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Abstract

Medicine will experience many changes in the
coming years because the so-called “medicine
of the future” will be increasingly proactive,
featuring four basic elements: predictive,
personalized, preventive, and participatory.
Drivers for these changes include the

digitization of data in medicine and the avail-
ability of computational tools that deal with
massive volumes of data. Thus, the need to
apply machine-learning methods to medicine
has increased dramatically in recent years
while facing challenges related to an unprece-
dented large number of clinically relevant
features and highly specific diagnostic tests.
Advances regarding data-storage technology
and the progress concerning genome studies
have enabled collecting vast amounts of
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patient clinical details, thus permitting the
extraction of valuable information. In conse-
quence, big-data analytics is becoming a man-
datory technology to be used in the clinical
domain.

Machine learning and big-data analytics can
be used in the field of cardiology, for example,
for the prediction of individual risk factors for
cardiovascular disease, for clinical decision
support, and for practicing precision medicine
using genomic information. Several projects
employ machine-learning techniques to address
the problem of classification and prediction of
heart failure (HF) subtypes and unbiased clus-
tering analysis using dense phenomapping to
identify phenotypically distinct HF categories.
In this chapter, these ideas are further presented,
and a computerized model allowing the distinc-
tion between two major HF phenotypes on the
basis of ventricular-volume data analysis is
discussed in detail.
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Introduction

In July 2016, the Food and Drug Administration
approved the first monoclonal antibody that
inactivates the components responsible for the
degradation of low-density lipoprotein receptors
in the liver, decreasing their blood levels to much
lower numbers than those that can be achieved
with statins. This development is relevant because
it represents the first important step toward a new
version, as an information science, of the field of
medicine. Genomics pioneer L. Hood [1] calls
this the “medicine of the future,” which is chang-
ing its way of working from reactive to proactive
toward “4P medicine” (powerfully predictive,
personalized, preventive [a shift of focus from
illness to wellness], and participatory). Several
things will eventually drive this change, and
among the most important will be the digitization

of medicine and the development of computa-
tional tools—that is, machine-learning tools and
methods, including preprocessing techniques
needed to eliminate noise and irrelevant variables
from the data—with the ability to deal with big
data. Because data dimensionality is continuously
increasing, it will be necessary to incorporate
big-data analytics in order to be able to deal
with the billions of data points that are expected
for each individual patient in the next decade.
Predictive medicine must correlate this high num-
ber of dimensional data sets with individual
genotypes and phenotypes.

Thus, in this medicine of the future, machine
learning [2] and big-data analytics [3–7] will be
key disciplines. Data, often in large volumes, will
be analyzed based on epidemiological variables,
electronic health records (EHRs), genomic
databases, and so on. These data will allow for
the practice of preventive and precision medicine
and the avoidance of medical errors that might
occur because of medical doctors’ distress due to
their increasing and intensifying workloads,
thereby increasing quality at affordable prices
(see Fig. 37.1). For example, 10 years ago the
expense of sequencing the genome of just one
individual was approximately €200,000, whereas
currently it is <€600.

Computerized and artificial intelligence (AI)–
based methods for the analysis and interpretation
of medical databases are not that new; these
techniques found relatively early application in
the medical sciences [8]. Machine learning and
big-data analytics can be used in the field of
cardiology in several ways, such as predicting
an individual’s risk for cardiovascular disease,
clinical decision support, precision medicine
using genomic information, and so on. Some
works that can be found in the literature using
machine-learning techniques investigate the prob-
lem of classification and prediction of heart fail-
ure (HF) subtypes [9] and unbiased clustering
analysis using dense phenomapping to identify
phenotypically distinct categories of preserved
ejection fraction (HFpEF). Alonso-Betanzos
et al. [10] propose a computerized model that
allows a clearer distinction between the two
major phenotypes of patients with HF based on
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ventricular volume data analysis. In that work, a
gray zone—which might correspond to a third
separate phenotype—was identified, thus
corroborating the capacity of machine-learning
techniques to discover knowledge in medicine.
Narula et al. [11] used an ensemble machine-
learning model to aid in cardiac phenotypic rec-
ognition, specifically for the automated discrimi-
nation of hypertrophic cardiomyopathy from the
physiological hypertrophy seen in athletes. The
model used the previous feature of selection
preprocessing (using the information gain filter
[12]) step-over features of cardiac tissue deforma-
tion. Three different models integrated the ensem-
ble (support vector machine [SVM], random
forest [RF], and artificial neural network), and
majority voting was used to reach a final decision.

However, studies using big-data analytics in
the field of cardiology are not yet frequent in the
literature. Some investigators described a frame-
work aiming at setting an “initial but timely step
toward a more intelligent and learning health care
system that will require innovative bonds among
patients, clinicians, data scientists, and health care
systems” [13]. Motwani et al. [14] used machine
learning on a data set from patients (10,030

patients during a 5-year follow-up period)
undergoing coronary computed tomographic
angiography. The aim of the study was to com-
pare the results of cardiovascular outcome predic-
tion using machine learning (including automated
feature selection and an ensemble algorithm for
learning) with those of traditional prognosis,
which was limited regarding the use of clinical
and imaging findings. The results showed consid-
erable improvement in predicting all-cause mor-
tality of those patients. In another study, the
investigators studied the use of a Bayesian statis-
tical model to address the limited predictive
capacity of existing risk scores derived from
multi-variate analyses [15]. The prognostic
model showed superior prediction of acute,
early, and late right-ventricular failure after left-
ventricular (LV) assist device (LVAD) therapy
compared with the currently available risk-
prediction model. In conclusion, these models
might facilitate clinical decision making while
screening candidates for LVAD therapy. The
trade-offs between data requirements and model
utility were analyzed by Ng et al. [16] and Spertus
et al. [17], who concluded that machine-learning
techniques should be more frequently used in

Fig. 37.1 The new scenario of big data and the application of artificial intelligence and machine-learning techniques to
precision medicine. EHR electronic health record
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health care—in particular in cardiovascular risk
estimations and mortality predictions—because
they can greatly contribute to minimizing bias in
hospital performance assessments. Despite these
seminal works, and without regard to how the
promising results have been reached, the use of
big-data analytics in cardiovascular practice is
still incipient, and it remains a long way from
being a reality in daily practice.

