
Chapter 8
Four-Wheel Autonomous Ground
Vehicles

Abstract In the recent years there has been significant effort in the design of intel-
ligent autonomous vehicles capable of operating in variable conditions. The precise
modeling of the vehicles dynamics improves the efficiency of vehicles controllers
in adverse cases, for example in high velocity, when performing abrupt maneuvers,
under mass and loads changes or when moving on rough terrain. Using model-based
control approaches it is possible to design a nonlinear controller that maintains the
vehicle’smotion characteristics according to given specifications.When the vehicle’s
dynamics is subject to modeling uncertainties or when there are unknown forces and
torques exerted on the vehicle it is important to be in position to estimate in real-time
disturbances and unknown dynamics so as to compensate for them. In this direction,
estimation for the unknown dynamics of the vehicle and state estimation-based con-
trol schemes have been developed. Feedback control of robotic ground vehicles can
be primarily based on (i) global linearization approaches, (ii) approximate lineariza-
tion approaches and (iii) Lyapunov methods. The control is applied to (i) 4-wheel
vehiclesmodels, and (ii) articulated vehicles. At a second stage, to implement control
under model uncertainty, estimation methods can be employed capable of identify-
ing in real-time the vehicles’ dynamics. The outcome of the estimation procedure
can be used by the aforementioned feedback controllers thus implementing indi-
rect adaptive control schemes. Finally to implement control of the ground vehicles
through the measurement of a small number of its state variables, elaborated non-
linear filtering approaches are developed. The topics treated by the chapter are: (a)
Nonlinear optimal control of four-wheel autonomous ground vehicles (b) Nonlinear
optimal control for an autonomous truck and trailer system (c) Nonlinear optimal
control of four-wheel steering autonomous vehicles and (d) Flatness-based control
of autonomous four-wheel ground vehicles.

8.1 Chapter Overview

The topics treated by the chapter are: (a) Nonlinear optimal control of four-wheel
autonomous ground vehicles (b) Nonlinear optimal control for an autonomous truck
and trailer system (c) Nonlinear optimal control of four-wheel steering autonomous
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vehicles and (d) Flatness-based control of autonomous four-wheel ground vehicles.
With reference to (a) the chapter proposes a new nonlinear optimal control method

for solving the problem of path following for four-wheel non-holonomic Automatic
Grounded Vehicles (AGVs). The dynamic model of the four-wheel AGVs undergoes
first approximate linearization around a temporary operating point that is updated at
each iteration of the control algorithm. The linearization takes place through first-
order Taylor series expansion and through the computation of the Jacobian matrices
of the state-space description of the vehicle. For the approximately linearized model
of the four-wheel vehicle an H-infinity feedback controller is computed. Actually,
the H-infinity controller stands for the solution of the optimal control problem for
the vehicle’s kinematics under model uncertainty and external perturbations. For the
computation of the feedback gain of the H-infinity controller an algebraic Riccati
equation is solved at each time-step of the control method.

With reference to (b) a nonlinear optimal control method is developed, this time
for an autonomous truck and trailer system. The dynamic model of the autonomous
vehicle undergoes linearization through Taylor series expansion. Adhering to the
previously analyzed procedure, the linearization is computed at a temporary equilib-
rium that is defined at each time instant by the present value of the state vector and
the last value of the control inputs vector. The linearization is based on the compu-
tation of Jacobian matrices. The modelling error due to approximate linearization is
considered to be a perturbation that is compensated by the robustness of the control
scheme. For the approximately linearized model of the truck and trailer autonomous
vehicle an H-infinity feedback controller is designed. This requires again the solution
of an algebraic Riccati equation at each iteration of the control algorithm.

With reference to (c) the chapter introduces a nonlinear optimal control method
for feedback control of autonomous four-wheel steering (4WS) robotic vehicles.
Comparing to two-wheel steering vehicles, four-wheel steering vehicles can exhibit
improved maneuverability. The joint kinematic and dynamic model of such vehicles
undergoes approximate linearization around a temporary operating point (equilib-
rium) which is updated at each iteration of the control method. This operating point
comprises the present value of the vehicle’s state vector and the last value of the
control inputs vector exerted on it. As in previous applications of nonlinear opti-
mal control, the linearization is performed using Taylor series expansion and the
computation of the Jacobian matrices of the system’s state-space description. For
the approximately linearized model of the 4WS vehicle an optimal (H-infinity) feed-
back controller is designed. The controller’s feedback gain requires the solution of an
algebraic Riccati equation again at each time step of the control method. The concept
of the control scheme is that at each time instant the state vector of the 4WS vehi-
cle is made to converge to the temporary equilibrium, while the equilibrium is also
shifted towards the reference setpoints. Thus asymptotically, the state vector of the
4WS vehicle reaches the targeted reference paths. For all cases (a) to (c) asymptotic
stability of the control methods is proven through Lyapunov analysis.

With reference to (d) controller design for autonomous 4-wheel ground vehicles
is performed with differential flatness theory. Using a 3-DOF nonlinear model of
the vehicle’s dynamics and through the application of differential flatness theory an
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equivalent model in linear canonical (Brunovksy) form is obtained. For the latter
model a state feedback controller is developed that enables accurate tracking of
velocity setpoints. Moreover, it is shown that with the use of Kalman Filtering it
is possible to dynamically estimate the disturbances due to unknown forces and
torques exerted on the vehicle. The processing of velocity measurements (provided
by a small number of on-board sensors) through a Kalman Filter which has been
redesigned in the form of a disturbance observer results in accurate identification
of external disturbances affecting the vehicle’s dynamic model. By including in the
vehicle’s controller an additional term that compensates for the estimated disturbance
forces, the desirable characteristics of the vehicle’s motion are achieved. The global
asymptotic stability for the AGV control scheme is assured.

8.2 Nonlinear Optimal Control of Four-Wheel Autonomous
Ground Vehicles

8.2.1 Outline

Intelligent four-wheel autonomous vehicles are characterized by the capability to
track precisely reference paths and to perform in a dexterous and accurate man-
ner all designated maneuvers [40, 68–70, 392, 523]. The present section proposes
a new nonlinear optimal (H-infinity) control method for the kinematic-dynamic
model of a four-wheel autonomous vehicle. The considered model describes pre-
cisely the motion of four-wheel autonomous vehicles which receive as control inputs
the engine’s torque and the heading angle provided by the steering wheel, while also
taking into account longitudinal and lateral forces exerted on the vehicle’s front and
rear wheels, as well as torques that result in a change of the vehicle’s orientation [26,
72, 228, 622]. To accomplish precision in path following by autonomous vehicles
several control approaches have been developed so far. One can primarily distinguish
global linearization-based control schemes, requiring a change of state variables for
the vehicle’s model [317, 319, 332, 333, 419, 571]. Moreover, optimization-based
control approaches have been a topic of significant research in autonomous four-
wheel vehicles technology [66, 123, 284, 616, 641].

The present section’s approach to the solution of the path tracking control problem
for autonomous four-wheel land vehicles is based on a nonlinear optimal control
concept and on the H-infinity control theory. To implement the considered control
method the joint kinematic and dynamic model of the four-wheel vehicle undergoes
first approximate linearization around a temporary operating point (equilibrium)
which is updated at each iteration of the control method. The temporary equilibrium
is defined by the present value of the vehicle’s state vector and by the last value
of the control inputs vector that was exerted on it [461, 466]. The linearization
relies on first-order Taylor series expansion and on the computation of the Jacobian
matrices of the vehicle’s state-space description [33, 431, 463]. The modelling error
which is due to the approximate linearization is considered to be a disturbance term
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which is finally compensated by the robustness of the control algorithm. For the
approximately linearized model of the four-wheel vehicle an H-infinity (optimal)
feedback controller is designed.

The H-infinity feedback controller is the solution to the optimal control prob-
lem for the four-wheel vehicle, under model uncertainty and external perturbations
[450, 457, 460]. It actually represents the solution to a min-max differential game in
which the controller tries to minimize a cost function comprising a quadratic term of
the state vector’s tracking error, while at the same time the disturbances and model
uncertainty terms try to maximize this cost function. The computation of the con-
troller’s feedback gain requires the solution of an algebraic Riccati equation taking
place at each time step of the control method. The stability properties of the control
scheme are analyzed with the use of the Lyapunov method. First, it is proven that the
control loop satisfies the H-infinity tracking performance criterion which signifies
elevated robustness against model uncertainty and external perturbations [305, 564].
Moreover, undermoderate conditions it is proven that the control loop is also globally
asymptotically stable. Finally, to implement state estimation-based control through
the feedback of a small number of sensor measurements the H-infinity Kalman Filter
is proposed as a robust state estimator [169, 511].

8.2.2 Dynamic and Kinematic Model of the Vehicle

8.2.2.1 Definition of Parameters in 4-Wheel Vehicle Dynamic Model

The dynamic model of the four-wheel vehicle has been analyzed in [332, 333,
457, 616]. With reference to Figs. 8.1 and 8.2 (where the lateral forces applied on
the wheels are considered to define the vehicle’s motion) one has the following
parameters: β is the angle between the velocity and the vehicle’s transversal angle,
V is the velocity vector of the vehicle, ψ is the yaw angle (rotation round the z axis),
fx : is the aggregate force along the x axis, fy is the aggregate force along the y axis,
Tz is the aggregate torque round the z axis and δ is the steering angle of the front
wheels.

The motion of the vehicle is described by the following set of equations:

1. Longitudinal motion

− mV (β̇ + ψ̇)sin(β) + mV̇ cos(β) = fx (8.1)

2. Lateral motion
mV (β̇ + ψ̇)cos(β) + mV̇ sin(β) = fy (8.2)

3. yaw turn
I ψ̈ = Tz (8.3)
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The above described dynamics of the four-wheel vehicle can be alsowritten inmatrix
form ⎛

⎝
−sin(β) cos(β) 0
cos(β) sin(β) 0

0 0 1

⎞
⎠

⎛
⎝
mV (β̇ + ψ̇)

mV̇
I ψ̈

⎞
⎠ =

⎛
⎝

fx
fy
Tz

⎞
⎠ (8.4)

Finally a matrix relation is provided about the transformation of forces on a tire into
forces and torques along the vehicle’s axes:

⎛
⎝

fx
fy
Tz

⎞
⎠ =

⎛
⎝

−sin(δ) 0
cos(δ) 1
L1cos(δ) −L2

⎞
⎠

(
Ff

Fr

)
(8.5)

8.2.2.2 Vehicle Dynamic Model with Longitudinal and Lateral Forces

The previous model of Fig. 8.1 is rexamined considering that β̇ = 0 and that ψ is
the yaw angle formed between the vehicle’s longitudinal axis and the horizontal axis
of an inertial reference frame. Moreover, it is assumed that apart from the lateral
forces there are traction torques transferred from the engine to the front wheels as
well as braking torques on the rear and front wheels. Due to the distance between
the wheels axes and the vehicle’s center of gravity, torques are also generated along
the vehicle’s z-axis. With reference to Fig. 8.1 the model of the vehicle’s dynamics
is formulated as follows [332, 333, 457]:

Fig. 8.1 Nonlinear 4-wheeled vehicle model
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Fig. 8.2 Vehicle model with
longitudinal and lateral
forces

mαx = m(V̇x − ψ̇ V̇y) = Fx1 + Fx2

mαy = m(V̇y + ψ̇ V̇x ) = Fy1 + Fy2

Izψ̈ = Tz1 + Tz2 (8.6)

where ax and ay are accelerations along the axes of the inertial reference frame and
V̇x , V̇y in a reference frame that rotates with the yaw rate ψ̇ . The forces Fxi , i = 1, 2
on the vehicle’s longitudinal axis and Fyi , i = 1, 2 on the vehicle’s transversal axis
are computed from the horizontal and vertical forces applied on the vehicle’s wheels
as follows:

Fx1 = Fx f cos(δ) − Fy f sin(δ)

Fx2 = Fxr

Fy1 = Fy f sin(δ) + Fy f cos(δ) (8.7)

Fy2 = Fyr

Tz1 = L f (Fy f cos(δ) + Fx f sin(δ))

Tz2 = −Lr Fyr

About the longitudinal and the lateral forces applied to the vehicle one has:

1. Longitudinal force on the front wheel

Fx f =
(
1

R

)
(Ir ω̇ f + Tm − Tb f ) (8.8)
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2. Longitudinal force on the rear wheel

Fxr = −
(
1

R

)
(Tbr + Ir ω̇r ) (8.9)

3. Lateral force on the front wheel (taking that the angle β between the vehicle’s

longitudinal axis and thewheel’s velocity vector is approximated byβ = Vy+ψ̇L f

Vx
)

Fy f = C f

(
δ − Vy + ψ̇L f )

Vx

)
(8.10)

4. Lateral force on the rear wheel (taking that for the rear wheel the steering angle is
δ = 0 and that the angle β between the vehicle’s longitudinal axis and the wheel’s

velocity vector is approximated by β = Vy−ψ̇Lr

Vx
).

