
Chapter 7
Unicycles and Two-Wheel Autonomous
Ground Vehicles

Abstract In complement to robotic manipulators, autonomous vehicles form the
second large class of robotic systems. In this context, the autonomous or semi-
autonomous navigation of unicycle-type and two-wheel vehicles, such as motorcy-
cles, can be significantly improved through electronic control of the their stability
properties. This will also allow for precise path following and for dexterous maneu-
vering. In this chapter, a nonlinear optimal controlmethod is developed for solving the
stabilization and path following problem of autonomous two-wheel vehicles. In the
presented application examples either the kinematic or the joint kinematic-dynamic
of the two-wheel vehicle undergoes approximate linearization around a temporary
operating point which is recomputed at each iteration of the control algorithm. The
linearization takes place using Taylor series expansion and the computation of the
Jacobian matrices of the system’s states-space model. For the approximately lin-
earizedmodel of the two-wheel vehicle anH-infinity feedback controller is designed.
The computation of the feedback gain of the controller requires the repetitive solution
of an algebraic Riccati equation, taking again place at each time-step of the control
method. The concept of the control method is that at each time instant the system’s
state vector is made to converge to the temporary equilibrium, while this equilibrium
is shifted towards the reference trajectory. Thus, asymptotically the state vector of the
two-wheel vehicle converges to the reference setpoints. Through Lyapunov stability
analysis the global asymptotic stability properties of the control method are proven
In particular, the chapter treats the following topics: (a) Nonlinear optimal control of
robotic unicycles, (b) Flatness-based control of robotic unicycles, and (c) Nonlinear
optimal control of autonomous two-wheeled vehicles such as motorcycles.

7.1 Chapter Overview

The present chapter treats the following topics: (a) Nonlinear optimal control of
robotic unicycles, (b) Flatness-based control of robotic unicycles, and (c) Nonlinear
optimal control of autonomous two-wheeled vehicles such as motorcycles.
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With reference to (a) the chapter introduces a new control method for feedback
control of autonomous robotic vehicles of the unicycle type. The control method
consists of a repetitive solution of an H-infinity control problem for the mobile
robot, that makes use of a locally linearizedmodel of the robot and takes place at each
iteration of the control algorithm. The vehicle’s model is locally linearized round its
current position through the computation of the associated Jacobian matrices. Using
the linearized model of the vehicle an H-infinity feedback control law is computed.
The known robustness features of H-infinity control enable to compensate for the
errors of the approximate linearization, as well as to eliminate the effects of external
perturbations.

With reference to (b) the chapter proposes a differential flatness theory-based
implementation of the Kalman Filter (known as Derivative-free nonlinear Kalman
Filter) and state estimation-based control for MIMO nonlinear dynamical systems,
such as autonomous vehicles. The considered nonlinear filtering scheme which is
based on differential flatness theory can be applied to the autonomous vehicle model
without the need for calculation of Jacobian matrices, and in general extends the
class of MIMO nonlinear systems for which derivative-free Kalman Filtering can be
performed. Nonlinear systems such as unicycle-type autonomous vehicles, satisfying
the differential flatness property, can be written in the Brunovsky (canonical) form
via a transformation of their state variables and control inputs. After transforming the
unicycle-type vehicle to the canonical form it is straightforward to apply the standard
Kalman Filter recursion.

With reference to (c) the chapter demonstrates that the autonomous or semi-
autonomous navigation of two-wheel vehicles, such as motorcycles, can be signifi-
cantly improved through electronic control of the their stability properties. This will
also allow for precise path following and for dexterous maneuvering. Actually, a
nonlinear optimal control method is developed once again, for solving the stabiliza-
tion and path following problemof autonomousmotorcycles. The joint kinematic and
dynamicmodel of themotorcycle undergoes approximate linearization around a tem-
porary operating point which is recomputed at each iteration of the control algorithm.
The linearization takes place using Taylor series expansion and the computation of
the Jacobian matrices of the system’s states-space model. For the approximately lin-
earized model of the motorcycle an H-infinity feedback controller is designed. The
computation of the feedback gain of the controller requires the repetitive solution
of an algebraic Riccati equation, taking again place at each time-step of the control
method. The concept of the controlmethod is that at each time instant the autonomous
motorcycle’s state vector is made to converge to the temporary equilibrium, while
this equilibrium is shifted towards the reference trajectory. Thus, asymptotically the
state vector of themotorcycle converges to the reference setpoints. In all cases (a)–(c)
the global asymptotic stability properties of the control method are proven through
Lyapunov analysis.
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7.2 Nonlinear Optimal Control of the Robotic Unicycle

7.2.1 Outline

Nonlinear and embedded control and autonomous navigation of robotic vehicles is of
primary importance for the automotive industry. By succeedingmotion control of the
vehicle, safety in driving canbe improvedwhile other several practical problems, such
as lane keeping and maneuvering or parallel parking can be solved [206, 207, 223,
278, 281, 425, 569, 574]. Up to now several research results have been developed to
enable the steering control and autonomous navigation of vehicles. The developed
methods are based on nonlinear control, such as differential geometry and differential
flatness theory approaches as well as on Lyapunov stability theory [38, 90, 100, 262,
343, 486, 604]. In this section a new solution to the problem of autonomous vehicle
navigation is given, using a linearization scheme together with H∞ robust control
theory [450].

The kinematic model of a unicycle robotic vehicle is considered as a case study,
however the proposed approach can be also applied to other types of vehicles (such
as four wheel vehicles, heavy duty vehicles, articulated vehicles etc.). Actually the
present section proposes the application of an approximate linearization scheme
for the kinematic model of the unicycle robotic vehicle. The linearization makes
use of Taylor series expansion around the vehicle’s current position. To perform
this linearization the computation of Jacobian matrices is needed while the induced
linearization error is treated as a disturbance. For the linearized equivalent of the
vehicle’s model an H∞ feedback control scheme is developed. The formulation of
the H∞ control problem is based on theminimization of a quadratic cost function that
comprises both the disturbance and the control input effects. The disturbance tries
to maximize the cost function while the control signal tries to minimize it, within a
min-max differential game.

Comparing to nonlinear feedback control approaches which rely on exact lin-
earization (as the ones based on differential flatness theory and analyzed in [450,
452, 457]) the proposed H∞ control scheme is assessed as follows: (i) it uses an
approximate linearization approach of the vehicle’s dynamic or kinematic model
which does not follow the elaborated transformations (diffeomorphisms) of the exact
linearization methods, (ii) it introduces additional disturbance error which is due to
the approximate linearization of the system dynamics coming from the application
of Taylor series expansion, (iii) it requires the computation of Jacobian matrices, (iv)
unlike exact feedback linearization, the H∞ control term has to compensate not only
for modelling uncertainties and external disturbances but needs also to annihilate the
effects of the cumulative linearization error, (v) the H∞ control approach follows
optimal control methods for the computation of the control signal, thus achieving
accurate tracking of reference setpoints under moderate variations of the control
input.
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7.2.2 Linearization of the Robotic Vehicle’s Kinematic Model

7.2.2.1 Approaches in Control of Nonlinear Robotic Vehicles

Motion control of unmanned vehicles is a nonlinear control problem. One can distin-
guish three main approaches in the design of nonlinear control systems: (i) control
and filtering based on global linearization methods, (ii) control and filtering based
on asymptotic linearization methods, (iii) Lyapunov methods.

As far as approach (i) is concerned, that is methods of global linearization, one
can classify there methods for the transformation of nonlinear vehicles dynamics
into equivalent linear state space form. For the linear equivalent forms of the vehi-
cles dynamics one can design feedback controllers and can solve the problem of
state estimation (filtering). In this area one can consider methods based on differ-
ential flatness theory and methods based on Lie algebra. These approaches avoid
approximation errors in modelling and arrive at controllers of elevated precision and
robustness, In this area, one can also distinguish a new nonlinear filtering method
(Derivative-free nonlinear Kalman Filter) which ismore precise and computationally
faster than other nonlinear estimation approaches [450].

