
Chapter 5
Flexible-Link Robots

Abstract Control for flexible-link robots is a non-trivial problem that has elevated
difficulty comparing to the control of rigid-link manipulators. This is because the
dynamic model of the flexible-link robot contains the nonlinear rigid link motion
coupled with the distributed effects of the links’ flexibility. This coupling depends
on the inertia matrix of the flexible manipulator while the vibration characteristics
are determined by structural properties of the links such as the damping and stiff-
ness parameters. Moreover, in contrast to the dynamic model of rigid-link robots the
dynamic model of flexible-link robots is an infinite dimensional one. As in the case
of the rigid-link manipulators there is a certain number of mechanical degrees of
freedom associated to the rotational motion of the robot’s joints and there is also an
infinite number of degrees of freedom associated to the vibration modes in which the
deformation of the flexible link is decomposed The controller of a flexible manipu-
lator must achieve the same motion objectives as in the case of a rigid manipulator,
i.e. tracking of specific joints position and velocity setpoints. Additionally, it must
also stabilize and asymptotically eliminate the vibrations of the flexible-links that
are naturally excited by the joints’ rotational motion. A first approach for the control
of flexible-link robots is to consider the vibration modes as additional state variables
and to develop stabilizing feedback controller for the extended state-space model of
the flexible manipulator. To this end, one can use again (i) control based on global
linearization methods, (ii) control based on approximate linearization methods, (iii)
control based on Lyapunov methods. Another approach to the solution of the con-
trol problem of flexible manipulators is to treat the robot as a distributed parameter
system and to apply control directly to the partial differential equations models that
describe the motion of the flexible links. Again global asymptotic stability for this
control approach can be demonstrated. On the other side, nonlinear filtering methods
can be used for implementing state estimation-based feedback control through the
measurement of a limited number of elements from the flexible robot’s state vector.
In particular, the topics which are developed by the present chapter are as follows:
(a) Inverse dynamics control of flexible-link robotic manipulators (b) sliding-mode
control of flexible-link robotic manipulators.
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5.1 Chapter Overview

The topics which are developed by the present chapter are as follows: (a) Inverse
dynamics control of flexible-link robotic manipulators (b) sliding-mode control of
flexible-link robotic manipulators.

With reference to (a) a comparative study on representative methods for model-
based andmodel-free control of flexible-link robots is given.Model-based techniques
for the control of flexible-link robots such as inverse dynamics control can come
up against limitations when an accurate model is unavailable, due to parameters
uncertainty or truncation of high order vibration modes. On the other hand, model-
free control methods, such as energy-based control can result in stabilization and
satisfactory trajectory tracking performance of flexible-link robots.

With reference to (b) a robust control approach for a 2-link flexible robotic manip-
ulator is developed that comprises sliding-mode control theory andKalman Filtering.
It is aimed to achieve: (i) simultaneous position control and suppression of the flexi-
ble structure vibrations. Assuming a known model of the robot dynamics, this can be
achieved with the use of robust model-based control schemes, such as sliding-mode
control, (ii) estimation of the complete state vector of the vibrating structure, so as
to implement state-feedback control. To solve the latter problem, in this chapter,
state estimation for the flexible-link robot is implemented with the use of Kalman
Filtering. The fast recursion of the Kalman Filter provides real-time estimates of the
robot’s state vector through the processing of measurements coming from a limited
number of sensors.

5.2 Inverse Dynamics Control of Flexible-Link Robots

5.2.1 Outline

Flexible-link robots comprise an important class of systems that include lightweight
arms for assembly, civil infrastructure, bridge/vehicle systems, military applications
and large-scale space structures. Modelling and vibration control of flexible sys-
tems have received a great deal of attention in recent years [224, 231, 442]. This
section presents a comparative study on representative methods for model-based and
model-free control of flexible-link robots. Conventional approaches to design a con-
trol system for a flexible-link robot often involve the development of a mathematical
model describing the robot dynamics, and the application of analytical techniques to
this model to derive an appropriate control law [22, 75, 119]. Usually, such a math-
ematical model consists of nonlinear partial differential equations, most of which
are obtained using some approximation or simplification [224, 442]. The inverse
dynamics model-based control for flexible link robots relies on modal analysis, i.e.
on the assumption that the deformation of the flexible link can be written as a finite
series expansion containing the elementary vibration modes [583]. However, this
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inverse-dynamics model-based control may result into unsatisfactory performance
when an accurate model is unavailable, due to parameters uncertainty or truncation
of high order vibration modes [268].

Another model-based approach for the control of flexible-link robots is flatness-
based control. Flatness-based control is a powerful tool for the control of distributed
parameter systems which does not follow modal analysis but the description of
the flexible robot using the concept of differential flatness [16, 39, 146]. It has
been shown that flexible-link robots and flexible beams are flat systems and thus
flatness-based control can be efficiently used for trajectory tracking of flexible-link
manipulators [145, 337, 349, 476]. The decomposition of the desirable trajectory
into a series of a reference flat output (Gevrey function) and its derivatives enables to
generate open-loop control that assures tracking of the desirable trajectory. To achieve
additional robustness a PID control loop can be designed to operate in parallel to
the flatness-based controller of the flexible-link manipulator. Different model-based
approaches for the control of flexible link manipulators have been also developed.
In [365] wave-based control of flexible-link robots has been proposed. First a new
wave-based model of uniform mass-spring systems was introduced and next this
model was used to derive a control method for flexible-link robotic systems. In [41],
a survey of model-based approaches for the control of flexible-link manipulators has
been given.

To overcome the inefficiencies of the aforementioned inverse-dynamics control,
model-free control methods have been studied [351, 529, 612]. A number of research
papers employ model-free approaches for the control of flexible-link robots based on
fuzzy logic and neural networks. In [557] control of a flexible manipulator with the
use of a neuro-fuzzy method is described, where the weighting factor of the fuzzy
logic controller is adjusted by the dynamic recurrent identification network. The
controller works without any prior knowledge about the manipulator’s dynamics.
Control of the end-effector’s position of a flexible-link manipulator with the use of
a neural and a fuzzy controller has been presented in [531, 543, 575]. In [575] an
intelligent optimal control for a nonlinear flexible robot arm driven by a permanent-
magnet synchronous servo motor has been designed using a fuzzy neural network
control approach. This consists of an optimal controller which minimizes a quadratic
performance index and a fuzzy neural-network controller that learns the uncertain
dynamics of the flexible manipulator. In [543] a fuzzy controller has been developed
for a three-link robot with two rigid links and one flexible fore-arm. This controller’s
design is based on fuzzy Lyapunov synthesis where a Lyapunov candidate function
has been chosen to derive the fuzzy rules. In [530] a neuro-fuzzy scheme has been
proposed for position control of the end effector of a single-link flexible robot manip-
ulator. The scale factors of the neuro-fuzzy controller are adapted on-line using a
neural network which is trained with an improved back-propagation algorithm. In
[73] two different neuro-fuzzy feed-forward controllers have been proposed to com-
pensate for the nonlinearities of a flexible manipulator. In [412] the dynamics of a
flexible link has been modeled using modal analysis and then an inverse dynam-
ics fuzzy controller has been employed to obtain tracking and deflection control.
In [503] a fuzzy logic controller has been applied to a flexible-link manipulator. In
this distributed fuzzy logic controller the two velocity variables which have higher
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importance have been grouped together as the inputs to a velocity fuzzy controller
while the two displacement variables which have lower importance degrees have
been used as inputs to a displacement fuzzy logic controller. In [204] adaptive con-
trol for a flexible-link manipulator has been achieved using a neuro-fuzzy time-delay
controller. In [362] a genetic algorithm has been used to improve the performance
of a fuzzy controller designed to compensate for the links’ flexibility and the joints’
flexibility of a robotic manipulator.

