
Chapter 11
Autonomous Underwater Vessels

Abstract The control of multi-DOF autonomous underwater vessels (AUVs)
exhibits particular difficulties which are due to the complicated nonlinear model
of the submersible vessels, the coupling between the systems control inputs and out-
puts, and the uncertainty about the values of their model’s parameters. Moreover, the
AUVs’ dynamic model is subject to external perturbations which are caused by vari-
able sea conditions and sea currents. Consequently, an efficient control scheme for
AUVs should not only compensate for the nonlinearities of the associated dynamic
model, but should also exhibit robustness to model parameter variations and to exter-
nal disturbances. To this end, the present chapter provides results on robust control
of AUVs, as well as on adaptive control of such submersible vessels. Thus the con-
trol problem for autonomous underwater vessels is treated with (i) global lineariza-
tion methods (ii) approximate linearization methods and (iii) Lyapunov methods.
The solution of the control problem requires a more elaborated procedure when
the AUVs’ dynamic model is underactuated. which means that the number of actu-
ators included in its propulsion system is less than the number of its degrees of
freedom.The methods developed in this chapter treat also the case of underactuated
AUVs. Moreover, advanced estimation methods are used to identify in real time the
unknown dynamics of the underwater vessels or disturbance forces and torques that
affect them. This allows for the implementation of indirect adaptive control schemes
for the AUVs. Additionally,for the precise localization of the AUVs and their safe
navigation elaborated nonlinear filtering methods are developed. These permit to
solve problems of multi-sensor fusion as well as problems of decentralized state
estimation with the use of spatially distributed nonlinear filters that track the AUVs
motion. In particular the chapter treats the following topics: (a) Global linearization-
based control of autonomous underwater vessels, (b) Flatness-based adaptive fuzzy
control of autonomous submarines, and (c) Nonlinear optimal control of autonomous
submarines.
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11.1 Chapter Overview

The present chapter treats the following topics: (a) Global linearization-based con-
trol of autonomous underwater vessels, (b) Flatness-based adaptive fuzzy control
of autonomous submarines, and (c) Nonlinear optimal control of autonomous sub-
marines.

With reference to (a) the chapter solves the problem of control and navigation for
Autonomous Underwater Vessels (AUVs) using differential flatness theory and the
Derivative-free nonlinear Kalman Filter. First, differential flatness is proven for the
6-DOFdynamicmodel of theAUV. This allows for transforming theAUVmodel into
the linear canonical (Brunovsky) form and for designing a state feedback controller.
Uncertainty about the parameters of the AUV’s dynamic model, as well external
perturbations which affect its motion are issues that have to be taken into account in
the controller’s design. To compensate for model imprecision and disturbance terms,
it is proposed to use a disturbance observer which relies on the previously analyzed
the Derivative-free nonlinear Kalman Filter. The considered filtering method con-
sists of the standard Kalman Filter recursion applied on the linearized model of the
underwater vessel and of an inverse transformation based on differential flatness the-
ory, which enables to obtain estimates of the state variables of the initial nonlinear
model of the vessel. With the use of the Kalman Filter-based disturbance observer,
simultaneous estimation of the non-measurable state variables of the AUV and of the
perturbation terms that affect its dynamics is achieved. Moreover, after estimating
such disturbances, their compensation is also accomplished.

With reference to (b) the chapter proposes adaptive fuzzy control based on dif-
ferential flatness theory for autonomous submarines. It is proven that the dynamic
model of the submarine, having as state variables the vessel’s depth and its pitch
angle, is a differentially flat one. This means that all its state variables and its control
inputs can be written as differential functions of the flat output and its derivatives.
By exploiting differential flatness properties the system’s dynamic model is written
in the multivariable linear canonical (Brunovsky) form, for which the design of a
state feedback controller becomes possible. After this transformation, the new con-
trol inputs of the system contain unknown nonlinear parts, which are identified with
the use of neurofuzzy approximators. The learning procedure for these estimators
is determined by the requirement the first derivative of the closed-loop’s Lyapunov
function to be a negative one. Moreover, the Lyapunov stability analysis shows that
H-infinity tracking performance is ascertained for the feedback control loop and this
assures improved robustness to the aforementioned model uncertainty as well as to
external perturbations.

With reference to (c) the chapter presents a nonlinear H-infinity (optimal) con-
trol approach for the problem of the control of the depth and heading angle of an
autonomous submarine. This is a multi-variable nonlinear control problem and its
solution allows for precise underwater navigation of the submarine. The submarine’s
dynamicmodel undergoes approximate linearization around a temporary equilibrium
that is recomputed at each iteration of the control algorithm. The linearization proce-
dure is based on Taylor series expansion and on the computation of the submarine’s
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model Jacobian matrices. For the approximately linearized model, the optimal con-
trol problem is solved through the design of an H-infinity feedback controller. The
computation of the controller’s gain requires the solution of an algebraic Riccati
equation, which is repetitively performed at each step of the control method. The
stability of the control scheme is proven through Lyapunov analysis.

11.2 Global Linearization-Based Control of Autonomous
Underwater Vessels

11.2.1 Outline

The control of 6-DOF autonomous underwater vessels (AUVs) exhibits particular
difficulties which are due to the complicated nonlinear model of the vessel, the
coupling between the system’s control inputs and outputs, and the uncertainty about
the values of themodel’s parameters.Moreover, theAUVs’ dynamicmodel is subject
to external perturbations which are due to variable sea conditions and sea currents
[143, 144, 191, 411]. Consequently, an efficient control scheme for AUVs should not
only compensate for the nonlinearities of the associated dynamic model, but should
also exhibit robustness to model parameter variations and to external disturbances.
To this end, during the last years, there have been several results on robust control of
AUVs [251, 258, 288, 386, 453, 536, 635], as well as on adaptive control of such
submersible vessels [253, 346, 462, 618].

In this section a new control method is proposed for the 6-DOF dynamic model
of AUVs, based on differential flatness theory [450, 452, 457]. First it is proven, that
the 6-DOF dynamic model of the AUV is a differentially flat one. This means that
all its state variables and its control inputs can be expressed as differential functions
of one single algebraic variable which is the so-called flat output [57, 145, 254,
267, 322, 472, 476, 519, 572]. By exploiting differential flatness properties, the
AUVs’ model is transformed into the linear canonical (Brunovsky) form. For the
latter description of the AUVs the design of a state feedback controller is possible.
Unlike approximate linearizationmethods the aforementioned transformation avoids
numerical errors and truncation of nonlinear terms from the AUVs’ dynamic model.

Another problem that has to be dealt with is that the control loop should compen-
sate for modelling uncertainties and external perturbation terms affecting the AUVs.
To this end, it is proposed to use the Derivative-free nonlinear Kalman Filter as a
disturbance observer. This nonlinear filter consists of the Kalman Filter recursion
applied on the equivalent linearized model of the AUVs together with an inverse
transformation, based again on differential flatness theory, which enables to obtain
estimates of the initial nonlinear AUVs’ model. The aforementioned disturbance
observer provides simultaneously estimates of non-measurable state variables of the
AUV and of the external perturbation terms. By identifying external disturbance
inputs their compensation becomes also possible.
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Fig. 11.1 Reference frames
for the localization and
navigation of the AUV

11.2.2 The 6-DOF Dynamic Model of the AUV

11.2.2.1 Kinematic Model of the AUV

Kinematic and dynamic modelling of AUVs and in general of marine vessels is
needed for the development of efficient control for propulsion purposes [373, 388,
416]. In the modelling of AUVs an inertial and a body-fixed reference frame are
usually defined. The inertial reference frame of the AUV denoted as OXY Z and the
body-fixed reference frame denoted as Oxyz, used for the localization and navigation
of the underwater vessel are depicted in Fig. 11.1.

The state vector of the AUV in the inertial reference frame is defined as
x = [x1, x2]T = [x, y, z, φ, θ, ψ]T , where x1 = [x, y, z]T denotes linear dis-
placement and x2 = [ψ, θ,ψ]T is the vector of Euler angles which denotes rota-
tional displacement. The associated velocities vector is given by ẋ = [ẋ1, ẋ2]T =
[ẋ, ẏ, ż, φ̇, θ̇ , ψ̇]T .

In the body-fixed reference frame the velocity vector of the AUV is denoted as
u = [u1, u2]T = [u, v,w, p, q, r ]T , where u1 = [u, v,w]T is the vector of linear
velocities and u2 = [p, q, r ]T is the vector of angular velocities.

The vector of external forces and torques which can be applied to the 6-DOFAUV
is given by τ = [Fx , Fy, Fz, Tx , Ty, Tz]T . In this representation τ1 = [Fx , Fy, Fz]T
is the vector of forces along the X , Y and Z axes respectively and τ2 = [Tx , Ty, Tz]T
is the vector of torques causing rotation round the X , Y and Z axes.

The following transformation connects velocities expressed in the inertial ref-
erence frame η̇1 = [ẋ, ẏ, ż]T and velocities expressed in the body-fixed frame
v1 = [u, v,w]T :
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η̇1 = J1v1 where

J1 =⎛
⎜⎝
cos(ψ)cos(θ) −sin(ψ)cos(φ) + cos(ψ)sin(θ)sin(φ) sin(ψ)sin(φ) + cos(ψ)cos(φ)sin(θ)

sin(ψ)cos(θ) cos(ψ)cos(φ) + sin(φ)sin(θ)sin(ψ) −cos(ψ)sin(φ) + sin(θ)sin(ψ)cos(φ)

−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)

⎞
⎟⎠

(11.1)

Moreover, the following transformation holds between angular velocities expre-
ssed in the inertial and in the body-fixed frame

η̇2 = J2v2 where

J2 =
⎛
⎝
1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)/cos(θ) cos(φ)/cos(θ)

⎞
⎠

(11.2)

Therefore, it holds
(

η̇1
η̇2

)
=

(
J1 0
0 J2

)(
v1
v2

)
or η̇ = J ·v (11.3)

11.2.2.2 Dynamic Model of the AUV

Dynamic models for AUVs have been extensively analyzed [373, 388]. The dynamic
model of the AUV representing an equilibrium in forces and torques is

MRBv̇ + CRB(v)·v = τRB (11.4)

where MRB is the inertia matrix of the AUV, CRB(v) is the Coriolis and centrifugal
forces matrix, v = [u, v,w, p, q, r ]T is the velocities vector in the body-fixed refer-
ence frame and τRB = [Fx , Fy, Fz, Tx , Ty, Tz]T = 0∈R6×1 is the vector of external
forces and torques exerted on the AUV when the latter is found at an equilibrium.
All variables of Eq. (11.4) are expressed in the body-fixed frame.

