
Chapter 6
Micro-manipulators

Abstract Microrobots can be used in the manipulation and precise positioning of
micro-objects, as well as in several microelectronics applications. Microrobotics
is primarily concerned with control problems of micro electromechanical systems
(MEMS). Specific problems that one encounters when developing microrobotic sys-
tems and MEMS is the imprecision about the micro-robot’s dynamic model and the
inability to measure specific state vector elements in it. This in turn signifies that the
design of feedback controllers for such systems has to be sufficiently robust to com-
pensate for unmodelled dynamics or for parametric uncertainty. To this end one can
consider either model-free control methods of proven stability (such as adaptive neu-
rofuzzy control schemes), or model-based control methods capable of eliminating
the effects of modelling errors, parametric inconsistency and external perturbations
(such as H-infinity control). Moreover, one has to implement state estimation-based
feedback control methods, making use of robust state observers, that will allow for
estimation of the entire state vector of the microrobot or MEMS through the pro-
cessing of measurements from a small number of sensors. In particular, the chapter
treats the following topics: (a) Adaptive neurofuzzy control of micro-actuators, (b)
Nonlinear optimal control of underactuated MEMS.

6.1 Chapter Overview

This chapter treats the following topics: (a) Adaptive neurofuzzy control of micro-
actuators, (b) Nonlinear optimal control of underactuated MEMS.

With reference to (a) the chapter presents an adaptive fuzzy approach to the
problemof control of electrostatically actuatedMEMS,which is based on differential
flatness theory and which uses exclusively output feedback. It is shown that the
model of the electrostatically actuated MEMS is a differentially flat one and this
permits to transform it to the so-called linear canonical form. For the new description
of the system’s dynamics the transformed control inputs contain unknown terms
which depend on the system’s parameters. To identify these terms adaptive fuzzy
approximators are used in the control loop. Thus an adaptive fuzzy control scheme is
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implemented in which the unknown or unmodeled system dynamics is approximated
by neurofuzzy networks and next this information is used by a feedback controller
that makes the electrostatically activated MEMS converge to the desirable motion
setpoints. This adaptive control scheme is exclusively implemented with the use of
output feedback, while the state vector elements which are not directly measured
are estimated with the use of a state observer that operates in the control loop. The
learning rate of the adaptive fuzzy system is suitably computed from Lyapunov
analysis, so as to ensure that both the learning procedure for the unknown system’s
parameters, the dynamics of the observer and the dynamics of the control loop will
remain stable. The Lyapunov stability analysis depends on twoRiccati equations, one
associated with the feedback controller and one associated with the state observer.

With reference to (b) the chapter proposes a nonlinear optimal control method for
solving the problem of control of coupled underactuated micro-electromechanical
systems (MEMS). The MEMS model consists of a Van-der-Pol oscillator being
elastically coupledwith a forcedDuffingoscillator. Thedynamicmodel of theMEMS
is approximately linearized around a temporary operating point with the use of first-
order Taylor series expansion and after computing the Jacobian matrices of its state-
space model. For the approximately linearized model of the MEMS a nonlinear
optimal (H-infinity) feedback controller is designed. This controller stands for the
solution of theMEMS optimal control problem undermodel uncertainty and external
perturbations. The computation of the feedback control gain relies on the solution of
an algebraic Riccati equation taking place at each time step of the control method.
Finally, to achieve state estimation-based control through themeasurement of a small
number of the MEMS state vector elements, the H-infinity Kalman Filter is used as
a robust state estimator. In both cases (a) and (b) the global asymptotic stability
properties of the control scheme are proven through Lyapunov analysis.

6.2 Adaptive Neurofuzzy Control of Microactuators

6.2.1 Outline

As micro and nanotechnology develop fast, the use of MEMS and particularly of
microactuators is rapidly deploying. One can note several systems where the use of
microactuators has become indispensable and the solution of the associated control
problems has become a prerequisite. In [501, 507, 649, 651] electrostatic microactu-
ators are used in adaptive optics and optical communications. In [56, 327] microac-
tuators are used for micromanipulation and precise positioning of microobjects. Sev-
eral approaches to the control of microactuators have been proposed. In [263, 276,
550] adaptive control methods have been used. In [142, 607] solution of microac-
tuation control problems through robust control approaches has been attempted. In
[482] backstepping control has been used, while in [550] an output feedback control
scheme has been implemented. Additional results for the stabilization and control
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of microactuators have been presented in [192, 389]. In such control systems, con-
vergence of the state vector elements to the associated reference setpoints has to be
performed with accuracy, despite modeling uncertainties, parametric variations or
external perturbations.Moreover, the reliable functioning of the control loop has to be
assured despite difficulties in measuring the complete state vector of theMEMS. The
present section develops a new method for the control of micro-electromechanical
systems (MEMS) which is based on differential flatness theory. The considered con-
trol problem is a nontrivial one because of the of the unknown nonlinear dynamical
model of the actuator and because of the constraint to implement the control using
exclusively output feedback (it is little reliable and technically difficult to use sensor
measurements for the monitoring of all state variables of the micro-actuator). The
differential flatness theory control approach is based on an exact linearization of the
MEMS dynamics which avoids the numerical errors of the approximate linearization
that is performed by other nonlinear control methods [93, 235, 335, 454, 457].

First, the section shows that the dynamic model of the studied microactuator is
a differentially flat one. This means that all its state variables and the control input
can be written as functions of one single algebraic variable, which is the flat output,
and also as functions of the flat output’s derivatives [267, 450, 452, 476, 519]. This
change of variables (differential flatness theory-based diffeomorphism) enables to
transform the nonlinear model of the actuator into the linear canonical (Brunovsky)
form [145, 334, 546, 572]. In the latter description of the MEMS, the transformed
control input contains elements which are associated with the unknown nonlinear
dynamics of the system. These are identified on-line with the use of neurofuzzy
approximators and the estimated system dynamics is finally used for the computa-
tion of the control signal that will make the MEMS state vector track the desirable
setpoints. Thus an adaptive fuzzy control scheme is implemented [457, 462]. The
learning rate of the neurofuzzy approximators is determined by the requirement to
assure that the Lyapunov function of the control loop will always have a negative
first-order derivative.

Next, another problem that has to be dealt with was that only output feedback can
be used for the implementation of the MEMS control scheme. The nonmeasurable
state variables of the microactuator have to be reconstructed with the use of a state
estimator (observer), which functions again inside the control loop. Thus, finally,
the Lyapunov function for the proposed control scheme comprises three quadratic
terms: (i) a term that describes the tracking error of the MEMS state variables from
the reference setpoints, (ii) a term that describes the error in the estimation of the non-
measurable state vector elements of the microactuator with respect to the reference
setpoints, and (iii) a sumof quadratic terms associatedwith the distance of theweights
of the neurofuzzy approximators from the values that give the best approximation of
the unknown MEMS dynamics. It is proven that an adaptive (learning) control law
can be found assuring that the Lyapunov function will continuously have a negative
first order derivative, thus also confirming that the stability of the control loop will be
preserved and that accurate tracking of the setpoints by the system’s state variables
will be achieved (H-infinity tracking performance).
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Fig. 6.1 Diagram of the 1-DOF parallel-plate electrostatic actuator

6.2.2 Dynamic Model of the Electrostatic Actuator

The considered MEMS (electrostatic microactuator) is depicted in Fig. 6.1. The
dynamic model of the MEMS has been analyzed in [172, 199, 648, 650], where
model-based control approaches have been mostly developed. It is assumed that
Q(t) is the charge of the device, while ε is the permitivity in the gap. Then the
capacitance of the device is

C(t) = εA

G(t)
(6.1)

while the attractive electrostatic force on the moving plate is

F(t) = V 2
a

2

∂C

∂G
= − εAV 2

a

2G2(t)
= −Q2(t)

2εA
(6.2)