In this section the energy-based model-free control method of flexible-link robots
is examined and shown to be equally effective to the model-based control methods.
In the energy-based control method, instead of using the dynamical model of the
links, the main stability results are derived with the use of the total energy and the
energy-work relationship of the whole system [164, 491].

5.2.2 Model-Based Control of Flexible Link Robots

5.2.2.1 The Inverse Dynamics Control Method

A common approach in modelling of flexible-link robots is depends on the Euler-
Bernoullimodel [583]. Thismodel consists of nonlinear partial differential equations,
which are obtained using some approximation or simplification. In case of a single-
link flexible manipulator the basic variables of this model are w(x, t) which is the
deformation of the flexible link, and θ(t) which is the joint’s angle.

E ·I ·w′′′′
(x, t) + ρẅ(x, t) + ρx θ̈ (t) = 0 (5.1)

It θ̈ (t) + ρ

∫ L

0
xẅ(x, t)dx = T (t) (5.2)

In Eqs. (5.1) and (5.2),w
′′′′
(x, t) = ∂4w(x,t)

∂x4 ,ẅ(x, t) = ∂2w(x,t)
∂t2 , while It is the moment

of inertia of a rigid link of length L , ρ denotes the uniform mass density and E I is
the uniform flexural rigidity with units N ·m2. To calculatew(x, t), instead of solving
analytically the above partial differential equations,modal analysis can be usedwhich
assumes that w(x, t) can be approximated by a weighted sum of orthogonal basis
functions

w(x, t) =
ne∑
i=1

φi (x)vi (t) (5.3)

where index i = [1, 2, . . . , ne] denotes the normal modes of vibration of the flexible
link. Using modal analysis a dynamical model of finite-dimensions is derived for the
flexible link robot.Without loss of generality assume a 2-link flexible robot (Fig. 5.1)
and that only the first two vibration modes of each link are significant (ne = 2).�1 is
a point on the first link with reference to which the deformation vector is measured.
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Fig. 5.1 A 2-DOF
flexible-link robot

Similarly, �2 is a point on the second link with reference to which the associated
deformation vector is measured. In that case the dynamicmodel of the robot becomes
[268, 583]:

(
M11(z) M12(z)
M21(z) M22(z)

)
·
(

θ̈

v̈

)
+

(
F1(z, ż)
F2(z, ż)

)
+

(
02×2 02×4

04×2 D(z)

)
·
(

θ̇

v̇

)
+

+
(
02×2 02×4

04×2 K (z)

)
·
(

θ

v

)
=

(
T (t)
04×1

) (5.4)

where z = [θ, v]T , with θ = [θ1, θ2]T , v = [v11, v12, v21, v22]T (vector of the vibra-
tion modes for links 1 and 2), and [F1(z, ż), F2(z, ż)]T = [0, 0]T (centrifugal and
Coriolis forces). The elements of the inertia matrix are: M11 ∈ R2×2, M12 ∈ R2×4,
M21 ∈ R4×2, M22 ∈ R4×4. The damping and elasticity matrices of the aforemen-
tioned model are D ∈ R4×4 and K ∈ R4×4. Moreover the vector of the control
torques is T (t) = [T1(t), T2(t)]T .

The principle of inverse dynamics control is to transform the nonlinear system
of Eq. (5.4) into a linear one, so that linear control techniques can be applied. From
Eq. (5.4) it holds that:

M11θ̈ + M12v̈ + F1(z, ż) = T (t) (5.5)

M21θ̈ + M22v̈ + F2(z, ż) + Dv̇ + Kv = 0 (5.6)

Equation (5.6) is solved with respect to v̈

v̈ = −M−1
22 M21θ̈ − M−1

22 F2(z, ż) − M−1
22 Dv̇ − M−1

22 Kv (5.7)

Equation (5.7) is substituted in Eq. (5.5) which results into:

(M11 − M12M
−1
22 M21)θ̈ − M12M

−1
22 F2(z, ż) − M12M

−1
22 Dv̇ − M12M

−1
22 Kv + F1(z, ż) = T (t)

(5.8)
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The following control law is now introduced [583]:

T (t) = −M12M
−1
22 F2(z, ż) − M12M

−1
22 Dv̇−

−M12M
−1
22 Kv + F1(z, ż) + (M11 − M12M

−1
22 M21)u0

(5.9)

u0 = θ̈d − Kd(θ̇ − θ̇d) − Kp(θ − θd) (5.10)

By replacing Eqs. (5.9) in (5.8) one gets

(M11 − M12M
−1
22 M21)θ̈ − M12M

−1
22 F2(z, ż) − M12M

−1
22 Dv̇ − M12M

−1
22 Kv + F1(z, ż) =

= −M12M
−1
22 F2(z, ż) − M12M

−1
22 Dv̇ − M12M

−1
22 Kv + F1(z, ż) + (M11 − M12M

−1
22 M21)u0

which finally results into
θ̈ = u0 (5.11)

Equation (5.11) implies that linearisation and decoupling of the robotic model has
been achieved. Substituting Eqs. (5.10) into (5.11) gives:

θ̈ − θ̈d + Kd(θ̇ − θ̇d) + Kp(θ − θd) = 0 ⇒
ë(t) + Kdė(t) + Kpe(t) = 0

(5.12)

Gain matrices Kp and Kd are selected, so as to assure that the poles of Eq. (5.12) are
in the left semiplane. This results into

limt→∞e(t) = 0 ⇒ limt→∞θ(t) = θd(t) (5.13)

Consequently, for θd(t) =constant it holds limt→∞θ̈ (t) = 0. Then Eq. (5.7) gives

v̈ = −M−1
22 F2 − M−1

22 Dv̇ − M−1
22 Kv (5.14)

and for F2(z, ż) = 0 results into

v̈ + M−1
22 Dv̇ + M−1

22 Kv = 0 (5.15)

which is the differential equation of the free damped oscillator. Suitable selection of
the damping matrix D and the elasticity matrix K assures that

limt→∞v(t) = 0 (5.16)

5.2.2.2 Shortfalls of Inverse Dynamics Control for Flexible-Link Robots

The objective of the inverse-dynamics model-based control for flexible-link robots,
that was presented in Sect. 5.2.2.1, is to force the rigid-mode variable θ(t) to follow
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a desired trajectory or to converge to a certain set-point and at the same time to
suppress the flexible modes of the links v(t). However, this control approach appears
several weaknesses [268]:
1. In general there are nr flexible links, thus θ(t) ∈ Rnr . The control input available
is T (t) ∈ Rnr , since there is one actuator per link. Considering n f flexible modes
for each link means that nr×n f additional degrees of freedom are introduced. Thus
appropriate control is required to suppress the vibrations. However, the number of
control inputs is nr which is less than the number of the degrees of freedom. Conse-
quently, there is reduced control effectiveness.
2. The situation becomes more complicated, because by selecting the control input
T (t) to achieve practical tracking performance of the rigid variable θ(t), one actually
destabilizes the flexible modes v(t). This is due to the non-minimum phase nature
of the zeros dynamics of the flexible-link arms.
3. Another drawback of model-based control is that the model of Eq. (5.4), is derived
assuming a finite number of vibration modes. This simplification is not always appli-
cable since higher-order modes may be excited. The proposed model-based control
does not provide robustness to external disturbances.