Fyr = −Cr
Vy − ψ̇Lr

Vx
(8.11)

where C f and Cr are the cornering stiffness coefficients for the front and rear tires
respectively.Nominal values of these cornering stiffness coefficients can be estimated
through identification procedures. The substitution of Eqs. (8.8)–(8.11) into (8.6)
results into

mV̇x = mψ̇Vy − Ir
R

(ω̇r + ω̇ f ) + 1

R
(Tm − Tb f − Tbr ) + C f

(
Vy + ψ̇L f )

Vx

)
δ − C f δ

2

mV̇y = −mψ̇Vx − C f

(
Vy + ψ̇L f

Vx

)
− Cr

(
Vy − ψ̇L f

Vx

)
+

(
1

R

)
(Tm − Tb f )δ +

(
C f − Ir

R
ω̇ f

)
δ

Izψ̈ = −L f C f

(
Vy + ψ̇L f )

Vx

)
+ LrCr

(
Vy − ψ̇L f )

Vx

)
+ L f

R
(Tm − Tb f )δ + L f

(
Tm − Ir

R

)
δ

(8.12)

The motion of the vehicle along its longitudinal axis is controlled by the traction or
braking wheel torque Tω = Tm − Tb with Tb = Tb f + Tbr and the lateral movement
via the steering angle δ. The two control inputs of the four wheel vehicle model are

u1 = Tω

u2 = δ (8.13)

A first form of the vehicle’s dynamic model is

ẋ = f (x, t) + g(x, t)u + g1u1u2 + g2u
2
2 (8.14)
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where

f (x, t) =

⎛
⎜⎜⎜⎝

Ir
mR (ω̇r + ω̇ f )

ψ̇Vx + 1
m

(
−C f

(Vy+L f ψ̇)

Vx
− Cr

(Vy−L f ψ̇)

Vx

)

1
Iz

(
−L f C f

(Vy+L f ψ̇)

Vx
+ LrCr

(Vy−L f ψ̇)

Vx

)

⎞
⎟⎟⎟⎠ (8.15)

g(x, t) =

⎛
⎜⎜⎜⎜⎝

1
mR

C f

m

(
Vy+L f ψ̇

Vx

)

0
(
C f R−Ir ω̇ f

mR

)

0 (L f C f R−L f Ir ω̇ f )

Iz R

⎞
⎟⎟⎟⎟⎠

(8.16)

g1 =

⎛
⎜⎜⎝

0
1

mR
L f

Iz R

⎞
⎟⎟⎠ g2 =

⎛
⎜⎝

−C f

m

0
0

⎞
⎟⎠ x =

⎛
⎜⎝
Vx

Vy

ψ̇

⎞
⎟⎠ u =

(
u1

u2

)
(8.17)

The previously analyzed nonlinear model of the vehicle’s dynamics can be simplified
if the control inputs u1u2 and u22 are not taken into account. In the latter case the
dynamics of the vehicle takes the form

ẋ = f (x, t) + g(x, t)u (8.18)

8.2.2.3 Joint Dynamic and Kinematic Model of the Vehicle

Using that the velocity variables of the vehicle Vx and Vy are expressed in a body-
fixed orthogonal coordinates frame, and using that the heading angle of the vehicle
is ψ one can express next the motion of the vehicle in an inertial reference frame as
follows:

VX = cos(ψ)Vx − sin(ψ)Vy⇒Ẋ = cos(ψ)Vx − sin(ψ)Vy

VY = sin(ψ)Vx + cos(ψ)Vy⇒Ẏ = sin(ψ)Vx + cos(ψ)Vy (8.19)

Using the above, the state-space description of the four-wheel vehicle becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

Ẋ
Ẏ
V̇X

V̇Y

ψ̇

ψ̈

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(ψ)Vx − sin(ψ)Vy

sin(ψ)Vx + cos(ψ)Vy

Ir
mR (ω̇R + ω̇ f )

ψ̇Vx + 1
m

[
−C f

(Vy+L f ψ̇)

Vx
− Cr

(Vy−L f ψ̇)

Vx

]

ψ̇

1
Iz

[
−L f C f

(Vy+L f ψ̇)

Vx
+ LrCr

(Vy−L f ψ̇)

Vx

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
1

mR
C f

m
Vy+L f π̇

Vx

0 C f R−Ir ω̇ f

mR
0 0
0 L f C f R−L f Ir ω̇ f

Iz R

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
Tω

δ

)

(8.20)
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Next, by defining the following state variables x1 = X , x2 = Y , x3 = Vx , x4 = Vy ,
x5 = ψ and x6 = ψ̇ the state-space description of the system becomes:

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(x5)x3 − sin(x3)x4
sin(x5)x3 + cos(x5)x4

Ir
mR (ω̇R + ω̇ f )

x6x3 + 1
m

[
−C f

(x5+L f x6)
x3

− Cr
(x4−L f x6)

x3

]

x6
1
Iz

[
−L f C f

(x4+L f x6)
x3

+ LrCr
(x4−L f x6

x3

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
1

mR
C f

m
x4+L f x6

x3

0 C f R−Ir ω̇ f

mR
0 0
0 L f C f R−L f Ir ω̇ f

Iz R

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
u1
u2

)

(8.21)
In vector field form, one obtains the following state-space description about the
vehicle’s dynamics

ẋ = f (x) + G(x)u⇒
ẋ = f (x) + g1(x)u1 + g2(x)u2 (8.22)

where f (x)∈R6×1, G(x)∈R6×2 while its columns are defined as g1(x)∈R6×1 and
g2(x)∈R6×1 with

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(x5)x3 − sin(x3)x4
sin(x5)x3 + cos(x5)x4

Ir
mR (ω̇R + ω̇ f )

x6x3 + 1
m

[
−C f

(x5+L f x6)
x3

− Cr
(x4−L f x6)

x3

]

x6
1
Iz

[
−L f C f

(x4+L f x6)
x3

+ LrCr
(x4−L f x6

x3

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

g1(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1

mR
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
g2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0

C f

m
x4+L f x6

x3
C f R−Ir ω̇ f

mR
0

L f C f R−L f Ir ω̇ f

Iz R

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8.23)

8.2.3 Approximate Linearization of the Four-Wheel Vehicle
Dynamics

The dynamic model of the four-wheel vehicle undergoes approximate linearization
around the temporary operating point (x∗, u∗) which is recomputed at each iteration
of the control algorithm. The linearization point (equilibrium) consists of the present
value of the vehicle’s state vector x∗ and of the last value of the control inputs
vector u∗ that was exerted on it. The linearization is based on first order Taylor
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series expansion and on the computation of the Jacobian matrices of the state-space
description of the vehicle. This gives:

ẋ = Ax + Bu + d̃ (8.24)

A and B are the system’s Jacobian matrices to be defined in the following and d̃ is a
model uncertainty term denoting the modelling error due to the truncation of higher-
order terms in the Taylor series expansion and the effects of external perturbations.
About matrix A one has

A = ∇x [ f (x) + G(x)u]|(x∗,u∗)⇒
A = ∇x [ f (x)]|(x∗,u∗) + ∇x [g1(x)]|(x∗,u∗) + ∇x [g2(x)]|(x∗,u∗) (8.25)

About matrix B one has

B = ∇u[ f (x) + G(x)u]|(x∗,u∗)⇒
B = G(x)|(x∗,u∗) (8.26)

The Jacobian matrix ∇x f (x) of the state-space description of the system are com-
puted as follows:

∇x f (x) =

⎛
⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x6

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x6· · · · · · · · · · · ·

∂ f6
∂x1

∂ f6
∂x2

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎠ |(x∗,u∗) (8.27)

The elements of the first row of the Jacobian matrix ∇x f (x) are:
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 0,
∂ f1
∂x3

= cos(x5),
∂ f1
∂x4

= −sin(x5),
∂ f1
∂x5

= −x3sin(x5) − x4cos(x5),
∂ f1
∂x6

= 0.

The elements of the second row of the Jacobianmatrix∇x f (x) are:
∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0,
∂ f2
∂x3

= sin(x5),
∂ f2
∂x4

= cos(x5),
∂ f2
∂x5

= x3cos(x5) − x4sin(x5),
∂ f2
∂x6

= 0.

The elements of the third row of the Jacobian matrix ∇x f (x) are:
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0, ∂ f3
∂x6

= 0.

The elements of the fourth row of the Jacobian matrix∇x f (x) are:
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= x6 + 1
m [−C f

−(x4+L f x6)
x23

− Cr
−(x4+L f x6)

x23
], ∂ f4

∂x4
= 1

m [−C f
1
x3

− Cr
1
x3

], ∂ f4
∂x5

= 0,
∂ f4
∂x6

= x3 + 1
m [−C f

L f

x3
− Cr

−L f

x3
].

The elements of the fifth row of the Jacobian matrix ∇x f (x) are:
∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0,
∂ f5
∂x3

= 0, ∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 1.
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The elements of the sixth row of the Jacobian matrix ∇x f (x) are:
∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0,
∂ f6
∂x3

= 0, ∂ f6
∂x4

= 1
Iz
[−L f C f

1
x3

+ L f Cr
1
x3

], ∂ f6
∂x5

= 0, ∂ f6
∂x6

= 1
Iz
[−L f C f

L f

x3
+ L f Cr

L f

x3
].

The Jacobian matrix ∇x g1(x) of the state-space description of the system are
computed as follows:

∇x g1(x) =

⎛
⎜⎜⎜⎝

∂g11
∂x1

∂g11
∂x2

· · · ∂g11
∂x6

∂g12
∂x1

∂g12
∂x2

· · · ∂g12
∂x6· · · · · · · · · · · ·

∂g16
∂x1

∂g16
∂x2

· · · ∂g16
∂x6

⎞
⎟⎟⎟⎠ |(x∗,u∗) (8.28)

It holds that ∇x g1(x) = 06×6.
The Jacobian matrix ∇x g2(x) of the state-space description of the system are

computed as follows:

∇x g2(x) =

⎛
⎜⎜⎜⎝

∂g21
∂x1

∂g21
∂x2

· · · ∂g21
∂x6

∂g22
∂x1

∂g22
∂x2

· · · ∂g22
∂x6· · · · · · · · · · · ·

∂g26
∂x1

∂g26
∂x2

· · · ∂g26
∂x6

⎞
⎟⎟⎟⎠ |(x∗,u∗) (8.29)

The elements of 1st, 2nd, 4th, 5th and 6th row of the Jacobian matrix ∇x g2(x) are
0, while the elements of the third row of the Jacobian matrix ∇x g2(x) are:

∂g32
∂x1

= 0,
∂g32
∂x2

= 0, ∂g32
∂x3

= C f

m (− (x4+L f x6)
x23

), ∂g32
∂x4

= C f

m ( 1
x3

), ∂g32
∂x5

= 0, ∂g32
∂x6

= C f

m (
L f

x3
).

8.2.4 The Nonlinear H-Infinity Control

8.2.4.1 Tracking Error Dynamics of the Four-Wheel Vehicle

The initial nonlinear model of the automatic ground vehicle is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (8.30)

Linearization of the system (four-wheel ground vehicle) is performed at each iter-
ation of the control algorithm round its present operating point (x∗, u∗) = (x(t),
u(t − Ts)). The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.31)

Thus, after linearization round its current operating point, the autonomous ground
vehicle’s dynamic model is written as

ẋ = Ax + Bu + d1 (8.32)
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Parameter d1 stands for the linearization error in the vehicle’s dynamic model
appearing in Eq. (8.32). The reference setpoints for the ground vehicle are denoted
by xd = [xd1 , . . . , xd6 ]. Tracking of this trajectory is achieved after applying the con-
trol input u∗. At every time instant the control input u∗ is assumed to differ from the
control input u appearing inEq. (8.32) by an amount equal toΔu, that is u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (8.33)

The dynamics of the controlled system described in Eq. (8.32) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (8.34)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (8.35)

By subtracting Eq. (8.33) from (8.35) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (8.36)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (8.37)

The above linearized form of the four wheel vehicle’s model can be efficiently con-
trolled after applying an H-infinity feedback control scheme.

8.2.5 Min-Max Control and Disturbance Rejection

The initial nonlinear model of the four-wheel autonomous ground vehicle is in the
form

ẋ = f (x, u) x∈Rn, u∈Rm (8.38)

Linearization of the system (four-wheel vehicle) is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)).
The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.39)

wherematrices A and B are obtained from the computation of the vehicle’s Jacobians,
according to Eqs. (8.25) and (8.26), and vector d̃ denotes disturbance terms due to
linearization errors. The problem of disturbance rejection for the linearized model
that is described by
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ẋ = Ax + Bu + Ld̃

y = Cx (8.40)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbations can also represent noise terms of any distribution.

As already explained in the previous applications of the H∞ control approach, a
feedback control scheme is designed for trajectory tracking by the system’s state vec-
tor and simultaneous disturbance rejection, considering that the disturbance affects
the system in the worst possible manner. The disturbances’ effect are incorporated
in the following quadratic cost function:

J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (8.41)

Once again, the significance of the negative sign in the cost function’s term that is
associatedwith the perturbation variable d̃(t) is that the disturbance tries tomaximize
the cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (8.42)

The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
system of the four-wheel autonomous vehicle. However, the solution to the min-max
optimization problem is directly related to the value of the parameter ρ. This means
that there is an upper bound in the disturbances magnitude that can be annihilated
by the control signal.

8.2.5.1 H-Infinity Feedback Control

For the linearized systemgiven byEq. (8.40) the cost function of Eq. (8.41) is defined,
where the coefficient r determines the penalization of the control input and the
weight coefficient ρ determines the reward of the disturbances’ effects. Once more,
it is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are

stabilizable, (iii) matrix [A,C] is detectable. Then, the optimal feedback control law
is given by

u(t) = −Kx(t) (8.43)
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with

K = 1

r
BT P (8.44)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (8.45)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1

ρ2
LT Px(t) (8.46)

The diagram of the considered control loop is depicted in Fig. 8.3.

