
Chapter 10
Unmanned Surface Vessels

Abstract Autonomous navigation of unmanned surface vessels (USVs) (such as
ships, hovercrafts, etc), is a significant topic, since it can find use in both security
and defence tasks, as well as in maritime transportation. The problem of control and
trajectory tracking for unmanned surface vessels (of the ship or hovercraft type) is
non-trivial because the associated dynamic and kinematic models are complex non-
linear ones. A first problem that arises in controller design for unmanned surface
vessels is that trajectory tracking has to be achieved despite modelling uncertainty
and external perturbations and thus the control loop must exhibit sufficient robust-
ness. Another problem that has to be dealt with is that the vessels model is often
underactuated (the propulsion system consists of less actuators than the vessel’s
degrees of freedom). The present chapter treats the problem of control of unmanned
surface vessels. Solution to the associated control problem is provided through (i)
global linearization methods, (ii) approximate linearization methods and (iii) Lya-
punov methods. To solve the control problem for unmanned surface vessels without
prior knowledge of the associated dynamic model, elaborated real-time estimation
methods are developed. These allow for identifying the unknown dynamic model
of the vessel and for implementing an indirect adaptive control scheme. Moreover,
for the accurate localization of the vessel and for precise computation of its motion
characteristics advanced (and precisely validated) nonlinear filtering and distributed
filtering are applied. These enable to perform fusion of the measurements of het-
erogeneous sensors and of state estimates provided by individual distributed local
filters. In particular, the chapter treats the following issues: (a) Nonlinear control
and Kalman Filtering for a 3-DOF surface vessel, (b) Flatness-based control for the
autonomous hovercraft (c) Nonlinear optimal control for autonomous navigation of
unmanned surface vessels, and (d) validation of distributed Kalman Filtering for ship
tracking applications.
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10.1 Chapter Overview

The present chapter treats the following issues: (a) Nonlinear control and Kalman
Filtering for a 3-DOF surface vessel, (b) Flatness-based control for the autonomous
hovercraft (c) Nonlinear optimal control for autonomous navigation of unmanned
surface vessels, and (d) validation of distributed Kalman Filtering for ship tracking
applications.

With reference to (a) the chapter examines the problem of dynamic ship posi-
tioning with the use of Kalman Filter-based and Particle Filter-based sensor fusion
algorithms. The proposed approach enables to estimate accurately the ship’s state
vector by fusing the vessel’s position and heading measurements coming from on-
board sensors together with distance measurements coming from sensors located at
the coast (e.g. radar). The estimated state vector is used in turn in a control loop, to
regulate the horizontal position and heading of the vessel.

With reference to (b) the chapter proposes a nonlinear control approach for the
underactuated hovercraft model based on differential flatness theory and uses a
new nonlinear state vector and disturbances estimation method under the name of
Derivative-free nonlinear Kalman Filter. It is proven that the nonlinear model of the
hovercraft is a differentially flat one. It is shown that this model cannot be subject
to static feedback linearization, however it admits dynamic feedback linearization
whichmeans that the system’s state vector is extended by including as additional state
variables the control inputs and their derivatives. Next, using the differential flatness
properties it is also proven that this model can be subject to input-output lineariza-
tion and can be transformed to an equivalent canonical (Brunovsky) form. Based on
this latter description the design of a state feedback controller is carried out enabling
accurate maneuvering and trajectory tracking. Additional problems that are solved in
the design of this feedback control scheme are the estimation of the nonmeasurable
state variables in the hovercraft’s model and the compensation of modeling uncer-
tainties and external perturbations affecting the vessel. To this end, the application of
the Derivative-free nonlinear Kalman Filter is proposed. This nonlinear filter consists
of the Kalman Filter’s recursion on the linearized equivalent model of the vessel and
of an inverse nonlinear transformation based on the differential flatness features of
the system which enables to compute state estimates for the state variables of the
initial nonlinear model. The redesign of the filter as a disturbance observer makes
possible the estimation and compensation of additive perturbation terms affecting
the hovercraft’s model.

With reference to (c) the chapter proposes a new nonlinear optimal control
approach for autonomous navigation of unmanned surface vessels. The dynamic
model of the surface vessels undergoes approximate linearization round local oper-
ating points which are redefined at each iteration of the control algorithm. These
temporary equilibria consist of the last value of the vessel’s state vector and of the
last value of the control signal thatwas exerted on it. For the approximate linearization
of the system’s dynamics Taylor series expansion is performed through the compu-
tation of the associated Jacobian matrices. The modelling errors are compensated by
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the robustness of the control algorithm. Next, for the linearized equivalent model of
the vessel an H-infinity feedback controller is designed. This requires the solution
of an algebraic Riccati equation at each iteration of the computer control program.
It is shown that the control scheme achieves H-infinity tracking performance, which
implies maximum robustness to modelling errors and external perturbations. The
stability of the control loop is proven through Lyapunov analysis.

With reference to (d) the chapter considers that tracking of ships’ motion and
monitoring of maritime traffic can be performed with the use of distributed Kalman
Filtering. However, some of the local Kalman Filters which constitute distributed
estimation schemes may depend on inaccurate models of the vessel’s dynamics or
kinematics and in such a case the aggregate state estimate provided by the distributed
filter is unreliable. To treat this problem the chapter proposes a statistical method
of optimized performance for the validation of Fuzzy Kalman Filters used in ship
tracking. By showing the equivalence of the localKalman Filters toARMAXmodels,
the Fuzzy Kalman Filter is proven to be equivalent to fuzzy weighting of local
ARMAX models. Using this equivalent modeling of the Fuzzy Kalman Filter, the
local statistical approach to fault diagnosis is applied for validating the accuracy of
the distributed filter or in the opposite case for detecting the local Kalman Filter that
makes use of an imprecise shipmodel. By applying theGeneralized LikelihoodRatio
on the residuals of the Kalman Filtering procedure the proposed validation method
finally takes the form of a χ2 statistical change detection criterion. This statistical
validation test is capable of detecting the faulty local filter within the distributed
estimation method, even in the case of small errors in the local model’s parameters
which do not exceed 1% of the associated nominal values.

10.2 Nonlinear Control and Filtering for a 3-DOF Surface
Vessel

10.2.1 Outline

During the last years, research on marine navigation systems and on autonomous
vessels have grown rapidly. Modern marine vessels are equipped with sophisticated
motion-control systemswhich accomplish various control objectives such as position
and heading regulation, trajectory tracking, and wave-induced motion compensation
[148, 189, 462]. Motion control operates in the three planar degrees of freedom,
i.e. surge (forward motion), sway (transverse motion), and yaw (rotation about the
vertical axis, also called heading) and is implemented through the feedback of infor-
mation from position and heading measurements. To estimate accurately the vessel’s
position, measurements coming from GPS, radar or an IMU can be used, while to
estimate the orientation of the vessel, fusion of measurements coming from mag-
netic compasses and gyroscopes can be performed. The term “Dynamic positioning”
describes the use of the propulsion system, in a control loop, to regulate the horizon-
tal position and heading of the vessel. Early Dynamic Positioning Systems (DPS)
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were based on three term PID control with a notch filter in order to counteract high
frequency motion due to waves. There exist also results on nonlinear filtering for
autonomous navigation systems which have been presented in [110, 310, 567, 592].
The present section studies sensor fusion-based dynamic positioning for ships using
Kalman and Particle Filtering methods.

Sensor-fusion based motion estimation using probabilistic inference forms a core
component in most modern guidance and navigation systems [234]. The estimator
fuses observations frommultiple sensorswith predictions froma dynamic state-space
model of the system under control. Themost widely used algorithms formulti-sensor
fusion are variants of the Kalman Filter (KF), which in the case of nonlinear dynami-
cal models take the form of the Extended Kalman Filter. Currently, Kalman Filtering
is a main element in the design of Dynamic Positioning Systems [163, 477, 547]. A
basic assumptionmade byKalman Filtering is that ofGaussian process/measurement
noise. On the other hand, the Extended Kalman Filter is based on the linearization
of the system dynamics, and proceeds with the recursive estimation of the standard
Kalman Filter [431, 433, 457].

A different approach to filtering and sensor fusion-based state estimation is Par-
ticle Filtering. The Particle Filter is a non-parametric state estimator which unlike
the KF or the EKF does not make any assumption on the probability density func-
tion of the measurements [23, 555]. The concept of particle filtering comes from
Monte-Carlo methods. The Particle Filter (PF) can provide optimal estimation in
non-Gaussian state-space models. In the case of nonlinear dynamical models the
PF avoids also the calculations associated with the Jacobians which appear in the
EKF equations [271, 625]. The main stages of the PF are prediction (time update),
correction (measurement update) and resampling for substituting the unsuccessful
state vector estimates with those particles that have better approximated the real state
vector.

The main developments of the section are outlined in the following: (i) design of
a Kalman Filter-based disturbance estimator that enables simultaneous estimation of
the ship’s state vector and of the vector of external disturbances, through the process-
ing of measurements from various types of sensors, (ii) design of a Particle Filter
disturbance estimator that enables simultaneous estimation of the ship’s state vector
and of the vector of external disturbances, again through the fusion of measurements
from various sensors, (iii) implementation of state estimation-based control using
these nonlinear filtering methods.

10.2.2 Kinematic and Dynamic Models of Vessels
for the Problem of Dynamic Positioning

10.2.2.1 A Generic Kinematic and Dynamic Ship Model

The motion of a ship is described by two reference frames: (i) a local geographical
earth-fixed frame and, (ii) a body-fixed frame denoted as XbYbZb which is attached
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Fig. 10.1 Components of
the linear velocity vector of
the vessel (surge, sway and
heave) and components of
the angular velocity of the
vessel (roll, pitch and yaw
Euler angles)

to the vessel (see Fig. 10.1). The components of the position vector of the vessel
are [x, y, ψ]T where (x, y) are the coordinates of the ship’s center of symmetry in
a local geographical frame and ψ is the orientation angle with reference to the OX
axis of the local coordinates frame [148].

The components of the ship’s velocity vector, denoted as v = [u, vs, r ]T , are the
surge and sway velocities (u, vs) and the yaw rate r . A model for vessel kinematics,
relating the ship’s position vector η to the ship velocity vector v, is

η̇ = R(ψ)v (10.1)

The kinematic transformation of Eq. (10.1) relates the body-fixed velocities to the
position derivatives in the local geographical frame. The transformation is described
by matrix R(ψ)∈R3×3 which performs a rotation round the z-axis by an angle ψ .
The equation of the ship dynamics describes the relation between the ship’s velocity
and the generalized forces vector (forces and torques τcontrol , τwind and τwaves) which
is applied to the vessel [148, 167].

Mv̇ + CRB(v)v + d(Vrc, γc) = τcontrol + τwind + τwaves (10.2)

In the above equation, CRB(v)v denotes Coriolis-centripetal terms while d(Vrc, γc)

denotes disturbance terms (e.g. due to wind and currents). The inertia matrix M is
the sum of two matrices MA and MRB , i.e. M = MA + MRB where

MA =
⎛
⎜⎝

−Xu̇ 0 0

0 −Yv̇s −Yṙ

0 −Yṙ −Nṙ

⎞
⎟⎠ MRB =

⎛
⎜⎝
m 0 0

0 m mxg

0 mxg Iz

⎞
⎟⎠ (10.3)

In the positive-definite hydrodynamic matrix MA, the added-mass coefficients Xu̇ ,
Yv̇, and Nṙ depend on the hull shape and show the change in momentum in the
fluid due to the vessel accelerations. On the other hand in the equation of the positive
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definite rigid-body mass matrix MRB , parameter xg denotes the longitudinal position
of the center of gravity of the vessel relative to the body-fixed frame. The Coriolis-
centripetal terms matrix CRB is given by

CRB =
⎛
⎜⎝

0 0 −m(xgr + vs)

0 0 mu

m(xgr + vs) −mu 0

⎞
⎟⎠ (10.4)

When a vessel operates under positioning control the velocities are small and thus
the Coriolis-centripetal terms CRB(v)v in Eq. (10.2) can be omitted from the ship’s
dynamic model.

10.2.2.2 Ship Model for the Dynamic Positioning Problem

As noted before, the term d(Vrc, γc) on the left hand side of Eq. (10.2) represents
the current and damping forces. The speed of the current is denoted as Vrc while the
angle of the current is denoted as γrc and is defined relative to the bow of the vessel
[148]. It is common practice to write the current forces in surge, sway and yaw as
functions of non-dimensional current coefficientsCXc(γrc),CYc(γrc),CNc(γrc)which
is

d(Vrc, γrc) = 1

2
ρV 2

rc

⎛
⎜⎝

AFcCXc(γrc)

ALcCYc(γrc)

ALc L0αCNc(γrc)

⎞
⎟⎠ (10.5)

where ρ is the water density, AFc and ALc are frontal and lateral projected areas of the
submerged part of the vessel and L0α is the length of the ship. However, the current
coefficients CXc(γrc), CYc(γrc), CNc(γrc) are difficult to estimate with accuracy. In
such cases, one can simplify the model of Eq. (10.5), in terms of a linear damping
term and a bias term which finally takes the form

d(Vrc, γrc) � D(v)v − RT (ψ)d (10.6)

where D = DT =
⎛
⎜⎝
D11 0

0 D22 D23

0 D32 D33

⎞
⎟⎠ , d =

⎛
⎜⎝
d1

d2

d3

⎞
⎟⎠ (10.7)

The wind forces and moments can be represented in a similar way to the current
forces and moments, i.e.



10.2 Nonlinear Control and Filtering for a 3-DOF Surface Vessel 507

τwind = 1

2
ραV

2
rw

⎛
⎜⎜⎝

AFwCXw(γrw)

ALwCYw(γrw)

ALwL0αCNw(γrw)

⎞
⎟⎟⎠ (10.8)

where ρα is the air density, AFw and ALw are the frontal and lateral projected wind
areas and L0α is the vessel’s overall length. The wind speed is Vrw and its direction
is γrw in earth-fixed coordinates. The wind model coefficients can be obtained by
model tests while with reference to the control problem, obtaining measurements of
thewind’s speed and direction enables to compensate τwind using a feed-forward term
τ̂wind . The difference (modeling error) between τwind and τ̂wind can be described by a
bias term RT (ψ)d, as in the case of the current bias term that was given in Eq. (10.6).

Wave forces are usuallymodeled as the sumof a linear and a nonlinear component,
i.e.

τwaves = τ lin
waves + τ nlin

waves (10.9)

The low-frequency nonlinear wave forces can be modeled again by a bias term,
and considered to be input disturbances. On the other hand the linear wave forces
are considered to be output disturbances. Therefore, the observation (measurement)
equation of the ship is given by z = η + nw + v1, where n is the vessel’s position
calculated using the ship’s dynamic model of Eqs. (10.1) and (10.2), v1 is sensor
measurement noise and nw is the ship’s displacement due to the linear wave forces.

Using Eq. (10.6) and the above assumptions about the wind and waves forces, the
vessel’s kinematic and dynamic model described in Eqs. (10.1) and (10.2) respec-
tively, is given by

η̇ = R(ψ)v

v̇ + M−1Dv = M−1[RT (ψ)d + τcontrol] + w

ḋ = w

z = η + nw + v1 or z = n + v

(10.10)

The bias is an additive disturbance in the ship’s dynamic model which can be esti-
mated with the use of a state observer. Once the bias is accurately estimated it can
be compensated by a suitable control term in the right hand side of Eq. (10.10). This
additional control term provides the required robustness to compensate for the bias
effects.

10.2.3 Ship Actuator Model

Without loss of generality the model of a vessel with two propellers and one bow
thruster is considered (see Fig. 10.2). The vector of the ship’s control forces and
torques τ∈R3 is related to propeller pitch ratios vector u (or propeller revolutions
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Fig. 10.2 Model of a vessel
with two propellers and a
bow thruster

for fixed blade propellers) as follows [171]

τ = T ·K (U )·u (10.11)

where U is the magnitude of the ship’s velocity in the xy-plane i.e. U = √
u2 + v2

while u denotes the surge velocity and v denotes the sway velocity. Vector u is defined
as u = [ f1(p1), f2(p2), f3(p3), f4(δ1), f5(δ2)]T . For the (fully actuated) ship model
of Fig. 10.2 with two propellers p1 and p2, one thruster p3 and two rudders δ1 and
δ2, matrix T∈R3×6 depends on the position of the actuators p1, p2 and p3, while
matrix K (U )∈R6×6 depends on the ship’s velocity and the type of the actuators.
The coefficients of matrices T and K are defined as follows: pi , (i = 1, 2, 3) are
the propeller pitch ratios (or for fixed-blade propellers are the propeller revolutions),
δi , (i = 1, 2) are the rudder angles, ti , (i = 1, . . . , 5) are distances to of the actuators
from the ship’s symmetry axes, and ki , (i = 1, . . . , 5) are the force coefficients.

10.2.4 Feedback Linearization for Ship Dynamic Positioning

10.2.4.1 Nonlinear Positioning Control of the Ship Model

As mentioned above, the kinematic and dynamic model of the ship is given by

η̇ = R·v
Mv̇ + D(v)v − RT d = τ

(10.12)

From the previous equation one obtains v = R−1η̇, or since RT = R−1 it can be
written as v = RT η̇. Similarly one obtains v̇ = ṘT η̇+ RT η̈. Consequently, this gives
[140, 227, 462]

J (η)η̈ + C(η, η̇)η̇ + F(η)η̇ − d = τ ∗ (10.13)
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where the ship model’s parameters are defined as

J (η) = RMRT ∈ R3×3 C(η, η̇) = RM ṘT∈R3×3

F(η) = RDRT∈R3×3 τ ∗ = Rτ
(10.14)

and denoting sin(ψ) and cos(ψ) as Sψ and Cψ respectively, while usingmi j , i, j =
1, . . . , 3 to represent the elements of the inertia matrix and di j , i, j = 1, . . . , 3 to
represent the elements of the damping matrix, the terms of the ship’s dynamic model
are described by [140]

J (η) =
⎛
⎜⎝

m11C2
ψ + m22S2ψ (m11 − m22)SψCψ −m23Sψ

(m11 − m12)SψCψ m11S2ψ + m22C2
ψ m23Cψ

−m23Sψ m23Cψ m33

⎞
⎟⎠ (10.15)

C(η, η̇) =
⎛
⎜⎝

ψ̇(m22 − m11)SψCψ ψ̇(m11C2
ψ + m22S2ψ) 0

−ψ̇(m11S2ψ) + m22C2
ψ)) ψ̇(m22 − m11)SψCψ 0

−ψ̇(m23Cψ −ψ̇(m23Sψ 0

⎞
⎟⎠ (10.16)

F(η) =
⎛
⎜⎝

d11C2
ψ + d22S2ψ (d11 − d12)SψCψ −d23Sψ

(d11 − d12)SψCψ d11S2ψ + d22C2
ψ d23Cψ

−d32Sψ d32Cψ d23

⎞
⎟⎠ (10.17)

The control signal is chosen to be

τ ∗ = J (η)[η̈d + J (η)−1C(η, η̇)η̇+
+J (η)−1F(η)η̇ − J (η)−1d − KD

˙̃η − KP η̃] (10.18)

where η̃ = η − ηd is the tracking error, while

KD = diag[kd1 , kd2 , kd3 ]
KP = diag[kp1 , kp2 , kp3 ]

(10.19)

are feedback gain matrices. This finally results into the tracking error dynamics

η̈ − η̈d + KD
˙̃η + KP η̃ = 0

or ¨̃η + KD
˙̃η + KP η̃ = 0

(10.20)
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10.2.5 Joint Estimation of the Ship’s State Vector
and of Unknown Additive Disturbances

The sensor fusion-based estimation procedure for obtaining the ship’s state vector is
affected by uncertainties characterizing the ship’s dynamicmodel. Such uncertainties
can be due to parametric variations in the model of Eqs. (10.13) and (10.14) or due
to external disturbances, e.g. additive input disturbances as shown in Eqs. (10.2) and
(10.10). Simultaneous estimation of a dynamical system’s state vector and of the
disturbances vector can be achieved using disturbance observers [82, 87, 105, 106,
180, 256, 341, 428, 623].

