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Foreword

The aim of the monograph is to solve control, estimation and filtering problems in
advanced models of robotic manipulators and vehicles. The methods to be devel-
oped are generic and applicable to a wide range of robotic systems. The methods
are of assured stability and of proven robustness thus confirming the reliable
function of robotic manipulators and vehicles under variable operating conditions,
model uncertainty and external disturbances. The following types of robotic
manipulators are examined: multi-DOF rigid-link robots, manipulators subject to
input/output delays, underactuated robots and redundant manipulators, closed-chain
robotic systems and flexible-link robots. Moreover, the following types of robotic
vehicles are examined: automatic ground vehicles (AGVs), unmanned aerial
vehicles (UAVs), unmanned surface vessels (USVs), autonomous underwater
vessels (AUVs) and various types of cooperating autonomous vehicles.

Robotic manipulators and vehicles exhibit complicated dynamics and kinemat-
ics. As a consequence, the solution of the associated problems of nonlinear control,
nonlinear estimation and nonlinear filtering is still an open research problem.
Despite progress in developing advanced robotic mechanisms and elaborated
robotic vehicles, control schemes for robots lack often a global stability proof and
may rely on heuristically tuned PID controllers that allow functioning only around
local operating points. Moreover, estimation and filtering schemes for robots may
lack convergence proof (as for instance in the case of neural modelling approaches
or in the case of state estimation with the Extended Kalman Filter). Due to the
aforementioned reasons, the precision of robots in tasks execution is hindered while
their safe and uninterrupted functioning may be also at risk. To overcome these
shortfalls, the monograph presents nonlinear control methods for robotic manipu-
lators and vehicles which are globally asymptotically stable, while they also exhibit
sufficient robustness to external perturbations. Moreover, the monograph presents
nonlinear estimation methods for robots which are of proven convergence thus
allowing for real-time identification of the manipulators’ and vehicles’ unknown
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dynamics. Finally, the monograph presents optimal and convergent filtering
methods for robotic manipulators and vehicles which allow for their reliable
functioning through the processing of measurements from a small number of
sensors.

In the area of robotic manipulators (including industrial robots), one can dis-
tinguish between two main problems: (i) robots operating in a free working space,
with indicative application examples in robotic welding, painting or laser and
plasma cutting and (ii) robots performing compliance tasks, with indicative appli-
cation examples in assembling, finishing of metal surfaces and polishing. When the
robotic manipulators operate in a free environment, then kinematic and dynamic
analysis provides the means for designing a control law that will move appropri-
ately their end-effector and will enable the completion of the scheduled tasks. (ii) In
the case of compliance (force control) tasks, the objective is not only to control the
end effectors position but also to regulate the force developed due to contact with a
surface. The monograph’s results in this field aim at treating also the simultaneous
position and force control problem of robotic manipulators.

In the area of mobile robots and autonomous vehicles, one has to handle non-
holonomic constraints and to avoid potential singularities in the design of the
control law. Again the kinematic and dynamic models of the mobile robots provide
the basis for deriving a controller that will enable tracking of desirable trajectories.
Several applications can be noted such as path tracking by autonomous mobile
robots and automatic ground vehicles (AGVs), motion control of articulated and
off-road land vehicles, trajectory tracking and dynamic positioning of surface and
underwater vessels (USVs and AUVs) and flight control of unmanned aerial
vehicles (UAVs). Apart from controller’s design, path planning and motion plan-
ning are problems to solve. The monograph’s results in this area aim particularly at
handling problems of advanced difficulty for autonomous vehicles, e.g. when the
unmanned vehicle operates in an unknown environment with moving obstacles and
stochastic uncertainties in the measurements provided by its sensors.

The monograph is primarily addressed to the academic community. The contents
of the monograph offer a useful insight to researchers in the areas of robotics and
automation about key problems on nonlinear control estimation and filtering. On
the other side, the monograph offers the knowhow about the handling of uncertainty
in the dynamics or in the kinematic model of robotic manipulators and vehicles. It
also analyses the implementation stages of new estimation and filtering techniques
and demonstrates their use in the modelling of robotic manipulators and autono-
mous vehicles. The aforementioned topics cover a large research area including
robotic arms and mobile robots or drones of various types. The contents of the
monograph can be used for the development of late undergraduate and of post-
graduate courses in robotics, in several engineering departments. Moreover, the
monograph is addressed to engineers working on robotics applications and on
industrial automation. The methods developed in it are applicable in industry and in
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several manufacturing tasks as well as in intelligent transportation systems
Therefore, the monograph’s approach to the problems of control, estimation and
filtering for robotic manipulators and autonomous vehicles can be of use by
engineers treating practical robotic applications.

Rion Patras, Greece Dr. Gerasimos Rigatos
Newcastle-upon-Tyne, UK
October 2017

Dr. Krishna Busawon
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Preface

The monograph treats problems of (i) nonlinear control, estimation and filtering for
robotic manipulators (multi-DOF rigid-link robots, robots subject to input–output
delays, underactuated manipulators, redundant manipulators and closed-chain
robotic mechanisms) and (ii) nonlinear control, estimation and filtering for robotic
manipulators (automatic ground vehicles, unmanned aerial vehicles, unmanned
surface vessels, autonomous underwater vessels and cooperating mobile robots).
The monograph attempts a thorough coverage of the entire range of applications of
robotic manipulators and autonomous vehicles. The nonlinear control and estima-
tion methods it develops are of generic use and suitable for a wide range of robotic
systems. Such methods can improve robustness, precision and fault tolerance in
robotic manipulators and vehicles while they also enable the reliable functioning
of these systems under variable conditions, model uncertainty and external per-
turbations. Through a balance between the theoretical and the applications part, the
monograph’s results and methods can be assimilated and used by both researchers
or members of the academic community and by engineers. The monograph can be a
useful contribution to robotics research and a reference guide for engineers working
on practical robotic applications.

The content of the monograph’s chapters is outlined in the following:
Chapter 1: Rigid-link manipulators and model-based control. The chapter

analyses the model-based nonlinear control approaches for multi-DOF rigid-link
robots, that is (i) control using global linearization methods, and (ii) control based
on approximate linearization methods. As far as approach (i) is concerned, that is
methods based on global linearization, these are techniques for the transformation
of the nonlinear dynamics of the robotic system to equivalent linear state-space
descriptions for which one can design state feedback controllers and can also solve
the associated state estimation (filtering) problem. One can classify here methods
mainly based on the theory of differentially flat systems. Differentially flat systems
form the widest class of systems to which global linearization-based nonlinear
control can be applied. Control of rigid-link robotic manipulators becomes of
elevated difficulty when the robot is subject to input–output time delays. However,
global linearization methods can offer efficient solution even in the latter case. As
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far as approach (ii) is concerned, solutions are pursued to the problem of nonlinear
control of robots with the use of local linear models (defined around local equi-
libria). For such local linear models, feedback controllers of proven stability can be
developed. One can select the parameters of such local controllers in a manner that
assures the robustness of the control loop to both external perturbations and to
model’s parametric uncertainty.

Chapter 2: Underactuated robotic manipulators. Control of underactuated robots
has received significant attention and its application areas comprise several types of
industrial and service robotic manipulators. The purpose of research in this area is
to design robotic mechanisms that can be controlled despite having a number of
actuators that are smaller than their degrees of freedom. This approach can reduce
the cost and weight of robots or can provide robotic systems with tolerance to
actuators’ failures. Again the control problem for such robots is treated with
(i) global linearization methods, (ii) approximate linearization approaches and
(iii) Lyapunov methods. To achieve model-free control of underactuated manipu-
lators, improved estimation approaches are developed, allowing the real-time
identification of their unknown dynamics or kinematics. Moreover, to implement
feedback control of underactuated robots through the measurement of a limited
number of the robot’s state variables, nonlinear filtering methods of proven con-
vergence are developed.

Chapter 3: Rigid-Link manipulators and model-free control. The chapter anal-
yses model-free nonlinear control approaches for multi-DOF rigid-link robots,
based on Lyapunov methods. There, one comes against problems of minimization
of Lyapunov functions so as to assure the asymptotic stability of the control loop.
Model-free control takes often the form of indirect adaptive control. In such a case,
the design of the controller is not based on prior knowledge of the robot’s
dynamics. With the use of adaptive algorithms and elaborated estimation methods,
it is possible to identify in real-time the unknown dynamics of the robots and
subsequently to use this information in the control loop, thus arriving at indirect
adaptive control schemes. Finally, the development of nonlinear filtering methods
for robotic manipulators allows the implementation of feedback control through
measuring of only a small number of the robot’s state variables. Global stability is
proven for the control loop that comprises both the nonlinear controller of the
robot’s dynamics nonlinear filters that estimate the robot’s state vector from indirect
measurements.

Chapter 4: Closed-chain robotic systems and mechanisms. Control of
closed-chain robots is a non-trivial problem because it is often associated with
complicated dynamic and kinematics models exhibiting nonlinearities. Unlike
robotic manipulators with a free end-effector, closed-chain robotic mechanisms
include actuators which are usually placed on a fixed base. On the one side, this
enables to develop mechatronic systems with low moving inertia and fast motion
control. On the other side, this may incur underactuation problems. Comparing to
open-chain robots, closed-chain robotic mechanisms have many advantages such as
high stiffness, high accuracy, and high payload-to-weight ratio. To solve the non-
linear control problem of closed-chain robotic systems, the following approaches
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are proposed (i) nonlinear control using global linearization methods, (ii) nonlinear
control using approximate linearization methods and (iii) nonlinear control using
Lyapunov methods. Besides applying model-free control for such a type of robotic
manipulators, online estimation algorithms of the unknown dynamics of the robot
can be considered once again. The global asymptotic stability of the control which
relies on the real-time estimation of the robot’s dynamics is proven. Moreover, as in
the previously analysed closed-chain manipulator models, to implement feedback
control through the measurement of a limited number of the closed-chain robot’s
state vector, nonlinear filtering methods of proven convergence are developed.

Chapter 5: Flexible-link robots. Control for flexible-link robots is a non-trivial
problem that has increased difficulty comparing to the control of rigid-link
manipulators. This is because the dynamic model of the flexible-link robot contains
the non-linear rigid-link motion coupled with the distributed effects of the links’
flexibility. This coupling depends on the inertia matrix of the flexible manipulator
while the vibration characteristics are determined by structural properties of the
links such as the damping and stiffness parameters. Moreover, in contrast to
rigid-link robots, the dynamic model of flexible-link robots is an infinite dimen-
sional one. The model exhibits a certain number of mechanical degrees of freedom
associated to the rotational motion of the robot’s joints and has also an infinite
number of degrees of freedom associated to the vibration modes in which the
deformation of the flexible link is decomposed The controller of a flexible
manipulator must achieve the same motion objectives as in the case of a rigid
manipulator, i.e. tracking of specific joints position and velocity setpoints.
Additionally, it must also stabilize and asymptotically eliminate the vibrations
of the flexible links that are naturally excited by the joints’ rotational motion. A first
approach for the control of flexible-link robots is to consider the vibration modes as
additional state variables and to develop stabilizing feedback controller for the
extended state-space model of the flexible manipulator. To this end, one can use
again (i) control based on global linearization methods, (ii) control based on
Lyapunov methods (energy-based control). Again, global asymptotic stability for
this control approach can be demonstrated. On the other side, nonlinear filtering
methods can be used for implementing state feedback control of the manipulator’s
state vector through the measurement of a limited number of elements from the
flexible robot’s state vector.

Chapter 6: Micro-manipulators. Microrobots can be used in the manipulation
and precise positioning of micro-objects, as well as in several microelectronics
applications. Microrobotics is primarily concerned with control problems of
microelectromechanical systems (MEMS). Specific problems one encounters in the
development of microrobotic systems and MEMS are the imprecision about the
microrobot’s dynamic model and the inability to measure specific state vector
elements in it. This in turn signifies that the design of feedback controllers for such
systems has to be sufficiently robust to compensate for unmodelled dynamics or for
parametric uncertainty. To this end, one can consider either model-free control
methods of proven stability (such as adaptive neurofuzzy control schemes), or
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model-based control methods capable of eliminating the effects of modelling errors,
parametric inconsistency and external perturbations (such as H-infinity control).
Moreover, one has to implement state estimation-based feedback control methods,
making use of robust state observers, that will allow for estimation of the entire
state vector of the microrobot or MEMS through the processing of measurements
from a small number of sensors.

Chapter 7: Unicycles and two-wheel autonomous ground vehicles. Models of
unicycles and two-wheel autonomous vehicles can be used to describe the driving
behaviour of autonomous ground vehicles in several cases. Robotization of such
vehicles requires that several of their functionalities and driving tasks are auto-
matically performed. To achieve this objective, the need of developing and using
elaborated control and estimation methods for motorcycles has become apparent.
To this end, several results have been developed aiming at solving the stabilization
and path tracking problems for autonomous or semi-autonomous motorcycles. Due
to underactuation in the motorcycle’s model and the strong nonlinearities charac-
terizing its state-space description, the solution of the associated motion problem is
a difficult and challenging endeavour. To achieve a satisfactory solution of the
problem of autonomous motorcycles driving, different nonlinear control methods
can be considered such as global linearization-based control, as well as approximate
linearization-based control approaches jointly with optimal control methods. To
implement state estimation-based control for two-wheel autonomous vehicles,
without the need to process measurements from a large number of on-board sen-
sors, robust state estimation and filtering methods are proposed.

Chapter 8: Four-wheel autonomous ground vehicles. In the recent years, there
has been significant effort in the design of intelligent four-wheel autonomous
vehicles capable of operating in variable conditions. The precise modelling of the
vehicles’ dynamics improves the efficiency of vehicles controllers in adverse cases,
for example in high velocity, when performing abrupt maneuvers, under mass and
loads changes or when moving on rough terrain. Using model-based control
approaches, it is possible to design a nonlinear controller that maintains the vehi-
cle’s motion characteristics according to given specifications. When the vehicle’s
dynamics is subject to modelling uncertainties or when there are unknown forces
and torques exerted on the vehicle, it is important to be in position to estimate in
real-time disturbances and unknown dynamics. In this direction, estimation for the
unknown dynamics of the vehicle and state estimation-based control schemes have
been developed. Feedback control of robotic ground vehicles can be primarily
based on (i) global linearization approaches, (ii) approximate linearization
approaches and (iii) Lyapunov methods. The control is applied to (a) four-wheel
vehicles, and (b) articulated vehicles. Finally, to implement control of the ground
vehicles through the measurement of a small number of its state variables, elabo-
rated nonlinear filtering approaches are developed.

Chapter 9: Unmanned aerial vehicles. The multi-DOF dynamic model of
unmanned aerial vehicles (UAVs) is a highly nonlinear one and its control can be
performed again with (i) global linearization control methods, (ii) local linearization
control methods and (iii) Lyapunov analysis-based methods. In approach (i), the
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dynamic model of the UAV is transformed into an equivalent linear description
through the application of a change of variables (diffeomorphisms). In (ii), the
nonlinear model of the UAV is decomposed into local linear models for which
linear feedback controllers are designed and next the aim is to select the feedback
control gains so as to assure the global asymptotic stability of the control loop. In
(iii), the objective is to define an energy function for the UAV (Lyapunov function)
and to demonstrate that through suitable selection of the feedback control the first
derivative of the energy function is always negative and thus the global stability
of the control loop is assured. The latter approach is particularly suitable for
model-free control of UAVs and takes the form of adaptive control methods. This
chapter analyses the aforementioned control approaches for UAVs and proves
global asymptotic stability for the aforementioned control approaches. The
robustness of the developed control methods against model uncertainty and external
perturbations is confirmed. Furthermore, elaborated nonlinear filtering approaches
are developed that allow for accurate estimation of the state vector of the UAVs
through the processing of measurements coming from a limited number of sensors.

Chapter 10: The problem of control and trajectory tracking for unmanned surface
vessels (of the ship or hovercraft type) is non-trivial because the associated dynamic
and kinematic models are complex nonlinear ones. A first problem that arises in
controller design for unmanned surface vessels is that trajectory tracking has to be
achieved despite modelling uncertainty and external perturbations and thus the
control loop must exhibit sufficient robustness. Another problem that has to be dealt
with is that the vessel’s model is often underactuated (the propulsion system
consists of less actuators than the vessel’s degrees of freedom). The present chapter
treats the problem of control of unmanned surface vessels. Solution to the associ-
ated control problem is provided through (i) global linearization methods, (ii) ap-
proximate linearization methods and (iii) Lyapunov methods. Moreover, for the
accurate localization of the vessel and for precise computation of its motion
characteristics, advanced (and precisely validated) nonlinear filtering and dis-
tributed filtering are applied. These enable to perform fusion of the measurements
of heterogeneous sensors and of state estimates provided by individual distributed
filters that track the vessel’s motion.

Chapter 11: Autonomous underwater vessels. The control of multi-DOF
autonomous underwater vessels (AUVs) exhibits particular difficulties which are
due to the complicated nonlinear model of the submersible vessels, the coupling
between the system’s control inputs and outputs, and the uncertainty about the
values of their dynamic and kinematic model’s parameters. Moreover, the AUVs’
dynamic model is subject to external perturbations which are caused by variable sea
conditions and sea currents. Consequently, an efficient control scheme for AUVs
should not only compensate for the nonlinearities of the associated dynamic model,
but should also exhibit robustness to model parameter variations and to external
disturbances. To this end, the present chapter provides results on robust control of
AUVs, as well as on adaptive control of such submersible vessels. Thus the control
problem for autonomous underwater vessels is treated with (i) global linearization
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methods (ii) approximate linearization methods and (iii) Lyapunov methods. The
solution of the control problem requires a more elaborated procedure when the
AUVs’ dynamic model is underactuated, which means that the number of actuators
included in its propulsion system is less than the number of its degrees of freedom.
The methods developed in this chapter also treat the case of underactuated AUVs.
Moreover, advanced estimation methods are used to identify in real time the
unknown dynamics of the underwater vessels or disturbance forces and torques that
affect them. This allows for the implementation of indirect control schemes for the
AUVs. Additionally, for the precise localization of the AUVs and their safe navi-
gation, elaborated nonlinear filtering methods are developed. These permit to solve
problems of multi-sensor fusion as well as problems of decentralized state esti-
mation with the use of spatially distributed nonlinear filters that track the AUVs
motion.

Chapter 12: Cooperating autonomous vehicles. Distributed and coordinated
control of autonomous vehicles (automatic ground vehicles, unmanned aerial
vehicles, unmanned surface and underwater vessels) has received significant
attention during the last years. In this chapter, a solution is developed first for the
problem of distributed control of cooperating unmanned surface vessels (USVs)
which chase a target. The distributed control aims at achieving the synchronized
convergence of the autonomous vessels towards the target and at maintaining the
cohesion of the vessels’ team, while also avoiding collisions between the individ-
uals vessels and collisions between them and obstacles in their motion plane. To
estimate the motion characteristics of the target, distributed filtering is performed.
To treat the distributed control problem for the cooperating unmanned surface
vessels, a Lyapunov theory-based method is introduced. To treat the distributed
filtering and state estimation in the multi-vessel system, one can apply established
methods for decentralized state estimation. The proposed distributed control and
filtering method can be used for surveillance and security tasks executed by
multi-robot systems and in particular by multi-USV systems. The method for
coordinated control of USVs is a generic one and thus applicable to various types of
autonomous robots, such as automatic ground vehicles. A second part of the chapter
is concerned with distributed control and cooperation of automatic ground vehicles
(such as agricultural robotic vehicles). A global linearization approach is used to
transform the nonlinear kinematic model of the vehicle into an equivalent linear
form. In this linear description, both the control and state estimation problems of the
individual vehicles can be solved, while it is also ascertained that the control loop is
globally stable. Moreover, distributed filtering is performed for accomplishing
multi-sensor fusion and distributed state estimates fusion. It is shown that the
method assures the vehicles’ precisely synchronized motion.

The problems of nonlinear control, estimation and filtering for robotic manip-
ulators and for autonomous vehicles are non-trivial ones and the present monograph
offers efficient solutions about them. Thus, the monograph is anticipated to be
meaningful for members of the academic and research community, as well as to
engineers working on practical robotics problems. The benefits from the application
of the monograph’s results are as follows: (i) the stability of the control loop for
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robotic manipulators and autonomous vehicles is assured, (ii) convergence of
estimation and filtering methods for the aforementioned robotic systems is also
ascertained, (iii) the robotic control loops exhibit robustness to modelling uncer-
tainty and external perturbations (iv) the implementation of feedback control does
not have as a prerequisite the precise knowledge of the robots’ dynamic or kine-
matic model. Actually, by following the monograph’s results one can develop
adaptive control methods which are entirely model-free (v) the presented methods
are not constrained by any assumption about the form and structure of the con-
trolled robotic system (vi) the implementation of feedback control does not require
measurement of the entire state vector of the robots and can be performed through
the processing of the readings from a limited number of sensors. All these reasons
indicate that the technical and scientific impact of the present monograph will be
noteworthy.

The monograph can be a reference for researchers working on elaborated robotic
systems. Moreover, the content of the monograph can be exploited for teaching
undergraduate or postgraduate courses on advanced robotic systems. Therefore, it
can be used by both academic tutors and students as a reference source for such a
course. Almost all departments of electrical, industrial and mechanical engineering,
include in their curriculum robotics courses and nonlinear control courses. This
means that the academic audience that will bear interest for such a monograph is
very wide. Moreover, since studies on robotics and control theory and applications
thereof are gaining importance, one should expect that in the following years the
number of engineers that will use the monograph’s methods on robotics and
nonlinear control will also grow.

Athens, Greece Dr. Gerasimos Rigatos
Electrical and Computer Engineer, Ph.D.

Newcastle, UK Dr. Krishna Busawon
October 2017 Electrical and Computer Engineer, Ph.D.
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Chapter 1
Rigid-Link Manipulators: Model-Based
Control

Abstract The chapter analyzes the model-based nonlinear control approaches for
multi-DOF rigid-link robots, that is (i) control based on global linearization meth-
ods, and (ii) control based on approximate linearization methods. As far as approach
(i) is concerned, that is methods relying on global linearization, these are tech-
niques for the transformation of the nonlinear dynamics of the robotic system to
equivalent linear state-space descriptions for which one can design state feedback
controllers and can also solve the associated state estimation (filtering) problem.
One can classify here methods mainly elaborating on the theory of differentially flat
systems. Differentially flat systems form the widest class of systems to which global
linearization-based nonlinear control can be applied. As far as approach (ii) is con-
cerned. solutions are sought to the problem of nonlinear control of robots with the use
of local linear models (defined around local equilibria). For such local linear models,
feedback controllers of proven global stability can be developed. One can select the
parameters of such local controllers in a manner that ensures the robustness of the
control loop to both external perturbations and to model’s parametric uncertainty. In
particular the chapter develops the following topics: (a) Kinematics and dynamics of
multi-DOF robotic manipulators. (b)Model-based control of rigid-link manipulators
using global linearization methods, (c) Model-based control of rigid-link manipula-
tors using approximate linearization methods, (d) Model-based control using global
linearization methods for rigid-link manipulators subject to time-delays.

1.1 Chapter Overview

The present chapter develops the following topics: (a) Kinematics and dynamics of
multi-DOF robotic manipulators. (b)Model-based control of rigid-link manipulators
using global linearization methods, (c) Model-based control of rigid-link manipula-
tors using approximate linearization methods, (d)Model-based control in the context
of global linearization methods for rigid-link robots subject to time-delays.

With reference to (a) the objective of kinematic analysis is to create models that
connect the velocities of the robotic manipulator in a cartesian reference frame with
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2 1 Rigid-Link Manipulators: Model-Based Control

the angular velocities of the robot’s joints. On the other side the purpose of dynamic
analysis is to create models that connect the angular or cartesian accelerations of the
manipulator with the torques and forces that are exerted on the manipulator by its
actuators or by contact with objects and surfaces. In the first case only the lengths
of the robot’s links are included in the kinematic model whereas in the latter case
the masses and moments of inertia of the robot’s link are included in the dynamic
model.

With reference to (b) the objective of global linearization-based control meth-
ods is to transform the robotic manipulator’s model into an equivalent linear form,
in which both the solution of the feedback control and state-estimation problem
becomes possible. Such a transformation is enabled through a change of state vari-
ables (diffeomorphisms) and is possible for all models of robotic manipulators that
satisfy the differential flatness property. This class of robotic models comprises both
fully actuated and underactuated manipulators.

With reference to (c) the dynamic model of the robotic manipulator undergoes an
approximate linearization around a temporary operating point which is recomputed
at each sampling instant. The linearization procedure makes use of first-order Taylor
series expansion for the manipulator’s model and relies on the computation of the
associated Jacobian matrices. For the approximately linearized model of the robot
an H-infinity (optimal) controller is developed after solving an algebraic Riccati
equation at each time step of the control method. The latter control scheme achieves
stabilization and tracking control for nonlinear roboticmanipulators without the need
to use the elaborated state-space transformations met in global linearization-based
control methods.

With reference to (d) by applying Taylor series expansion to the terms of the
robotic manipulator the time-derivatives of the control variables of the initial nonlin-
ear model of the manipulator emerge as additional control inputs. Next, dynamic
extension is performed which means that the state-space model of the robot is
extended by including in it as additional control variables its initial control inputs.
For the extended state-space description of the manipulator it is proven that differ-
ential flatness properties hold. This signifies that the extended state-space model is
input-output linearizable and in this latter form the solution of the stabilization and
control problem becomes possible. Moreover, it is shown that time-delays effects in
themodel of the roboticmanipulator can be represented as additive disturbance terms
affecting its input-output linearized description.With the use of a differential flatness
theory-based filtering approach, which is the Derivative-free nonlinear Kalman Filter
in the form of a disturbance observer, the real-time estimation of the aforementioned
perturbation inputs is enabled. This, in turn allows for the computation of a control
law that compensates for the time-delays effects.
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1.2 Kinematics and Dynamics of Rigid-Link Multi-DOF
Manipulators

1.2.1 Outline

Knowledge and understanding of the dynamic and kinematic model of robotic sys-
tems can help to increase productivity, cut-off production costs, and to improve
working conditions and safety in industrial environments. This need has resulted in
the development of modeling and control methods for robotic systems, and of opti-
mization methods aiming at a more profitable functioning of robotic manipulators.
Precise modelling of manipulators’ dynamics and kinematics can help in handling
more efficiently the associated control, estimation and filtering problems.

1.2.2 Dynamic Analysis of Rigid Link Robots

In the area of multl-DOF robotic manipulators one can distinguish between two
main problems: (i) robots operating in a free working space, as in the case of robotic
welding, painting, or laser and plasma cutting and (ii) robots performing compliance
tasks, as in the case of assembling, finishing of stiff surfaces and polishing. When
the robotic manipulator operates in a free environment then kinematic and dynamic
analysis provide the means for designing a control law that will move appropriately
the robot’s end effector and will enable the completion of the scheduled tasks. The
dynamic model of a multi-DOF rigid-link robotic manipulator, as the one depicted
in Fig. 1.1, is obtained from the Euler-Lagrange principle, that is

Fig. 1.1 A 3-DOF robotic
manipulator with rigid links
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∂

∂t

∂L

∂q̇i
− ∂L

∂qi
= Ti (1.1)

where L is the robot’s Lagrangian, that is the difference between its kinematic and
potential energy, qi is the turn angle of the i th joint of the manipulator, q̇i is the
angular velocity of the j th joint and Ti is the actuator’s torque that provides motion
to the i th joint. A generic rigid-link dynamic model obtained from this procedure is:

D(θ)θ̈ + h(θ, θ̇ ) + G(θ) = k(rgθm − θ) (1.2)

where T (θ) = k(rgθm − θ) represents the control input vector (torque). In the latter
relation, k is an elasticity coefficient and rg denotes gears ratio, i.e. joints flexibility is
introduced in the dynamic model of the manipulator [225, 226, 268]. The elements
of the inertia matrix D(θ), the Coriolis and centrifugal forces matrix h(θ, θ̇ ) and the
gravity matrix G(θ) can be found in [155].

The physical characteristics of the manipulator and the range of values that the
different variables of the system acquire in a real working environment can be defined
for every type of industrial robot. The coordinates frames attached to each joint
are defined using the Denavit-Hartenberg method and are depicted in Fig. 1.1. The
Denavit-Hartenberg parameters for the general case of a 6-DOF robot are defined in
[17] and their indicative values are given in Table 1.1:

The rigid link coordinates system and its parameters are depicted in Fig. 1.2.
Considering the i th and the (i−1)th reference frames, the parameters of the Denavit-
Hartenberg representation are defined as follows:

1. θi is the joint angle from the xi−1 axis to the xi axis, about the zi−1 axis (using
the right hand rule).

2. di is the distance from theorigin of the (i−1)th coordinate frame to the intersection
of the zi−1 axis, with the xi axis along the zi−1 axis

3. αi is the offset distance from the intersection of the zi−1 axis with the xi axis to
the origin of the i th frame along the xi axis (or the shortest distance between the
zi−1 and zi axes).

4. ai is the offset angle from the zi−1 axis to the zi axis about the xi axis (using the
right hand rule)

The elements of the inertia matrix D(θ), the Coriolis and centrifugal forces matrix
h(θ, θ̇ ) and the gravity matrix G(θ) appearing in Eq. (1.2) are defined in [155] and

Table 1.1 Denavit-
Hartenberg
parameters

i θi ai αi di Joint range o

1 90 −90 0 0 −160 to 160

2 0 0 431.8mm 149.08mm −225 to 45

3 90 90 −20.32mm 0 −45 to 225

4 0 −90 0 433.07mm −110 to 170

5 0 90 0 0 −100 to 100

6 0 0 0 56.25mm −266 to 266
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Fig. 1.2 Rigid link coordinates system and its parameters

for a 3-DOF robot are given by

D(θ) =⎛
⎜⎝
m2l22 + m3(l2S2 + l3S23)2 0 0

0 m2l22 + m3(l22 + 2l2l3C3 + l23) m3l3(l2C3 + l3)

0 m3l3(l2C3 + l3) m3l23

⎞
⎟⎠

(1.3)

h(θ, θ̇) =⎛
⎜⎜⎝
2[m2l

2
2 S2C2 + m3(l2S2 + l3S23)(l2S2 + l3C23)]θ̇1θ̇2 + 2m3l3C23(l2S2 + l3S23)θ̇1θ̇3

−2m3l2l3S3θ̇2θ̇3 − m3l2l3S3θ̇
2
3 − [m2l2S2C2 + m2(l2S2 + l3S23)(l2C2 + l3C23)]θ̇21

−m3(l2S2 + l3S23)l3C23θ̇
2
1 + m2l2l3S3θ̇

2
2 + m3l3θ̇2θ̇3

⎞
⎟⎟⎠

(1.4)

G(θ) =
⎛
⎝

0
−m2gl2S2 − m3g(l2S2 + l3S23)

m3gl3S23

⎞
⎠ (1.5)



6 1 Rigid-Link Manipulators: Model-Based Control

where Si and Ci , denote sin(θi ) and cos(θi ) respectively, with i = 1, 2, 3, while Si j
denotes sin(θi + θ j ) and Ci j denotes cos(θi + θ j ).

For the dynamicmodel of the 3-DOF robot shown in Fig. 1.1 andwith its dynamics
described in Eq. (1.2), it holds that

θ = [θ1, θ2, θ3]T , θ̇ = [θ̇1, θ̇2, θ̇3]T , θ̈ = [θ̈1, θ̈2, θ̈3]T (1.6)

where θ is the vector of the joints angles, θ̇ is the vector of the angular velocities
and θ̈ is the vector of angular accelerations. Consequently, the robot’s state vector is
defined as x ∈ R6×1, and its derivative is given by ẋ ∈ R6×1,

x = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]T , ẋ = [θ̇1, θ̇2, θ̇3, θ̈1, θ̈2, θ̈3]T (1.7)

Then, Eq. (1.2) is written as

θ̈ = D(θ)−1[−h(θ, θ̇ ) − G(θ) + k(rgθm − θ)]⇒
θ̈ = D(θ)−1[−h(θ, θ̇ ) − G(θ) + T (θ)] (1.8)

where T (θ) = k(rgθm − θ). The control input u ∈ R3×1 is defined as

u = D(θ)−1[−h(θ, θ̇ ) − G(θ) + T (θ)] (1.9)

Moreover, it holds that ẋ1 = x4, ẋ2 = x5 and ẋ3 = x6. Taking 03×3 to be 3×3 matrix
with zero elements, and I3×3 to be the identity 3×3 matrix one obtains

⎛
⎜⎝
ẋ1
ẋ2
ẋ3

⎞
⎟⎠ = (

03×3 I3×3
)
x + (

03×3
)
u (1.10)

Furthermore, it holds that
⎛
⎜⎝
ẋ4
ẋ5
ẋ6

⎞
⎟⎠ = (

03×3 03×3
)
x + (

I3×3
)
u (1.11)

Thus, finally the robot’s dynamic model can be written in a linear state-space form
given by

ẋ = Ax + Bu (1.12)

with

A =
(
03×3 I3×3

03×3 03×3

)
, B =

(
03×3

I3×3

)
(1.13)
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The reference trajectories vector for the joints of the manipulator is defined as
xd = [xd1 , xd2 , xd3 ]T . The control input given in Eq. (1.9) can be complemented
with feedback terms of the outputs tracking vector of the manipulator that is
e = [e1, e2, e3]T = [x1 − xd1 , x2 − xd2 , x3 − xd3 ]T . Thus by defining, the diago-
nal feedback gain matrices Kp = diag[kp1 , kp2 , kp3 ] and Kd = diag[kd1 , kd2 , kd3 ]
and also by selecting the feedback control input to be

u = ẍd − Kdė − Kpe (1.14)

one arrives at the linearized and decoupled form of the manipulator’s dynamics

ë + Kdė + Kpe = 03×1 (1.15)

or equivalently

ëi + kdi ėi + kpi ei = 0 i = 1, 2, 3 (1.16)

By selecting the feedback gains Kpi > 0 and Kdi > 0 so as the characteristic
polynomial p(s) = s2 + kdi s+ kpi is Hurwitz stable, that is to have roots exclusively
at the left complex semi-plane one has that the tracking error for the i th joint of the
robot is asymptotically eliminated. This is described by

limt→∞ ei (t) = 0⇒
limt→∞ xi (t) = xdi (t), i = 1, 2, 3

(1.17)

The control input that is actually generated by the actuators of the manipulator is
given by

u = ẍd − Kd ˙e − Kpe⇒D(θ)−1[−h(θ, θ̇ ) − G(θ) + T (θ)] = ẍd − Kdė − Kpe⇒
T (θ) = D(θ)[ẍd − Kdė − Kpe] + h(θ, θ̇ ) + G(θ)

(1.18)

This is the computed torquemethod. This stands for a special case of control of robots
based on global linearization methods and on transformation of the manipulator’s
dynamics to a new linear and decoupled state-space description. The transition from
the continuous time differential equations of Eq. (1.2) that describe the dynamics of
the robotic manipulator, to the state-space description of Eq. (1.12) that is used in the
simulation experiments can be carried out using established discretization methods
and after choosing an appropriate sampling rate. Alternatively, the robot’s dynamics
can be simulated through numerical solution of the associated differential equations,
given in Eq. (1.2).
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1.2.3 Kinematic Analysis of Rigid Link Robots

Using the rigid-link reference system depicted in Fig. 1.2, a joint axis is established
(for each joint i) at the connection of two links. This joint axis has two normals
connected to it, one for each end of the links. The relative position of two such
connected links (link i − 1 and link i) is given by di which is the distance measured
along the joint axis between the normals. The joint angle θi between the normals is
measured in a plane that is taken to be normal to joint axis. Parameters di and θi are
called the distance and angle between the adjacent links, respectively, and define the
relative position of neighboring links.

A link i (i = 1, . . . , 6) is connected to at most two other links, i.e link i − 1
and link i + 1 and two joint axes are established at the end of each connection. A
fixed configuration between joints can be obtained by parameters ai and αi which
are defined as follows: The parameter ai is the shortest distance measured along the
common normal between the joint axes, while αi is the angle between the joint axes
measured in a plane perpendicular to ai . Equivalently, ai and αi are called the length
and twist angle of link i .

An orthonormal cartesian coordinate system (xi , yi , zi ) can be established for
each link at its joint axis, where i = 1, 2, . . . , n (n = number of degrees of freedom)
plus the base coordinate frame. Since a rotary joint has only one degree of freedom
each (xi , yi , zi ) coordinate frame of a robot arm corresponds to joint i + 1 and is
fixed in link i . Moreover, since the i th coordinate system is fixed in link i it moves
together with link i . Thus, the nth coordinate frame moves the end-effector (link n).
The base coordinates are defined as the 0th coordinate frame (x0, y0, z0) which is
also the inertial coordinate frame of the robot arm. Thus for a six-axis robot arm,
there are seven coordinate frames namely (x0, y0, z0), (x1, y1, z1), . . . , (x6, y6, z6).
Every coordinate frame is determined and established on the basis of three rules:

1. The zi−1 axis lies along the axis of motion of the i th joint.
2. The xi axis is normal to the zi−1 axis and point away from it.
3. The yi axis completes the right-handed coordinate system as required.

By these rules one is free to choose the location of coordinate frame 0 anywhere in
the supporting base, as long as the z0 axis lies along the axis of motion of the first
joint. The last (nth) coordinate frame, can be placed anywhere in the robot’s hand,
as long as the xn axis is normal to the zn−1 axis.

Once the Denavit-Hartneberg (D-H) coordinate system has been established for
each link (according to the analysis given in Sect. 1.2.2), a homogeneous transforma-
tion matrix can easily be developed relating the i th coordinate frame to the (i − 1)th
coordinate frame. Thus, a point ri expressed in the i th coordinate system may be
expressed in the (i − 1)th coordinate system as ri−1 by performing the following
successive transformations:

1. Rotate about the zi−1 axis of an angle θi to align the xi−1 axis with the xi axis
(xi−1 axis is parallel to xi axis and pointing in the same direction).
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2. Translate along the zi−1 axis a distance of di to bring the xi−1 and xi axes into
coincidence.
3. Translate along the xi axis a distance of αi to bring the two origins, as well as the
x axis into coincidence.
4. Rotate about the xi axis an angle of ai to bring the two coordinate systems into
coincidence.

Each of these four operations can be expressed by a basic homogeneous rotation-
translation matrix and the product of these four basic homogeneous transformation
matrices yields a composite homogeneous transformation matrix i−1Ai , known as
the D-H transformation matrix for adjacent coordinate frames i and i − 1. Thus,

i−1Ai = Tz,dTz,θTx,αTx,a =

=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
cos(θi ) −sin(θi ) 0 0
sin(θi ) cos(θi ) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎝
1 0 0 αi

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos(ai ) −sin(ai ) 0

0 sin(ai ) cos(ai ) 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

i.e.i−1Ai =

⎛
⎜⎜⎜⎝

cos(θi ) −cos(ai )sin(θi ) sin(ai )sin(θi ) αi cos(θi )

sin(θi ) cos(ai )cos(θi ) −sin(ai )cos(θi ) αi sin(θi )

0 sin(ai ) cos(ai ) di
0 0 0 1

⎞
⎟⎟⎟⎠

(1.19)

The inverse of this transformation enables transition from the reference system i to
the reference system i − 1.

[i−1Ai ]−1 =i Ai−1 =

⎛
⎜⎜⎜⎝

cos(θi ) sin(θi ) 0 −αi

−cos(ai )sin(θi ) cos(ai )cos(θi ) sin(ai ) −di sin(ai )

sin(ai )sin(θi ) −sin(ai )cos(θi ) cos(ai ) −di cos(ai )

0 0 0 1

⎞
⎟⎟⎟⎠

(1.20)

where αi , ai , di are constants while θi is the joint variable for a revolute joint. For a
prismatic joint, the joint variable is di , while ai , αi and θi are constants. In this case,
i−1Ai becomes

i−1Ai = Tz,θTz,dTx,α =

⎛
⎜⎜⎜⎝

cos(θi ) −cos(ai )sin(θi ) sin(ai )sin(θi ) 0

sin(θi ) cos(ai )cos(θi ) −sin(ai )cos(θi ) 0

0 sin(ai ) cos(ai ) di
0 0 0 1

⎞
⎟⎟⎟⎠ (1.21)

and its inverse is
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[i−1Ai ]−1 =i Ai−1 =

⎛
⎜⎜⎜⎝

cos(θi ) sin(θi ) 0 0

−cos(ai )sin(θi ) cos(ai )cos(θi ) sin(ai ) −di sin(ai )

sin(ai )sin(θi ) −sin(ai )cos(θi ) cos(ai ) −di cos(ai )

0 0 0 1

⎞
⎟⎟⎟⎠

(1.22)

Using the [i−1Ai ]−1 matrix, one can relate a point pi at the examined link i , and
expressed in homogeneous coordinates with respect to the coordinate system i , to
the coordinate system i − 1 established at link i − 1 by

pi−1 = [i−1Ai ]−1 pi (1.23)

where pi−1 = (xi−1, yi−1, zi−1, 1)T and pi = (xi , yi , zi )T . For the six-DOF robotic
manipulator the associate coordinates transformation matrices i−1Ai are given by

0A1 =

⎛
⎜⎜⎜⎝

C1 0 −S1 0

S1 0 C1 0
0 −1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ , 1A2 =

⎛
⎜⎜⎜⎝

C2 −S2 0 α2C2

S2 C2 0 α2S2
0 0 1 d2
0 0 0 1

⎞
⎟⎟⎟⎠

2A3 =

⎛
⎜⎜⎜⎝

C3 0 S3 α3C3

S3 0 −C3 α3S3
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠ , 3A4 =

⎛
⎜⎜⎜⎝

C4 0 −S4 0

S4 0 C4 0

0 −1 0 d4
0 0 0 1

⎞
⎟⎟⎟⎠

4A5 =

⎛
⎜⎜⎜⎝

C5 0 S5 0

S5 0 −C5 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎠

5A6 =

⎛
⎜⎜⎜⎝

C6 −S6 0 0

S5 C6 0 0

0 0 1 d6
0 0 0 1

⎞
⎟⎟⎟⎠

(1.24)

T1 = 0A1
1A2

2A3 =

⎛
⎜⎜⎜⎝

C1C23 −S1 C1S23 α2C1C2 + α3C1C23 − d2S1
S1C23 C1 S1S23 α2S1C2 + α3S1C23 − d2C1

−S23 0 C23 −α2S2 − α3S23
0 0 0 1

⎞
⎟⎟⎟⎠

T2 = 3A4
4A5

5A6 =

⎛
⎜⎜⎜⎝

C4C5C6 − S4S6 −C4C5S6 − S4C6 C4S5 d6C4S5
S4C5C6 + C4S6 −S4C5S6 + C4C6 S4S5 d6S4S5

−S5C6 S5S6 C5 d6C5 + d4
0 0 0 1

⎞
⎟⎟⎟⎠

(1.25)

where Ci = cos(θi ), Si = sin(θi ), Ci j = cos(θi + θ j ), Si j = sin(θi + θ j ). The
homogeneousmatrix 0Ti which specifies the location of the i th coordinate framewith
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respect to the base coordinate system is the chain product of successive coordinate
transformation matrices of i−1Ai and is expressed as

0Ti = 0A1
1A2· · ·i−1Ai = Π i

j=1A j for i = 1, 2, . . . , n

=
(
xi yi zi pi
0 0 0 1

)
=

(
0Ri

0 pi
0 1

)
(1.26)

1.3 Model-Based Control of Rigid-Link Manipulators
Using Global Linearization Methods

1.3.1 Outline

Manipulators control based on global linearization, comprises techniques for the
transformation of the nonlinear dynamics of the robotic system to equivalent linear
state-space descriptions for which one can design state feedback controllers and can
also solve the associated state estimation (filtering) problem. The widest class of
robot control methods comprises approaches based on the theory of differentially
flat systems. Alternatively, one can consider control methods based on Lie algebra.
Differential flatness theory is currently a main direction in the analysis of nonlinear
dynamical systems [450, 476, 519]. To conclude if a dynamical system is differen-
tially flat, the following should be examined: (i) the existence of the so-called flat
output, i.e. a new variable which is expressed as a function of the system’s state
variables. It should hold that the flat output and its derivatives are not coupled in the
form of an ordinary differential equation, (ii) the components of the system (i.e. state
variables and control input) should be expressed as functions of the flat output and its
derivatives [145, 254, 267, 322, 439, 572]. Differential flatness theory enables trans-
formation to a linearized form (canonical Brunovsky form) for which the design of
the controller becomes easier. Moreover, by showing that a system is differentially
flat one can easily design a reference trajectory as a function of the so-called flat
output and can find a control law that ensures tracking of this desirable trajectory
[145, 572]. Robotic manipulators are differentially flat MIMO nonlinear dynamical
systems which after applying the differential flatness theory can be written in the
Brunovksy (canonical) form [322].

1.3.2 Differential Flatness Theory

1.3.2.1 Overview of Differential Flatness Theory

Differential flatness theory canbe applied to the generic class of systems ẋ = f (x, u).
In this study, the interest is in dynamic models of the form of Eq. (1.27).
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ẋ = f (x, t) + g(x, t)u (1.27)

The principles of differential flatness theory have been extensively studied in the rele-
vant bibliography [57, 145, 254, 267, 322, 450, 476, 519, 572]: A finite dimensional
system is considered. This can be written in the form of an ordinary differential equa-
tion (ODE), i.e. Si (w, ẇ, ẅ, . . . ,w(i)) = 0, i = 1, 2, . . . , q. The term w denotes
the system variables (these variables are for instance the elements of the system’s
state vector and the control input) while w(i), i = 1, 2, . . . , q are the associated
derivatives. Such a system is said to be differentially flat if there exists a set of m
functions y = (y1, . . . , ym) of the system’s variables and of their time-derivatives, i.e.
yi = φ(w, ẇ, ẅ, . . . ,w(αi )), i = 1, . . . ,m satisfying the following two conditions
[145, 322]:

1. There does not exist any differential relation of the form R(y, ẏ, . . . , y(β)) = 0
which implies that the derivatives of the flat output are not coupled in the sense of an
ODE, or equivalently it can be said that the flat output is differentially independent.
2. All system variables (i.e. the elements of the system’s state vector w and the
control input) can be expressed using only the flat output y and its time derivatives
wi = ψi (y, ẏ, . . . , y(γi )), i = 1, . . . , s. An equivalent definition of differentially flat
systems is as follows:

Definition: The system ẋ = f (x, u), x ∈ Rn , u ∈ Rm is differentially flat if there
exist relations

h : Rn×(Rm)r+1→Rm,

φ : (Rm)r→Rn and

ψ : (Rm)r+1→Rm

(1.28)

such that
y = h(x, u, u̇, . . . , u(r)),

x = φ(y, ẏ, . . . , y(r−1)), and

u = ψ(y, ẏ, . . . , y(r−1), y(r)).

(1.29)

This means that all system dynamics can be expressed as a function of the flat output
and its derivatives, therefore the state vector and the control input can be written as

x(t) = φ(y(t), ẏ(t), . . . , y(r−1)(t)), and

u(t) = ψ(y(t), ẏ(t), . . . , y(r)(t))
(1.30)

1.3.2.2 Classes of Differentially Flat Systems

For certain classes of dynamical systems it has been proven that they satisfy differen-
tial flatness properties. The following classes of nonlinear differentially flat systems
are presented [57, 322]:
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1. Affine in-the-input systems: The dynamics of such systems is given by:

ẋ = f (x) +
m∑
i=1

gi (x)ui (1.31)

From Eq. (1.31) it can be concluded that the above state equation can also describe
MIMO dynamical systems. Without loss of generality it is assumed that G =
[g1, . . . , gm] is of rank m. In case that the flat outputs of the aforementioned system
are only functions of states x , then this class of dynamical systems is called 0-flat.
It has been proven that a dynamical affine system with n states and n − 1 inputs is
0-flat if it is controllable.

2. Driftless systems: These are systems of the form

ẋ =
m∑
i=1

fi (x)ui (1.32)

For driftless systems with two inputs, i.e.

ẋ = f1(x)u1 + f2(x)u2 (1.33)

the flatness property holds, if and only if the rank of matrix Ek+1 := {Ek, [Ek, Ek]},
k≥0 with E0 := { f1, f2} is equal to k + 2 for k = 0, . . . , n − 2. It has been proven
that a driftless system that is differentially flat, is also 0-flat.

Moreover, for flat systems with n states and n − 2 control inputs, i.e.

ẋ =
n−2∑
i=1

ui fi (x) x ∈ Rn (1.34)

the flatness property holds, if controllability also holds. Furthermore, the system is
0-flat if n is even.

1.3.3 Differential Flatness for MIMO Nonlinear Dynamical
Systems

1.3.3.1 Conditions for Applying Differential Flatness Theory

The transformation of MIMO robotic systems into the canonical (Brunovsky) from,
through the application of differential flatness theory, will be explained first. Next,
a new control method for such systems will be developed, also in accordance to
differential flatness theory. It will be shown that the proposed control and filtering
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methods can be efficiently applied to the model of the nonlinear MIMO robotic
manipulators.

The MIMO nonlinear robotic system can be written as a state-space model of the
form ẋ = f (x, u).Moreover, the previous state-space description can be transformed
to the form of an affine in-the-input system by adding an integrator to each input [57,
267]. In the latter case one obtains

ẋ = f (x) + ∑m
i=1gi (x)ui (1.35)

The following definitions are now used [457]:

(i) Lie derivative: L f h(x) stands for the Lie derivative L f h(x) = (∇h) f and the
repeated Lie derivatives are recursively defined as L0

f h = h for i = 0, Li
f h =

L f L
i−1
f h = ∇Li−1

f h f for i = 1, 2, . . ..
(ii) LieBracket: adi

f g stands for a LieBracketwhich is defined recursively as ad
i
f g =

[ f, adi−1
f g] with ad0

f g = g and ad f g = [ f, g] = ∇g f − ∇ f g.
If the system of Eq. (1.35) can be linearized by a diffeomorphism z = φ(x) and a
static state feedback u = α(x) + β(x)v into the following form

żi, j = zi+1, j for 1≤ j≤m and 1≤i≤v j − 1

żvi, j = v j
(1.36)

with
∑m

j=1v j = n, then y j = z1, j for 1≤ j≤m are the 0-flat outputs which can be
written as functions of only the elements of the state vector x . To provide conditions
for transforming the system of Eq. (1.35) into the canonical form described in Eq.
(1.36) the following theorem has been stated [57]:

Theorem: For nonlinear systems described by Eq. (1.35) the following variables are
defined: (i)G0 = span[g1, . . . , gm], (ii)G1 = span[g1, . . . , gm, ad f g1, . . . , ad f gm],
· · · (k) Gk = span{ad j

f gi for 0≤ j≤k, 1≤i≤m}. Then, the linearization problem
for the system of Eq. (1.35) can be solved if and only if: (1). The dimension of
Gi , i = 1, . . . , k is constant for x ∈ X⊆Rn and for 1≤i≤n − 1, (2). The dimension
of Gn−1 if of order n, (3). The distribution Gk is involutive for each 1≤k≤n − 2.

1.3.3.2 Transformation of the Nonlinear MIMO Dynamics
into a Canonical State-Space Form

It is assumed now that after defining the flat outputs of the previous state-space
description of the nonlinear MIMO dynamics and after expressing the robotic sys-
tem’s state variables and control inputs as functions of the flat output and of the asso-
ciated derivatives, the robotic system can be transformed in the Brunovsky canonical
form:
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ẋ1 = x2
· · ·
ẋr1−1 = xr1
ẋr1 = f1(x) + ∑p

j=1g1 j (x)u j + d1

ẋr1+1 = xr1+2

· · ·
ẋ p−1 = xp
ẋ p = f p(x) + ∑p

j=1gpj (x)u j + dp

y1 = x1
· · ·
yp = xn−rp+1

(1.37)

where x = [x1, . . . , xn]T is the state vector of the transformed system (according to
the differential flatness formulation), u = [u1, . . . , u p]T is the set of control inputs,
y = [y1, . . . , yp]T is the output vector, fi are the drift functions and gi, j , i, j =
1, 2, . . . , p are smooth functions corresponding to the control input gains, while d j

is a variable associated to external disturbances. It holds that r1 + r2 + · · · + rp = n.
After writing the initial nonlinear system into the canonical (Brunovsky) form it
holds

y(ri )
i = fi (x) + ∑p

j=1gi j (x)u j + d j (1.38)

Next the following vectors andmatrices can be defined: f (x) = [ f1(x), . . . , fn(x)]T ,
g(x) = [g1(x), . . . , gn(x)]T , with gi (x) = [g1i (x), . . . , gpi (x)]T , A = diag[A1,

. . . , Ap], and B = diag[B1, . . . , Bp],CT = diag[C1, . . . ,Cp], d = [d1, . . . , dp]T ,
where matrix A has the MIMO canonical form, i.e. with block-diagonal elements

Ai =

⎛
⎜⎜⎜⎜⎜⎝

0 1 · · · 0
0 0 · · · 0
...

... · · · ...