The inertia matrix MRB is given by

MRB =

⎛
⎜⎜⎜⎜⎜⎜⎝

m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG Ix −Ixy −Ixz

mzG 0 −mxG −Ixy Iy −Iyz
−myG mxG 0 −Ixz −Iyz Iz

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.5)
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where Ix , Iy , Iz are inertia matrices, Ixy , Ixz , Iyz are inertia products and rG =
[xG, yG, zG] are the coordinates of the AUV’s center of mass (in the body-fixed
frame). The Coriolis matrix of the AUV is given by

CRB =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 m(yGq + zGr) −m(xGq − w) −m(xGr + v)

0 0 0 −m(yG p + w) m(zGr + xG p) −m(yGr − u)

0 0 0 −m(zG p − v) −m(zGq + u) −m(xG p + yGq)

−m(yGq + zGr) m(yG p + w) m(zG p − v) 0 −Iyzq − Ixz p + Izr Iyzr + Ixy p − Iyq

m(xGq − w) −m(zGr + xG p) m(zGq + u) Iyx q + Ixz p − Izr 0 Ixzr + Ixyq + Ix p

m(xGr + v) m(yGr − u) −m(xG p + yGq) −Iyzr − Ixy p − Iyq Ixzr + Ixyq − Ix p 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.6)

The motion of the AUV is also affected by the inertia of the fluid that surrounds it.
This is modeled as follows:

τA = −MAv̇ − CA(v)v (11.7)

This means that a force / torque is developed against the motion of the vessel and it
varies proportionally to the vessel’s acceleration. The new inertia matrix MA is given
by

MA =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 0 0 0 0 0
0 A22 0 0 0 0
0 0 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.8)

and the new Coriolis matrix is given by

CA =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 A33w −A22v
0 0 0 −A33w 0 A11u
0 0 0 A22v −A11u 0
0 A33w −A22v 0 A66r −A55q

−A33w 0 A11u −A66r 0 A44 p
A22v −A11u 0 A55q −A44 p 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.9)

The model is completed by the vector of a force / torque which resists to the motion
of the underwater vessel and which is proportional to its velocity

τDL = −D(v)v where

D(v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

X |u|u |u| 0 0 0 0 0
0 Y|v|v|v| 0 0 0 0
0 0 Z |w|w|w| 0 0 0
0 0 0 K|p|p|p| 0 0
0 0 0 0 M|q|q |q| 0
0 0 0 0 0 N|r |r |r |

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.10)
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while the diagonal elements of matrix D(v) are defined as follows:

X |u|u = ρ

2 V
2
3Cx (0o, 0o) K|p|p = ρ

2 V
5
3Cp

Y|v|v = ρ

2 V
2
3Cy(90o, 0o) M|q|q = ρ

2 V
5
3Cq

Z |w|w = ρ

2 V
2
3Cz(90o, 90o) N|r |r = ρ

2 V
5
3Cr

(11.11)

where ρ is the specific mass of the water, V is the volume of the submerged vessel
and Cx , Cy , Cz , Cp, Cq , Cr are constants.

The weight of the AUV is W = m·g, while the lift force exerted on the AUV
is B = ρgV , where ρ is the water’s specific weight (both expressed in the inertial
reference frame). These forces can be expressed in the body-fixed reference frame
as follows: fW = J−1

1 [0, 0,W ]T and fB = −J−1
1 [0, 0, B]T . Moreover, there are

torques which are generated due to these forces and these are given by τW = rG× fW
and τB = rB× fB , where rG = [xG, yG, zG]T and rB = [xB, yB, zB]T . Thus, there is
an additional vector of forces and torques applied on the AUV which is given by

τWB =
(
fw + fB
τw + τB

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

(W − B)sin(θ)

−(W − B)cos(θ)sin(φ)

−(W − B)cos(θ)cos(φ)

−(YGW − YB B)cos(θ)cos(φ) + (zGW − zB B)cos(θ)sin(ψ)

(zGW − zB B)sin(θ) + (xGW − xB B)cos(θ)cos(φ)

−(xGW − xB B)cos(θ)sin(φ) − (yGW − yB B)sin(θ)

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.12)

By applying one more transformation on the aforementioned vector, the forces and
torques due to the effects of weight and lift are finally expressed in the inertial
reference frame. Thus, due to the effects of the resistive forces and torques which
are generated by the surrounding fluid one has the dynamics

MRBv̇ + CRB(v)v = τA + τDL + τWB + τ (11.13)

where τA = −MAv̇−CA(v)v, τDL = −D(v)v stands for forces and torques resisting
the vessel’s motion), τWB = −g f represents forces and torques due to weight and
lift effects, and τ is the vector of external torques and forces defining the vessel’s
propulsion. By combining Eqs. (11.4) and (11.7) one obtains the aggregate dynamics

(MRB + MA)v̇ + (CRB(v) + CA(v))v + D(v)v + g f = τ (11.14)

The aggregate inertia matrix is M = MRB + MA, the aggregate Coriolis matrix is
C(v) = CRB(v) + CA(v). Thus, the dynamic and the kinematic model of the AUV
are finally written as

Mv̇ + Cv + D(v)v + g f = τ (11.15)

η̇ = J (η)v (11.16)
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11.2.3 Differential Flatness of the AUV’s Model

It will be proven that the dynamicmodel of the AUV is a differentially flat one, which
means that all its state variables and its control inputs can be written as differential
functions of the an algebraic variable (vector) which is the so-called flat output
[57, 145, 254, 267, 322, 472, 476, 519, 572]. Using that v = J−1η̇ or v = Rη̇ Eq.
(11.15) can be written equivalently as

M̃ η̈ + C̃ η̇ + D̃(η̇)η̇ + g f (η) = τ (11.17)

where η has been defined in the inertial reference frame as η = [x, y, z, φ, θ, ψ]T ,
M̃ = MR, C̃ = MṘ + CR and D̃ = DR. By denoting the inverse of the inertia
matrix as M̃−1 = N one obtains

η̈ + N ·C̃ η̇ + N ·D̃(η̇)η̇ + N ·g f (η) = N ·τ (11.18)

Moreover, using the state vector elements notation z1 = x , z2 = ẋ , z3 = y, z4 = ẏ,
z5 = z, z6 = ż, z7 = φ, z8 = φ̇, z9 = θ , z10 = θ̇ , z11 = ψ , z12 = ψ̇ and
by defining the state vector Z = [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12]T , the
dynamic model of Eq. (11.18) becomes

ż1 = z2 ż2 + f1(Z) = N1(Z)τ

ż3 = z4 ż4 + f2(Z) = N2(Z)τ

ż5 = z6 ż6 + f3(Z) = N3(Z)τ

ż7 = z8 ż8 + f4(Z) = N4(Z)τ

ż9 = z10 ż10 + f5(Z) = N5(Z)τ

ż11 = z12 ż12 + f6(Z) = N6(Z)τ

(11.19)

where τ∈R6×1 is the vector of external forces and torques, fi (Z) i = 1, · · · , 6 are
the row elements of the vector f = N ·C̃ η̇+N ·D̃(η̇)η̇+N ·g f (η), while Ni (Z), i =
1, · · · , 6 are the rows of matrix N = M−1. The flat output of the system is taken
to be the vector Y = [z1, z3, z5, z7, z9, z11]. From Eq. (11.19) it holds that z2 = ż1,
z4 = ż3, z6 = ż5, z8 = ż7, z10 = ż9 and z12 = ż11. Therefore, it holds

z2 = [1 0 0 0 0 0]Ẏ z4 = [0 1 0 0 0 0]Ẏ
z6 = [0 0 1 0 0 0]Ẏ z8 = [0 0 0 1 0 0]Ẏ
z10 = [0 0 0 0 1 0]Ẏ z2 = [0 0 0 0 0 1]Ẏ

(11.20)

Consequently the state vector elements given above can be written as functions of
the flat output Y . Moreover, from Eq. (11.19) one has that

z̈1 = v1 = − f1 + N1τ z̈3 = v2 = − f2 + N2τ

z̈5 = v3 = − f3 + N3τ z̈7 = v4 = − f4 + N4τ

z̈9 = v5 = − f5 + N5τ z̈11 = v6 = − f6 + N6τ

(11.21)

Therefore, one has
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⎛
⎜⎜⎜⎜⎜⎜⎝

z̈1
z̈3
z̈5
z̈7
z̈9
z̈11

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

− f1
− f2
− f3
− f4
− f5
− f6

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

N1τ

N2τ

N3τ

N4τ

N5τ

N6τ

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.22)

which is equivalently written as

z̈a = − fa(Z) + Nτ⇒τ = N−1(z̈a + fa(Z))

⇒τ = M(z̈a + fa(Z))
(11.23)

Consequently, the control inputs of the 6-DOF AUV model can be also written
as functions of the flat output and its derivatives. Therefore, the AUV model is a
differentially flat one.

11.2.4 Flatness-Based Control of the AUV

By exploiting the previously proven differential flatness properties of the AUV it will
be shown that a stabilizing feedback controller can be designed for the AUV model.
Using Eq. (11.19) the following control inputs are defined.

v1 = − f1 + N1τ v2 = − f2 + N2τ

v3 = − f3 + N3τ v4 = − f4 + N4τ

v5 = − f1 + N1τ v6 = − f1 + N1τ

(11.24)

or equivalently

v = − fa + Nτ⇒τ = N−1(v + fa)⇒τ = M(v + fa) (11.25)

This means that if the transformed control inputs v are computed so as to assure
asymptotic tracking of the AUV’s reference setpoints, one can also find the real
control inputs τ which should be exerted on the AUV for succeeding this objective.
According to the above, the dynamic model of Eq. (11.19) can be written into the
canonical (Brunovsky) form

ż1 = z2 ż2 = v1 ż3 = z4 ż4 = v2
ż5 = z6 ż6 = v3 ż7 = z8 ż8 = v4
ż9 = z10 ż10 = v5 ż11 = z12 ż12 = v6

(11.26)

which also takes the matrix form

Ż = AZ + BV (11.27)
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or equivalently one has the following state-space description for the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1
ż2
ż3
ż4
ż5
ż6
ż7
ż8
ż9
ż10
ż11
ż12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6
z7
z8
z9
z10
z11
z12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

v1
v2
v3
v4
v5
v6

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.28)

and the measurement equation for this system becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6
z7
z8
z9
z10
z11
z12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.29)

Thus, using differential flatness theory the AUV’smodel has beenwritten in aMIMO
linear canonical (Brunovsky) form, which is both controllable and observable. After
being written in the linear canonical form the AUV’s state-space equation comprises
6 subsystems of the form

ÿ fi = vi , i = 1, · · · , 6 (11.30)

For each one of these subsystems a controller can be defined as follows

vi = ÿdfi − kdi (ẏ fi − ẏdfi ) − kpi (y fi − ydfi ), i = 1, · · · , 6 (11.31)
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Once the transformed control inputs vector v∈R6×1 has been computed, one can use
Eq. (11.25) to find also the torques and forces vector τ = M(v + fa) that should be
exerted on the AUV so as to achieve convergence to its reference setpoints.

