D3.4 EUBra-BIGSEA QoS infrastructure
services intermediate version. Technical report, 3 July 2017

10. Corbett, J.C.: Timing analysis of ada tasking programs. IEEE Trans. Softw. Eng.
22(7), 461–483 (1996)

11. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf.
Comput. 205(3), 380–415 (2007)

12. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P.
(eds.) Verification of Digital and Hybrid Systems. NATO ASI Series (Series F:
Computer and Systems Sciences), vol. 170, pp. 265–292. Springer, Berlin (2000).
https://doi.org/10.1007/978-3-642-59615-5 13

13. Krakora, J., Waszniowski, L., Pisa, P., Hanzalek, Z.: Timed automata approach
to real time distributed system verification. In: Proceedings of IEEE International
Workshop on Factory Communication Systems, pp. 407–410, September 2004

14. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of Berkeley symposium on mathematical statistics
and probability, vol. 1, pp. 281–297 (1967)

http://www.dice-h2020.eu/
https://doi.org/10.1007/978-3-642-59615-5_13

332 F. Marconi et al.

15. Marconi, F., Bersani, M.M., Erascu, M., Rossi, M.: Towards the formal verifica-
tion of data-intensive applications through metric temporal logic. In: Ogata, K.,
Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 193–209. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47846-3 13

16. Palencia, J.C., Harbour, M.G.: Schedulability analysis for tasks with static and
dynamic offsets. In: Proceedings of IEEE Real-Time Systems Symposium, pp. 26–
37, December 1998

17. Perez, D., Bernardi, S., Merseguer, J.Z., Requeno, J.I., Casale, G., Zhu, L.: DICE
simulation tools - final version. Deliverable. http://www.dice-h2020.eu/resources/

https://doi.org/10.1007/978-3-319-47846-3_13
http://www.dice-h2020.eu/resources/

Tuning Permissiveness of Active Safety
Monitors for Autonomous Systems

Lola Masson1(B), Jérémie Guiochet1,2, Hélène Waeselynck1, Kalou Cabrera1,
Sofia Cassel3, and Martin Törngren3

1 LAAS-CNRS, CNRS, Toulouse, France
{lola.masson,jeremie.guiochet,helene.waeselynck,kalou.cabrera}@laas.fr

2 Université de Toulouse, UPS, Toulouse, France
3 KTH, Stockholm, Sweden

{sofia.cassel,martin}@md.kth.se

Abstract. Robots and autonomous systems have become a part of our
everyday life, therefore guaranteeing their safety is crucial. Among the
possible ways to do so, monitoring is widely used, but few methods exist
to systematically generate safety rules to implement such monitors. Par-
ticularly, building safety monitors that do not constrain excessively the
system’s ability to perform its tasks is necessary as those systems oper-
ate with few human interventions. We propose in this paper a method
to take into account the system’s desired tasks in the specification of
strategies for monitors and apply it to a case study. We show that we
allow more strategies to be found and we facilitate the reasoning about
the trade-off between safety and availability.

1 Introduction

Autonomous systems are becoming an increasing part of our daily lives: medical
robots, self-driving cars, and industrial robots are good examples. It is critical
to be able to guarantee the safety of such systems, since they operate indepen-
dently in the vicinity of humans. One way to guarantee safety of autonomous
systems is to attempt to specify them completely and reason about any dan-
gerous behavior before deployment. This, however, requires that they behave
predictably in any situation, which is not true as the systems interact with other
humans or autonomous systems, in unstructured environments. In these cases,
monitoring is an attractive option for guaranteeing safety. It consists in dele-
gating the safety aspect to an independent component. It facilitates the task
since a detailed specification of all possible behaviors is not necessary. A coarse
granularity is sufficient to distinguish between safe and unsafe behavior. A safety
monitor watches the system in operation, and intervenes as soon as potentially
dangerous behavior is detected, typically by inhibiting certain actions, or by
triggering corrective actions.

Such an approach, that only studies unsafe behaviors, may however restrict
the system to the point where it cannot function in a meaningful way, i.e. avail-
ability suffers. For example, a robot having to transport objects might be kept
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 333–348, 2018.
https://doi.org/10.1007/978-3-319-77935-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_23&domain=pdf

334 L. Masson et al.

standing still, or prohibited from dropping or picking up anything. The system
might be safe, but useless for its purposes.

In this paper, we address the problem of monitoring autonomous systems
while avoiding too conservative restrictions on behavior. This refers to the clas-
sical trade-off between safety and availability (readiness for usage). The system’s
availability depends on what we call the monitor’s permissiveness, i.e. its ability
to let the system reach functional states. We specify permissiveness by identify-
ing the behaviors that are essential to the system’s function. The specification
is introduced as an extension to SMOF [15], a Safety Monitoring Framework we
developed for the synthesis of safety strategies. It aims to facilitate the tuning of
the monitor’s permissiveness and the reasoning about how safety and availability
interrelate in the context of a particular system.

The paper is organised as follows: in Sect. 2, we give an overview of related
work; we detail the background of this work in Sect. 3; in Sect. 4, we present how
we express functionality requirements for the synthesis of safety strategies. We
apply this method to an example in Sect. 5. We conclude in Sect. 6.

2 Related Work

Safety monitoring is a common mechanism used as part of fault-tolerance
approaches [4] usually implemented as an independent mechanism that forces
the system to stay in a safe state. This principle has been used in robotics under
different names such as safety manager [18], autonomous safety system [19],
guardian agent [7], or emergency layer [9].

In all these works, the specification of the safety strategies (i.e. the rules that
the monitor follows to trigger safety interventions) is essentially done ad hoc:
the user would manually choose what is the best (combination of) action(s) to
trigger to avoid a risk, and when to do so. Other authors provide methods to
identify safety invariants either from a hazard analysis [21] or from execution
traces [11]. Some specify safety strategies in a DSL (Domain Specific Language)
in order to generate code [3,10]. But none of them offers a complete approach
to identify invariants from hazards and formally derive the safety strategies. In
contrast, our previous work [14,15] provides a complete safety rule identification
process, starting from a hazard analysis using the HAZOP-UML [8] technique
and using formal verification techniques to synthesize the strategies.

Safety monitoring is related to runtime verification and property enforce-
ment. Runtime verification [5,12] checks for properties (e.g., in temporal logic)
by typically adding code into the controller software. Property enforcement [6]
extends runtime verification with the ability to modify the execution of the con-
troller, in order to ensure the property. These techniques consider a richer set
of property classes than safety ones, and, most importantly, can be tightly cou-
pled to the system. It makes the underlying mechanisms quite different from the
external safety monitors considered in this paper which have to rely on limited
observation and intervention means. Though, the transparency property men-
tioned for example in [13,16] for the specification of runtime monitors is close

Tuning Permissiveness of Active Safety Monitors for Autonomous Systems 335

to our permissiveness property: the runtime monitor should not modify already
correct behaviors.

3 Baseline and Concepts

Our method to synthesize safety strategies for monitors is presented in [15]:
SMOF (Safety Monitoring Framework). We briefly explain the SMOF principles
below and introduce the motivation for the extension proposed in this paper.

3.1 Safety Invariants, Margins and States

As a first step of the process, one identifies a list of hazards that may occur during
the system’s operation, using the model-based hazard analysis HAZOP-UML [8].
From the list of hazards, one extracts those that can be treated by the monitor.
Those hazards are reformulated as safety invariants such that each hazard is
represented by the violation of an invariant. A safety invariant is a logic formula
over a set of observable variables, derived from sensor values. The formalization
of hazards as invariants may reveal the need for additional observation means,
like in [17] where the original system design was revised to add sensors.

A combination of observation values defines a system state, as perceived
by the monitor. If one of the safety invariants is violated, the system enters a
catastrophic state that is assumed irreversible. Each safety invariant partitions
the state space into catastrophic and non-catastrophic states as represented in
Fig. 1. The non-catastrophic states can in turn be partitioned into safe and
warning states, in such a way that any path from a safe state to a catastrophic
one traverses a warning state. The warning states correspond to safety margins
on the values of observations.

Fig. 1. System state space from the perspective of the monitor (Color figure online)

The monitor has means to prevent the evolution of the system towards the
catastrophic states: these means are a set of safety interventions (mostly based

336 L. Masson et al.

on actuators) made available to it. An intervention is modeled by its effect (con-
straints that cut some transitions) and preconditions (constraint on the state in
which it can be applied). Interventions are applied in warning states in order
to cut all the existing transitions to the catastrophic states, as shown in Fig. 1
by the red cross. The association of interventions to warning states constitutes
a safety strategy. For example, let us assume that the invariant involves a pred-
icate v < Vmax (the velocity should always be lower than Vmax). In order to
prevent evolution towards Vmax, the strategy will associate one or several inter-
vention(s) to warning states corresponding to a velocity higher than the threshold
Vmax − margin. The determination of the size of the margin involves a worst-
case analysis, accounting for the dynamics of the physical system, as well as for
the detection and reaction time of the monitor after the threshold crossing.

3.2 Safety and Permissiveness Properties

The safety strategy must fulfill two types of properties: safety and permissive-
ness properties. Both properties are expressed using CTL (Computation Tree
Logic) which is well suited for reachability properties. Safety is defined as the non
reachability of the catastrophic states. Permissiveness properties are intended
to ensure that the strategy still permits functionality of the system, or, in other
words maintains its availability. This is necessary to avoid safe strategies that
would constrain the system’s behavior to the point where it becomes useless (e.g.,
always engaging brakes to forbid any movement). SMOF adopts the view that
the monitored system will be able to achieve its tasks if it can freely reach a wide
range of states (e.g., it can reach states with a non zero velocity). Accordingly,
permissiveness is generically formulated in terms of state reachability require-
ments: every non-catastrophic state must remain reachable from every other
non-catastrophic state. We call it universal permissiveness. The safety strategy
may cut some of the paths between pairs of states, but not all of the paths.
In CTL, this is expressed as: AG(EF(nc state)), for each non-catastrophic state.
Indeed, EF specifies that the state of interest is reachable from the initial state,
and AG extends this to the reachability from every state. The user can also use
the simple permissiveness which merely requires the reachability from the initial
state: EF(nc state)). It is much weaker than the universal permissiveness as it
allows some of the monitor’s interventions to be irreversible: after reaching a
warning state in which the monitor intervenes, the system may be confined into
a subset of states for the rest of the execution. For example, an emergency stop
can permanently affect the ability of the system to reach states with a non zero
velocity.

3.3 SMOF Tooling

The SMOF tool support [2] includes the synthesis algorithm and a modelling
template to ease the formalization of the different elements of the model: the
behavior model with a partition into safe, warning and catastrophic states; the
available interventions modeled by their effect on observable state variables; the

Tuning Permissiveness of Active Safety Monitors for Autonomous Systems 337

safety and permissiveness properties. The template offers predefined modules, as
well as auto-completion facilities. For example, the tool automatically identifies
the set of warning states (having a transition to a catastrophic state). Also, the
permissiveness properties are automatically generated based on the identification
of non-catastrophic states. Finally, SMOF provides a synthesis tool based on the
model-checker NuSMV [1]. For this reason the NuSMV language is used for the
formalization and we will use the typewriter font to refer to it in the rest of the
paper. The SMOF synthesis tool relies on a branch and bound algorithm that
associates interventions to warning states and checks some criteria to evaluate if
the branch should be cut or explored. It returns a set of both safe and permissive
strategies for the given invariant to enforce (see [15] for details).

The formalization and strategy synthesis is done for each invariant separately.
Then a last step is to merge the models and to check for the consistency of the
strategies selected for the different invariants.

The SMOF method and tool have been applied to real examples of robots: an
industrial co-worker in a manufacturing setting [15], and a maintenance robot
in airfield [17]. Examples and tutorials can be found online [2].

3.4 On Tuning Permissiveness Properties

This paper revisits the notion of permissiveness, in order to address some limi-
tations of the generic definition adopted in SMOF. By default, SMOF requires
the universal permissiveness, which is a very stringent requirement. As a result,
the synthesis algorithm prunes any strategy that would cut all paths to a non-
catastrophic state, even though this specific state may be useless for the accom-
plishment of the functions of the system. To give an example, let us consider a
classical invariant stating that the system velocity should never reach a maximal
absolute value Vmax. The synthesis would reject any strategy preventing reach-
ability of warning states with values close to Vmax. But the cruise velocity of
the system, used to accomplish its functions, is typically much lower than Vmax

and Vmax − margin. Requiring the universal reachability of the warning states
is useless in this case, since getting close to Vmax is not a nominal behavior.
The system operation could well accommodate a safety strategy that forbids
evolution to close-to-catastrophic velocity values.

Suppose now that we do not find any solution respecting universal permissive-
ness. The user can choose to require the simple permissiveness. The requirements
would be dramatically weakened. We would accept strategies that permanently
affect the reachability of any non-catastrophic state, e.g., not only the close-to-
catastrophic velocity values but also the moderate ones.

From what precedes, it may seem that we could simply modify the generic
definition of permissiveness to require universal reachability of safe states only,
excluding warning states. However, this would not work for all systems, as
demonstrated by the maintenance robot studied in [17]. For this robot, some
warning states do correspond to a nominal behavior and are essential to
the accomplishment of the maintenance mission. More precisely, the robot is
intended to control the intensity of lights along the airport runways. The light

338 L. Masson et al.

measurement task is done by moving very close to the lights, which, from the
perspective of the anticollision invariant, corresponds to a warning state. Any
safety strategy removing reachability of a close-to-catastrophic distance to the
lights would defeat the very purpose of the robot.

Actually, there is no generic definition of permissiveness that would pro-
vide the best trade-off with respect to the system functions. We would need
to incorporate some application-specific information to tune the permissiveness
requirements to the needs of the system. This paper proposes a way to introduce
such custom permissiveness properties into SMOF, allowing more strategies to
be found and facilitating the elicitation of trade-offs in cases where some func-
tionalities must be restricted due to safety concerns.

4 Defining Custom Permissiveness Properties

The custom permissiveness properties are introduced by a dedicated state model,
focusing on the identification of the states that are essential to the system
functionalities (Sect. 4.1). The essential/not essential view is different from the
safe/warning/catastrophic one we have in the safety state model. We thus need
to bind together the functionality and safety models to reflect the fact that
they represent two orthogonal decompositions of the same system state space
(Sect. 4.2). Once this is done, custom permissiveness properties can be used as
a replacement for the generic ones: the synthesis tool will search for safe strate-
gies ensuring universal permissiveness with respect a subset of non-catastrophic
states, the ones identified as essential. In case ignoring the non-essential states
does not suffice to allow a strategy to be found, the user may consider whether
restricting one of the functionalities is feasible (Sect. 4.3). The whole approach
does not essentially change the principles of SMOF, which should facilitate its
integration into the existing toolchain (Sect. 4.4).

4.1 A Formal Model for the Permissiveness

We consider that a functionality is defined by a goal or objective that the system
was designed to achieve. For example, if the system is designed to pick up objects
and transport them, two of its functionalities could be “move from A to B” and
“pick up an object”. Some of the functionalities are not related to any of the
monitored variables, and therefore do not need to be considered.

To be used in the synthesis, we must model the permissiveness properties
associated to the identified functionalities. While generic permissiveness proper-
ties apply to all non-catastrophic states, we choose to express the custom ones as
the reachability of a subset of states, the ones that are essential to the system’s
functionalities.

The state model for the functionalities is defined as a set of variables parti-
tioned in classes of values of interest. For instance, let us consider the function-
ality f, which requires observable variable v (e.g., velocity, or position of a tool)

Tuning Permissiveness of Active Safety Monitors for Autonomous Systems 339

to reach a given value Vreq (e.g., cruise velocity, vertical position) with some tol-
erance δ. The domain of the variable v would be partitioned into three classes:
0 corresponding to values lower than Vreq − δ; 1 to values in [Vreq − δ, Vreq + δ];
2 to values greater than Vreq + δ.

Let vf : {0, 1, 2} be the abstract variable encoding the partition from the
point of view of the functionality. The SMOF template provides a predefined
module to express the continuity constraints on the evolution of the variables
values. For example, the velocity cannot jump from 0 to 2 without traversing
the nominal range of values. Generally speaking, the modeling can reuse the
syntactic facilities offered for the safety model, also defined in terms of observable
variables, classes of values of interest and evolution constraints.

The purpose of the functionality model is to allow the user to conveniently
specify sets of states that are essential to a given functionality. A set of states is
introduced by a predicate req over a variable or a set of variables. In the above
example, the user would specify that the functionality requires vf = 1. Each func-
tionality may introduce several requirements, i.e., several essential sets of states.
For instance, a “move” functionality could have two separate requirements, one
for cruise motion and one for slow motion.

The list of req predicates can then be extracted to produce permissiveness
properties of the form: AG(EF(req)). We choose to reuse the same template as
the one for universal permissiveness. However, we now require the reachability
of sets of states, rather than the reachability of every individual state. For exam-
ple, we have no reachability requirement on states satisfying vf = 2, and may
accommodate strategies discarding some of the states vf = 1 provided that at
least one of them remains reachable.

The functionalities that would require another type of template are not con-
sidered yet, but so far the expressivity of this template has been sufficient to
model the considered functionalities.

4.2 Binding Together Invariants and Permissiveness

The permissiveness and the safety properties are defined using two different state
models. Some of the abstract variables used in those state models represent the
same physical observation, or dependent ones. To connect the invariants and
functionalities models, we have to bind their variables. Two types of bindings
can be used: physical dependencies (e.g., speed and acceleration), or the use of
the same observation with two different partitions.

In the first case, we specify the constraints on transitions (using the NuSMV
keyword TRANS) or on states (INVAR). For example, for observations of speed and
accelerations, we would write TRANS next(acc) = 0 → next(speed) = speed.
The NuSMV primitives next(acc) or next(speed) specify the value of acc or
speed after transitioning, i.e., if the acceleration is null, the speed cannot change.

In the second case, we need to introduce a “glue” variable to bind the differ-
ent partitions. This variable will be partitioned in as many intervals as needed.
The different intervals will be bound with a specification on the states. For

340 L. Masson et al.

example, let us assume we have an invariant and a functionality using a veloc-
ity variable, and the partition used for the invariant is vinv = {0, 1, 2} where
0 : stationary or slow, 1 : medium and 2 : high, and the one used for the func-
tionality is vf = {0, 1} where 0 : stationary or slow and 1 : medium or high. We
introduce a continuous “glue” variable partitioned as vglue = {0, 1, 2}. The bind-
ing through the “glue” variable is specified as follows:

INVAR vglue = 0 ↔ vinv = 0 & vf = 0;
INVAR vglue = 1 ↔ vinv = 1 & vf = 1;
INVAR vglue = 2 ↔ vinv = 2 & vf = 1.

Note that those two binding approaches, by adding constraints or glue vari-
ables, are also used in the standard SMOF process when merging models of
different safety invariants.

4.3 Restricting Functionalities

Custom permissiveness is weaker than SMOF’s generic permissiveness, since
we get rid of non essential reachability requirements. As a result, the strategy
synthesis tool may return relevant strategies that would have been discarded
with the generic version.

Still, it is possible that the custom requirements do not suffice, and that no
strategy is found by the tool. We want to make it possible that the user restricts
the functionalities, i.e., further weakens permissiveness. This may change the
system’s objectives, or increase the time or effort it takes to achieve the objec-
tives. Functionalities can be restricted in several ways. We consider three of them
in this paper. An important point is that the corresponding trade-offs are made
explicit in the model of functionalities.

First, one of the req predicates can be weakened to correspond to a larger
set of system states. The permissiveness property becomes AG(EF(req′)), with
req => req′. For example, the “move” functionality can be restricted to “move
slowly”, where req′ means that V only needs to reach a velocity Vreq′ lower than
the initially specified cruise one.

Second, it is possible to replace the universal permissiveness property by the
simple one, EF(req). This weak form of permissiveness was already offered by the
generic version of SMOF, but it applied to all individual states. With the custom
list of req predicates, the user can decide for which of these predicates simple
permissiveness would be acceptable. For example, the “move” functionality could
become impossible after some monitor’s intervention has been triggered, but
other functionalities like manipulating objects would have to be preserved.

The third way is to simply remove the functionality from the requirements.
For example a “manipulation while moving” functionality is no longer required.
Here, the corresponding CTL property is simply deleted, and the synthesis run
again without it. This ultimate restriction step can show the user that the
intended functionality is not compatible with the required level of safety. This
information can be propagated back to the hazard analysis step and used to
revise the design of the system or its operation rules. Again, not all of the

Tuning Permissiveness of Active Safety Monitors for Autonomous Systems 341

requirements may need a restriction. The functionalities that are not restricted
are guaranteed to remain fully available despite the monitor’s intervention.

4.4 Integration in SMOF Tooling

Integrating management of custom permissiveness into SMOF is possible without
any major change of the core toolset. Only the front-end would need to be
updated. The template would include an optional functionality modeling part
with syntactic sugar to introduce the list of req predicates. The auto-completion
facilities would allow for the generation of the CTL properties from the req
predicates and the desired level of permissiveness (universal, simple) for each
of them. The core modeling approach and strategy synthesis algorithm would
remain unchanged.

The SMOF front-end has not been updated yet. Still, we can use the current
version of SMOF for the experimentation, as presented in the next Section. We
manually entered the CTL properties (rather than just the req predicates) and
intercepted a generated command script to instruct the synthesis tool to use the
custom properties, not the generic ones.

5 Application to an Example

To explain the approach and study its usefulness we will consider a robotic
system composed of a mobile platform and an articulated arm (see Fig. 2). It is
an industrial co-worker in a manufacturing setting, sharing its workspace with
human workers. Its purpose is to pick up objects using its arm and to transport
them. To do so, the arm can rotate and a gripper at its end can open and
close to hold objects. Some areas of the workspace are prohibited to the robot.
The hazard analysis has been performed on this robot in a previous project [20]
and a list of 13 safety invariants has been identified. Among them, 7 could be
handled by the monitor [15]. Several ways to model those invariants have been
explored, considering various interventions and observation means. We defined
custom permissiveness properties for each of the models and detail here the three
invariants that give different results compared to generic permissiveness:

· SI1: the arm must not be extended when the platform moves with a speed
higher than smax;

· SI2: a gripped box must not be tilted more than α0;
· SI3: the robot must not enter a prohibited zone.

The models for the three mentioned invariants can be found online at [2].
For all of them, the synthesis took less than 0.5 s to compute on an Intel Core
i5-3437U CPU @ 1.90 GHz x 4 with 16 GB of memory.

342 L. Masson et al.

Fig. 2. Manipulator robot from Kuka Fig. 3. Partitioning of the sg variable

5.1 SI1: The Arm Must Not Be Extended when the Platform
Moves over a Certain Speed

Modeling. We consider the invariant SI1: the arm must not be extended when
the platform moves with a speed higher than smax. The available observations
are sinv, the speed of the platform; and ainv, the position of the arm. Note that
the variables names are extended with the index inv to specify that they are
the variables used for the invariant model. The observations are partitioned as
detailed in Table 1. Considering the discrete representation of the variables, the
catastrophic state can be expressed as cata : sinv = 2 & ainv = 1 (high speed
with extended arm).

Table 1. Partitioning of the variables sinv and ainv

Speed of the platform Real speed interval Discrete variable

Low sinv < smax − m sinv = 0

Within the margin smax − m ≤ sinv < smax sinv = 1

Higher than the maximum allowed value sinv ≥ smax sinv = 2

Position of the arm Discrete variable

Not extended beyond the platform ainv = 0

Extended beyond the platform ainv = 1

To express the relevant permissiveness properties, we identify in the speci-
fications what functionalities are related to the invariant. Let us consider the
variables involved in SI1. The sinv variable is an observation of the speed
of the mobile platform, in absolute value. The system is supposed to move
around the workplace to carry objects, i.e., the speed must be allowed to reach
a minimal cruise speed value c smin, from any state. To model this function-
ality we introduce the sfct variable, which will be partitioned as showed in
Table 2. Note that the variables names are extended with the index fct to spec-
ify that they are the variables used for the functionalities model. This prop-
erty can be expressed following the template: cruise motion : AG(EF(sfct = 1)).

Tuning Permissiveness of Active Safety Monitors for Autonomous Systems 343

Table 2. Partitioning of the variables sfct and afct

Speed of the platform Real speed interval Discrete variable

Null or lower than the minimum cruise speed sfct < c smin sfct = 0

At the minimum cruise speed or higher sfct ≥ c smin sfct = 1

Position of the arm Discrete variable

Folded afct = 0

Extended beyond the platform afct = 1

The system must also be able to stop or move slowly, thus another functional-
ity is expressed: slow motion : AG(EF(sfct = 0)). Also, the ainv variable models
whether the manipulator arm is extended beyond the platform or not. To han-
dle objects, the arm must be allowed from any state to reach a state where the
arm is extended beyond the platform, and a state where the arm is folded. We
introduce the variable afct which is partitioned as showed in Table 2. We have
arm extension : AG(EF(afct = 1)) and arm folding : AG(EF(afct = 0)).

The speed value and arm position are observed in both the invariant model
(sinv and ainv) and the functionalities model (sfct and afct). We need to make
their evolution consistent. To do so, we introduce glue variables, sg and ag.

For the speed, we have two different partitions as presented in Fig. 3, one for
sinv (with discrete values {0, 1, 2}) and one for sfct (with discrete values {0, 1}).
The resulting glue variable sg will then have four values as presented in Fig. 3.
We thus have the formal definition:

INVAR sg = 0 ↔ sinv = 0 & sfct = 0;
INVAR sg = 1 ↔ sinv = 0 & sfct = 1;
INVAR sg = 2 ↔ sinv = 1 & sfct = 1;
INVAR sg = 3 ↔ sinv = 2 & sfct = 1.

For the arm variable, it is much simpler:

INVAR ag = 0 ↔ ainv = 0 & afct = 0;
INVAR ag = 1 ↔ ainv = 1 & afct = 1.

Additionally, we have to provide a model of the interventions of the monitor.
Let us consider that two interventions are available: the brakes can be triggered
and affect the speed, and the extension of the arm can be blocked. Concerning
the braking intervention, it can be applied at any time but will only be efficient
(i.e. prevent the reachability of sinv > smax) if it is engaged when the speed
threshold smax − m has just been crossed. Indeed, the size of the margin is chosen
precisely to have time to brake before reaching the undesired value. For the
intervention blocking the arm, its effect is to block the extension and it can only
be applied if the arm is not already extended (see definitions in Table 3).

Results. We compare in this section the results obtained without and with
the approach through the definition of custom permissiveness. To graphically

344 L. Masson et al.

Table 3. Interventions definition for SI1

Name Precondition Effect

Brake sinv = 0 &
next(sinv) = 1

next(sinv) = sinv − 1

Block arm ainv = 0 next(ainv) = 0

Table 4. Interventions definition for
SI2

Name Precondition Effect

Brake d = 2 &
next(d) = 1

next(vinv) = 0

describe the strategies, we represent the invariant as a state machine. In the
first case, we use the generic permissiveness, i.e., the reachability of every non-
catastrophic state (the states {safe1, safe2, w1, w2, w3} in Fig. 4), from every
other non-catastrophic state. Only one minimal strategy (no useless interven-
tions) is both safe and permissive. It is found by SMOF and represented in
Fig. 4.

safe1

si < smax − m

ai = 0 w1

smax − m < si < smax

block arm

w2

si > smax

block arm

safe2ai = 1 w3

brake
cata

Fig. 4. Single strategy synthesized for
the invariant SI1 with generic permis-
siveness properties.

safe1

si < smax − m

ai = 0 w1

smax − m < si < smax

brake

w2

si > smax

safe2ai = 1 w3

brake
cata

Fig. 5. Additional strategy synthesized
for the invariant SI1 with the custom
permissiveness properties.

In the second case, we replace the generic permissiveness with the use of
the custom permissiveness properties cruise motion, slow motion, arm folding and
arm extension specified before. We only require the reachability of the states
{safe1, safe2}. After running the synthesis, in addition to the previous strategy
we have a strategy only using the braking intervention (see Fig. 5). This can be
preferable in some cases, as the use of the arm is then never impacted and even
if the monitor triggers the brakes the system can keep manipulating objects.
This strategy couldn’t be found with the generic permissiveness as it removes
the reachability of w2.

The custom permissiveness requirements may allow to synthesize more strate-
gies, like in the previous example, or even to synthesize strategies for problems
that had no solution with the generic permissiveness. Indeed, we require the
reachability of a reduced set of states, therefore more strategies can be found.

Tuning Permissiveness of Active Safety Monitors for Autonomous Systems 345

5.2 SI2: A Gripped Box Must Not Be Tilted More Than α0

For the initial model presented in [15], the monitor could observe the presence
of a box (inferred through the position of the robot’s arm in the workspace and
the position of the gripper), and the angle of rotation of the arm. No strategy
was found. Indeed, the monitor only could brake the arm (prevent its rotation)
and no control was possible on the gripper. The monitor would thus not be able
to prevent the system from grabbing a box with the gripper already tilted more
than α0. We chose to reformulate the invariant as SI ′

2: a gripped box must not
be tilted mode than α0 if the robot is outside of the storage area. The industrial
partner indicated that dropping a box (tilt it over α0) in the storage area is not
that dangerous as it would fall from a low height.

As an alternative solution to ensure SI2, we also explored the effect of an
additional intervention: the monitor can lock the gripper (prevent it from clos-
ing). But the automated synthesis with the generic permissiveness failed to
return any strategy. We now revisit this model by specifying custom permis-
siveness properties for a manipulation functionality (carrying a box at a low
rotation angle). Using the custom permissiveness, the tool successfully synthe-
sizes a strategy. It combines the braking of the arm and the lock of the gripper
to maintain the invariant while permitting functionality.

5.3 SI3: The Robot Must Not Enter a Prohibited Zone

Modeling. The considered invariant is: SI3: the robot must not enter a prohib-
ited zone. The observation used is d, the distance to the prohibited zone. The
distance variable is partitioned according to the concept of margin: d : {0, 1, 2},
0 representing the robot into the prohibited zone, 1 the robot close to the pro-
hibited zone and 2 the robot far from the prohibited zone. According to this
partition, the catastrophic state can be expressed as cata : d = 0.

The only available intervention here is the braking intervention, which stops
the robot completely. To model this intervention, we introduce a velocity variable
vinv, partitioned as follows: vinv : {0, 1} where 0 represents the robot stopped
and 1 the robot moving. A dependency between the distance and the velocity
variables is specified as TRANS next(vinv) = 0 → next(d) = d, i.e., the distance
cannot change if the robot does not move. The braking intervention is only
effective under the precondition that the distance threshold to the prohibited
zone has just been crossed, and affects the velocity variable. This intervention is
modeled as shown in Table 4.

In this case, for the functionalities we just need to specify that the
robot needs to reach a state where it is moving, and a state where it is
stopped. We model the custom permissiveness with move : AG(EF(vfct = 1))
and stop : AG(EF(vfct = 0)) where vfct represents the robot moving or stopped.
This variable is directly bound to the vinv variable with a glue variable vg as:

INVAR vg = 0 ↔ vinv = 0 & vfct = 0;
INVAR vg = 1 ↔ vinv = 1 & vfct = 1.

346 L. Masson et al.

Results. The synthesis of strategies with the braking intervention and the move
and stop functionalities does not give any result. Applying the brakes until the
system is stopped violates the permissiveness property associated to the move
functionality. The system is stopped close to the prohibited zone and cannot ever
move again, i.e., the monitor’s intervention is irreversible. In term of automata,
we reached a deadlock state. In order to guarantee safety and synthesize a strat-
egy, we need to either change the interventions or accept a restriction of the
functionality as described in Sect. 4.3. In our case, we do not have any other
intervention, we thus need to restrict the functionality.

We can express the restriction as follows: we accept the intervention of the
monitor to be irreversible, but we still want the functionality to be fully available
before the intervention of the monitor. We have the following resulting permis-
siveness property: restricted move : EF(vfct = 1). The property for stop remains
unchanged. With the restricted permissiveness property, the synthesis generates
one strategy which is modeled in Fig. 6.

safe

d = 2

w

d = 1

brake

cata

d = 0

Fig. 6. Strategy synthesized for the invariant SI3 with restricted functionality.

As we can see, the w state is a deadlock: the system cannot reach any other
state from this state. It means that if the robot ever gets too close to a prohibited
zone, it will be stopped by the monitor and an intervention of the operator will
be needed to continue the mission. The safety is guaranteed by this strategy.
Specifying the restriction of functionalities highlights the impact of the monitor
intervention on the system ability to function, which was not possible with the
use of generic simple permissiveness.

6 Conclusion and Perspectives

In this paper, we have described an approach to specify safety monitors for
robots, using and extending the SMOF monitoring framework. We overcome an
overly stringent definition of the monitor’s permissiveness in proposing a custom
definition of permissiveness according to the system’s functionalities (the behav-
iors necessary to fulfill its purposes). The custom permissiveness properties are
expressed following a simple template. We require the reachability of a reduced
set of states, therefore, more strategies can be synthesized. In the studied exam-
ple, the proposed solution provided a new strategy only requiring the use of
one intervention instead of two. Also, a problem which had no solutions with a
generic definition of permissiveness properties had one with custom properties.

Tuning Permissiveness of Active Safety Monitors for Autonomous Systems 347

Whenever it is not possible to synthesize a safety strategy, we propose an
iterative design strategy: we give three ways to adapt functionalities by weak-
ening the permissiveness properties following a template. In these situations,
some strategies can often still be found with slight and traceable changes of the
functionalities. The impact of the monitor on the robot’s operation can thus be
qualified and reasoned about.

Integrating the definition and use of custom permissiveness properties is now
possible with the existing SMOF tooling with a small change on the front-end.
The synthesis algorithm remains unchanged. In future work we wish to adapt
the template so that the user does not have to use the CTL logic.

We would also like to extend our approach to cover different types of mon-
itor interventions. We could search for multi-level strategies combining guaran-
teed and non-guaranteed interventions (having a probability of success, possibly
depending on the operational situation). The monitor would first try the inter-
ventions that would affect the system without compromising the mission (e.g.,
trajectory re-planing). In case of failure of those interventions, the least permis-
sive but guaranteed ones (e.g., emergency stop) would only be triggered in last
emergency.

References

1. NuSMV home page. http://nusmv.fbk.eu/. Accessed Nov 2017
2. Safety Monitoring Framework. LAAS-CNRS Project. https://www.laas.fr/

projects/smof. Accessed Dec 2017
3. Adam, S., Larsen, M., Jensen, K., Schultz, U.P.: Rule-based dynamic safety mon-

itoring for mobile robots. J. Softw. Eng. Robot. 7, 120–141 (2016)
4. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-

omy of dependable and secure computing. IEEE Trans. Dependable Secur. Com-
put. 1, 11–33 (2004)

5. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. Trans. Softw. Eng. 30, 859–872 (2004)

6. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transf. 14, 349–382 (2012)

7. Fox, J., Das, S.: Safe and Sound - Artificial Intelligence in Hazardous Applications.
AAAI Press/MIT Press, Palo Alto (2000)

8. Guiochet, J.: Hazard analysis of human-robot interactions with HAZOP-UML. Saf.
Sci. 84, 225–237 (2016)

9. Haddadin, S., Suppa, M., Fuchs, S., Bodenmüller, T., Albu-Schäffer, A., Hirzinger,
G.: Towards the robotic co-worker. In: Pradalier, C., Siegwart, R., Hirzinger, G.
(eds.) The 14th International Symposium on Robotics Research (ISRR2011), vol.
70, pp. 261–282. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19457-3 16

10. Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., Rosu, G.:
ROSRV: runtime verification for robots. In: Bonakdarpour, B., Smolka, S.A. (eds.)
RV 2014. LNCS, vol. 8734, pp. 247–254. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11164-3 20

11. Jiang, H., Elbaum, S., Detweiler, C.: Inferring and monitoring invariants in robotic
systems. Auton. Robot 41, 1027–1046 (2017)

http://nusmv.fbk.eu/
https://www.laas.fr/projects/smof
https://www.laas.fr/projects/smof
https://doi.org/10.1007/978-3-642-19457-3_16
https://doi.org/10.1007/978-3-642-19457-3_16
https://doi.org/10.1007/978-3-319-11164-3_20
https://doi.org/10.1007/978-3-319-11164-3_20

348 L. Masson et al.

12. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78, 293–303 (2009)

13. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. IJIS 4, 2–16 (2005)

14. Machin, M., Dufossé, F., Blanquart, J.-P., Guiochet, J., Powell, D., Waeselynck, H.:
Specifying safety monitors for autonomous systems using model-checking. In: Bon-
davalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp.
262–277. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2 18

15. Machin, M., Guiochet, J., Waeselynck, H., Blanquart, J.-P., Roy, M., Masson, L.:
SMOF - a safety monitoring framework for autonomous systems. IEEE Trans.
Syst., Man Cybern. PP, 1–14 (2016)

16. Martinelli, F., Matteucci, I., Morisset, C.: From qualitative to quantitative enforce-
ment of security policy. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012.
LNCS, vol. 7531, pp. 22–35. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33704-8 3

17. Masson, L., Guiochet, J., Waeselynck, H., Desfosses, A., Laval, M.: Synthesis of
safety rules for active monitoring: application to an airport light measurement
robot. In: 2017 First IEEE International Conference on Robotic Computing (IRC)
(2017)

18. Pace, C., Seward, D.: A safety integrated architecture for an autonomous safety
excavator. In: International Symposium on Automation and Robotics in Construc-
tion (2000)

19. Roderick, S., Roberts, B., Atkins, E., Akin, D.: The ranger robotic satellite servicer
and its autonomous software-based safety system. Intell. Syst. 19, 12–19 (2004)

20. SAPHARI: Safe and Autonomous Physical Human-Aware Robot Interaction.
Project supported by the European Commission under the 7th Framework Pro-
gramme. (2011–2015). www.saphari.eu. Accessed Nov 2017

21. Woodman, R., Winfield, A.F., Harper, C., Fraser, M.: Building safer robots: safety
driven control. Int. J. Robot. Res. 31, 1603–1626 (2012)

https://doi.org/10.1007/978-3-319-10506-2_18
https://doi.org/10.1007/978-3-642-33704-8_3
https://doi.org/10.1007/978-3-642-33704-8_3
http://www.saphari.eu

Sound Black-Box Checking
in the LearnLib

Jeroen Meijer(B) and Jaco van de Pol

Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{j.j.g.meijer,j.c.vandepol}@utwente.nl

Abstract. In Black-Box Checking (BBC) incremental hypotheses of a
system are learned in the form of finite automata. On these automata
LTL formulae are verified, or their counterexamples validated on the
actual system. We extend the LearnLib’s system-under-learning API for
sound BBC, by means of state equivalence, that contrasts the original
proposal where an upper-bound on the number of states in the system
is assumed. We will show how LearnLib’s new BBC algorithms can be
used in practice, as well as how one could experiment with different
model checkers and BBC algorithms. Using the RERS 2017 challenge we
provide experimental results on the performance of all LearnLib’s active
learning algorithms when applied in a BBC setting. The performance of
learning algorithms was unknown for this setting. We will show that the
novel incremental algorithms TTT, and ADT perform the best.

1 Introduction

There are many formal methods for analyzing the desired behavior of systems.
Examples include complex industrial critical systems, such as wafer steppers,
and X-ray diffraction machines. In these systems both liveness (something good
eventually happens), and safety (something bad never happens) are essential. It
is key for testers and developers of these systems to have easily usable tooling
available to investigate liveness and safety properties of systems. We present
an instance of such tooling known as Black-Box Checking (BBC), originally
developed by Peled et al. [23] which we implemented in the LearnLib. We show
its ease of use, why our method is sound even when not assuming an upper-
bound on the number of states in the System Under Learning (SUL), and show
how well it performs with an actual case study.

The essence of using formal methods is relating requirements on one hand,
and a system on the other. The requirements are often formulated with some
kind of temporal logic, such as Linear Temporal Logic (LTL). These formulas
then express the liveness and safety properties of the system. In formal methods
traditionally, the three main complementary methods are verification, testing,
and learning. Verification involves checking whether some abstract instance (e.g.

J. Meijer—Supported by STW SUMBAT grant: 13859.
J. van de Pol—Supported by the 3TU.BSR project.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 349–366, 2018.
https://doi.org/10.1007/978-3-319-77935-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_24&domain=pdf
http://orcid.org/0000-0002-1591-1195
http://orcid.org/0000-0003-4305-0625

350 J. Meijer and J. van de Pol

in the form of an automaton) of the specification adheres to a set of requirements.
Testing involves checking whether the system conforms to an abstract instance
of the specification. If such an abstract instance is modeled as an automaton,
Model-Based Testing (MBT) [30] is typically applied. Conversely, an abstract
instance can also be learned from a system. If such an instance is in the form
of an automaton, and the system can only be accessed as a black-box, then
this procedure is called Active Automata Learning (AAL) [27]. LearnLib [12]
is a toolset that contains a wide variety of AAL algorithms. Many of these
algorithms are inspired by Angluin’s famous L∗ algorithm [1]. Figure 1 provides
an overview of the aforementioned approaches. Figure 1 also shows the concept
of an alphabet. An alphabet contains the symbols in which requirements must be
written, and in what language the system communicates with the environment.
This means that to make the system perform an action an input must be sent
that is a symbol in the alphabet. To observe the reaction of the system, the
output must also be a symbol in the alphabet.

req. automation system

alphabet

testing

learning

modeling

verification

black-box checking

Fig. 1. Formal methods

Testing, verification, and learning
can be used in a complementary fash-
ion, because all of them have their
advantages. Verification is typically
done through model checking. Model
checking has been around for several
decades and efficient model checkers
are readily available. The advantage of
testing is a highly automated approach
to check whether a system conforms
to a specific model. There are many
mature MBT tools available, such as
JTorX [3]. From a practical perspective, learning an automaton from a system
is also quite straightforward, because the only requirements are a definition of
the alphabet, and some kind of adapter between a learning algorithm and sys-
tem. These adapters are often quite easy to build. The three methods also have
disadvantages. For example when verification is performed, it is known which
requirement hold on an abstract notion of the system, but it is unknown which of
those requirements also hold on the actual system. Testing has the disadvantage
that the abstract notion (e.g. an automaton) has to be built and maintained by
hand. Writing specifications for automata can be tedious, since it is often done
with specification languages that may be unfamiliar to the developers of the sys-
tem. Verifying requirements on an automaton that is obtained through learning
is also difficult. Because it can take quite a long time before learning algorithms
produce such an automaton. Even when such an automaton is obtained, verify-
ing requirements is not straightforward, because the learned automaton can be
incorrect. Black-box checking tries to alleviate those problems. It resolves the
need for maintenance of an abstract notion of a system so that requirements can
be directly checked on a system.