Some areas in which impact is expected in a
few years are the fields of cardiovascular epide-
miology and cardiac imaging, among others.
Using data from EHRs will not only obtain
more accurate predictions, because it will permit
balancing primary well-known risk factors with
other secondary less-investigated ones, it also
crosses those risk factors with other illnesses,
such as cancer or cerebrovascular diseases. At
the same time, more general health models
could be obtained in this way. Machine learning
with big data will also permit the selection of
sub-populations in specific geographic areas,
thus opening a door to the design of local health
policies and adequate resource planning, which
are lacking in many countries. Image analysis
also soon will probably see changes in patient
classification, diagnosis, and visualization
because multi-modal big data are increasingly
being generated from echocardiography studies,
computerized tomography studies, magnetic res-
onance studies, and so on. Patients will be
empowered by the generalized use of mobile
devices and apps, thus allowing for extra-hospital
management of cardiac conditions, such as car-
diac insufficiency, auricular fibrillation, etc., and
helping decrease the incidence of costly patient
re-hospitalization.

Some of the difficulties encountered are data
standardization between and within hospitals; the
need to render data anonymous; and data hetero-
geneity, complexity, and disorganization, which
in turn leads to the need for preprocessing
techniques aiming at removing noise, discretizing
and filtering data, removing irrelevant variables,
and so on. In addition to technical difficulties,
some other aspects to be considered are the secu-
rity and privacy of data, which is of special
importance in a medical context.

Big Data

Managing and using big data effectively is cur-
rently challenging, but in fact the existence of data
is not new. Since ancient times, humans have tried
to save data and information, but never has it been
so easy, inexpensive, and quick to save, copy,
share, and process data. In addition, we have
evolved from saving simple scientific numbers at
the origin of computation to the possibility of
representing digitally almost anything, such as
music, travel, or even the human body, among
others. This growing digitalization process is pos-
sible thanks to the existence of myriad sensors that
register events and activities, which permits the
transformation from the physical to the digital.
Because digital entities can be easily replicated,
saved, transmitted, modified, sold, and so on,
health sectors, for example, are being transformed
into information and knowledge services.

However, sensors are not the only difference.
Until some years ago, we were happily living with
our database relational model. However, some
companies (such as Google and Yahoo) found
out that the database model limited the type and
quantity of data that could be saved and analyzed
and that this fact was contrary to their business.
Thus, they decided to confront certain problems in
a non-traditional way, which included the fact that
all data could be considered important in some
way. All data have value and saving and analyzing
large volumes of data was a key point in their new
business proposal. The problem? The value of big
data is really discovered only after analyzing large
volumes of them. Since then, analyzing big-data
analytics has become a major driver of the
economy.

As mentioned, the use of data is not new in the
field of health care, where researchers have
always been involved in collecting and analyzing
data. However, the new digitization context,
toward which we are currently moving, implies
a volume, variety, and velocity of data production
that pose new opportunities and demands in terms
of both scale and complexity. Those challenges
are the main impetus behind the development of
the National Institutes of Health Big Data to
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Knowledge initiative [18] for addressing the
opportunities and challenges presented by bio-
medical big data as well as the partnership
between the National Cancer Institute and the
United States Department of Energy to research
years of cancer data and analyze them to develop
new and more effective cancer treatments [19].

Several characteristics are required for data
sets to be considered “big data” (see Fig. 37.2).
Among the most important so-called five “Vs” of
big data [20] are volume, velocity, variety, valid-
ity/veracity, and value.

– The volume of data that must be processed by
algorithms is substantially large (on the order of
petabytes [i.e. 1015 bytes] and zettabytes [i.e.
1021 bytes] and continuously growing. Large
volumes of data demand different data-storage
and -processing tools and new characteristics of
the data-preparation and -preprocessing steps
(see section “Preprocessing methods for big
data”).

– Data might appear in some context at high
velocities, in other words, important volumes
of data manifesting in short time periods.
Being able to analyze this data in real time

might be crucial for some applications, but
this requires a specific infrastructure to man-
age data streams. There are use cases, how-
ever, in which velocity is not a problem. For
example, many more “tweets” are generated
per minute than magnetic resonance imaging
(MRI) scan images, and while reacting to a
negative tweet might be relevant for a com-
pany, a strict real-time response is rarely
required for MRI diagnostics.

– Data currently come in different types
(structured, semi-structured, and unstructured),
and formats (text, images, audio, video, XML,
etc.). This great variety increases complexity in
data-saving and analytics solutions.

– The variety of data types and formats, with
large volumes at being generated at high
velocities, constitutes the ideal situation to
raise doubts about their degree of date quality
and/or veracity or validity. Are the data cor-
rect? Are they of good-enough quality? Can I
simultaneously use data that have different
degrees of precision or temporal or spatial
scale? Are these data relevant for my problem?
Can they lead me to “actionable” information?
Data preprocessing techniques are mostly

Fig. 37.2 The five “Vs” of big data
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unavoidable because they remove noise, invalid
data, or redundant features, for example. How-
ever, these processes also pose a problem and a
challenge. Regarding the problem, on one hand
their use implies an extra effort that perhaps is
not justified if the results are not really affected;
in contrast, if the information to be obtained is
sensible, the preprocessing step should not be
avoided. Thus, depending on the application,
veracity could be mandatory or secondary.
Regarding the challenge, most preprocessing
techniques (such as discretization or feature
selection) were not designed for the use of big
data, and the data suffer when scalability is
needed.