0 0 · · · 1
0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

ri×ri
BT
i = (

0 0 · · · 0 1
)
1×ri

Ci = (
1 0 · · · 0 0

)
1×ri

(1.39)

Thus, Eq. (1.38) can be written in state-space form

ẋ = Ax + Bv + Bd̃
y = Cx

(1.40)

where the control input is written as v = f (x) + g(x)u. The system of Eqs. (1.39)
and (1.40) is in controller and observer canonical form.
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1.3.4 Global Linearization of a 2-DOF Robotic Manipulator

Following the previous analysis and without loss of generality, a 2-DOF rigid link
robotic manipulator is considered. The dynamic model of the robot is given by

(
M11 M12

M21 M22

) (
θ̈1

θ̈2

)
+

(
F1(θ, θ̇ )

F2(θ, θ̇ )

)
+

(
G1(θ)

G2(θ)

)
=

(
T1
T2

)
(1.41)

or equivalently

(
θ̈1

θ̈2

)
= −

(
M11 M12

M21 M22

)−1 (
F1(θ, θ̇ )

F2(θ, θ̇ )

)
−

−
(
M11 M12

M21 M22

)−1 (
G1(θ)

G2(θ)

)
+

(
M11 M12

M21 M22

)−1 (
T1
T2

) (1.42)

Denoting the inverse of the inertia matrix as
(
M11 M12

M21 M22

)
=

(
N11 N12

N21 N22

)
(1.43)

then one obtains
(

θ̈1

θ̈2

)
= −

(
N11 N12

N21 N22

) (
F1(θ, θ̇ )

F2(θ, θ̇ )

)
−

(
N11 N12

N21 N22

)(
G1(θ)

G2(θ)

)
+

(
N11 N12

N21 N22

)(
T1
T2

)

(1.44)

or equivalently

(
θ̈1

θ̈2

)
=

(−N11F1(θ, θ̇) − N12F2(θ, θ̇) − N11G1(θ) − N12G2(θ) + N11T1 + N12T2

−N21F2(θ, θ̇) − N22F2(θ, θ̇) − N21G1(θ) − N22G2(θ) + N21T1 + N22T2

)

(1.45)

which can be also written as

θ̈1 = −N11F1(θ, θ̇ ) − N12F2(θ, θ̇ ) − N11G1(θ) − N12G2(θ) + (
N11 N12

) (
T1
T2

)

(1.46)

θ̈2 = −N21F1(θ, θ̇ ) − N22F2(θ, θ̇ ) − N21G1(θ) − N22G2(θ) + (
N21 N22

) (
T1
T2

)

(1.47)
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The following state variables are defined

x1 = θ1 x2 = θ̇1 x3 = θ2 x4 = θ̇2 (1.48)

It holds that

ẍ1 = f1(x) + g1(x)u

ẍ3 = f2(x) + g2(x)u
(1.49)

where

f1(x) = −N11F1(θ, θ̇ ) − N12F2(θ, θ̇ ) − N11G1(θ) − N12G2(θ) ∈ R1×1

g1(x) = [N11 N12] ∈ R1×2

f2(x) = −N21F1(θ, θ̇ ) − N22F2(θ, θ̇ ) − N21G1(θ) − N22G2(θ) ∈ R1×1

g2(x) = [N21 N22] ∈ R2×2

(1.50)

The flat output is defined as

y = [θ1, θ2] = [x1, x3] (1.51)

It holds that

ẋ1 = x2
ẋ2 = f1(x) + g1(x)u

ẋ3 = x4
ẋ4 = f2(x) + g2(x)u

(1.52)

therefore all system state variables can be written as functions of the flat output y
and its derivatives. The same holds for the control input u

x1 = [1 0]yT x2 = [1 0]ẏT
x3 = [0 1]yT x2 = [0 1]ẏT (1.53)

Moreover, from Eq. (1.52) it holds

(
ẍ1
ẍ3

)
=

(
f1(x)

f2(x)

)
+

(
g1(x)

g2(x)

)
u i.e. u =

(
g1(x)

g2(x)

)−1 {(
ẍ1
ẍ3

)
−

(
f1(x)

f2(x)

)}

(1.54)

Knowing that x = h(y, ẏ) one finally obtains

u =
(
g1(h(y, ẏ))

g2(h(y, ẏ))

)−1 {(
[1 0]ÿT
[0 1]ÿT

)
−

(
f1(h(y, ẏ))

f2(h(y, ẏ))

)}
(1.55)
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Therefore, the considered robotic system is a differentially flat one. Next, considering
also the effects of additive disturbances to the joints of the robotic manipulator the
dynamic model becomes

ẍ1 = f1(x, t) + g1(x, t)u + d̃1

ẍ3 = f2(x, t) + g2(x, t)u + d̃2
(1.56)

(
ẍ1
ẍ3

)
=

(
f1(x, t)

f2(x, t)

)
+

(
g1(x, t)

g2(x, t)

)
u +

(
d̃1

d̃2

)
(1.57)

Moreover, the following control input is defined

u =
(
g1(x, t)

g2(x, t)

)−1 {(
ẍ d1
ẍ d3

)
−

(
f1(x, t)

f2(x, t)

)
−

(
KT

1

KT
2

)
e +

(
uc1
uc2

)}
(1.58)

where [uc1 uc2 ]T is a supervisory control term that is used for the compensation
of the model’s uncertainties as well as of the external disturbances and KT

i =
[ki1, ki2, . . . , kin−1, k

i
n] are the rows of the error feedback gain matrix [447, 457].

Additionally, the differentially flat robotic model is written in the Brunovsky
(canonical) form. Considering the state vector x ∈ R4×1, with the state variables
defined in Eq. (1.48), the following matrices are defined

A =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠ , C =

(
1 0 0 0
0 0 1 0

)
(1.59)

Using the matrices of Eq. (1.59) one obtains the Brunovsky form of the MIMO robot
model dynamics

ẋ = Ax + Bv
y = Cx

(1.60)

where the new input v is given by

v =
(
f1(x, t)

f2(x, t)

)
+

(
g1(x, t)

g2(x, t)

)
u +

(
d̃1

d̃2

)
(1.61)

Moreover, considering that the model’s structure and parameters are known and that
the additive input disturbance d̃i , i = 1, 2, . . . are also known, but the system’s
state vector is obtained by an estimation procedure, then the following feedback
linearizing control input is defined
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u =
(
g1(x, t)

g2(x, t)

)−1 {(
ẍ d1
ẍ d3

)
−

(
f1(x, t)

f2(x, t)

)
−

(
KT

1

KT
2

)
e +

(
uc1
uc2

)}
(1.62)

where [uc1 uc2 ]T is a supervisory control term that is used for the compensation
of the model’s uncertainties as well as of the external disturbances and KT

i =
[ki1, ki2, . . . , kin−1, k

i
n] are the rows of the feedback gain matrix, while x̂ is the esti-

mated value of the system’s state vector [447, 457]. It is also noted that to perform
simultaneous state and disturbances estimation one can consider results on distur-
bance observers within a Kalman Filter framework [450].

Finally, the differentially flat roboticmodel iswritten in theBrunovsky (canonical)
form. Considering the state vector x ∈ R4×1, with the state variables defined in Eq.
(3.29), the following matrices are defined

A =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠ , C =

(
1 0 0 0
0 0 1 0

)
(1.63)

Using the matrices of Eq. (1.63) one obtains the Brunovsky form of the MIMO robot
model dynamics

ẋ = Ax + Bv
y = Cx

(1.64)

where the new input v is given by

v =
(
f1(x, t)

f2(x, t)

)
+

(
g1(x, t)

g2(x, t)

)
u +

(
d̃1

d̃2

)
(1.65)

For the model of Eq. (1.64) is is possible to apply feedback control after measuring
only the outputs of the model, that is the joint angles. The non-measurable elements
of the state vector are estimated with the use of Kalman Filtering. In such a case,
matrices A, B and C of Eq. (1.63) are turned into discrete-time ones using common
discretization methods. These discrete-time matrices are denoted as Ad , Bd and Cd

respectively. For the robotic model of Eqs. (1.64) and (1.65) state estimation can be
performed using the Kalman Filter recursion, as described in [457].

1.3.5 Simulation Tests

The performance of the proposed global linearization-based control was tested in the
model of a 2-DOF rigid-link robotic manipulator (Fig. 1.3). The differentially flat
model of the robot and its transformation to the Brunovksy form has been analyzed
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Fig. 1.3 A 2-DOF rigid-link
robotic manipulator

in the previous section. The flat outputs were taken to be the robot’s joint angles
y1 = x1 and y2 = x3. It has been proven that all state variables of the robotic model
and the associated control inputs, i.e. the torques applied by the motors to the links’
joints can be written as functions of the flat output [y1, y2] and of the associated
derivatives.

Two different set-points were studied: (i) a sinusoidal signal of amplitude 1.0 and
period T = 10 s, (ii) a see-saw set-point of amplitude 0.30 and period T = 10 s.
At the beginning of the second half of the simulation time an additive sinusoidal
disturbance of amplitude A = 0.5 and period T = 10 s was applied to the system.
The approximations f̂ and ĝ were used in the derivation of the control law. To
implement state estimation-based control after measuring only x1 and x3 the Kalman
Filter has been applied on the linearized equivalent model of the robot.

The position and velocity variations for the sinusoidal set-point for the first joint
of the robotic manipulator are depicted in Fig. 1.4. For the second joint of the 2-DOF
robot the tracking of the position and velocity setpoints is depicted in Fig. 1.5. The
control inputs (motor torques) applied to the first and second joint of the robotic
manipulator are shown in Fig. 1.6.

The performance of the state estimation-based control has been also tested in
the tracking of a see-saw set-point. The position and velocity variation of the first
joint are demonstrated in Fig. 1.7. Similarly, the tracking of the position and velocity
reference setpoints for the second joint are depicted in Fig. 1.8. The control signal in
the case of tracking of a tracking a see-saw setpoint by the two joints of the robotic
manipulator is shown in Fig. 1.9. The estimated state variables were denoted as green
line whereas the real state variables were denoted as blue lines.

Moreover, state estimation with Kalman Filtering on the linearized equivalent
model of the robot (Derivative-free nonlinear Kalman Filter (DKF) [457]) was tested
against the Extended Kalman Filter which is among the most commonly used esti-
mation methods for nonlinear dynamical systems. In the latter case, the position
and velocity variations for the sinusoidal set-point for the first joint of the robotic
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Fig. 1.4 Control with global linearization andKalman Filtering: a Tracking of a sinusoidal position
set-point (dashed line) by the angle of the first joint of the robot (continuous line) b Tracking of
a sinusoidal velocity set-point (dashed line) by the angular velocity of the first joint of the robot
(continuous line)
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Fig. 1.5 Control with global linearization andKalman Filtering: a Tracking of a sinusoidal position
set-point (dashed line) by the angle of the second joint of the robot (continuous line) b Tracking of
a sinusoidal velocity set-point (dashed line) by the angular velocity of the second joint of the robot
(continuous line)

manipulator are depicted in Fig. 1.10. For the second joint of the 2-DOF robot the
tracking of the position and velocity setpoints is depicted in Fig. 1.11. The control
inputs (motor torques) applied to the first and second joint of the robotic manipulator
are shown in Fig. 1.12.

The performance of the state estimation-based control is also tested in the track-
ing of a see-saw set-point. The position and velocity variation of the first joint are
demonstrated in Fig. 1.13. Similarly, the tracking of the position and velocity refer-
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Fig. 1.6 Tracking of a sinusoidal setpoint by the 2-DOF robotic manipulator with the use of the
derivative-free Kalman Filter: a Control input (motor torque) applied to the first joint b Control
input (motor torque) applied to the second joint
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Fig. 1.7 Control with global linearization and Kalman Filtering: a Tracking of a seesaw position
set-point (dashed line) by the angle of the first joint of the robot (continuous line) b Tracking
of a seesaw velocity set-point (dashed line) by the angular velocity of the first joint of the robot
(continuous line)

ence setpoints for the second joint are depicted in Fig. 1.14. The control signal in
the case of tracking a see-saw setpoint by the two joints of the robotic manipulator
is shown in Fig. 1.15.

Comparing the estimation performed by the derivative-free MIMO nonlinear
Kalman Filter with the one performed by the Extended Kalman Filter it can be
noticed that the derivative-free filtering approach results in more accurate state esti-
mates. Moreover, comparing the associated state estimation-based control loop that
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Fig. 1.8 Control with global linearization and Kalman Filtering: a Tracking of a seesaw position
set-point (dashed line) by the angle of the second joint of the robot (continuous line) Control with
global linearization and Kalman Filtering Tracking of a seesaw velocity set-point (dashed line) by
the angular velocity of the second joint of the robot (continuous line)
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Fig. 1.9 Control with global linearization and Kalman Filtering: Tracking of a seesaw setpoint by
the 2-DOF robotic manipulator with the use of the derivative-free Kalman Filter: a Control input
(motor torque) applied to the first joint b Control input (motor torque) applied to the second joint

was based on the derivative-free MIMO nonlinear Kalman Filter to the control that
was based on the ExtendedKalman Filter it was observed that the first control scheme
was significantly more robust and capable of tracking with better accuracy the desir-
able trajectories. These findings show the suitability of the considered derivative-free
MIMO nonlinear Kalman Filter for tracking, control and fault diagnosis tasks.
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Fig. 1.10 Control with computed torque method and Extended Kalman Filtering: a Tracking of
a sinusoidal position set-point (dashed line) by the angle of the first joint of the robot (continuous
line) b Tracking of a sinusoidal velocity set-point (dashed line) by the angular velocity of the first
joint of the robot (continuous line)
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Fig. 1.11 Control with computed torque method and Extended Kalman Filtering: a Tracking of a
sinusoidal position set-point (dashed line) by the angle of the second joint of the robot (continuous
line) b Tracking of a sinusoidal velocity set-point (dashed line) by the angular velocity of the second
joint of the robot (continuous line)
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Fig. 1.12 Tracking of a sinusoidal setpoint by the 2-DOF robotic manipulator with the use of the
Extended Kalman Filter: a Control input (motor torque) applied to the first joint b Control input
(motor torque) applied to the second joint
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Fig. 1.13 Control with computed torque method and Extended Kalman Filtering: a Tracking of a
seesaw position set-point (dashed line) by the angle of the first joint of the robot (continuous line)
b Tracking of a seesaw velocity set-point (dashed line) by the angular velocity of the first joint of
the robot (continuous line)
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Fig. 1.14 Control with computed torque method and Extended Kalman Filtering: a Tracking of
a seesaw position set-point (dashed line) by the angle of the second joint of the robot (continuous
line) b Tracking of a seesaw velocity set-point (dashed line) by the angular velocity of the second
joint of the robot (continuous line)
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Fig. 1.15 Tracking of a seesaw setpoint by the 2-DOF robotic manipulator with the Extended
Kalman Filter: a Control input (motor torque) applied to the first joint b Control input (motor
torque) applied to the second joint

1.4 Model-Based Control of Rigid-Link Manipulators
Using Approximate Linearization Methods

1.4.1 Outline

As previously analyzed, the problem of nonlinear control for multi-DOF robotic
manipulators is a nontrivial one [86, 233, 372, 377, 403, 484]. In this section a new
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method for H-infinity nonlinear control of robotic manipulators is developed and the
associated stability proof is provided. In the preceding section it has been shown
that existing methods for control of robotic manipulators can be based on global
linearization transformations and static state feedback and among these methods
the computed torque approach is the most popular one. As already explained, such
control methods are based on the transformation of the nonlinear manipulator into
an equivalent form of new state variables in which the robot’s dynamics is given by
a linear and decoupled model. For the latter description of the robot the design of a
state feedback controller becomes possible [230, 450, 452, 457, 519].

In this section a different approach for the control of multi-DOF robotic manip-
ulators is proposed, making use of local linearization of the robot’s dynamics and
applyingH-infinity control theory [10, 132, 243, 305, 528]. The nonlinear dynamical
model of the robot is subject to local linearization through a Taylor series expansion
and the computation of the associated Jacobian matrices [33, 431, 463]. The selec-
tion of the linearization point (equilibrium) is performed using the present value of
the state vector and the control input of the robotic model. The resulting linearized
model of the robot contains also an uncertainty term which is due to the linearization
error and this is compensated with the application of an H-infinity feedback control
scheme [417, 466].

Actually, the solution of theH-infinity control problem for the linearized dynamics
of the robot stands for a min-max differential game in which the control input tries to
minimize a cost functional expressing the tracking error for the robot’s state variables
while the disturbance and model uncertainty input tries to maximize it [133, 402,
404, 564, 605]. The computation of the controller’s feedback gain is performed by
solving an algebraic Riccati equation at each iteration of the algorithm. The stability
of the control method is demonstrated through Lyapunov analysis. It is proven that
despite the existence of model uncertainties and external perturbations in the robot’s
dynamic model, the H-infinity tracking performance condition can be attained. This
addresses robustness issues which are a prerequisite in the design of robot control
systems [156, 499]. Under moderate conditions, this can also confirm the system’s
asymptotic stability.

The main features of nonlinear H-infinity control for multi-DOF robotic manip-
ulators are outlined as follows: (i) the new control approach does not make use
of linearizing transformations (diffeomorphisms) of the robot’s description but acts
directly on the robot’s nonlinear model, (ii) the H-infinity control approach follows
optimal control theory for the computation of the control signal (iii) the new control
approach makes use of local linearization and requires the computation of Jaco-
bian matrices in the robot’s dynamic model, (iv) the computation of the controller’s
feedback gains relies on the solution of an algebraic Riccati equation and this is
performed at each stage of the control algorithm, (v) yet simple the control method
provides good tracking accuracy and exhibits robustness to modelling errors and
external perturbations.
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1.4.2 Dynamic Model of the Multi-DOF Robotic System

The dynamic model of the 2-DOF rigid-link robot which is depicted again in
Fig. 1.3, and under the assumption that the masses of the links are concentrated
at the links’ end is given by

D(θ)θ̈ + h(θ, θ̇ ) + g(θ) = τ (1.66)

where D(θ) is the inertia matrix

D(θ) =
(

(m1 + m2)l21 + m1l22 + 2m2l1l2cos(θ2) m2l22 + m2l1l2cos(θ2)

m2l22 + m2l1l2cos(θ2) m2l2(l1 + l2)cos(θ2)

)
(1.67)

h(θ, θ̇ ) is the Coriolis and centrifugal forces vector

h(θ, θ̇ ) =
(

−m2l21sin(θ2)θ̇
2
2 − 2m2l21sin(θ2)θ̇1θ̇2

m2l21sin(θ2)θ̇
2
1

)
(1.68)

g(θ) is the gravitational forces vector

g(θ) =
(

(m1 + m2)gl1cos(θ1) + m2gl2cos(θ1 + θ2)

m2gl2cos(θ1 + θ2)

)
(1.69)

and τ(t) is the control inputs vector consisting of the torques that are generated by
the motors mounted on the robot’s joints.

It holds that

D−1(θ) = 1
det D

(
m2l2(l1 + l2)cos(θ2) −m2l22 + m2l1l2cos(θ2)

−m2l22 + m2l1l2cos(θ2) (m1 + m2)l21 + m2l22 + 2m2l1l2cos(θ2)

)

(1.70)

where the determinant of D is

det D = [(m1 + m2)l21 + m2l22 + 2m2l1l2cos(θ2)][m2l2(l1 + l2)cos(θ2)]−
−[m2l22 + m2l1l2cos(θ2)]2 ⇒

det D = (m1 + m2)m2l21l2(l1 + l2)cos(θ2) + m2
2l

3
2(l1 + l2)cos(θ2) + 2m2

2l1l
2
2(l1+

+l2)cos2(θ2) − m2
2l

4
2 − m2

2l
2
1l

2
2cos

2(θ2) − 2m2
2l1l

3
2cos(θ2)

(1.71)

Without loss of generality, the following parameters’ values are assumed:m1 = 1 kg,
m2 = 1 kg, l1 = 1 m, l2 = 1 m and g = 10 m/s2. Thus the inverse of the inertia
matrix D(θ) becomes
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D−1(θ) = 1
det D

(
2cos(θ2) −1 + cos(θ2)

−1 + cos(θ2) 2 + 2cos(θ2)

)
(1.72)

with

det D = 4cos(θ2) + 3cos2(θ2) − 1 (1.73)

For the previously given values of the parameters in the robot’s model one has

h(θ, θ̇ ) =
(

−sin(θ2)θ̇
2
2 − 2sin(θ2)θ̇1θ̇2

sin(θ2)θ̇
2
1

)
(1.74)

g(θ) =
(
10cos(θ1) + 10cos(θ1 + θ2)

10cos(θ1 + θ2)

)
(1.75)

Using the above one gets

−D−1(θ)h(θ, θ̇ ) = −1
det D ·

·
⎛
⎜⎝

2cos(θ2) −1 + cos(θ2)

−1 + cos(θ2) 2 + 2cos(θ2)

⎞
⎟⎠

(
−sin(θ2)θ̇

2
2 − 2sin(θ2)θ̇1θ̇2

sin(θ)2θ̇
2
1

)
(1.76)

or equivalently

−D−1(θ)h(θ, θ̇ ) = −1
det D ·

·
(

2cos(θ2)[−sin(θ2)θ̇
2
2 − 2sin(θ2)θ̇1θ̇2] + [−1 + cos(θ2)]sin(θ)2θ̇

2
1

[−1 + cos(θ2)][−sin(θ2)θ̇
2
2 − 2sin(θ2)θ̇1θ̇2] + [2 + 2cos(θ2)]sin(θ)2θ̇

2
1

)

(1.77)

Alternatively,

−D−1(θ)g(θ) = − 1
det D ·

·
(

2cos(θ2) −1 + cos(θ2)

−1 + cos(θ2) 2 + 2cos(θ2)

)(
10cos(θ1) + 10cos(θ1 + θ2)

10cos(θ1 + θ2)

)
(1.78)

or equivalently

−D−1(θ)g(θ) = −1
det D ·

·
(

2cos(θ2)[10cos(θ1) + 10cos(θ1 + θ2)] + [−1 + cos(θ2)]10cos(θ1 + θ2)

[−1 + cos(θ2)][10cos(θ1) + 10cos(θ1 + θ2)] + [2 + 2cos(θ2)]10cos(θ1 + θ2)

)

(1.79)
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Next, by defining the state variables x1 = θ1, x2 = θ̇1, x3 = θ2 and x4 = θ̇2 one gets

D−1(θ) =

⎛
⎜⎜⎝

2cos(x3)

4cos(x3) + 3cos2(x3) − 1

−1 + cos(x3)

4cos(x3) + 3cos2(x3) − 1
−1 + cos(x3)

4cos(x3) + 3cos2(x3) − 1

2 + 2cos(x3)

4cos(x3) + 3cos2(x3) − 1

⎞
⎟⎟⎠ (1.80)

and also

−D−1(θ)h(θ, θ̇) = −

⎛
⎜⎜⎜⎜⎜⎝

2cos(x3)[−sin(x3)x
2
4 − 2sin(x3)x2x4] + [−1 + cos(x3)]sin(x3)x

2
2

4cos(x3) + 3cos2(x3) − 1

[1 + cos(x3)][−sin(x3)x
2
4 − 2sin(x3)x2x4] + [2 + 2cos(x3)]sin(x3)x

2
2

4cos(x3) + 3cos2(x3) − 1

⎞
⎟⎟⎟⎟⎟⎠

(1.81)

and similarly

−D−1(θ)g(θ) = −

⎛
⎜⎜⎜⎜⎝

2cos(x3)[10cos(x1) + 10cos(x1 + x3)] + [−1 + cos(x3)][10cos(x1 + x3)]
4cos(x3) + 3cos2(x3) − 1

[−1 + cos(x3)][10cos(x1) + 10cos(x1 + x3)] + [2 + 2cos(x3)]10cos(x1 + x3)

4cos(x3) + 3cos2(x3) − 1

⎞
⎟⎟⎟⎟⎠

(1.82)

The state-space equations of the robotic model are
(
ẍ1
ẍ3

)
= −D−1(θ)h(θ, θ̇ ) − D−1(θ)g(θ) − D−1(θ)τ (1.83)

and using that the state vector is x = [x1, x2, x3, x4]T = [θ1, θ̇1, θ2, θ̇2]T and the
control inputs vector is τ = [τ1, τ2]T = [u1, u2]T the above system can be written
as,

ẋ = f (x) + ga(x)u1 + gb(x)u2 (1.84)

or equivalently

⎛
⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

ga1
ga2
ga3
ga4

⎞
⎟⎟⎟⎠ u1 +

⎛
⎜⎜⎜⎝

gb1
gb2
gb3
gb4

⎞
⎟⎟⎟⎠ u2 (1.85)

with

f1 = x2 (1.86)
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f2 = −2cos(x3)[−sin(x3)x24 − 2sin(x3)x2x4] + [−1 + cos(x3)]sin(x3)x22
4cos(x3) + 3cos2(x3) − 1

−

−2cos(x3)[10cos(x1) + 10cos(x1 + x3)] + [−1 + cos(x3)][10cos(x1 + x3)]
4cos(x3) + 3cos2(x3) − 1

(1.87)
f3 = x4 (1.88)

f4 = −[1 + cos(x3)][−sin(x3)x24 − 2sin(x3)x2x4] + [2 + 2cos(x3)]sin(x3)x22
4cos(x3) + 3cos2(x3) − 1

−[−1 + cos(x3)][10cos(x1) + 10cos(x1 + x3)] + [2 + 2cos(x3)]10cos(x1 + x3)

4cos(x3) + 3cos2(x3) − 1
(1.89)

Moreover, one has

ga1 = 0 gb1 = 0

ga2 = 2cos(x3)

4cos(x3) + 3cos2(x3) − 1
gb2 = −1cos(x3)

4cos(x3) + 3cos2(x3) − 1
ga3 = 0 gb3 = 0

ga4 = −1 + cos(x3)

4cos(x3) + 3cos2(x3) − 1
gb4 = 2 + 2cos(x3)

4cos(x3) + 3cos2(x3) − 1

(1.90)

1.4.3 Approximate Linearization of the Robot’s Dynamics

The linearization procedure for the robotic model, which is shown in Fig. 1.3, takes
place around the operating point (x∗, u∗), which is the present value of the robot’s
state vector x∗ and the value of the control input vector u∗ applied at the last iteration
of the control algorithm. The linearization procedure gives

ẋ = [∇x f |(x∗,u∗) +∇x gau1 |(x∗,u∗) +∇x gbu2 |(x∗,u∗)]x + gau1 + gbu2 + d1
(1.91)

and thus, by defining the linearization error as d1 and matrices A, B as

A = ∇x f |(x∗,u∗) +∇x gau1 |(x∗,u∗) +∇x gbu2 |(x∗,u∗) (1.92)

B = [ga gb] (1.93)

one obtains the linearized description of the robot

ẋ = Ax + Bu + d1 (1.94)
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Using the linearized description of the robotic system ẋ = Ax + Bu+d1, the design
of the feedback controller can be performed after applying the H-infinity control
theory.

Computation of Jacobian matrices of the robot’s dynamics: The Jacobian matrices
of the model of the 2-DOF robotic manipulator are defined as

∇x f |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x3

∂ f4
∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(x∗,u∗)

(1.95)

∇x ga |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ga1
∂x1

∂ga1
∂x2

∂ga1
∂x3

∂ga1
∂x4

∂ga2
∂x1

∂ga2
∂x2

∂ga2
∂x3

∂ga2
∂x4

∂ga3
∂x1

∂ga3
∂x2

∂ga3
∂x3

∂ga3
∂x4

∂ga4
∂x1

∂ga4
∂x2

∂ga4
∂x3

∂ga4
∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(x∗,u∗)

(1.96)

∇x gb |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂gb1
∂x1

∂gb1
∂x2

∂gb1
∂x3

∂gb1
∂x4

∂gb2
∂x1

∂gb2
∂x2

∂gb2
∂x3

∂gb2
∂x4

∂gb3
∂x1

∂gb3
∂x2

∂gb3
∂x3

∂gb3
∂x4

∂gb4
∂x1

∂gb4
∂x2

∂gb4
∂x3

∂gb4
∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(x∗,u∗)

(1.97)
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where

∂ f1
∂x1

= 0
∂ f1
∂x2

= 1
∂ f1
∂x3

= 0
∂ f1
∂x4

= 0 (1.98)

∂ f2
∂x1

= −2cos(x3)[10cos(x1) + 10cos(x1 + x3)] + [−1 + cos(x3)][10cos(x1 + x3)]
4cos(x3) + 3cos2(x3) − 1

(1.99)

∂ f2
∂x2

= −−2cos(x3)2sin(x3)x4 + [−1 + cos(x3)]sin(x3)2x2
4cos(x3) + 3cos2(x3) − 1

− 2cos(x3)10sin(x1 + x3)

4cos(x3) + 3cos2(x3) − 1

(1.100)

∂ f2
∂x3

= −
{ −2sin(x3)[−sin(x3)x

2
4 − 2sin(x3)x2x4] + 2cos(x3)[cos(x3)x24 − 2cos(x3)x2x4]

[4cos(x3) + 3cos2(x3) − 1]2

+ [−sin(x3)]sin(x3)x
2
2 + [−1 + cos(x3)]cos(x3)x22

[4cos(x3) + 3cos2(x3) − 1]2
}

[4cos(x3) + 3cos2(x3) − 1]

−
{
2sin(x3)[10cos(x1) + 10cos(x1 + x3)] − 2cos(x3)10sin(x1 + x3)

[4cos(x3) + 3cos2(x3) − 1]2

+ [−sin(x3)][10cos(x1 + x3)] − [−1 + cos(x3)]sin(x1 + x3)

[4cos(x3) + 3cos2(x3) − 1]2
}

[4cos(x3) + 3cos2(x3) − 1]
{

+ 2cos(x3)[−sin(x3)x
2
4 − 2sin(x3)x2x4] + [−1 + cos(x3)]sin(x3)x

2
2

[4cos(x3) + 3cos2(x3) − 1]2

+ 2cos(x3)[10cos(x1) + 10cos(x1 + x3)] + [−1 + cos(x3)][10cos(x1 + x3)]
[4cos(x3) + 3cos2(x3) − 1]2

}
[−4sin(x3) − 6cos(x3)sin(x3)]

(1.101)

∂ f2
∂x4

= 2cos(x3)[−sin(x3)2x4 − 2sin(x3)x2]
4cos(x3) + 3cos2(x3) − 1

(1.102)

∂ f3
∂x1

= 0
∂ f3
∂x2

= 0
∂ f3
∂x3

= 0
∂ f3
∂x4

= 1 (1.103)

∂ f4
∂x1

= −[−1 + cos(x3)][−10sin(x1) − 10sin(x1 + x3)] − [2 + 2cos(x3)]10sin(x1 + x3)

4cos(x3) + 3cos2(x3) − 1
(1.104)

∂ f4
∂x2

= −[1 + cos(x3)][−2sin(x3)x4] + [2 + 2cos(x3)]sin(x3)2x2
4cos(x3) + 3cos2(x3) − 1

(1.105)
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∂ f4
∂x3

= −
{ −sin(x3)[−sin(x3)x

2
4 − 2sin(x3)x2x4] + [1 + cos(x3)][cos(x3)x24 − 2cos(x3)x2x4]

[4cos(x3) + 3cos2(x3) − 1]2

+ −2sin(x3)sin(x3)x
2
2 + [2 + 2cos(x3)]cos(x3)x22

[4cos(x3) + 3cos2(x3) − 1]2
}

[4cos(x3) + 3cos2(x3) − 1]

−
{

−sin(x3)[10cos(x1) + 10cos(x1 + x3)] + [−1 + cos(x3)][−10sin(x3) − 10sin(x1 + x3)]
[4cos(x3) + 3cos2(x3) − 1]2

+ −2sin(x3)10cos(x1 + x3) − [2 + 2cos(x3)]10sin(x1 + x3)

[4cos(x3) + 3cos2(x3) − 1]2
}

[4cos(x3) + 3cos2(x3) − 1]
{ [1 + cos(x3)][−sin(x3)x

2
4 − 2sin(x3)x2x4] + [2 + 2cos(x3)]sin(x3)x

2
2

[4cos(x3) + 3cos2(x3) − 1]2

+ [−1 + cos(x3)][10cos(x1) + 10cos(x1 + x3)] + [2 + 2cos(x3)]10cos(x1 + x3)

[4cos(x3) + 3cos2(x3) − 1]2
}

[−4sin(x3) − 6cos(x3)sin(x3)]

(1.106)

∂ f4
∂x4

= [1 + cos(x3)][−sin(x3)2x4 − 2sin(x3)x2]
4cos(x3) + 3cos2(x3) − 1

(1.107)

In a similar manner one computes

∂ga1
∂x1

= 0
∂ga1
∂x2

= 0
∂ga1
∂x3

= 0
∂ga1
∂x4

= 0 (1.108)

∂ga2
∂x1

= 0
∂ga2
∂x2

= 0
∂ga2
∂x4

= 0 (1.109)

∂ga2
∂x3

= −2sin(x3)[4cos(x3) + 4cos2(x3) − 1] + 2cos(x3)[−4sin(x3) − 6sin(x3)cos(x3)]
[4cos(x3) + 3cos2(x3) − 1]2

(1.110)

∂ga3
∂x1

= 0
∂ga3
∂x2

= 0
∂ga3
∂x3

= 0
∂ga3
∂x4

= 0 (1.111)

∂ga2
∂x1

= 0
∂ga2
∂x2

= 0
∂ga2
∂x4

= 0 (1.112)

∂ga2
∂x3

= −sin(x3)[4cos(x3) + 4cos2(x3) − 1] + [−1 + cos(x3)][4sin(x3) + 6sin(x3)cos(x3)]
[4cos(x3) + 3cos2(x3) − 1]2

(1.113)

while one also obtains

∂gb1
∂x1

= 0
∂gb1
∂x2

= 0
∂gb1
∂x3

= 0
∂gb1
∂x4

= 0 (1.114)
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∂gb2
∂x1

= 0
∂gb2
∂x2

= 0
∂gb2
∂x3

= 0 (1.115)

∂gb2
∂x3

= −sin(x3)[4cos(x3) + 4cos2(x3) − 1] + [−1 + cos(x3)][4sin(x3) + 6sin(x3)cos(x3)]
[4cos(x3) + 3cos2(x3) − 1]2

(1.116)

∂gb3
∂x1

= 0
∂gb3
∂x2

= 0
∂gb3
∂x3

= 0
∂gb3
∂x4

= 0 (1.117)

∂gb4
∂x1

= 0
∂gb4
∂x2

= 0
∂gb4
∂x3

= 0 (1.118)

∂gb4
∂x3

= −2sin(x3)[4cos(x3) + 4cos2(x3) − 1] + [2 + 2cos(x3)][4sin(x3) + 6sin(x3)cos(x3)]
[4cos(x3) + 3cos2(x3) − 1]2

(1.119)

1.4.4 Design of an H-Infinity Nonlinear Feedback Controller

1.4.4.1 Equivalent Linearized Dynamics of the Robot

After linearization round its current operating point, the robot’s dynamic model is
written as

ẋ = Ax + Bu + d1 (1.120)

Parameter d1 stands for the linearization error in the robot’s dynamicmodel appearing
in Eq. (1.120). The reference setpoints for the robot’s state vector are denoted by
xd = [xd1 , . . . , xd4 ]. Tracking of this trajectory is achieved after applying the control
input u∗. At every time instant the control input u∗ is assumed to differ from the
control inputu appearing inEq. (1.120) by an amount equal toΔu, that isu∗ = u+Δu

ẋd = Axd + Bu∗ + d2 (1.121)

The dynamics of the controlled system described in Eq. (1.120) can be also written
as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (1.122)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (1.123)
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By subtracting Eq. (1.121) from Eq. (1.123) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (1.124)

By defining the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (1.125)

The above linearized form of the robot’s model can be efficiently controlled after
applying an H-infinity feedback control scheme.

1.4.4.2 The Nonlinear H-Infinity Control

The initial nonlinear model of the robotic manipulator is in the form

ẋ = f (x, u) x ∈ Rn, u ∈ Rm (1.126)

Linearization of the system (multi-DOF robot) is performed at each iteration of the
control algorithm around its present operating point (x∗, u∗) = (x(t), u(t − Ts)).
The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x ∈ Rn, u ∈ Rm, d̃ ∈ Rq (1.127)

where matrices A and B are obtained from the computation of the Jacobians

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂xn

· · · · · · · · · · · ·
∂ fn
∂x1

∂ fn
∂x2

· · · ∂ fn
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂u1

∂ f1
∂u2

· · · ∂ f1
∂um

∂ f2
∂u1

∂ f2
∂u2

· · · ∂ f2
∂um

· · · · · · · · · · · ·
∂ fn
∂u1

∂ fn
∂u2

· · · ∂ fn
∂um

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) (1.128)

and vector d̃ denotes disturbance terms due to linearization errors. The problem of
disturbance rejection for the linearized model that is described by

ẋ = Ax + Bu + Ld̃

y = Cx
(1.129)

where x ∈ Rn , u ∈ Rm , d̃ ∈ Rq and y ∈ Rp, cannot be handled efficiently if
the classical LQR control scheme is applied. This is because of the existence of
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the perturbation term d̃ . The disturbance term d̃ apart from modeling (parametric)
uncertainty and external perturbation terms can also represent noise terms of any
distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory
tracking by the system’s state vector and simultaneous disturbance rejection, con-
sidering that the disturbance affects the system in the worst possible manner. The
disturbances’ effects are incorporated in the following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t)+

+ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0
(1.130)

The significance of the negative sign in the cost function’s term that is associated
with the perturbation variable d̃(t) is that the disturbance tries to maximize the
cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each otherwithin amin-max differential game. This problemofmini-max
optimization can be written as

minumaxd̃ J (u, d̃) (1.131)

The objective of the optimization procedure is to compute a control signal u(t)
which can compensate for the worst possible disturbance, that is externally imposed
to the robotic system. However, the solution to the min-max optimization problem
is directly related to the value of the parameter ρ. This means that there is an upper
bound in the disturbances magnitude that can be annihilated by the control signal.

1.4.5 Computation of the Feedback Control Gains
for the Approximately Linearized Robot

For the linearized system given by Eq. (1.129) the cost function of Eq. (1.130) is
defined, where the coefficient r determines the penalization of the control input and
the weight coefficient ρ determines the reward of the disturbances’ effects.

It is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L] are

stabilizable, (iii) the matrix [A,C] is detectable. Then, the optimal feedback control
law is given by

u(t) = −Kx(t) (1.132)

with

K = 1
r B

T P (1.133)
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Fig. 1.16 Diagram of the control scheme for the multi-DOF robotic manipulator

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P
(
1
r BB

T − 1
2ρ2 LLT

)
P = 0 (1.134)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (1.135)

The diagram of the considered control loop is depicted in Fig. 1.16.

1.4.6 Riccati Equation Coefficients in Controller’s
Robustness

The parameter ρ in Eq. (1.130), is an indication of the closed-loop system robustness.
If the values of ρ > 0 are excessively decreased with respect to r , then the solution
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of the Riccati equation is no longer a positive definite matrix. Consequently there
is a lower bound ρmin of ρ for which the H∞ control problem has a solution. The
acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found and used in
the design of the H∞ controller, then the closed-loop system will have increased
robustness. Otherwise, if a value ρ > ρmin is used, then an admissible stabilizing
H∞ controller will be derived but it will be a suboptimal one. TheHamiltonianmatrix

H =
(

A −( 1r BB
T − 1

ρ2 LLT )

−Q −AT

)
(1.136)

provides a criterion for the existence of a solution of the Riccati equation Eq. (1.134).
Anecessary condition for the solutionof the algebraicRiccati equation to be apositive
semi-definite symmetric matrix is that H has no imaginary eigenvalues [450].

1.4.7 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme guarantees H∞ tracking performance for the roboticmanipulator, and
that in case of bounded disturbance terms asymptotic convergence to the reference
setpoints is achieved. The tracking error dynamics for the multi-DOF robot is written
in the form

ė = Ae + Bu + Ld̃ (1.137)

where in the robot’s case L = I ∈ R4 with I being the identity matrix. Variable
d̃ denotes model uncertainties and external disturbances of the robot’s model. The
following Lyapunov function is considered

V = 1
2e

T Pe (1.138)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T Pe + 1

2e
T P[Ae + Bu + Ld̃]⇒ (1.139)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (1.140)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(1.141)
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The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + ( 12u
T BT Pe + 1

2e
T PBu)+

+( 12 d̃
T LT Pe + 1

2e
T PLd̃)

(1.142)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P
(
2
r BB

T − 1
ρ2 LLT

)
P (1.143)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (1.144)

By substituting Eqs. (1.143) and (1.144) one obtains

V̇ = 1
2e

T
[
−Q + P

(
2
r BB

T − 1
ρ2 LLT

)
P

]
e+

+eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(1.145)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(1.146)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (1.147)

or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(1.148)

Lemma: The following inequality holds

1
2e

T Ld̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (1.149)

Proof The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(1.150)
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The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (1.151)

Equation (1.151) is substituted in Eq. (1.148) and the inequality is enforced, thus
giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (1.152)

Equation (1.152) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt (1.153)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (1.154)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (1.155)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (1.138) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞ e(t) = 0.

The outline of the global stability proof is that at each iteration of the control
algorithm the state vector of the robotic system converges towards the temporary
equilibrium and the temporary equilibrium in turn converges towards the reference
trajectory. Thus, the control scheme exhibits global asymptotic stability properties
and not local stability. Assume the ith iteration of the control algorithm and the ith
time interval about which a positive definite symmetric matrix P is obtained from the
solution of the Riccati Equation appearing in Eq. (1.143). By following the stages
of the stability proof one arrives at Eq. (1.152) which shows that the H-infinity
tracking performance criterion holds. By selecting the attenuation coefficient ρ to
be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that the
first derivative of the Lyapunov function is upper bounded by 0. Therefore for the
ith time interval it is proven that the Lyapunov function defined in Eq. (1.138) is
a decreasing one. This signifies that between the beginning and the end of the ith
time interval there will be a drop of the value of the Lyapunov function and since
matrix P is a positive definite one, the only way for this to happen is the Euclidean
norm of the state vector error e to be decreasing. This means that comparing to the
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beginning of each time interval, the distance of the state vector error from 0 at the
end of the time interval has been diminished. Consequently as the iterations of the
control algorithm advance the tracking error will approach zero, and this is a global
asymptotic stability condition.

1.4.8 Simulation Tests

The tracking performance of the proposed nonlinear H-infinity control algorithmwas
confirmed in the case of tracking of different reference setpoints by two different
types of multi-DOF robotic manipulators: (i) a planar 2-DOF robot, (ii) a 2-DOF
manipulator with a dynamic model subjected to the effects of gravitational forces.
In both cases it was confirmed that the applied control method achieved precise
tracking of the joints’ reference setpoints. The convergence of the joints’ angles to
the desirable values was fast, while the variation of the control input was smooth and
remained within moderate ranges.

First, the results about themotion of the joints of the planar 2-DOF robot are given.
It was considered that themotion of the robot was taking place in the horizontal plane
at zero height. Consequently Eq. (1.159) did not contain the vector of gravitational
forces g(θ). In Figs. 1.17, 1.18 and 1.19 one can note how under the proposed control
scheme the angles of the joints of themulti-DOF planar roboticmanipulator converge
to a constant reference setpoint. Equivalently in Figs. 1.20, 1.21 and 1.22 one can
note how under the proposed control scheme the angles of the joints of themulti-DOF
planar robotic manipulator track a sinusoidal reference setpoint.
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Fig. 1.17 a Tracking of a constant reference setpoint by the joints x1 = θ1 and x3 = θ2 of a 2-DOF
planar robot manipulator, b the associated control inputs u1 and u2
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Fig. 1.18 a Tracking of a constant reference setpoint by the joints θ1 of a 2-DOF planar robot
manipulator, b angular velocity θ̇1
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Fig. 1.19 a Tracking of a constant reference setpoint by the joints θ2 of a 2-DOF planar robot
manipulator, b angular velocity θ̇2

Next, results about the convergence to reference setpoints of the joints of the
2-DOF robotic model subjected to gravitational forces are presented. The dynamic
model of the robot was that of Eq. (1.159). It was considered that the motion of the
robot takes place in the cartesian space and consequently the vector of gravitational
forces g(θ) had non-zero values. In Figs. 1.23, 1.24 and 1.25 one can observe how
under the proposed control scheme the angles of the joints of the multi-DOF robotic
manipulator convergence to a constant reference setpoint. Equivalently in Figs. 1.26,
1.27 and 1.28 one can note how under the proposed control scheme the angles of the
joints of the multi-DOF robotic manipulator track a sinusoidal reference setpoint.
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Fig. 1.20 a Tracking of a sinusoidal reference setpoint by the joints x1 = θ1 and x3 = θ2 of a
2-DOF planar robot manipulator, b the associated control inputs u1 and u2
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Fig. 1.21 a Tracking of a sinusoidal reference setpoint by the joints θ1 of a 2-DOF planar robot
manipulator, b angular velocity θ̇1

The tracking accuracy of the presented control method (H∞) was compared
against the one of the computed torque method (CT) in the case of several refer-
ence setpoints (path 1: a constant angle setpoint, path 2: a linearly increasing angle
setpoint, path 3; a sinusoidal angle setpoint). The obtained results are given in Tables
1.2 and 1.3. The proposed nonlinear H-infinity control method was based on approx-
imate linearization of the dynamic model of the robot, whereas the computed torque
method made use of global linearization. Despite this the performance of the nonlin-
ear H-infinity control was equally good to the performance of control based on the
computed torque method.
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Fig. 1.22 a Tracking of a sinusoidal reference setpoint by the joints θ2 of a 2-DOF planar robot
manipulator, b angular velocity θ̇2

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

x 1

0 5 10 15 20 25 30 35 40
0

1

2

3

4

time (sec)

x 3

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

u
1

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

u
2

(a) (b)

Fig. 1.23 a Tracking of a constant reference setpoint by the joints x1 = θ1 and x3 = θ2 of a 2-DOF
robot manipulator that was subjected to gravitational forces, b the associated control inputs u1
and u2

The tracking performance of the nonlinearH-infinity controlmethod for themodel
of the 2-DOF manipulator and under additive disturbances affecting element ga,2(x)
of the input gain functions ga(x) of Eq. (1.84) is outlined in Table 1.4. It can be
noticed that despite model perturbations the tracking accuracy of the control method
remained satisfactory.

Comparison of the proposed control method to PD or PID controllers can confirm
the improved performance and reliability of nonlinear H-infinity control. Actually,
when PD or PID controllers are applied to nonlinear dynamical systems, such as
robotic manipulators, global asymptotic stability of the control loop usually cannot
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Fig. 1.24 a Tracking of a constant reference setpoint by the joint θ1 of a 2-DOF robot manipulator
that was subjected to gravitational forces, b angular velocity θ̇1
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Fig. 1.25 a Tracking of a constant reference setpoint by the joint θ2 of a 2-DOF robot manipulator
that was subjected to gravitational forces, b angular velocity θ̇2

be proven. The functioning of PID controllers remains valid only at local operating
points (equilibria) where the nonlinear system can be approximated by an equivalent
robotic model. When the operating conditions change or when the robotic system
is subject to modelling uncertainty or to external perturbations, the stability of the
control loop is likely to be lost. On the other hand, the nonlinear H-infinity control
of the robotic manipulator is proven to have global asymptotic stability properties
and to be robust as described by the H-infinity tracking performance criterion of Eq.
(1.152).

The improved performance of nonlinear H-infinity control comparing to LQR/
LQG control can be also confirmed. The LQR control method is the solution to the
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Fig. 1.26 a Tracking of a sinusoidal reference setpoint by the joints x1 = θ1 and x3 = θ2 of a
2-DOF planar robot manipulator that was subjected to gravitational forces, b the associated control
inputs u1 and u2
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Fig. 1.27 a Tracking of a sinusoidal reference setpoint by the joint θ1 of a 2-DOF robot manipulator
that was subjected to gravitational forces, b angular velocity θ̇1

optimal control method according to Bellman’s optimality principle and following
minimization of the associated Hamiltonian of the system (the latter consisting of a
first term representing a quadratic cost function and of a second term representing
the state-space equation of the system). The LQG control approach is the solution
of the joint optimal control and optimal state estimation problem (Kalman Filtering)
for linear dynamical systems. The solution of the optimal control problem through
LQR is possible provided that the system’s state-space equation is a linear one and
provided also that no external disturbances or model uncertainty terms exist in the
system’s dynamics. On the other side the solution of the optimal control problem
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Fig. 1.28 a Tracking of a sinusoidal reference setpoint by the joint θ2 of a 2-DOF robot manipulator
that was subjected to gravitational forces, b angular velocity θ̇2

Table 1.2 RMSE of the robot’s state variables (planar robot)

No RMSEx1 RMSEx2 RMSEx3 RMSEx4

path 1 CT 8.4·10−3 0.1·10−3 7.0·10−3 0.1·10−3

path 1 H∞ 8.4·10−3 0.1·10−3 7.0·10−3 0.1·10−3

path 2 CT 9.2·10−3 0.1·10−3 7.8·10−3 0.1·10−3

path 2 H∞ 9.2·10−3 0.1·10−3 7.8·10−3 0.1·10−3

path 3 CT 4.8·10−3 1.1·10−3 3.6·10−3 0.1·10−3

path 3 H∞ 4.8·10−3 1.0·10−3 3.6·10−3 0.1·10−3

in case that the robotic system is characterized by nonlinear dynamics is a non-
trivial problem and the iterative optimization solutions which have been proposed
for it are not always of assured convergence to a minimum. The nonlinear optimal
control problem becomes much more complicated when the system is subject to
model uncertainty and external perturbations. The present section has proposed a
solution to the nonlinear optimal control problem under model uncertainties and
external perturbations. Themethod is of proven stability and robustness. This control
approach is based on approximate linearization of the nonlinear system’s dynamics
around a temporary equilibrium that is recomputed at each iteration of the control
algorithm. It has been proven that the state vector of the system is made to converge
to the temporary equilibrium while progressively the equilibrium also converges to
the reference trajectories. This comes to explain the stability and convergence to
optimum properties of the proposed control method.



1.5 Model-Based Control of Rigid-Link Manipulators Under Time-Delays 49

Table 1.3 RMSE of the robot’s state variables (cartesian space)

No RMSEx1 RMSEx2 RMSEx3 RMSEx4

path 1 CT 8.4·10−3 0.1·10−3 7.0·10−3 0.1·10−3

path 1 H∞ 8.4·10−3 0.1·10−3 7.2·10−3 0.1·10−3

path 2 CT 9.2·10−3 0.1·10−3 7.8·10−3 0.1·10−3

path 2 H∞ 9.6·10−3 0.1·10−3 7.9·10−3 0.1·10−3

path 3 CT 5.8·10−3 0.5·10−3 3.6·10−3 0.1·10−3

path 3 H∞ 5.3·10−3 0.9·10−3 4.0·10−3 0.1·10−3

Table 1.4 RMSE of state variables under model disturbance

No % change RMSEx1 RMSEx2 RMSEx3 RMSEx4

1 0 8.4·10−3 0.1·10−3 7.2·10−3 0.1·10−4

2 50 8.4·10−3 0.1·10−3 7.3·10−3 0.1·10−4

3 100 8.4·10−3 0.1·10−3 7.8·10−3 0.1·10−4

4 150 8.4·10−3 0.1·10−3 8.7·10−3 0.1·10−4

5 200 8.4·10−3 0.1·10−3 9.4·10−3 0.1·10−4

1.5 Model-Based Control of Rigid-Link Manipulators
Under Time-Delays

1.5.1 Outline

The previous sections have analyzed the problem of embedded control of the robotic
manipulator, meaning that the controller and the actuators were both on the robot’s
side. Unlike this, networked control schemes arise when the robot is teleoperated
and the controller is separately placed from the robot’s actuators, at a distant loca-
tion. Networked control of robotic manipulators is a non-trivial problem and up to
now several approaches for its solution have been attempted. One can distinguish: (i)
global linearization-based control methods which try to develop linearizing transfor-
mations of the system’s state-space description capable of incorporating the effects of
time-delays either to the control input’s and to the system’s outputs or to the system’s
state variables [61, 64, 65, 147, 321, 468] (ii) approximate linearization-based con-
trol methods which take into account the presence of time delays in the linearization
they perform around local operating points on the system’s state-space description
[178, 200] (iii) Lyapunov-based control methods which dynamically adapt the con-
troller’s gains aiming at compensating for model uncertainty and time-delays effects
[300, 397] (iv) the use of filters as smoothers that incorporate delayed measurements
in the estimation procedure about the system’s state vector (v) the use of filters as
predictors that give a several steps-ahead estimate of the system’s state variables
which is turn is used for the computation of the control input. In particular the use of
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diffeomorphisms (state variable transformations) for treating the problems of time-
delays in the design of controllers and state estimators has been analyzed in [63, 161,
185, 537, 644]. Several findings about the design of state-observers for dynamical
systems subject to time delays can be also found in [160, 165, 585, 642, 643, 645]

In the present section a control method is developed, for the compensation of
time-delays effects in the control loop of robotic manipulators, after making use of
differential flatness theory and of the associated global linearization of the robot’s
dynamics [145, 267, 465, 467, 519, 572]. By performing Taylor-series expansion
to the control terms of the robotic manipulator which are subject to time-delays, the
time-derivative of its control variables emerge as new control inputs. Next, dynamic
extension is implemented which means that the state vector of the manipulator is
extended by introducing as additional state-vector elements the initial control inputs
of the system. The extended state-space description of the robotic manipulator is
shown to be differentially flat and this signifies that it can be transformed into an input-
output linearized form. In its latter linearized description the design of a stabilizing
state feedback controller becomes possible [450, 457, 459].