As far as approach (ii) is concerned, that ismethods of asymptotic linearization, the
focus is on robust and adaptive control with the use of a decomposition of the vehicles
dynamics into a set of linear local models. One can pursue solutions to the problem
of nonlinear control, relying on local linear models (around linearization points). For
such systems one can select the parameters of the local controllers by following linear
feedback controller design methods. These controllers achieve asymptotically, that
is in the course of time, the compensation of the nonlinear system dynamics and the
stabilization of the feedback control loops. In this research direction several results
have been obtained about a new nonlinear H-infinity control method, which is based
on the local and approximate linearization of the vehicles dynamics andwhichmakes
use of the computation of Jacobian matrices.

As far as approach (iii) is concerned, that is Lyapunov theory-based nonlinear con-
trol methods one comes against problems of minimization of the Lyapunov functions
so as to compute control signals for nonlinear vehicle dynamics. For the develop-
ment of Lyapunov-type controllers one can either exploit a model of the vehicle’s
dynamics, or can avoid completely the use of such a model as in the case of adaptive
control. In the latter case, the vehicles dynamics is completely unknown and can be
approximated by adaptive algorithms which are suitably designed so as to assure the
stability and robustness of the control loop.

7.2.3 Linearization of the Unicycle Robot Through Taylor
Series Expansion

A unicycle autonomous robotic vehicle is considered, as shown in Fig. 7.1. Its kine-
matic model is given by
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Fig. 7.1 The model of the
autonomous robotic vehicle
(cart-like vehicle)
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ẏ
θ̇

⎞
⎠ =

⎛
⎝
cos(θ) 0
sin(θ) 0

0 1

⎞
⎠ ·

(
v
ω

)
(7.1)

where x, y are the cartesian coordinates of the robot’s center of gravity and θ is its
orientation angle. Input v is the vehicle’s linear velocity andω is the vehicle’s angular
velocity for rotations round its transversal axis.

Considering linearization of the model round the current position of the robot and
round the velocity value v(t − Ts), where TS is the sampling period, the Jacobian
matrices of the robotic model are:

A =
⎛
⎝
0 0 −v(t − Ts)·sin(θ)

0 0 v(t − Ts)·cos(θ)

0 0 0

⎞
⎠ (7.2)

B =
⎛
⎝
cos(θ) 0
sin(θ) 0

0 1

⎞
⎠ (7.3)

The state vector of the robotic vehicle is denoted as x = [x, y, θ ]T while the input
vector is denoted as u = [v,w]T . After linearization around its current position, the
robot’s kinematic model is written as

ẋ = Ax + Bu + d1 (7.4)
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Parameter d1 stands for the linearization error in the robot’s kinematic model appear-
ing in Eq. (7.4). The desirable trajectory of the robot is denoted by xd = [xd, yd, θd].
Tracking of this trajectory is achieved after applying the control input u∗. At every
time instant the control input u∗ is assumed to differ from the control input u appear-
ing in Eq. (7.4) by an amount equal to �u, that is u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (7.5)

The dynamics of the controlled system described in Eq. (7.4) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (7.6)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (7.7)

By subtracting Eq. (7.5) from Eq. (7.7) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (7.8)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (7.9)

The above linearized form of the robotic model can be efficiently controlled after
applying an H-infinity feedback control scheme.

7.2.4 The Nonlinear H-Infinity Control

7.2.4.1 Mini-Max Control and Disturbance Rejection

The initial nonlinear system is assumed to be in the form

ẋ = f (x, u) x∈Rn, u∈Rm (7.10)

Linearization of the system (autonomous vehicle) is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)).
The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (7.11)

where matrices A and B are obtained from the computation of the Jacobians
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and vector d̃ denotes disturbance terms due to linearization errors. The problem of
disturbance rejection for the linearized model that is described by

ẋ = Ax + Bu + Ld
y = Cx

(7.14)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d. The disturbance term d apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

As analyzed in previous applications of the H∞ control approach, a feedback
control scheme is designed for trajectory tracking by the system’s state vector and
simultaneous disturbance rejection, considering that the disturbance affects the sys-
tem in the worst possible manner. The disturbances’ effects are incorporated in the
following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t)+

+ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0
(7.15)

As pointed out in previous sections, the significance of the negative sign in the
cost function’s term that is associated with the perturbation variable d̃(t) is that the
disturbance tries tomaximize the cost function J (t)while the control signal u(t) tries
to minimize it. The physical meaning of the relation given above is that the control
signal and the disturbances compete to each other within a min-max differential
game. This problem of min-max optimization can be written as

minumaxd̃ J (u, d̃) (7.16)

The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
unicycle vehicle. However, the solution to the min-max optimization problem is
directly related to the value of the parameter ρ. This means that there is an upper
bound in the disturbances magnitude that can be annihilated by the control signal.
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7.2.4.2 H-Infinity Feedback Control

For the linearized systemgiven byEq. (7.14) the cost function of Eq. (7.15) is defined,
where the coefficient r determines the penalization of the control input and theweight
coefficient ρ determines the reward of the disturbances’ effects. It is assumed that:

As in previous applications of the H-infinity control method, it is assumed that
(i) The energy that is transferred from the disturbances signal d(t) is bounded, that
is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [AB] and [AL] are stabilizable, (iii) matrix

[AC] is detectable. Then, the optimal feedback control law is given by

u(t) = −Kx(t) (7.17)

with

K = 1
r B

T P (7.18)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P( 1r BB
T − 1

2ρ2 LLT )P = 0 (7.19)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by d̃(t) = 1

ρ2 LT Px(t).

7.2.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme for the unicycle vehicle assures H∞ tracking performance, and that in
case of bounded disturbance terms asymptotic convergence to the reference setpoints
is achieved. The tracking error dynamics for the robotic vehicle is written in the form

ė = Ae + Bu + Ld̃ (7.20)

where in the unicycle robot’s application example L = I∈R3 with I being the identity
matrix. The following Lyapunov function is considered

V = 1
2e

T Pe (7.21)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains
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V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T P + 1

2e
T P[Ae + Bu + Ld̃]⇒ (7.22)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (7.23)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(7.24)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (7.25)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P
(
1
r BB

T − 1
2ρ2 LLT

)
P (7.26)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (7.27)

By substituting Eq. (7.26) and Eq. (7.27) one obtains

V̇ = 1
2e

T
[
−Q + P

(
1
r BB

T − 1
2ρ2 LLT

)
P

]
e+

+eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(7.28)

V̇ = − 1
2e

T Qe +
(
1
r PBBT Pe − 1

2ρ2 eT PLLT
)
Pe

− 1
r e

T PBBT Pe + eT PLd̃
(7.29)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (7.30)

or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(7.31)

Lemma: The following inequality holds
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1
2e

T Ld̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (7.32)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(7.33)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (7.34)

Equation (7.34) is substituted in Eq. (7.31) and the inequality is enforced, thus giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (7.35)

Equation (7.35) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt (7.36)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (7.37)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (7.38)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (7.21) it becomes clear that e(t) will
be also bounded since e(t) ∈ �e = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

7.2.6 Simulation Tests

The performance of the proposed nonlinear H∞ control scheme is tested is two exam-
ples: (i) when the mobile robot tracks a reference trajectory, (ii) when the unicycle
robot performs the automated parallel parking task. In both cases the performance
of the proposed controller was satisfactory, with minimum tracking error and fast



7.2 Nonlinear Optimal Control of the Robotic Unicycle 351

convergence to the reference setpoints. In the computation of the reference path, the
coordinates of the reference trajectory in the 2D-plane (xd , yd) have been used, while
the desirable steering angle has been computed by θd = tan−1(ẏd/ẋd). The obtained
results are depicted in Figs. 7.2, 7.3 and 7.4.

The tracking performance of the control method is shown in Table7.1. It can
be observed that the tracking error for all state variables of the unicycle robot was
extremely small. Besides, in the simulation diagrams one can note the excellent
transient performance of the control algorithm, which means that convergence to the
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Fig. 7.2 a Plot of the circular x − y trajectory followed by the mobile robot, b convergence of the
robot’s state variables x1 = x , x2 = y and x3 = θ to the associated reference setpoints
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Fig. 7.3 a Plot of the eight-shaped x − y trajectory followed by the mobile robot, b convergence
of the robot’s state variables x1 = x , x2 = y and x3 = θ to the associated reference setpoints
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Fig. 7.4 a Plot of the x − y trajectory followed by the mobile robot in case of the parallel parking
maneuver, b convergence of the robot’s state variables x1 = x , x2 = y and x3 = θ to the associated
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Table 7.1 Tracking RMSE in the disturbance-free case

RMSEx RMSEy RMSEθ

Path1 36.00 · 10−4 39.00 · 10−4 10.00 · 10−4

Path2 7.90 · 10−4 12.00 · 10−4 2.40 · 10−4

reference path was succeeded in a smooth manner, while also avoiding overshoot
and oscillations.