Sound Black-Box Checking in the LearnLib 351

When BBC is applied to industrial cases, the guess of an upper-bound on the
number of states to have a sound BBC procedure can be either dangerous (the
guess is too low), or unpractical (the guess is too high). We resolve this by allow-
ing the LearnLib to check for state equivalence in the SUL. Our implementation
in the LearnLib is Free and Open Source, this alleviates the current scarcity of
tool support. To investigate how efficient several active learning algorithms are
for BBC, we contribute the following.

– Two variations of black-box checking algorithms.
– A novel sound black-box checking approach that uses state equivalences,

instead of an upper-bound on the number of states in the SUL.
– A modular design, allowing new model checkers to be added easily, or smarter

strategies to be implemented for detecting spurious counterexamples.
– A thorough reproducible experimental setup, with several algorithms.

The rest of the paper is structured as follows. Section 2 provides preliminary
definitions and procedures for model checking, active learning and black-box
checking. Section 3 describes how one can check whether a SUL accepts an infi-
nite lasso-shaped word, and how this is implemented in the LearnLib. In Sect. 4
we discuss related work, such as other model checkers, active learning algorithms
and the LBTest toolset. Section 5 details the result of our case study, and Sect. 6
concludes our work.

2 Preliminaries

The LearnLib mainly contains AAL algorithms for DFAs and Mealy machines.
We provide a definition for both, and a definition for LTSs were multiple labels
per edge are allowed. Typically, model checkers, such as LTSmin verify LTL
properties on LTSs. Hence we provide LTL semantics for LTSs, and provide
straightforward translations from DFAs and Mealy machines to LTSs. We also
provide actual implementations of these translations in the LearnLib. Further-
more, this section gives a short introduction to active learning, and black-box
checking.

Definition 1 (Edge Labeled Transition System). An edge Labeled Tran-
sition System (LTS) is defined as a tuple L = 〈S, s0, δ, L, T, λ〉, where S is a
finite nonempty set of states, s0 ∈ S is the initial state, δ : S → 2S is the
transition function, L is the set of edge labels, T is the set of edge label types,
and λ : S × S → 2T×L: is the edge labeling function. A path in L is an infinite
sequence of states beginning in s0. The set of paths is Paths(L) = {s0s1 . . . ∈
Sω | ∀i > 0: si ∈ δ(si−1)}. A trace is an infinite sequence of sets of tuples of
labels: Traces(L) = {λ(s0, s1)λ(s1, s2) . . . ∈ (2T×L)ω | s ∈ Paths(L)}.
Definition 2 (Deterministic Finite Automaton). A Deterministic Finite
Automaton (DFA) is defined as a tuple D = 〈S, s0, Σ, δ, F 〉, where S is a
finite nonempty set of states, s0 ∈ S is the initial state, Σ is a finite alpha-
bet, δ : S × Σ → S is the total transition function, F ⊆ S is the set

352 J. Meijer and J. van de Pol

of accepting states. The language of D is denoted L(D). A DFA is Prefix-
Closed iff ∀s ∈ S,∀i ∈ Σ : δ(s, i) ∈ F =⇒ s ∈ F . In other words
∀σ1 . . . σn ∈ L(D) : σ1 . . . σn−1 ∈ L(D). The LTS of a non-empty, prefix-closed
DFA D is LD = 〈F, s0, δL, Σ, {letter}, λL〉, where δL(s) =

⋃
i∈Σ δ(s, i), and

λL(s, s′) = {(letter, l) | l ∈ Σ ∧ δ(s, l) = s′}.

s0start s1

a

b

(a) DFA

s0start s1

(letter,a)

(letter,b)

(b) LTS

Fig. 2. Example DFA

Example 1 (DFA). An example prefix-closed DFA for the regular expression
(ab)∗a? is given in Fig. 2a (the trap state is implicit). The LTS is given in Fig. 2b.
The traces in the LTS are: {{(letter, a)}{(letter, b)} . . .}.

Definition 3 (Mealy Machine). A Mealy machine is defined as a tuple M =
〈S, s0, Σ,Ω, δ, λ〉, where S is a finite nonempty set of states, s0 ∈ S is the initial
state, Σ is a finite input alphabet, Ω is a finite output alphabet, δ : S × Σ → S
is the total transition function, and λ : S × Σ → Ω is the total output function.
The LTS of M is LM = 〈S, s0, δL, Σ ∪ Ω, {input, output}, λL〉, where δL(s) =⋃

i∈Σ δ(s, i), and λL(s, s′) = {{(in, i), (out, o)} | i ∈ Σ ∧ δ(s, i) = s′ ∧ o ∈
Ω ∧ λ(s, i) = o}.

s0start s1

a/1

a/2

(a) Mealy machine

s0start s1

(in,a),(out,1)

(in,a),(out,2)

start

(b) LTS

Fig. 3. Example Mealy machine

Example 2 (Mealy Machine). An example Mealy machine is given in Fig. 3a.
The LTS is given in Fig. 3b. The traces of the LTS are: {{(in, a),
(out, 1)}{(in, a), (out, 2)} . . .}.

Throughout this paper the following assumptions are made.

– All DFAs reject the empty language (because an LTS thereof is not defined).
– All DFAs are prefix-closed (Mealy machines are by definition prefix-closed).
– All DFAs and Mealy machines are minimal (automata constructed through

active learning are always minimal; our definition of prefix-closed only holds
on minimal automata).

– All SULs are deterministic.

Sound Black-Box Checking in the LearnLib 353

2.1 LTL Model Checking

An LTL formula expresses a property that should hold over all infinite runs of
a system. This means that if a system does not satisfy an LTL property, there
generally exists a counterexample that is an infinite word which exhibits a lasso
structure.

Definition 4 (LTL). Given an LTS L = 〈S, s0, δ, L, T, λ〉, LTL formulae over
L adhere to the following grammar:1 φ :: = true | φ1∧φ2 | ¬φ | Xφ | φ1Uφ2 | t =
l, where t ∈ T , and l ∈ L. Given an LTL formula φ, all infinite words that satisfy
φ are given by the set Words(φ) = {σ ∈ (2T×L)ω | σ |= φ}, where the satisfaction
relation |= ⊆ (T × L)ω × LTL is defined inductively over φ by the following
properties. Let σ = A0A1A2 . . . ∈ (2T×L)ω, and σ[j . . .] = AjAj+1Aj+2 . . .:

σ |=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

true,

φ1 ∧ φ2 iff σ |= φ1 ∧ σ |= φ2,

¬φ iff σ �|= φ,

Xφ iff σ[1 . . .] = A1A2A3 . . . |= φ,

φ1 U φ2 iff ∃j ≥ 0: σ[j . . .] |= φ2 ∧ ∀0 ≤ i < j : σ[i . . .] |= φ1,

t = l iff (t, l) ∈ A0.

Finally L |= φ ⇐⇒ Traces(L) ⊆ Words(φ).

Example 3 (LTL for DFAs). An example LTL formula that holds for the LTS
L in Fig. 2b is: φ = X(letter = b). All the words that satisfy the formula are in
Words(φ) = {{(letter, a)}{(letter, b)} . . . , {(letter, b)}{(letter, b)} . . .}. Clearly,
Traces(L) ⊆ Words(φ), so L |= φ.

An example for Mealy machines is analogous. Finally we provide a formal
definition of a lasso as follows.

Definition 5 (Lasso). Given an LTS L, a trace σ ∈ Traces(L) is a lasso if it
can be split in a finite prefix p, such that p � σ, and a finite loop q, such that
pqω = σ.

2.2 Active Learning

For our purposes, active learning is the process of learning a sequence of hypothe-
ses H1H2 . . . HF , such that their behavior converges to some target automaton
(DFA, or Mealy machine). The key components are illustrated in Fig. 4.

1 Extensions and equivalences may be defined as in [2] (such as implication: =⇒ ,
globally G, and future: F).

354 J. Meijer and J. van de Pol

Learner

=

∈

SUL

Σ

HF

CE MQH

MQ

IO

Fig. 4. Active learning

Learner : an algorithm that can form
hypotheses based on queries and coun-
terexamples.

Equivalence oracle (=): an oracle that
decides whether two languages are equal.
The oracle decides between the language
of the current hypothesis of the learner,
and the language of the SUL. If the
languages are not equivalent the oracle
will provide a counterexample that distin-
guishes both languages. The language of
the SUL is a set of finite traces.

Membership oracle (∈): an oracle that decides whether or not a word is a member
of the language of the SUL.

SUL: In the case an active learning algorithm is applied to an actual system, a
SUL interface is used that can step through a system, to answer membership
queries. In the LearnLib, the SUL interface exposes the methods pre and post
that can reset a system (i.e. put it back to the initial state), step that stimu-
lates the system with one input symbol and returns the corresponding output,
canFork and fork that may fork a SUL, i.e. provide some copy (that behaves
identically to) a system. In active learning, this is used to pose queries in parallel.
We will show it is useful for performing state equivalence checks in BBC too.

Definition 6 (query). Given a DFA D = 〈S, s0, Σ, δ, F 〉, and a SUL, a query
is a function q : Σ∗ → B, where B = {⊥,�} denotes the set of Booleans, indi-
cating whether the input word is in the language of the SUL or not.

Example 4 (Active Learning). Given an alphabet Σ = {a, b}, and a DFA D to
be learned such that L(D) = (ab)∗a?, an active learning algorithm could first
produce the hypothesis D1 in Fig. 5a (the trap state is explicit), where the lan-
guage accepted is L(D1) = a∗. At some point the equivalence oracle generates
aa ∈ Σ∗, and performs the membership query q(aa) = ⊥. The equivalence oracle
recognizes that aa ∈ L(D1), and concludes it found a counterexample to D1. The
learner refines D1, and produces the final hypothesis in Fig. 5b. Note that this
example hides the complexity of actually refining the hypothesis. In the LearnLib
refining a hypothesis is done with the method Learner.refineHypothesis()
that accepts a query (counterexamples) and subsequently poses additional mem-
bership queries. More details on refining hypotheses are outside of the scope of
this paper; they can be found in e.g. [1,27].

Finding a counterexample to the current hypothesis by means of an equiva-
lence oracle is expensive in terms of time. In the worst-case the equivalence oracle
has to try out all words of maximum length n in Σn. Some smart equivalence
oracles (e.g. ones using the partial W-method [8]) can find a counterexample
quite quickly, if there is one. However, the number of membership queries to

Sound Black-Box Checking in the LearnLib 355

s0start s1

a

b

a

b

(a) Hypothesis 1

s0start s1

a

b

(b) Final hypothesis

Fig. 5. Active learning

find the counterexample is still orders of magnitudes larger than the size of the
hypothesis. E.g. any word of maximum length 2 that could serve as a counter
example for the first hypothesis in Example 4 is in {ε, a, b, aa, ab, ba, bb}. When
hypotheses grow larger, the set of possible counterexamples grows with an even
larger degree.

2.3 Black-Box Checking

Compared to active learning, BBC (Fig. 6) adds a procedure that checks a set
of properties {P1, . . . , Pn} on each hypothesis produced by the Learner. The
components added are as follows.

Learner ∈

∅

⊆|=

Σ

P1 . . . Pn

MQ

H

CEs

CE

MQ

MQ

CEs

⊥

Fig. 6. Black-box checking extension

Model checker (|=): an algorithm that
checks whether an hypothesis satisfies a
property. If the hypothesis does not sat-
isfy the property it provides some coun-
terexamples to the property. The lan-
guage of the counterexamples is a subset
of the language of the checked hypothesis.

Emptiness oracle (∅): an oracle that
decides whether the intersection of two
languages is empty. The oracle decides
between the language of the counterex-
amples given by the model checker, and
the language of the SUL. If the intersec-
tion is not empty it will provide a coun-
terexample, which is a word in the intersection and as such, a counterexample
to the property checked by the model checker.

Inclusion oracle (⊆): an oracle that decides whether one language is included in
another. The oracle decides whether the language of the counterexamples given
by the model checker is included in the language of the SUL. If the language is
not included, the oracle will provide a counterexample such that it is a word not
in the language of the SUL, and thus a counterexample to the current hypoth-
esis. One can view the combination of the model checker, emptiness oracle, and
inclusion oracle as a black-box oracle.

356 J. Meijer and J. van de Pol

In traditional active learning there are two kinds of sets of membership
queries; learning queries (done by the learner) and equivalence queries (done
by the equivalence oracle). With BBC there are two more types of queries;
inclusion queries (done by the inclusion oracle), and emptiness queries (done
by the emptiness oracle). The decision between performing inclusion queries,
and emptiness queries depends on whether the property can be falsified with
the current hypothesis. We generalize both to model checking queries. The key
observation why adding properties to verify to the learning algorithm can be
useful, follows from the observation that black-box checking queries are very
cheap compared to equivalence queries. Given an alphabet Σ, a naive equiva-
lence oracle has to perform arbitrary membership queries for words in Σ∗, while
the black-box oracle has to perform only membership queries for a subset of the
language of the current hypothesis.

Given that black-box checking queries are much cheaper than equivalence
queries a sketch of the black-box checking algorithm (Figs. 5 and 6) is as follows.
Initially (①) the learner constructs an hypothesis using membership queries (②).
This hypothesis is, together with a set of properties, given to the model checker
(➋). If the model checker finds counterexamples for a property and the cur-
rent hypothesis, the counterexamples are given to the emptiness oracle (➌). The
emptiness oracle performs membership queries (➍) to try to find a counterex-
ample from the model checker that is not spurious. If a real counterexample
for a property is found, it is reported to the user (➎), and the property is not
considered for future hypotheses. Otherwise, there could be a spurious one, and
thus the set of counterexamples are given to the inclusion oracle. The inclusion
oracle performs membership queries (➏) to find a counterexample for the current
hypothesis (➐), the learner performs membership queries (②) to complete the
next hypothesis. If the hypothesis is refined, the black-box oracle repeats steps
(➋, . . . , ➐) until the model checker can not find any new counterexample. In the
latter case we enter the traditional active learning loop (Fig. 4): the equivalence
oracle tries to find a counterexample for the current hypothesis (③) using mem-
bership queries (④). If a counterexample is found (⑤) the learner will construct
the next hypothesis using membership queries (②) and the black-box oracle is
put back to work. If the equivalence does not find a counterexample (④) the final
hypothesis is reported to the user. Note that a black-box oracle can be imple-
mented in two ways. The black-box oracle can first try to find a counterexample
for every property before finding a refinement for the current hypothesis. The
second implementation finds a counterexample for a single property and if such
a counterexample does not exist, find a counterexample for the current hypothe-
sis, before checking the next property. One may favor the first implementation if
there is a high chance a property can be disproved with the current hypothesis,
or refining the current hypothesis becomes quite expensive.

Example 5 (Black-Box Checking). Consider again the first hypothesis D, pro-
duced by an active learning algorithm from Fig. 5a, that accepts the language
a∗, and the LTL formula φ = X(letter = b), from Example 3. An LTL model
checker checks whether D |= φ. The model checker concludes D does not model

Sound Black-Box Checking in the LearnLib 357

φ, and produces the lasso aω as a counterexample. The model checker unrolls
the loop of the lasso an arbitrary number of 3 times, and provides the sin-
gleton language L(CEs) = {aaa} to the emptiness oracle (∅). The emptiness
oracle checks whether the intersection of the language of the SUL (L(SUL)),
and L(CEs) is empty. To this end, a membership query q(aaa) = ⊥ is per-
formed. This means indeed L(SUL) ∩ L(CEs) = ∅ and the property can not
be falsified. Next, L(CEs) is given to the inclusion oracle (⊆) that checks
L(CEs) ⊆ L(SUL). To this end the inclusion oracle performs the same member-
ship query q(aaa) = ⊥. The inclusion oracle concludes that L(CEs) �⊆ L(SUL),
and thus provides aaa �∈ L(SUL) as a counterexample to the learner. The essence
of this example is that Fig. 5a, can be refined without performing any equivalence
query. This example (like Example 4) hides to complexity of refining a hypoth-
esis too. Refining a hypothesis in the LearnLib in the context of BBC can also
be done with Learner.refineHypothesis().

3 Sound Black-Box Checking

The main contribution is (1.) the concept of sound BBC, that involves checking
whether a SUL accepts a lasso-shaped infinite word, and (2.) an overview of the
implementation in the LearnLib.

3.1 Validating Lassos with State Equivalence

Making the BBC procedure sound involves checking whether infinite lasso-
shaped words given as counterexamples by the model checker are accepted by
the SUL. Obviously in practice checking whether a SUL accepts an infinite word
is impossible. However, this can be resolved if one considers what goes on inside
a black-box system. We need to check if the SUL also exhibits a particular lasso
through its state space when stimulated with a finite word (that also produces
the same output as given by the model checker). This can be achieved by observ-
ing particular states the SUL evolves through when stimulated. Note that this
view of a SUL is still quite a black-box view; we only record the states, we do
not enforce the SUL to move to a particular state. We introduce a new notion
of a query, namely an ω-query, which in addition to the input word and output
of the SUL also contains which states need to be recorded, and which states
where actually visited. Compared with traditional BBC, sound BBC requires
an emptiness oracle for lassos, denoted ∅ω, and a membership oracle for lassos,
denoted ∈ω.

Definition 7 (w-query). Given a DFA D = 〈S, s0, Σ, δ, F 〉, and another set of
states Z from the SUL, an w-query is a function qω : Σ∗ × 2N → B × Z∗, where
B = {⊥,�} denotes the set of Booleans, indicating whether the input word is
in the language of the SUL or not, 2N the set of possible symbol indices after
which a state has to be recorded, and Z∗ a sequence of possible recorded states.
A definition for an ω-query for Mealy machines is analogous.

358 J. Meijer and J. van de Pol

Example 6 (ω-query). An example property that does not hold for the final DFA
D in Fig. 5b is φ = (letter = b). Whenever a model checker determines whether
D |= φ, it may give the lasso l = a(ba)ω as a potential counterexample for φ.
The language L(CEs) = {l} is given to the lasso emptiness oracle ∅ω, which
will unroll the loop of the lasso an arbitrary number of 3 times, and asks the
omega membership oracle (∈ω) for qω(abababa, {1, 3, 5}) = (�, s1s1s1). Here it is
clear the SUL cycles through state s1, and thus accepts the infinite lasso-shaped
word l.

In general, determining whether a state sequence is a closed loop can be
done with Definition 8 (we record states at the beginning of each loop iteration).
This definition allows us to check whether a SUL accepts a lasso in the most
general way. E.g. to check whether a SUL accepts lasso p(q1q2 . . . qn)ω in a finite
number of steps, we also check if the SUL accepts structurally different shaped
(but equivalent) lassos, such as pq1(q2 . . . qnq1)ω, p(q1q2 . . . qnq1q2 . . . qn)ω etc.

Definition 8 (closed-loop). Given an ω-query qω(pqn, I) = {�, s}, a state
sequence s = s0s1 . . . sn is a closed-loop iff n > 0, and ∃0 ≤ i < j ≤ n : si = sj,
and I = {|p|, |p| + |q|, . . . , |p| + |q| · n}.

3.2 Implementation in the LearnLib

We extend the interface of the LearnLib following Fig. 6, with a new type of
query, and more oracles. The purpose of queries is to have a well defined way
of exchanging information between the learner and the SUL. Oracles find coun-
terexamples to claims, that may in practice, be undecidable to do.
SUL: The SUL interface is extended with methods boolean canRetrieveState()
indicating whether states can actually be observed in the SUL, if this is not
possible then sound BBC is not possible, Object getState() returning the
current state of the SUL, boolean deepCopies() indicating whether the object
returned by getState() is a deep copy.
ModelChecker: A ModelChecker may find a counterexample to a property and
hypothesis. A counterexample is a subset of the language of the hypothesis.
LTSmin [4,15] is an available implementation of a ModelChecker for LTL in the
LearnLib.
OmegaQuery: An OmegaQuery is a specialization of a Query. An answered Query
contains information about whether a word is in the language of the SUL. An
OmegaQuery specializes this behavior to infinite words.
OmegaMembershipOracle: An oracle that decides whether an infinite word is in
the language of the SUL. To this end it poses OmegaQueries. There are several
implementations available; one that simulates DFAs and Mealy machines, and
one that wraps around a SUL.
EmptinessOracle: An EmptinessOracle generates words that are in a given
automaton, and tests whether those words are also in the SUL. The current
implementation, generates words in a breadth-first manner. A limit can be
placed on the maximum number of words. An EmptinessOracle is used to

Sound Black-Box Checking in the LearnLib 359

check whether any word in the language given as a counterexample by the
ModelChecker is present in the SUL. A specialization of an EmptinessOracle
is a LassoEmptinessOracle that uses OmegaQueries to check whether infinite
lasso-shaped words are not in the SUL.
InclusionOracle: Similar to the EmptinessOracle; it generates a limited num-
ber of words in a breadth-first manner, but checks whether words are in the
language of the SUL. Note that both of these oracles may perform the same
queries; this is a practical issue and is usually resolved by using a SULCache so
that in case of a cache-hit the SUL is not stimulated. The InclusionOracle,
and EmptinessOracle may have different strategies (BFS vs. DFS), and hence
are not merged together into a single oracle. Separation of concerns (finding
a counterexample to the current hypothesis, vs. finding a counterexample to a
property), is also considered a good design principle.
BlackBoxProperty: a BlackBoxProperty is a property for a black-box system. It
may be disproved, or used to find a counterexample to the current hypothesis. To
these ends, it requires a ModelChecker, EmptinessOracle, InclusionOracle,
and the property itself, such as an LTL formula. Note that LTL counterex-
amples for safety properties not necessarily exhibit a lasso structure. A future
improvement could exploit this and hence the EmptinessOracle is given to
BlackBoxProperty, and not to a BlackBoxOracle.
BlackBoxOracle: an oracle that disproves a set of BlackBoxProperties,
or find a counterexample to the current hypothesis in the same set of
BlackBoxProperties. Currently, there are two implementations available. One
implementation iterates over the set of properties that are still unknown, and
tries to disprove any of them before refining the current hypothesis. The other
implementation iterates over the set of properties that are still unknown, and
before disproving a next property it first tries to refine the current hypoth-
esis with the current property. Both implementations at their core compute
a least fixed-point of a set of properties they can not disprove. The lat-
ter implementation is used in the experiments later. In the case where an
OmegaMembershipOracle wraps around a SUL there are two implementations
available, based on the implementation of SUL.deepCopies(). If a SUL does not
make a deep copy of the state of the SUL it could be the case that if SUL.step()
is executed, a previously obtained state with SUL.getState() would also be
modified, e.g. the assertion in the Java snippet

Object o1 = SUL.getState(); int hc = o1.hashCode(); SUL.step();
assert o1.hashCode()== hc;

may not hold. To resolve this; if SUL.deepCopies() does not hold, then
SUL.forkable() must hold. Two instances of a SUL are used, i.e. one regu-
lar instance, and a forked instance to compare two states. More specifically
an OmegaMembershipOracle that wraps around a SUL that does not make deep
copies of states in fact uses hash codes of states, and if the hash codes of two
states are equal, the OmegaMembershipOracle will step one instance of the SUL
through the access sequence of one state, and the forked instance of the SUL
through the access sequence of the second state.

360 J. Meijer and J. van de Pol

In case SUL.deepCopies() does hold, checking equality of two states is
straightforward; one can simply invoke Object.equals() on the two states.
Listing 1.1 shows how the running example can be implemented in the LearnLib.
Note that we show how a membership oracle can answer queries by simulating
a DFA. In Sect. 5 we show how one can learn a Mealy machine by implementing
LearnLib’s SUL interface.

Listing 1.1. Black-box checking in the LearnLib
// de f i n e the alphabet
Alphabet sigma = Alphabets . cha ra c t e r s (’ a ’ , ’ b ’) ;
// c r ea t e the running example DFA
DFA dfa = AutomatonBuilders .newDFA(sigma) .

w i t h I n i t i a l (”q0”) . withAccepting (”q0”) . withAccepting (”q1”) .
from (”q0”) . on (’ a ’) . to (”q1”) . from (”q1”) . on (’b ’) . to (”q0”) . c r e a t e () ;

// c r ea t e an omega membership orac l e , that s imu la t e s the DFA
DFAOmegaMembershipOracle oMO = new DFASimulatorOmegaOracle (dfa) ;
// c r e a t e a r egu l a r membership o r a c l e
DFAMembershipOracle mO = oMO. getDFAMembershipOracle () ;
// c r ea t e an equ iva l ence o r a c l e that uses the p a r t i a l W−method
DFAEquivalenceOracle eqO = new DFAWpMethodEQOracle (3 , mO) ;
// c r ea t e a TTT l e a rn e r
DFALearner l e a r n e r = new TTTLearnerDFA(sigma , mO, LINEAR FWD) ;
// c r ea t e a par s e r that t r a n s l a t e s data between LTSmin and the LearnLib
Function<Str ing , Character> edgeParser = s −> s . charAt (0) ;
// c r ea t e an LTSmin model checker
DFAModelCheckerLasso modelChecker = new

LTSminLTLDFABuilder () . wi thStr ing2Input (edgeParser) . c r e a t e () ;
// c r ea t e an emptiness o r a c l e f o r l a s s o s
DFALassoEmptinessOracle emO = new DFALassoDFAEmptinessOracle (oMO) ;
// c r ea t e an i n c l u s i o n o r a c l e
DFAInclusionOracle inO = new DFABreadthFirstInc lus ionOracle (1 , mO) ;
// c r ea t e the black−box property from the running example
DFABlackBoxProperty l t l = new DFABBPropertyDFALasso (modelChecker , emO,

inO , ”X l e t t e r==\”b\””) ;
// c r ea t e the black−box o r a c l e with the s i n g l e t on s e t o f p r op e r t i e s
DFABlackBoxOracle bBO = new CExFirstDFABBOracle (l t l) ;
// c r ea t e a black−box checking experiment
DFABBCExperiment e = new DFABBCExperiment(l ea rne r , eqO , sigma , bBO) ;
// run the experiment
e . run () ;
// a s s e r t we have the c o r r e c t r e s u l t
a s s e r t f indSeparatingWord (dfa , e . ge tF ina lHypothes i s () , sigma) == nu l l ;

4 Related Work

Related work in context of this work can be found in three main areas. First,
there is a tool that already does BBC, called LBTest [21]. Second, other than
the LearnLib there is another active learning framework called libalf [5]. Third,
aside from LTSmin there are other model checkers such as NuSMV [6], and
SPIN [9]. Currently, LBTest is not Free and Open Source Software (FOSS). The
LearnLib on the other hand is licensed under the Apache 2 license and thus
freely available, even for commercial use. This argument is important because
BBC is very successful when applied to industrial critical systems [17,19]. Our
new implementation in the LearnLib is also licensed under the Apache 2 license.
Our reasoning for implementing BBC in the LearnLib, and not libalf is that
LearnLib is actively maintained, while libalf is not.

Sound Black-Box Checking in the LearnLib 361

We choose to select the LTSmin [15] model checker, because LTSmin, similar
to the LearnLib has a liberal BSD license, and is still actively maintained. Com-
pared to NuSMV, LTSmin has an explicit-state model checker, while NuSMV is
a symbolic model checker using BDDs. In principle NuSMV would also suffice as
a model checker in this work. We have designed our BBC approach in such a way
that in the future integrating NuSMV with the LearnLib is easy. Another pop-
ular model checker is SPIN. The disadvantage of using the SPIN model checker
is that the counterexamples it produces are state-based, while active learning
algorithms require action-based counterexamples [26].

BBC is not new to the LearnLib, several years ago a similar study was per-
formed, named dynamic testing [24]. Recently new active learning algorithms
such as ADT [7], and TTT [13] have been added to the LearnLib, and their
performance in the context of BBC is still unknown. Both ADT, and TTT may
very well compare to the main learning algorithm Incremental Kripke Learn-
ing (IKL) [20] in LBTest, which is a so-called incremental learning algorithm.
Incremental learning algorithms try to produce new hypotheses more quickly, in
order to reduce the number of learning queries. Traditional active learning algo-
rithms, such as L* produce fewer hypotheses, where each new hypothesis requires
more learning queries. The latter makes sense in the context of active learning,
because this minimizes the number of equivalence queries necessary. In the con-
text of active learning incremental learning algorithms may actually degrade
performance; while they may perform well in the number of learning queries,
they may require more equivalence queries to refine the hypotheses, resulting in
longer run times, see [11, Sect. 5.5]. In BBC model checking queries can be used
to refine hypotheses. Model checking queries are negligible compared to equiv-
alence queries [20], making the ADT, and TTT algorithms excellent candidates
for a BBC study.

5 Results

BBC in the presence of a good amount of LTL formulae can greatly reduce
the number of learning queries, and equivalence queries required to disprove
the LTL formulae compared to active learning. Note that, although BBC intro-
duces additional model checking queries (performed by the equivalence oracle,
or inclusion oracle), these model checking queries are dwarfed by the amount
of equivalence queries (and even learning queries). We will thus refrain from
reporting the amount model checking queries here (they can be found online2,
alongside reproduction instructions). What we will show is the following.

– How many learning queries, and equivalence queries it takes to disprove as
many LTL formulae as possible in the traditional active learning setting. This
means evaluating all LTL formulae after active learning algorithms produce
the final hypothesis.

2 https://github.com/Meijuh/NFM2018BBC.

https://github.com/Meijuh/NFM2018BBC

362 J. Meijer and J. van de Pol

– The amount of learning queries, and equivalence queries in the BBC setting
to disprove as many LTL formulae as possible.

Currently there are eight active learning algorithms implemented in the Learn-
Lib for Mealy machines, which are as follows: ADT [7], DHC [22], Discrimina-
tion Tree [10], L* [1], Kearns and Vazirani [16], Maler and Pnueli [18], Rivest
and Schapire [25], and TTT [13]. To investigate the performance of these algo-
rithms in a BBC setting we take problem instances, and LTL formulae from the
2017 RERS challenge. The Rigorous Examination of Reactive Systems (RERS)
challenge3 is a yearly recurring verification challenge [14]. There are two main
categories. In one category one has to solve properties for problems which are
parallel in nature [29]. The other category involves sequential problems [28].
The RERS sequential problems are provided in Java (among others); the Java
problem structure is given in Listing 1.2.

Listing 1.2. RERS structure
@EqualsAndHashCode (exc lude =

{” inputs ”})
pub l i c c l a s s Problem {

. . .
pub l i c S t r ing [] inputs =

{”B” , ”E” , ”C” , ”A” , ”D” } ;

p r i va t e i n t a175 = 6 ;
p r i va t e i n t a52 = 9 ;
p r i va t e i n t a176 = 7 ;
p r i va t e St r ing a166 = ”e” ;
p r i va t e St r ing a167 = ”e” ;
p r i va t e St r ing a62 = ” f ” ;

pub l i c S t r ing
ca lcu lateOutput (St r ing
i){ }

pub l i c void r e s e t () { }
. . .

One can see that it is straight-
forward to actively learn a Mealy
machine from a Problem instance.
The alphabet is specified with the
field String[] inputs. The state of
a problem instance is determined by
the valuations of some instance vari-
ables (a175, a52, a176, a166, a167,
and a62). An input can be given
to the calculateOutput method,
which returns an output. The problem
instance can be reset with the reset()
method. A SUL implementation of a
RERS Problem is easy: SUL.post()
invokes Problem.reset(), SUL.step()
invokes Problem.calculateOutput().
To achieve sound BBC, we must be able to retrieve the current state of a Problem
instance. We choose not to make deep copies of a state of a Problem, hence
SUL.deepCopies() does not hold. This means an OmegaMembershipOracle,
must use Object.hashCode(), and Object.equals(). These methods can
be easily generated with project Lombok4, by annotating a class with
@EqualsAndHashCode. Lastly, the SUL can be forked by creating a new SUL
instance, with a new Problem instance.

We benchmark the LearnLib active learning algorithms with nine different
RERS problems from the 2017 RERS challenge in a BBC setting. Each prob-
lem comes with 100 different LTL formulae, where typically approximately half
of the formulae hold, and the other half does not hold. When active learning
algorithms are able to learn the complete Mealy machine, this Mealy machine
will be minimal. In case of the RERS problems the size of those Mealy machine

3 http://rers-challenge.org.
4 https://projectlombok.org.

http://rers-challenge.org
https://projectlombok.org

Sound Black-Box Checking in the LearnLib 363

ADT

DHC

DiscriminationTree

ExtensibleLStar

KearnsVazirani

MalerPnueli

RivestSchapire

TTT

0
10
20
30
40
50

100 1000

#f
al
si
fie

d

0
10
20
30
40
50

10 1000

#f
al
si
fie

d

0
10
20
30
40

1e+05 1e+07

#f
al
si
fie

d

Fig. 7. Experimental results (Color figure online)

range from tens of states to several thousands. Additionally this requires a few
hundred to several thousand learning queries, and several thousand to millions
equivalence queries. In Fig. 7 the top graph shows the legend. The second graph
shows the number of learning queries for the smallest RERS problem, and the
third graph the number of equivalence queries. The last graph shows the num-
ber of learning queries for the largest RERS problem. The x-axes show on a
logarithmic scale the number of queries required to disprove a certain number
of properties. The y-axes show the amount of properties that are disproved. A
dashed line shows the relation between queries and falsified properties in an
active learning setting, while a normal line shows the relation in a BBC set-
ting. The further a line appears to the left; the better the algorithm. A dashed
line is always purely vertical, because active learning algorithms do not disprove
properties on-the-fly (i.e. the same number of queries is required to disprove all
properties). In the case of BBC (uninterrupted lines) properties are disproved
on-the-fly. This means fewer queries may be required to disprove the first proper-
ties. One can also see that in some cases an uninterrupted line, and dashed line of
the same color are not equally high. This means that within the used timeout of
1 h active learning did not construct the complete hypothesis, and thus disproves
fewer properties. Interestingly, almost all algorithms use fewer learning queries
when used in the context of BBC. And even more interesting, some algorithms
only use equivalence queries to disprove the last few properties. Obviously this
is a great result. Figure 7 also shows that (as suspected) the incremental TTT,

364 J. Meijer and J. van de Pol

and ADT algorithms produce more equivalence queries compared to a classic
algorithm like Rivest and Schapire. The performance of the eight algorithms is
quite consistent throughout the larger problem instances. The ADT algorithm
seems to perform really well, but the TTT is quite competitive too, this can be
seen especially in the largest RERS problem. Also the last graph5 shows that
TTT seems to need fewer learning queries, but ADT seems to be able to dis-
prove more properties within 1 h. The great performance of ADT is particularly
interesting since it is only developed recently. The ADT algorithm is developed
to reduce the number of resets of the SUL. Now it seems to be the best choice
for BBC too among the benchmarked algorithms and RERS problem instances.

6 Conclusion

We have presented a black-box checking implementation for the LearnLib. This
includes a novel sound approach for liveness LTL properties, where we can check
if a system-under-learning accepts an infinite lasso-shaped word. This contrasts
the original proposal where an (hard to guess) upper-bound on the number of
states of the system-under-learning is assumed. Our implementation is available
under a liberal free and open source license, such that it can be put to practice
quite easily. Our results (Fig. 7) show that recently added ADT, and TTT active
learning algorithms perform the best in a black-box checking setting. In contrast
to some other learning algorithms in the LearnLib, ADT, and TTT are incre-
mental learning algorithms, meaning they construct more hypotheses while using
less learning queries. In an active learning setting this may degrade performance,
because more equivalence queries are required. In a black-box checking setting
this appeared to be an advantage, because model checking queries replace expen-
sive equivalence queries. Further work may show how ADT, and TTT compare
with the IKL algorithm in LBTest. Software testers now have a free ease-of-
use sound black-box checking implementation available for industrial use cases.
Future work may show whether additional model checkers such as NuSMV pro-
vide comparable results, or if there exist different valuable strategies for finding
(spurious) counterexamples to properties. In our case study we applied a per-
fect state equivalence function to the RERS problems, it would be interesting
to apply our approach to cases where only part of the state can be observed, or
when the SUL is hardware, instead of software.

Acknowledgements. We want to thank the developers of the AutomataLib, and the
LearnLib; without the extraordinary design of those tools, this work would not have
been possible. Furthermore, we would like to thank Frits Vaandrager for his useful
feedback on a draft version of this paper.

5 Maler and Pnueli is not shown, because it was not able to disprove a single property.

Sound Black-Box Checking in the LearnLib 365

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Belinfante, A.: JTorX: exploring model-based testing. Ph.D. thesis, University of

Twente, Enschede, Netherlands (2014)
4. Bloemen, V., van de Pol, J.: Multi-core SCC-based LTL model checking. In: Bloem,

R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 18–33. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49052-6 2

5. Bollig, B., Katoen, J.-P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf:
the automata learning framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV
2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14295-6 32

6. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

7. Frohme, M.: Active automata learning with adaptive distinguishing sequences.
Master’s thesis, Technische Universität Dortmund (2015)

8. Fujiwara, S., von Bochmann, G., Khendek, F., et al.: Test selection based on finite
state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991)

9. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

10. Howar, F.: Active learning of interface programs. Ph.D. thesis, Dortmund Univer-
sity of Technology (2012)

11. Isberner, M.: Foundations of active automata learning: an algorithmic perspective.
Ph.D. thesis, Technical University Dortmund, Germany (2015)

12. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib - a framework
for active automata learning. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21690-4 32

13. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

14. Jasper, M., Fecke, M., Steffen, B., et al.: The RERS 2017 challenge and workshop
(invited paper). In: SPIN, Santa Barbara, CA, USA, 10–14 July 2017, pp. 11–20
(2017)

15. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

16. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

17. Khosrowjerdi, H., Meinke, K., Rasmusson, A.: Learning-based testing for safety
critical automotive applications. In: Bozzano, M., Papadopoulos, Y. (eds.) IMBSA
2017. LNCS, vol. 10437, pp. 197–211. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-64119-5 13

https://doi.org/10.1007/978-3-319-49052-6_2
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/978-3-642-14295-6_32
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-319-64119-5_13
https://doi.org/10.1007/978-3-319-64119-5_13

366 J. Meijer and J. van de Pol

18. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995)

19. Meinke, K.: Learning-based testing of cyber-physical systems-of-systems: a pla-
tooning study. In: Reinecke, P., Di Marco, A. (eds.) EPEW 2017. LNCS, vol.
10497, pp. 135–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66583-2 9

20. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21768-5 11

21. Meinke, K., Sindhu, M.A.: LBTest: a learning-based testing tool for reactive sys-
tems. In: ICST, Luxembourg, 18–22 March 2013, pp. 447–454 (2013)

22. Merten, M., Howar, F., Steffen, B., Margaria, T.: Automata learning with on-
the-fly direct hypothesis construction. In: Hähnle, R., Knoop, J., Margaria, T.,
Schreiner, D., Steffen, B. (eds.) ISoLA 2011. CCIS, pp. 248–260. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-34781-8 19

23. Peled, D.A., Vardi, M.Y., Yannakakis, M.: Black box checking. J. Autom. Lang.
Comb. 7(2), 225–246 (2002)

24. Raffelt, H., Steffen, B., Margaria, T.: Dynamic Testing Via Automata Learning.
In: Yorav, K. (ed.) HVC 2007. LNCS, vol. 4899, pp. 136–152. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-77966-7 13

25. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

26. Sindhu, M.A.: Algorithms and tools for learning-based testing of reactive systems.
Ph.D. thesis (2013)

27. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from
a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS,
vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21455-4 8

28. Steffen, B., Isberner, M., Naujokat, S., et al.: Property-driven benchmark genera-
tion: synthesizing programs of realistic structure. STTT 16(5), 465–479 (2014)

29. Steffen, B., Jasper, M., et al.: Property-preserving generation of tailored benchmark
Petri nets. In: ACSD, Zaragoza, Spain, 25–30 June 2017, pp. 1–8 (2017)

30. Timmer, M., Brinksma, E., Stoelinga, M.: Model-based testing. In: Software and
Systems Safety - Specification and Verification, pp. 1–32 (2011)

https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-319-66583-2_9
https://doi.org/10.1007/978-3-642-21768-5_11
https://doi.org/10.1007/978-3-642-34781-8_19
https://doi.org/10.1007/978-3-540-77966-7_13
https://doi.org/10.1007/978-3-642-21455-4_8
https://doi.org/10.1007/978-3-642-21455-4_8

Model-Checking Task Parallel Programs
for Data-Race

Radha Nakade1, Eric Mercer1(B) , Peter Aldous1 , and Jay McCarthy2

1 Brigham Young University, Provo, UT, USA
radha.nakade@gmail.com, {egm,aldous}@cs.byu.edu

2 University of Massachusetts Lowell, Lowell, USA
jay.mccarthy@gmail.com

Abstract. Data-race detection is the problem of determining if a con-
current program has a data-race in some execution and input; it has
been long studied and often solved. The research in this paper reprises the
problem in the context of task parallel programs with the intent to prove,
via model checking, the absence of data-race on any feasible schedule for
a given input. Many of the correctness properties afforded by task paral-
lel programming models such as OpenMP, Cilk, X10, Chapel, Habanero,
etc. rely on data-race freedom. Model checking for data-race, presented
here, is in contrast to recent work using run-time monitoring, log analy-
sis, or static analysis which are complete or sound but never both. The
model checking algorithm builds a happens-before relation from the pro-
gram execution and uses that relation to detect data-race similar to many
solutions that reason over a single observed execution. Unlike those solu-
tions, model checking generates additional program schedules sufficient
to prove data-race freedom over all schedules on the given input. The
approach is evaluated in a Java implementation of Habanero using the
JavaPathfinder model checker. The results, when compared to existing
data-race detectors in Java Pathfinder, show a significant reduction in
the time required for proving data race freedom.