– Validity and veracity are critical determinants
for users of big data because they affect the last
“V”: value. Value implies that the knowledge
and information derived from the data must be
useful for the company or entity. To derive that
knowledge, big-data analytics must be used,
which makes data scientists essential. Although
some aspects could be automatized, manage-
ment of the entire process (from designing the
appropriate infrastructure needed to adequately
visualize the results) is complex and requires
high-level human expertise.

Many issues require planning and careful exe-
cution for the use of big data. Among the most
important, especially in the field of health care, are
security and privacy. The privacy of those
individuals whose data are being managed is cru-
cial, and addressing issues of this type requires
deep understanding of the nature of the data, the
relevant norms and regulations, and the techniques
that should be used, such as, for example,

anonymization. A careless analysis might reveal
private information, thus opening a possibly unno-
ticed gap in privacy. Big-data security issues
should be also considered, mostly because the
types of databases that should be used do not
provide as robust a built-in security mechanism
as do traditional relational database-management
systems. Similar situations might appear in the
data-analysis phase, in which data might be
distributed among several nodes, which is a com-
mon situation. If, for example, we are trying to
derive prognostic models using patient data from
different hospitals in a region or country, the
machine-learning algorithms being used might
need to interchange or combine intermediate
results, again opening the possibility for inadver-
tent breaches of privacy. Thus, privacy preserva-
tion should be a requirement for the employed
algorithms. Because the analysis of big data is
different from traditional data analysis, a system-
atic methodology [20, 21] is needed to organize
the diverse associated activities (see Fig. 37.3), and
these must be managed by specialized data
scientists.

Data Identification

In the first step, the business case to be confronted
should be clearly identified, with an adequate moti-
vation for the analysis, together with the types of
data and the analytics needed. The projects goals
also should be established. An important outcome
of this stage is definition of the tools and other
economic or personnel resources needed.

In the data-identification stage, the sources of
data to be employed and their quantity, quality,

Fig. 37.3 Typical life cycle of big-data analytics
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and format should be established. The data sources
can be internal or external to the company. In the
latter case, a list of data providers (this includes
publicly available data sets) is needed. Finally, if
personally identifiable information requires
removal or masking, the involved requirements
for anonymization and re-identification should be
stated.

Data Collection

Data are collected from the data sources identified
in the previous step during the acquisition phase.
In addition, meta-data (such as data size, structure,
date, time of creation, etc.) is added, if needed, to
maintain the data during the rest of the methodol-
ogy phases. Persistence of the data should be
assured because fault-tolerance scenarios must be
accounted for; therefore, data should be stored in a
database.

Data Preprocessing

Preprocessing data implies several operations,
such as removing noise, filtering data to remove
some types possibly lacking value for posterior
analysis, aggregating data that might be spread
across several data sets, and removing irrelevant
and redundant features in the data to simplify the
data-analysis phase. Preprocessing is a funda-
mental step for assuring data quality and consis-
tency, and it will be described in detail in section
“Preprocessing methods for big data.”

Data Analysis

The data-analysis stage is devoted to discovering
patterns, correlations, predictions, or anomalies in
the data to give answers to the questions raised in
the first stage, thus making it possible to derive
business value from the data. Because large
volumes of data should be analyzed, specialized
software tools and applications for machine
learning and statistics are needed. The algorithms
to be employed should obviously be scalable, and

the type of architecture and tools to be employed
depend on the restrictions of the specific use case.
Stream-processing architecture produces real-
time data insights because it computes one data
element at a time. The data analysis is performed
in almost real time, and thus immediate action can
be taken in response. An example of this is acting
in response to a patient’s health status or the
experience of a hospitalized patient. Tools are
different for batch processing, which processes
large volumes of data for which a quick response
time is not critical; an example could be the
elaboration of a monthly report on some activities
of the hospital. Batch processing is more related
to the volume and variety, whereas for stream
processing velocity is most critical. Therefore,
for some applications, batch-processed data
might be outdated by the time it reaches health-
care professionals. Of course, scenarios exist in
which both types of data processing can be
employed. For example, in marketing, batch
data processing can be used to analyze the habits
of consumers from historical data sets. Then
health-care marketers can create tailored and
targeted marketing campaigns that will ideally
improve adherence and engagement from patients
by establishing which communication channels
will result in the best response rate from each
group. From there onward, streaming processes
can analyze which social media messages are
most effective for each individual and take imme-
diate action. Another example is the different use
cases that can be derived from health services
running on smartphones with sensors, which
have become extremely popular, tracking regu-
larly daily activities, such as sport, sleep, and diet
habits across sport-oriented social networks.
Because this is also an important phase,
machine-learning methods will be described in
more detail in section “Supervised and unsuper-
vised machine-learning methods.”

Data Visualization

Finally, data visualization consists of a presenta-
tion of the output (from the previous phase) in a
format that allows business users to understand
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the results obtained and thus be able to make
decisions based on them. This might comprise
tables, graphs, information “blocks,” and so on.