Thus, the equation of motion of the actuator is given by

mG̈(t) + bĠ(t) + k(G(t) − G0) = −Q2(t)

2εA
(6.3)

From Eqs. (6.2) and (6.3) it can be concluded that the electrostatic force F increases
with the inverse square of the gap, while the restoring mechanical force which is
associated with the term k(G(t) − G0) increases linearly with the plate deflection.
A critical value for the voltage across the device is called pull-in voltage and is given
by [651]

Vpi =
√
8kG2

0

27C0
(6.4)
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It is assumed that the MEMS starts operating from an initially uncharged state at
t = 0. Then the charge of the electrodes at time instant t is given by Q(t) =∫ t
0 Is(τ )dτ , or equivalently Q̇(t) = Is(t). By applying Kirchhoff’s voltage law one
has for the current that goes through the resistor

Q̇(t) = 1

R

(
Vs(t) − Q(t)G(t)

εA

)
(6.5)

Next, the equations of the system’s dynamics given in Eqs. (6.3)–(6.5) undergo a
transformation which consists of a change of the time scale τ = ωt and of the fol-
lowing normalization

x = 1 − G
G0

q = Q
Qpi

u = Vs
Vpi

i = Is
Vpiω0C0

r = ω0C0R
(6.6)

where C0 = εA
G0
, Qpi = 3

2C0Vpi is the pull-in charge corresponding to the pull-in

voltage, ω0 = √
k/m is the undamped natural frequency, and ζ = b

2mω0
is the damp-

ing ratio. The normalized voltage across the actuator can be expressed in terms of
normalized deflection x of the moveable electrode, that is uo = 3

2q(1 − x), while
the dynamics of the normalized charge is q̇ = 2

3 i .
After the aforementioned normalization and transformation, the dynamic model

of the microactuator is written as [651]

ẋ = v

v̇ = −2ζv − x + 1

3
q2 (6.7)

q̇ = 1

r
q(1 − x) + 2

3r
u

In the previous state-spacemodel: ẋ = v: is a variable denoting the speed of deflection
of themoving electrode,q is a variable denoting the ratio between the actual change of
the plates Q and the pull-in charge Qpi . It holds that q = Q

Qpi
, where Qpi = 3

2CoVpi

and Vpi is the pull-in voltage.

Remark 1 The previously analyzed MEMS dynamics is a highly nonlinear one and
nonlinear control methods have to be used for it. One can distinguish three main
approaches in the control of nonlinear dynamical systems: (i) control based on global
linearization methods, (ii) control based on approximate linearization methods, (iii)
Lyapunov methods.

The results of the present section are mostly based on approach (iii) that is
Lyapunov theory-based design of feedback controllers for dynamical systems of
unknown model and of non completely measurable state vector. Comparing to meth-
ods (i) and (ii), approach (iii) is a completely model-free one. Therefore, the major
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benefit from it is that there is no dependence on prior knowledge of the microac-
tuator’s dynamics. The main difficulty in the application of approach (iii) is that
it may require operations between matrices of high dimension. Thus it becomes
computationally more demanding than approaches (i) and (ii).

6.2.3 Linearization of the MEMS Model Using Lie Algebra

The MEMS nonlinear dynamics given in Eq. (6.7), with state vector defined as
x = [x, v, q], is also written in the form

ẋ = f (x) + g(x)u (6.8)

where the vector fields f (x) and g(x) are defined as

f (x) =
⎛
⎜⎝

v

−2ζv − x + 1
2q

2

− 1
r q(1 − x)

⎞
⎟⎠ g(x) =

⎛
⎝ 0

0
2
3r

⎞
⎠ (6.9)

Using the above formulation, one can arrive at a linearized description of the MEMS
dynamics using a differential geometric approach and the computation of Lie deriva-
tives. The following state variables are defined: z1 = h1(x) = x , z2 = L f h1(x) and
z3 = L2

f h1(x). It holds that

z2 = L f h1(x)⇒z2 = ∂h1
∂x1

f1 + ∂h1
∂x2

f2 + ∂h1
∂x3

f3⇒
z2 = 1 f1 + 0 f2 + 0 f3⇒z2 = f1⇒z2 = v⇒z2 = ẋ

(6.10)

In a similar manner one computes

z3 = L2
f h1(x)⇒z3 = ∂z2

∂x1
f1 + ∂z2

∂x2
f2 + ∂z2

∂x3
f3⇒

z3 = 0 f1 + 1 f2 + 0 f3⇒z3 = v̇⇒z3 = ẍ
(6.11)

Moreover, one has that

ż3 = x (3) = L3
f h1(x) + LgL

2
f h1x ·u (6.12)

where

L3f h1(x) = L f z2⇒L3f h1(x) = ∂z3
∂x1

f1 + ∂z3
∂x2

f2 + ∂z3
∂x3

f3⇒

L3f h1(x) = 1 f1 − 2ζ f2 + 2

3
q f3⇒L3f h1(x) = v − 2ζ v̇ + 2

3
q

(
−1

r
q(1 − x)

)
⇒
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L3f h1(x) = ẏ − 2ζ ÿ + 2

3
q

[
−1

r
q(1 − x)

]
⇒L3f h1(x) = −2ζ ÿ − ẏ − 1

r
(1 − y)

2

3
q2⇒

L3f h1(x) = −2ζ ÿ − ẏ − 2

r
(1 − y)[ÿ + 2ζ ẏ + y] (6.13)

Following a similar procedure one finds

LgL2
f h1(x) = Lgz3⇒LgL2

f h1(x) = ∂z3
∂x1

g1 + ∂z3
∂x2

g2 + ∂z3
∂x3

g3⇒
LgL2

f h1(x) = 1g1 − 2ζ g2 + 2
3qg3⇒LgL2

f h1(x) = 4
9r q⇒

LgL2
f h1(x) = 4

9r

√
3[ÿ + 2ζ ẏ + y]

(6.14)

For the linearized description of the MEMS dynamics given in Eq. (6.12), and using
that v = L3

f h1(x) + LgL2
f h1(x)u one obtains the state-space description⎛

⎜⎝
ż1
ż2
ż3

⎞
⎟⎠ =

⎛
⎜⎝
0 1 0

0 0 1

0 0 0

⎞
⎟⎠

⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ +

⎛
⎝0
0
1

⎞
⎠ v (6.15)

zmeas = (
1 0 0

)⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ (6.16)

For the linearized description of the system given in Eq. (6.25) the design of a state
feedback controller is carried out as follows:

v = y(3)
d − k1(ÿ − ÿd) − k2(ẏ − ẏd) − k3(y − yd) (6.17)

which results in tracking error dynamics of the form

e(3)(t) + k1ë(t) + k2ė(t) + k3e(t) = 0 (6.18)

By selecting the feedback gains ki , i = 1, 2, 3 such that the characteristic polynomial
of Eq. (6.31) to be a Hurwitz one, it is assured that limt→∞e(t) = 0.

6.2.4 Differential Flatness of the Electrostatic Actuator

6.2.4.1 Differential Flatness Properties of the Electrostatic
Microactuator

The dynamicmodel of the electrostaticmicroactuator given inEq. (6.7) is considered.
The flat output of the model is taken to be be y = x . Therefore, it also holds v = ẏ.
From the second row of the state space equations, given in Eq. (6.7) one has
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ÿ = −2ζ ẏ − y + 1
3q

2⇒q2 = 3[ÿ + 2ζ ẏ + y]
⇒q = √

3[ÿ + 2ζ ẏ + y]⇒q = fq(y, ẏ, ÿ)
(6.19)

From the third row of the state space equations, given in Eq. (6.7) one has

u = 3r

2

[
q̇ + 1

r
q(1 − x)

]
⇒u = fu(y, ẏ, ÿ, y

(3)) (6.20)

Since all state variables and the control input of the system are expressed as functions
of the flat output and its derivatives, it is concluded that the model of the electrostatic
actuator is a differentially flat one.