8.2.6 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the control loop of the four-

Fig. 8.3 Diagram of the nonlinear optimal control scheme for the four-wheel autonomous ground
vehicle
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wheel autonomous ground vehicle.Moreover, undermoderate conditions asymptotic
stability is proven and convergence to the reference setpoints is achieved.The tracking
error dynamics for the automatic ground vehicle is written in the form

ė = Ae + Bu + Ld̃ (8.47)

where in this autonomous vehicle’s case L = I∈R6×6 with I being the identity
matrix. Variable d̃ denotes model uncertainties and external disturbances of the vehi-
cle’s model. The following Lyapunov function is considered

V = 1

2
eT Pe (8.48)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1

2
ėT Pe + 1

2
ePė⇒

V̇ = 1

2
[Ae + Bu + Ld̃]T P + 1

2
eT P[Ae + Bu + Ld̃]⇒ (8.49)

V̇ = 1

2
[eT AT + uT BT + d̃T LT ]Pe +

+1

2
eT P[Ae + Bu + Ld̃]⇒ (8.50)

V̇ = 1

2
eT AT Pe + 1

2
uT BT Pe + 1

2
d̃T LT Pe +

1

2
eT P Ae + 1

2
eT PBu + 1

2
eT PLd̃ (8.51)

The previous equation is rewritten as

V̇ = 1

2
eT (AT P + PA)e +

(
1

2
uT BT Pe + 1

2
eT PBu

)
+

+
(
1

2
d̃T LT Pe + 1

2
eT PLd̃

)
(8.52)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (8.53)
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Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (8.54)

By substituting Eqs. (8.53) and (8.54) one obtains

V̇ = 1

2
eT

[
−Q + P

(
2

r
BBT − 1

2ρ2
LLT

)
P

]
e +

+eT PB

(
−1

r
BT Pe

)
+ eT PLd̃⇒ (8.55)

V̇ = −1

2
eT Qe +

(
2

r
PBBT Pe − 1

2ρ2
eT PLLT

)
Pe

−1

r
(eT PBBT Pe) + eT PLd̃ (8.56)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (8.57)

or, equivalently

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe +

+1

2
eT PLd̃ + 1

2
d̃T LT Pe (8.58)

Lemma: The following inequality holds

1

2
eT Ld̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.59)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1

ρ2
b2 − 2ab ≥ 0 ⇒ 1

2
ρ2a2 + 1

2ρ2
b2 − ab ≥ 0 ⇒

ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 ⇒ 1

2
ab + 1

2
ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 (8.60)
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The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.61)

Equation (8.61) is substituted in Eq. (8.58) and the inequality is enforced, thus giving

V̇ ≤ −1

2
eT Qe + 1

2
ρ2d̃T d̃ (8.62)

Equation (8.62) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T

0
V̇ (t)dt ≤ −1

2

∫ T

0
||e||2Qdt + 1

2
ρ2

∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||d̃||2dt (8.63)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (8.64)

then one gets ∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (8.65)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (8.48) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe ≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

8.2.7 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop for the four-wheel autonomous vehicle can be implementedwith the
feedback of a partiallymeasurable state vector and by processing only a small number
of state variables. To reconstruct the missing information about the state vector of
the autonomous vehicle it is proposed to use a filtering scheme which allows to apply
state estimation-based control [457]. The recursion of the H∞ Kalman Filter, for the
model of the distributed finance agents, can be formulated in terms of ameasurement
update and a time update part



408 8 Four-Wheel Autonomous Ground Vehicles

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)] (8.66)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k) (8.67)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One
can measure only a part of the state vector of the system of the autonomous ground
vehicle, such as the velocities Vx and Vy and the orientation angleψ , and can estimate
through filtering the rest of the state vector elements.

8.2.8 Simulation Tests

Theperformanceof theproposednonlinear optimal control scheme for the autonomous
four-wheel vehicle has been tested in the case of tracking of different reference set-
points (Figs. 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, 8.12 and 8.13). The control scheme
exhibited fast and accurate tracking of the reference paths. The computation of the
feedback control gain required the solution of the algebraic Riccati equation given in
Eq. (8.53), at each iteration of the control algorithm. The obtained results are depicted
in Figs. 8.22, 8.23, 8.24, 8.25, 8.26, 8.27, 8.28, 8.29, 8.30, 8.31, 8.32 and 8.33. The
measurement units for the state variables of the four-wheel vehicle’s model were
in the SI system (position coordinates measured in m and heading angle in rad). It
can be noticed that the H-infinity controller achieved fast and accurate convergence
to the reference setpoints for all elements of the four-wheel vehicle’s state-vector.
Moreover, the variations of the control inputs, that is of the autonomous vehicle’s
velocity and of its steering angle were smooth.

As noted, the proposed nonlinear optimal control method for the four-wheel
autonomous vehicle was based on an approximate linearization of its joint kinematic
and dynamic model. The advantages that the proposed control method exhibits are
outlined as follows: (i) it is applied directly on the nonlinear dynamical model of
the four-wheel vehicle and not on an equivalent linearized description of it, (ii) It
avoids the elaborated linearizing transformations (diffeomorphisms) which can be
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Fig. 8.4 a Tracking of reference path 1 (red-line) by the four-wheel autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied to the
vehicle
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Fig. 8.5 Tracking of reference path 1: a convergence of state variables x1 to x3 of the four-wheel
vehicle to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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Fig. 8.6 a Tracking of reference path 2 (red-line) by the four-wheel autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied to the
vehicle
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Fig. 8.7 Tracking of reference path 2: a convergence of state variables x1 to x3 of the four-wheel
vehicle-to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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Fig. 8.8 a Tracking of reference path 3 (red-line) by the four-wheel autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied to the
vehicle

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

x 1

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

x 2

0 5 10 15 20 25 30 35 40
0

10

20

time (sec)

x 3

0 5 10 15 20 25 30 35 40
−20

0

20

time (sec)

x 4

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

x 5

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

x 6

(a) (b)

Fig. 8.9 Tracking of reference path 3: a convergence of state variables x1 to x3 of the four-wheel
vehicle to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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Fig. 8.10 a Tracking of reference path 1 (red-line) by the four-wheel autonomous vehicle (blue
line) and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied
to the vehicle
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Fig. 8.11 Tracking of reference path 4: a convergence of state variables x1 to x3 of the four-wheel
vehicle to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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Fig. 8.12 a Tracking of reference path51 (red-line) by the four-wheel autonomous vehicle (blue
line) and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied
to the vehicle
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Fig. 8.13 Tracking of reference path 5: a convergence of state variables x1 to x3 of the four-wheel
vehicle to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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met in global linearization-based control methods for autonomous vehicles (iii) the
controller is designed according to optimal control principles which implies the best
trade-off between precise tracking of the reference setpoints on the one side and
moderate variations of the control inputs on the other side (iv) the control method
exhibits significant robustness to parametric uncertainty, modelling errors as well as
to external perturbations.

Yet computationally simple, the proposed H∞ control scheme has an excellent
performance. Comparing to the control of the automatic ground vehicles that can rely
on global linearization methods the presented nonlinear H-infinity control scheme
is equally efficient in setpoint tracking while also retaining optimal control features
[457]. The tracking accuracy of the presented control method (H∞) has been mon-
itored in the case of several reference setpoints. By using the Kalman Filter as a
robust observer estimates of the state vector of the vehicle were obtained and thus
the implementation of state estimation-based control became possible. Themeasured
state variables were x3 = Vx , x4 = Vy and x5 = ψ . The obtained results are given in
Table8.1.

The tracking performance of the nonlinearH-infinity controlmethod for themodel
of the four-wheel vehicle was measured in the case of model uncertainty, imposing
an imprecision equal to Δa% about the vehicle’s moment of inertia Iz . The obtained
results are outlined in Table8.2. It can be noticed that despite model perturbations
the tracking accuracy of the control method remained satisfactory.

Table 8.1 RMSE of the vehicle’s state variables

Path RMSE X (m) RMSE Y (m) RMSE ψ (rad)

1 4.5·10−3 4.5·10−3 0.1·10−3

2 15.1·10−3 5.7·10−3 17.3·10−3

3 13.3·10−3 13.7·10−3 18.6·10−3

4 15.3·10−3 9.3·10−3 17.0·10−3

5 8.7·10−3 15.5·10−3 17.8·10−3

Table 8.2 RMSE of state variables under disturbance

Δa (%) RMSE X (m) RMSE Y (m) RMSE ψ (rad)

0 8.7·10−3 15.5·10−3 17.8·10−3

10 9.0·10−3 16.2·10−3 16.3·10−3

20 9.5·10−3 17.2·10−3 14.8·10−3

30 10.1·10−3 18.3·10−3 13.4·10−3

40 10.8·10−3 19.3·10−3 12.0·10−3

50 11.6·10−3 20.3·10−3 10.7·10−3

60 12.7·10−3 20.9·10−3 9.5·10−3
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8.3 A Nonlinear H-Infinity Control Approach
for an Autonomous Truck and Trailer System

8.3.1 Outline

Comparing to the previously analyzed unicycle-type and four-wheel vehicles there
exist more complicated and difficult to control models, such as multi-body and artic-
ulated autonous vehicles [202, 249, 508]. Due to their complicated kinematic and
dynamic model the problems of path planning and path following for the aforemen-
tioned types of vehicles is of elevated difficulty [12, 109, 166, 218, 328, 394]. To
achieve accurate tracking of reference paths and to assure stability for the vehicles’
autonomous navigation system, nonlinear control approaches have been proposed
[59, 344, 355, 366, 469]. In [248, 471] one can find results on global linearization-
based control of multi-body and articulated vehicles, based on differential flatness
theory. In [217] the controller’s design for the above mentioned type of vehicles is
based on approximate linearization and the description of their kinematics or dynam-
ics with the use of local models. Moreover, in [24] Lyapunov theory-based control
methods are developed for such complicated vehicles.

In this section the problems of nonlinear optimal control and the problem of
autonomous navigation of a truck and trailer vehicle are considered. The kinematic
model of the vehicle is formulated and the controller’s design proceeds by carrying
out an approximate linearization on this model around a time-varying equilibrium.
The linearization procedure relies on Taylor series expansion for the articulated
vehicle’s kinematicmodel andon the computation of the associated Jacobianmatrices
[33, 431, 463]. The linearization point (equilibrium) is updated at each time instant
and is defined by the present value of the vehicle’s state vector and the last value of
the vehicle’s control inputs vector. The modelling error which is due to approximate
linearization and the cut-off of higher order terms in the Taylor series expansion is
considered as a perturbation that is compensated by the robustness of the H-infinity
control scheme [461, 466].

For the linearized equivalent model of the truck and trailer vehicle an H-infinity
feedback controller is designed. This is an optimal controller for the case of a system
subject to model uncertainty and external perturbations [450, 452, 457, 459, 460].
H-infinity control stands for the solution of a min-max differential game. Actually,
the control inputs try to minimize a quadratic cost function associated with the devi-
ation of the vehicle’s state vector from its reference values, while the perturbations
and model uncertainty terms try to maximize this cost function [132, 305, 564].
The feedback gain of the controller is based on the solution of an algebraic Riccati
equation that is performed at each iteration of the control algorithm. The stability of
the control loop for the truck and trailer system is confirmed through Lyapunov anal-
ysis. First, it is shown that the H-infinity tracking performance criterion is satisfied.
This signifies elevated robustness of the control loop against model uncertainty and
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exogenous disturbances. Moreover, under moderate conditions the global asymp-
totic stability of the control loop is proven. Finally, ro implement feedback control
for the autonomous truck and trailer system when its state vector is only partially
measurable, the H-infinity Kalman Filter is proposed [169, 511].

8.3.2 Kinematic Model of the Truck and Trailer

8.3.2.1 State-Space Description of the Truck and Trailer System

The kinematic model of the truck and trailer system is given by

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ t

ẏt

θ̇

ẋ i

ẏi

ψ̇

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

vcos(θ)

vsin(θ)

ω

vcos(θ − ψ)cos(ψ)

vcos(θ − ψ)sin(ψ)
v
Li sin(θ − ψ)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.68)

where (xt ,yt ) are the cartesian coordinates of the truck in an inertial reference frame,
θ is the heading angle of the truck formed by its transversal axis and the OX axis of
the reference frame, ω is the turn rate of the truck (turn rate of the steering wheel),
(xi ,yi ) are the cartesian coordinates of the trailer, ψ i is the heading angle of the
trailer, v is the longitudinal speed of the truck, and β is the hitch point angle between
the truck and the drawbar that connects the truck with the trailer. The parameters of
the truck and trailer system are shown in Fig. 8.14.

In the diagram of Fig. 8.14, the following distances are defined: Lt is the distance
between the front and the rear axis of the truck, Li us the distance between the hitch
point RJ and the rear axis of the trailer. The state vector of the truck and trailer system
is defined as x = [xt , yt , θ, xi , yi , ψ]T while the control inputs vector is defined as
u = [v, ω]T and thus consists of the velocity of the truck and the turn rate of the
steering wheel of the truck.

The kinematic model of the truck and trailer system is justified as follows: The
velocity v of point RJ is first projected on the longitudinal axis of the trailer, thus
giving vcos(θ − ψ) and next (a) it is projected on the OX axis thus giving vcos(θ −
ψ)cos(ψ). This variable is the velocity of the trailer along the OX axis (b) it is
projected on the OY axis thus giving vcos(θ − ψ)sin(ψ). Moreover, the trailer
performs a rotational motion round point RJ , with rotational speed denoted as ψ̇ .
The linear velocity of point RJ that is parallel to the transversal axis of the vehicle
is given by vsin(θ − ψ). Thus, it holds: ψ̇ = 1

Li
vsin(θ − ψ).
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The kinematic model of the truck and trailer system is also written in the vector
form:

ẋ = f (x, u) (8.69)

where x∈R6×1, f ∈R6×1 and u∈R2×1. It also holds thatβ = θ − ψ .With the previous
definition of state variables one arrives at the following state-space description

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

u1cos(x3)
u1sin(x3)

u2
u1cos(x3 − x6)cos(x6)
u1cos(x3 − x6)sin(x6)

u1
Li
sin(x3 − x6)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.70)

8.3.2.2 Approximate Linearization of the Truck and Trailer Model

Approximate linearization is performed to the kinematicmodel of the truck and trailer
system round a temporary equilibrium x∗ which is re-computed at each iteration of
the control algorithm. The method is based on Taylor series expansion and on the
calculation of the associated Jacobian matrices, while the equilibrium consists of
the present value of the system’s state vector x∗ and of the last value of the control
inputs vector u∗ that was exerted on it. Thus one has the linearization point (x∗, u∗).
Using that the kinematic model of the system is ẋ = f (x, u) the following linearized
description is obtained

Fig. 8.14 Kinematic model of the truck and trailer
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ẋ = Ax + Bu + d̃ (8.71)

where d̃ is the linearization error and the associated Jacobian matrices are:

A = ∇x f (x, u) |(x∗,u∗) B = ∇u f (x, u) |(x∗,u∗) (8.72)

The elements of the Jacobian matrices are

A =

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x6

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x6· · · · · · · · · · · ·

· · · · · · · · · · · ·
∂ f6
∂x1

∂ f6
∂x2

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂u1

∂ f1
∂u2

∂ f2
∂u1

∂ f2
∂u2· · · · · ·

· · · · · ·
∂ f6
∂u1

∂ f6
∂u2

⎞
⎟⎟⎟⎟⎟⎠

(8.73)

With the previous definition of the Jacobian matrices one finds
The first row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is ∂ f1

∂x1
= 0, ∂ f1

∂x2
= 0,

∂ f1
∂x3

= −u1sin(x3),
∂ f1
∂x4

= 0, ∂ f1
∂x5

= 0 and ∂ f1
∂x6

= 0.