Choosing the appropriate infrastructure is cru-
cial in big-data projects because companies build
their competence around it. The selected infra-
structure strongly affects big-data architecture for
new products and services. Having the appropriate
tools for storing, processing, and analyzing data is
key. Among the most well-known tools are
big-data databases (e.g., MongoDB, HBase, or
Apache Cassandra); tools for transferring and
aggregating data (e.g., Flume or Lucene);
frameworks (e.g., Apache Hadoop [http://hadoop.
apache.org/], Apache Spark [http://spark.apache.
org/], or Apache Flink [https://flink.apache.org/])
with their corresponding machine-learning
libraries (e.g., Mahout, MlLib, and Flink ML) or
Spark components for graph analytics (e.g.,
GraphX and GraphFrames).

Preprocessing Methods for Big Data

As mentioned in the previous section, the advent
of big data has brought an important number of
challenges to the scientific community, which now
must deal with unprecedented volumes in data and
try to extract useful information from them. We
continue to store data of all kinds, and usually a
preprocessing step is necessary before applying an
adequate machine-learning method (see section
“Supervised and unsupervised machine-learning
methods”). In fact, a typical scenario in health
data is to be able to classify a patient as presenting
with a particular condition or not (e.g., the risk of
not catching a patient presenting with heart fail-
ure). From a machine-learning perspective, this is a
classification task in which a learner or classifier
must learn the characteristics of the data
(i.e. variables about a given patient, such as age,
sex, and the results of medical tests) and then
provide a prediction. However, in many cases
these variables are of different natures because
attributes such as sex are discrete; other attributes,
such as weight, have continuous values. Some
classifiers can only deal with discrete data, so

there exists an important preprocessing technique
called “discretization.”

Another problem typically encountered by
machine-learning researchers facing medical
data are that it is likely that some variables are
not relevant for the prediction task. For example,
sex can be an important factor for determining the
risk of presenting with heart failure but
completely irrelevant for other conditions. To
solve this problem, feature selection is usually
applied as a preprocessing step to remove those
unimportant variables from the task at hand. In
this section we will focus on two popular
preprocessing techniques: discretization and fea-
ture selection.

Discretization

Discretization is a preprocessing technique that
consists of transforming the continuous variables
of a data set into discrete variables. By applying
this technique, quantitative data are transformed
into qualitative data, thus procuring a nonoverlap-
ping division of a continuous domain.
Discretization also can be considered as a data-
reduction mechanism because it reduces data
from a large domain of numeric values to a subset
of discrete values [22].

In some cases, discretization is a mandatory
step because some machine-learning algorithms
used afterward are not able to handle continuous
variables. For instance, this is the case with the
popular classifier Naïve Bayes [23] and also with
feature-selection methods, such as the informa-
tion gain filter [24]. Apart from this, discretization
can have a beneficial impact on the performance
of learning algorithms, for example, in terms of
speed (especially important in the context of big
data and real-time learning) and accuracy. The
basic discretization process is formed by four
steps, which are detailed here and also can be
seen in Fig. 37.4.

Step 1: Sort the continuous values for an attribute
(either in ascending or descending order). It is
crucial to choose an efficient sorting algorithm
to perform this step.
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Step 2: After sorting, select the best cut point of
the best pair of adjacent intervals in the attri-
bute range to split or merge them in the next
step. It is necessary to define an evaluation
measure of function, which can be correlation,
gain, improvement in performance, or any
other benefit according to the class label.

Step 3: Split or merge intervals according to the
operation method of each discretization algo-
rithm. To split, the possible cut points are the
different continuous values in each attribute. To
merge, the discretization algorithm tries to find
the best adjacent intervals in each iteration.

Step 4: Stop according to some criterion or other-
wise return to step 2. Usually a trade-off
between a low number of intervals, good com-
prehension, and consistency is assumed.

A broad suite of discretization algorithms can
be found in the literature, and the selection of one
or another depends on the type of the data. For a
complete taxonomy about discretization methods,
see Ramírez et al. [22]. In the following text,
some of the most popular methods will be
described (including those in the popular Weka
tool [25]).

• Equal width: This simple unsupervised
discretization algorithm calculates the range
of the variable and then divides it into equal
parts. The resulting intervals will generally be

unbalanced, with many items ending in a few
of them and some much less populated. The
split/merge step is disregarded in this simple
method.

• Equal frequency: This algorithm obtains
intervals that contain a constant number of
items. The basic version of this method aims
to obtain a fixed number of intervals, although
this is suboptimal for some classification
algorithms. Therefore, a variation called Pro-
portional k-Interval Discretization (PKID) [26]
can be used instead. This algorithm adjusts the
number of intervals according to the number of
samples.

• Minimum Descriptive Length (MDL): This
popular method uses information-entropy
minimization as a heuristic to calculate the
most suitable cut points [27].

In a big-data scenario, the problem is that
classical data-reduction methods were not
designed to handle such a large amount of data,
which makes their use difficult or even impossi-
ble in some cases. To solve this issue, in the past
few years new implementations of the most pop-
ular methods have appeared that take advantage
of distributed computational frameworks. For
example, a distributed implementation of PKID
is available in Spark MlLib. Moreover, a
distributed implementation of MDL is available
for Apache Spark [28], which leverages a

Fig. 37.4 Discretization process
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computer cluster to speed up the sorting and cut
point–evaluation steps involved in this method,
thus enabling it to deal with large data sets.

Feature Selection

Analogous to the term “big data,” the term “big
dimensionality” has been coined to refer to the
unprecedented number of features arriving at
levels that render existing machine-learning
methods inadequate [29]. Thus, dimensionality-
reduction techniques, such as feature selection,
have become almost essential. Feature selection
is the process of selecting relevant variables
(features), by removing the irrelevant and/or
redundant ones, with the aim of obtaining better
and simpler models. Because the process does not
transform the original features (unlike feature-
extraction methods), it obtains models that might
be easier to interpret for researchers or medical
practitioners. Moreover, it presents other benefits,
such as enhancing generalization by decreasing
overfitting and the confers the requirement of

shorter training times (a crucial point in real-time
application).