In the case of a surface vessel, defining the generalized state vector x =
[η, d, η̇, ḋ]T and considering invariance of the disturbance d for specific time periods,
one obtains the generalized ship state-space model

η̈ + J (η)−1[C(η, η̇) + F(η)]η̇ − J−1(η)d = J−1(η)τ

d̈ = 0.
(10.21)

Setting x1 = η, x2 = d, x3 = η̇, x4 = ḋ and taking into account the existence of
process and measurement noise one obtains a ship’s model of the form

ẋ = Ax + Bu + w

z = γ (x) + v (10.22)

where matrices A and B are given by

A =

⎛
⎜⎜⎜⎜⎝

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

03×3 J−1(x) −J−1(x)[C(x, ẋ) + F(x)] 03×3

03×3 03×3 03×3 03×3

⎞
⎟⎟⎟⎟⎠

B = (
03×3 03×3 J−1(x) 03×3

)T

(10.23)

The extended state vector is x = [x1, x2, x3, x4]T with xi ∈ R3×1, i = 1, 2, 3, 4. The
control input is τ ∈ R3×1. The measurement vector of the ship’s model is given by
z = [x, y, ψ, d1]T , where x, y are measurements of the ship’s cartesian coordinates,
ψ is a measurement of the ship’s orientation and d1 is a measurement of the ship’s
distance from the coast, provided by a coastal sensor (e.g. radar). The vectors of
process and measurement noises are denoted as w and v, respectively. Using the
above state-space representation, state vector x can be estimated by processing a
sequence of output measurements y with the use of a state observer or Kalman
Filtering [46, 149, 631].

It is noted that disturbance terms affecting the ship’s model, as shown in
Eq. (10.10), can be identified with the use of disturbance observers were initially
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conceived with a static observer gain [82, 87, 180, 256, 341, 623]. However they
can be suitably modified so as to be based on dynamic adaptation of the observer
gain through the Kalman Filter recursion [105, 428]. Once the disturbances vector
is estimated, a supervisory control term can be introduced in the control law so as
to annihilate the disturbances effects. A common technique is the Unknown Input
Observer which estimates both the states of the system and the disturbance by aug-
menting a linear design model with a linear disturbance model. Another approach
is based on the Extended State Observer. This has the state and disturbance esti-
mation power of an Unknown Input Observer while being also simpler in tuning.
Another solution to the problem of simultaneous state and disturbance estimation
comes from the Perturbation Observer. The Perturbation observer is suitable not
only for estimation of additive disturbances but also for estimation of unmodeled
variations of the monitored system. In place of static observer gain for the aforemen-
tioned observers one can consider on-line adaptation of the observer’s gain through
the Kalman Filter recursion. Therefore it is possible to design Kalman Filter-based
disturbance observers exhibiting the advantages of Kalman Filter estimation such
as minimization of the estimation error and smoother convergence of the estimated
state variables towards the real state variables.

10.2.6 Sensor Fusion for the Surface Vessel Using Kalman
Filtering

The application of EKF to the fusion of data that come from different sensors of
the monitored surface vessel is examined first. The ship’s kinematic and dynamic
model is considered again. It is assumed that at each time instantmeasurements of the
ship’s cartesian coordinates (x, y) as well as of the ship’s heading ψ are available.
Moreover the distance of the ship from the coast is provided by a coastal sensor
(e.g. radar). Fusing the aforementioned measurements with the use of a stochastic
estimation algorithm, such as the Kalman Filter, can provide an accurate estimate of
the ship’s state vector.

The coordinates of the center of symmetry of the ship with respect to OXY
(inertial coordinates system) are (x, y), while the coordinates of a reference point
i of the ship (e.g. bridge), with respect to O ′X ′Y ′ (body-fixed coordinates system)
are x

′
i , y

′
i (Fig. 10.3). The orientation of the ship’s reference point with respect to

O ′X ′Y ′ is ψ
′
i .

Thus the coordinates of the reference point i with respect to OXY are (xi , yi ) and
its orientation is ψi , and are given by

xi (k) = x(k) + x
′
i sin(ψ(k)) + y

′
i cos(ψ(k))

yi (k) = y(k) − x
′
i cos(ψ(k)) + y

′
i sin(ψ(k))

ψi (k) = ψ(k) + ψi

(10.24)
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Fig. 10.3 Estimation of the ship’s state vector by fusing the measurements of its position and
orientation with the measurement of its distance from the coast provided by a coastal sensor (e.g.
radar)

Each reference plane P j on the coast can be represented by P j
r and P j

n (Fig.
10.3), where (i) P j

r is the normal distance of the plane from the origin O, (ii) P j
n is

the angle between the normal line to the plane and the x-direction. Using the above
notation, the distance of the ship’s reference point i (e.g. bridge), from the reference
plane P j on the coast depends on P j

r , P j
n (see Fig. 10.3) [433]:

d1(k) = P j
r − xi (k)cos(P

j
n ) − yi (k)sin(P j

n ). (10.25)

By definition of the measurement vector one has that the output function γ (x(k)) is
given by

γ (x(k)) = [x(k), y(k), ψ(k), d1(k)]T (10.26)

To obtain the Extended Kalman Filter (EKF), the model of the ship is linearized
about the estimates x̂(k) and x̂−(k) as described in the previous subsection. The
process noise covariance matrix Q(k)∈R12×12 and the measurement noise matrix
R∈R4×4 are taken to be diagonal. The Kalman Filter gain is K∈R12×4. For matrix
γ appearing in the ship’s output equation it holds

γ (x̂(k)) = [x̂(k), ŷ(k), ψ̂(k), P j
r − xi (k))cos(P

j
n ) − yi (k)sin(P j

n )]T (10.27)

The Jacobian of the ship model’s output γ with respect to the state vector x(k) is
thus,
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J T
γ (x̂−(k)) =

⎛
⎜⎜⎜⎜⎝

1 0 0 01×9

0 1 0 01×9

0 0 1 01×9

α41 α42 α43 01×9

⎞
⎟⎟⎟⎟⎠

(10.28)

where α41 = −cos(P j
n ), α42 = −sin(P j

n ) and α43 = {x ′
i cos(ψ − P j

n ) − y
′
i sin(ψ −

P j
n )}. As analyzed in Sect. 10.2.4, the ship can be steered along the reference trajec-

tory using the estimated state vector and control based on feedback linearization of
the ship’s dynamic model. Alternatively nonlinear backstepping control can be used
[462].

For the dynamicmodel of the vessel that is described byEqs. (10.161) and (10.162)
sensor fusion-based state estimation can be performed using Kalman Filtering. As
shown for instance in Eqs. (4.88) and (4.89) the implementation stages of the Kalman
Filter comprise a measurement-update part and a time-update part.

10.2.7 Particle Filter-Based Sensor Fusion for Estimating
the Ship’s Motion and Disturbances

As in the KF case, the Particles Filter consists also of the measurement update (cor-
rection stage) and the time update (prediction stage) [271, 555, 625]. The prediction
stage calculates

p(x(k)|Z−) where Z− = {z(1), z(2), . . . , z(k − 1)} (10.29)

are output measurements up to time instant k − 1. It holds that

p(x(k − 1)|Z−) =
N∑
i=1

wi
k−1δξ i

k−1
(x(k − 1)) (10.30)

while from Bayes formula it holds

p(x(k)|Z−) =
∫

p(x(k)|x(k − 1))p(x(k − 1)|Z−)dx (10.31)

From the above one finally obtains:

p(x(k)|Z−) = ∑N
i=1w

i
k−1δξ i

k−
(x(k))

with ξ i
k− ∼ p(x(k)|x(k − 1) = ξ i

k−1)
(10.32)
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The previous relation means that the state equation of the system is executed N
times, starting from the N previous values of the state vectors x(k − 1) = ξ i

k−1.
Consequently, the value of the state vector which is calculated in the prediction stage
is the result of the weighted averaging of the state vectors which were computed after
running the state equation, starting from the N previous values of the state vectors
ξ i
k−1.
The a-posteriori probability density is found as follows: a new position mea-

surement z(k) is obtained and the objective is to calculate the corrected probability
density

p(x(k)|Z) where Z = {z(1), z(2), . . . , z(k)} (10.33)

From Bayes law it holds that

p(x(k)|Z) = p(Z |x(k))p(x(k))
p(Z)

(10.34)

which can be also written as

p(x(k)|Z) = p(z(k)|x(k))p(x(k)|Z−)∫
p(z(k)|x(k), Z−)p(x(k)|Z−)dx

(10.35)

After intermediate calculations one finally obtains

p(x(k)|Z) =
N∑
i=1

wi
kδξ i

k−
(x(k))

where wi
k = wi

k− p(z(k)|x(k) = ξ i
k−)∑N

j=1w
j
k− p(z(k)|x(k) = ξ

j
k−)

(10.36)

The previous equation denotes the corrected value for the state vector. The recursion
of the PF proceeds in a way similar to the update of the Kalman Filter or the Extended
Kalman Filter [450, 555].

Measurement update: Acquire z(k) and compute the new value of the state vector

p(x(k)|Z) = ∑N
i=1w

i
kδξ i

k−
(x(k))

with corrected weights wi
k = wi

k− p(z(k)|x(k) = ξ i
k−)∑N

j=1w
i
k− p(z(k)|x(k) = ξk−)i

and ξ i
k = ξ i

k−

(10.37)

Resampling: Substitute the degenerated particles. The particles of lowweight factors
are removed and their place is occupied by duplicates of the particleswith highweight
factors.
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Time update: compute state vector x(k + 1) according to the pdf

p(x(k + 1)|Z) = ∑N
i=1w

i
kδξ i

k
(x(k))

where ξ i
k∼p(x(k + 1)|x(k) = ξ i

k)
(10.38)

Knowing the measured value of the ship’s position and orientation [x, y, ψ], one can
assign a weight to each particle (estimate of the state vector [x̂, ŷ, ψ̂]i ), according to
how closely the particle approaches the measured state vector. Similarly, knowing
the distance d1 from the coastal reference surface, and calculating an estimation of
this distance d̂1 for every particle [x̂, ŷ, ψ̂]i , one can assign a weight to the particle
according to the accuracy of estimation of the distance d1. Further averaging of these
two weight values associated with each particle provides the aggregate particle’s
weight which is used in the Particle Filter’s iteration.

10.2.8 Simulation Tests

10.2.8.1 Dynamic Ship Positioning with the Use of Kalman Filtering

The use of Kalman and Particle Filtering for fusing the data that come from the
ship’s navigation instruments with the measurements that come from coastal sensors
provides an estimation of the state vector [x(t), y(t), ψ(t)] and enables the successful
application of nonlinear steering control. In the implementation of the Kalman Filter
the process noise covariancematrixQ∈R12×12 and themeasurement noise covariance
matrix R∈R4×4 were taken to be diagonal with nonzero elements equal to 10e−3. The
number of particles used by the PF was N = 1000. From the simulation experiments
it can be observed that the KF and the PF provide accurate estimations of the external
disturbances. Thus, an auxiliary control term based on the disturbances estimation
can be included in the right hand side of Eq. (10.18), and can compensate for the
disturbances’ effects.

The following cases were examined: (i) Kalman Filtering-based ship’s Dynamic
Positioning (DP) through tracking of a circular trajectory. The associated results are
shown in Figs. 10.4, 10.5, 10.6, 10.7 and 10.8 (ii) Kalman Filtering-based ship’s
DP through tracking of an eight-shaped trajectory. The associated results are shown
in Figs. 10.9, 10.10, 10.11, 10.12 and 10.13 (iii) Kalman Filtering-based ship’s DP
through tracking of a complex curved trajectory. The associated results are shown
in Figs. 10.14, 10.15, 10.16, 10.17 and 10.18 (iv) Particle Filtering-based ship’s DP
through the tracking of a circular trajectory. The associated results are shown in
Figs. 10.19, 10.20, 10.21, 10.22 and 10.23 (v) Particle Filtering-based ship’s DP
through the tracking of an eight-shaped trajectory. The associated results are shown
in Figs. 10.24, 10.25, 10.26, 10.27 and 10.28 (vi) Particle Filtering-based ship’s DP
through the tracking of a complex curved trajectory. The associated results are shown
in Figs. 10.29, 10.30, 10.31, 10.32 and 10.33.
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Fig. 10.4 Tracking of a circular trajectory: a KF-based estimation of the ship’s position along the
x-axis (green line) and desirable x-axis position (red line), b KF-based estimation of the ship’s
velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.5 Tracking of a circular trajectory: a KF-based estimation of the ship’s position along the
y-axis (green line) and desirable y-axis position (red line), b KF-based estimation of the ship’s
velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.6 Tracking of a circular trajectory: a KF-based estimation of the ship’s angle round the
z-axis (green line) and desirable z-axis rotation angle (red line), bKF-based estimation of the ship’s
angular velocity round the z-axis (green line) and desirable angular velocity (red line)
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Fig. 10.7 a Tracking of a circular trajectory: KF-based estimation of the disturbance along the
x-axis (blue line) and real value of the x-axis disturbance (red line), b KF-based estimation of the
disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.8 Tracking of a circular trajectory: a KF-based estimation of the disturbance torque round
the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b Trajectory of the
ship on the xy-plane (green line) and desirable ship trajectory (red line) in the case of KF-based
state estimation
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Fig. 10.9 Tracking of an eight-shaped trajectory: a KF-based estimation of the ship’s position
along the x-axis (green line) and desirable x-axis position (red line), b KF-based estimation of the
ship’s velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.10 Tracking of an eight-shaped trajectory: a KF-based estimation of the ship’s position
along the y-axis (green line) and desirable y-axis position (red line), b KF-based estimation of the
ship’s velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.11 Tracking of an eight-shaped trajectory: aKF-based estimation of the ship’s angle round
the z-axis (green line) and desirable z-axis rotation angle (red line), b KF-based estimation of the
ship’s angular velocity round the z-axis (green line) and desirable angular velocity (red line)
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Fig. 10.12 Tracking of an eight-shaped trajectory: a KF-based estimation of the disturbance along
the x-axis (blue line) and real value of the x-axis disturbance (red line), b KF-based estimation of
the disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.13 Tracking of an eight-shaped trajectory: aKF-based estimation of the disturbance torque
round the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b Trajectory of
the ship on the xy-plane (green line) and desirable ship trajectory (red line) in the case of KF-based
state estimation
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Fig. 10.14 Tracking of a complex-curved trajectory: a KF-based estimation of the ship’s position
along the x-axis (green line) and desirable x-axis position (red line), b KF-based estimation of the
ship’s velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.15 Tracking of a complex-curved trajectory: a KF-based estimation of the ship’s position
along the y-axis (green line) and desirable y-axis position (red line), b KF-based estimation of the
ship’s velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.16 Tracking of a complex-curved trajectory: a KF-based estimation of the ship’s angle
round the z-axis (green line) and desirable z-axis rotation angle (red line), b KF-based estimation
of the ship’s angular velocity round the z-axis (green line) and desirable angular velocity (red line)
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Fig. 10.17 Trackingof a complex-curved trajectory:aKF-based estimationof the disturbance along
the x-axis (blue line) and real value of the x-axis disturbance (red line), b KF-based estimation of
the disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.18 Tracking of a complex-curved trajectory: a KF-based estimation of the disturbance
torque round the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b
Trajectory of the ship on the xy-plane (green line) and desirable ship trajectory (red line) in the
case of KF-based state estimation
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Fig. 10.19 Tracking of a circular trajectory: a PF-based estimation of the ship’s position along
the x-axis (green line) and desirable x-axis position (red line), b PF-based estimation of the ship’s
velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.20 Tracking of a circular trajectory: a PF-based estimation of the ship’s position along
the y-axis (green line) and desirable y-axis position (red line), b PF-based estimation of the ship’s
velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.21 Tracking of a circular trajectory: a PF-based estimation of the ship’s angle round the
z-axis (green line) and desirable z-axis rotation angle (red line), b PF-based estimation of the ship’s
angular velocity round the z-axis (green line) and desirable angular velocity (red line)
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Fig. 10.22 Tracking of a circular trajectory: a PF-based estimation of the disturbance along the
x-axis (blue line) and real value of the x-axis disturbance (red line), b PF-based estimation of the
disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.23 Tracking of a circular trajectory: a PF-based estimation of the disturbance torque round
the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b Trajectory of the
ship on the xy-plane (green line) and desirable ship trajectory (red line) in the case of PF-based
state estimation
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Fig. 10.24 Tracking of an eight-shaped trajectory: a PF-based estimation of the ship’s position
along the x-axis (green line) and desirable x-axis position (blue line), b PF-based estimation of the
ship’s velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.25 Tracking of an eight-shaped trajectory: a PF-based estimation of the ship’s position
along the y-axis (green line) and desirable y-axis position (red line), b PF-based estimation of the
ship’s velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.26 Tracking of an eight-shaped trajectory: a PF-based estimation of the ship’s angle round
the z-axis (blue line) and desirable z-axis rotation angle (red line), b PF-based estimation of the
ship’s angular velocity round the z-axis (blue line) and desirable angular velocity (red line)
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Fig. 10.27 Tracking of an eight-shaped trajectory: a PF-based estimation of the disturbance along
the x-axis (green line) and real value of the x-axis disturbance (red line), b PF-based estimation of
the disturbance along the y-axis (green line) and real value of the y-axis disturbance (red line)
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Fig. 10.28 Tracking of an eight-shaped trajectory: a PF-based estimation of the disturbance torque
round the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b Trajectory of
the ship on the xy-plane (green line) and desirable ship trajectory (red line) in the case of PF-based
state estimation
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Fig. 10.29 Tracking of a complex-curved trajectory: a PF-based estimation of the ship’s position
along the x-axis (green line) and desirable x-axis position (red line), b PF-based estimation of the
ship’s velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.30 Tracking of a complex-curved trajectory: a PF-based estimation of the ship’s position
along the y-axis (green line) and desirable y-axis position (red line), b PF-based estimation of the
ship’s velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.31 Tracking of a complex-curved trajectory: a PF-based estimation of the ship’s angle
round the z-axis (green line) and desirable z-axis rotation angle (red line), b PF-based estimation
of the ship’s angular velocity round the z-axis (green line) and desirable angular velocity (red line)

10.2.8.2 Evaluation of the Particle Filter-Based State Estimation
and Control

From the simulation experiments it canbe alsonoticed that theParticleFilter performs
equallywell to theKalmanFilter and that it provides accurate estimates of the vessel’s
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Fig. 10.32 Tracking of a complex-curved trajectory: a PF-based estimation of the disturbance along
the x-axis (blue line) and real value of the x-axis disturbance (red line), b PF-based estimation of
the disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.33 Tracking of a complex-curved trajectory: a PF-based estimation of the disturbance
torque round the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b
Trajectory of the ship on the xy-plane (green line) and desirable ship trajectory (red line) in the
case of PF-based state estimation
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Table 10.1 Variance using KF and PF for N = 1000

State variable x y ψ

KF 5.24 · 10−2 8.52 · 10−2 1.94 · 10−1

PF 7.03 · 10−2 6.80 · 10−2 7.47 · 10−3

Table 10.2 Particle number, simulation time and variance of ψ̂

No particles 800 1000 1300 1600 1900 2200

PF cycle
time (s)

0.355 0.463 0.577 0.775 0.975 1.097

Variance 2.733 · 10−1 7.473 · 10−3 1.153 · 10−2 1.647 · 10−3 8.905 · 10−2 7.817 · 10−3

state vector. Besides, the Particle Filter is a nonparametric estimator, therefore its
application is not constrained by the assumption about Gaussianmeasurements noise
made in the case of the Kalman Filter. Table 10.1 presents results on the variance
of the state vector estimates, when considering equal noise levels for the EKF and
the PF simulation, and assuming that the number of particles used by the PF was
N = 1000.Themeasure used for evaluating the accuracy of the estimation performed
by the nonlinear filters, as well as the accuracy of tracking of the state estimation-
based control loops was the Root Mean Square Error (RMSE). Alternatively, the
Cramer–Rao Lower Bound (CRLB) could have been considered [129, 181, 639].