Moreover, it is shown that unknown time-delays in the control inputs and the
measured outputs of themanipulator can be represented as additive disturbance terms
affecting the robot. For the compensation of such perturbations, which are induced
by time-delays, the Derivative-free nonlinear Kalman Filter is used as a disturbance
observer. This filter consists of the implementation of the Kalman Filter on the
linearized equivalent model of the robot [33, 431, 463]. It also comprises an inverse
transformation based on differential flatness diffeomorphisms that provides estimates
of the state variables in the initial nonlinear dynamics of the robot. Under the formof a
disturbance observer, the Derivative-free nonlinear Kalman Filter provides real-time
estimates of the unknown perturbations that affect the manipulator’s control inputs
and which are due time-delays in the robot’s dynamic model. By obtaining accurate
estimates of these cumulative disturbance terms their compensation becomes also
possible. The global stability properties of the control scheme are proven.

1.5.2 State-Space Description of the Robotic Manipulator

The dynamic model of the robotic manipulator is given by

D(θ)θ̈ + h(θ, θ̇ ) + g(θ) = T (t − τ) (1.156)

where, θ ∈ Rn×1, is the vector of the joints angles, θ̇ ∈ Rn×1, is the vector of
the joints angular velocities, D(θ) ∈ Rn×n is the inertia matrix, h(θ, θ̇ ) ∈ Rn×1

is the Coriolis and centrifugal terms matrix and g(θ) ∈ Rn×1 is the gravitational
terms matrix, whereas T (t − τ) ∈ Rn×1 is the joint torques vector subjected to a
time-delay equal to τ . Equivalently, one has
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Fig. 1.29 Networked control of the robotic manipulator under input/output delays

θ̈ = −D−1(θ)h(θ, θ̇ ) − D−1(θ)g(θ) + D−1(θ)T (t − τ) (1.157)

The torques vector T (t − τ) which constitutes the control input of the system is
expanded with the first-order Taylor series method around the present time instant t ,
thus giving

T (t − τ) = T (t) + Ṫ (t)(−τ
1! )⇒

T (t − τ) = T (t) − τ Ṫ (t)
(1.158)

To solve the control problem of the robotic manipulator under time-delays the
concept of dynamic extension is applied. This means that the robot’s state vector
x = [θ1, θ̇1, θ2, θ̇2, . . . , θn, θ̇n] is extended by including as additional state variables
in it, the elements of the control input. Thus, the extended state vector becomes
xe = [θ1, θ̇1, θ2, θ̇2, . . . , θn, θ̇n, T1, T2, . . . , Tn].

The dynamic model of the 2-DOF rigid-link robot which is depicted again in Fig.
1.29. As noted above, and under the assumption that the masses of the links are
concentrated at the links’ end the dynamic model of the manipulator is given by

D(θ)θ̈ + h(θ, θ̇ ) + g(θ) = T (t − τ) (1.159)

where D(θ) is the inertia matrix

D(θ) =
(

(m1 + m2)l21 + m1l22 + 2m2l1l2cos(θ2) m2l22 + m2l1l2cos(θ2)

m2l22 + m2l1l2cos(θ2) m2l2(l1 + l2)cos(θ2)

)

(1.160)
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h(θ, θ̇ ) is the Coriolis and centrifugal forces vector

h(θ, θ̇ ) =
(

−m2l21sin(θ2)θ̇
2
2 − 2m2l21sin(θ2)θ̇1θ̇2

m2l21sin(θ2)θ̇
2
1

)
(1.161)

g(θ) is the gravitational forces vector

g(θ) =
(

(m1 + m2)gl1cos(θ1) + m2gl2cos(θ1 + θ2)

m2gl2cos(θ1 + θ2)

)
(1.162)

and τ(t) is the control inputs vector consisting of the torques that are generated by
the motors mounted on the robot’s joints.

Following the stages previously presented about the inversion of the inertia matrix
D−1(θ) and about the computation of the products D−1(θ)h(θ, θ̇ ) and D−1(θ)g(θ),
the state-space equations of the robotic model are

(
ẍ1
ẍ3

)
= −D−1(θ)h(θ, θ̇ ) − D−1(θ)g(θ) − D−1(θ)T (t − τ) (1.163)

and using that the state vector is x = [x1, x2, x3, x4]T = [θ1, θ̇1, θ2, θ̇2]T and the
control inputs vector is T (t − τ) = [T1(t − τ), T2(t − τ)]T = [u1, u2]T this is also
written in the form

ẋ = f (x) + ga(x)u1 + gb(x)u2 (1.164)

or equivalently

⎛
⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

ga1
ga2
ga3
ga4

⎞
⎟⎟⎟⎠ u1 +

⎛
⎜⎜⎜⎝

gb1
gb2
gb3
gb4

⎞
⎟⎟⎟⎠ u2 (1.165)

with

f1 = x2 (1.166)

f2 = −2cos(x3)[−sin(x3)x24 − 2sin(x3)x2x4] + [−1 + cos(x3)]sin(x3)x22
4cos(x3) + 3cos2(x3) − 1

−

−2cos(x3)[10cos(x1) + 10cos(x1 + x3)] + [−1 + cos(x3)][10cos(x1 + x3)]
4cos(x3) + 3cos2(x3) − 1

(1.167)
f3 = x4 (1.168)
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f4 = −[1 + cos(x3)][−sin(x3)x24 − 2sin(x3)x2x4] + [2 + 2cos(x3)]sin(x3)x22
4cos(x3) + 3cos2(x3) − 1

−[−1 + cos(x3)][10cos(x1) + 10cos(x1 + x3)] + [2 + 2cos(x3)]10cos(x1 + x3)

4cos(x3) + 3cos2(x3) − 1
(1.169)

Moreover, one has

ga1 = 0 gb1 = 0

ga2 = 2cos(x3)

4cos(x3) + 3cos2(x3) − 1
gb2 = −1cos(x3)

4cos(x3) + 3cos2(x3) − 1
ga3 = 0 gb3 = 0

ga4 = −1 + cos(x3)

4cos(x3) + 3cos2(x3) − 1
gb4 = 2 + 2cos(x3)

4cos(x3) + 3cos2(x3) − 1

(1.170)

1.5.3 Control of the Robotic Manipulator Under Known Time
Delays

1.5.3.1 State-Space Description of the Robot Under Time Delays

About the time-delayed control inputs of the manipulator u1 = T1(t − τ1) and
u2 = T2(t−τ2), and by denoting as additional state variables x5 = T1(t), x6 = T2(t),
it holds that

u1 = T1(t) − τ1Ṫ1(t)⇒u1 = x5 − τ1ũ1
ẋ5 = ũ1

(1.171)

u2 = T2(t) − τ2Ṫ2(t)⇒u2 = x6 − τ2ũ2
ẋ6 = ũ2

(1.172)

Thus, the extended state-space model of the 2-DOF robot becomes:

ẋ1 = x2
ẋ2 = f2(x) + ga2(x)[x5 − τ1ũ1] + gb2(x)[x6 − τ2ũ2]

ẋ3 = x4
ẋ4 = f4(x) + ga4(x)[x5 − τ1ũ1] + gb4(x)[x6 − τ2ũ2]

ẋ5 = ũ1
ẋ6 = ũ2

(1.173)
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1.5.4 Differential Flatness of the Robot’s Model

Theflat outputs of the robotic systemunder time delays are taken to be y = [y1, y2] =
[x1, x3]. From the first row of the state-space model of Eq. (1.173) one has

x2 = ẋ1⇒x2 = ha(y, ẏ) (1.174)

From the third row of the state-space model of Eq. (1.173) one has

x4 = ẋ3⇒x2 = hb(y, ẏ) (1.175)

From the second and fourth row of the state-space model of Eq. (1.173) one has

(
ẋ2
ẋ4

)
=

(
f2(x) + ga2(x)x5 + gb2(x)x6
f4(x) + ga4(x)x5 + gb4(x)x6

)
+

(
ga2(x)(−τ1) gb2(x)(−τ2)

ga4(x)(−τ1) gb4(x)(−τ2)

) (
ũ1
ũ2

)

(1.176)

By considering x5 and x6 as time-varying parameters for the model of the first four
state space equations (zero dynamics) one can solve Eq. (1.176) with respect to ũ1
and ũ2, thus obtaining

(
ũ1
ũ2

)
=

(
ga2 (x)(−τ1) gb2 (x)(−τ2)

ga4 (x)(−τ1) gb4 (x)(−τ2)

)−1

{
(
ẋ2
ẋ4

)
−

(
f2(x) + ga2 (x)x5 + gb2 (x)x6
f4(x) + ga4 (x)x5 + gb4 (x)x6

)
}

(1.177)

The previous equation signifies that

ũ1 = hc(y, ẏ) ũ2 = hd(y, ẏ) (1.178)

Consequently, all state variables and the control inputs of the robotic manipulator’s
model are written as differential functions of the flat output, and the robotic model
is a differentially flat one.

1.5.4.1 Transformation of the Robot’s Model into an Input-Output
Linearized Form

By proving that the model of the robotic manipulator is a differentially flat one
its transformation into an input-output linearized form is possible (Lie-Backlund
equivalence). The second and the fourth row of the previous state-space model of
the 2-DOF robotic manipulator are rewritten as
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ẍ1 = [ f2(x) + ga2(x)x5 + gb2(x)x6] − τ1ga2(x)ũ1 − τ2gb2(x)ũ2
ẍ3 = [ f4(x) + ga4(x)x5 + gb4(x)x6] − τ1ga4(x)ũ1 − τ2gb4(x)ũ2

(1.179)

and by defining F1 = [ f2(x) + ga2(x)x5 + gb2(x)x6], G11(x) = −τ1ga2(x), G12 =
−τ2gb2(x) as well as F2(x) = [ f4(x) + ga4(x)x5 + gb4(x)x6], G21 = −τ2ga4(x),
G22 = −τ2gb4(x), the previous dynamic model is rewritten as

ẍ1 = F1(x) + G11(x)ũ1 + G12(x)ũ2
ẍ3 = F2(x) + G21(x)ũ1 + G22(x)ũ2

(1.180)

or in matrix form
(
ẍ1
ẍ3

)
=

(
F1(x)

F2(x)

)
+

(
G11(x) G12(x)

G21(x) G22(x)

) (
ũ1
ũ2

)
(1.181)

The following notation is used v1 = F1 + G11ũ1 + G12ũ2 and v2 = F2 + G21ũ1 +
G22ũ2. The stabilizing feedback control that is exerted on the robot is

v1 = ẍ d1 − Kd1(ẋ1 − ẋ d1 ) − Kp1(x1 − xd1 )

v2 = ẍ d3 − Kd2(ẋ3 − ẋ d3 ) − Kp2(x3 − xd3 )
(1.182)

where the feedback control gains Kpi > 0, i = 1, 2 and Kdi > 0, i = 1, 2 are
chosen such that the associated characteristic polynomials become Hurwitz stable,
that is ë1 + Kd1 ė1 + Kp1e1 = 0 and ë3 + Kd2 ė3 + Kp2e3 = 0.

The control input variables ũ1 and ũ2 are computed next from the following
relation

(
ũ1
ũ2

)
=

(
G11 G12

G21 G22

)−1 (
v1 − F1

v2 − F2

)
(1.183)

Finally, the control inputs that are exerted on the robotic systemcomprise the integrals
of ũ1 and ũ2, that is u1 = ∫ t

0 ũ1(t)dt and u2 = ∫ t
0 ũ2(t)dt .

1.5.5 Control of the Robot Under Unknown Time Delays

Next, the case in which time-delays τ1, τ2 are unknown or subject to uncer-
tainty, is considered. The model of the robotic manipulator given in Eq. (1.180) is
re-examined and uncertainty about the time delays τ1 and τ2 is assumed. This in-turn
incurs perturbation terms at the control input gains of the dynamic model of the
robot. Thus, it holds that
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ẍ1 = [ f2(x) + ga2(x)x5 + gb2(x)x6] − [τ1 + Δτ1]ga2(x)ũ1 − [τ2 + Δτ2]gb2(x)ũ2
ẍ3 = [ f4(x) + ga4(x)x5 + gb4(x)x6] − [τ1 + Δτ1]ga4(x)ũ1 − [τ2 + Δτ2]gb4(x)ũ2

(1.184)
The previous state-space representation is also written as

ẍ1 = [ f2(x) + ga2(x)x5 + gb2(x)x6] − τ1ga2(x)ũ1−
−τ2gb2(x)ũ2 − Δτ1ga2(x)ũ1 − Δτ2gb2(x)ũ2

ẍ3 = [ f4(x) + ga4(x)x5 + gb4(x)x6] − τ1ga4(x)ũ1−
−τ2gb4(x)ũ2 − Δτ1ga4(x)ũ1 − Δτ2gb4(x)ũ2

(1.185)

or equivalently it can be written in the form

ẍ1 = F1 + G11ũ1 + G12ũ2 − ΔG11ũ1 − ΔG12ũ2
ẍ3 = F2 + G21ũ1 + G22ũ2 − ΔG21ũ1 − ΔG22ũ2

(1.186)

First, the following disturbance terms due to time delays of the control inputs are
defined: ˜db1 = −ΔG11ũ1 − ΔG12ũ2 and ˜db2 = −ΔG21ũ1 − ΔG22ũ2.

Moreover, by considering time delays in the feedback of the robot’s output to
the controller one can define: v1 + ˜da1 = F1 + G11ũ1 + G12ũ2, and v2 + ˜da2 =
F2 + G21ũ1 + G22ũ2.

Consequently, one obtains the following compact form of the robotic manipula-
tor’s dynamics under variable time delays:

ẍ1 = v1 + ˜da1 + ˜db1⇒ẍ1 = v1 + d̃1

ẍ3 = v2 + ˜da2 + ˜db2⇒ẍ3 = v2 + d̃2
(1.187)

In such a case the stabilizing control input requires a precise estimation of the aggre-
gate disturbance terms d̃1 and d̃2 and takes the form:

v1 = ẍ d1 − Kd1(ẋ1 − ẋ d1 ) − Kp1(x1 − xd1 ) − ˆ̃d1
v2 = ẍ d2 − Kd2(ẋ2 − ẋ d2 ) − Kp2(x2 − xd2 ) − ˆ̃d2

(1.188)

These estimates can be obtained with the use of a Kalman Filter-based disturbance
observer. This approach is known asDerivative-free nonlinear Kalman Filter because
it consists of the Kalman Filter recursion applied to the input-output linearizedmodel
of the robotic manipulator that was obtained through the previously analyzed proce-
dure [457].

To compensate for the effects of the unknown time delays, the precise estimation
of d̃1 and d̃2 is needed. This will be obtained with the use of the above-mentioned
Kalman Filter, redesigned as a disturbance observer. It is assumed that d̃1 and d̃2 are
described by their nth order derivative (for instance n = 2) and the associated initial
conditions, that is
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¨̃d1 = fd1
¨̃d2 = fd2 (1.189)

However, since estimation of d̃1 and d̃2 is going to be performed with the use of
stochastic filtering, knowledge about initial conditions becomes obsolete. Next, the
previously analyzed input-output linearized form of the robotic manipulator, given in
Eq. (1.187), is considered. An extended state-space form of the system is obtained by
defining the disturbance terms and their time derivatives as additional state variables.
Actually, the extended state vector of the system comprises the following state vari-

ables: z1 = x1, z2 = ẋ1, z3 = x3, z4 = ẋ3, z5 = d̃1, z6 = ˙̃d1, z7 = d̃2, z8 = ˙̃d2. Next,
using Eq. (1.187) and the new definition of state variables the extended state-space
description of the system is obtained:

ż1 = z2 ż5 = z6
ż2 = v1 + z5 ż6 = fd1

ż3 = z4 ż7 = z8
ż4 = v2 + z7 ż8 = fd2

(1.190)

The extended state-space description of the robot can be also written in matrix form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1
ż2
ż3
ż4
ż5
ż6
ż7
ż8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6
z7
z8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
v1
v2
fd1
fd2

⎞
⎟⎟⎠ (1.191)

while bydenoting the state vector of the systemas Ze = [z1, z2, z3, z4, z5, z6, z7, z8]T ,
the measurement equation is obtained from the following relation

(
zm1
zm3

)
=

(
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0

)
Ze (1.192)

Thus, one has a state-space description for the dynamics of the robotic manipulator
under time-delays of the inputs and outputs,in the following matrix form:

że = Aeze + Beve
zme = Ceze

(1.193)
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For the state-space model of Eq. (1.193) one can perform simultaneous estimation of
the non-measurable state vector elements z2, z4 as well as estimation of the unknown
disturbance terms due to time delays z5 = d̃1 and z7 = d̃2, with the use of a
disturbance observer

ˆ̇ze = Aoẑe + Bovo + K f (zme − ẑme )

ẑme = Coẑe
(1.194)

where Ao = Ae, Co = Ce and

BT
o =

(
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

)
(1.195)

and K f is the estimator’s gain which is obtained by applying the Kalman Filter
recursion to the input-output linearized model of the system (Derivative-free nonlin-
ear Kalman Filter). Before implementing Kalman Filtering the state-space model of
Eq. (1.194) undergoes discretization with common discretization techniques and its
discrete-time equivalent is obtained. The discrete-time equivalents of matrices Ao,
Bo and Co are denoted as Ad , Bd and Cd , respectively. The discrete-time disturbance
observer is given by

ẑe(k + 1) = Ad ẑe(k) + Bdvo(k) + K f (k)(zme (k) − ẑme (k))

ẑme = Cd ẑe(k)
(1.196)

The Kalman Filter-based disturbance observer for the state and disturbance estima-
tion problem comprises a measurement update and a time update stage.

measurement update:

K f (k) = P−(k)CT
d [Cd P−(k)CT

d + R(k)]−1

x̂(k) = x̂−(k) + K f (k)[zme (k) − ẑme (k)]
P(k) = P−(k) − K f (k)Cd P−(k)

(1.197)

time update:

P−(k + 1) = Ad P(k)AT
d + Q(k)

x̂−(k + 1) = Ad x̂(k) + Bdvo(k)
(1.198)

where Q(k) is the process noise covariance matrix and R(k) is the measurement
noise covariance matrix. By ensuring through the above estimation procedure that

limt→∞ ˆ̃d1 = d̃1 and limt→∞ ˆ̃d2 = d̃2 one has also the following conditions about
elimination of the state variables tracking error

limt→∞ x1(t) = xd1 (t) limt→∞ x2(t) = xd2 (t)

limt→∞ x3(t) = xd3 (t) limt→∞ x4(t) = xd3 (t)
(1.199)
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Fig. 1.30 Setpoint 1 - τ1 = 0.29 s, Δτ1 = 0.18 s, τ2 = 0.27 s, Δτ2 = 0.18 s: a Convergence of
the joint angles of the robot x1, x3 to the reference setpoints b Estimation of disturbance terms d1,
d2 which are due to the uncertainty about time delays Δτ1, Δτ2
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Fig. 1.31 Setpoint 1 - τ1 = 0.29 s, Δτ1 = 0.18 s, τ2 = 0.27 s, Δτ2 = 0.18 s: a Convergence of
state variables x1 to x4 of the robotic manipulator to the reference setpoints b Control inputs ũ1, ũ2
of the extended state-space model of the robot

whichmeans that both the position and angular velocity tracking errors for the robot’s
joints are eliminated, despite the existence of time-delays.
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Fig. 1.32 (Setpoint 2 - τ1 = 0.29 s, Δτ1 = 0.19 s, τ2 = 0.27 s, Δτ2 = 0.17 s: a Convergence of
the joint angles of the robot x1, x3 to the reference setpoints b Estimation of disturbance terms d1,
d2 which are due to the uncertainty about time delays Δτ1, Δτ2
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Fig. 1.33 Setpoint 2 - τ1 = 0.29 s, Δτ1 = 0.19 s, τ2 = 0.27 s, Δτ2 = 0.17 s: a Convergence of
state variables x1 to x4 of the robotic manipulator to the reference setpoints b Control inputs ũ1, ũ2
of the extended state-space model of the robot

1.5.6 Simulation Tests

The performance of the proposed flatness-based control scheme for the compensation
of time-delays in the control loop of robotic manipulators has been further confirmed
through simulation experiments. The robot’s control loopwas sampled at fs = 2 kHz.
The obtained results demonstrate that the state variables of the robotic manipulator
converge to the reference setpoints despite the existence of time-delays of variable
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Fig. 1.34 Setpoint 3 - τ1 = 0.25 s, Δτ1 = 0.19 s, τ2 = 0.24 s, Δτ2 = 0.20 s: a Convergence of
the joint angles of the robot x1, x3 to the reference setpoints b Estimation of disturbance terms d1,
d2 which are due to the uncertainty about time delays Δτ1, Δτ2
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Fig. 1.35 Setpoint 3 - τ1 = 0.25 s, Δτ1 = 0.19 s, τ2 = 0.24 s, Δτ2 = 0.20 s: a Convergence of
state variables x1 to x4 of the robotic manipulator to the reference setpoints b Control inputs ũ1, ũ2
of the extended state-space model of the robot

duration. The obtained results are given in Figs. 1.30, 1.31, 1.32, 1.33, 1.34, 1.35,
1.36, 1.37, 1.38 and 1.39.

The controller’s design makes use of the input-output linearized extended state-
space description of the robotic manipulator. According, to Eq. (1.185) the control
input that finally is exerted on the robotic manipulator comprises the terms ũ1 and ũ2
which in adherence to Eq. (1.181) are functions of the joint angles’ tracking errors
and of their derivatives. Moreover, this control input comprises the integral terms∫ t
0 ũ1dt and

∫ t
0 ũ2dt . Thus, it can be stated that the control input that is applied to
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Fig. 1.36 Setpoint 4 - τ1 = 0.27 s, Δτ1 = 0.19 s, τ2 = 0.25 s, Δτ2 = 0.16 s: a Convergence of
the joint angles of the robot x1, x3 to the reference setpoints b Estimation of disturbance terms d1,
d2 which are due to the uncertainty about time delays Δτ1, Δτ2
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Fig. 1.37 Setpoint 4 - τ1 = 0.27 s, Δτ1 = 0.19 s, τ2 = 0.25 s, Δτ2 = 0.16 s: a Convergence of
state variables x1 to x4 of the robotic manipulator to the reference setpoints b Control inputs ũ1, ũ2
of the extended state-space model of the robot

the nonlinear and multivariable model of the robotic manipulator is finally of the
proportional-integral type.

The Derivative-free nonlinear Kalman Filter is used as a disturbance observer,
that is capable of estimating in real-time the cumulative perturbation terms that are
exerted on the control inputs of the extended state-space model of the manipulator
and which are due to time-delays in its dynamic model. The associated results are
shown in Figs. 1.30b, 1.31, 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, 1.38 and 1.39b. It can be

noticed that the estimated variables ˆ̃d1 and ˆ̃d2 converge rapidly to the real variables of
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Fig. 1.38 Setpoint 5 - τ1 = 0.30 s, Δτ1 = 0.19 s, τ2 = 0.28 s, Δτ2 = 0.19 s: a Convergence of
the joint angles of the robot x1, x3 to the reference setpoints b Estimation of disturbance terms d1,
d2 which are due to the uncertainty about time delays Δτ1, Δτ2
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Fig. 1.39 Setpoint 5 - τ1 = 0.30 s, Δτ1 = 0.19 s, τ2 = 0.28 s, Δτ2 = 0.19 s: a Convergence of
state variables x1 to x4 of the robotic manipulator to the reference setpoints b Control inputs ũ1, ũ2
of the extended state-space model of the robot

the cumulative disturbance terms d̃1 and d̃2 and that the associated estimation error
was practically eliminated.



Chapter 2
Underactuated Robotic Manipulators

Abstract Control of underactuated robots has received significant attention and its
application areas comprise several types of industrial and service robotic manipula-
tors. The purpose of research in this area is to design robotic mechanisms that can
be controlled despite having a number of actuators that is smaller than their degrees
of freedom. This approach can reduce the cost and weight of robots or can provide
robotic systems with tolerance to actuators failures. Again the control problem for
such robots can be treated with (i) global linearization methods, (ii) approximate lin-
earization approaches and (iii) Lyapunov methods. To achieve model-free control of
underactuated manipulators, improved estimation approaches are developed, allow-
ing the real-time identification of their unknown dynamics or kinematics. Moreover,
to implement feedback control of underactuated robots through the measurement
of a limited number of the robot’s state variables, nonlinear filtering methods of
proven convergence are developed. In particular the chapter develops the following
topics: (a) Nonlinear optimal control for multi-DOF underactuated overhead cranes,
(b) Nonlinear optimal control for ship-mounted cranes (c) Nonlinear optimal control
for the rotary (Furuta’s) pendulum, (d) Nonlinear optimal control for the cart and
double-pendulum system, and (e) Nonlinear optimal control for a 3-DOF underac-
tuated robotic arm

2.1 Chapter Overview

The present chapter develops the following topics: (a) Nonlinear optimal control for
multi-DOF underactuated overhead cranes, (b) Nonlinear optimal control for ship-
mounted cranes (c) Nonlinear optimal control for the rotary (Furuta’s) pendulum,
(d) Nonlinear optimal control for the cart and double-pendulum system, and (e)
Nonlinear optimal control for a 3-DOF underactuated robotic arm.

With reference to (a) the dynamicmodel of the overhead crane undergoes approxi-
mate linearization around local operating points which are redefined at each iteration
of the control algorithm. The crane’s system is underactuated because it receives only
two external inputs, namely a force that allows the motion of its bridge component
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along the x axis and a force that allows the motion of its trolley component along the
y axis. A solution to the control problem of this underactuated system is obtained
by applying nonlinear H-infinity control. For the approximate linearization of the
system’s dynamics, Taylor series expansion is performed through the computation
of the associated Jacobian matrices. Next, for the linearized equivalent model of the
crane an H-infinity feedback controller is designed.

With reference to (b) a nonlinear optimal control approach is developed for the
precise functioning of ship-mounted cranes. The problem is of elevated difficulty
because of the nonlinearities of the associated dynamic model, the time-delays
appearing in some of its state variables and the underactuation with reference to
the model’s control input. The considered crane model comprises a winch that is
rotated by an AC motor which in turn controls the submergence of a payload in the
water. The objective is to control precisely the payload’s vertical position, despite
the effect of hydrodynamic forces and of the vessel’s heave motion. The dynamic
model of the ship-mounted crane systemundergoes approximate linearization around
a temporary operating point that is re-computed at each iteration of the control algo-
rithm. For the approximately linearized system an optimal (H-infinity) controller is
designed. The global stability properties of the control method is proven through
Lyapunov analysis.

With reference to (c) The rotary pendulum’s dynamicmodel is first transformed to
an equivalent form after applying partial feedback linearization. The later description
of the pendulum’s dynamics undergoes approximate linearization which takes place
round a temporary operating point (equilibrium) recomputed at each iteration of
the control algorithm. For the approximately linearized model of the pendulum the
optimal (H-infinity) control problem is solved.

With reference to (d) a nonlinearH-infinity (optimal) control approach is proposed
for the nonlinear model of the cart and double-pendulum system. The control of the
cart and double-pendulum system is known to exhibit a high degree of difficulty due
to nonlinearities and underactuation. Actually, there are three degrees of freedom
(the longitudinal motion of the cart and the two rotational motions of the poles that
constitute the double pendulum) which have to be controlled with only one input
(the force exerted on the cart). To solve this non-trivial control problem, the dynamic
model of the cart and double-pendulum systemundergoes first approximate lineariza-
tion around a temporary operating point (equilibrium) which is recomputed at each
iteration of the control algorithm. For the approximately linearized model of the cart
and double-pendulum a stabilizing H-infinity (optimal) controller is developed.

With reference to (e) a nonlinear H-infinity (optimal) control approach is devel-
oped for the problem of end-effector trajectory tracking in 3-DOF planar underactu-
ated roboticmanipulators. First, the state-spacemodel of the underactuatedmanipula-
tor is subject to a transformation which results into a new description of its dynamics.
Next, the new dynamic model of the underactuated manipulator undergoes approxi-
mate linearization, round a local operating point. Furthermore, anH-infinity feedback
controller is designed. The feedback gain is computed after solving an algebraic Ric-
cati equation at each iteration of the control algorithm. Through Lyapunov stability
analysis it is proven that the control loop satisfies an H-infinity tracking performance
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criterion, which signifies elevated robustness to model uncertainty and external per-
turbations. Moreover, under moderate conditions the global asymptotic stability of
the control loop is proven. In all aforementioned cases (a)–(e) the global asymptotic
stability properties for the models of the underactuated robotic systems are proven
through Lyapunov analysis.

2.2 Nonlinear Optimal Control for Multi-DOF
Underactuated Overhead Cranes

2.2.1 Outline

Overhead cranes are nonlinear underactuated electromechanical systems and their
control is a nontrivial problem [141, 168, 289, 532, 539]. Cranes have been exten-
sively used in factories and industrial sites, in workshops and building constructions,
in loading and unloading of ships at ports and in several other applications requiring
the pick and placement of heavy payloads [534, 595, 597, 629, 646]. However, due
to the fast motion of their trolley part excessive swing of the payload may be caused
(Fig. 2.1). On the one side the trolley is required to move fast so as to accomplish the
payload placement tasks in short time. On the other side this fast motion causes unde-
sirable oscillations of the payload which have to be rapidly and efficiently suppressed
by the crane’s control system [112, 139, 188, 196, 535]. The difficulty in achieving
simultaneously fast motion of the trolley and rapid attenuation of the payload’s oscil-
lations comes from the fact that the crane’s control system is underactuated [97, 325,
360, 568, 596]. In this section a 4-DOF underactuated overhead crane is considered
(Fig. 2.1). The crane exhibits four degrees of freedom associated with the motion
of its bridge component along the x-axis, with the motion of its trolley component
along the bridge (the latter defining also the y axis), while there are also two angles
θx and θy defining the displacement of the payload from the vertical position and
with respect to the x and y axes respectively. Due to strong nonlinearities and the
limited actuation that the system receives, the crane’s control problem is complex
[91, 168, 538, 594]. As explained, the system is underactuated because it receives
only two external inputs, namely a force that allows the motion of the bridge along
the x axis and a force that allows the motion of the trolley along the y axis [597].

To solve the control and stabilization problem for the 4-DOF crane, in this section
an H-infinity nonlinear control approach is proposed. The nonlinear model of the
crane undergoes approximate linearization, around a temporary equilibrium which
is recomputed at each iteration of the control algorithm. This equilibrium consists
of the present value of the crane’s state vector and the last value of the control
inputs vector that was exerted on it [461, 466]. The linearization follows the con-
cept of Taylor series expansion and requires the computation of Jacobian matrices
[33, 431, 463, 564]. The modelling error which is due to the truncation of higher
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order terms in the Taylor series expansion is considered to be a perturbation that is
compensated by the robustness of the control algorithm.

For the linearized model of the overhead crane an H-infinity feedback controller
is designed. This controller represents the solution to a min-max differential game in
which the controller tries to minimize a quadratic cost functional associated with the
tracking error of the crane’s state vector while the model uncertainty and disturbance
terms try to minimize it. The feedback gain of the H-infinity controller is obtained
from the solution of an algebraic Riccati equation [450, 452, 457, 459, 460]. This
procedure is repeated at each iteration of the control method. The stability of the
control scheme is confirmed through Lyapunov analysis. First, it is shown that the
control system satisfies the H-infinity tracking performance criterion and this sig-
nifies elevated robustness against parametric uncertainty and external disturbances.
Moreover, under moderate conditions it is proven that the control scheme is globally
asymptotically stable.

Additionally, to implement state estimation-based feedback control of the over-
head crane through measuring only a subset of its state vector elements, the
H-infinity Kalman Filter is used [169, 511]. The H-infinity Kalman Filter is an
optimal state estimator under imprecision of the dynamic model of the crane. This
allows for reconstructing the entire state vector of the crane after obtaining measure-
ments from sensors that record specific state variables of it. The H-infinity Kalman
Filter comprises two-stages, an update in measurement and an update in time. The
estimation method uses in its recursion the update of a modified state vector error
covariance matrix, and finally provides optimal estimation of the state vector under
model uncertainty or exogenous perturbations.

The solution achieved by the proposed nonlinear H-infinity control method
exhibits several advantages which are outlined in the following: (i) it is applied
directly on the nonlinear dynamical model of the overhead crane and not on an
equivalent linearized description of it, (ii) It avoids the elaborated linearizing trans-
formations (diffeomorphisms)which can bemet in global linearization-based control
methods for robotic manipulators, (iii) the controller is designed according to opti-
mal control principles which implies the best trade-off between precise tracking of
the reference setpoints on the one side and moderate variations of the control inputs
on the other side (iv) the control method exhibits significant robustness to parametric
uncertainty, modelling errors as well as to external perturbations (v) the compu-
tational implementation of the control method is simple since it requires only the
solution of an algebraic Riccati equation. It is noted that other control methods such
asModel Predictive Control (MPC)would be unsuitable for application to the crane’s
model because of the model’s nonlinearity. Moreover, Nonlinear Model Predictive
Control (NMPC) would not be of assured stability and convergence. On the other
side, the proposed nonlinear H-infinity control approach is of proven global asymp-
totic stability. Finally, it is noted that comparing to energy-based control methods the
proposed nonlinear optimal control method appears again to have better performance
because it is computationally simpler, it avoids singularities, and avoids intuition in
the selection of the energy function to be minimized as well as in the selection of the
feedback terms and parameters of the stabilizing controller.
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Fig. 2.1 Reference axes for
the model of the
underactuated crane

2.2.2 Dynamic Model of the Crane

Using Euler–Lagrange analysis, the dynamic model of the underactuated crane
(Fig. 2.1) is shown to be described by the following set of differential equations
[535, 597]:

(m + mx )ẍ + mlcos(θx )cos(θy)θ̈x − mlsin(θx )sin(θy)θ̈y−
−mlsin(θx )cos(θy)θ̇2

y − 2mlcos(θx )sin(θy)θ̇x θ̇y−
mlsin(θx )cos(θy)θ̇2

y = Fx

(2.1)

(m + my)ÿ + mlcos(θy)θ̈y − mlsin(θy)θ̇
2
y = Fy (2.2)

mlcos(θx )cos(θy)ẍ + ml2cos2(θy)θ̈x−
−2ml2sin(θy)cos(θy)θ̇x θ̇y + mglsin(θx)cos(θy) = 0

(2.3)

mlsin(θx )sin(θy)ẍ − mlcos(θx )ÿ − ml2θ̈y−
−ml2sin(θy)cos(θy)θ̇2

x − mglcos(θx )sin(θy) = 0
(2.4)

In the previous equations m is the payload mass, mx is the trolley mass, my is the
bridge mass, l is the length of the cable and g is the gravitational acceleration. More-
over, x(t) is the displacement of the trolley along the x-axis, y(t) is the displacement
of the trolley along the y axis, θx is the swing angle related to the displacement of the
payload from its vertical position and along the x axis, θy is the swing angle related
to the displacement of the payload from its vertical position and along the y axis,
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Fx is the control force along the x-axis which is exerted on the bridge and Fy is the
control force along the y-axis which is exerted on the trolley.

Next, using Eqs. (2.1) and (2.2) to define the new control inputs

ux = −mlcos(θx )cos(θy)θ̈x
(m+mx )

+ mlsin(θx )sin(θy)θ̈y
(m+mx )

+
+ mlsin(θx )cos(θy)θ̇2

y

(m+mx )
+ 2mlcos(θx )sin(θy)θ̇x θ̇y

(m+mx )
+

+ mlsin(θx )cos(θy)θ̇2
y

(m+mx )
+ 1

(m+mx )
Fx

(2.5)

uy = −mlcos(θy )θ̈y
(m+my)

+ mlsin(θy)θ̇
2
y

(m+my)
+ 1

(m+my)
Fy (2.6)

the following state-space model is obtained for the underactuated crane [597]

ẍ = ux (2.7)

ÿ = uy (2.8)

θ̈x = 1
lcos(θy)

[2lsin(θy)θ̇x θ̇y − gsin(θx − uxcos(θ)x ] (2.9)

θ̈y = 1
l [uxsin(θx )sin(θy) − uycos(θy) − lsin(θy)cos(θy)θ̇2

x − gcos(θx )sin(θy)]
(2.10)

Thus by defining the state vector q = [x, y, θx , θy, ẋ, ẏ, θ̇x , θ̇y]T , the model of the
underactuated crane is written in the state-space form [597]

q̇ = f (q) + g(q)u (2.11)

where u = [u1, u2]T and

f (q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ
ẏ
θ̇x
θ̇y
0
0

1
lcos(θy )

[2lsin(θy)θ̇x θ̇y − gsin(θx )]
1
l [−lsin(θy)cos(θy)θ̇2x − gcos(θx )sin(θy)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g(q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
1 0
0 1

− cos(θx )
lcos(θx )

0
sin(θx )sin(θy )

l − cos(θy )
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.12)

Next, using the state variables notation x1 = x , x2 = y, x3 = θx , x4 = θy , x5 = ẋ ,
x6 = ẏ, x7 = θ̇x and x8 = θ̇y one obtains the following state-space description

ẋ = f (x) + g(x)u (2.13)

where u = [u1, u2]T and



2.2 Nonlinear Optimal Control for Multi-DOF Underactuated Overhead Cranes 71

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x5
x6
x7
x8
0
0

1
lcos(x4)

[2lsin(x4)x7x8 − gsin(x3)]
1
l [−lsin(x4)cos(x4)x23 − gcos(x3)sin(x4)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0
1 0
0 1

− cos(x3)
lcos(x4)

0
sin(x3)sin(x4)

l − cos(x4)
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.14)

2.2.3 Approximate Linearization of the Crane’s Model

The model of the overhead crane is linearized around the temporary equilibrium
(x∗, y∗) by performing Taylor series expansion and by computing the associated
Jacobian matrices [461, 466]

ẋ = Ax + Bu + d̃ (2.15)

where matrices A and B are the system’s Jacobians

A = [∇x f (x) + ∇x g(x)u] |(x∗,u∗) (2.16)

B = g(x) |(x∗,u∗) (2.17)

Ihe Jacobian matrices of the system are computed after considering the vector
fields appearing in the state-space description of the system, that is f = [ f1, ·, f8]T ,
and g = [g1, g2]with g1 = [g11. . . . , g18]T , g2 = [g21. . . . , g28]T . Thus the Jacobian
matrices are given by

∇x f = ∇x g1 = ∇x g2 =
⎛
⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x8

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x8· · · · · · · · · · · ·

∂ f8
∂x1

∂ f8
∂x2

· · · ∂ f8
∂x8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

∂g11
∂x1

∂g11
∂x2

· · · ∂g11
∂x8

∂g12
∂x1

∂g12
∂x2

· · · ∂g12
∂x8· · · · · · · · · · · ·

∂g18
∂x1

∂g18
∂x2

· · · ∂g18
∂x8

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

∂g21
∂x1

∂g21
∂x2

· · · ∂g21
∂x8

∂g22
∂x1

∂g22
∂x2

· · · ∂g22
∂x8· · · · · · · · · · · ·

∂g28
∂x1

∂g28
∂x2

· · · ∂g28
∂x8

⎞
⎟⎟⎟⎠

(2.18)

The elements of the Jacobian matrix ∇x f are as follows:

1st row of ∇x f :
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 0, ∂ f1
∂x3

= 0, ∂ f1
∂x4

= 0, ∂ f1
∂x5

= 1, ∂ f1
∂x6

= 0, ∂ f1
∂x7

= 0 and
∂ f1
∂x8

= 0.

2nd row of ∇x f :
∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0, ∂ f2
∂x3

= 0, ∂ f2
∂x4

= 0, ∂ f2
∂x5

= 0, ∂ f2
∂x6

= 1, ∂ f2
∂x7

= 0 and
∂ f2
∂x8

= 0.
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3rd row of ∇x f :
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0, ∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0, ∂ f3
∂x6

= 0, ∂ f3
∂x7

= 1 and
∂ f3
∂x8

= 0.

4th row of ∇x f :
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0, ∂ f4
∂x3

= 0, ∂ f4
∂x4

= 0, ∂ f4
∂x5

= 0, ∂ f4
∂x6

= 0, ∂ f4
∂x7

= 0 and
∂ f4
∂x8

= 1.

5th row of ∇x f :
∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

= 0, ∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 0, ∂ f5
∂x7

= 0 and
∂ f5
∂x8

= 0.

6th row of ∇x f :
∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0, ∂ f6
∂x3

= 0, ∂ f6
∂x4

= 0, ∂ f6
∂x5

= 0, ∂ f6
∂x6

= 0, ∂ f6
∂x7

= 0 and
∂ f6
∂x8

= 0.

7th row of ∇x f :
∂ f7
∂x1

= 0, ∂ f7
∂x2

= 0, ∂ f7
∂x3

= −gcos(x3)
lcos(x4)

,
∂ f7
∂x4

= 2x7x8 + [2lsin(x4)x7x8−gcos(x3)][lsin(x4)]
[lcos(x4)]2 , ∂ f7

∂x5
= 0,

∂ f7
∂x6

= 0, ∂ f7
∂x7

= 2sin(x4)x8
cos(x4)

, ∂ f7
∂x8

= 2sin(x4)x7
cos(x4)

.

8th row of ∇x f :
∂ f8
∂x1

= 0, ∂ f8
∂x2

= 0, ∂ f8
∂x3

= lsin(x4)sin(x3)x25+gsin(x3)cos(x4)
l , ∂ f8

∂x4
=

−lcos(x4)cos(x3)x25+gcos(x3)sin(x4)
l , ∂ f8

∂x5
= −2sin(x4)cos(x3)x5,

∂ f8
∂x6

= 0, ∂ f8
∂x7

= 0,
∂ f8
∂x8

= 0.

The elements of the Jacobian matrix ∇x g1 are as follows:

1st row of ∇x g1:
∂g11
∂x1

= 0, ∂g11
∂x2

= 0, ∂g11
∂x3

= 0, ∂g11
∂x4

= 0, ∂g11
∂x5

= 0, ∂g11
∂x6

= 0, ∂g11
∂x7

= 0,
∂g11
∂x8

= 0 .

2nd row of∇x g1:
∂g12
∂x1

= 0, ∂g12
∂x2

= 0, ∂g12
∂x3

= 0, ∂g12
∂x4

= 0, ∂g12
∂x5

= 0, ∂g12
∂x6

= 0, ∂g12
∂x7

= 0,
∂g12
∂x8

= 0 .

3rd row of∇x g1:
∂g13
∂x1

= 0, ∂g13
∂x2

= 0, ∂g13
∂x3

= 0, ∂g13
∂x4

= 0, ∂g13
∂x5

= 0, ∂g13
∂x6

= 0, ∂g13
∂x7

= 0,
∂g13
∂x8

= 0 .

4th row of ∇x g1:
∂g14
∂x1

= 0, ∂g14
∂x2

= 0, ∂g14
∂x3

= 0, ∂g14
∂x4

= 0, ∂g14
∂x5

= 0, ∂g14
∂x6

= 0, ∂g14
∂x7

= 0,
∂g14
∂x8

= 0 .

5th row of ∇x g1:
∂g15
∂x1

= 0, ∂g15
∂x2

= 0, ∂g15
∂x3

= 0, ∂g15
∂x4

= 0, ∂g15
∂x5

= 0, ∂g15
∂x6

= 0, ∂g15
∂x7

= 0,
∂g15
∂x8

= 0.

6th row of ∇x g1:
∂g16
∂x1

= 0, ∂g16
∂x2

= 0, ∂g16
∂x3

= 0, ∂g16
∂x4

= 0, ∂g16
∂x5

= 0, ∂g16
∂x6

= 0, ∂g16
∂x7

= 0,
∂g16
∂x8

= 0.
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7th row of ∇x g1:
∂g17
∂x1

= 0, ∂g17
∂x2

= 0, ∂g17
∂x3

= sin(x3)
lcos(x3)

, ∂g16
∂x4

= − sin(x3)sin(x4)
lcos2(x4)

, ∂g17
∂x5

= 0,
∂g17
∂x6

= 0, ∂g17
∂x7

= 0, ∂g17
∂x8

= 0.

8th rowof∇x g1:
∂g18
∂x1

= 0, ∂g18
∂x2

= 0, ∂g18
∂x3

= cos(x3)sin(x4)
l , ∂g18

∂x4
= sin(x3)cos(x4)

l , ∂g18
∂x5

= 0,
∂g18
∂x6

= 0, ∂g18
∂x7

= 0, ∂g18
∂x8

= 0.

The elements of the Jacobian matrix ∇x g2 are as follows:

1st row of ∇x g2:
∂g21
∂x1

= 0, ∂g21
∂x2

= 0, ∂g21
∂x3

= 0, ∂g21
∂x4

= 0, ∂g21
∂x5

= 0, ∂g21
∂x6

= 0, ∂g21
∂x7

= 0,
∂g21
∂x8

= 0 .

2nd row of∇x g2:
∂g22
∂x1

= 0, ∂g22
∂x2

= 0, ∂g22
∂x3

= 0, ∂g22
∂x4

= 0, ∂g22
∂x5

= 0, ∂g22
∂x6

= 0, ∂g22
∂x7

= 0,
∂g22
∂x8

= 0 .

3rd row of∇x g2:
∂g23
∂x1

= 0, ∂g23
∂x2

= 0, ∂g23
∂x3

= 0, ∂g23
∂x4

= 0, ∂g23
∂x5

= 0, ∂g23
∂x6

= 0, ∂g23
∂x7

= 0,
∂g23
∂x8

= 0 .

4th row of ∇x g2:
∂g24
∂x1

= 0, ∂g24
∂x2

= 0, ∂g24
∂x3

= 0, ∂g24
∂x4

= 0, ∂g24
∂x5

= 0, ∂g24
∂x6

= 0, ∂g24
∂x7

= 0,
∂g24
∂x8

= 0 .

5th row of ∇x g2:
∂g25
∂x1

= 0, ∂g25
∂x2

= 0, ∂g25
∂x3

= 0, ∂g25
∂x4

= 0, ∂g25
∂x5

= 0, ∂g25
∂x6

= 0, ∂g25
∂x7

= 0,
∂g25
∂x8

= 0.

6th row of ∇x g2:
∂g26
∂x1

= 0, ∂g26
∂x2

= 0, ∂g26
∂x3

= 0, ∂g26
∂x4

= 0, ∂g26
∂x5

= 0, ∂g26
∂x6

= 0, ∂g26
∂x7

= 0,
∂g26
∂x8

= 0.

7th row of ∇x g2:
∂g27
∂x1

= 0, ∂g27
∂x2

= 0, ∂g27
∂x3

= 0, ∂g27
∂x4

= 0, ∂g27
∂x5

= 0, ∂g27
∂x6

= 0, ∂g27
∂x7

= 0,
∂g27
∂x8

= 0.

8th row of ∇x g2:
∂g28
∂x1

= 0, ∂g28
∂x2

= 0, ∂g28
∂x3

= 0, ∂g28
∂x4

= 0, ∂g28
∂x5

= 0, ∂g28
∂x6

= 0, ∂g28
∂x7

= 0,
∂g28
∂x8

= 0.

As previously noted, about the linearized state-space description of the system it
holds that

A = ∇x [ f (x) + g(x)u] |(x∗,u∗)= ∇x [ f (x) + g1(x)u1 + g2(x)u2] |(x∗,u∗)
B = ∇u[ f (x) + g(x)u] |(x∗,u∗)= ∇u[ f (x) + g1(x)u1 + g2(x)u2] |(x∗,u∗)= g(x)

(2.19)
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2.2.4 Design of an H-Infinity Nonlinear Feedback Controller

2.2.4.1 Equivalent Linearized Dynamics of the Crane

After linearization around its current operating point, the crane’s dynamic model is
written as

ẋ = Ax + Bu + d1 (2.20)

Parameter d1 stands for the linearization error in the crane’s dynamicmodel appearing
in Eq. (2.20). The reference setpoints for the crane’s state vector are denoted by
xd = [xd1 , . . . , xd8 ]. Tracking of this trajectory is achieved after applying the control
input u∗. At every time instant the control input u∗ is assumed to differ from the
control input u appearing inEq. (2.20) by an amount equal toΔu, that is u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (2.21)

The dynamics of the controlled system described in Eq. (2.20) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (2.22)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (2.23)

By subtracting Eq. (2.21) from (2.23) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (2.24)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (2.25)

The above linearized form of the crane’s model can be efficiently controlled after
applying an H-infinity feedback control scheme.

2.2.4.2 The Nonlinear H-Infinity Control

The initial nonlinear model of the underactuated crane is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (2.26)
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Linearization of the system (multi-DOF crane) is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)),
where Ts is the sampling period. The linearized equivalent model of the system is
described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (2.27)

where matrices A and B are obtained from the computation of the Jacobians of
the crane’s state-space description and vector d̃ denotes disturbance terms due to
linearization errors. The problem of disturbance rejection for the linearized model
that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(2.28)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ in the linearized model of the crane. The disturbance term d̃ apart from
modeling (parametric) uncertainty and external perturbation terms can also represent
noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajec-
tory tracking by the system’s state vector and simultaneous disturbance rejection,
considering that the disturbance affects the system in the worst possible manner. As
already explained in Chap.1, disturbances’ effect are incorporated in the following
quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (2.29)

The significance of the negative sign in the cost function’s term that is associated
with the perturbation variable d̃(t) is that the disturbance tries to maximize the
cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (2.30)

The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
overhead crane system. However, the solution to the min-max optimization problem
is directly related to the value of the parameter ρ. This means that there is an upper
bound in the disturbances magnitude that can be annihilated by the crane’s control
signal.
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2.2.4.3 Computation of the Feedback Control Gains

For the linearized systemgiven byEq. (2.75) the cost function of Eq. (2.76) is defined,
where the coefficient r determines the penalization of the control input and theweight
coefficient ρ determines the reward of the disturbances’ effects.

It is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L] of

the linearized model of the crane are stabilizable, (iii) the matrix [A,C] is detectable.
Then, the optimal feedback control law is given by

u(t) = −Kx(t) (2.31)

with
K = 1

r B
T P (2.32)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P
(
1
r BB

T − 1
2ρ2 LLT

)
P = 0 (2.33)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (2.34)

The diagram of the considered control loop is depicted in Fig. 2.2.

2.2.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme ensures H∞ tracking performance for the crane, and that in case
of bounded disturbance terms asymptotic convergence to the reference setpoints is
achieved. The tracking error dynamics for the underactuated crane is written in the
form

ė = Ae + Bu + Ld̃ (2.35)

where in the crane’s case L = I∈R8 with I being the identity matrix. Variable d̃
denotes model uncertainties and external disturbances of the crane’s model. The
following Lyapunov function is considered

V = 1
2e

T Pe (2.36)
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Fig. 2.2 Diagram of the control scheme for the underactuated crane

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T Pe + 1

2e
T P[Ae + Bu + Ld̃]⇒ (2.37)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+

+ 1
2e

T P[Ae + Bu + Ld̃]⇒ (2.38)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(2.39)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (2.40)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P
(
2
r BB

T − 1
ρ2 LLT

)
P (2.41)
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Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (2.42)

By substituting Eqs. (2.41) and (2.42) one obtains

V̇ = 1
2e

T
[
−Q + P

(
2
r BB

T − 1
ρ2 LLT

)
P

]
e+

+ eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(2.43)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(2.44)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (2.45)

or, equivalently
V̇ = − 1

2e
T Qe − 1

2ρ2 eT PLLT Pe+
+ 1

2e
T PLd̃ + 1

2 d̃
T LT Pe

(2.46)

Lemma: The following inequality holds

1
2e

T PLd̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.47)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(2.48)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.49)

Equation (2.49) is substituted in Eq. (2.46) and the inequality is enforced, thus giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (2.50)

Equation (2.50) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives
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∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt (2.51)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (2.52)

then one gets ∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (2.53)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (2.36) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the underactuated crane is based on Eq. (2.50) and
on the application of Barbalat’s Lemma. It uses the condition of Eq. (2.52) about the
boundedness of the square of the aggregate disturbance and modelling error term d̃
that affects the model. However, as explained above the proof of global asymptotic
stability is not restricted by this condition. By selecting the attenuation coefficient
ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that
the first derivative of the Lyapunov function is upper bounded by 0. Therefore for
the i th time interval it is proven that the Lyapunov function defined in Eq. (2.36) is
a decreasing one. This also ensures the Lyapunov function of the system defined in
Eq. (29) will always have a negative first-order derivative.

2.2.6 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop has to be implemented with the use of information provided by a
small number of sensors and by processing only a small number of state variables.
To reconstruct the missing information about the state vector of the overhead crane it
is proposed to use a filtering scheme and based on it to apply state estimation-based
control [169, 457, 511]. The recursion of the H∞ Kalman Filter, for the model of the
crane, can be formulated in terms of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(2.54)
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Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)
(2.55)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the crane, and estimate through filtering the
rest of the state vector elements. Moreover, the proposed Kalman filtering method
can be used for sensor fusion purposes.