It is pointed out that the errors and disturbances that affect the proposed control
method are as follows: (i) linearization errors due to the truncation of higher order
terms in the Taylor series expansion of the vehicle’s nonlinear model, (ii) external
perturbations that may affect the vehicle’s motion. H-infinity control aims at pro-
viding maximum robustness to this kind of modeling errors and disturbances, and
this is achieved through the appropriate selection of the attenuation coefficient ρ

which appears in the associated Riccati equation. Actually, the minimum value of ρ

for which there exists a solution for the algebraic Riccati equation (in the form of a
positive definite symmetric matrix P) is the one that provides the control loop with
maximum robustness. The above have been explained in Sect. 3.3 of manuscript.

Moreover, it is pointed out that the control method that is presented in this section
and which is based on nonlinear H-infinity control theory can be compared against
global linearization methods, e.g. those based on differential flatness theory and
against Lyapunov-based methods (used by adaptive control schemes) [450, 452,
457]. As a general remark it can be stated that the nonlinear H-infinity control, yet
conceptuallymore simple than the other two control approaches, is a reliable and effi-
cient solution for the problem of autonomous vehicles’ control. Besides,by avoiding
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the intuitive definition of linearizing outputs and the elaborated computations asso-
ciated with state variables’ transformations met in global linearization-based control
schemes, the nonlinear optimal control approach appears to be advantageous.

7.3 Flatness-Based Control of the Robotic Unicycle

7.3.1 Outline

In this section, using differential flatness theory, the nonlinear dynamics of the vehicle
(e.g. the UGVof Fig. 7.5) is first subject to a linearization transformation. Thismakes
possible (i) to design an efficient control law for trajectories tracking, and (ii) to apply
to the nonlinear system a filtering method that it is based on the standard Kalman
Filter recursion. Unlike the Extended Kalman Filter (EKF), the proposed filtering
method provides estimates of the state vector of the UGV without the need for
derivatives and Jacobians calculation. By avoiding linearization approximations, the
proposed derivative-free nonlinear Kalman filtering method improves the accuracy
of estimation of the system state variables, and results in smooth control signal
variations and in minimization of the tracking error of the associated control loop.

Filtering-based state estimation for unmanned ground vehicles (UGVs) is a signif-
icant topic because it enables their accurate localization and autonomous navigation
[45]. For nonlinear systems such as UGVs, and under the assumption of Gaussian
noise, the ExtendedKalman Filter (EKF) is frequently applied for estimating the non-
measurable state variables through the processing of input and output sequences or

Fig. 7.5 The model of the
4-wheel autonomous vehicle
(car-like vehicle) is
approximated by that of the
unicycle at moderate speeds
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for obtaining estimates of the state vector through the fusion ofmeasurements coming
from various sensors [33, 190, 222, 359]. The Extended Kalman Filter is based on
linearization of the system dynamics using a first order Taylor expansion [431, 432,
439, 445, 449, 601]. Although EKF is efficient in several estimation and fusion prob-
lems, it is characterized by cumulative errors due to the local linearization assumption
and this may affect the accuracy of the UGV’s motion estimation or even risk the
stability of the UGV state estimation-based control loop.

The present section extends the results of [415, 433] towards nonlinear dynamical
systems, such as UGVs, which are described by multi-input multi-output (MIMO)
models. Actually, the section’s results are applicable to differentially flat MIMO
nonlinear dynamical systems which after employing the differential flatness theory
can bewritten in theBrunovksy (canonical) form [254, 322]. Simulation experiments
on the problem of autonomous navigation of a unicycle robotic vehicle are provided
to test the performance of the proposed derivative-free Kalman Filter.

7.3.2 Application of Derivative-Free Kalman Filtering to
UGVs

7.3.2.1 Kinematic Models for Autonomous Vehicles

The proposed method of derivative-free nonlinear Kalman Filtering (DKF) for
MIMO nonlinear systems will be analyzed through an application example. Once
again the kinematic model of a UGV (unicycle robotic vehicle) is considered. This
is given by

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = ω = v
L tan(φ)

(7.39)

where v(t) is the velocity of the vehicle, L is the distance between the front and
the rear wheel axis of the vehicle, θ is the angle between the transversal axis of the
vehicle and axis OX , and φ is the angle of the steering wheel with respect to the
transversal axis of the vehicle. As shown in previous sections, the position of such
a vehicle is described by the coordinates (x, y) of the center of its rear axis and its
orientation is given by the angle θ between the x-axis and the axis of the direction
of the vehicle. The steering angle φ and the speed v are considered to be the inputs
of the system.

The problem of control of autonomous ground vehicles (AGVs) of the unicycle-
type is considered once more. The position of such a vehicle is described by the
coordinates (x, y) of the center of its rear axis and its orientation is given by the
angle θ between the x-axis and the axis of the direction of the vehicle. The steering
angle φ and the speed u are considered to be the inputs of the system. The kinematic
model of autonomous vehicles can be expressed in the general form [415]
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⎛
⎝
ẋ
ẏ
θ̇

⎞
⎠ =

⎛
⎝
cos(θ) 0
sin(θ) 0

0 1

⎞
⎠ ·

(
v(t)

v(t)ρ(t)

)
(7.40)

where (x, y) are the coordinates of the center of the vehicle’s rear wheels axis,
v(t) is the velocity of the vehicle, and θ is the angle between the transversal axis
of the vehicle and axis OX , while ρ(t) = 1/r(t) is the curvature of the robot’s
path. The autonomous vehicle is a nonholonomic system. Nonholonomic systems
are characterized by nonintegrable differential expressions, such as

n∑
i=i

fi j (q1, q2, · · · , qn, t)q̇i = 0, j = 1, 2, · · · ,m (7.41)

where q̇i represents the nth generalized coordinate (state variable), m is the number
of equations defining the nonholonomic constraints, q̇i represents the generalized
speed and fi j are nonlinear functions of qi at time t . For the kinematic model of
Eq. (7.40) the following nonholonomic constraint exists:

ẋsin(θ) − ẏcos(θ) = 0 (7.42)

The curvature radius for any path can be written as

R(t) = 1

ρ(t)
= L

tan(φ)
(7.43)

where L is the distance between the front and the back wheels, and φ (namely the
steering angle) is the angle defined by the main axis of the vehicle and the velocity
vector of the front wheel (for cart like vehicles as shown in Fig. 7.1, and for car-like
vehicles as shown in Fig. 7.5). The value of R(t) is usually bounded by Rmin , the
minimum curvature radius.

7.3.2.2 Controller Design for UGVs

Flatness-based control canbeused for steering thevehicle along adesirable trajectory.
In the case of the autonomous vehicle of Eq. (7.39) the flat output is the cartesian
position of the center of the wheel axis, denoted as η = (x, y), while the other model
parameters can be written as:

v = ±||η̇||
(
cos(θ)

sin(θ)

)
= η̇

v tan(φ) = ldet (η̇η̈)/v3 (7.44)

where det stands for a matrix determinant. These formulas show simply that θ

is the tangent angle of the curve and tan(φ) is the associated curvature. With
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reference to a generic driftless nonlinear system q̇, q ∈ Rn,w ∈ Rm , dynamic feed-
back linearization consists in finding a feedback compensator of the form

ξ̇ = α(q, ξ) + b(q, ξ)u
w = c(q, ξ) + d(q, ξ)u

(7.45)

with state ξ ∈ Rv and input u ∈ Rm , such that the closed-loop system of Eq. (7.39)
and Eq. (7.45) is equivalent under a state transformation z = T (q, ξ) to a linear
system. The starting point is the selection of a m-dimensional output η = h(q) to
which a desired behavior can be assigned (this is the previously defined flat output).
One then proceeds by successively differentiating the output until the input appears
in a non-singular way. If the sum of the output differentiation orders equals the
dimension n + v of the extended state space, full input-state-output linearization is
obtained. The closed-loop system is then equivalent to a set of decoupled input-output
chains of integrators from ui to ηi . The exact linearization procedure is illustrated
for the vehicle’s model of Eq. (7.39). As flat output η = (x, y) the coordinates of
the center of the wheel axis is considered. Differentiation with respect to time then
yields [371, 439]