The cycle time (runtime) of the Particle Filter with respect to the number of
particles, using the Matlab platform on a PC with a 2GHz Intel Core Duo processor,
is depicted in Table 10.2. Optimization of code of the resampling procedure can
improve to some extent the speed of the algorithm. When it is necessary to use more
particles, improved hardware and parallel processing available to embedded systems
enable real-time implementation of the PF algorithm [53, 340, 611].

When sorting of particles is not performed in the resampling procedure the runtime
of Particle Filtering increases linearly with respect to the number of particles [493].

Finally, the accuracy of tracking of the previously described reference trajectories
was examinedunder progressively increasingdisturbancemagnitude. Itwas observed
that tracking of these trajectories was possible even when the magnitude of the
disturbance became several times larger than the initial disturbance of Figs. 10.7,
10.8, 10.9, 10.10, 10.11, 10.12, 10.13, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19,
10.20, 10.21, 10.22, 10.23, 10.24, 10.25, 10.26, 10.27, 10.28, 10.29, 10.30, 10.31,
10.32 and 10.33. Indicative results for disturbance di = 3, i = 1, . . . , 3 are presented
in Fig. 10.34.
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Fig. 10.34 Tracking of a circular trajectory under raised additive disturbances: a Trajectory of
the ship on the xy-plane (continuous line) and desirable ship trajectory (red line) in the case of
KF-based state estimation, b Trajectory of the ship on the xy-plane (red line) and desirable ship
trajectory (dashed line) in the case of PF-based state estimation

10.3 Flatness-Based Control for the Autonomous
Hovercraft

10.3.1 Outline

Autonomous navigation of unmanned surface vessels (USVs) (such as hovercrafts),
is a significant topic, since it can find use in both security purposes and passenger
transportation [345, 452, 517, 518, 545]. The problem of control and trajectory
tracking for unmanned surface vessels of the hovercraft type is non-trivial because
the associated kinematic model is a complex nonlinear one [20, 128, 179, 522, 566].
A first problem that arises in controller design for unmanned vessels is that trajectory
tracking has to be achieved despite modelling uncertainty and external perturbations
and thus the control loop must exhibit sufficient robustness [297, 498]. Another
problem that has to be dealt with is that the vessels’ model can be underactuated [36,
47, 99, 127, 167, 187, 375, 498, 505, 505, 526, 627]. Indicative results on control
of underactuated dynamical systems can be found in [416].

As previously noted, the problem of autonomous navigation of unmanned surface
vessels has received particular attention, since it can find use in both security purposes
and passenger transportation [2, 111, 452, 517, 518, 545]. In particular, the problem
of control and trajectory tracking for unmanned surface vessels of the hovercraft
type is non-trivial because the associated kinematic model is a complex nonlinear
one [20, 128, 179, 522, 566]. Another problem that has to be dealt with is that the
hovercraft’s model is underactuated [36, 47, 187, 375, 505, 526]. Indicative results
on control of underactuated dynamical systems can be found in [402, 404, 427].
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Moreover, the hovercraft’s model cannot be subjected to undergo static feedback
linearization, but admits only dynamic feedback linearization. This means that to
achieve linearization, the state-space description of the system has to be augmented
by considering as additional state variables the control inputs and their derivatives.
Thus, finally the control input that is applied to the vessel contains integral terms
of the tracking error. The present section proposes a solution to the control problem
of hovercrafts with the use of differential flatness theory and of a nonlinear filtering
method, the so-called Derivative-free nonlinear Kalman Filter.

First it is shown that the hovercraft’s model is differentially flat. This means that
all its state variables and the control inputs can be written as differential functions of
one single algebraic variable which is the flat output [57, 145, 254, 267, 322, 450,
472, 476, 519]. By exploiting the differential flatness properties it is shown that the
system can be transformed into the linear canonical form, through dynamic feedback
linearization. To achieve this, dynamic extension is performed which means that the
state-vector’s dimension is increased by considering as additional state variables
certain control inputs and their derivatives. For the linearized equivalent model of
the system the design of a state feedback controller is possible, through the use of
pole placement techniques. Next, to estimate the nonmeasurable state variables of the
surface vessel and to identify additive disturbance terms that affect the system, the
Derivative-free nonlinear Kalman Filter is redesigned as a disturbance observer [33,
421, 431, 438, 443, 457, 463]. This estimation algorithm consists of the standard
Kalman Filter recursion applied on the linearized equivalent model of the surface
vessel and of an inverse transformation that makes use of differential flatness theory,
which permits to compute estimates of the state variables of the initial nonlinear
system.

Comparing to approximate linearization methods [79, 99, 205, 564], nonlinear
feedback control approaches which are based on exact feedback linearization of the
vessel’s model, are assessed as follows: (i) they avoid cumulative numerical errors
which are due to the approximate linearization of the system dynamics coming from
the application of Taylor series expansion, (ii) the generated control input compen-
sates exclusively for the effects of external perturbations whereas in approximate
linearization methods the control input has to compensate both for internal mod-
elling errors and for exogenous disturbances, (iii) they require a smaller number of
real-time computations for generating the control inputs, because unlike the approx-
imate linearization methods a large part of the controller’s design (e.g. computation
of the linearized equivalent model of the system) is performed out of the loop.

10.3.2 State-Space Description of the Underactuated
Hovercraft

10.3.2.1 State-Space Equation of the Underactuated Hovercraft

The hovercraft’s dynamic and kinematic model stems from the generic ship’s model,
after setting specific values for the elements of the inertia and Coriolis matrix and
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after reducing the number of the available control inputs [452, 517, 518]. The state-
space equation of the nonlinear underactuated hovercraft model (Fig. 10.35) is given
by

ẋ = ucos(ψ) − vsin(ψ)

ẏ = usin(ψ) + vcos(ψ)

ψ̇ = r
u̇ = v·r + τu

v̇ = −u·r − βv
ṙ = τr

(10.39)

where x and y are the cartesian coordinates of the vessel, ψ is the orientation angle,
u is the surge velocity, v is the sway velocity and r is the yaw rate. Coefficient β

is a function of elements of the inertia matrix and hydrodynamic damping matrix
of the vessel. The control inputs are the surge force τu and the yaw torque τr . The
hovercraft’s model is also written in the matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ψ̇

u̇

v̇

ṙ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ucos(ψ) − vsin(ψ)

usin(ψ) + vcos(ψ)

r

vr

−ur − βv

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 0

1 0

0 0

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
τu

τr

)
(10.40)

or equivalently, one has the description

˙̃x = f̃ (x̃) + g̃(x̃)ṽ (10.41)

The system’s state vector is denoted as x̃ = [x, y, ψ, u, v, r ]T , f (x̃)∈R6×1, and
g̃(x̃) = [g̃a, g̃b]∈R6×2, while the control input is the vector ṽ = [τu, τr ]T .

The system’s state vector can be extended by including as additional state variables
the control input τu and its first derivative τ̇u . These are denoted as z1 = τu and
z2 = τ̇u . The extended state-space description of the hovercraft becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ψ̇

u̇

v̇

ṙ

ż1

ż2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ucos(ψ) − vsin(ψ)

usin(ψ) + vcos(ψ)

r

vr + z1

−ur − βv

0

z2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 0

0 0

0 0

0 1

0 0

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
τ̈u

τr

)
(10.42)
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or equivalently, one has the description

ż = f (z) + g(z)ṽ (10.43)

The extended system’s state vector is denoted as z = [x, y, ψ, u, v, r, z1, z2]T .More-
over, one has f (z)∈R8×1, and g(z) = [ga, gb]∈R8×2, while the control input is the
vector ṽ = [τ̈u, τr ]T .

From the previous state-space description it can be noticed that the hovercraft’s
model is an underactuated one. Underactuation in the considered hovercraft’s model
means that, to control the vehicle’s motion and orientation, one has fewer control
inputs that the degrees of freedom. Thus considering the capability of the vessel
to move on the xy plane and also to rotate round its z axis by a yaw angle that
is denoted by ψ one has three degrees of freedom. On the other hand the vessel is
supplied with only two control inputs which are the surge force τu and the yaw torque
τr . In practice, the hovercraft is supplied with a number of fans that inject air mass
backwards and which are installed at its rear part, while being also symmetrically
placed with respect to the vessel’s longitudinal axis (Fig. 10.35). Without loss of
generality one can consider the propulsion scheme of Fig. 10.35. The aggregate surge
force τu is the sum of the two propulsion forces FL and FR , which are generated by
the left and right fan respectively. The yaw torque τr is generated by altering the force
produced by the two fans according to the sign of the desirable turn angle. Thus, to
turn left FL is set to be smaller than FR . On the other hand, to turn right FR is set to
be smaller than FL . In this manner the steering of the vessel (turn by a specific yaw

Fig. 10.35 Diagram of the underactuated hovercraft’s kinematic model
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angle) is achieved without the use of a rudder. Succeeding control of the hovercraft’s
motion and orientation in case of underactuation is very important, for assuring the
efficient navigation of the vessel.

10.3.2.2 Lie Algebra-Based Control of the Underactuated Hovercraft

It will be shown that Lie algebra-based control through the computation of Lie
derivatives is an approach equivalent to differential flatness theory-based control for
the model of the underactuated hovercraft. The state-space model of the hovercraft
that was described in Sect. 10.3.2, and particularly Eq. (10.85), is considered again.
The following linearizing outputs of the system are defined

z1,1 = x z2,1 = y (10.44)

Moreover, the new state variables are defined

z1,2 = L f z1,1 z2,2 = L f z2,1

z1,3 = L2
f z1,1 z2,3 = L2

f z2,1

z1,4 = L3
f z1,1 z2,4 = L3

f z2,1

(10.45)

The system will be brought to a linearized input-output form using

ż1,4 = L4
f z1,1 + Lga L

3
f z1,1τ̈u + Lgb L

3
f z1,1τr

ż2,4 = L4
f z2,1 + Lga L

3
f z2,1τ̈u + Lgb L

3
f z2,1τr

(10.46)

It holds that z1,1 = x . Thus one has

z1,2 = L f z1,1⇒z1,2 = ∂z1,1
∂x f1 + ∂z1,1

∂y f2 + ∂z1,1
∂ψ

f3 + ∂z1,1
∂u f4 + ∂z1,1

∂v f5 + ∂z1,1
∂r f6 +

∂z1,1
∂z1

f7 + ∂z1,1
∂z2

f8⇒z1,2 = 1· f1⇒z1,2 = ucos(ψ) − vsin(ψ).

Similarly, one obtains

z1,3 = L2
f z1,1⇒z1,3 = ∂z1,2

∂x f1 + ∂z1,2
∂y f2 + ∂z1,2

∂ψ
f3 + ∂z1,2

∂u f4 + ∂z1,2
∂v f5 + ∂z1,2

∂r f6 +
∂z1,2
∂z1

f7+ ∂z1,2
∂z2

f8⇒z1,3 = (−usin(ψ)−vcos(ψ)) f3+cos(ψ) f4−sin(ψ) f5⇒z1,3 =
(−usin(ψ)−vcos(ψ))r+cos(ψ)(vr+z1)−sin(ψ)(−ur−βv)⇒z1,3 = τucos(ψ)+
βvsin(ψ).

Equivalently, it holds that

z1,4 = L3
f z1,1⇒z1,4 = L f z1,3⇒z1,4 = ∂z1,3

∂x f1+ ∂z1,3
∂y f2+ ∂z1,3

∂ψ
f3+ ∂z1,3

∂u f4+ ∂z1,3
∂v f5+

∂z1,3
∂r f6 + ∂z1,3

∂z1
f7 + ∂z1,3

∂z2
f8,
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while after intermediate operations one obtains

z1,4 = (−τusin(ψ)+βvcos(ψ)) f3+βsin(ψ) f5+cos(ψ) f7⇒z1,4 = (−τusin(ψ)+
βcos(ψ))r +βsin(ψ)(−ur +βv)+cos(ψ)z2⇒z1,4 = (τ̇usin(ψ)+βvcos(ψ))r +
βsin(ψ)(−ur − βv) + cos(ψ)z2

or, using the extended state vector variables notation one has

z1,4 = z2cos(ψ) − z1sin(ψ)r − βursin(ψ)−
−β2vsin(ψ) + βvcos(ψ)r

(10.47)

It also holds that

ż1,4 = L4
f z1,1 + Lga L

3
f z1,1τ̈u + Lgb L

3
f z1,1τr⇒

ż1,4 = L f z1,4 + Lga z1,4τ̈u + Lgb z1,4τr
(10.48)

where
L f z1,4 = ∂z1,4

∂x f1 + ∂z1,4
∂y f2 + ∂z1,4

∂ψ
f3 + ∂z1,4

∂u f4+
+ ∂z1,4

∂v f5 + ∂z1,4
∂r f6 + ∂z1,4

∂z1
f7 + ∂z1,4

∂z2
f8

(10.49)

which gives

L f z1,4 = (−z2sin(ψ) − z1cos(ψ)r − βurcos(ψ) − β2vcos(ψ) − βvsin(ψ)r)r +
(−βrsin(ψ))(vr + z1) + (−β2sin(ψ) + βcos(ψ)r)(−ur + βv) + (−z1sin(ψ) −
βvsin(ψ) + βvcos(ψ))0 + (−sin(ψ)r)z2

while after some intermediate computations one obtains

L f z1,4 = −2z2sin(ψ)r − z1cos(ψ)r2−
−βvr2sin(ψ) − βz1rsin(ψ)−
−βur2cos(ψ) + β2ursin(ψ)−

−β3vsin(ψ) − β2vrcos(ψ) − βur2cos2(ψ) + β2vrcos(ψ)

−βvr2sin(ψ)

(10.50)

In a similar manner one computes

Lga z1,4 = ∂z1,4
∂x ga1 + ∂z1,4

∂y ga2 + ∂z1,4
∂ψ

ga3 + ∂z1,4
∂u ga4 + ∂z1,4

∂v ga5 + ∂z1,4
∂r ga6 + ∂z1,4

∂z1
ga7 +

∂z1,4
∂z2

ga8Lga z1,4 = ∂z1,4
∂z2

⇒Lga z1,4 = cos(ψ)

and also

Lgb z1,4 = ∂z1,4
∂x gb1 + ∂z1,4

∂y gb2 + ∂z1,4
∂ψ

gb3 + ∂z1,4
∂u gb4 + ∂z1,4

∂v gb5 + ∂z1,4
∂r gb6 + ∂z1,4

∂z1
gb7 +

∂z1,4
∂z2

gb8Lgb z1,4 = ∂z1,4
∂r ⇒Lgb z1,4 = −z1sin(ψ) − βusin(ψ) + βvcos(ψ)
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In an equivalent way, and using that z2,1 = y2 = y one can compute

z2,2 = L f z2,1⇒z2,2 = ∂z2,1
∂x f1 + ∂z2,1

∂y f2 + ∂z2,1
∂ψ

f3 + ∂z2,1
∂u f4 + ∂z2,1

∂v f5 + ∂z2,1
∂r f6 +

∂z2,1
∂z1

f7 + ∂z2,1
∂z2

f8⇒z2,2 = 1· f2⇒z2,2 = usin(ψ) + vcos(ψ)

Equivalently, one has

z2,3 = L2
f z2,1⇒z2,3 = L f z2,2⇒z2,3 = ∂z2,2

∂x f1+ ∂z2,2
∂y f2+ ∂z2,2

∂ψ
f3+ ∂z2,2

∂u f4+ ∂z2,2
∂v f5+

∂z2,2
∂r f6 + ∂z2,2

∂z1
f7 + ∂z2,2

∂z8
f8⇒z2,3 = (ucos(ψ) − vsin(ψ))r + sin(ψ)(vr + z1) +

cos(ψ)(−ur − βv)⇒z2,3 = z1sin(ψ) + βvcos(ψ)