The second row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0,
∂ f2
∂x3

= u1cos(x3),
∂ f2
∂x4

= 0, ∂ f2
∂x5

= 0 and ∂ f2
∂x6

= 0.

The third row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0 and ∂ f3
∂x6

= 0.

The fourth row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= −sin(x3 − x6)cos(x6)u1,
∂ f4
∂x4

= 0, ∂ f4
∂x5

= 0 and ∂ f4
∂x6

= [sin(x3 − x6)
cos(x6) − cos(x3 − x6)sin(x6)]u1.

Thefifth rowof the Jacobianmatrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

=
−sin(x3 − x6)sin(x6)u1,

∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0 and ∂ f5
∂x6

= [sin(x3 − x6)sin(x6) +
cos(x3 − x6)cos(x6)]u1.

The sixth row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0,
∂ f6
∂x3

= 1
Li
cos(x3 − x6)u1,

∂ f6
∂x4

= 0, ∂ f6
∂x5

= 0 and ∂ f6
∂x6

= − 1
Li
cos(x3 − x6)u1.

In a similar manner one finds
Thefirst rowof the Jacobianmatrix B = ∇u f (x, u) |(x∗,u∗) is

∂ f1
∂u1

= cos(x3),
∂ f1
∂u2

= 0,

The second row of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) is ∂ f2
∂u1

= sin(x3),
∂ f2
∂u2

= 0,
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The third row of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) is
∂ f3
∂u1

= 0, ∂ f3
∂u2

= 1,

The fourth row of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) is ∂ f4
∂u1

= cos(x3 −
x6)cos(x6),

∂ f4
∂u2

= 0,

The fifth row of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) is ∂ f5
∂u1

= cos(x3 −
x6)sin(x6),

∂ f6
∂u2

= 0,

The sixth rowof the Jacobianmatrix B = ∇u f (x, u) |(x∗,u∗) is
∂ f6
∂u1

= 1
Li sin(x3 − x6),

∂ f6
∂u2

= 0,

8.3.3 The Nonlinear H-Infinity Control

8.3.3.1 Mini-Max Control and Disturbance Rejection

The initial nonlinear model of the truck and trailer system is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (8.74)

Linearization of the system (truck and trailer) is performed at each iteration of the
control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)). The
linearized equivalent model of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.75)

where matrices A and B are obtained from the computation of the Jacobians matrices
of the truck and trailer’s state-space model and vector d̃ denotes disturbance terms
due to linearization errors. The problem of disturbance rejection for the linearized
model that is described by

ẋ = Ax + Bu + Ld̃

y = Cx (8.76)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

Adhering to the previous applications of the H∞ control approach, a feedback
control scheme is designed for trajectory tracking by the system’s state vector and
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simultaneous disturbance rejection, considering that the disturbance affects the sys-
tem in the worst possible manner. The disturbances’ effect are incorporated in the
following quadratic cost function:

J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (8.77)

According to the analysis of the previous sections, the significance of the negative
sign in the cost function’s term that is associated with the perturbation variable d̃(t)
is that the disturbance tries to maximize the cost function J (t) while the control
signal u(t) tries to minimize it. The physical meaning of the relation given above is
that the control signal and the disturbances compete to each other within a min-max
differential game. This problem of min-max optimization can be written as

minumaxd̃ J (u, d̃) (8.78)

As pointed out in previous cases, the objective of the optimization procedure is to
compute a control signal u(t) which can compensate for the worst possible dis-
turbance, that is externally imposed to the system of the truck and trailer system.
However, the solution to the min-max optimization problem is directly related to the
value of the parameter ρ. This means that there is an upper bound in the disturbances
magnitude that can be annihilated by the control signal.

8.3.3.2 H-Infinity Feedback Control

For the linearized systemgiven byEq. (8.76) the cost function of Eq. (8.77) is defined,
where the coefficient r determines the penalization of the control input and theweight
coefficient ρ determines the reward of the disturbances’ effects. As in previous appli-
cations of the H-infinity control it is assumed that (i) The energy that is transferred
from the disturbances signal d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matri-

ces [A, B] and [A, L] are stabilizable, (iii) matrix [A,C] is detectable. Then, the
optimal feedback control law is given by

u(t) = −Kx(t) (8.79)

with

K = 1

r
BT P (8.80)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (8.81)
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Fig. 8.15 Diagram of the nonlinear optimal control scheme for the truck and trailer system

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1

ρ2
LT Px(t) (8.82)

The diagram of the considered control loop is depicted in Fig. 8.15.

8.3.4 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the control loop of the truck and
trailer system. Moreover, under moderate conditions asymptotic stability is proven
and convergence to the reference setpoints is achieved. The tracking error dynamics
for the truck and trailer system is written in the form

ė = Ae + Bu + Ld̃ (8.83)

where in this autonomous vehicle’s case L = I∈R6×6 with I being the identity
matrix. Variable d̃ denotes model uncertainties and external disturbances of the truck
and trailer model. The following Lyapunov function is considered
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V = 1

2
eT Pe (8.84)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1

2
ėT Pe + 1

2
ePė⇒

V̇ = 1

2
[Ae + Bu + Ld̃]T P + 1

2
eT P[Ae + Bu + Ld̃]⇒ (8.85)

V̇ = 1

2
[eT AT + uT BT + d̃T LT ]Pe +

+1

2
eT P[Ae + Bu + Ld̃]⇒ (8.86)

V̇ = 1

2
eT AT Pe + 1

2
uT BT Pe + 1

2
d̃T LT Pe +

1

2
eT P Ae + 1

2
eT PBu + 1

2
eT PLd̃ (8.87)

The previous equation is rewritten as

V̇ = 1

2
eT (AT P + PA)e +

(
1

2
uT BT Pe + 1

2
eT PBu

)
+

+
(
1

2
d̃T LT Pe + 1

2
eT PLd̃

)
(8.88)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (8.89)

Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (8.90)

By substituting Eqs. (8.89) and (8.90) one obtains

V̇ = 1

2
eT

[
−Q + P

(
2

r
BBT − 1

2ρ2
LLT

)
P

]
e +

+eT PB

(
−1

r
BT Pe

)
+ eT PLd̃⇒ (8.91)
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V̇ = −1

2
eT Qe +

(
2

r
PBBT Pe − 1

2ρ2
eT PLLT

)
Pe

−1

r
(eT PBBT Pe) + eT PLd̃ (8.92)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (8.93)

or, equivalently

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe +

+1

2
eT PLd̃ + 1

2
d̃T LT Pe (8.94)

Lemma: The following inequality holds

1

2
eT Ld̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.95)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1

ρ2
b2 − 2ab ≥ 0 ⇒ 1

2
ρ2a2 + 1

2ρ2
b2 − ab ≥ 0 ⇒

ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 ⇒ 1

2
ab + 1

2
ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 (8.96)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.97)

Equation (8.97) is substituted in Eq. (8.94) and the inequality is enforced, thus giving

V̇ ≤ −1

2
eT Qe + 1

2
ρ2d̃T d̃ (8.98)
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Equation (8.98) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T

0
V̇ (t)dt ≤ −1

2

∫ T

0
||e||2Qdt + 1

2
ρ2

∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||d̃||2dt (8.99)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (8.100)

then one gets ∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (8.101)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (8.84) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe ≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

8.3.5 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop for the truck and trailer system can be implemented with the feed-
back of a partially measurable state vector and by processing only a small number of
state variables. To reconstruct the missing information about the state vector of the
autonomous vehicle it is proposed to use a filtering scheme which allows to apply
state estimation-based control [457]. The recursion of the H∞ Kalman Filter, can be
formulated in terms of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)] (8.102)
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Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k) (8.103)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the system of the truck and trailer system,
such as state variables xi i = 1, 2 (cartesian coordinates of the truck) and can estimate
through filtering the rest of the state vector elements.

8.3.6 Simulation Tests

The performance of the proposed nonlinear optimal control scheme for the
autonomous truck and trailer vehicle has been tested in the case of tracking of dif-
ferent reference setpoints. The control scheme exhibited fast and accurate tracking
of the reference paths. The computation of the feedback control gain required the
solution of the algebraic Riccati equation given in Eq. (8.89), at each iteration of the
control algorithm. The obtained results are depicted in Figs. 8.16, 8.17 and 8.18. It
can be noticed that the H-infinity controller achieved fast and accurate convergence
to the reference setpoints for all elements of the vehicle’s state-vector. Moreover,
the variations of the control inputs, that is of the truck’s velocity and of the truck’s
steering angle were smooth.
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Fig. 8.16 a tracking of reference setpoint 1 (red-line) by the heading angle θ of the truck (blue
line), b tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of
the trailer (blue line)
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Fig. 8.17 a tracking of reference setpoint 2 (red-line) by the heading angle θ of the truck (blue
line), b tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of
the trailer (blue line)
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Fig. 8.18 a tracking of reference setpoint 3 (red-line) by the heading angle θ of the truck (blue
line), b tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of
the trailer (blue line)

As noted, the proposed nonlinear optimal control method for the truck and trailer
model was based on an approximate linearization of the vehicle’s kinematics. Com-
paring to nonlinear feedback control approaches which are based on exact feed-
back linearization, the proposed H∞ control scheme for the autonomous vehicle has
the following features: (i) it uses an approximate linear description of the system’s
kinematics which does not follow the elaborated transformations (diffeomorphisms)
met in exact linearization methods, (ii) it is applied directly on the initial nonlinear
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model of the vehicle. Thus, the computation of the control inputs which are applied
to the vehicle does not require inverse transformations and avoids singularities, (iii)
it retains the advantages of typical optimal control, that is accurate tracking of the
reference trajectories through moderate variations of the control inputs.

8.4 Nonlinear Optimal Feedback Control of Four-Wheel
Steering Autonomous Vehicles

8.4.1 Outline

Four-wheel steering (4WS) autonomous vehicles can exhibit improved maneuver-
ability comparing to two-wheel steering vehicles. There are several examples of
applications of 4WS autonomous vehicles in transportation, in security and defense
tasks as well as in agriculture [7, 70, 213, 364]. In an aim to improve the steer-
ing capabilities of autonomous vehicles and mobile robots there have been several
efforts to solve the problem of control of 4WS systems. The description of the kine-
matics and dynamics of 4WS vehicles typically takes the form of nonlinear models.
However under specific assumptions such models can be locally simplified into a
linear form and linear control methods can be considered. [67, 195, 381, 478, 586].
One can note also results on nonlinear model-based control for 4WS vehicles [216,
257, 306, 390]. In several approaches it is attempted to decouple the vehicle’s multi-
variable dynamics into simpler loops which are controlled independently [269, 270,
282, 317]. The efficiency of the aforementioned control methods depends on the
proximity of the model considered for the controller’s design to the real nonlinear
dynamics of the vehicle [283, 578, 584].

In the present section, a nonlinear H-infinity (optimal) controller is introduced for
the motion control problem of 4WS vehicles [419, 461]. The design of the controller
remains consistent with the precise nonlinear dynamics of the four-wheel steering
vehicle. As in previous applications of nonlinear optimal control the 4WS vehicle’s
kinematic and dynamic model undergoes first approximate linearization around a
temporary operating point (equilibrium) which is recomputed at each iteration of the
control algorithm. The equilibrium is defined by the present value of the system’s
state vector and the last value of the control inputs vector that was exerted on it.
The linearization makes use of first order Taylor series expansion of the state-space
description of the vehicle and requires the computation of the associated Jacobian
matrices [33, 431, 463]. The modelling error due to truncation of higher order terms
in the Taylor series expansion is considered as a perturbation which is asymptotically
eliminated by the robustness of the control algorithm. Next, for the approximately
linearized model of the 4WS vehicle an H-infinity feedback controller is designed.



428 8 Four-Wheel Autonomous Ground Vehicles

The H-infinity controller stands for the solution to the optimal control problem for
the 4WS vehicle under model uncertainty and external perturbations. As previously
noted, it represents the solution to amin-max differential game inwhich the controller
tries to minimize a cost function that comprises a quadratic term of the state vector’s
tracking error, whereas the model uncertainty and the external perturbations try to
maximize this cost function. To compute the feedback gain of theH-infinity controller
an algebraic Riccati equation has to be solved at each time step of the control method
[450, 457, 460]. The stability properties of the control scheme are confirmed through
Lyapunov analysis. First, it is shown that the control loop satisfies the H-infinity
tracking performance criterion, which ascertains elevated robustness against model
inconsistencies and external disturbances [305, 564]. Moreover, under moderate
conditions the global asymptotic stability of the control scheme is proven. Finally,
to implement state estimation-based control for the 4WS vehicle without the need
to process measurements from a large number of on-board sensors the H-infinity
Kalman Filter is used as a robust state estimator [169, 511].

Comparing to other control methods for the problem of motion control of
autonomous vehicles and mobile robots the following can be noted [450, 457, 460]:
(i) PID control which is widely used by practitioners in the area of robotics is finally
an unreliable methodology because the tuning of such a controller is performed
in a heuristic manner around local operating points where the unrealistic assump-
tion is made that the dynamics of the 4WS vehicle remains linear. Such a control
method lacks a global stability proof. (ii) On the other side the application of global
linearization-based control methods to 4WS vehicles is hindered by the complexity
of the associated state-space transformations that finally allow for describing the
vehicle’s dynamics into a linear canonical form. Besides this method may come
against singularity problems because it requires inverse transformations for comput-
ing the control signal that will be finally applied to the initial nonlinear system of
the 4WS vehicle. (iii) As far as optimal control methods for autonomous vehicles is
concerned, the use of model predictive control is unsuccessful because this control
method is addressed to linear dynamics and cannot compensate for the nonlinearities
of the 4WS vehicle state-space model. On the other side the use of nonlinear model-
predictive control for 4WS vehicles can be of questionable performance because its
iterative search for an optimum is not of assured convergence and depends on initial
parametrization, (iv) Finally, sliding mode control cannot be applied directly to the
model of the 4WS vehicles because this is not inherently found into a canonical form.
Additionally, the application of backstepping control approaches is hindered by the
fact that the state-space description of 4WS vehicles is not found into a triangular
form. For the aforementioned reasons, nonlinear optimal (H-infinity) control is one
of the most efficient solutions one can have for the control problem of autonomous
navigation of 4WS vehicles.
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Fig. 8.19 Reference axes for themotion of the 4WS autonomous vehicle: the velocity of the vehicle
is decomposed in two components in a body-fixed reference frame xOy. The control inputs for
the 4WS vehicle are (i) the longitudinal force Fl f and Flr at the wheels of the front and rear axes,
provided by the vehicle’s engine or actuators, (ii) the turn angle of the front wheels δ f , (iii) the turn
angle of the rear wheels δr

8.4.2 Modelling of the Kinematics and Dynamics of the 4WS
Autonomous Vehicle

8.4.2.1 Outline of the Model of the 4WS Vehicle

Important parameters and variables in the 4WS vehicle model are: (i) the vehicle’s
velocity v, which is a vector forming an angle β with the transversal axis of the
vehicle. It can be decomposed in two components, a velocity Vx which is aligned
with the horizontal axis Ox in a body-fixed reference frame and a velocity Vy which
is aligned with the vertical axis Oy in such a body-fixed reference frame (Fig. 8.19),
(ii) the vehicle’s mass m and its moment of inertia I for rotation around the Oz axis,
(iii) the cornering stiffness coefficients c f and cr of the front and rear wheels of the
vehicle.