11.2.5 Disturbances Compensation with the Derivative-Free
Nonlinear Kalman Filter

It was shown that the initial nonlinear model of the AUV can be written in theMIMO
canonical form of Eqs. (11.28) and (11.29). Next, it is assumed that the AUV’s model
is affected by additive input disturbances, thus one has

z̈1 = v1 + d̃1 z̈2 = v2 + d̃2
z̈3 = v3 + d̃3 z̈4 = v4 + d̃4
z̈5 = v5 + d̃5 z̈6 = v6 + d̃6

(11.32)

The system’s dynamics can be also written as ż1 = z2, ż2 = v1 + d̃1, ż3 = z4,
ż4 = v2 + d̃2, ż5 = z6, ż6 = v3 + d̃3, ż7 = z8, ż8 = v4 + d̃4, ż9 = z10, ż10 = v5 + d̃5,
ż11 = z12, ż12 = v6 + d̃6.

Without loss of generality, it is assumed that the dynamics of the disturbances

terms are described by their second order derivative, i.e. ¨̃di = fdi , i = 1, · · · , 6.
Next, the extended state vector of the system is defined so as to include disturbance
terms as well. Thus one has the additional state variables

z13 = d̃1 z14 = ˙̃d1 z15 = ¨̃d1 z16 = d̃2 z17 = ˙̃d2 z18 = ¨̃d2
z19 = d̃3 z20 = ˙̃d3 z21 = ¨̃d3 z22 = d̃4 z23 = ˙̃d4 z24 = ¨̃d4
z25 = d̃5 z26 = ˙̃d6 z27 = ¨̃d5 z28 = d̃6 z29 = ˙̃d6 z30 = ¨̃d6

(11.33)

Thus, the disturbed system can be described by a state-space equation of the form

ż f = A f z f + B f v
zmeas
f = C f z f

(11.34)

where A f ∈R30×30, B f ∈R30×6 and C f ∈R6×30, with
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A f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×1 1 01×28

01×12 1 01×17

01×3 1 01×26

01×15 1 01×14

01×5 1 01×24

01×18 1 01×11

01×7 1 01×22

01×21 1 01×8

01×9 1 01×20

01×24 1 01×5

01×11 1 01×18

01×27 1 01×2

01×13 1 01×16

01×14 1 01×15

01×30

01×16 1 01×13

01×17 1 01×12

01×30

01×19 1 01×10

01×20 1 01×9

01×30

01×22 1 01×7

01×23 1 01×6

01×30

01×25 1 01×4

01×26 1 01×3

01×30

01×28 1 01×1

01×29 1
01×30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×6

1 01×5

01×1 1 01×4

01×6

01×2 1 01×3

01×6

01×3 1 01×2

01×6

01×4 1 01×1

01×6

01×5 1
018×6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C f =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 01×29

01×2 1 01×27

01×4 1 01×25

01×6 1 01×23

01×8 1 01×21

01×10 1 01×19

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.35)
For the aforementioned model, and after carrying out discretization of matrices A f ,
B f and C f with common discretization methods one can implement the standard
KalmanFilter algorithm, consisting of a time-update and ameasurement update stage
[33, 431, 463]. As previously explained,this is Derivative-free nonlinear Kalman
filtering for the model of the AUVwhich, unlike EKF, is performed without the need
to compute Jacobian matrices and does not introduce numerical errors.

The dynamics of the disturbance terms d̃i , i = 1, · · · , 6 are taken to be unknown
in the design of the associated disturbances’ estimator. Defining as Ãd , B̃d , and C̃d ,
the discrete-time equivalents of matrices Ã f , B̃ f and C̃ f respectively, one has the
following dynamics:

˙̂z f = Ã f ·ẑ f + B̃ f ·ṽ + K (zmeas
f − C̃ f ẑ f ) (11.36)
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where K∈R30×6 is the state estimator’s gain. The associated Kalman Filter-based
disturbance estimator is given by [450, 452, 457]

measurement update:

K (k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

ẑ f (k) = ẑ−
f (k) + K (k)[zmeas

f (k) − C̃d ẑ
−
f (k)]

P(k) = P−(k) − K (k)C̃d P−(k)
(11.37)

time update:

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

ẑ−
f (k + 1) = Ãd(k)ẑ f (k) + B̃d(k)ṽ(k)

(11.38)

To compensate for the effects of the disturbance forces it suffices to use in the
control loop the modified control input vector

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 − ˆ̃d1
v2 − ˆ̃d2
v3 − ˆ̃d3
v4 − ˆ̃d4
v5 − ˆ̃d5
v6 − ˆ̃d6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or v =

⎛
⎜⎜⎜⎜⎜⎜⎝

v1 − ẑ13
v2 − ẑ16
v3 − ẑ19
v4 − ẑ22
v5 − ẑ25
v6 − ẑ28

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.39)

11.2.6 Simulation Tests

The efficiency of the proposed control scheme was tested through simulation exper-
iments. First, results are given about tracking a 3D trajectory, having as projection in
the xy-plane a circular path (Fig. 11.2). Additional simulation experiments for this
first trajectory tracking problem are concerned with control of the AUV under dis-
turbance forces and torques. The estimation of the disturbance forces and torques is
shown in Fig. 11.3. Moreover, as shown in Figs. 11.4, 11.5 and 11.6, flatness-based
control enabled accurate tracking of the reference trajectories for both the linear
position and velocity variables and for the angular position and velocity variables
(blue line: real value, green line estimated value, red line: setpoint).

Next, results are given about tracking a 3D trajectory, having as projection in
the xy-plane an eight-shaped path (Fig. 11.7). Additional simulation experiments for
this second trajectory tracking problem are concerned again with control of the AUV
under disturbance forces and torques. The estimation of the disturbance forces and
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(a) (b)

Fig. 11.2 Control of the 6-DOF AUV: a trajectory of the AUV in the cartesian space, b projection
of the AUV’s trajectory on the xy plane
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Fig. 11.3 Use of the Derivative-free nonlinear Kalman Filter in estimation of disturbances: a
associated with linear motion, b associated with the rotational motion of the vehicle

torques is shown in Fig. 11.8. Moreover, as demonstrated in Figs. 11.9, 11.10 and
11.11, flatness-based control enabled accurate tracking of the reference trajectories
for both the linear position and velocity variables and for the angular position and
velocity variables (blue line: real value, green line estimated value, red line: setpoint).



11.3 Adaptive Fuzzy Control of Autonomous Submarines 607

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

t (sec)

y f 1

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

t (sec)

y f 2

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

t (sec)

y f 3

0 5 10 15 20 25 30 35 40
−10

0

10

20

t (sec)
y f 4

(a) (b)

Fig. 11.4 Control of the AUV in the presence of external disturbances a position and velocity along
the x axis, b position and velocity along the y axis
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Fig. 11.5 Control of the AUV in the presence of external disturbances: a position and velocity
along the z axis, b rotation angle φ and associated angular speed

11.3 Adaptive Fuzzy Control of Autonomous Submarines

11.3.1 Outline

Next, an adaptive control approach to the problem of control of Autonomous Under-
water Vessels is presented, comprising both global linearization methods and Lya-
punov stability analysis methods. The design of control systems for autonomous
underwater vessels (AUVs) and submarines is a non-trivial problem because such
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Fig. 11.6 Control of the AUV in the presence of disturbances: a rotation angle θ and associated
angular speed, b rotation angle ψ and associated angular speed

(a) (b)

Fig. 11.7 Control of the 6-DOF AUV: a trajectory of the AUV in the cartesian space, b projection
of the AUV’s trajectory on the xy plane

systems exhibit a highly nonlinear multivariable dynamics with strong couplings
between their inputs and outputs [128, 411, 516]. Besides, such systems function
under variable conditions and thus their dynamic model is subject to parametric
changes. Moreover, submersible autonomous robots and submarines are exposed to
strong perturbations due to variable sea conditions and sea currents. Therefore, it is
important to develop feedback control schemes for AUVs and submarines that will
be little dependent on prior and exact knowledge of the associated dynamic model
and will exhibit sufficient robustness to perturbation inputs [21, 143, 144, 191, 251,
386, 457, 522]. To this end, in the recent years several research results have been
presented, in particular on robust control [253, 346, 518] and on adaptive control of
AUVs [258, 375, 462, 635].
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Fig. 11.8 Use of the Derivative-free nonlinear Kalman Filter in estimation of disturbances: a
associated with linear motion, b associated with the rotational motion of the vehicle
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Fig. 11.9 Control of the AUV in the presence of external disturbances a position and velocity along
the x axis, b position and velocity along the y axis

Adaptive fuzzy controlmethods can provide a solution to the problemof trajectory
tracking and stabilization for autonomous submarines. As previously noted, adaptive
fuzzy control schemes have been developed for unknown single-input single-output
(SISO) and unknown multi-input multi-output (MIMO) dynamical systems. The
capability of neurofuzzy controllers to compensate for model parametric uncertain-
ties, external disturbances, as well as for incomplete measurement of the systems
state vector has been analyzed in several studies [84, 89, 277, 524, 562]. Adaptive
fuzzy control methods usually try to invert the systems dynamics, and thus to achieve
convergence of its output to the desirable setpoints, starting from a description of the
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Fig. 11.10 Control of the AUV in the presence of external disturbances: a position and velocity
along the z axis, b rotation angle φ and associated angular speed
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Fig. 11.11 Control of the AUV in the presence of disturbances: a rotation angle θ and associated
angular speed, b rotation angle ψ and associated angular speed

system in the canonical form. On the other hand, differential flatness theory enables
to transform the system’s generic description ẋ = f (x, u) into the canonical form
and from that point on to develop adaptive control schemes. Consequently, differen-
tial flatness theory extends the class of nonlinear control systems to which adaptive
neural / fuzzy control can be applied and this is a significant benefit for adaptive
control theory [399, 457, 609, 617].