5.2.3 Energy-Based Control of Flexible Link Robots

5.2.3.1 Energy-Based Control

To overcome the weaknesses of the inverse-dynamics model-based control for flex-
ible link robots, model-free control methods have been proposed. Of interest is the
energy-based control which requires only knowledge of the potential and kinetic
energy of the flexible manipulator. Energy-based control of flexible-link robots
assures closed-loop system stability in the case of constant set-points (point-to-point
control).

The kinetic energy Ekin of a n-link flexible robot is given by [164, 583]

Ekin =
n∑

i=1

1

2
ρ

∫ Li

0
[ ṗ2xi + ṗ2yi ]dx (5.17)

In Eq. (5.17), pxi is the position of elementary segment of the i th link along x-axis,
while pyi is the position of elementary segment of the i th link along y-axis. On the
other hand the potential energy Ep of a planar n-link flexible robot is due to the links
deformation and is given by

Ep =
n∑

i=1

1

2
E I

∫ Li

0
[ ∂2

∂x2
wi (x, t)]2dx (5.18)

Thus to estimate the robot’s potential energy, measurement of the flexible links
strain ∂2wi (x,t)

∂x2 is needed. The potential energy includes only the energy due to strain,



278 5 Flexible-Link Robots

while the gravitational effect as well as longitudinal and torsional deformations are
neglected.

Moreover, the energy provided to the flexible-link robot by the i th motor is given
by

Wi =
∫ t

0
Ti (τ )θ̇(τ )dτ (5.19)

Consequently, the power of the i th motor is

Pi (t) = Ti (t)θ̇i (t) (5.20)

where Ti (t) is the torque of the i th motor and θ̇i (t) is the motor’s angular velocity.
Thus, the aggregate motors energy is given by

W =
n∑

i=1

∫ t

0
Ti (τ )θ̇i (τ )dτ (5.21)

The energy that is provided to the flexible-link robot by its motors takes the form
of: (i) potential energy (due to the deformation of the flexible links) and (ii) kinetic
energy. This energy flow is described by

[Ekin(t) + Ep(t)] − [Ekin(0) + Ep(0)] = W (5.22)

Energy-based control of flexible-link robots considers that the torque of the i th motor
(control output) is based on a PD-type controller and is given by [164, 583]:

Ti (t) = −Kpi [θi (t) − θdi (t)] − Kdi θ̇i (t)−
−Kiw

′′
i (x, t)

∫ t
0 θ̇i (s)w

′′
i (x, s)ds, i = 1, 2, . . . , n

(5.23)

where Kpi is the i th P control gain, Kdi is the i th D control gain, θdi , is the desir-
able angle of the i th link, Ki is also a positive (constant) gain, and wi (x, t) is the
deformation of the i th link.

5.2.3.2 Stability Proof

The proposed control law of Eq. (5.23) assures the asymptotic stability of the closed-
loop system in case of constant set-points (point to point control). The following
Lyapunov (energy) function is considered [164, 583]:

V = Ekin + Ep + 1

2

N∑
i=1

Kpi [θi (t) − θdi (t)]2 + 1

2

n∑
i=1

Ki [
∫ t

0
θ̇i (s)w

′′
i (s, t)ds]2

(5.24)
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where Ekin is given by Eq. (5.17) and denotes the kinetic energy of the robot’s links,
while Ep is given by Eq. (5.18) and denotes the potential energy of the robot’s links
due to deformation.

It holds that V (t) > 0 since Ekin > 0, Ep > 0, 1
2

∑n
i=1Kpi [θi (t) − θdi (t)]2 > 0

and 1
2

∑n
i=1Ki [

∫ t
0 θ̇i (t)wi (s, t)]2 > 0. Moreover, it holds that

V̇ (t) = Ėkin + Ė p + ∑n
i=1Kpi [θi (t) − θdi (t)]θ̇i (t)+

1
2

∑n
i=12Ki [

∫ t
0 θ̇i (s, t)w

′′
i (s, t)ds][θ̇i (t)w′′

i (x, t)]
(5.25)

while using Eqs. (5.20) and (5.22) the derivative of the robot’s energy is found to be

Ėkin(t) + Ė p(t) =
n∑

i=1

Ti (t)θ̇i (t) (5.26)

where the torque generated by the i th motor is given by Eq. (5.23). By substituting
Eqs. (5.26) and (5.23) in (5.25) one gets

V̇ (t) = −∑n
i=1Kpi [θi (t) − θdi (t)]θ̇i (t)−

−∑n
i=1Kdi θ̇

2
i (t) − ∑n

i=1[Kiw
′′
i (x, t)

∫ t
0 θ̇i (s)w

′′
i (s, t)ds]θ̇i (t)

+∑n
i=1Kpi [θi (t) − θdi (t)]θ̇i (t) + ∑n

i=1[Kiw
′′
i (x, t)

∫ t
0 θ̇i (s)w

′′
i (s, t)ds]θ̇i (t)

(5.27)
which finally results into,

V̇ (t) = −
n∑

i=1

Kdi θ̇
2
i (5.28)

Obviously, fromEq. (5.28) it holds that V̇ (t)≤0,which implies stability of the closed-
loop system, but not asymptotic stability. Asymptotic stability can be proven as fol-
lows [583]: If the i th link did not converge to the desirable angle, i.e. limt→∞θi (t)
= ai �=θdi (t) then the torque of the i th motor would become equal to a small pos-
itive constant. This is easy to prove from Eq. (5.23) where the terms Kdi θ̇i (t) = 0,
Kiwi (x, t)

∫ t
0 θ̇i (s)w

′′
i (s, t)ds = 0,while the term Kpi [θi (t) − θdi (t)] = Kpi ai becomes

equal to a positive constant.
However, if Ti (t) = constant �=0 then the i th link should continue to rotate. This

means that θi (t) �=ai , which contradicts the initial assumption limt→∞θi (t)= ai .
Therefore, it must hold limt→∞Ti (t) = 0 and limt→∞θi (t) = θdi (t). Consequently,
limt→∞V (t) = 0.

The proposed energy-based controller is a decentralized controller since the con-
trol signals Ti (t) of the i th motor are calculated using only the angle θi (t) and the
deformation wi (x, t) of the i th link.
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5.2.4 Force Control in Flexible-Link Robots

Up to now the study of control methods for flexible-link robots followed the assump-
tion that the robot operated in the free space. However, when in contact with a surface,
forces are exerted to robot’s end-effector and a significant issue that has to be taken
into account in the design of the robotic controller is force control. To solve the force
control problem, a kinematic model of a flexible-link robot is first introduced.