In an equivalent manner one obtains

z2,4 = L3
f z2,1⇒z3,3 = L f z2,3 ⇒ z2,4 = ∂z2,3

∂x f1 + ∂z2,3
∂y f2 + ∂z2,3

∂ψ
f3 + ∂z2,3

∂u f4 +
∂z2,3
∂v f5+ ∂z2,3

∂r f6+ ∂z2,3
∂z1

f7+ ∂z2,3
∂z2

f8⇒z2,4 = (cos(ψ)−βvsin(ψ)) f3+βcos(ψ) f5+
sin(ψ) f7⇒z2,4 = (z1cos(ψ) − βvsin(ψ))r + (βcos(ψ)(−ur − βv) + sin(ψ)z2⇒
z2,4 = z1cos(ψ)r − βvrsin(ψ) − βurcos(ψ) + β2vcos(ψ) + z2sin(ψ)

Moreover, it holds that

ż2,4 = L4
f z2,1 + Lga L

3
f z2,1τ̈u + Lgb L

3
f z2,1τr (10.51)

where

L4
f z2,1 = L f z2,4⇒L4

f z2,1 = ∂z2,4
∂x f1 + ∂z2,4

∂y f2 + ∂z2,4
∂ψ

f3+
+ ∂z2,4

∂u f4 + ∂z2,4
∂v f5 + ∂z2,4

∂r f6 + ∂z2,4
∂z1

f7 + ∂z2,4
∂z2

f8⇒
(10.52)

which gives

L4
f z2,1 = [−z1sin(ψ)r − βvrcos(ψ) + βursin(ψ) − β2vsin(ψ) + z2cos(ψ)]r +

[−βrcos(ψ)](vr + z1) + [−βrsin(ψ) + β2cos(ψ)](−ur − βv) + [z1cos(ψ) −
βvsin(ψ) − βucos(ψ)]0 + [cos(ψ)r ]z2 + [sin(ψ)]0
and after additional computations one arrives at the form

L4
f z2,1 = −z1r2sin(ψ)−βvr2cos(ψ)+βur2sin(ψ)−β2vrsin(ψ)+ z2rcos(ψ)−

−βvr2cos(ψ) − βr z1cos(ψ) + βur2sin(ψ) − β2rvsin(ψ) − β2urcos
(ψ) + β2vcos(ψ) + z2rcos(ψ)

Proceeding as before, one computes

Lga L
3
f z2,1 = Lga z2,4⇒Lga L

3
f z2,1 = ∂z2,4

∂x ga1+ ∂z2,4
∂y ga2+ ∂z2,4

∂ψ
ga3+ ∂z2,4

∂u ga4+ ∂z2,4
∂v ga5+

∂z2,4
∂v ga6 + ∂z2,4

∂z1
ga7 + ∂z2,4

∂z2
ga8⇒Lga L

3
f z2,1 = ∂z2,4

∂z2
⇒Lga L

3
f z2,1 = sin(ψ)

Equivalently, one computes

Lgb L
3
f z2,1 = Lgb z2,4⇒Lgb L

3
f z2,1 = ∂z2,4

∂x gb1 + ∂z2,4
∂y gb2 + ∂z2,4

∂ψ
gb3 + ∂z2,4

∂u gb4 +
∂z2,4
∂v gb5+ ∂z2,4

∂r gb6+ ∂z2,4
∂z1

gb7+ ∂z2,4
∂z2

gb8⇒Lgb L
3
f z2,1 = ∂z2,4

∂v ⇒Lgb L
3
f z2,1 = z1cos(ψ) =

βvsin(ψ) − βucos(ψ)
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The aggregate dynamics of the input-output linearized system is

x (4) = L4
f z1,1 + Lga L

3
f z1,1τ̈u + Lgb L

3
f z1,1τr

y(4) = L4
f z2,1 + Lga L

3
f z2,1τ̈u + Lgb L

3
f z2,1τr

(10.53)

By defining the new control inputs

v1 = L4
f z1,1 + Lga L

3
f z1,1τ̈u + Lgb L

3
f z1,1τr

v2 = L4
f z2,1 + Lga L

3
f z2,1τ̈u + Lgb L

3
f z2,1τr

(10.54)

one arrives at the following description for the input-output linearized system

x (4) = v1

y(4) = v2
(10.55)

which can be also written in the state-space form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1,1

ż1,2

ż1,3

ż1,4

ż2,1

ż2,2

ż2,3

ż2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
v1

v2

)
(10.56)

while the associated measurement equation is

(
zm1
zm2

)
=

(
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1

z1,2

z1,3

z1,4
z2,1
z2,2
z2,3
z2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.57)

A suitable feedback control law for the linearized system is

v1 = x (4)
d − k11(x

(3) − x (3)
d ) − k12(ẍ − ẍd) − k13(ẋ − ẋd) − k14(x − xd), and v2 =

y(4)
d − k21(y

(3) − y(3)
d ) − k22(ÿ − ÿd) − k23(ẏ − ẏd) − k24(y − yd).
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One can also compute the control input that is finally applied to the hovercraft model.
It holds that

v̄ = f̃ + M̃ṽ (10.58)

where matrices and vectors v̄, f̃ , M̃ and ṽ are defined as

v̄ =
(
v1

v2

)
f̃ =

(
L4

f z1,1

L4
f z2,1

)

M̃ =
(
Lg,a L3

f z1,1 Lgb L
3
f z1,1

Lg,a L3
f z2,1 Lg,bL3

f z2,1

)
ṽ =

(
τ̈u

τr

) (10.59)

The above equation can be solved with respect to ṽ, which finally gives

ṽ = M̃−1(v̄ − f̃ ) (10.60)

The vector ũ is the control input that is finally applied to the system, which finally
means that the control signal contains integrals of the tracking error.

10.3.3 Differential Flatness Properties of the Hovercraft’s
Model

It can be proven that the model of the underactuated vessel (hovercraft) given in
Eq. (10.39) is a differentially flat one. This means that all its state variables and
the control inputs can be written as functions of a single variable, which is the flat
output. In the hovercraft’s case the flat output is the vector of the vessel’s cartesian
coordinates, that is

ỹ = [y1, y2] = [x, y] (10.61)

It holds that

ẍ = u̇cos(ψ) − u·sin(ψ)·ψ̇ − v̇sin(ψ) − v·cos(ψ)ψ̇

ÿ = u̇sin(ψ) + u·cos(ψ)·ψ̇ + v̇cos(ψ) − v·cos(ψ)ψ̇
(10.62)

Moreover, it holds that

ẍ + β ẋ = cos(ψ)(u̇ − vψ̇ + βu) + sin(ψ)(−uψ̇ − v̇ − βv)

ÿ + β ẏ = cos(ψ)(v̇ + uψ̇ + βv) + sin(ψ)(−vψ̇ + u̇ + βu)
(10.63)
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Using Eqs. (10.63) and (10.39), and after computing that

uψ̇ + v̇ + βv = u·r − ur − βv + βv = 0

u̇ − vψ̇ + βu = vr + τu − vr + βu = τu + βu
(10.64)

one obtains

ÿ + β ẏ

ẍ + β ẋ
= cos(ψ)0 + sin(ψ)(τu + βu)

cos(ψ)(τu + βu) − sin(ψ)0
⇒

ÿ + β ẏ

ẍ + β ẋ
= tan(ψ)⇒ψ = atan−1(

ÿ + β ẏ

ẍ + β ẋ
)

(10.65)

Thus, through Eq. (10.65) it is proven that the state variable ψ (heading angle of the
vessel) is a function of the flat output and of its derivatives.

From Eq. (10.63) one also has that

(ẍ + β ẋ)2 + (ÿ + β ẏ)2 = (τu + βu)2 (10.66)

Moreover, it holds that

ẋ(ẍ + β ẋ) = (ucos(ψ) − vsin(ψ))cos(ψ)(τu + βu)

ẏ(ÿ + β ẏ) = (usin(ψ) + vcos(ψ))sin(ψ)(τu + βu)
(10.67)

while using Eq. (10.66) and after intermediate computations one finally obtains

ẋ(ẍ + β ẋ) + ẏ(ÿ + β ẏ) = u(τu + βu) (10.68)

Dividing Eq. (10.68) with the square root of Eq. (10.66) one obtains

ẋ(ẍ + β ẋ) + ẏ(ÿ + β ẏ)√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

= u(τu + βu)

(τu + βu)
(10.69)

which finally give

u = ẋ(ẍ + β ẋ) + ẏ(ÿ + β ẏ)√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

(10.70)

It also holds that

ẏ ẍ − ẋ ÿ = (usin(ψ) + vcos(ψ))(u̇cos(ψ) − usin(ψ)ψ̇ − v̇sin(ψ) − vcos(ψ)ψ̇) −
−(ucos(ψ) − vsin(ψ))(u̇sin(ψ) + ucos(ψ)ψ̇ + v̇cos(ψ) − vsin(ψ)ψ̇)

which after intermediate computations and substitution of the derivative variables
from Eq. (10.39) give
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ẏ ẍ − ẋ ÿ = v(βu + τu) (10.71)

From Eqs. (10.71) and (10.66) one obtains

v = ẏ ẍ − ẋ ÿ√
(ẍ + β ẋ)2 + ÿ + β ẏ)2

(10.72)

From the state-space equations it holds that

r = ψ̇ (10.73)

where from Eq. (10.65) one has that

ψ = atan−1

(
ÿ + β ẏ

ẍ + β ẋ

)
(10.74)

which means that r is also a function of the flat output and of its derivatives. This
can be also confirmed analytically. Indeed from Eq. (10.74) it holds that

cos2(ψ)ψ̇ + sin2(ψ)ψ̇

cos2(ψ)
= (y(3) + βψ̈)(ẍ + β ẋ) − (ÿ + β ẏ)(x (3) + β ẍ)

(ẍ + β ẋ)2

(10.75)
which also gives

ψ̇

cos2(ψ)
= (y(3) + βψ̈)(ẍ + β ẋ) − (ÿ + β ẏ)(x (3) + β ẍ)

(ẍ + β ẋ)2
(10.76)

while using that
1

cos2 ψ
= tan2(ψ) + 1 (10.77)

one obtains that

cos2 ψ = (ẍ + β ẋ)2

(ẍ + β ẋ)2 + (ÿ + β ẏ)2
(10.78)

Thus, from Eqs. (10.76) and (10.73) one has that

r = ψ̇⇒r = cos2(ψ)
(y(3) + βψ̈)(ẍ + β ẋ) − (ÿ + β ẏ)(x (3) + β ẍ)

(ẍ + β ẋ)2
(10.79)

which after intermediate operations gives

r = y(3)(ẍ + β ẋ) − x (3)(ÿ + β ẏ) − β2(ẍ ẏ − ÿ ẋ)

(ẍ + β ẋ)2 + (ÿ + β ẏ)2
(10.80)



10.3 Flatness-Based Control for the Autonomous Hovercraft 543

Equivalently, from the state-space equations one has that

τu = u̇ − v·r⇒τu = d

dt

{
ẋ(ẍ + β ẋ) + ẏ(ÿ + β ẏ)√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

}
−

− ẏ ẍ − ẋ ÿ√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

· y
(3)(ẍ + β ẋ) − x (3)(ÿ + β ẏ) − β2(ẍ ẏ − ÿ ẋ)

(ẍ + β ẋ)2 + ÿ + β ẏ)2

(10.81)
which after intermediate operations gives

τu = ẍ(ẍ + β ẋ) + ÿ(ÿ + β ẏ)√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

(10.82)

Finally, for the control input τr it holds that τr = ṙ and using Eq. (10.80) this implies
that τr is also a function of the flat output and of its derivatives. This can be also
shown analytically according to the following:

τr = ṙ⇒τr =
y(4)(ẍ + βx) − x (4)(ÿ + β ẏ) + β(y(3) ẍ − x (3) ÿ) − β2(x (3) ẏ − y(3) ẋ)

[(ẍ + β ẋ)2 + (ÿ + β ẏ)2]·
−2

[y(3)(ẍ + β ẋ) − x3(ÿ + β ẏ) − β2(ẍ ẏ − ÿ ẋ)]
[(ẍ + β ẋ)2 + (ÿ + β ẏ)2]2 ·

·{(ẍ + β ẋ)(x (3) + β ẍ) + (ÿ + β ẏ)(y(3) + β ÿ)}

(10.83)

Through Eq. (10.83) it is confirmed that that all state variables and the control input
of the hovercraft’s model can be written as functions of the flat output and of its
derivatives. Consequently, the vessel’s model is a differential flat one.

10.3.4 Flatness-Based Control of the Hovercraft’s Model

Next, it will be shown that a flatness-based controller can be developed for the
hovercraft’s model. It has been shown that it holds

ẍ = u̇cos(ψ) − usin(ψ)ψ̇ − v̇sin(ψ) − vcos(ψ)ψ̇⇒ẍ = (vr + τu)cos(ψ) −
usin(ψ)r − (−ur − βv)sin(ψ) − vcos(ψ)r⇒ẍ = τucos(ψ) + βvsin(ψ)

By differentiating once more with respect to time and after intermediate operations
one finally obtains

x (3) = τ̇ucos(ψ) − τusin(ψ)r+
+β(−ur − βv)sin(ψ) + βvcos(ψ)r

(10.84)
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Similarly one has

ÿ = u̇sin(ψ) + ucos(ψ)ψ̇ + v̇cos(ψ) − vsin(ψ)ψ̇⇒ÿ = (vr + τu)sin(ψ) +
ucos(ψ)r + (−ur − βv)cos(ψ) − vsin(ψ)r⇒ÿ = τusin(ψ) − βvcos(ψ)

As in Sect. 10.3.2, the state vector of the system is extended so as to include as new
state variables the control input τu and its first derivative τ̇u . The new state variables
are denoted as z1 = τu and ż1 = τ̇u . The extended state-space description of the
system becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ψ̇

u̇

v̇

ṙ

ż1

ż2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ucos(ψ) − vsin(ψ)

usin(ψ) + vcos(ψ)

r

vr + z1

−ur − βv

0

z2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 0

0 0

0 0

0 1

0 0

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
τ̈u

τr

)
(10.85)

or equivalently, one has the description

ż = f (z) + g(z)ṽ (10.86)

The system’s state vector is again denoted as z = [x, y, ψ, u, v, r, z1, z2]T , f (z)∈
R8×1, and g(z) = [ga, gb]∈R8×2, while the control input is the vector ṽ = [τ̈u, τr ]T .

The extended state-space description of the system given in Eq. (10.85) or in its
compact form described by Eq. (10.86), is used. By differentiating once more with
respect to time and after intermediate operations one finally obtains

y(3) = z2sin(ψ) + z1cos(ψ)r + βurcos(ψ)+
+β2vcos(ψ) + βvsin(ψ)r

(10.87)

It can be noticed that in the equations of the third order derivatives for both x and
y only the control input τu and its derivative τ̇u appear, while the control input
τr is missing. Therefore, differentiation of x (3) once more with respect to time is
performed. This gives

x (4) = τ̈ucos(ψ) − 2z2sin(ψ)r − z1cos(ψ)r2 − z1sin(ψ)τr − βvr2sin(ψ) −
βz1rsin(ψ) − βuτr sin(ψ) − βur2cos(ψ) + β2ursin(ψ) − β3vsin(ψ) − β2vrcos
(ψ) − βur2cos(ψ) + β2vrcos(ψ) − βvr2sin(ψ) + βvcos(ψ)τr

while after substituting the time derivative according to Eq. (10.39) and after regroup-
ing terms one obtains a description of the form
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x (4) = [−2z2sin(ψ)r − z1cos(ψ)r2 − βvr2sin(ψ) − βz1rsin(ψ)−
−βur2cos(ψ) + β2ursin(ψ) − β3vsin(ψ) − β2vrcos(ψ)−
−βur2cos(ψ) + β2vrcos(ψ) − βvr2sinψ] + [cos(ψ)]τ̈u+

+[−z1sin(ψ) − βusin(ψ) + βvcos(ψ)]τr
Consequently, the fourth derivative of x is finally written in the form

x (4) = L4
f y1 + Lga L

3
f y1τ̈u + Lgb L

3
f y1τr (10.88)

where

L4
f y1 = −2z2sin(ψ)r − z1cos(ψ)r − βvr2sin(ψ) − βz1rsin(ψ)−

−βur2cos(ψ) + β2ursin(ψ) − β3vsin(ψ) − β2vrcos(ψ) − βur2cos(ψ)+
β2vrcos(ψ) − βvr2sinψ

Lga L
3
f y1 = cos(ψ) (10.89)

Lgb L
3
f y1 = −z1sin(ψ) − βusin(ψ) + βvcos(ψ) (10.90)

In a similar manner, differentiating once more with respect to time the expression
about y(3) one gets

y(4) = ż1cos(ψ)r − z1sin(ψ)ψ̇r + z1cos(ψ)ṙ−
−β v̇rsin(ψ) − βvṙ sin(ψ) − βvrcos(ψ)ψ̇−
−βu̇rcos(ψ) − βuṙcos(ψ) + βursin(ψ)ψ̇+

+β2v̇cos(ψ) − β2vsinψψ̇+
+ż2sin(ψ) + z2cos(ψ)ψ̇

(10.91)

while after substituting the time derivative according to Eq. (10.39) and after regroup-
ing terms one obtains a description of the form

y(4) = [z2rcos(ψ) − z1r2sin(ψ) + βur2sin(ψ) − β2vrsin(ψ) − βvr2cos(ψ)]
−βvr2cos(ψ) − βz1rcos(ψ) + βur2sin(ψ)−

−βurcos(ψ) + β2vcos(ψ) − β2vrsin(ψ) + z2rcos(ψ)]+
+[sin(ψ)]τ̈u + [z1cos(ψ) − βvsin(ψ) − βucos(ψ)]τr

Thus y(4) can be also written in the form

y(4) = L4
f y2 + Lga L

3
f y2τ̈u + Lgb L

3
f y2τr (10.92)
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where L4
f y2 = [z2rcos(ψ) − z1r2sin(ψ) + βur2sin(ψ) − β2vrsin(ψ) − βvr2cos

(ψ)] − βvr2cos(ψ) − βz1rcos(ψ) + βur2sin(ψ) − βurcos(ψ) + β2vcos(ψ) −
β2vrsin(ψ) + z2rcos(ψ)], and

Lga L
3
f y2 = sin(ψ) (10.93)

Lgb L
3
f y2 = z1cos(ψ) − βvsin(ψ) − βucos(ψ) (10.94)

Consequently, the aggregate input-output linearized description of the system
becomes

x (4) = L4
f y1 + Lga L

3
f y1τ̈u + Lgb L

3
f y1τr

y(4) = L4
f y2 + Lga L

3
f y2τ̈u + Lgb L

3
f y2τr

(10.95)

while by defining the new control inputs

v1 = L4
f y1 + Lga L

3
f y1τ̈u + Lgb L

3
f y1τr

v2 = L4
f y2 + Lga L

3
f y2τ̈u + Lgb L

3
f y2τr

(10.96)

the following description for the input-output linearized hovercraft model is obtained

x (4) = v1

y(4) = v2
(10.97)

For the dynamics of the linearized equivalent model of the system the following new
state variables can be defined

z1,1 = x z1,2 = ẋ z1,3 = ẍ z1,4 = x (3)

z2,1 = y z2,2 = ẏ z2,3 = ÿ z2,4 = y(3)
(10.98)

and the state-space description of the system becomes

ż = Az + Bv

zm = Cz
(10.99)

or equivalently
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1,1

ż1,2

ż1,3

ż1,4

ż2,1

ż2,2

ż2,3

ż2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
v1

v2

)
(10.100)

while the associated measurement equation is

(
zm1
zm2

)
=

(
1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.101)

A suitable feedback control law for the linearized system is

v1 = x (4)
d − k11(x

(3) − x (3)
d ) − k12(ẍ − ẍd) − k13(ẋ − ẋd) − k14(x − xd), and v2 =

y(4)
d − k21(y

(3) − y(3)
d ) − k22(ÿ − ÿd) − k23(ẏ − ẏd) − k24(y − yd)

One can compute again the control input that is finally applied to the hovercraft
model. It holds that

v̄ = f̃ + M̃ṽ (10.102)

where matrices and vectors v̄, f̃ , M̃ and ṽ are defined as

v̄ =
(
v1

v2

)
f̃ =

(
L4

f z1,1

L4
f z2,1

)

M̃ =
(
Lg,a L3

f z1,1 Lgb L
3
f z1,1

Lg,a L3
f z2,1 Lg,bL3

f z2,1

)
ṽ =

(
τ̈u

τr

) (10.103)

The above equation can be solved with respect to ũ, which finally gives

ṽ = M̃−1(v̄ − f̃ ) (10.104)
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The vector ṽ is the control input that is finally applied to the system, which finally
means that the control signal contains integrals of the tracking error.