In this section, an adaptive control scheme is developed for autonomous sub-
marines relying on differential flatness theory and on real-time identification of
the unknown dynamics of the system with the use of neurofuzzy approximators
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Fig. 11.12 Reference
frames for the autonomous
submarine

[450, 452]. First, it is proven that the dynamic model of the submersible vessel,
comprising as state variables the submarine’s depth and its pitch angle, is a differ-
entially flat one. This means that all its state variables and its control inputs can be
expressed as differential functions of a specific algebraic variable which is the so-
called flat output. By exploiting the differential flatness properties of the submarine’s
model its transformation into the linear canonical (Brunovsky) form is accomplished.
For the latter description of the system’s dynamics the design of a MIMO state feed-
back controller becomes possible [57, 145, 254, 267, 322, 472, 476, 519]. In the
transformed state-space model, the new control inputs of the submarine contain
unknown nonlinear terms which are identified in real-time with the use of neuro-
fuzzy approximators. The learning procedure for these estimators is determined by
the requirement the first derivative of the closed-loop’s Lyapunov function to be a
negative one. Moreover, through Lyapunov stability analysis it is proven that the
control system satisfies the H-infinity tracking conditions. This assures the control
loop’s robustness against model uncertainties and external perturbations. Finally,
the efficiency of the submarine’s control scheme is confirmed through simulation
experiments.

11.3.2 The Dynamic Model of the Autonomous Submarine

Thedive-plane nonlinear time-varying dynamicmodel of the submarine is considered
(see. Fig. 11.12). The primary variables of this model are: (i) the diving speed along
the vessel’s z-axis (in a body-fixed frame), (ii) the pitch angle θ formed between the
horizontal reference axis (in an inertial reference frame) and the x-axis of the vessel
(in the body-fixed frame) [258].

The equations of motion of the vessel are:
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Table 11.1 Parameters of the submarine’s dynamic model

Parameter value Parameter value Parameter value

Z
′
w = −0.0110 Z

′
ẇ = −0.0075 Z

′
θ = −0.0045

Z
′
θ = −0.0002 Z

′
δB = −0.0025 Z

′
δS = −0.0050

M
′
w = 0.0030 M

′
ẇ = −0.0002 M

′
θ = −0.0025

M
′
θ̇

= −0.0004 M
′
δB = 0.0005 M

′
δS = −0.0025

I
′
y = 5.6867·10e−4 L = 286ft m = 1.52·105slug
Zg − ZB = −1.5ft U = 8.43ft/s ρ = 2.0 slug/ft3

I
′
2 = I

′
y − M

′
B m = 2m/(ρL3)) m

′
3 = m

′ − Z
′
w

ẇ(t) = Z
′
wU

Lm
′
3
w(t) + 1

m
′
3
Ż

′
θ̇
+ m

′
)U θ̇ (t) + Z

′
Q̇
L

m ′
s
Q̇(t)+

+ Z
′
δBU

2

m
′
3L

δB(t) + Z
′
δSU

2

m
′
3L

δS(t) + Zd (t)
0.5ρL3m

′
3
+ Zη(w, q)

(11.40)

Q̇(t) = M
′
ẇ

L I
′
2
ẇ(t) + M

′
vU

L2 I
′
2
w(t) + M

′
θ̇
U

L I
′
2
θ̇ (t)+

+M
′
δBU

2

L2 I
′
2

δB(t) + M
′
δSU

2

L2 I
′
2

δS(t) + 2mg(zG−zB )

ρL5 I
′
2

θ(t) + Md (t)
0.5ρL5 I

′
2
+ Mη(w, q)

(11.41)

In the above dynamic model of the submarine w is the velocity along the z-axis,
h is the depth of the vessel measured in the inertial coordinates system, θ is the
pitch angle, Q = θ̇ is the rate of change of the pitch angle, δB is the hydroplane
deflection in the bow plane, δS is the hydroplane deflection in the stern plane, and
Zd , Md are bounded disturbance inputs due to sea currents. Moreover, Zη(w, q),
Mη(w, q) are disturbance inputs representing the vessel’s cross-flow drag (the latter
is a function that contains the termsw|w| and Q|Q|, aswell as higher-order terms ofw
and Q).

Actually, for the computation of the mathematical model of the vessel the precise
knowledge of the terms Zη(w, Q) and Mη(w, Q) is not necessary since they can be
treated by the adaptive control scheme as disturbances. The term U = U0 denotes
the x-axis (forward) velocity of the vessel (Table11.1).

The dynamic model of the submarine is completed by the following coefficients,
given in Table I [258]:

The control input of the submarine’s model is described by the vector

u = [δB(t) δS(t)]T (11.42)

that is the control input consists of the hydroplane deflections in the bow and stern
planes. A first description of the vessel’s dynamics in matrix form is given by

(
ẇ
Q̇

)
=

(
fW (w, θ, Q, t)
fθ (w, θ, Q, t)

)
+ Bou (11.43)
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where

(
fw(w, θ, Q, t)

fθ ( fW (w, θ, Q, t)

)
= M−1·

⎛
⎜⎝

Z
′
wU

Lm
′
3
w(t) + 1

m
′
3
Ż

′
θ̇
+ m

′
)U θ̇ (t) + Z

′
Q̇
L

m ′
s
Q̇(t) + Zd (t)

0.5ρL3m
′
3
+ Zη(w, q)

M
′
ẇ

L I
′
2
ẇ(t) + M

′
vU

L2 I
′
2
w(t) + M

′
θ̇
U

L I
′
2
θ̇ (t) + 2mg(zG−zB )

ρL5 I
′
2

θ(t) + Md (t)
0.5ρL5 I

′
2
+ Mη(w, q)

⎞
⎟⎠

(11.44)
while for matrices M and Bo it holds

M =
(

1 −ZQ̇ L/m
′
3

−Mẅ(L I
′
2
−1

) 1

)
Bo =

⎛
⎝

Z
′
δBU

2

m
′
3L

Z
′
δSU

2

m
′
3L

M
′
δBU 2

L2 I
′
2

M
′
δSU 2

L2 I
′
2

⎞
⎠ (11.45)

It holds that the depth of the vessel measured in the inertial reference frame and the
velocity of the submarine along the z-axis of the body-fixed frame are related as
follows:

ḣ = wcos(θ) −Uosin(θ)⇒
ḧ = ẇcos(θ) − wsin(θ)θ̇ −Uocos(θ)θ̇⇒
ḧ = ẇcos(θ) − wQsin(θ) −UoQcos(θ)

(11.46)

Moreover, solving with respect to w. from the first row of Eq. (11.46) one obtains

w = (cos(θ)−1)(ḣ +Uosin(θ)) (11.47)

Additionally, from Eq. (11.43) one gets

ẇ = fw(w, θ, Q, t) + Bo11u1 + Bo12u2
Q̇ = fθ (w, θ, Q, t) + Bo21u1 + Bo22u2

(11.48)

Substituting Eq. (11.47) and the first row of Eq. (11.48) into the third row of Eq.
(11.46) gives

ḧ = [ fw(w, θ, Q, t) + Bo11u1 + Bo12u2]cos(θ) − (ḣ+U0sin(θ))
cos(θ)

Qsin(θ) −U0Qcos(θ) (11.49)

Next by denoting

fw(w, θ, Q, t) = gh(h, ḣ, θ, θ̇ , t)
fθ (w, θ, Q, t) = gθ (h, ḣ, θ, θ̇ , t)

(11.50)

from Eq. (11.49) and the second row of Eq. (11.48) one obtains
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ḧ = gh(h, ḣ, θ, θ̇ , t)cos(θ) − (ḣ+U0sin(θ))

cos(θ)
θ̇sin(θ) −U0θ̇cos(θ)+

+B011cos(θ)u1 + B012cos(θ)u2
(11.51)

θ̈ = gθ (h, ḣ, θ, θ̇ , t) + B021u1 + B022u2 (11.52)

Thus, from Eqs. (11.51) and (11.52) and by defining the state vector

x = [h, ḣ, θ, θ̇ ]T (11.53)

the dynamic model of the submarine is written as

(
ẍ1
ẍ3

)
=

(
gb(x, t)cos(x3) − x4+U0sin(x3)

cos(x3)
x4sin(x3) −U0x4cos(x3)

gθ (x, t)

)
+

+
(
B011 B012
B021 B022

)(
u1
u2

) (11.54)

or equivalently in the MIMO form
(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

(
g11(x, t) g12(x, t)
g21(x, t) g22(x, t)

) (
u1
u2

)
(11.55)

11.3.3 Estimation of the Submarine’s Unknown Dynamics

11.3.3.1 Differential Flatness of the Submarine’s Model

It can be proven that the submarine’s MIMO nonlinear model given in Eq. (11.55)
is a differentially flat one, having as flat output the vector

y = [x1, x3]T = [h, θ ]T (11.56)

As explained above it holds that x2 = ẋ1 and x4 = ẋ3, which also means

x2 = [1 0]ẏ
x4 = [0 1]ẏ (11.57)

Moreover, by solving Eq. (11.55) with respect to the control input u one obtains

(
u1
u2

)
=

(
g11(x) g12(x)
g21(x) g22(x)

)−1

(

(
ẍ1
ẍ2

)
−

(
f1(x)
f2(x)

)
) (11.58)
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and since the elements of the state vector x are functions of the flat output, one has
u1 = fa(y, ẏ, ÿ) and u2 = fb(y, ẏ, ÿ). Therefore, one finally has that all elements of
the submarine’s state vector and the control inputs can be written as functions of the
flat output and its derivatives [57, 145, 254, 267, 322, 472, 476, 519]. Consequently,
the system is a differentially flat one.

By exploiting the differentially flat description of the system. the submarine’s
model can be written in the linear canonical (Brunovsky) form. To this end the
following transformed control inputs are defined

v1 = f1(x, t) + g11u1 + g12u2
v2 = f2(x, t) + g21u1 + g22u2

(11.59)

Therefore, one gets
⎛
⎜⎜⎝
ẏ1
ẏ2
ẏ3
ẏ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
y1
y2
y3
y4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

(
v1
v2

)
(11.60)

while it is considered that the complete state vector of the submarine y = [h, ḣ, θ, θ̇ ]
is available through measurements.