η̇ =
(
ẋ
ẏ

)
=

(
cos(θ) 0
sin(θ) 0

)
·
(
v
ω

)
(7.46)

showing that only v affects η̇, while the angular velocity ω cannot be recovered from
this first-order differential information. To proceed, one needs to add an integrator
(whose state is denoted by ξ ) on the linear velocity input

v = ξ, ξ̇ = α⇒η̇ = ξ

(
cos(θ)

sin(θ)

)
(7.47)

where α denotes the linear acceleration of the vehicle. Differentiating further one
obtains

η̈ = ξ̇

(
cos(θ)

sin(θ)

)
+ ξ θ̇

(
sin(θ)

cos(θ)

)
=

=
(
cos(θ) −ξsin(θ)

sin(θ) ξcos(θ)

)(
α

ω

) (7.48)

and the matrix multiplying the modified input (α, ω) is nonsingular if ξ 	= 0. Under
this assumption one defines

(
α

ω

)
=

(
cos(θ) −ξsin(θ)

sin(θ) ξcos(θ)

)
·
(
u1
u2

)
(7.49)

and η̈ is denoted as



7.3 Flatness-Based Control of the Robotic Unicycle 357

η̈ =
(

η̈1
η̈2

)
=

(
u1
u2

)
= u (7.50)

which means that the desirable linear acceleration and the desirable angular velocity
can be expressed using the transformed control inputs u1 and u2. Then, the resulting
dynamic compensator is (return to the initial control inputs v and ω)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ

ω = u2cos(θ) − u1sin(θ)

ξ

(7.51)

Being ξ∈R, it is n + v = 3 + 1 = 4, equal to the output differentiation order in
Eq. (7.50). In the new coordinates

z1 = x
z2 = y

z3 = ẋ = ξcos(θ)

z4 = ẏ = ξsin(θ)

(7.52)

The extended system is thus fully linearized and described by the chains of integra-
tors, in Eq. (7.50), and can be rewritten as

z̈1 = u1, z̈2 = u2 (7.53)

The dynamic compensator of Eq. (7.51) has a potential singularity at ξ = v = 0, i.e.
when the vehicle is not moving, which is a case not met while executing the trajectory
tracking. It is noted however, that the occurrence of such a singularity is structural
for non-holonomic systems. In general, this difficulty must be obviously taken into
account when designing control laws on the equivalent linear model. A nonlinear
controller for output trajectory tracking, based on dynamic feedback linearization, is
easily derived. Assume that the autonomous vehicle must follow a smooth trajectory
(xd(t), yd(t))which is persistent, i.e. forwhich the nominal velocity vd = (ẋ2d + ẏ2d )

1
2

along the trajectory never goes to zeros (and thus singularities are avoided). On the
equivalent and decoupled systemofEq. (7.53), one can easily design an exponentially
stabilizing feedback for the desired trajectory, which has the form

u1 = ẍd + kp1(xd − x) + kd1(ẋd − ẋ)
u2 = ÿd + kp1(yd − y) + kd1(ẏd − ẏ)

(7.54)

and which results in the following error dynamics for the closed-loop system

ëx + kd1 ėx + kp1ex = 0
ëy + kd2 ėy + kp2ey = 0,

(7.55)

where ex = x − xd and ey = y − yd . The proportional-derivative gains are chosen as
kp1 > 0 and kd1 > 0 for i = 1, 2.Knowing the control inputs u1, u2, for the linearized
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system one can calculate the control inputs v and ω applied to the vehicle, using Eq.
(7.45). The above result is valid, provided that the dynamic feedback compensator
does not meet the singularity. In the general case of design of flatness-based con-
trollers, the following theorem assures the avoidance of singularities in the proposed
control law [371]:
Theorem: Letλ11,λ12 andλ21,λ22, be respectively the eigenvalues of two equations of
the error dynamics, given in Eq. (7.45). Assume that, for i = 1, 2 it is λ11 < λ12 < 0
(negative real eigenvalues), and that λi2 is sufficiently small. If

mint≥0||
(
ẋd(t)
ẏd(t)

)
||≥

(
ε̇0x
ε̇0y

)
(7.56)

with ε̇0x = ε̇x (0) 	=0 and ε̇0y = ε̇y(0) 	=0, then the singularity ξ = 0 is never met.

7.3.2.3 Derivative-Free Kalman Filtering for UGVs

It is assumed now that the vehicle’s velocity has to be estimated through the process-
ing of the sequence of position measurements by a filtering algorithm. To this end
the derivative-free nonlinear Kalman Filter for MIMO nonlinear dynamical systems
can been used. From the previous application of the differential flatness theory, it is
possible to transform the initial nonlinear vehicle’s model into a linearized equivalent
model that is finally written in the Brunovsky form. Thus one arrives at Eq. (7.50)
which means ẍ = u1 and ÿ = u2. Next, the state variables x1 = x , x2 = ẋ , x3 = y
and x4 = ẏ are defined. Considering the state vector x∈R4×1, the following matrices
are also defined

A =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠ , C =

(
1 0 0 0
0 0 1 0

)
(7.57)

Using the matrices of Eq. (7.57) one obtains the Brunovsky form of the MIMO robot
model

ẋ = Ax + Bv
y = Cx

(7.58)

where the new input v is given by v = [u1(x, t), u2(x, t)]T . For the unicycle robotic
model of Eq. (7.58) state estimation can be performed using the standard Kalman
Filter recursion, as described in Eqs. (4.88) and (4.89).
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7.3.3 Simulation Tests

7.3.3.1 Extended Kalman Filter Based Navigation of the Autonomous
Vehicle

The vehicle’s kinematic model of Eq. (7.39) is considered. AGPS sensor or encoders
placed at the vehicle’s wheels can be used to provide measurements of the cartesian
coordinates of the vehicle x(t) and y(t) (displacement of the vehicle), over a sam-
pling period T . The values of the vehicle’s velocity components along the x and
y axes are not directly available and are estimated through the processing of the
sequence of position measurements with the use of a filtering algorithm. Computing
the vehicle’s speed through the differentiation of the position measurements would
introduce cumulative errors in the value of the vehicle’s velocity, which in turn can
affect the performance of the control loop. To avoid such errors an estimation of
the vehicle’s velocity is obtained through the processing of the sequence of position
measurements with the use of a filtering algorithm.

Assuming a constant sampling period �tk = T the measurement equation is
z(k + 1) = γ (x(k)) + v(k), where z(k) is the vector containing the sequence ofmea-
surements of the cartesian coordinates of the vehicle and v(k) is the measurement
noise vector.

z(k) = [x(k) + v1(k), y(k) + v2(k)], k = 1, 2, 3 · · · (7.59)

To obtain the Extended Kalman Filter (EKF), the kinematic model of the vehicle is
linearized about the estimates x̂(k) and x̂−(k), and the control inputU (k) is applied.
Using that the continuous-time state-space description of the system is

ẋ = φ(x, u) + wz = γ (x) + v (7.60)

and by defining matrices A = I + Ts Jxφ(x, u)(x), B = Ts Juφ(x, u) and
C = Jxγ (x) the linearized description of the system is obtained:

x(k + 1) = Ax + Bu(k) + w(k)
z(k) = Cx(k) + v(k)

(7.61)

The EKF recursion consists of the measurement update part and of the time update
part as described in Eqs. (4.88) and (4.89), respectively.

One has to use the input gain matrix B(k)

B(k) =
⎛
⎝
Tscos(θ(k)) 0
Tssin(θ(k)) 0

0 T

⎞
⎠ (7.62)

and to compute the drift matrix A(k) as follows



360 7 Unicycles and Two-Wheel Autonomous Ground Vehicles

A(k) =
⎛
⎝
1 0 −v(k)sin(θ)Ts
0 1 v(k)cos(θ)Ts
0 0 1

⎞
⎠ (7.63)

while for the elements of the process noise covariance matrix which is given by
Q(k) = diag[σ 2(k), σ 2(k), σ 2(k)] indicative values would be σ 2(k) = 10−3.