For the linearized equivalent model of the system it is possible to perform state
estimation using the Derivative-free nonlinear Kalman Filter. Before computing the
Kalman Filter stages, the previously defined matrices A, B and C are substituted
by their discrete-time equivalents Ad , Bd and Cd . This is done through common
discretization methods. The recursion of the filter’s algorithm consists of two stages:

Measurement update:

K (k) = P−CT
d [P−CT

d P + R]−1

ẑ(k) = ẑ−(k) − K (k)[Cdz(k) − Cd ẑ−(k)]
P(k) = P−(k) − K (k)Cd P−(k)

(10.105)

Time update:
P−(k + 1) = AT

d P(k)Ad + Q(k)

ẑ−(k + 1) = Ad ẑ(k) + Bdu(k)
(10.106)

Moreover, by using the nonlinear transformations which are provided by differential
flatness theory according to Eqs. (10.70), (10.72), (10.74) and (10.79) one can obtain
estimates of the state variables of the initial nonlinear hovercraft model.

10.3.5 Disturbances’ Compensation with the Use
of the Derivative-Free Nonlinear Kalman Filter

Next, a Kalman Filtering method will be developed for estimating at the same time:
(i) the non-measurable state vector elements of the hovercraft and (ii) the external
perturbations that affect the vessel’s model. It is assumed that the input-output lin-
earized equivalent model of the system, is subject to disturbance terms which express
the effects of both modeling uncertainty and of external perturbations. Thus one has

x (4) = v1 + d̃1

y(4) = v2 + d̃2
(10.107)

It is considered that the disturbance signals are equivalently represented by their time
derivatives (up to order n) and by the associated initial conditions (however, since
disturbances are estimated with the use of the Kalman Filter, finally the dependence
on knowledge of initial conditions becomes obsolete). It holds that

d̃(n)
1 = fd1 d̃

(n)
2 = fd2 (10.108)

The system’s state vector is extended by including as additional state variables the
disturbances’ derivatives. Thus, taking that the derivative’s order is n = 2 one has
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zd,1 = d̃1 zd,2 = ˙̃d1 zd,3 = d̃2 zd,4 = ˙̃d2 (10.109)

and the extended state-space description of the hovercraft becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1,1

ż1,2

ż1,3

ż1,4

ż2,1

ż2,2

ż2,3

ż2,4

żd,1

żd,2

żd,3

żd,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

zd,1

zd,2

zd,3

zd,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

τ̈u
τr
fd1
fd2

⎞
⎟⎟⎠ (10.110)

while the associated measurement equation is

(
z1,1
z2,1

)
=

(
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

)
ze (10.111)

where ze = [z1,1, z1,2, z1,3, z1,4, z2,1, z2,2, z2,3, z2,4, zd,1, zd,2, zd,3, zd,4]T is the
extended state vector. Thus, the extended state-space description of the hovercraft
model takes the form

że = Aeze + Beve

zmeas
e = Ceze

(10.112)

For the extended state-space description of the systemone can design a state estimator
of the form ˙̂ze = Aoze + Bove + K (zmeas

e − Coẑe)

ẑmeas
e = Coẑe

(10.113)

where for the matrices Ao and Co it holds Ao = Ae and Co = Ce, while for matrix
Bo one has

BT
o =

⎛
⎜⎜⎝
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎠ (10.114)
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Again the Kalman Filter recursion provides joint estimation of the non-measurable
state vector elements, of the disturbances’ inputs and of their derivatives. Prior to
computing the Kalman Filter stages, the previously defined matrices A, B and C are
substituted by their discrete-time equivalents Aed , Bed and Ced . This is done through
common discretization methods. The recursion of the filter’s algorithm consists of
two stages. Thus, one has

Measurement update:

K (k) = P−
e CT

ed [P−
e Ced

T Pe + Re]−1

ẑe(k) = ẑ−
e (k) − K (k)[Ced ze(k) − Ced ẑe

−(k)]
Pe(k) = P−

e (k) − K (k)Ced P
−
e (k)

(10.115)

Time update:
P−
e (k + 1) = Aed

T Pe(k)Aed + Qe(k)

ẑ−
e (k + 1) = Aed ẑe(k) + Bed ve(k)

(10.116)

For compensating the disturbances’ effects, the modified control input that is applied
to the system is

v1 = x (4)
d − k11(x

(3) − x (3)
d ) − k12(ẍ − ẍd) − k13(ẋ − ẋd) − k14(x − xd) − ẑd,1 and

v2 = y(4)
d − k21(y

(3) − y(3)
d ) − k22(ẍ − ÿd) − k23(ẏ − ẏd) − k24(y − yd) − ẑd,2.

10.3.6 Simulation Tests

The performance of the flatness-based control method for the underactuated hover-
craft was evaluated in the case of several reference setpoints. The associated results
are presented in Figs. 10.36, 10.37, 10.38, 10.39 and 10.40. It can be observed that in
all cases the nonlinear feedback controller achieved fast and accurate tracking of the
reference setpoints. The Derivative-free nonlinear Kalman Filter enabled estimation
of the nonmeasurable variables of the system’s state-vector which were needed for
the implementation of the feedback control scheme. Moreover, by using the inverse
transformation that was provided by differential flatness theory it was possible to
obtain estimates of the state variables of the initial nonlinear system.

The convergence of the state variables of the hovercraft (position x , y to the
desirable setpoints is shown in Figs. 10.36a, 10.37a, 10.38a, 10.39a and 10.40a. The
estimation of the disturbance terms that were applied to the hovercraft model are
depicted in Figs. 10.36b, 10.37b, 10.38b, 10.39b and 10.40b, respectively. It can be
noticed again that the proposed feedback nonlinear control scheme achieved fast and
accurate tracking to these setpoints.

For the underactuated hovercraft one can succeed exactly the same motion and
orientation control as in the case of the fully actuated vessel. Therefore, it is possible
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Fig. 10.36 Reference path 1 a Trajectory tracking for states x , y of the underactuated hovercraft,
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter
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Fig. 10.37 Reference path 2 a Trajectory tracking for states x , y of the underactuated hovercraft,
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter

for the hovercraft to track complicated reference paths with excellent accuracy while
keeping also the desirable velocity. This has been demonstrated through a series
of examples, in the simulation tests section of the manuscript (Figs. 10.36, 10.37,
10.38, 10.39 and 10.40). It is noteworthy that the dynamic feedback linearization
procedure which has been implemented on the hovercraft’s model, results in the
canonical form description of Eqs. (10.100) and (10.101) which is confirmed to
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Fig. 10.39 Reference path 4 a Trajectory tracking for states x , y of the underactuated hovercraft,
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter

be controllable. Practically, this means that under the proposed control scheme the
vessel can reach any point in its motion plane and can track any reference path.

The possibility for the appearance of singularities in the computation of the control
signal is present in all static or dynamic feedback linearization algorithms which
arrive at a transformed control input of the form v = f (x, t) + g(x, t)u, that is
u = g(x, t)−1[v − f (x, t)]. There are two cases: (i) due to the inherent model of
g(x, t) its inverse never becomes 0. In such a case the singularity problem is avoided,
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Fig. 10.40 Reference path 5 a Trajectory tracking for states x , y of the underactuated hovercraft,
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter

(ii) for certain areas of the state vector space x∈Rn the zeroing of g(x, t)−1 cannot
be excluded. For the latter case the avoidance of singularities can be succeeded by a
state variables transformation into a new state-space representation which does not
include any points of singularity.

The presented simulation experiments have been performed under the assumption
that the hovercraft was subject to external disturbances such as wind or current. The
proposed control scheme is robust to modeling uncertainties and external perturba-
tions. This is a prerequisite in the design of control systems for underactuated surface
vessels [127, 167, 297, 345, 498, 627]. First, it has been proven that the feedback
control applied on the input-output linearized model of the hovercraft achieved the
placement of all poles of the control loop in the left complex semiplane. Next, it can
be confirmed that the extended state-space model of the hovercraft, which contains
disturbances as additional state variables, has multiple poles at the origin (multiple
poles at zero). This means that by output feedback one can achieve infinite gain
margin and a sufficiently large phase margin. With the use of the Derivative-free
nonlinear Kalman Filter it became possible to identify the perturbation and model-
ing uncertainty terms in real-time and subsequently to compensate for them through
the inclusion of an additional term in the control signal. This amendment in the feed-
back control scheme provided the control loop with elevated robustness. Finally, it
is worth mentioning that the proposed control scheme had an excellent performance
although it was not possible to measure directly all elements of the state vector (only
the cartesian coordinates of the vessel could be measured) and several state variables
had to be estimated with the use of filtering.

The model of the disturbances considered in this section is quite realistic. The dis-
turbance inputs can be represented equally well if their analytical function is known
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or if their nth order derivative and the associated initial conditions are known. How-
ever, in the latter case and with the Kalman filtering approach followed in the present
section, the knowledge of initial conditions becomes obsolete since theKalman Filter
can reconstruct the disturbance inputs and their derivatives without dependance on
initial conditions. In conclusion, the numerical simulation performed in this section
estimates quite well the disturbances’ effects. The disturbance inputs have a clear
physical meaning since they represent the effects of wind forces or wave forces
exerted on the vessel.

The control method which has been implemented in the present section is a global
linearization one. Thismeans that the vessel’s dynamicmodel is transformed through
a change of variables into an equivalent linear description for which the design of
the feedback controller becomes easier. Moreover, this linearization is an exact one
because it does not introduce any numerical errors due to truncation of terms in the
linearization procedure. Prior to this transformation the so-called dynamic extension
is performed that is the vessel’s state-spacemodel is extended by considering as addi-
tional state variables the control inputs and their derivatives [382, 634]. A second
major class of solutions for the problem of autonomous navigation of underactuated
vessels uses methods that asymptotically linearize the vessel’s dynamics. This holds
for instance in the case of H-infinity control or local models fuzzy control. The ves-
sel’s model can be linearized round local operating points. Next, for the linearized
model of the vessel a feedback controller is designed, taking also into account that
robustness should be exhibited against both approximate linearization errors and
external perturbations [79, 99, 205, 564]. A third class of possible solutions com-
prisesLyapunovmethods inwhich the stabilizing control of the underactuated vessels
is obtained from the procedure of minimization of a suitably chosen Lyapunov func-
tion. Such solutions can be model-based which means that prior knowledge about
the vessel’s dynamic model is available and is used by the control algorithm. They
can also be model-free taking the form of adaptive control. In the latter case the
vessel’s dynamic model is considered to be completely unknown and is identified
online by an adaptation scheme during the execution of the control algorithm [126,
127, 251, 279, 398]. The comparison of the aforementioned approaches shows that
the differential flatness theory-based method for the underactuated vessel is concep-
tually simpler and straightforward to implement, while also avoiding linearization
approximations, numerical errors and constraining assumptions about the structure
of the controlled vessel’s model.

10.4 A Nonlinear H-Infinity Control Approach
for Underactuated Surface Vessels

10.4.1 Outline

In this section control of unmanned surface vessels (USVs) is based on a local
linearization approach. The linearization takes place round theUSV’s local operating
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point which is defined at each time instant by the present value of the state vector and
the last value of the control inputs vector [461]. The linearizationmakes use of Taylor
series expansion and of the computation of Jacobian matrices [33, 431, 463, 564].
The modelling error, due to truncation of higher order terms in the Taylor series, is
considered as perturbation which is compensated by the robustness of the control
algorithm. For the linearized model of the USV an H-infinity feedback controller is
designed. A cost function is introduced comprising the weighted square of the error
of the system’s state vector (distance of the state vector from the reference setpoints).

This control method represents a differential game taking place between the
control input which tries to minimize the above cost function and between the distur-
bances which try to maximize this objective function. The computation of the feed-
back control gain requires the solution of an algebraic Riccati equation, which takes
place at each iteration of the control algorithm. The solution of the Riccati equation
provides a positive definite symmetric matrix which is used as a weighting coeffi-
cient in the computation of the controller’s feedback gain. The known robustness
features of H-infinity control assure the elimination of perturbation effects, which in
turn implies compensation of model uncertainty terms, external disturbance inputs
as well as of measurement noises. The stability properties of the control scheme are
assured by Lyapunov analysis. It is shown that the proposed feedback control law
for USVs results in H-infinity tracking performance which means robustness against
modeling uncertainty and external perturbations. Under moderate conditions it is
also proven that the control loop is also globally asymptotically stable. The tracking
accuracy and the smooth transients in the proposed USV control method are also
confirmed through simulation experiments.

Yet computationally simple, the proposed H∞ control scheme has an excellent
performance. Comparing to the control of underactuated vessels that is based on
global linearization methods (see [416, 450, 452, 457, 460]), the following features
can be attributed to the presented nonlinear H-infinity control scheme (i) it is applied
directly on the nonlinear dynamical model of the underactuated vessel and does not
require the computation of diffeomorphisms (change of variables) that will bring
the system into an equivalent linearized form, (ii) the computation of the feedback
control signal follows an optimal control concept and requires the solution of an
algebraic Riccati equation at each iteration of the control algorithm, (iii) the method
retains the advantages of typical optimal control, that is fast and accurate tracking of
the reference trajectories under moderate variations of the control inputs.

10.4.2 Approximate Linearization of the Underactuated
Vessel

In the previous section it was shown that the joint kinematic and dynamic model of
the underactuated vessel is
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⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ
ẏ
ψ̇

u̇
v̇
ṙ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ucos(ψ) − vsin(ψ)

usin(ψ) + vcos(ψ)

r

v·r
−ur − βv

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
1 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(
τu
τr

)
(10.117)

where (x, y) are the cartesian coordinates if the vessel in the inertial reference frame,
ψ is the heading angle of the vessel in the inertial reference frame, u is the surge
velocity, v is the sway velocity, r is the yaw rate, β is a function of the elements of
the inertia matrix of the vessel.

Linearization of the vessel’s kinematic and dynamic model will be performed
round a local operating point (equilibrium) (x∗, u∗). To this end, the joint kinematics
and dynamics model of Eq. (10.117) is written in the form:

ẋ = f (x) + g(x)u (10.118)

where the state vector is x = [x1, x2, x3, x4, x5, x6]T = [x, y, ψ, u, v, r ]T and

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x4cos(x3) − x5sin(x3)

x4sin(x3) + x5cos(x3)

x6

x5x6

−x4x6 − βx5

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0

0 0
0 0
1 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(10.119)

The linearization of the vessel’s model round the temporary equilibrium gives

ẋ = Ax + Bu (10.120)

where

A = ∇x [ f (x) + g(x)u] |(x∗,u∗) ⇒A = ∇x f (x) |(x∗,u∗) (10.121)

B = ∇u[ f (x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗) (10.122)

For the Jacobian matrix A = ∇x [ f (x) + g(x)u] |(x∗,u∗), it holds that

A = ∇x [ f (x) + g(x)u] |(x∗,u∗) ⇒
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A =

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

∂ f1
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· · · ∂ f1
∂x6
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∂x1

∂ f2
∂x2

∂ f2
∂x3

· · · ∂ f2
∂x6

· · · · · · · · · · · ·
∂ f6
∂x1

∂ f6
∂x2

∂ f6
∂x3

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎟⎟⎠

(10.123)

For the first row of the aforementioned Jacobian matrix one has:
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 0, ∂ f1
∂x3

= −x4sin(x3) − x5cos(x3),
∂ f1
∂x4

= cos(x3),
∂ f1
∂x5

= −sin(x3),
∂ f1
∂x6

= 0.

For the second row of the aforementioned Jacobian matrix one has:
∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0, ∂ f2
∂x3

= x4cos(x3) − x5sin(x3),
∂ f2
∂x4

= sin(x3),
∂ f2
∂x5

= cos(x3),
∂ f2
∂x6

= 0.

For the third row of the aforementioned Jacobian matrix one has:
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0, ∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0, ∂ f3
∂x6

= 1.

For the fourth row of the aforementioned Jacobian matrix one has:
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0, ∂ f4
∂x3

= 0, ∂ f4
∂x4

= 0, ∂ f4
∂x5

= x6,
∂ f4
∂x6

= x5.

For the fifth row of the aforementioned Jacobian matrix one has:
∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

= 0, ∂ f5
∂x4

= −x6,
∂ f5
∂x5

= −β, ∂ f5
∂x6

= −x4.

For the sixth row of the aforementioned Jacobian matrix one has:
∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0, ∂ f6
∂x3

= 0, ∂ f6
∂x4

= 0, ∂ f6
∂x5

= 0, ∂ f6
∂x6

= 0.