5.2.4.1 Overview of the Kinematic Model of Flexible-Link Robots

Assume the i th linkof theflexible-link robot and the associated rotating frameOi XiYi
(Fig. 5.1). Then the vector of coordinates of the end-effector M is given by

piM = [xi ,wi (xi )]T (5.29)

The coordinates of the end-effector in the inertial frame O1X
′
1Y

′
1 is given by

pM = ri + Wi p
i
M (5.30)

with
Wi = Wi−1Ei−1Ri = Ŵi−1Ri

Ŵ0 = I
(5.31)

where Ri is the rigid rotation matrix that aligns the rotating frame of the i th link to
the inertial frame of the same link, and Ei−1 is the flexible rotation matrix that aligns
the inertial frame of link i to the rotational frame of link i − 1:

Ri =
(
cos(θi ) −sin(θi )

sin(θi ) cos(θi )

)
, Ei =

(
1 −w

′
ie

w
′
ie 1

)
=

(
1 − ∂wi

∂xi
∂wi
∂xi

1

)
(5.32)

ri = ri−1 + Wir
i−1
i (5.33)

where r i−1
i is the distance vector between the origin of the and i th and the i − 1th

frame, ri is the distance vector between the origin of the i th rotational frame and the
inertial frame, and Wi is the rotation matrix calculated with the use of Eq. (5.31).

Using Eqs. (5.33) and (5.43) in the 2-DOF flexible-link robot depicted in Fig. 5.1,
one obtains

r2 = r1 + W1r
1
2 =

(
L1cos(θ1) − w1(L1, t)sin(θ1)

L1sin(θ1) + w1(L1, t)cos(θ1)

)
(5.34)

pM = r2 + W2 p
2
M (5.35)

where
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p2M =
(

L2

w2(L2, t)

)
,W2 = R1E1R2 =(

cos(θ1) −sin(θ1)

sin(θ1) cos(θ1)

)
·
(

1 −w
′
1e

w
′
1e 1

)
·
(
cos(θ2) −sin(θ2)

sin(θ2) cos(θ2)

) (5.36)

The differential kinematic model of the flexible-link robot can now be calculated.
The coordinates of the end-effector in the inertial frame are given by Eq. (5.30).
According to modal analysis the deformation wi (xi , t) in normal modes of vibration
is given by Eq. (5.3). Using the previous 2 equations the kinematic model can be
written as a function of the joint angles θ and of the normal modes of vibration v.

p = k(θ, v) (5.37)

The velocity of the end-effector is calculated through the differentiation of Eq. (5.43).

ṗM = ṙi + Ẇi p
i
M + Wi ṗ

i
M (5.38)

Moreover, it holds that ṙ ii+1 = ṗiM(Li ) = [0, ẇi (xi = Li )]T since there is no longi-
tudinal deformation (ẋi = 0). It also holds that

Ẇi = ˙̂Wi−1Ri + Ŵi−1 Ṙi˙̂Wi = Ẇi Ei + Wi Ėi

(5.39)

It also holds that
Ṙi = SRi θ̇i
Ėi = Sẇ

′
ie

(5.40)

with S =
(
0 −1
1 0

)
. Substituting Eqs. (5.39) and (5.40) in (5.38) the differential kine-

matic model of the flexible-link robot is obtained:

ṗ = Jθ (θ, v)θ̇ + Jv(θ, v)v̇ (5.41)

where

Jθ = ∂k
∂θ
: is the Jacobian with respect to θ

Jv = ∂k
∂v : is the Jacobian with respect to v.

If the end-effector is in contact with the surface�(θ) and is subject to contact-forces
F = [Fx , Fy] then the torques which are developed to the joints are:
J T
θ F : torques that produce the work associated with the rotation angle θ .
J T
v F : torques that produce work associated with the deformation modes v.
The dynamic model of the flexible-link robot given in Eq. (5.4) is corrected into:
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(
M11(z) M12(z)
M21(z) M22(z)

) (
θ̈

v̈

)
+

(
F1(z, ż)
F2(z, ż)

)
+

+
(
02×2 02×4

04×2 D(z)

)(
θ̇

v̇

)
+

(
02×2 02×4

04×2 K (z)

) (
θ

v

)
=

(
T (t) − J T

θ (θ, v)F
−J T

v (θ, v)F

) (5.42)

For a two-link flexible robot of Fig. 5.1 one gets

pM =
(
L1cos(θ1) − w1(L1, t)sin(θ1)

L1sin(θ1) + w1(L1, t)cos(θ1)

)
+

+
(
cos(θ1 + θ2) − w

′
1esin(θ1 + θ2) −sin(θ1 + θ2) − w

′
1ecos(θ1 + θ2)

sin(θ1 + θ2) + w
′
1ecos(θ1 + θ2) cos(θ1 + θ2) − w

′
1esin(θ1 + θ2)

) (
L2

w2

)

(5.43)
with

w1(L1, t) = φ11(L1)v11(t) + φ12(L1)v12(t)
w2(L2, t) = φ21(L2)v21(t) + φ22(L2)v22(t)
w

′
1e = ∂w1(x,t)

∂x |x=L1 = φ
′
11(L1)v11(t) + φ

′
12(L1)v12(t)

(5.44)

The Jacobian Jθ is

Jθ =
⎛
⎝

∂ p(1)
M

∂θ1

∂ p(1)
M

∂θ2

∂ p(2)
M

∂θ1

∂ p(2)
M

∂θ2

⎞
⎠ (5.45)

∂ p(1)
M

∂θ1
= −L1sin(θ1) − w1(L1, t)cos(θ1) − L2sin(θ1 + θ2)−

−L2w
′
1ecos(θ1 + θ2) − w2(L2, t)cos(θ1 + θ2) + w2(L2, t)w

′
1esin(θ1 + θ2)

∂ p(2)
M

∂θ1
= L1cos(θ1) − w1(L1, t)sin(θ1) + L2cos(θ1 + θ2) − L2w

′
1esin(θ1 + θ2)−

−w2(L2, t)sin(θ1 + θ2) + w2(L2, t)w
′
1ecos(θ1 + θ2)

∂ p(1)
M

∂θ2
= −L2sin(θ1 + θ2) − L2w

′
1ecos(θ1 + θ2) − w2(L2, t)cos(θ1 + θ2)+

+w2(L2, t)w
′
1esin(θ1 + θ2)

∂ p(2)
M

∂θ2
= L2cos(θ1 + θ2) − L2w

′
1esin(θ1 + θ2) − w2(L2, t)sin(θ1 + θ2)−

−w2(L2, t)w
′
1ecos(θ1 + θ2)

Similarly, the Jacobian Jv is calculated:

Jv =
⎛
⎝

∂ p(1)
M

∂v11

∂ p(1)
M

∂v12

∂ p(1)
M

∂v21

∂ p(1)
M

∂v22
∂ p(2)