Using the estimated state vector, function φ(x) appearing in the state equations
part andγ (x) appearing in themeasurements equations part of the vehicle’s kinematic
model become φ(x̂(k)) = [x̂(k), ŷ(k)]T , and γ (x̂(k)) = [x̂(k), ŷ(k)], respectively.
The associated Jacobian matrix J T

γ (x̂−(k)) is given by

Jγ (x̂−(k)) =
(
1 0 0
0 1 0

)
(7.64)

The vehicle is steered by the flatness-based controller analyzed in Sect. 7.3.2

u1 = ẍd + Kp1(xd − x) + Kd1(ẋd − ẋ)
u2 = ÿd + Kp2(yd − y) + Kd2(ẏd − ẏ)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ, ω = u2cos(θ) − u1sin(θ)

ξ

(7.65)

The use of EKF for estimating the vehicle’s velocity along the x-axis (denoted as
ẋ) and the vehicle’s velocity along the y-axis (denoted as ẏ) enables the successful
application of nonlinear steering control of Eq. (7.65).

Indicative results about tracking of the circular reference trajectory with use of the
Extended Kalman Filter are shown in Figs. 7.6, 7.7, 7.8 and 7.9. In Fig. 7.6 one can
notice the accuracy of tracking of the reference trajectory, achieved by the proposed
state estimation-based control scheme. In Fig. 7.7 the accuracy of tracking of the
x and y axis position setpoints is depicted. In Fig. 7.8, the associated x and y axis
tracking errors are shown. Finally, in Fig. 7.9 the x and y axis velocity estimation
errors are given.

Indicative results about tracking of the eight-shaped reference trajectory with use
of the Extended Kalman Filter are shown in Figs. 7.10, 7.11 and 7.12 and 7.13. In
Fig. 7.10 one can notice the accuracy of tracking of the reference trajectory, achieve
by the proposed state estimation-based control scheme. In Fig. 7.11 the accuracy of
tracking of the x and y axis position setpoints is depicted. In Fig. 7.12, the associated
x and y axis tracking errors are shown. Finally, in Fig. 7.13 the x and y axis velocity
estimation errors are given.

Indicative results about tracking of the complex-curved reference trajectory with
use of the Extended Kalman Filter are shown in Figs. 7.14, 7.15, 7.16 and 7.17. In
Fig. 7.14 one can notice the accuracy of tracking of the reference trajectory, achieve
by the proposed state estimation-based control scheme. In Fig. 7.15 the accuracy of
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Fig. 7.6 a Tracking of a circular reference trajectory (green line) by the autonomous vehicle and
associated estimation of the vehicle’s position provided by the Extended Kalman Filter (continuous
yellow line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle
and real position of the vehicle (dashed red line)
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Fig. 7.7 Tracking of a circular reference trajectory with use of the EKF: a tracking of the x-axis
reference set-point b tracking of the y-axis reference set-point
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Fig. 7.8 Tracking of a circular reference trajectory with use of the EKF: a tracking error along the
x-axis b tracking error along the y-axis
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Fig. 7.9 Tracking of a circular reference trajectory by the autonomous vehicle with use of the EKF:
a convergence of the estimated x-axis velocity (green line) to the associated real velocity (blue line)
b convergence of the estimated y-axis velocity (green line) to the associated real velocity (green
line)

tracking of the x and y axis position setpoints is depicted. In Fig. 7.16, the associated
x and y axis tracking errors are shown. Finally, in Fig. 7.17 the x and y axis velocity
estimation errors are given.
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Fig. 7.10 a Tracking of an eight-shaped reference trajectory (green line) by the autonomous vehicle
and associated estimation of the vehicle’s position provided by the Extended Kalman Filter (yellow
line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle and real
position of the vehicle (dashed red line)
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Fig. 7.11 Tracking of an eight-shaped reference trajectory with use of the EKF: a tracking of the
x-axis reference set-point b tracking of the y-axis reference set-point
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Fig. 7.12 Tracking of an eight-shaped reference trajectory with use of the EKF: a tracking error
along the x-axis b tracking error along the y-axis
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Fig. 7.13 Tracking of an eight-shaped reference trajectory by the autonomous vehicle with use of
the EKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

7.3.3.2 Derivative-Free Kalman Filter Based Navigation of the
Autonomous Vehicle

A second set of tests focused on the performance of the proposed Derivative-free
nonlinear Kalman Filter (DKF) in the problem of state estimation-based control
of an autonomous vehicle (cart-like robot) (Fig. 7.1). The differentially flat model
of the autonomous vehicle and its transformation to the Brunovksy form has been
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Fig. 7.14 a Tracking of a complex-curved reference trajectory (green line) by the autonomous
vehicle and associated estimation of the vehicle’s position provided by the Extended Kalman Filter
(yellow line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle
(red dashed line) and real position of the vehicle (dashed red line)
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Fig. 7.15 Tracking of a complex-curved reference trajectory with use of the EKF: a tracking of
the x-axis reference set-point b tracking of the y-axis reference set-point
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Fig. 7.16 Tracking of a complex-curved reference trajectory with use of the EKF: a tracking error
along the x-axis b tracking error along the y-axis
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Fig. 7.17 Tracking of a complex-curved reference trajectory by the autonomous vehicle with use of
the EKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

analyzed in Eqs. (7.39) and (7.46). The state estimation algorithm of the Derivative-
free nonlinear Kalman Filter consisted of Eqs. (4.88) and (4.89). It was assumed
that only measurements of the cartesian coordinates of the vehicle (displacement
on the xy-plane) could be obtained through a GPS unit (localization of moderate
accuracy), RTK-GPS (localization of higher accuracy) or through laser, visual and
sonar sensors with reference to specific landmarks (the latter measuring approaches
require transformation from a local to a global coordinates system).
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Fig. 7.18 a Tracking of a circular reference trajectory (green line) by the autonomous vehicle and
associated estimation of the vehicle’s position provided by the derivative-free Kalman Filter (yellow
line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle and real
position of the vehicle (dashed red line)

Indicative results about tracking of the circular reference trajectory with use of
the Derivative-free nonlinear Kalman Filter are shown in Figs. 7.18, 7.19 and 7.20.
Comparing the estimation performed by the derivative-freeMIMOnonlinearKalman
Filter with the one performed by the Extended Kalman Filter it can be noticed that
the derivative-free filtering approach results in more accurate state estimates.

Indicative results about tracking of the circular reference trajectory with use of
the Derivative-free nonlinear Kalman Filter are shown in Figs. 7.18, 7.19 and 7.20. In
Fig. 7.18 one can notice the accuracy of tracking of the reference trajectory, achieved
by the proposed state estimation-based control scheme. In Fig. 7.19, the associated
x and y axis tracking errors are shown. Finally, in Fig. 7.20 the x and y axis velocity
estimation errors are given.

Indicative results about tracking of the eight-shaped reference trajectory with
use of the Extended Kalman Filter are shown in Figs. 7.21, 7.22, 7.23 and 7.24. In
Fig. 7.21 one can notice the accuracy of tracking of the reference trajectory, achieved
by the proposed state estimation-based control scheme. In Fig. 7.22 the accuracy of
tracking of the x and y axis position setpoints is depicted. In Fig. 7.23, the associated
x and y axis tracking errors are shown. Finally, in Fig. 7.24 the x and y axis velocity
estimation errors are given.

Indicative results about tracking of the complex-curved reference trajectory with
use of the Extended Kalman Filter are shown in Figs. 7.25, 7.26, 7.27 and 7.28. In
Fig. 7.25 one can notice the accuracy of tracking of the reference trajectory, achieved
by the proposed state estimation-based control scheme. In Fig. 7.26 the accuracy of
tracking of the x and y axis position setpoints is depicted. In Fig. 7.27, the associated
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Fig. 7.19 Tracking of a circular reference trajectory with use if the DKF: a tracking error along
the x-axis b tracking error along the y-axis
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Fig. 7.20 Tracking of a circular reference trajectory by the autonomous vehicle with use of the
DKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

x and y axis tracking errors are shown. Finally, in Fig. 7.28 the x and y axis velocity
estimation errors are given.