2.2.7 Simulation Tests

The performed simulation tests have demonstrated the excellent tracking perfor-
mance of the H-infinity nonlinear control scheme in the case of the stabilization and
control problem of the underactuated crane. The computation of the feedback control
gain was based on the solution of the algebraic Riccati equation given in Eq. (2.41),
through a procedure that was repeated at each iteration of the control method. The
obtained results are depicted in Figs. 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8. The simulation
tests’ diagrams evaluate the performance of the proposed nonlinear H-infinity control
method for the problem of control of the 4-DOF overhead crane with respect to the
following indexes: (i) accuracy of tracking of the reference trajectories measured in
RMSE (Root Mean Square Error) (ii) avoidance of abrupt variations of the control
inputs and avoidance of actuators saturation, (iii) robustness tomodel uncertainty and
external perturbations. It can be confirmed that fast and accurate convergence of the
state variables of the crane to the reference setpoints was achieved. Moreover, it can
be seen that the variation of the control inputs remained smooth and within moderate
ranges. Despite underactuation, the control method’s performance was satisfactory
and precise tracking of the reference setpoints was achieved.

In the presented simulation experiments state estimation-based control has been
implemented. Out of the 8 state variables of the underactuated crane only 4 where
considered to be measurable. These were the cartesian coordinates of the crane x
and y and the displacement angles of the payload θx and θy . The rest of the state
variables, describing the time derivatives of the cartesian coordinates of the crane and
the time derivatives of the payload’s displacement angles were indirectly estimated
with the use of the H-infinity Kalman Filter. The real value of each state variable
has been plotted in blue, the estimated value has been plotted in green, while the
associated reference setpoint has been plotted in red. It can be noticed that despite
model uncertainty the H-infinity Kalman Filter achieved accurate estimation of the
real values of the state vector elements. In this manner the robustness of the state
estimation-based H-infinity control scheme was also improved.



2.2 Nonlinear Optimal Control for Multi-DOF Underactuated Overhead Cranes 81

0 10 20 30 40
0

0.5

1

1.5

time (sec)

x 1

0 10 20 30 40
0

0.5

1

1.5

time (sec)
x 2

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

time (sec)

x 3

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

time (sec)

x 4

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

u 1

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)
u 2

(a) (b)

Fig. 2.3 Reference path 1: a Convergence of the state variables of the crane x1 = x , x2 = y,
x3 = θx and x4 = θy (blue line: real value, green line: estimated value by the H-infinity filter) to
the associated reference values (red line). b Control inputs u1 and u2 applied to the control system
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Fig. 2.4 Reference path 2: a Convergence of the state variables of the crane x1 = x , x2 = y,
x3 = θx and x4 = θy (blue line: real value, green line: estimated value by the H-infinity filter) to
the associated reference values (red line). b Control inputs u1 and u2 applied to the control system

Yet computationally simple, the proposed H∞ control scheme has an excellent
performance. Comparing to the control of underactuated cranes that can be based on
global linearization methods [457, 629] the presented nonlinear H∞ control scheme
is equally efficient in setpoint tracking while also retaining optimal control features.
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Fig. 2.5 Reference path 3: a Convergence of the state variables of the crane x1 = x , x2 = y,
x3 = θx and x4 = θy (blue line: real value, green line: estimated value by the H-infinity filter) to
the associated reference values (red line). b Control inputs u1 and u2 applied to the control system
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Fig. 2.6 Reference path 4: a Convergence of the state variables of the crane x1 = x , x2 = y,
x3 = θx and x4 = θy (blue line: real value, green line: estimated value by the H-infinity filter) to
the associated reference values (red line). b Control inputs u1 and u2 applied to the control system
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Fig. 2.7 Reference path 5: a Convergence of the state variables of the crane x1 = x , x2 = y,
x3 = θx and x4 = θy (blue line: real value, green line: estimated value by the H-infinity filter) to
the associated reference values (red line). b Control inputs u1 and u2 applied to the control system
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Fig. 2.8 Reference path 6: a Convergence of the state variables of the crane x1 = x , x2 = y,
x3 = θx and x4 = θy (blue line: real value, green line: estimated value by the H-infinity filter) to
the associated reference values (red line). b Control inputs u1 and u2 applied to the control system
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Table 2.1 RMSE of the crane’s state variables

Path RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8

1 1.26·10−6 2.36·10−6 0.02·10−6 0.03·10−6 0.12·10−6 0.26·10−6 0.05·10−6 0.10·10−6

2 0.85·10−6 0.36·10−6 0.11·10−6 0.19·10−6 0.21·10−6 0.53·10−6 0.30·10−6 0.70·10−6

3 0.65·10−6 0.17·10−6 0.11·10−6 0.20·10−6 0.24·10−6 0.32·10−6 0.29·10−6 0.72·10−6

4 0.04·10−4 0.06·10−4 0.07·10−4 0.17·10−4 0.10·10−4 0.25·10−4 0.24·10−4 0.41·10−4

5 9.00·10−4 5.00·10−4 10.0·10−4 4.00·10−4 3.00·10−4 1.00·10−4 1.00·10−4 2.00·10−4

6 9.47·10−4 4.00·10−4 4.00·10−4 2.00·10−4 2.00·10−4 9.00·10−4 4.00·10−6 2.00·10−4

Table 2.2 RMSE of state variables under model disturbance

Δa
(%)

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8

0 0.04·10−4 0.06·10−4 0.07·10−4 0.17·10−4 0.10·10−4 0.23·10−4 0.24·10−4 0.41·10−4

25 0.25·10−4 25.0·10−4 0.07·10−4 0.17·10−4 0.10·10−4 2.09·10−4 0.24·10−4 0.40·10−4

50 0.48·10−4 49.0·10−4 0.06·10−4 0.16·10−4 0.11·10−4 4.08·10−4 0.24·10−4 0.40·10−4

75 0.74·10−4 72.0·10−4 0.06·10−4 0.16·10−4 0.12·10−4 6.04·10−4 0.24·10−4 0.40·10−4

100 0.96·10−4 96.0·10−4 0.06·10−4 0.16·10−4 0.13·10−4 7.36·10−4 0.24·10−4 0.39·10−4

Table 2.3 RMSE of state variables under model disturbance

Δa
(%)

RMSEx1 RMSEx2 RMSEx3 RMSEx4 RMSEx5 RMSEx6 RMSEx7 RMSEx8

0 0.04·10−4 0.06·10−4 0.07·10−4 0.17·10−4 0.10·10−4 0.23·10−4 0.24·10−4 0.41·10−4

25 1.00·10−4 15.0·10−4 0.06·10−4 0.16·10−4 0.11·10−4 1.29·10−4 0.24·10−4 0.39·10−4

50 1.83·10−4 29.0·10−4 0.06·10−4 0.13·10−4 0.19·10−4 2.46·10−4 0.23·10−4 0.38·10−4

75 3.66·10−4 43.0·10−4 0.06·10−4 0.15·10−4 0.33·10−4 3.58·10−4 0.23·10−4 0.37·10−4

100 6.05·10−4 52.0·10−4 0.06·10−4 0.14·10−4 0.52·10−4 4.66·10−4 0.26·10−4 0.36·10−4

The tracking accuracy of the presented H∞ control method has been monitored in
the case of several reference setpoints. The obtained results are given in Table 2.1.

The tracking performance of the nonlinearH-infinity controlmethod for themodel
of the multi-DOF robotic system and under disturbances, imposing a change equal
to Δa% to the first element of the 7th row of the drift function f (x) of Eq. (2.12), is
outlined in Table 2.2. It can be noticed that despite model perturbations the tracking
accuracy of the control method remained satisfactory.

Moreover, the tracking performance of the nonlinear H-infinity control method
for the model of the 2-DOF manipulator and under disturbances, imposing a change
equal toΔa%to thefirst element of the 8th rowof the drift function f (x)ofEq. (2.12),
is outlined in Table 2.3. It can be noticed that despitemodel perturbations the tracking
accuracy of the control method remained satisfactory.

H-infinity control in its classical implementation is addressed to linear dynamical
systems. The 4-DOF overhead crane model considered in this section is a highly
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nonlinear one. Therefore, the application of the classicalH-infinity control to it would
be inadequate.To enable the solutionof control and stabilizationof theoverhead crane
under model uncertainty, the H-infinity control is applied to the crane’s linearized
model which is obtained after performing first order Taylor series expansion for the
crane’s state-space description. Jointly, the crane’s linearization procedure and the
application of the H-infinity control method to the approximately linearized model
form the nonlinear H-infinity control approach. It is noted that other control methods
such as the Model Predictive Control (MPC) would be unsuitable for application to
the crane’s model because of the model’s nonlinearity. Moreover, Nonlinear Model
Predictive Control (NMPC) may not be of assured stability and convergence. On the
other side, the proposed nonlinear H-infinity control approach is of proven global
asymptotic stability.

For the control problem of the overhead crane one can also consider energy-
based methods, where the control input is chosen from minimization of a function
that comprises the kinematic and the dynamic model of the crane [535]. Such a
type of control has been also applied in [450]. Energy-based control methods have
been successfully used in many robotic systems, however some of the shortfalls they
may exhibit are outlined as follows (i) they rely on an intuitive procedure about
the selection of the energy function of the robotic system (ii) they need an intuitive
parametrization and tuning of the feedback controller, (iii) they are computationally
more demanding because they need more intermediate calculations to arrive at the
form that the stabilizing feedback controller should have, (iv) they do not assure the
avoidance of singularities, (v) their performance appears to be debatable in terms
of transients for both the state variables and control inputs. On the other side, the
proposed nonlinearH-infinity controlmethod has clear and easy to implement stages.
It requires only (i) the approximate linearization of the robotic system’s dynamic
model using Taylor expansion and the computation of Jacobian matrices, (ii) the
solution of an algebraic Riccati equation that allows for computing the controller’s
feedback gain. Besides this control method retains the advantages of optimal control,
that is best trade-off between accuracy of tracking of the reference trajectories and
minimal variations of the control input.

2.3 A Nonlinear Optimal Control Approach for Precise
Functioning of Ship-Mounted Cranes

2.3.1 Outline

The need for precise functioning of ship-mounted cranes is apparent in tasks car-
ried out in vessels and offshore platforms aiming at accurately submerging various
payloads. To annihilate the effect of hydrodynamic forces and of the vessel’s heave
motion,methods for cranes nonlinear control and in particular for active heavemotion
control have been developed [124, 125, 533, 593]. Indicative approaches to themod-
eling of the electromechanical parts of ship-mounted cranes and heave compensation
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systems can be found in [27, 177, 385, 400, 588]. Attempts for the robust function-
ing of ship-mounted cranes and of the associated payload positioning systems have
been presented in [95, 186, 331, 488, 619]. In this section, the ship-mounted crane
and payload positioning system is activated by a winch which in turn is driven by
an AC motor. The winch controls the submergence of a payload in the water as well
as the payload’s vertical position (depth). The payload’s positioning is affected by
hydrodynamic forces and the lift force that is exerted by the crane. Moreover. due
to the heave motion of the of the vessel, the payload’s motion is also affected by
a disturbance term that the control scheme has to compensate for. The problem of
control of the payload’s position is a nontrivial one because of the nonlinearities
of the associated state-space description, and because of time-delays that appear in
specific state variables of it. Furthermore, this system is underactuated because of
receiving only one control input while having two degrees of freedom [239–242,
285, 304, 357].

There have been attempts to solve this control problem with the use of global
linearization methods [240]. The approach of the present section follows an approx-
imate linearization method. The dynamic model of the active heave compensation
system undergoes approximate linearization, around a temporary operating point
(equilibrium) which is recomputed at each iteration of the control method [423, 461,
466]. This equilibrium comprises the present value of the payload’s positioning sys-
tem state vector and the last value of the control input that was applied to it. The
linearization makes use of Taylor series expansion and of the computation of the
system’s Jacobian’s matrices [33, 463, 564]. The modelling error which is due to
truncation of higher order terms in the Taylor series expansion is considered to be a
perturbation that is compensated by the robustness of the control algorithm. For the
approximately linearized model of the payload’s positioning system an H-infinity
(optimal controller) is designed that is finally capable of compensating the heave
motion’s effects.

The H-infinity controller stands for the solution to the optimal control problem of
the payload’s positioning system undermodel uncertainty and external perturbations.
It actually implements the solution to a min-max differential game in which the
control input tries to minimize a cost function comprising a quadratic term of the
tracking error of the system’s state vector, whereas themodel uncertainty and external
disturbance terms try to maximize this cost functional. To select the controller’s
feedback gain, an algebraic Riccati equation is solved at each time step of the control
method [305, 450, 457, 459]. The stability of the payload’s positioning system is
proven through Lyapunov analysis. First, it is proven that the control loop satisfies the
H-infinity tracking performance criterion. This signifies elevated robustness against
model uncertainties and external disturbances. Moreover, under moderate conditions
it is proven that the control method is globally asymptotically stable. Finally, to
implement state estimation-based feedback control after measuring only a small
number of the system’s state variables, the H-infinity Kalman Filter has been used
as a robust state estimator [169, 511].
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2.3.2 Dynamic Model of the Payload’s Positioning System

The ship-mounted crane and the associated payload positioning system is shown in
Figs. 2.9 and 2.10. The state-space description of the payload’s positioning system is
given by the state vector x = [φw, φ̇w, zP , ż P ]T , whereφ is the turn angle of thewinch
and z p is the position of the submerged payload on the z-axis. A detailed analysis
of this model follows the stages presented in [240]. The state-space equations of the
model are:
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ẋ1
ẋ2
ẋ3
ż4

⎞
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⎛
⎜⎜⎝
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⎞
⎟⎟⎠ (2.56)

while the measurable output is the depth of the payload z p. In particular the state
variables of themodel are defined as: x1 = φr,t is the turn angle of the crane, x2 = ˙φr,t

is the rotational speed of the crane, x3 = z p is the position of the payload along the
z-axis and ż p is the velocity of the payload along the z-axis, as shown in Figs. 2.9
and 2.10. Moreover, the term x1(t − Td) denotes that time-delay equal to Td affects
state variable x1.

About parameterβ onehasβ = Fg − ρwg(V (zr )) + 1
2 lwAr ,wherewith reference

to Fig. 2.10, V (zr ) is the submerged volume of the load, lw is the nominal length of
the rope, Ar is the cross-sectional area of the submerged rope . About parameter ms

one has ms = meq + A33 + ρwV (zr ), where A33 is the added mass of the rope, and
is given by A33 = ρwCaV (zr )whereCa is the added mass coefficient which depends
on the shape of the object, and ρw is the density of the water. Additionally,meq is the
mass of the load plus the mass of the rope, Fg is the gravitational force, ρwg(V (zr ))
is a lift force, while γ = l p + zc(0), where l p is the length (height) of the payload
and zc is the position of the end tip of the crane on the z-axis.

Due to the heave motion of the vessel, an unknown acceleration term equal to z̈c
affects the motion of the payload, while a term dependent on ż p affects the tension of
the rope (see [240]). These are perturbations which can be included in the state-space
model of Eq. (2.56) by adding a cumulative disturbance term dh to its fourth row.
This unknown disturbance term is anticipated to be compensated by the robustness
of the H-infinity control method.

⎛
⎜⎜⎝
ẋ1
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⎟⎟⎠ (2.57)
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Fig. 2.9 Ship-mounted crane and payload positioning system

Fig. 2.10 Coordinates for the ship-mounted crane and its payload positioning system

2.3.3 Approximate Linearization of the Payload’s Positioning
System

The state variable x1(t − Td) which exhibits time-delay in the state-space model of
Eq. (2.56) is approximated with the use of first-order Taylor series expansion

x1(t − Td) = x1(t) − Td ẋ1(t)⇒
x1(t − Td) = x1(t) − Tdx2

(2.58)

Consequently, the state-space model of the system under time-delays becomes
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⎛
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The previous state-space model can be also written in vector form:
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By defining the time-varying variable ã = a if x4 > 0 and ã = −a if x4 < 0 one has
the following state-space description

ẋ = f (x) + g(x)u (2.61)

where

f (x) =
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The state-space model of the payload’s positioning system undergoes approximate
linearization around the temporary operating point (x∗, u∗), where x∗ is the present
value of the system’s state vector and u∗ is the last value of the control input that was
exerted on it. To carry out linearization the computation of the associated Jacobian
matrices is needed.
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About the first row of ∇x f (x) one has:
∂ f1
∂x1
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About the Jacobian matrix ∇u(g(x)u) = g(x) one has ∇u(g(x)u) = [0 kw

Tw
0 0]T .

Thus the approximately linearized system is

ẋ = Ax + Bu + d̃ (2.64)

where d̃ is a disturbance which is due to the truncation of higher-order terms in the
Taylor series expansion and matrices A, B are defined as:

A = ∇x [ f (x) + g(x)u] |(x∗,u∗) ⇒A = ∇x f (x) |(x∗,u∗) (2.65)

B = ∇u[ f (x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗) (2.66)

2.3.4 Design of an H-Infinity Nonlinear Feedback Controller

2.3.4.1 Equivalent Linearized Dynamics of the Payload’s Positioning
System

After linearization around its current operating point, the dynamic model of the
payload’s positioning system is written as

ẋ = Ax + Bu + d1 (2.67)

Parameter d1 stands for the linearization error in the dynamic model of the payload’s
positioning system appearing in Eq. (2.67). The reference setpoints for the payload’s
positioning system state vector are denoted by xd = [xd1 , . . . , xd6 ]. Tracking of this
trajectory is achieved after applying the control input u∗. At every time instant the
control input u∗ is assumed to differ from the control input u appearing in Eq. (2.67)
by an amount equal to Δu, that is u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (2.68)

The dynamics of the controlled system described in Eq. (2.67) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (2.69)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (2.70)

By subtracting Eq. (2.68) from (2.70) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (2.71)
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By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (2.72)

The above linearized form of the payload’s positioning system can be efficiently
controlled after applying an H-infinity feedback control scheme.

2.3.5 The Nonlinear H-Infinity Control

2.3.5.1 The H-infinity control approach

The initial nonlinear model of the payload’s positioning system is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (2.73)

Linearization of the system, that is of the ship-mounted crane and payload’s position-
ing system, is performed at each iteration of the control algorithm round its present
operating point (x∗, u∗) = (x(t), u(t − Ts)), where Ts is the sampling period. The
linearized equivalent model of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (2.74)

wherematrices A and B are obtained from the computation of the system’s Jacobians
and vector d̃ denotes disturbance terms due to linearization errors. The problem of
disturbance rejection for the linearized model that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(2.75)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory
tracking by the system’s state vector and simultaneous disturbance rejection, con-
sidering that the disturbance affects the system in the worst possible manner. The
disturbances’ effects are incorporated in the following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (2.76)

As already explained, the significance of the negative sign in the cost function’s
term that is associated with the perturbation variable d̃(t) is that the disturbance tries
to maximize the cost function J (t) while the control signal u(t) tries to minimize
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it. The physical meaning of the relation given above is that the control signal and
the disturbances compete to each other within a min-max differential game. This
problem of min-max optimization can be written as

minumaxd̃ J (u, d̃) (2.77)

The objective of the optimization procedure is to compute a control signal u(t)
which can compensate for the worst possible disturbance, that is externally imposed
to the system. However, the solution to the min-max optimization problem is directly
related to the value of the parameter ρ. This means that there is an upper bound in
the disturbances magnitude that can be annihilated by the control signal.

2.3.5.2 Computation of the Feedback Control Gains

For the linearized systemgiven byEq. (2.75) the cost function of Eq. (2.76) is defined,
where the coefficient r determines the penalization of the control input and theweight
coefficient ρ determines the reward of the disturbances’ effects.

It is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L] are

stabilizable, (iii) the matrix [A,C] is detectable. Then, the optimal feedback control
law is given by

u(t) = −Kx(t) (2.78)

with
K = 1

r B
T P (2.79)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P
(
1
r BB

T − 1
2ρ2 LLT

)
P = 0 (2.80)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (2.81)

The diagram of the considered control loop is depicted in Fig. 2.11.

2.3.5.3 Riccati Equation Coefficients in H-Infinity Control Robustness

As already analyzed, parameter ρ in Eq. (2.76), is an indication of the closed-loop
system robustness. If the values of ρ > 0 are excessively decreased with respect
to r , then the solution of the Riccati equation is no longer a positive definite matrix.
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Fig. 2.11 Diagram of the control scheme for the ship-mounted crane and payload positioning
system

Consequently there is a lower bound ρmin of ρ for which the H∞ control problem
has a solution. The acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is
found and used in the design of the H∞ controller, then the closed-loop system
will have increased robustness. Unlike this, if a value ρ > ρmin is used, then an
admissible stabilizing H∞ controller will be derived but it will be a suboptimal one.
The Hamiltonian matrix

H =
(

A −( 1r BB
T − 1

ρ2 LLT )

−Q −AT

)
(2.82)

provides a criterion for the existence of a solution of the Riccati equation (2.80). A
necessary condition for the solution of the algebraic Riccati equation to be a positive
semi-definite symmetric matrix is that H has no imaginary eigenvalues [450].

2.3.6 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown again that the proposed non-
linear control scheme assures H∞ tracking performance for the ship-mounted crane
and the payload’s positioning system, and that in case of bounded disturbance terms
asymptotic convergence to the reference setpoints is achieved. The tracking error
dynamics for the payload’s positioning system is written in the form
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ė = Ae + Bu + Ld̃ (2.83)

where in the case of the payload’s positioning system L = I∈R4 with I being the
identity matrix. Variable d̃ denotes model uncertainties and external disturbances of
the payload’s positioning system. The following Lyapunov equation is considered

V = 1
2e

T Pe (2.84)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T Pe + 1

2e
T P[Ae + Bu + Ld̃]⇒ (2.85)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+

+ 1
2e

T P[Ae + Bu + Ld̃]⇒ (2.86)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(2.87)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (2.88)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P
(
2
r BB

T − 1
ρ2 LLT

)
P (2.89)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (2.90)

By substituting Eqs. (2.89) and (2.90) one obtains

V̇ = 1
2e

T
[
−Q + P

(
2
r BB

T − 1
ρ2 LLT

)
P

]
e+

+ eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(2.91)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(2.92)
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which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (2.93)

or, equivalently
V̇ = − 1

2e
T Qe − 1

2ρ2 eT PLLT Pe+
+ 1

2e
T PLd̃ + 1

2 d̃
T LT Pe

(2.94)

Lemma: The following inequality holds

1
2e

T PLd̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.95)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(2.96)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.97)

Equation (2.97) is substituted in Eq. (2.94) and the inequality is enforced, thus giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (2.98)

Equation (2.98) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt

(2.99)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (2.100)

then one gets ∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (2.101)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (2.84) it becomes clear that e(t) will
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be also bounded since e(t) ∈ Ωe = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic sta-
bility for the control loop of the ship-mounted crane and the payload’s positioning
system is based on Eq. (2.98) and on the application of Barbalat’s Lemma. It uses the
condition of Eq. (2.100) about the boundedness of the square of the aggregate distur-
bance andmodelling error term d̃ that affects themodel. However, the proof of global
asymptotic stability is not restricted by this condition. By selecting the attenuation
coefficient ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2
one has that the first derivative of the Lyapunov function is upper bounded by 0.
Therefore for the i th time interval it is proven that the Lyapunov function defined
in Eq. (2.84) is a decreasing one. This also assures the Lyapunov function of the
ship-mounted crane system will always have a negative first-order derivative.

2.3.7 Robust State Estimation with the Use of the H∞
Kalman Filter

The control loop has to be implemented with the use of information provided by a
small number of sensors and by processing only a small number of state variables. To
reconstruct themissing information about the state vector of the payload’s positioning
system it is proposed to use afiltering schemeandbasedon it to apply state estimation-
based control [169, 457, 511]. The recursion of the H∞ Kalman Filter, for the model
of the payload’s positioning system, can be formulated in terms of a measurement
update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(2.102)

Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)
(2.103)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only the depth x3 = z p of the payload, and can estimate through filtering the
rest of the state vector elements. Moreover, the proposed Kalman filtering method
can be used for sensor fusion purposes.
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Fig. 2.12 Tracking of setpoint 1: a Convergence of the state variables of the payload’s positioning
system xi i = 1, . . . , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates
(green lines). b Diagrams about convergence of state variables x1 = φw , and x3 = z p to their
reference setpoint, and diagram depicting the variations of the control input

2.3.8 Simulation Tests

The performance of the considered control scheme for the ship-mounted crane and
the payload’s positioning system was tested through simulation experiments. The
effect of the heave’s motion, as shown in the fourth row of Eq. (2.57), was described
by a sinusoidal disturbance term dh(t). The obtained results are depicted in Figs. 2.12,
2.13, 2.14, 2.15 and 2.16. It can be observed that convergence of the state variables to
the reference setpoints was achieved and this in turn signifies that precise positioning
of the payload is accomplished. The only measurable state variable was the depth
of the payload z3 = z p. In the provided simulation results the real value of the state
variables of the payload’s positioning system is printed in blue, the estimated value
provided by the H-infinity Kalman Filter is printed in green, whereas the associated
reference setpoints are depicted in red.

The transient performance of the control algorithm is determined by the selection
of parameters r , ρ and Q which appear in the algebraic Riccati equation of Eq. (2.89).
The robustness of the control method is affected by the selection of the H-infinity
attenuation coefficient ρ. By selecting the value of ρ to be sufficiently small, so as
the H-infinity tracking performance condition of Eq. (11.123) to hold, one assures
also the global asymptotic stability of the control loop and the elimination of the
state vector’s tracking error. The smallest value of ρ for which the Riccati equation
of Eq. (2.89) can be solved is the one that provides the control loop with maximum
robustness.

Yet computational simple the section’s approach provides an efficient solution
to the problem of precise functioning of ship-mounted cranes and of the associated
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Fig. 2.13 Tracking of setpoint 2: a Convergence of the state variables of the payload’s positioning
system xi i = 1, . . . , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates
(green lines). b Diagrams about convergence of state variables x1 = φw , and x3 = z p to their
reference setpoint, and diagram depicting the variations of the control input

payload’s positioning systems. Comparing to other methods for the same problem,
the advantages of the sections’s approach are outlined as follows: (i) the nonlinear
optimal control scheme is directly applied on the nonlinear model of the payload’s
positioning system and unlike global linearization-based control does not require
its transformation into a linear form through elaborated changes of state variables
(diffeomorphisms), (ii) the method retains the typical advantages of optimal con-
trol, that is precise tracking of the reference setpoints at moderate variation of the
control inputs, (iii) unlike nonlinear model predictive control the proposed nonlinear
optimal control method is of proven stability and convergence to an optimum, (iv)
the proposed control method does not require the state-space model of the payload’s
positioning system to be in a specific form (e.g. triangular, canonical etc.)

2.4 Nonlinear H-Infinity Control for Underactuated
Systems: The Furuta Pendulum Example

2.4.1 Outline

As noted in the previous section, control of underactuated systems is a topic of
primary importance in the area of nonlinear dynamical systems [153, 347, 378,
506, 520]. A typical underactuated system is Furuta’s pendulum, also known as
rotary pendulum. The system has two degrees of freedom while it receives only one
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Fig. 2.14 Tracking of setpoint 3: a Convergence of the state variables of the payload’s positioning
system xi i = 1, . . . , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates
(green lines). b Diagrams about convergence of state variables x1 = φw , and x3 = z p to their
reference setpoint, and diagram depicting the variations of the control input
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Fig. 2.15 Tracking of setpoint 4: a Convergence of the state variables of the payload’s positioning
system xi i = 1, . . . , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates
(green lines). b Diagrams about convergence of state variables x1 = φw , and x3 = z p to their
reference setpoint, and diagram depicting the variations of the control input
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Fig. 2.16 Tracking of setpoint 5: a Convergence of the state variables of the payload’s positioning
system xi i = 1, . . . , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates
(green lines). b Diagrams about convergence of state variables x1 = φw , and x3 = z p to their
reference setpoint, and diagram depicting the variations of the control input

control input [299, 326, 527, 544, 630]. Besides, the system exhibits strong nonlinear
characteristics due to the appearance of nonlinear gravitational and Coriolis terms
in it [18, 78, 137, 244, 640]. Furthermore, the system is not linearizable through
state feedback and in its nonlinear form it is not differentially flat. As a result its
transformation into a linear equivalent state-space form through a change of state
variables (diffeomorphisms) is not a straightforward and easy to implement procedure
[3–5, 405, 406]. For these reasons the control of Furuta’s pendulum is a non-trivial
problem.

In this section, a nonlinear optimal (H-infinity) control approach to the problem
of Furuta’s pendulum is developed. The pendulum’s model first undergoes a partial
state feedback linearizationwhich allows to express half of its state-space description
into a linear form. For the aggregate model, which remains nonlinear, approximate
linearization is performed around a temporary operating point (equilibrium) which is
updated at each iteration of the control algorithm. The equilibrium is defined by the
present value of the pendulum’s state vector and the last value of the control input that
was exerted on it [461, 466]. The linearization makes use of Taylor series expansion
[33, 431, 463]. To obtain the linearized state-space model of the pendulum it is
required to compute the associated Jacobian matrices. The modelling error which is
due to the truncationof higher-order terms in theTaylor series expansion is considered
as a perturbation that is compensated by the robustness of the control algorithm.

For the approximately linearized model of the rotary pendulum an H-infinity
stabilizing feedback controller is defined. It represents the solution to a min-max dif-
ferential game inwhich the controller tries tominimize a cost functional comprising a
quadratic term of the state vector error of the pendulum, while the disturbance inputs
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try to maximize it. The controller’s feedback gain is computed from the solution of
an algebraic Riccati equation that is also performed at each iteration of the control
method [450, 452, 457, 459, 460]. The stability properties of the control scheme are
confirmed through Lyapunov analysis. First it is proven that the H-infinity tracking
performance criterion is satisfied. This indicates elevated robustness against mod-
elling uncertainties and external perturbations.Moreover, under moderate conditions
it is proven that the pendulum’s control loop exhibits global asymptotic stability prop-
erties. Finally, to implement state estimation-based feedback control of the rotary
pendulum the H-infinity Kalman Filter is used to compute the system’s state vector
through the processing of its outputs’ measurements [169, 511].

Comparing to the proposed nonlinear optimal control method, other nonlinear
control schemes for the rotarypendulumare assessed as follows:Global linearization-
based control schemes, such as Lie-algebra based control require the intuitive defi-
nition of linearizing outputs as well as the application of elaborated state variables
transformations (diffeomorphisms). Due to applying the control input to the lin-
earized equivalent model of the dynamical system and not to the initial nonlinear
model such methods may come against singularity problems. Additionally, in the
case of underactuation the application of global linearization-based control schemes
may require dynamic extension, that is the inclusion of the control inputs and their
derivatives in the extended state vector of the system and in the form of additional
state variables. Moreover, the application of Model Predictive Control schemes is
not possible because this method requires that the dynamics of the control system is
a linear one, whereas the Furuta pendulum is a strongly nonlinear one. Additionally,
Nonlinear Model Predictive Control trying to extend MPC to the nonlinear case,
is not of assured convergence to an optimum and the performance of its iterative
search for an optimum is dependent on its parametrization and on initial conditions.
Furthermore, the application of sliding-mode control to underactuated systems (such
as the model of the Furuta pendulum) is hindered by the fact that such systems are
usually not found into a canonical form, so the definition of the sliding surface is
not a task that can be directly accomplished. Finally, the application of backstepping
control in the case of underactuated robotic systems is not recommended because
such systems are not found a-priori into a triangular form [194, 313, 379, 483, 542].

2.4.2 Dynamic Model of Furuta’s Penulum

2.4.2.1 State-Space Description of the Pendulum

The dynamic model of Furuta’s pendulum, as obtained from the application of the
Euler–Lagrange method, is given by [506]:

(α + β + sin2(θ))φ̈ + γ cos(θ)θ̈ + 2βθ̇φ̇sin(θ)cos(θ) − γ θ̇2sin(θ) = T
γ cos(θ)φ̈ + βθ̈ − βφ̇2sin(θ)cos(θ) − δsin(θ) = 0

(2.104)
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Fig. 2.17 Diagram of Furuta’s pendulum

In this model φ is the angle of the arm with φ̇ and φ̈ to stand for the associated
angular velocity and the angular acceleration, θ is the angle of the pendulum with
θ̇ and θ̈ to stand for the associated angular velocity and angular acceleration, while
α, β, γ and δ are parameters comprising the masses and lengths of the two links
of the pendulum. The control input (torque) that is applied to the arm and which
is generated by a DC motor is denoted as T . The diagram of Furuta’s pendulum is
depicted in Fig. 2.17. The system is underactuated because it has only one control
input while having two degrees of freedom.

After applying a partial feedback linearization transformation through the relation

T = (α + βsin2(θ))u + γ cos(θ)θ̈ + 2βθ̇φ̇sin(θ)cos(θ) − γ θ̇2sin(θ) (2.105)

the dynamic model of Furuta’s pendulum is written as

φ̈ = u

θ̈ = φ̇2β sin(θ)cos(θ)+δsin(θ)−γ cos(θ)u
β

(2.106)

where the control input in the transformed nonlinear model of Eq. (2.106) is denoted
as u. Next, by defining the state variables x1 = φ, x2 = φ̇, x3 = θ and x4 = θ̇ one
arrives at the following state-space description of the pendulum

ẋ = f (x) + g(x)u (2.107)
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where x∈R4×1, u∈R1×1, f (x)∈R4×1 and g(x)∈R4×1 and vector fields f (x) and
g(x) are given by

f (x) =

⎛
⎜⎜⎝

x2
0
x4

x22βsin(θ)cos(θ)+δsin(θ)

β

⎞
⎟⎟⎠ g(x) =

⎛
⎜⎜⎝

0
1
0

−γ cos(θ)

β

⎞
⎟⎟⎠ (2.108)

2.4.2.2 Approximate Linearization of the Pendulum’s Dynamics

Approximate linearization for the pendulum’s state-space model takes place around
a time-varying equilibrium which is re-computed at each time instant and which
consists of the present value of system’s state vector x∗ and of the last value of
the control inputs vector u∗ that was applied on it. This results into a linearized
state-space description of the form

ẋ = Ax + Bu + d̃ (2.109)

where d̃ is the modelling error due to approximate linearization and truncation of
higher-order terms in the Taylor series expansion, while matrices A and B are given
by

A = ∇x [ f (x) + g(x)u] |(x∗,u∗) ⇒A = ∇x [ f (x) |(x∗,u∗) +∇x [g(x)u |(x∗,u∗)]
B = ∇u[ f (x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗)

(2.110)
Next, the elements of the model’s Jacobian matrix ∇x f (x) are computed:

First row of ∇x f (x):
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 1, ∂ f1
∂x3

= 0, and ∂ f1
∂x4

= 0.

Second row of ∇x f (x):
∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0, ∂ f2
∂x3

= 0, and ∂ f2
∂x4

= 0.

Third row of ∇x f (x):
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0, ∂ f3
∂x3

= 0, and ∂ f3
∂x4

= ‘1.

Fourth row of ∇x f (x): ∇x f (x):
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 2x2sin(x3)cos(x3),
∂ f4
∂x3

= x22β[cos2(x3)−sin2(x3)]+δcos(x3)
β

, and ∂ f4
∂x4

= 0.

In a similar manner, the elements of the model’s Jacobian matrix ∇x g(x) are com-
puted:

First row of ∇x g(x):
∂g1
∂x1

= 0, ∂g1
∂x2

= 0, ∂g1
∂x3

= 0, and ∂g1
∂x4

= 0.

Second row of ∇x g(x):
∂g2
∂x1

= 0, ∂g2
∂x2

= 0, ∂g2
∂x3

= 0, and ∂g2
∂x4

= 0.
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Third row of ∇x g(x):
∂g3
∂x1

= 0, ∂g3
∂x2

= 0, ∂g3
∂x3

= 0, and ∂g3
∂x4

= 0.

Fourth row of ∇x g(x):
∂g4
∂x1

= 0, ∂g4
∂x2

= 0, ∂g4
∂x3

= γ sin(x3)
β

, and ∂g4
∂x4

= 0.

For the previous approximately linearized model of Fututa’s pendulum H-infinity
feedback control is applied [450, 457, 459] (Fig. 2.17).

2.4.3 Design of an H-Infinity Nonlinear Feedback Controller

2.4.3.1 Equivalent Linearized Dynamics of the Pendulum

After linearization around its current operating point, the pendulum’s dynamicmodel
is written as

ẋ = Ax + Bu + d1 (2.111)

As noted in the previous section, parameter d1 stands for the linearization error in
the pendulum’s dynamic model appearing in Eq. (2.111). The reference setpoints
for the pendulum’s state vector are denoted by xd = [xd1 , . . . , xd6 ]. Tracking of this
trajectory is achieved after applying the control input u∗. At every time instant the
control input u∗ is assumed to differ from the control input u appearing in Eq. (2.111)
by an amount equal to Δu, that is u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (2.112)

The dynamics of the controlled system described in Eq. (2.67) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (2.113)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (2.114)

By subtracting Eq. (2.112) from (2.114) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (2.115)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (2.116)

The above linearized form of the pendulum’s model can be efficiently controlled
after applying an H-infinity feedback control scheme.
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2.4.3.2 The Nonlinear H-Infinity Control

The initial nonlinear model of the underactuated rotary pendulum is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (2.117)

Linearization of the system (underactuated pendulum) is performed at each iter-
ation of the control algorithm round its present operating point (x∗, u∗) = (x(t),
u(t − Ts)), where Ts is the sampling period. The linearized equivalent model of the
system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (2.118)

where matrices A and B are obtained from the computation of the Jacobian matrices
of the pendulum’s state-space description and vector d̃ denotes disturbance terms
due to linearization errors. The problem of disturbance rejection for the linearized
model that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(2.119)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory
tracking by the rotary pendulum’s state vector and simultaneous disturbance rejec-
tion, considering that the disturbance affects the system in the worst possible manner.
The disturbances’ effects are incorporated in the following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (2.120)

As also noted in the previous section, the significance of the negative sign in the
cost function’s term that is associated with the perturbation variable d̃(t) is that the
disturbance tries to maximize the cost function J (t) while the control signal u(t)
tries to minimize it. In adherence to the previous section, the physical meaning of the
relation given above is that the control signal of the pendulum and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (2.121)

Once again, the objective of the optimization procedure is to compute a control sig-
nal u(t) which can compensate for the worst possible disturbance, that is externally
imposed to the system. As explained, the solution to such a type of min-max opti-
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mization problem is directly related to the value of the parameter ρ. This means that
there is an upper bound in the disturbances magnitude that can be annihilated by the
control signal.

2.4.3.3 Computation of the Feedback Control Gains

For the linearized system given by Eq. (2.119) the cost function of Eq. (2.120) is
defined, where the coefficient r determines the penalization of the control input and
the weight coefficient ρ determines the reward of the disturbances’ effects.

It is assumed again that (i) The energy that is transferred from the disturbances sig-
nal d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L]

are stabilizable, (iii) the matrix [A,C] is detectable. Then, the optimal feedback
control law is given by

u(t) = −Kx(t) (2.122)

with
K = 1

r B
T P (2.123)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P
(
1
r BB

T − 1
2ρ2 LLT

)
P = 0 (2.124)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (2.125)

The diagram of the considered control loop is depicted in Fig. 2.18.

2.4.4 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the pendulum, and that in case
of bounded disturbance terms asymptotic convergence to the reference setpoints is
achieved. The tracking error dynamics for the underactuated pendulum is written in
the form

ė = Ae + Bu + Ld̃ (2.126)

where in the pendulum’s case L = I∈R4 with I being the identity matrix. Variable
d̃ denotes model uncertainties and external disturbances of the pendulum’s model.
The following Lyapunov function is considered
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Fig. 2.18 Nonlinear H-infinity control loop for Furuta’s pendulum: An H-infinity controller is
applied to the approximately linearized model of the pendulum, which is obtained after Taylor
series expansion of its state-space description

V = 1
2e

T Pe (2.127)

where e = x − xd is the tracking error. By differentiating with respect to time and
by using the previous technique one obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T Pe + 1

2e
T P[Ae + Bu + Ld̃]⇒ (2.128)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+

+ 1
2e

T P[Ae + Bu + Ld̃]⇒ (2.129)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(2.130)

The previous equation is rewritten as
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V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (2.131)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P
(
2
r BB

T − 1
ρ2 LLT

)
P (2.132)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (2.133)

By substituting Eqs. (2.132) and (2.133) one obtains

V̇ = 1
2e

T
[
−Q + P

(
2
r BB

T − 1
ρ2 LLT

)
P

]
e+

+ eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(2.134)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(2.135)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (2.136)

or, equivalently
V̇ = − 1

2e
T Qe − 1

2ρ2 eT PLLT Pe+
+ 1

2e
T PLd̃ + 1

2 d̃
T LT Pe

(2.137)

Lemma: The following inequality holds

1
2e

T PLd̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.138)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(2.139)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes
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1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.140)

Equation (2.140) is substituted in Eq. (2.137) and the inequality is enforced, thus
giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (2.141)

Equation (2.141) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt

(2.142)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (2.143)

then one gets ∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (2.144)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (2.127) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaboratiing on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the underactuated pendulum relies on Eq. (2.141)
and on the application of Barbalat’s Lemma. It uses the condition of Eq. (2.143)
about the boundedness of the square of the aggregate disturbance and modelling
error term d̃ that affects the model of the rotary pendulum. However, as explained
above the proof of global asymptotic stability is not restricted by this condition. By
selecting the attenuation coefficient ρ to be sufficiently small and in particular to
satisfy ρ2 < ||e||2Q/||d̃||2 one has that the first derivative of the Lyapunov function is
upper bounded by 0. Therefore for the i th time interval it is proven that the Lyapunov
function defined in Eq. (2.127) is a decreasing one. This also assures the Lyapunov
function of the rotary pendulum defined in Eq. (2.127) will always have a negative
first-order derivative.

2.4.5 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop of the rotary pendulum can be implemented with the use of informa-
tion provided by a small number of sensors and by processing only a small number
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of state variables. To reconstruct the missing information about the state vector of
Furuta’s (rotary) pendulum it is proposed to use a filtering scheme and based on it to
apply state estimation-based control [169, 511]. The recursion of the H∞ Kalman
Filter, for the model of the pendulum, can be formulated in terms of a measurement
update and a time update part.
Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(2.145)

Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)

(2.146)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the pendulum, and can estimate through
filtering the rest of its state vector elements.

2.4.6 Simulation Tests

After applying nonlinear H-infinity control to the dynamic model of Furuta’s pen-
dulum given in Eq. (2.106) convergence of all state variables of the pendulum to the
reference setpoints was achieved. For the computation of the feedback gain of the
H-infinity controller the algebraic Riccati equation appearing in Eq. (2.132) had to
be repetitively solved at each iteration of the control method. The obtained results ate
given in Fig. 2.19, 2.20, 2.21, 2.22, 2.23, 2.24 and 2.25. The variation of the control
signal remained smooth.

In the presented simulation experiments state estimation-based control has been
implemented. Out of the 4 state variables of the underactuated pendulum only 2
where considered to be measurable. These were the rotational angle of the arm φ

and the rotation angle of the pendulum θ . The rest of the state variables, describing
the time derivatives of the turn angles, that is the angular velocities, for the arm
and the pendulum were indirectly estimated with the use of the H-infinity Kalman
Filter. The real value of each state variable has been plotted in blue, the estimated
value has been plotted in green, while the associated reference setpoint has been
plotted in red. It can be noticed that despite model uncertainty the H-infinity Kalman
Filter achieved accurate estimation of the real values of the state vector elements. In
this manner the robustness of the state estimation-based H-infinity control scheme
was also improved. Moreover, the tracking accuracy of the control method and the
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Fig. 2.19 Test case 1: a Tracking of reference setpoints (red-lines) by the state variables x1-x4 of
Furuta’s pendulum (blue lines) and state variables’ estimates (green lines). b Control input
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Fig. 2.20 Test case 2: a Tracking of reference setpoints (red-lines) by the state variables x1-x4 of
Furuta’s pendulum (blue lines) and state variables’ estimates (green lines). b Control input

precision under which the state variables of the rotary (Furuta’s) pendulum could
converge to the reference setpoints is given in Table 2.4. Additionally, the robustness
of the control method to parametric variations is given in Table 2.5. It it is shown
that despite changes in the value of parameter β of the pendulum ’s model given in
Eq. (2.107) the tracking accuracy remained satisfactory.

Comparing to control methods for underactuated systems which make use of
global linearization techniques, themain properties of the nonlinearH-infinity control
scheme for the rotary pendulum are outlined as follows: (i) it is applied directly
on the nonlinear dynamical model of the underactuated pendulum and does not
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Fig. 2.21 Test case 3: a Tracking of reference setpoints (red-lines) by the state variables x1-x4 of
Furuta’s pendulum (blue lines) and state variables’ estimates (green lines). b Control input
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Fig. 2.22 Test case 4: a Tracking of reference setpoints (red-lines) by the state variables x1-x4 of
Furuta’s pendulum (blue lines) and state variables’ estimates (green lines). b Control input

require the computation of diffeomorphisms (change of variables) that can bring
the system into an equivalent linearized form, (ii) the computation of the feedback
control signal follows an optimal control concept and requires the solution of an
algebraic Riccati equation at each iteration of the control algorithm, (iii) the method
retains the advantages of optimal control, that is minimization of the tracking error
for the state variables of the rotary pendulum, while also keeping the moderate the
variations of the control input.
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Fig. 2.23 Test case 5: a Tracking of reference setpoints (red-lines) by the state variables x1-x4 of
Furuta’s pendulum (blue lines) and state variables’ estimates (green lines). b Control input
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Fig. 2.24 Test case 6: a Tracking of reference setpoints (red-lines) by the state variables x1-x4 of
Furuta’s pendulum (blue lines) and state variables’ estimates (green lines). b Control input

2.5 A Nonlinear Optimal Control Approach for the Cart
and Double-Pendulum System

2.5.1 Outline

As it has been already analyzed, control of pendulum systems is an important research
area because it is the basis for solving stabilization and trajectory tracking problems
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Fig. 2.25 Test case 7: a Tracking of reference setpoints (red-lines) by the state variables x1-x4 of
Furuta’s pendulum (blue lines) and state variables’ estimates (green lines). b Control input

Table 2.4 RMSE of the pendulum state variables

Setpoint RMSE x1 RMSE x2 RMSE x3 RMSE x4

1 0.24·10−5 0.27·10−5 0.04·10−5 0.19·10−5

2 0.31·10−5 0.32·10−5 0.05·10−5 0.18·10−5

3 0.11·10−5 0.20·10−5 0.04·10−5 0.18·10−5

4 1.41·10−5 1.10·10−5 0.09·10−5 0.26·10−5

5 2.56·10−5 1.88·10−5 0.15·10−5 0.29·10−5

6 3.74·10−5 1.88·10−5 0.34·10−5 0.63·10−5

Table 2.5 RMSE of pendulum under disturbances

Δa (%) RMSE x1 RMSE x2 RMSE x3 RMSE x4

0 0.31·10−5 0.32·10−5 0.05·10−5 0.18·10−5

10 0.22·10−5 0.36·10−5 0.06·10−5 0.21·10−5

20 0.17·10−5 0.35·10−5 0.05·10−5 0.20·10−5

30 0.24·10−5 0.20·10−5 0.05·10−5 0.25·10−5

40 0.14·10−5 0.19·10−5 0.05·10−5 0.35·10−5

50 0.23·10−5 0.36·10−5 0.06·10−5 0.39·10−5

60 0.12·10−5 0.32·10−5 0.07·10−5 0.46·10−5
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for robotic systems and electromechanical systems characterized by complex non-
linear dynamics and underactuation [8, 130, 236, 342, 354, 647]. The problem of
trajectory tracking and stabilization for multi-pendulum systems has been studied in
[121, 302, 558, 614]. Moroever, several results on nonlinear control of pendulum
systems exhibiting underactuation have been presented [80, 237, 380, 591, 638]. In
particular the control of the cart and double-pendulum system, either in the form of an
overhead crane or in the form of an inverted pendulum has been analyzed in several
studies [175, 539, 548, 600, 613]. The present section proposes a nonlinear optimal
(H-infinity) control approach for the cart and double-pendulum system [450, 457,
459]. The control problem of the cart and double-pendulum system is acknowledged
to be of high difficulty because of the strong nonlinearities characterizing its dynam-
ics and because of the model’s underactuation. Actually, there are three degrees of
freedom (the longitudinal motion of the cart and the rotational motions of the poles
that the constitute the double pendulum) which have to be controlled by only one
control input (which is the force exerted on the cart).

To solve the control problem for the cart and double-pendulum system the associ-
ated dynamic model is first subject to approximate linearization around a temporary
operating point (equilibrium) [417, 461, 466]. This operating point is defined by
the present value of the system’s state vector and the last value of the control inputs
vector that was applied on it. The linearization makes use of first order Taylor series
expansion and of the computation of the model’s Jacobian matrices [33, 431, 463].
The modelling error which is due to the truncation of higher-order terms in the Tay-
lor series expansion is considered to be a disturbance that is compensated by the
robustness of the control method. For the approximately linearized model of the cart
and double-pendulum system an H-infinity (optimal) controller is designed.

H-infinity control for the cart and double-pendulum model provides solution to
the system’s optimal control problem under model uncertainty and external per-
turbations [305, 564]. H-infinity control is the solution to a min-max differen-
tial game in which the control inputs try to minimize a quadratic cost function
defined the square of the state vector’s tracking error, whereas the disturbance
and model uncertainty terms try to maximize this cost function. As analyzed in
previous sections, the selection of the feedback gain of the H-infinity controller
requires the solution of an algebraic Riccati equation at each step of the control
method. The stability of the control scheme is proven through Lyapunov analy-
sis. First, it is shown that the control method achieves the H-infinity tracking per-
formance criterion which signifies elevated robustness to model uncertainty and
external perturbations. Next, it is shown that the control loop satisfies also condi-
tions for global asymptotic stability. Furthermore, to implement the nonlinear opti-
mal control scheme though partial measurement of the cart and double pendulum’s
state vector, the H-infinity Kalman filter is proposed as a robust state estimator
[169, 511].
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2.5.2 Dynamic Model of the Cart and Double-Pendulum
System

The diagram of the cart and double-pendulum system is depicted in Fig. 2.26. The
following parameters of the model are defined: l1 is the length of pole 1, l2 is the
length of pole 2, F is the force that is exerted on the cart, g is the acceleration of
gravity, mc is the mass of the cart, m1 is the mass of pole 1 and m2 is the mass of
pole 2.

The dynamic model of the cart and double-pendulum system is obtained with the
application of Euler–Lagrange analysis and is given by [539, 548]:

(m1 + m2 + mc)ẍ + (m1 + m2)l1(θ̈1)cos(θ1) − θ̇2
1 sin(θ1)+

+m2l2θ̈2cos(θ2) − m2l2θ̇2
2 sin(θ2) = F

(2.147)

(m1 + m2)l1cos(θ1)ẍ + (m1 + m2)l21 θ̈1 + m2l1l2cos(θ1 − θ2)θ̈2+
+m2l1l2sin(θ1 − θ2)θ̇

2
1 + (m1 + m2)gl1sin(θ)1 = 0

(2.148)

m2l2 ẍcos(θ1) + m2l1l2cos(θ1 − θ2)θ̈1 + m2l22 θ̈2−
−m2l1l2θ̇2

1 sin(θ1 − θ2) + m2gl2sin(θ2) = 0
(2.149)

By reformulating the state-space equations an equivalent description of the cart and
double-pendulum system is obtained, where the following state variables xi , i =
1, . . . , 6 are defined: x1 = θ1 that is the rotation angle of the first pole, x2 = θ̇1,

Fig. 2.26 The cart and double-pendulum system: a as inverted pendulum, b as crane
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x3 = θ2 that is the rotation angle of the second pole, x4 = θ̇2, x5 = x that is the linear
displacement of the cart and x6 = ẋ . The control input of the states-space model is
denoted as u = F that is the force exerted on the cart [539, 548]:

ẋ1 = f1 = x2
ẋ2 = f2 = g1 + bp1F

ẋ3 = f3 = x4
ẋ4 = f4 = g2 + bp2F

ẋ5 = f5 = x6
ẋ6 = f6 = g3 + bc3F

(2.150)

where one complements the previous model with the incusion of additive input
disturbance variables. The terms of tne model given in Eq. (2.150) are defined as
follows [539, 548]:

g1 = A21
l1m1

sin(x3 − x1) + 1
l1
gsin(x1) − A11

l1m2
cos(x1)sin(x1) (2.151)

g2 = A11
l1m1

sin(x3 − x1) (2.152)

g3 = A11
mc

sin(x1) (2.153)

while one has bp1 = A22
l1m1

sin(x3 − x1) − cos(x1)
l1mc

− A12
l1m1

cos(x1)sin(x1), bp2 = A12
l2m1

sin(x3 − x1), bc3 = 1
m1

+ A12
mc

sin(x), a11 = 1
m1

+ sin2(x1)
mc

, a22 = 1
m1

+ 1
mc
, Δ =

a11a12 − a122, A12 = − a22sin(x1)
Δmc

, A21 = a22(l1)ẋ21−gcos(x1)−a12l2 ẋ23
Δ

, A22 = a12sin(x1)
Δmc

.