1 Introduction

A data-race is where two concurrent executions access the same memory location
with at least one of the two accesses being a write. It introduces non-determinism
into the program execution as the behavior may depend on the order in which
the concurrent executions access memory. Data-race is problematic because it
is not possible to directly control or observe the run-time internals to know if a
data-race exists let alone enumerate program behaviors when one does.

The data-race detection problem, given a program with its input, is to deter-
mine if there exists an execution containing a data-race. The research presented
in this paper is concerned with proving data-race freedom for task parallel mod-
els that impose structure on parallelism by constraining how threads are created
and joined, and by constraining how shared memory is accessed (e.g., OpenMP,
Cilk, X10, Chapel, Habanero, etc.). These models rely on run-time environ-
ments to implement task abstractions to represent concurrent executions [1–4].
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 367–382, 2018.
https://doi.org/10.1007/978-3-319-77935-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_25&domain=pdf
http://orcid.org/0000-0002-2264-2958
http://orcid.org/0000-0003-0602-2000

368 R. Nakade et al.

The language restrictions on parallelism and shared memory interactions enable
properties like determinism (i.e., the computation is independent of the execu-
tion) or the ability to serialize (i.e., removing all task related keywords yields a
serial solution). Such properties only hold in the absence of data-race, which is
not always the case since programmers, both intentionally and unintentionally,
move outside the programming model.

Data-race detection in task parallel models generally prioritizes performance
and the ability to scale to many tasks over a proof of absence. The predomi-
nant SP-bags algorithm, with its variants, is a dynamic approach that exploits
assumptions on task creation and joining for efficient on-the-fly detection with
low overhead [5–9]; millions of tasks are feasible with varying degrees of slow-
down (i.e., slow-down increases as parallelism constraints are relaxed) [10]. Other
approaches use access histories [11,12] or programmer annotations [13]. Perfor-
mance is a priority requiring careful integration into complex run-time environ-
ments, and solutions are only complete, meaning that nothing can be concluded
about other executions of the program on the same input.

The research presented in this paper reprises the data-race problem in task
parallel models with the intent to prove, via model checking, data race freedom
on a given input over all feasible executions. Prior model checking based solutions
enumerate schedules that interleave conflicting accesses, meaning at least one
access is a write, to shared variables [14–16]. The approach here rather uses
techniques from dynamic approaches to build a happens-before relation from a
single observed program execution sufficient to prove data-race freedom in all
executions that order mutually exclusive regions in the same way as the observed
execution [17–19]. As such, the happens-before relation captures in one many of
the schedules exhaustively enumerated by the prior model checking solutions.
Unlike the dynamic approaches, though, the approach here then generates other
program executions necessary to prove data-race freedom over all executions on
the input. As a result, in the absence of mutual exclusion, a single program
execution is sufficient to prove data-race freedom. In the presence of mutual
exclusion, the model checker generates and checks all feasible orderings of the
mutually exclusive regions to complete the proof. Underlying this contribution
is the fact that we assume the program under test terminates; if such is not the
case, then the research in this paper does not directly apply.

The research presented in this paper includes an empirical study of the pro-
posed model checking algorithm for a Java implementation of Habenero with the
Java Pathfinder model checker (JPF). Unlike prior solutions, this implementa-
tion uses an idealized verification run-time for Habanero rather than a produc-
tion run-time, does not require internal modifications to JPF, and gives results
about the input program that generalize to any language run-time implemen-
tation [14–16]. Results over several published benchmarks comparing to JPF’s
default race detection using partial order reduction and a task parallel approach
with permission regions show the approach here to be more efficient in JPF
terms with its inherent overhead. Of course, as with any model checking app-
roach, the intent is to not scale to millions of parallel tasks with hundreds of

Model-Checking Task Parallel Programs for Data-Race 369

proc m (var x : int)
g := 0;
post r ← p 0 λv. skip;
[isolated g := 1]
await r
return x

proc p (var x : int)
[isolated skip;]
g := 2;
return 0

public class Example1{
static int g = 0;
public static void main(String[] args) {
g := 0
finish {
async { p(0); }
isolated{ g := 1; }

}
public static void p(int x) {
isolated{ /∗ skip ∗/ };
g := 2;
return 0;

}
}

(a) (b)

Fig. 1. A program with data-race. (a) Task parallel. (b) Habanero Java.

mutually exclusive regions; rather, this research assumes that it is possible to
provide input to any given program that results in hundreds of tasks and tens of
mutually exclusive regions. It further assumes that a data-race freedom proof on
the small instance generalizes to the large instance. The primary contributions
are thus

– a simple approach to data-race detection in programs that terminate based
on constructing a happens-before relation from an execution of a task parallel
program;

– a proof that scheduling to interleave mutually exclusive regions is sufficient
to prove data-race freedom; and

– an implementation of the approach for Java Habanero in JPF with results
from benchmarks comparing to other solutions in JPF.

The rest of this paper is organized as follows: Sect. 2 illustrates the approach
in a small example; Sect. 3 defines the computation graph, task parallel pro-
grams, and how to build a computation graph from a program execution; Sect. 4
gives a correctness proof; Sect. 5 is the empirical study with a summary of the
implementation; and Sect. 7 is the conclusion with future work.

2 Example

The approach to data-race detection in this paper is presented in a very simple
example. Consider the task-parallel program in Fig. 1(a). The language used
is defined in this paper with a formal semantics to facilitate proofs but has a
direct expression in most task parallel languages. For example, Fig. 1(b) is the
equivalent program in the Habanero Java language.

370 R. Nakade et al.

For Fig. 1, execution begins with the procedure m. The variable g is global.
The post-statement creates a new asynchronous task running procedure p pass-
ing 0 for its parameter. The task handle is stored in the region r, also global, and
when that task completes and joins with its parent m, it runs the λ-expression
as a return value handler. In this case, that handler is the no-op skip.

The isolated-statement runs the statement in its scope in mutual exclusion
to other isolated-statements. The await-statement joins all tasks in region r
with the task that issued the await. The issuer may join with a task in the region
if that task is at its return-statement. The expression in the return-statement
is evaluated at the join and the value is passed to the return value handler in
the parent context. The parent blocks at the await-statement until it has joined
with all tasks in the indicated region.

The program in Fig. 1 has a schedule dependent data race. If the scheduler
runs the isolated-statement in procedure p before the isolated-statement in
procedure m then there is a write-write data-race; otherwise, there is no data-
race.

Related work in model checking task parallel languages enumerates schedules
to interleave the mutual exclusion and to interleave any unprotected shared
memory access leading quickly to state explosion [14–16]. These approaches use
the happens-before relation to detect data-race but not to reduce the number of
considered schedules—every schedule is checked.

The approach in this paper exploits so-called partial order analyses to reduce
the number of schedules that must be checked to prove data-race freedom.
The approach uses the simple happens-before partial order, [17], but is eas-
ily extended to something like weak causally-precedes to further reduce checked
schedules [18,19]. Unlike other partial-order approaches though, a sufficient set
of schedules is checked to prove data-race freedom on the given input.

The approach dynamically detects shared memory accesses and uses the lan-
guage semantics to capture, during execution, the happens-before relation in
the form or a computation graph. The left part of Fig. 2 shows the computation
graph for the data-race free schedule of the example program. Every node rep-
resents a block of sequential operations and edges order the nodes. The thick
p-labeled line is the result of the post-statement creating a new task, and the
dashed boxes are the isolated-statements. Intuitively, the computation graph is
a Hasse diagram with inverted edges—things at the bottom happen-after things
at the top—and with extra information on each node to indicate read and write
memory locations. Such a graph can be readily checked for data-race in linear
time [17].

To reason over all schedules, the approach in this paper first assumes two
restrictions common in most task parallel languages: if a return value handler
side-effects, then it exists in a region by itself throughout its lifetime, and all
tasks are joined at termination in a deterministic order by a implicit enclosing
parent task. Under these restrictions, the model checker, to prove data-race
freedom, must generate a set of schedules that contains all ways allowed by the

Model-Checking Task Parallel Programs for Data-Race 371

Fig. 2. Two computation graphs for Fig. 1: no data-race on left and data-race right.

program semantics to interleave isolated-statements. This result is the main
contribution.

The right part of Fig. 2 shows the computation graph for the data-race sched-
ule of the simple example program. Although the two schedules in Fig. 2 are the
only schedules that need to be considered by the model checker in this example,
the number of interesting schedules grows exponentially in the number of con-
current dependent isolated-statements. The growth limits the model checking
approach in this paper to programs that can be instantiated on small problem
instances; however, in general, a proof on a small problem instance typically
generalizes to large problem instances.

3 Task Parallel Programs

A task parallel program uses a general programming model to define parallelism.
That model, under certain restrictions, captures the semantics of many common
task parallel models such as Habanero, X10, Cilk, OpenMP, Chapel, etc. This
section first defines the structure of the computation graph, and it then discusses
task parallel programs and how a computation graph can be created from an
observed execution of a task parallel program. The full semantics for the pro-
gramming model, and how the computation graph is formally constructed from
an execution of the program, is not presented here but can be found at https://
jpf.byu.edu/jpf-hj/.

https://jpf.byu.edu/jpf-hj/
https://jpf.byu.edu/jpf-hj/

372 R. Nakade et al.

3.1 Computation Graphs

A Computation Graph for a task parallel program is a directed acyclic graph rep-
resenting the concurrent structure of the program execution [20]. It is modified
here to track memory locations accessed by tasks.

Definition 1. A computation graph is a directed acyclic graph (DAG), G =
(N,E, ρ, ω), where N is a finite set of nodes, E ⊆ N × N is a set of directed
edges, ρ : (N �→ P (Globals)) maps N to the unique identifiers for the shared
locations read by the tasks, ω : (N �→ P (Globals)) maps N to the unique
identifiers for the shared locations written by the tasks, and Globals is the set
of the unique identifiers for the shared locations.

The graph captures the happens-before relation between nodes: ≺⊂ N × N .
There is a data race in the graph if and only if there are two nodes, ni and nj ,
such that the nodes are concurrent, (i.e., ni ⊀ nj ∧ nj ⊀ ni or, equivalently,
ni ||≺ nj), and the two nodes conflict:

conflict(ni, nj) =
ρ(ni) ∩ ω(nj) 	= ∅ ∨
ρ(nj) ∩ ω(ni) 	= ∅ ∨
ω(ni) ∩ ω(nj) 	= ∅

(1)

The condition is readily checked in linear time as mentioned in the previous
section.

3.2 Programming Model

The programming model is derived from Bouajjani and Emmi for isolated par-
allel tasks [21]; this variant removes the isolation between tasks with the intro-
duction of shared memory. It additionally restricts task passing to only allow
tasks to be passed when a child completes, and those tasks are only passed to
the parent. Finally, procedures with side-effecting return value handlers must be
the only members of their respective regions.

The surface syntax for the language is given in Fig. 3. A program P is a
sequence of procedures. Each procedure has a single parameter l of type L. Pro-
cedures may also reference shared variables taken from a finite set of names which
include a special reserved variable isolate that is only used by the semantics
for mutual exclusion. The body of a procedure is inductively defined by s. The
expression language, e, is also abstracted.

The post, await, ewait, and isolated statements relate to concurrency
and affect the shape of the computation graph; the rest of the statements have
their usual sequential meaning. The semantics produce a computation graph
as a by-product of reducing the program via rewrites. Two additional data are
associated with the computation graph and are used by the semantics in the
construction: last is a special node used to assert the observed order of isolated-
statements and R : Regs �→ P (N) is a function used to join tasks in a region at
synchronization. In general, a function notation is adopted to access members

Model-Checking Task Parallel Programs for Data-Race 373

P ::= (proc p (var l : L) s)∗
s ::= s; s | l := e | skip | [if e then s else s]

| [while e do s] | call l := p e | return e
| post r ← p e d | await r | ewait r
| [isolated s]

Fig. 3. The surface syntax for task parallel programs.

of tuples. For example, the members of the G = (N,E, ρ, ω, last , R) are accessed
as N(G), E(G), ρ(G), etc.

The post-statement adds a task into a region r, taken from a finite set of
region identifiers, by indicating the procedure p for the task with an expression
for the local variable value e, and a return value handler d to run in the context
of the parent task. The Post rewrite rule adds two fresh nodes n′

0 and n1 to
the computation graph: node n′

0 represents the statements following post and
n1 represents the statements to be executed by the new task: N(G′) = N(G) ∪
{n′

0, n1} and E(G′) = E(G)∪{(n0, n
′
0) , (n0, n1)}. The rule orders both after the

current node for the parent, n0, in the computation graph. The read set ρ of
node n0 is updated to include any global variables referenced in the expression,
η (e), for the local parameter value in the new task: ρ(G′) = ρ(G)[n0

∪�→ η(e, σ)];
meaning that the ρ function is as before only now it additionally includes the
variables read by η(e, σ) in the read set for n0—σ in the store value lookup.

The await and ewait statements synchronize a task with the sub-ordinate
tasks in the indicated region. Intuitively, when a task calls await on region r, it
is blocked until all the tasks it owns in r finish execution. Similarly, when a task
issues an ewait with region r, it is blocked until one task it owns in r completes.
A task is termed completed when its statement is a return-statement.

The await rule blocks the execution of the currently executing task until
a task in the indicated region completes. A new node to join the two tasks
is not created in the computation graph, nor are the two tasks ordered in
the sense of join because the choice of task, say its t2, in the region is non-
deterministic; as such, the computation graph allows tasks in the region to join
in any order contrary to the observed reduction by the rule. The rule saves the
current node in the graph for t2, n(t2), to join later once the region is empty,
R(G′) = R(G)[r ∪�→ n(t2)], and it updates the read set for t2 on the expres-
sion in the return-statement: ρ(G)[n(t2)

∪�→ η(e, σ)]. The new state adds an
await-statement after the return value handler statement since the region is
not yet empty, and the region valuation function in the new state includes any
tasks owned by t2 (e.g., the new statement context replaces S[await r] with
S[s; await r] where s in the return value handler).

The Await-Done rule activates when the last task, let us call it t2, in the
region is joined. It differs from the Await rule in that it constrains all tasks that
have joined in the region to happen-before the new node for the parent in the
computation graph, and it does not insert another await-statement in the new

374 R. Nakade et al.

state since the region is now empty: n′ = fresh(), N(G′) = N(G) ∪ {n′}, and
E(G′) = E(G) ∪ {(n, n′) , (n(t2), n′)} ∪ {(ni, n

′) | ni ∈ R(G)(r)}.
The Ewait and Ewait-Done rules follow Await and Await-Done respec-

tively only without the recursive statement when the region is not empty since
it only needs to wait on a single task to complete. The rules delay the ordering
of tasks joined in the region to when the region becomes empty (i.e., the last
task joins) just as done for await-statements.

The isolated-statement provides mutual exclusion relative to other
isolated-statements. If s is isolated, then it runs mutually exclusive to any other
statements s′ that are also isolated; however, s does not run mutually exclusive
to other non-isolated statements that may be concurrent with s.

If no other isolated statements are running, then the Isolated rule updates
the isolated shared variable to block other tasks from isolating and inserts
after the isolated statement s the new isolated-end keyword to reset the
shared variable at the end of isolation. The computation graph gets a new
node to track accesses in the isolated statement with an appropriate edge from
the previous node. A sequencing edge from last is also added so the previous
isolated statement happens before this new isolated statement: n′ = fresh(),
N(G′) = N(G) ∪ {n′}, and E(G′) = E(G) ∪ {(n, n′) , (last(G), n′)}. As a note,
last is initialized to the initial node when execution starts.

The Isolated-End rule creates a new node in the computation graph to
denote the end of isolation, updates the isolated shared variable, and it updates
last to properly sequence any future isolation. isolated-statements are totally
ordered in the computation graph: n′ = fresh(), last(G′) = n, N(G′) = N(G) ∪
{n′}, and E(G′) = E(G) ∪ {(n, n′)}.

4 Proof of Correctness

For a given program and input, the computation graphs produced by the tree
semantics summarized in Sect. 3.1 demonstrate a data race if and only if a data
race is possible for the given program and input. Before proving this claim, we
formally define data race. The definition of data race depends on definitions for
concurrency and conflict.

Definition 2 (Conflict). Two statements conflict if they both access the same
shared variable and at least one of them writes to that variable. ρ (s) and ω (s)
behave as expected.

conflict(si, sj) =
ρ(si) ∩ ω(sj) 	= ∅ ∨
ρ(sj) ∩ ω(si) 	= ∅ ∨
ω(si) ∩ ω(sj) 	= ∅

(2)

A state’s set of active statements is used to define concurrency.

Definition 3 (Active statements). A state ς has a set of active statements
a (ς) that corresponds to the next statement to be reduced in each of the active
tasks in the state.

Model-Checking Task Parallel Programs for Data-Race 375

Without loss of generality, we call the program’s initial state ς0.

Definition 4 (Concurrency). Two statements are concurrent if and only if
an execution of the program can result in a state ς such that both statements are
active at the same time:

s || s′ ⇐⇒ ∃ς : ς0
∗→ ς ∧ {s, s′} ⊆ a (ς) . (3)

A state ς that satisfies this condition for s and s’ is called a witness state
for s || s′. ∗→ is the transitive closure of the transition relation → defined in the
semantics.

Definition 5 (Data race). There is a data race on two statements s and s′ if
and only if they conflict and are concurrent:

DR (s, s′) = s || s′ ∧ conflict (s, s′) . (4)

Two statements that occur in the same thread of execution cannot be concur-
rent, as exactly one statement is active in each active thread at any point in time.
The semantics ensure that no two statements inside of isolated-statements can
be concurrent, as only one thread may enter an isolated-statement at a time.

Before proving the correctness of data races in the computation graph, we
observe that only nodes that end in a post-statement and nodes for isolated-
statements can have multiple outgoing edges. In both cases, the nodes reached
by these edges are all in distinct threads of execution. Similarly, only isolated-
statements and nodes following an await- or ewait-statement (in the parent
thread) and following return-statements (in child threads) have multiple incom-
ing edges. The edges that converge on these nodes come from distinct threads.

Lemma 1. If two nodes n and n′ are unordered in a state’s computation graph
G, every s ∈ n and s′ ∈ n′ are concurrent:

∀s ∈ n, s′ ∈ n′ : n ||≺ n′ =⇒ s || s′. (5)

Proof. The two nodes n and n′ are both reachable; otherwise, they would not
have been generated in G. Within a node, it is possible to advance or wait
independent of other nodes’ behaviors. Accordingly, it is possible to begin at ς0
and advance until s is active. Similarly, it is possible to advance until s’ is active.
What remains to be proven is whether or not it is possible to reach a state where
both s and s’ are active; in other words, if it is possible for some schedule to
reach s in one task and then to reach s’ in some other task without advancing
the first task any further.

By the construction of G, n and n′ must have some least common ancestor
nA that is also reachable. nA must either end in a post-statement or be an
isolated-statement, as the reduction rules only allow these two statements to
have multiple outgoing edges. In both cases, the child nodes of nA must be in
different tasks. Without loss of generality, we say that t either contains n or is

376 R. Nakade et al.

some ancestor of the task that does. Similarly, we say that t′ either contains n′

or is an ancestor of the task that does.
We first advance to nA on some schedule that does not contradict ≺. This is

possible because nA, n, and n′ were all generated. Execution may block, neces-
sitating the advancement of other threads; however, no relationship can exist
between the thread that leads to n′, as this would contradict the definition
of nA as least common ancestor. We advance t and any relevant children or
unrelated threads until reaching n and then proceed until reaching s. Then, we
advance t′ and any relevant children or unrelated threads until reaching n′ and
then proceed until reaching s′.

Both s and s′ are active, so they are concurrent.

Lemma 2 (Soundness of conflict over nodes). If two nodes conflict, there
exists a pair of statements, one from each node, that conflicts:

conflict (n, n′) =⇒ ∃s ∈ n, s′ ∈ n′ : conflict (s, s′) . (6)

Proof. If two nodes conflict, it is because ρ and ω were updated in some reduc-
tion. More specifically, if ρ (n) 	= ∅, at least one statement s ∈ n must read a
global variable; the reduction of statements that read a global variable are the
only way that ρ updates. The same reasoning applies to ω.

Lemma 3 (Completeness of conflict over nodes). If two statements con-
flict, their respective nodes will conflict.

∀s ∈ n, s′ ∈ n′ : conflict (s, s′) =⇒ conflict (n, n′) . (7)

Proof. If s ∈ n, then s must have been reduced in n. Per the semantics, ρ (n) and
ω (n) must be updated to include reads and writes from s. Accordingly, nodes
conflict whenever statements they include conflict.

Theorem 1 (Soundness of computation graph over data races). If a
computation graph reports a data race, there is a data race in the program on
the given input.

Proof. By Lemmas 1 and 2.

Theorem 2 (Completeness of computation graph over data races). If
there is a data race in the program on the given input, a computation graph
generated by the model checker reports a data race.

Proof. We choose, without loss of generality, the first data race manifest along
some schedule in the program. Our algorithm reports the first data race it finds
and exits. This is consistent with the theorem definition.

The definition of data race states that the two statements must be concur-
rent, which implies that it is possible to generate a witness state for the two
statements’ concurrency. As a result, any two statements that conflict and are
both reachable will be members of nodes in some computation graph. Because
the model checker generates all possible computation graphs, it generates the
computation graph created by the witness state. By Lemmas 1 and 3, this com-
putation graph demonstrates the data race.

Model-Checking Task Parallel Programs for Data-Race 377

5 Implementation and Results

The model checking approach to data race detection described in this paper
has been implemented for Habanero Java (HJ). The implementation uses the
verification run-time specifically designed to test HJ programs and play nicely
with JPF [16]. The implementation is a set of JPF listeners to create the com-
putation graph and only schedule on isolated-statements. It is worth noting
that this implementation does not use vector clocks for data-race detection on
the generated computation graph but rather uses a more direct, albeit naive,
quadratic check via transitive closure.

As a sketch of the implementation, JPF’s VM listeners are used to track
various program events related to parallelism. The methods objectCreated
and objectReleased are used to create nodes in the computation graph. The
objectCreated method is used to track the creation of a new async task.
The objectCreated method detects when a post statement executes and adds
appropriate edges to the computation graph. Similarly, the objectReleased
method is used to track when finish blocks complete execution. The await
statement is used to create a node in the graph where the tasks belonging to
the finish block join. The executeInstruction method is used to track mem-
ory locations that are accessed by various tasks by updating the node with the
location accessed by the task during the execution of that instruction. All in all,
seven listeners and two factories are replaced in JPF consisting of roughly 1.6K
lines of code.

The approach in this paper is compared to two other approaches imple-
mented by JPF: Precise race detector (PRD) and Gradual permission regions
(GPR). The PRD algorithm is a partial order reduction based on JPF’s ability
to dynamically detect shared memory accesses. In this mode, JPF schedules on
all detected shared memory accesses. GPR uses program annotations to reduce
the number of shared locations that need to consider scheduling by grouping
several bytecodes that access shared locations into a single atomic block of code
with read/write indications [22]. For example, if there are two bytecodes that
touch shared memory locations, PRD schedules from each of the two locations.
In contrast, if those two locations are wrapped in a single permission region, then
GPR only considers schedules from the start of the region with the region being
considered atomic. GPR is equal to PRD if every bytecode that accesses shared
memory is put in its own region. Both approaches are a form of partial order
reduction with GPR outperforming PRD by virtue of considering significantly
fewer scheduling points via the user annotated permission regions.

The comparison over a set of benchmarks is shown in Table 1. The bench-
marks are a collection of those from the HJ distribution itself1 and various pre-
sentation materials introducing the Habanero model; other benchmarks come
from testing various language constructs in the development process. The table
indicates for each benchmark its relative size in lines-of-code and tasks. The
number of states generated by JPF for the proof, the time in minutes and sec-

1 https://wiki.rice.edu/confluence/display/HABANERO/Habanero-Java.

https://wiki.rice.edu/confluence/display/HABANERO/Habanero-Java

378 R. Nakade et al.

Table 1. Computation graphs vs permission regions vs. PreciseRaceDetector.

Test ID SLOC Tasks Computation graphs GPR PRD

States mm:ss Race States mm:ss Race States mm:ss Race

Primitive Array Race 39 3 5 00:00 Y 5 00:00 Y 220 00:00 Y

Reciprocal Array Sum 58 2 4 00:08 Y 32 00:06 Y - - -

Primitive Array No

Race

29 3 5 00:00 N 5 00:00 N 11,852 00:00 N

Two Dim Arrays 30 11 15 00:00 N 15 00:00 N 597 00:00 Y*

ForAll With Iterable 38 2 9 00:00 N 9 00:00 N - - -

Integer Counter

Isolated

54 10 24 00:01 N 1,013,102 05:53 N - - -

Pipeline With Futures 69 5 34 00:00 N 34 00:00 N - - -

Prime Num Counter 51 25 776 00:01 N 3,542,569 17:37 N - - -

Prime Num Counter

ForAll

52 25 30 00:02 N 18 00:01 N - - -

Prime Num Counter

ForAsync

44 11 653 00:01 N 2,528,064 15:44 N - - -

Add 67 3 11 00:01 N 62,374 00:33 N 4930 00:03 Y*

Scalar Multiply 55 3 15 00:01 N 55,712 00:30 N 826 00:01 Y*

Vector Add 50 3 5 00:00 N 17 00:00 N 46,394 00:19 N

Clumped Access 30 3 5 00:03 N 15 00:00 N - - -

onds, and finally whether or not a race was detected. The “-” indicates that no
results are available because the approach exceeded the arbitrary one hour time
bound for each run. The experiments were run on a machine with an Intel Core
i5 processor with 2.6 GHz speed and 8 GB of RAM.

The table shows that in general, PRD does not finish in the time bound. The
“Y*” on the Race column for PRD indicates that PRD incorrectly reports data-
race on array objects in some examples because it does not check the indexes—
a shortcoming in the PRD implementation. GPR falls behind quickly as the
number of permission regions grow. The difference in performance is seen in the
Add, Scalar multiply, and Prime number counter benchmarks which use shared
variables. The regions are made as big as possible without creating a data-race.
The Prime number counter benchmark also has isolated sections. As a result, the
state space for computation graphs is also large compared to other benchmarks.
Of course, in the presence of isolation, the approach in this paper must enumerate
all possible computation graphs, so it suffers the same state explosion as other
model checking approaches.

The next set of results are for bigger real-world programs. The Crypt-af
and Crypt-f benchmarks are implementations of the IDEA encryption algo-
rithm and Series-af and Series-f are the Fourier coefficient analysis bench-
marks adapted from the JGF suite [23] using async-finish and future con-
structs respectively. The strassen benchmark is adapted from the OpenMP ver-
sion of the program in the Kastors suite [24]. These are quickly verified free
of data-race using computation graphs as shown below—PRD and GPR time
out. Source code and additional benchmarks converted from https://github.com/
LLNL/dataracebench can be found at https://jpf.byu.edu/jpf-hj/.

https://github.com/LLNL/dataracebench
https://github.com/LLNL/dataracebench
https://jpf.byu.edu/jpf-hj/

Model-Checking Task Parallel Programs for Data-Race 379

Test ID SLOC Tasks States mm:ss Race

Crypt-af 1010 259 260 00:17 N

Crypt-f 1145 387 775 00:46 N

Series-af 730 329 750 00:36 N

Series-f 830 354 630 00:51 N

Strassen 560 3 7 00:57 N

6 Related Work

Data-race detection in unstructured thread parallelism, where there is no defined
protocol for creating and joining threads, or accessing shared memory, relies
on static analysis to approximate parallelism and memory accesses [25–27] and
then improves precision with dynamic analysis [17,28–31]. Other approaches rea-
son about threads individually [32,33]. These approaches make few assumptions
about the parallelism for generality and typically have higher cost for analy-
sis. It is difficult to compare the approach in this paper to these more general
approaches because the work in this paper relies critically on the structure of
the parallelism to reduce the cost of formal analysis.

Structured parallelism constrains how threads are created and joined and
how shared memory is accessed through programming models. For example, a
locking protocol leads to static, dynamic, or hybrid lock-set analyses for data-
race detection that are typically more efficient than approaches to unstructured
parallelism [34–36]. Locking protocols can be applied to isolation with similar
results—over-approximating the set of shared locations potentially rejecting pro-
grams as having data-race when indeed they do not.

Dynamic data-race detection based on SP-bags has been shown to effec-
tively scale to large program instances and the method has been applied to the
Habanero programming model to support a limited set of Habanero keywords
including futures but not isolation [10]. The goal in this paper is verification
and not run time monitoring, so it needs to enumerate all possible computa-
tion graphs but can benefit from the more efficient SP-bags algorithm to detect
data-race on-the-fly in the computation graph.

Programmer annotations indicating shared interactions (e.g., permission
regions) do improve model checking in general [13]. These are best understood
as helping the partial order reduction by grouping several shared accesses into a
single atomic block. The regions are then annotated with read/write properties
to indicate what the atomic block is doing. The model checker only considers the
interactions of these shared regions to reduce the number of executions explored
to prove the system correct.

There are other model checkers for task parallel languages [14,15]. The first
modifies JPF and an X10 run-time extensively (beyond the normal JPF options
for customization) and the second is a new virtual machine to model check the
language. Both of these solutions require extensive programming whereas the
solution in this paper leverages the existing Habanero verification runtime for

380 R. Nakade et al.

JPF. That run-time maps tasks to threads making it small enough (relatively
few lines of code) to argue correctness and making it work with JPF without
any modification to JPF internals.

7 Conclusion and Future Work

This paper presents a model checking approach for data race detection in task
parallel programs using computation graphs. The computation graph represents
the happens-before relation of the task parallel program and can readily be
checked for data-race. The approach then enumerates all computation graphs
created by different schedules of isolated regions to prove data-race freedom.
The data race detection analysis is implemented for a Java implementation of
the Habanero programming model using JPF and evaluated on a host of bench-
marks. The results are compared to JPF’s precise race detector and a gradual
permission regions based extension. The results show that computation graph
analysis reduces the time required for verification significantly relative to JPF’s
standards.

Future work is to reduce the number of schedules that must be considered by
the model checker by weakening the happens-before relation in a manner similar
to recent advances in dynamic data-race detection [18,19]. Soundly weakening
the happens-before relation grows the number of schedules covered by any one
observed program execution including schedules that have different orders of
isolation statements. These larger equivalence classes captured by the weakened
happens-before relation can be used to prune schedules from consideration by
the model checker. Other future work is to leverage static analysis, abstract
interpretation, to reason over the input space so that the proof can be generalized
to all inputs and executions.

Acknowledgement. This work is supported by the National Science Foundation
under grant 1302524. Thanks to Lincoln Bergeson and Kyle Storey for their contri-
bution to the tool and its tests.

References

1. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55–69 (1996)

2. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. SIGPLAN Not. 40(10), 519–538 (2005)

3. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-Java: the new adventures
of old X10. In: Proceedings of the 9th International Conference on Principles and
Practice of Programming in Java, pp. 51–61. ACM (2011)

4. Imam, S., Sarkar, V.: Habanero-Java library: a Java 8 framework for multicore
programming. In: Proceedings of the 2014 International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, pp. 75–86. ACM (2014)

Model-Checking Task Parallel Programs for Data-Race 381

5. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in Cilk pro-
grams. In: Proceedings of the Ninth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA 1997, pp. 1–11. ACM, New York (1997)

6. Cheng, G.I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data
races in Cilk programs that use locks. In: Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA 1998, pp. 298–309.
ACM, New York (1998)

7. Bender, M.A., Fineman, J.T., Gilbert, S., Leiserson, C.E.: On-the-fly maintenance
of series-parallel relationships in fork-join multithreaded programs. In: Proceed-
ings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA 2004, pp. 133–144. ACM, New York (2004)

8. Raman, R., Zhao, J., Sarkar, V., Vechev, M.T., Yahav, E.: Efficient data race
detection for async-finish parallelism. Form. Methods Syst. Des. 41(3), 321–347
(2012)

9. Utterback, R., Agrawal, K., Fineman, J.T., Lee, I.T.A.: Provably good and prac-
tically efficient parallel race detection for fork-join programs. In: Proceedings of
the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2016, pp. 83–94. ACM, New York (2016)

10. Surendran, R., Sarkar, V.: Dynamic determinacy race detection for task parallelism
with futures. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp.
368–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 23

11. Mellor-Crummey, J.: On-the-fly detection of data races for programs with nested
fork-join parallelism. In: Proceedings of the 1991 ACM/IEEE Conference on Super-
computing, Supercomputing 1991, pp. 24–33. ACM, New York (1991)

12. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Scalable and precise
dynamic datarace detection for structured parallelism. In: ACM SIGPLAN Notices,
vol. 47, no. 6, pp. 531–542. ACM (2012)

13. Westbrook, E., Zhao, J., Budimlić, Z., Sarkar, V.: Practical permissions for race-
free parallelism. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313, pp. 614–639.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31057-7 27

14. Gligoric, M., Mehlitz, P.C., Marinov, D.: X10X: model checking a new program-
ming language with an “old” model checker. In: 2012 IEEE Fifth International Con-
ference on Software Testing, Verification and Validation, pp. 11–20. IEEE (2012)

15. Zirkel, T.K., Siegel, S.F., McClory, T.: Automated verification of chapel programs
using model checking and symbolic execution. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 198–212. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38088-4 14

16. Anderson, P., Chase, B., Mercer, E.: JPF verification of Habanero Java programs.
ACM SIGSOFT Softw. Eng. Notes 39(1), 1–7 (2014)

17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

18. Kini, D., Mathur, U., Viswanathan, M.: Dynamic race prediction in linear time.
SIGPLAN Not. 52(6), 157–170 (2017)

19. Huang, J., Meredith, P.O., Rosu, G.: Maximal sound predictive race detection with
control flow abstraction. SIGPLAN Not. 49(6), 337–348 (2014)

20. Dennis, J.B., Gao, G.R., Sarkar, V.: Determinacy and repeatability of parallel
program schemata. In: 2012 Data-Flow Execution Models for Extreme Scale Com-
puting (DFM), pp. 1–9. IEEE (2012)

21. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. ACM SIG-
PLAN Not. 47(1), 203–214 (2012)

https://doi.org/10.1007/978-3-319-46982-9_23
https://doi.org/10.1007/978-3-642-31057-7_27
https://doi.org/10.1007/978-3-642-38088-4_14

382 R. Nakade et al.

22. Mercer, E., Anderson, P., Vrvilo, N., Sarkar, V.: Model checking task parallel pro-
grams using gradual permissions. In: Proceedings of 30th IEEE/ACM International
Conference on Automated Software Engineering, New Ideas Category, pp. 535–540.
ACM (2015)

23. Bull, J.M., Smith, L.A., Westhead, M.D., Henty, D.S., Davey, R.A.: A benchmark
suite for high performance Java. Concurr. - Pract. Exp. 12(6), 375–388 (2000)

24. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage,
O., Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS
benchmark suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M.,
Müller, M.S. (eds.) IWOMP 2014. LNCS, vol. 8766, pp. 16–29. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11454-5 2

25. Kahlon, V., Sinha, N., Kruus, E., Zhang, Y.: Static data race detection for concur-
rent programs with asynchronous calls. In: Proceedings of the 7th Joint Meeting of
the European Software Engineering Conference and the Foundations of Software
Engineering, pp. 13–22. ACM (2009)

26. Kulikov, S., Shafiei, N., Van Breugel, F., Visser, W.: Detecting data races with
Java PathFinder (2010)

27. Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic verification of deter-
minism for structured parallel programs. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 455–471. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15769-1 28

28. Godefroid, P.: Model checking for programming languages using Verisoft. In: Pro-
ceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 1997, pp. 174–186. ACM, New York (1997)

29. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
In: ACM SIGPLAN Notices, vol. 44, no. 6, pp. 121–133. ACM (2009)

30. Choi, J.D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V., Sridharan, M.: Effi-
cient and precise datarace detection for multithreaded object-oriented programs.
SIGPLAN Not. 37(5), 258–269 (2002)

31. Dimitrov, D., Raychev, V., Vechev, M., Koskinen, E.: Commutativity race detec-
tion. In: ACM SIGPLAN Notices, vol. 49, no. 6, pp. 305–315. ACM (2014)

32. Malkis, A., Podelski, A., Rybalchenko, A.: Precise thread-modular verification. In:
Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 218–232. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2 14

33. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis.
In: ACM SIGPLAN Notices, vol. 42, no. 6, pp. 266–277. ACM (2007)

34. Engler, D., Ashcraft, K.: RacerX: effective, static detection of race conditions and
deadlocks. In: ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 237–
252. ACM (2003)

35. Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: a race and transaction-aware Java
runtime. In: ACM SIGPLAN Notices, vol. 42, no. 6, pp. 245–255. ACM (2007)

36. Voung, J.W., Jhala, R., Lerner, S.: RELAY: static race detection on millions of
lines of code. In: Proceedings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pp. 205–214. ACM (2007)

https://doi.org/10.1007/978-3-319-11454-5_2
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-540-74061-2_14

Consistency of Property Specification
Patterns with Boolean and Constrained

Numerical Signals

Massimo Narizzano1(B) , Luca Pulina2 , Armando Tacchella1 ,
and Simone Vuotto1,2

1 DIBRIS, University of Genoa, Viale Causa 13, 16145 Genoa, Italy
{massimo.narizzano,armando.tacchella}@unige.it

2 Chemistry and Pharmacy Department, University of Sassari,
Via Vienna 2, Sassari, Italy

{lpulina,svuotto}@uniss.it

Abstract. Property Specification Patterns (PSPs) have been proposed
to solve recurring specification needs, to ease the formalization of require-
ments, and enable automated verification thereof. In this paper, we
extend PSPs by considering Boolean as well as atomic numerical asser-
tions. This extension enables us to reason about functional requirements
which would not be captured by basic PSPs. We contribute an encod-
ing from constrained PSPs to LTL formulae, and we show experimental
results demonstrating that our approach scales on requirements of realis-
tic size generated using a probabilistic model. Finally, we show that our
extension enables us to prove (in)consistency of requirements about an
embedded controller for a robotic manipulator.

1 Introduction

In the context of safety- and security-critical cyber-physical systems (CPSs),
checking the consistency of functional requirements is an indisputable, yet chal-
lenging task. Requirements written in natural language call for time-consuming
and error-prone manual reviews, whereas enabling automated consistency verifi-
cation often requires overburdening formalizations. Given the increasing perva-
siveness of CPSs, their stringent time-to-market and product budget constraints,
practical solutions to enable automated verification of requirements are in order,
and Property Specification Patterns (PSPs) [8] offer a viable path towards
this target. PSPs are a collection of parameterizable, high-level, formalism-
independent specification abstractions, originally developed to capture recur-
ring solutions to the needs of requirement engineering. Each pattern can be
directly encoded in a formal specification language, such as linear time temporal
logic (LTL) [18], computational tree logic (CTL) [2], or graphical interval logic
(GIL) [5]. Because of their features, PSPs may ease the burden of formalizing
requirements, yet enable their verification using current state-of-the-art auto-
mated reasoning tools—see, e.g., [1,9,11,14,23].
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 383–398, 2018.
https://doi.org/10.1007/978-3-319-77935-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_26&domain=pdf
http://orcid.org/0000-0002-0268-4843
http://orcid.org/0000-0003-0258-3222
http://orcid.org/0000-0001-9487-331X
http://orcid.org/0000-0001-6617-2874

384 M. Narizzano et al.

The original formulation of PSPs caters for temporal structure over Boolean
variables. However, for most practical applications, such expressiveness is too
restricted. This is the case of the embedded controller for robotic manipulators
that is under development in the context of the EU project CERBERO1 and pro-
vides the main motivation for this work. As an example, consider the following
statement: “The angle of joint1 shall never be greater than 170 degrees”. This
requirement imposes a safety threshold related to some joint of the manipulator
(joint1) with respect to physically-realizable poses, yet it cannot be expressed as
a PSP unless we add atomic numerical assertions in a constraint system D. We
call Constraint PSP, or PSP(D) for short, a pattern which has the same struc-
ture of a PSP, but contains atomic propositions from D. For instance, using
PSP(R, <,=) we can rewrite the above requirement as an universality pattern:
“Globally, it is always the case that θ1 < 170 holds”, where θ1 is the numeri-
cal signal (variable) for the angle of joint1. In principle, automated reasoning
about Constraint PSPs can be performed in Constraint Linear Temporal Logic,
i.e., LTL extended with atomic assertions from a constraint system [4]: in our
example above, the encoding would be simply � (θ1 < 170). Unfortunately, this
approach does not always lend itself to a practical solution, because Constraint
Linear Temporal Logic is undecidable in general [3]. Restrictions on D may
restore decidability [4], but they introduce limitations in the expressiveness of
the corresponding PSPs.