10.4.3 Design of an H-Infinity Nonlinear Feedback
Controller

10.4.3.1 Equivalent Linearized Dynamics of the Vessel

After linearization round its current operating point, the USV’s dynamic model is
written as

ẋ = Ax + Bu + d1 (10.124)

Parameter d1 stands for the linearization error in theUSV’s dynamicmodel appearing
in Eq. (10.124). The reference setpoints for USV’s state vector are denoted by xd =
[xd1 , . . . , xd6 ]. Tracking of this trajectory is achieved after applying the control input
ũ∗. At every time instant the control input ũ∗ is assumed to differ from the control
input u appearing in Eq. (10.124) by an amount equal to Δu, that is ũ∗ = u + Δu
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ẋd = Axd + Bu∗ + d2 (10.125)

The dynamics of the controlled system described in Eq. (10.124) can be also written
as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (10.126)

and by denoting d3 = −Bũ∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bũ∗ + d3 (10.127)

By subtracting Eq. (10.125) from (10.127) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (10.128)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (10.129)

The above linearized form of the USV’s model can be efficiently controlled after
applying an H-infinity feedback control scheme.

10.4.3.2 The Nonlinear H-Infinity Control

The initial nonlinear model of the unmanned surface vessel is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (10.130)

Linearization of the model of the unmanned surface vessel is performed at each
iteration of the control algorithm round its present operating point (x∗, u∗) =
(x(t), u(t − Ts)), where Ts is the sampling period. The linearized equivalent of
the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (10.131)

where matrices A and B are obtained from the computation of the Jacobians

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ f̃1
∂x1

∂ f̃1
∂x2

· · · ∂ f̃1
∂xn

∂ f̃2
∂x1

∂ f̃2
∂x2

· · · ∂ f̃2
∂xn

· · · · · · · · · · · ·
∂ f̃n
∂x1

∂ f̃n
∂x2

· · · ∂ f̃n
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) B =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ f̃1
∂u1

∂ f̃1
∂u2

· · · ∂ f̃1
∂um

∂ f̃2
∂u1

∂ f̃2
∂u2

· · · ∂ f̃2
∂um

· · · · · · · · · · · ·
∂ f̃n
∂u1

∂ f̃n
∂u2

· · · ∂ f̃n
∂um

⎞
⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) (10.132)
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and vector d̃ denotes disturbance terms due to linearization errors. As already
analyzed, the problem of disturbance rejection for the linearized model that is
described by

ẋ = Ax + Bu + Ld̃

y = Cx (10.133)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

It has been already noted in the previous application examples of the H∞ control
approach, that a feedback control scheme is designed for trajectory tracking by the
system’s state vector and simultaneous disturbance rejection, considering that the
disturbance affects the system in the worst possible manner. The disturbances’ effect
are incorporated in the following quadratic cost function:

J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (10.134)

It has been pointed out that the meaning of the negative sign in the cost function’s
term that is associated with the perturbation variable d̃(t) is that the disturbance tries
to maximize the cost function J (t) while the control signal u(t) tries to minimize
it. The physical meaning of the relation given above is that the control signal and
the disturbances compete to each other within a min–max differential game. This
problem of min–max optimization can be written as

minumaxd̃ J (u, d̃) (10.135)

As previously explained, the objective of the optimization procedure is to compute a
control signal u(t) which can compensate for the worst possible disturbance, that is
externally imposed to the system.However, the solution to themin–max optimization
problem is directly related to the value of parameter ρ. This means that there is an
upper bound in the disturbances magnitude that can be annihilated by the control
signal.

10.4.3.3 Computation of the Feedback Control Gains

For the linearized system given by Eq. (10.133) the cost function of Eq. (10.134)
is defined, where the coefficient r determines the penalization of the control input
and the weight coefficient ρ determines the reward of the disturbances’ effects. It
is assumed that (i) The energy that is transferred from the disturbances signal d̃(t)
is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L] are

stabilizable, (iii) the matrix [A,C] is detectable. Then, the optimal feedback control
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Fig. 10.41 Diagram of the nonlinear H-infinity control scheme for the unmanned surface vessel

law is given by
u(t) = −Kx(t) (10.136)

with

K = 1

r
BT P (10.137)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (10.138)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by d̃(t) = 1

ρ2 LT Px(t). The diagram of the considered control loop is depicted
in Fig. 10.41.

10.4.4 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the USV, and that in case
of bounded disturbance terms asymptotic convergence to the reference setpoints is
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achieved. The tracking error dynamics for the unmanned surface vessel is written in
the form

ė = Ae + Bu + Ld̃ (10.139)

where in the USV’s case L = I∈R6×6 with I being the identity matrix. Variable
d̃ denotes model uncertainties and external disturbances of the USV’s model. The
following Lyapunov function is considered

V = 1

2
eT Pe (10.140)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2e

T Pė⇒
V̇ = 1

2 [Ae + Bu + Ld̃]T Pe + 1
2e

T P[Ae + Bu + Ld̃]⇒ (10.141)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (10.142)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(10.143)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + ( 12u
T BT Pe + 1

2e
T PBu)+

+( 12 d̃
T LT Pe + 1

2e
T PLd̃)

(10.144)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (10.145)

Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (10.146)

By substituting Eqs. (10.145) and (10.146) one obtains

V̇ = 1
2e

T [−Q + P( 2r BB
T − 1

ρ2 LLT )P]e+
+eT PB(− 1

r B
T Pe) + eT PLd̃⇒ (10.147)
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V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(10.148)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (10.149)

or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(10.150)

Lemma: The following inequality holds

1

2
eT PLd̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (10.151)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(10.152)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (10.153)

Equation (10.153) is substituted in Eq. (10.150) and the inequality is enforced, thus
giving

V̇ ≤ −1

2
eT Qe + 1

2
ρ2d̃T d̃ (10.154)

Equation (10.154) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||d̃||2dt

(10.155)
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Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (10.156)

then one gets
∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (10.157)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (10.140) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe ≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the unmanned surface vessel relies on Eq. (10.154)
and on the application of Barbalat’s Lemma. It uses the condition of Eq. (10.156)
about the boundedness of the square of the aggregate disturbance and modelling
error term d̃ that affects the model. However, as explained above the proof of global
asymptotic stability is not restricted by this condition. By selecting the attenuation
coefficient ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2
one has that the first derivative of the Lyapunov function is upper bounded by 0.
Therefore for the i th time interval it is proven that the Lyapunov function defined in
Eq. (10.140) is a decreasing one. This also assures that the Lyapunov function of the
system defined in Eq. (10.140) will always have a negative first-order derivative.

10.4.5 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop can be implemented with the use of information provided by a
small number of sensors and by processing only a small number of state variables.
To reconstruct the missing information about the state vector of the hovercraft it is
proposed to use a filtering scheme and based on it to apply state estimation-based
control [457]. As previously explained, the recursion of the H∞ Kalman Filter, for
the model of the USV, can be formulated in terms of a measurement update and a
time update part.

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(10.158)
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Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)
(10.159)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1−θW (k)+CT (k)R(k)−1C(k)will be positive definite.When θ = 0
the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the USV, and estimate through filtering the
rest of the state vector elements. Moreover, the proposed Kalman filtering method
can be used for sensor fusion purposes.

10.4.6 Simulation Tests

The efficiency of the nonlinear H-infinity control method for the problem of
autonomous navigation of the underactuated unmanned surface vessels, was tested in
the case of tracking of several reference trajectories. The setpoints have been chosen
by taking into account the differential flatness properties of the vessel which have
been explained in previous sections. In the autonomous vessel’s case the flat outputs
of the model are the vessel’s cartesian coordinates (x, y).

In the presented simulation experiments state estimation-based control has been
implemented. Out of the 6 state variables of the USV only the cartesian coordinates
of the vessel (x, y)where considered to be measurable. The rest of the state variables
were indirectly estimated with the use of the H-infinity Kalman Filter. The real value
of each state variable has been plotted in blue, the estimated value has been plotted
in green, while the associated reference setpoint has been plotted in red.

The obtained results are presented in Figs. 10.42, 10.43, 10.44, 10.45, 10.46,
10.47, 10.48, 10.49, 10.50 and 10.51. The state variables of the model have been
measured in SI units. It has been confirmed that the proposed control method resulted
in fast and accurate tracking of the reference paths. The H-infinity controller assured
fast elimination of the tracking error for all state variables of the USV while the
variation of the control inputs was smooth and remained within moderate ranges.
The method exhibited significant robustness both to the modelling error that was due
to the approximate linearization of the USV’s dynamics and to parametric changes.

The tracking performance of the nonlinearH-infinity controlmethod for themodel
of the underactuated vessel (in its state estimation-based implementation) is outlined
in Table 10.3:

Apart from remarkable tracking accuracy, the proposed control method exhibits
also significant robustness. Even if it is considered that the controller is designed
under uncertainty about parameter β of Eq. (10.39) and deviation from the parame-
ter’s nominal value (β = 15), the state variables of the hovercraft converged accu-
rately to the reference setpoint and the tracking error was negligible. The robustness
of the control method is defined by the attenuation coefficient ρ. Actually, maximum
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Fig. 10.42 Reference path 1: a Tracking of the reference trajectory (red line) in the x − y plane by
the unmanned surface vessel (blue line), b Convergence of the state variables of the vessel x1 = x ,
x2 = y and x3 = ψ (blue line) to the associated reference values (red line)
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Fig. 10.43 Reference path 1: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Fig. 10.44 Reference path 2: a Tracking of the reference trajectory (red line) in the x − y plane by
the unmanned surface vessel (blue line), b Convergence of the state variables of the vessel x1 = x ,
x2 = y and x3 = ψ (blue line) to the associated reference values (red line)
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Fig. 10.45 Reference path 2: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Fig. 10.46 Reference path 3: a Tracking of the reference trajectory (red line) in the x − y plane by
the unmanned surface vessel (blue line), b Convergence of the state variables of the vessel x1 = x ,
x2 = y and x3 = ψ (blue line) to the associated reference values (red line)
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Fig. 10.47 Reference path 3: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Fig. 10.48 Reference path 4: a Tracking of the reference trajectory (red line) in the x − y plane by
the unmanned surface vessel (blue line), b Convergence of the state variables of the vessel x1 = x ,
x2 = y and x3 = ψ (blue line) to the associated reference values (red line)
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Fig. 10.49 Reference path 4: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Fig. 10.50 Reference path 5: a Tracking of the reference trajectory (red line) in the x − y plane by
the unmanned surface vessel (blue line), b Convergence of the state variables of the vessel x1 = x ,
x2 = y and x3 = ψ (blue line) to the associated reference values (red line)
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Fig. 10.51 Reference path 5: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Table 10.3 RMSE of the USV’s state variables

Parameter x y ψ u v r

RMSE1 0.677 · 10−4 0.499 · 10−4 0.355 · 10−4 0.001 · 10−4 0.001 · 10−4 0.002 · 10−4

RMSE2 2.412 · 10−4 4.845 · 10−4 0.418 · 10−4 0.856 · 10−4 0.001 · 10−4 0.001 · 10−4

RMSE3 4.556 · 10−4 5.851 · 10−4 5.945 · 10−4 2.493 · 10−4 0.038 · 10−4 9.418 · 10−4

RMSE4 3.993 · 10−4 8.129 · 10−4 3.710 · 10−4 3.450 · 10−4 0.047 · 10−4 4.528 · 10−4

RMSE5 2.554 · 10−4 1.549 · 10−4 0.679 · 10−4 1.280 · 10−4 0.003 · 10−4 0.020 · 10−4

robustness is achieved for the smallest value of ρ for which the algebraic Riccati
equation given in Eq. (10.145) can be solved.

As previously noted, the joint kinematic-dynamic model of the surface vessel
comes primarily from [517, 518]. The considered model is related to a specific type
of surface vessels that is hovercrafts. The model of hovercrafts, is obtained from the
generic ship model under specific assumptions about the vessel’s parameters and this
issue has been analyzed in Ref. [416]. However, the section’s results can be applied
to more types of surface vessels.

Comparing the H-infinity control approach for the underactuated model of the
hovercraft against other controlmethods such asPIDcontrol the following conclusion
can be reached: PID control is of questionable performance and unsuitable for the
problem of autonomous navigation of unmanned surface vessels. PID controllers
are usually tuned round local operating points and assuming a linear dynamics for
the controlled system. In the case of the unmanned surface vessel the condition
about linearity of the vessel’s kinematic-dynamic model does not hold. Moreover, in
the problem of autonomous navigation the reference setpoints change continuously,
therefore one cannot assume that the operating points of the control loop remain
unchanged. Consequently, one cannot select gains of the PID controller that assure
the reliable functioning of the vessel’s control loop, in terms of global asymptotic
stability. Additionally, the PID control is vulnerable to external perturbations. In
conclusion PID control is not computationally simpler than the proposed control
nonlinear H-infinity control method. Besides it cannot assure the stability of the
control loop.

10.5 Validation of Distributed Kalman Filtering for Ship
Tracking Applications

10.5.1 Outline

As it has been already pointed out, filtering and controlmethods of improved accuracy
are necessary for developing safe autonomous surface or underwater vessels and
reliable maritime transportation systems [222, 271, 555, 625, 631]. By estimating
the motion characteristics of a ship through filtering procedures it becomes possible
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to implement feedback control for precise trajectory tracking and for avoidance of
collisionswith nearbyvessels [148, 227, 450, 457, 462].DistributedKalmanfiltering
is often used for the localization and motion characteristics estimation of ships [189,
234, 309, 329]. Therefore, it is important to develop statistical validation methods
for confirming the accuracy of such filtering schemes and for initiating parameters
update and corrections in the associated algorithms [30, 33, 58, 107, 170, 221, 430,
652]. To this end, in this section a statistical method is applied for validating the
precision of Fuzzy Kalman Filtering, and aiming at a more efficient tracking of the
motion of marine vessels.

Fuzzy Kalman Filtering (FKF) is a distributed filtering approach in which a global
state estimate is obtained after making use of fuzzy weighting of local estimates pro-
vided by distributed Kalman Filters [189, 234, 309, 329]. In the case of autonomous
vessels and maritime traffic monitoring, this means that the motion plane of the ves-
sels on the sea surface is covered by spatially distributed Kalman Filters, and that the
aggregate estimate of a ship’s motion characteristics is computed through a fuzzy
averaging procedure. The estimate provided by each local Kalman Filter is attributed
a weight which denotes the proximity of a vessel to the center of the area covered
by this specific Kalman Filter. To compute an estimate of the ship’s state vector
each local Kalman Filter makes use of a model of the ship’s dynamics. However, the
parameters of certain local models may differ from the nominal values of the param-
eters constituting the real ship dynamics. In such a case inaccurate state estimates are
produced, first at a local level, while at a second stage this erroneous state estimates
are reflected in the aggregate outcome of the distributed filtering procedure.

The purpose of statistical validation of the Fuzzy Kalman Filter is to detect if the
filter provides reliable and precise state estimates about the ship’s motion. Moreover,
the statistical validation test should detect the local filters which make use of the
inaccurate dynamic model of the vessel, thus enabling the update of these models
and the removal of errors from the filtering procedure. The Fuzzy Kalman Filter
validation method developed in this section is based on the local statistical approach
to fault diagnosis. To apply the method, it is first shown that local Kalman Filters are
equivalent to ARMAXmodels and next that the Fuzzy Kalman Filter is equivalent to
a set of fuzzy weighted ARMAX models [76, 190, 211, 632]. A key element of the
proposed validation approach is theGeneralizedLikelihoodRatio, computed through
the processing of the residuals of the estimation procedure (that is the differences
between the real and the estimated outputs of the ship’s dynamics) [34, 42, 463, 464,
633]. This finally results in the χ2 change detection test and enables to define an
optimal threshold beyond which the distributed filtering procedure and the indicated
local dynamical models of the vessels are considered to be unreliable [32, 35, 624].
The efficiency of the proposed validation scheme for the Fuzzy Kalman Filter is
confirmed through simulation experiments, making use of a 6th order model of a
surface vessel dynamics. It is shown that the statistical validation test is capable of
detecting the faulty local filter, even under small errors in the localmodel’s parameters
which do not exceed 1% of the associated nominal values.
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10.5.2 Dynamic Model of Surface Vessels

10.5.2.1 Estimation of the Ship’s State Vector

The sensor fusion-based estimation procedure for obtaining the ship’s state vector is
affected by uncertainties characterizing the ship’s dynamicmodel. Such uncertainties
can be due to parametric variations in the model of Eqs. (10.13) and (10.14) or due
to external disturbances, e.g. additive input disturbances as shown in Eqs. (10.2) and
(10.10).

In the case of a surface vessel, defining the generalized state vector x = [η, η̇]T
and considering invariance of the disturbance d for specific time periods, one obtains
the generalized ship state-space model

η̈ + J (η)−1[C(η, η̇) + F(η)]η̇ − J−1(η)d = J−1(η)τ (10.160)

Setting x1 = η, x2 = d, x3 = η̇, x4 = ḋ and taking into account the existence of
process and measurement noise one obtains a ship’s model of the form

ẋ = Ax + Bu + w
z = γ (x) + v

(10.161)

where matrices A and B are given by

A =
(
03×3 I3×3

03×3 −J−1(x)[C(x, ẋ) + F(x)]
)

B = (
03×3 J−1(x)

)T
(10.162)

The extended state vector is x = [x1, x2, x3, x4]T with xi ∈ R3×1, i = 1, 2, 3, 4.
The control input is τ ∈ R3×1. The measurement vector of the ship’s model is given
by z = [x, y, ψ]T , where x, y are measurements of the ship’s cartesian coordinates,
and ψ is a measurement of the ship’s orientation. The vectors of process and mea-
surement noises are denoted as w and v, respectively. Using the above state-space
representation, state vector x can be estimated by processing a sequence of output
measurements y with the use of a state observer or Kalman Filtering [222, 555].