2.5.3 Approximate Linearization of the Cart
and Double-Pendulum System

In vector-fields form the state-space model of the cart and double-pendulum system
is written as ⎛

⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f1(x)
f2(x)
f3(x)
f4(x)
f5(x)
f6(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

g1(x)
g2(x)
g3(x)
g4(x)
g5(x)
g6(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

F (2.154)

and by substituting the elements of vector fields f (x)∈R6×1 and g(x)∈R6×1 one has:
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⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x2
A21
l1m2

sin(x3 − x1) + 1
l1
gsin(x1) − A11

l1mc
cos(x1)sin(x1)

x4
A11
l2m1

sin(x3 − x1)
x6

A11
mc

sin(x1)

⎞
⎟⎟⎟⎟⎟⎟⎠

+

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
A22
l1m1

sin(x3 − x1) − cos(x1)
l1m1

0
A12
l2m1

sin(x3 − x1)
0

1
mc

+ A12
mc

sin(x1)

⎞
⎟⎟⎟⎟⎟⎟⎠

F

(2.155)

As noted above, the system is in the state-space form:

ẋ = f (x) + g(x)u (2.156)

The state-space model of the cart and double-pendulum undergoes approximate lin-
earization around a temporary operating point (equilibrium) (x∗, u∗)which is recom-
puted at each step of the control algorithm and which is defined by the present value
of the system’s state vector x∗ and the last value of the control input u∗ that was
exerted on it. The linearized system has the following description

ẋ = Ax + Bu + d̃ (2.157)

where d̃ is the disturbance’s vector, representing the model inaccuracy due to the
approximate linearization aswell as the effects of external perturbations, whilematri-
ces A and B are computed from the system’s Jacobian matrices

A = [∇x f (x) + ∇x g(x)u] |(x∗,u∗) (2.158)

B = [∇u f (x) + ∇ug(x)u] |(x∗,u∗)

⇒B = g(x) |x∗
(2.159)

The Jacobian matrices of the system are written as follows

∇x f (x) =

⎛
⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x6

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x6· · · · · · · · · · · ·

∂ f6
∂x1

∂ f6
∂x2

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎠ ∇x g(x) =

⎛
⎜⎜⎜⎝

∂g1
∂x1

∂g1
∂x2

· · · ∂g1
∂x6

∂g2
∂x1

∂g2
∂x2

· · · ∂g2
∂x6· · · · · · · · · · · ·

∂g6
∂x1

∂g6
∂x2

· · · ∂g6
∂x6

⎞
⎟⎟⎟⎠ (2.160)

in particular, the elements of the Jacobian matrix ∇x f (x) are computed as follows:
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1st row of the Jacobian matrix:

∂ f1
∂x1

= 0, ∂ f1
∂x2

= 1, ∂ f1
∂x3

= 0, ∂ f1
∂x4

= 0, ∂ f1
∂x5

= 0, ∂ f1
∂x6

= 0.

2nd row of the Jacobian matrix: ∂ f2
∂x1

=
∂A21
∂x1
l1m1

sin(x3 − x1) − A21
l1m1

cos(x3 − x1) +
g
l1
cos(x1) +

∂A11
∂x1
l1mc

cos(x1)sin(x1) + A11
l1mc

[sin2(x1) − cos2(x1)], ∂ f2
∂x2

=
∂A21
∂x2
l1m1

sin(x3 −
x1) +

∂A11
∂x2
l1mc

cos(x1)sin(x1),
∂ f2
∂x3

=
∂A21
∂x3
l1m1

sin(x3 − x1) + A21
l1m1

cos(x3 − x1) +
∂A11
∂x3
l1mc

cos(x1)sin(x1),
∂ f2
∂x4

=
∂A21
∂x4
l1m1

sin(x3 − x1),
∂ f2
∂x5

= 0, ∂ f2
∂x6

= 0

3rd row of the Jacobian matrix: ∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0, ∂ f3
∂x3

= 0, ∂ f3
∂x4

= 1, ∂ f3
∂x5

= 0,
∂ f3
∂x6

= 0.

4th row of the Jacobian matrix: ∂ f4
∂x1

=
∂A11
∂x1
l1m1

sin(x3 − x1) − A11
l2m1

cos(x3 − x1),
∂ f4
∂x2

=
∂A11
∂x2
l1m1

sin(x3 − x1),
∂ f4
∂x3

=
∂A11
∂x3
l1m1

sin(x3 − x1) + A11
l2m1

cos(x3 − x1),
∂ f4
∂x4

= 0, ∂ f4
∂x5

= 0,
∂ f4
∂x6

= 0

5th row of the Jacobian matrix:: ∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

= 0, ∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0,
∂ f5
∂x6

= 1.

6th row of the Jacobian matrix: ∂ f6
∂x1

=
∂A11
∂x1
mc

sin(x1) − A11
mc

cos(x1),
∂ f6
∂x2

=
∂A11
∂x2
mc

sin(x1),
∂ f6
∂x3

=
∂A11
∂x3
mc

sin(x1).
∂ f6
∂x4

= 0, ∂ f6
∂x5

= 0, ∂ f6
∂x6

= 0.

The elements of the Jacobian matrix ∇x g(x) are computed as follows:

1st row of the Jacobian matrix: ∂g1
∂x1

= 0, ∂g1
∂x2

= 0, ∂g1
∂x3

= 0, ∂g1
∂x4

= 0, ∂g1
∂x5

= 0,
∂g1
∂x6

= 0.

2nd row of the Jacobian matrix: ∂g2
∂x1

=
∂A22
∂x1
l1m1

sin(x3 − x1) − A22
l1m1

cos(x3 − x1) +
sin(x1)
l1mc

−
∂A12
∂x1
l1mc

cos(x1)sin(x1) + A12
l1mc

[sin2(x1) − cos2(x1)], ∂g2
∂x2

=
∂A22
∂x2
l1m1

sin(x3 − x1)

−
∂A12
∂x2
l1mc

cos(x1)sin(x1)
∂g2
∂x3

=
∂A22
∂x3
l1m1

sin(x3 − x1) + A22
l1m1

cos(x3 − x1),
∂g2
∂x4

= 0,
∂g2
∂x5

= 0. ∂g2
∂x6

= 0.

3rd row of the Jacobian matrix: ∂g3
∂x1

= 0, ∂g3
∂x2

= 0, ∂g3
∂x3

= 0, ∂g3
∂x4

= 0, ∂g3
∂x5

= 0,
∂g3
∂x6

= 0.
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4th row of the Jacobian matrix: ∂g4
∂x1

=
∂A12
∂x1
l2m1

sin(x3 − x1) − A12
l2m1

cos(x3 − x1),

∂g4
∂x2

=
∂A12
∂x2
l2m1

sin(x3 − x1),
∂g4
∂x3

=
∂A12
∂x3
l2m1

sin(x3 − x1),
∂g4
∂x4

= 0, ∂g4
∂x5

= 0, ∂g4
∂x6

= 0

5th row of the Jacobian matrix: ∂g5
∂x1

= 0, ∂g5
∂x2

= 0, ∂g5
∂x3

= 0, ∂g5
∂x4

= 0, ∂g5
∂x5

= 0,
∂g5
∂x6

= 0.

6th rowof the Jacobianmatrix: ∂g6
∂x1

=
∂A12
∂x1
mc

sin(x1) + A12
mc

cos(x1)
∂g6
∂x2

=
∂A12
∂x2
mc

sin(x1),

∂g6
∂x3

=
∂A12
∂x3
mc

sin(x1),
∂g6
∂x4

= 0, ∂g6
∂x5

= 0, ∂g6
∂x6

= 0

Next the computation of the partial derivatives of the variables A11, A12, A21 and A22

with respect to the state variables of the system xi i = 1, 2, . . . , 6 is given. It holds
that

A11 = −a12(l1x21−gcos(x1))+a11l2x22
Δ

(2.161)

The derivatives of A11 with respect to the state vector elements xi i = 1, . . . , 6 are
computed as follows:

∂A11
∂x1

= [− ∂a12
∂x1

(l1x22−gcos(x1))−a12gsin(x1)+ ∂a11
∂x1

l2x24 ]Δ
Δ2 − [−a12(l1x22−gcos(x1))+a11l2x24 ] ∂Δ

∂x1
Δ2

∂A11
∂x2

= [− ∂a12
∂x2

(l1x22−gcos(x1))−a12(2l1x2)+ ∂a11
∂x2

l2x24 ]Δ
Δ2 − [−a12(l1x22−gcos(x1))+a11l2x24 ] ∂Δ

∂x2
Δ2

∂A11
∂x3

= [− ∂a12
∂x3

(l1x22−gcos(x1))+ ∂a11
∂x3

l2x24 ]Δ
Δ2 − [−a12(l1x22−gcos(x1))+a11l2x24 ] ∂Δ

∂x3
Δ2

∂A11
∂x4

= [− ∂a12
∂x4

(l1x22−gcos(x1))+ ∂a11
∂x4

l2x24+2a11l2x4]Δ
Δ2 − [−a12(l1x22−gcos(x1))+a11l2x24 ] ∂Δ

∂x4
Δ2

∂A11
∂x5

= [− ∂a12
∂x5

(l1x22−gcos(x1))+ ∂a11
∂x5

l2x24 ]Δ
Δ2 − [−a12(l1x22−gcos(x1))+a11l2x24 ] ∂Δ

∂x5
Δ2

∂A11
∂x6

= [− ∂a12
∂x6

(l1x22−gcos(x1))+ ∂a11
∂x6

l2x24 ]Δ
Δ2 − [−a12(l1x22−gcos(x1))+a11l2x24 ] ∂Δ

∂x6
Δ2

It holds that
A12 = − a22sin(x1)

Δ
(2.162)

The derivatives of A12 with respect to the state vector elements xi i = 1, . . . , 6 are
computed as follows:

∂A12
∂x1

= −[ ∂a22
∂x1

sin(x1)+a22cos(x1)]Δ
mcΔ2 + a22sin(x1)

∂Δ
∂x1

mcΔ2

∂A12
∂x2

= −[ ∂a22
∂x2

sin(x1)]Δ
mcΔ2 + a22sin(x1)

∂Δ
∂x2

mcΔ2
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∂A12
∂x3

= −[ ∂a22
∂x3

sin(x1)]Δ
mcΔ2 + a22sin(x1)

∂Δ
∂x3

mcΔ2

∂A12
∂x4

= −[ ∂a22
∂x4

sin(x1)]Δ
mcΔ2 + a22sin(x1)

∂Δ
∂x4

mcΔ2

∂A12
∂x5

= −[ ∂a22
∂x5

sin(x1)]Δ
mcΔ2 + a22sin(x1)

∂Δ
∂x5

mcΔ2

∂A12
∂x6

= −[ ∂a22
∂x6

sin(x1)]Δ
mcΔ2 + a22sin(x1)

∂Δ
∂x6

mcΔ2

It holds that
A21 = a22(l1x21−gcos(x1))−a12l2x24

Δ
(2.163)

The derivatives of A21 with respect to the state vector elements xi i = 1, . . . , 4 are
computed as follows:

∂A21
∂x1

= [− ∂a22
∂x1

(l1x22−gcos(x1))−a22gsin(x1)+ ∂a12
∂x1

l2x24 ]Δ
Δ2 − [−a22(l1x22−gcos(x1))+a12l2x24 ] ∂Δ

∂x1
Δ2

∂A21
∂x2

= [− ∂a22
∂x2

(l1x22−gcos(x1))−a22(2l1x2)+ ∂a12
∂x2

l2x24 ]Δ
Δ2 − [−a22(l1x22−gcos(x1))+a12l2x24 ] ∂Δ

∂x2
Δ2

∂A21
∂x3

= [− ∂a22
∂x3

(l1x22−gcos(x1))+ ∂a12
∂x3

l2x24 ]Δ
Δ2 − [−a22(l1x22−gcos(x1))+a12l2x24 ] ∂Δ

∂x3
Δ2

∂A21
∂x4

= [− ∂a22
∂x4

(l1x22−gcos(x1))+ ∂a12
∂x4

l2x24+2a12l2x4]Δ
Δ2 − [−a22(l1x22−gcos(x1))+a12l2x24 ] ∂Δ

∂x4
Δ2

∂A21
∂x5

= [− ∂a22
∂x5

(l1x22−gcos(x1))+ ∂a12
∂x5

l2x24 ]Δ
Δ2 − [−a22(l1x22−gcos(x1))+a12l2x24 ] ∂Δ

∂x5
Δ2

∂A21
∂x6

= [− ∂a22
∂x6

(l1x22−gcos(x1))+ ∂a12
∂x6

l2x24 ]Δ
Δ2 − [−a22(l1x22−gcos(x1))+a12l2x24 ] ∂Δ

∂x6
Δ2

It holds that
A22 = a12sin(x1)

mcΔ
(2.164)

The derivatives of A22 with respect to the state vector elements xi i = 1, . . . , 4 are
computed as follows:

∂A22
∂x1

= [ ∂a12
∂x1

sin(x1)+a12cos(x1)]Δ
mcΔ2 + a12sin(x1)

∂Δ
∂x1

mcΔ2

∂A22
∂x2

= [ ∂a12
∂x2

sin(x1)]Δ
mcΔ2 + a12sin(x1)

∂Δ
∂x2

mcΔ2

∂A22
∂x3

= [ ∂a12
∂x3

sin(x1)]Δ
mcΔ2 + a12sin(x1)

∂Δ
∂x3

mcΔ2

∂A22
∂x4

= [ ∂a12
∂x4

sin(x1)]Δ
mcΔ2 + a12sin(x1)

∂Δ
∂x4

mcΔ2
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∂A22
∂x5

= [ ∂a12
∂x5

sin(x1)]Δ
mcΔ2 + a12sin(x1)

∂Δ
∂x5

mcΔ2

∂A22
∂x6

= [ ∂a12
∂x6

sin(x1)]Δ
mcΔ2 + a12sin(x1)

∂Δ
∂x6

mcΔ2

Finally, about the partial derivatives of the parameters a11, a12 and a21, with respect
to the state variables of the xi i = 1, . . . , 6 one has

∂a11
∂x1

= 2
mc
sin(x1)cos(x1),

∂a11
∂x2

= 0, ∂a11
∂x3

= 0, ∂a11
∂x4

= 0, ∂a11
∂x5

= 0, ∂a11
∂x6

= 0.

∂a12
∂x1

= −sin(x3−x1)
mc

, ∂a12
∂x2

= 0, ∂a12
∂x3

= sin(x3−x1)
mc

, ∂a12
∂x4

= 0, ∂a12
∂x5

= 0, ∂a12
∂x6

= 0.

∂a22
∂x1

= 0, ∂a22
∂x2

= 0, ∂a22
∂x3

= 0, ∂a22
∂x4

= 0, ∂a22
∂x5

= 0, ∂a22
∂x6

= 0.

Moreover, considering that ∂a22
∂xi

= 0, i = 1, . . . , 6, the derivatives of Δ = a11a22 −
a212 with respect to the state vector elements xi , i = 1, . . . , 6 are computed as follows:

∂Δ
∂x1

= ∂a11
∂x1

a22 − 2a12
∂a12
∂x1

∂Δ
∂x2

= ∂a11
∂x2

a22 − 2a12
∂a12
∂x2

∂Δ
∂x3

= ∂a11
∂x3

a22 − 2a12
∂a12
∂x3

∂Δ
∂x4

= ∂a11
∂x4

a22 − 2a12
∂a12
∂x4

∂Δ
∂x5

= ∂a11
∂x5

a22 − 2a12
∂a12
∂x5

∂Δ
∂x6

= ∂a11
∂x6

a22 − 2a12
∂a12
∂x6

2.5.4 Design of an H-Infinity Nonlinear Feedback Controller

2.5.4.1 Equivalent Linearized Dynamics of the Cart and
Double-Pendulum System

After linearization around its current operating point, the dynamic model of the cart
and double-pendulum system is written as

ẋ = Ax + Bu + d1 (2.165)

As in previous applications of the linearization procedure, parameter d1 stands for the
linearization error in the dynamic model of the cart and double pendulum appearing
in Eq. (2.165). The reference setpoints for the cart and double pendulum’s state
vector are denoted by xd = [xd1 , . . . , xd6 ]. Tracking of this trajectory is achieved after
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applying the control input u∗. At every time instant the control input u∗ is assumed
to differ from the control input u appearing in Eq. (2.165) by an amount equal toΔu,
that is u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (2.166)

The dynamics of the controlled system described in Eq. (2.165) can be also written
as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (2.167)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (2.168)

By subtracting Eq. (2.166) from (2.168) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (2.169)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (2.170)

The above linearized form of the model of the cart and double-pendulum can be
efficiently controlled after applying an H-infinity feedback control scheme.

2.5.4.2 The Nonlinear H-Infinity Control

The initial nonlinear model of the underactuated model of the cart and double-
pendulum is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (2.171)

Linearization of the multi-DOFmodel of the cart and double-pendulum is performed
at each iteration of the control algorithm around its present operating point (x∗, u∗) =
(x(t), u(t − Ts)), where Ts is the sampling period. The linearized equivalent model
of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (2.172)

where matrices A and B are obtained from the computation of the Jacobians given
in Eq. (2.160), and vector d̃ denotes disturbance terms due to linearization errors.
As explained, the problem of disturbance rejection for the linearized model that is
described by
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ẋ = Ax + Bu + Ld̃
y = Cx

(2.173)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

As already explained in the previous application of the H∞ control, a feedback
control scheme is designed for trajectory tracking by the system’s state vector and
simultaneous disturbance rejection, considering that the disturbance affects the sys-
tem in the worst possible manner. The disturbances’ effects are incorporated in the
following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (2.174)

The significance of the negative sign in the cost function’s term that is associated
with the perturbation variable d̃(t) is that the disturbance tries to maximize the
cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as minumaxd̃ J (u, d̃).

As previously noted, the objective of the optimization procedure is to compute a
control signal u(t) which can compensate for the worst possible disturbance, that is
externally imposed to the cart and double-pendulum system. However, the solution
to the min-max optimization problem is directly related to the value of the parameter
ρ. This means that there is an upper bound in the disturbances magnitude that can
be annihilated by the control signal.

2.5.4.3 Computation of the Feedback Control Gains

For the linearized system given by Eq. (2.173) the cost function of Eq. (2.174) is
defined, where the coefficient r determines the penalization of the control input and
the weight coefficient ρ determines the reward of the disturbances’ effects.

It is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L] are

stabilizable, (iii) the matrix [A,C] is detectable. Then, the optimal feedback control
law is given by

u(t) = −Kx(t) (2.175)

with K = 1
r B

T P , where P is a positive semi-definite symmetric matrix which is
obtained from the solution of the Riccati equation

AT P + PA + Q − P( 1r BB
T − 1

2ρ2 LLT )P = 0 (2.176)
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Fig. 2.27 Diagram of the control scheme for the cart and double-pendulum system

where Q is also a positive definite symmetric matrix. The worst case disturbance
is given by d̃(t) = 1

ρ2 LT Px(t). The above Riccati equation has to be solved at
each time-step of the control method. The diagram of the considered control loop is
depicted in Fig. 2.27.

2.5.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the cart and double-pendulum
system, and that in case of bounded disturbance terms asymptotic convergence to the
reference setpoints is achieved. The tracking error dynamics for the underactuated
model of the cart and double-pendulum is written in the form

ė = Ae + Bu + Ld̃ (2.177)

where in the cart and double-pendulum’s case L = I∈R6 with I being the identity
matrix. Variable d̃ denotes model uncertainties and external disturbances of the cart
and double pendulum’s model. The following Lyapunov function is considered

V = 1
2e

T Pe (2.178)
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where e = x − xd is the tracking error. By differentiating with respect to time and
by following the previous technique, one obtains

V̇ = 1
2 ė

T Pe + 1
2e

T Pė⇒
V̇ = 1

2 [Ae + Bu + Ld̃]T Pe + 1
2e

T P[Ae + Bu + Ld̃]⇒ (2.179)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+

+ 1
2e

T P[Ae + Bu + Ld̃]⇒ (2.180)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(2.181)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (2.182)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P
(
2
r BB

T − 1
ρ2 LLT

)
P (2.183)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (2.184)

By substituting Eqs. (2.183) and (2.184) one obtains

V̇ = 1
2e

T
[
−Q + P

(
2
r BB

T − 1
ρ2 LLT

)
P

]
e+

+ eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(2.185)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(2.186)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (2.187)

or, equivalently
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V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(2.188)

Lemma: The following inequality holds

1
2e

T PLd̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.189)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(2.190)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.191)

Equation (2.191) is substituted in Eq. (2.188) and the inequality is enforced, thus
giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (2.192)

Equation (2.192) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt

(2.193)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (2.194)

then one gets ∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (2.195)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (2.178) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the underactuated cart and double-pendulum relies
on Eq. (2.192) and on the application of Barbalat’s Lemma. It uses the condition of
Eq. (2.194) about the boundedness of the square of the aggregate disturbance and
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modelling error term d̃ that affects the model. However, as explained above the
proof of global asymptotic stability is not restricted by this condition. By select-
ing the attenuation coefficient ρ to be sufficiently small and in particular to satisfy
ρ2 < ||e||2Q/||d̃||2 one has that the first derivative of the Lyapunov function is upper
bounded by 0. Therefore for the i th time interval it is proven that the Lyapunov func-
tion defined in Eq. (2.178) is a decreasing one. This also assures that the Lyapunov
function of the rotary pendulum defined in Eq. (2.171) will always have a negative
first-order derivative.

2.5.6 Robust State Estimation with the Use of the H∞
Kalman Filter

The control loop for the cart and double-pendulum system can be implemented with
the use of information provided by a small number of sensors and by processing only
a small number of state variables. To reconstruct the missing information about the
state vector of the cart and double pendulum it is proposed to use a filtering scheme
and based on it to apply state estimation-based control [169, 457, 459, 511]. The
recursion of the H∞ Kalman Filter, for the model of the cart and double-pendulum
system, can be formulated in terms of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(2.196)

Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)

(2.197)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the cart and double-pendulum system, for
instance x1 = θ1, x3 = θ2, and x5 = x , and can estimate through filtering the rest of
the state vector elements.

2.5.7 Simulation Tests

The performance and the tracking accuracy of the nonlinear optimal (H-infinity)
control scheme for the cart and double-pendulum system has been demonstrated
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Fig. 2.28 Tracking of reference setpoints by the state variables x1 = θ1, x3 = θ2 and x5 = x of the
cart and double pendulum system (blue lines: real values, green lines: estimated values, red lines:
setpoints), and variation of the control input u. a Test case 1. b Test case 2

through simulation experiments. It has been shown that the under the proposed control
approach fast and accurate tracking of all reference setpointswas achieved by the state
vector elements of the cart and double-pendulum system. The obtained results are
depicted in Figs. 2.28, 2.29, 2.30 and 2.31. In these diagrams, the reference setpoints
are given with a red-line, the real value of the state variables is plotted with a blue
line whereas, its estimated value is plotted with a green line.

For the design of the H-infinity feedback controller it was necessary to solve
repetitively and at each iteration of the control algorithm the algebraic Riccati
equation given in Eq. (2.183). The implementation of the proposed nonlinear H-
infinity control scheme depends on the existence of a solution for the aforementioned
Riccati equation. Actually, the smallest value of the attenuation coefficient ρ for
which such a solution exists is the one that supplies the control method with maxi-
mum robustness. By selecting parameter ρ to be sufficiently small it can be assured
that the inequality given in Eq. (2.192) holds and moreover that the first derivative
of the system’s Lyapunov function will be upper bounded by 0. This ascertains the
global asymptotic stability of the control loop.

For the implementation of state estimation-based control, the H-infinity Kalman
Filter has been used as a robust state estimator. It has been shown that it is possible
to control and stabilize the cart and double-pendulum system by measuring only a
small number of its state vector elements (such as x1 = θ1, x3 = θ2 and x5 = x) and
by estimating the rest of these elements with the use of the Kalman Filter. Despite
the approximate linearization of the system’s dynamics and despite the use of the
estimated state vector in the control loop, the nonlinear H-infinity control scheme
for the cart and double-pendulum system had a very satisfactory performance.
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Fig. 2.29 Tracking of reference setpoints by the state variables x1 = θ1, x3 = θ2 and x5 = x of the
cart and double pendulum system (blue lines: real values, green lines: estimated values, red lines:
setpoints), and variation of the control input u. a Test case 3. b Test case 4
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Fig. 2.30 Tracking of reference setpoints by the state variables x1 = θ1, x3 = θ2 and x5 = x of the
cart and double pendulum system (blue lines: real values, green lines: estimated values, red lines:
setpoints), and variation of the control input u. a Test case 3. b Test case 4

The tracking performance of the nonlinear optimal control algorithm, and par-
ticularly the RMSE for state variables x1 = θ1, x3 = θ2 and x5 = x is outlined in
Table 2.6. The robustness of the control method against perturbations affecting the
parameters of the cart and double-pendulum system is given in Table 2.7, which also
appears next. The specific results are related with a change in the mass of the cart,
up to 60% from the associated nominal value. Detailed diagrams about the variation
of the state variables xi , i = 1, . . . , 6 of the cart and double-pendulum system and



2.5 A Nonlinear Optimal Control Approach … 131

0 20 40
−0.05

0

0.05

0.1

0.15

time (sec)

x 1

0 20 40
−0.05

0

0.05

0.1

0.15

time (sec)
x 3

0 20 40
0

0.5

1

1.5

time (sec)

x 5

0 20 40
−50

0

50

100

time (sec)

u

0 20 40
−0.05

0

0.05

0.1

0.15

time (sec)

x 1

0 20 40
−0.05

0

0.05

0.1

0.15

time (sec)

x 3

0 20 40
0

0.5

1

1.5

time (sec)
x 5

0 20 40
−50

0

50

100

time (sec)

u

(a) (b)

Fig. 2.31 Tracking of reference setpoints by the state variables x1 = θ1, x3 = θ2 and x5 = x of the
cart and double pendulum system (blue lines: real values, green lines: estimated values, red lines:
setpoints), and variation of the control input u. a Test case 7. b Test case 8

Table 2.6 RMSE of x1 = θ1, x3 = θ2 and x5 = x

No test RMSE x1 RMSE x3 RMSE x5

1 9.45·10−7 9.67·10−7 8.28·10−4

2 7.33·10−7 7.62·10−7 7.05·10−4

3 8.82·10−7 9.12·10−7 5.43·10−4

4 3.16·10−6 3.19·10−6 5.15·10−4

5 6.37·10−5 6.42·10−5 7.35·10−5

6 6.34·10−5 6.38·10−5 8.57·10−4

7 1.38·10−5 1.38·10−5 1.32·10−4

8 5.23·10−6 5.21·10−6 6.67·10−5

Table 2.7 RMSE of x1, x3 and x5 under disturbance

Δa (%) RMSE x1 RMSE x3 RMSE x5

0 9.45·10−7 9.67·10−7 8.28·10−4

20 1.65·10−6 1.66·10−6 7.55·10−4

30 1.77·10−6 1.77·10−6 1.70·10−3

40 1.26·10−6 1.26·10−6 4.46·10−4

50 4.02·10−6 4.03·10−6 3.90·10−3

60 1.02·10−5 1.02·10−5 4.20·10−3
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Fig. 2.32 Tracking of reference setpoint 1: a State variables x1 = θ1 and x2 = θ̇1 of the cart and
double pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b State variables x3 = θ2 and x4 = θ̇2 of the cart and double-pendulum system (blue lines: real
values, green lines: estimated values, red lines: setpoints)
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Fig. 2.33 Tracking of reference setpoint 1: a State variables x5 = x and x6 = ẋ of the cart and
double pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b Control input u of the cart and double-pendulum system (blue line)

their convergence to the associated reference setpoints has been given in Appendix
II at the end of manuscript. These diagrams appear in Figs. 2.32, 2.33, 2.34, 2.35,
2.36, 2.37, 2.38, 2.39, 2.40, 2.41, 2.42, 2.43, 2.44, 2.45, 2.46 and 2.47. Moreover,
diagrams showing also in detail the variation of the control input u have been also
provided.
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Fig. 2.34 Tracking of reference setpoint 2: a State variables x1 = θ1 and x2 = θ̇1 of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b State variables x3 = θ2 and x4 = θ̇2 of the cart and double-pendulum system (blue lines: real
values, green lines: estimated values, red lines: setpoints)
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Fig. 2.35 Tracking of reference setpoint 2: a State variables x5 = x and x6 = ẋ of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b Control input u of the cart and double-pendulum system (blue line)

Tracking performance of the nonlinear optimal control method for the cart and
double-pendulum system:
The variation in time of the state variables xi , i = 1, . . . , 6, where x1 = θ1, x2 = θ̇1,
x3 = θ2, x4 = θ̇2, x5 = x and x6 = ẋ , as well as of the control input u = F of the
cart and double-pendulum system is shown in the following diagrams:
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Fig. 2.36 Tracking of reference setpoint 3: a State variables x1 = θ1 and x2 = θ̇1 of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b State variables x3 = θ2 and x4 = θ̇2 of the cart and double-pendulum system (blue lines: real
values, green lines: estimated values, red lines: setpoints)
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Fig. 2.37 Tracking of reference setpoint 3: a State variables x5 = x and x6 = ẋ of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b Control input u of the cart and double-pendulum system (blue line)
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Fig. 2.38 Tracking of reference setpoint 4: a State variables x1 = θ1 and x2 = θ̇1 of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b State variables x3 = θ2 and x4 = θ̇2 of the cart and double-pendulum system (blue lines: real
values, green lines: estimated values, red lines: setpoints)
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Fig. 2.39 Tracking of reference setpoint 4: a State variables x5 = x and x6 = ẋ of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b Control input u of the cart and double-pendulum system (blue line)
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Fig. 2.40 Tracking of reference setpoint 5: a State variables x1 = θ1 and x2 = θ̇1 of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b State variables x3 = θ2 and x4 = θ̇2 of the cart and double-pendulum system (blue lines: real
values, green lines: estimated values, red lines: setpoints)
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Fig. 2.41 Tracking of reference setpoint 5: a State variables x5 = x and x6 = ẋ of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b Control input u of the cart and double-pendulum system (blue line)

2.6 Nonlinear Optimal Control for 3-DOF Underactuated
Robotic Manipulators

2.6.1 Introduction

Control of underactuated robotic manipulators, that is robotic arms including both
active and passive joints is a non-trivial problem due to the need of controlling the
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Fig. 2.42 Tracking of reference setpoint 6: a State variables x1 = θ1 and x2 = θ̇1 of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b State variables x3 = θ2 and x4 = θ̇2 of the cart and double-pendulum system (blue lines: real
values, green lines: estimated values, red lines: setpoints)

nonlinear robot dynamics with the use of a small number of actuators [19, 28, 352,
393, 485]. There are cases in which robotic manipularoes exhibit underactuation
because of their design characteristics. Additionally there are cases in which the
number of actuators is chosen to be smaller than the robot’s degrees of freedom
aiming at reducing the manipulator’s weight and its power consumption. Moreover,
solving the problem of control of a robot in underactuation signifies a fault tolerant
functioning of the manipulator and that the robot’s performance will remain reli-
able even if specific actuators undergo a failure [209, 307, 308, 473, 502]. A main
approach in the control of underactuatedmanipulators is based on global linearization
methods and the transformation of the robot’s dynamic model into an equivalent lin-
ear form through a change of state variables (diffeomorphisms) [116–118, 208, 489].
Another major approach in the solution of the underactuated manipulators control
problem is energy-based control in which the control inputs are computed through
the minimization of a suitably chosen Lyapunov function of the robotic system [9,
210, 245, 247, 603, 628].

In this section a newmethod for the control of underactuated robotic manipulators
has been developed, with the use of a nonlinear optimal (H-infinity) control approach
[450, 457, 459]. The case of a 3-DOF robotic manipulator that comprises two active
and one passive joint has been considered. The associated dynamic model consists
of two equations describing the translational motion of the last (unactuated) link of
the robot and one equation describing the rotational motion of this link. After initial
transformations on the robot’s dynamic model, an equivalent state-space description
of the manipulator was obtained. For the latter description of the robot’s dynamics a
nonlinear optimal feedback controller has been designed, that was capable of making
the state variables of the robot track any desirable trajectory.
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Fig. 2.43 Tracking of reference setpoint 6: a State variables x5 = x and x6 = ẋ of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b Control input u of the cart and double-pendulum system (blue line)
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Fig. 2.44 Tracking of reference setpoint 7: a State variables x1 = θ1 and x2 = θ̇1 of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b State variables x3 = θ2 and x4 = θ̇2 of the cart and double-pendulum system (blue lines: real
values, green lines: estimated values, red lines: setpoints)

To achieve the design of the stabilizing feedback controller, the equivalent model
of the underactuated manipulator was subject first to approximate linearization. The
linearization is performed around a time-varying operating point (equilibrium)which
is re-computed at each iteration of the control algorithm. This equilibrium is defined
by the present value of the robotic system’s state vector and of the last value of the
control inputs vector that was exerted on it. The approximate linearization is based
on first-order Taylor series expansion of the robotic model and on computation of the
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Fig. 2.45 Tracking of reference setpoint 7: a State variables x5 = x and x6 = ẋ of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b Control input u of the cart and double-pendulum system (blue line)
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Fig. 2.46 Tracking of reference setpoint 8: a State variables x1 = θ1 and x2 = θ̇1 of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b State variables x3 = θ2 and x4 = θ̇2 of the cart and double-pendulum system (blue lines: real
values, green lines: estimated values, red lines: setpoints)

associated Jacobian matrices [33, 431, 461, 463]. The modelling error which is due
to the truncation of higher-order terms in the Taylor series expansion is considered to
be a perturbation which is compensated by the robustness of the control algorithm.

For the approximately linearized model of the underactuated manipulator an opti-
mal (H-infinity) feedback controller is designed. This controller represents a solution
to a min-max differential game, taking place between the controller (which tries to
minimize a cost function incorporating a a quadratic term of the state vector’s error)
and the model uncertainty and disturbance terms (which try to maximize this cost
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Fig. 2.47 Tracking of reference setpoint 8: a State variables x5 = x and x6 = ẋ of the cart and
double-pendulum system (blue lines: real values, green lines: estimated values, red lines: setpoints),
b Control input u of the cart and double-pendulum system (blue line)

function). The computation of the feedback control gain requires the repetitive solu-
tion of an algebraic Riccati equation which also takes place at each step of the control
method [132, 305, 564].

The stability of the nonlinear optimal control method is proven through Lyapunov
analysis. First, it is demonstrated that the controlmethod satisfies theH-infinity track-
ing performance criterion. This signifies elevated robustness against model uncer-
tainty and external perturbations. Moreover, under moderate conditions it is proven
that the control scheme has global asymptotic stability features. Finally, to implement
state estimation -based control for the underactuated robotic manipulator without the
need to measure its entire state vector, the H-infinity Kalman Filter is used as a robust
state estimator [169, 511].

2.6.2 Dynamic Model of the Underactuated Manipulator

The considered 3-DOF robotic manipulator comprises 2 active joints rotated by DC
motors and 1 passive joint that receives no actuation. After some preliminary trans-
formations, the dynamic model of the 3-DOF underactuated manipulator (Fig. 2.48)
is written in cartesian coordinates as follows [19, 117]:

ẍ p = u1cos(θ)

ÿp = u1sin(θ)

θ̈ = 1
λ
u2

(2.198)
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Fig. 2.48 Diagram of the 3-DOF underactuated manipulator, comprising 2 active and 1 passive
joint

where λ = (ml2 + I )/ml with I to stand for the moment of inertia of the third link
(for rotation round its center of symmetry), m to be the mass of this link, and l to be
the distance of the center of gravity of the third link from its basis. Moreover xp, yp
are the cartesian coordinates of the center of gravity third link, θ is the orientation
angle of the third link with respect to a reference frame mounted on its basis and u1,
u2 are transformed control inputs to be defined next.

Next, the stages of computation of the dynamic model describing the translational
and rotational motion performed by the third link of the robot are analyzed. The
cartesian coordinates (xp, yp) of the center of gravity of the third link are connected
to the cartesian coordinates of the joint at the basis of the link (x, y), through the
following relation:

xp = x + lcos(θ)

yp = y + lsin(θ)
(2.199)

The forces affecting the translationalmotion of the third link are Fx and Fy , expressed
in the reference frame of the joint of this robot, as shown in Fig. 2.49. It holds that

Fx = mẍp

Fy = mÿp
(2.200)

About the acceleration of the center of gravity of the third link it holds

ẋ p = ẋ − lsin(θ)θ̇⇒
ẍ p = ẍ − lcos(θ)θ̇2 − lsin(θ)θ̈

(2.201)
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Fig. 2.49 Positioning reference frame for the 3rd rink of the underactuated manipulator

ẏp = ẏ + lcos(θ)θ̇⇒
ÿp = ÿ − lsin(θ)θ̈ + lcos(θ)θ̈

(2.202)

Consequently, the equations of the translational motion of the third link become
[19, 117]

Fx = m(ẍ − lcos(θ)θ̇2 − lsin(θ)θ̈⇒
Fx = mẍ − mlcos(θ)θ̇2 − mlsin(θ)θ̈

(2.203)

Fy = m(ÿ − lsin(θ)θ̇2 + lcos(θ)θ̈)⇒
Fy = mÿ − mlcos(θ)θ̇2 + mlcos(θ)(̈θ)

(2.204)

The third link performs also a rotational motion which is due to torques generated
by forces Fx and Fy . Since there is no actuator at the passive joint and consequently
the associated mechanical torque is Tθ = 0, it holds that

Fx (−lsin(θ)) + Fy(lcos(θ)) + Tθ = I θ̈ (2.205)

By substituting Eqs. (2.203) and (2.204) in (2.205) one obtains

(mẍ − mlcos(θ)θ̇2 − mlsin(θ)θ̈)(−lsin(θ))+
+ (mÿ − mlcos(θ)θ̇2 + mlcos(θ)(̈θ))(lcos(θ)) = −I θ̈

(2.206)

and after intermediate operations one arrives at

−mlẍsin(θ) + ml ÿcos(θ) + (ml2 + I )θ̈ = 0 (2.207)
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Moreover, after setting λ = ml2+I
ml one arrives at the following equation about the

rotational equation of the third link [19, 117]

mẍ = Fx + mlcos(θ)θ̇2 + mlsin(θ)θ̈ (2.208)

mÿ = Fy + mlsin(θ)θ̇2 − mlcos(θ)θ̈ (2.209)

λθ̈ = ẍsin(θ) − ÿcos(θ) (2.210)

Equivalently, the equations of motion of the third link can be written as

ẍ = ẍ p + lcos(θ)θ̇2 + lsin(θ)θ̈ (2.211)

ÿ = ÿp + lsin(θ)θ̇2 − lcos(θ)θ̈ (2.212)

θ̈ = 1
λ
ẍsin(θ) − 1

λ
ÿcos(θ) (2.213)

By substituting Eqs. (2.211) and (2.212) into (2.213) one gets

θ̈ = 1
λ
[ẍ p + lcos(θ)θ̇2 + lsin(θ)(̈θ)]sin(θ)−

− 1
λ
[ÿp + mlsin(θ)θ̇2 − mlcos(θ)(̈θ)]cos(θ)

(2.214)

Considering a case in which l = λ (that is all mass of the third link is taken to be
concentrated at its center of gravity), Eq. (2.214) of the rotational motion of the third
link of the underactuated 3-DOF robotic manipulator becomes

0 = ẍ psin(θ) − ÿpcos(θ) (2.215)

Moreover, about the angular acceleration of the center of gravity of the third link
of the underactuated manipulator, this is expressed in a reference frame with its
horizontal axis being aligned with the link and is decomposed into two orthogonal
components ax and ay . Thus it holds

ẍ p = acos(θ) = ax
ÿp = asin(θ) = ay

(2.216)

The acceleration of the joint of the third link (ẍ, ÿ), expressed in the reference frame
of the joint of this link, is related to (ẍ p, ÿp) through a rotation’s transformation. This
gives

ẍ = axcos(θ) + aysin(θ)

ÿ = axsin(θ) − aycos(θ)
(2.217)

By substituting Eqs. (2.211) and (2.212) into (2.213) one gets
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θ̈ = 1
λ
[axcos(θ) + aysin(θ)]sin(θ)−

− 1
λ
[axsin(θ) − aycos(θ)]cos(θ)

(2.218)

which after intermediate operations gives

θ̈ = 1
λ
ay (2.219)

By substituting the first row of Eqs. (2.217) and (2.215) into (2.211) one gets

axcos(θ) + aysin(θ) = ẍ p + lcos(θ)θ̇2 + lsin(θ) 1
λ
ay (2.220)

which after intermediate operations gives

ẍ p = (ax − l θ̇2)cos(θ) (2.221)

By substituting the second row of Eqs. (2.217) and (2.215) into (2.212) one gets

axsin(θ) − aycos(θ) = ÿp + lsin(θ)θ̇2 − lcos(θ) 1
λ
ay (2.222)

which after intermediate operations gives

ÿp = (ax − l θ̇2)sin(θ) (2.223)

Consequently, the equations of motion of the third link of the 3-DOF underactuated
robotic manipulator are written as

ẍ p = (ax − l θ̇2)cos(θ)

ÿp = (ax − l θ̇2)sin(θ)

θ̈ = 1
λ
ay

(2.224)

The new control inputs of the robotic system are defined

u1 = ax − l θ̇2

u2 = ay
(2.225)

After substituting Eq. (2.225) into (2.226) one obtains the following form of the
dynamics of the third-link in the 3-DOF underactuated robotic manipularor

ẍ p = u1cos(θ)

ÿp = u1sin(θ)

θ̈ = 1
λ
u2

(2.226)
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The problem of control of the motion of the third-link of the robot will be solved
using the dynamic model of Eq. (2.226), which is also the previously defined model
of Eq. (2.198).

2.6.3 Approximate Linearization of the Underactuated Robot

Next, the dynamicmodel of the robot’s unactuated link, given inEq. (2.226) is consid-
ered. By defining the state vector x = [x1, x2, x3, x4, x5, x6]T = [xp, yp, θ, ẋ p, ẏp,
θ̇T ], the dynamic model of the underactuated 3-DOF robotic manipulator is

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

x4
x5
x6
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0

cos(x3) 0
sin(x3) 0

0 1
λ

⎞
⎟⎟⎟⎟⎟⎟⎠

(
u1
u2

)
(2.227)

where (x1, x2) are the cartesian coordinates of the center of gravity of the third-link
of the manipulator, x3 is the turn angle of the third link with respect to the reference
frame of the joint found at its basis, and u1, u2 are the previously defined transformed
control inputs which are applied on this link.

Linearization of the robot’s dynamic model will be performed round a local
equilibrium (x∗, u∗). To this end, the dynamics model of Eq. (2.227) is written in the
form:

ẋ = f (x) + g(x)u (2.228)

where the state vector x∈R6 was defined before and

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x4
x5
x6
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

g(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0

cos(x3) 0
sin(x3) 0

0 1
λ

⎞
⎟⎟⎟⎟⎟⎟⎠

(2.229)

The linearization of the underactuated robot’smodel round the temporary equilibrium
gives

ẋ = Ax + Bu (2.230)

where
A = ∇x [ f (x) + g(x)u] |(x∗,u∗) (2.231)

B = ∇u[ f (x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗) (2.232)
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By denoting the columns of matrix g(x) = [g1(x), g2(x)], for the Jacobian matrix
A = ∇x [ f (x) + g(x)u] |(x∗,u∗), it holds that

A = ∇x f (x) + ∇x g1(x)u] |(x∗,u∗) (2.233)

where the Jacobian matrix ∇x f (x) is given by

∇x f (x) =

⎛
⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

· · · ∂ f1
∂x6

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

· · · ∂ f2
∂x6· · · · · · · · · · · ·

∂ f6
∂x1

∂ f6
∂x2

∂ f6
∂x3

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎠ (2.234)

For the first row of the aforementioned Jacobian matrix one has:

∂ f1
∂x1

= 0, ∂ f1
∂x2

= 0, ∂ f1
∂x3

= 0, ∂ f1
∂x4

= 1, ∂ f1
∂x5

= 0, ∂ f1
∂x6

= 0.

For the second row of the aforementioned Jacobian matrix one has:

∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0, ∂ f2
∂x3

= 0, ∂ f2
∂x4

= 0, ∂ f2
∂x5

= 1, ∂ f2
∂x6

= 0.

For the third row of the aforementioned Jacobian matrix one has:

∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0, ∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0, ∂ f3
∂x6

= 1.

For the fourth row of the aforementioned Jacobian matrix one has:

∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0, ∂ f4
∂x3

= 0, ∂ f4
∂x4

= 0, ∂ f4
∂x5

= 0, ∂ f4
∂x6

0.

For the fifth row of the aforementioned Jacobian matrix one has:

∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

= 0, ∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 0.

For the sixth row of the aforementioned Jacobian matrix one has:

∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0, ∂ f6
∂x3

= 0, ∂ f6
∂x4

= 0, ∂ f6
∂x5

= 0, ∂ f6
∂x6

= 0.

Similarly, the Jacobian matrix ∇x g1(x) is given by

∇x g1(x) =

⎛
⎜⎜⎜⎝

∂g11
∂x1

∂g11
∂x2

∂g11
∂x3

· · · ∂g11
∂x6

∂g21
∂x1

∂g21
∂x2

∂g21
∂x3

· · · ∂g21
∂x6· · · · · · · · · · · ·

∂g61
∂x1

∂g61
∂x2

∂g61
∂x3

· · · ∂g61
∂x6

⎞
⎟⎟⎟⎠ (2.235)
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For the first row of the aforementioned Jacobian matrix one has:

∂g11
∂x1

= 0, ∂g11
∂x2

= 0, ∂g11
∂x3

= 0, ∂g11
∂x4

= 0, ∂g11
∂x5

= 0, ∂g11
∂x6

= 0.

For the second row of the aforementioned Jacobian matrix one has:

∂g21
∂x1

= 0, ∂g21
∂x2

= 0, ∂g21
∂x3

= 0, ∂g21
∂x4

= 0, ∂g21
∂x5

= 0, ∂g21
∂x6

= 0.

For the third row of the aforementioned Jacobian matrix one has:

∂g31
∂x1

= 0, ∂g31
∂x2

= 0, ∂g31
∂x3

= 0, ∂g31
∂x4

= 0, ∂g31
∂x5

= 0, ∂g31
∂x6

= 0.

For the fourth row of the aforementioned Jacobian matrix one has:

∂g41
∂x1

= 0, ∂g41
∂x2

= 0, ∂g41
∂x3

= −sin(x3),
∂g41
∂x4

= 0, ∂g41
∂x5

= 0, ∂g41
∂x6

0.

For the fifth row of the aforementioned Jacobian matrix one has:

∂g51
∂x1

= 0, ∂g51
∂x2

= 0, ∂g51
∂x3

= cos(x3),
∂g51
∂x4

= 0, ∂g51
∂x5

= 0, ∂g51
∂x6

= 0.

For the sixth row of the aforementioned Jacobian matrix one has:

∂g61
∂x1

= 0, ∂g61
∂x2

= 0, ∂g61
∂x3

= 0, ∂g61
∂x4

= 0, ∂g61
∂x5

= 0, ∂g61
∂x6

= 0.

2.6.4 Design of an H-Infinity Nonlinear Feedback Controller

2.6.4.1 Equivalent Linearized Dynamics of the Robot

After linearization round its current operating point, the dynamic model for the third
link of the underactuated robotic manipulator is written as

ẋ = Ax + Bu + d1 (2.236)

Parameter d1 stands for the linearization error in the link’s dynamic model appearing
in Eq. (2.236). The reference setpoints for the state vector of the aforementioned
dynamic model are denoted by xd = [xd1 , . . . , xd4 ]. Tracking of this trajectory is
achieved after applying the control input u∗. At every time instant the control input
u∗ is assumed to differ from the control input u appearing in Eq. (2.236) by an amount
equal to Δu, that is u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (2.237)
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The dynamics of the controlled system described in Eq. (2.236) can be also written
as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (2.238)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (2.239)

By subtracting Eq. (2.237) from (2.239) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (2.240)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (2.241)

The above linearized form of the robot’s model can be efficiently controlled after
applying an H-infinity feedback control scheme.

2.6.4.2 The Nonlinear H-Infinity Control

The initial nonlinear model of the third link of the underactuated robot is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (2.242)

Linearization of the system (unactuated link of the 3-DOF robot) is performed at
each iteration of the control algorithm round its present operating point (x∗, u∗) =
(x(t), u(t − Ts)). The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (2.243)

where matrices A and B are obtained from the computation of the Jacobians of the
3-DOF underactuated manipulator, and vector d̃ denotes disturbance terms due to
linearization errors. The problem of disturbance rejection for the linearized model
that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(2.244)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.
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In the H∞ control approach, a feedback control scheme is designed for trajectory
tracking by the system’s state vector and simultaneous disturbance rejection, con-
sidering that the disturbance affects the system in the worst possible manner. The
disturbances’ effects are incorporated in the following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t)+

+ ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0
(2.245)

The significance of the negative sign in the cost function’s term that is associated
with the perturbation variable d̃(t) is that the disturbance tries to maximize the
cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (2.246)

As previously noted, the objective of the optimization procedure is to compute a
control signal u(t) which can compensate for the worst possible disturbance, that is
externally imposed to the system. However, the solution to themin-max optimization
problem is directly related to the value of the parameter ρ. This means that there is
an upper bound in the disturbances magnitude that can be annihilated by the control
signal.

2.6.4.3 Computation of the Feedback Control Gains

For the linearized system given by Eq. (2.244) the cost function of Eq. (2.245) is
defined, where the coefficient r determines the penalization of the control input and
the weight coefficient ρ determines the reward of the disturbances’ effects.

It is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L] are

stabilizable, (iii) the matrix [A,C] is detectable. Then, the optimal feedback control
law is given by

u(t) = −Kx(t) (2.247)

with
K = 1

r B
T P (2.248)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P
(
1
r BB

T − 1
2ρ2 LLT

)
P = 0 (2.249)
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Fig. 2.50 Diagram of the control scheme for the underactuated 3-DOF robotic manipulator

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (2.250)

The diagram of the considered control loop is depicted in Fig. 2.50.

2.6.4.4 Riccati Equation Coefficients in H-Infinity Control Robustness

The parameter ρ in Eq. (2.245), is an indication of the closed-loop system robustness.
If the values of ρ > 0 are excessively decreased with respect to r , then the solution
of the Riccati equation is no longer a positive definite matrix. Consequently there
is a lower bound ρmin of ρ for which the H∞ control problem has a solution. The
acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found and used in
the design of the H∞ controller, then the closed-loop system will have increased
robustness. Unlike this, if a value ρ > ρmin is used, then an admissible stabilizing
H∞ controller will be derived but it will be a suboptimal one. TheHamiltonianmatrix

H =
(

A −( 1r BB
T − 1

ρ2 LLT )

−Q −AT

)
(2.251)
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provides a criterion for the existence of a solution of the Riccati equation (2.249). A
necessary condition for the solution of the algebraic Riccati equation to be a positive
semi-definite symmetric matrix is that H has no imaginary eigenvalues [450].

2.6.5 Lyapunov Stability Analysis

ThroughLyapunov stability analysis itwill be shown that the proposed nonlinear con-
trol scheme assures H∞ tracking performance for the underactuated 3-DOF robotic
manipulator, and that in case of bounded disturbance terms asymptotic convergence
to the reference setpoints is achieved. The tracking error dynamics for the unactuated
link of the 3-DOF robot is written in the form

ė = Ae + Bu + Ld̃ (2.252)

where in the robot’s case L = I∈R6 with I being the identity matrix. Variable d̃
denotes model uncertainties and external disturbances of the robot’s model. The
following Lyapunov function is considered

V = 1
2e

T Pe (2.253)

where e = x − xd is the tracking error. By differentiating with respect to time and
by following the previous method one obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T Pe + 1

2e
T P[Ae + Bu + Ld̃]⇒ (2.254)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+

+ 1
2e

T P[Ae + Bu + Ld̃]⇒ (2.255)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(2.256)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (2.257)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation
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AT P + PA = −Q + P
(
2
r BB

T − 1
ρ2 LLT

)
P (2.258)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (2.259)

By substituting Eqs. (2.258) and (2.259) one obtains

V̇ = 1
2e

T [−Q + P( 2r BB
T − 1

ρ2 LLT )P]e+
+ eT PB(− 1

r B
T Pe) + eT PLd̃⇒ (2.260)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(2.261)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (2.262)

or, equivalently
V̇ = − 1

2e
T Qe − 1

2ρ2 eT PLLT Pe+
+ 1

2e
T PLd̃ + 1

2 d̃
T LT Pe

(2.263)

Lemma: The following inequality holds

1
2e

T Ld̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.264)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(2.265)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (2.266)

Equation (2.266) is substituted in Eq. (2.263) and the inequality is enforced, thus
giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (2.267)
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Fig. 2.51 Control of the underactuated 3-DOF robotic manipultor - Case 1 : a path followed by
the robot’s third-link in the xy cartesian coordinates frame (blue line) and reference path (red line),
b control inputs ui i = 1, 2 applied to the robot

Equation (2.267) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt

(2.268)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (2.269)

then one gets ∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (2.270)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (2.253) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞ e(t) = 0.