6.2.4.2 Linearization of the MEMS Model Using Differential Flatness
Theory

From the second row of the state-space model given in Eq. (6.7) it holds that

ÿ = −2ζ ẏ − y + 1

3
q2 (6.21)

By deriving once more with respect to time one gets

y(3) = −2ζ ÿ − ẏ + 2

3
qq̇ (6.22)

By substituting the third row of the state-space model given in Eq. (6.7) one obtains

y(3) = −2ζ ÿ − ẏ + 2
3q

[− 1
r q(1 − x) + 2

3r u
]⇒

y(3) = −2ζ ÿ − ẏ − 2
3r (1 − x)q2 + 4

9r qu
(6.23)

Next, using from Eq. (6.19) that q2 = ÿ + 2ζ ẏ + y or equivalently that q =√
ÿ + 2ζ ẏ + y the following relation is obtained

y(3) = −2ζ ÿ − ẏ − 2

e
(1 − y)[ÿ + 2ζ ẏ + y] + 4

9r

√
3[ÿ + 2ζ ẏ + y]u (6.24)

or equivalently

y(3) = f (y, ẏ, ÿ) + g(y, ẏ, ÿ)u (6.25)

where

f (y, ẏ, ÿ) = −2ζ ÿ − ẏ − 2

r
(1 − y)[ÿ + 2ζ ẏ + y] (6.26)
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g(y, ẏ, ÿ) = 4

9r
[√3[ÿ + 2ζ ẏ + y] (6.27)

For the linearized description of the MEMS dynamics given in Eq. (6.25), and using
the notation z1 = y, z2 = ẏ and z3 = ÿ, and v = f (y, ẏ, ÿ) + g(y, ẏ, ÿ)u one arrives
also at the state-space description⎛

⎜⎝
ż1
ż2
ż3

⎞
⎟⎠ =

⎛
⎜⎝
0 1 0

0 0 1

0 0 0

⎞
⎟⎠

⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ +

⎛
⎜⎝
0

0

1

⎞
⎟⎠ v (6.28)

zmeas = (
1 0 0

)⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ (6.29)

For the linearized description of the system given in Eq. (6.25) the design of a state
feedback controller is carried out as follows:

v = y(3)
d − k1(ÿ − ÿd) − k2(ẏ − ẏd) − k3(y − yd) (6.30)

which results in tracking error dynamics of the form

e(3)(t) + k1ë(t) + k2ė(t) + k3e(t) = 0 (6.31)

By selecting the feedback gains ki , i = 1, 2, 3 such that the characteristic polynomial
of Eq. (6.31) to be a Hurwitz one, it assured that limt→∞e(t) = 0.

6.2.5 Adaptive Fuzzy Control of the MEMS Model Using
Output Feedback

6.2.5.1 Problem Statement

Adaptive fuzzy control aims at solving the microactuator’s control problem in case
that its dynamics is unknown and the state vector is not completely measurable. It has
been shown that after applying the differential flatness theory-based transformation,
the following non-linear SISO system is obtained:

x (n) = f (x, t) + g(x, t)u + d̃ (6.32)

where f (x, t), g(x, t) are unknown nonlinear functions and d̃ is an unknown addi-
tive disturbance. The objective is to force the system’s output y = x to follow a
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given bounded reference signal xd . In the presence of non-Gaussian disturbances w,
successful tracking of the reference signal is denoted by the H∞ criterion [450, 457].∫ T

0
eT Qedt ≤ ρ2

∫ T

0
wTwdt (6.33)

where ρ is the attenuation level and corresponds to the maximum singular value of
the transfer function G(s) of the linearized equivalent of Eq. (6.32).

6.2.5.2 Transformation of Tracking into a Regulation Problem

The flatness-based adaptive fuzzy control approach for nonlinear systems control
consists of the following steps : (i) linearization is applied; (ii) the unknown system
dynamics are approximated by neural or fuzzy estimators, (iii) an H∞ control term,
is employed to compensate for estimation errors and external disturbances. If the
state vector is not measurable, this can be reconstructed with the use of an observer.

For measurable state vector x , desirable state vector xm and uncertain functions
f (x, t) and g(x, t) an appropriate control law for (6.32) would be

u = 1

ĝ(x, t)
[x (n)

m − f̂ (x, t) + KT e + uc] (6.34)

where, f̂ and ĝ are the approximations of the unknown parts of the system dynam-
ics f and g respectively, and which can be given by the outputs of suitably trained
neuro-fuzzy networks. The term uc denotes a supervisory controller which compen-
sates for the approximation error w = [ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u,
as well as for the additive disturbance d̃. Moreover the feedback control gains
KT = [kn, kn−1, . . . , k1], and the vector of the state vector element’s tracking error
eT = [e, ė, ë, . . . , e(n−1)]T are chosen such that the polynomial e(n) + k1e(n−1) +
k2e(n−2) + · · · + kne is Hurwitz. The substitution of control law of Eq. (6.34) in
(6.32) results into

x(n) = f (x, t) + g(x, t) 1
ĝ(x,t) [x

(n)
m − f̂ (x, t) − KT e + uc] + d̃ ⇒

x(n) = f (x, t) + {ĝ(x, t) + [g(x, t) − ĝ(x, t)]} 1
ĝ(x,t) [x

(n)
m − f̂ (x, t) − KT e + uc] + d̃ ⇒

x(n) = f (x, t) +
{
ĝ(x,t)
ĝ(x,t) [x

(n)
m − f̂ (x, t) − KT e + uc] + [g(x, t) − ĝ(x, t)]u

}
+ d̃ ⇒

x(n) = f (x, t) + x(n)
m − f̂ (x, t) − KT e + uc + [g(x, t) − ĝ(x, t)]u + uc + d̃ ⇒

x(n) − x(n)
m = −KT e + [ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + uc + d̃ ⇒

x(n) = −KT e + uc + [ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d̃
(6.35)
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The above relation can be written in a state-equations form. The state vector is taken
to be eT = [e, ė, . . . , e(n−1)], which yields

ė = Ae − BKT e + Buc + B{[ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d̃}
(6.36)

or equivalently

ė = (A − BKT )e + Buc + B{[ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d̃}
e1 = CT e

(6.37)
where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0

0 0 1 · · · · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · 1

0 0 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.38)

BT = (
0, 0, · · · , 0, 1

)
, CT = (

1, 0, · · · , 0, 0
)

KT = (
k0, k1, · · · , kn−2, kn−1

)
where e1 denotes the output error e1 = x − xm . Eq. (6.37) describes a regulation
problem.

6.2.5.3 Estimation of the State Vector

The control of the microactuator described by Eq. (6.32) becomes more complicated
when the state vector x is not directlymeasurable and has to be reconstructed through
a state observer. The following definitions are used

• error of the state vector e = x − xm
• error of the estimated state vector ê = x̂ − xm
• observation error ẽ = e − ê = (x − xm) − (x̂ − xm)

When an observer is used to reconstruct the state vector, the control law of Eq. (6.34)
is written as

u = 1

ĝ(x̂, t)
[x (n)

m − f̂ (x̂, t) + KT e + uc] (6.39)

Applying Eq. (6.39) to the nonlinear system described by Eq. (6.32), after some
operations results into
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x (n) = x (n)
m − KT ê + uc + [ f (x, t) − f̂ (x̂, t)]+

[g(x, t) − ĝ(x̂, t)]u + d̃

It holds e = x − xm ⇒ x (n) = e(n) + x (n)
m . Substituting x (n) in the above equation

gives

e(n) + x (n)
m = x (n)

m − KT ê + uc + [ f (x, t) − f̂ (x̂, t)]+
+[g(x, t) − ĝ(x̂, t)]u + d̃ ⇒

(6.40)

ė = Ae − BKT ê + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+[g(x, t) − ĝ(x̂, t)]u + d̃}

(6.41)

e1 = CT e (6.42)

where e = [e, ė, ë, . . . , e(n−1)]T , and ê = [ê, ˙̂e, ¨̂e, . . . , ê(n−1)]T .
The state observer is designed according to Eqs. (6.41) and (6.42) and is given by

[457]:

˙̂e = Aê − BKT ê + Ko[e1 − CT ê] (6.43)

ê1 = CT ê (6.44)

The observation gain Ko = [ko0 , ko1 , . . . , kon−2 , kon−1 ]T is selected so as to ensure the
convergence of the observer.