10.5.3 Fuzzy Kalman Filtering for Ship Motion Estimation

Fuzzy Kalman Filtering is a distributed filtering approach is which the aggregate
state estimate is provided by fuzzy weighting of the estimates generated by local and
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Fig. 10.52 Fuzzy Kalman
Filtering for ship tracking
applications

V

spatially distributed Kalman Filters [189, 234, 309, 329]. Here, the sea surface is
partitioned into local areas, each one monitored by a different Kalman Filter. The
area that each Kalman Filter covers is described by fuzzy rules Rl of the form:

Rl IF x is Ai AND y is A j THEN K Fl estimates x̂ l (10.163)

where i = 1, 2, . . . , n, j = 1, 2, . . . , n and l = 1, 2, . . . n × m.
Next, it is assumed that the partitioning of the sea surface is as depicted in

Fig. 10.52. Then the associated Fuzzy Kalman Filter is described by the follow-
ing fuzzy rules:

IF x is A1 AND y is A1 THEN K F1

IF x is A1 AND y is A2 THEN K F2

IF x is A2 AND y is A1 THEN K F3

IF x is A2 AND y is A2 THEN K F4

· · · · · · · · · · · · · · · · · · · · · · · ·
IF x is An AND y is An − 1 THEN K Fn×n−1

IF x is An AND y is An THEN K Fn×n

(10.164)

Next, the number of the fuzzy rules is denoted as M = n×n. The aggregate estimate
that is provided by the fuzzy Kalman Filter is of the form

x̂ =
M∑
l=1

∏N
i=1A

l
i∑M

j=1

∏N
i=1A

j
i

x̂l⇒x̂ =
M∑
l=1

wl x̂l (10.165)
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According to the above the ship’s model was written in the linear state-space form

ẋ = Ax + Bu + w

y = Cx + v
(10.166)

while after discretization, the discrete-time description of the linearized ship dynam-
ics, in discrete-time, is obtained

x(k + 1) = Adx(k) + Bdu(k) + w(k)

y(k) = Cdx(x) + v(k)
(10.167)

The i th Kalman Filter, which is associated with the lth fuzzy rule is given by

x̂ l(k + 1) = Al
d x̂(k) + Bl

du(k) + Kl
f C

l
d(x

l(k)) − x̂ l(k) (10.168)

The difference ε(k) = Cl
d(x

l(k)) − x̂ l(k) between the real and the estimated output
of the vessel’s dynamic model, is the residual and follows a zero-mean Gaussian dis-
tribution. By applying the z transformation the equivalent description of the Kalman
Filter in the z-frequency domain can be obtained, which has a MIMO transfer func-
tion form

⎛
⎜⎝
Y1(z)

Y2(z)

Y3(z)

⎞
⎟⎠ =

⎛
⎜⎝
H A

11 H A
12 H A

13

H A
21 H A

22 H A
23

H A
31 H A

32 H A
33

⎞
⎟⎠

⎛
⎜⎝
U1(z)

U2(z)

U3(z)

⎞
⎟⎠ +

⎛
⎜⎝
HB

11 HB
12 HB

13

HB
21 HB

22 HB
23

HB
31 HB

32 HB
33

⎞
⎟⎠

⎛
⎜⎝
E1(z)

E2(z)

E3(z)

⎞
⎟⎠ (10.169)

Next, examining for instance the subsystem

Y1(z)H A
11U1(z) + H A

12U2(z) + H A
13U3(z)+

+HB
11E1(z) + HB

12E2(z) + HB
13E3(z)

(10.170)

where each one of the transfer functions H1 j j = 1, 2, 3 included in the above
description has in its denominator the system’s characteristic polynomial given by
the determinant |z I − Ad |. Taking into account that this characteristic polynomial is
of 6th order one gets the equivalent ARMAX description

y1(k) = ∑6
i=1ai y(k − i) + ∑5

j1=1b j1u1(k − j1)+
+∑5

j2=1c j2u2(k − j2) + ∑5
j3=1c j3u3(k − j3)+

+∑5
m1=1 pm1ε1(k − m1) + ∑5

m2=1qm2ε2(k − m2)+
+∑5

m3=1rm3ε3(k − m3)

(10.171)

where coefficients ai i = 1, 2, 3 are obtained from the system’s characteristic poly-
nomial det |z I − A| in descending order. Next, the aforementioned characteristic
polynomial is computed. It holds that
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A =
(
03×3 I3×3

03×3 −J−1x)[C(x, ẋ) + F(x)]

)
(10.172)

Furthermore, using the definition of matrices J , C and F given in Eqs. (10.15),
(10.16) and (10.17) respectively, and considering that the yaw angle of the ship is 0,
that is ψ = 0 and ψ̇ = 0 one obtains C = 03×3 while

J =
⎛
⎜⎝
m11 0 0

0 m22 0

0 m23 0

⎞
⎟⎠ F =

⎛
⎜⎝
d11 0 0

0 d22 d23

0 d32 d23

⎞
⎟⎠ (10.173)

To compute the system’s description in MIMO transfer function form, one has to
calculate first the inverse matrix (z I − Ad)

−1. It holds that

Q = (z I − Ad)
−1 = 1

|z I − Ad | ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q11 −Q21 Q31 Q41 −Q51 Q61

−Q12 Q22 −Q32 −Q42 Q52 −Q62

Q13 −Q23 Q33 Q43 −Q53 Q63

−Q14 Q24 −Q34 −Q44 Q54 −Q64

Q15 −Q25 Q35 Q45 −Q55 Q65

−Q16 Q26 −Q36 Q46 −Q56 Q66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.174)

where the elements of the adjoint matrix are

Q11 = (z−1)2(z−1− Ts
d11
m11

)[(z−1− Tsv55)(z−1− Tsv66)− (−1− Tsv65)(−1−
Tsv56)], Q12 = 0, Q13 = 0, Q14 = 0, Q15 = 0 and Q16 = 0.

Q21 = 0, Q22 = (z − 1)2(z − 1 − Ts
d11
m11

)[(z − 1 − Tsv65)(z − 1 − Tsv66) − (−1 −
Tsv65)(−1 − Tsv56)], Q23 = 0, Q24 = 0, Q25 = 0, and Q26 = 0.

Q31 = 0, Q32 = 0, Q33 = (z− 1)2(z− 1− Ts
d11
m11

)[(z− 1− Tsv55)(z− 1− Tsv66)−
(−1 − Tsv65)(−1 − Tsv56)], Q34 = 0, Q35 and Q36 = 0.

Q41 = (z − 1)2(−Ts)[(z − 1− Tsv65)(z − 1− Tsv66) − (−1− Tsv65)(−1− Tsv56)],
Q42 = 0, Q43 = 0, Q44 = (z − 1)2[(z − 1 − Tsv55)(z − 1 − Tsv66) − (−1 −
Tsv65)(−1 − Tsv56)], Q45 = 0, and Q46 = 0.

Q51 = 0, Q52 = −Ts(z − 1)2(z−1− Ts
d11
m11

)(z−1− Tsv66), Q53 = Ts(z − 1)2(z−
1 − Ts

d11
m11

)(−1 − Tsv65), Q54 = (z − 1)3(z − 1 − Ts
d11
m11

)(z − 1 − Tsv66), Q55 =
(z − 1)3(z−1−Ts

d11
m11

)(z−1−Tsv66), and Q56 = (z − 1)3(z−1−Ts
d11
m11

)(−1−Tsv65)

Q61 = 0, Q62 = (z − 12)(z − 1− Ts
d11
m11

)(−Ts)(−1− Tsv56), Q63 = −(z − 1)2(z −
1− Ts

d11
m11

)Ts(z − 1− Tsv55), Q64 − 0, Q65 = (z − 1)3(z − 1− Ts
d11
m11

)(−1− Tsv56),

Q66 = (z − 1)3(z − 1 − Ts
d11
m11

)(z − 1 − Tsv55).
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The computation of the associated characteristic polynomial gives:

det (z I − A) = z6 + [(−2 − Tsv66) − Tsv55 + (−4 + Ts
d11
m11

)]z5+

[(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+

+ (−4 + Ts
d11
m11

)(−2 − Tsv66 − Tsv55) + (6 + 3Ts
d11
m11

)]z4+

[(−4 + Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+

+ (6 + 3Ts
d11
m11

)(−2 − Tsv66 − Tsv55) + (−4 − 3Ts
d11
m11

)]z3+ (10.175)

[(6 + 3Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+

+ (−4 − 3Ts
d11
m11

)(−2 − Tsv66 − Tsv55) + (1 + Ts
d11
m11

)]z2+

[(−4 − 3Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+

+ (1 + Ts
d11
m11

)(−2 − Tsv66 − Tsv55)]z+

[(1 + Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)]

where Ts is the sampling period and

v55 = d22m11m33 − d33m11m23

m11(m22m33 − m2
23)

v56 = d23m11m33 + d33m11m23

m11(m22m33 − m2
23)

v65 = d22m11m23 + d33m11m22

m11(m22m33 − m2
23)

v66 = −d23m11m23 + d33m11m22

m11(m22m33 − m2
23)

(10.176)

Next, to avoid extended computations in the section’s example, the ARMAX model
of Eq. (10.171) is simplified into the form

yl(k + 1) = al1y
l(k) + al2y

l(k − 1) + al3y
l(k − 2)+

+bl1u
l
1(k) + bl2u

l
2(k) + bl3u

l
3(k)+

+cl1ε
l
1(k)

(10.177)
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where l = 1, 2, 3, 4 is the lth local model and

al1 = −[(−2 − Tsv66) − Tsv55 + (−4 + Ts
d11
m11

)]

al2 = −[(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+
+(−4 + Ts

d11
m11

)(−2 − Tsv66 − Tsv55) + (6 + 3Ts
d11
m11

)]

al3 = −[(−4 + Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+
+(6 + 3Ts

d11
m11

)(−2 − Tsv66 − Tsv55) + (−4 − 3Ts
d11
m11

)]
(10.178)

Moreover, taking into account that the transfer functionmatrices given inEq. (10.169),
are H A(z) = Cd(z I − Ad)

−1B and HB(z) = Cd(z I − Ad)
−1K f (where K f is the

gain of the Kalman Filter), and that the measurement matrix for the ship’s model is
C = [I3×3 03×3], it holds

H A(z) = 1

det (z I − Ad)

⎛
⎜⎝

Q11 −Q21 Q31 −Q41 Q51 −Q61

−Q12 Q22 −Q32 Q42 −Q52 Q62

Q13 −Q23 Q33 −Q43 Q53 −Q63

⎞
⎟⎠ ·

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0

− Ts
m11

0 0

0 − Tsm33

m22m33 − m2
23

Tsm23

m22m33 − m2
23

0
Tsm23

m22m33 − m2
23

− Tsm22

m22m33 − m2
23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.179)

HB(z) = 1

det (z I − Ad )

⎛
⎜⎝

Q11 −Q21 Q31 −Q41 Q51 −Q61

−Q12 Q22 −Q32 Q42 −Q52 Q62

Q13 −Q23 Q33 −Q43 Q53 −Q63

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K f11 K f12 K f13

K f21 K f22 K f23

K f31 K f32 K f33

K f41 K f42 K f43

K f51 K f52 K f53

K f61 K f62 K f63

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.180)

Then for the rest of the parameters of the local ARMAXmodel of the Kalman Filter
one has that:

b1 is the coefficient multiplying the highest order term of the polynomial [TsQ41]/
m11, b2 is the coefficient multiplying the highest order term of the polynomial
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[−Tsm33Q51 − Tsm23Q61]/(m22m33 − m2
23), b3 is the coefficient multiplying the

highest order term of the polynomial [Tsm23Q51 + Tsm22Q61]/(m22m33 − m2
23),

and c1 is the coefficient multiplying the highest order term of the polynomial
K f11Q11 − K f21Q21 + K f31Q31 − K f41Q41 + K f51Q51 − K f61Q61.

Using the above and Fig. 10.52 the fuzzy Kalman Filter for the ship tracking
problem is described by the following fuzzy rule base:

IF x is A1AND y is A1 THEN

ŷ1(k + 1) = a11 ŷ
1(k) + a12 ŷ

1(k − 1) + a13 ŷ
1(k − 2)+

+b11u
1
1(k) + b12u

1
2(k) + b13u

1
3(k) + c11ε

1
1(k)

IF x is A1AND y is A2 THEN

ŷ2(k + 1) = a11 ŷ
2(k) + a12 ŷ

2(k − 1) + a23 ŷ
2(k − 2)+

+b11u
2
1(k) + b22u

2
2(k) + b23u

2
3(k) + c21ε

2
1(k)

IF x is A2AND y is A1 THEN

ŷ3(k + 1) = a31 ŷ
1(k) + a32 ŷ

3(k − 1) + a33 ŷ
3(k − 2)+

+b31u
3
1(k) + b32u

3
2(k) + b33u

3
3(k) + c31ε

3
1(k)

IF x is A2AND y is A2 THEN

ŷ4(k + 1) = a41 ŷ
4(k) + a42 ŷ

4(k − 1) + a43 ŷ
4(k − 2)+

+b41u
4
1(k) + b42u

4
2(k) + b43u

4
3(k) + c41ε

4
1(k)

(10.181)

For a properly functioning fuzzy Kalman Filter it should hold a1j = a2j = a3j =
a4j j = 1, 2, 3 and similarly b1j = b2j = b3j = b4j j = 1, 2, 3, and finally c1j =
c2j = c3j = c4j j = 1. If the above condition does not hold then for at least one local
Kalman Filter the parameters of the ship model used in the estimation procedure are
incorrect. The statistical change detection test which is proposed in this section is
capable of detecting the inconsistent local Kalman Filter.

10.5.4 Consistency of the Kalman Filter

To obtain accurate estimates with the Kalman Filter, previously a tuning process is
required. A question that arises is about which state estimates can be considered as
reliable. There is need for systematic methods showing when the Kalman Filter is not
performing optimally and when its retuning, either in terms of the used dynamic or
kinematicmodel or in terms of the covariancematrices, should be performed. Several
methods can be applied to test the consistency of the Kalman Filter, from the desired
characteristics of the measurement residuals. These include the normalized error
square (NES) test, the autocorrelation test, and the normalized mean error (NME)
test and have been analyzed in [30, 107].
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(i) It is assumed that a discrete error process ek with dimension m × 1 is a zero-
mean Gaussian white-noise process with covariance given by Ek . This process can
be the Kalman Filter’s residual associated to the state estimation error or the residual
associated to themeasurement estimation error. Then, the following normalized error
square (NES) is defined

εk = eTk E
−1
k ek (10.182)

The normalized error square follows a χ2 distribution. An appropriate test for the
normalized error sum is to numerically show that the following condition is met
within a level of confidence (according to the properties of the χ2 distribution)

E{εk} = m (10.183)

This can be achieved using statistical hypothesis testing, which are associated with
confidence intervals. A 95% confidence interval is frequently applied, which is spec-
ified using 100(1 − a) with a = 0.05. Actually, a two-sided probability region
is considered cutting-off two end tails of 2.5% each. For M runs of Monte-Carlo
experiments the normalized error square that is obtained is given by

ε̄k = 1

M

M∑
i=1

εk(i) = 1

M

M∑
i=1

eTk (i)E−1
k (i)ek(i) (10.184)

where εi stands for the i th run at time tk . ThenM ε̄k will follow a χ2 density withMm
degrees of freedom. This condition can be checked using a χ2 test. The hypothesis
holds true if the following condition is satisfied

ε̄k∈[ζ1, ζ2] (10.185)

where ζ1 and ζ2 are derived from the tail probabilities of the χ2 density. For example,
form = 2 and M = 100 one has χ2

Mm(0.025) = 162 and χ2
Mm(0.975) = 241. Using

thatM = 100 one obtains ζ1 = χ2
Mm(0.025)/M = 1.62 and ζ2 = χ2

Mm(0.975)/M =
2.41.

(ii)Another consistency checkingmethod is the test forwhiteness. This is obtained
by using the following sample autocorrelation:

ρ̄k, j = 1√
M

M∑
i=1

eTk (i)

[
M∑
i=1

ek(i)e
T
k (i)

M∑
i=1

e j (i)e
T
j (i)

]−1/2

e j (i) (10.186)

For a sufficiently large value of M , variable ρ̄ j,k for k �= j is zero mean with variance
given by 1/M . Next the application of the central limit theorem provides a normal
approximation, and considering a 95% confidence interval one finally obtains
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ρ̄ j,k∈
[
−1.96

M
,+1.96

M

]
(10.187)

(iii) An additional consistency test is based on the normalized mean error (NME) for
the j th element of ek

[μ̄k] j = 1

M

M∑
j=1

[ek] j√[Ek] j j
, j = 1, 2, . . . , M (10.188)

Then, since the variance of [μ̄k] j is 1
M for a 95% acceptance interval one has

[μ̄k] j∈
[
−1.96√

M
,+1.96√

M

]
(10.189)

The hypothesis holds true, if Eq. (10.189) is satisfied. The NES, NME and autocor-
relation consistency tests can be all performed with a single run using N data points.
Using a time-averaging approach one obtains a low variability test statistic, which
can be executed in real-time. In the latter case the time-average NES is given by

ε̄ = 1

N

N∑
k=1

eTk E
−1
k ek (10.190)

Considering that ek is a zero mean, white-noise process, then N ε̄ follows a χ2

density distribution with Nm degrees of freedom. Through the computation of the
time-average auto-correlation the whiteness test for ek is

ρ̄ j = 1√
N

N∑
k=1

eTk ek+ j

[
N∑

k=1

eTk ek

N∑
k=1

eTk+ j ek+ j

] −1
2

(10.191)

For N sufficiently large, ρ̄ j has zero mean and variance given by 1/N . With a 95%
acceptance interval one has

ρ̄ j∈
[
−1.96√

N
,+1.96√

N

]
(10.192)

The hypothesis is accepted if Eq. (10.192) is satisfied. The aforementioned tests can
be applied to the residuals of the Kalman Filter or to the Kalman Filter state errors for
checking the consistency of the obtained estimation and for checking the necessary
consistency for filter optimality. If the tests are not satisfied then this means that the
Kalman Filter is not running optimally, and the filter has to be retuned, or the filter’s
design has to be reconsidered.
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In this section a systematic method, the local statistical approach to fault diag-
nosis, will be introduced for checking the consistency of Fuzzy Kalman Filtering. It
will be shown that the method is capable of identifying the elements responsible for
the filter’s failure, in the dynamic or kinematic model associated with the estimation
performed by the local Kalman filters.

10.5.5 Change Detection with the Local Statistical Approach

10.5.5.1 The Global χ2 Test for Change Detection

The local statistical approach to fault diagnosis is a statisticalmethod of fault diagno-
sis which can be used for consistency checking of the Fuzzy Kalman Filter. Based on
a small parametric disturbance assumption, the proposed FDI method aims at trans-
forming complex detection problems concerning a parameterized stochastic process
into the problem of monitoring the mean of a Gaussian vector. The local statistical
approach consists of two stages: (i) the global test which indicates the existence of
a change in some parameters of the fuzzy model, (ii) the diagnostics tests (sensitiv-
ity or min–max) which isolate the parameter affected by the change. The method’s
stages are analyzed first, following closely the method presented in [33, 633].

As shown in Fig. 10.53 the proposedmethod relies on the definition of the residual
ei described as the difference between the output from the nonlinear ARMAXmodel
of the Fuzzy Kalman Filter obtained with the use of the changed dynamics or kine-
matics of the system and the output of the nonlinear ARMAX model of the Fuzzy

(a) (b)

Fig. 10.53 a Residual between the Fuzzy Kalman Filter that uses consistent local models and the
Fuzzy Kalman Filter that uses inconsistent (distorted) local models, b Probability density function
of the χ2 distribution, for various degrees of freedom p
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Kalman Filter obtained with the use of the unchanged dynamics or kinematics. The
nonlinear ARMAX model is actually a neuro-fuzzy model of the Takagi–Sugeno
type that is based on the system’s dynamics or kinematics model in an undistorted
(fault-free) mode.