The outline of the global stability proof is that at each iteration of the control
algorithm the state vector of the underactuated roboticmanipulator converges towards
the temporary equilibrium and the temporary equilibrium in turn converges towards
the reference trajectory. Thus, the control scheme exhibits global asymptotic stability
properties and not local stability. Assume the i th iteration of the control algorithm and
the i th time interval about which a positive definite symmetric matrix P is obtained
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Fig. 2.52 Control of the underactuated 3-DOF robotic manipultor - Case 1 : a convergence of
state variables xi , i = 1, 2, 3 (blue line) and of their estimated values (green lines) to the reference
setpoints (red line), b convergence of state variables xi , i = 4, 5, 6 (blue line) and of their estimated
values (green lines) to the reference setpoints (red line)
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Fig. 2.53 Control of the underactuated 3-DOF robotic manipultor - Case 2 : a path followed by
the robot’s third-link in the xy cartesian coordinates frame (blue line) and reference path (red line),
b control inputs ui i = 1, 2 applied to the robot

from the solution of the Riccati Equation appearing in Eq. (2.258). By following the
stages of the stability proof one arrives at Eq. (2.267) which shows that the H-infinity
tracking performance criterion holds. By selecting the attenuation coefficient ρ to
be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that the
first derivative of the Lyapunov function is upper bounded by 0. Therefore for the
i th time interval it is proven that the Lyapunov function defined in Eq. (2.253) is a
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Fig. 2.54 Control of the underactuated 3-DOF robotic manipultor - Case 2 : a convergence of
state variables xi , i = 1, 2, 3 (blue line) and of their estimated values (green lines) to the reference
setpoints (red line), b convergence of state variables xi , i = 4, 5, 6 (blue line) and of their estimated
values (green lines) to the reference setpoints (red line)

decreasing one. This signifies that between the beginning and the end of the i th time
interval there will be a drop of the value of the Lyapunov function and since matrix
P is a positive definite one, the only way for this to happen is the Euclidean norm of
the state vector error e to be decreasing. This means that comparing to the beginning
of each time interval, the distance of the state vector error from 0 at the end of the
time interval has diminished. Consequently as the iterations of the control algorithm
advance the tracking error will approach zero, and this is a global asymptotic stability
condition.

2.6.6 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop has to be implemented with the use of information provided by a
small number of sensors and by processing only a small number of state variables.
To reconstruct the missing information about the state vector of the unactuated link
of the 3-DOF robotic manipulator it is proposed to use a filtering scheme and based
on it to apply state estimation-based control [457]. The recursion of the H∞ Kalman
Filter, for the model of the underactuated manipulator, can be formulated in terms
of a measurement update and a time update part.
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Fig. 2.55 Control of the underactuated 3-DOF robotic manipultor - Case 3 : a path followed by
the robot’s third-link in the xy cartesian coordinates frame (blue line) and reference path (red line),
b control inputs ui i = 1, 2 applied to the robot

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(2.271)

Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)
(2.272)

where it is assumed that parameter θ is sufficiently small to assure that the covari-
ance matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k)will be positive definite.When
θ = 0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One
canmeasure only a part of the state vector of the robotic system, and estimate through
filtering the rest of the state vector elements.Moreover, the proposedKalman filtering
method can be used for sensor fusion purposes.

2.6.7 Simulation Tests

The efficiency of the previously analyzed control scheme, developed at the unactu-
ated joint of the manipulator, has been tested through simulation experiments. The
obtained results are given in Figs. 2.51, 2.52, 2.53, 2.54, 2.55, 2.56, 2.57, 2.58, 2.59
and 2.60. The real value of the state variable of the underactuated robot is denoted
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Fig. 2.56 Control of the underactuated 3-DOF robotic manipulator - Case 3 : a convergence of
state variables xi , i = 1, 2, 3 (blue line) and of their estimated values (green lines) to the reference
setpoints (red line), b convergence of state variables xi , i = 4, 5, 6 (blue line) and of their estimated
values (green lines) to the reference setpoints (red line)
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Fig. 2.57 Control of the underactuated 3-DOF robotic manipulator - Case 4 : a path followed by
the robot’s third-link in the xy cartesian coordinates frame (blue line) and reference path (red line),
b control inputs ui i = 1, 2 applied to the robot

with blue colour, the estimated value is denoted with green colour while the reference
setpoints are denoted with red colour. It can be noticed that the proposed nonlinear
optimal control scheme achieved fast and accurate tracking of all reference setpoints
while the variations of the control input remained smooth. For the computation of
the feedback gain of the H-infinity controller the algebraic Riccati equation given
in Eq. (2.258) had to be solved at each step of the control method. In the presented
simulation experiments sensorless control for the model of the underactuated robotic
manipulator has been implemented, where the only state variables being measured
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Fig. 2.58 Control of the underactuated 3-DOF robotic manipulator - Case 4 : a convergence of
state variables xi , i = 1, 2, 3 (blue line) and of their estimated values (green lines) to the reference
setpoints (red line), b convergence of state variables xi , i = 4, 5, 6 (blue line) and of their estimated
values (green lines) to the reference setpoints (red line)
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Fig. 2.59 Control of the underactuated 3-DOF robotic manipulator - Case 5 : a path followed by
the robot’s third-link in the xy cartesian coordinates frame (blue line) and reference path (red line),
b control inputs ui i = 1, 2 applied to the robot

were the unactuated link’s cartesian coordinates x1 = xp and x2 = yp. The real val-
ues of the robot’s state variables are plotted in blue colour, the values of the state
variables which were estimated by the H-infinity Kalman Filter are plotted in green
colour, while the associated reference setpoints are printed in red colour.

It is of worth to note that despite its computational simplicity the proposed non-
linear H-infinity control method for 3-DOF underactuated robotic manipulators is
very efficient and exhibits specific advantages: (i) it is applied directly on the nonlin-
ear dynamical model of the underactuated robot and not on an equivalent linearized
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Fig. 2.60 Control of the underactuated 3-DOF robotic manipulator - Case 5 : a convergence of
state variables xi , i = 1, 2, 3 (blue line) and of their estimated values (green lines) to the reference
setpoints (red line), b convergence of state variables xi , i = 4, 5, 6 (blue line) and of their estimated
values (green lines) to the reference setpoints (red line)

description of it, (ii) It avoids the elaborated linearizing transformations (diffeomor-
phisms) which can be met in global linearization-based control methods for robotic
systems, (iii) the controller is designed according to optimal control principles which
implies the best trade-off between precise tracking of the reference setpoints on the
one side andmoderate variations of the control inputs on the other side (iv) the control
method exhibits significant robustness to parametric uncertainty, modelling errors as
well as to external perturbations (v) the computational implementation of the control
method is simple since it requires only the solution of an algebraic Riccati equation.



Chapter 3
Rigid-Link Manipulators: Model-Free
Control

Abstract The chapter analyzes model-free nonlinear control approaches for multi-
DOF rigid-link robots, based on Lyapunov methods. There, one comes against prob-
lems of minimization of Lyapunov functions so as to ensure the asymptotic stability
of the control loop. Model-free control takes often the form of indirect adaptive con-
trol. In such a case the design of the controller is not based on prior knowledge of
the robot’s dynamics. With the use of adaptive algorithms and elaborated estimation
methods it is possible to identify in real-time the unknown dynamics of the robots
and subsequently to use this information in the control loop, thus arriving at indirect
adaptive control schemes. Finally, the development of nonlinear state-estimation
methods for robotic manipulators allows the implementation of feedback control
through measuring of only a small number of the robot’s state variables. Global sta-
bility is proven for the control loop that comprises both the nonlinear controller of
the robot’s dynamics and nonlinear observers that estimate the robot’s state vector
from indirect measurements. In particular, the chapter develops the following topics:
(a) Model-free adaptive control of rigid-link manipulators using full-state feedback,
(ii) Model-free adaptive control of rigid-link manipulators using output feedback,
(iii) Model-free adaptive control of the underactuated rotary (Furuta’s) pendulum.

3.1 Chapter Overview

The present chapter develops the following topics: (a) Model-free adaptive control
of rigid-link manipulators using full-state feedback, (ii) Model-free adaptive con-
trol of rigid-link manipulators using output feedback, (c) Model-free control of the
underactuated rotary (Furuta’s) pendulum.

With reference to (a) the solution of the adaptive control problem for the robotic
manipulator exploits the differential flatness properties of the manipulator and its
transformation into an equivalent input-output linearized form. In this latter descrip-
tion the control input that is applied to the robot comprises the unknown functions of
the manipulator’s nonlinear dynamics. These unknown functions are online identi-
fied with the use of neurofuzzy approximators and the obtained function estimators
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are used in a feedback control scheme that finally stabilizes the robot and makes it
track accurately all reference trajectories. The global asymptotic stability properties
of the control method are proven through Lyapunov analysis.

With reference to (b) the adaptive control problem for robotic manipulators
becomes more complicated since apart from the unknown dynamic model of the
robot, its state vector is also considered to be only partially measurable. To solve the
estimation problem for the non-measurable state vector elements of the manipulator
a state observer is included in the adaptive control loop. Again the global asymptotic
stability properties of the control method are proven through Lyapunov analysis.

With reference to (c) an adaptive controller is developed for the case that the
dynamic model of the rotary (Furuta’s) pendulum is unknown. In such a case neuro-
fuzzy networks are used to estimate the elements of the matrices which constitute the
approximately linearized model of the pendulum. Actually, neurofuzzy networks are
employed for learning the constituent functions of the rotary pendulum’s dynamic
model. Based on these function estimates the rotary pendulum’s Jacobian matrices
are also obtained and this allows the implementation of an adaptive H-infinity neu-
rofuzzy control scheme. To ensure the stability of the control loop, the learning rate
of the neurofuzzy approximators is chosen from the requirement the first derivative
of the system’s Lyapunov function to be always a negative one.

3.2 Model-Free Adaptive Control of Rigid-Link
Manipulators Using State Feedback

3.2.1 Outline

There has been significant research effort among the members of the robotic sys-
tems community in the design of nonlinear control systems, particularly for robotic
systems with partially known or unknown dynamics. The application of global lin-
earization techniques has enabled advancements in this research direction [415, 435,
561, 581, 582]. These techniques can be applied to nonlinear systems, with not
exactly known dynamics. Based on the universal approximation theorem, many sta-
ble adaptive fuzzy control schemes have been developed for unknown single-input
single-output (SISO) and unknownmulti-inputmulti-output (MIMO) dynamical sys-
tems [83, 89, 277, 524, 562]. The capability of neurofuzzy controllers to compensate
for model parametric uncertainties, external disturbances, as well as for incomplete
measurement of the system’s state vector has been analyzed in several studies [14,
108, 274, 504, 559]. Moreover results on neural and fuzzy control have been pre-
sented for both the case that the complete state vector of the dynamical system is
measurable, as well as for the case that the state vector of the system is not mea-
surable and has to be reconstructed with the use of a state observer [92, 158, 294,
395, 560]. To improve the robustness of these control schemes a supervisory con-
trol term is added to the control signal which can take the form of sliding mode
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control or H∞ control [85, 88, 280]. In this section an approach to the design of
robust controllers for MIMO nonlinear robotic systems of unknown dynamics will
be developed according to flatness-based control theory. This approach extends the
class of nonlinear robotic systems to which adaptive fuzzy control can be applied.

Flatness-based control is currently a main direction of research in the design of
nonlinear control systems [450, 476, 519]. The section proposes flatness-based adap-
tive fuzzy control for MIMO nonlinear robotic systems with unknown parameters.
As already noted in the previous chapter, to find out if a dynamical system is dif-
ferentially flat, the following should be examined: (i) the existence of the so-called
flat output, i.e. a new variable which is expressed as a function of the system’s state
variables. It should hold that the flat output and its derivatives should not be coupled
in the form of an ordinary differential equation, (ii) the components of the system
(i.e. state variables and control input) should be expressed as differential functions of
the flat output [145, 182, 183, 254, 267, 445, 572]. Differential flatness is a property
characterising classes of systems. Expressing all system variables as functions of the
flat output and its derivatives enables transformation to a linearized form for which
the design of the controller becomes easier. Moreover, by showing that a system is
differentially flat one can easily design a reference trajectory as a function of the
so-called flat output and can find a control law that ensures tracking of this trajectory
[145, 572].

Flatness-based control can be also applied to robotic systems characterized by
model uncertainties and exogenous disturbances [182, 183]. In [415] it was shown
that flatness-based adaptive fuzzy control can be developed for single-input nonlinear
dynamical systems with uncertain model. In this section, the results of [415] are
generalized and applied to multi-input multi-output (MIMO) robotic systems. The
section is concerned with differentially flat multi-input multi-output (MIMO) robotic
systems which can be written in the Brunovksy (canonical) form. Transformation
into the Brunovksy form can be achieved for systems that admit static feedback
linearization (i.e. a change of coordinates for both the system state variables and the
system’s control input). Single-input differentially flat robotic systems admit static
feedback linearization and therefore can be finally written in the Brunovsky form
[322]. Moreover, multi-input robotic systems which satisfy the differential flatness
properties can be also transformed to an equivalent canonical linear form (input-
output linearized form), after a change of their state variables (diffeomorphisms).

After transforming a MIMO system into the canonical form, the resulting con-
trol inputs are shown to contain nonlinear elements which depend on the system’s
parameters. If the parameters of the system are unknown, then the nonlinear terms
which appear in the control inputs can be approximated with the use of nonlinear
regressors (e.g. neuro-fuzzy networks). In this section it is shown that a suitable
learning law can be defined for the aforementioned neuro-fuzzy approximators so
as to preserve the closed-loop system stability. Lyapunov stability analysis proves
also that the proposed flatness-based adaptive fuzzy control scheme results in H∞
tracking performance, in accordance to the results of [436, 447, 457].
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3.2.2 Adaptive Control Based on Transformation of the
Robot’s Dynamics to a Canonical Form

In Chap.1 it was shown that, by applying differential flatness theory, the model
of the multi-DOF robotic manipulator (see for instance Fig. 1.3), can be written in
state-space form of Eq. (1.40), that is

ẋ = Ax + B[f (x) + g(x)u + d̃ ]
y = Cx

(3.1)

which can be also written in the equivalent form:

ẋ = Ax + Bv + Bd̃
y = Cx

(3.2)

where v = f (x) + g(x)u.
The reference setpoints for the robot’s outputs y1, . . . , yp, that is for the joints’

angles, are denoted as y1m, . . . , ypm, thus for the associated tracking errors it holds

e1 = y1 − y1m
e2 = y2 − y2m

· · ·
ep = yp − ypm

(3.3)

The error vector of the outputs the transformed MIMO robotic system is denoted as

E1 = [e1, . . . , ep]T
ym = [y1m, . . . , ypm]T

· · ·
y(r)
m = [y(r)

1m, . . . , y(r)
pm]T

(3.4)

where y(r)
im denotes the rth order derivative of the ith reference output of the MIMO

roboticmodel. Thus, one can also define the following vectors: (i) a vector containing
the state variables of the system and the associated derivatives, (ii) a vector containing
the reference outputs of the system and the associated derivatives

x = [x1, . . . , xr1−1
1 , . . . , xp, . . . , x

rp−1
p ]T (3.5)

Ym = [y1m, . . . , yr1−1
1m , . . . , ypm, . . . , y

rp−1
pm ]T (3.6)

while in a similar manner one can define a vector containing the tracking error of the
robotic system’s outputs and the associated derivatives
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e = Ym − x = [e1, . . . , er1−1
1 , . . . , ep, . . . , e

rp−1
p ]T (3.7)

It is assumed that matrix g(x) is a nonsingular one, i.e. g−1(x) exists and is bounded
for all x ∈ Ux, whereUx⊂Rn is a compact set. In any case, the problemof singularities
in matrix g(x) can be avoided by appropriately modifying the state feedback-based
control input.

The objective of the adaptive fuzzy controller, denoted as u = u(x, e|θ) is: (i)
all the signals involved in the controller’s design are bounded and it holds that
limt→∞e = 0, (ii) theH∞ tracking performance criterion is achieved for a prescribed
attenuation level.

In the presence of non-gaussian disturbances wd , successful tracking of the ref-
erence signal is denoted by the H∞ criterion [436, 561]:

∫ T
0 eTQedt ≤ ρ2

∫ T
0 wd

Twddt (3.8)

where ρ is the attenuation level and corresponds to the maximum singular value of
the transfer function G(s) of the linearized model associated to Eq. (3.2).

From theH∞ control theory, theH∞ norm of a linear systemwith transfer function
G(s), is denoted by ||G||∞ and is defined as ||G||∞ = supωσmax[G(jω)] [436, 447,
457]. In this definition sup denotes the supremumor least upper bound of the function
σmax[G(j(ω)], and thus theH∞ norm of G(s) is the maximum value of σmax[G(j(ω)]
over all frequencies ω. H∞ norm has a physically meaningful interpretation when
considering the system y(s) = G(s)u(s). When this system is driven with a unit
sinusoidal input at a specific frequency, σmax|G(jω)| is the largest possible output
for the corresponding sinusoidal intput. Thus, the H∞ norm is the largest possible
amplification over all frequencies of a sinusoidal input.

3.2.3 Control Law

The control signal of the MIMO nonlinear system which has been transformed into
the Brunovsky form as described by Eq. (3.2) contains the unknown nonlinear func-
tions f (x) and g(x), through the transformed control input v = f (x) + g(x)u. These
can be approximated by

f̂ (x|θf ) = Φf (x)θf
ĝ(x|θg) = Φg(x)θg

(3.9)

where

Φf (x) = (ξ 1
f (x), ξ 2

f (x), . . . ξ n
f (x))T (3.10)
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with ξ i
f (x), ı = 1, . . . , n being the vector of kernel functions (e.g. normalized fuzzy

Gaussian membership functions), where

ξ i
f (x) = (φ

i,1
f (x), φi,2

f (x), . . . , φi,N
f (x)) (3.11)

thus giving

Φf (x) =

⎛

⎜
⎜
⎜
⎝

φ
1,1
f (x) φ

1,2
f (x) · · · φ

1,N
f (x)

φ
2,1
f (x) φ

2,2
f (x) · · · φ

2,N
f (x)

· · · · · · · · · · · ·
φ
n,1
f (x) φ

n,2
f (x) · · · φ

n,N
f (x)

⎞

⎟
⎟
⎟
⎠

(3.12)

while the weights vector is defined as

θf
T = (

θ1
f , θ

2
f , . . . θN

f

)
(3.13)

j = 1, . . . ,N is the number of basis functions that is used to approximate the compo-
nents of function f which are denoted as i = 1, . . . , n. Thus, one obtains the relation
of Eq. (3.9), i.e. f̂ (x|θf ) = Φf (x)θf .

In a similar manner, for the approximation of function g one has

Φg(x) = (
ξ 1
g (x), ξ

2
g (x), . . . ξ

N
g (x)

)T (3.14)

with ξ i
g(x), ı = 1, . . . ,N being the vector of kernel functions (e.g. normalized fuzzy

Gaussian membership functions), where

ξ i
g(x) = (

φi,1
g (x), φi,2

g (x), . . . , φi,N
g (x)

)
(3.15)

thus giving

Φg(x) =

⎛

⎜
⎜
⎝

φ1,1
g (x) φ1,2

g (x) · · · φ1,N
g (x)

φ2,1
g (x) φ2,2

g (x) · · · φ2,N
g (x)

· · · · · · · · · · · ·
φn,1
g (x) φn,2

g (x) · · · φn,N
g (x)

⎞

⎟
⎟
⎠ (3.16)

while the weights vector is defined as

θg = (
θ1
g , θ

2
g , . . . , θ

p
g
)T (3.17)

where the components of matrix θg are defined as

θ
j
g =

(
θ
j
g1, θ

j
g2 , . . . θ

j
gN

)
(3.18)
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j = 1, . . . ,N is the number of basis functions that is used to approximate the com-
ponents of function g which are denoted as i = 1, . . . , n. Thus one obtains about
matrix θg ∈ RN×p

θg =

⎛

⎜
⎜
⎝

θ1
g1 θ2

g1 · · · θ
p
g1

θ1
g2 θ2

g2 · · · θ
p
g2

· · · · · · · · · · · ·
θ1
gN θ2

gN · · · θ
p
gN

⎞

⎟
⎟
⎠ (3.19)

It holds that

g =

⎛

⎜
⎜
⎝

g1
g2
· · ·
gn

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

g11 g21 · · · gp1
g12 g22 · · · gp2· · · · · · · · · · · ·
g1n g2n · · · gpn

⎞

⎟
⎟
⎠ (3.20)

Using the above, one finally has the relation of Eq. (3.9), i.e. ĝ(x|θg) = Φg(x)θg .
If the state variables of the system are available for measurement then a state-

feedback control law can be formulated as

u = ĝ−1(x|θg)[−f̂ (x|θf ) + y(r)
m + KTe + uc] (3.21)

where f̂ (x|θf ) and ĝ(x|θg) are neurofuzzy models to approximate f (x) and g(x),
respectively. uc is a supervisory control term, e.g. an H∞ control term that is used
to compensate for the effects of modelling inaccuracies and external disturbances.
Using the system’s state-space description of Eq. (3.1) the control term uc is defined
as

uc = − 1
r B

TPe (3.22)

Moreover, KT is the feedback gain matrix that assures that the characteristic poly-
nomial of matrix A − BKT will be a Hurwitz one.

3.2.4 Application of Flatness-Based Adaptive Fuzzy Control
to Robotic Manipulators

The previous examined 2-DOF rigid link robotic manipulator, shown in Fig. 3.1 is
considered again. The dynamic model of the robot is given by

(
M11 M12

M21 M22

) (
θ̈1
θ̈2

)

+
(
F1(θ, θ̇ )

F2(θ, θ̇ )

)

+
(
G1(θ)

G2(θ)

)

=
(
T1
T2

)

(3.23)
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Fig. 3.1 A 2-DOF rigid-link
robotic manipulator

or equivalently

(
θ̈1
θ̈2

)

= −
(
M11 M12

M21 M22

)−1 (
F1(θ, θ̇ )

F2(θ, θ̇ )

)

−

−
(
M11 M12

M21 M22

)−1 (
G1(θ)

G2(θ)

)

+
(
M11 M12

M21 M22

)−1 (
T1
T2

) (3.24)

As explained in Chap.1, by denoting the inverse of the inertia matrix as
(
M11 M12

M21 M22

)

=
(
N11 N12

N21 N22

)

(3.25)

then one obtains
(

θ̈1
θ̈2

)

= −
(
N11 N12

N21 N22

) (
F1(θ, θ̇ )

F2(θ, θ̇ )

)

−

−
(
N11 N12

N21 N22

) (
G1(θ)

G2(θ)

)

+
(
N11 N12

N21 N22

) (
T1
T2

) (3.26)

which can be also written as

θ̈1 = −N11F1(θ, θ̇ ) − N12F2(θ, θ̇ )−
−N11G1(θ) − N12G2(θ) + N11T1 + N12T2

(3.27)

θ̈2 = −N21F1(θ, θ̇ ) − N22F2(θ, θ̇ )−
= N21G1(θ) − N22G2(θ) + N21T1 + N22T2

(3.28)
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The following state variables are defined

x1 = θ1 x2 = θ̇1 x3 = θ2 x4 = θ̇2 (3.29)

It holds that

ẍ1 = f1(x) + g1(x)u
ẍ3 = f2(x) + g2(x)u

(3.30)

where

f1(x) = −N11F1(θ, θ̇ ) − N12F2(θ, θ̇ )−
−N11G1(θ) − N12G2(θ) ∈ R1×1

g1(x) = [N11 N12] ∈ R1×2

f2(x) = −N21F2(θ, θ̇ ) − N22F2(θ, θ̇ )−
−N21G1(θ) − N22G2(θ) ∈ R1×1

g2(x) = [N21 N22] ∈ R2×2

(3.31)

The flat output is defined as

y = [θ1, θ2] = [x1, x3] (3.32)

It holds that

ẋ1 = x2
ẋ2 = f1(x) + g1(x)u

ẋ3 = x4
ẋ4 = f2(x) + g2(x)u

(3.33)

therefore all system state variables can be written as functions of the flat output y
and its derivatives. The same holds for the control input u

x1 = [1 0]yT x2 = [1 0]ẏT
x3 = [0 1]yT x4 = [0 1]ẏT (3.34)

Moreover, from Eq. (3.33) it holds
(
ẍ1
ẍ3

)

=
(
f1(x)
f2(x)

)

+
(
g1(x)
g2(x)

)

u i.e.

u =
(
g1(x)
g2(x)

)−1 {(
ẍ1
ẍ3

)

−
(
f1(x)
f2(x)

)} (3.35)

Knowing that x = h(y, ẏ) one finally obtains

u =
(
g1(h(y, ẏ))
g2(h(y, ẏ))

)−1 {([1 0]ÿT
[0 1]ÿT

)

−
(
f1(h(y, ẏ))
f2(h(y, ẏ))

)}
(3.36)
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Therefore, as it has already been proven, the considered robotic system is a differ-
entially flat one. Next, taking into account also the effects of additive disturbances
to the joints of the robotic manipulator the dynamic model becomes

ẍ1 = f1(x, t) + g1(x, t)u + d̃1
ẍ3 = f2(x, t) + g2(x, t)u + d̃2

(3.37)

(
ẍ1
ẍ3

)

=
(
f1(x, t)
f2(x, t)

)

+
(
g1(x, t)
g2(x, t)

)

u +
(
d̃1
d̃2

)

(3.38)

The following control input is defined

u =
(
ĝ1(x, t)
ĝ2(x, t)

)−1

·
{(

ẍd1
ẍd3

)

−
(
f̂1(x, t)
f̂2(x, t)

)

−
(
KT
1

KT
2

)

e +
(
uc1
uc2

)}

(3.39)

where [uc1 uc2 ]T is a robust control term that is used for the compensation of the
model’s uncertainties as well as of the external disturbances. The feedback control
gain is defined as KT

i = [ki1, ki2, . . . , kin−1, k
i
n].

Substituting Eq. (3.39) into (3.38) the closed-loop tracking error dynamics is
obtained

(
ẍ1
ẍ3

)

=
(
f1(x, t)
f2(x, t)

)

+
(
g1(x, t)
g2(x, t)

) (
ĝ1(x, t)
ĝ2(x, t)

)−1

{(
ẍd1
ẍd3

)

−
(
f̂1(x, t)
f̂2(x, t)

)

−
(
KT
1

KT
2

)

e +
(
uc1
uc2

)}

+
(
d̃1
d̃2

) (3.40)

Equation (3.40) can now be written as
(
ẍ1
ẍ3

)

=
(
f1(x, t)
f2(x, t)

)

+

+
{(

g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)

+
(
ĝ1(x, t)
ĝ2(x, t)

)}(
ĝ1(x, t)
ĝ2(x, t)

)−1

·

·
{(

ẍd1
ẍd3

)

−
(
f̂1(x, t)
f̂2(x, t)

)

−
(
KT
1

KT
2

)

e +
(
uc1
uc2

)}

+
(
d̃1
d̃2

)
(3.41)

and using Eq. (3.39) this results into

(
ë1
ë3

)

=
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)

+

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)

u −
(
KT
1

KT
2

)

e +
(
uc1
uc2

)

+
(
d̃1
d̃2

) (3.42)
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The following description for the approximation error is defined

w =
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)

u (3.43)

Moreover, the following matrices are defined

A =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

0 0
1 0
0 0
0 1

⎞

⎟
⎟
⎠

KT =
(
K1
1 K1

2 K1
3 K1

4
K2
1 K2

2 K2
3 K2

4

)
(3.44)

Using matrices A, B, KT , Eq. (3.42) is written in the following form

ė = (A − BKT )e + Buc+
+B{

(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)

+

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)

u + d̃}
(3.45)

Next, the following approximators of the unknown system dynamics are defined

f̂ (x) =
(
f̂1(x|θf ) x ∈ R4×1 f̂1(x|θf ) ∈ R1×1

f̂2(x|θf ) x ∈ R4×1 f̂2(x|θf ) ∈ R1×1

)

(3.46)

with kernel functions

φ
i,j
f (x) =

∏n
j=1μ

i
Aj

(xj)
∑N

i=1

∏n
j=1μ

i
Aj

(xj)
(3.47)

where l = 1, 2 and μAi
j
(x) is the ith membership function of the antecedent (IF) part

of the lth fuzzy rule.
Similarly, the following approximators of the unknown system dynamics are

defined

ĝ(x) =
(
ĝ1(x|θg) x ∈ R4×1 ĝ1(x|θg) ∈ R1×2

ĝ2(x|θg) x ∈ R4×1 ĝ2(x|θg) ∈ R1×2

)

(3.48)

The values of the weights that result in optimal approximation are

θ∗
f = arg minθf ∈Mθf

[supx∈Ux
(f (x) − f̂ (x|θf ))]

θ∗
g = arg minθg∈Mθg

[supx∈Ux
(g(x) − ĝ(x|θg))] (3.49)

where the variation ranges for the weights are defined as
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Mθf = {θf ∈ Rh : ||θf ||≤mθf }
Mθg = {θg ∈ Rh : ||θg||≤mθg } (3.50)

Taking the value of the approximation error defined in Eq. (3.43) that corresponds
to the optimal values of the weights vectors θ∗

f and θ∗
g one has

w =
(
f (x, t) − f̂ (x|θ∗

f )

)
+ (

g(x, t) − ĝ(x|θ∗
g )

)
u (3.51)

which is next written as

w =
(
f (x, t) − f̂ (x|θf ) + f̂ (x|θf ) − f̂ (x|θ∗

f )

)
+

+ (
g(x, t) − ĝ(x|θg) + ĝ(x|θg) − ĝ(x|θ∗

g )
)
u

(3.52)

which can be also written in the following form

w = (
wa + wb

)
(3.53)

where

wa = {[f (x, t) − f̂ (x|θf )] + [g(x, t) − ĝ(x|θg)]}u (3.54)

wb = {[f (x, t) − f̂ (x|θ∗
f )] + [g(x, t) − ĝ(x|θ∗

g )]}u (3.55)

Moreover, the following weights error vectors are defined

θ̃f = θf − θ∗
f

θ̃g = θg − θ∗
g .

(3.56)

3.2.5 Lyapunov Stability Analysis

3.2.5.1 Stability Proof for the Control Loop

The following quadratic Lyapunov function is defined

V = 1

2
eTPe + 1

2γ1
θ̃T
f θ̃f + 1

2γ2
tr[θ̃T

g θ̃g] (3.57)

Parameter γ1 is the learning rate used in the adaptation of the weights of the neu-
rofuzzy approximator for f (x), while parameter γ2 is the learning rate used in the
adaptation of the weights of the neurofuzzy approximation for g(x). It holds that

V̇ = 1
2 ė

TPe + 1
2e

TPė + 1
γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g] (3.58)
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The tracking error dynamics is described by

ė = (A − BKT )e + Buc + B

{(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)

+

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

) (
ĝ1(x, t)
ĝ2(x, t)

)−1

u + d̃

} (3.59)

and defining the approximation error

w =
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

) (
ĝ1(x, t)
ĝ2(x, t)

)−1

u (3.60)

the previous relation can be also written as

ė = (A − BKT )e + Buc + B(w + d̃) (3.61)

From Eq. (3.58) one obtains

V̇ = 1
2 {eT (A − BKT )T + uTc B

T+
+(w + d̃)TBT }Pe + 1

2e
TP{(A − BKT )e+

+Buc + B(w + d̃)} + 1
γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g]
(3.62)

which in turn yields

V̇ = 1
2e

T {(A − BKT )TP + P(A − BKT )}e+
1
22e

TPBuc + 1
22B

TPe(w + d̃)+
+ 1

γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g]
(3.63)

Assumption 1: For given positive definite matrix Q there exists a positive definite
matrix P, which is the solution of the following matrix equation

(A − BKT )
T
P + P(A − BKT ) − PB( 2r − 1

ρ2 )BTP + Q = 0 (3.64)

Substituting Eqs. (3.64) and (3.22) into V̇ yields after some operations

V̇ = 1
2e

T {−Q + PB( 2r − 1
ρ2 )BTP}e+

eTPB{− 1
r B

TPe} + BTP(w + d̃)+
+ 1

γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g]
(3.65)

Therefore it holds
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V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + eTPB(w + d̃)+

1
γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g]
(3.66)

It also holds that

˙̃
θf = θ̇f − θ̇∗

f = θ̇f
˙̃
θg = θ̇g − θ̇∗

g = θ̇g
(3.67)

The following weights adaptation law is used

θ̇f = −γ1Φ(x)TBTPe
θ̇g = −γ2Φ(x)TBTPeuT

(3.68)

where assuming N fuzzy rules and associated kernel functions the matrices dimen-
sions are θf ∈ RN×1, θg ∈ RN×2, Φ(x) ∈ R2×N , B ∈ R4×2, P ∈ R4×4 and e ∈ R4×1.
Therefore it holds

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + eTPB(w + d̃)+

+ 1
γ1

(−γ1)eTPBΦ(x)(θf − θ∗
f )+

+ 1
γ2

(−γ2)tr[ueTPBΦ(x)(θg − θ∗
g )]

(3.69)

or

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + eTPB(w + d̃)+

+ 1
γ1

(−γ1)eTPBΦ(x)(θf − θ∗
f )+

+ 1
γ2

(−γ2)tr[ueTPB(ĝ(x|θg) − ĝ(x|θ∗
g )]

(3.70)

Taking into account that u ∈ R2×1 and eTPB(ĝ(x|θg) − ĝ(x|θ∗
g )) ∈ R1×2 it holds

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + eTPB(w + d̃)+

+ 1
γ1

(−γ1)eTPBΦ(x)(θf − θ∗
f )+

+ 1
γ2

(−γ2)tr[eTPB(ĝ(x|θg) − ĝ(x|θ∗
g ))u]

(3.71)

Since eTPB(ĝ(x|θg) − ĝ(x|θ∗
g ))u ∈ R1×1 it holds

tr(eTPB(ĝ(x|θg) − ĝ(x|θ∗
g )u) =

= eTPB(ĝ(x|θg) − ĝ(x|θ∗
g ))u

(3.72)

Therefore, one finally obtains

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + eTPB(w + d̃)+

+ 1
γ1

(−γ1)eTPBΦ(x)(θf − θ∗
f )+

+ 1
γ2

(−γ2)eTPB(ĝ(x|θg) − ĝ(x|θ∗
g ))u

(3.73)
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Next the following approximation error is defined

wα = [f̂ (x|θ∗
f ) − f̂ (x|θf )] + [ĝ(x|θ∗

g ) − ĝ(x|θg)]u (3.74)

Thus, one obtains

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe+

+eTPB(w + d̃) + eTPBwα

(3.75)

Denoting the aggregate approximation error and disturbances vector as

w1 = w + d̃ + wα (3.76)

the derivative of the Lyapunov function becomes

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + eTPBw1 (3.77)

which in turn is written as

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe+

+ 1
2e

TPBw1 + 1
2w

T
1 B

TPe
(3.78)

The following Lemma is now used:
Lemma: The following inequality holds:

1
2e

TPBw1 + 1
2w

T
1 B

TPe − 1
2ρ2 eTPBBTPe ≤ 1

2ρ
2wT

1 w1 (3.79)

Proof : The binomial (ρa − 1
ρ
b)2 ≥ 0 is considered. Expanding the left part of the

above inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(3.80)

The following substitutions are carried out: a = w1 and b = eTPB and the previous
relation becomes

1
2w

T
1 B

TPe + 1
2e

TPBw1−
− 1

2ρ2 eTPBBTPe ≤ 1
2ρ

2wT
1 w1

(3.81)

The previous inequality is used in V̇ , and the right part of the associated inequality
is enforced

V̇≤ − 1

2
eTQe + 1

2
ρ2wT

1w1 (3.82)
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Equation (3.82) can be used to show that the H∞ performance criterion is satisfied.
The integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||e||2dt + 1

2ρ
2
∫ T
0 ||w1||2dt ⇒

2V (T ) + ∫ T
0 ||e||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||w1||2dt

(3.83)

Moreover, if there exists a positive constant Mw > 0 such that

∫ ∞
0 ||w1||2dt ≤ Mw (3.84)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Mw (3.85)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded and according to Barbalat’s Lemma one

obtains limt→∞e(t) = 0.

3.2.5.2 Riccati Equation Coefficients in H∞ Control Robustness

The linearized tracking error dynamics of the robotic manipulator in Eq. (3.61) is
considered again, i.e.

ė = (A − BKT )e + Buc + B(w + d̃)

The aim of H∞ control is to eliminate the impact of the modelling errors w =
[ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u and the external disturbances d̃ which are
not white noise signals. This implies the minimization of the quadratic cost function
[243, 305]:

J (t) = 1
2

∫ T
0 eT (t)e(t) + ruTc (t)uc(t)−

−ρ2(w + d̃)T (w + d̃)dt, r, ρ > 0
(3.86)

The weight r determines how much the control signal should be penalized and the
weight ρ determines how much the disturbances influence should be rewarded in
the sense of a min-max differential game. The H∞ control law is u(t) = − 1

r B
TPe(t)

where P is the positive definite symmetric matrix derived from the algebraic Riccati
equation Eq. (3.64).

The parameter ρ in Eq. (3.86), is an indication of the closed-loop system robust-
ness. If the values of ρ > 0 are excessively decreased with respect to r, then the
solution of the Riccati equation is no longer a positive definite matrix. Consequently
there is a lower bound ρmin of ρ for which the H∞ control problem has a solution.
The acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found and used
in the design of the H∞ controller, then the closed-loop system will have elevated
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robustness. Otherwise, if a value ρ > ρmin is used, then an admissible stabilizingH∞
controller will be derived but it will be a suboptimal one. The Hamiltonian matrix

H =
(

A −( 2r − 1
ρ2 )BBT

−Q −AT

)

(3.87)

provides a criterion for the existence of a solution of the Riccati equation Eq. (3.64).
A necessary condition for the solution of the algebraic Riccati equation to be a
positive semi-definite symmetric matrix is that H has no imaginary eigenvalues
[132, 459].

3.2.6 Simulation Tests

The performance of the proposedflatness-based adaptive fuzzyMIMOcontrollerwas
tested in the previously analyzed model of the 2-DOF rigid-link robotic manipulator
(Fig. 3.1). The control loop is depicted in Fig. 3.2. The differentially flat model of the
robot and its transformation to the Brunovksy form has been analyzed in Sect. 3.3.5.
The flat outputs were taken to be the robot’s joint angles y1 = x1 and y2 = x3. It has
been proven that all state variables of the robotic model and the associated control
inputs, i.e. the torques applied by the motors to the links’ joints can be written as
functions of the flat output [y1, y2] and of the associated derivatives.

The state feedback gain was K ∈ R2×4. The basis functions used in the estima-

tion of fi(x, t), i = 1, 2 and gij(x, t), i = 1, 2, j = 1, 2 were μAj (x̂) = e(
x̂−cj

σ
)2 , j =

1, . . . , 3. Since there are four inputs x1, ẋ1 and x2, ẋ2 and their range of variation
comprises 3 fuzzy sets, for the approximation of functions fi(x, t) i = 1, 2, there will
be 81 fuzzy rules of the form:

Rl : IF x1 is Al
1 AND ẋ1 is Al

2

AND x3 is Al
3 AND ẋ3 is Al

4 THEN f̂ li is bl
(3.88)

and f̂i(x, t) =
∑81

l=1 f̂
l
i

∏4
i=1μ

l
Ai

(xi)
∑81

l=1

∏4
i=1μ

l
Ai

(xi)
. The centers c(l)

i , i = 1, . . . , 4 and the variances v(l) of

each rule are as follows (Table3.1)
In the considered fuzzy rule-base there are four input parameters in the antecedent

parts of the fuzzy rules, i.e. x1 = θ1, x2 = θ̇1, x3 = θ2 and x4 = θ̇4. Each parameter is
partitioned into 3 fuzzy sets. Therefore by taking all possible combinations between
the fuzzy sets one has 34 = 81 fuzzy rules. Thefiner the partition of the input variables
into fuzzy sets is, the more accurate the approximation of the nonlinear system
dynamics by the neuro-fuzzy model is expected to be (although some of the rules
of the fuzzy rule base may not be sufficiently activated due to little coverage of
the associated region of the patterns space by input data). However, considering a
large number of fuzzy sets for each input variable induces the curse of dimensionality
whichmeans that there is an excessive and rather unnecessary increase in the number
of the adaptable parameters that constitute the neuro-fuzzy model.
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Fig. 3.2 Flatness-based adaptive-fuzzy control loop for the robotic manipulator

Table 3.1 Parameters of the fuzzy rule base

Rule c(l)
1 c(l)

2 c(l)
3 c(l)

4 v(l)

R(1) −1.0 −1.0 −1.0 −0.5 3

R(2) −1.0 −1.0 −1.0 0.0 3

R(3) −1.0 −1.0 −1.0 −1.0 3

R(4) −1.0 −1.0 0.0 −0.5 3

R(5) −1.0 −1.0 0.0 0.0 3

R(6) −1.0 −1.0 0.0 0.5 3

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
R(81) 1.0 1.0 1.0 0.5 3

The estimation of the control input gain functions ĝij(x, t) i = 1, 2 was derived
in a similar way. The overall simulation time was ts = 40 s. The time step was taken
to be 0.01 s. In the beginning of the training of the neuro-fuzzy approximators their
weights were initialized to zero. Moreover, the elements of the robot’s state vector
were also initialized to zero. The positive definite matrix P ∈ R4×4 stems from the
solution of the algebraic Riccati equation (3.64), for Q also positive definite.
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Fig. 3.3 aTracking of a sinusoidal position set-point by joint 1 of the robot,bTracking of sinusoidal
velocity setpoint by joint 1 of the robot

Tracking of two different setpoints is demonstrated: (i) a sinusoidal signal of
variable amplitude and frequency, (ii) a see-saw set-point of amplitude 0.30 and
period T = 20 s. The approximations f̂ and ĝ were used in the derivation of the
control law, given by Eq. (3.21). To show the disturbance rejection capability of
the proposed adaptive fuzzy controller, at the beginning of the second half of the
simulation time additive sinusoidal disturbances of amplitude A = 0.5 and period
T = 10 s were applied to the robot’s joints. The external disturbances which appear
as additive torques to the robot’s joints can be due to a force F exerted on the
manipulator’s end-effector (e.g. due to contact with a surface) and which through the
relation T = J TF (J stands for the Jacobian matrix of the robot’s kinematic model)
generates torques on the joints.

In the simulation results that follow the position and velocity setpoints are noted
as continuous lines while the position and velocity signals of the robot’s joints are
denoted as dashed lines. The position and velocity variation for the first joint of the
robotic manipulator when tracking a sinusoidal set-point is depicted in Fig. 3.3. For
the second joint of the 2-DOF robot the tracking of the position and velocity setpoint
is depicted in Fig. 3.4. The control inputs (motor torques) applied to the first and
second joint of the robotic manipulator are shown in Fig. 3.5.

The performance of the proposed flatness-based adaptive fuzzy control is also
tested in the tracking of a see-saw set-point. This is a reference signal characterized
by discontinuities. It serves as a good example for testing the accuracy of tracking
of the proposed adaptive fuzzy control scheme and its stabilization features in case
of set-points that exhibit abrupt variations. It is shown that after suitable tuning of
the feedback gain matrix K defined in Eq. (3.44) precise tracking of the see-saw
setpoint can be achieved, with fast elimination of the tracking error. The controller
is also suitable for compensating the effects of the additive torques disturbance that
is applied to the robot’s joints.
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Fig. 3.4 aTracking of a sinusoidal position set-point by joint 2 of the robot,bTracking of sinusoidal
velocity setpoint by joint 2 of the robot
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Fig. 3.5 a Tracking of a sinusoidal setpoint: Control input to joint 1, b Tracking of a sinusoidal
setpoint: Control input to joint 2

The position and velocity variation of the first joint is demonstrated in Fig. 3.6.
Similarly, the tracking of the position and velocity reference setpoint for the second
joint is depicted in Fig. 3.7. The control signal in the case of tracking a see-saw
setpoint by the two joints of the robotic manipulator is shown in Fig. 3.8.

Finally, the approximation of function g22(x, t) in the case of tracking of a sinu-
soidal and a seesaw setpoint is shown in Fig. 3.9 (and is marked as a dashed line).

TheRMSE (rootmean square error) of the examined control loop is also calculated
(assuming the same parameters of the controller) in the case of tracking of previous
setpoints (a) sinusoidal setpoint of variable amplitude/frequency and (b) seesaw
setpoint. The results are summarized inTable3.2. It canbeobserved that the examined
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Fig. 3.6 a Tracking of a seesaw position set-point by joint 1 of the robot, b Tracking of seesaw
velocity setpoint by joint 1 of the robot
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Fig. 3.7 a Tracking of a seesaw position set-point by joint 2 of the robot, b Tracking of seesaw
velocity setpoint by joint 2 of the robot

controller, apart from elimination of the tracking error for the parameters of the
robot’s state vector achieves also good transient performance. Taking into account
that no prior knowledge about the robot’s dynamics has been used by the controller,
and at the first iterations of the control loop the controller undergoes self-tuning
(learning of values for specific gains) the transient characteristics of the control
scheme can be also deemed as quite satisfactory.
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Fig. 3.8 a Tracking of a seesaw setpoint: Control input to joint 1, b Tracking of a seesaw setpoint:
Control input to joint 2
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Fig. 3.9 aApproximation of function g22(x, t)when tracking a sinusoidal setpoint,bApproximation
of function g22(x, t) when tracking a seesaw setpoint

Table 3.2 RMSE of joints’ angles

parameter θ1 θ2

RMSEa 0.0085 0.0028

RMSEb 0.0175 0.0145
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3.3 Model-Free Adaptive Control of Rigid-Link
Manipulators Using Output Feedback

3.3.1 Outline

The present section proposes a solution to the problem of observer-based adaptive
fuzzy control for nonlinear robotic manipulators). The objective of this section is to
design an adaptive fuzzy controller for multi-DOF robotic arms, under the constraint
that only the system’s output is measured, which is the joints’ angles of the robot. The
control algorithm aims at satisfying the H∞ tracking performance criterion, which
means that the influence of the modeling errors and the external disturbances on
the tracking error is attenuated to an arbitrary desirable level. After transforming the
MIMO robotic system into the canonical form, the resulting control inputs are shown
to contain nonlinear elements which depend on the system’s parameters. Since the
parameters of the robot’s dynamic model are unknown, then the nonlinear terms
which appear in the control inputs have to be approximated with the use of neuro-
fuzzy networks.Moreover, since only the system’s output ismeasurable the complete
state vector has to be reconstructed with the use of a state observer. In this section it is
shown that a suitable learning law can be defined for the aforementioned neuro-fuzzy
approximators so as to preserve the closed-loop system stability. Lyapunov stability
analysis proves also that the proposed observer-based adaptive fuzzy control scheme
results in H∞ tracking performance, in accordance to the results of [436, 447, 457].

For the design of the observer-based adaptive fuzzy controller one has to solve
two Riccati equations, where the first one is associated with the controller and the
second one is associated with the observer. Parameters that affect the closed-loop
robustness are: (i) the feedback gain vector K , (ii) the observer’s gain vector Ko,
(iii) the positive definite matrices P1 and P2 which stem from the solution of the
two algebraic Riccati equations and which weigh the above mentioned observer and
controller terms. The proposed control architecture guarantees that, the output of
the closed-loop system will asymptotically track the desired trajectory and that H∞
performance will be achieved.

3.3.2 Transformation of MIMO Robotic Systems
into the Brunovsky Form

It is assumed once again that after defining the flat outputs of the initial MIMO non-
linear robotic system that was initially described in Sect. 1.3.4, and after expressing
the system state variables and control inputs as functions of the flat output and of the
associated derivatives, the system can be transformed in the Brunovsky canonical
form:
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ẋ1 = x2
ẋ2 = x3
· · ·
ẋr1−1 = xr1
ẋr1 = f1(x) + ∑p

j=1g1j (x)uj + d1
ẋr1+1 = xr1+2

ẋr1+2 = xr1+3

· · ·
ẋp−1 = xp
ẋp = fp(x) + ∑p

j=1gpj (x)uj + dp

y1 = x1
· · ·
yi = xri
· · ·
yp = xn−rp+1

(3.89)

where x = [x1, . . . , xn]T is the state vector of the transformed system (according to the
differential flatness formulation), u = [u1, . . . , up]T is the set of control inputs, y =
[y1, . . . , yp]T is the output vector, fi are the drift functions and gi,j, i, j = 1, 2, . . . , p
are smooth functions corresponding to the control input gains, while dj is a variable
associated to external disturbances. In holds that r1 + r2 + · · · + rp = n. Having
written the initial nonlinear robotic system into the canonical (Brunovsky) form it
holds

y(ri)
i = fi(x) + ∑p

j=1gij(x)uj + dj (3.90)

Equivalently, in vector form, one has the following description for the system dynam-
ics

y(r) = f (x) + g(x)u + d (3.91)

where the following vectors and matrices are be defined

y(r) = [y(r1)
1 , . . . , y

(rp)
p ]

f (x) = [f1(x), . . . , fp(x)]T
g(x) = [g1(x), . . . , gp(x)]
with gi(x) = [g1i(x), . . . , gpi(x)]T
A = diag[A1, . . . ,Ap], B = diag[B1, . . . ,Bp]
CT = diag[C1, . . . ,Cp], d = [d1, . . . , dp]T

(3.92)

while matrix A has the MIMO canonical form, i.e. with elements

Ai =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 · · · 0
0 0 · · · 0
...

... · · · ...

0 0 · · · 1
0 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

ri×ri

BT
i = (

0 0 · · · 0 1
)
1×ri

Ci = (
1 0 · · · 0 0

)
1×ri

(3.93)
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Thus, as previously shown, Eq. (3.90) can be written in state-space form

ẋ = Ax + B[f (x) + g(x)u + d̃ ]
y = CTx

(3.94)

which can be also written in the equivalent form:

ẋ = Ax + Bv + Bd̃
y = CTx

(3.95)

where v = f (x) + g(x)u. The reference setpoints for the system’s outputs y1, . . . , yp
are denoted as y1m, . . . , ypm, thus for the associated tracking errors it holds

e1 = y1 − y1m
e2 = y2 − y2m

· · ·
ep = yp − ypm

(3.96)

The error vector of the outputs of the transformed MIMO system is denoted as

E1 = [e1, . . . , ep]T
ym = [y1m, . . . , ypm]T

· · ·
y(r)
m = [y(r)

1m, . . . , y(r)
pm]T

(3.97)

where y(r)
im denotes the rth order derivative of the ith reference output of the MIMO

dynamical system, as analyzed in Sect. 3.2. Thus, one can also define the following
vectors: (i) a vector containing the state variables of the system and the associated
derivatives, (ii) a vector containing the reference outputs of the system and the asso-
ciated derivatives

x = [x1, . . . , xr1−1
1 , . . . , xp, . . . , x

rp−1
p ]T (3.98)

Ym = [y1m, . . . , yr1−1
1m , . . . , ypm, . . . , y

rp−1
pm ]T (3.99)

while in a similar manner one can define a vector containing the tracking error of the
system’s outputs and the associated derivatives

e = Ym − x = [e1, . . . , er1−1
1 , . . . , ep, . . . , e

rp−1
p ]T (3.100)

It is assumed that matrix g(x) is a nonsingular one, i.e. g−1(x) exists and is bounded
for all x ∈ Ux, whereUx⊂Rn is a compact set. In any case, the problemof singularities
in matrix g(x) can be handled by appropriately modifying the state feedback-based
control input.
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The objective of the adaptive fuzzy controller, denoted as u = u(x, e|θ) is: all the
signals involved in the controller’s design are bounded and it holds that limt→∞e = 0,
(ii) the H∞ tracking performance criterion is achieved for a prescribed attenuation
level.

In the presence of non-gaussian disturbances wd , successful tracking of the ref-
erence signal is denoted by the H∞ criterion [436, 561]:

∫ T
0 eTQedt ≤ ρ2

∫ T
0 wd

Twddt (3.101)

where ρ is the attenuation level and corresponds to the maximum singular value
of the transfer function G(s) of the linearized model associated to Eqs. (3.94) and
(3.95).