6.2.5.4 The Additional Control Term uc

The additional termuc which appeared inEq. (6.34) is also introduced in the observer-
based control to compensate for:

• The external disturbances d̃
• The state vector estimation error ẽ = e − ê = x − x̂
• The approximation error of the nonlinear functions f (x, t) and g(x, t), denoted
as w = [ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u

The control signal uc consists of 2 terms, namely:

• the H∞ control term, ua = − 1
r B

T Pẽ for the compensation of d and w
• the control term ub for the compensation of the observation error ẽ
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6.2.5.5 Dynamics of the Observation Error

The observation error is defined as ẽ = e − ê = x − x̂ . Subtracting Eq. (6.43) from
(6.41) as well as Eq. (6.44) from (6.42) one gets

ė − ˙̂e = A(e − ê) + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+ [g(x, t) − ĝ(x̂, t)]u + d̃} − KoC

T (e − ê)

e1 − ê1 = CT (e − ê)

that is

˙̃e = Aẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+ [g(x, t) − ĝ(x̂, t)]u + d̃} − KoC

T ẽ

ẽ1 = CT ẽ

which can be written as

˙̃e = (A − KoC
T )ẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u + d̃}

(6.45)

ẽ1 = Cẽ (6.46)

6.2.5.6 Approximation of the Unknown MEMS Dynamics

Neurofuzzy networks can been trained on-line to approximate parts of the unknown
dynamics of the microactuator,or to compensate for external disturbances. The
approximation of functions f (x, t) and g(x, t) of Eq.(6.32) can be carried out with
Takagi-Sugeno neuro-fuzzy networks of zero or first order (Fig. 6.2 ). These consist
of rules of the form:

Rl : IF x̂ is Al
1 AND

˙̂x is Al
2 AND · · · AND x̂ (n−1) is Al

n THEN ȳl = ∑n
i=1w

l
i x̂i +

bl , l = 1, 2, . . . , L
The output of the neuro-fuzzy model is calculated by taking the average of the

consequent part of the rules

ŷ =
∑L

l=1 ȳ
l
∏n

i=1μAl
i
(x̂i )∑L

l=1

∏n
i=1μAl

i
(x̂i )

(6.47)

where μAl
i
is the membership function of xi in the fuzzy set Al

i . The training of
the neuro-fuzzy networks is carried out with 1st order gradient algorithms, in pattern
mode, i.e. by processing only one data pair (xi , yi ) at every time step i . The estimation
of f (x, t) and g(x, t) can be written as
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Fig. 6.2 Neuro-fuzzy approximator for the unknown dynamics of the mioroactuator: Gi Gaussian
basis function, Ni : normalization unit

f̂ (x̂ |θ f ) = θT
f φ(x̂)

ĝ(x̂ |θg) = θT
g φ(x̂)

(6.48)

where φ(x̂) are kernel functions with elements φl(x̂) =
∏n

i=1μAli
(x̂i )∑L

l=1

∏n
i=1μAli

(x̂i )
l = 1, 2,

· · · , L . It is assumed that that the weights θ f and θg vary in the bounded areas Mθ f

and Mθg which are defined as

Mθ f = {θ f ∈ Rh : ||θ f || ≤ mθ f }
Mθg = {θg ∈ Rh : ||θg|| ≤ mθg }

(6.49)

with mθ f and mθg positive constants. The values of θ f and θg for which optimal
approximation is achieved are:

θ∗
f = arg minθ f ∈Mθ f

[supx∈Ux ,x̂∈Ux̂ | f (x) − f̂ (x̂ |θ f )|]
θ∗
g = arg minθg∈Mθg

[supx∈Ux ,x̂∈Ux̂ |g(x) − ĝ(x̂ |θg)|]

The variation ranges of x and x̂ are the compact sets

Ux = {x ∈ Rn : ||x || ≤ mx < ∞},
Ux̂ = {x̂ ∈ Rn : ||x̂ || ≤ mx̂ < ∞} (6.50)

The approximation error of f (x, t) and g(x, t) is given by

w = [ f̂ (x̂ |θ∗
f ) − f (x, t)] + [ĝ(x̂ |θ∗

g ) − g(x, t)]u ⇒
w = {[ f̂ (x̂ |θ∗

f ) − f (x |θ∗
f )] + [ f (x |θ∗

f ) − f (x, t)]}+
{[ĝ(x̂ |θ∗

g ) − g(x̂ |θ∗
g )] + [g(x̂ |θ∗

g )g(x, t)]}u
(6.51)
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where

• f̂ (x̂ |θ∗
f ) is the approximation of f for the best estimation θ∗

f of the weights’ vector
θ f .

• ĝ(x̂ |θ∗
g ) is the approximation of g for the best estimation θ∗

g of the weights’ vector
θg .

The approximation error w can be decomposed into wa and wb, where

wa = [ f̂ (x̂ |θ f ) − f̂ (x̂ |θ∗
f )] + [ĝ(x̂ |θg) − ĝ(x̂ |θ∗

g )]u
wb = [ f̂ (x̂ |θ∗

f ) − f (x, t)] + [ĝ(x̂ |θ∗
g ) − g(x, t)]u

Finally, the following two parameters are defined:

θ̃ f = θ f − θ∗
f , θ̃g = θg − θ∗

g (6.52)

6.2.6 Lyapunov Stability Analysis

6.2.6.1 Design of the Lyapunov Function

The adaptation law of the neurofuzzy approximators’ weights θ f and θg as well as
of the supervisory control term uc for the microactuator’s loop are derived from the
requirement for negative definiteness of the Lyapunov function

V = 1

2
êT P1ê + 1

2
ẽT P2ẽ + 1

2γ1
θ̃T
f θ̃ f + 1

2γ2
θ̃T
g θ̃g (6.53)

The selection of the Lyapunov function relies on the following principle of indirect
adaptive control ê : limt→∞ x̂(t) = xd(t) and ẽ : limt→∞ x̂(t) = x(t). This yields
limt→∞ x(t) = xd(t). Substituting Eqs. (6.41), (6.42) and Eqs. (6.45), (6.46) into Eq.
(6.53) and differentiating results into

V̇ = 1

2
˙̂eT P1ê + 1

2
êT P1 ˙̂e + 1

2
˙̃eT P2ẽ + 1

2
ẽT P2 ˙̃e + 1

γ1
θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg (6.54)

which in turn gives

V̇ = 1
2 {(A − BKT )ê + KoCT ẽ}T P1ê + 1

2 ê
T P1{(A − BKT )ê + KoCT ẽ}+

+ 1
2 {(A − KoCT )ẽ + Buc + Bd + Bw}T P2ẽ + 1

2 ẽ
T P2{(A − KoCT )ẽ + Buc + Bd + Bw}+

+ 1
γ1

θ̃Tf
˙̃
θ f + 1

γ2
θ̃Tg

˙̃
θg

(6.55)



316 6 Micro-manipulators

or, equivalently

V̇ = 1
2 {êT (A − BKT )T + ẽT CK T

o }P1ê + 1
2 ê

T P1{(A − BKT )ê + KoCT ẽ}+
+ 1

2 {ẽT (A − KoCT )T + BT uc + BTw + BT d}P2ẽ + 1
2 ẽ

T P2{(A − KoCT )ẽ + Buc + Bw + Bd}+
+ 1

γ1
θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.56)