11.3.3.2 Approximation of the Submarine’s Unknown Dynamics

The control signal of the MIMO nonlinear system which has been transformed into
the Brunovsky form as described by Eq. (11.60) contains the unknown nonlinear
functions f (x) and g(x) which can be approximated by

f̂ (x |θ f ) = Φ f (x)θ f

ĝ(x |θg) = Φg(x)θg
(11.61)

where

Φ f (x) = (ξ 1
f (x), ξ

2
f (x), · · · ξ n

f (x))
T (11.62)

with ξ i
f (x), ı = 1, · · · , n being the vector of kernel functions (e.g. normalized fuzzy

Gaussian membership functions), where

ξ i
f (x) = (φ

i,1
f (x), φi,2

f (x), · · · , φ
i,N
f (x)) (11.63)

thus giving
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Φ f (x) =

⎛
⎜⎜⎜⎝

φ
1,1
f (x) φ

1,2
f (x) · · · φ

1,N
f (x)

φ
2,1
f (x) φ

2,2
f (x) · · · φ

2,N
f (x)

· · · · · · · · · · · ·
φ
n,1
f (x) φ

n,2
f (x) · · · φ

n,N
f (x)

⎞
⎟⎟⎟⎠ (11.64)

while the weights vector is defined as

θ f
T = (

θ1
f , θ

2
f , · · · θ N

f

)
(11.65)

j = 1, · · · , N is the number of basis functions that is used to approximate the com-
ponents of function f which are denoted as i = 1, · · · , n. Thus, one obtains the
relation of Eq. (11.61), i.e. f̂ (x |θ f ) = Φ f (x)θ f .

In a similar manner, for the approximation of function g one has

Φg(x) = (
ξ 1
g (x), ξ

2
g (x), · · · ξ N

g (x)
)T (11.66)

with ξ i
g(x), ı = 1, · · · , N being the vector of kernel functions (e.g. normalized fuzzy

Gaussian membership functions), where

ξ i
g(x) = (

φi,1
g (x), φi,2

g (x), · · · , φi,N
g (x)

)
(11.67)

thus giving

Φg(x) =

⎛
⎜⎜⎝

φ1,1
g (x) φ1,2

g (x) · · · φ1,N
g (x)

φ2,1
g (x) φ2,2

g (x) · · · φ2,N
g (x)

· · · · · · · · · · · ·
φn,1
g (x) φn,2

g (x) · · · φn,N
g (x)

⎞
⎟⎟⎠ (11.68)

while the weights vector is defined as

θg = (
θ1
g , θ

2
g , · · · , θ

p
g
)T (11.69)

where the components of matrix θg are defined as

θ
j
g =

(
θ
j
g1, θ

j
g2 , · · · θ j

gN

)
(11.70)

j = 1, · · · , N is the number of basis functions that is used to approximate the
components of function g which are denoted as i = 1, · · · , n. Thus one obtains
about matrix θg∈RN×p
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θg =

⎛
⎜⎜⎜⎝

θ1
g1 θ2

g1 · · · θ
p
g1

θ1
g2 θ2

g2 · · · θ
p
g2

· · · · · · · · · · · ·
θ1
gN θ2

gN · · · θ
p
gN

⎞
⎟⎟⎟⎠ (11.71)

It holds that

g =

⎛
⎜⎜⎝
g1
g2
· · ·
gn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
g11 g21 · · · gp

1
g12 g22 · · · gp

2· · · · · · · · · · · ·
g1n g2n · · · gp

n

⎞
⎟⎟⎠ (11.72)

Using the above, one finally has the relation of Eq. (11.61), i.e. ĝ(x |θg) = Φg(x)θg . If
the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

u = ĝ−1(x |θg)[− f̂ (x |θ f ) + y(r)
m − KT e + uc] (11.73)

where f̂ (x |θ f ) and ĝ(x |θg) are fuzzy models to approximate f (x) and g(x), respec-
tively. uc is a supervisory control term, e.g. H∞ control term that is used to compen-
sate for the effects of modelling inaccuracies and external disturbances. Using the
submarine’s state-space description of Eq. (11.60) the control term uc is defined as

uc = − 1
r B

T Pe (11.74)

Moreover, KT is the feedback gain matrix that assures that the characteristic poly-
nomial of the resulting closed-loop dynamics will be a Hurwitz one.

11.3.4 Flatness-Based Adaptive Fuzzy Control
of the Submarine Dynamics

Next, taking into account also the effects of additive disturbances to the submarine
the dynamic model of Eq. (11.55) becomes

ẍ1 = f1(x, t) + g1(x, t)u + d̃1
ẍ3 = f2(x, t) + g2(x, t)u + d̃2

(11.75)

or, in matrix form

(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

(
g1(x, t)
g2(x, t)

)
u +

(
d̃1
d̃2

)
(11.76)
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The following control input is defined

u =
(
ĝ1(x, t)
ĝ2(x, t)

)−1

·{
(
ẍ d1
ẍ d3

)
−

(
f̂1(x, t)
f̂2(x, t)

)
−

(
KT

1
KT

2

)
e +

(
uc1
uc2

)
} (11.77)

where [uc1 uc2 ]T is a robust control term that is used for the compensation of the
model’s uncertainties as well as of the external disturbances and the vector of the
feedback gain is KT

i = [ki1, ki2, · · · , kin−1, k
i
n].

Substituting Eqs. (11.77) into (11.76) the closed-loop tracking error dynamics of
the submarine is obtained

(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

(
g1(x, t)
g2(x, t)

) (
ĝ1(x, t)
ĝ2(x, t)

)−1

·

{
(
ẍ d1
ẍ d3

)
−

(
f̂1(x, t)
f̂2(x, t)

)
−

(
KT

1
KT

2

)
e +

(
uc1
uc2

)
} +

(
d̃1
d̃2

) (11.78)

Equation (11.78) can now be written as
(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

+{
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
+

(
ĝ1(x, t)
ĝ2(x, t)

)
}
(
ĝ1(x, t)
ĝ2(x, t)

)−1

·

·{
(
ẍ d1
ẍ d3

)
−

(
f̂1(x, t)
f̂2(x, t)

)
−

(
KT

1
KT

2

)
e +

(
uc1
uc2

)
} +

(
d̃1
d̃2

)

(11.79)

and using Eq. (11.77) this results into

(
ë1
ë3

)
=

(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u−

−
(
KT

1
KT

2

)
e +

(
uc1
uc2

)
+

(
d̃1
d̃2

) (11.80)

The following description for the approximation error is defined

w =
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u (11.81)

Moreover, the following matrices are defined
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A =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

KT =
(
K 1

1 K 1
2 K 1

3 K 1
4

K 2
1 K 2

2 K 2
3 K 2

4

)
(11.82)

Using matrices A, B, KT , Eq. (11.80) is written in the following form

ė = (A − BKT )e + Buc + B{
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u + d̃}

(11.83)

Next, the following approximators of the unknown system dynamics are defined

f̂ (x) =
(
f̂1(x |θ f ) x∈R4×1 f̂1(x |θ f ) ∈ R1×1

f̂2(x |θ f ) x∈R4×1 f̂2(x |θ f ) ∈ R1×1

)
(11.84)

with kernel functions

φ
i, j
f (x) =

∏n
j=1μ

i
A j

(x j )∑N
i=1

∏n
j=1μ

i
A j

(x j )
(11.85)

where l = 1, 2 and μAi
j
(x) is the i-th membership function of the antecedent (IF)

part of the l-th fuzzy rule. Similarly, the following approximators of the unknown
system dynamics are defined

ĝ(x) =
(
ĝ1(x |θg) x∈R4×1 ĝ1(x |θg) ∈ R1×2

ĝ2(x |θg) x∈R4×1 ĝ2(x |θg) ∈ R1×2

)
(11.86)

The values of the weights that result in optimal approximation are

θ∗
f = arg minθ f ∈Mθ f

[supx∈Ux
( f (x) − f̂ (x |θ f ))]

θ∗
g = arg minθg∈Mθg

[supx∈Ux
(g(x) − ĝ(x |θg))] (11.87)

where the variation ranges for the weights are defined as

Mθ f = {θ f ∈Rh : ||θ f ||≤mθ f }
Mθg = {θg∈Rh : ||θg||≤mθg } (11.88)

For the value of the approximation error defined in Eq. (11.81) that corresponds to
the optimal values of the weights vectors θ∗

f and θ∗
g one has
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w =
(
f (x, t) − f̂ (x |θ∗

f )

)
+ (

g(x, t) − ĝ(x |θ∗
g )

)
u (11.89)

which is next written as

w =
(
f (x, t) − f̂ (x |θ f ) + f̂ (x |θ f ) − f̂ (x |θ∗

f )

)
+

+ (
g(x, t) − ĝ(x |θg) + ĝ(x |θg) − ĝ(x |θ∗

g )
)
u

(11.90)

which can be also written in the following form

w = (
wa + wb

)
(11.91)

where

wa = {[ f̂ (x, θ f ) − f̂ (x |θ∗
f )] + [ĝ(x, θg) − ĝ(x |θ∗

g )]}·u (11.92)

wb = {[ f (x, t) − f̂ (x |θ f )] + [g(x, t) − ĝ(x |θg)]}u (11.93)

Moreover, the following weights error vectors are defined

θ̃ f = θ f − θ∗
f

θ̃g = θg − θ∗
g

(11.94)

Following the previous analysis it is pointed out that the use of differential flatness
theory enables to solve the problem of control of the nonlinear dynamics of the
autonomous submarine in a conclusive manner: (i) by showing that a dynamical
system is differentially flat it is possible to express its dynamics through specific
primary variables which are the so-called flat outputs. All state variables of the
system can be written as differential functions of the flat outputs, (ii) by showing that
a dynamical system is differentially flat it can be assured that its transformation to the
linear canonical (Brunovsky) form can be achieved, (iii) by expressing a differentially
flat system into its equivalent linearized form the design of a state feedback controller
for it can be completed in a few stages.