3.3.3 Control Law

The control signal of theMIMOnonlinear robotic systemwhichhas been transformed
into the Brunovsky form as described by Eq. (3.95) contains the unknown nonlinear
functions f (x) and g(x). As explained in Sect. 2.2, in case that the complete state
vector x is measurable these unknown functions can be approximated by

f̂ (x|θf ) = Φf (x)θf
ĝ(x|θg) = Φg(x)θg

(3.102)

where

Φf (x) = (ξ 1
f (x), ξ 2

f (x), . . . ξ n
f (x))T (3.103)

with ξ i
f (x), ı = 1, . . . , n being the vector of kernel functions (e.g. normalized fuzzy

Gaussian membership functions), where

ξ i
f (x) = (φ

i,1
f (x), φi,2

f (x), · · · , φ
i,N
f (x)) (3.104)

thus giving

Φf (x) =

⎛

⎜
⎜
⎜
⎝

φ
1,1
f (x) φ

1,2
f (x) · · · φ

1,N
f (x)

φ
2,1
f (x) φ

2,2
f (x) · · · φ

2,N
f (x)

· · · · · · · · · · · ·
φ
n,1
f (x) φ

n,2
f (x) · · · φ

n,N
f (x)

⎞

⎟
⎟
⎟
⎠

(3.105)
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while the weights vector is defined as

θf
T = (

θ1
f , θ

2
f , . . . θN

f

)
(3.106)

j = 1, . . . ,N is the number of basis functions that is used to approximate the compo-
nents of function f which are denoted as i = 1, . . . , n. Thus, one obtains the relation
of Eq. (3.102), i.e. f̂ (x|θf ) = Φf (x)θf .

In a similar manner, for the approximation of function g one has

Φg(x) = (
ξ 1
g (x), ξ

2
g (x), . . . ξ

N
g (x)

)T (3.107)

with ξ i
g(x), ı = 1, . . . ,N being the vector of kernel functions (e.g. normalized fuzzy

Gaussian membership functions), where

ξ i
g(x) = (

φi,1
g (x), φi,2

g (x), . . . , φi,N
g (x)

)
(3.108)

thus giving

Φg(x) =

⎛

⎜
⎜
⎝

φ1,1
g (x) φ1,2

g (x) · · · φ1,N
g (x)

φ2,1
g (x) φ2,2

g (x) · · · φ2,N
g (x)

· · · · · · · · · · · ·
φn,1
g (x) φn,2

g (x) · · · φn,N
g (x)

⎞

⎟
⎟
⎠ (3.109)

while the weights vector is defined as

θg = (
θ1
g , θ

2
g , . . . , θ

p
g
)

(3.110)

where the components of matrix θg are defined as

θ
j
g =

(
θ
j
g1 , θ

j
g2 , . . . θ

j
gN

)T
(3.111)

j = 1, . . . , p is the number of basis functions that is used to approximate the com-
ponents of function g which are denoted as i = 1, . . . , n. Thus one obtains about
matrix θg ∈ RN×p

θg =

⎛

⎜
⎜
⎝

θ1
g1 θ2

g1 · · · θ
p
g1

θ1
g2 θ2

g2 · · · θ
p
g2

· · · · · · · · · · · ·
θ1
gN θ2

gN · · · θ
p
gN

⎞

⎟
⎟
⎠ (3.112)
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It holds that

g =

⎛

⎜
⎜
⎝

g1
g2
· · ·
gn

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

g11 g21 · · · gp1
g12 g22 · · · gp2· · · · · · · · · · · ·
g1n g2n · · · gpn

⎞

⎟
⎟
⎠ (3.113)

Using the above, one finally has the relation of Eq. (3.102), i.e. ĝ(x|θg) = Φg(x)θg . If
the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

u = ĝ−1(x|θg)[−f̂ (x|θf ) + y(r)
m − KTe + uc] (3.114)

where f̂ (x|θf ) and ĝ(x|θg) are fuzzy models to approximate f (x) and g(x), respec-
tively.uc is a supervisory control term, e.g.H∞ control term that is used to compensate
for the effects of modelling inaccuracies and external disturbances. Moreover, KT

is the feedback gain matrix that assures that the characteristic polynomial of matrix
A − BKT will be a Hurwitz one.

3.3.4 Estimation of the State Vector

The control of the system described by Eq. (3.91) becomes more complicated when
the state vector x of the robotic manipulator is not directly measurable and has to be
reconstructed through a state observer. The following definitions are used

• error of the state vector e = x − xm
• error of the estimated state vector ê = x̂ − xm
• observation error ẽ = e − ê = (x − xm) − (x̂ − xm)

When an observer is used to reconstruct the state vector, the control law of Eq. (3.114)
is written as

u = ĝ−1(x̂|θg)[−f̂ (x̂|θf ) + y(r)
m − KT ê + uc] (3.115)

Applying Eq. (3.115) to the nonlinear system described by Eq. (3.91), results into

y(r) = f (x) + g(x)ĝ−1(x̂)[−f̂ (x̂) + y(r)
m − KT ê + uc] + d⇒

y(r) = f (x) + [g(x) − ĝ(x̂) + ĝ(x̂)]ĝ−1(x̂)[−f̂ (x̂) + y(r)
m − KT ê + uc] + d⇒

y(r) = [f (x) − f̂ (x̂)] + [g(x) − ĝ(x̂)]u + y(r)
m − KT ê + uc + d

(3.116)
It holds e = x − xm ⇒ y(r) = e(r) + y(r)

m . Substituting y(r) in the above equation
gives
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e(r) + y(r)
m = y(r)

m − KT ê + uc + [f (x) − f̂ (x̂)]+
+[g(x) − ĝ(x̂)]u + d

(3.117)

and equivalently

ė = Ae − BKT ê + Buc + B{[f (x) − f̂ (x̂)]+
+[g(x) − ĝ(x̂)]u + d̃} (3.118)

e1 = CTe (3.119)

where e = [e1, e2, . . . , ep]T with ei = [ei, ėi, ëi, . . . , eri−1
i ]T , i = 1, 2, . . . , p and

equivalently ê = [ê1, ê2, . . . , êp]T with êi = [êi, ˆ̇ei, ˆ̈ei, . . . , êri−1
i ]T , i = 1, 2, . . . , p.

Matrices A, B and C have been defined in Eq. (3.93).
A state observer is designed according to Eqs. (3.118) and (3.119) and is given

by [561]:

˙̂e = Aê − BKT ê + Ko[e1 − CT ê] (3.120)

ê1 = CT ê (3.121)

The feedback gain matrix is denoted as K ∈ Rn×p. The observation gain matrix is
denoted as Ko ∈ Rn×p and its elements are selected so as to assure the asymptotic
elimination of the observation error.

3.3.5 Application of Observer-Based Adaptive Fuzzy Control
to Robotic Systems

As shown in the previous section, for the 2-DOF rigid-link robotic manipulator, it
holds that

ẍ1 = f1(x) + g1(x)u
ẍ3 = f2(x) + g2(x)u

(3.122)

where

f1(x) = −N11F1(θ, θ̇ ) − N12F2(θ, θ̇ )−
−N11G1(θ) − N12G2(θ) ∈ R1×1

g1(x) = [N11 N12] ∈ R1×2

f2(x) = −N21F2(θ, θ̇ ) − N22F2(θ, θ̇ )−
−N21G1(θ) − N22G2(θ) ∈ R1×1

g2(x) = [N21 N22] ∈ R2×2

(3.123)
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The flat output is defined as

y = [θ1, θ2] = [x1, x3] (3.124)

It holds that

ẋ1 = x2
ẋ2 = f1(x) + g1(x)u

ẋ3 = x4
ẋ4 = f2(x) + g2(x)u

(3.125)

therefore all system state variables can be written as functions of the flat output y
and its derivatives. The same holds for the control input u

x1 = [1 0]yT x2 = [1 0]ẏT
x3 = [0 1]yT x4 = [0 1]ẏT (3.126)

Moreover, from Eq. (3.125) it holds
(
ẍ1
ẍ3

)

=
(
f1(x)
f2(x)

)

+
(
g1(x)
g2(x)

)

u i.e.

u =
(
g1(x)
g2(x)

)−1 {(
ẍ1
ẍ3

)

−
(
f1(x)
f2(x)

)} (3.127)

Knowing that x = h(y, ẏ) one finally obtains

u =
(
g1(h(y, ẏ))
g2(h(y, ẏ))

)−1 {([1 0]ÿT
[0 1]ÿT

)

−
(
f1(h(y, ẏ))
f2(h(y, ẏ))

)}
(3.128)

Therefore, as already proven in the previous section, the considered robotic system
is a differentially flat one. Next, taking into account also the effects of additive
disturbances to the joints of the robotic manipulator the dynamic model becomes

ẍ1 = f1(x, t) + g1(x, t)u + d1
ẍ3 = f2(x, t) + g2(x, t)u + d2

(3.129)

(
ẍ1
ẍ3

)

=
(
f1(x, t)
f2(x, t)

)

+
(
g1(x, t)
g2(x, t)

)

u +
(
d1
d2

)

(3.130)

The stabilizing control input for the robot dynamics will be now generated using the
estimated value for the nonlinear functions f̂ and ĝ. The following control input is
defined
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u =
(
ĝ1(x, t)
ĝ2(x, t)

)−1

{
(
ẍd1
ẍd3

)

−
(
f̂1(x, t)
f̂2(x, t)

)

−
(
KT
1

KT
2

)

e +
(
uc1
uc2

)

} (3.131)

where [uc1 uc2 ]T is a robust control term that is used for the compensation of the
model’s uncertainties as well as of the external disturbances, and the rows of the
feedback gain matrix K are KT

i = [ki1, ki2, . . . , kin−1, k
i
n]. Substituting Eq. (3.131)

into (3.130) the closed-loop tracking error dynamics is obtained

(
ẍ1
ẍ3

)

=
(
f1(x, t)
f2(x, t)

)

+
(
g1(x, t)
g2(x, t)

) (
ĝ1(x, t)
ĝ2(x, t)

)−1

·

·
{(

ẍd1
ẍd3

)

−
(
f̂1(x, t)
f̂2(x, t)

)

−
(
KT
1

KT
2

)

e +
(
uc1
uc2

)}

+
(
d1
d2

) (3.132)

Equation (3.132) can now be written as

(
ẍ1
ẍ3

)

=
(
f1(x, t)
f2(x, t)

)

+ {
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)

+

+
(
ĝ1(x, t)
ĝ2(x, t)

)

}
(
ĝ1(x, t)
ĝ2(x, t)

)−1

·
{(

ẍd1
ẍd3

)

−
(
f̂1(x, t)
f̂2(x, t)

)

−
(
KT
1

KT
2

)

e +
(
uc1
uc2

)}

+
(
d1
d2

)

(3.133)
and using Eq. (3.131) this results into

(
ë1
ë3

)

=
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)

u−

−
(
KT
1

KT
2

)

e +
(
uc1
uc2

)

+
(
d1
d2

) (3.134)

The following description for the approximation error is defined

w =
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)

u (3.135)

Moreover, the following matrices are defined

A =

⎛

⎜
⎜
⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟
⎟
⎠ , B =

⎛

⎜
⎜
⎝

0 0
1 0
0 0
0 1

⎞

⎟
⎟
⎠

KT =
(
K1
1 K1

2 K1
3 K1

4
K2
1 K2

2 K2
3 K2

4

)
(3.136)
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Using matrices A, B, KT , Eq. (3.134) is written in the following form

ė = (A − BKT )e + Buc + B{
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)

+

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)

u + d̃}
(3.137)

When the estimated state vector x̂ is used in the feedback control loop, equivalently
to Eq. (3.118) one has

ė = Ae − BKT ê + Buc + B

{(
f1(x, t) − f̂1(x̂, t)
f2(x, t) − f̂2(x̂, t)

)

+

+
(
g1(x, t) − ĝ1(x̂, t)
g2(x, t) − ĝ2(x̂, t)

)

u + d̃

} (3.138)

and considering that the approximation error w is now denoted as

w =
(
f1(x, t) − f̂1(x̂, t)
f2(x, t) − f̂2(x̂, t)

)

+
(
g1(x, t) − ĝ1(x̂, t)
g2(x, t) − ĝ2(x̂, t)

)

u (3.139)

Equation (3.138) can be also written as

ė = Ae − BKT ê + Buc + Bw + Bd̃ (3.140)

The associated state observer will be described again by Eqs. (3.120) and (3.121).

3.3.6 Dynamics of the Observation Error

The observation error is defined as ẽ = e − ê = x − x̂. Substructing Eq. (3.120) from
(3.118) as well as Eq. (3.121) from (3.119) one gets

ė − ˙̂e = A(e − ê) + Buc + B{[f (x, t) − f̂ (x̂, t)]+
+[g(x, t) − ĝ(x̂, t)]u + d̃} − KoCT (e − ê)

e1 − ê1 = CT (e − ê)

or equivalently

˙̃e = Aẽ + Buc + B{[f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u + d̃} − KoCT ẽ
ẽ1 = CT ẽ
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which can be written as

˙̃e = (A − KoCT )ẽ + Buc + B{[f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u + d̃}
(3.141)

ẽ1 = CT ẽ (3.142)

or equivalently, it can be written as

˙̃e = (A − KoCT )ẽ + Buc + Bw + d̃ (3.143)

ẽ1 = CT ẽ. (3.144)

3.3.7 Approximation of Unknown System’s Dynamics

Next, the following approximators of the unknown system dynamics are defined

f̂ (x̂) =
(
f̂1(x̂|θf ) x̂ ∈ R4×1 f̂1(x̂|θf ) ∈ R1×1

f̂2(x̂|θf ) x̂ ∈ R4×1 f̂2(x̂|θf ) ∈ R1×1

)

(3.145)

with kernel functions

φ
i,j
f (x̂) =

∏n
j=1μ

i
Aj

(x̂j)
∑N

i=1

∏n
j=1μ

i
Aj

(x̂j)
(3.146)

where l = 1, 2, x̂ is the estimate of the state vector and μAi
j
(x̂) is the ith membership

function of the antecedent (IF) part of the lth fuzzy rule. Similarly, the following
approximators of the unknown dynamics of the robotic manipulator are defined

ĝ(x̂) =
(
ĝ1(x̂|θg) x̂ ∈ R4×1 ĝ1(x̂|θg) ∈ R1×2

ĝ2(x̂|θg) x̂ ∈ R4×1 ĝ2(x̂|θg) ∈ R1×2

)

(3.147)

The values of the weights that result in optimal approximation are

θ∗
f = arg minθf ∈Mθf

[supx̂∈Ux̂
(f (x) − f̂ (x̂|θf ))]

θ∗
g = arg minθg∈Mθg

[supx̂∈Ux̂
(g(x) − ĝ(x̂|θg))] (3.148)

where the variation ranges for the weights are defined as

Mθf = {θf ∈ Rh : ||θf ||≤mθf }
Mθg = {θg ∈ Rh : ||θg||≤mθg } (3.149)
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The value of the approximation error defined in Eq. (3.135) that corresponds to the
optimal values of the weights vectors θ∗

f and θ∗
g is given by

w =
(
f (x, t) − f̂ (x̂|θ∗

f )

)
+ (

g(x, t) − ĝ(x̂|θ∗
g )

)
u (3.150)

which is next written as

w =
(
f (x, t) − f̂ (x̂|θf ) + f̂ (x̂|θf ) − f̂ (x̂|θ∗

f )

)
+

+ (
g(x, t) − ĝ(x̂|θg) + ĝ(x̂|θg) − ĝ(x̂|θ∗

g )
)
u

(3.151)

which can be also written in the following form

w = (
wa + wb

)
(3.152)

where

wa = {[f (x, t) − f̂ (x̂|θf )] + [g(x, t) − ĝ(x̂|θg)]}u (3.153)

wb = {[f̂ (x̂|θf ) − f̂ (x̂|θ∗
f )] + [ĝ(x̂, θg) − ĝ(x̂|θ∗

g )]}u (3.154)

Moreover, the following weights error vectors are defined

θ̃f = θf − θ∗
f

θ̃g = θg − θ∗
g .

(3.155)

3.3.8 Lyapunov Stability Analysis

3.3.8.1 Design of the Lyapunov Function

In the case of observer-based adaptive fuzzy control with the use of differential
flatness theory, the adaptation law of the neurofuzzy approximators weights θf and
θg as well as the supervisory control term uc are derived from the requirement for
a negative first-order derivative of a suitably chosen Lyapunov function. Extending
the results presented in Sect. 3.2.5, the Lyapunov function is now defined as

V = 1
2 ê

TP1ê + 1
2 ẽ

TP2ẽ + 1
2γ1

θ̃T
f θ̃f + 1

2γ2
tr[θ̃T

g θ̃g] (3.156)

The selection of the Lyapunov function relies on the following principle of indi-
rect adaptive control ê : limt→∞ x̂(t) = xd (t) and ẽ : limt→∞ x̂(t) = x(t). This yields
limt→∞ x(t) = xd (t). Substituting Eqs. (3.120), (3.121), (3.141), (3.142) into (3.156)
and differentiating results into
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V̇ = 1
2
˙̂eTP1ê + 1

2 ê
TP1

˙̂e + 1
2
˙̃eTP2ẽ + 1

2 ẽ
TP2

˙̃e+
+ 1

γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g] ⇒ (3.157)

V̇ = 1
2 {(A − BKT )ê + KoCT ẽ}TP1ê + 1

2 ê
TP1{(A − BKT )ê + KoCT ẽ}+

+ 1
2 {(A − KoCT )ẽ + Buc + Bd̃ + Bw}TP2ẽ+

+ 1
2 ẽ

TP2{(A − KoCT )ẽ + Buc + Bd̃ + Bw}+
+ 1

γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g] ⇒
(3.158)

V̇ = 1
2 {êT (A − BKT )T + ẽTCKT

o }P1ê + 1
2 ê

TP1{(A − BKT )ê + KoCT ẽ}+
+ 1

2 {ẽT (A − KoCT )T + uTc B
T + wTBT + d̃ TBT }P2ẽ+

1
2 ẽ

TP2{(A − KoCT )ẽ + Buc + Bw + Bd̃} + 1
γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g] ⇒
(3.159)

V̇ = 1
2 ê

T (A − BKT )TP1ê + 1
2 ẽ

TCKT
o P1ê+

+ 1
2 ê

TP1(A − BKT )ê + 1
2 ê

TP1KoCT ẽ+
+ 1

2 ẽ
T (A − KoCT )TP2ẽ + 1

2 (u
T
c + wT + d̃ T )BTP2ẽ+

+ 1
2 ẽ

TP2(A − KoCT )ẽ + 1
2 ẽ

TP2B(uc + w + d̃)+
+ 1

γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g]

(3.160)

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive
definite matrices P1 and P2, which are the solution of the following Riccati equa-
tions [561]

(A − BKT )TP1 + P1(A − BKT ) + Q1 = 0 (3.161)

(A − KoCT )
T
P2 + P2(A − KoCT )−

−P2B
(
2
r − 1

ρ2

)
BTP2 + Q2 = 0

(3.162)

The conditions given in Eqs. (3.161)–(3.162) are related to the requirement that the
systems described by Eqs. (3.120), (3.121), (3.141), (3.142) have stable eigenvalues.
Substituting Eqs. (3.161)–(3.162) into V̇ yields

V̇ = 1
2 ê

T {(A − BKT )TP1 + P1(A − BKT )}ê + ẽTCKT
o P1ê+

+ 1
2 ẽ

T {(A − KoCT )TP2 + P2(A − KoCT )}ẽ+
+ẽTP2B(uc + w + d̃) + 1

γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g]
(3.163)
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that is

V̇ = − 1
2 ê

TQ1ê + ẽTCKT
o P1ê − 1

2 ẽ
T

{
Q2 − P2B

(
2
r − 1

ρ2

)
BTP2

}
ẽ+

+ẽTP2B(uc + w + d̃) + 1
γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g]
(3.164)

The supervisory control uc is decomposed in two terms, ua and ub.
• The control term ua is given by

ua = −1

r
ẽTP2B + Δua (3.165)

where assuming that the measurable elements of vector ẽ are {ẽ1, ẽ3, . . . , ẽk}, the
term Δua is such that

− 1
r ẽ

TP2B + Δua = − 1
r

⎛

⎜
⎜
⎝

p11ẽ1 + p13ẽ3 + · · · + p1k ẽk
p13ẽ1 + p33ẽ3 + · · · + p3k ẽk

· · · · · · · · ·
p1k ẽ1 + p3k ẽ3 + · · · + pkk ẽk

⎞

⎟
⎟
⎠ (3.166)

• The control term ub is given by

ub = −[(P2B)T (P2B)]−1(P2B)TCKT
o P1ê (3.167)

• ua is an H∞ control used for the compensation of the approximation error w and
the additive disturbance d̃ . Its first component − 1

r ẽ
TP2B has been chosen so as to

compensate for the term 1
r ẽ

TP2BBTP2ẽ,which appears inEq. (3.164).By including
also the second component Δua, one has that ua is computed based only on the
feedback of the measurable variables {ẽ1, ẽ3, . . . , ẽk}, out of the complete vector
ẽ = [ẽ1, ẽ2, . . . , ẽn]. According to Eq. (3.165) ua is written as ua = − 1

r ẽ
TP2B +

Δua.
• ub is a control used for the compensation of the observation error (the control term
ub has been chosen so as to satisfy the condition ẽTP2Bub = −ẽTCKT

o P1ê.

The control scheme is depicted in Fig. 3.10
Substituting Eqs. (3.165) and (3.167) in V̇ and assuming that Eqs. (3.161) and

(3.162) hold, one gets

V̇ = − 1
2 ê

TQ1ê + ẽTCKT
o P1ê − 1

2 ẽ
TQ2ẽ + 1

r ẽ
TP2BBTP2ẽ − 1

2ρ2 ẽTP2BBTP2ẽ+
+ẽTP2Bua + ẽTP2Bub + ẽTP2B(w + d̃) + 1

γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g]
(3.168)
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Fig. 3.10 The proposed observer-based control scheme for the multi-DOF robotic manipulator

or equivalently,

V̇ = − 1
2 ê

TQ1ê − 1
2 ẽ

TQ2ẽ − 1
2ρ2 ẽTP2BBTP2ẽ+

+ẽTP2B(w + d̃ + Δua) + 1
γ1

˙̃
θT
f θ̃f + 1

γ2
tr[ ˙̃θT

g θ̃g]
(3.169)

It holds that ˙̃
θf = θ̇f − θ̇∗

f = θ̇f and
˙̃
θg = θ̇g − θ̇∗

g = θ̇g . The following weight adap-
tation laws are considered:

θ̇f = −γ1Φ(x̂)TBTP2ẽ
θ̇g = −γ2Φ(x̂)TBTP2ẽuT

(3.170)

where assuming N fuzzy rules and associated kernel functions the matrices dimen-
sions are θf ∈ RN×1, θg ∈ RN×2, Φ(x) ∈ R2×N , B ∈ R4×2, P ∈ R4×4 and ẽ ∈ R4×1.

The update of θf is a gradient type algorithm. The update of θg is also a gradient
type algorithm, where uc implicitly tunes the adaptation gain γ2 [33, 457, 463].
Substituting Eq. (3.170) in V̇ gives
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V̇ = − 1
2 ê

TQ1ê − 1
2 ẽ

TQ2ẽ − 1
2ρ2 ẽTP2BBTP2ẽ + BTP2ẽ(w + d + Δua)+

+ 1
γ1

(−γ1)ẽTP2BΦ(x̂)(θf − θ∗
f )+

+ 1
γ2

(−γ2)tr[uẽTP2BΦ(x̂)(θg − θ∗
g )]

(3.171)

or

V̇ = − 1
2 ê

TQ1ê − 1
2 ẽ

TQ2ẽ − 1
2ρ2 ẽTP2BBTP2ẽ + BTP2ẽ(w + d̃ + Δua)+

+ 1
γ1

(−γ1)ẽTP2BΦ(x̂)(θf − θ∗
f )+

+ 1
γ2

(−γ2)tr[uẽTP2B(ĝ(x̂|θg) − ĝ(x̂|θ∗
g ))]

(3.172)

Taking into account that u ∈ R2×1 and ẽTPB(ĝ(x|θg) − ĝ(x|θ∗
g )) ∈ R1×2 it holds

V̇ = − 1
2 ê

TQ1ê − 1
2 ẽ

TQ2ẽ − 1
2ρ2 ẽTP2BBTP2ẽ + BTP2ẽ(w + d̃ + Δua)+

+ 1
γ1

(−γ1)ẽTP2BΦ(x̂)(θf − θ∗
f )+

+ 1
γ2

(−γ2)tr[ẽTP2B(ĝ(x̂|θg) − ĝ(x̂|θ∗
g ))u]

(3.173)

Since ẽTP2B(ĝ(x̂|θg) − ĝ(x̂|θ∗
g ))u ∈ R1×1 it holds

tr(ẽTP2B(ĝ(x|θg) − ĝ(x|θ∗
g )u) =

= ẽTP2B(ĝ(x|θg) − ĝ(x|θ∗
g ))u

(3.174)

Therefore, one finally obtains

V̇ = − 1
2 ê

TQ1ê − 1
2 ẽ

TQ2ẽ − 1
2ρ2 ẽTP2BBTP2ẽ + BTP2ẽ(w + d̃ + Δua)+

+ 1
γ1

(−γ1)ẽTP2BΦ(x̂)(θf − θ∗
f )+

+ 1
γ2

(−γ2)ẽTP2B(ĝ(x̂|θg) − ĝ(x̂|θ∗
g ))u

(3.175)

Next, the following approximation error is defined

wα = [f̂ (x̂|θ∗
f ) − f̂ (x̂|θf )] + [ĝ(x̂|θ∗

g ) − ĝ(x̂|θg)]u (3.176)

Thus, one obtains

V̇ = − 1
2 ê

TQ1ê − 1
2 ẽ

TQ2ẽ − 1
2ρ2 ẽTP2BBTP2ẽ+

+BTP2ẽ(w + d̃) + ẽTP2Bwα

(3.177)

Denoting the aggregate approximation error and disturbances vector as

w1 = w + d̃ + wα + Δua (3.178)
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the derivative of the Lyapunov function becomes

V̇ = − 1
2 ê

TQ1ê − 1
2 ẽ

TQ2ẽ − 1
2ρ2 ẽTP2BBTP2ẽ + ẽTP2Bw1 (3.179)

which in turn is written as

V̇ = − 1
2 ê

TQ1ê − 1
2 ẽ

TQ2ẽ − 1
2ρ2 ẽTP2BBTP2ẽ+

+ 1
2 ẽ

TPBw1 + 1
2w

T
1 B

TP2ẽ
(3.180)

Lemma: The following inequality holds

1
2 ẽ

TP2Bw1 + 1
2w

T
1 B

TP2ẽ − 1
2ρ2 ẽTP2BBTP2ẽ

≤ 1
2ρ

2wT
1w1

(3.181)

Proof : The binomial (ρa − 1
ρ
b)2 ≥ 0 is considered. Expanding the left part of the

above inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒

1
2ρ

2a2 + 1
2ρ2 b2 − ab ≥ 0 ⇒

ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2 ⇒

1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(3.182)

The following substitutions are carried out: a = w1 and b = ẽTP2B and the previous
relation becomes

1
2w

T
1 B

TP2ẽ + 1
2 ẽ

TP2Bw1 − 1
2ρ2 ẽTP2BBTP2ẽ

≤ 1
2ρ

2wT
1w1

(3.183)

The above relation is used in V̇ , and the right part of the associated inequality is
enforced

V̇≤ − 1

2
êTQ1ê − 1

2
ẽTQ2ẽ + 1

2
ρ2wT

1w1 (3.184)

Thus, Eq. (3.184) can be written as

V̇ ≤ −1

2
ETQE + 1

2
ρ2wT

1w1 (3.185)

where

E =
(
ê
ẽ

)

, Q =
(
Q1 0
0 Q2

)

= diag[Q1,Q2] (3.186)
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As explained in Sect. 3.4, a sufficiently small value for the attenuation coefficient ρ
assures that the right part of Eq. (3.185) will be upper bounded by 0.

Hence, the H∞ performance criterion is derived. For ρ sufficiently small Eq.
(3.184) will be true and the H∞ tracking criterion will be satisfied. In that case, the
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||E||2dt + 1

2ρ
2
∫ T
0 ||w1||2dt ⇒

2V (T ) − 2V (0) ≤ −∫ T
0 ||E||2Qdt + ρ2

∫ T
0 ||w1||2dt ⇒

2V (T ) + ∫ T
0 ||E||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||w1||2dt

(3.187)

It is assumed that there exists a positive constant Mw > 0 such that
∫ ∞
0 ||w1||2dt ≤

Mw. Therefore for the integral
∫ T
0 ||E||2Qdt one gets

∫ ∞

0
||E||2Qdt ≤ 2V (0) + ρ2Mw (3.188)

Thus, the integral
∫ ∞
0 ||E||2Qdt is bounded and according to Barbalat’s Lemma

limt→∞ E(t) = 0 ⇒
limt→∞ ê(t) = 0
limt→∞ ẽ(t) = 0

(3.189)

Therefore limt→∞ e(t) = 0.

3.3.9 Riccati Equation Coefficients in Observer-Based
Adaptive Fuzzy Control

The linear system of Eqs. (3.141) and (3.142) is considered again

˙̃e = (A − KoCT )ẽ + Buc + B{[f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u + d̃}
e1 = CT ẽ

The aim of H∞ control is to eliminate the impact of the modelling errors w =
[f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u and the external disturbances d̃ which are
not white noise signals. This implies the minimization of the quadratic cost function
[132, 243, 305]:

J (t) = 1
2

∫ T
0 ẽT (t)ẽ(t) + ruTc (t)uc(t)−

−ρ2(w + d̃)T (w + d̃)dt, r, ρ > 0
(3.190)
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As previously pointed out, the weight r determines how much the control signal
should be penalized and the weight ρ determines how much the disturbances influ-
ence should be rewarded in the sense of a min-max differential game. The control
input uc has been defined as the sum of the terms described in Eqs. (3.165) and
(3.167).

Parameter ρ in Eq. (3.190), is an indication of the closed-loop system robustness.
If the values of ρ > 0 are excessively decreased with respect to r, then the solution
of the Riccati equation is no longer a positive definite matrix. Consequently there
is a lower bound ρmin of ρ for which the H∞ control problem has a solution. The
acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found and used in the
design of the H∞ controller, then the closed-loop system will have have elevated
robustness. Unlike this, if a value ρ > ρmin is used, then an admissible stabilizing
H∞ controller will be derived but it will be a suboptimal one. TheHamiltonianmatrix

H =
(
A − KoCT −( 2r − 1

ρ2 )BBT

−Q −(A − KoCT )T

)

(3.191)

provides a criterion for the existence of a solution of the Riccati equation Eq. (3.162).
Anecessary condition for the solutionof the algebraicRiccati equation to be apositive
semi-definite symmetric matrix is that H has no imaginary eigenvalues [132, 457].

It is noted that several methods on adaptive neural/fuzzy control of nonlinear
dynamical systems assume that the system is already described in the canonical
Brunovsky form. However, for the majority of electro-mechanical systems this does
not hold. For example, robotic manipulators, unmanned aerial vehicles, land vehi-
cles, surface and underwater vehicle models, are some examples of robotic systems
which are not inherently found in the canonical form [450]. Adaptive fuzzy control
methods usually try to invert the system’s dynamics, and thus to succeed convergence
of its output to the desirable setpoints, starting from a description of the system in
the canonical form. This means that the system is taken to be a-priori in the descrip-
tion given in Eq. (3.95), however in the majority of electromechanical systems the
dynamics is in the form of Eq. (3.37). Differential flatness theory enables to transform
the system’s description ẋ = f (x, u) into that of Eq. (3.95) and from that point on to
develop adaptive control schemes. Consequently, differential flatness theory extends
the class of nonlinear robotic systems to which adaptive neural/fuzzy control can be
applied and this is a significant benefit for adaptive control theory. Additional results
about adaptive fuzzy controllers which make use of transformations into canonical
forms can be found in [399, 609, 617].

3.3.10 Simulation Tests

The performance of the proposed observer-based adaptive fuzzy MIMO controller
was tested in the benchmark problem of the 2-DOF rigid-link robotic manipulator
(Fig. 3.11). The differentially flat model of the robot and its transformation to the
Brunovksy form has been analyzed in Sect. 3.3.5.
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Fig. 3.11 A multi-DOF
robotic manipulator
controlled by an
observer-based adaptive
fuzzy control scheme

The state feedback gain was K ∈ R2×4. The basis functions used in the estima-

tion of fi(x̂, t), i = 1, 2 and gij(x̂, t), i = 1, 2, j = 1, 2 were μAj (x̂) = e(
x̂−cj

σ
)2 , j =

1, . . . , 3. Since there are four inputs x̂1, ˙̂x1 and x̂3, ˙̂x3 and each one of them consists
of 3 fuzzy sets, for the approximation of functions fi(x̂, t) i = 1, . . . , 3, there will be
81 fuzzy rules of the form:

Rl : IF x̂1 is Al
1 AND ˙̂x1 is Al

2

AND x̂3 is Al
3 AND ˙̂x3 is Al

4 THEN f̂ li is bl
(3.192)

The aggregate output of the neuro-fuzzy approximator (rule-base) is f̂i(x̂, t) =
∑81

l=1 f̂
l
i

∏4
i=1μ

l
Ai

(x̂i)
∑81

l=1

∏4
i=1μ

l
Ai

(x̂i)
. The centers c(l)

i , i = 1, . . . , 4 and the variances v(l) of each rule

are summarized in Table3.3.
The estimation of the control input gain functions ĝij(x̂, t) i = 1, 2 was derived in

a similar way. The overall simulation time was ts = 40 s. The sampling period was
taken to be 0.01 s. In the beginning of the training of the neuro-fuzzy approximators
their weights were initialized to zero. Moreover, the elements of the robot’s state
vector were also initialized to zero. The positive definite matrices P1 ∈ R4×4 and
P2 ∈ R4×4 stem from the solution of the algebraic Riccati equations given in Eqs.
(3.161) and (3.162), for Q1 and Q2 also positive definite.

The approximations f̂ and ĝ were used in the derivation of the control law, given
by Eq. (3.115). To show the disturbance rejection capability of the proposed adaptive
fuzzy controller, at the beginning of the second half of the simulation time additive
sinusoidal disturbances of amplitude A = 0.5 and period T = 10 s were applied to
the robot’s joints.
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Table 3.3 Parameters of the fuzzy rule base

Rule c(l)
1 c(l)

2 c(l)
3 c(l)

4 v(l)

R(1) −1.0 −1.0 −1.0 −1.0 3

R(2) −1.0 −1.0 −1.0 0.0 3

R(3) −1.0 −1.0 −1.0 1.0 3

R(4) −1.0 −1.0 0.0 −1.0 3

R(5) −1.0 −1.0 0.0 0.0 3

R(6) −1.0 −1.0 0.0 1.0 3

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
R(81) 1.0 1.0 1.0 1.0 3
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Fig. 3.12 a Tracking of a sinusoidal position set-point by joint 1 of the robot. b Tracking of
sinusoidal velocity setpoint by joint 1 of the robot

In the simulation results that follow, the position and velocity setpoints are noted
as continuous red lines while the position and velocity signals of the robot’s joints are
denoted as dashed blue lines. The position variation for the first joint of the robotic
manipulator when tracking a sinusoidal set-point is depicted in Fig. 3.12a, while the
velocity variation is shown in Fig. 3.12b. For the second joint of the 2-DOF robot the
tracking of the position setpoint is depicted in Fig. 3.13a while the tracking of the
velocity setpoint is shown in Fig. 3.13b. The control inputs (motor torques) applied
to the first and second joint of the robotic manipulator are shown in Fig. 3.14a and
in Fig. 3.14b, respectively.
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Fig. 3.13 a Tracking of a sinusoidal position set-point by joint 2 of the robot. b Tracking of
sinusoidal velocity setpoint by joint 2 of the robot
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Fig. 3.14 Tracking of a sinusoidal setpoint: a Control input to joint 1 of the robot b Control input
to joint 2 of the robot

The performance of the proposed observer-based adaptive fuzzy control scheme
was also tested in the case of various other setpoints. The associated results, about the
accuracy of tracking of the state vector elements, are shown in Figs. 3.15 and 3.16.
The control loop enabled fast convergence of the state variables to the desirable
setpoints although there was no previous knowledge about the dynamic model of the
robotic manipulator and despite the effects of external disturbances.

The RMSE (root mean square error) of the examined control loop is also calcu-
lated (assuming the same parameters of the controller) in the case of tracking of the
previous setpoints: (a) the piecewise constant setpoint of Fig. 3.15a, (b) the sinu-
soidal setpoint of Fig. 3.15b, (c) the seesaw setpoint of Fig. 3.16a, (d) the setpoint
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Fig. 3.15 Convergence of state vector elements of the robot to the desirable setpoints: a when
tracking a piecewise constant setpoint b when tracking a sinusoidal setpoint
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Fig. 3.16 Convergence of state vector elements of the robot to the desirable setpoints: a when
tracking a seesaw setpoint bwhen tracking a setpoint obtained from the sum of different sinusoidal
signals

obtained from the sum of different sinusoidal signals as shown in Fig. 3.16b. The
results are summarized in Table3.4. It can be seen that the transient characteristics
of the control scheme are also quite satisfactory.

Through the presented simulation experiments it has been shown that the adaptive
control method achieves excellent accuracy in the tracking of the reference setpoints.
This is a confirmation of the stability analysis that resulted in an H-infinity tracking
performance criterion and in an asymptotic stability condition. Moreover, it has
been shown that the control input exhibits smooth variations. This is an advantage
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Table 3.4 RMSE of joints’ angles

parameter θ1 θ2

RMSEa 0.0471 0.0449

RMSEb 0.0418 0.0427

RMSEc 0.0495 0.0288

RMSEd 0.0449 0.0472

comparing, for instance, to adaptive fuzzy sliding mode control since in the latter
case there are abrupt control input variations. What is also important to compare is
the extent of the class of robotic systems to which the various control methods can be
applied and the constraining assumptions made about the structure of the controlled
systems. From this point of view, the proposed “Differential flatness theory approach
to observer-based adaptive fuzzy control of MIMO nonlinear dynamical systems
outperforms all other adaptive neural/fuzzy control methods. The method can be
applied to any type of MIMO differentially flat systems that admit a transformation
to the canonical Brunovsky form and does not require the system’s dynamic model to
have a particular structure (e.g. affine-in-the-input, triangular or other). Besides, the
control method relies exclusively on feedback of the outputs of the system and does
not requiremeasurements of all elements of the state vector. Performing estimation of
the state vector instead or precise measurements of the state variables has significant
advantages. It is less costly because it requires less sensors to be used in the control
loop. It reduces the faulty conditions for the control loop because it is free of sensors
that frequently undergo failures when used in harsh operating conditions of robotic
systems (such as robotic manipulators, autonomous ground vehicles, aerial vehicles,
unmanned surface and underwater vessels or other).

The definition of the parameters of the fuzzy rule base (81 rules) has been given
in Table3.5. For the two-DOF robotic model considered as application example, the
number of the rules is computed as follows: there are four input variables in the
antecedent part of the each rule, namely position and angular velocity for each one
of the robot’s joints. Each input variable is partitioned into three fuzzy sets, therefore
taking into account all possible combinations of the fuzzy sets to which the input
variables can be assigned one has 34 = 81 fuzzy rules. The placement of the centers
of the fuzzy sets at specific points of the four-dimensional state-space is performed
following the so-called grid partitioning. This means that the centers of the fuzzy sets
are chosen to occupy equally distant positions along the axes of the input variables.
This results in a uniform coverage of the state space.
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3.4 Adaptive H-Infinity Neurofuzzy Control for the Rotary
Pendulum

3.4.1 Outline

Next, the problem of adaptive (model-free) control of the rotary pendulum is treated.
Adaptive control of underactuated robotic systems is a significant problem because
(i) in several cases the number of available control inputs (actuators) is less than the
number of degrees of freedom of the robot, (ii) the dynamic model of such robotic
systems is often unknown [153, 347, 378, 506, 520]. A typical underactuated sys-
tem is Furuta’s pendulum, also known as rotational pendulum. As analyzed in the
previous sections, this system has two degrees of freedom while it receives only one
control input [299, 326, 527, 544, 630]. Besides, the system exhibits strong nonlinear
characteristics due to the appearance of nonlinear gravitational and Coriolis terms in
it [18, 78, 137, 244, 640]. Furthermore, the system is not linearizable through state
feedback and in its nonlinear form it is not differentially flat. As a result its transfor-
mation into a linear equivalent state-space form through a change of state variables
(diffeomorphisms) can be a burdening procedure [3–5, 405, 406]. Additionally, the
pendulum’s dynamic model may be subject to parametric uncertainty and variation
or to external perturbations thus making model-based approaches for the solution of
the associated control problem be unreliable. For these reasons adaptive control of
the rotary (Furuta’s) pendulum is a non-trivial problem [577, 606].

In this section, an adaptive H-infinity neurofuzzy control method is applied to
the dynamic model of the rotary (Furuta’s) pendulum. As noted above, this control
problem is of elevated difficulty because the pendulum exhibits strong nonlinearities
while it is also an underactuated system (there are two degrees of freedom and only
one control input). Besides, in the model-free case, as for instance when the values
of the model parameters are unknown (lengths and weights of the pendulum’s links)
the control problem’s complexity is further raised. To solve this control problem, the
pendulum’s model was first subject to approximate linearization round a temporary
equilibrium that was recomputed at each iteration of the control method. The equilib-
rium is defined by the present value of the pendulum’s state vector and the last value
of the control input that was exerted on it [461, 466]. The linearization procedure is
relies on Taylor series expansion and on the computation of the pendulum’s Jacobian
matrices [431, 463].

For the approximately linearized model of the pendulum and for the case of a
known dynamical model it would be possible to achieve stabilization by using an
H-infinity feedback controller. Such a controller would provide a solution to the
nonlinear H-infinity (optimal) control problem of the pendulum [450, 452, 457,
459, 460]. Its feedback gain would be computed from the repetitive solution of
an algebraic Riccati equation, taking place at each iteration of the control method.
However, the dynamic model of the pendulum is actually unknown and to solve the
H-infinity control problem, an indirect adaptive control scheme based on neurofuzzy
estimators is developed. Neurofuzzy networks are employed to approximate in real
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time the functions that constitute the unknowndynamics of the rotary pendulum.Next
these functions’ estimates are used to approximate the system’s Jacobians. Finally,
by using the approximated Jacobian in the algebraic Riccati equation the feedback
gain of the H-infinity controller is obtained.

The stability properties of this adaptive neurofuzzy control scheme are analyzed
with the use of the Lyapunov method [450, 457, 460]. First, it is shown that the H-
infinity tracking performance criterion holds for the control loop that comprises: (i)
the rotary pendulum of unknown dynamics, (ii) the neurofuzzy approximators that
estimate the system’s unknown dynamics and (iii) the H-infinity feedback controller.
At a second stage, it is shown that the control loop exhibits global asymptotic stability
properties. The learning rate of the neurofuzzy approximators is chosen in a manner
that assures that the first derivative of the system’s Lyapunov function will always be
a negative one. Through simulation experiments, the excellent tracking performance
of the control method is further confirmed.

3.4.2 Dynamic Model of the Rotary Pendulum

3.4.3 Control System Dynamics

As demonstrated before, the rotary pendulum’s model belongs to the wider class of
affine-in-the-input systems which can be described in the form

ẋ = f (x) + g(x)u (3.193)

where x ∈ Rn and u ∈ R. The system undergoes approximate linearization through
Taylor series expansion at a temporary equilibrium (x∗, u∗) which is defined by the
present value of the state vector u∗ and the last value of the control input that was
appliedon the system. In accordance to the previously given analysis, the linearization
procedure is based on the computation of Jacobian matrices:

A = ∇x[f (x) + g(x)u](x∗,u∗)⇒ B = ∇u[f (x) + g(x)u](x∗,u∗)⇒
A = ∇xf̃ |(x∗,u∗) B = ∇uf̃ |(x∗,u∗)

(3.194)

which, after denoting f̃ (x, u) = [f (x) + g(x)u] yields

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂ f̃1
∂x1

∂ f̃1
∂x2

· · · ∂ f̃1
∂xn

∂ f̃2
∂x1

∂ f̃2
∂x2

· · · ∂ f̃2
∂xn· · · · · · · · · · · ·

· · · · · · · · · · · ·
∂ f̃n
∂x1

∂ f̃n
∂x2

· · · ∂ f̃n
∂xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

B =

⎛

⎜
⎜
⎜
⎜
⎝

g1
g2
· · ·
· · ·
gn

⎞

⎟
⎟
⎟
⎟
⎠

(3.195)
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Using that the effects of linearization error due to truncation of higher order terms
in the Taylor series expansion are denoted with the vector d1, the dynamics of the
approximately linearized system is given by

ẋ = Ax + Bu + d1 (3.196)

Moreover, considering that u∗ is the control signal which achieves perfect tracking
of the reference trajectories xd one has

ẋd = Axd + Bu∗ + d2 (3.197)

where u∗ = u + Δu. From Eq. (3.196) one obtains

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (3.198)

and by denoting d3 = −Bu∗ + d1 one gets

ẋ = Ax + Bu + Bu∗ + d3 (3.199)

By subtracting Eq. (3.197) from (3.199) one has

ẋ − ẋ∗ = A(x − x∗) + Bu + d3 − d1⇒
ė = Ae + Bu + Ld̃

(3.200)

where A ∈ Rn×n, B ∈ Rn×1 and L = In that is the identity matrix of dimension n.
Equation (3.200) denotes the tracking error dynamics for the model that is obtained
from approximate linearization, when the stabilizing feedback control u (e.g. H-
infinity control) is applied on it.

In case that functions f (x) and g(x) inEq. (3.193) are unknown, onehas to compute
the Jacobian matrices A = ∇x[f (x) + g(x)u]|(x∗,u∗) and B = ∇u[f (x) + g(x)u]|(x∗,u∗)

using the estimated values of functions f (x) and g(x). The estimates f̂ (x) and ĝ(x)
can be obtained from neurofuzzy networks. In such a case the estimated values of
the Jacobian matrices are computed as follows:

Â = ∇x[f̂ (x) + ĝ(x)u](x∗,u∗)⇒ B̂ = ∇u[f̂ (x) + ĝ(x)u](x∗,u∗)⇒
Â = ∇x

ˆ̃f(x∗,u∗) B̂ = ĝ(x)
(3.201)

which, after denoting ˆ̃f (x, u) = [f̂ (x) + ĝ(x)u] gives
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Â =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂
ˆ̃f1

∂x1
∂
ˆ̃f1

∂x2
· · · ∂

ˆ̃f1
∂xn

∂
ˆ̃f2

∂x1
∂
ˆ̃f2

∂x2
· · · ∂

ˆ̃f2
∂xn· · · · · · · · · · · ·

· · · · · · · · · · · ·
∂
ˆ̃fn

∂x1
∂
ˆ̃fn

∂x2
· · · ∂

ˆ̃fn
∂xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

B̂ =

⎛

⎜
⎜
⎜
⎜
⎝

ĝ1
ĝ2
· · ·
· · ·
ĝn

⎞

⎟
⎟
⎟
⎟
⎠

(3.202)

When using a model of the system that is based on the approximated Jacobians Â
and B̂ the tracking error dynamics is given by

˙̂e = Âê + B̂u + L̂d̃ (3.203)

where the feedback control input can be obtained from an H-infinity control law
as u = − 1

r B̂
TPê and matrix P will be obtained from the solution of the algebraic

Riccati equation of the generic form

ÂTP + PÂ + Q − P
(
1
r B̂B̂

T − 1
ρ2 L̂L̂T

)
P = 0. (3.204)

3.4.4 Estimation of the Unknown Dynamics of the System

For the estimation of the unknown dynamics of the rotary pendulum one proceeds
as follows: It is considered that the unknown functions f (x) and g(x) that constitute
the dynamic model of the system can be approximated by a neurofuzzy network
(Fig. 3.17)

Fig. 3.17 Neurofuzzy approximator for estimating the unknown dynamics of the system: Φij are
kernel functions, Nij are normalized kernel functions, and θj are weights
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f̂ (x) =

⎛

⎜
⎜
⎜
⎜
⎝

f̂1(x)
f̂2(x)
· · ·
· · ·
f̂n(x)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

φ11(x) φ12(x) · · · φ1m(x)
φ21(x) φ22(x) · · · φ2m(x)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

φn1(x) φn2(x) · · · φnm(x)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

θ
f
1

θ
f
2· · ·

· · ·
θ
f
m

⎞

⎟
⎟
⎟
⎟
⎠

(3.205)

ĝ(x) =

⎛

⎜
⎜
⎜
⎜
⎝

ĝ1(x)
ĝ2(x)
· · ·
· · ·
ĝn(x)

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

φ11(x) φ12(x) · · · φ1m(x)
φ21(x) φ22(x) · · · φ2m(x)

· · · · · · · · · · · ·
· · · · · · · · · · · ·

φn1(x) φn2(x) · · · φnm(x)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

θ
g
1

θ
g
2· · ·

· · ·
θ
g
m

⎞

⎟
⎟
⎟
⎟
⎠

(3.206)

where φij(x), i = 1, 2, . . . , n, j = 1, 2, . . . , n are kernel functions, while θ
f
i , θ

g
i ,

i = 1, 2, . . . , n are the weights of the neural approximators for functions f and g
respectively. Equivalently, it holds that

f̂ (x) = Φ(x)θf ĝ(x) = Φ(x)θg (3.207)

where f̂ (x) ∈ Rn×1,Φ(x) ∈ Rn×m, θf (x) ∈ Rm×1, ĝ(x) ∈ Rn×1 and θg(x) ∈ Rm×1. The
elements of matrix Φ(x) ∈ Rn×m are the kernel functions φij(x), i = 1, . . . , n, j =
1, . . . ,m which are defined as

φij(x) = n
i=1μAi,j (xi)∑n

k=1
m
i=1μAi,k (xi)

(3.208)

The value of the weight vector θf that achieves optimal approximation of function f
is denoted as θ∗

f . Equivalently, the value of the weight vector θg that achieves optimal
approximation of function g is denoted as θ∗

g .

The weight vector errors for the approximation of functions f (x) and g(x) are
defined as

θ̃f = θf − θ∗
f θ̃g = θg − θ∗

g (3.209)

Using Eq. (3.205) one has about the approximations of functions f̂ (x) and ĝ(x):

f̂ =

⎛

⎜
⎜
⎜
⎜
⎝

f̂1
f̂2
· · ·
· · ·
f̂n

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

∑m
i=1θ

f
i φi1(x)∑m

i=1θ
f
i φi2(x)

· · ·
· · ·

∑m
i=1θ

f
i φin(x)

⎞

⎟
⎟
⎟
⎟
⎠

ĝ =

⎛

⎜
⎜
⎜
⎜
⎝

ĝ1
ĝ2
· · ·
· · ·
ĝn

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

∑m
i=1θ

g
i φi1(x)∑m

i=1θ
g
i φi2(x)

· · ·
· · ·∑m

i=1θ
g
i φin(x)

⎞

⎟
⎟
⎟
⎟
⎠

(3.210)
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Fig. 3.18 Adaptive neurofuzzy H-infinity control loop of the rotary pendulum

Thus, the approximation of the Jacobians of vector fields f̂ (x) and ĝ(x) becomes

∇xf̂ (x) =

⎛

⎜
⎜
⎜
⎜
⎝

∂ f̂1(x)
∂x1

∂ f̂1(x)
∂x2

· · · ∂ f̂1(x)
∂xn

∂ f̂2(x)
∂x1

∂ f̂2(x)
∂x2

· · · ∂ f̂2(x)
∂xn· · · · · · · · · · · ·

∂ f̂n(x)
∂x1

∂ f̂n(x)
∂x2

· · · ∂ f̂n(x)
∂xn

⎞

⎟
⎟
⎟
⎟
⎠

∇x ĝ(x) =

⎛

⎜
⎜
⎜
⎝

∂ ĝ1(x)
∂x1

∂ ĝ1(x)
∂x2

· · · ∂ ĝ1(x)
∂xn

∂ ĝ2(x)
∂x1

∂ ĝ2(x)
∂x2

· · · ∂ ĝ2(x)
∂xn· · · · · · · · · · · ·

∂ ĝn(x)
∂x1

∂ ĝn(x)
∂x2

· · · ∂ ĝn(x)
∂xn

⎞

⎟
⎟
⎟
⎠

(3.211)

The above relations can be used in the approximately linearized model of the system,
after setting Â = [∇xf̂ (x) + ∇x ĝ(x)u] |(x∗,u∗) and B̂ = ĝ(x) |(x∗,u∗).

The diagram of the proposed adaptive neurofuzzy H-infinity control loop for the
rotary pendulum, is depicted in Fig. 3.18.