Comparing the estimation performed by the Derivative-free nonlinear Kalman
Filter with the one performed by the Extended Kalman Filter it can be noticed that
the derivative-free filtering approach results in more accurate state estimates. More-
over, comparing the associated state estimation-based control loop of the autonomous
vehicle that was based on the derivative-free MIMO nonlinear Kalman Filter to the
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Fig. 7.21 a Tracking of an eight-shaped reference trajectory (green line) by the autonomous vehicle
and associated estimation of the vehicle’s position provided by the derivative-free Kalman Filter
(yellow line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle
and real position of the vehicle (dashed red line)
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Fig. 7.22 Tracking of an eight-shaped reference trajectory with use of the DKF: a tracking of the
x-axis reference set-point b tracking of the y-axis reference set-point
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Fig. 7.23 Tracking of an eight-shaped reference trajectory with use of the DKF: a tracking error
along the x-axis b tracking error along the y-axis
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Fig. 7.24 Tracking of an eight-shaped reference trajectory by the autonomous vehicle with use of
the DKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

control that relied on the Extended Kalman Filter it was observed that the first con-
trol scheme was significantly more robust and capable of tracking with better accu-
racy the desirable trajectories. These findings show the suitability of the considered
Derivative-free nonlinear Kalman Filter for localization, control and autonomous
navigation of autonomous vehicles. Finally, it is noted that the section’s approach
can be applied also to various types of 4-wheel robotic vehicles.
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Fig. 7.25 a Tracking of a complex-curved reference trajectory (green line) by the autonomous
vehicle and associated estimation of the vehicle’s position provided by the derivative-free Kalman
Filter (yellow line) b Tracking of a circular reference trajectory (green line) by the autonomous
vehicle and real position of the vehicle (dashed red line)
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Fig. 7.26 Tracking of a complex-curved reference trajectory with use of the DKF: a tracking of
the x-axis reference set-point b tracking of the y-axis reference set-point
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Fig. 7.27 Tracking of a complex-curved reference trajectory with use of the DKF: a tracking error
along the x-axis b tracking error along the y-axis

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

time

ve
hi

cl
e 

ve
lo

ci
ty

 x

0 10 20 30 40 50
−5

0

5

10

15

20

time

ve
hi

cl
e 

ve
lo

ci
ty

 y

(a) (b)

Fig. 7.28 Tracking of a complex-curved reference trajectory by the autonomous vehicle with use of
the DKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)
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7.4 Nonlinear Optimal Control of Autonomous Two-Wheel
Vehicles

7.4.1 Outline

Autonomous or semi-autonomous navigation of two-wheel vehicles such asmotorcy-
cles, requires that several of their functionalities and driving tasks, are automatically
performed [74, 81, 154, 615, 626]. To achieve this objective, the need of developing
and using elaborated control and estimation methods for motorcycles has become
apparent [15, 324, 479, 481, 610]. To this end, several results have been developed
aiming at solving the stabilization and path tracking problems for autonomous or
semi-autonomous motorcycles [71, 104, 114, 173, 293, 410, 565]. Due to under-
actuation in the motorcycle’s model and the strong nonlinearities characterizing its
state-space description, the solution of the associated motion problem is a difficult
and challenging endeavour [102, 103, 113, 115]. To achieve a satisfactory solution of
the problem of autonomous motorcycles driving, in this section a nonlinear optimal
(H-infinity) controller is developed [419, 461].

First, the joint kinematic and dynamicmodel of themotorcycle undergoes approx-
imate linearization around a temporary operating point (equilibrium)which is recom-
puted at each iteration of the control method. This equilibrium is defined by the
present value of the system’s state vector and the last value of the control inputs
vector that was exerted on it. The linearization procedure requires first order Taylor
series expansion of the state-space description of the motorcycle and computation of
the associated Jacobian matrices [33, 431, 463]. The modelling error which is due
to the truncation of higher-order terms in the Taylor series expansion is considered
to be a disturbance which is eliminated by the robustness of the control loop. Next,
for the approximately linearized model of the motorcycle an optimal (H-infinity)
feedback controller is designed.

The H-infinity controller represents the solution of the optimal control problem
for the model of the autonomous motorcycle, under model uncertainty and external
perturbations. It actually stands for the solution of a min-max differential game,
in which the controller tries to minimize a cost function comprising a quadratic
term of the state vector’s tracking error, whereas the model uncertainty and external
perturbation terms try to maximize this cost function. For the computation of the
controller’s feedback gain it is necessary to solve an algebraic Riccati equation at
each time-step of the control method [450, 457, 459]. The stability properties of
the control method are proven through Lyapunov analysis. First, it is demonstrated
that the control loop of the motorcycle satisfies the H-infinity tracking performance
criterion. This signifies elevated robustness against model uncertainty and external
perturbations affecting themotorcycle’s motion [305, 564]. Next, it is proven that the
control loop is also globally asymptotically stable, which ascertains precise tracking
of reference paths. Moreover, to implement a state estimation-based control scheme
for the autonomous motorcycle, through the processing of measurements from a
small number of on-board sensors, the H-infinity Kalman Filter is proposed as a
robust state estimator [169, 511].
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7.4.2 Dynamic and Kinematic Model of the Riderless
Motorcycle

As noted above the control and stabilization problem of the autonomous motorcy-
cle is a nontrivial one. The use of nonlinear optimal (H-infinity) control for this
problem is in several aspects advantageous. Comparing for instance against global
linearization-based control schemes, the proposed nonlinear optimal control does not
require complicated transformations (diffeomorphisms) for bringing the state-space
model of the system into an equivalent linear form. Besides, it does not come against
singularity problems because for computing the control inputs that will be finally
exerted on the vehicle’s model there is no need to implement inverse transformations
which in-turn imply matrices inversions. Comparing against other optimal control
methods it can be noted that Model Predictive Control is unsuitable for the model
of the autonomous motorcycle because such a control method is addressed to lin-
ear dynamical systems and cannot compensate for strong nonlinearities. It can be
also noted that Nonlinear Model Predictive Control, being a popular optimal con-
trol approach for nonlinear dynamical systems is not of assured convergence while
its iterative search for an optimum is dependent on initial parametrization. On the
other side, backstepping control cannot be directly applied to the model of the of the
autonomous motorcycle because this is not inherently found in the triangular form.
Furthermore, the application of sliding-mode control is hindered by the fact that the
model of the autonomous motorcycle is not found inherently into a canonical form.
Finally, PID control which is widely used by practitioners in the area of robotics is
an unreliable methodology because the tuning of such a controller is performed in a
heuristic manner around local operating points where the unrealistic assumption is
made that the dynamics of the autonomous motorcycle remains linear. Such a control
method lacks a global stability proof.

The main parameters of the autonomous motorcycle are described in Fig. 7.29.
By defining as σ = tan(δ)

p the joint kinematic and dynamic model of the riderless
motorcycle is given by [154]

ẋ = vcos(ψ) (7.66)

ẏ = vsin(ψ) (7.67)

ψ̇ = v tan(δ)

p (7.68)

φ̈ = 1
h {gsin(φ) + cos(ψ)[(1 + hσ sin(φ))σv2 + hψ̈]} (7.69)
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Fig. 7.29 Diagram of the
two-wheel autonomous
vehicle (riderless
motorcycle)

By differentiating Eq. (7.68) one obtains [154]:

ψ̈ = v δ̇
pcos2(δ) + v̇ tan(δ)

p (7.70)

The following state variables are defined: x1 = x , x2 = y, x3 = ψ , x4 = φ, x5 = φ̇,
x6 = v, x7 = δ. Moreover, the following control inputs are defined u1 = v̇, u2 = δ̇,
that is the control inputs of the autonomous motorcycle are its acceleration and the
rate of turn of the angle of its steering wheel. The state-space description of the
system becomes:

ẋ1 = x6cos(x3)
ẋ2 = x6sin(x3)
ẋ3 = x6

tan(x7)
p

ẋ4 = x5
ẋ5 = 1

h

{
gsin(x4) + cos(x4)

[
(1 + hσ sin(x4))σ x26 + bcos(x4)

(
u2

x6
pcos2(x7)

+ u1
tan(x7)

p

)]}

ẋ6 = u1
ẋ7 = u2

(7.71)

In vector form, one obtains the state-space description

ẋ = f (x) + G(x)u (7.72)

where G(x) = [g1(x) g2(x)] is the control inputs gain, or analytically
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x6cos(x3)
x6sin(x3)
x6

tan(x7)
p

x5
1
h {gsin(x4 + cos(x4)[(1 + hσ sin(x4))σ x26 ])}

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0

bcos(x4)tan(x7)
p

bcos(x4)x6
pcos2(x7)