In this paper, we propose a solution which ensures that automated verifica-
tion of requirements is feasible, yet enables PSPs mixing both Boolean variables
and (constrained) numerical signals. Our approach enables us to capture many
specifications of practical interest, and to pick a verification procedure from
the relatively large pool of automated reasoning systems currently available for
LTL. In particular, we restrict our attention to a constraint systems of the form
(R, <,=), and atomic propositions of the form x < C or x = C, where x ∈ R

is a variable and C ∈ R is a constant value. In the following, we write DC to
denote such restriction. Our contribution can be summarized as follows:

– We extend basic PSPs over the constraint system DC , and we provide an
encoding from any PSP(DC) into a corresponding LTL formula.

– We provide a tool2 based on state-of-the-art decision procedures and model
checkers to automatically analyze requirements expressed as PSPs(DC).

– We implement a generator of artificial requirements expressed as PSPs(DC);
the generator takes a set of parameters in input and emits a collection of
PSPs according to a parametrized probability model.

– Using our generator, we run an extensive experimental evaluation aimed at
understanding (i) which automated reasoning tool is best at handling set of
requirements as PSPs(DC), and (ii) whether our approach is scalable.

– Finally, we analyze the requirements of the aforementioned embedded con-
troller, experimenting also with the addition of faulty ones.

1 Cross-layer modEl-based fRamework for multi-oBjective dEsign of Reconfigurable
systems in unceRtain hybRid envirOnments—http://www.cerbero-h2020.eu/.

2 https://github.com/SAGE-Lab/snl2fl.

http://www.cerbero-h2020.eu/
https://github.com/SAGE-Lab/snl2fl

Consistency of PSPs with Boolean and Constrained Numerical Signals 385

The consistency of requirements written in PSP(DC) is carried out using tools
and techniques available in the literature [11,21,22]. With those, we demonstrate
the scalability of our approach by checking the consistency of up to 1920 require-
ments, featuring 160 variables and up to 8 thresholds appearing in the atomic
assertions, within less than 500 CPU seconds. A total of 75 requirements about
the embedded controller for the CERBERO project is checked in a matter of
seconds, even without resorting to the best tool among those we consider.

The rest of the paper is organized as follows. Section 2 contains some basic
concepts on LTL, PSPs and some related work. In Sect. 3 we present the exten-
sion of basic PSPs over DC and the related encoding to LTL. In Sects. 4 and 5
we report the results of the experimental analysis concerning the scalability and
the case study on the embedded controller, respectively. We conclude the paper
in Sect. 6 with some final remarks.

2 Background and Related Work

LTL syntax and semantics. Linear temporal logic (LTL) [17] formulae are built
on a finite set Prop of atomic propositions as follows:

φ = p | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2

where p ∈ Prop, φ, φ1, φ2 are LTL formulae, X is the “next” operator and U is
the “until” operator. An LTL formula is interpreted over a computation, i.e., a
function π : N → 2Prop which assigns truth values to the elements of Prop at
each time instant (natural number). For a computation π and a point i ∈ N:
– π, i |= p for p ∈ Prop iff p ∈ π(i)
– π, i |= ¬α iff π, i �|= α
– π, i |= (α ∨ β) iff π, i |= α or π, i |= β
– π, i |= X α iff π, i + 1 |= α
– π, i |= α U β iff for some j ≥ i, we have π, j |= β and for all k, i ≤ k < j we

have π, k |= α

We say that π satisfies a formula φ, denoted π |= φ, iff π, 0 |= φ. If π |= φ for
every π, then φ is true and we write |= φ. We abbreviate p ∨ ¬p as �, p ∧ ¬p as
⊥ and we consider other Boolean connectives like “∧” and “→” with the usual
meaning. We introduce ♦φ (“eventually”) to denote � U φ and �φ (“always”) to
denote ¬♦¬φ. Finally, some of the PSPs use the “weak until” operator defined
as α W β = �α ∨ (α U β).

LTL satisfiability. Among various approaches to decide LTL satisfiability, reduc-
tion to model checking was proposed in [20] to check the consistency of require-
ments expressed as LTL formulae. Given a formula φ over a set Prop of atomic
propositions, a universal model M can be constructed. Intuitively, a univer-
sal model encodes all the possible computations over Prop as (infinite) traces,
and therefore φ is satisfiable precisely when M does not satisfy ¬φ. In [22]
a first improvement over this basic strategy is presented together with the
tool PANDA3 whereas in [13] an algorithm based on automata construction is
3 https://ti.arc.nasa.gov/m/profile/kyrozier/PANDA/PANDA.html.

https://ti.arc.nasa.gov/m/profile/kyrozier/PANDA/PANDA.html

386 M. Narizzano et al.

proposed to enhance performances even further—the approach is implemented
in a tool called aalta. Further studies along this direction include [11,12]. In
the latter, a portfolio LTL satisfiability solver called polsat is proposed to run
different techniques in parallel and return the result of the first one to terminate
successfully.

Response

Describe cause-effect relationships between a pair of events/states. An occur-
rence of the first, the cause, must be followed by an occurrence of the second,
the effect. Also known as Follows and Leads-to.

Structured English Grammar
It is always the case that if P holds, then S eventually holds.

LTL Mappings

Globally � (P → ♦S)

Before R ♦R → (P → (R U (S ∧ R))) U R

After Q � (Q → � (P → ♦S))

Between Q and R � ((Q ∧ R ∧ ♦R) → (P → (R U (S ∧ R))) U R)

After Q until R � (Q ∧ R → ((P → (R U (S ∧ R))) W R)

Example
If the train is approaching, then the gate shall be closed.

Fig. 1. Response pattern (α stands for ¬α).

Property Specification Patterns (PSPs). The original proposal of PSPs is to
be found in [8]. They are meant to describe the essential structure of system’s
behaviours and provide expressions of such behaviors in a range of common
formalisms. An example of a PSP is given in Fig. 1—with some part omitted for
sake of readability.4 A pattern is comprised of a Name (Response in Fig. 1), an
(informal) statement describing the behaviour captured by the pattern, and a
(structured English) statement [10] that should be used to express requirements.
The LTL mappings corresponding to different declinations of the pattern are also
given, where capital letters (P , S, T , etc.) stands for Boolean states/events.5 In
more detail, a PSP is composed of two parts: (i) the scope, and (ii) the body. The
scope is the extent of the program execution over which the pattern must hold,

4 The full list of PSPs considered in this paper and their mapping to LTL and other
logics is available at http://patterns.projects.cis.ksu.edu/.

5 We omitted some aspects which are not relevant for our work, e.g., translations to
other logics like CTL [8].

http://patterns.projects.cis.ksu.edu/

Consistency of PSPs with Boolean and Constrained Numerical Signals 387

and there are five scopes allowed: Globally, to span the entire scope execution;
Before, to span execution up to a state/event; After, to span execution after
a state/event; Between, to cover the part of execution from one state/event to
another one; After-until, where the first part of the pattern continues even if
the second state/event never happens. For state-delimited scopes, the interval
in which the property is evaluated is closed at the left and open at the right
end. The body of a pattern, describes the behavior that we want to specify.
In [8] the bodies are categorized in occurrence and order patterns. Occurrence
patterns require states/events to occur or not to occur. Examples of such bodies
are Absence, where a given state/event must not occur within a scope, and
its opposite Existence. Order patterns constrain the order of the states/events.
Examples of such patterns are Precedence, where a state/event must always
precede another state/event, and Response, where a state/event must always
be followed by another state/event within the scope. Moreover, we included
the Invariant pattern introduced in [19], and dictating that a state/event must
occur whenever another state/event occurs. Combining scopes and bodies we
can construct 55 different types of patterns.

Related Work. In [15] the framework, Property Specification Pattern Wizard
(PSP-Wizard) is presented, for machine-assisted definition of temporal formu-
lae capturing pattern-based system properties. PSP-Wizard offers a translation
into LTL of the patterns encoded in the tool, but it is meant to aid specification,
rather than support consistency checking, and it cannot deal with numerical
signals. In [10], an extension is presented to deal with real-time specifications,
together with mappings to Metric temporal logic (MTL), Timed computational
tree logic (TCTL) and Real-time graphical interval logic (RTGIL). Even if this
work is not directly connected with ours, it is worth mentioning it since their
structured English grammar for patterns is at the basis of our formalism. The
work in [10] also provided inspiration to a recent set of works [6,7] about a tool,
called VI-Spec, to assist the analyst in the elicitation and debugging of formal
specifications. VI-Spec lets the user specify requirements through a graphical
user interface, translates them to MITL formulae and then supports debugging
of the specification using run-time verification techniques. VI-Spec embodies an
approach similar to ours to deal with numerical signals by translating inequalities
to sets of Boolean variables. However, VI-Spec differs from our work in several
aspects, most notably the fact that it performs debugging rather than consis-
tency, so the behavior of each signal over time must be known. Also, VI-Spec
handles only inequalities and does not deal with sets of requirements written
using PSPs.

3 Constraint Property Specification Patterns

Let us start by defining a constraint system D as a tuple D = (D,R1, . . . , Rn, I),
where D is a non-empty set called domain, and each Ri is a predicate symbol
of arity ai, with I(Ri) ⊆ Dai being its interpretation. Given a set of variables

388 M. Narizzano et al.

X and a set of constants C such that C ∩ X = ∅, a term is a member of the
set T = C ∪ X; an (atomic) D-constraint over a set of terms is of the form
Ri(t1, . . . , tai

) for some 1 ≤ i ≤ n and tj ∈ T for all 1 ≤ j ≤ ai—we also use
the term constraint when D is understood from the context. We define linear
temporal logic modulo constraints—LTL(D) for short—as an extension of LTL
with atoms in a constraint system D. Given a set of Boolean propositions Prop,
a constraint system D = (D,R1, . . . , Rn, I), and a set of terms T = C ∪ X, an
LTL(D) formula is defined as:

φ = p | Ri(t1, . . . , tai
) | ¬φ1 | φ1 ∨ φ2 | X φ1 | φ1 U φ2

where p ∈ Prop, φ, φ1, φ2 are LTL(D) formulas, and Ri(·) with 1 ≤ i ≤ n is
an atomic D-constraint. Additional Boolean and temporal operators are defined
as in LTL with the same intended meaning. Notice that the set of LTL(D) for-
mulas is a (strict) subset of those in constraint linear temporal logic—CLTL(D)
for short—as defined, e.g., in [4]. LTL(D) formulas are interpreted over com-
putations of the form π : N → 2Prop plus additional evaluations of the form
ν : T ×N → D such that, for all i ∈ N, ν(c, i) = ν(c) ∈ D for all c ∈ C, whereas
ν(x, i) ∈ D for all x ∈ X. In words, the function ν associates to constants c ∈ C
a value ν(c) that does not change in time, and to variables x ∈ X a value ν(x, i)
that possibly changes at each time instant i ∈ N. LTL semantics is extended to
LTL(D) by handling constraints:

π, ν, j |= Ri(t1, . . . , tai
) iff (ν(t1, j), . . . , ν(tai

, j)) ∈ I(Ri)

We say that π and ν satisfy a formula φ, denoted π, ν |= φ, iff π, ν, 0 |= φ. A
formula φ is satisfiable as long as there exist a computation π and a valuation
ν such that π, ν |= φ. We further restrict our attention to the constraint system
DC = (R, <,=), with atomic constraints of the form x < c and x = c, where c
is a constant corresponding to some real number—we abuse notation and write
c ∈ R—and the interpretation of the predicates “<” and “=” is the usual one.
While CLTL(D) is undecidable in general [3,4], LTL(DC) is decidable since, as
we show in the following, it can be reduced to LTL satisfiability.

We introduce the concept of constraint property specification pattern, denoted
PSP(D), to deal with specifications containing Boolean variables as well as atoms
from a constraint system D. In particular, a PSP(DC) features only Boolean
atoms and atomic constraints of the form x < c or x = c (c ∈ R). For example,
the requirement:

The angle of joint1 shall never be greater than 170 degrees

can be re-written as a PSP(DC):

Globally, it is always the case that θ1 < 170

where θ1 ∈ R is the variable associated to the angle of joint1 and 170 is the
limiting threshold. While basic PSPs only allow for Boolean states/events in
their description, PSPs(DC) also allow for atomic numerical constraints. It is

Consistency of PSPs with Boolean and Constrained Numerical Signals 389

straightforward to extend the translation of [8] from basic PSPs to LTL in order
to encode any PSP(DC) to a formula in LTL(DC). Consider, for instance, the
set of requirements:

R1 Globally, it is always the case that v ≤ 5.0 holds.
R2 After a, v ≤ 8.5 eventually holds.
R3 After a, it is always the case that if v ≥ 3.2 holds, then z eventually holds.

where a and z are Boolean states/events, whereas v is a numeric signal. These
PSPs(DC)6 can be rewritten as the following LTL(DC) formula:

�(v < 5.0 ∨ v = 5.0) ∧
�(a → ♦(v < 8.5) ∨ (v = 8.5)) ∧
�(a → �(¬(v < 3.2) → ♦z))

(1)

Therefore, to reason about the consistency of sets of requirements written using
PSPs(DC) it is sufficient to provide an algorithm for deciding the satisfiability
of LTL(DC) formulas.

To this end, consider an LTL(DC) formula φ, and let X(φ) be the set of
variables and C(φ) be the set of constants that occur in φ. We define the set of
thresholds Sx(φ) ⊆ C(φ) as the set of constant values against which variable x ∈
X(φ) is compared to. More precisely, for every variable x ∈ X(φ) we construct
a set Sx(φ) = {c1, .., cn} such that, for all ck ∈ R with 1 ≤ k ≤ n, φ contains a
constraint of the form x < ck or x = ck. In the following, for our convenience,
we consider each threshold set Sx(φ) ordered in ascending order, i.e., ck < ck+1

for all 1 ≤ k < n. For instance, in example (1), we have X = {v} and the set
Sv = {3.2, 5.0, 8.5}. Given an LTL(D) formula φ, let Sx(φ) = {c1, . . . , cn} be
the ordered set of thresholds for some variable x ∈ X(φ); given a computation
π and a valuation ν we can define:

– Qx(φ) = {q1, . . . , qn} as the set of Boolean propositions such that, for 1 < j ≤
n, we have qj ∈ π(i) for some i = 0, 1, . . . exactly when cj−1 < ν(x, i) < cj ,
and for j = 1, we have qj ∈ π(i) for some i = 0, 1, . . . exactly when ν(x, i) <
cj .

– Ex(φ) = {e1, . . . , en} as the set of Boolean propositions such that we have
ej ∈ π(i) for i = 0, 1, . . . exactly when ν(x, i) = cj .

Notice that, by definition of Qx(φ) and Ex(φ), given any time instant i ∈
0, 1, 2, . . ., we have that exactly one of the following cases is true (1 ≤ j ≤ n):

– qj ∈ π(i) for some j, ql �∈ π(i) for all l �= j and ej �∈ π(i) for all j;
– ej ∈ π(i) for some j, el �∈ π(i) for all l �= j and qj �∈ π(i) for all j;
– qj �∈ π(i) and ej �∈ π(i) for all j.

6 Strictly speaking, the syntax used is not that of DC , but a statement like v ≤ 5.0
can be thought as syntactic sugar for the expression (v < 5.0) ∨ (v = 5.0).

390 M. Narizzano et al.

Intuitively, the first case above corresponds to a value of x that lies between some
threshold value in Sx(φ) or before its smallest value; the second case occurs when
a threshold value is assigned to x, and the third case is when x exceeds the highest
threshold value in Sx(φ). For instance, in example (1) we have Sv = {3.2, 5.0, 8.5}
and the corresponding sets Qv{q1, q2, q3} and Ev = {e1, e2, e3}. Assuming, e.g.,
ν(v, i) = 10 for some i = 0, 1, 2, . . ., we would have that Qv∩π(i) = Ev∩π(i) = ∅.

Given the definitions above, an LTL(D) formula φ over the set of Boolean
propositions Prop and the set of terms T = C ∪ X, can be converted to an LTL
formula φ′ over the set of Boolean propositions Prop ∪ ⋃

ξinX(Qξ(φ) ∪ Eξ(φ)).
We obtain this by considering, for each variable x ∈ X and associated thresh-
old set Sx(φ), the corresponding propositions Qx(φ) = {q1, . . . qn} and Ex =
{e1, . . . , en}; then, for each tk ∈ Sx(φ), we perform the following substitutions:

x < tk �
k∨

j=1

qj ∨
k−1∨

j=1

ej and x = tk � ek. (2)

However, replacing atomic numerical constraints is not enough to ensure equisat-
isfiability of φ′ with respect to φ. In particular, we must encode the observation
made above about “mutually exclusive” Boolean valuations for propositions in
Qx(φ) and Ex(φ) for every x ∈ X(φ) as corresponding Boolean constraints:

φM =
∧

ξ∈X(φ)

⎛

⎝
∧

a,b∈Mξ(φ),a�=b

�¬(a ∧ b)

⎞

⎠ (3)

where Mξ(φ) = Qξ(φ) ∪ Eξ(φ). We can now state the following fact:

Property 1. Given an LTL(DC) formula φ over the set of Boolean atoms Prop
and the terms C(φ) ∪ X(φ) we have that φ is satisfiable if and only if the
LTL formula φM → φ′ is satisfiable, where φ′ is obtained by replacing atomic
numerical constraints according to rules (2) and φM is defined according to (3).

For instance, given example (1), we have Qv = {q1, q2, q3} and Ev =
{e1, e2, e3} and the mutual exclusion constraints are written as:

φM =�¬(q1 ∧ q2) ∧ �¬(q1 ∧ q3) ∧ �¬(q1 ∧ e1) ∧ �¬(q1 ∧ e2)∧
�¬(q1 ∧ e3) ∧ �¬(q2 ∧ q3) ∧ �¬(q2 ∧ e1) ∧ �¬(q2 ∧ e2)∧
�¬(q2 ∧ e3) ∧ �¬(q3 ∧ e1) ∧ �¬(q3 ∧ e2) ∧ �¬(q3 ∧ e3)∧
�¬(e1 ∧ e2) ∧ �¬(e1 ∧ e3) ∧ �¬(e2 ∧ e3).

(4)

Therefore, the LTL formula to be tested for assessing the consistency of the
requirements is

φM → (�(q1 ∨ q2 ∨ e1 ∨ e2)∧
�(a → ♦(

∨3
i=1 qi ∨ ei))∧

�(a → �(¬q1 → ♦z))).
(5)

Consistency of PSPs with Boolean and Constrained Numerical Signals 391

4 Analysis with Probabilistic Requirement Generation

The main goal of this Section is to investigate the scalability of our encoding
from LTL(D) to LTL. To this end, we evaluate the performances7 of some state-
of-the-art tools for LTL satisfiability, and then we consider the best among such
tools to assess whether our approach can scale to sets of requirements of realistic
size. Since we want to have control over the kind of requirements, as well as the
number of constraints and the size of the corresponding domains, we generate
artificial specifications using a probabilistic model that we devised and imple-
mented specifically to carry out the experiments herein presented. In particular,
the following parameters can be tuned in our generator of specifications:

– The number of requirements generated (#req).
– The probability of each different body to occur in a pattern.
– The probability of each different scope to occur in a pattern.
– The size (#vars) of the set from which variables are picked uniformly at

random to build patterns.
– The size (dom) of the domain from which the thresholds of the atomic con-

straints are chosen uniformly at random.

Evaluation of LTL satisfiability solvers. The solvers considered in our analysis
are the ones included in the portfolio solver polsat [11], namely aalta [14],
NuSMV [1], pltl [23], and trp++ [9]. In order to have a better understand-
ing about the behavior of such solvers, we ran them separately instead of run-
ning polsat. Furthermore, in the case of NuSMV, we considered two different
encodings. With reference to Property 1, the first encoding defines φM as an
invariant—denoted as NuSMV-invar—and φ′ is the property to check; the sec-
ond encoding considers φM → φ as the property to check—denoted as NuSMV-
noinvar. In our experimental analysis we set the range of the parameters as
follows: #vars ∈ {16, 32}, dom ∈ {2, 4, 8, 16}, and #req ∈ {8, 16, 32, 64}. For
each combination of the parameters with v ∈ #vars, r ∈ #req and d ∈ dom, we
generate 10 different benchmarks. Each benchmark is a specification containing
r requirements where each scope has (uniform) probability 0.2 and each body
has (uniform) probability 0.1. Then, for each atomic numerical constraint in the
benchmark, we choose a variable out of v possible ones, and a threshold value
out of d possible ones. In Table 1 we show the results of the analysis. Notice that
we do not show the results of trp++ because of the high number of failures
obtained. Looking at the table, we can see that aalta is the tool with the best
performances, as it is capable of solving two times the problems solved by other
solvers in most cases. Moreover, aalta is up to 3 orders of magnitude faster than
its competitors. Considering unsolved instances, it is worth noticing that in our
experiments aalta never reaches the granted time limit (10 CPU minutes), but

7 All the experiments reported in this Section ran on a server equipped with 2 Intel
Xeon E5-2640 v4 CPUs and 256 GB RAM running Debian with kernel 3.16.0-4.

392 M. Narizzano et al.

Fig. 2. Scalability analysis. On the x-axes (y-axes resp.) we report #req (CPU time
in seconds resp.). Axis are both in logarithmic scale. In each plot we consider different
values of #dom. In particular, the diamond green line is for #dom = 4, the light blue
line with stars is for #dom = 8, the blue crossed lines and red circled ones denote
#dom = 16 and #dom = 32, respectively. (Color figure online)

Consistency of PSPs with Boolean and Constrained Numerical Signals 393

Table 1. Evaluation of LTL satisfiability solvers on randomly generated requirements.
The first line reports the size of the domain (dom), while the second line reports the
total amount of variables (vars) for each domain size. Then, for each tool (on the first
column), the table shows the total amount of solved problems and the CPU time (in
seconds) spent to solve them (columns “S” and “T”, respectively).

dom 2 4 8 16

#vars 16 32 16 32 16 32 16 32

Tool S T S T S T S T S T S T S T S T

aalta 16 0.0 27 0.1 22 0.1 29 0.4 26 0.6 29 1.4 25 2.8 31 4.9

NuSMV-invar 11 30.4 10 185.1 10 804.2 9 881.3 11 68.1 8 402.9 10 1172.6 8 1001.9

NuSMV-noinvar 11 65.0 10 489.7 7 303.6 7 505.5 11 92.4 10 1277.6 8 660.0 9 1394.5

pltl 8 25.0 11 108.1 9 1.2 10 0.6 10 19.6 11 0.1 11 14.5 14 3.5

it always fails beforehand. This is probably due to the fact that aalta is still in
a relatively early stage of development and it is not as mature as NuSMV and
pltl. Most importantly, we did not found any discrepancies in the satisfiability
results of the evaluated tools.

Evaluation of scalability. The analysis involves 2560 different benchmarks gen-
erated as in the previous experiment. The initial value of #req has been set
to 15, and it has been doubled until 1920, thus obtaining benchmarks with a
total amount of requirements equals to 15, 30, 60, 120, 240, 480, 960, and 1920.
Similarly has been done for #vars and #dom; the former ranges from 5 to 640,
while the latter ranges from 4 to 32. At the end of the generation, we obtained
10 different sets composed of 256 benchmarks. In Fig. 2 we present the results,
obtained running aalta. The Figure is composed by 8 plots, one for each value
of #vars. Looking at the plots in Fig. 2, we can see that the difficulty of the
problem increases when all the values of the considered parameters increase,
and this is particularly true considering the total amount of requirements. The
parameter #dom has a higher impact of difficulty when the number of variables
is small. Indeed, when the number of variables is less then 40 there is a clear
difference between solving time with #dom = 4 and #dom = 32. On the other
hand when the number of variables increases, all the plots for various values
of #dom are very close to each other. As a final remark, we can see that even
considering the largest problem (#vars = 640, #dom = 32), more than the 60%
of the problems are solved by aalta within the time limit of 10 min.

394 M. Narizzano et al.

5 Analysis with a Controller for a Robotic Manipulator

Fig. 3. WidowX robotic arm moving a
grabbed object in the bucket on the left.

In this Section, as a basis for our
experimental analysis, we consider a
set of requirements from the design of
an embedded controller for a robotic
manipulator. The controller should
direct a properly initialized robotic
arm—and related vision system—to
look for an object placed in a given
position and move to such position in
order to grab the object; once grabbed,
the object is to be moved into a bucket

placed in a given position and released without touching the bucket. The robot
must stop also in the case of an unintended collision with other objects or with
the robot itself—collisions can be detected using torque estimation from current
sensors placed in the joints. Finally, if a general alarm is detected, e.g., by the
interaction with a human supervisor, the robot must stop as soon as possible. The
manipulator is a 4 degrees-of-freedom Trossen Robotics WidowX arm8 equipped
with a gripper: Fig. 3 shows a snapshot of the robot in the intended usage sce-
nario taken from V-REP9 simulator. The design of the embedded controller is
currently part of the activities related to the “Self-Healing System for Planetary
Exploration” use case [16] in the context of the EU project CERBERO.

Table 2. Robotic use case requirements synopsis. The table is organized as follows:
the first column reports the name of the patterns and it is followed by two groups
of three columns denoted with the scope type: the first group refers to the intended
specification, the second to the one with fault injections. Each cell in the first group
reports the number of requirements grouped by pattern and by scope type. Cells in
the second group categorize the 6 injected faults, labeled with F1, . . . , F6.

Pattern Specification Fault injections

after after until globally after after until globally

Absence – 12 14 [F4] – [F3]

Existence 9 – – – [F5] [F4, F6]

Invariant – – 29 – – [F2, F6]

Precedence – – 1 – – –

ResponseChain – – 2 – – –

Response 1 – 4 – – [F1]

Universality 2 – 1 – – –

8 http://www.trossenrobotics.com/widowxrobotarm.
9 http://www.coppeliarobotics.com/.

http://www.trossenrobotics.com/widowxrobotarm
http://www.coppeliarobotics.com/

Consistency of PSPs with Boolean and Constrained Numerical Signals 395

In this case study, constrained numerical signals are used to represent require-
ments related to various parameters, namely angle, speed, acceleration, and
torque of the 4 joints, size of the object picked, and force exerted by the
end-effector. We consider 75 requirements, including those involving scenario-
independent constraints like joints limits, and mutual exclusion among states,
as well as specific requirements related to the conditions to be met at each state.
The set of requirements involved in our analysis includes 14 Boolean signals and
20 numerical ones. In Table 2 we present a synopsis of the requirements, to give
an idea of the kind of patterns used in the specification.10 While most require-
ments are expressed with the Invariant pattern, e.g., mutual exclusiveness of
states and safety conditions, the expressivity of LTL is required to describe the
evolution of the system. Indeed, as shown in [8,19], it is often the case that few
PSPs cover the majority of specifications whereas others are sparsely used.

Our first experiment11 is to run NuSMV-invar on the intended specification
translated to LTL(DC). The motivation for presenting the results with NuSMV-
invar rather than aalta is twofold: While its performances are worse than
aalta, NuSMV-invar is more robust in the sense that it either reaches the
time limit or it solves the problem, without ever failing for unspecified reasons
like aalta does at times; second, it turns out that NuSMV-invar can deal
flawlessly and in reasonable CPU times with all the specifications we consider in
this Section, both the intended one and the ones obtained by injecting faults. In
particular, on the intended specification, NuSMV-invar is able to find a valid
model for the specification in 37.1 CPU seconds, meaning that there exists at
least a model able to satisfy all the requirements simultaneously. Notice that
the translation time from patterns to formulas in LTL(DC) is negligible with
respect to the solving time. Our second experiment is to run NuSMV-invar
on the specification with some faults injected. In particular, we consider six
different faults, and we extend the specification in six different ways considering
one fault at a time. The patterns related to the faults are summarized in Table 2.
In case of faulty specifications, NuSMV-invar concludes that there is no model
able to satisfy all the requirements simultaneously. In particular, in the case of
F2 and F3, NuSMV-invar returned the result in 2.1 and 1.7 CPU seconds,
respectively. Concerning the other faults, the tools was one order of magnitude
slower in returning the satisfiability result. In particular, it spent 16.8, 50.4, 12.2,
and 25.6 CPU seconds in the evaluation of the requirements when faults 1, 4, 5
and 6 are injected, respectively.

The noticeable difference in performances when checking for different faults
in the specification is mainly due to the fact that F2 and F3 introduce an
initial inconsistency, i.e., it would not be possible to initialize the system if
they were present in the specification, whereas the remaining faults introduce

10 The full list of requirements and the fault injection examples are available at https://
github.com/SAGE-Lab/robot-arm-usecase.

11 Experiments herein presented ran on a PC equipped with a CPU Intel Core i7-
2760QM @ 2.40 GHz (8 cores) and 8 GB of RAM, running Ubuntu 14.04 LTS.

https://github.com/SAGE-Lab/robot-arm-usecase
https://github.com/SAGE-Lab/robot-arm-usecase

396 M. Narizzano et al.

inconsistencies related to interplay among constrains in time, and thus additional
search is needed to spot problems. In order to explain this difference, let us first
consider fault 2:

Globally, it is always the case that if state init holds,
then not arm idle holds as well.

It turns out that in the intended specification there is one requirement specifying
exactly the opposite, i.e., that when the robot is in state init, then arm idle
must hold as well. Thus, the only models that satisfy both requirements are the
ones preventing the robot arm to be in state init. However, this is not possible
because other requirements related to the state evolution of the system impose
that state init will eventually occur and, in particular, that it should be the
first one. On the other hand, if we consider fault 6:

Globally, it is always the case that if arm moving holds,
then joint1 speed > 15.5 holds as well.
Globally, arm moving and proximity sensor = 10.0
eventually holds.

we can see that the first requirement sets a lower speed bound at 15.5 deg/s
for joint1 when the arm is moving, while there exists a requirement in the
intended specification setting an upper speed bound at 10 deg/s when the prox-
imity sensor detects an object closer than 20 cm. In this case, the model checker
is still able to find a valid model in which proximity sensor< 20.0 never hap-
pens when arm moving holds, but the second requirements in fault 6 prohibits
this opportunity. It is exactly this kind of interplay among different temporal
properties which makes NuSMV-invar slower in assessing the (in)consistency
of some specifications.

6 Conclusions

In this paper, we have extended basic PSPs over the constraint system DC , and
we have provided an encoding from any PSP(DC) into a corresponding LTL for-
mula. This enables us to deal with many specifications of practical interest, and
to verify them using automated reasoning systems currently available for LTL.
Using realistically-sized specifications generated with a probabilistic model we
have shown that our approach implemented on the tool aalta scales to problems
containing more than a thousand requirements over hundreds of variables. Con-
sidering a real-world case study in the context of the EU project CERBERO,
we have shown that it is feasible to check specifications and uncover injected
faults, even without resorting to aalta, but considering NuSMV, a tool which
proved to be slower, yet more robust, than aalta. These results witness that
our approach is viable and worth of adoption in the process of requirement engi-
neering. Our next steps toward this goal will include easing the translation from
natural language requirements to patterns, and extending the pattern language
to deal with other relevant aspects of cyber-physical systems, e.g., real-time
constraints. Further elements will also include search for minimum unsatisfiable

Consistency of PSPs with Boolean and Constrained Numerical Signals 397

cores in requirements, i.e., discoverying or approximating the minimum set of
requirements causing the inconsistency.

Acknowledgments. The research of Luca Pulina and Simone Vuotto has been funded
by the EU Commissions H2020 Programme under grant agreement N.732105 (CER-
BERO project).

References

1. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

2. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)

3. Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichtenberg,
H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44622-2 17

4. Demri, S., DSouza, D.: An automata-theoretic approach to constraint LTL. Inf.
Comput. 205(3), 380–415 (2007)

5. Dillon, L.K., Kutty, G., Moser, L.E., Melliar-Smith, P.M., Ramakrishna, Y.S.: A
graphical interval logic for specifying concurrent systems. ACM Trans. Softw. Eng.
Methodol. (TOSEM) 3(2), 131–165 (1994)

6. Dokhanchi, A., Hoxha, B., Fainekos, G.: Metric interval temporal logic specification
elicitation and debugging. In: 13th ACM-IEEE International Conference on Formal
Methods and Models for Codesign, pp. 21–23 (2015)

7. Dokhanchi, A., Hoxha, B., Fainekos, G.: Formal requirement debugging for testing
and verification of cyber-physical systems. arXiv preprint arXiv:1607.02549 (2016)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, pp. 411–420 (1999)

9. Hustadt, U., Konev, B.: TRP++ 2.0: a temporal resolution prover. In: Baader,
F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 274–278. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45085-6 21

10. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software Engineering, pp. 372–381 (2005)

11. Li, J., Pu, G., Zhang, L., Yao, Y., Vardi, M.Y., et al.: Polsat: a portfolio LTL
satisfiability solver. arXiv preprint arXiv:1311.1602 (2013)

12. Li, J., Yao, Y., Pu, G., Zhang, L., He, J.: Aalta: an LTL satisfiability checker over
infinite/finite traces. In: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 731–734 (2014)

13. Li, J., Zhang, L., Pu, G., Vardi, M.Y., He, J.: LTL satisfiability checking revisited.
In: 20th International Symposium on Temporal Representation and Reasoning, pp.
91–98 (2013)

14. Li, J., Zhu, S., Pu, G., Vardi, M.Y.: SAT-based explicit LTL reasoning. In: Piter-
man, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 209–224. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26287-1 13

https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-44622-2_17
http://arxiv.org/abs/1607.02549
https://doi.org/10.1007/978-3-540-45085-6_21
http://arxiv.org/abs/1311.1602
https://doi.org/10.1007/978-3-319-26287-1_13

398 M. Narizzano et al.

15. Lumpe, M., Meedeniya, I., Grunske, L.: PSPWizard: machine-assisted definition of
temporal logical properties with specification patterns. In: Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, pp. 468–471 (2011)

16. Masin, M., Palumbo, F., Myrhaug, H., de Oliveira Filho, J., Pastena, M., Pelcat,
M., Raffo, L., Regazzoni, F., Sanchez, A., Toffetti, A., et al.: Cross-layer design of
reconfigurable cyber-physical systems. In: 2017 Design, Automation and Test in
Europe Conference and Exhibition (DATE), pp. 740–745. IEEE (2017)

17. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57. IEEE (1977)

18. Pnueli, A., Manna, Z.: The temporal logic of reactive and concurrent systems.
Springer 16, 12 (1992)

19. Post, A., Hoenicke, J.: Formalization and analysis of real-time requirements: a
feasibility study at BOSCH. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 225–240. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27705-4 18

20. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. In: Bošnački, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 149–167. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73370-6 11

21. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. Int. J. Softw. Tools Technol.
Transf. (STTT) 12(2), 123–137 (2010)

22. Rozier, K.Y., Vardi, M.Y.: A multi-encoding approach for LTL symbolic satisfia-
bility checking. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp.
417–431. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-
0 31

23. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: de Swart, H.
(ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidel-
berg (1998). https://doi.org/10.1007/3-540-69778-0 28

https://doi.org/10.1007/978-3-642-27705-4_18
https://doi.org/10.1007/978-3-642-27705-4_18
https://doi.org/10.1007/978-3-540-73370-6_11
https://doi.org/10.1007/978-3-642-21437-0_31
https://doi.org/10.1007/978-3-642-21437-0_31
https://doi.org/10.1007/3-540-69778-0_28

Automatic Generation of DO-178 Test
Procedures

César Ochoa Escudero1,2(B), Rémi Delmas1, Thomas Bochot2,
Matthieu David2, and Virginie Wiels1

1 ONERA, Toulouse, France
{cesar.ochoa,remi.delmas,virginie.wiels}@onera.fr
2 Liebherr-Aerospace Toulouse SAS, Toulouse, France

{cesar.ochoaescudero,thomas.bochot,matthieu.david}@liebherr.com

Abstract. The work presented in this paper takes place in the context
of the testing activities of safety critical Air Management Systems for
civilian and military aircraft. The applicative software of such systems
is developed following DO-178 guidelines, using a model-based approach
built on the SCADE modeling language. In the current V&V process,
Test Cases (TCs) specify test conditions and expected outcomes on inter-
nal data-flows of the SCADE model. TCs are then implemented in the
form of concrete Test Procedures (TPs) that are run against the exe-
cutable object code and can thus only drive the main inputs of the pro-
gram. TP implementation is a complex task, today performed manually.
This paper proposes an approach to assist the generation of TPs, based
on a purpose-built domain specific language for test case specification,
from which synchronous observers are generated and composed with the
applicative software SCADE model. TPs are then obtained by using a
model checker to refute the observer output, yielding, after some post-
processing a trace of main input values extended with expected outcome
checks.

Keywords: Software testing · Domain-specific language
Synchronous observers · Model-checking

1 Introduction

Liebherr-Aerospace Toulouse (LTS) is a provider of Air Management Systems
(AMS) for civilian and military aircraft. The main functions of an AMS are
to provide air supply, wing anti-icing, environmental control and cabin pressur-
ization for the crew and passengers. Consequently, an AMS implements several
sub-functions such as data acquisition, consolidation, control, monitoring, etc.
The safety-critical aspect of the AMS requires its software development process
to comply with DO-178 DAL-B guidelines. To this end, the Liebherr software
testing process, depicted in Fig. 1, is built on the following notions:

(1) High-Level Requirements (HLRs) are the requirements of the AMS, which
must be implemented and tested, and are written in natural language;

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 399–415, 2018.
https://doi.org/10.1007/978-3-319-77935-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_27&domain=pdf

400 C. Ochoa Escudero et al.

(2) Low-Level Requirements (LLRs) are detailed software specifications. In the
current LTS process, most LLRs are formalized as SCADE [1] data-flow mod-
els. All LLRs together form what we call the SCADE model of the applicative
software. An HLR can be refined in more than one LLR, and a given LLR
can support more than one HLR. The Executable Object Code is automat-
ically generated from the SCADE model using suitable code generator and
compiler;

(3) Test Cases (TCs) are declarative test specifications, written in natural lan-
guage. TCs are linked with HLRs. Any HLR must be covered by one or more
TCs. The test conditions and expected outcomes are expressed in terms of
HLR identifiers. Therefore its writing is independent from the SCADE LLRs.

(4) Test Procedures (TPs) are executable implementations of TCs, and are meant
to be run against the executable applicative software, on the target computer.
A TP implements several TCs in sequence, drives the software main inputs
and checks the outcomes specified in the TCs.

Fig. 1. Software testing process

The difficulty of implementing TPs is mainly due to the fact that TPs are
restricted to drive only the software main inputs, which in turn makes TPs highly
dependent on the overall SCADE data-flow structure, even-though the TCs to
be implemented are specified independently of the SCADE data-flow structure.
Indeed, in order to establish the required test conditions on internal data-flows,
one must perform a sort of back-propagation reasoning through the overall data-
flow structure to derive appropriate main input values for the TP. This task is
mainly performed by human operators today, and is hence very resource con-
suming. Furthermore this data-flow structure dependency makes TPs fragile: a
TP for a given HLR might be invalidated by evolutions of seemingly indirectly
related HLRs/LLRs, or by non-functional evolution of the model, for instance by
subsampling of its sub-functions. To illustrate fragility, let us come back to Fig. 1
and focus on HLR2 , that is refined into LLR2 . A modification of HLR1/LLR1

might invalidate the TPs corresponding to HLR2/LLR2 , since LLR1 lies in the
cone of influence of LLR2 .

Automatic Generation of DO-178 Test Procedures 401

The work presented in this paper aims at reducing the human effort
involved in producing and maintaining TPs under evolutions of correspond-
ing HLRs/LLRs. First, we propose a formal and declarative language, named
Liebherr Test Specification Language (LTSL) – item (5) in Fig. 1, used as an
intermediate formalization step between natural language TC specification and
TP implementation. Second, we provide an automatic generator of synchronous
SCADE observers from LTSL specifications, which are then used to instrument
the SCADE model – item (6) in Fig. 1. A model-checker (Systerel S3 [2]) is then
used on the instrumented model to refute the observer output, yielding traces
for the software main inputs which satisfy the test conditions expressed in the
LTSL specification. These traces are then post-processed to be augmented with
checks of expected test outcomes to obtain TPs implementations.

The paper is structured as follows: Sect. 2 provides information on the indus-
trial context in which this work takes place. Section 3 defines the LTSL syntax
and semantics. The automatic generation of SCADE observers from LTSL spec-
ifications is discussed in Sect. 4. Section 5 provides details on the implementation
of the approach and illustration. Section 6 discusses related works. Last, Sect. 7
concludes the paper and outlines some perspectives to this work.

2 Industrial Context

In this section, we first provide an example of a high-level requirement used
throughout the paper for illustration, and then present a more detailed look into
the software verification process currently in use at Liebherr-Aerospace Toulouse.

2.1 Running HLR Example

The Bleed system is a sub-system of the AMS. Its purpose is to bleed hot air
from compressor stages of the engines and to condition it for later use as input
for the wing anti-icing sub-system or the input cabin pressurization system.
Table 1 presents the HLR for the function Monitoring of Bleed Overpressure, a
prototypical example of a latched monitoring function (largely simplified with
respect to the industrial version by lack of space).

Req1 states that the function is required to run at a 500 ms period; to generate
an alarm when A is set for at least 500 ms; to be reset when B is set and A is
not set, or when C is not set, with no confirmation time; priority is given to the
reset conditions.