The control inputs to the model of the 4WS vehicle are defined as follows: (i) the
traction force that is exerted on the vehicle (ii) the turn angle of the front wheels (or
the first derivative of this turn angle) (iii) the turn angle of the rear wheels (or the
first derivative of this turn angle).

The difference between the turn angle of the vehicle’s wheels δ and the angle
formed between the vehicle’s velocity and the vehicle’s transversal axis β, is the
side-slip angle of the vehicle and is denoted by a = δ − β.

The forces exerted on the 4WS vehicle are defined as follows: (i) the longitudinal
force Fl which in turn is defined by the traction force of the vehicle’s engine or by the
force developed by the vehicle’s breaking system, (ii) the side or transversal force
FS which depends on the vehicle’s side-slip angle a and on the reaction force Fz

developed by the front and rear axle of the vehicle for compensating the vehicle’s
weight or additional load.
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About the X-axis forces, in the body-fixed reference frame for the vehicle one has
that [216]:

Fx f = Fl f cos(δ f ) − Fs f sin(δ f )

Fxr = Flr cos(δ f ) − Fsr sin(δr ) (8.104)

Under the assumption of a small turn angle of the vehicle’swheel, that is cos(δ f ) 
 1,
sin(δ f ) 
 δ f and cos(δr ) 
 1, sin(δr ) 
 δr one gets [216]:

Fx f = Fl f − Fs f δ f

Fxr = Flr − Fsrδr (8.105)

About the Y-axis forces, in the body-fixed reference frame for the vehicle one has
that (Fig. 8.20):

Fy f = Fs f cos(δ f ) + Fl f sin(δ f )

Fyr = Fsr cos(δ f ) + Flr sin(δr ) (8.106)

Again, under the assumption of a small turn angle of the vehicle’s wheel, that is
cos(δ f ) 
 1, sin(δ f ) 
 δ f and cos(δr ) 
 1, sin(δr ) 
 δ f one gets:

Fy f = Fs f + Fl f δ f

Fyr = Fsr + Flrδr (8.107)

Next, by considering that the vehicle’s motion is expressed in a body-fixed frame
and that Coriolis effects have to be taken into account, the equations of motion of
the 4WS vehicle become

m(v̇x − rvy) = Fl f + Flr − Fs f δ f − Fsrδr − cav
2
x (8.108)

m(v̇y + rvx ) = Fl f δ f + Flrδr + Fs f + Fsrδr (8.109)

I ṙ = l f (Fl f δ f + Fs f ) − lr (Flrδr + Fsr ) (8.110)

8.4.2.2 Kinematic and Dynamic Model of the 4WS Vehicle

The dynamic model of the 4WS vehicle was shown to be given by Eqs. (8.108),
(8.109) and (8.110). In this model Fl f and Flr are the traction forces generated by the
engine of the vehicle or by electric actuators and exerted on the wheels of the front
rear axles respectively. The control inputs of the vehicle are (i) the traction forces u1,
given by Fl f and FLr (ii) the angle of the wheels of the front axle, that is δ f = u2,
(iii) the angle of the wheels of the rear axle, that is δr = u3.
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Fig. 8.20 Diagram of the 4 WS vehicle

About the side forces exerted on the front wheels of the vehicle one has

Fs f = m

l
(glr − v̇x h)c f a f ⇒Fs f = mglr

l
c f a f − mv̇xh

l
c f a f (8.111)

and by considering that v̇x << g and h << l (h is the height of the center of gravity of
the vehicle) onehas that the term mv̇x h

l c f a f canbe considered asmoderate disturbance
which can be omitted. Thus, the model of the side force being exerted on the front
wheels is given by

Fs f = m

l
(glr − v̇x h)c f a f ⇒Fs f = mglr

l
c f a f (8.112)

or equivalently

Fs f = m

l
(glr )c f

(
u2 − vy + l f r

vx

)
(8.113)

where it has been used that a f = δ f − β f and β f = vy+l f r
vx

About the side forces exerted on the rear wheels of the vehicle one has

Fsr = m

l
(gl f − v̇x h)crar⇒Fsr = mgl f

l
crar − mv̇xh

l
crar (8.114)

and by considering that v̇x << g and h << l one has that the term mv̇x h
l crar can be

considered as moderate disturbance which can be omitted. Thus, the model of the
force being exerted on the front wheels is given by

Fsr = m

l
(gl f )crar⇒Fsr = mglr

l
crar , (8.115)
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or equivalently

Fsr = m

l
(gl f )cr

(
u3 − vy − lrr

vx

)
(8.116)

where it has been used that ar = δr − βr and βr = vy−lr r
vx

.
Consequently, the side forces exertedon thewheels of the vehicle are givenby [216]

Fs f = m

l
(glr )c f

(
u2 − vy + lr r

vx

)

Fsr = m

l
(gl f )cr

(
u3 − vy − lrr

vx

)
(8.117)

Using Eq. (8.117) in (8.108)–(8.110) one obtains the following equations for the
dynamic model of the 4WS autonomous vehicle:

mv̇x = mrvy + u1 + u1 − m

l
(glr )c f

(
u2 − vy + lr r

vx

)
u2 −

−m

l
(gl f )cr

(
u3 − vy − lrr

vx

)
u3 − cav

2
x (8.118)

mv̇y = −mrvx + u1u2 + u1u3 + m

l
(glr )c f

(
u2 − vy + lr r

vx

)
+

+m

l
(gl f )cr

(
u3 − vy − lrr

vx

)
(8.119)

I ṙ = l f

[
(u1u2) + m

l
(glr )c f

(
u2 − vy + lr r

vx

)]
−

− lr

[
(u1u3) + m

l
(gl f )cr

(
u3 − vy − lrr

vx

)]
(8.120)

Moreover, taking that (x, y) are the cartesian coordinates and θ is the orientation
angle of the vehicle, then the following equations about the 4WS vehicle kinematics
are considered:

ẋ = vxcos(θ) − vysin(θ) (8.121)

ẏ = vxsin(θ) + vycos(θ) (8.122)

θ̇ = r (8.123)

After a re-arrangement of Eqs. (8.121)–(8.123) and (8.118)–(8.120), the state-space
description of the 4WS is given as follows:

ẋ = vxcos(θ) − vysin(θ) (8.124)
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ẏ = vxsin(θ) + vycos(θ) (8.125)

v̇x = rvy + 2

m
u1 − 1

l
(glr )c f

(
u2 − vy + lrr

vx

)
u2 −

−1

l
(gl f )cr

(
u3 − vy − lrr

vx

)
u3 − ca

m
v2x (8.126)

v̇y = −rvx + 1

m
u1u2 + 1

m
u1u3 + 1

l
(glr )c f

(
u2 − vy + lr r

vx

)
+

+1

l
(gl f )cr

(
u3 − vy − lr r

vx

)
(8.127)

θ̇ = r (8.128)

ṙ = l f
I

[
(u1u2) + m

Il
(glr )c f

(
u2 − vy + lr r

vx

)]
−

− lr
I

[
(u1u3) + m

Il
(gl f )cr

(
u3 − vy − lr r

vx

)]
(8.129)

By defining the system’s state vector as X = [x, y, vx , vy, θ, r ]T one obtains the
following state-space description for the 4WS vehicle

ẋ1 = x3cos(x5) − x4sin(x5) (8.130)

ẋ2 = x3sin(x5) + x4cos(x5) (8.131)

ẋ3 = x4x6 + 2

m
u1 − 1

l
(glr )c f

(
u2 − x4 + lr x6

x3

)
u2 −

−1

l
(gl f )cr

(
u3 − x4 − lr x6

x3

)
u3 − ca

m
x23 (8.132)

ẋ4 = −x3x6 + 1

m
u1u2 + 1

m
u1u3 + 1

l
(glr )c f

(
u2 − x4 + lr x6

x3

)
+

+1

l
(gl f )cr

(
u3 − x4 − lr x6

x3

)
(8.133)

ẋ5 = x6 (8.134)
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ẋ6 = l f
I

[
(u1u2) + m

Il
(glr )c f

(
u2 − x4 + lr x6

x3

)]
−

− lr
I

[
(u1u3) + m

Il
(gl f )cr

(
u3 − x4 − lr x6

x3

)]
(8.135)

Thus, the joint kinematic-dynamic model of the 4WS vehicle is written in the form

ẋ = f (x, u) (8.136)

where x∈R6×1, u∈R3×1, and f ∈R6×1.

8.4.3 Approximate Linearization of the Model of the 4WS
Vehicle

8.4.3.1 1st Modelling and Linearization Approach

First, linearization of the complete kinematic-dynamic model of the 4WS vehicle is
considered. The completemodel has been given in Eqs. (8.130)–(8.135). The approx-
imately linearized model of the vehicle is computed around the temporary operating
point (equilibrium) (x∗, u∗), where x∗ is the present value of the system’s state vector
and u∗ is the last value of the control input vector exerted on the 4WS vehicle. The
linearized model is written as

ẋ = Ax + Bu + d̃ (8.137)

where

A =

⎛
⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x6

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x6· · · · · · · · · · · ·

∂ f6
∂x1

∂ f6
∂x2

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎠ |(x∗,u∗) B =

⎛
⎜⎜⎜⎝

∂ f1
∂u1

∂ f1
∂u2

∂ f1
∂u3

∂ f2
∂u1

∂ f2
∂u2

∂ f2
∂u3· · · · · · · · ·

∂ f6
∂u1

∂ f6
∂u2

∂ f6
∂u3

⎞
⎟⎟⎟⎠ |(x∗,u∗) (8.138)

The computation of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) proceeds as follows:
For the first row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f1

∂x1
= 0, ∂ f1

∂x2
= 0,

∂ f1
∂x3

= cos(x5),
∂ f1
∂x4

= −sin(x5),
∂ f1
∂x5

= −x3sin(x5) + x4cos(x5),
∂ f1
∂x6

= 0.

For the second row of the Jacobianmatrix A = ∇x f (x, u) one has: ∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0,
∂ f2
∂x3

= sin(x5),
∂ f2
∂x4

= cos(x5),
∂ f2
∂x5

= x3cos(x5) − x5sin(x5),
∂ f2
∂x6

= 0,

For the third row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= glr c f

l (− x4+l f x6
x23

)u2 − gl f cr
l (− x4−lr x6

x23
)u3 − ca

m 2x3,
∂ f3
∂x4

= x6 + glr c f

l
1
x3
u2,

∂ f3
∂x5

=
0, ∂ f3

∂x6
= x4 + glr c f

l
l f
x3
u2 − gl f cr

l
l f
x3
u3
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For the fourth row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= −x6 + glr c f

l
x4+l f x6

x23
+ gl f cr

l
x4−lr x6

x23
, ∂ f4

∂x4
= glr c f

l − 1
x3
u2 + gl f cr

l − 1
x3
u3,

∂ f4
∂x5

= 0,
∂ f4
∂x6

= −x3 + glr c f

l (− l f
x3

) + gl f cr
l ( lr

x3
).

For the fifth row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0,
∂ f5
∂x3

= 0, ∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 1.

For the sixth row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0,
∂ f6
∂x3

= l f mglr
I l c f

x4+l f x6
x23

− lrmgl f
I l cr

x4−lr x6
x23

, ∂ f6
∂x4

= l f mglr
I l c f (− 1

x3
) − lrmgl f

I l cr (
1
x3

), ∂ f6
∂x5

=
0, ∂ f6

∂x6
= l f mglr

I l c f (− l f
x3

) − lrmgl f
I l cr (− lr

x3
).

The computation of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) proceeds as fol-
lows:
For the first row of the Jacobian matrix B = ∇u f (x, u) one has: ∂ f1

∂u1
= 0, ∂ f1

∂u2
= 0,

∂ f1
∂u3

= 0

For the second row of the Jacobianmatrix B = ∇u f (x, u) one has: ∂ f2
∂u1

= 0, ∂ f2
∂u2

= 0,
∂ f2
∂u3

= 0

For the third row of the Jacobian matrix B = ∇u f (x, u) one has: ∂ f3
∂u1

= 2
m ,

∂ f3
∂u2

=
− glr c f

l (2u2 − x4+l f x6
x3

), ∂ f3
∂u3

= − gl f c f

l (2u3 − x4−lr x6
x3

).

For the fourth rowof the Jacobianmatrix B = ∇u f (x, u)one has: ∂ f4
∂u1

= 1
m u2 + 1

m u3,
∂ f4
∂u2

= 1
m u1 + glr c f

l , ∂ f4
∂u3

= 1
m u1 + gl f cr

l .

For the fifth row of the Jacobian matrix B = ∇u f (x, u) one has: ∂ f5
∂u1

= 0, ∂ f5
∂u2

= 0,
∂ f5
∂u3

= 0.