M
∂v11

∂ p(2)
M

∂v12

∂ p(2)
M

∂v21

∂ p(2)
M

∂v22

⎞
⎠ (5.46)

∂ p(1)
M

∂v11
= −φ11(L1)sin(θ1) − L2φ

′
11(L1)sin(θ1 + θ2) − w2(L2, t)φ

′
11(L1)cos(θ1 + θ2)
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∂ p(1)
M

∂v12
= −φ12(L1)sin(θ1) − L2φ

′
12(L1)sin(θ1 + θ2) − w2(L2, t)φ

′
12(L1)cos(θ1 + θ2)

∂ p(1)
M

∂v21
= −φ21(L2)sin(θ1 + θ2) − φ21(L2)w

′
1ecos(θ1 + θ2)

∂ p(1)
M

∂v22
= −φ22(L2)sin(θ1 + θ2) − φ22(L2)w

′
1ecos(θ1 + θ2)

∂ p(2)
M

∂v11
= φ11(L1)cos(θ1) + L2φ

′
11(L1)cos(θ1 + θ2) − w2(L2, t)φ

′
11(L1)sin(θ1 + θ2)

∂ p(2)
M

∂v12
= φ12(L1)cos(θ1) + L2φ

′
12(L1)cos(θ1 + θ2) − w2(L2, t)φ

′
12(L1)sin(θ1 + θ2)

∂ p(2)
M

∂v21
= φ21(L2)cos(θ1 + θ2) − φ21(L2)w

′
1esin(θ1 + θ2)

∂ p(2)
M

∂v22
= φ22(L2)cos(θ1 + θ2) − φ22(L2)w

′
1esin(θ1 + θ2)

5.2.4.2 Interaction with the Compliant Surface

A simple model of elastic force due to contact of the end-effector with a surface is
given by:

F = KeηηT (p − pe) (5.47)

where p = k(θ, v) are the coordinates of the end-effector which are calculated from
the kinematic model, and η is a vector normal to the surface pe. From the second
line of the dynamic model of Eq. (5.42) one obtains:

M21θ̈ + M22v̈ + Dv̇ + Kv = −J T
v (θ, v)F (5.48)

In the steady-state one obtains

v = −K−1 J T
v (θ, v)F − K−1 J T

v (θ, v)ηKe(pn − pen) ⇒
v = −K−1 JvnKe(pn − pen)

(5.49)

where pn = ηT p, pen = ηT pe, and Jvn = J T
v η. The derivative of Eq. (5.49) with

respect to t is calculated.

v̇ = ∂v
∂θ

∂θ
∂t = ∂

∂θ
{−K−1 Jvn Ke(pn − pen)}θ̇ ⇒

v̇ = −K−1 ∂ Jvn
∂θ

Ke(pn − pen) + K−1 Jvn Ke
∂ pen
∂θ

θ̇
(5.50)

which finally results into
v̇ = −K−1Ke J f (θ)θ̇ (5.51)

with J f (θ) = ∂ Jvn
∂θ

Ke(pn − pen) + K−1 Jvn Ke
∂ pen
∂θ

. SubstitutingEq. (5.51) into (5.41)
gives:
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ṗ = Jθ (θ, v)θ̇ + Jv(θ, v){−K−1Ke J f (θ)} ⇒
ṗ = {Jθ (θ, v) − K−1Ke Jv(θ, v)J f (θ)} (5.52)

The overall Jacobian matrix Jp is defined as:

Jp = Jθ (θ, v) − K−1Ke Jv(θ, v)J f (θ) (5.53)

which relates the velocity of the end-effector with the angular velocity of the joints

ṗ = Jp(θ, v)θ̇ (5.54)

5.2.4.3 Force Control

The desirable contact force along the normal vector of surface pe is denoted as Fd

and corresponds to the desirable position pd . The relation between Fd and pd is given
by

pdn = ηT pd = K−1
e Fd + pen (5.55)

or equivalently pdn − pen = K−1
e Fd ⇒ ηT pd − ηT pe = K−1

e Fd . Thus to succeed
contact force equal to Fd the end-effector should reach the depth ηT pd − ηT pe. The
design of the force controller comprises the following steps [509]:
1. For a certain force set-point Fd the corresponding position of the end-effector is
calculated using Eq. (5.55).
2. Knowing pd an inverse kinematics algorithm is used to calculate the associated
joint angles θd and the vibration modes vd .
3. The values of θd and vd are used as set-points of a simple proportional-derivative
joint controller, as the ones described in the previous sections.
The inverse kinematics problem can be solved with the use of an inverse kinematics
algorithm which enables the calculation of θd and vd through the following relation:

θ̇ = J T
P (θ, v)Kp(pd − p) (5.56)

where Jp is the Jacobian of Eq. (5.53), p is the current position of the end-effector, pd
is the desirable position of the end-effector, and Kp is the diagonal feedback matrix
of Eq. (5.56). The convergence conditions of the inverse kinenatics algorithm have
been studied [509]. The calculated values θd and vd which are associated with the
desirable position pd are introduced as set-points in the PD controller of each link.
This is given in:

T (t) = K1(θd − θ) + K2θ̇ + J T
θ (θd , vd)Fdn (5.57)

where Fdn = Ke[ηT pd − ηT pe]η and Jθ is the Jacobian of Eq. (5.45). The term
J T
θ Fdn is added to the control signal to compensate for the torques which are induced

to the joints due to the contact forces.
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Fig. 5.2 A flexible-link
robot which operates in the
presence of compliance
forces

The discrete-time solution of the inverse kinematics gives

θd(k + 1) = θd(k) + Ts J
T
P (θd(k), vd(k))Kp[pd(k) − p(k)] (5.58)

where the Jacobian Jp is given by Eq. (5.53), and Ts is the sampling period. From
Eq. (5.51), one obtains iteratively the setpoints for the normal vibration modes,

vd(k + 1) = −K−1Ke Jvn (θd(k))[pn(k) − pen (k)] (5.59)

with pn = ηT p, pen = ηT pe and Jvn = J T
v η (Fig. 5.2).

5.2.5 Simulation Results

The performance of the previously analyzed model-free control method (energy-
based control) is compared to the performance of model-based techniques (inverse-
dynamics control), in a simulation case study for planar 2-DOF manipulators
(Fig. 5.2).

5.2.5.1 Model-Based Control of Flexible-Link Robots

The 2-DOF flexible link robot of Fig. 5.1 is considered. The robot is planar and
consists of two flexible links of length L1 = 0.45m and L2 = 0.45m, respectively.
The dynamic model of the robot is given by Eq. (5.4). The elements of the inertia
matrix M are:
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M11 =
(
1 2
2 1

)
, M12 = MT

21 =
(

1 1 0.2 0.3
0.5 0.1 2 0.7

)
, M22 =

(
1 0
0 1

)

The damping matrix was taken to be D = diag{0.04, 0.08, 0.03, 0.06} while the
stiffness matrices was selected as K = diag{0.02, 0.04, 0.03, 0.06}. The inverse
dynamics control law given in Eqs. (5.9) and (5.10) is employed. The selection of
the gain matrices Kp and Kd determines the transient response of the closed loop
system. The following controller gains have been considered: Kp = diag{0.2, 0.2}
and Kd = diag{0.1, 0.1}. The desirable joints positions are θd1 = 1 rad and θd2 =
1.4 rad. The performance of the model-based controller is given in Fig. 5.3.