The concept of this FDI technique is as follows: there is a nonlinear ARMAX
model that represents the unchanged systemdynamics.At each time instant the output
of the aforementioned reference nonlinear ARMAXmodel is compared to the output
of the nonlinear ARMAX model that represents the changed system dynamics. The
difference between these two output measurements is called residual. The statistical
processing of a sufficiently large number of residuals through anFDImethodprovides
an index-variable that is compared against a fault threshold’ and which can give
early indication about deviation of the model used by the Kalman Filter from the real
system dynamics or kinematics. Under certain conditions (detectability of changes)
the proposed FDI method enables also fault isolation, i.e. to identify the source of
fault within the model used by the Fuzzy Kalman Filter. In practical terms this means
that the proposed change detection method can find out the i th local Kalman Filter
(out of the N local Kalman Filters that constitute the Fuzzy Kalman Filter) which
makes use of an inconsistentmodel of themonitored vessel’s dynamics or kinematics.

Considering the representation of the FuzzyKalman Filter as a neuro-fuzzymodel
of the Takagi–Sugeno type, the partial derivative of the residual square is:

H(θ, yi ) = 1

2

∂e2i
∂θ

= ei
∂ ŷi
∂θ

(10.193)

where θ is the vector of model’s parameters. The vector H having as elements
the above H(θ, yi ) is called primary residual. Since the nonlinear ARMAX model
is a neuro-fuzzy model, the gradient of the output with respect to the consequent
parameters clfi is given by

∂ ŷ

∂clfi
= xiμRl (x)∑L

l=1μRl (x)
(10.194)

The gradient with respect to the center cli has been given in Eq. (10.217) while the
gradient with respect to the spread vli has been given in Eq. (10.218).

Next, having calculated the partial derivatives of Eqs. (10.216)–(10.218), the rows
of the Jacobian matrix J are found by

J (θ0, yk) = ∂ ŷk(θ)

∂θ

∣∣∣∣
θ=θ0

(10.195)

where θ0 represents the nominal value of the parameters. The problem of change
detectionwith theχ2 test consists ofmonitoring a change in themean of theGaussian
variable which for the one-dimensional parameter vector θ is formulated as
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X = 1√
N

N∑
i=1

ek
∂ ŷk
∂θ

∼ N(μ, σ 2) (10.196)

where ŷk is the output of the neural model generated by the input pattern xk , ek is the
associated residual and θ is the vector of the model’s parameters. It is noted that X
is the monitored parameter for the FDI test, which means that when the mean value
of X is 0 the system is in the fault-free condition, while when the mean value of X
has moved away from 0 the system (Kalman Filter) is in a faulty condition. For a
multivariable parameter vector θ should hold X ∼ N(Mδθ, S), where S denotes the
covariance matrix of X . In order to decide if the system (Kalman Filter) is in fault-
free operating conditions, given a set of data of N measurements, let θ∗ be the value
of the parameters vector μ minimizing the RMSE. The notation is introduced only
for the convenience of problem formulation, and its actual value does not need to be
known. Then the model validation problem amounts to make a decision between the
two hypotheses [33, 633]:

H0 : θ∗ = θ0

H1 : θ∗ = θ0 + 1√
N

δθ
(10.197)

where δθ �= 0. It is known from the central limit theorem that for a large data sample,
the normalized residual given by Eq. (10.196) asymptotically follows a Gaussian
distribution when N→∞ [33, 34, 42]. More specifically, the hypothesis that has to
be tested is:

H0 : X ∼ N(0, S)

H1 : X ∼ N(Mδθ, S)

where M is the sensitivity matrix (see Eq. (10.198)), δθ is the change in the param-
eters’ vector and S is the covariance matrix (see Eq. (10.199)). The product Mδθ

denotes the new center of the monitored Gaussian variable X , after a change on
the system’s parameter θ . The sensitivity matrix M of 1√

N
X is defined as the mean

value of the partial derivative with respect to θ of the primary residual defined in
Eq. (10.215), i.e. E{ ∂

∂θ
H(θ, yk)} and is approximated by [33, 35, 624, 633]:

M(θ0) � ∂

∂θ

1

N

∑N

k=1
H(θ0, yk) � 1

N
JT J (10.198)

The covariance matrix S is defined as E{H(θ, yk)HT (θ, yk+m)},m = 0,±1, . . . and
is approximated by [32]:

S � ∑N
k=1[H(θ0, yk)HT (θ0, yk)]+

+∑I
m=1

1
N−m

∑N−m
k=1 [H(θ0, yk)HT (θ0, yk+m)+

+H(θ0, yk+m)HT (θ0, yk)]
(10.199)
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where an acceptable value for I is 3. The decision tool is the likelihood ratio s(X) =
ln

pθ1(x)

pθ0(x)
, where pθ1(X) = e[X−μ(X)]T S−1[X−μ(X)] and pθ0(X) = eX

T S−1X [633]. The
center of the Gaussian distribution of the changed system is denoted asμ(X) = Mδθ

where δθ is the change in the parameters vector. The Generalized Likelihood Ratio
(GLR) is calculated by maximizing the likelihood ratio with respect to δθ [32]. This
means that the most likely case of parameter change is taken into account. This gives
the global χ2 test t :

t = XT S−1M(MT S−1M)−1MT S−1X (10.200)

Since X asymptotically follows a Gaussian distribution, the statistics defined in
Eq. (10.200) follows a χ2 distribution with n degrees of freedom. Mapping the
change detection problem to this χ2 distribution enables the choice of the change
threshold. Assume that the desired probability of false alarm is α then the change
threshold λ should be chosen from the relation [33, 633]

∫ ∞

λ

χ2
n (s)ds = α, (10.201)

where χ2
n (s) is the probability density function (p.d.f.) of a variable that follows the

χ2 distribution with n degrees of freedom.

10.5.5.2 Statistical Fault Isolation with the Sensitivity Test

Fault isolation is needed to identify the source of faults in the dynamic or kinematic
model of the system used by the Fuzzy Kalman Filter. This means that the fault
diagnosis method should also be able to find out (among the N local Kalman Filters
that constitute the Fuzzy Kalman Filter) which is the local Kalman Filter that makes
use of an inconsistent model. A first approach to change isolation is to focus only on a
subset of the parameters while considering that the rest of the parameters unchanged
[32]. The parameters vector η can be written as η = [φ,ψ]T , where φ contains those
parameters to be subject to the isolation test, whileψ contains those parameters to be
excluded from the isolation test.Mφ contains the columns of the sensitivity matrixM
which are associated with the parameters subject to the isolation test. Similarly Mψ

contains the columns of M that are associated with the parameters to be excluded
from the sensitivity test.

Assume that among the parameters η, it is only the subset φ that is suspected
to have undergone a change. Thus η is restricted to η = [φ, 0]T . The associated
columns of the sensitivity matrix are given by Mφ and the mean of the Gaussian to
be monitored is μ = Mφφ, i.e.

μ = MAφ, A = [0, I ]T (10.202)
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Matrix A is used to select the parameters that will be subject to the fault isolation
test. The rows of A correspond to the total set of parameters while the columns of A
correspond only to the parameters selected for the test. Thus the fault diagnosis χ2

test (sensitivity test) of Eq. (10.200) can be restated as [33, 633]:

tφ = XT S−1Mφ(MT
φ S−1Mφ)−1MT

φ S−1X (10.203)

10.5.5.3 Statistical Fault Isolation with the Min–Max Test

In this approach the aim is to find a statistic that will be able to detect a change on
the part φ of the parameters vector η and which will be robust to a change in the
non observed part ψ [32]. Assume the vector partition η = [φ,ψ]T . The following
notation is used:

MT S−1M =
(
Iϕϕ Iϕψ

Iψϕ Iψψ

)
(10.204)

γ =
(

ϕ

ψ

)T

·
(
Iϕϕ Iϕψ

Iψϕ Iψψ

)
·
(

ϕ

ψ

)
(10.205)

where S is the previously defined covariance matrix. The min–max test aims to
minimize the non-centrality parameter γ with respect to the parameters that are not
suspected for change. The minimum of γ with respect to ψ is given for [33, 463,
633]:

ψ∗ = argmin
ψ

γ = ϕT (Iϕϕ − Iϕψ I
−1
ψψ Iψϕ)ϕ (10.206)

and is found to be

γ ∗ = min
ψ

γ = ϕT (Iϕϕ − Iϕψ I
−1
ψψ Iψϕ)ϕ =

=
(

ϕ

−I−1
ψψ Iψϕϕ

)T (
Iϕϕ Iϕψ

Iψϕ Iψψ

) (
ϕ

−I−1
ψψ Iψϕϕ

) (10.207)

which results in

γ ∗ = ϕT {[I,−Iϕψ I
−1
ψψ ]MTΣ−1} Σ−1{Σ−1M[I,−Iϕψ I

−1
ψψ ]}ϕ (10.208)

The following linear transformation of the observations is considered:

X∗
φ = [I,−Iϕψ I

−1
ψψ ]MTΣ−1X (10.209)

The transformed variable X∗
φ follows a Gaussian distribution N (μ∗

φ, I ∗
φ ) with

mean:
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Table 10.4 Stages of the local statistical approach for FDI

1. Generate the residuals partial derivative given by Eq. (10.215)

2. Calculate the Jacobian matrix J given by Eq. (10.195)

3. Calculate the sensitivity matrix M given by Eq. (10.198)

4. Calculate the covariance matrix S given by Eq. (10.199)

5. Apply the χ2 test for change detection of Eq. (10.200)

6. Apply the change isolation tests of Eq. (10.203) or (10.212)

μ∗
ϕ = I ∗

ϕ ϕ (10.210)

and with covariance:

I ∗
ϕ = Iϕϕ − Iϕψ I

−1
ψψ Iψϕ (10.211)

The min–max test decides between the hypotheses:

H∗
0 : μ∗ = 0

H∗
1 : μ∗ = I ∗

ϕϕ

and is described by:

τ ∗
ϕ = X∗

ϕ
T I ∗

ϕ
−1X∗

ϕ (10.212)

The stages of fault detection and isolation (FDI) with the use of the local statistical
approach are summarized in Table10.4.

10.5.5.4 Sensitivity of the Fuzzy Kalman Filter to Parametric Changes

It was shown that the Fuzzy Kalman Filter can be represented as a fuzzy weighting
of ARMAX models, which is actually the so-called Takagi–Sugeno fuzzy model.
These are written as:

Rl : IF x1 is Al
1AND x2 is Al

2 AND · · ·AND xn is Al
n

THEN ȳl = ∑n
i=1c

l
fi
xi l = 1, 2, . . . , L

(10.213)

where Rl is the lth rule, x = [x1, x2, . . . , xn]T is the input (antecedent) variable, ȳl

is the output (consequent) variable, and wl
i , b

l are the parameters of the local linear
models. The output of the Takagi–Sugeno model is given by the weighted average
of the rules consequents [211, 463]:
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ŷ =
∑L

l=1 ȳ
l
∏n

i=1μAl
i
(xi )∑L

l=1

∏n
i=1μAl

i
(xi )

(10.214)

where μAl
i
(xi ) : R→[0, 1] is the membership function of the fuzzy set Al

i in the
antecedent part of the rule Rl . The output of the lth local model is given by ȳl =∑n

i=1c
l
fi
xi [211, 463].

First, the residual ei is defined as the difference between the fuzzy model output
ŷi and the physical system output yi , i.e. ei = ŷi − yi . It is also acceptable to
define the residual as the difference between the fuzzy model output and the exact
model output, where the exact model replaces the physical system and has the same
number of parameters as the fuzzy model (see Fig. 10.53). The partial derivative of
the residual square is:

H(θ, yi ) = 1

2

∂e2i
∂θ

= ei
∂ yi
∂θ

(10.215)

The vector H having as elements the above H(θ, yi ) is called primary residual. Next,
the gradients of the outputwith respect to themodel’s parameters are computed [463].
In the case of fuzzy models the gradient of the output with respect to the consequent
parameters wl

i is given by

∂ ŷ

∂wl
i

= xiμRl (x)∑L
l=1μRl (x)

(10.216)

The gradient with respect to the center cli is

∂ ŷ

∂cli
=

L∑
l=1

yl 2(xi−cli )
vli

μRl (xi )[∑L
j=1 μR j (xi ) − μRl (xi )]

[∑L
l=1 μRl (xi )]2

(10.217)

The gradient with respect to the spread vli is

∂ ŷ

∂vli
=

L∑
l=1

yl 2(xi−cli )
2

vli
3 μRl (xi )[∑L

j=1 μR j (xi ) − μRl (xi )]
[∑L

l=1 μRl (xi )]2
(10.218)

It is noted that the equivalence between the fuzzy Kalman filter and a Takagi–Sugeno
neurofuzzy model enables to exploit previous results on fault detection and isolation
for non-parametric estimators, such as neurofuzzy networks, by making use the
local statistical approach to fault diagnosis. By describing the Fuzzy Kalman filter
in the form of a Takagi–Sugeno neurofuzzy model it becomes easy to complete the
intermediate stages for the application of the change detection method, which are
described in Table 10.4 [32, 463].
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10.5.6 Simulation Tests

The motion of the ship was considered to be monitored by the Fuzzy Kalman Filter
of Fig. 10.52. The fuzzy Kalman Filter through local linear models was taken to
consist of the following rules:

R(1) : I F x1 is (c(1)
1 , v) AND x2 is (c(1)

2 , v) AND · · ·
AND xn is (c(1)

n , v) · · · T HEN ŷ = c f
(1)xT

R(2) : I F x1 is (c(2)
1 , v) AND x2 is (c(2)

2 , v) AND · · ·
AND xn is (c(2)

n , v) · · · T HEN ŷ = c f
(2)xT

R(3) : I F x1 is (c(3)
1 , v) AND x2 is (c(3)

2 , v) AND · · ·
AND xn is (c(3)

n , v) · · · T HEN ŷ = c f
(3)xT

R(4) : I F x1 is (c(4)
1 , v) AND x2 is (c(4)

2 , v) AND · · ·
AND xn is (c(4)

n , v) · · · T HEN ŷ = c f
(4)xT

According to Sect. 10.5.3, the regressor’s vector appearing in the consequent part
of the previous fuzzy rules is xT = [ŷ(k), ŷ(k − 1), ŷ(k − 2), u1(k), u2(k), u3(k),
ε1(k)]T , while the parameters’ vector is c f = [a1, a2, a3, b1, b2, b3, c1]. The above
model implies fusion of local estimates from 4 sub-models. The spread of the mem-
bership functions is denoted by v. A 2D projection of the input space partition is
demonstrated in Fig. 10.54.

As mentioned before, to reduce the number of parameters in the statistical vali-
dation test, only the first three variables were maintained in the AR part of the local
ARMAX models, that is y(k − 1), y(k − 2) and y(k − 3). Thus, the parameters set
in the new TSK fuzzy model consisted of 4× 7+ 4× 3 = 40 parameters (28 linear
parameters which were the output layer weights and 12 nonlinear parameters which
were the centers of the fuzzy sets in the antecedent part of the rules). This means that
by applying the local statistical approach to FDI and the χ2 change detection test to
the considered model, the fault threshold should be equal to 40.

The numerical tests confirmed theory. In case that no fault was assumed for the
monitored system the mean value of the χ2 test over a number of trials was found
to be close to the threshold value 40. Such a value was anticipated according to the
theoretical analysis of the χ2 test. For slight deviations of the parameters of the fuzzy
Kalman Filter from their nominal (fault-free) values, the global χ2 test was capable
of giving a clear indication about the existence of a fault. Thus for changes which
varied between 0.1% and 1% of the nominal parameter’s value the score of the χ2

test deviated significantly from the fault threshold (which as mentioned before was
set equal to 40).
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Fig. 10.54 Fuzzy rule base generated with input space partition

Table 10.5 Comparison
between χ2 and MSE tests

% change χ2 MSE

0.20 44.45 1.01 · 10−6

0.24 60.54 1.01 · 10−6

0.30 101.21 1.01 · 10−6

0.35 106.99 1.01 · 10−6

0.40 172.49 1.01 · 10−6

0.45 165.97 1.02 · 10−6

0.50 187.87 1.02 · 10−6

0.55 230.14 1.02 · 10−6

0.60 295.33 1.02 · 10−6

0.65 282.00 1.03 · 10−6

0.70 330.59 1.03 · 10−6

0.75 365.88 1.03 · 10−6

A comparison between (i) the proposedχ2 change detection test based on the local
statistical approach and the Generalized Likelihood ratio and (ii) the mean square
error (MSE) test, for detectingmodel inconsistencies in the distributed/fuzzyKalman
Filter is given in Table 10.5 and in Fig. 10.55. It can be clearly noticed that for small
parametric changes in the ship’s local models used by the fuzzy Kalman Filter, the
MSE test gives the erroneous conclusion that the functioning of the Kalman Filter
remains accurate. Actually it is observed that there is no change in the MSE value
despite changes in the parameters of the model used by the Kalman Filter, and the
MSE value remains low as in the case of fault-free operation. Besides in theMSE test
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Fig. 10.55 Comparison between i the proposed χ2 test based on the local statistical approach and
the Generalized Likelihood ratio and ii of the mean square error (MSE) test, for detecting model
inconsistencies in the distributed/Fuzzy Kalman Filter

the fault threshold is defined in an ad-hoc manner and this is another reason for the
low credibility of this test. On the other hand the proposed χ2 test based on the local
statistical approach and the Generalized Likelihood ratio provides a clear indication
about inconsistencies between the models used by the fuzzy Kalman Filter and the
dynamics of the real system. Despite the small magnitude of parametric changes, the
output of the χ2 test based on the local statistical approach becomes several times
larger than the fault threshold (that is 40). Thus a clear indication is provided about
the need to correct the parameters of the local models used by the Fuzzy Kalman
Filter.

As far as fault isolation is concerned, the numerical results showed that the sen-
sitivity method for fault isolation was very efficient in distinguishing the parameter
subject to fault among all parameters in the fuzzy Kalman Filter’s model. The sensi-
tivity fault isolation test and the min–max fault isolation test was performed for the
parameters (weight wi ) of the local Kalman Filter. As it can be observed from the
test’s success rate depicted in Fig. 10.56 the proposed fault isolation methods can
detect the local Kalman Filter, that uses an inconsistent model with reference to the
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Fig. 10.56 a Success rate of the fault isolation test (sensitivity method) for changes in a parameter
of the first local Kalman Filter, ranging between 0.1 and 1.0% of the nominal value b Success rate
of the fault isolation test (max–min method) for changes in a parameter of the first local Kalman
Filter, ranging between 0.1 and 1.0% of the nominal value

real system’s model. Thus correction of the parameters of this particular filter can
be carried out instead of redesign of all local Kalman Filters constituting the Fuzzy
Kalman Filter.
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