11.3.5 Lyapunov Stability Analysis

The following quadratic Lyapunov function is defined for the control loop of the
autonomous submarine

V = 1

2
eT Pe + 1

2γ1
θ̃T
f θ̃ f + 1

2γ2
tr [θ̃T

g θ̃g] (11.95)
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Parameter γ1 is the learning rate used in the adaptation of the weights of the neu-
rofuzzy approximator for f (x), while parameter γ2 is the learning rate used in the
adaptation of the weights of the neurofuzzy approximation for g(x). It holds that

V̇ = 1
2 ė

T Pe + 1
2e

T Pė + 1
γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g] (11.96)

The tracking error dynamics is described by

ė = (A − BKT )e + Buc + B{
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
}+

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u + d̃}

(11.97)

and defining the approximation error

w =
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u (11.98)

the previous relation can be also written as

ė = (A − BKT )e + Buc + B(w + d̃) (11.99)

From Eq. (11.96) one obtains

V̇ = 1
2 {eT (A − BKT )T + uT

c B
T+

+(w + d̃)T BT }Pe + 1
2e

T P{(A − BKT )e+
+Buc + B(w + d̃)} + 1

γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g]
(11.100)

which in turn gives

V̇ = 1
2e

T {(A − BKT )T P + P(A − BKT )}e+
1
22e

T PBuc + 1
22B

T Pe(w + d̃)+
+ 1

γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g]
(11.101)

Assumption 1: For given positive definite matrix Q there exists a positive definite
matrix P , which is the solution of the following matrix equation

(A − BKT )
T
P + P(A − BKT )−

−PB( 2r − 1
ρ2 )BT P + Q = 0

(11.102)

Substituting Eqs. (11.102) and (11.74) into V̇ yields after some operations
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V̇ = 1
2e

T {−Q + PB( 2r − 1
ρ2 )BT P}e+

eT PB{− 1
r B

T Pe} + BT P(w + d̃) + 1
γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g] (11.103)

Therefore it holds

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

1
γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g] (11.104)

It also holds that

˙̃
θ f = θ̇ f − θ̇∗

f = θ̇ f
˙̃
θg = θ̇g − θ̇∗

g = θ̇g
(11.105)

The following weights adaptation law is used (Fig. 11.13)

θ̇ f = −γ1Φ(x)T BT Pe
θ̇g = −γ2Φ(x)T BT PeuT (11.106)

This is a gradient-type learning method for the weights of the neurofuzzy approxi-
mators [33, 431, 463]. Assuming N fuzzy rules and associated kernel functions the
matrices dimensions are θ f ∈RN×1, θg∈RN×2, Φ(x)∈R2×N , B∈R4×2, P∈R4×4 and
e∈R4×1. Therefore it holds

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

+ 1
γ1

(−γ1)eT PBΦ(x)(θ f − θ∗
f )+

+ 1
γ2

(−γ2)tr [ueT PBΦ(x)(θg − θ∗
g )]

(11.107)

or

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

+ 1
γ1

(−γ1)eT PBΦ(x)(θ f − θ∗
f )+

+ 1
γ2

(−γ2)tr [ueT PB(ĝ(x |θg) − ĝ(x |θ∗
g )]

(11.108)

Taking into account that u ∈ R2×1 and eT PB(ĝ(x |θg) − ĝ(x |θ∗
g )) ∈ R1×2 it holds

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

+ 1
γ1

(−γ1)eT PBΦ(x)(θ f − θ∗
f )+

+ 1
γ2

(−γ2)tr [eT PB(ĝ(x |θg) − ĝ(x |θ∗
g ))u]

(11.109)

Since eT PB(ĝ(x |θg) − ĝ(x |θ∗
g ))u∈R1×1 it holds

tr(eT PB(ĝ(x |θg) − ĝ(x |θ∗
g )u) =

= eT PB(ĝ(x |θg) − ĝ(x |θ∗
g ))u

(11.110)
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Fig. 11.13 Diagram of the flatness-based adaptive fuzzy controller for the autonomous submarine

Therefore, one finally obtains

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

+ 1
γ1

(−γ1)eT PBΦ(x)(θ f − θ∗
f )+

+ 1
γ2

(−γ2)eT PB(ĝ(x |θg) − ĝ(x |θ∗
g ))u

(11.111)

Next the following approximation error is defined

wα = [ f̂ (x |θ f ) − f̂ (x |θ∗
f )] + [ĝ(x |θg) − ĝ(x |θ∗

g )]u (11.112)

Thus, one obtains

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe+

+eT PB(w + d̃) + eT PBwα

(11.113)

Denoting the aggregate approximation error and disturbances vector as

w1 = w + d̃ + wα (11.114)

the derivative of the Lyapunov function becomes
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V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PBw1 (11.115)

which in turn is written as

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe+

+ 1
2e

T PBw1 + 1
2w

T
1 B

T Pe
(11.116)

Next, the following Lemma is introduced:

Lemma: The inequality given below holds:

1
2e

T PBw1 + 1
2w

T
1 B

T Pe − 1
2ρ2 eT PBBT Pe ≤ 1

2ρ
2wT

1 w1 (11.117)

Proof : The binomial (ρa − 1
ρ
b)2 ≥ 0 is considered. Expanding the left part of the

above inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(11.118)

The following substitutions are carried out: a = w1 and b = eT PB and the previous
relation becomes

1
2w

T
1 B

T Pe + 1
2e

T PBw1 − 1
2ρ2 eT PBBT Pe ≤ 1

2ρ
2wT

1 w1 (11.119)

The previous inequality is used in V̇ , and the right part of the associated inequality
is enforced

V̇≤ − 1

2
eT Qe + 1

2
ρ2wT

1 w1 (11.120)

The attenuation coefficient ρ can be chosen such that the right part of Eq. (11.120) is
always upper bounded by 0. For instance, it suffices at every iteration of the control
algorithm to have

− 1
2e

T Qe + 1
2ρ

2||w1||2≤0⇒ − 1
2 ||e||2Q + 1

2ρ
2||w1||2≤0⇒

1
2ρ

2||w1||2≤ 1
2 ||e||2Q + ⇒ρ2≤ ||e||2Q

||w1||2
(11.121)

Again without knowledge of the uncertainties and disturbance term ||w1|| a suffi-
ciently small value of ρ can assure that the above inequality holds and thus that
the loop’s stability is ascertained. Actually, ρ should be given the least value which
permits to obtain a solution of the Riccati equation, given in Eq. (11.102).

Equation (11.120) can be used to show that the H∞ performance criterion is satisfied.
The integration of V̇ from 0 to T gives
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∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||e||2dt + 1

2ρ
2
∫ T
0 ||w1||2dt ⇒

2V (T ) + ∫ T
0 ||e||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||w1||2dt

(11.122)

Moreover, if there exists a positive constant Mw > 0 such that

∫ ∞
0 ||w1||2dt ≤ Mw (11.123)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Mw (11.124)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded and according to Barbalat’s Lemma one

obtains limt→∞e(t) = 0.

It is ofworthmentioning that in case that the complete state vector of the submarine
is not completely measurable one can implement an observer-based adaptive fuzzy
control scheme based on differential flatness theory. The observer-based adaptive
fuzzy control, making use of differential flatness theory, extends the class of systems
to which indirect adaptive fuzzy control can be applied. This control method enables
control of MIMO nonlinear systems without the need to measure all state vector
elements [454]. The only assumption needed for the design of the observer-based
controller and for succeeding H-infinity tracking performance for the control loop is
that there exists a solution for two Riccati equations associated with the linearized
error dynamics of the differentially flat model. This assumption holds for several
nonlinear systems, thus providing a systematic approach to the design of observer-
based controllers.

11.3.6 Simulation Tests

The results about the stability and robustness features of the submarine’s control
loop were also confirmed through simulation experiments. In the simulation tests,
the dynamic model of the submarine was considered to be completely unknown and
was identified in real-time by the previously analyzed neurofuzzy approximators.
The estimated unknown dynamics of the system was used in the computation of the
control inputs which were finally exerted on the submarine’s model. The sampling
period was set to Ts = 0.01sec. Apart from modelling uncertainty it was considered
that the submarine’smodelwas also affected by external perturbations. The numerical
values of the gains which have been used in the solution of the Riccati equation have
been defined as r = 0.1 and ρ = 1.0.

The state feedback gain was K∈R2×4. The basis functions used in the estimation

of fi (x, t), i = 1, 2 and gi j (x, t), i = 1, 2, j = 1, 2 were μA j (x̂) = e(
x̂−c j

σ
)2 , j =

1, · · · , 3. Since there are four inputs x1, x2 and x4, x4 and the associated definition set



626 11 Autonomous Underwater Vessels

Table 11.2 Parameters of the fuzzy rule base

Rule c(l)
1 c(l)

2 c(l)
3 c(l)

4 v(l)

R(1) −1.0 −1.0 −1.0 −1.0 3

R(2) −1.0 −1.0 −1.0 0.0 3

R(3) −1.0 −1.0 −1.0 1.0 3

R(4) −1.0 −1.0 0.0 −1.0 3

R(5) −1.0 −1.0 0.0 0.0 3

R(6) −1.0 −1.0 0.0 1.0 3

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
R(81) 1.0 1.0 1.0 0.5 3

(universe of discourse) consists of 3 fuzzy sets, for the approximation of functions
fi (x, t) i = 1, 2, there will be 81 fuzzy rules of the form:

Rl : IF x1 is Al
1 AND x2 is Al

2

AND x3 is Al
3 AND x4 is Al

4 THEN f̂ li is bl
(11.125)

and f̂i (x, t) =
∑81

l=1 f̂
l
i

∏4
i=1μ

l
Ai

(xi )∑81
l=1

∏4
i=1μ

l
Ai

(xi )
. Indicative (dimensionless) values for the placement

on a spatial grid of the centers c(l)
i , i = 1, · · · , 4 and the variances v(l) of each rule

are as follows (Table11.2).
As noted, in the considered fuzzy rule-base there are four input parameters in the

antecedent parts of the fuzzy rules, i.e. x1 = h, x2 = ḣ, x3 = θ and x4 = θ̇ . Each
parameter is partitioned into 3 fuzzy sets. Therefore, by taking all possible combi-
nations between the fuzzy sets one has 34 = 81 fuzzy rules. The finer the partition
of the input variables into fuzzy sets is, the more accurate the approximation of the
nonlinear system dynamics by the neuro-fuzzy model is expected to be (although
some of the rules of the fuzzy rule base may not be sufficiently activated due to
little coverage of the associated region of the state-space by input data). However,
considering a large number of fuzzy sets for each input variable induces the curse
of dimensionality which means that there is an excessive and rather unnecessary
increase in the number of the adaptable parameters that constitute the neuro-fuzzy
model.