Moreover, it is considered that an additive disturbance torque appears on each
joint. The disturbance is given by di (t) = 0.3cos(t). The performance of the model-
based controller of the flexible-link robot in the presence of disturbance is depicted
in Fig. 5.4. It can be seen that vibrations around the desirable joint positions cannot
be eliminated.

5.2.5.2 Energy-Based Control

The same robotic model as in Sect. 5.3.4.1 is used to simulate the variation of
the manipulator’s joints with respect to time. Energy-based control of flexible-
link robots is based on Eq. (5.23). The following controller gains have been used:
Kp = diag{1.9, 5.6}, Kd = diag{7.2, 23.3} and Ki = diag{0.1, 0.1}. The desir-
able joint positions are again θd1 = 1.0 rad and θd2 = 1.4 rad. To derive the control
signal of Eq. (5.23) the strains at the base of each link were used, i.e. w

′′
i (0, t). The

performance of the energy-based controller in the case of the 2-DOF flexible link
robot is shown in Fig. 5.5.

Moreover, the performance of the energy-based controller in presence of the
external disturbances of Sect. 5.3.4.1 is given inFig. 5.6. Suppression of the vibrations
can be achieved if the elements of the gain matrix Kd are given higher values.

5.3 Sliding-Mode Control of Flexible-Link Manipulators

5.3.1 Outline

In the previous sections it has been pointed out that the control for flexible-link robots
is a non-trivial problem that has elevated difficulty comparing to the control of rigid-
link manipulators [450, 583]. This is because the dynamic model of the flexible-link
robot contains the nonlinear rigid link motion coupled with the distributed effects
of the links’ flexibility. This coupling depends on the inertia matrix of the flexible
manipulator while the vibration characteristics are determined by structural proper-
ties of the links such as the damping and stiffness parameters. Moreover, in contrast
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Fig. 5.3 Model-based control of a 2-link flexible robot a joints’ angles and joints’ angular velocity,
b the first two vibration modes for each link
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Fig. 5.4 Model-based control of a 2-link flexible robot in the presence of additive motor-torques
disturbances a joints’ angles and joints’ angular velocity, b the first two vibration modes for each
link
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Fig. 5.5 Energy-based control of a 2-link flexible robot a joints’ angles and joints’ angular velocity,
b the first two vibration modes for each link
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Fig. 5.6 Energy-based control of a 2-link flexible robot in the presence of additive motor-torques
disturbances a joints’ angles and joints’ angular velocity, b the first two vibration modes for each
link
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to the dynamic model of rigid-link robots the dynamic model of flexible-link robots
is an infinite dimensional one. As in the case of the rigid-link robot there is a certain
number of mechanical degrees of freedom associated to the rotational motion of the
robot’s joints and there is also an infinite number of degrees of freedom associated
to the vibration modes in which the deformation of the flexible link is decomposed
[441]. The controller of a flexible manipulator must achieve the same motion objec-
tives as in the case of a rigid manipulator, i.e. tracking of specific joints position and
velocity setpoints. Additionally, it must also stabilize and asymptotically eliminate
the vibrations of the flexible-links that are naturally excited by the joints rotational
motion.

It has already been shown that the inverse dynamics model-based control for
flexible-link robots relies on modal analysis, i.e. on the assumption that the defor-
mation of the flexible link can be written as a finite series expansion containing the
elementary vibration modes. However, this inverse-dynamics model-based control
may result into unsatisfactory performance when an accurate model is unavailable,
due to parameters uncertainty or truncation of high order vibration modes in the
model [441]. Moreover, based on the state space formulation, the sliding mode con-
trol, which belongs to the wider class of the variable structure control schemes, is
a nonlinear robust controller suitable for flexible-link manipulators. Sliding-mode
control (SMC) can achieve simultaneous convergence of the flexible robot’s joints
angles and angular velocities to the desirable setpoints and efficient suppression of
the flexible links vibrations. The inclusion of a switching control term in a sliding
mode controller can provide robustness against parametric uncertainties and input
disturbances [136, 229, 330].

As mentioned, sliding-mode control is a state-feedback based controller and its
implementation requires knowledge of the complete state vector of the controlled
system [204, 490]. However, there are certain elements in the state vector of the
flexible-link robotwhich are difficult tomeasure, e.g. the vibrationmodes. Therefore,
to apply sliding-mode control to the flexible manipulator it is necessary to use some
kind of state estimator which can reconstruct the robot’s state vector through the
processing of measurements from a limited number of sensors, e.g. angles of the
joints and the associated angular velocities [31, 361]. The Kalman Filter can provide
real-time estimates of the state vector of the flexible link robot while assuring the
optimality of estimation in the presence of measurement noises [222, 431].

Indicative results about filtering-based control for flexible-link robots can be
noted. In [174] state feedback control for a flexible-link robot is implementedwith the
use of a state vector that is estimated through Kalman Filtering. Using fuzzy rules,
an online adaptation of the covariance matrix of the Kalman Filter is performed
which aims at improving the vibration suppression capabilities of the filtering-based
control. In [290] a controller that follows the principles of singular perturbations
theory is developed and the flexible-link robot model is decomposed into a fast and
a slow dynamics subsystem. Then a two-time scale Kalman filter is designed for
estimating the components of the robot’s state vector associated both with the rigid
(slow) and the flexible (fast) dynamics of the robot. The estimated state vector is
used in the control loop. In [353] an observer-based control scheme for flexible-link
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robots is developed where a fixed-gain state estimator processes measurements of
the flexible-links’ deformation. Lyapunov-like stability analysis is used to demon-
strate the efficiency of the feedback control scheme. In [391] a method is proposed
for improving the performance of flexible manipulators through the employment of
robust state estimation techniques. The method is based on discrete-time Kalman
filtering and sliding mode principles and is applied to the model of a 1-DOF flexible-
link manipulator. Finally, in [25] the Extended Kalman Filter is redesigned in the
form of a disturbance observer to estimate the disturbance forces that are exerted on
the end-effector of a single-link flexible robotic manipulator. The forces’ estimates
provided by the filter are used in the robot’s feedback control loop.

In this section it will be shown how a suitable formulation of the dynamic model
of the flexible manipulator enables the application of the Kalman Filter recursion and
provides accurate estimates of the robot’s state vector which in turn can be used by a
sliding-mode control loop. The present section extends and elaborates on the results
of [437]. The performance of the proposed Kalman Filter-based sliding mode con-
troller is also compared against the previously analyzed inverse dynamics control for
flexible-link robots. As already discussed, in the latter method, by assuming a finite
number of vibration modes, acontrol input is developed which inverts the dynamics
of robotic system and eliminates the tracking error of its state variables [450, 583].
The evaluation of Kalman filter-based sliding-mode control against inverse dynamics
control derives useful results on the efficiency of this control approach.