2.2 Software Test Standards

The goal of the software testing process is to demonstrate that the Executable
Object Code satisfies its HLRs. The Software Test Standards (STS) is an internal
LTS document containing operational procedure which is deemed sufficient for
DO-178 compliance. It defines rules to apply when redacting TCs and imple-
menting TPs for HLRs. The following STS rules are relevant to our work:

402 C. Ochoa Escudero et al.

Table 1. Monitoring of Bleed Overpressure HLR

Req1

OVPR is set every 500 ms according to the following logic:

� Set logic: A is set

� Set confirmation time: 500ms

� Reset logic: ◦ B is set and A is unset

◦ C is unset

� Reset confirmation time: None

� Priority: Reset

1. TCs shall be defined only with reference to HLRs and HLR variable iden-
tifiers; 2. The purpose of each TC, which details which aspect of an HLR is
addressed by the TC, shall be documented; 3. No two TCs shall have the same
purpose; 4. The values of the controlled inputs and the expected test outcomes
must be explicitly stated in the TC; 5. TPs shall be defined with reference to
LLR interface identifiers; 6. Several TCs can be implemented in sequence within
a single TP, and TCs shall be uniquely identified in the context of a TP; 7. In
TPs, the (sequence of) expected outcome(s) of two consecutive TCs must be
different;

The STS document also provides recommendations regarding structural cov-
erage: 1. Each TC should test the effect of each input on the output value of
tested function independently; 2. For combinational logics with boolean inputs,
a TC should be specified for each possible entry of logics truth table; 3. For
threshold logics (i.e. range checking logic, confirmation logic, etc.), the logics
output value shall be checked with input(s) below the threshold value(s), as well
as with input(s) above the threshold value(s).

2.3 Running Example: TCs for Req1

Following the current process, five TCs are written to cover HLR Req1 and
then grouped and sequenced in Table 2. The first row specifies the identifier of
the HLR covered by the TCs. The second row specifies a sequence of unique
TC identifiers TC1 to TC5 . The third row documents the purpose of each TC.
Each TC consists of a sequence of one or more Trace Snippets; (TSs). A TS
is characterized by minimum duration expressed as a number of HLR periods
(fourth row), a vector of input values to be maintained over that duration (fifth
row), and a collection of checks to be performed at some specific instant relative
to the start of the TS (which has index 0).

The TCs grouped in a table are implemented in a single TP. Consequently
the order of TCs and TSs is significant, each TC relying on the state reached
through previous TCs to achieve its purpose. For instance, TC3 tests a maintain
behavior, using a first TS to test the initial setting of the latch, and a second TS

Automatic Generation of DO-178 Test Procedures 403

Table 2. TCs covering Req1 as per Software Test Standards

HLR Req1

TC id TC1 TC2 TC3 TC4 TC5

Purpose Set logic 1st rst log Maintain set logic 2nd rst log Reset priority

Duration at least 1 cycle 2 cycles 1 cycle 2 cycles 1 cycle 1 cycle 2 cycles 1 cycle

Inputs A False True False True False False True True

B False True True True False False True True

C False True True True True False True False

E.Outp. OVPR

False at False at False at False at True at False at False at False at

cycle 0 cycle 0 cycle 0 cycle 0 cycle 0 cycle 0 cycle 0 cycle 0

True at True at True at

cycle 1 cycle 1 cycle 1

to test latching after set conditions are released. Hence TC3 must be started in
a state in which the latch is not already set, which corresponds to the expected
outcome of TC2 . Specifying the order of TCs is the responsibility of the test
engineer.

2.4 Running Example: TP Implementation for Req1

This sub-section illustrates back-propagation reasoning required to implement
TPs, as performed currently by human operators. Figure 2 shows the Applica-
tive Software SCADE model, consisting of LLRs LLR1 to LLR8 (SCADE
nodes). The LLR of interest here is LLR6, with SCADE node instance path
APPLICATIVE SOFTWARE #1/ovpr mon #1, and implements HLR Req1.

First, the naming correspondence between HLR and LLR is established based
on traceability documents, as follows: A → SET, B → RSTA, C → NOT RST,
OVPR → OVPR. Since the TP can only drive main inputs I = {Ii|i ∈ [1, 6]}
I1, the human implementor must analyze the cone of influence (COI) of SET,
RSTA and NOT RSTA to determine how to drive them from the main inputs. The
COI might be arbitrarily complex, involving boolean logic, arithmetic operations,
timing, hysteresis, latching, etc. Here, COI(SET) ∩ I = {I1, I2}, COI(RSTA) ∩ I =
{I3, I4}, and COI(NOT RST) ∩ I = {I5, I6}. Let us now focus on implementing
TC1 on LLR6 . It’s decomposed in two consecutive TSs. The first one is an

Fig. 2. Applicative software SCADE model

404 C. Ochoa Escudero et al.

initialization logic specifying that inputs SET, RSTA and NOT RSTA must be false
simultaneously for at least 1 cycle. Since the first ones are outputs of LLR3 and
LLR4 they are false by default. Leaving the case of NOT RSTA, which requires
I5 �= fby(I6∗5+1, 1, 10), i.e. I5 �= 10 when in the initial state. The following TS of
TC1 specifies that inputs SET, RSTA and NOT RSTA must be true simultaneously
for at least 2 cycles. Consequently the input of LLR3 must be true for at least
2+2 = 4 cycles, which requires ¬I1∧I2 > 10 to hold for at least 4 cycles – let us
fix I1 = false and I2 = 20 ; Consequently the input of LLR4 must be set to true
for at least 3 + 2 = 5 cycles, which requires (I3 ∨ I4) ∧ ¬I4 to hold for 5 cycles
– let us fix I3 = false, I4 = true; Consequently the inputs of LLR5 must satisfy
I5 �= fby(I6 ∗ 5 + 1, 10, 1) for at least 2 cycles – let us fix I5 = 50 and I6 = 10.
Last, to establish all these conditions simultaneously for 2 cycles, we need to
maintain the appropriate main input values for max (2, 4, 5) = 5 cycles. So even
though TC1 ’s specified duration is 2 cycles, the extra duration of 3 cycles is
a function of the COI of inputs controlled in the test case, which cannot be
determined when specifying the TCs, but only when implementing the TP. The
process is repeated for TC2 to TC5 in order to obtain the full TP for Req1.
In general, such extra duration can be required to transition between any two
consecutive trace snippet conditions.

Table 3. Fragment of TP implementation for Req1 in TCL language

In practice, a TP is implemented as sequential program in the TCL scripting
language as shown in Table 3. The certification process requires, in addition to
checking the expected test outcomes, to check that the LLR inputs have been
controlled as expected from the main inputs.

3 Liebherr Test Specification Language

This section details the syntax and semantics of the Liebherr Test Specification
Language (LTSL) Domain Specific Language, meant as an intermediary formal-
ization step between TC specification and TP implementation.

Automatic Generation of DO-178 Test Procedures 405

3.1 Syntax

Since LTSL is an intermediary step between TCs and TPs, it inherits some of
the STS requirements specified in Sect. 2.2: 1. An LTSL file virtually defines the
scope of a single TP so the TCs shall be uniquely identified within an LTLS
file; 2. The purpose of each TC must be documented in the LTSL format; 3.
The values of the controlled inputs and the expected test outcomes for each TC
must be explicitly stated in the LTSL format; LTSL is a step closer to a TP
implementation so it uses LLR identifiers and not HLR, however both HLR and
LLR are declared at the top of an LTSL file for traceability.

The LTSL syntax is defined below using an EBNF notation where: 1. paren-
theses () represent grouping; 2. pipes | represent disjunction; 3. square braces [r]
represent 0 or 1 repetitions; 4. curly braces { r } represent 0 or more repetitions.

First identifiers, value literals and string literals are defined:

〈ID〉 ::= regexp: [a-zA-Z]+ 〈INTP〉 ::= regexp: [1-9][1-9]*

〈INT 〉 ::= regexp: -?[0-9]+ 〈REAL〉 ::= regexp: -?[0-9]+\.[0-9]+
〈STR〉 ::= regexp: \"[^\"]*\" 〈val〉 ::= true | false | 〈INT 〉 | 〈REAL〉

An LTSL file starts with an HLR identifier and corresponding SCADE
instance graph identifier of the LLR. Then it specifies a sequence of TC sec-
tions, each described by an identifier, a purpose string and one or more trace
snippets. A trace snippet is characterized by a duration, an observe block and a
check block :

〈ltslFile〉 ::= HLR : 〈ID〉 ; LLR : 〈llrID〉 ; { 〈testCase〉 }
〈llrID〉 ::= 〈ID〉 #〈INTP〉 { / 〈ID〉 #〈INTP〉 }

〈testCase〉 ::= Test case 〈ID〉 : 〈STR〉 { 〈traceSnippet〉 }+
〈traceSnippet〉 ::= For 〈duration〉 : 〈obsBlock〉 [〈chekBlock〉]

The duration of a trace snippet is an interval where bounds are expressed in
number of ticks of the LLR clock, with the lower bound strictly positive. The
upper bound is optional – absence is represented by the “don’t care” symbol ?.
This is meant to allow for unknown latencies to occur when transitioning from
one trace snippet to the next.

〈duration〉 ::= 〈interval〉 cycles 〈interval〉 ::= [〈INTP〉,(〈INTP〉 | ?)]
An observe block lists conditions that must hold over LLR input variables for
the duration of the snippet, within some numerical tolerance for real-valued
variables:

〈obsBlock〉 ::= Observe : { 〈cond〉; } 〈cond〉 ::= 〈ID〉 = 〈val〉 [t=〈REAL〉]

A check block specifies a list of checks to be performed over a LLR output
variables at some position of the trace snippet. The position represents a number

406 C. Ochoa Escudero et al.

of execution cycles relative to the beginning of the snippet (first cycle has index
0), and must be strictly less than the lower bound:

〈chkBlock〉 ::= Check : { 〈ID〉:〈cond〉 〈rlPos〉; } 〈rlPos〉 ::= at cycle 〈INT 〉

3.2 Semantics

We now define a formal trace semantics for LTSL, that is, the formal conditions
according to which a concrete program execution trace satisfies an LTSL speci-
fication. Let V be the set of variables, partitioned in V = VB ∪VZ ∪VR ∪ChkLbl ,
with VB a set of boolean-valued variables, VZ a set of integer-valued variables, VR

a set of real-valued variables, ChkLbl a set of check labels. Let S be a set of states,
equipped with evaluation functions evalB : S × VB → B, evalZ : S × VZ → Z,
evalR : S × VR → R and evalChkLbl : S × ChkLbl → B which allow to obtain the
value of a variable in a given state. Let Traces = {tr = [s0, . . . , sn] | si ∈ S} be
the set of traces, i.e. of all possible finite sequences of states. Let Conds be the set
of conditions, equipped with functions var : Conds → VB∪VZ∪VR, val : Conds →
B∪Z∪R and tol : Conds → Z∪R which return respectively the variable, the value
and the tolerance of the condition. Let ChkCnds be the set of check conditions
equipped with functions clabel : ChkCnds → ChkLbl , ccnd : ChkCnds → Conds,
and relpos : ChkCnds → N, which return respectively the label, the condi-
tion and position of the check condition. Let TraceSnippets be the set of all
possible trace snippets, equipped with functions lwr : TraceSnippets → N

+,
upr : TraceSnippets → N

+ ∪ {?}, oConds : TraceSnippets → Conds∗ and
cConds : TraceSnippets → ChkCnds∗ which return respectively the lower dura-
tion bound, optional upper bound, the set of observed conditions and the set of
checked conditions of a trace snippet. Let Spec be the set of all possible specifi-
cations where a specification is a finite sequence of TCs, each of which in turn is
a finite sequence of TSs. The function trSnpts : Spec → TraceSnippets∗ be the
function that returns the concatenation of all TSs contained in a specification.

Definition 1 (Condition Evaluation Function). The following function
allows evaluating a condition in a given state: cEval : S × Conds → B

cEval(s, c) =

⎧
⎪⎨

⎪⎩

evalB(s, var(c)) = val(c) var(c) ∈ VB

evalZ(s, var(c)) = val(c) var(c) ∈ VZ

abs(evalR(s, var(c)) − val(c)) ≤ tol(c) var(c) ∈ VR

Definition 2 (LTSL Satisfaction Relation).

Let tr ∈ Traces, spec ∈ Spec and trSnpts(spec) = [

head
︷︸︸︷
ts1 ,

tail
︷ ︸︸ ︷
ts2, . . . , tsn] be the

sequence of trace snippets to be evaluated against tr for satisfaction.
Let i be an integer representing an index in the finite trace tr. Then (tr , i) |=

spec if and only if ∃k, k ≥ lwr(head) and k ≤ upr(head) if upr(head) is defined,
such that:

Automatic Generation of DO-178 Test Procedures 407

– length(tr) − i ≥ k and
– ∀obsCond ∈ oConds(head), ∀j ∈ [i, i + k − 1], cEval(sj , obsCond) = � and
– ∀chkCond ∈ cConds(head):

• let j = relpos(chkCond)
• ∀s �= si+j−1, evalChkLbl(s, clabel(chkCond)) = ⊥ and
• evalChkLbl(si+j−1, clabel(chkCond)) = � and
• cEval(si+j−1, ccnd(chkCond)) = �

– If tail �= ∅, (spec, i + k) |= tail , i.e. the trace suffix starting at index i + k
satisfies the tail of the specification if it is not emtpy.

– Lastly, we define: tr |= spec ≡ ∃start index ∈ N, (tr , start index) |= spec,
i.e. a trace satisfies a specification if and only if the trace satisfies the speci-
fication starting some finite index start index .

The existentially quantified variable k associated with each TS in the above def-
inition is called the span variable of the TS.

3.3 Running Example: Req1 TCs Expressed in LTSL

Figure 3 presents the LTLS formalization of the Req1 TCs. The duration of each
trace snippet has a “don’t care” upper bound to allow maximum flexibility in
the specified trace. One could alternatively have forced strict upper bounds on
trace snippets, in effect reducing the set of admitted traces.

Fig. 3. LTSL specification of Req1 TCs.

4 SCADE Observers Generation

This section details the translation rules used to generate a synchronous SCADE
observer from an LTSL specification.

408 C. Ochoa Escudero et al.

4.1 SCADE Automata Syntax

The SCADE language is a formal graphical notation based on Lustre [3,12]. As
of version 6, the SCADE language offers synchronous hierarchical state machines
[4]. Our translation requires only a subset of the full SCADE 6 language, defined
below. First, we define some recurrent patterns, such as built-in type identifiers,
numeral values and variable declarations:

〈ID〉 ::= regexp: [a-zA-Z0-9]+ 〈T 〉 ::= bool | int | real
〈REAL〉 ::= regexp: -?[0-9]+\.[0-9]+ 〈INT 〉 ::= regexp: -?[0-9]+

〈val〉 ::= true | false | 〈INT 〉 | 〈REAL〉 〈vD〉 ::= 〈ID〉:〈T 〉
〈dfltD〉 ::= 〈vD〉[default=〈val〉]

A SCADE program is a collection of type, constant and operator declarations.

〈opD〉 ::= node〈ID〉〈inD〉 returns 〈outD〉 〈locD〉 〈body〉
〈typeD〉 ::= type 〈ID〉 = 〈T 〉; 〈constD〉 ::= const 〈vD〉 = 〈val〉;

〈inD〉 ::= (〈vD〉{ ;〈vD〉 }) 〈locD〉 ::= var { 〈dfltD〉 ; }
〈outD〉 ::= (〈dfltD〉{ ;〈dfltD〉 }) 〈body〉 ::= let { 〈dfD〉 } tel

The body of an operator contains a collection of data-flow definitions, which can
be either a pure data-flow definition or an automaton definition. The subset of
data-flow expressions we use is limited to constants, scalar variables, operator
instantiation, logical connectors, initialization, unit delay operators and rela-
tional operators.

〈dfD〉 ::= 〈ID〉 = 〈e〉; | 〈autoD〉
〈e〉 ::= 〈ID〉 | 〈val〉 | pre(e) | 〈ID〉(e) | not〈e〉 | 〈e〉 (and | or |→| = |<=) 〈e〉

An automaton contains a collection of states, one of which must be tagged initial.
A state has a list of outgoing transitions in which order reflects priority, and
a body consisting of a collection of scalar data-flow definitions. A transition is
characterized by its guard expression and target state. We only use strong unless

transitions, for which guard evaluation and firing occur in the same logical step.
Strong transitions require avoiding causality loops when using flows defined by
the automaton itself in transition guards, by introducing unit delays in guards
when required.

〈autoD〉 ::= automaton { 〈state〉 } returns ..; 〈trs〉 ::= if 〈e〉 resume 〈ID〉
〈state〉 ::= [initial] state 〈ID〉 unless { 〈trs〉 } let { 〈ID〉 = 〈e〉 } tel

4.2 Translation Function

In this section, we define the function translating an LTSL specification to a
SCADE observer.

Automatic Generation of DO-178 Test Procedures 409

We use the notation prtSet({e1, . . . , en}, sep) ≡ e1 sep . . . sep en for
the concatenation of SCADE expressions ei with separator sep; as well as
andx∈S e[x] ≡ e[x1] and . . . and e[xn] for the n-ary conjunction of SCADE
expression e dependent on x ranging over some set S.

Reusing Sect. 3.2 notations, let trSnpts(spec) = [ts1, . . . , tsn], where Spec ∈
Spec is an LTLS specification. The genSCADEObservers translation function
generates an observer node from spec:

genSCADEObservers(spec) �
node observer(prtSet(inD(spec) ∪ {trig : bool}, ;))

returns(Incomplete : bool default = true;

prtSet({clabel(chk): bool default = false | chk ∈ cConds(tsi)}, ;))
var cpt : int default = 0;

let

automaton

initial state S0 unless if obCnd(ts1) resume S1;

prtSet({state(tsi, tsi+1) | i ∈ [1,n − 1]}, \n)
state Sn unless

if abRg(tsn) or (not(obCnd(tsn))and not(inRg(tsn))) resume S0;

if inRg(tsn) and trign resume Final;

let ctDf (tsn); prtSet({lblDf (c) | c ∈ cConds(tsn)}, ;) tel

state Final let Incomplete = false; tel

returns ..;

tel

The observer input flows are generated by the function:

inD(spec) � {var(c) : otp(c) | c ∈ oConds(ts), ts ∈ trSnpts(spec)}
which gathers all LLR identifiers occurring in the LTSL specification, their type
being inferred using function otp : Conds → {bool | int | real}. The trigger
variable is an extra free observer input, whose utility is detailed later in the state
function definition.

The observer defines a boolean output flow per check label occurring in the
LTSL specification, as well as a boolean output flow Incomplete, which is defined
to be true by default and false when a trace satisfying the LTSL specification
was observed and the Final state was reached.

The observer contains an integer counter cpt defined in each state to count
the number of cycles spent in that state. Our encoding uses two auxiliary nodes
for checking an input i against a range [LB − 1, UB − 1], where UB is possibly
a “don’t care” value, represented as UB = −1 by the encoding. Subtracting 1
from each bound is a consequence of using these checks in strong transitions,
and is used to compensate for checking the previous value of the local counter

410 C. Ochoa Escudero et al.

– see transition code below. The node InRange checks if i is in the range, or
simply above the lower bound when the upper bound is a “don’t care”. The
node AbRange checks if the input i has gone above the upper bound of the
range, which is false when the upper bound is a “don’t care”.

node InRange (i : int; LB : int; UB : int) returns (IR : bool)

let IR= i >= LB − 1 and (if UB = −1 then true else i <= UB − 1); tel

node AbRange (i : int; UB : int) returns (AR : bool)

let AR= if UB = −1 then false else i > UB − 1; tel

Based on the precedent library, the following intermediary functions are defined.
Functions inRg(tsi) (resp. abRg(tsi)) generates an expression which checks if
the counter value corresponds to an allowed number of execution cycles for tsi
(resp. if the counter value exceeds the number of execution cycles allowed for
the tsi). These expressions are later used in strong transition guards and require
to introduce a unit delay on cpt to avoid causality loops (since cpt is defined in
the state itself). The cSat function generates a saturation value for the counter,
equal to the upper bound of tsi duration when it’s defined or to its lower bound
otherwise. One is added to that value to allow detecting overstaying in a state.
The obCnd expression checks if the observed conditions corresponding to tsi are
satisfied.

inRg(tsi) � InRange((−1) → (pre cpt),lwr(tsi),upr(tsi))

abRg(tsi) � AbRange((−1) → (pre cpt),upr(tsi))

cSat(tsi) � if upr(tsi) = −1 then lwr(tsi)+1, else upr(tsi)+1

obCnd(tsi) � and
c∈oConds(tsi)

var(c) = val(c)

The body of the observer consists of a single state machine. The purpose of
the initial state S0 is to wait until the TS ts1 observed conditions are satisfied,
and to transition to state S1. The definitions of states S1 to Sn−1 are obtained
with the function state which generates a state Si encoding TS tsi:

state(tsi, tsi+1) �
state Si unless

if abRg(tsi) or((not obCnd(tsi))and(not obCnd(tsi+1)))
or ((not obCnd(tsi))and(not inRg(tsi))) resume S0;

if inRg(tsi) and obCnd(tsi+1) and trig resume Si+1;
let

cpt = 0 → (if (pre cpt+ 1 <=cSat(tsi)) then(pre cpt + 1) else cSat(tsi));
prtSet({clabel(chk) = cpt =relpos(chk); | chk ∈ cConds(tsi)}, \n)
tel

Two transitions allow to exit Si. The priority is given to the error transition back
towards the initial state S0. It is fired in the following cases: 1. The number of

Automatic Generation of DO-178 Test Procedures 411

execution cycles spent in this state is greater than the allowed number of cycles
for tsi; 2. The observed conditions corresponding to tsi and tsi+1 are both not
satisfied; 3. The number of execution cycles spent in this state are lesser than the
allowed number of cycles for tsi and the observed conditions corresponding to
tsi+1 are not satisfied. The second transition to Si+1 is fired if the counter value
is within the allowed number of execution cycles interval for tsi, the observed
conditions of tsi+1 are satisfied and the trigger variable is true. As mentioned
before the trigger variable is an extra free observer input that acts as a non-
deterministic oracle for triggering transitions. Its purpose is to correctly take
into account the existentially quantified span variables used in the definition of
the LTSL satisfaction relation. Take for instance the specification and the trace,
shown in Fig. 4.

Fig. 4. Eager and non-deterministic transitions for LTSL satisfaction

An automaton in which transitions would be fired eagerly as soon as their
guard holds would match TS1 over [0,1], TS2 over [2,4] and reject the trace
at cycle 5 because c3 does not hold yet. However, this trace is a model of the
specification, because snippet TS1 is satisfied over [0,3], TS2 is satisfied over
[3,5] and TS3 is satisfied over [6,7].

By correctly choosing the value of the trigger variable as shown in Fig. 4, we
can accept the trace: the transition from TS1 to TS2 can be taken at cycle 2,
3 or 4 since c1 and c2 overlap. The only correct choice is cycle 4, so as to be
able to match TS3 at cycle 6. The trigger value computation is left in practice
to the model-checker used for refuting the observer output. The trigger variable
can safely be omitted for transitions linking snippets with mutually exclusive
observe conditions, which is often the case in practice.

The body of a state consists of a counter definition and optionally several
check label definitions. The counter is initialized at 0, with an increment of 1,
and a saturation value is defined by the cSat function. Each check label is defined
as an equality between cpt and its relative position within tsi, thus allowing to
locate the place to insert checks in the post-processing phase.

State Sn encodes the last TS tsn. Its error transition is defined as previously,
and its accept transition only depends on its own observe conditions since there
is no next snippet. Finally, the final state represents the acceptance of all trace
snippets in sequence and sets the Incomplete flow to false.

412 C. Ochoa Escudero et al.

5 Illustration of the Approach

The LTSL language, translation function, post processing and model-checker
harness have been implemented and used on an industrial use case. TPs obtained
with the approach proved to be satisfactory with respect to the previous hand-
implemented TPs.

We now illustrate the results obtained with this approach when generating a
TP from the LTSL specification given in Fig. 3 for the SCADE model depicted
in Fig. 2. The Systerel S3 model-checker [2] is used on the instrumented model
to refute the observer output, yielding traces for the software main inputs which
satisfy the test conditions expressed in the LTSL specification. These traces are
then post-processed to be translated into a properly formatted TP extended with
check of input values and test outcomes, expressed as a sequential program in
the TCL language. The TP is presented graphically in Fig. 5. Please notice that
the model-checker generates the shortest possible trace satisfying the test spec-
ification, and that even in this case, the generated trace includes some latency.
This illustrates the need for “don’t care” bounds in the LTSL language. Figure 7
shows the result of regenerating a TP implementation from an unmodified LTSL
specification on a new SCADE model, depicted in Fig. 6, in which evolutions were
applied in LLRs other that the one under test. TP maintenance/regeneration of

Fig. 5. Time-line of TP for Req1 and SCADE model depicted in Fig. 2.

Fig. 6. Evolution of applicative software SCADE model

Automatic Generation of DO-178 Test Procedures 413

Fig. 7. Time-line of TP corresponding to Req1 and SCADE model depicted in Fig. 6

TPs under model evolution is fully automatic with this method, as long as the
LTSL specification remains unmodified.

6 Related Work

The Liebherr Test Specification Language semantics and observers generation
is inspired from previous works about runtime monitoring of LTL properties
[10,14]. More precisely, we have tried using the LTL on finite traces framework
[5,6,8,11] to formalize LTSL and generate monitors, by encoding LTSL to LTLf,
and then using the LTLf to unbounded LTL embedding proposed in [7], to in
turn generate a monitor using the ltl2tgba tool. However the LTLS trace pat-
terns do not need the full power of the LTLf logic, and monitor generation with
ltl2tgba ran into combinatorial explosion due to having to encode trace snip-
pets as disjunctions of nested pre formulas: ◦(c) ∨ ◦(◦(c)) ∨ · · · ∨ ◦(· · · ◦ (c) . . .),
which grows quadratically with trace snippet’s duration upper bound. We then
took inspiration from recent work on trace-insensitive LTL monitoring [9], which
proposes an LTL variant extended with counters and deterministic monitor
generation. From these earlier works, we distilled the minimal semantics and
observer generation approach presented in this paper, to meet our industrial
needs. Since these observers are meant for refutation with a model checker, it
allowed us to retain some non-determinism in the semantics and observer encod-
ing – through the observer trigger variable, which is beneficial to the size of the
resulting observer.

7 Conclusion

In this paper, we have presented an approach to assist the generation of TPs. We
have defined LTSL as a formal and declarative language to formalize TCs. LTSL

414 C. Ochoa Escudero et al.

specifications are automatically translated into synchronous SCADE observers,
which are used to instrument the model and from which TPs can be generated
by leveraging model-checking techniques. This approach was illustrated in this
paper by a simplified example. Another example has been given to highlight the
robustness of LTSL specification against possible evolutions of the SCADE model
under test, as long as the LTSL specification remains unchanged. The pertinence
of our work has been demonstrated by using our approach on an actual industrial
AMS software. The TPs obtained by this new method are satisfactory, in the
sense that they cover the test objectives and implement the oracle checks as
required by the test specification.

The perspectives are firstly to prove more formally the adequation between
LTSL formal semantics and the generated SCADE observer. Secondly, in order
to handle cases in which test cases are not reachable, we need to resort to
unbounded model checking to terminate test case generation when objectives are
truly unreachable (today only bounded model checking is used and the analysis
can diverge in the presence of unreachable objectives). Then, we need to test the
approach on more significant numerical use cases, in particular involving floats.
For extending the expressive power of LTSL, we would like to allow the position-
ing checks relative to the end of a trace snippet, even in cases where a “don’t
care” duration upper-bound is specified. Finally, the parameterization and the
composition of the LTSL TCs to factorize a maximum the LTSL specification.
Not addressed in this paper by lack of space is the case of multi-periodic SCADE
models scheduled and robustness to model scheduling. We have addressed such
models successfully in practice but the details of the multi-periodic LTSL seman-
tics and observer implementation remain to be formalized. Also not addressed
in this paper is the question of observability of checked variables. Some of them
are only indirectly observable in the program under test, and would require
automatic reformulation of the checked conditions.

References

1. SCADE Suite. http://www.esterel-technologies.com/products/scade-suite.
Accessed 6 Feb 2018

2. Systerel Smart Solver. http://www.systerel.fr/innovation/produits/systerel-
smart-solver. Accessed 6 Feb 2018

3. Beneviste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernie, P., de Simone,
R.: The synchronous languages 12 years later. Proc. IEEE 91(1), 64–83 (2003)

4. Colaço, J.L., Pagano, B., Pouzet. M.: A conservative extension of synchronous
data-flow with state machines (2005)

5. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness (2014)

6. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: LTLF
and LDLF monitoring: a Technical report (2014)

7. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces (2015)
8. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on

finite traces (2013)

http://www.esterel-technologies.com/products/scade-suite
http://www.systerel.fr/innovation/produits/systerel-smart-solver
http://www.systerel.fr/innovation/produits/systerel-smart-solver

Automatic Generation of DO-178 Test Procedures 415

9. Du, X., Liu, Y., Tiu, A.: Trace-length independent runtime monitoring of quanti-
tative policies in LTL (2015)

10. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification (2013)
11. Fionda, V., Greco, G.: The complexity of LTL on finite traces: hard and easy

fragments (2016)
12. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow

programming lanagage Lustre. Proc. IEEE 79(9), 1305–1320 (1991)
13. Kurtev, I., Hooman, J., Schuts, M.: Runtime monitoring based on interface spec-

ifications. In: Katoen, J.-P., Langerak, R., Rensink, A. (eds.) ModelEd, TestEd,
TrustEd. LNCS, vol. 10500, pp. 335–356. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-68270-9 17

14. Leucker, M., Schallhart, C.: A brief account of runtime verification (2009)

https://doi.org/10.1007/978-3-319-68270-9_17
https://doi.org/10.1007/978-3-319-68270-9_17

Using Test Ranges to Improve
Symbolic Execution

Rui Qiu1, Sarfraz Khurshid1, Corina S. Păsăreanu2,
Junye Wen3, and Guowei Yang3(B)

1 University of Texas at Austin, Austin, USA
{ruiqiu,khurshid}@utexas.edu

2 CMU/NASA Ames, Mountain View, USA
corina.s.pasareanu@nasa.gov

3 Texas State University, San Marcos, USA
{j w236,gyang}@txstate.edu

Abstract. Symbolic execution is a powerful systematic technique for
checking programs, which has received a lot of research attention during
the last decade. In practice however, the technique remains hard to scale.
This paper introduces SynergiSE, a novel approach to improve symbolic
execution by tackling a key bottleneck to its wider adoption: costly and
incomplete constraint solving. To mitigate the cost, SynergiSE intro-
duces a succinct encoding of constraint solving results, thereby enabling
symbolic execution to be distributed among different workers while shar-
ing and re-using constraint solving results among them without having
to communicate databases of constraint solving results. To mitigate the
incompleteness, SynergiSE introduces an integration of complementary
approaches for testing, e.g., search-based test generation, with symbolic
execution, thereby enabling symbolic execution and other techniques to
apply in tandem. Experimental results using a suite of Java programs
show that SynergiSE presents a promising approach for improving sym-
bolic execution.

1 Introduction

Symbolic execution is a systematic technique for checking programs, which pro-
vides a powerful analysis in principle but remains computationally expensive
and hard to scale in practice [11,17,21,23,25–27,31,36,44,46]. There are two
basic issues with scaling symbolic execution. One, it requires exploring a very
large number of program paths. Two, it requires expensive and incomplete solv-
ing of constraints, termed path conditions, defined by the program’s operations
on its inputs. Researchers developed various approaches to address these issues,
and two such approaches form the basis of our work: (1) partitioning of the path
exploration problem into several sub-problems in a parallel or distributed setting
with minimal communication overhead using several symbolic execution work-
ers [8,22,38,39,42]; and (2) re-use of constraint solving results within one run of
symbolic execution or across different runs in a sequential setting [9,43,46,47].
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 416–434, 2018.
https://doi.org/10.1007/978-3-319-77935-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_28&domain=pdf

Using Test Ranges to Improve Symbolic Execution 417

This paper introduces the SynergiSE approach for improving symbolic exe-
cution. A key novelty of SynergiSE is that it allows obtaining the benefits of
the parallel exploration and constraint re-use in tandem without the overhead of
communicating databases of constraint solving results or sharing the databases.
To our knowledge, none of the existing techniques for parallel symbolic exe-
cution [8,22,38,39,42] share constraint solving results among different workers.
While existing techniques for constraint re-use can be applied for the parallel
setting in principle, doing so directly requires communicating or sharing con-
straint databases. Furthermore, SynergiSE allows applying complementary test
automation techniques, e.g., search-based [15] or feedback-directed random [28]
test generation, in tandem with symbolic execution.

At the heart of SynergiSE lies a new form of ranged analysis that builds
on previous work on ranged symbolic execution [39], which introduced the idea
of bounding a run of symbolic execution using a range defined by a pair of
two ordered tests (t1, t2) such that symbolic execution is restricted to program
paths that are lexicographically between the path executed by t1 and the path
executed by t2. We extend that work by introducing two special kinds of ranges
– feasible ranges that succinctly encode constraint solving results for lightweight
communication among parallel workers, and unexplored ranges that succinctly
encode unexplored regions of the program’s exploration space.

A feasible range is a range such that all paths explored by symbolic exe-
cution within that range are known to be feasible, e.g., during an earlier run
of symbolic execution during iterative deepening, or during the exploration by
another worker in a parallel setting. Thus, a feasible range uses just two inputs
to compactly encode constraint satisfaction of all the path conditions for the
paths in the range. Given a feasible range, the corresponding constraint satis-
faction database can be quickly populated by just building the path conditions
for all paths that are within the range – all such paths are feasible by definition
– without requiring any additional constraint solving. The populated database
can then be efficiently re-used when symbolically executing other, unexplored,
parts of the program.

An unexplored range is a range that only contains paths that are not explored
by existing tests of a program or by a previous partial exploration of the pro-
gram’s execution paths. Unexplored ranges enable symbolic execution to effi-
ciently reuse existing tests, providing a natural integration between any test
generation tool and symbolic execution. Previously generated tests using other
tools, such as random testing tools or search-based tools, can be ordered [39] with
respect to the specific search order used by the symbolic execution tool employed
to define a set of unexplored ranges, which only contain program paths that none
of the existing test cover. Efficiently reusing test inputs from another tool for
symbolic execution helps speed up analysis, generate more tests that cover yet
unexplored program paths, hence increasing code coverage as well as confirm-
ing that certain paths not covered previously are actually infeasible. Unexplored
ranges enable a new form of integration of symbolic execution with other test
generation techniques, which may already have an internal symbolic execution
component.

418 R. Qiu et al.

This paper makes the following contributions:

– Feasible ranges. We introduce the idea of feasible ranges that compactly
encode path condition feasibility for all paths that are explored by symbolic
execution with respect to the ranges; consecutively explored in order by sym-
bolic execution.

– Unexplored ranges. We introduce the idea of unexplored ranges that com-
pactly encode execution paths that are not covered by existing tests for a
program.

– Framework. We present SynergiSE, a framework for symbolic execution,
which enables distributed analysis and constraint reuse in tandem using fea-
sible ranges without communicating or sharing constraint databases, as well
as enables symbolic execution to apply in synergy with other test generation
techniques using unexplored ranges.

– Evaluation. We present an experimental evaluation using standard subjects
to show that SynergiSE significantly reduces the amount of communication
among different symbolic execution workers and enables an effective integra-
tion of heuristics-based and systematic approaches for test generation.

2 The SynergiSE Approach

Figure 1 shows an overview of SynergiSE . SynergiSE uses two types of ranges
to improve symbolic execution. Feasible ranges define only feasible paths while
unexplored ranges define only unexplored paths.

To obtain feasible ranges, SynergiSE takes a program P and performs a
shallow symbolic execution up to a small depth d (d < D), where D is a user
specified depth, and uses infeasible paths to divide symbolic execution tree into
a set of ranges which only contain feasible paths of the program P . SynergiSE
then assigns each feasible range to a distributed worker who performs a ranged
symbolic execution on the paths within the range. The key novelty of feasible
ranges is that they enable efficient reuse and sharing of constraint solving results
among distributed workers. To obtain unexplored ranges, SynergiSE uses a
complementary test generation tool (e.g., Randoop or EvoSuite) to generate a set
of test inputs for the program P . These tests define a set of unexplored ranges,
which only contain paths that are not explored by any existing tests. Similarly,
each unexplored range is assigned to a distributed worker to perform ranged
symbolic execution. The key novelty of unexplored ranges is that they enable
efficient reuse of test cases generated from other complementary test generation
tools.

2.1 Traditional Ranges

Consider a program P with m symbolic inputs I = {I1, I2, . . . , Im}. A bounded
symbolic execution over P explores all the paths up to D. Our technique assumes
that program P is deterministic and symbolic execution follows a fixed search

Using Test Ranges to Improve Symbolic Execution 419

Fig. 1. An overview of SynergiSE approach

order, e.g., a standard depth-first search in which the “true” branch of every
symbolic conditional instruction is always explored before its “false” branch.
Thus, symbolic execution explores an ordered list of paths R = [ρ1, ρ2, . . . , ρn]
of program P up to depth D. For any path ρi(1 ≤ i ≤ n) in R, an off-the-shelf
solver generates a corresponding test input Ti containing concrete input values
for each symbolic input in I.

Traditional ranges [39] encode subsets of the program state space using test
inputs based on the following observations. Any test input succinctly represents
an analysis state in symbolic execution. Furthermore, any two test inputs Ti and
Tj for program P naturally form an order based on the order of program paths.
Specifically, two test inputs Ti and Tj drive program P to follow two paths ρi and
ρj respectively. If ρi and ρj are the same path in program P , we have Ti = Tj .
If ρi is explored before ρj in R, we have Ti < Tj . Otherwise, we have Ti > Tj . In
addition, they define a range r = [ρs, ρe) to be the set of all paths ρ in R such
that ρs ≤ ρ < ρe. We refer to this type of range from the previous work as a
traditional range.

2.2 SynergiSE with Feasible Range

Traditional ranges may contain infeasible paths of the program P . We introduce
a new type of range named Feasible Range, where each bounded path within
the range must be feasible up to a specified search depth. Specifically, a feasible
range fr = [Ts, Te, d] is a range that contains all paths ρ of the program P up to
a depth d that are between ρs and ρe (ρs ≤ ρ ≤ ρe), where ρs and ρe are the

420 R. Qiu et al.

paths represented by Ts and Te respectively. The paths in a feasible range may
be partial (non-terminating) as they are bounded by depth d. Note that Ts and
Te may represent paths other than ρs and ρe when the search depth is larger
than d.

To form feasible ranges, SynergiSE performs a standard bounded symbolic
execution up to the search depth d, generating an ordered list of k paths
R = [ρ1, ρ2, ρ3, ρu, ρ4, . . . , ρi, ρu, . . . , ρj , ρk], where ρu denotes an unsatisfiable
path, and each path in R is bounded by depth d. A set of feasible ranges will
be {(ρ1, ρ3), (ρ4, ρi), . . . , (ρj , ρk)}. Again, each path ρ is represented by a corre-
sponding test case. Essentially, unsatisfiable paths serve as dividers for generat-
ing feasible ranges. Note that when we increase search depth from d to d+d′, each
incomplete path in a feasible range will extend to one or more feasible/infeasible
paths of depth d + d′. At this larger depth the original feasible range may no
longer contain all feasible paths. Thus each feasible range is associated with a
depth d. Also note that in a feasible range fr = [Ts, Te, d], Ts and Te can be the
same test case when the path represented by them is between two unsatisfiable
paths. If there is no infeasible path at depth d, one can either increase it to
larger depths until the program has an infeasible path or any two paths in the
program can form a feasible range as long as there is no infeasible path among
them up to the depth d.

A feasible range has an advantage that by definition no unsatisfiable path
(up to a depth) can be encountered within the range. This enables several
improvements over traditional ranged symbolic execution as described in the
following.

1. Deepening symbolic execution on a feasible range. When we perform
symbolic execution within a feasible range [Ts, Te, d] to a larger depth D, no
constraint solving is needed for the depth that is smaller than d as the paths
within depth d are all feasible thus all corresponding path conditions are
bound to be satisfiable. A constraint solver is only needed when we explore
the bounded paths with depth that is greater than the original depth d. Algo-
rithm 1 shows the procedures for performing symbolic execution of the pro-
gram P to a larger depth D (“deepening”) within a feasible range. We begin
with the constraint solver “turned off” (Line 5) and whenever the beginning
test input Ts satisfies the path condition and the depth is d, the execution
reaches the range (Lines 10–11). The execution gets out of the range when
the path represented by test Te is explored (Lines 12–13). Note that Ts and
Te may be the same test input. No constraint solver is needed inside the range
(Lines 16–17) while we only “turn on” the solver when the exploration reaches
larger depths (Lines 14–15). Any paths that are out of the range are ignored
(Lines 18–19). Feasible ranges enable reusing constraint solving results for
any path conditions that are encountered within the depth d, reducing the
total number of constraint solver calls thus reducing the execution time.

2. Inferring constraint satisfaction results from feasible ranges. Feasible
ranges also enable inferring all constraint solving results in a program up to a
certain search depth. Let us assume that symbolically executing the program

Using Test Ranges to Improve Symbolic Execution 421

Algorithm 1. Algorithm for deepening symbolic execution with a feasible range
Input: Program P , Feasible range fr[Ts, Te, d], Depth D(D > d)
Output: A list of paths Lρ for P bounded by depth D
1: List Lρ ← empty list
2: inRange ← false
3: depth ← 0
4: i ← first instruction in P under symbolic execution
5: turn off constraint solver
6: while i is not the last instruction in P do
7: if i is a conditional instruction then
8: depth ← depth + 1
9: pc ← i’s path condition

10: if (¬inRange) ∧ (depth = d) ∧ (Ts satisfies pc) then
11: inRange ← true
12: else if inRange ∧ (depth = d) ∧ (Te satisfies pc) ∧ ¬(Ts satisfies pc) then
13: inRange ← false
14: else if inRange ∧ (depth > d) then
15: turn on constraint solver
16: else if inRange ∧ (depth ≤ d) then
17: turn off constraint solver
18: else if ¬inRange ∧ ¬(Ts satisfies pc) then
19: backtrack symbolic execution
20: if (depth == D) ∨ (i is a Return instruction) then
21: Test T ← solve i’s path condition
22: add T to Lρ

23: i ← next instruction
24: return Lρ

P to a depth d results in a set of feasible ranges FR = {fr1, fr2, . . . , frn}. For
each feasible range in FR we can easily infer that all path conditions (up to
depth d) within it are all satisfiable due to the definition of feasible ranges
that no infeasible paths are included. Furthermore, any path constraints that
are not in any feasible ranges of FR are then unsatisfiable. Essentially, one
could infer satisfiability results of all path conditions that are within search
depth d from the set of feasible ranges FR.
The algorithm for inferring constraints’ satisfiability in the program P is
similar to Algorithm 1. We perform a guided symbolic execution without using
constraint solvers and if a feasible range is entered, all constraints up to depth
d are satisfiable. All constraints encountered after the execution reaches out
of a range and before it enters next feasible range are all unsatisfiable. This
enables efficient sharing of constraint solving results in a distributed setting.