The associated results are presented in Figs. 11.14, 11.15 and 11.16. It can be
observed that the adaptive fuzzy control scheme achieved fast and accurate tracking
of the reference setpoints. After finding the solution of the algebraic Riccati equation
given in Eq. (11.102) the computation of an H-infinity feedback control term was
possible and this provided the submarine’s control loop with additional robustness.
Taking into account that in real operating conditions the control of a submarine cannot
rely on the assumption about a precise mathematical model and about complete
knowledge of external perturbations, the significance of the proposed adaptive fuzzy
control scheme becomes obvious.
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Fig. 11.14 Setpoint 1: a Convergence of the state variables xi , i = 1, · · · , 4 of the submarine to
the desirable setpoints, b Variations of the control inputs (bow and stern hydroplane reflections)
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Fig. 11.15 Setpoint 2: a Convergence of the state variables xi , i = 1, · · · , 4 of the submarine to
the desirable setpoints, b Variations of the control inputs (bow and stern hydroplane reflections)

There have been numerous examples of the use of model-based flatness-based
control, given in [450, 457]. If the model of the control system is a precise one
flatness-based control is anticipated to have an excellent performance. The control
problem becomes more complicated in the case of absence of a precise mathematical
model for the controlled system. It is even more difficult when there is no prior
knowledge about the system’s dynamics that can be used in the design of the flatness-
based controller. The solution to the latter control problem is obtained with the use of
the proposed flatness-based adaptive fuzzy control method. Although the dynamic
model of the system is completely unknown, it is assured through Lyapunov stability
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Fig. 11.16 Setpoint 3: a Convergence of the state variables xi , i = 1, · · · , 4 of the submarine to
the desirable setpoints, b Variations of the control inputs (bow and stern hydroplane reflections)

analysis that this unknown system dynamics will be online identified by neurofuzzy
approximators and that the state variables of the systemwill converge to the desirable
setpoints. The robustness of the proposed adaptive fuzzy control method depends on
the selection of parameters, such as the attenuation coefficient ρ which is used in the
solution of the associated Riccati equation.

The reference trajectories can be generated using the differential flatness proper-
ties of the system. This means that all state variables of the system are expressed as
differential functions of the flat outputs. Next, reference trajectories are defined for
the flat outputs and these are also used for computing the reference setpoints for the
rest of the state variables of the submarine’s model.

11.4 Nonlinear Optimal Control of Autonomous
Submarines

11.4.1 Outline

As previously noted, research on nonlinear control of autonomous underwater ves-
sels has grown rapidly during the last years since there is need to develop robotic
systems capable of functioning autonomously in an underwater environment [37,
251, 258, 602]. In this section, a nonlinear optimal (H-infinity) control method
is developed aiming at solving the problem of depth and heading control of an
autonomous submarine. It has been pointed out that navigation of autonomous under-
water vessels (AUVs) and particularly of submarines exhibits several difficulties due
to strong nonlinearities and the multivariable coupling characterizing the associated
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dynamic model [143, 386, 411, 416, 457, 462]. Moreover, submersible robotized
vessels are subject to model uncertainty and parametric variations while they are
also affected by external perturbations [253, 275, 420, 500, 635]. For these rea-
sons the control problem of a submarine’s depth and heading angle is a nontrivial
one. Apart from the developments of the previous sections, other results for the
solution of this problem with the use of optimal control theory can be found in
[44, 50, 98, 287, 346, 423, 608]. The approach to be developed in this section is
relies on approximate linearization of the submarine’s dynamics and on application
of optimal (H-infinity) control to the model that is obtained from the linearization
procedure.

The dynamic model of the submarine, describing coupling between its depth and
its heading angle, undergoes approximate linearization, around a temporary operating
point (equilibrium) which is recomputed at each iteration of the control algorithm
[461, 466]. The equilibrium is defined by the present value of the submarine’s state
vector and the last value of the control inputs vector that was exerted on it. The
linearization takes place through Taylor series expansion and the computation of
the associated Jacobian matrices [33, 463, 564]. The modelling error which is due
to truncation of higher order terms from the Taylor series is considered to be a
perturbation that is compensated by the robustness of the control algorithm.

For the approximately linearized model of the submarine, the optimal (H-infinity)
control problem is solved [132, 305, 450, 457, 459]. Actually the designedH-infinity
controller stands for a solution to a min-max differential game. In such a game the
controller tries to minimize a quadratic cost functional based on the submarine’s
state vector error, while the model uncertainty and external perturbation terms try
to maximize it. The computation of the feedback gain of the H-infinity controller
requires the solution of an algebraic Riccati equation which also takes place at each
step of the control method.

The stability of the control method is proven through Lyapunov analysis. First,
it is demonstrated that the control loop satisfies the H-infinity tracking performance
criterion. This provides the control scheme with elevated robustness against model
uncertainty and external perturbations. Moreover, under moderate conditions it is
shown that the control loop exhibits global asymptotic stability properties. Finally to
implement state estimation-based control of the submarine without the need to mea-
sure its entire state vector, theH-infinityKalman Filter is used [169, 511]. This stands
for an optimal state estimator, when the monitored system’s model is characterized
by parametric uncertainty or is subject to external perturbations.

11.4.2 Approximate Linearization of the AUV’s Model

Using the description of the state-space model of the submarine given in Eq. (11.54)
one has about functions gh(x, t) and gθ (x, t)
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(
gh(x, t)
gθ (x, t)

)
=

(
1 −Z

′
QL/m

′
3

−Mẅ(L I
′
2
−1

) 1

)−1

·

⎛
⎝

Z
′
wU

Lm
′
3
w(t) + 1

m
′
3
(Ż

′
θ̇
+ m

′
)U θ̇ (t) + Zd (t)

0.5ρL3m
′
3
+ Zη(w, Q)

M
′
vU

L2 I
′
2
w(t) + M

′
θ̇
U

L I
′
2
θ̇ (t) + 2mg(zG−zB )

ρL5 I
′
2

θ(t) + Md (t)
0.5ρL5 I

′
2
+ Mη(w, Q)

⎞
⎠

(11.126)

The effects of thewave and currents forces and the effects of hydrodynamic forces are
considered as disturbances and thus are omitted from the model of the submarine’s
dynamics. By grouping coefficients the previous equation given in Eq. (11.126) can
be written as

(
gh(x, t)
gθ (x, t)

)
=

(
m11 m12

m21 m22

)(
a1

1
cos(x3)

[x2 +U0sin(x3)] + a2x4
b1

1
cos(x3)

[x2 +U0sin(x3)] + b2x4

)
(11.127)

or equivalently

(
gh(x, t)
gθ (x, t)

)
=

(
m11 m12

m21 m22

)(
a1 a2
b1 b2

) ( 1
cos(x3)

[x2 +U0sin(x3)]
x4

)
(11.128)

and by performing additional operations between coefficients one has

(
gh(x, t)
gθ (x, t)

)
=

(
p11 p12
p21 p22

)( 1
cos(x3)

[x2 +U0sin(x3)]
x4

)
(11.129)

According to the above, the AUV’s model is written in the generic form:
(
ẍ1
ẍ3

)
=

(
F1(x)
F2(x)

)
+

(
G11(x)
G21(x)

)
u1 +

(
G12(x)
G22(x)

)
u2 (11.130)

where one has that

F1(x) = p11
1

cos(x3)
(x2 +U0sin(x3)) + p12x4 − x2+U0sin(x3)

cos(x3)
x4sin(x3) −U0x4sin(x3)

(11.131)

F2(x) = p21
1

cos(x3)
(x2 +U0sin(x3)) + p22x4 (11.132)

while it also holds that

G11(x) = B011cos(x3) G12(x) = B012cos(x3)
G21(x) = B021 G22(x) = B022

(11.133)
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Next, the Jacobian matrices of the submarine’s dynamic model are computed. For
the Jacobian matrix ∇x F one has:

∇x F =

⎛
⎜⎜⎜⎜⎜⎝

∂F1
∂x1

∂F1
∂x2

∂F1
∂x3

∂F1
∂x4

∂F2
∂x1

∂F2
∂x2

∂F2
∂x3

∂F2
∂x4

∂F3
∂x1

∂F3
∂x2

∂F3
∂x3

∂F3
∂x4

∂F4
∂x1

∂F4
∂x2

∂F4
∂x3

∂F4
∂x4

⎞
⎟⎟⎟⎟⎟⎠

(11.134)

About the first row of the Jacobian matrix ∇x F one has: ∂F1
∂x1

= 0, ∂F1
∂x2

= 1, ∂F1
∂x3

= 0,
∂F1
∂x4

= 0

About the second row of the Jacobianmatrix∇x F one has:∇x F one has: ∂F2
∂x1

= 0,
∂F2
∂x2

= p11
1

cos(x3)
− x4sin(x3)

cos(x3)
, ∂F2

∂x3
= p11U0

cos(x3)2
− U02sin(x3)cos(x3)2+U0sin(x3)2

cos(x3)2
−U0x4cos(x3),

∂F2
∂x4

= p12 − x2+U0sin(x3)
cos(x3)

sin(x3) −U0sin(x3)

About the third row of the Jacobian matrix ∇x F one has: ∂F3
∂x1

= 0, ∂F3
∂x2

= 0,
∂F3
∂x3

= 0, ∂F3
∂x4

= 1

About the fourth row of the Jacobian matrix∇x F one has:∇x F one has: ∂F4
∂x1

= 0,
∂F4
∂x2

= p21
1

cos(x3)
, ∂F4

∂x3
= p21

U0
cos(x3)2

, ∂F4
∂x4

= p22

For the Jacobian matrix ∇xG1 one has:

∇xG1 =

⎛
⎜⎜⎜⎜⎜⎝

∂G11
∂x1

∂G11
∂x2

∂G11
∂x3

∂G11
∂x4

∂G21
∂x1

∂G21
∂x2

∂G21
∂x3

∂G21
∂x4

∂G31
∂x1

∂G31
∂x2

∂G31
∂x3

∂G31
∂x4

∂G41
∂x1

∂G41
∂x2

∂G41
∂x3

∂G41
∂x4

⎞
⎟⎟⎟⎟⎟⎠

(11.135)

About the first row of the Jacobian matrix ∇xG1 one has: ∂G11
∂x1

= 0, ∂G11
∂x2

= 0,
∂G11
∂x3

= 0, ∂G11
∂x4

= 0

About the second row of the Jacobian matrix ∇xG1 one has:
∂G21
∂x1

= 0, ∂G21
∂x2

= 0,
∂G21
∂x3

= −B011sin(x3),
∂G21
∂x4

= 0

About the third row of the Jacobian matrix ∇xG1 one has:
∂G31
∂x1

= 0, ∂G31
∂x2

= 0,
∂G31
∂x3

= 0, ∂G31
∂x4

= 0

About the fourth row of the Jacobian matrix ∇xG1 one has:
∂G41
∂x1

= 0, ∂G41
∂x2

= 0,
∂G41
∂x3

= 0, ∂G41
∂x4

= 0

For the Jacobian matrix ∇xG2 one has:
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∇xG1 =