5.3.2 Design of a Sliding-Mode Controller

Sliding-mode control for flexible-link robots has been studied in several papers
[136, 490]. In the sequel and for simplifying the presentation of the control scheme a
2-link flexible manipulator will be assumed, i.e. n = 2. The flexible-link robot model
of Eq. (5.4) can be written as

(
θ̈

v̈

)
= −

(
M11 M12

M21 M22

)−1

{
(
0 0
0 D

)(
θ̇

v̇

)
+

(
0 0
0 K

) (
θ

v

)
+

+
(
F1

F2

)
+

(
G1

G2

)
−

(
T
0

)
}

(5.60)

The model of the flexible-link robot dynamics is written in state-space form after
defining the following state vector:

x = [θ1, θ2, v11, v12, v21, v22, θ̇1, θ̇2, v̇11, v̇12, v̇21, v̇22]T (5.61)

The following notation is used for the inverse of the inertia matrix of the flexible-link
robot (

M11 M12

M21 M22

)−1

=
(
N11 N12

N21 N22

)
(5.62)
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where N11∈R2×2, N12∈R2×4, N21∈R4×2 and N22∈R4×4. It holds that

θ̈ = −N12Kv − N12Dv̇ − N11F1 − N11G1 + N11T (5.63)

The elements of the damping matrix D∈R4×4 are denoted as D(i, j), where
D(i, j) �=0 for i = j , while the elements of the stiffness matrix K∈R4×4 are
denoted as K (i, j), where K (i, j) �=0 for i = j . Additionally the terms of the
Coriolis and the gravitational vectors are F = (

F1 ∈ R2×1, F2 ∈ R4×1
)T

and G =(
G1 ∈ R2×1, G2 ∈ R4×1

)T
. To obtain a more compact mathematical description in

the design of the controller, and without loss of generality, in the rest of this section
it will be considered that F2 = 04×1 and G2 = 04×1.

Therefore, one can write the dynamics of the joints of the flexible-link robot in a
matrix form:

ẍ1 = f1(x) + g1(x)u
ẍ2 = f2(x) + g2(x)u

(5.64)

whereu = (
T1 T2

)T
, g1(x) = (

N11(1, 1) N11(1, 2)
)
, g2(x) = (

N11(2, 1) N11(2, 2)
)
,

while functions f1(x) and f2(x) are defined as

f1(x) = −N12(1, 1)K (1, 1)x3 − N12(1, 2)K (2, 2)x4
−N12(1, 3)K (3, 3)x5 − N12(1, 4)K (4, 4)x6
−N12(1, 1)D(1, 1)x9 − N12(1, 2)D(2, 2)x10
−N12(1, 3)D(3, 3)x11 − N12(1, 4)D(4, 4)x12

−N11(1, 1)F1(1, 1) − N11(1, 2)F1(2, 1)
−N11(1, 1)G1(1, 1) − N11(1, 2)G1(2, 1)

(5.65)

f2(x) = −N12(2, 1)K (1, 1)x3 − N12(2, 2)K (2, 2)x4
−N12(2, 3)K (3, 3)x5 − N12(2, 4)K (4, 4)x6
−N12(2, 1)D(1, 1)x9 − N12(2, 2)D(2, 2)x10
−N12(2, 3)D(3, 3)x11 − N12(2, 4)D(4, 4)x12

−N11(2, 1)F1(1, 1) − N11(2, 2)F1(2, 1)
−N11(2, 1)G1(1, 1) − N11(2, 2)G1(2, 1)

(5.66)

In the equations describing the joint dynamics the terms g1(x) and g2(x) depend
on the elements of the inertia matrix of the flexible-link robot and are considered to
be known. On the other hand, the terms f1(x) and f2(x) are considered to vary in
uncertainty ranges, given by

| f1 − f̂1|≤ΔF1, | f2 − f̂2|≤ΔF2 (5.67)

The following tracking error for the joints angles is defined:

e1 = x1 − xd1 , e2 = x2 − xd2 (5.68)
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The flexible-link robot’s description given in Eq. (5.64) is in the input-output linear
formand signifies also that the robotic systemcanbewritten in a canonical state-space
form. Moreover, the sliding surface vector s = [s1, s2]T is defined with elements

s1 = ė1 + λ1e1, s2 = ė2 + λ2e2 (5.69)

To achieve convergence of the tracking error to zero for the i th element of the state
vector the following conditions should hold:

1

2

d

dt
s2i ≤ − ηi |si |, ηi > 0, i = 1, 2 (5.70)

The sliding-mode control law is finally given by

u =
(
g1(x)
g2(x)

)−1

··
(
ẍ d1 − f̂1(x) − λ1(ẋ1 − ẋ d1 ) − k1sgn(s1)
ẍ d2 − f̂2(x) − λ2(ẋ2 − ẋ d2 ) − k2sgn(s2)

)
(5.71)

To define the permissible values for the switching gains ki i = 1, 2 the following
conditions are used

1
2

d
dt s

2
i ≤ − ηi |si |⇒si ṡi≤ − ηi |si |⇒[

fi (x) + gi (x)u − ẍ di + λi (ẋi − ẋ di )
]
si≤ − ηi |si | (5.72)

The conditions given in Eq. (5.72) can be written as follows

(
s1 0
0 s2

)
{
(
f1(x)
f2(x)

)
+

(
g1(x)
g2(x)

)
u −

(
ẍ d1
ẍ d2

)
+

+
(

λ1(ẋ1 − ẋ d1 )

λ2(ẋ2 − ẋ d2 )

)
}≤

(−η1|s1|
−η2|s2|

) (5.73)

Substituting in Eq. (5.73) the control law u that was calculated in Eq. (5.71), one
obtains (

s1 0
0 s2

)(
f1(x) − f̂1(x) − k1sgn(s1)
f2(x) − f̂2(x) − k2sgn(s2)

)
≤

(−η1|s1|
−η2|s2|

)
(5.74)

or equivalently
( f1(x) − f̂1(x) − k1sgn(s1))s1≤ − η1|s1|
( f2(x) − f̂2(x) − k2sgn(s2))s2≤ − η2|s2| (5.75)

and using Eq. (5.67) one has

ΔF1s1 − k1sgn(s1)s1≤ − η1|s1|
ΔF2s2 − k2sgn(s2)s2≤ − η2|s2| (5.76)

or equivalently
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ΔF1s1 − k1|s1|≤ − η1|s1|
ΔF2s2 − k2|s2|≤ − η2|s2| (5.77)

The switching control gains are chosen to satisfy

k1 = ΔF1 + η1, k2 = ΔF2 + η2 (5.78)

Substituting Eqs. (5.78) into (5.77) gives

ΔF1s1 − ΔF1|s1| − η1|s1|≤−η1|s1|
ΔF2s2 − ΔF2|s2| − η2|s2|≤−η2|s2| (5.79)

or equivalently
ΔF1s1≤ΔF1|s1|
ΔF2s2≤ΔF2|s2| (5.80)

This assures that limt→∞si = 0, i = 1, 2 and consequently the asymptotic elimina-
tion of the tracking error for the joints’ angle and rotation speed.