3. Sharing constraint solving results among distributed workers. Con-
straint satisfiability checking is expensive in symbolic execution hence vari-
ous forms of results caching are utilized so that satisfiability of constraints
encountered in previous analysis can be retrieved without calling a solver,
thus reducing the total number of solver calls. For example, Green [43] uses a

422 R. Qiu et al.

Redis in-memory database to store all path constraints of symbolic execution
into a key-value store, in which keys are path constraint strings and values
are boolean results of satisfiability (either satisfiable or unsatisfiable).

In a typical distributed setting, each computation machine or core or process as
a worker performs symbolic execution on its own without any memory sharing
with each other. Sharing constraint solving results among them could be chal-
lenging. Feasible ranges provide a lightweight approach for sharing constraint
satisfiability among distributed workers. Instead of sharing a possibly very large
constraint solving results database (e.g., a Green Redis database) among work-
ers, SynergiSE allows workers to share feasible ranges and re-generate the con-
straint satisfiability results. A set of feasible ranges only contain a number of
concrete test inputs and they are usually much more compact than path con-
straint results, stored as strings. From feasible ranges, one could easily infer all
path conditions’ satisfiability as shown previously.

A direct application of efficiently sharing constraint solving results among
workers using feasible ranges is to speed up symbolic execution in a regression
setting. Assume that we perform symbolic execution to analyze a program every
time it is changed, in order to find out if there is any uncaught exceptions or
to generate test cases with high coverage. Program changes are often small and
incremental. When we symbolically execute the new slightly modified program,
many of the constraint solving results from the previous analysis may be reused.
In a distribution setting where each worker maintains its own set of stored con-
straint solving results, a worker that does not have access to other workers’
results may miss some number of constraint satisfiability reuse chances. A sim-
ple solution is that whenever a worker finishes its assigned part of symbolic
execution, it sends its cached constraint solving results to every other worker.
However, these shared results could be very large to distribute over network.

A more efficient way is to share the constraint solving results by sharing
feasible ranges. Each worker could generate a set of feasible ranges after it finishes
symbolic execution on its assigned portion. To further reduce the number of
feasible ranges shared among workers, we merge the feasible ranges generated
by all workers. The following are the steps to merge and share feasible ranges:
(1) each worker finishes its assigned work portion and generates a set of feasible
ranges FR; (2) each worker sends its feasible ranges FR to a coordinator which
gathers all to form an ordered list of feasible ranges [fr1, fr2, . . . , frk] and merges
fri and fri+1 if and only if there is no infeasible paths among the two feasible
ranges; (3) the coordinator sends the merged list of feasible ranges to each worker;
(4) each worker repopulates all the path condition satisfiability results for the
program using the received feasible ranges.

2.3 SynergiSE with Unexplored Range

Previous work on traditional ranges [39] provides an algorithm for ordering
two test inputs T1 and T2 based on the order of paths R that are explored
by symbolic execution. The algorithm performs symbolic execution guided by

Using Test Ranges to Improve Symbolic Execution 423

test inputs T1 and T2, without constraint solver calls. Whenever a path condi-
tion explored is satisfied by test T1 but not by T2, one concludes that T1 < T2

and vice versa. If both tests drive program P to the same terminating path
with same path condition, T1 and T2 follow the same path, i.e., T1 = T2. We
say tests T1 and T2 are distinct if T1 �= T2. Starting from a set of test inputs,
either from existing test suites or generated by a shallow symbolic execution,
one can create a set of distinct tests T = {T1, T2, . . . , Tk}, resulting in k + 1
ranges [null, T1), [T1, T2), . . . , [Tk, null). Here null represents both beginning and
ending boundaries of ranges. By distributing each range to a worker that only
analyzes the paths within the range, the entire set of paths in program P is
explored.

The limitation of traditional ranges is that they may contain no complete
paths between the beginning test Ts and the ending test Te; this happens when
Ts and Te represent consecutive paths ρs and ρe such that e = s + 1 in the
list of paths R. For example, let us assume that symbolically executing the
program P generates an ordered list of paths {ρ1, ρ2, . . . , ρk} with corresponding
tests {T1, T2, . . . , Tk}. If an initial set of tests includes T1, T2, and T3, four
traditional ranges are generated as [null, T1), [T1, T2), [T2, T3), and [T3, null).
Only the last traditional range contains paths of program P that are not covered
by any existing test inputs while the other ranges only contain program paths
that are already represented by test inputs. Assuming our goal for symbolic
execution is to generate tests that achieve higher path coverage, ranged analysis
on first three traditional ranges will not result in any new test cases that could
improve coverage. In a parallel symbolic execution setting they would also incur
unnecessary cost as more ranges are distributed among workers while there is
no extra gain.

To avoid this problem in traditional ranges, we introduce the notion of unex-
plored range, ur(Ts, Te), where Ts and Te encode two non-consecutive paths
ρs and ρe (e �= s + 1) of the program P respectively. For the previous example,
tests T1, T2, and T3 will not form any unexplored ranges as they encode consec-
utive paths of the program P . Thus only one unexplored range ur(T3, null) is
generated.

Simply ordering a set of test inputs does not suffice for generating unex-
plored ranges. Algorithm2 shows how to generate a set of unexplored ranges
from a set of initial test inputs (denoted as “Unexplored Range Generator” in
Fig. 1). We perform a symbolic execution guided by the test inputs, with the
constraint solver “turned off”. A symbolic execution tree data structure seTree
is constructed and the nodes of the tree correspond to a path condition of the
program. If any test inputs satisfy a path condition we add that test input to
the corresponding node (Lines 8–10). Otherwise if none of the test inputs satisfy
a path condition, the state of this path condition is unexplored by any tests thus
a mark UnexploredStatus is added to the node and we force symbolic execution
to backtrack to previous states (Lines 11–13) as we do not explore any state if
no test input guides execution there. Essentially, an UnexploredStatus stands for
either an unsatisfiable path or a path that is not explored by any existing test

424 R. Qiu et al.

Algorithm 2. Algorithm for generating unexplored ranges from test inputs
Input: Program P , A set of test inputs T
Output: A set of unexplored range UR
1: Set UR ← ∅
2: SETree seTree ← new symbolic execution tree
3: i ← first instruction in P under symbolic execution
4: while i is not the last instruction in P do
5: if i is a conditional instruction then
6: pc ← i’s path condition
7: add new node Npc for pc to seTree
8: for each Test t ∈ T do
9: if t satisfies pc then

10: attach t to NPC

11: if ¬ (∃t ∈ T satisfies pc) then
12: attach UnexploredStatus to NPC

13: backtrack symbolic execution
14: i ← next instruction
15: List LT ← preorder traversal seTree to get all leaf nodes
16: for each Element e ∈ LT do
17: if e is UnexploredStatus then
18: ts ← element before e in LT

19: te ← element after e in LT

20: add (ts, te) to UR
21: return UR

inputs. After guided symbolic execution is over, we traverse seTree to gather a
list of all leaf nodes (Line 15) and form unexplored ranges based on the indices
of UnexploredStatus marks in the list (Lines 16–20). The entire process does not
require any call to a constraint solver as test inputs serve as implicit solver. The
algorithm is efficient as checking whether a concrete test input satisfies a path
condition is much faster than checking the path condition’s satisfiability.

Compared to how traditional ranges are formed [39], Algorithm 2 orders test
inputs and generates a smaller number of unexplored ranges if there are any
consecutive initial test inputs. Furthermore, it enables symbolic execution to
efficiently reuse test cases generated by any automated test generation tools,
providing a natural integration of symbolic execution and other test generation
tools. Specifically, we use a (potentially very large) number of tests generated
by a test generation tool, either a random-based test generation tool like Ran-
doop [29] or a search-based software testing tool like EvoSuite [15], to form a set
of unexplored ranges, only including paths that are not covered by any existing
tests from the tool. Unexplored ranges could help avoiding re-exploring (possi-
bly a large number of) paths that are already covered by tests while traditional
ranges re-explore all paths in the program.

Using Test Ranges to Improve Symbolic Execution 425

3 Evaluation

In this section, we present the experiments we have conducted to evaluate the
efficiency and effectiveness of SynergiSE . In particular, we evaluate:

– SynergiSE with feasible ranges compared to traditional ranges (Sect. 3.2);
– SynergiSE with unexplored ranges for integrating test generation tools

(Sect. 3.3);
– SynergiSE with feasible ranges for sharing constraint solving results among

workers (Sect. 3.4).

3.1 Implementation and Subjects

We implement SynergiSE in the Symbolic PathFinder (SPF) tool [32], using SPF
listeners to generate different types of ranges and to steer symbolic execution
within a specified range. For distribution, we use a Java implementation [37] of
standard Message Passing Interface (MPI) [14] communication system between
a coordinator process and a worker process.

We perform the experiments on the Stampede Linux cluster at the Texas
Advanced Computing Center (TACC) [1]. TACC provides powerful computa-
tion nodes with reliable and fast connectivity. The programs for the coordinator
and each worker node are executed on independent processors without memory
sharing.

We evaluate our approach on the following Java subjects: Rational, WBS,
TCAS, MerArbiter, Dijkstra, JDK 1.5 Sorting Algorithms and Red-Black Tree
Data Structure, which were used before for evaluating symbolic execution [3,
19,30,34,35,41,45,46]. These subjects contain rich programming constructs like
recursion, that are difficult to handle with symbolic execution. All relevant
research artifacts, including subjects, test cases generated, etc. are publicly avail-
able for download [2].

3.2 SynergiSE with Feasible Ranges

We evaluate the performance of SynergiSE with feasible ranges compared to
traditional ranges. Table 1 shows the results of our experiments. For each sub-
ject, we first perform a shallow symbolic execution with an initial depth, and
then perform distributed symbolic execution based on the generated ranges to
explore all paths of the program. This initial analysis generates a number of test
inputs representing (possibly incomplete) paths of the program, which form a
set of feasible ranges as described in Sect. 2.2. To compare feasible ranges with
traditional ranges, we also create the same number of traditional ranges using
the test inputs generated by the initial analysis, such that each of them contains
approximately the same number of test inputs. For example, if the initial analy-
sis generates a list of 13 tests [T1, T2, T3, . . . , T13), we can create three traditional
ranges as [null, T5), [T5, T9), [T9, null], each covering 4 or 5 tests.

426 R. Qiu et al.

Table 1. Evaluation of SynergiSE with feasible ranges compared to traditional ranges

Subject Initial Depth # Ranges # Workers Time (s) # Solver Calls

TR FR TR FR

MergeSort
SPF Time: 262
Solver Calls:
10,366

20 6 6 94 74 10, 536 10, 366

23 8 6 88 75 10, 615 10, 366

26 12 12 51 51 10, 822 10, 366

29 16 12 50 51 11, 109 10, 366

QuickSort
SPF Time: 657
Solver Calls:
25,920

9 6 6 248 228 26, 198 25, 920

12 8 6 275 205 26, 337 25, 920

13 12 12 147 408 26, 574 25, 930

14 16 12 160 262 26, 756 25, 932

HeapInsert
SPF Time: 72
Solver Calls:
2,590

25 6 6 16 17 2, 717 2, 590

28 8 6 21 21 2, 729 2, 590

31 12 12 33 12 2, 881 2, 590

34 16 12 21 16 3, 007 2, 590

RedBlack Tree
SPF Time: 505
Solver Calls:
20,462

25 6 6 198 93 20, 735 20, 462

28 10 6 195 130 20, 933 20, 462

31 12 12 112 91 21, 037 20, 466

34 16 12 131 68 21, 239 20, 470

WBS
SPF Time: 443
Solver Calls:
27,646

10 6 6 96 98 27, 827 27, 646

13 8 6 239 90 27, 869 27, 646

16 12 12 169 60 27, 981 27, 646

19 16 12 202 71 28, 098 27, 646

For each subject, there are four different experimental settings, where either 6
or 12 workers plus one additional coordinator are used. Table 1 reports the exe-
cution time for traditional ranges (“TR”) and feasible ranges (“FR”). It also
reports the number of constraint solver calls for each setting. Table 1 shows that
the ranged analysis based on both types of ranges speeds up traditional (sequen-
tial) symbolic execution (shown as “SPF Time” in the first column), ranging
from 1.6× (FR 12 ranges 12 workers for QuickSort) to 7.4× (FR 16 ranges 12
workers for RedBlack Tree) faster, on average about 4.5× faster. In most cases,
feasible ranges outperform traditional ranges, up to 2.8× faster. This is also
reflected by the fewer constraint solver calls for feasible ranges. The few cases
where feasible ranges are slower than traditional ranges due to the imbalance in
the feasible ranges.

3.3 SynergiSE for Integrating Test Generation Tools

In SynergiSE , unexplored ranges provide an efficient way for symbolic execution
to integrate with other complementary test generation tools. To evaluate this,

Using Test Ranges to Improve Symbolic Execution 427

Table 2. Evaluation of SynergiSE for Integrating Test Generation Tools

Subject Tool Time

(s)

#

Tests

TR/# UR Time (s) # Solver Calls # New

Tests

Init/New

Cov. (%)

TR UR URS TR UR URS

TCAS

SPF Time: 12

Solver

Calls: 678

Randoop 3 1, 737 13/2 11 11 10 784 654 654 335 30/93

6 3, 653 13/2 11 11 10 780 654 654 335 30/93

EvoSuite 3 9 10/8 9 8 10 856 623 623 337 70/93

6 8 9/9 5 5 10 852 623 623 339 84/93

9 10 11/11 9 8 9 921 600 600 337 88/93

30 9 10/10 6 6 10 887 614 614 338 93/93

Rational

SPF Time:258

Solver

Calls: 22,294

Randoop 5 4, 319 597/597 122 94 197 52, 605 17, 659 17, 706 8, 686 89/89

10 7, 719 639/639 109 96 194 54, 426 17, 406 17, 437 8, 644 89/89

EvoSuite 5 7 8/8 172 170 257 22, 650 22, 170 22, 170 9, 275 89/89

10 8 9/9 122 120 256 22, 697 22, 154 22, 154 9, 274 89/89

WBS

SPF Time:443

Solver

Calls: 27,646

Randoop 5 3, 943 1, 702/620 211 178 361 31, 276 22, 599 22, 637 12, 124 60/66

10 6, 346 2, 293/663 224 175 343 30, 644 21, 533 21, 557 11, 533 60/66

EvoSuite 5 9 10/10 137 136 436 28, 058 27, 518 27, 497 13, 816 66/66

10 12 13/13 95 93 435 28, 200 27, 488 27, 485 13, 813 66/66

MerArbiter

SPF Time: 820

Solver

Calls: 38,944

Randoop 5 2, 747 1, 238/965 345 267 744 74, 952 33, 813 33, 885 17, 046 57/65

10 5, 517 1, 970/1, 390 447 318 719 95, 839 31, 306 31, 611 16, 314 57/65

EvoSuite 5 4 5/5 420 417 809 39, 070 38, 902 38, 902 18, 279 41/65

10 8 5/5 444 439 811 39, 070 38, 910 38, 910 18, 279 41/65

15 9 9/9 262 262 810 39, 223 38, 861 38, 861 18, 275 49/65

30 18 14/13 192 189 805 39, 387 38, 819 38, 819 18, 270 47/65

we choose two popular test generation tools: Randoop [29] and EvoSuite [15].
We conduct experiments on four subjects as listed in Table 2, with several dif-
ferent settings. In each setting, we first run a test generation tool (denoted as
“Tool” in Table 2) on a subject for a short period of time (“Run Time (s)”),
generating a number of test inputs (“# Tests”). The run time for test genera-
tion tools is varied and is increased until the branch coverage no longer increases
or up to 30 s. These test inputs could form a number of traditional ranges (“#
TR”) or unexplored ranges (“# UR”). The numbers of both types of ranges are
the same if no consecutive paths exist in the paths represented by the initial test
inputs. We use 6 workers plus one coordinator to run distributed symbolic execu-
tion with the generated traditional ranges or with unexplored ranges (“TR” and
“UR”). To evaluate the effects of distribution, we also use the unexplored ranges
in a sequential setting where only one worker works on all ranges sequentially
(“URS”). We report the time for the distributed symbolic execution and the
number of total constraint solver calls. We also report the number of new tests
generated (“# New Tests”) and the comparison of branch coverage achieved
by the initial test cases from the complementary test generation tools and the
updated coverage after symbolic execution (“Init/New Cov.”). The execution
time and number of constraint solver calls of traditional (sequential) symbolic
execution using SPF are listed in the first column of Table 2.

From Table 2 we observe that Randoop generated a large number of tests but
only a small fraction of them cover unique paths in the program. The number

428 R. Qiu et al.

of unique paths is the number of traditional ranges minus one. As expected,
Randoop tends to have lower branch coverage compared to EvoSuite because
Randoop is random testing technique while EvoSuite combines search based
and dynamic symbolic execution techniques.

For larger subjects Rational, WBS, and MerArbiter, using a large number of
test inputs from Randoop speeds up symbolic execution, regardless of whether a
distribution setting is used. If we only consider the sequential setting, Randoop
results speed up Rational, WBS, and MerArbiter up to 1.3×. For EvoSuite, the
total time including both initial test generation and the time for subsequent
symbolic execution is slightly longer than SPF execution time due to the small
number of tests generated. In distribution settings, the speedup is significant for
both types of ranges, ranging from about 1.3× (TR for Rational with EvoSuite
running 3 s) to about 4.7× (UR for WBS with EvoSuite running 10 s). The
average speedup for the three subjects is about 2.5×.

Furthermore, the number of unexplored ranges is either the same or less than
the number of traditional ranges. In all cases, execution time for using unexplored
ranges are faster than or the same as using traditional ranges (about 1.1× faster
on average). In cases where the initial set of tests do not achieve the high-
est branch coverage, symbolic execution generates more tests, which increase
the branch coverage; otherwise, symbolic execution verifies that the coverage
achieved by the initial test set is the highest possible, i.e., the other branches
that are not covered are actually infeasible branches.

3.4 SynergiSE for Sharing Constraint Solving Results Among
Workers

We evaluate sharing constraint solving results among workers in a regression
setting. Each subject listed in Table 3 has ten versions: the original program
version and its mutants generated by applying first order mutations [20] (e.g.,
changing a comparison operator or changing a constant) at randomly selected
locations in the code. The mutations simulate small program changes that are
common in practice. We first perform distributed symbolic execution with feasi-
ble ranges for the original program version using 6 workers plus one additional
coordinator (“Orig”) and then we perform the same analysis for the mutants
with the same 6 workers in four different settings: (1) each worker does not
reuse any constraint solving results from the previous analysis on the original
program (“No Reuse”); (2) each worker reuses its own stored constraint solv-
ing results from the previous analysis on the original program without sharing
across workers (“No Share”); (3) each worker sends its own stored constraint
solving results, i.e., a Green database, to the coordinator after the first run of
symbolic execution on the original program, and the coordinator then merges all
databases and sends the merged database back to each worker for reuse (“Share
DB”); (4) each worker sends its updated feasible ranges due to ranged symbolic
execution, which extend the feasible range initially assigned to the worker, to
the coordinator, the coordinator merges all the received feasible ranges to a set
feasible ranges for the whole program and sends this set to each worker, and each

Using Test Ranges to Improve Symbolic Execution 429

Table 3. Evaluation of SynergiSE for sharing constraint solving results

Subject Approach Time (s) # Reuses/# Solver Calls # Con-

straints

Size

(KB)

Zipped

Size

(KB)

Process

Time

(s)

Orig Mutants Orig Mutants

Only Total

WBS

Init Depth: 10

No Reuse 98 77 175 0/27,646 0/23,460

No Share 40 26 66 27,564/27,646 23,417/23,460

Share DB 45 25 70 27,564/27,646 23,417/23,460 10 2 0.5 4

Share FR 71 26 97 27,564/27,646 23,417/23,460 10 0.31 0.31 29

HeapInsert

Init Depth: 25

No Reuse 16 25 41 0/2,590 0/2,706

No Share 15 19 34 0/2,590 207/2,706

Share DB 19 17 36 0/2,590 1,700/2,706 2,568 484 59 4

Share FR 20 16 36 0/2,590 1,700/2,706 2,568 0,33 0.32 5

MergeSort

Init Depth: 20

No Reuse 74 87 161 0/10,366 0/11,071

No Share 63 73 136 166/10,366 506/11,071

Share DB 68 59 127 166/10,366 7,498/11,071 9,982 2,079 350 6

Share FR 85 60 145 166/10,366 7,498/11,071 9,982 27 1.4 20

RedBlack

Tree

Init Depth: 25

No Reuse 92 91 183 0/20,462 0/20,462

No Share 81 78 159 1,228/20,462 1,228/20,462

Share DB 86 64 150 1,228/20,462 9,250/20,462 29,174 4,121 737 6

Share FR 99 63 162 1,228/20,462 9,250/20,462 29,174 93 4.3 18

QuickSort

Init Depth: 9

No Reuse 229 220 449 0/25,920 0/27,339

No Share 201 197 398 974/25,920 1,064/27,339

Share DB 210 107 317 974/25,920 23,037/27,339 24,915 5,781 1,384 6

Share FR 232 107 339 974/25,920 23,037/27,339 24,915 110 5.5 27

Dijkstra

Init Depth: 6

No Reuse 4, 387 4,318 8,705 0/5,059 0/5,135

No Share 3, 907 3,969 7,876 866/5,059 1,135/5,135

Share DB 3, 990 2,701 6,691 866/5,059 4,829/5,135 4,862 1,256 314 7

Share FR 4, 362 2,573 6,935 866/5,059 4,829/5,135 4,862 26 1.6 29

worker repopulates all constraint solving results for the original program from
this set of feasible ranges for reuse (“Share FR”). In the last two settings, each
distributed worker has all constraint solving results from symbolic execution of
the original program. The difference is that setting (3) shares the whole Green
database while setting (4) shares a set of feasible ranges which can be used to
repopulate the entire results of the same Green database.

Table 3 reports the symbolic execution time for the original program
(“Orig”), for an individual mutant (“Only”), and for both the original program
and a mutant (“Total”). For mutants, it shows the average time cost across all
the mutants. It also reports the average number of reuses out of the total number
of constraint solver calls. In most cases, sharing constraint results among work-
ers yields larger number of reuses of constraint solving results for symbolically
executing the mutants (marked in bold), thus saving the total running time. In
addition, Table 3 reports the size of the data shared among workers, in form of
either whole Green database or the whole set of feasible ranges (“Size (KB)”).
We also report the number of constraints in the data set (“# Constraints”). The
size of Green database is much larger than the size of feasible ranges, e.g., Green
database for HeapInsert is about 1464 times larger than its corresponding set of

430 R. Qiu et al.

feasible ranges. We also measure the sizes of compressed Green databases and
sizes of compressed feasible ranges (“Zipped Size (KB)”). In all subjects, the
compressed Green databases are still significantly larger than the compressed
feasible ranges. On the other hand, it takes longer to get feasible ranges repop-
ulated into a Green database than to merge multiple databases into one Green
database (as in column “Process Time”).

From Table 3 we observe that sharing feasible ranges often takes longer total
time compared to directly sharing Green databases. This is because in our exper-
iment environment (TACC), the overhead difference between sending a set of
feasible ranges and sending its corresponding Green database is negligible com-
pared to our symbolic execution cost.

4 Related Work

Our approach extends the work on ranged symbolic execution [39] with two
new types of ranges. Unexplored ranges enhance the traditional ranges work by
efficiently reusing test inputs from other test generation tools. Feasible ranges
only contain feasible paths of the program up to a specified search depth and
enable efficient sharing constraint solving results among workers. A poster pre-
sentation [33] briefly describes the latter. In this paper we give an extensive
description and evaluation for both new ranges.

Dini [12] addressed memoization in the context of ranging in the Korat tool [7]
for test generation and data structure repair. The work uses invalid ranges which
are conceptually a dual to our feasible ranges, but do not encode path conditions
since Korat does not build or analyze them.

While our focus in this paper is on approaches based on distributed analysis
and constraint re-use, there exist many other approaches for enhancing symbolic
execution, including compositional analysis [16,34,35], abstraction [6,40], and
the use of program transformations, such as compiler optimizations [10,13]. We
believe our work on feasible ranges and unexplored ranges would also enable
these other approaches to apply in tandem.

A survey on various techniques for automated software test case generation
can be found in [4]. Our approach enables a natural efficient integration of sym-
bolic execution with other test case generation techniques. We chose two repre-
sentative tools Randoop [29] and EvoSuite [15] in this domain to evaluate the
feasibility of this integration. Randoop is a technique that improves on random
test generation by incorporating feedback from executing already created tests.
A set of predefined contracts and filters are checked against the execution of
any generated test case thus providing guidance over next generation. EvoSuite
is a search-based software testing tool that utilizes evolutionary algorithms. It
evolves a population of test suites until a solution is found that fulfills the desired
coverage or the allocated resources have been exhausted. The evolution of test
suites is guided by a fitness function that depicts how much of coverage a test
suite has achieved. In practice, our integration approach is not limited to these
two test generation tools and can accommodate other test case generation tools
as well.

Using Test Ranges to Improve Symbolic Execution 431

There are many hybrid approaches that combine the strengths of different
test generation tools [5,18,24]. For instance, Microsoft Pex accepts previously
generated test inputs, builds the path constraints along the executions triggered
by these inputs and starts further exploration from there. However this may
explore many unnecessary paths. In contrast, our approach organizes the test
inputs into ranges and explores only two inputs for each range while also being
amenable for parallelization.

Several techniques [8,22,38,39,42] have been proposed for distributing sym-
bolic execution. However none of them address communicating constraints
results between distributed workers. This has been identified as one of the main
challenges in previous work on Cloud9 [8] which found constraint solving to
account for half or more of total symbolic execution time. With our work, we
are addressing this challenge by allowing workers to reuse the computation per-
formed by other workers, where the constraint satisfaction results are communi-
cated using a compact representation, which is provided by our feasible ranges.

5 Conclusion

We presented SynergiSE , a novel synergistic approach for enhancing symbolic
execution using test ranges. SynergiSE uses feasible ranges to enable distributed
analysis with constraint re-use while minimizing the communication of constraint
solving results among parallel workers. SynergiSE also uses unexplored ranges
to enable integration of complementary test generation tools, such as Randoop
or EvoSuite, with symbolic execution. This results in higher quality tests and
efficient re-use of tests created by other techniques for effective use of symbolic
execution to enhance existing testing tools. Experimental results show that Syn-
ergiSE can significantly reduce the amount of communication among different
symbolic execution workers and enables an effective integration of heuristics-
based and systematic approaches for test generation. In future work, we plan to
evaluate our approach on larger programs as well as to further optimize our algo-
rithms. We also plan to incorporate compositional approaches for better scaling
of symbolic execution.

Acknowledgments. This work was funded in part by the National Science Founda-
tion (NSF Grant Nos. CCF-1319688, CCF-1319858, CCF-1549161, CCF-1464123, and
CNS-1239498).

References

1. Stampede. https://www.tacc.utexas.edu/stampede
2. http://cs.txstate.edu/∼g y10/synergise
3. Albert, E., Gómez-Zamalloa, M., Rojas, J.M., Puebla, G.: Compositional CLP-

based test data generation for imperative languages. In: Alpuente, M. (ed.) LOP-
STR 2010. LNCS, vol. 6564, pp. 99–116. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-20551-4 7

https://www.tacc.utexas.edu/stampede
http://cs.txstate.edu/~g_y10/synergise
https://doi.org/10.1007/978-3-642-20551-4_7
https://doi.org/10.1007/978-3-642-20551-4_7

432 R. Qiu et al.

4. Anand, S., Burke, E.K., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W., Har-
man, M., Harrold, M.J., Mcminn, P.: An orchestrated survey of methodologies for
automated software test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

5. Baars, A.I., Harman, M., Hassoun, Y., Lakhotia, K., McMinn, P., Tonella, P., Vos,
T.E.J.: Symbolic search-based testing. In: ASE 2011, pp. 53–62 (2011)

6. Beyer, D., Lemberger, T.: Symbolic execution with CEGAR. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9952, pp. 195–211. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-47166-2 14

7. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on Java
predicates. In: ISSTA 2002, pp. 123–133 (2002)

8. Bucur, S., Ureche, V., Zamfir, C., Candea, G.: Parallel symbolic execution for
automated real-world software testing. In: EuroSys 2011, pp. 183–198 (2011)

9. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: OSDI 2008, pp. 209–224
(2008)

10. Chen, J., Hu, W., Zhang, L., Hao, D., Khurshid, S., Liu, X., Zhang, L.: Learning
to accelerate symbolic execution via code transformation. Under peer-review

11. Clarke, L.A.: A program testing system. In: ACM 1976, pp. 488–491 (1976)
12. Dini, N.: MKorat: a novel approach for memorizing the Korat search and some

potential applications. Master’s thesis, University of Texas at Austin (2016)
13. Dong, S., Olivo, O., Zhang, L., Khurshid, S.: Studying the influence of standard

compiler optimizations on symbolic execution. In: ISSRE 2015, pp. 205–215 (2015)
14. Message Passing Interface Forum: MPI: a message-passing interface standard.

Technical report, Knoxville, TN, USA (1994)
15. Fraser, G., Arcuri, A.: Evolutionary generation of whole test suites. In: QSIC 2011,

Los Alamitos, CA, USA, pp. 31–40 (2011)
16. Godefroid, P.: Compositional dynamic test generation. In: POPL 2007, pp. 47–54

(2007)
17. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.

In: PLDI 2005, pp. 213–223 (2005)
18. Inkumsah, K., Xie, T.: Evacon: a framework for integrating evolutionary and con-

colic testing for object-oriented programs. In: ASE 2007, pp. 425–428 (2007)
19. Inkumsah, K., Xie, T.: Improving structural testing of object-oriented programs

via integrating evolutionary testing and symbolic execution. In: ASE 2008, pp.
297–306 (2008)

20. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

21. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 40

22. Kim, M., Kim, Y., Rothermel, G.: A scalable distributed concolic testing approach:
an empirical evaluation. In: ICST 2012, pp. 340–349 (2012)

23. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

24. Lakhotia, K., McMinn, P., Harman, M.: An empirical investigation into branch
coverage for C programs using CUTE and AUSTIN. J. Syst. Softw. 83(12), 2379–
2391 (2010)

25. Li, G., Andreasen, E., Ghosh, I.: SymJS: automatic symbolic testing of Javascript
web applications. In: FSE 2014, pp. 449–459 (2014)

https://doi.org/10.1007/978-3-319-47166-2_14
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40

Using Test Ranges to Improve Symbolic Execution 433

26. Liew, D., Cadar, C., Donaldson, A.F.: Symbooglix: a symbolic execution engine
for boogie programs. In: ICST 2016, pp. 45–56 (2016)

27. Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 95–111. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7 11

28. Pacheco, C., Ernst, M.D.: Eclat: automatic generation and classification of test
inputs. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 504–527. Springer,
Heidelberg (2005). https://doi.org/10.1007/11531142 22

29. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: ICSE 2007, Minneapolis, MN, USA, 23–25 May 2007, pp. 75–84
(2007)

30. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. In: PLDI 2011, pp. 504–515 (2011)

31. Păsăreanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry, M., Per-
son, S., Pape, M.: Combining unit-level symbolic execution and system-level con-
crete execution for testing NASA software. In: ISSTA 2008, pp. 15–25 (2008)

32. Păsăreanu, C.S., Rungta, N.: Symbolic PathFinder: symbolic execution of Java
bytecode. In: ASE 2010, pp. 179–180 (2010)

33. Qiu, R., Khurshid, S., Păsăreanu, C.S., Yang, G.: A synergistic approach for dis-
tributed symbolic execution using test ranges. In: ICSE 2017 - Companion, pp.
130–132 (2017)

34. Qiu, R., Yang, G., Păsăreanu, C.S., Khurshid, S.: Compositional symbolic execu-
tion with memoized replay. In: ICSE 2015, pp. 632–642 (2015)

35. Rojas, J.M., Păsăreanu, C.S.: Compositional symbolic execution through program
specialization. In: BYTECODE 2013 (ETAPS) (2013)

36. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 38

37. Shafi, A., Carpenter, B., Baker, M.: Nested parallelism for multi-core HPC systems
using Java. J. Parallel Distrib. Comput. 69(6), 532–545 (2009)

38. Siddiqui, J.H., Khurshid, S.: ParSym: parallel symbolic execution. In: ICSTE 2010,
vol. 1, pp. V1-405–V1-409, October 2010

39. Siddiqui, J.H., Khurshid, S.: Scaling symbolic execution using ranged analysis. In:
OOPSLA 2012, pp. 523–536 (2012)

40. Slabý, J., Strejček, J., Trt́ık, M.: Checking properties described by state machines:
on synergy of instrumentation, slicing, and symbolic execution. In: Stoelinga, M.,
Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437, pp. 207–221. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32469-7 14

41. Souza, M., Borges, M., d’Amorim, M., Păsăreanu, C.S.: CORAL: solving complex
constraints for symbolic pathfinder. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 359–374. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20398-5 26

42. Staats, M., Pǎsǎreanu, C.: Parallel symbolic execution for structural test genera-
tion. In ISSTA 2010, pp. 183–194 (2010)

43. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: reducing, reusing and recycling
constraints in program analysis. In: FSE 2012, pp. 58:1–58:11 (2012)

44. Wang, R., Ning, P., Xie, T., Chen, Q.: MetaSymploit: day-one defense against
script-based attacks with security-enhanced symbolic analysis. In: USENIX Secu-
rity 2013, pp. 65–80 (2013)

https://doi.org/10.1007/978-3-642-23702-7_11
https://doi.org/10.1007/11531142_22
https://doi.org/10.1007/11817963_38
https://doi.org/10.1007/978-3-642-32469-7_14
https://doi.org/10.1007/978-3-642-20398-5_26

434 R. Qiu et al.

45. Yang, G., Khurshid, S., Person, S., Rungta, N.: Property differencing for incre-
mental checking. In: ICSE 2014, pp. 1059–1070 (2014)

46. Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In ISSTA
2012, pp. 144–154 (2012)

47. Yang, G., Person, S., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. ACM Trans. Softw. Eng. Methodol. 24(1), 3:1–3:42 (2014)

Symbolic Execution and Reachability
Analysis Using Rewriting Modulo SMT

for Spatial Concurrent Constraint
Systems with Extrusion

Miguel Romero(B) and Camilo Rocha(B)

Department of Electronics and Computer Science,
Pontificia Universidad Javeriana, Cali, Colombia

{miguel.romero,camilo.rocha}@javerianacali.edu.co

Abstract. The usual high degree of assurance in safety-critical sys-
tems is being challenged by a new incarnation of distributed systems
exposed to the presence of hierarchical computation (e.g., virtualization
resources such as container and virtual machine technology). This paper
addresses the issue of symbolically specifying and verifying properties of
distributed hierarchical systems using rewriting modulo SMT, a symbolic
approach for rewriting logic that seamlessly combines rewriting modulo
theories, SMT solving, and model checking. It presents a rewrite theory
R implementing a symbolic executable semantics of an algebraic model
of spatially constrained concurrent process with extrusion. The underly-
ing constraint system in R is materialized with the help of SMT-solving
technology, where the constraints are quantifier-free formulas interpreted
over the Booleans and integers, and information entailment is queried via
semantic inference. Symbolic rewrite steps with →R capture all possible
traces from ground instances of the source state to the ground instances
of the target state. This approach, as illustrated with some examples in
the paper, is well-suited for specifying and proving (or disproving) exis-
tential reachability properties of distributed hierarchical systems, such
as fault-tolerance, consistency, and privacy.

1 Introduction

The widespread availability of virtualization resources such as container and vir-
tual machine technology are marking a new incarnation of distributed systems.
This means that the usual high degree of assurance in safety-critical systems
is now exposed to the presence of hierarchical computation (and sharing) of
information among groups of distributed and concurrent agents. Such a scenario
poses new and challenging goals for formal methods that can be met with the
help of symbolic analysis techniques and tools, because they can be used to
prove correct the functionality offered by the agents for any possible input and
communication interleaving. Rewriting modulo SMT [19] is a symbolic speci-
fication and verification method for rewriting logic [16] – a general semantic
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 435–451, 2018.
https://doi.org/10.1007/978-3-319-77935-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_29&domain=pdf

436 M. Romero and C. Rocha

framework in which many concurrent models of computation can be naturally
specified – that seamlessly combines rewriting modulo theories, SMT solving,
and model checking. This approach has been previously used in the symbolic
specification and verification of safety-critical infinite-state systems that inter-
act with a nondeterministic environment [19], such as NASA’s Plan Execution
Interchange Language (PLEXIL) [11] and the CASH scheduling protocol [6].

This paper addresses the issue of symbolically specifying and verifying proper-
ties of distributed hierarchical systems using the rewriting modulo SMT approach.
It presents a rewrite theory R that implements the operational semantics of the
model of spatially constrained concurrent process with extrusion (i.e., mobility) in
[13,15]. In that model, information (e.g., knowledge) can be shared in spatially dis-
tributed agents that interact with the global system by launching processes (e.g.,
programs). The scope of an agent is given by a spatial operator indicating where a
process resides within the space structure, where it queries and posts information
in a local store. The rewriting logic semantics R is executable in Maude [7], thus
benefiting from formal analysis techniques and tools such as state-space explo-
ration and automata-based LTL model checking. Safety criteria such as consis-
tency (e.g., does a fault propagate to the global system?), fault-tolerance (e.g.,
when and how does a local store first become inconsistent?), and privacy (e.g.,
does a store ever gain enough information as to reveal certain information?; do
two stores have the same information?) can be automatically queried.

The rewriting logic semantics R axiomatizes posting and querying infor-
mation from/to a local store, parallel composition of processes, recursion, and
extrusion. The underlying constraint system is materialized with the help of
SMT-solving technology, where the constraints are quantifier-free formulas inter-
preted over the Booleans and integers, and information entailment is obtained
via semantic inference. In particular, system states with n local stores are repre-
sented as symbolic terms of the form t(φ1, . . . , φn), where t encodes the hierarchi-
cal structure of spaces and each φi a local store (i.e., a formula under the control
of the SMT solver). State transitions are symbolic rewrite steps modulo SMT
between state terms. In one rewrite step from t(φ1, . . . , φn) to u(ψ1, . . . , ψk), pos-
sibly infinitely many instances of t can be rewritten to instances of u. In general,
a n-step symbolic rewrite captures all possible traces with n transitions from
ground instances of the source state to the ground instances of the target state.
This is one of the reasons why rewriting modulo SMT is well-suited for symbol-
ically proving (or disproving) existential reachability properties of distributed
hierarchical systems, such as fault-tolerance, consistency, and privacy.

The rewriting logic specification R in the syntax of Maude, the formal ver-
ification experiments, examples, and proofs can be all found in the technical
report [21].

Outline. Section 2 presents some preliminaries on rewriting. Section 3 overviews
spatial concurrent constraint systems with extrusion. Section 4 introduces the
rewriting logic semantics R and mechanical proofs about its executability prop-
erties. Section 5 explains how existential reachability properties can be automat-
ically proved with R. Section 6 concludes the paper.

Symbolic Execution and Reachability Analysis Using Rewriting Modulo 437

2 Preliminaries

This section briefly explains order-sorted rewriting logic [16], a semantic frame-
work that unifies a wide range of models of concurrency. Maude [7] is a language
and tool to support the formal specification and analysis of concurrent systems
in rewriting logic.

An order-sorted signature Σ is a tuple Σ=(S,≤, F) with a finite poset of
sorts (S,≤) and a set of function symbols F typed with sorts in S, which can
be subsort-overloaded. A top sort in Σ is a sort s ∈ S such that s′ ≤ s for all
s′ in the connected component of s. For X = {Xs}s∈S an S-indexed family of
disjoint variable sets with each Xs countably infinite, the set of terms of sort
s and the set of ground terms of sort s are denoted, respectively, by TΣ(X)s

and TΣ,s; similarly, TΣ(X) and TΣ denote, respectively, the set of terms and the
set of ground terms. A substitution is an S-indexed mapping θ : X −→ TΣ(X)
that is different from the identity only for a finite subset of X and such that
θ(x) ∈ TΣ(X)s if x ∈ Xs, for any x ∈ X and s ∈ S. A substitution θ is called
ground iff θ(x) ∈ TΣ or θ(x) = x for any x ∈ X. The application of a substitution
θ to a term t is denoted by tθ.

A rewrite theory is a tuple R = (Σ,E � B,R) with: (i) (Σ,E � B) an order-
sorted equational theorywith signatureΣ,E a set of equations overTΣ , andB a set
of structural axioms – disjoint from the set of equations E – over TΣ for which there
is a finitary matching algorithm (e.g., associativity, commutativity, and identity,
or combinations of them); and (ii) R a finite set of rewrite rules over TΣ .