V̇ = 1
2 ê

T (A − BKT )T P1ê + 1
2 ẽ

T CKT
o P1ê + + 1

2 ê
T P1(A − BKT )ê + 1

2 ê
T P1KoCT ẽ+

+ 1
2 ẽ

T (A − KoCT )T P2ẽ + 1
2 B

T P2ẽ(uc + w + d) + 1
2 ẽ

T P2(A − KoCT )ẽ+
+ 1

2 ẽ
T P2B(uc + w + d) + 1

γ1
θ̃Tf

˙̃
θ f + 1

γ2
θ̃Tg

˙̃
θg

(6.57)

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive
definite matrices P1 and P2, which are the solution of the following Riccati equations
[457]

(A − BKT )T P1 + P1(A − BKT ) + Q1 = 0 (6.58)

(A − KoCT )
T
P2 + P2(A − KoCT )−

−P2B( 2r − 1
ρ2 )BT P2 + Q2 = 0

(6.59)

The conditions given in Eqs. (6.58)–(6.59) are related to the requirement that the sys-
tems described by Eqs. (6.43), (6.44) and Eqs. (6.45), (6.46) become asymptotically
stable. Substituting Eqs. (6.58)–(6.59) into V̇ yields

V̇ = 1
2 ê

T {(A − BKT )T P1 + P1(A − BKT )}ê + ẽT CK T
o P1ê+

+ 1
2 ẽ

T {(A − KoCT )T P2 + P2(A − KoCT )}ẽ + BT P2ẽ(uc + w + d)+
+ 1

γ1
θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.60)

which is also written as

V̇ = − 1
2 ê

T Q1ê + ẽT CK T
o P1ê−

− 1
2 ẽ

T {Q2 − P2B( 2r − 1
ρ2 )BT P2}ẽ + BT P2ẽ(uc + w + d)+

+ 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.61)

Following the concept analyzed in Chapter 3, the supervisory control uc is decom-
posed in two terms, ua and ub

ua = −1

r
p1nẽ1 = −1

r
ẽT P2B + 1

r
(p2nẽ2 + · · · + pnnẽn) = −1

r
ẽT P2B + �ua

(6.62)
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where p1n stands for the last (n-th) element of the first row of matrix P2, and

ub = −[(P2B)T (P2B)]−1(P2B)TCK T
o P1ê (6.63)

• ua is an H∞ control used for the compensation of the approximation error w and
the additive disturbance d̃. Its first component − 1

r ẽ
T P2B has been chosen so as to

compensate for the term 1
r ẽ

T P2BBT P2ẽ, which appears in Eq. (6.61). By subtract-
ing the second component − 1

r (p2nẽ2 + · · · + pnnẽn) one has that ua = − 1
r p1nẽ1,

whichmeans that ua is computed based on the feedback of themeasurable variable
ẽ1. Eq. (6.62) is finally rewritten as ua = − 1

r ẽ
T P2B + �ua .

• ub is a control used for the compensation of the observation error (the control term
ub has been chosen so as to satisfy the condition ẽT P2Bub = −ẽT CK T

o P1ê.

The control scheme is depicted in Fig. 6.3. Substituting Eqs. (6.62) and (6.63) in V̇ ,
one gets

V̇ = − 1
2 ê

T Q1ê + ẽT CK T
o P1ê − 1

2 ẽ
T Q2ẽ + 1

r ẽ
T P2BBT P2ẽ−

− 1
2ρ2 ẽT P2BBT P2ẽ + ẽT P2Bub − 1

r ẽ
T P2BBT P2ẽ + BT P2ẽ(w + d + �ua)+

+ 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.64)

Fig. 6.3 The proposed adaptive-fuzzy control scheme
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or equivalently,

V̇ = − 1
2 ê

T Q1ê − 1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + BT P2ẽ(w + d + �ua)+

+ 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.65)

It holds that ˙̃
θ f = θ̇ f − θ̇∗

f = θ̇ f and
˙̃
θg = θ̇g − θ̇∗

g = θ̇g . The following weight adap-
tation laws are considered:

θ̇ f = {−γ1ẽT P2Bφ(x̂) i f ||θ f || < mθ f

0 ||θ f || ≥ mθ f

(6.66)

θ̇g = {−γ2ẽT P2Bφ(x̂)uc i f ||θg|| < mθg

0 ||θg|| ≥ mθg

(6.67)

To set θ̇ f and θ̇g equal to 0, when ||θ f ≥ mθ f ||, and ||θg ≥ mθg || the projection
operator is employed [450]:

P{γ1ẽT P2Bφ(x̂)} = −γ1ẽT P2Bφ(x̂) +
+γ1ẽT P2B

θ f θ
T
f

||θ f ||2 φ(x̂)

P{γ1ẽT P2Bφ(x̂)uc} = −γ1ẽT P2Bφ(x̂)uc +
+γ1ẽT P2B

θ f θ
T
f

||θ f ||2 φ(x̂)uc

The update of θ f stems from a gradient algorithm on the cost function 1
2 ( f − f̂ )2

[33, 432]. The update of θg is also of the gradient type, while uc implicitly tunes the
adaptation gain γ2. Substituting Eqs. (6.66) and (6.67) in V̇ gives

V̇ = − 1
2 ê

T Q1ê − 1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + BT P2ẽ(w + d + �ua)+

+ 1
γ1

θ̃T
f (−γ1ẽT P2Bφ(x̂)) + 1

γ2
θ̃T
g (−γ2ẽT P2Bφ(x̂)u)

(6.68)
which is also written as

V̇ = − 1
2 ê

T Q1ê − 1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + ẽT P2B(w + d + �ua)−

−ẽT P2Bθ̃T
f φ(x̂) − ẽT P2Bθ̃T

g φ(x̂)u
(6.69)

and using Eqs. (6.48) and (6.52) results into

V̇ = − 1
2 ê

T Q1ê − 1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + ẽT P2B(w + d + �ua)−

−ẽT P2B{[ f̂ (x̂ |θ f ) + ĝ(x̂ |θ f )u] − [ f̂ (x̂ |θ∗
f ) + ĝ(x̂ |θ∗

g )u]}
(6.70)
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where [ f̂ (x̂ |θ f ) + ĝ(x̂ |θ f )u] − [ f̂ (x̂ |θ∗
f ) + ĝ(x̂ |θ∗

g )u] = wa . Thus setting w1 =
w + wa + d + �ua one gets

V̇ = − 1
2 ê

T Q1ê
1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + BT P2ẽw1 ⇒

V̇ = − 1
2 ê

T Q1ê
1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + 1

2w
T
1 B

T P2ẽ + 1
2 ẽ

T P2Bw1
(6.71)

Lemma: The following inequality holds

1
2 ẽ

T P2Bw1 + 1
2w

T
1 B

T P2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ ≤ 1

2ρ
2wT

1 w1 (6.72)

Proof : The binomial (ρa − 1
ρ
b)2 ≥ 0 is considered. Expanding the left part of the

above inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0

⇒ ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2 ⇒ 1

2ab + 1
2ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2
(6.73)

The following substitutions are carried out: a = w1 and b = ẽT P2B and the previous
relation becomes

1
2w

T
1 B

T P2ẽ + 1
2 ẽ

T P2Bw1 − 1
2ρ2 ẽT P2BBT P2ẽ

≤ 1
2ρ

2wT
1 w1

(6.74)

The above inequality is used in V̇ , and the right part of the associated inequality is
enforced

V̇≤ − 1

2
êT Q1ê − 1

2
ẽT Q2ẽ + 1

2
ρ2wT

1 w1 (6.75)

Thus, Eq. (6.75) can be written as

V̇ ≤ −1

2
ET QE + 1

2
ρ2wT

1 w1 (6.76)

where

E =
(
ê

ẽ

)
, Q =

(
Q1 0

0 Q2

)
= diag[Q1, Q2] (6.77)