Typically, feature-selection methods are clas-
sified into filters, wrappers, and embedded
methods based on their relationship with the
learning algorithm (see Fig. 37.5). The simplest
model is the filter, which relies on the general
characteristics of training data and performing
the feature-selection process as a preprocessing
step with independence of the induction algo-
rithm. Wrappers involve a learning algorithm as
a black box, and they use their prediction perfor-
mance to assess the relative usefulness of subsets
of variables. Finally, embedded methods perform
feature selection in the process of training and are
usually specific to given learning machines. They
learn which features best contribute to the accu-
racy of the model while the model is being cre-
ated. Because of this interaction with the learning
algorithm, wrappers and embedded methods tend
to give more accurate subsets of features, but they
are usually specific for a particular classifier and
are computationally expensive (especially
wrappers). In contrast, filters are advantageous

Fig. 37.5 Feature-selection approaches
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for their low computational cost and good gener-
alization abilities [30]. Each of the three
approaches is extensively used, although the filter
model is more adequate for big-data settings.

Considering that several algorithms exist for
each one of the previously commented approaches,
there is a vast body of feature-selection methods.
We describe some of the most popular ones here:

• Correlation-based feature selection: This is a
simple multi-variate filter algorithm that ranks
feature subsets according to a correlation-
based heuristic-evaluation function [31]. The
bias of the evaluation function is toward
subsets that contain features that are highly
correlated with the class and not correlated
with each other. Irrelevant features should be
ignored because they will have low correlation
with the class. Redundant features should be
screened out because they will be highly
correlated with one or more of the remaining
features. The acceptance of a feature will
depend on the extent to which it predicts clas-
ses in areas of the instance space not already
predicted by other features.

• Consistency-based: This filter [32] evaluates
the worth of a subset of features by the level
of consistency in the class values when the
training instances are projected onto the subset
of attributes.

• Information gain: This filter [12] provides an
ordered ranking of all features, and then a
threshold is required.

• ReliefF: This filter [33] is an extension of the
original Relief algorithm. The original Relief
works by randomly sampling an instance from
the data and then locating its nearest neighbor
from the same class and from the opposite
class. The values of the attributes of the nearest
neighbors are compared with the sampled
instance and used to update relevance scores
for each attribute. The rationale is that a useful
attribute should differentiate between
instances from different classes and have the
same value for instances from the same class.
ReliefF adds the ability of dealing with multi-
class problems and is also more robust and
capable of dealing with incomplete and noisy

data. ReliefF is applicable in all situations; it
has low bias; it includes interaction among
features; and it may capture local
dependencies missed by other methods.

• Minimum redundancy maximum relevance:
This filter [34] selects features that have the
greatest relevance with the target class and that
are also minimally redundant. In other words,”
it selects features that are maximally dissimilar
to each other. Both optimization criteria (max-
imum relevance and minimum redundancy)
are based on mutual information.

• Recursive Feature Elimination for SVMs: This
embedded method [35] performs feature selec-
tion by iteratively training an SVM classifier
with the current set of features and removing
the least important feature indicated by
the SVM.

Although feature selection is almost manda-
tory for machine-learning algorithms to be able to
manage large dimensional data sets, most avail-
able methods were not developed considering this
scenario, and their computational costs prevent
their use in big-data settings. Recently, some
approaches—such as employing graphical
processing units (to implement faster versions
[36] of well-known algorithms) or parallelization
using MapReduce, Hadoop, or Apache Spark—
have been developed to solve this problem.

Supervised and Unsupervised
Machine-Learning Methods

As mentioned in the Introduction section, digiti-
zation seems to be an unstoppable process in the
fields of medicine and health, among others. For
the analysis of these ever-increasing amounts of
data, thus being able to derive information and
knowledge from them, it is unavoidable to use
automated methods, which should be scalable to
keep pace with the crescent input loads. Machine
learning [37] is a sub-discipline of the field of AI
that consists of a set of methods and algorithms
that can learn from data and devise models for
different processes, such as pattern recognition or
prediction, for example. However, machine
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learning [38–41] is not a new field: It appeared
due to the early interest of AI researchers in
determining if computers could learn directly
from data without being programmed to perform
specific tasks. However, due to the appearance of
big data, machine learning is currently a hot
buzzword, and an area of very active research,
which—together with other factors— have
brought a “new spring to the step” of the field of
AI. Although many machine-learning algorithms
have been around for several years, the ability to
automatically apply complex mathematical
calculations to large quantities of data in compet-
itive time is a recent development. Machine-
learning algorithms learn a function f: X!Y.
This function belongs to a certain “family” [42]
and maps the input domain of data X to a certain
output domain Y (a prediction, for example). The
five main types of problems machine learning can
solve [43] include:

1. Classification, where the algorithm must
assign unseen inputs to a series of predefined
classes

2. Regression, where the focus is predicting a
continuous output

3. Clustering, where inputs must be labeled into
unknown groups (unlike classification)

4. Density estimation, where the goal is finding
the distribution of a set of inputs

5. Dimensionality reduction, where inputs are
simplified by mapping them to lower dimen-
sional spaces

These tasks can also be classified according to
the nature of the available learning data, which is
provided in the form of examples (xi, yi) € X
Y. In this case, three basic forms of learning can
be distinguished:

• Supervised learning, where a set of known
patterns are used for training, that is, the train-
ing data set is labeled, and thus yi is the
corresponding ground truth for xi, and the
aim of the process is to classify data based on
that a priori knowledge. This previous knowl-
edge of the data set’s instance classes (i.e. the
value to be predicted) is used to learn

predictive models from the data set of
examples in order to classify unseen instances.
One important aspect of supervised classifica-
tion is the evaluation of algorithms by means
of an evaluation function, which usually
quantifies the generalization ability of the clas-
sifier. That is, the goal is to minimize the error
or loss function, fˆ ¼ Y � Y!R, which
quantifies the difference between the predicted
output and the real ground-truth label for that
sample. In real-world problems, the true clas-
sification error is unknown, and thus so is its
underlying probability distribution. Therefore,
it must be estimated from the data. Because the
loss cannot be minimized directly on the test
instances and their labels, because typically
these are not available at training times,
supervised algorithms aim to construct
functions that generalize well to previously
unseen data, not to those that perform opti-
mally on the given training data set (thus
overfitting the data). In training and evaluating
the devised model, two sources of data are
employed. The parameters of the model are
set based on the train data only, and if the
test data are generated from the same underly-
ing process that has generated the training
data, an unbiased estimate of the generaliza-
tion performance can be obtained by measur-
ing the test-data performance of the trained
model. It is important to recall that the test
performance should not be used to adjust the
model parameters because in this case the
measure of performance will lose its indepen-
dence. In particular, the mean squared error
(MSE) is the measure typically employed for
evaluating estimations made by the
algorithms. The MSE is the second-order
moment of the error, and therefore it
incorporates both the variance and the bias of
the estimator. The most common supervised
learning tasks are classification and regression.

As an example, we show the results of classi-
fication for the data set Heart Disease (Cleveland)
from the University of California-Irvine learning
repository (http://archive.ics.uci.edu/ml/). We
used the well-known platform Weka [25] to
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apply the selected algorithms. The Heart Disease
data set has 13 attributes and 5 different classes as
output (with 160, 35, 54, 35, and 13 samples
respectively), with a total of 297 samples, because
6 of the 303 total have missing data and thus were
eliminated from this study (see Fig. 37.6).

Several different classification algorithms can
be used, and they show the results employing the
RF classifier [44] because it is one of the state-of-
the-art and more accurate classifiers. For this data
set, the number of data available is not large, and
thus if we must divide the data set into training
(usually 80%) and test (20%) of the data, the
estimation of the true error will be not very accu-
rate. In these cases, a cross-validation procedure
is often used. Cross-validation consists of making
k partitions (folds) of the data, using k-1 for
training and the remaining one for testing, and
repeating the procedure k times until all folds
have been used for testing the model. Thus, we
are evaluating k models, and by averaging the
results we have an idea of the variance of the
learning algorithm with the variations in the train-
ing data and thus can obtain a more real approach
to the error of the model. Cross-validation is
conventionally applied with k ¼ 10, although if
the number of samples in each fold is low (usually
< 30 [because this allows for approximating the
binomial distribution of the number of correctly
classified samples in a fold by normal distribu-
tion]), other k are used (most commonly k ¼ 5).
An extreme value is k ¼ n, in which all samples
except one are used to train, and that one is also
used to test. This method is called “leaving-one-
out” [17]. Using 10-fold cross-validation, the

results obtained are 57.6% accurate; the confu-
sion matrix is listed in Table 37.1.

If the data set is converted to a binary one, then
only the class absence of heart disease (class
1, 160 samples) and the presence of heart disease
(classes 2 through 5 with 137 samples total) are
taken into account; the accuracy increases to
83.5% using the same classifier and with the
contingency table listed in Table 37.2.

Thus, it can be seen that multi-class classifica-
tion is a more difficult problem for the algorithm
because the number of samples available is not
enough for a good generalization. Another prob-
lem mentioned, one that is quite common in med-
ical data bases, is the existence of missing values
that should be treated accordingly [45, 45]. In our

100

35

54

35

13

Fig. 37.6 Distribution of
classes in the heart disease
(Cleveland) data set

Table 37.1 Results obtained after applying the RF clas-
sifier to the multi-class data set Heart Disease (Cleveland)

Class 1 Class 2 Class 3 Class 4 Class 5

Class 1 149 2 7 2 0

Class 2 10 12 6 7 0

Class 3 33 8 2 11 0

Class 4 6 11 11 6 1

Class 5 4 2 1 4 2

Table 37.2 Results obtained after applying the RF clas-
sifier to the binary version of the data set Heart Disease
(Cleveland)

Class 0
(no heart disease)

Class 1
(heart disease)

Class 0 137 23

Class 1 26 111
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case, because the missing data are only present in
three samples, we opted for the simplest opera-
tion, that is, elimination. Another common prob-
lem in medical data sets [37] are incorrectness
(the presence of noise, probably due to sensor
errors), inexactness (the presence of redundant
data, which can imply the need of more complex
models that in fact would not be necessary), and
sparseness (sometimes there might be few records
available for certain studies).

• Unsupervised learning, in which the training
data set is unlabeled {xi} and the aim is to
unravel the underlying similarities, obtains a
plausible compact description of the data. An
objective is used to quantify the accuracy of
the description. In the case of unsupervised
learning, the aim is to model the distribution
p(x). The likelihood of the model to generate
the data is a popular measure of the accuracy
of the description.

The most common unsupervised learning task
is clustering, in which the aim is the construction
of a function (f), which partitions the training
data set into k clusters. Several algorithms can
be applied for clustering, but typically they work
by assessing the similarity between instances by
assigning similar samples to the same cluster and
dissimilar ones to different cluster. Using a
simple and well-known cluster algorithm,
k-means, with the binary Heart Disease
(Cleveland) data set and not supplying the infor-
mation related to the class (because it is assumed
that the data set is unlabeled in this case), the error
of the algorithm is 20.2%; the results are listed in
Table 37.3.