For the sixth row of the Jacobian matrix B = ∇u f (x, u) one has: ∂ f6
∂u1

= l f
I u2 − lr

I u3,
∂ f6
∂u2

= l f mglr
I l c f + l f

I u1,
∂ f6
∂u3

= − lrmgl f
I l cr − lr

I u1

8.4.3.2 2nd Modelling and Linearization Approach

Next, linearization of a simplified kinematic-dynamic model of the 4WS vehicle is
considered. This model is obtained from the complete model given in Eqs. (8.130)–
(8.135), after omitting terms comprising squares of the control inputs that is u2i ,
or products between the control inputs, such as uiu j . Under such an approach the
kinematic-dynamic model of the 4WS vehicle becomes:
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ẋ1 = x3cos(x5) − x4sin(x5) (8.139)

ẋ2 = x3sin(x5) + x4cos(x5) (8.140)

ẋ3 = x4x6 + 2

m
u1 + 1

l
(glr )c f

(
x4 + lr x6

x3

)
u2 −

+1

l
(gl f )cr

(
x4 − lr x6

x3

)
u3 − ca

m
x23 (8.141)

ẋ4 = −x3x6 + 1

l
(glr )c f

(
u2 − x4 + lr x6

x3

)
+

+1

l
(gl f )cr

(
u3 − x4 − lr x6

x3

)
(8.142)

ẋ5 = x6 (8.143)

ẋ6 = l f
I

[
m

Il
(glr )c f

(
u2 − x4 + lr x6

x3

)]
−

− lr
I

[
m

Il
(gl f )cr

(
u3 − x4 − lr x6

x3

)]
(8.144)

Then, the state-space model of the 4WS autonomous vehicle can be written as:

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3cos(x5) − x4sin(x5)
x3sin(x5) + x4cos(x5)

x4x6 − ca
m x23

−x3x6 − 1
l (glr )c f

(
x4+lr x6

x3

)
− 1

l (gl f )cr
(
x4−lr x6

x3

)

x6
l f
I

[
m
Il (glr )c f

(
− x4+lr x6

x3

)]
− lr

I

[
m
Il (gl f )cr

(
− x4−lr x6

x3

)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
2
m

1
l (glr )c f

(
x4+lr x6

x3

)
1
l (gl f )cr

(
x4−lr x6

x3

)

0 1
l (glr )c f

1
l (gl f )cr

0 0 0
0 l f

I
m
I l (glr )c f − lr

I
m
I l (gl f )cr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝
u1
u2
u3

⎞
⎠ (8.145)

Thus, the state-space model of the 4WS autonomous vehicle is written in the affine-
in-the-input form:

ẋ = f (x) + g(x)u (8.146)

with x∈R6×1, f (x)∈R6×1, g(x)∈R6×3 and u∈R6×3. For the state-space model of
Eq. (8.146) linearization is performed around the temporary operating point (equi-
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librium) (x∗, u∗). This operating pointwhich is updated at each iteration of the control
method, consists of the present value of the 4WS vehicle state vector x∗ and of the
last value of the control inputs vector u∗ that was exerted on it. By denoting the gain
matrix g(x) = [g1(x), g2(x), g3(x)] the approximate linearization procedure gives

ẋ = Ax + Bu + d̃ (8.147)

where matrices A, B are associated with the system’s Jacobians, as shown next:

A = ∇x f (x) |(x∗,u∗) +∇x g2(x)u2 |(x∗,u∗) +∇x g3(x)u3 |(x∗,u∗) (8.148)

B = ∇u[ f (x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗) (8.149)

The elements of the Jacobian matrix ∇x f (x) |(x∗,u∗) are computed as follows:
For the first row of the Jacobian matrix ∇x f (x, u) one has: ∂ f1

∂x1
= 0, ∂ f1

∂x2
= 0,

∂ f1
∂x3

= cos(x5),
∂ f1
∂x4

= −sin(x5),
∂ f1
∂x5

= −x3sin(x5) + x4cos(x5),
∂ f1
∂x6

= 0.

For the second row of the Jacobian matrix ∇x f (x, u) one has: ∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0,
∂ f2
∂x3

= sin(x5),
∂ f2
∂x4

= cos(x5),
∂ f2
∂x5

= x3cos(x5) − x5sin(x5),
∂ f2
∂x6

= 0,

For the third row of the Jacobian matrix ∇x f (x) one has: ∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= −2cax3,
∂ f3
∂x4

= x6,
∂ f3
∂x5

= 0, ∂ f3
∂x6

= x4

For the fourth row of the Jacobian matrix ∇x f (x) one has: ∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= −x4 + glr c f

l
x4+l f x6

x23
+ gl f cr

l
x4−lr x6

x23
, ∂ f4

∂x4
= − glr c f

l
1
x3

− gl f cr
l

1
x3
, ∂ f4

∂x5
= 0, ∂ f4

∂x6
=

− glr c f

l
l f
x3

+ gl f cr
l

lr
x3
.

For the fifth row of the Jacobian matrix ∇x f (x) one has:
∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

= 0,
∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 0.

For the sixth row of the Jacobian matrix ∇x f (x) one has:
∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0, ∂ f6
∂x3

=
l f mglr

I l c f
x4+l f x6

x23
− lrmgl f

I l cr
x4−lr x6

x23
, ∂ f6

∂x4
= l f mglr

I l c f
1
x3

+ lrmgl f
I l cr

1
x3
, ∂ f6

∂x5
= 0, ∂ f6

∂x6
=

− l f mglr
I l c f

l f
x3

− lrmgl f
I l cr

lr
x3
.

The elements of the Jacobian matrix ∇x g2(x) |(x∗,u∗) are computed as follows:

∇x g2(x) |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 − glr c f

l
x4+l f x6

x23

glr c f

l
1
x3

0 glr c f

l
l f
x3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.150)
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The elements of the Jacobian matrix ∇x g3(x) |(x∗,u∗) are computed as follows:

∇x g3(x) |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 − gl f cr

l
x4−lr x6

x23

gl f cr
l

1
x3

0 gl f cr
l − lr

x3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.151)

8.4.4 The Nonlinear H-Infinity Control

8.4.4.1 Tracking Error Dynamics for the 4WS Vehicle

The initial nonlinear model of the 4WS automatic ground vehicle is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (8.152)

Linearization of themodel of the 4WSgroundvehicle is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)).
The linearized equivalent model of the 4WS vehicle is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.153)

Thus, after linearization round its current operating point, the 4WS autonomous
ground vehicle’s kinematic-dynamic model is written as

ẋ = Ax + Bu + d1 (8.154)

Parameter d1 stands for the linearization error in the 4WS vehicle’s dynamic model
appearing in Eq. (8.154). The reference setpoints for the 4WS ground vehicle are
denoted by xd = [xd1 , · · · , , xd6 ]. Tracking of this trajectory is achieved after applying
the control input u∗. At every time instant the control input u∗ is assumed to differ
from the control input u appearing in Eq. (8.154) by an amount equal to Δu, that is
u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (8.155)

The joint kinematics and dynamics of the controlled 4WS vehicle described in
Eq. (8.154) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (8.156)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains
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ẋ = Ax + Bu + Bu∗ + d3 (8.157)

By subtracting Eq. (8.155) from (8.157) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (8.158)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (8.159)

The above linearized form of the 4WS vehicle’s model can be efficiently controlled
after applying an H-infinity feedback control scheme.

8.4.4.2 Min-Max Control and Disturbance Rejection

The initial nonlinear model of the 4WS autonomous ground vehicle is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (8.160)

Linearization of the joint kinematic and dynamicmodel of the 4WS ground vehicle is
performed at each iteration of the control algorithm round its present operating point
(x∗, u∗) = (x(t), u(t − Ts)). The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.161)

where matrices A and B are obtained from the computation of the 4WS vehicle’s
Jacobians, according to Eq. (8.138), and vector d̃ denotes disturbance terms due to
linearization errors. The problem of disturbance rejection for the linearized model
that is described by

ẋ = Ax + Bu + Ld̃

y = Cx (8.162)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

As pointed out in previous applications of the H∞ control approach, a feedback
control scheme is designed for trajectory tracking by the 4WS vehicle’s state vector
and simultaneous disturbance rejection, considering that the disturbance affects the
system in the worst possible manner. The disturbances’ effect are incorporated in the
following quadratic cost function:
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J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (8.163)

The significance of the negative sign in the cost function’s term that is associated
with the perturbation variable d̃(t) is that the disturbance tries to maximize the
cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (8.164)

As in previously examined ground vehicles, the objective of the optimization proce-
dure for the 4WS vehicle is to compute a control signal u(t) which can compensate
for the worst possible disturbance, that is externally imposed to the system of the
4WS autonomous vehicle. However, the solution to the min-max optimization prob-
lem is directly related to the value of the parameter ρ. This means that there is an
upper bound in the disturbances magnitude that can be annihilated by the control
signal.

8.4.4.3 H-Infinity Feedback Control

Following previous applications of the H-infinity control, for the linearized system
given by Eq. (8.162) the cost function of Eq. (8.163) is defined, where the coef-
ficient r determines the penalization of the control input and the weight coeffi-
cient ρ determines the reward of the disturbances’ effects. It is assumed that (i)
The energy that is transferred from the disturbances signal d̃(t) is bounded, that is∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L] are stabilizable, (iii) the
matrix [A,C] is detectable. Then, the optimal feedback control law is given by

u(t) = −Kx(t) (8.165)

with

K = 1

r
BT P (8.166)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (8.167)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by
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Fig. 8.21 Diagram of the nonlinear optimal control scheme for the 4WS autonomous ground
vehicle

d̃(t) = 1

ρ2
LT Px(t) (8.168)

The diagram of the considered control loop is depicted in Fig. 8.21.

8.4.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the control loop of the 4WS
autonomous ground vehicle. Moreover, under moderate conditions asymptotic sta-
bility is proven and convergence to the reference setpoints is achieved. The tracking
error dynamics for the 4WS automatic ground vehicle is written in the form

ė = Ae + Bu + Ld̃ (8.169)

where in this 4WS autonomous vehicle’s case L = I∈R6×6 with I being the iden-
tity matrix. Variable d̃ denotes model uncertainties and external disturbances of the
vehicle’s model. The following Lyapunov function is considered
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V = 1

2
eT Pe (8.170)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1

2
ėT Pe + 1

2
ePė⇒

V̇ = 1

2
[Ae + Bu + Ld̃]T P + 1

2
eT P[Ae + Bu + Ld̃]⇒ (8.171)

V̇ = 1

2
[eT AT + uT BT + d̃T LT ]Pe +

+1

2
eT P[Ae + Bu + Ld̃]⇒ (8.172)

V̇ = 1

2
eT AT Pe + 1

2
uT BT Pe + 1

2
d̃T LT Pe +

1

2
eT P Ae + 1

2
eT PBu + 1

2
eT PLd̃ (8.173)

The previous equation is rewritten as

V̇ = 1

2
eT (AT P + PA)e +

(
1

2
uT BT Pe + 1

2
eT PBu

)
+

+
(
1

2
d̃T LT Pe + 1

2
eT PLd̃

)
(8.174)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (8.175)

Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (8.176)

By substituting Eqs. (2.89) and (2.90) one obtains

V̇ = 1

2
eT

[
−Q + P

(
2

r
BBT − 1

2ρ2
LLT

)
P

]
e +

+eT PB

(
−1

r
BT Pe

)
+ eT PLd̃⇒ (8.177)
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V̇ = −1

2
eT Qe +

(
2

r
PBBT Pe − 1

2ρ2
eT PLLT

)
Pe

−1

r
(eT PBBT Pe) + eT PLd̃ (8.178)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (8.179)

or, equivalently

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe +

+1

2
eT PLd̃ + 1

2
d̃T LT Pe (8.180)

Lemma: The following inequality holds

1

2
eT Ld̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.181)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1

ρ2
b2 − 2ab ≥ 0 ⇒ 1

2
ρ2a2 + 1

2ρ2
b2 − ab ≥ 0 ⇒

ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 ⇒ 1

2
ab + 1

2
ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 (8.182)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.183)

Equation (8.183) is substituted in Eq. (8.180) and the inequality is enforced, thus
giving

V̇ ≤ −1

2
eT Qe + 1

2
ρ2d̃T d̃ (8.184)

Equation (8.184) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives
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∫ T

0
V̇ (t)dt ≤ −1

2

∫ T

0
||e||2Qdt + 1

2
ρ2

∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||d̃||2dt (8.185)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (8.186)

then one gets ∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (8.187)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (8.170) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe ≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the 4WS vehicle’s model is based on Eq. (8.184) and
on the application of Barbalat’s Lemma. It uses the condition of Eq. (8.186) about
the boundedness of the square of the aggregate disturbance and modelling error term
d̃ that affects the model. However, as explained above the proof of global asymptotic
stability is not restricted by this condition. By selecting the attenuation coefficient
ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that
the first derivative of the Lyapunov function is upper bounded by 0. Therefore for
the i th time interval it is proven that the Lyapunov function defined in Eq. (8.170) is
a decreasing one. This also assures the Lyapunov function of the system defined in
Eq. (8.170) will always have a negative first-order derivative.

8.4.6 Robust State Estimation Using the H-Infinity Kalman
Filter

The control loop for the 4WS autonomous vehicle can be implemented with the
feedback of a partiallymeasurable state vector and by processing only a small number
of state variables. To reconstruct the missing information about the state vector of
the 4WS autonomous vehicle it is proposed to use a filtering scheme and based on
it to apply state estimation-based control [457]. The recursion of the H∞ Kalman
Filter, can be formulated in terms of a measurement update and a time update part
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Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)] (8.188)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k) (8.189)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the system of the 4WS autonomous vehicle,
such as the velocities Vx and Vy and the orientation angle θ , and can estimate through
filtering the rest of the state vector elements.

8.4.7 Simulation Tests

The performance of the proposed nonlinear optimal control scheme for the
autonomous 4WS vehicle has been tested in the case of tracking of different ref-
erence setpoints. The control scheme exhibited fast and accurate tracking of the
reference paths. The computation of the feedback control gain required the solution
of the algebraic Riccati equation given in Eq. (8.175), at each iteration of the control
algorithm. The obtained results are depicted in Figs. 8.22, 8.23, 8.24, 8.25, 8.26, 8.27,
8.28, 8.29, 8.30, 8.31, 8.32 and 8.33. The measurement units for the state variables
of the 4WS vehicle’s model were in the SI system (position coordinates measured in
m and heading angle in rad). It can be noticed that the H-infinity controller achieved
fast and accurate convergence to the reference setpoints for all elements of the 4WS
vehicle’s state-vector. Moreover, the variations of the control inputs, that is of the
4WS autonomous vehicle’s velocity and of its steering angle were smooth.