Hence, the H∞ performance criterion is derived. For ρ sufficiently small Eq. (6.75)
will be true and the H∞ tracking criterionwill be satisfied. In that case, the integration
of V̇ from 0 to T gives
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∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||E ||2dt + 1

2ρ
2
∫ T
0 ||w1||2dt ⇒

2V (T ) − 2V (0) ≤ −∫ T
0 ||E ||2Qdt + ρ2

∫ T
0 ||w1||2dt ⇒

2V (T ) + ∫ T
0 ||E ||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||w1||2dt

It is assumed that there exists a positive constant Mw > 0 such that
∫ ∞
0 ||w1||2dt ≤

Mw. Therefore for the integral
∫ T
0 ||E ||2Qdt one gets∫ ∞

0
||E ||2Qdt ≤ 2V (0) + ρ2Mw (6.78)

Thus, the integral
∫ ∞
0 ||E ||2Qdt is bounded and according to Barbalat’s Lemma

lim
t→∞ E(t) = 0 ⇒ limt→∞ ê(t) = 0

limt→∞ ẽ(t) = 0

Therefore limt→∞ e(t) = 0.

6.2.6.2 Riccati Equation Coefficients in H∞ Control Robustness

Following the concept of the flatness-based adaptive fuzzy control which has been
developed in previous sections, the linear system of Eqs. (6.45) and (6.46) is consid-
ered again

˙̃e = (A − KoC
T )ẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u + d̃}

e1 = CT ẽ

Once again the aim of H∞ control is to eliminate the impact of the modelling
errors w = [ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u and the external disturbances
d̃ which are not white noise signals. This implies the minimization of the following
quadratic cost function for the microactuator’s state vector tracking problem [132,
243, 305]:

J (t) = 1

2

∫ T

0
[ẽT (t)ẽ(t) + ruT

c (t)uc(t) − ρ2(w + d̃)T (w + d̃)]dt, r, ρ > 0

(6.79)

The weight r determines how much the control signal should be penalized and the
weight ρ determines how much the disturbances influence should be rewarded in the
sense of a min-max differential game. The control input uc has been defined as the
sum of the terms described in Eqs. (6.62) and (6.63).

The parameter ρ in Eq. (6.79), is an indication of the closed-loop system robust-
ness. If the values of ρ > 0 are excessively decreased with respect to r , then the
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solution of the Riccati equation is no longer a positive definite matrix. Consequently
there is a lower bound ρmin of ρ for which the H∞ control problem has a solution.
The acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found and used
in the design of the H∞ controller, then the closed-loop system will have increased
robustness. Unlike this, if a value ρ > ρmin is used, then an admissible stabilizing
H∞ controller will be derived but it will be a suboptimal one. TheHamiltonianmatrix

H =
(
A − KoCT −( 2r − 1

ρ2 )BBT

−Q −(A − KoCT )T

)
(6.80)

provides a criterion for the existence of a solution of theRiccati equationEq. (6.59). A
necessary condition for the solution of the algebraic Riccati equation to be a positive
semi-definite symmetric matrix is that H has no imaginary eigenvalues [132, 457].

6.2.7 Simulation Tests

The performance of the proposed output feedback-based adaptive fuzzy control
approach for MEMS (microactuator) was tested in the case of tracking of several
reference setpoints. The only measurable variable, used in the control loop was
the microactuator’s deflection variable x . Indicative variation ranges for the MEMS
parameters are ζ∈[0.1, 3] and r∈[0.1, 3] without excluding that these parameters
may take values in wider intervals. In the simulation tests, the dynamic model of
the MEMS, as well as the numerical values of its parameters were considered to be
completely unknown.

The estimation of the unknowndynamics of the systemwith the use of neuro-fuzzy
approximators has been explained in Sect. 6.2.5.6. Knowing that there are i = 3 state
variables for the MEMS model and that each such variable comprises n = 3 fuzzy
sets, the total number of rules in the fuzzy rule base should be nm = 33 = 27. The
aggregate output of the neuro-fuzzy approximator (rule-base) for function f (x) is
given by Eq. (6.47). The centers c(l)

i , i = 1, . . . , 3 and the variances v(l) of each rule
are summarized in Table 6.1. Similar is the structure of the neuro-fuzzy approximator
for function g(x).

The control loop was based on simultaneous estimation of the unknown MEMS
dynamics (this was performed with the use of neuro-fuzzy approximators) and of the
nonmeasurable elements of the microactuator’s state vector, that is of the deflections
change rate ẋ and of the charge of the plates q (this was performed with the use of
the state observer). The obtained results are presented in Figs. 6.4, 6.5, 6.6, 6.7 and
6.8. The real values of the monitored parameters (state vector variables) are denoted
with blue line, the estimated variables are denoted with green line and the reference
setpoints are plotted as red lines. It can be noticed that differential flatness theory-
based adaptive fuzzy control of the MEMS, achieved fast and accurate tracking of
the reference setpoints.



322 6 Micro-manipulators

Table 6.1 Table I:
Parameters of the fuzzy rule
base

Rule c(l)
1 c(l)

2 c(l)
3 v(l)

R(1) −1.0 −1.0 −1.0 3

R(2) −1.0 −1.0 0.0 3

R(3) −1.0 −1.0 1.0 3

R(4) −1.0 0.0 −1.0 3

R(5) −1.0 0.0 0.0 3

R(6) −1.0 0.0 1.0 3

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
R(27) 1.0 1.0 1.0 3
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Fig. 6.4 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 1:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)

The implementation of the proposed control scheme requires that the two algebraic
Riccati equations which have been defined in Eqs. (6.58) and (6.59) are solved in
each iteration of the control algorithm. These provide the positive definite matrices
P1 and P2 which are used for the computation of the control signals ua and ub that
have been defined in Eqs. (6.62) and (6.63). The transients of the state vector elements
xi , i = 1, . . . , 3, are determined by the values given to the positive definite matrices
Qi , i = 1, . . . , 3, as well as by the value of the parameter r and of the H-infinity
coefficient (attenuation level) ρ. It has been confirmed that the variations of both
xi , i = 1, . . . , 3 and of the control input u were smooth.

One can compare the proposed adaptive fuzzy control method for the elec-
tromechanically actuated MEMS against model-based control methods based on the
approximate linearization of MEMS. The latter method consists of local
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Fig. 6.5 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 2:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)
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Fig. 6.6 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 3:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)

linearization of the MEMS model round operating points and on the solution of
LMIs and remains dependent on knowledge of the MEMS dynamics. In [456], it
has been shown that although the proposed adaptive control scheme uses no prior
knowledge about the system’s dynamics it performs equally well to the aforemen-
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Fig. 6.7 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 4:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)
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Fig. 6.8 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 5:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)

tioned model-based control approach. The associated simulation results about the
comparison of the two methods can be found in [456].
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6.3 Nonlinear Optimal Control of Underactuated MEMS

6.3.1 Outline

Extending the analysis on the dynamics of microactuators that was given in the previ-
ous section, one can consider next micro-electromechanical systems (MEMS) which
exhibit often the dynamics of nonlinear oscillators such as the Van-der-Pol oscilla-
tor and the Duffing oscillator [214, 215, 407, 409]. In certain cases these oscillator
models are coupled and are described for instance by a Van-der-Pol oscillator driven
by a forced Duffing oscillator [138, 266, 376, 579]. Such micro-electromechanical
systems can exhibit complex and chaotic dynamics [29, 265, 339, 383]. In an aim
to improve the precision and reliability of MEMS, nonlinear control of MEMS has
been the subject of wide research during the last years [184, 336, 368, 384, 496].
However, taking into account the nonlinearities of their dynamic model and possible
underactuation, the problem of control of these micro-electromechanical systems is
considered as a non-trivial one [96, 120, 296, 338].