5.3.3 Estimation of the Non-measurable State Variables

Knowing that certain elements of the state vector of the flexible-link robot are not
directly measurable, e.g. vibration modes, it becomes necessary to estimate these
variables with the use of a state observer or filter. Indicative research results on state
estimation-based control for flexible-link robots have been given in [31, 204, 361].
To obtain a state estimation-based control scheme for the flexible manipulator, in this
section the state-space description of the flexible-link robot dynamics in the form of
Eq. (5.81) is used:

ẋ = Ax + Bua
y = Cx

(5.81)

where x∈R12×1 is the previously defined state vector, ua = [T1 − F1 − G1, T2 −
F1 − G1]T , while matrices A and B are defined as

A =
⎛
⎝ 06×6 I6×6

[02×2,−N12K ] [02×2,−N12D]
[04×2,−N22K ] [04×2,−N22D]

⎞
⎠ B =

⎛
⎝06×2

N12

N22

⎞
⎠ (5.82)

C =

⎛
⎜⎜⎝

1 0 01×10

0 1 01×10

01×6 1 01×5

01×7 1 01×4

⎞
⎟⎟⎠ (5.83)
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Thus, it is considered that the measurable elements of the robot’s state vector are the
joints’ angles and the joints’ angular velocities. After applying common discretiza-
tion methods the linear continuous-timemodel of the flexible-link robot of Eq. (5.81)
is turned into a discrete-time linear model, which makes use of the discrete-time
equivalents of matrices A, B and C defined in Eqs. (5.82) and (5.83).

For the latter discrete-time model the application of the recursion of the discrete-
time Kalman Filter is possible. The discrete-time Kalman filter can be decomposed
into two parts: (i) time update (prediction stage), and (ii) measurement update (cor-
rection stage) [222, 450, 457]. The first part employs an estimate of the state
vector x(k) made before the output measurement y(k) is available (a priori esti-
mate). The second part estimates x(k) after y(k) has become available (a posteriori
estimate). The covariance matrices associated with x̂−(k) and x̂(k) are defined as:
P−(k) = Cov[e−(k)] = E[e−(k)e−(k)T ] and P(k) = Cov[e(k)] = E[e(k)eT (k)].

Matrices A, B and C of the linear state-space model are defined in Eq. (5.82) and
Eq. (5.83). Next, by applying common discretization methods (e.g. Tustin transform)
the continuous-time linear model of the robot’s dynamics is transformed into a linear
discrete-time model where matrices A, B, and C are substituted by their discrete-
time equivalents Ad , Bd and Cd . For this latter model, the application of the standard
discrete-time Kalman Filter recursion is possible.

The recursion of the discrete-time Kalman Filter is formulated as:

measurement update:

K (k) = P−(k)Cd(k)T [Cd(k)·P−(k)Cd(k)T + R]−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cd(k)x̂−(k)]
P(k) = P−(k) − K (k)Cd(k)P−(k)

(5.84)

time update:

P−(k + 1) = Ad(k)P(k)AT
d (k) + Q(k)

x̂−(k + 1) = Ad(k)x̂(k) + B(dk)u(k)
(5.85)

5.3.4 Simulation Tests

5.3.4.1 Inverse Dynamics Control for a 2-Link FLR

The 2-link flexible robot of Fig. 5.1 is considered. The robot consists of two flexible
links of length L1 = 0.45m and L2 = 0.45m, respectively. The dynamic model of
the robot is given by Eq. (5.4). The elements of the inertia matrix M are:

M11 =
(
1 2
2 1

)
, M22 =

(
1 0
0 1

)

M12 = MT
21 =

(
1 1 0.2 0.3
0.5 0.1 2 0.7

) (5.86)
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Fig. 5.7 a Inverse dynamics control of a 2-link flexible robot under additive motor-torques distur-
bances: joints’ angles (rad) and joints’ angular velocity (rad/sec) b Inverse dynamics control of a
2-link flexible robot under additive motor-torques disturbances: the first two vibration modes for
each link
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Fig. 5.8 a Sliding-mode control of a 2-link flexible robot under additive motor-torques distur-
bances: joints’ angles (rad) and joints’ angular velocity (rad/sec) for each link, b Sliding-mode
control of a 2-link flexible robot under additive motor-torques disturbances: the first two vibration
modes for each link
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Fig. 5.9 a Estimates (continuous lines) of the non-measurable state vector elements of the flexible-
link robot (vibration modes), provided by the Kalman Filter. b Top row: Control inputs (torques)
Ti , i = 1, 2 applied to the joints of the flexible-link robot, Bottom row: estimation of function
fi , i = 1, 2 of the flexible-link dynamics
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The damping matrix is D = diag{0.04, 0.08, 0.03, 0.06} while the stiffness matrix
is K = diag{0.02, 0.04, 0.03, 0.06}. The inverse dynamics control law given in
Sect. 5.2.2 was employed. The selection of the gain matrices Kp and Kd determines
the transient response of the closed loop system. The following controller gains have
been considered: Kp = diag{10.5, 15.5} and Kd = diag{10.9, 15.0}. The desirable
joints’ positionswere θd1 = 1 rad and θd2 = 1.4 rad. It was considered that an additive
disturbance torque di (t) = 0.3cos(t) affected each joint.

In the simulation diagrams about angular position and velocity setpoint tracking,
the horizontal axis represents time in sec, and since the robot’s control takes place in
the configuration space the vertical axis represents angle in rad and angular velocity
in rad/sec. Moreover, as shown in Eq. (5.3), the vibration modes variables vi (t) are
functions of time and are associatedwith the deformation of the flexible linksw(x, t).
The performance of the model-based controller of the flexible-link robot in the pres-
ence of disturbance is depicted in Fig. 5.7. It can be seen that vibrations around the
desirable joint positions cannot be eliminated.

5.3.4.2 Sliding-Mode Control for a 2-Link Flexible-Link Robot

The sliding-mode control scheme proposed in Sect. 5.3.2 was tested on the 2-link
flexible robotic manipulator model. It was assumed that the complete state vector
of the robot was not directly measurable. Thus, it was considered that only the
joints’ angles θi , i = 1, 2 and the associated angular velocities θ̇i , i = 1, 2 could
be obtained through sensor measurements, whereas the vibration modes of the links
v11, v12, v21, v22 were not measurable and had to be reconstructed with the use of the
Kalman Filter.

The obtained results are depicted in Fig. 5.8a where convergence of the joints’
angles and velocities to the desirable setpoints is shown. In Fig. 5.8b the evolution in
time of the vibration modes of the flexible links is presented. Figure5.9a presents the
estimation of the flexible-links’ vibration modes, provided by the Kalman Filter. It
can be noticed that the Kalman Filter state estimates track with satisfactory accuracy
the real values of the non-measurable state vector elements. Finally, Fig. 5.9b depicts
the control inputs (torques) applied to the joints of the flexible-link robot.

From the simulation experiments it can be noticed that as the Kalman Filter-based
sliding-mode controller, the energy-based controller is also efficient in controlling the
position and in suppressing vibrations of the flexible links. However, an advantage
of the Kalman Filter-based sliding mode control is that it achieves accurate tracking
for any type of joint angle and velocity set-point whereas the convergence of the
energy-based control is assured only in the case of constant set-points.
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