As noted, the proposed nonlinear optimal controlmethod for the 4WSautonomous
vehicle was based on an approximate linearization of its joint kinematic and dynamic
model. The advantages that the proposed control method exhibits are outlined as
follows: (i) it is applied directly on the nonlinear dynamical model of the 4WS
vehicle and not on an equivalent linearized description of it, (ii) It avoids the elab-
orated linearizing transformations (diffeomorphisms) which can be met in global
linearization-based control methods for autonomous vehicles (iii) the controller is
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Fig. 8.22 a Tracking of reference path 1 (red-line) by the 4WS autonomous vehicle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the 4WS
vehicle
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Fig. 8.23 Tracking of reference path 1: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)

designed according to optimal control principles which implies the best trade-off
between precise tracking of the reference setpoints on the one side and moderate
variations of the control inputs on the other side (iv) the control method exhibits sig-
nificant robustness to parametric uncertainty, modelling errors as well as to external
perturbations.



8.4 Nonlinear Optimal Feedback Control of Four-Wheel … 447

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x1

x2

0 5 10 15 20 25 30 35 40
−20

0

20

time (sec)

u 1

0 5 10 15 20 25 30 35 40
−1

0

1

time (sec)

u 2

0 5 10 15 20 25 30 35 40
−1

0

1

time (sec)

u 3

(a) (b)

Fig. 8.24 a Tracking of reference path 2 (red-line) by the 4WS autonomous vehicle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the 4WS
vehicle
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Fig. 8.25 Tracking of reference path 2: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Fig. 8.26 a Tracking of reference path 3 (red-line) by the 4WS autonomous vehicle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the 4WS
vehicle
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Fig. 8.27 Tracking of reference path 3: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Fig. 8.28 a Tracking of reference path 4 (red-line) by the 4WS autonomous vehicle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the 4WS
vehicle
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Fig. 8.29 Tracking of reference path 4: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Fig. 8.30 a Tracking of reference path 5: (red-line) by the 4WS autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the
4WS vehicle
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Fig. 8.31 Tracking of reference path 5: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Fig. 8.32 a Tracking of reference path 6: (red-line) by the 4WS autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the
4WS vehicle
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Fig. 8.33 Tracking of reference path 6: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Table 8.3 RMSE of the 4WS vehicle’s state variables

Path RMSE X (m) RMSE Y (m) RMSE θ (rad)

1 3.3·10−3 3.3·10−3 0.1·10−3

2 6.0·10−3 13.0·10−3 0.7·10−3

3 8.2·10−3 6.0·10−3 1.1·10−3

4 13.3·10−3 11.6·10−3 2.4·10−3

5 5.0·10−3 4.2·10−3 1.0·10−3

6 12.2·10−3 12.6·10−3 1.2·10−3

Table 8.4 RMSE of the 4WS state variables under disturbance

Δa (%) RMSE X (m) RMSE Y (m) RMSE θ (rad)

0 8.2·10−3 6.0·10−3 1.1·10−3

10 8.2·10−3 6.2·10−3 0.6·10−3

20 8.2·10−3 6.3·10−3 0.8·10−3

30 8.0·10−3 6.4·10−3 1.3·10−3

40 7.9·10−3 6.5·10−3 1.8·10−3

50 7.9·10−3 6.6·10−3 2.3·10−3

60 7.8·10−3 6.6·10−3 2.8·10−3

Yet computationally simple, the proposed H∞ control scheme has an excellent
performance. Comparing to the control of 4WS automatic ground vehicles that rely
on global linearization methods the presented nonlinear H-infinity control scheme
is equally efficient in setpoint tracking while also retaining optimal control features
[457]. The tracking accuracy of the presented control method (H∞) has been eval-
uated in the case of several reference setpoints. By using the Kalman Filter as a
robust observer estimates of the state vector of the vehicle were obtained, and thus
the implementation of state estimation-based control became possible. Themeasured
state variables were x3 = Vx , x4 = Vy and x5 = θ . The obtained results are given in
Table8.3.

The tracking performance of the nonlinearH-infinity controlmethod for themodel
of the 4WS vehicle was measured in the case of model uncertainty, imposing an
imprecision equal to Δa% about the vehicle’s moment of inertia I . The obtained
results are outlined in Table8.4. It can be noticed that despite model perturbations
the tracking accuracy of the control method remained satisfactory.
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8.5 Flatness-Based Control for AGVs and Kalman
Filter-Based Compensation of Disturbance Forces
and Torques

8.5.1 Outline

The present section analyzes the use of a global linearization-based control approach
that is based on differential flatness theory to the problem of autonomous navigation
of four-wheel robotic vehicles. As previously noted, the precisemodeling of the vehi-
cles’ dynamics improves the efficiency of vehicles controllers in adverse cases, for
example in high velocity, when performing abrupt maneuvers, under mass and loads
changes or when moving on rough terrain. Using model-based control approaches it
is possible to design a nonlinear controller that maintains the vehicle’s motion char-
acteristics within desirable ranges [45, 319, 332, 333, 348, 616]. When the vehicle’s
dynamics is subject to modeling uncertainties or when there are unknown forces and
torques exerted on the vehicle it is important to be in position to estimate in real-time
disturbances and unknown dynamics so as to compensate them through the control
input and to maintain the satisfactory performance of the vehicle’s automated steer-
ing system. In this direction, estimation for the unknown dynamics of the vehicle and
state estimation-based control schemes have been developed [201, 312, 350, 580].

The objective of the present section is two-fold. On the one side it analyzes
the design of a controller for autonomous navigation of automatic ground vehicles
(AGVs). On the other side it proposes a solution to the problem of four-wheel vehicle
control under model uncertainties and external disturbances. Considering, that only
under ideal conditions the dynamicmodel of the vehicle is precisely known (e.g. there
may be variations in the transported mass, or in the cornering stiffness coefficients
characterizing the interaction of the tires with the ground, or in the position of the
vehicle’s center of gravity) and that in several cases there is uncertainty about the
forces and torques developed on the vehicle (e.g. traction and braking torques on the
wheels, forces due to traction of implements, or lateral forces which generate torques
affecting the yaw stability of the vehicle) the need for designing robust controllers
of the autonomous vehicles becomes obvious [49, 510, 521, 590]. By compensating
efficiently such disturbances forces and torques safety features of the vehicle are
improved and its autonomous functioning remains reliable even under adverse road
conditions.

Dynamic analysis for the 4-wheel vehicle provided, as in the case of Sect. 8.2.
A 3-DOF model is introduced having as elements the vehicle’s velocity along the
horizontal and vertical axis of an inertial reference frame as well as the rate of change
of its orientation angle (this is the angle defined by the vehicle’s longitudinal axis
and the horizontal axis of the frame). Lateral forces are shown to affect the vehicle’s
motion and to be dependent on the longitudinal and lateral velocity of the vehicle,
on the yaw rate and on the cornering stiffness coefficients for the front and rear
tires. The control inputs to the vehicles’ dynamic model are the traction/bracking
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wheel torque and the turn angle of the steering wheel. Since the parameters of the
dynamic model of the vehicle cannot always be known with precision or may be
time-varying (e.g. cornering stiffness coefficients, transported mass) and since there
may be unmodelled external forces and torques exerted on the vehicle (e.g. due to
road condition, disturbances in traction forces) it is important to design a control
loop with robustness to the aforementioned sources of uncertainty and disturbances,
as well as to be in position to estimate in real-time such disturbances through the
processing of measurements from a small number of on-board sensors.

Next, it is shown how a nonlinear controller for the aforementioned vehicle’s
model can be obtained through the application of differential flatness theory [145,
476, 546, 572]. The flat output for the vehicle’s model is a vector comprising the
x-axis velocity and a second variable based on a linear relation between the y-axis
velocity and the rate of change of the orientation angle [332, 333]. By expressing
all state variables and the control input of the four-wheel vehicle model as functions
of the flat output and its derivatives the system’s dynamic model is transformed into
the linear Brunovksy (canonical) form [303, 495]. For the latter model it is possible
to design a state feedback controller that enables accurate tracking of the vehicle’s
velocity set-points.

By exploiting the vehicle’s exactly linearized model and its transformation into a
canonical form it is possible to design a state estimator for approximating the system’s
state vector through the processing of measurements coming from a small number
of on-board sensors. To this end the concept of Derivative-free nonlinear Kalman
Filtering is used once again. Unlike the Extended Kalman Filter, the proposed fil-
tering method provides estimates of the state vector of the nonlinear system without
the need for derivatives and Jacobians calculation [439, 445, 450]. By avoiding lin-
earization approximations, the proposed filtering method improves the accuracy of
estimation of the system’s state variables. Moreover, it is shown that it is possible
to redesign the Kalman Filter in the form of a disturbance observer and using the
estimation of the disturbance to develop an auxiliary control input that compen-
sates for their effects. In this way the vehicle’s control and autonomous navigation
system can become robust with respect to uncertainties in the model’s parameters
or uncertainties about external forces and torques. It is also noted that in terms of
computation speed the proposed Kalman Filter-based disturbance estimator for the
vehicle is faster than disturbance estimators that may be based on other nonlinear
filtering approaches (e.g. Extended Kalman Filter, Unscented Kalman Filter or Par-
ticle Filter) thus becoming advantageous for the real-time estimation of the unknown
vehicle dynamics [438, 457]. The efficiency of the proposed nonlinear control and
Kalman Filter-based disturbances estimation scheme is evaluated through numerical
simulation tests. It has been shown that by accurately estimating disturbance forces
and torques the control loop achieves elimination of the tracking error for all state
variables of the vehicle.
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Fig. 8.34 Nonlinear
4-wheeled vehicle model

8.5.2 Dynamic Model of the Vehicle

8.5.2.1 Definition of Parameters in 4-Wheel Vehicle Dynamic Model

The dynamic model of the four-wheel vehicle that was analyzed in a previous section
is now re-examined. With reference to Fig. 8.34 (where the lateral forces applied on
the wheels are considered to define the vehicle’s motion) one has the following
parameters: β is the angle between the velocity and the vehicle’s transversal angle,
V is the velocity vector of the vehicle, ψ is the yaw angle (rotation round the z axis),
fx : is the aggregate force along the x axis, fy is the aggregate force along the y axis,
Tz is the aggregate torque round the z axis and δ is the steering angle of the front
wheels [332, 348, 572].

Themotion of the vehicle along its longitudinal axis is controlled by the traction or
braking wheel torque Tω = Tm − Tb with Tb = Tb f + Tbr and the lateral movement
via the steering angle δ. The two control inputs of the four wheel vehicle model are

u1 = Tω

u2 = δ (8.190)

As explained in Sect. 8.2, a first form of the vehicle’s dynamic model is

ẋ = f (x, t) + g(x, t)u + g1u1u2 + g2u
2
2 (8.191)

where
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f (x, t) =

⎛
⎜⎜⎝

Ir
mR (ω̇r + ω̇ f )

ψ̇Vx + 1
m

(
−C f

(Vy+L f ψ̇)

Vx
− Cr

(Vy−L f ψ̇)

Vx

)

1
Iz

(
−L f C f

(Vy+L f ψ̇)

Vx
+ LrCr

(Vy−L f ψ̇)

Vx

)

⎞
⎟⎟⎠ (8.192)

g(x, t) =

⎛
⎜⎜⎝

1
mR

C f

m

(
Vy+L f ψ̇

Vx

)

0
(
C f R−Ir ω̇ f

mR

)

0 (L f C f R−L f Ir ω̇ f )

Iz R

⎞
⎟⎟⎠ (8.193)

g1 =
⎛
⎝

0
1

mR
L f

Iz R

⎞
⎠ g2 =

⎛
⎝

−C f

m
0
0

⎞
⎠ x =

⎛
⎝
Vx

Vy

ψ̇

⎞
⎠ u =

(
u1
u2

)
(8.194)

The previously analyzed nonlinear model of the vehicle’s dynamics can be simplified
if the control inputs u1u2 and u22 are not taken into account. In the latter case the
dynamics of the vehicle takes the form

ẋ = f (x, t) + g(x, t)u (8.195)

8.5.3 Flatness-Based Controller for the 3-DOF Vehicle Model

8.5.3.1 Flatness-Based Controller for the 4-Wheel Vehicle

To show that the four-wheel vehicle is differentially flat the following flat outputs
are defined [332, 333]:

y1 = Vx

y2 = L f mVy − Izψ̇ (8.196)

Then it holds that all elements of the system’s state vector can be written as functions
of the flat outputs and their derivatives. Indeed, for x = [Vx , Vy, ψ̇]T it holds

Vx = y1 (8.197)

Vy = y2
L f m

−
(

Iz
L f m

) (
L f my1 ẏ2 + Cr (L f + Lr )y2

Cr (L f + Lr )(Iz − L f Lrm) + (L f my1)2

)
(8.198)

ψ̇ = L f my1 ẏ2 + Cr (L f + Lr )y2
Cr (L f + Lr )(Iz − L f Lrm) + (L f my1)2

(8.199)
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Expressing the system’s state variables as functions of the flat outputs one has the
following state-space description for the system

(
ẏ1
ÿ2

)
= Δ(y1, y2, ẏ2)

(
u1
u2

)
+ Φ(y1, y2, ẏ2) (8.200)

where

Δ(y1, y2, ẏ2) =
(

Δ11(y1, y2, ẏ2) Δ12(y1, y2, ẏ2)
Δ21(y1, y2, ẏ2) Δ22(y1, y2, ẏ2)

)
(8.201)

with

Δ11(y1, y2, ẏ2) = 1

mR
(8.202)

Δ12(y1, y2, ẏ2) = C f

m

(
Vy + L f ψ̇

y1

)
(8.203)

Δ21(y1, y2, ẏ2) = Cr (L f + Lr )(Vy − Lr ψ̇) − L f mψ̇ y21
mRy21

(8.204)

Δ22(y1, y2, ẏ2) =
(

−L f my1 + LrCr (L f + Lr )

y1

)
(L f C f R − L f Ir ω̇ f )