In this section a nonlinear optimal (H-infinity) control method is developed for
the model of a MEMS described in the form of a Van-der-Pol oscillator elastically
coupled with a forced Duffing oscillator. This MEMS receives control input only
at the side of the Duffing oscillator. The MEMS dynamic model undergoes first
approximate linearization around a temporary operating point (equilibrium) which
is redefined at each iteration of the control method. This temporary equilibrium
comprises the present value of the system’s state vector and the last value of the
control inputs vector that was applied on it. The linearization makes use of first-
order Taylor series expansion and requires the computation of the system’s Jacobian
matrices [33, 431, 463] . The modelling error which is due to the truncation of
higher order terms in the Taylor series expansion is considered to be a disturbance
term which is finally compensated by the robustness of the control algorithm.

For the approximately linearizedmodel of theMEMSanoptimal (H-infinity) feed-
back controller is designed [461, 466]. As explained in the previous sections, the
H-infinity controller represents the solution to the optimal control problem under
model uncertainty and external perturbations. Actually, the H-infinity controller
stands for the solution to a min-max differential game in which the control inputs try
to minimize a cost function comprising a quadratic term of the state vector’s tracking
error, whereas the model uncertainty and the disturbance inputs try to maximize it
[450, 457, 459]. For the computation of the feedback gain of the H-infinity controller
an algebraic Riccati equation is solved repetitively at each time-step of the control
method
[305, 564].

The stability of the proposed nonlinear optimal control method is proven through
Lyapunov analysis. First, it is demonstrated that the control loop satisfies the
H-infinity tracking performance criterion,which signifies elevated robustness against
model uncertainty and external perturbations. Moreover, under moderate conditions
it is shown that the control scheme has also global asymptotic stability properties.
Finally, to implement state estimation-based control of the MEMS through the mea-
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surement of a small number of its state vector elements, the H-infinity Kalman Filter
is proposed as a robust state estimator [169, 511].

6.3.2 Dynamic Model of MEMS

The dynamic model of the coupled MEMS comprises a Van der Pol oscillator driven
by a forced Duffing oscillator (Fig. 6.9). The variation in time of the Van der Pol
oscillator is given by state variable z1 while the variation in time of the Duffing
oscillator is given by state variable z2. Moreover, the control input to the MEMS is
the sinusoidal voltage V = ucos(ωd

ω1
τ) , and thus one has the following dynamics

[266, 376]

z̈1 + γ2(z21 − 1)ż1 +
(

ω2
ω1

)2
z1 = k(z2 − z1)

z̈2 + γ2 ż2 + δz32 = (z1 − z2) + ucos
(

ωd
ω1

τ
) (6.81)

The following state variables are defined x1 = z1, x2 = ż1, x2 = z2 and x4 = ż2.
Then, the state-space description of the system is given by

ẋ1 = x2

ẋ2 = −γ1(x21 − 1)x2 −
(

ω2
ω1

)2
x1 + k(x2 − x1)

ẋ3 = x4

ẋ4 = −γ2x4 − δx23 + k(x1 − x3) + ucos
(

ωd
ω1

τ
)

(6.82)

Fig. 6.9 Diagram of an electrostatically actuated MEMS, exhibiting the dynamics of a Duffing
oscillator
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Next, the system of the coupled Van der Pol and Duffing oscillators can be written
in the following matrix form

⎛
⎜⎜⎜⎝
ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x2
−γ1(x21 − 1)x2 − (ω2

ω1
)2x1 + k(x2 − x1)

x4
ẋ4 = −γ2x4 − δx23 + k(x1 − x3)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

0

0

0

cos(ωd
ω1

τ)

⎞
⎟⎟⎟⎠ u (6.83)

Thus by defining the vector fields f (x) x∈R4×1 and g(x) x∈R4×1 where

f (x) =

⎛
⎜⎜⎜⎝

x2
−γ1(x21 − 1)x2 − (ω2

ω1
)2x1 + k(x2 − x1)

x4
ẋ4 = −γ2x4 − δx23 + k(x1 − x3)

⎞
⎟⎟⎟⎠ g(x) =

⎛
⎜⎜⎜⎝

0

0

0

cos(ωd
ω1

τ)

⎞
⎟⎟⎟⎠ u

(6.84)

one arrives at the states-space description

ẋ = f (x) + g(x)u (6.85)

6.3.3 Approximate Linearization of the MEMS Dynamics

Approximate linearization of the MEMS dynamics given in Eq. (6.85) is performed
around the temporary operating point (equilibrium) (x∗, u∗) which is re-defined at
each iteration of the control algorithm by the present value of the system’s state
vector x∗ and the last value of the control inputs vector u∗ that was exerted on it.
This results in the following linear state-space form of the system:

ẋ = Ax + Bu + d̃ (6.86)

where matrices A and B are defined as follows:

A = ∇x [ f (x) + g(x)u] |(x∗,u∗) ⇒A = ∇x f (x) |(x∗) (6.87)

B = ∇u[ f (x) + g(x)u] |(x∗,u∗) ⇒B = g(x) (6.88)

About the Jacobian matrix ∇x f (x) |(x∗) one has
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∇x f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x3

∂ f4
∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.89)

where the elements of the first row of ∇x f (x) are:
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 1, ∂ f1
∂x3

= 0, and
∂ f1
∂x4

= 0.

the elements of the second row of ∇x f (x) are: ∂ f2
∂x1

= −γ12x1x2 − (ω2
ω1

)2 − k,
∂ f2
∂x2

= −γ1(x21 − 1), ∂ f2
∂x3

= 1, and ∂ f2
∂x4

= 0.

the elements of the third row of ∇x f (x) are: ∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0, ∂ f3
∂x3

= 0, and
∂ f3
∂x4

= 1.

and the elements of the fourth row of ∇x f (x) are: ∂ f4
∂x1

= k, ∂ f4
∂x2

= 0, ∂ f4
∂x3

=
−2δx3 − k, and ∂ f3

∂x4
= −γ1.

6.3.4 Design of an H-Infinity Nonlinear Feedback Controller

6.3.4.1 Equivalent Linearized Dynamics of the MEMS

After linearization round its current operating point, the dynamicmodel of theMEMS
is written as

ẋ = Ax + Bu + d1 (6.90)

Parameter d1 stands for the linearization error in the dynamic model of the MEMS
appearing in Eq. (6.90). The reference setpoints for theMEMSmodel state vector are
denoted by xd = [xd1 , . . . , xd6 ]. Tracking of this trajectory is achieved after applying
the control input u∗. At every time instant the control input u∗ is assumed to differ
from the control input u appearing in Eq. (6.90) by an amount equal to �u, that is
u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (6.91)

The dynamics of the controlled system described in Eq. (6.90) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (6.92)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (6.93)
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By subtracting Eq. (6.91) from (6.93) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (6.94)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (6.95)

The above linearized form of the MEMS model can be efficiently controlled after
applying an H-infinity feedback control scheme.

6.3.5 The Nonlinear H-Infinity Control

The initial nonlinear model of MEMS is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (6.96)

Linearization of theMEMSmodel that comprises coupled electromechanical oscilla-
tors is performed at each iteration of the control algorithm round its present operating
point (x∗, u∗) = (x(t), u(t − Ts)), where Ts is the sampling period. The linearized
equivalent model of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (6.97)

where matrices A and B are obtained from the computation of the Jacobians of the
MEMSmodel, and vector d̃ denotes disturbance terms due to linearization errors. The
problem of disturbance rejection for the MEMS linearized model that is described
by

ẋ = Ax + Bu + Ld̃

y = Cx (6.98)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

As explained in the application of the control method in previous sections, in the
H∞ control approach, a feedback control scheme is designed for trajectory tracking
by the MEMS state vector and simultaneous disturbance rejection, considering that
the disturbance affects the system in the worst possible manner. The disturbances’
effects are incorporated in the following quadratic cost function:
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J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (6.99)

As mentioned in previous chapters, the significance of the negative sign in the cost
function for the MEMS control loop is that this is associated with the perturbation
variable d̃(t) is that the disturbance tries to maximize the cost function J (t)while the
control signal u(t) tries to minimize it. The physical meaning of the relation given
above is that the control signal and the disturbances compete to each other within a
min-max differential game. This problem of min-max optimization can be written as

minumaxd̃ J (u, d̃) (6.100)

The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
MEMS. As explained in previous sections, the solution to the mini-max optimization
problem is directly related to the value of the parameter ρ. This means that there is
an upper bound in the disturbances magnitude that can be annihilated by the control
signal.