Other unsupervised tasks also exist—such as
association rules (which build rules associating

items that occur together with a certain
frequency, discover patterns in the data, or can
alternatively use correlation between real-valued
variables—that are popular in machine learning.
Then, to end we can say that machine learning is
the task of building a model from data that
generalizes a decision against a performance
measure.

Most times, learning pipelines must include
some kind of preprocessing operations, for exam-
ple, noise must be eliminated, data discretized,
and so on. Feature selection is also an important
operation to consider because it can help with the
generalization of machine-learning algorithms,
thus improving their performance and perhaps
the interpretability of the obtained results (see
Fig. 37.7).

A Case Study

In this section we present a case study in which
we applied machine-learning methods to classify
HF subtypes based on the work by Alonso-
Betanzos et al. [10]. HF is a relatively common
cardiac syndrome known for its severe sequelae,
including death. The diagnosis is often only evi-
dent from the combination of symptoms (e.g.,
fatigue, dyspnea, etc.) and signs (e.g., ankle
edema), plus clinical investigations—including
the determination of LV size and chamber filling
pressure—and information derived from specific
biomarkers.

HF is manifested in at least two subtypes. The
current paradigm distinguishes them by using
metric EF and constraint for end-diastolic vol-
ume. Approximately half of all HF patients,
often including women and elderly, exhibit
HFpEF. Thus, as life expectancies continue to
increase in western societies, the prevalence of
HFpEF will continue to grow. However, com-
pared with “classical” HF with decreased ejection
fraction (HFrEF), only a limited spectrum of
treatment modalities seems to be effective for
improving the morbidity and mortality rates in
patients with HFpEF.

Traditionally, EF has been widely applied to
assess the severity of cardiac problems. In the

Table 37.3 Results of the k-means algorithm for cluster-
ing the Heart Disease (Cleveland) data set (binary)

Class 0
(no heart disease)

Class 1
(heart disease)

Class 0 126 34

Class 1 26 111
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particular case of HF, EF is one of the many
indicators to characterize the various aspects of
the syndrome [47]. Typically, a low EF value
corresponds with serious cardiac problems and a
poor prognosis. Calculation of EF is performed
by taking the ratio of two LV volume
determinations during a cardiac cycle, namely,
at the completion of filling and again at maximal
contraction. Advised cut-off levels to distinguish
HFrEF from HFpEF are clearly formulated, but
they vary between 40% and 50%, which defines a
linear divider. In addition, some studies opt for
eliminating HF patients from consideration if
40 < EF < 50% (“gray zone” [currently often
referred to as the “mid-range” phenotype]).
Thus, there is a need to develop documented
classification guidelines, solve gray-zone

ambiguity, and formulate crisp delineation of the
transition between phenotypes.

Subgroups of HF patients are located in at least
two distinct regions on the basis of their
end-systolic volume index and end-diastolic vol-
ume index; therefore, they are uniquely located
within the LV-volume domain. In this case study,
we present the application of machine-learning
techniques to explore a more rational foundation
for classifying two phenotypes of HF.

In summary, this case study addresses several
relevant issues regarding the classification of HF
patients: How can machine-learning models assist
clinicians in the classification of major HF
subtypes, the consequences of varying the
cut-off values, and describe implications for bor-
derline patients (in the gray zone).

Fig. 37.7 Example of feature-selection and -classifica-
tion process on the Heart Disease (Cleveland) data set.
At the bottom, we can see a part of the C4.5 decision tree
built for predicting class 3 (presence of heart disease). The
variables used are Thal (Thalassemia), ca 8 (number of

major vessels colored by fluoroscopy), exang (Exercise-
Induced Angina), slope (Slope of the Peak Exercise ST
Segment), cp (Chest Pain Type), and thalach (Maximum
Heart Rate Achieved)
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Results for Applying Machine-Learning
Techniques

The first set of experiments performed consisted
of using unsupervised ML methods for the fol-
lowing three data sets (for more details, check
Alonso-Betanzos et al. [10]):

• Data set 1: Data from real patients, a total of
48 instances where 35 belong to class HFpEF
and 13 to class HFrEF.

• Data set 2: Data simulated with Monte Carlo, a
total of 63 instances where 34 belong to class
HFpEF and 29 to class HFrEF.

• Data set 3: Monte Carlo data generated as
testing data, a total of 403 instances where
150 refer to class HFpEF; 137 belong to class
HFrEF; and a third group (n ¼ 116) still
requires classification because on the basis of
current guidelines they belong to neither
HFpEF nor HFrEF. The third group is specifi-
cally introduced to challenge the universal
validity of the current EF–EDVI paradigm,
which favors a linear separator based on a
fixed EF value.

Because we are using unsupervised algorithms,
we focused on clustering, which consists of
grouping a set of data in such a way that those
belonging to the same group (called a “cluster”)
are more similar (in one sense or another [which is
defined by the type of algorithm and its
parameters]) to each other than to those in other
clusters. To perform an unsupervised separation
of the two major phenotypes of HF patients, we
evaluated several different clustering algorithms,
using different approaches all implemented in the
Weka software tool [25]: K-means, Expectation
Minimization (EM), and Sequential Information
Bottleneck (sIB). As can be seen in Fig. 37.8, for
Data sets 1 and 2 (real patients and simulated
Monte Carlo, including only the two major types
of patient subgroups), only the sIB algorithm tried
to separate the samples using a similar approach as
the current clinical guidelines. However, it can
also be seen that the patients reclassified in an

alternative manner (see squares in Fig. 37.8) and
are all located within a region, which in some
other studies is neglected and referred to as the
“gray zone.”