Iz R
+

+ ((Cr (L f + Lr ))(Vy − Lr ψ̇) − L f mψ̇ y21 )

y21
·C f (Vy + L f ψ̇)

my1
− Cr (L f + Lr )

y1

RC f − Ir ω̇ f

mR

(8.205)

Moreover about matrix Φ(y1, y2, ẏ2) it holds

Φ(y1, y2, ẏ2) =
(

Φ1(y1, y2, ẏ2)
Φ2(y1, y2, ẏ2)

)
(8.206)

with elements

Φ1(y1, y2, ẏ2) = ψ̇Vy − Ir
mR

(ω̇r + ω̇ f ) (8.207)

Φ2(y1, y2, ẏ2) = −L f my1 f3(x, t) − Cr (L f + Lr )

y1
f2(x, t) +

+C f (L f + Lr )(Vy − Lr ψ̇) − L f mψ̇ y21
y21

f1(x, t) + LrCr (L f + Lr )

y1
f3(x, t) (8.208)

According to the above the system’s control input can be also written as a function
of the flat output and its derivatives. Thus one has
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(
ẏ1
ÿ2

)
= Δ(y1, y2, ẏ2)

(
u1
u2

)
+ Φ(y1, y2, ẏ2) (8.209)

i.e. (
u1
u2

)
= Δ−1(y1, y2, ẏ2)

−1(

(
ẏ1
ẏ2

)
− Φ(y1, y2, ẏ2)) (8.210)

which means that provided that matrix Δ(y1, y2, ẏ2) is invertible, the control input
u = [u1, u2]T can be written as a function of the flat output and its derivatives. The
non-singularity of matrix Δ(y1, y2, ẏ2) depends on the determinant

det (Δ(y1, y2, ẏ2)) = (Ir ω̇ f − C f R)(L2
f y

2
1m

2 − Cr (L f + Lr )Lr L f m + Cr Iz Lr )

Iz R2y1m2

(8.211)
This determinant has non-zero values because it holds:

(i) (Ir ω̇ f − C f R) �=0 since for the wheels rotational acceleration one has ω̇ f <
C f R
Ir

, and also

(ii) (L2
f y

2
1m

2 − Cr (L f + Lr )Lr L f m + Cr Iz Lr ) �=0 when Iz > L f m.

The differentially flat model of the vehicle can be also written in a canonical form
after defining the new control input vector

(
v1
v2

)
= Δ(y1, y2, ẏ2)

(
u1
u2

)
+ Φ(y1, y2, ẏ2) (8.212)

thus one obtains a MIMO system description into canonical form, i.e.

⎛
⎝
ẏ1
ẏ2
ÿ2

⎞
⎠ =

⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝
y1
y2
ẏ2

⎞
⎠ +

⎛
⎝
1 0
0 0
0 1

⎞
⎠

(
v1
v2

)
(8.213)

Once the vehicle’s model is written in the differentially flat form the controller that
enables tracking of a desirable trajectory defined by yre f1 , yre f2 , ẏre f2 is given by

v1 = ẏre f1 − kp1(y1 − yre f1 )

v2 = ÿre f2 − kd2(ẏ2 − ẏre f2 ) − kp2(y2 − yre f2 ) (8.214)

and defining the error variables e1 = y1 − yre f1 and e2 = y2 − yre f2 one has the fol-
lowing tracking error dynamics for the closed-loop system

ė1 + kp1e1 = 0

ë2 + kd2 ė2 + kp2e2 = 0 (8.215)
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Therefore, the suitable selection of gains kp1>0 and kp2 > 0, kd2 > 0 assures
the asymptotic elimination of the tracking errors, i.e. limt→∞e1(t) = 0 and
limt→∞e2(t) = 0.

The control input that is finally applied for the vehicle’s steering is given by

(
u1
u2

)
= Δ(y1, y2, ẏ2)

−1

((
v1
v2

)
− Φ(y1, y2, ẏ2)

)
(8.216)

or equivalently

(
u1
u2

)
= Δ(y1, y2, ẏ2)

−1[
(

ẏre f1 − kp1 (y1 − yre f1 )

ÿre f2 − kd2 (ẏ2 − ẏre f2 ) − kp2 (y2 − yre f2 )

)
− Φ(y1, y2, ẏ2)]

(8.217)

The transformation of the vehicle’s model into a canonical form, through the appli-
cation of the differential flatness theory, facilitates not only the design of a feedback
controller for trajectory tracking but also the design of filters for the estimation of
the state vector of the vehicle out of a limited number of sensor measurements.

8.5.4 Estimation of Vehicle Disturbance Forces with the
Derivative-Free Nonlinear Kalman Filter

8.5.4.1 State Estimation with the Derivative-Free Nonlinear Kalman
Filter

It was shown that the initial nonlinear model of the vehicle can be written in the
MIMO canonical form

⎛
⎝
ẏ1
ẏ2
ÿ2

⎞
⎠ =

⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠

⎛
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y2
ẏ2

⎞
⎠ +

⎛
⎝
1 0
0 0
0 1

⎞
⎠

(
v1
v2

)
(8.218)

Thus one has a MIMO linear model of the form

ẏ f = A f y f + B f v

z f = C f y f (8.219)

where y f = [y1, y2, ẏ2]T and matrices A f ,B f ,C f are in the MIMO canonical form

A f =
⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠ B f =

⎛
⎝
1 0
0 0
0 1

⎞
⎠ CT

f =
⎛
⎝
1 0
0 1
0 0

⎞
⎠ (8.220)
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where the measurable variables y1 = Vx , y2 = L f mVy − Izψ̇ are associated with
the linear velocity of the vehicle Vx , Vy and with its angular velocity ψ̇ . For the
aforementioned model, and after carrying out discretization of matrices A f , B f and
C f with common discretization methods one can perform linear Kalman filtering
using Eqs. (8.229) and (8.230). This is Derivative-free nonlinear Kalman filtering
for the model of the vehicle which, unlike EKF, is performed without the need to
compute Jacobian matrices and does not introduce numerical errors.

8.5.4.2 Kalman Filter-Based Estimation of Disturbances

It is assumed that disturbance forces affect the nonlinear vehicle model along its
longitudinal and transversal axis and that disturbance torques affect the nonlinear
vehicle model on its z axis. For example disturbance forces can be due to a force
vector that coincides with the vehicle’s longitudinal axis (e.g. traction disturbance)
or disturbance torques can be due to unmodelled lateral forces. These disturbance
forces and torques change dynamically in time and their dynamics is given by

d̃x = fdx (Vx , Vy, ψ̇)

d̃y = fdy (Vx , Vy, ψ̇)

d̃ψ = Tdψ
(Vx , Vy, ψ̇) (8.221)

Since the state variables of the vehicle’s dynamic model can be written as functions
of the flat outputs y1 and y2 and of their derivatives it also holds

d̃(i)
x = f (i)

dx
(y1, y2, ẏ2)

d̃(i)
y = f (i)

dy
(y1, y2, ẏ2)

d̃(i)
ψ = T (i)

dψ
(y1, y2, ẏ2) (8.222)

where i = 1, 2, . . . stands for the i th order derivative of the disturbance variable.
Considering the effect of disturbance functions on the initial nonlinear state equa-

tion of the vehicle and the linear relation between the initial state variables [Vx , Vy]
and the state variables of the flat system description [y1, y2] one has the appearance
of the disturbance terms in the canonical form model of Eq. (8.213)

⎛
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⎛
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)
+

⎛
⎜⎝

1
m d̃x
0

L f
˙̃dy − ˙̃dψ

⎞
⎟⎠ (8.223)

Next, the state vector of the model of Eq. (8.223) is extended to include as additional
state variables the disturbance forces d̃x , d̃y and d̃ψ . Then, in the new state-space
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description one has z1 = y1, z2 = y2, z3 = ẏ2, z4 = f̃a = 1
m d̃x , z5 = ˙̃fa , z6 = ˙̃fb =

L f
˙̃dy − ˙̃dψ , z7 = ¨̃fb, which takes the form of matrix equations

ż = Ã·z + B̃·ṽ (8.224)

where the control input is

ṽ =
(
v1 v2

1
m

¨̃dx L f d̃(3)
y − d̃(3)

ψ

)T
or

ṽ =
(
v1 v2

¨̃fa f̃ (3)
b

)T
(8.225)

with
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(8.226)

where the measurable state variables are z1 and z2. Since the dynamics of the dis-
turbance terms f̃a and f̃b are taken to be unknown in the design of the associated
disturbances’ estimator one has the following dynamics:

żo = Ão·z + B̃o·ṽ + K (Coz − Coẑ) (8.227)

where K∈R7×2 is the state estimator’s gain and

Ão =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

B̃o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

C̃T
o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.228)
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Defining as Ãd , B̃d , and C̃d , the discrete-time equivalents of matrices Ão, B̃o and
C̃o respectively, a Derivative-free nonlinear Kalman Filter can be designed for the
aforementioned representation of the system dynamics [438, 459]. The associated
Kalman Filter-based disturbance estimator is given by

measurement update:

K (k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

x̂(k) = x̂−(k) + K (k)[z(k) − C̃d x̂
−(k)]

P(k) = P−(k) − K (k)C̃d P
−(k) (8.229)

time update:

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

x̂−(k + 1) = Ãd(k)x̂(k) + B̃d(k)ṽ(k) (8.230)

To compensate for the effects of the disturbance forces it suffices to use in the control
loop the modified control input vector

v =
⎛
⎝v1 − ˆ̃fa
v2 − ˆ̃̇

fb

⎞
⎠ or v =

(
v1 − ẑ4
v2 − ẑ6

)
(8.231)

8.5.5 Simulation Tests

To evaluate for the performance of the proposed nonlinear control scheme, as well as
about the performance of the Kalman Filter-based disturbances estimator simulation
experiments have been carried out.Different velocity setpoints had been assumed (for
velocity along the horizontal and vertical axis of the inertial reference frame, as well
as for angular velocity round the vehicle’s z axis). Moroever, different disturbances
forces and torques have been assumed to affect the vehicles’ dynamic model. Using
the representation of the vehicle’s dynamics given in Eq. (8.223) two generalized
disturbance forces/torques have been considered: the first denoted as f̃a was associ-
ated with state variable y1, while the second one denoted as f̃b was associated with
the state variable y2. It was also assumed that the change in time of the generalized
forces and torques was defined by the second derivative of the associated variable,

i.e. ¨̃fa and ¨̃fb. The disturbances dynamics was completely unknown to the controller
and their identification was performed in real time by the disturbance estimator. The
control loop used in the vehicle’s autonomous navigation is given in Fig. 8.35.
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Fig. 8.35 Control loop for the autonomous vehicle comprising a flatness-based nonlinear controller
and a Kalman Filter-based disturbances estimator
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Fig. 8.36 Vehicle control under disturbances profile 1: a Convergence of x-axis velocity Vx (blue
line) to the desirable setpoint (red line), b Convergence of the y-axis velocity Vy (blue line) to the
desirable setpoint (red line)



464 8 Four-Wheel Autonomous Ground Vehicles

0 5 10 15 20 25 30 35 40
−1.5

−1

−0.5

0

0.5

1

time

Ve
lψ 0 20 40

−5

0

5

10

15

time

fa
 −

 fa
es

t

0 20 40
−0.5

0

0.5

1

time

df
a/

dt
 −

 d
fa

es
t

/d
t

0 20 40
−2

0

2

4

time

df
b/

dt
 −

 d
fb

es
t

/d
t

0 20 40
−0.5

0

0.5

1

1.5

time

df
2

b/
dt

2  −
 d

f2
b

es
t

/d
t2

(a) (b)

Fig. 8.37 Vehicle control under disturbances profile 1: a Convergence of yaw rate ψ̇ (blue line) to
the desirable setpoint (red line), b Estimation of the disturbance terms and of their rate of change
(red line) and the associated real values (blue line)
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Fig. 8.38 Vehicle control under disturbances profile 2: a Convergence of x-axis velocity Vx (blue
line) to the desirable setpoint (red line), b Convergence of the y-axis velocity Vy (blue line) to the
desirable setpoint (red line)

Themeasurable variables used by the control and disturbances’ estimation scheme
were the vehicle’s velocity Vx along the longitudinal axis, the vehicle’s velocity Vy

along the lateral axis and the vehicle’s yaw rate ψ̇ . The first two variables can be
obtained with the use of onboard accelerometers while the third variable can be
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Fig. 8.39 Vehicle control under disturbances profile 2: a Convergence of yaw rate ψ̇ (blue line) to
the desirable setpoint (red line), b Estimation of the disturbance terms and of their rate of change
(red line) and the associated real values (blue line)
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Fig. 8.40 Vehicle control under disturbances profile 3: a Convergence of x-axis velocity Vx (blue
line) to the desirable setpoint (red line), b Convergence of the y-axis velocity Vy to the desirable
setpoint (blue line) and the associated real values (red line)

obtained with the use of a gyrocompass. The longitudinal axis of the vehicle is
denoted as x-axis, while the lateral axis of the vehicle is denoted as y-axis. As it can
be seen inFigs. 8.36, 8.37, 8.38, 8.39, 8.40, 8.41, 8.42 and8.43 the proposed nonlinear
controller achieved accurate tracking of velocity setpoints. Moreover, the efficient
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Fig. 8.41 Vehicle control under disturbances profile 3: a Convergence of yaw rate ψ̇ (blue line) to
the desirable setpoint (red line), b Estimation of the disturbance terms and of their rate of change
(red line) and the associated real values (blue line)

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

2

2.5

3

time

Ve
lx

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

2

2.5

3

time

Ve
ly

(a) (b)

Fig. 8.42 Vehicle control under disturbances profile 4: a Convergence of x-axis velocity Vx (blue
line) to the desirable setpoint (red line), b Convergence of the y-axis velocity Vy (blue line) to the
desirable setpoint (red line)

estimation of disturbance forces and torques that was achieved by the Kalman Filter-
based disturbance estimator enabled their compensation through the inclusion of an
additional control term in the loop.
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Fig. 8.43 Vehicle control under disturbances profile 4: a Convergence of yaw rate ψ̇ (blue line) to
the desirable setpoint (red line), b Estimation of the disturbance terms and of their rate of change
(red line) and the associated real values (blue line)
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