Intuitively, R specifies a concurrent system whose states are elements of the
set TΣ/E�B of Σ-terms modulo E � B and whose concurrent transitions are
axiomatized by the rules R according to the inference rules of rewriting logic
[5]. In particular, for t, u ∈ TΣ representing states of the concurrent system
described by R, a transition from t to u is captured by a formula of the form
t →R u; the symbol →R denotes the binary rewrite relation induced by R over
TΣ/E�B and TR = (TΣ/E�B,→R) denotes the initial reachability model of R.
The expressions TΣ/E�B and = E�B denote, respectively, the initial algebra of
(Σ,E � B) and the congruence induced by (Σ,E � B) on Σ-terms.

Appropriate requirements are needed to make an equational theory R admis-
sible, i.e., executable in Maude. It is assumed that the equations E can be ori-
ented into a set of (possibly conditional) sort-decreasing, operationally termi-
nating, and confluent rewrite rules

−→
E modulo B [7]. For a rewrite theory R,

the rewrite relation →R is undecidable in general, even if its underlying equa-
tional theory is admissible, unless conditions such as coherence [24] are given
(i.e., whenever rewriting with →R/E∪B can be decomposed into rewriting with
→E/B and →R/B). The admissibility of a rewrite theory R ultimately means
that its mathematical and execution semantics coincide.

3 Spatial Concurrent Constraint Systems with Extrusion

Concurrent Constraint Programming (CCP) [22] is a model for concurrency that
combines the traditional operational view of process calculi with a declarative

438 M. Romero and C. Rocha

view based on logic. Under this paradigm, the concept of store as valuation in
the von Neumann model is replaced by the notion of store as constraint and
processes are seen as information transducers. The CCP model is parametric in
a constraint system (CS) specifying the structure and interdependencies of the
partial information that processes can query (ask) and post (tell) in the shared
store. Given a signature Σ and a first-order theory Δ over Σ, constraints can
be thought of as first-order formulae over Σ. The (binary) entailment relation
� over constraints is defined for any pair of constraints c and d by c � d iff the
implication c ⇒ d is valid in Δ.

Definition 1 (Constraint Systems). A constraint system (CS) C is a com-
plete algebraic lattice (Con,�). The elements of Con are called constraints. The
symbols 	, true, and false are used to denote the least upper bound (lub) opera-
tion, the bottom, and the top element of C, respectively.

The elements of the lattice, the constraints, represent (partial) information. A
constraint c can be viewed as an assertion (or a proposition). The lattice order �
is meant to capture entailment of information: d � c, alternatively written c
 d,
means that the assertion d represents as much information as c. Thus, d � c may
be interpreted as saying that c � d or that d can be derived from c. The least
upper bound (lub) operator 	 represents join of information and thus c 	 d is
the least element in the underlying lattice above c and d, asserting that both
c and d hold. The top element represents the lub of all, possibly inconsistent,
information, hence it is referred to as false. The bottom element true represents
the empty information.

The authors of [13,15] extend the notion of CS to a distributed and multia-
gent scenario where each agent i has a space []i for storing its local information
and for performing computation. Intuitively, the expression [c]i asserts that the
constraint c holds within a space attributed to agent i.

Definition 2 (Spatial Constraint System with Extrusion [13,15]).
A n-agent spatial constraint system with extrusion (n-SCSE) is a tuple
(C, [·]1, . . . , [·]n, ↑1, . . . , ↑n), with C = (Con,�) a constraint system, [·]1, . . . , [·]n
and ↑1, . . . , ↑n self-maps over Con, satisfying for 1 ≤ i ≤ n:

S.1 [true]i = true,
S.2 [c 	 d]i = [c]i 	 [d]i for each c, d ∈ Con, and
S.3 ↑i is the right inverse of [·]i.
Given an n-SCSE, each [·]i is thought as the space (or space function) of the
agent i and each ↑i is thought as the execution of the given process outside
agent’s i space. Property S.1 requires space functions to be strict maps (i.e.,
bottom preserving) where an empty local space equates to having no knowledge.
Property S.2 states that space functions preserve (finite) lubs, and also allows
to join and distribute the local information of any agent i. Property S.3 defines
extrusion to be the right inverse of space functions (which is assumed to always
exist). If n is unimportant, then n-SCSE is simply written as SCSE.

The spatial concurrent constraint programming with extrusion (SCCP) cal-
culus is parametric on a SCSE.

Symbolic Execution and Reachability Analysis Using Rewriting Modulo 439

Definition 3 (SCCP Processes [13,15]). Let (C, [·]1, . . . , [·]n, ↑1, . . . , ↑n) be
an n-SCSE, A = {1, . . . , n} a set of n agents, and V an countably infinite set of
variables. Consider the following EBNF-like syntax:

P :: = 0 | tell(c) | ask(c) → P | P ‖ P | [P]i | P ↑i | x | μx.P

where c ∈ Con, i ∈ A, and x ∈ V . An expression P in the above syntax is a
process iff every variable x in P occurs in the scope of an expression of the form
μx.P . The set of processes of SCCP is denoted by Proc.

The SCCP calculus can be thought of as a shared-spaces model of computation.
Each agent i ∈ A has a computational space of the form [·]i possibly containing
processes and other agents’ spaces. The basic constructs of SCCP are tell, ask,
and parallel composition, and they are defined as in standard CCP [22]. A process
tell(c) running in an agent i ∈ A adds c to its local store si, making c available
to other processes in the same space. This addition, represented as si 	 c, is
performed even if the resulting constraint is inconsistent. The process ask(c) →
P running in space i may execute P if c is entailed by si, i.e., c � si. The process
P ‖ Q specifies the parallel execution of processes P and Q. A construction
of the form [P]i denotes a process P running within the agent i’s space. Any
information that P produces is available to processes that lie within the same
space. The process P ↑i denotes that process P runs outside the space of agent i
and the information queried and posted by P resides in the store of the parent of
agent i. The behavior of a recursive process μx.P is represented by P [μx.P/x],
i.e., every free occurrence of x in P is replaced with μx.P .

The operational semantics of SCCP [15] is defined over configurations. A
configuration is a pair of the form 〈P, c〉 ∈ Proc ×Con, where P is a process and
c is the spatial distribution of information available to it; the set of configurations
is denoted by Conf. The structural operational semantics of SCCP is captured
by the binary transition relation −→ ⊆ Conf × Conf , defined by the rules in
Fig. 1.

Fig. 1. Structural operational semantics of SCCP.

440 M. Romero and C. Rocha

Fig. 2. Execution of process P and evolution of the SCCP system.

The rules Tell,Ask, Par, and Rec for the basic processes and recursion are the
standard ones in CCP. In order to avoid another version of the Par rule for
process Q, parallel composition is assumed to be (associative and) commutative.

Symbolic Execution and Reachability Analysis Using Rewriting Modulo 441

The rule Ext is a context-dependent definition for extrusion, i.e., it requires a
space process (i.e., [·]j with j = i) and specifies extrusion in the sense explained
before. In the rule SP, ci represents all the information the agent i may see or
have in c: namely, P runs with store ci, i.e., with the agent’s i view of c defined as
ci =

⊔
{d | [d]i � c}. Note that the information c′ added to ci by the computation

of P corresponds to the information added by [P]i to the space of agent i. A
distinctive property about SCCP is that it allows to even have inconsistent
information within spaces; e.g., one agent may have local information c and the
other some local information d such that c 	 d = false. This also means that
an agent can send inconsistent information to different agents.

As an example of how hierarchical distributed processes evolve with respect
to the SCCP’s structural operational semantics, consider the sequence of system
states depicted in Fig. 2. These states (Figs. 2a–l) correspond to a step-by-step
execution from the initial configuration (Fig. 2a), with the process P defined as
follows:

P
def= [[P1 ‖ [P2]0]1 ↑0]0

and where:

P1
def= tell(Z ≥ 10)

P2
def= ask(Y < 20) → [[P3]2]0 ↑1 ↑0

P3
def= tell(W < Y).

4 Symbolic Rewriting Logic Semantics

The rewriting logic semantics of a language L is a rewrite theory RL = (ΣL, EL�
BL, RL) where →RL provides a step-by-step formal description of L’s observable
run-to-completion mechanisms. The conceptual distinction between equations
and rules in RL has important consequences that are captured by rewriting
logic’s abstraction dial [17]. Setting the level of abstraction in which all the
interleaving behavior of evaluations in L is observable, corresponds to the special
case in which the dial is turned down to its minimum position by having EL �
BL = ∅. The abstraction dial can also be turned up to its maximal position
as the special case in which RL = ∅, thus obtaining an equational semantics of
L without observable transitions. The rewriting logic semantics R sets such an
abstraction dial at a position that exactly captures the interleaving behavior of
SCCP.

The rewriting logic semantics of SCCP is a rewrite theory R = (Σ,E,R)
with topsort Sys. The data types supporting the state structure are defined by
the equational theory (Σ,E) and the state transitions are axiomatized by the
rewrite rules R. The constraint system is materialized by an equational theory
(Σ0, E0) ⊆ (Σ,E) of built-ins whose quantifier-free formulas are handled by
SMT decision procedures. Figure 3 depicts the module structure of R. In this
semantics, two modes for importing a module are used, namely, protecting

442 M. Romero and C. Rocha

Fig. 3. Module structure of the rewriting logic semantics of SCCP.

denoted by a triple arrow � (meaning no junk and no confusion are allowed
on the imported sorts) and including denoted by a single arrow → (meaning
maybe junk and confusion are allowed on the imported sorts). The reader is
referred to [7] for more details about module importation in Maude and their
mathematical meaning.

4.1 The Constraint System

The materialization of the constraint system in R uses SMT solving technology.
Given a many-sorted (i.e., order-sorted without sort structure) equational theory
E0 = (Σ0, E0) and a set of variables X0 ⊆ X over the sorts in Σ0, the formulas
under consideration are in the set QFΣ0

(X0) of quantifier-free Σ0-formulas: each
formula being a Boolean combination of Σ0-equation with variables in X0 (i.e.,
atoms). The terms in TE0 are called built-ins and represent the portion of the
specification that will be handled by the SMT solver (i.e., semantic data types).
Thus, an SMT instance is a formula φ ∈ QFΣ0

(X0) and the initial algebra TE+
0

,
where E+

0 is a decidable extension of E0 (typically by adding some inductive
consequences and, perhaps, some extra symbols) such that

φ is satisfiable in TE+
0

iff (∃σ : X0 −→ TΣ0) TE0 |= φσ.

Many decidable theories E+
0 of interest are supported by SMT solvers satisfying

this requirement (see [19] for details).
The INTEGER module implements the equational theory E0 = (Σ0, E0) of

built-ins and the sort Boolean defines the data type used to represent the con-
straints. The topmost concurrent transitions in R are then symbolic rewrite steps

Symbolic Execution and Reachability Analysis Using Rewriting Modulo 443

of state terms with subterms in the set TΣ(X0)Sys of Σ-terms of sort Sys with
variables over the built-in sorts in Σ0.

Lemma 1. The pair B =
(
QFΣ0

(X0), |=
)

is a constraint system, where X0 are
the variables ranging over the sorts Boolean and Integer.

The elements in QFΣ0
(X0) are equivalence classes of quantifier-free Σ0-formulas

of sort Boolean modulo semantic equivalence in TE0 (this technicality guarantees,
e.g., the uniqueness of least upper bounds). Therefore, by an abuse of notation,
the constraint system B has quantifier-free Σ0-formulas of sort Boolean as the
constraints and the inverse |=of the semantic validity relation |=, w.r.t. the
initial model TE0 , as the entailment relation.

In order to use B as the underlying constraint system, R relies on the cur-
rent version of Maude that is integrated with the CVC4 [3] and Yices2 [10] SMT
solvers. The SMT-UTIL module encapsulates this integration, which requires the
reflective capabilities of Maude available from the META-LEVEL module. The func-
tion entails implements the semantic validity relation |= (w.r.t. TE0) using the
auxiliary functions check-sat and check-unsat (observe that the sort Boolean
is different to the usual sort Bool for Boolean terms in Maude):

op entails : Boolean Boolean -> Bool.
op check-sat : Boolean -> Bool.
op check-unsat : Boolean -> Bool.
eq check-sat(B) = metaCheck([’INTEGER], upTerm(B)).
eq check-unsat(B) = not(check-sat(B)).
eq entails(C1, C2) = check-unsat(C1 and not(C2)).

The function invocation check-sat(B) evaluates to true iff B is satisfiable; alter-
natively, it evaluates to false if B is unsatisfiable or if the SMT solver times out.
The function invocation check-unsat(B) returns true iff B is unsatisfiable. Note
that if the constraints B are decidable, then check-unsat is not only sound but
complete. More precisely, if Γ is a finite subset of decidable constraints in B and
φ is also a decidable constraint in B, then the following equivalence holds:

TE0 |=
∧

γ∈Γ

γ ⇒ φ iff entails

⎛

⎝
∧

γ∈Γ

γ , φ

⎞

⎠ .

4.2 System States

The top sort Sys is defined in the SCCP-STATE module:

sort Sys.
op {_} : Cnf -> Sys [ctor].

The argument of a state is the configuration of objects representing the setup
of the agents and processes in the system. Sort Cnf is that of configuration of
agents in an object-like notation.

sorts Cid Obj Cnf.
subsorts Obj < Cnf.
ops store process : -> Cid.

444 M. Romero and C. Rocha

op [_,_,_] : Cid Aid Boolean -> Obj [ctor].
op [_,_,_] : Cid Aid SCCPCmd -> Obj [ctor].
op mt : -> Cnf [ctor] .
op __ : Cnf Cnf -> Cnf [ctor assoc comm id: mt].
op {_} : Cnf -> Sys [ctor].

The sort Cnf represents multisets of terms of sort Obj, with set union denoted
by juxtaposition. An object is by itself a configuration of objects, namely, the
singleton one; constant mt denotes the empty configuration and it is the identity
of the union operator. There are two types of objects: process objects and store
objects, each represented as a triple [, ,] (as Obj). The first two arguments of
both a process and a store object are its type (either process or store, as Cid)
and its identifier (as Aid). The third argument of a process object is the program
it is executing (as SCCPCmd) and the third argument of a store object is a formula
representing the constraint of its corresponding agent (as Boolean). The idea is
that in any observable state there can be many process objects executing in an
agent’s space, but there must be exactly one store (i.e., space) object per agent.
More precisely, in an observable state, each agent’s space is represented by a set
of object terms: some encoding the state of execution of all its processes and
exactly one object representing its local store.

Process and store objects use a qualified name (sort Aid) identifying to which
agent’s space they belong; this sort is defined in module AGENT-ID. Natural
numbers (sort iNat), in Peano notation and with an equality enrichment [12], are
used to specify agents’ identifiers. The hierarchical structure of spaces is modeled
as a tree-like structure where the root space is identified by the constant root.
Any other qualified name corresponds to a dot-separated list of agent identifiers,
arranged from left to right. That is, 3 . 1 . root denotes that agent 3 is within
the space of agent 1, which in turn is within the top level space of root.

sorts iNat Aid.
op root : -> Aid.
op _._ : iNat Aid -> Aid.
op 0 : -> iNat [ctor].
op s_ : iNat -> iNat [ctor].
op _˜_ : iNat iNat -> Bool [comm].

The processes in SCCP are modeled as commands (sort SCCPCmd) and are
defined in the SCCP-SYNTAX module:

op 0 : -> SCCPCmd.
op tell_ : Boolean -> SCCPCmd.
op ask_->_ : Boolean SCCPCmd -> SCCPCmd.
op _||_ : SCCPCmd SCCPCmd -> SCCPCmd [assoc comm gather (e E)].
op <_>[_] : iNat SCCPCmd -> SCCPCmd.
op rec(_,_) : iNat SCCPCmd -> SCCPCmd.
op xtr(_,_) : iNat SCCPCmd -> SCCPCmd.
op v(_) : iNat -> SCCPCmd.

The argument of a tell command is a formula (as Boolean), namely, the
constraint to be added to the corresponding store. The ask -> command has a
formula (as Boolean) and a program (as SCCPCmd) as arguments, denoting that
if the given formula is entailed by the corresponding store, then the given process
is to be executed next. Both arguments of the || command are processes (as
SCCPCmd). The arguments of the < >[], rec(,), and xtr(,) commands are

Symbolic Execution and Reachability Analysis Using Rewriting Modulo 445

a natural number (representing the identifier of a child space) and a command
to be executed. Note that the syntax of each command is very close to the actual
syntax in the SCCP calculus, e.g., constructs of the form P ||Q and [P]i in SCCP
are represented as SCCPCmd terms of the form P || Q and <i>[P], respectively.

Example 1. The SCCP space structure in Example 2a can be represented as
follows:

{ [store, root, true] [store, 0 . root, X:Integer === 25] [store, s 0 . root, true]
[store, 0 . s 0 . root, Y:Integer < 5] }

There are some auxiliary operations defined in the semantics omitted in this
paper, e.g., replacing terms in the recursion command; the reader is referred to
[21] for these details.

4.3 System Transitions

The state transitions in R comprise both invisible (given by equations) and
observable (given by rules) transitions. There are two types of invisible transi-
tions, namely, one to remove a 0 process from a configuration and other to join
the contents of two stores of the same space (i.e., two stores with the same Aid).
The latter type of transition is especially important because when a new process
is spawned in a agent’s space, a store with the empty constraint (i.e., true) is
created for that space. If such a space existed before, then the idea is that the
newly created store is subsumed by the existing one (variable L is of sort Aid, X
of sort Cnf, and B0, B1 of sort Boolean):

eq { [process, L, 0] X } = { mt X }.
eq { [store, L, B0] [store, L, B1] X } = { [store, L, B0 and B1] X }.

The following six rules capture the concurrent observable behavior in the
specification (variable L is of sort Aid, X of sort Cnf, B0, B1 of sort Boolean,
C0, C1 of sort SCCPCmd, and N of sort iNat):

rl [tell]:
{ [store, L, B0] [process, L, tell B1] X }

=> { [store, L, B0 and B1] [process, L, 0] X }.

crl [ask]:
{ [store, L, B0] [process, L, ask B1 -> C1] X }

=> { [store, L, B0] [process, L, C1] X }
if entails(B0, B1).

rl [parallel]:
{ [process, L, C0 || C1] X }

=> { [process, L, C0] [process, L, C1] X }.

rl [space]:
{ [store, L, B0] [process, L, < N >[C0]] X }

=> { [store, L, B0] [process, L, 0] [process, N . L, C0] [store, N . L, true] X }.

rl [recursion]:
{ [process, L, rec(N, C0)] X }

=> { [process, L, replace(C0, N, rec(N, C0))] X }.

446 M. Romero and C. Rocha

rl [extrusion]:
{ [process, N . L, xtr(N, C0)] X }

=> { [process, N . L, 0] [process, L, C0] X }.

The [tell] rule implements the semantics of a process executing a tell com-
mand by posting the given constraint in the local store and by transforming
such a process to the nil process. The [ask] rule executes command C1 when
the guard B1 in ask B1 -> C1 holds: that is, when B1 is entailed by the local
store B0. The [parallel] rule implements the semantics for parallel composition
of process by spawning the two process in the current space. The [space] rule
creates a new empty space with agent identifier N . L and starts the execution
of program C0 within that space. The [recursion] rule defines the seman-
tics of a process executing a rec command by using the auxiliary function
replace (replace(P, N, C) substitutes each occurrence of N in P by C). The
[extrusion] rule executes process C0 in the parent space and transitions the
xtr process to be the nil process. Note that a recursion command can lead to
non-termination. It is common in SCCP to guard such commands with an ask
in order to tame the potential non-termination.

Example 2. Consider the following command in the syntax of Example 1:

xtr(0,< s 0 >[tell (Z:Integer >= 10) || < 0 >[ask Y:Integer < 20 ->
xtr(0,xtr(s 0,< 0 >[< s s 0 >[tell (W:Integer < Y:Integer)]]))]])

If this command is executed in the space of agent 0 . root from the initial state
in Example 1 (and depicted in Fig. 2a), it leads to the state

{ [store, root, true] [store, 0 . root, X:Integer === 25] [store, s 0 . root, Z:Integer >= 10]
[store, s s 0 . 0 . root, W:Integer < Y:Integer] [store, 0 . s 0 . root, Y:Integer < 5] }

which corresponds to the final state depicted in Fig. 2l.

The soundness and completeness of →R relative to the SOS of SCCP is
stated in Theorem 1 for the fragment of decidable constraints in B (e.g., for
linear integer arithmetic).

Theorem 1. If 〈P, c〉 and 〈P ′, c′〉 are configurations of SCCP with underlying
constraint system B restricted to decidable formulas, then

〈P, c〉 ∗−→ 〈P ′, c′〉 iff
{

〈P, c〉
} ∗→R

{
〈P ′, c′〉

}
,

where 〈P, c〉 and 〈P ′, c′〉 are an encoding of the corresponding configurations in
R.

Proof. The proof follows by structural induction on the −→ and →R relations.
�	

4.4 Admissibility

The admissibility of R is obtained with the help of a theory map R �→ R′ that
results, under some assumptions, in a rewrite theory R′, equivalent in terms

Symbolic Execution and Reachability Analysis Using Rewriting Modulo 447

of admissibility to R. The main observation is that dependencies in R of non-
algebraic data types, such as terms over the built-ins or at the meta-level, are
removed while preserving the non-admissibility in of R in R′. In particular, the
map R �→ R′ consists of the following steps, which make the specification R′

amenable to mechanical verification in the Maude Formal Environment (MFE)
[9]:

– Changing the sort Bool in TRUTH-VALUE to the sort iBool and adjusting the
specification to account for this new definition of Boolean values.

– Removing all dependencies in SMT-UTIL of the module META-LEVEL.
– Introducing a custom if-then-else-fi function symbol in SCCP-SYNTAX and

adjusting the specification to use this new version instead.

The admissibility proofs are obtained mechanically using the MFE.

Theorem 2. The rewrite theory R′ is admissible.

Proof. In the MFE, termination of the equational part of R′ modulo axioms is
proved using the Maude Termination Tool, sort-decreasingness and confluence
modulo axioms are proved using the Church-Rosser Checker, and coherence is
proved using the Maude Coherence Checker:

Maude> (ctf SCCP.)
rewrites: 839665 in 187688ms cpu (191102ms real) (4473 rewrites/second)
Success: The functional part of module SCCP is terminating.
...
Maude> (ccr SCCP.)
rewrites: 35929405 in 45540ms cpu (45539ms real) (788963 rewrites/second)
Church-Rosser check for SCCP

All critical pairs have been joined.
The specification is locally-confluent.
The module is sort-decreasing.

...
Maude> (cch SCCP.)
rewrites: 8004447 in 7844ms cpu (7843ms real) (1020454 rewrites/second)
Coherence checking of SCCP

All critical pairs have been rewritten and no rewrite with rules can
happen at non-overlapping positions of equations left-hand sides.

Finally, the admissibility of R can be obtained from the admissibility of
R′ under the assumption that Maude’s META-LEVEL module is admissible. In
particular, it is required that the meta-level functionality used for querying the
SMT solver is correct.

Corollary 1. If Maude’s META-LEVEL is admissible, then R is admissible.

5 Symbolic Reachability Analysis

Given the state terms t(φ1, . . . , φn) with n stores and u(ψ1, . . . , ψk) with k stores,
the existential reachability question of whether there is a ground substitution θ
and concrete states t′ ∈ t(φ1, . . . , φn)θ and u′ ∈ u(ψ1, . . . , ψk)θ such that t′ ∗→R
u′ is of special interest for many safety properties. For example, u′ can represent
a ‘bad state’ and the goal is to know if reaching such a state is possible. It is
important to mention that the approach presented in this section for reachability
analysis mainly relies on Maude’s search command, but it can be easily extended
to be used with Maude’s LTL Model Checker.

448 M. Romero and C. Rocha

5.1 Fault-Tolerance and Consistency

Fault tolerance is the property that ensures a system to continue operating prop-
erly in the event of the failure; consistency means that a local failure does not
propagate to the entire system. In R, this means that if a store becomes incon-
sistent, it is not the case that such an inconsistency spreads to the entire system.
Of course, inconsistencies can appear in other stores due to some unrelated rea-
sons. Finding an inconsistent store can be logically formulated by the following
model-theoretic satisfaction instance:

TR |= (∃−→x , i ∈ [1..k]) t(φ1, . . . , φn) ∗→R u(ψ1, . . . , ψk) ∧ unsat(ψi).

Answering this query in the positive means that from some initial state satisfy-
ing the pattern t(φ1, . . . , φn), a state can be reached in which a store becomes
inconsistent.

Such queries can be easily implemented with the help of R and the rewriting
modulo SMT approach by using Maude’s search command. As an example,
consider the following search command:

search in SCCP :
{ [store, root, true] [store, 0 . root, X:Integer === 25] [store, s 0 . root, true]

[store, 0 . s 0 . root, Y:Integer < 5]
[process, 0 . root, xtr(0,< s 0 >[tell (Z:Integer >= 10) || < 0 >[ask Y:Integer < 20 ->

xtr(0,xtr(s 0,< 0 >[< s s 0 >[tell (W:Integer < Y:Integer)]]))]])] }
=>* { [store, A:Aid, B:Boolean, B0:Boolean] C:Cnf } such that check-unsat(B0:Boolean) .

Note that a store is inconsistent if it is unsatisfiable, thereby checking whether a
store is inconsistent can be accomplished with the function check-unsat. This
command does not find an inconsistent store in any of the reachable states.
However, it is possible to make a store inconsistent, e.g., by substituting tell(Z

>= 10) with tell(Z >= 10) || tell(Z === 9):

Solution 1 (state 14)
states: 15 rewrites: 678 in 76ms cpu (76ms real) (8921 rewrites/second)
C:Cnf --> [process,s 0 . root,< 0 >[ask Y:Integer < 20 ->

xtr(0,xtr(s 0,< 0 >[< s s 0 >[tell (W:Integer < Y:Integer)]]))]]
[store,root,true] [store,0 . root,X:Integer === (25).Integer]
[store,0 . s 0 . root,Y:Integer < 5]

A:Aid --> s 0 . root
B0 --> Z:Integer >= (10).Integer and Z:Integer === (9).Integer
...

There are 55 reachable states (from the initial state) and 16 of them have an
inconsistent store. Note that, even though the inconsistency appears for the first
time in state 14, the system evolves until no more processes can be performed. It
is possible to verify that there are states with consistent and inconsistent stores
at the same time by slightly modifying the search command.

5.2 Knowledge Inference

Knowledge inference refers to acquiring new knowledge from existing facts. In
the setting of R, this means that starting from an initial state, at some point,

Symbolic Execution and Reachability Analysis Using Rewriting Modulo 449

an agent has gained enough information to infer – from the rules of first-order
logic – new facts:

TR |= (∃−→x , i ∈ [1..k]) t(φ1, . . . , φn) ∗→R u(ψ1, . . . , ψk) ∧ ψi ⇒ τ,

where τ is the formula representing the new fact. Answering the above query
in the positive means that from some initial state satisfying the pattern
t(φ1, . . . , φn) there is at least an agent as part of a configuration satisfying the
pattern u(ψ1, . . . , ψk) that has enough information to infer τ . As an example,
consider the following search command:

search in SCCP :
{ [store, root, true] [store, 0 . root, X:Integer === 25] [store, s 0 . root, true]

[store, 0 . s 0 . root, Y:Integer < 5]
[process, 0 . root, xtr(0,< s 0 >[tell (Z:Integer >= 10) || < 0 >[ask Y:Integer < 20 ->

xtr(0,xtr(s 0,< 0 >[< s s 0 >[tell (W:Integer < Y:Integer)]]))]])] }
=>* { [store, A:Aid, B0:Boolean] C:Cnf } such that entails(B0:Boolean, Y:Integer > 9).

It checks if there is a state, reachable from the given initial state, in which some
store logically implies Y > 9. This query does not find a solution.

5.3 Same Knowledge

Formally, this type of reachability query can be specified for R as follows:

TR |= (∃−→x , i, j ∈ [1..k]) t(φ1, . . . , φn) ∗→R u(ψ1, . . . , ψk) ∧ ψi ⇔ ψj ∧ i �= j,

where ⇔ denotes logical equivalence. As an example, consider the following
Maude search command, querying for two stores having the same information
when they are non-empty:

search in SCCP :
{ [store, root, true] [store, 0 . root, X:Integer === 25] [store, s 0 . root, true]

[store, 0 . s 0 . root, Y:Integer < 5]
[process, 0 . root, xtr(0,< s 0 >[tell (Z:Integer >= 10) || < 0 >[ask Y:Integer < 20 ->

xtr(0,xtr(s 0,< 0 >[< s s 0 >[tell (W:Integer < Y:Integer)]]))]])] }
=>* { [store, A0:Aid, C0:Boolean] [store, A1:Aid, C1:Boolean] C:Cnf }

such that entails(C0:Boolean, C1:Boolean) and entails(C1:Boolean, C0:Boolean) and
C1:Boolean =/= true.

Using Fig. 2l is easy to check that it is never the case that there are two stores
with the same information, which agrees with the (omitted) output of Maude.

6 Related Work and Concluding Remarks

Rewrite-based executable semantics of process-based formalisms have been pro-
posed before in the realm of rewriting logic and Maude (see, e.g., [4,8,23]). They
are part of a larger set of formal interpreters developed over the years that have
helped in exploring the features of rewriting logic as a semantic framework. The
work presented here is a significant extension of the preliminary work initiated
in [20]. In particular, the present work adds support for the recursion and extru-
sion primitives present in SCCP. Other related work in [2] presents K-stores, a

450 M. Romero and C. Rocha

system for SCCP implemented in Prolog as a constraint interpreter. Two impor-
tant differences with their work are: (i) extrusion is supported by R and (ii) the
general approach for symbolic specification and reachability analysis supported
by R thanks to Maude and its related formal verification tools.

This paper presented a symbolic rewriting logic semantics – based on the
rewriting modulo SMT approach – of SCCP [14,15], an extension of the CCP
model [22] with spaces and extrusion. The executable rewriting logic semantics
implements the structural operational semantics of SCCP by materializing the
underlying constraint system with SMT-based technology. As such, it offers a
complete and sound decision procedure for symbolic reachability analysis of exis-
tential formulas in SCCP, that can be automatically mechanized using Maude.
Examples have been used to illustrate the main concepts and the rewriting logic
semantics R. The novel idea of combining term rewriting and constrained data
structures, as it is the case in R, is an active area of research using the rewriting
modulo SMT approach [19]. Ultimately, this approach strengthens with symbolic
support the wealth of techniques and tools that can be used to symbolically spec-
ify and analyze safety-critical systems in Maude.

As future work, extensions of SCCP with real-time and probabilities are a
promising line of research. Moreover, providing the rewriting logic semantics of
such extensions could lead to interesting case studies for Real-Time Maude [18]
and PMaude [1]. Finally, new case studies with applications to emergent systems
such as cloud computing and social networks should be pursued with the help
of the rewriting logic semantics presented in this work.

Acknowledgments. The authors would like to thank C. Rueda and F. Valencia for
the fruitful discussions on these ideas, and the anonymous referees for their comments
that helped in improving the paper. The first author was partially supported by Col-
ciencias’ Convocatoria 761 Jóvenes Investigadores e Innovadores 2016.

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language for
probabilistic object systems. Electron. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

2. Barco, A., Knight, S., Valencia, F.D.: K-Stores: a spatial and epistemic concur-
rent constraint interpreter. In: 21st Workshop on Functional and Constraint Logic
Programming (WFLP2012), Nagoya, Japan. Informal Proceedings (2012)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

4. Braga, C., Meseguer, J.: Modular rewriting semantics in practice. Electron. Notes
Theor. Comput. Sci. 117, 393–416 (2005)

5. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

6. Caccamo, M., Buttazzo, G., Sha, L.: Capacity sharing for overrun control. In: 21st
IEEE Real-Time Systems Symposium, pp. 295–304. IEEE (2000)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14

Symbolic Execution and Reachability Analysis Using Rewriting Modulo 451

7. Clavel, M. (ed.): All about Maude - a High-Performance Logical Framework: How
to Specify, Program, and Verify Systems in Rewriting Logic. Lecture Notes in
Computer Science, vol. 4350. Springer, Berlin (2007). https://doi.org/10.1007/978-
3-540-71999-1

8. Degano, P., Gadducci, F., Priami, C.: A causal semantics for CCS via rewriting
logic. Theor. Comput. Sci. 275(1–2), 259–282 (2002)

9. Durán, F., Rocha, C., Álvarez, J.M.: Towards a Maude formal environment. In:
Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems,
Biological Systems. LNCS, vol. 7000, pp. 329–351. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-24933-4 17

10. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

11. Estlin, T., Jonsson, A., Pasareanu, C., Simmons, R., Tso, K., Verma, V.: Plan exe-
cution interchange language (PLEXIL). Technical report TM-2006-213483, NASA,
April 2006

12. Gutiérrez, R., Meseguer, J., Rocha, C.: Order-sorted equality enrichments modulo
axioms. Sci. Comput. Program. 99, 235–261 (2015)

13. Guzmán, M., Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: Belief, knowledge,
lies and other utterances in an algebra for space and extrusion. J. Log. Algebr.
Methods Program. 86(1), 107–133 (2017)

14. Guzmán, M., Valencia, F.D., Herbstritt, M.: On the expressiveness of spatial con-
straint systems. Technical report, Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik GmbH, Wadern/Saarbruecken, Germany (2016)

15. Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epis-
temic modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32940-1 23

16. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

17. Meseguer, J., Roşu, G.: The rewriting logic semantics project: a progress report.
Inf. Comput. 231, 38–69 (2013)

18. Ölveczky, P., Meseguer, J.: Real-time maude: a tool for simulating and analyzing
real-time and hybrid systems. Electron. Notes Theor. Comput. Sci. 36, 361–382
(2000)

19. Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system
analysis. J. Log. Algebr. Methods Program. 86(1), 269–297 (2017)

20. Romero, M.: Una semántica ejecutable en lógica de reescritura para programación
espacial concurrente por restricciones (SCCP). Trabajo de grado 001/522, Escuela
Colombiana de Ingenieria Julio Garavito, Bogotá, Colombia, January 2017

21. Romero, M., Rocha, C.: Reachability analysis for spatial concurrent constraint
systems with extrusion (2017). http://camilorocha.info/publications

22. Saraswat, V.: Concurrent Constraint Programming. Logic programming. MIT
Press, Cambridge (1993)

23. Verdejo, A., Mart́ı-Oliet, N.: Two case studies of semantics execution in Maude:
CCS and LOTOS. Formal Methods Syst. Des. 27(1–2), 113–172 (2005)

24. Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285(2), 487–517
(2002)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-24933-4_17
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-642-32940-1_23
http://camilorocha.info/publications

Experience Report: Application
of Falsification Methods on the

UxAS System

Cumhur Erkan Tuncali1(B) , Bardh Hoxha2 , Guohui Ding3,
Georgios Fainekos1, and Sriram Sankaranarayanan3

1 Arizona State University, Tempe, USA
{etuncali,fainekos}@asu.edu

2 Southern Illinois University, Carbondale, USA
bhoxha@siu.edu

3 University of Colorado, Boulder, USA
{guohui.ding,sriram.sankaranarayanan}@colorado.edu

Abstract. In this report, we present our experiences in applying falsifi-
cation methods over the Unmanned Systems Autonomy Services (UxAS)
system. UxAS is a collection of software modules that enables complex
mission planning for multiple vehicles. To test the system, we utilized
the tool S-TaLiRo to generate mission scenarios for both UxAS and the
underlying vehicle simulators, with the goal of finding behaviors which
do not meet system specifications.

1 Introduction

Testing and verification of Cyber-Physical Systems (CPS) with respect to their
functional or safety requirements is a critical and difficult problem. The difficulty
for testing mainly arises from the fact that the generally large input and state
spaces of most complex systems make it challenging to identify the values of the
inputs and the initial system states which will lead to unexpected behaviors.

Among different testing methodologies, requirements-based boundary-value
testing is an approach where the system is tested for the boundary values
extracted from the requirements. Although it is a very widely used approach
in the industry for testing safety-critical systems, it does not cover the input
space of the CPS well. Hence, it may fail to find the failure cases which are
not around the boundaries of the requirements. On the other hand, fuzzing [10],
where the tests are randomly sampled from the input space of the system, pro-
vides a better coverage of the input space. However, the input space is generally
infinitely large, especially when it is on real-valued inputs. If an unexpected
behavior for the system is caused by a small region in the input space, then, in
general, there is a very small probability to hit that small region with randomly

This research was supported by the Summer of Innovation 2017 program organized
by AFRL and Wright Brothers Institute in Dayton, OH.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 452–459, 2018.
https://doi.org/10.1007/978-3-319-77935-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_30&domain=pdf
http://orcid.org/0000-0002-8948-187X
http://orcid.org/0000-0001-6255-7566
http://orcid.org/0000-0001-7315-4340

Experience Report: Application of Falsification Methods 453

generated test cases. Optimization-based test generation/falsification approaches
utilize global optimization methods to guide the tests towards a possibly small
region in the input space that lead to an incorrect system behavior. Falsifica-
tion can be defined as the task of discovering counterexamples, i.e., the system
behaviors that do not satisfy the given safety or functional requirements.

In this work, we use optimization-based falsification for identifying the con-
ditions that cause an unexpected system behavior. In particular, we used S-
TaLiRo which is a robustness-guided automatic test case generation tool [4,9].
S-TaLiRo simulates the system with generated input signals and computes a
robustness value for the simulated system trajectory. The robustness value is
basically a measure of how close is a system trajectory to a set of unsafe behav-
iors [5]. While a positive robustness value indicates that the trajectory satisfies
the system requirements, a negative robustness value means that the trajectory
does not satisfy (falsify) at least one system requirement. After computing the
robustness value, S-TaLiRo utilizes stochastic optimization techniques [1,8] to
update test cases in order to minimize the robustness value. The search contin-
ues until it finds a negative robustness value, i.e., a system trajectory falsifying
(failing to satisfy) the requirements, or until it exceeds the maximum number of
simulations. The stochastic nature of S-TaLiRo helps it to obtain a better cov-
erage of the input space of the system compared to the boundary-value testing,
while the robustness-guided search approach helps it to smartly guide the tests
towards risky areas. This allows exploring the failure cases with a smaller num-
ber of simulations compared to random testing, or given a finite time, finding
more failure cases than the random testing.

2 Problem Statement

UxAS is a publicly available task automation software for Unmanned Aerial
Vehicles (UAVs), designed as a set of modular services by the US Air Force
Research Laboratory (AFRL) [3]. UxAS computes optimal or close-to-optimal
execution plans for a given set of tasks for multiple UAVs and allows cooperative
decision making between the UAVs. The search and surveillance tasks UxAS can
handle include point inspection, line (path) search, area search, spiral search and
sector search (Table 1) as described by Kingston et al. [6]. The UxAS distribu-
tion contains some example scenarios that can be used as a base for these tasks.
However, scenarios involve numerous parameters that are specific to an individ-
ual mission. Additionally, the missions are carried out under operating region
constraints that describe Keep In regions that a particular aircraft must always
remain inside and Keep Out regions that an aircraft must keep out of. Finally,
the dynamics of the flight are subjected to wind and GPS disturbances.

Formal System Requirements: In order to mathematically evaluate whether a
trajectory of the system satisfies its requirements, we need formal, mathemat-
ical representations of the system requirements. We utilize Metric Temporal
Logic (MTL) specifications to formally express the system requirements [7]. MTL

454 C. E. Tuncali et al.

Table 1. Examples of parameters describing various mission types in UxAS.

Mission type Parameters

Point search GPS coordinate, view angles distance bounds

Line search Line coordinates, view angles max distance

Area search Region, desired resolution, angles

extends common temporal operators such as Finally, Globally and Until with
time intervals that restrict how these operators are applied to a timed trace.
We refer the reader to the original paper by Koymans [7] or our earlier work [1]
for a detailed exposition of MTL. Using MTL, we can eliminate ambiguity in
the requirements, and we can mathematically reason about the system behavior
with respect to its requirements.

Thus, the overall problem is as follows:
Inputs: Mission parameter ranges, operating region parameter ranges, wind and
GPS disturbance parameters, additional MTL requirements.
Output: Concrete parameter values and operating regions, wind and GPS dis-
turbance patters so that the resulting plan executions violate mission require-
ments, operating region requirements or additional MTL constraints.

UXAS

S-TALIRO

TEST INITIALIZATION

AUTONOMY MONITOR

TRAJECTORY RECORDER

AMASE

SIMULATOR

ROBUSTNESS

CALCULATION

GLOBAL

OPTIMIZATION

SCENARIO DESCR.

MTL REQUIREMENTS

Fig. 1. An overview of the various components involved in the test generation setup
for UxAS

3 Test Generation for UxAS

A basic overview of our test generation environment architecture is illustrated in
Fig. 1. In this section, we will briefly explain the main blocks of this environment.

Experience Report: Application of Falsification Methods 455

AMASE Simulator: OpenAMASE is an openly available aircraft dynamics sim-
ulation toolset developed by the US Air Force Research Laboratory [2]. It com-
municates with UxAS through a middleware interface and implements simula-
tors for UAV platforms and disturbances such as wind. We have additionally
incorporated GPS disturbances into this framework. OpenAMASE is initialized
by providing descriptions of the various air vehicles and their initial positions.
Next, the UxAS system provides a series of waypoints to the aircrafts to follow.
AMASE roughly simulates the behavior of the Piccolo autopilot over these way-
points and periodically publishes aircraft positions and headings back to UxAS
as the simulation progresses.

Scenario Description: Scenarios are described externally through an XML file
that is read and transmitted to the UxAS system through a middleware layer.
The message to the UxAS system contains mission information that includes
aircraft descriptions and configurations, initial aircraft states, target tasks, Keep
In/Out zone parameters and weather conditions which can change during the
simulation. In our approach, we mainly generate new test cases by modifying
the parameters defined in these messages. We add additional fields to the XML
structure to define the ranges of the parameters.