6.3.5.1 Computation of the Feedback Control Gains

For the linearized model of the MEMS given by Eq. (6.98) the cost function of
Eq. (6.99) is defined, where the coefficient r determines the penalization of the
control input and the weight coefficient ρ determines the reward of the disturbances’
effects.

In adherence to the analysis of the control method given in previous sections, it
is assumed again that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are

stabilizable, (iii) matrix [A,C] is detectable. Then, the optimal feedback control law
is given by

u(t) = −Kx(t) (6.101)

with

K = 1

r
BT P (6.102)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (6.103)
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Fig. 6.10 Diagram of the control scheme for MEMS comprising a Van-der-Pol oscillator coupled
with a forced Duffing oscillator

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1

ρ2
LT Px(t) (6.104)

The diagram of the MEMS control loop is depicted in Fig. 6.10.

6.3.6 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the MEMS model, and that in
case of bounded disturbance terms asymptotic convergence to the reference setpoints
is achieved. The tracking error dynamics for the MEMSmodel is written in the form

ė = Ae + Bu + Ld̃ (6.105)

where in the MEMS case L = I∈R4 with I being the identity matrix. Variable d̃
denotesmodel uncertainties and external disturbances of themicro-electromechanical
system’s model. The following Lyapunov equation is considered
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V = 1

2
eT Pe (6.106)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2e

T Pė⇒
V̇ = 1

2 [Ae + Bu + Ld̃]T Pe + 1
2e

T P[Ae + Bu + Ld̃]⇒ (6.107)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (6.108)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(6.109)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (6.110)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (6.111)

Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (6.112)

By substituting Eqs. (6.111) and (6.112) one obtains

V̇ = 1
2e

T
[
−Q + P

(
2
r BB

T − 1
ρ2 LLT

)
P

]
e+

+eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(6.113)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(6.114)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (6.115)
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or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(6.116)

Lemma: The following inequality holds

1

2
eT PLd̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe≤ 1

2
ρ2d̃T d̃ (6.117)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(6.118)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe≤ 1

2
ρ2d̃T d̃ (6.119)

Equations (6.119) is substituted in (6.116) and the inequality is enforced, thus giving

V̇≤ − 1

2
eT Qe + 1

2
ρ2d̃T d̃ (6.120)

Equation (6.120) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||d̃||2dt (6.121)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (6.122)

then one gets ∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (6.123)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (6.106) it becomes clear that e(t) will
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be also bounded since e(t) ∈ �e = {e|eT Pe≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the MEMS model is based on Eq. (6.120) and on
the application of Barbalat’s Lemma. It uses the condition of Eq. (6.122) about the
boundedness of the square of the aggregate disturbance and modelling error term d̃
that affects the model. However, as explained above the proof of global asymptotic
stability is not restricted by this condition. By selecting the attenuation coefficient
ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that
the first derivative of the Lyapunov function is upper bounded by 0. Therefore for
the i-th time interval it is proven that the Lyapunov function defined in Eq (6.106) is
a decreasing one. This also assures that the first derivative of the Lyapunov function
of the system defined in Eq. (6.106) will always be negative.

6.3.7 Robust State Estimation with the Use of the H-infinity
Kalman Filter

TheMEMS control loop can be implementedwith the use of information provided by
a small number of sensors and by processing only a small number of state variables.
To reconstruct the missing information about the state vector of the MEMS model it
is proposed to use a filtering scheme and based on it to apply state estimation-based
control [169, 457, 511]. The recursion of the H∞ Kalman Filter, for the MEMS
model, can be formulated in terms of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1 (6.124)

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]

Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)
(6.125)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the MEMS (e.g. state variables x1 and x3),
and can estimate through filtering the rest of the state vector elements.
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6.3.8 Simulation Tests

6.3.8.1 Computation of Setpoints for the Model of the Coupled MEMS

The setpoints for the model of the coupled MEMS, that is if the Van der Pol Oscil-
lator driven by the forced Duffing oscillator are computed by exploiting the model’s
differential flatness properties. The system is in triangular form and thus it is differ-
entially flat, with flat output equal to y = x1. From the first row of the state-space
model of Eq. (6.83) it holds that x2 = ẋ1. Moreover, from the second row of the
state-space model of Eq. (6.83) one obtains

x3 = 1

k

[
ẋ2 + γ1(x

2
1 − 1)x2 +

(
ω2

ω1

)2

x1 + kx1

]
(6.126)

From the third row of the state-space model it holds x4 = ẋ3. Additionally, from the
fourth raw of the state-space model one has

u = 1

cos
(

ωd
ω1

τ
) [ẋ4 + γ2x4 + δx23 − k(x1 − x3)] (6.127)

Therefore, all state variables and the control inputs of the model can be expressed
as differential functions of the flat output, and as a consequence the MEMS sys-
tem consisting of the Van der Pol oscillator, driven by the Duffing oscillator, is a
differentially flat one.

6.3.8.2 Simulation Diagrams

Simulation tests have been carried out to test the tracking accuracy of the proposed
nonlinear optimal (H-infinity) control method for theMEMS that comprised theVan-
del-Pol oscillator model, elastically coupled to the forced Duffing oscillator model.
The obtained simulation result have confirmed that despite the nonlinearities and the
underactuation in the MEMS state-space description the proposed control scheme
achieves fast and accurate tracking of all reference setpoints, while also keeping
moderate the variations of the control input. The simulation results are depicted in
Figs. 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18 and 6.19, where the real values
of the MEMS state variables are depicted in blue, the reference setpoints of the
experiments are plotted in red while the estimated values of the state vector elements
(provided by the H-infinity Kalman Filter) are printed in green.

The computation of the feedback gain of the H-infinity controller was based on
the solution of the algebraic Riccati equation of Eq. (6.111), taking place at each time
step of the control method. The selection of the attenuation coefficient ρ determines
the robustness of the control algorithm as well as the existence of a solution in the
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Fig. 6.11 Setpoint 1: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.12 Setpoint 2: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.13 Setpoint 3: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.14 Setpoint 4: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.15 Setpoint 5: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.16 Setpoint 6: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.17 Variation of the control input u applied to theMEMS awhen tracking Setpoint 1, bwhen
tracking Setpoint 2
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Fig. 6.18 Variation of the control input u applied to theMEMS awhen tracking Setpoint 3, bwhen
tracking Setpoint 4

aforementionedRiccati equation.As explained in the preceding sections, by selecting
ρ to be sufficiently small the global asymptotic stability of the control method is
assured. Moreover, the values of parameters ρ,r and of matrix Q appearing in Eq.
(6.111) determine the transients of the control method.

By using the H-infinity Kalman Filter as a robust state estimator it has become
possible to implement state estimation-based control through the measurement of
selected state vector elements (for instance the position variables of the Van-der-Pol
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Fig. 6.19 Variation of the control input u applied to theMEMS awhen tracking Setpoint 5, bwhen
tracking Setpoint 6

and the Duffing oscillators). The rest of the state vector elements were estimated
through the Kalman Filter’s recursion. The use of a state estimator, in place of
measurements of the entire state vector of the MEMS is important considering the
difficulty of obtaining sensor measurements at the MEMS scale.
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