⎛
⎜⎜⎜⎜⎜⎝

∂G12
∂x1

∂G12
∂x2

∂G12
∂x3

∂G12
∂x4

∂G22
∂x1

∂G22
∂x2

∂G22
∂x3

∂G22
∂x4

∂G32
∂x1

∂G32
∂x2

∂G32
∂x3

∂G32
∂x4

∂G42
∂x1

∂G42
∂x2

∂G42
∂x3

∂G42
∂x4

⎞
⎟⎟⎟⎟⎟⎠

(11.136)

About the first row of the Jacobian matrix ∇xG2 one has: ∂G12
∂x1

= 0, ∂G12
∂x2

= 0,
∂G12
∂x3

= 0, ∂G12
∂x4

= 0

About the second row of the Jacobian matrix ∇xG2 one has:
∂G22
∂x1

= 0, ∂G22
∂x2

= 0,
∂G22
∂x3

= −B011sin(x3),
∂G22
∂x4

= 0

About the third row of the Jacobian matrix ∇xG2 one has:
∂G32
∂x1

= 0, ∂G32
∂x2

= 0,
∂G32
∂x3

= 0, ∂G32
∂x4

= 0

About the fourth row of the Jacobian matrix ∇xG2 one has:
∂G42
∂x1

= 0, ∂G42
∂x2

= 0,
∂G42
∂x3

= 0, ∂G42
∂x4

= 0

By considering the time varying equilibrium (linearization point) (x∗, u∗), where
x∗ is the present value of the submarine’s state vector and u∗ is the last value of the
control inputs vector that was exerted on it, the linearized description of the AUV’s
model becomes

ẋ = Ax + Bu + d̃ (11.137)

where matrices A and B are given by

A = [∇x F + ∇xG1u1 + ∇xG2u2] |(x∗,u∗) (11.138)

B = [∇u F + ∇uG1u1 + ∇uG2u2] |(x∗,u∗)= [G1,G2] (11.139)

and d̃ is a term denoting modelling error and external perturbation effects.

11.4.3 Design of an H-Infinity Nonlinear Feedback
Controller

11.4.3.1 Equivalent Linearized Dynamics of the Submarine

After linearization round its current operating point, the submarine’s dynamic model
is written as
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ẋ = Ax + Bu + d1 (11.140)

Parameter d1 stands for the linearization error in the submarine’s dynamic model
appearing in Eq. (11.140). The reference setpoints for the submarine’s state vector
are denoted by xd = [xd1 , · · · , xd4 ]. Tracking of this trajectory is succeeded after
applying the control input u∗. At every time instant the control input u∗ is assumed
to differ from the control input u appearing in Eq. (11.140) by an amount equal to
�u, that is u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (11.141)

The dynamics of the controlled system described in Eq. (11.140) can be also written
as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (11.142)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (11.143)

By subtracting Eq. (11.141) from (11.143) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (11.144)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (11.145)

The above linearized form of the submarine’s model can be efficiently controlled
after applying an H-infinity feedback control scheme.

11.4.4 The Nonlinear H-Infinity Control for the Autonomous
Submarine

The initial nonlinear model of the autonomous submarine is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (11.146)

Linearization of the system (autonomous submarine) is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)),
where Ts is the sampling period. The linearized equivalent model of the system is
described by
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ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (11.147)

where matrices A and B are obtained from the computation of the Jacobians of
the submarine’s state-space model and vector d̃ denotes disturbance terms due to
linearization errors. The problem of disturbance rejection for the linearized model
that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(11.148)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbations can also represent noise terms of any distribution.

As already explained in previous examples on the H∞ control approach, a feed-
back control scheme is designed for trajectory trackingby the submarine’s state vector
and simultaneous disturbance rejection, considering that the disturbance affects the
system in the worst possible manner. The disturbances’ effects are incorporated in
the following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (11.149)

It has already been proven that the significance of the negative sign in the cost func-
tion’s term that is associatedwith the perturbation variable d̃(t) is that the disturbance
tries to maximize the cost function J (t) while the control signal u(t) tries to mini-
mize it. The physical meaning of the relation given above is that the control signal
and the disturbances compete to each other within a min-max differential game. This
problem of min-max optimization can be written as

minumaxd̃ J (u, d̃) (11.150)

As already analyzed, the objective of the optimization procedure is to compute a
control signal u(t) which can compensate for the worst possible disturbance, that is
externally imposed to the system. However, the solution to themin-max optimization
problem is directly related to the value of the parameter ρ. This means that there is
an upper bound in the disturbances magnitude that can be annihilated by the control
signal.

11.4.4.1 Computation of the Feedback Control Gains

For the linearized system given by Eq. (11.148) the cost function of Eq. (11.149) is
defined, where the coefficient r determines the penalization of the control input and
the weight coefficient ρ determines the reward of the disturbances’ effects.
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Fig. 11.17 Diagram of the control scheme for the autonomous submarine

Remaining at the assumptions made in previous applications of H-infinity control
it is considered that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are

stabilizable, (iii) matrix [A,C] is detectable. Then, the optimal feedback control law
is given by

u(t) = −Kx(t) (11.151)

with

K = 1
r B

T P (11.152)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P( 1r BB
T − 1

2ρ2 LLT )P = 0 (11.153)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (11.154)

The diagram of the considered control loop is depicted in Fig. 11.17.
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11.4.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the submarine, and that in case
of bounded disturbance terms asymptotic convergence to the reference setpoints is
achieved. The tracking error dynamics for the autonomous submarine is written in
the form

ė = Ae + Bu + Ld̃ (11.155)

where in the submarine’s case L = I∈R4 with I being the identity matrix. Variable
d̃ denotes model uncertainties and external disturbances of the submarine’s model.
The following Lyapunov function is considered

V = 1
2e

T Pe (11.156)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T Pe + 1

2e
T P[Ae + Bu + Ld̃]⇒ (11.157)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (11.158)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(11.159)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + ( 12u
T BT Pe + 1

2e
T PBu)+

+( 12 d̃
T LT Pe + 1

2e
T PLd̃)

(11.160)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P( 2r BB
T − 1

ρ2 LLT )P (11.161)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (11.162)

By substituting Eqs. (11.161) and (11.162) one obtains
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V̇ = 1
2e

T [−Q + P( 2r BB
T − 1

ρ2 LLT )P]e+
+eT PB(− 1

r B
T Pe) + eT PLd̃⇒ (11.163)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(11.164)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (11.165)

or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(11.166)

Lemma: The following inequality holds

1
2e

T PLd̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (11.167)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(11.168)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (11.169)

Equation (11.169) is substituted in Eq. (11.166) and the inequality is enforced, thus
giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (11.170)

Equation (11.170) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt (11.171)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (11.172)
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then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (11.173)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (11.156) it becomes clear that e(t) will
be also bounded since e(t) ∈ �e = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaboratiing on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the autonomous submarine relies on Eq. (11.170)
and on the application of Barbalat’s Lemma. It uses the condition of Eq. (11.172)
about the boundedness of the square of the aggregate disturbance and modelling
error term d̃ that affects the model. However, the proof of global asymptotic stability
is not restricted by this condition. By selecting the attenuation coefficient ρ to be
sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that the first
derivative of the Lyapunov function is upper bounded by 0. Therefore for the i-th
time interval it is proven that the Lyapunov function defined in Eq. (11.156) is a
decreasing one. This also ensures that the Lyapunov function of the system defined
in Eq. (11.156) will always have a negative first-order derivative.

11.4.6 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop for the autonomous submarine can be implemented with the use of
information provided by a small number of sensors and by processing only a small
number of state variables. To reconstruct the missing information about the state
vector of the autonomous submarine it is proposed to use a filtering scheme and
based on it to apply state estimation-based control [169, 457, 511]. The recursion of
the H∞ Kalman Filter, for the model of the submarine, can be formulated in terms
of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(11.174)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)

(11.175)
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Fig. 11.18 Tracking of setpoint 1: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2
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Fig. 11.19 Tracking of setpoint 2: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1−θW (k)+CT (k)R(k)−1C(k)will be positive definite.When θ = 0
the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the submarine, and can estimate through
filtering the rest of the state vector elements.Moreover, the proposedKalman filtering
method can be used for sensor fusion purposes.
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Fig. 11.20 Tracking of setpoint 3: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2
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Fig. 11.21 Tracking of setpoint 4: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2

11.4.7 Simulation Tests

The performance of nonlinear H-infinity control for the autonomous submarine
was tested through simulation experiments.After applying H-infinity control to the
dynamic model of the submarine which has been obtained through Taylor series
expansion it has become possible to make its state variables converge to the asso-
ciated reference setpoints. The obtained results are depicted in Figs. 11.18, 11.19,
11.20, 11.21, 11.22 and 11.23. It can be noticed that fast and accurate tracking of
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Fig. 11.22 Tracking of setpoint 5: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2
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Fig. 11.23 Tracking of setpoint 6: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2

the reference setpoints was achieved while the variation of the submarine’s control
inputs remained smooth and within moderate ranges. For the computation of the
feedback control gain the algebraic Riccati equation appearing in Eq. (11.161) had
to be repetitively solved at each step of the control method.

In the presented simulation experiments state estimation-based control has been
implemented. Out of the 4 state variables of the autonomous submarine only 2 where
considered to be measurable. These were the submarine’s depth h and its heading
angle θ . The rest of the state variables, describing rate of change of the vessel’s depth
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and rate of change of its heading angle were indirectly estimated with the use of the
H-infinity Kalman Filter. The real value of each state variable has been plotted in
blue, the estimated value has been plotted in green, while the associated reference
setpoint has been plotted in red. It can be noticed that despite model uncertainty
the H-infinity Kalman Filter achieved accurate estimation of the real values of the
state vector elements. In this manner the robustness of the state estimation-based
H-infinity control scheme was also improved.

Comparing to control methods for autonomous underwater vessels which are
based on global linearization techniques, the main properties of the nonlinear
H-infinity control scheme are outlined as follows: (i) it is applied directly on the
nonlinear dynamical model of the submarine and does not require the computation
of diffeomorphisms (change of variables) that will bring the system into an equiva-
lent linearized form, (ii) the computation of the feedback control signal follows an
optimal control concept and requires the solution of an algebraic Riccati equation
at each iteration of the control algorithm, (iii) the control method retains the advan-
tages of optimal control, that is fast and accurate tracking of reference setpoints under
moderate variations of the control inputs.
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