1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
u1
u2

)

(7.73)

7.4.3 Approximate Linearization of the Model of the
Riderless Motorcycle

Linearization is performed around the temporary operating point (x∗, u∗), where x∗
is the present value of the state-vector of the two-wheel unmanned vehicle and u∗ is
the last value of the control input vector that was exerted on it. One has the linearized
model ẋ = Ax + Bu + d̃ with:

A = ∇x [ f (x) + G(x)u] |(x∗,u∗) ⇒
A = [∇x f (x) + ∇x g1(x)u1 + ∇x g2(x)u2] |(x∗,u∗)

(7.74)

B = ∇u[ f (x) + G(x)u] |(x∗,u∗) ⇒
B = G(x) |(x∗,u∗)

(7.75)

About the Jacobian matrix ∇x f (x)|(x∗,u∗) one has

∇x f (x) |(x∗,u∗)=

⎛
⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x7

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x7· · · · · · · · · · · ·

∂ f7
∂x1

∂ f7
∂x2

· · · ∂ f7
∂x7

⎞
⎟⎟⎟⎠ |(x∗,u∗) (7.76)

For the first row of the Jacobian matrix ∇x f (x)|(x∗,u∗) it holds:
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 0,
∂ f1
∂x3

= −x6sin(x3),
∂ f1
∂x4

= 0, ∂ f1
∂x5

= 0, ∂ f1
∂x6

= cos(x3),
∂ f1
∂x7

= 0.

For the second row of the Jacobian matrix ∇x f (x)|(x∗,u∗) it holds:
∂ f2
∂x1

= 0, ∂ f2
∂x2

=
0, ∂ f2

∂x3
= x6cos(x3),

∂ f2
∂x4

= 0, ∂ f2
∂x5

= 0, ∂ f2
∂x6

= 0sin(x3),
∂ f1
∂x7

= 0.
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For the third row of the Jacobian matrix ∇x f (x)|(x∗,u∗) it holds:
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0, ∂ f3
∂x6

= tan(x7)
p , ∂ f3

∂x7
= x6

1
pcos2(x7)

.

For the fourth row of the Jacobianmatrix∇x f (x)|(x∗,u∗) it holds:
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= 0, ∂ f4
∂x4

= 0, ∂ f4
∂x5

= 1, ∂ f4
∂x6

= 0, ∂ f4
∂x7

= 0.

For the Jacobian’s ∇x f (x)|(x∗,u∗) fifth row it holds: ∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

=
0, ∂ f5

∂x4
= 1

h {gcos(x4) − sin(x4)[(1 + h tan(x7)
p sin(x4))

tan(x7)
p x26 ] + cos(x4)[h tan(x7)

p

cos(x4)
tan(x7)

p x26 ]}, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 1
h cos(x4)[1 + h tan(x7)

p sin(x4))
tan(x7)

p 2x6], and

continuing in a similar manner ∂ f5
∂x7

= 1
h cos(x4){[(h 1

pcos2(x7)
sin(x4))

tan(x7)
p x26 ] +

[(1 + h tan(x7)
p sin(x4))

1
pcos2(x7)

x26 ]}.
For the sixth row of the Jacobian matrix∇x f (x)|(x∗,u∗) it holds:

∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0,
∂ f6
∂x3

= 0, ∂ f6
∂x4

= 0, ∂ f6
∂x5

= 0, ∂ f6
∂x6

= 0, ∂ f6
∂x7

= 0.

For the seventh row of the Jacobian matrix∇x f (x)|(x∗,u∗) it holds:
∂ f7
∂x1

= 0, ∂ f7
∂x2

=
0, ∂ f7

∂x3
= 0, ∂ f7

∂x4
= 0, ∂ f7

∂x5
= 0, ∂ f7

∂x6
= 0, ∂ f7

∂x7
= 0.

About the Jacobian matrix ∇x g1(x)|(x∗,u∗) one has

∇x g1(x) |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 bsin(x4)

tan(x7)
p 0 0 bcos(x4)

1
pcos2(x7)

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) (7.77)

About the Jacobian matrix ∇x g2(x)|(x∗,u∗) one has

∇x g2(x) |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 − bsin(x4)x6

pcos2(x7)
0 bcos(x4)

pcos2(x7)
bcos(x4)x6sin(x7)

pcos3(x7)

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) (7.78)

7.4.4 The Nonlinear H-Infinity Control

7.4.4.1 Tracking Error Dynamics for the Autonomous Motorcycle

The initial nonlinear model of the autonomous motorcycle is in the form
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ẋ = f (x, u) x∈Rn, u∈Rm (7.79)

Linearization of themodel of the riderlessmotorcycle is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)).
The linearized equivalent of the autonomous motorcycle is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (7.80)

Thus, after linearization round its current operating point, the motorcycle’s dynamic
model is written as

ẋ = Ax + Bu + d1 (7.81)

Parameter d1 stands for the linearization error in the two-wheel vehicle’s dynamic
model appearing in Eq. (7.81). The reference setpoints for the autonomous motorcy-
cle are denoted by xd = [xd1 , . . . , , xd6 ]. Tracking of this trajectory is achieved after
applying the control input u∗. At every time instant the control input u∗ is assumed
to differ from the control input u appearing in Eq. (7.81) by an amount equal to �u,
that is u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (7.82)

The joint kinematics and dynamics of the riderless motorcycle is described in Eq.
(7.81) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (7.83)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (7.84)

By subtracting Eq. (7.82) from Eq. (7.84) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (7.85)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (7.86)

The above linearized form of the motorcycle’s model can be efficiently controlled
after applying an H-infinity feedback control scheme.
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7.4.4.2 Min-Max Control and Disturbance Rejection

The initial nonlinear model of the riderless motorcycle is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (7.87)

Linearization of the joint kinematic and dynamic model of the autonomous two-
wheel vehicle is performed at each iteration of the control algorithm round its present
operating point (x∗, u∗) = (x(t), u(t − Ts)). The linearized equivalent model of the
system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (7.88)

where matrices A and B are obtained from the computation of the motorcycle’s
Jacobians, according to Eqs. (7.76), (7.77) and (7.78) and vector d̃ denotes distur-
bance terms due to linearization errors. The problem of disturbance rejection for the
linearized model that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(7.89)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory
tracking by the autonomous motorcycle’s state vector and simultaneous disturbance
rejection, considering that the disturbance affects the system in the worst possible
manner. The disturbances’ effect are incorporated in the following quadratic cost
function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (7.90)

As explained in the application of the H-infinity control presented in the previous
sections, the significance of the negative sign in the cost function’s term that is
associatedwith the perturbation variable d̃(t) is that the disturbance tries tomaximize
the cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (7.91)
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The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
system of the two-wheel autonomous vehicle. However, the solution to the min-max
optimization problem is directly related to the value of the parameter ρ. This means
that there is an upper bound in the disturbances magnitude that can be annihilated
by the control signal.

7.4.4.3 H-Infinity Feedback Control

For the linearized systemgiven byEq. (7.89) the cost function of Eq. (7.90) is defined,
where the coefficient r determines the penalization of the control input and theweight
coefficient ρ determines the reward of the disturbances’ effects. It is assumed that
(i) The energy that is transferred from the disturbances signal d̃(t) is bounded, that
is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are stabilizable, (iii) matrix

[A,C] is detectable. Then, the optimal feedback control law is given by

u(t) = −Kx(t) (7.92)

with

K = 1
r B

T P (7.93)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P
(
1
r BB

T − 1
2ρ2 LLT

)
P = 0 (7.94)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (7.95)

The diagram of the considered control loop is depicted in Fig. 7.30.