S-TaLiRo/UxAS Interface: The testing process is started by a Matlab script.
This startup script reads the scenario description XML files and extracts the
ranges for the variable parameters. It further extracts the information on the
path search tasks and the operating zones. If there is a path search task to be
randomized, a random path for the task is generated. Similarly, for any keep
out zone, it randomly places the Keep Out zone around the path such that the
keep out zone does not intersect with the path. The MTL requirements for the
system are also specified in the startup script.

After basic configuration is read, S-TaLiRo is called with the parameter
ranges, the ranges for the coordinates of the Keep Out Zones and the system
requirements. Figure 1 gives an overview of our test generation approach. After
it starts, S-TaLiRo randomly samples from the parameter ranges, and commu-
nicates with the test services located in the UxAS over TCP/IP sockets to send
the sampled parameter values and to receive the system trajectory at the end of
the simulation. The received trajectories are used for computing the robustness
value for the current execution. The sampled values are updated, and the sim-
ulation is executed again until a negative robustness value is obtained or until
the user-defined maximum number of simulation executions is reached. In this
case study, we utilize the Simulated Annealing optimization method to search
for parameters that minimize the robustness value.

Autonomy Monitors: The autonomy monitoring service is implemented inside
UxAS to monitor the positions of vehicles over time and decide if a task has
completed or failed. Furthermore, it computes the robustness value of the tra-
jectory with respect to the task requirements. First, we define specific monitors
for each type of task and operating region constraints in our overall mission

456 C. E. Tuncali et al.

specification. The monitors receive periodic timestamped messages containing
the positions and headings of the various airplanes. It then updates the cur-
rent completion status for each task and operating region constraints. It then
publishes success or failure messages along with robustness values to S-Taliro.

We now briefly describe the operation of S-Taliro to generate test cases. This
includes randomized generation of paths for various search tasks and the random
generation of operation zone constraints.

Random Path Generation: A random path is specified by its starting and ending
points: pstart, pend, minimum and maximum distances between various segments
of the path dmin, dmax, maximum angular difference between segments θmax, and
the standard deviation of the angle difference, θσ. We generate a list of coordi-
nates p0 : pstart, . . . , pN : pend with the line joining the coordinates specifying
the overall path.

Initially, the partial path just consists of pstart. We then sample a point at
a sample distance dsample and angle θsample. dsample is chosen randomly from
the given range, and θsample is chosen at random with the mean value centered
around the line joining the last point to the end point pend and specified standard
deviation. This process continues until the last point in the path so far is close
enough to the endpoint. At this stage, the point pend is added to the list and the
process terminates. The green paths in Fig. 2 are generated by this algorithm
for a path search task.

Scenario Description: Scenarios are described externally through an XML file
that is read and transmitted to the UxAS system through a middleware layer.
The message to the UxAS system contains mission information that includes
aircraft descriptions and configurations, initial aircraft states, target tasks, Keep
In/Out zone parameters and weather conditions which can change during the
simulation. In our approach, we mainly generate new test cases by modifying
the parameters defined in these messages. We add additional fields to the xml
structure to define the ranges of the parameters.

Random Placement of Keep Out Zone: A keep out zone specifies a region that an
aircraft cannot enter during the mission. To test the system, we randomly place
Keep Out zones ensuring that the overall mission remains feasible in doing so:
i.e., no keep out zone intersects a path or target point in the mission specification.
Our approach starts by computing the interval hull of the generated path and
sampling a point in the hull. We then place the keep out region R at this point
and test for an intersection with the path. If an intersection occurs, we then find
a point of intersection and choose a direction along with we translate the region
R by the minimum possible distance to move the current intersection point
outside the region R. We repeat this process until we are free of intersections.
However, this process need not terminate in all cases. To aid termination, we
place maximum limits on the number of iterations and restart afresh. Examples
of randomly generated paths (in green) with a randomly placed keep out zones
(in red) are shown in Fig. 2.

Experience Report: Application of Falsification Methods 457

Fig. 2. Randomly generated search paths and Keep Out zones along with simulations:
(left) satisfying requirements and (right) violation. (Color figure online)

3.1 Case-Study

The scenario in our case study involves three UAVs with ID 400, 500 and 600, for
which we denote the positions by pV 400, pV 500, pV 600. A line search task arrives,
and UxAS generates an optimal plan for one of the UAVs to perform the task
of obtaining surveillance video that covers the path to be searched. We also add
a keep out zone Z1 at random such that it does not intersect with the search
path. Since the aircrafts are not supposed to fly over keep out zones, we require
that “Whenever any of UAV 400, 500 or 600 enters the keep out zone Z1, it
should exit the zone in 10 s”. The MTL representation for this requirement can
be given as

�(r1 =⇒ ♦[0,10]¬r1) ∧ �(r2 =⇒ ♦[0,10]¬r2) ∧ �(r3 =⇒ ♦[0,10]¬r3),

where r1 is a predicate which evaluates to True (�) when the UAV 400 enters
the keep out zone Z1, i.e., r1 := pV 400 ∈ Z1. Similarly, r2 := pV 500 ∈ Z1 and
r3 := pV 600 ∈ Z1.

We leave the shape of the path to be searched, the nominal speed values
for each of the aircrafts, wind speed and wind directions that can change 6
times over the simulation time as the variable parameters of the scenario. We
use OpenAMASE to simulate the aircrafts. In our test generation approach, we
randomly sample a path as the line search task and use S-TaLiRo to search
over the variable scenario parameters to discover the system behaviors that do
not satisfy the MTL specification which is given above. The system under test
can be considered as the UxAS tool together with the UAVs in the scenario.

The aircrafts start from their given initial positions. If an aircraft never enters
zone Z1 during the simulation, then the robustness value (for this example) is
the minimum distance between the aircraft trajectory and the keep out zone
boundaries. If an aircraft actually enters zone Z1, then the robustness value
for the violation reduces to how far inside Z1 the UAV flies beyond the 10
second time limit. Moreover, in the latter case, the robustness value is negative
indicating that the requirement has been violated.

In the execution example given in Fig. 2 (left) the green path is the one to
be searched and the purple path connects waypoints generated by UxAS. In this

458 C. E. Tuncali et al.

case, the robustness value is the length represented by the yellow arrow which
is the point where the aircraft comes closest to the keep out zone, as illustrated
by the yellow arrow.

In our case study, S-TaLiRo discovered cases where UxAS generates way-
points inside a keep out zone for a path search task and the vehicles fly into this
zone (see Fig. 2 (right)) and stay inside the zone for more than 10 seconds which
is against the system requirements.

4 Conclusion and Future Work

We have developed a framework which can be used to automatically generate test
cases which can discover scenarios that lead to unexpected behaviors. Although
the level of automation can be increased, we have automated most of the process
by extracting data from existing scenario files. This ability would save human
effort spent on generating test cases. Furthermore, because the automatic test
generation framework does not have a developer’s/tester’s bias, it can discover
unforeseen conditions leading to failure.

As a future work, we propose to use Simulink aircraft simulation models to
apply coverage guided test generation techniques. Furthermore, we plan to utilize
simplified system dynamics for the aircrafts and the environment to compute
functional gradient descent directions as described in our earlier work [11].

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Proba-
bilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. (TECS) 12(2s), 95 (2013)

2. Air Force Research Laboratory, Aerospace System Directorate, Power and Control
Division. OpenAMASE, Aerospace Multi-agent Simulation Environment, Decem-
ber 2017. https://github.com/afrl-rq/OpenAMASE/

3. Air Force Research Laboratory, Aerospace System Directorate, Power and Control
Division. OpenUXAS, Project for multi-UAV cooperative decision making, Dec.
2017. Available at https://github.com/afrl-rq/OpenUxAS

4. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

5. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoret. Comput. Sci. 410(42), 4262–4291 (2009)

6. Kingston, D., Rasmussen, S., Humphrey, L.: Automated UAV tasks for search and
surveillance. In: 2016 IEEE Conference on Control Applications (CCA), pp. 1–8.
IEEE (2016)

7. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

8. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancić, F., Gupta, A., Pappas,
G.J.: Monte-Carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: HSCC 2010, pp. 211–220. ACM, New York (2010)

https://github.com/afrl-rq/OpenAMASE/
https://github.com/afrl-rq/OpenUxAS
https://doi.org/10.1007/978-3-642-19835-9_21

Experience Report: Application of Falsification Methods 459

9. S-TaLiRo. December 2017. https://sites.google.com/a/asu.edu/s-taliro/s-taliro
10. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.

Pearson Education, London (2007)
11. Tuncali, C.E., Yaghoubi, S., Pavlic, T.P., Fainekos, G.: Functional gradient descent

optimization for automatic test case generation for vehicle controllers. In: 2017
IEEE International Conference on Automation Science and Engineering (CASE).
IEEE (2017)

https://sites.google.com/a/asu.edu/s-taliro/s-taliro

MoDeS3: Model-Based Demonstrator
for Smart and Safe Cyber-Physical

Systems

András Vörös1,2(B), Márton Búr1,4, István Ráth2,3, Ákos Horváth2,3,
Zoltán Micskei2, László Balogh2, Bálint Hegyi2, Benedek Horváth2,

Zsolt Mázló2,3, and Dániel Varró1,2,4

1 MTA-BME Lendület Cyber-Physical Systems Research Group,
Budapest, Hungary

{vori,bur}@mit.bme.hu
2 Department of Measurement and Information Systems,

Budapest University of Technology and Economics, Budapest, Hungary
rath@incquerylabs.com, {ahorvath,micskei,varro}@mit.bme.hu

3 IncQuery Labs Ltd., Budapest, Hungary
4 Department of Electrical and Computer Engineering,

McGill University, Montreal, Canada

Abstract. We present MoDeS3, a complex research demonstrator illus-
trating the combined use of model-driven development, formal verifica-
tion, safety engineering and IoT technologies for smart and safe cyber-
physical systems. MoDeS3 represents a smart transportation system-of-
systems composed of a model railway and a crane which may automati-
cally load and unload cargo from trains where both subsystems need to
fulfill functional and safety requirements. The demonstrator is built by
using the model-based software engineering principle, while the system
level safety is ensured by the combined use of design-time and runtime
verification and validation techniques.

Keywords: Smart cyber-physical systems
Model-driven engineering · Formal methods · Education
Demonstrator

1 Introduction

Motivation. A smart and safe cyber-physical system (CPS) autonomously per-
ceives its operational context and adapts to changes over an open, heteroge-
neous and distributed platform with a massive number of nodes, dynamically
acquires available resources and aggregates services to make real-time decisions,
and resiliently provides critical services in a trustworthy way [9,12].

These challenges and the multidisciplinary nature of CPS make the engineer-
ing of such systems very complex. On the one hand, traditional techniques used
for developing safety-critical systems may have limited applicability for CPS
c© Springer International Publishing AG, part of Springer Nature 2018
A. Dutle et al. (Eds.): NFM 2018, LNCS 10811, pp. 460–467, 2018.
https://doi.org/10.1007/978-3-319-77935-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77935-5_31&domain=pdf

MoDeS3: Model-Based Demonstrator for Smart and Safe CPS 461

[8]. Moreover, both research and education of CPSs necessitate well-documented
open-source demonstrator platforms which capture and reflect the essence of
problems and challenges, yet it is reasonably complex to highlight the key char-
acteristics of CPSs and present them in the context of modern technologies.

Objectives. We introduce MoDeS3: the Model-based Demonstrator for Smart
and Safe Cyber-Physical Systems1, which aims to illustrate the combined use
of model-driven development, intelligent data processing, safety engineering and
IoT technologies in the context of safety-critical system of systems with emerging
safety hazards. This open source project simultaneously serves as (1) a research
platform used for experimental evaluation of CPS-related research, (2) a complex
educational platform used for graduate and undergraduate teaching, and (3) an
IoT technology demonstrator used by industrial partners and collaborators.

The MoDeS3 demonstrator as a smart and safe CPS. The physical layout
of MoDeS3 is depicted in Fig. 1. As its core is a model railway transportation
system, guarantees for the safe operation of trains, switches, and semaphores
are required. Connected to a specific segment of the track, an automated crane
system loads cargo on and off the trains. As such, it is a critical system in itself
since the cargo cannot be dropped by the crane.

Fig. 1. Physical layout

Physicalw
orld

Railway system Crane system

Control loop

Hierarchical monitoring
Safety logic

Safe
Sm

artData processing
Control loop

Data processing
Sensing

Safety logic

Fig. 2. Architectural overview

Additionally, the MoDeS3 demonstrator represents a system-of-systems,
since the railway and the crane system are physically located next to each other.
In this case, new kind of hazardous situations may emerge which are not incor-
porated in any of the constituent systems. For instance, a rotating movement of
the crane may physically hit a train passing by along the track.

To make the demonstrator more realistic, we adopted various safety assurance
techniques ranging across design-time formal verification and validation (V&V),
runtime monitoring or testing on various levels of abstraction (see Sect. 2). A
conceptual overview is provided in Fig. 2. Multiple levels of safety are applied:
a distributed safety logic is responsible for the accident-free operation of the
trains. Hierarchical monitoring is used to ensure the safe cooperation of the
1 http://modes3.inf.mit.bme.hu/.

http://modes3.inf.mit.bme.hu/

462 A. Vörös et al.

subsystems. The details are given in Sect. 2. A wide range of sensors serves as
a rich information source for smart control and data analytics (see details in
Sect. 3). Educational use of MoDeS3 is covered in Sect. 4. The project timeline
and conclusions are drawn in Sect. 5.

2 Design- and Runtime Assurance

The development of safety-critical systems has a long history with well-
established methodologies to ensure safe operation. The MoDeS3 demonstrator
was built using Model-based Systems Engineering (MBSE) where models are
first-class citizens of the engineering process. SysML models are used to define
the functional and the platform architecture of the system, while the Gamma
Statechart Composition Framework2 is used for the precise definition of the
component level behaviour. Gamma supports the design, verification and code
generation for component-based reactive systems.

The MoDeS3 demonstrator incorporates various V&V approaches (such as
model checking, structural completeness and consistency analysis) as well as
fault-tolerance techniques — all of which are widely used in real systems.
However, due to its complex and multidisciplinary nature, design-time assur-
ance cannot guarantee in itself the safe operation of inherently dynamic smart
CPSs. Therefore, runtime certification [13] using techniques like runtime moni-
toring [10] or runtime verification [7] complement design-time assurance. There-
fore, MoDeS3 integrates runtime monitoring and verification techniques on both
component and system-level to flag violations of safety properties during the
operation of the system and trigger appropriate counter-measures such as imme-
diately stopping or slowing down trains. Our emphasis is on the combined use
of design-time and runtime V&V techniques when building MoDeS3 to address
its safety requirements. A high-level overview of V&V techniques is illustrated
in Fig. 3.

Intermediate model

Formal model

Requirements

Transform

Transform

Implement

Back-
annotate

Live modelSafety property
VIATRA-

CEPIntervene

System

Safety rule

Statechart

UPPAAL

Component
1

Component
2

Observe
Design- me

Run me

Run me

Design- me

Legend:

Fig. 3. Overview of design-time and runtime verification in MoDeS3

2.1 Design-Time Formal V&V of Timing Properties

As a primary design-time verification task, we carried out a formal analysis of
logical and timing properties of the distributed safety logic of the accident pre-
vention subsystem. We used the Gamma Statechart Composition Framework [11]
2 http://gamma.inf.mit.bme.hu/.

http://gamma.inf.mit.bme.hu/

MoDeS3: Model-Based Demonstrator for Smart and Safe CPS 463

to form the composite behavior of Yakindu statechart models. This composite
model serves as the engineering input for the design-time analysis. Gamma intro-
duces an intermediate state machine language with some high-level constructs
and precisely defined semantics [14] to serve as a bridge between engineering
and formal models. This intermediate language also helps in the back-annotation
of analysis results to statechart models. Formal verification is performed using
UPPAAL model checker [2], which is widely used for analyzing timing properties.

The generated formal models address the verification of a single component
against local properties as well as their interaction against global properties.
However, these models are insufficient to reason about the correctness of the
system in themselves. For that purpose, one needs to ensure the interaction
between the physical world and the cyber world.

For this purpose, formal models are built to capture the (logical and physical)
behavior of trains. Then a combined design-time verification can reveal poten-
tially unsafe situations, e.g. if trains move too fast, some accidents cannot be
prevented. Investigating the counterexample retrieved by Gamma highlights that
the situation could only happen if the trains are faster than the messages trans-
mitted between the components. Unless there is a denial-of-service attack with
flooding of messages, this is hardly the case in practice, but it is still a potential
security threat. After extending the statechart models with timing assumptions
on communication speed, we can formally prove that the safety logic prevents
multiple trains from entering the same section of the track.

2.2 System-Level Runtime Monitoring

As smart and safe CPSs have complex interactions with an evolving environment
and the physical world, we complement design-time verification in MoDeS3 with
runtime monitoring techniques on both component and system level. For space
considerations, here we only provide a summary of the hierarchical system-level
runtime monitoring technique using graph reasoning with live models and com-
plex event processing techniques (see right part of Fig. 3).

As traditional monitoring techniques consume events but do not cover data-
dependent behavior or structural properties, runtime knowledge about the oper-
ational system is captured by a runtime (live) model [4]. A runtime model cap-
tures the current abstract snapshot of the system and its operational context, and
changes in the underlying running system are constantly incorporated. Unlike
a detailed design model, a runtime model only captures those aspects of the
system, which are relevant for runtime monitoring and intervention.

System-level safety monitoring is carried out using graph queries and com-
plex event processing (CEP) [5], which detect runtime violations of safety rules
(by the identification of changes in the match sets of graph queries) and trigger
appropriate reactions. While graph models and queries are widely used in design
tools of CPS and CEP is a key technique in stream processing for web applica-
tions, their use in the context of smart and safe CPS is an innovative aspect of
the MoDeS3 demonstrator.

464 A. Vörös et al.

Graph-based runtime techniques nicely complement traditional, component-
level, automaton-based monitors deployed to embedded computers since critical
signals raised by low-level monitors can be further propagated to the system-
level as a hierarchy of events. As a consequence, we obtain a technique for the
runtime monitoring of system-of-systems [15] where emerging and ad hoc haz-
ardous situations can be incorporated and detected automatically also in the
presence of complex structural (graph) constraints.

3 Smart IoT Technologies

Intelligent services and technologies are integrated into MoDeS3 at various lev-
els. First, distributed autonomous intelligent control is used both for driving the
trains and also to load and unload cargo on trains by the robot crane. More-
over, multiple sensors and surveillance cameras are used, and initial processing
of the data stream is carried out close to the information source in accordance
with fog and edge computing [6,9] principles. Such sensor data can be consumed
by multiple data processing services and different subsystems by offering gen-
eralized sensing services. This way, reusable smart sensing services may initiate
actuation and control according to the collected environmental and operational
information. The software stack is based on open-source Eclipse IoT solutions.

System-level runtime verification exploits events obtained from track sen-
sors and general-purpose surveillance cameras. The visual information is pro-
cessed using state-of-the-art computer vision (OpenCV) and neural network
(TensorFlow) technologies. Distributed components are using state-of-the-art
IoT communication protocols with open connectivity to share sensor data with
different data processing services (and different subsystems). MQTT3 provides
a lightweight protocol for exchanging messages in a publish/subscribe model,
which is widely used in communication between embedded devices and sensors.

Open-source microcontrollers (Arduino) and industrial embedded computers
(Raspberry Pi, BeagleBone Black) provide the hardware elements of the plat-
form. Cloud computing technologies are used for integrating hardware devices,
service APIs and real-time data analytics.

4 MoDeS3 in Education

One of the goals of MoDeS3 is to support education with realistic examples and
case studies. The demonstrator currently fulfills this purpose at the Budapest
University of Technology and Economics at various stages of education.
Undergraduate level. At the first year introductory System Modeling course,
the demonstrator is used for illustration purposes: students are introduced to
modeling by the simplified models of the platform. Third year undergraduate
students of the Systems Engineering course face the problem of designing the
railway system by going through the development process. All phases of the
3 http://mqtt.org/.

http://mqtt.org/

MoDeS3: Model-Based Demonstrator for Smart and Safe CPS 465

development process result in a model which is then evaluated by the instruc-
tors. Undergraduate students choose thesis project after completing the Systems
Engineering course which may include developments of the MoDeS3 platform
itself.
Graduate level. At the master’s level, three courses actively use the demon-
strator platform. The course on Model-Driven Software Development introduces
domain specific languages and development of model transformations for the
students. The Cyber-Physical Systems course integrates the knowledge from the
previous courses and introduces the modeling and controlling of hybrid systems.
Beside the theoretical foundations, practical skills for integrating IoT technolo-
gies and cloud computing is also part of the curriculum. CPS course also covers
fault-tolerance and other extra-functional aspects of cloud-based CPS. Software
and Systems Verification is a course for further enhancing the knowledge of the
students on testing with a specific focus on model-based testing or hardware-
in-the-loop and model-in-the-loop testing. The course also summarizes runtime
verification with a special focus on the hierarchical composition of the verifica-
tion tasks according to the specification. At this part of the course, the advanced
verification approaches are illustrated to the students on the MoDeS3 platform.

5 Project Timeline and Conclusion

Since its inception in 2014, the project has been proceeding by major milestones
which have been organized along public demonstrations and presentations. At
each milestone, some new features have been introduced, and critical main-
tenance tasks have been completed. These milestones are illustrated in Fig. 4
together with the new features.

2014 2015 2016

Hardware prototype
and accident

preven on system

System run me
verifica on

2017

Component
run me

verifica on

SoS and run me
verifica on
integra on

Design me
verifica on

Future

Verifica on/tes ng of
the smart techniques

Gamma-based
system design

Safety features

Smart features

CV-based rou ng
prototype

Web-based
user interface

Deep neural network-based train
detec on and collision avoidance system

Robot crane
control

M6

M0 M5

M4M3

M2M1 M7

Fig. 4. Project timeline and milestones. M0: Project kickoff, M1: Researchers’ Night
2014, M2: Ericsson University Day 2015, M3: Researchers’ Night 2015, M4: 2016
Eclipse IoT Challenge and Ericsson University Day 2016, M5: Researchers’ Night 2016
and EclipseCon France 2016, M6: EclipseCon Europe 2016 Demo, M7: EclipseCon
Europe 2017 Demo

MoDeS3 demonstrates the innovative use of model-driven engineering
approaches, formal methods and intelligent technologies for smart CPS. MoDeS3

466 A. Vörös et al.

proved its innovation at many industrial events: the team won a third prize at
the Eclipse Open IoT Challenge 2.0 and MoDeS3 was exhibited twice at the
industrial EclipseCon Europe conference and another workshop [1].

As a future work, we plan to further extend the demonstrator with smart
technologies, such as a neural network based collision avoidance system and
intelligent data analysis. Smart techniques used in for accident prevention have
to be extensively tested/verified, where we will exploit the recent advances of
the field. In addition, a novel distributed graph-based monitoring approach [3]
will be integrated to provide an additional level of safety.

Acknowledgment. MoDeS3 is a joint effort of many participants. It was partially
supported by MTA-BME Lendület Research Group on Cyber-Physical Systems the
ARTEMIS JU R5-COP project and the NSERC RGPIN-04573-16 project. MoDeS3
also received financial and technical support from our industrial partners: IncQuery
Labs Ltd., Quanopt Ltd., Ericsson Hungary and Miniversum. The TITAN Xp used for
this research was donated by the NVIDIA Corporation. Colleagues at Dept. of Mea-
surement and Information Systems (BME) worked on the project beside the authors:
István Majzik, Gábor Szárnyas, and Oszkár Semeráth. We also thank the hard work
of our students: Flórán Deé, Márton Elekes, Anna Gujgiczer, Bence Graics, Raimund
Konnerth, Gergő Somos, and Sámuel Várallyay.

References

1. Balogh, L., et al.: Distributed and heterogeneous event-based monitoring in smart
cyber-physical systems. In: MT CPS Workshop (CPS Week 2016) (2016)

2. Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on the
Quantitative Evaluation of Systems, pp. 125–126. IEEE (2006)

3. Búr, M., et al.: Distributed graph queries for runtime monitoring of cyber-physical
systems. In: International Conference on Fundamental Approaches to Software
Engineering (2018, accepted)

4. Cheng, B.H.C., et al.: Using models at runtime to address assurance for self-
adaptive systems. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.)
Models@run.time. LNCS, vol. 8378, pp. 101–136. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08915-7 4

5. Dávid, I., Ráth, I., Varró, D.: Foundations for streaming model transformations
by complex event processing. Softw. Syst. Model. 17(1), 1–28 (2016)

6. Dubey, A., et al.: Resilience at the edge in cyber-physical systems. In: FMEC, pp.
139–146, May 2017

7. Havelund, K.: Rule-based runtime verification revisited. STTT 17(2), 143–170
(2015)

8. Lee, E.A.: Cyber physical systems: design challenges. In: 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing, pp. 363–369
(2008)

9. Lee, E.A., et al.: The swarm at the edge of the cloud. IEEE Des. Test 31(3), 8–20
(2014)

10. Medhat, R., et al.: Runtime monitoring of cyber-physical systems under timing
and memory constraints. ACM T. Embed. Comput. Syst. 14(4), 1–29 (2015)

11. Molnár, V., et al.: The gamma statechart composition framework. In: ICSE 2018:
Demonstrations (2018, accepted)

https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4

MoDeS3: Model-Based Demonstrator for Smart and Safe CPS 467

12. Nielsen, C.B., et al.: Systems of systems engineering: basic concepts, model-based
techniques, and research directions. ACM Comput. Surv. 48(2), 18 (2015)

13. Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289,
pp. 21–35. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89247-
2 2

14. Tóth, T., Vörös, A.: Verification of a real-time safety-critical protocol using a
modelling language with formal data and behaviour semantics. In: Bondavalli, A.,
Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 207–
218. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10557-4 24

15. Vierhauser, M., et al.: Reminds: a flexible runtime monitoring framework for sys-
tems of systems. J. Syst. Softw. 112, 123–136 (2016)

https://doi.org/10.1007/978-3-540-89247-2_2
https://doi.org/10.1007/978-3-540-89247-2_2
https://doi.org/10.1007/978-3-319-10557-4_24

Author Index

Ahmad, Waqar 139
Aït-Ameur, Yamine 1
Aldous, Peter 367

Balogh, László 460
Baresi, Luciano 315
Bendisposto, Jens 244
Benyagoub, Sarah 1
Bersani, Marcello M. 315
Bhattacharyya, Siddhartha 20
Bingham, Brad 95
Blanchard, Allan 37
Bochot, Thomas 399
Broccia, Giovanna 54
Búr, Márton 460

Cabrera, Kalou 333
Carvalho, Marco 20
Cassel, Sofia 333
Chand, Saksham 70
Chaudhary, Kaylash 157, 164
Chen, Charles Zhuo 87
Colton, Simon 237

David, Matthieu 399
De Paula, Flavio M. 95
Delmas, Rémi 399
Dietl, Werner 87
Ding, Guohui 452
Dutertre, Bruno 113
Dutta, Souradeep 121

Elderhalli, Yassmeen 139
Eskridge, Thomas C. 20

Fainekos, Georgios 452
Fehnker, Ansgar 157, 164
Feliú, Marco A. 179
Fromherz, Aymeric 185

Gerhold, Marcus 203
Giaquinta, Ruben 220
Guiochet, Jérémie 333

Haran, Arvind 95
Hartmanns, Arnd 203
Hasan, Osman 139
Hegyi, Bálint 460
Hoffmann, Ruth 220
Horváth, Ákos 460
Horváth, Benedek 460
Hoxha, Bardh 452

Ireland, Andrew 237
Ireland, Murray 220

Jha, Susmit 121
Jovanović, Dejan 113

Khurshid, Sarfraz 416
Körner, Philipp 244
Kosmatov, Nikolai 37

Laarman, Alfons 261, 280
Liu, Yanhong A. 70
Llano, Maria Teresa 237
Loulergue, Frédéric 37

Maarand, Hendrik 299
Marconi, Francesco 315
Mashkoor, Atif 1
Masson, Lola 333
Mázló, Zsolt 460
McCarthy, Jay 367
Mehta, Vinay 164
Meijer, Jeroen 349
Mercer, Eric 367
Micskei, Zoltán 460
Milazzo, Paolo 54
Miller, Alice 220
Miné, Antoine 185
Moscato, Mariano M. 179

Nakade, Radha 367
Narizzano, Massimo 383
Navas, Jorge A. 113
Neogi, Natasha A. 20
Norman, Gethin 220

Ochoa Escudero, César 399
Ölveczky, Peter Csaba 54
Ouadjaout, Abdelraouf 185
Ouederni, Meriem 1

Păsăreanu, Corina S. 416
Pulina, Luca 383

Qiu, Rui 416
Quattrocchi, Giovanni 315

Ráth, István 460
Rocha, Camilo 435
Romero, Miguel 435
Rossi, Matteo 315

Sankaranarayanan, Sriram 121, 452
Stafford, Milton 20
Stoelinga, Mariëlle 203

Tacchella, Armando 383
Tahar, Sofiène 139
Tiwari, Ashish 121
Törngren, Martin 333
Tuncali, Cumhur Erkan 452

Uustalu, Tarmo 299

van de Pol, Jaco 349
Varró, Dániel 460
Vörös, András 460
Vuotto, Simone 383

Waeselynck, Hélène 333
Wen, Junye 416
Wiels, Virginie 399

Yang, Guowei 416

470 Author Index

	Preface
	Organization
	Contents
	Incremental Construction of Realizable Choreographies
	1 Introduction
	2 Background and Notations
	2.1 Model
	2.2 Realizability

	3 CCP Language for Realisable CPs
	3.1 Composition Operators
	3.2 Realizable-by-Construction CP

	4 CCP Model: Refinement-Based Realizability
	4.1 The Refinement Strategy
	4.2 The Root Model
	4.3 First Refinement: Synchronous Model
	4.4 Second Refinement: Asynchronous Model
	4.5 Instantiation and Axiom Validation
	4.6 Assessment

	5 Related Work
	6 Conclusion
	References

	Formal Assurance for Cooperative Intelligent Autonomous Agents
	1 Introduction
	2 Related Work
	3 Modeling and Formal Verification
	3.1 Cognitive Architectures and Frameworks: Soar
	3.2 Formal Languages and Verification: Uppaal

	4 Example Case Study: Engine Out Contingency During Takeoff
	5 Automated Translation from Cognitive Architecture to Formal Environment
	5.1 Automated Translation to Uppaal
	5.2 Translation Implementation

	6 Verification and Validation Efforts
	6.1 Simulation Efforts for Validation of the Autonomous Pilot Agent
	6.2 Formal Verification of the Autonomous Pilot Agent

	7 Conclusion and Future Work
	References

	Ghosts for Lists: A Critical Module of Contiki Verified in Frama-C
	1 Introduction
	2 The List Module of Contiki
	3 The Verification Approach
	3.1 Running Example
	3.2 List Representation by a Companion Ghost Array
	3.3 Formal Specification
	3.4 Ghost Functions
	3.5 Auxiliary Lemmas and Proofs
	3.6 Results of the Verification
	3.7 Validation of Specification

	4 Related Work
	5 Conclusion and Future Work
	References

	An Executable Formal Framework for Safety-Critical Human Multitasking
	1 Introduction
	2 Preliminaries
	3 A Formal Model of Human Multitasking
	3.1 Classes
	3.2 Dynamic Behavior

	4 Analyzing Safety-Critical Human Multitasking
	5 Example: Interacting with a GPS Device While Driving
	6 Related Work
	7 Concluding Remarks
	References

	Simpler Specifications and Easier Proofs of Distributed Algorithms Using History Variables
	1 Introduction
	2 Specifications Using Message History Variables
	3 Invariants and Proofs Using Message History Variables
	4 Multi-Paxos
	5 Results
	6 Related Work and Conclusion
	References

	Don't Miss the End: Preventing Unsafe End-of-File Comparisons
	1 Introduction
	2 Type System
	2.1 Type Qualifiers and Qualifier Hierarchy
	2.2 Type Casting Rules
	2.3 Default Qualifiers
	2.4 Data-Flow-Sensitive Type Refinement

	3 Implementation
	4 Experiments
	5 Related Work
	6 Conclusions
	References

	An Efficient Rewriting Framework for Trace Coverage of Symmetric Systems
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Strategy Overview
	4.1 Rewriting Systems
	4.2 Abstraction and Coverage Model

	5 Conservative Abstraction
	5.1 Abstractable Composed-Systems
	5.2 Trace Abstraction
	5.3 Abstract Trace Rewriting
	5.4 Coverage Holes

	6 Experiments
	6.1 The MIST Protocol
	6.2 Model Viability
	6.3 Effectiveness
	6.4 Monitor-Centric Experiments
	6.5 Experiments on a Large-Scale Verification Environment

	7 Conclusion
	References

	Verification of Fault-Tolerant Protocols with Sally
	1 Introduction
	2 Sally
	3 Modeling Fault-Tolerant Protocols
	3.1 Approximate Agreement
	3.2 Verification Results

	4 Related Work
	5 Conclusion
	References

	Output Range Analysis for Deep Feedforward Neural Networks
	1 Introduction
	2 Preliminaries
	2.1 Mixed Integer Linear Programs

	3 Problem Definition and MILP Encoding
	3.1 MILP Encoding

	4 Combining MILP Solvers with Local Search
	4.1 Overall Approach
	4.2 Local Search Improvement

	5 Application: Reachability Analysis
	6 Experimental Evaluation
	7 Conclusion
	References

	Formal Dynamic Fault Trees Analysis Using an Integration of Theorem Proving and Model Checking
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	4 Formalization of Dynamic Fault Trees in HOL
	4.1 Identity Elements
	4.2 Temporal Operators
	4.3 Fault Tree Gates
	4.4 Formal Verification of the Simplification Theorems

	5 Experimental Results
	5.1 Formal Verification of the Reduced Cascaded PAND DFT
	5.2 Quantitative Analysis Results Using STORM

	6 Conclusion
	References

	Twenty Percent and a Few Days – Optimising a Bitcoin Majority Attack
	1 Introduction
	2 The Bitcoin Protocol
	3 Model and Strategies
	4 Analysis
	5 Conclusion
	References

	An Even Better Approach – Improving the B.A.T.M.A.N. Protocol Through Formal Modelling and Analysis
	1 Introduction
	2 The B.A.T.M.A.N. Protocol
	2.1 Literal Model
	2.2 Alternative Model

	3 Uppaal Model
	4 Simulation Results
	5 Conclusion
	References

	Towards a Formal Safety Framework for Trajectories
	1 Introduction
	2 The Framework
	3 Trajectory Validation Strategy
	4 Conclusion and Future Work
	References

	Static Value Analysis of Python Programs by Abstract Interpretation
	1 Introduction
	2 The Mini-Python Language
	2.1 Syntax
	2.2 Concrete Collecting Semantics

	3 Value Abstraction
	3.1 Non-relational Abstraction
	3.2 Relational Abstraction

	4 Generator Analysis
	4.1 Concrete Semantics
	4.2 Abstractions

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	Model-Based Testing for General Stochastic Time
	1 Introduction
	2 Background
	3 Stochastic Testing Theory
	3.1 Test Cases
	3.2 Stochastic Input-Output Conformance and Annotations
	3.3 Test Execution and Sampling
	3.4 Test Evaluation and Correctness

	4 Implementing Stochastic Testing
	4.1 Goodness of Fit
	4.2 Algorithm Outline

	5 Experiments
	6 Conclusion
	References

	Strategy Synthesis for Autonomous Agents Using PRISM
	1 Introduction
	2 Background
	3 Scenarios
	4 Conclusions and Future Work
	References

	The Use of Automated Theory Formation in Support of Hazard Analysis
	1 Introduction
	2 Background
	3 Experiments with a Simple Design Model
	3.1 Applying HR to the Laser Control System
	3.2 Discovering Properties in Support of Hazard Analysis
	3.3 Breaking Properties

	4 Future Work and Conclusion
	References

	Distributed Model Checking Using ProB
	1 Introduction
	1.1 B and ProB

	2 Architecture Overview
	3 Implementation
	3.1 Socket Patterns and Messages
	3.2 When is a Model Suitable for Distributed Model Checking?
	3.3 Passing States to C
	3.4 Visited States
	3.5 Work Sharing
	3.6 Proxy
	3.7 Bandwidth Reduction

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Optimal Storage of Combinatorial State Spaces
	1 Introduction
	2 An Information Theoretical Lower Bound
	3 An Analysis of Binary Tree Compression
	4 A Novel Compact Tree
	5 Experiments
	6 Discussion and Conclusion
	References

	Stubborn Transaction Reduction
	1 Introduction
	2 Preliminaries
	3 Stubborn Transaction Reduction
	3.1 Parametrized Stubborn Sets
	3.2 Reduced Transaction Systems

	4 Comparison Between TR and POR
	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Certified Foata Normalization for Generalized Traces
	1 Introduction
	2 Traces, Foata Normal Forms and Normalization
	3 Formalization
	3.1 Traces
	3.2 Normal Forms
	3.3 Normalization
	3.4 Properties

	4 Example: Local Reads in TSO
	5 Related Work
	6 Conclusion and Future Work
	References

	On the Timed Analysis of Big-Data Applications
	1 Introduction
	2 Background
	2.1 Apache Spark Framework
	2.2 Constraint LTL over-clocks

	3 Modeling Spark Applications
	4 Implementation and Validation of the Model
	5 Related Works
	6 Conclusion
	References

	Tuning Permissiveness of Active Safety Monitors for Autonomous Systems
	1 Introduction
	2 Related Work
	3 Baseline and Concepts
	3.1 Safety Invariants, Margins and States
	3.2 Safety and Permissiveness Properties
	3.3 SMOF Tooling
	3.4 On Tuning Permissiveness Properties

	4 Defining Custom Permissiveness Properties
	4.1 A Formal Model for the Permissiveness
	4.2 Binding Together Invariants and Permissiveness
	4.3 Restricting Functionalities
	4.4 Integration in SMOF Tooling

	5 Application to an Example
	5.1 SI1: The Arm Must Not Be Extended when the Platform Moves over a Certain Speed
	5.2 SI2: A Gripped Box Must Not Be Tilted More Than 0
	5.3 SI3: The Robot Must Not Enter a Prohibited Zone

	6 Conclusion and Perspectives
	References

	Sound Black-Box Checking in the LearnLib
	1 Introduction
	2 Preliminaries
	2.1 LTL Model Checking
	2.2 Active Learning
	2.3 Black-Box Checking

	3 Sound Black-Box Checking
	3.1 Validating Lassos with State Equivalence
	3.2 Implementation in the LearnLib

	4 Related Work
	5 Results
	6 Conclusion
	References

	Model-Checking Task Parallel Programs for Data-Race
	1 Introduction
	2 Example
	3 Task Parallel Programs
	3.1 Computation Graphs
	3.2 Programming Model

	4 Proof of Correctness
	5 Implementation and Results
	6 Related Work
	7 Conclusion and Future Work
	References

	Consistency of Property Specification Patterns with Boolean and Constrained Numerical Signals
	1 Introduction
	2 Background and Related Work
	3 Constraint Property Specification Patterns
	4 Analysis with Probabilistic Requirement Generation
	5 Analysis with a Controller for a Robotic Manipulator
	6 Conclusions
	References

	Automatic Generation of DO-178 Test Procedures
	1 Introduction
	2 Industrial Context
	2.1 Running HLR Example
	2.2 Software Test Standards
	2.3 Running Example: TCs for Req1
	2.4 Running Example: TP Implementation for Req1

	3 Liebherr Test Specification Language
	3.1 Syntax
	3.2 Semantics
	3.3 Running Example: Req1 TCs Expressed in LTSL

	4 SCADE Observers Generation
	4.1 SCADE Automata Syntax
	4.2 Translation Function

	5 Illustration of the Approach
	6 Related Work
	7 Conclusion
	References

	Using Test Ranges to Improve Symbolic Execution
	1 Introduction
	2 The SynergiSE Approach
	2.1 Traditional Ranges
	2.2 SynergiSE with Feasible Range
	2.3 SynergiSE with Unexplored Range

	3 Evaluation
	3.1 Implementation and Subjects
	3.2 SynergiSE with Feasible Ranges
	3.3 SynergiSE for Integrating Test Generation Tools
	3.4 SynergiSE for Sharing Constraint Solving Results Among Workers

	4 Related Work
	5 Conclusion
	References

	Symbolic Execution and Reachability Analysis Using Rewriting Modulo SMT for Spatial Concurrent Constraint Systems with Extrusion
	1 Introduction
	2 Preliminaries
	3 Spatial Concurrent Constraint Systems with Extrusion
	4 Symbolic Rewriting Logic Semantics
	4.1 The Constraint System
	4.2 System States
	4.3 System Transitions
	4.4 Admissibility

	5 Symbolic Reachability Analysis
	5.1 Fault-Tolerance and Consistency
	5.2 Knowledge Inference
	5.3 Same Knowledge

	6 Related Work and Concluding Remarks
	References

	Experience Report: Application of Falsification Methods on the UxAS System
	1 Introduction
	2 Problem Statement
	3 Test Generation for UxAS
	3.1 Case-Study

	4 Conclusion and Future Work
	References

	MoDeS3: Model-Based Demonstrator for Smart and Safe Cyber-Physical Systems
	1 Introduction
	2 Design- and Runtime Assurance
	2.1 Design-Time Formal V&V of Timing Properties
	2.2 System-Level Runtime Monitoring

	3 Smart IoT Technologies
	4 MoDeS3 in Education
	5 Project Timeline and Conclusion
	References

	Author Index