Then, we performed a supervised automatic
classification of both major HF types using
SVM PEGASOS, which implements a sequential
minimal-optimization algorithm for training an
SVM, also available in Weka [25]. The set of
experiments carried out included different
cut-off points (EF at 40%, 45%, 50%, and 55%)
in the training data set (Data Set 1) to evaluate the
consequences of adopting different criteria for
defining major HF phenotypes and the ability of
machine-learning methods to correctly classify
the patients in each case. A summary of the
results is listed in Table 37.4; more details can
be found in Alonso-Betanzos et al. [10].

As can be seen, the results obtained after
classifying the data with an SVM are quite satis-
factory, with true-positive rates >0.90 in most of
the cases. Moreover, we performed experiments
to see how a machine-learning method would
classify those patients belonging to the gray
zone (i.e. the area where 40 < EF < 50%), which
is not yet classified.

In Figs. 37.9 and 37.10, we see an example for
cut-off 45%; the complete results can be checked
in Alonso-Betanzos et al. [10]. In general, we can
see that that the third group can largely be classi-
fied as HFpEF (although it varies when changing
the cut-off). Interestingly, the separation does not
follow the linear division as prescribed by the
concept referring to a constant EF value for the
cut-off. As seen, the points that are labeled differ-
ently seem to be located on the border between
the main classes.

We can thus conclude that machine-learning
models offer promise for making a computer-
assisted distinction between the two major
phenotypes of HF patients on the basis of
ventricular-volume analysis. Moreover, selected
machine-learning tools may assist during the clas-
sification of individual patients having
measurements located in the (clinically often
neglected) gray zone where 40 < EF < 50%.
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Table 37.4 Results obtained after applying the RF classifier to the binary version of the data set Heart Disease
(Cleveland)

EF CUT-OFF 40% 45% 50% 55%

TPR (HFpEF) 1 (169) 0.91 (161) 0.98 (147) 0.99 (136)

TPR (HFrEF) 0.87 (82) 0.96 (104) 0.97 (133) 0.98 (164)

TPR true-positive rate
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4.69

32.281 133.5625

EDVI
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170.478
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Fig. 37.8 Results of clustering analysis. Squares repre-
sent instances that are incorrectly assigned to a cluster. EM
expectation minimization, sIB sequential-information

bottleneck. (Image reprinted with permission from
Alonso-Betanzos et al. [10])
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Future Directions

The need to apply machine-learning methods to
the field of medicine has increased dramatically in
recent years to face challenges brought by the
advent of big data, for which it is necessary to
cope with an unprecedented large number of
features and samples. The increasingly decreased

cost of storage technology has enabled us to store
all kind of information about patients, with the
aim of extracting useful and valuable information.
However, these data are messy when they come
out of the electronic health record of a patient and,
even when they were collected from a study, the
data might be of very different natures, which
complicates the task of developing machine-
learning algorithms.

Fig. 37.9 Real labels for
the test set (n ¼ 403
[including the third group,
which is newly assigned to
either of the existing
phenotypes]) for the 45%
cut-off of the patient data as
a training set (image
reprinted with permission
from Alonso-Betanzos et al.
[10])

Fig. 37.10 Enlarged
picture of the third group of
data labels showing in
detail that the algorithm
applies a nonlinear division
rather than a straight EF line
(image reprinted with
permission from Alonso-
Betanzos et al. [10])
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Several research lines are open in this area.
First is the problem of data distribution and data
privacy. In some cases, information about
patients is distributed across geographical and
organizational boundaries (i.e. different
hospitals), and it is not legal or affordable to
gather it in a single location. In this case, it is
necessary to develop distributed approaches for
existing machine-learning methods that preserve
privacy. It can be the case of a vertical distribu-
tion (each party has partial information about all
the patients) or a horizontal distribution (each
party involved in data sharing has information
about all the variables but for different sets of
patients). Although some approaches already
exist that try to deal with this issue, there is still
room for more works solving a problem that is
especially important in the medical field. Another
open question is the necessity of real-time
processing in computer-assisted methods for the
analysis of medical data. If a practitioner must
wait a long time to obtain a recommendation
from a computerized system, it is likely that he
or she will stop using it. To avoid this, it is crucial
to process and analyze data in real time, which
can be performed either by accelerating the
processing of the data (with feature selection or
discretization methods) or by using online
approaches (which are still relatively scarce in
the literature). Anonymization, a process in
which data sets are purged of personally
identifying information, is another important
challenge that has constituted an open research
question for years. Although some recent
attempts have been made to be able to use well-
known privacy models, such as k-anonymity, in
big data [48] and others, such as ε-differential
privacy [49], there is still a long way to go
because there are in fact very sophisticated
methods [50] that can work backwards and
re-identify individuals. Finally, another challenge
is the visualization and interpretation of results. In
recent years, several dimensionality-reduction
techniques have been developed, aiming at a bet-
ter visualization of the data. However, some of
them have the limitation that the features being
visualized are transformations of the original
features, which greatly complicates the task of
interpretation usually required by practitioners.

In conclusion, machine-learning models are
much needed to help in clinical medicine. How-
ever, this enthusiasm does not generally match the
level of actual activity in the field. It is very well to
have machine-learning algorithms that are good at
predicting and may help in clinical routine, but it is
more complicated to employ them in the real
world. We must make sure that they can be applied
in a safe, responsible, and ethical way and—most
of all—that people would accept being diagnosed
by a machine rather than a person.
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