7.4.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the control loop of the riderless
motorcycle. Moreover, under moderate conditions asymptotic stability is proven and
convergence to the reference setpoints is achieved. The tracking error dynamics for
the autonomous motorcycle is written in the form
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Fig. 7.30 Diagram of the nonlinear optimal control scheme for the 2-wheel autonomous vehicle
(riderless motorcycle)

ė = Ae + Bu + Ld̃ (7.96)

where in themotorcycle’s case L = I∈R7×7 with I being the identitymatrix.Variable
d̃ denotes model uncertainties and external disturbances of the vehicle’s model. The
following Lyapunov function is considered

V = 1
2e

T Pe (7.97)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T P + 1

2e
T P[Ae + Bu + Ld̃]⇒ (7.98)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (7.99)
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V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(7.100)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (7.101)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P
(
2
r BB

T − 1
ρ2 LLT

)
P (7.102)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (7.103)

By substituting Eqs. (7.102) and (7.103) one obtains

V̇ = 1
2e

T
[
−Q + P

(
2
r BB

T − 1
2ρ2 LLT

)
P

]
e+

+eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(7.104)

V̇ = − 1
2e

T Qe +
(
2
r PBBT Pe − 1

2ρ2 eT PLLT
)
Pe

− 1
r

(
eT PBBT Pe

) + eT PLd̃
(7.105)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (7.106)

or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(7.107)

Lemma: The following inequality holds

1
2e

T Ld̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (7.108)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(7.109)
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The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (7.110)

Equation (7.110) is substituted in Eq. (7.107) and the inequality is enforced, thus
giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (7.111)

Equation (7.111) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt

(7.112)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (7.113)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (7.114)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (7.97) it becomes clear that e(t) will
be also bounded since e(t) ∈ �e = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the autonomous motorcycle is based on Eq. (7.111)
and on the application of Barbalat’s Lemma. It uses the condition of Eq. (7.113) about
the boundedness of the square of the aggregate disturbance and modelling error term
d̃ that affects the model. However, as explained above the proof of global asymptotic
stability is not restricted by this condition. By selecting the attenuation coefficient
ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that
the first derivative of the Lyapunov function is upper bounded by 0. Therefore for
the i th time interval it is proven that the Lyapunov function defined in Eq. (7.97) is
a decreasing one. This also assures the Lyapunov function of the system defined in
Eq. (7.97) will always have a negative first-order derivative.
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7.4.6 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop for the autonomous motorcycle can be implemented with the feed-
back of a partially measurable state vector and by processing only a small number of
state variables. To reconstruct the missing information about the state vector of the
autonomous two-wheel vehicle it is proposed to use a filtering scheme which allows
to apply state estimation-based control [457]. The recursion of the H∞ Kalman Fil-
ter, for the model of the distributed finance agents, can be formulated in terms of a
measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(7.115)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)

(7.116)

where it is assumed that parameter θ is sufficiently small to assure that the covari-
ance matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k)will be positive definite.When
θ = 0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One
can measure only a part of the state vector of the system of the autonomous motor-
cycle, such as the cartesian coordinates of its rear wheels (x, y) and can estimate
through filtering the rest of the state vector elements.

7.4.7 Simulation Tests

The performance of the proposed nonlinear optimal (H-infinity) control method
for the model of the autonomous motorcycle has been tested through simulation
experiments. The simulation results depicted in Figs. 7.31, 7.32, 7.33, 7.34, 7.35,
7.36, 7.37 and 7.38 confirm the stability properties of the control loop that was
previously proven through Lyapunov analysis. Moreover, they demonstrate that the
state vector elements of the motorcycle could track precisely the reference setpoints
and that the two-wheel vehicle could follow accurately the designated paths in the
2D motion plane. This comes to point out that under electronic control, several
of the motorcycle’s driving tasks such as lane following, lane change or vehicle
overtaking can be safely performed. The implementation of the proposed control
scheme required the solution at each time step of the algebraic Riccati equation,
given in Eq. (7.102).
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Fig. 7.31 a Tracking of reference path 1 (red-line) by the autonomous motorcycle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u2 applied to the
autonomous motorcycle
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Fig. 7.32 Tracking of reference path 1: a convergence of state variables x1 to x2 of the autonomous
motorcycle to their reference setpoints (red-lines) and estimated state variables provided by the
Kalman Filter (green lines), b convergence of state variables x3 to x4 of the autonomous motorcycle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines)
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Fig. 7.33 a Tracking of reference path 2 (red-line) by the autonomous motorcycle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u2 applied to the
autonomous motorcycle
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Fig. 7.34 Tracking of reference path 2: a convergence of state variables x1 to x2 of the autonomous
motorcycle to their reference setpoints (red-lines) and estimated state variables provided by the
Kalman Filter (green lines), b convergence of state variables x3 to x4 of the autonomous motorcycle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines)
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Fig. 7.35 a Tracking of reference path 3 (red-line) by the autonomous motorcycle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u2 applied to the
autonomous motorcycle
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Fig. 7.36 Tracking of reference path 3: a convergence of state variables x1 to x2 of the autonomous
motorcycle to their reference setpoints (red-lines) and estimated state variables provided by the
Kalman Filter (green lines), b convergence of state variables x3 to x4 of the autonomous motorcycle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines)
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Fig. 7.37 a Tracking of reference path 4 (red-line) by the autonomous motorcycle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u2 applied to the
autonomous motorcycle
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Fig. 7.38 Tracking of reference path 4: a convergence of state variables x1 to x2 of the autonomous
motorcycle to their reference setpoints (red-lines) and estimated state variables provided by the
Kalman Filter (green lines), b convergence of state variables x3 to x4 of the autonomous motorcycle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines)
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To implement state estimation-based control from the autonomous motorcycle
through the processing of a small number of on-board sensor measurements, the
H-infinity Kalman filter has been used as a robust state estimator. Actually, it was
necessary to receive measurements about the cartesian coordinates (x, y) of the
vehicle’s rear wheel, while the rest of the state vector elements of the motorcycle
could be estimated through the H-infinity Kalman Filter. In the simulation diagrams,
the real values of the state vector components of the two-wheel vehicle are depicted
in blue colour, the estimated values are plotted in greenwhile the associated reference
setpoints are printed in red colour. It can be noted that the proposed control method
achieved fast and accurate tracking of the reference setpoints, while the variations
of the control inputs remained smooth and moderate.

Despite its computational simplicity, the proposed H∞ control scheme has an
excellent performance. Comparing to the control of autonomous vehicles that rely
on global linearization methods the presented nonlinear H-infinity control scheme
is equally efficient in setpoint tracking while also retaining optimal control features
[457]. The tracking accuracy of the presented control method (H∞) has been moni-
tored in the case of several reference setpoints. By using the Kalman Filter as a robust
observer estimates of the state vector of the two-wheel vehicle were obtained thus
the implementation of state estimation-based control became possible. Themeasured
state variables were x1 = x , x2 = y. It can be noticed that despite model perturba-
tions the tracking accuracy of the control method remained satisfactory. The RMSE
of the tracking reference setpoints by the state variables of the motorcycle is given
in Table7.1. Moreover, the tracking performance of the nonlinear H-infinity con-
trol method for the model of the autonomous motorcycle was measured in the case
of model uncertainty, imposing an imprecision equal to �a% about the vehicle’s
mass m. The obtained results are outlined in Table7.2. It can be noticed that despite
model perturbations the tracking accuracy of the control method remained satisfac-
tory (Tables7.3 and 7.4).

Table 7.2 Tracking RMSE in motion under disturbances

RMSEx RMSEy RMSEθ

Path1 37.00 · 10−4 54.00 · 10−4 13.00 · 10−4

Path2 14.00 · 10−4 16.00 · 10−4 2.41 · 10−4

Table 7.3 RMSE of the autonomous motorcycle’s state variables

Path RMSE X (m) RMSE Y (m) RMSE ψ (rad) RMSE φ (rad)

1 2.5·10−3 11.3·10−3 0.1·10−3 0.3·10−3

2 4.8·10−3 19.7·10−3 3.0·10−3 3.2·10−3

3 1.4·10−3 6.6·10−3 0.7·10−3 1.1·10−3

4 1.9·10−3 26.3·10−3 0.1·10−3 1.2·10−3
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Table 7.4 RMSE of the motorcycle under disturbance

�a (%) RMSE X (m) RMSE Y (m) RMSE ψ (rad) RMSE φ (rad)

0 1.9·10−3 26.3·10−3 0.1·10−3 1.2·10−3

10 1.9·10−3 26.3·10−3 0.1·10−3 1.2·10−3

20 1.2·10−3 23.4·10−3 0.2·10−3 1.1·10−3

30 2.4·10−3 26.9·10−3 0.1·10−3 1.3·10−3

40 3.7·10−3 16.0·10−3 0.1·10−3 0.7·10−3

50 4.0·10−3 16.0·10−3 0.2·10−3 0.8·10−3

60 8.5·10−3 17.1·10−3 0.5·10−3 2.3·10−3
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