3.4.5 Lyapunov Stability Analysis

For the dynamic model of the rotary pendulum, the following Lyapunov function is
defined

V = 1
2 ê

TPê + 1
2γ1

θ̃T
f θ̃f + 1

2γ2
θ̃T
g θ̃g (3.212)
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By differentiating Eq. (3.212) with respect to time one obtains

V̇ = 1
2
˙̂eTPê + 1

2 ê
TP ˙̂e + 1

γ1

˙̃
θT
f θ̃f + 1

γ2

˙̃
θT
g θ̃g (3.213)

and using that the tracking error dynamics for the model comprising Â and B̂ is
given by

˙̂e = Âê + B̂u + L̂d̃ (3.214)

then one obtains

V̇ = 1
2 (ê

T ÂT + uT B̂ + d̃ T L̂T )Pê + 1
2 ê

TP(Âê + B̂u + L̂d̃)+
+ 1

γ1

˙̃
θT
f θ̃f + 1

γ2

˙̃
θT
g θ̃g+ (3.215)

The feedback control signal is

u = − 1
r B̂

TPe (3.216)

where P comes from the solution of a Riccati equation. By advancing with compu-
tations one gets

V̇ = 1
2 ê

T ÂTPê + 1
2u

T B̂TPê + 1
2 d̃

T L̂TPê
+ 1

2 ê
TPÂê + 1

2 ê
TPB̂u + 1

2 ê
TPL̂d̃

+ 1
γ1

˙̃
θT
f θ̃f + 1

γ2

˙̃
θT
g θ̃g

(3.217)

By grouping terms in the above equation one obtains

V̇ = 1
2 ê

T
(
ÂP + PÂ − 1

r PB̂B̂
TP

)
ê + d̃ T L̂TPê+

+ 1
γ1

˙̃
θT
f θ̃f + 1

γ2

˙̃
θT
g θ̃g

(3.218)

Assumption: The following algebraic Riccati equation is considered to admit as
solution a positive definite symmetric matrix P

ÂP + PÂ + Q − 1
r PB̂B̂

TP + 1
2ρ2PL̂L̂TP = 0 (3.219)

The above algebraic Riccati equation is equivalently written as

ÂP + PÂ − 1
r PB̂B̂

TP = −Q − 1
2ρ2PL̂L̂TP = 0 (3.220)

By substituting Eq. (3.220) into (3.218) one has

V̇ = − 1
2 ê

TQê − 1
2ρ2 êTPL̂L̂TPê + êTPL̂d̃+

+ 1
γ1

˙̃
θT
f θ̃f + 1

γ2

˙̃
θT
g θ̃g

(3.221)
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Next, the following weights adaptation laws are considered

θ̇f = −γ1φ
T L̂TPê or θ̇T

f = −γ1êTPL̂Φ

θ̇g = −γ2φ
T L̂TPêu or θ̇T

g = −γ2uêTPL̂Φ
(3.222)

By substituting the weights’ adaptation laws of Eq. (3.222) into (3.221) one has

V̇ = − 1
2 ê

TQê − 1
2ρ2 êTPL̂L̂TPê + êTPL̂d̃+

+ 1
γ1

(−γ1)êT pL̂Φ(θf − θ∗
f ) + 1

γ2
(−γ2)êT pL̂Φ(θg − θ∗

g )u
(3.223)

By elaborating on computations in the previous relation one gets

V̇ = − 1
2 ê

TQê − 1
2ρ2 êTPL̂L̂TPê + êTPL̂d̃+

−êTPL̂{[f̂ (x|θf ) − f̂ (x|θ∗
f )] + [ĝ(x|θg) − ĝ(x|θ∗

g )]u}
(3.224)

Actually the modelling error term wa is

wa = [f̂ (x|θf ) − f̂ (x|θ∗
f )] + [ĝ(x|θg) − ĝ(x|θ∗

g )]u or

wa = [f̂ (x|θf ) + ĝ(x|θg)u] − [f̂ (x|θ∗
f ) + ĝ(x|θ∗

g )u]
(3.225)

denotes the difference in the approximation of the nonlinear dynamics of the rotary
pendulum ẋ = f (x) + g(x)u when described with neural networks of weights θf , θg
and when described with neural networks having the optimal estimation weights θ∗

f ,
θ∗
g . By substituting wa in Eq. (3.224) one obtains

V̇ = − 1
2 ê

TQê − 1
2ρ2 êTPL̂L̂TPê + êTPL̂d̃ − êTPL̂wa (3.226)

By defining w1 = d̃ − wa one has

V̇ = − 1
2 ê

TQê − 1
2ρ2 êTPL̂L̂TPê + êTPL̂w1 (3.227)

Equation (3.228) is written in the equivalent form

V̇ = − 1
2 ê

TQê − 1
2ρ2 êTPL̂L̂TPê+

+ 1
2 ê

TPL̂w1 + 1
2w

T
1 L̂

T ê
(3.228)

Lemma: The following inequality holds

1
2 ê

TPL̂w1 + 1
2w1L̂TPê − 1

2ρ2 êTPL̂L̂TPê≤ 1
2ρ

2wT
1 w1 (3.229)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets
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ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(3.230)

The following substitutions are carried out: a = w1 and b = êTPL̂ and the previous
relation becomes

1
2w

T
1 L̂

TPê + 1
2 ê

TPL̂w1 − 1
2ρ2 êTPL̂L̂TPê≤ 1

2ρ
2wT

1w1 (3.231)

Equation (3.231) signifies the completion of the Lemma’s proof. Equation (3.231) is
substituted in Eq. (3.228) and the inequality is enforced, thus giving

V̇≤ − 1
2 ê

TQê + 1
2ρ

2wT
1w1 (3.232)

Equation (3.232) shows that the H∞ tracking performance criterion is satisfied. This
implies that the effect that themodelling error and external perturbationsmay have on
the control system is finally taken into account by the condition defining the sign of the
first derivative of the system’s Lyapunov function. If the disturbance termw1 vanishes
then one has a clear asymptotic stability condition. By selecting the attenuation
coefficient ρ to be sufficiently small and in particular to satisfy ρ2 < ||ê||2Q/||w1||2
one has that the first derivative of the Lyapunov function is upper bounded by 0.
Therefore for each time interval it is proven that the Lyapunov function defined
in Eq. (3.212) is a decreasing one, and that at every time instant its value keeps on
diminishing. This also assures that the first-order derivative of the Lyapunov function
of the system defined in Eq. (3.212) will be always negative.

Equivalently to the above, the integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||ê||2Qdt + 1

2ρ
2
∫ T
0 ||w1||2dt⇒

2V (T ) + ∫ T
0 ||ê||2Qdt≤2V (0) + ρ2

∫ T
0 ||w1||2dt (3.233)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||w1||2dt ≤ Md (3.234)

then one gets

∫ ∞
0 ||ê||2Qdt ≤ 2V (0) + ρ2Md (3.235)

Thus, the integral
∫ ∞
0 ||ê||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (3.212) it becomes clear that ê(t) will
be also bounded since ê(t) ∈ Ωê = {ê|êTPê≤2V (0) + ρ2Md }. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞ê(t) = 0.
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3.4.6 Simulation Tests

In the implementation of simulation tests about the adaptive neurofuzzy H-infinity
control method of Furuta’s pendulum it has been assumed that the parameters of the
pendulum’s model were unknown, For the computation of the feedback control law,
the Riccati equation appearing in Eq. (3.220) had to be solved at each iteration of the
controlmethod. This in turnmade use of the Jacobianmatrices Â = ∇x[f̂ (x) + ĝ(x)u]
and B̂ = ∇u[f̂ (x) + ĝ(x)u] which were approximated with the use of neurofuzzy
estimators. The obtained results are depicted in Figs. 3.19, 3.20, 3.21, 3.22, 3.23,
3.24 and 3.25.

The approximation of the unknown functions f̂ (x) and ĝ(x) was performed with
the use of neurofuzzy estimators. There are four input fuzzy variables xi associated
with the state variables of the pendulum, that is x1 = φ, x2 = φ̇, x3 = θ and x4 = θ̇ .
Considering that each one of them is analyzed into three fuzzy sets Ai, then there
should be in aggregate 34 = 81 fuzzy rules. The aggregate fuzzy rule base takes the
form given in Table3.5. Each neurofuzzy estimator comprises rules of the form

Rl : IF x1 is Al
1 AND x2 is Al

2

AND x3 is Al
3 AND x4 is Al

4 THEN f̂ li is bl
(3.236)

where l = 1, . . . , 81 and f̂ (x, t) =
∑81

l=1 f̂
l
i

∏4
i=1μ

l
Ai

(xi)
∑81

l=1

∏4
i=1μ

l
Ai

(xi)
. Indicative (dimensionless) values

for the placement on a spatial grid of the centers c(l)
i , i = 1, . . . , 4 and about the

variances v(l) of each rule are as follows (Table3.5):
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Fig. 3.19 H-infinity neural adaptive control of the underactuated rotary pendulum: a Tracking of
setpoint 1 by the state variables xi, i = 1, . . . , 4 of the pendulum b control input u
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Fig. 3.20 H-infinity neural adaptive control of the underactuated rotary pendulum: a Tracking of
setpoint 2 by the state variables xi, i = 1, . . . , 4 of the pendulum b control input u
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Fig. 3.21 H-infinity neural adaptive control of the underactuated rotary pendulum: a Tracking of
setpoint 3 by the state variables xi, i = 1, . . . , 4 of the pendulum b control input u

The finer the partition of the input variables into fuzzy sets is, the more accurate
the approximation of the nonlinear system dynamics by the neuro-fuzzy model is
expected to be (although some of the rules of the fuzzy rule base may not be suffi-
ciently activated due to little coverage of the associated region of the patterns space
by input data). However, considering a large number of fuzzy sets for each input
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Fig. 3.22 H-infinity neural adaptive control of the underactuated rotary pendulum: a Tracking of
setpoint 4 by the state variables xi, i = 1, . . . , 4 of the pendulum b control input u

0 10 20 30 40
0

2

4

6

time (sec)

x 1

0 10 20 30 40
−1

0

1

2

time (sec)

x 2

0 10 20 30 40
−0.5

0

0.5

1

time (sec)

x 3

0 10 20 30 40
−1

0

1

2

time (sec)

x 4

0 5 10 15 20 25 30 35 40
−5

−4

−3

−2

−1

0

1

2

3

4

5

time (sec)

u

(a) (b)

Fig. 3.23 H-infinity neural adaptive control of the underactuated rotary pendulum: a Tracking of
setpoint 5 by the state variables xi, i = 1, . . . , 4 of the pendulum b control input u

variable induces the curse of dimensionality which means that there is an exces-
sive and rather unnecessary increase in the number of the adaptable parameters that
constitute the neuro-fuzzy model.

From Figs. 3.19, 3.20, 3.21, 3.22, 3.23, 3.24 and 3.25, it can be noticed that the
proposed controlmethod achieves fast and accurate trackingof the reference setpoints
for the state variables of the rotary pendulum. The associated variations of the control
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Fig. 3.24 H-infinity neural adaptive control of the underactuated rotary pendulum: a Tracking of
setpoint 6 by the state variables xi, i = 1, . . . , 4 of the pendulum b control input u
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Fig. 3.25 H-infinity neural adaptive control of the underactuated rotary pendulum: a Tracking of
setpoint 7 by the state variables xi, i = 1, . . . , 4 of the pendulum b control input u

input remained moderate. This comes to confirm the previously given theoretical
analysis about the stability and convergence of the proposed control scheme and to
show its application to underactuated robotic systems.
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Table 3.5 Parameters of the fuzzy rule base

Rule c(l)
1 c(l)

2 c(l)
3 c(l)

4 v(l)

R(1) −1.0 −1.0 −1.0 −1.0 3

R(2) −1.0 −1.0 −1.0 0.0 3

R(3) −1.0 −1.0 −1.0 1.0 3

R(4) −1.0 −1.0 0.0 −1.0 3

R(5) −1.0 −1.0 0.0 0.0 3

R(6) −1.0 −1.0 0.0 1.0 3

· · · · · · · · · · · · · · ·
R(25) −1.0 1.0 1.0 −1.0 3

R(26) −1.0 1.0 1.0 0.0 3

R(27) −1.0 1.0 1.0 1.0 3

· · · · · · · · · · · · · · ·
R(81) 1.0 1.0 1.0 1.0 3



Chapter 4
Closed-Chain Robotic Systems
and Mechanisms

Abstract Control of closed-chain robots is a non-trivial problem because it is often
associated with complicated dynamic and kinematics models exhibiting nonlineari-
ties. Unlike roboticmanipulatorswith a free end-effector, closed-chain roboticmech-
anisms include actuatorswhich are usually placed on a fixed base. On the one side this
enables to develop robotic and mechatronic systems with lowmoving inertia and fast
motion control. On the other side this may incur underactuation problems. Compar-
ing to open-chain robots, closed-chain robotic mechanisms have many advantages
such as high stiffness, high accuracy, and high payload-to-weight ratio To solve the
nonlinear control problem of closed-chain robotic systems the following approaches
are proposed (i) nonlinear control based on global linearization methods, (ii) nonlin-
ear control based on approximate linearization methods and (iii) nonlinear control
based on Lyapunov methods. Besides to apply model-free control for such a type of
robotic manipulators, online estimation algorithms of the unknown dynamics of the
robot can be considered once again. The global asymptotic stability of the control
based on the real-time estimation of the robot’s dynamics is proven. Moreover, as
in the previously analysed multi-DOF manipulator models, to implement feedback
control through the measurement of a limited number of the closed-chain robot’s
state vector elements, nonlinear filtering methods of proven convergence are devel-
oped. In particular the chapter analyzes the following topics: (a)Model-based control
of closed-chain kinematic mechanisms with the use of differential flatness theory,
(b) Flatness-based adaptive fuzzy control of closed-chain kinematic mechanisms (c)
Nonlinear optimal control for closed-chain kinematic mechanisms.

4.1 Chapter Overview

The present chapter develops the following topics: (a)Model-based control of closed-
chain kinematic mechanisms with the use of differential flatness theory, (b) Flatness-
based adaptive fuzzy control of closed-chain kinematic mechanisms (c) Nonlinear
optimal control for closed-chain kinematic mechanisms.

With reference to (a) global linearization-based control for underactuated closed-
chain robotic systems is considered. Using differential flatness theory it is shown
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that the model of a closed-chain 2-DOF robotic manipulator can be transformed
to linear canonical form. For the linearized equivalent of the robotic system it is
demonstrated that a state feedback controller can be designed. Since certain elements
of the state vector of the linearized system can not bemeasured directly, it is proposed
to estimate them with the use of a differential flatness theory-based implementation
of the Kalman Filter, the so-called Derivative-free nonlinear Kalman Filter (DKF).
Moreover, by redesigning theKalman Filter as a disturbance observer, it is shown that
one can estimate simultaneously external disturbances terms that affect the robotic
model or disturbance terms which are associated with parametric uncertainty.

With reference to (b) an adaptive fuzzy controller is designed for the previously
noted closed-chain 2-DOF roboticmanipulator, under the constraint that the system’s
model is unknown. After transforming the robotic system into the canonical form,
the resulting control inputs are shown to contain nonlinear elements which depend
on the system’s parameters. The nonlinear terms which appear in the control inputs
are approximated with the use of neuro-fuzzy networks. It is shown that a suitable
learning law can be defined for the aforementioned neuro-fuzzy approximators so as
to preserve the closed-loop system stability.

With reference to (c) the previously noted dynamic model of the closed-chain
robotic mechanism undergoes approximate linearization, round a local operating
point. This local equilibrium is re-calculated at each iteration of the control pro-
gram. The linearization relies on Taylor series expansion and the computation of the
associated Jacobian matrices. Next, an H-infinity feedback controller is designed.
The feedback gain is computed after solving an algebraic Riccati equation at each
iteration of the control algorithm. In all cases (a) to (c) the global asymptotic stability
of the considered control schemes for the manipulators of closed-chain kinematics
was proven through Lyapunov analysis.

4.2 Flatness-Based Control
of Closed-Chain Kinematic Mechanisms

4.2.1 Outline

Control of underactuated closed-chain robots has received significant attention.
The design of robotic mechanisms that can be controlled with a smaller number of
actuators than their degrees of freedom enables to reduce cost and weight of robots
and to achieve robustness in the case of actuators’ failures [150, 197, 245, 246,
308, 356, 599, 636]. The control problem of underactuated robotic manipulators has
been studied in several research articles during the last years. In [150] the property of
differential flatness for a class of planar under-actuated open-chain robots having a
specific inertia distribution, but drivenbyonly oneor two actuators has been analyzed.
In [636] it was shown that closed chain underactuated robots satisfy differential
flatness properties and this enables their transformation into a linearized form for
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which the design of a feedback controller becomes easier. In [599] energy-based
control for underactuated robotic manipulators has been proposed. In [245, 246] a
Lyapunov-based approach to the design of efficient control for underactuated robots
is proposed. In [356] passive velocity control and decoupling vector field control
have been applied to the control of underactuated mechanical systems. In [308] the
problem of point-to-point control for underactuated robotic manipulators has been
presented. In [197] an open-loop vibrational control for an underactuatedmechanical
system has been studied.

Unlike robotic manipulators with a free end-effector, machines with closed chains
include actuators which are usually placed on a fixed base. This enables to develop
mechatronic systems with lowmoving inertia and fast motion control. The particular
problem studied in this section is the controller design for a closed-chainmechatronic
system, characterized by model uncertainty and subjected to external perturbations.
Moreover, the control system is an underactuated one, which means that the number
of actuators is less than the number of degrees of freedom in the associated dynamic
model. Underactuation can be met in: (1) mobile manipulators carrying out coopera-
tive tasks, (2) fixed-base robots that manipulate elastically deformable objects [159,
413, 474, 475, 563, 637]. Underactuated closed-chain robotic systems, containing
fewer actuators than the degrees of freedom have little been studied. This is mainly
due to strong nonlinearities of the associated dynamic model and the complexity in
the controller’s design.

In this section an approach to solve the problem of closed-chain underactuated
robots is developed with the use of a flatness-based controller and a Kalman Filter-
based disturbances estimator. Dynamic analysis for the closed-chain underactuated
robot is first provided. Closed-chain robotic models can be underactuated and the
efficient suppression of disturbance inputs is important for attaining the performance
objectives of the control loop. The elements of the state vector are variables denoting
the linear displacement and the rotation of the robot’s joints. The control input to the
model is the torque applied by an actuator to a joint that is mounted on a fixed base.
Disturbance inputs can be due to model uncertainties or external perturbation forces
and torques.

First, Lie algebra is used to perform input-output linearization to the robot’s
model. This enables to introduce a state-space transformation (diffeomorphism)
which brings the system to the linear canonical Brunovsky form. Next, it is shown
how a controller for the aforementioned robot model can be obtained through the
application of differential flatness theory. The flat output for the robot’s model is a
nonlinear function of the linear and rotational displacement of the robot’s joints [1,
151]. By expressing all state variables and the control input of the robotic model
as functions of the flat output and its derivatives the system’s dynamic model is
transformed into the linear Brunovksy (canonical) form [57, 145, 254, 267, 322,
450, 476, 519, 572]. For the latter model it is possible to design a state feedback
controller that enables accurate tracking of position and velocity set-points by the
robot’s joints. However, since measurements are available only for certain elements
of the transformed state vector, to implement a state feedback control loop, the
rest of the elements of the robot’s transformed state vector have to be estimated
with the use of an observer or filter. To this end the concept of Derivative-free
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nonlinear Kalman Filtering is employed. By avoiding linearization approximations,
the proposed filtering method improves the accuracy of estimation of the system’s
state variables [424, 438, 457].

A particular difficulty, in the case of state estimation for the robotic model is
the existence of the unmodeled disturbance forces. It is shown that it is possible to
redesign the Kalman Filter in the form of a disturbance observer and using the esti-
mation of the disturbance to develop an auxiliary control input that compensates for
the disturbances effects [87, 105, 106, 180, 341, 367]. In this way the robot’s control
system can become robust with respect to uncertainties in the model’s parameters
or uncertainties about external forces and torques. It is also noted that in terms of
computation speed the proposed Kalman Filter-based disturbance estimator is faster
than disturbance estimators thatmay rely on other nonlinear filtering approaches (e.g.
Extended Kalman Filter, Unscented Kalman Filter or Particle Filter) thus becoming
advantageous for the real-time estimation of the unknown dynamics of the robot. The
efficiency of the proposed control and Kalman Filter-based disturbances estimation
scheme is evaluated through numerical simulation tests. It has been shown that the
accurate estimation of the disturbance forces which are exerted on the robot enables
their efficient compensation. This is achieved by introducing an additional element
in the controller that produces a counter-disturbance input based on the estimated
value for the disturbance variable. This control scheme finally results in minimizing
the effects of the disturbances that affect the robot.

4.2.2 Dynamic Model of the Closed-Chain 2-DOF Robotic
System

The considered closed-chain 2-DOF robotic system depicted in Fig. 4.1 consists of
four bodies: (i) bodies 1 and 2 are two sliders with masses m1 and m2 respectively
[150, 636]. Body 3 is connected with a revolute joint to body 1 and has mass m3,
length l3 while its moment of inertia is I3. Similarly body 4 is connected to body 2
with a revolute joint, has mass m4, length l4 while the associated moment of inertia
is I4. The motion of the system takes place in the 2D xy plane depicted in Fig. 4.1
while its dynamics is subjected to gravity.

The state variables for the robotic system are as follows q = [q1, q3, q2, q4]T : q1
is the displacement of mass m1 along the x-axis, q3 is the turn angle of body 3 round
the revolute joint A. q2 is the displacement of m2 along the x-axis and q4 is the turn
angle of body 4 round the revolute joint B. The following geometric constraints hold:

l3sin(q3) = l4sin(q4)
q1 + l3cos(q3) = q2 + l4cos(q4)

(4.1)

The control inputs exerted on the robotic model are the horizontal force F1 that
causes the displacement of mass m1 along the x-axis, the torque T3 that causes the
rotation of the link with length l3 round the revolute joint A, the horizontal force
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Fig. 4.1 A two-part underactuated robotic system constituting a closed-chain mechanism

F2 that causes the displacement of mass m2 along the x-axis and the torque T4 that
causes the rotation of the link with length l4 round the revolute joint B. Thus, in
the most generic case the input vector can be u = [f1,T3, f2,T4]T . According to the
Euler–Lagrange analysis the dynamic model of the robotic manipulator is obtained
(the complete proof is given in the following subsection 4.2.3)

A(q)q̈ + h(q, q̇) = u (4.2)

where

A(q) =

⎛
⎜⎜⎝
a11 a12 0 0
a21 a22 0 0
0 0 a33 a34
0 0 a43 a44

⎞
⎟⎟⎠ (4.3)

with a11 = m1 + m3, a12 = a21 = −m3lc3sin(q3), a22 = m3l2c3 + I3, a33 = m2 + m4,
a34 = a43 = −m4lc4sin(q4), a44 = m4l2c4 + I4, and

h(q, q̇) =

⎛
⎜⎜⎝

−m3lc3cos(q3)q̇
2
3

m3glc3cos(q3)
−m4lc4cos(q4)q̇

2
4

m4glc4cos(q4)

⎞
⎟⎟⎠ (4.4)

Next, the case in which l3 = l4 is examined. Moreover, it is considered that the mass
m2 is connected to a spring with elasticity k2, while at the revolute joint of the second
link l4 there is also a torsional spring with elasticity coefficient k4. Finally, it is
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assumed that the only inputs applied to the robotic model are u1 = f1 and u2 = T3.
The dynamic model of the robot becomes [636]

A(ql)q̈l + h(ql, q̇l) = [u1, u2]T (4.5)

where ql = [q1, q3]T and q = [q1, q2, q3, q4]T . The inertia and Coriolis matrices are
defined as [636]

A(ql) =
(

M1 + M2 −2M2l3sin(q3)

−2M2l3sin(q3) I3 + I4 + 4M2l23sin
2(q3)

)
(4.6)

h(ql, q̇l) =
( −2M2l3q̇23cos(q3) + k2ld

k4(q3 − π) + 2l3sin(q3)(2M2l3q̇23cos(q3) − k2ld )

)
(4.7)

where M1 = m1 + m3, M2 = m2 + m4, ld = q1 + 2l3cos(q3) − L. Denoting x =
[q1, q3, q̇1, q̇3]T the robot’s dynamic model can be written in the following state-
space form:

ẋ = f (x) + g1(x)u1 + g2(x)u2 (4.8)

where

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

q̇1
q̇3

−k2ld (I3 + I4) + 2l3M2(k2(π − q3)sin(q3) + (I3 + I4)q̇
2
3cos(q3)

M2(I3 + I4) + M1(I3 + I4 + 4M2l
2
3sin

2(q3)))

k4(M1 + M2)(π − q3) + 2I3M1sin(q3)(k2ld − 2l3M2q̇
2
3cos(q3))

M2(I3 + I4) + M1(I3 + I4 + 4M2l
2
3sin

2(q3))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.9)

g1(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0

I3 + I4 + 4M2l
2
3sin

2(q3)
(I3 + I4)M2 + M1(I3 + I4 + 4M2l

2
3sin

2(q3))

2M2l3sin(q3)
(I3 + I4)M2 + M1(I3 + I4 + 4M2l

2
3sin

2(q3))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.10)

g2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0

2M2l3sin(q3)
(I3 + I4)M2 + M1(I3 + I4 + 4M2l

2
3sin

2(q3))

M1 + M2

(I3 + I4)M2 + M1(I3 + I4 + 4M2l
2
3sin

2(q3))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.11)
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The robotic system is underactuated when only one of the control inputs is enabled.
It can be proven that when the only input is u1 = F1 then the robotic system is not
static feedback linearizable.

Next, the case in which the only control input is u2 = T3 is examined. When
k2 �=0 and k4 = 0 then the robotic model is static feedback linearizable. Equivalently
this means that (i) the distribution D3 =< g(x), adf (x)g(x), ad2

f (x)g(x), ad
3
f (x)g(x) >

has full rank and (ii) the vector fields D0 =< g(x) >, D1 =< g(x), adf (x)g(x) >

andD2 =< g(x), adf (x)g(x), ad2
f (x)g(x) > are involutive. The previous conditions (i)

and (ii) are necessary and sufficient conditions for Lie algebra-based input-to-state
linearization for nonlinear dynamical systems. A detailed analysis on input-to-state
and input-output linearization of nonlinear dynamical systems is given in [457].

4.2.3 Proof of the Robot’s Dynamic Model Using
the Euler–Lagrange Method

The closed chain robotic system of Fig. 4.2, presented initially in Sect. 4.2.2 is con-
sidered again. This comprises four masses, out of which mass m1 and mass m2 slide
along the x-axis, while masses m3 and m4 associated with links l3 and l4 perform
both translational and rotational motion in the xy-plane.

Fig. 4.2 The closed chain robotic system, comprising two sliding masses m1 and m2 and two
rotating links with masses m3 and m4
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For mass m1 one has that the potential energy is P1 = 0 while the kinetic energy
is K1 = 1

2m1q̇21. For mass m2 one has again that the potential energy is P2 = 0 while
the kinetic energy is K2 = 1

2m2q̇22.
For mass m3 the potential energy is given by

P3 = m3glc3sin(q3) (4.12)

The kinetic energy of mass m3 (link l3) is due to both translational motion and
rotational motion. Denoting by I3 the moment of inertia for the rotation of the link
l3 one has the kinetic energy that is associated with the rotational motion is K3,1 =
1
2 I3q̇

2
3. The kinetic energy of link l3 that is associated with the translational motion

is denoted as K3,2 and is given by

K3,2 = 1
2m3Ċ3ĊT

3 (4.13)

Ċ3 is the velocity of the center of gravity of mass (link) 3 in cartesian coordinates.
Using that the position of the center of gravity of link 3 is the vector

C3 = [q1 + lc3cos(q3), lc3sin(q3)] (4.14)

its velocity is computed as follows

Ċ3 = [q̇1 − lc3sin(q3)q̇3, lc3cos(q3)q̇3] (4.15)

Thus, using Eq. (4.15) the kinetic energy of link 3 that is due to its translational
motion is given by

K3,2 = 1
2m3Ċ3ĊT

3 ⇒
K3,2 = 1

2m3[(q̇1 − lc3sin(q3)q̇3)
2 + (lc3cos(q3)q̇3)

2]⇒
K3,2 = 1

2m3[q̇21 + l2c3 q̇
2
3 − 2lc3sin(q3)q̇1q̇3]

(4.16)

Using K3,1 and K3,2 one has that the aggregate kinetic energy of mass (link) m3 is

K3 = 1
2 I3q̇

2
3 + 1

2m3[q̇21 + l2c3 q̇
2
3 − 2lc3sin(q3)q̇1q̇3] (4.17)

For mass m4 the potential energy is given by

P4 = m4glc4sin(q4) (4.18)

The kinetic energy of mass m4 (link l4) is due to both translational motion and
rotational motion. Denoting by I4 the moment of inertia for the rotation of the link
l4 one has the kinetic energy that is associated with the rotational motion is K4,1 =
1
2 I4q̇

2
4. The kinetic energy of link l4 that is associated with the translational motion

is denoted as K4,2 and is given by

K4,2 = 1
2m4Ċ4ĊT

4 (4.19)
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Ċ4 is the velocity of the center of gravity of mass (link) 4 in cartesian coordinates.
Using that the position of the center of gravity of link 4 is the vector

C4 = [q2 + lc4cos(q4), lc4sin(q4)] (4.20)

its velocity is computed as follows

Ċ4 = [q̇2 − lc4sin(q4)q̇4, lc4cos(q4)q̇4] (4.21)

Thus, using Eq. (4.21) the kinetic energy of link 4 that is due to its translational
motion is given by

K4,2 = 1
2m4Ċ4ĊT

4 ⇒
K4,2 = 1

2m4[(q̇2 − lc4sin(q4)q̇4)
2 + (lc4cos(q4)q̇4)

2]⇒
K4,2 = 1

2m4[q̇24 + l2c4 q̇
2
4 − 2lc4sin(q4)q̇2q̇4]

(4.22)

Using K4,1 and K4,2 one has that the aggregate kinetic energy of mass (link) m4 is

K4 = 1
2 I4q̇

2
4 + 1

2m4[q̇22 + l2c4 q̇
2
4 − 2lc4sin(q4)q̇2q̇4] (4.23)

The Lagrangian of the considered robotic system (closed kinematic mechanism) is
given by

L = ∑4
i=1Ki − ∑4

i=1Pi⇒

L = 1
2m1q̇21 + 1

2m2q̇22+
+ 1

2 I3q̇
2
3 + 1

2m3[q̇21 + l2c3 q̇
2
3 − 2lc3sin(q3)q̇1q̇3]+

+ 1
2 I4q̇

2
4 + 1

2m4[q̇22 + l2c4 q̇
2
4 − 2lc4sin(q4)q̇2q̇4]+

−m3glc3sin(q3) − m4glc4sin(q4)

(4.24)

Next, it can be computed that

∂L
∂ q̇1

= m1q̇1 + m3q̇1 + m3lc3sin(q3)q̇3 (4.25)

and by differentiating Eq. (4.25) with respect to time gives

∂
∂t

∂L
∂ q̇1

= (m1 + m3)q̈1 − m3lc3cos(q3)q̇
2
3 − m3lc3sin(q3)q̈3 (4.26)

while one also obtains
∂L
∂q1

= 0 (4.27)

In a similar manner one computes

∂L
∂ q̇2

= m2q̇2 + m4q̇2 − m4lc4sin(q4)q̇4 (4.28)
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and by differentiating Eq. (4.28) with respect to time gives

∂
∂t

∂L
∂ q̇2

= (m2 + m4)q̈2 − m4lc4cos(q4)q̇
2
4 − m4lc4sin(q4)q̈4 (4.29)

while one also obtains
∂L
∂q2

= 0 (4.30)

In an equivalent way one finds

∂L
∂ q̇3

= I3q̇3 + m3l2c3 q̇3 − m3lc3sin(q3)q̇1 (4.31)

and by differentiating Eq. (4.31) with respect to time gives

∂
∂t

∂L
∂ q̇3

= I3q̈3 + m3l2c3 q̈3 − m3lc3cos(q3)q̇1q̇3 − m3lc3sin(q3)q̈1 (4.32)

while one also obtains

∂L
∂q3

= −m3lc3cos(q3)q̇1q̇3 − m3glc3cos(q3) (4.33)

Following the same procedure one gets

∂L
∂ q̇4

= I4q̇4 + m4l2c4 q̇4 − m4lc4sin(q4)q̇2 (4.34)

and by differentiating Eq. (4.34) with respect to time gives

∂
∂t

∂L
∂ q̇4

= I4q̈4 + m4l2c4 q̈4 − m4lc4cos(q4)q̇2q̇4 − m4lc4sin(q4)q̈2 (4.35)

while one also obtains

∂L
∂q4

= −m4lc4cos(q4)q̇2q̇4 − m4glc4cos(q4) (4.36)

Next, by using the previous equations and by applying the Euler–Lagrange principle
one gets

∂
∂t

∂L
∂ q̇1

− ∂L
∂q1

= F1⇒
(m1 + m3)q̈1 − m3lc3sin(q3)q̈3 − m3lc3cos(q3)q̇

2
3 = F1

(4.37)

∂
∂t

∂L
∂ q̇2

− ∂L
∂q2

= F2⇒
(m2 + m4)q̈2 − m4lc4sin(q4)q̈4 − m4lc4cos(q4)q̇

2
4 = F2

(4.38)
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∂
∂t

∂L
∂ q̇3

− ∂L
∂q3

= T1⇒
−m3lc3sin(q3)q̈1 + (I3 + m3l2c3)q̈3 − m3lc3cos(q3)q̇1q̇3+
+m3lc3cos(q3)q̇1q̇3 + m3glc3cos(q3) = T1⇒

−m3lc3sin(q3)q̈1 + (I3 + m3l2c3)q̈3 + m3glc3cos(q3) = T1

(4.39)

∂
∂t

∂L
∂ q̇4

− ∂L
∂q4

= T2⇒
−m4lc4sin(q4)q̈2 + (I4 + m4l2c4)q̈4 − m4lc4cos(q4)q̇2q̇4+
+m4lc4cos(q4)q̇2q̇4 + m4glc4cos(q4) = T2⇒

−m4lc4sin(q4)q̈2 + (I4 + m4l2c4)q̈4 + m4glc4cos(q4) = T2

(4.40)

By considering the state vector q̃ = [q1, q3, q2, q4]T and by grouping together Eqs.
(4.37), (4.39) and (4.38), (4.40) one has

(m1 + m3)q̈1 − m3lc3sin(q3)q̈3 − m3lc3cos(q3)q̇
2
3 = F1

−m3lc3sin(q3)q̈1 + (I3 + m3l2c3)q̈3 + m3glc3cos(q3) = T1
(4.41)

(m2 + m4)q̈2 − m4lc4sin(q4)q̈4 − m4lc4cos(q4)q̇
2
4 = F2

−m4lc4sin(q4)q̈2 + (I4 + m4l2c4)q̈4 + m4glc4cos(q4) = T2
(4.42)

Equations (4.41) and (4.42) can now be written in matrix form

⎛
⎜⎜⎝

(m1 + m3) −m3lc3sin(q3) 0 0
−m3lc3sin(q3) (I3 + m3l2c3) 0 0

0 0 (m2 + m4) −m4lc4sin(q4)
0 0 −m4lc4sin(q4) (I4 + m4l2c4)

⎞
⎟⎟⎠

⎛
⎜⎜⎝
q̈1
q̈2
q̈3
q̈4

⎞
⎟⎟⎠ +

+

⎛
⎜⎜⎝

−m3lc3cos(q3)q̇
2
3

m3glc3cos(q3)
−m4lc4cos(q4)q̇

2
4

m4glc4cos(q4)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
F1

T1
F2

T2

⎞
⎟⎟⎠

(4.43)

Equation (4.43) can also take the compact matrix form

A(q̃) ¨̃q + h(q̃, ˙̃q) = ũ (4.44)

This is the description of the robotic mechanism which has been given in Eqs. (4.2)–
(4.4).
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4.2.4 Linearization of the Closed-Chain 2-DOF Robotic
System Using Lie Algebra Theory

The following variable (linearizing output) is defined first

z1 = y = h1(q) = (M1 + M2)q1 + 2M2l3cos(q3) (4.45)

Applying Lie-algebra theory, it holds that [230]

z2 = Lf h1 =
(

∂h1
∂q1

∂h1
∂q3

∂h1
∂ q̇1

∂h1
∂ q̇3

)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z2 = Lf h1 = (
(M1 + M2 −2M2l3sin(q3) 0 0)

)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z2 = Lf h1 = (M1 + M2)f1 − 2M2l3sin(q3)f2⇒
z2 = Lf h1 = (M1 + M2)q̇1 − 2M2l3sin(q3)q̇3

(4.46)

Similarly, it holds

z3 = L2f h1 =
(

∂z2
∂q1

∂z2
∂q3

∂z2
∂ q̇1

∂z2
∂ q̇3

)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z3 = L2f h1 = (
0 −2M2l3cos(q3)q̇3 (M1 + M2) −2M2l3sin(q3)

)
⎛
⎜⎜⎝

f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z3 = L2f h1 = (M1 + M2)f3 − 2M2l3sin(q3)f4 − 2M2l3cos(q3)q̇3f2

(4.47)

It holds that

q̈1 = f3 + ga3u1 + gb3u2⇒q̈1 = f3 + gb3u2⇒f3 = q̈1 − gb3u2
q̈3 = f4 + ga4u1 + gb4u2⇒q̈4 = f4 + gb4u2⇒f4 = q̈3 − gb4u2

(4.48)
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Therefore, it holds

z3 = (M1 + M2)f3 − 2M2l3sin(q3)f4 − 2M2l3cos(q̇3)f2⇒
z3 = (M1 + M2)q̈1 − (M1 + M2)gb2u2 − 2M2l3sin(q3)q̈3 + 2M2l3sin(q3)gb4u2−

−2M2l3cos(q3)q̇23⇒
(4.49)

or equivalently

z3 = (M1 + M2)q̈1 − 2M2l3sin(q3)q̈3

− (M1 + M2)2M2l3sin(q3)

(I3 + I4)M2 + M1(I3 + I4 + 4M2l23sin
2(q3))

u2

+ (M1 + M2)2M2l3sin(q3)

(I3 + I4)M2 + M1(I3 + I4 + 4M2l23sin
2(q3))

u2

−2M2l3cos(q3)q̇23

(4.50)

Consequently, it holds that

z3 = (M1 + M2)q̈1 − 2M2l3sin(q3)q̈3 − 2M2l3q̇23cos(q3) (4.51)

Using Eqs. (4.5)–(4.7) one obtains that

(M1 + M2)q̈1 − 2M2l3sin(q3)q̈3 = 2M2l3q̇23cos(q3) − k2ld + u1 (4.52)

with u1 = 0 due to underactuation. Therefore, it holds

z3 = 2M2l3q̇23cos(q3) − k2ld − 2M2l3q̇23cos(q3)⇒
z3 = −k2ld⇒z3 = −k2(q1 + 2l3cos(q3) − L)

(4.53)

Similarly, one has

z4 = L3f h1(q) =
(

∂z3
∂q1

∂z3
∂q3

∂z3
∂ q̇1

∂z3
∂ q̇3

)
⎛
⎜⎜⎝
f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z4 = (−k2 2k2l3sin(q3) 0 0
)
⎛
⎜⎜⎝
f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

z4 = −k2f1 + 2k2l3sin(q3)f2⇒z4 = −k2q̇1 + 2k2l3sin(q3)q̇3

(4.54)
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Moreover, it holds that

ż4 = L4f h1 + LgaL
3
f h1u1 + LgbL

3
f h1u2 (4.55)

Additionally,

L4f h1 =
(

∂z4
∂q1

∂z4
∂q3

∂z4
∂ q̇1

∂z4
∂ q̇3

)
⎛
⎜⎜⎝
f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

L4f h1 = (
0 2k2l3cos(q3)q̇3 −k2 2k2l3sin(q3)

)
⎛
⎜⎜⎝
f1
f2
f3
f4

⎞
⎟⎟⎠ ⇒

L4f h1 = 2k2l3cos(q3)q̇3f2 − k2f3 + 2k2l3sin(q3)f4⇒
L4f h1 = 2k2l3cos(q3)q̇23 − k2f3 + 2k2l3sin(q3)f4

(4.56)

It holds that u1 = 0 and

LgbL
3
f h1 =

(
∂z4
∂q1

∂z4
∂q3

∂z4
∂ q̇1

∂z4
∂ q̇3

)
⎛
⎜⎜⎝
gb1
gb2
gb3
gb4

⎞
⎟⎟⎠ ⇒

LgbL
3
f h1 = (

0 2k3l3cos(q3)q̇3 −k2 2k2l3sin(q3)
)
⎛
⎜⎜⎝
gb1
gb2
gb3
gb4

⎞
⎟⎟⎠

(4.57)

which can be also written as

LgbL
3
f h1 = −k2

2M2l3sin(q3)

(I3 + I4)M2 + M1(I3 + I4 + 4M2l
2
3sin

2(q3))
+

+2k2l3sin(q3)
M1 + M2

(I3 + I4)M2 + M1(I3 + I4 + 4M2l
2
3sin

2(q3))
⇒

LgbL
3
f h1 = 2k2l3sin(q3)M1

(I3 + I4)M2 + M1(I3 + I4 + 4M2l
2
3sin

2(q3))

(4.58)

Using next the relation

ż4 = L(4)
f h1 + LgaL

3
f h1u1 + LgbL

3
f h1u2 = v (4.59)

and that ż1 = z2, ż2 = z3, ż3 = z4 one has that the robotic model can be finally written
in the linear canonical (Brunovsky) form
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⎛
⎜⎜⎝
ż1
ż2
ż3
ż4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
z1
z2
z3
z4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ v (4.60)

For the linearized system, a suitable feedback control law is

v = żd4 − k1(z4 − zd4 ) − k2(z3 − zd3 ) − k3(z2 − zd2 ) − k4(z1 − zd1 ) (4.61)

After computing the control input v, one can also find the control input that should
be really applied to the robotic system. Using that u1 = 0, it holds that

v = L(4)
f h1 + LgaL

(3)
f h1u1 + LgbL

(3)
f h1u2⇒

u2 = 1
LgbL

(3)
f h1

(v − L(4)
f h1).

(4.62)

4.2.5 Differential Flatness of the Closed-Chain 2-DOF
Robotic System

4.2.5.1 Differential Flatness Proof for the Closed-Chain 2-DOF Robotic
System

The following flat output is chosen:

y = (M1 + M2)q1 + 2M2l3cos(q3) (4.63)

Then, one has

ẏ = (M1 + M2)q̇1 − 2M2l3sin(q3)q̇3⇒
ÿ = (M1 + M2)q̈1 − 2M2l3sin(q3)q̈3 − 2M2l3cos(q3)q̇23

(4.64)

Using Eqs. (4.2)–(4.4) it holds that

(M1 + M2)q̈1 − 2M2l3sin(q3)q̈3 = 2M2l3q̇23cos(q3) − k2ld + u1 (4.65)

where due to underactuation one has u1 = F1 = 0. Therefore, it holds

ÿ = −k2ld⇒ÿ = −k2(q1 + 2l3cos(q3) − L) (4.66)

Consequently
y(3) = −k2[q̇1 − 2l3sin(q3)q̇3] (4.67)
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Fig. 4.3 Flatness-based diffeomorphism and its inverse, enabling the implementation of nonlinear
control for the underactuated robotic mechanism

and respectively

y(4) = −k2q̈1 + 2k2l3cos(q3)q̇23 + 2k2l3sin(q3)q̈3 (4.68)

From Eq. (4.63) describing the flat output and from the equations of its higher order
derivatives one has a set of equations which can be solved with respect to the state
variables q1, q3, q̇1 and q̇3 (Fig. 4.3). It holds that

q1 = k2y − M2ÿ + M2k2L

k2M1
(4.69)

q3 = cos−1

(
ÿ + k2q1 − k2L

2k2l3

)
(4.70)

q̇1 = k2ẏ + M2y(3)

k2M1
(4.71)

q̇3 = 1

sin(q3)

(M1 + M2)q̇1 − ẏ

2M2l3
(4.72)
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Having expressed the elements of the state vector q as functions of the flat output
and its derivatives and knowing that q̈1 = f3 + ga3u1 + gb3u2 and q̈3 = f4 + ga4u1 +
gb4u2 one concludes that the control inputs u1 and u2 can be also written as functions
of the flat output and its derivatives. Therefore, the robotic system stands for a
differentially flat model.

4.2.5.2 Design of a Flatness-Based Controller for the Closed-Chain
2-DOF Robotic System

From the relation q̇ = f (q) + ga(q)u1 + gb(q)u2 and the associated relations about
f (q), gaq and gb(q) it holds

q̈1 = f3 + ga3u1 + gb3u2⇒q̈1 = f3 + gb3u2⇒

q̈1 = −k2ld (I3 + I4) + 2l3M2[K4(π − q3)sin(q3) + (I3 + I4)q̇23cos(q3)

M2(I3 + I4) + M1(I3 + I4 + 4M2l23sin
2(q3))

+

+ 2M2l3sin(q3)

(I3 + I4)M2 + M1(I3 + I4 + 4M2l
2
3sin

2(q3))
u2

(4.73)

Equivalently, one has

q̈3 = f4 + ga4u1 + gb4u2⇒q̈3 = f3 + gb4u2⇒

q̈3 = k4(M1 + M2)(π − q3) + 2l3M1sin(q3)[K2ld − 2l3M2q̇23cos(q3)]
M2(I3 + I4) + M1(I3 + I4 + 4M2l

2
3sin

2(q3))
+

+ M1 + M2

(I3 + I4)M2 + M1(I3 + I4 + 4M2l
2
3sin

2(q3))
u2

(4.74)

The flat output of the closed-chain robot has been chosen to be y = (M1 + M2)q1 +
2M2l3cos(q3). Consequently, after successive differentiations, one has

y(4) = −k2q̈1 + 2k2l3cos(q3)q̇
2
3 + 2k2l3sin(q3)q̈3⇒

y(4) = −k2(f3 + gb3 )u2 + 2k2l3cos(q3)q̇
2
3 + 2k2l3sin(q3)(f4 + gb4u2)⇒

y(4) = 2k2l3cos(q3)q̇
2
3 − k2f3 + 2k2l3sin(q3)f4 + [−k2gb3 + 2k2l3sin(q3)gb4 ]u2⇒

y(4) = fv + gvu⇒y(4) = v

(4.75)

where v = fv + gvu2 with

fv = 2k2l3cos(q3)q̇23 − k2f3 + 2k2l3sin(q3)f4
gv = −k2gb3 + 2k2l3sin(q3)gb4

(4.76)

The following new state variables are defined z1 = y, z2 = ẏ, z3 = ÿ and z4 = y(3). For
the new state variables a description of the system in the linear canonical (Brunovsky)
form is obtained
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⎛
⎜⎜⎝
ż1
ż2
ż3
ż4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
z1
z2
z3
z4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ v (4.77)

Considering that the linear displacement of the left part of the kinematic chain q1 is
measurable, and that the same holds for the turn angle q3 of joint A, one has that the
flat output y = (M1 + M2)q1 + 2M2l3cos(q3) is also a measurable variable.

Using the description of system in the linear canonical form, the appropriate
control law is

v = żd4 − k1(z4 − zd4 )) − k2(z3 − zd3 ) − k3(z2 − zd2 ) − k4(z1 − zd1 ) (4.78)

After computing the control input v, one can also find the control input that should
be really applied to the robotic system. The following relation is used:

v = fv + gvu2⇒u2 = g−1
v (v − fv). (4.79)

4.2.6 Derivative-Free Nonlinear Kalman Filter
for the Closed-Chain 2-DOF Robotic System

4.2.6.1 State Estimation with the Derivative-Free Nonlinear Kalman
Filter

The concept of global linearizing transformations has been extensively analyzed and
previous results about state estimation through transformation to linear canonical
forms can be found in [424, 438, 457]. It was shown that the dynamical model of
the underactuated closed-chain robot can be written in the MIMO canonical form of
Eq. (4.77). Thus one has a MIMO linear model of the form

ẏf = Af yf + Bf v
zf = Cf yf

(4.80)

where zf = [z1, z2, z3, z4]T and matrices Af ,Bf ,Cf are in the form

Af =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ Bf =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ CT

f =

⎛
⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎠ (4.81)

where the measurable variables y = z1 is associated with the linear displacement and
the rotationalmotion of jointA (Fig. 4.1) in the roboticmodel. For the aforementioned
model, and after carrying out discretization of matrices Af , Bf and Cf with common
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discretization methods one can apply linear Kalman filtering. This isDerivative-free
nonlinear Kalman Filtering for the model of the robot which is performed without
the need to compute Jacobian matrices and does not introduce numerical errors due
to approximative linearization with Taylor series expansion.

4.2.6.2 Kalman Filter-Based Estimation of Robot Disturbance Forces

Disturbances affecting the robot’s model can be due to: (i) uncertainty and changes
in model parameters, (ii) unknown external torques exerted on the robot’s joints,
(iii) unknown forces exerted on the masses of the robotic mechanism (e.g. friction).
Considering the effects of disturbances on the robotic model and after applying a
transform on the system’s state variables according to the differential flatness theory
it has been shown that the robot model is described by

z(4)
1 = v + φ(τ) (4.82)

The robot’s state space model of Eq. (4.77) will be extended to take into account
also the dynamics and the effects of the disturbance input φ(t). The extended state
vector of the robot model is defined as z∈R8×1 with z1 = y, z2 = ẏ, z3 = ÿ, z4 = y(3),
z5 = φ, z6 = φ̇, z7 = φ̈, z8 = φ(3). The dynamics of the disturbance is assumed to
be defined by its fourth order derivative, i.e. φ(4) = fd (y, ẏ, ÿ, y(3)). Thus one has the
extended state-space model

ż = Ã·z + B̃·ṽ
q = C̃z

(4.83)

with

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C̃T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.84)

where the measurable variable is z1 and the control input is

ṽ = (
u, φ(4)

)T (4.85)

The disturbance estimator has the following structure

˙̂z = Ão·ẑ + B̃o·ṽ + K(z1 − ẑ1)
ẑ1 = C̃oŷ

(4.86)
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where the estimator’s gain K∈R8×1 and matrices Ão, B̃o and C̃o are defined as

Ão =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B̃o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, C̃T
o =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.87)

The disturbance estimator’s gain K∈R8×1 will be computed through the Kalman
Filter recursion.

Defining as Ãd , B̃d , and C̃d , the discrete-time equivalents of matrices Ão, B̃o and
C̃o respectively, a Derivative-free nonlinear Kalman Filter can be designed for the
aforementioned representation of the system dynamics [33, 190, 222, 432]. The
associated Kalman Filter-based disturbance estimator is given by

measurement update:

K(k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

ẑ(k) = ẑ−(k) + K(k)[z(k) − C̃d ẑ−(k)]
P(k) = P−(k) − K(k)C̃dP−(k)

(4.88)

time update:

P−(k + 1) = Ãd (k)P(k)ÃT
d (k) + Q(k)

ẑ−(k + 1) = Ãd (k)ẑ(k) + B̃d (k)ṽ(k)
(4.89)

To compensate for the effects of the disturbance forces it suffices to use in the control
loop the modified control input vector v1 = u − φ̂(t).

By transforming the nonlinear dynamicmodel of the robot into the canonical form
of Eq. (4.82), one obtains an equivalent linear description havingmultiple poles at the
origin. Such a system, can be easily stabilized, using pole placement methods. Thus,
by applying state feedback, it is shown in this section that a closed loop system can be
obtained having poles exclusively in the left complex semi-plane. Next, considering
that Kalman Filter-based estimation of the state vector is used for the implementation
of the state feedback control scheme, it becomes clear that the stability and robustness
properties of the control loop are finally those of LQG control.

It is known that a function φ(t) can been represented either through explicit
knowledge of its mathematical formulation or through knowledge of its n-th order
derivative and of the associated initial conditions. The latter case is assumed in this
section for the description of the dynamics of the disturbance term φ(t). Thus, it is
considered that φ(t) is equivalently described by knowledge of the time derivatives
of order n, that is φ(n)(t) and of the associated initial conditions φ(0), . . ., φ(n−1)(0),
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Fig. 4.4 Control scheme for the closed-chain underactuated robot consisting of a flatness-based
control term and a Kalman Filter-based disturbances estimator

while without loss of generality it is considered that the order of derivation is n = 4.
Moreover, since the reconstruction of φ(t) is performed with the use of Kalman
Filtering, and the convergence of this estimation algorithm is not dependent on ini-
tial conditions, the use of the initial conditions becomes finally unnecessary in the
estimation procedure for φ(t).

4.2.7 Simulation Tests

The efficiency of the proposedKalmanFilter-based control scheme for the underactu-
ated robotic manipulator (Fig. 4.4) was evaluated in the tracking of various setpoints
for state variable q1 i.e. the linear displacement of mass M1 of the mechanism and
state variable q3, i.e. the rotation angle of joint A. The mass displacement has been
measured in m while the joint’s turn angle has been measured in rad.

As it can be observed in Figs. 4.5a, 4.6, 4.7 and 4.8a the proposed control scheme
enabled accurate tracking of the reference setpoints by the robot’s state variables.
Moreover, as it can be confirmed in Figs. 4.5b, 4.6, 4.7 and 4.8b the tracking error
for the state variables of the robot, converged rapidly to zero.

Additionally, as it can be seen in Figs. 4.9 and 4.10, the Kalman Filter-based dis-
turbance estimator was capable of identifying in real-time the external disturbances
that affected the robotic system. By including an additional term in the control loop
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Fig. 4.5 Tracking of setpoint 1 a Convergence of the robot’s state variables to reference setpoints
b Variation of the tracking error
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Fig. 4.6 Tracking of setpoint 2 a Convergence of the robot’s state variables to reference setpoints
b Variation of the tracking error

that was based on the disturbances estimation it became possible to compensate for
the disturbances effects.

Finally, Table4.1 presents the tracking RMSE (root mean square error) and the
% tracking error for the state variables xi, i = 1, . . . , 4 of the underactuated robot
modeled by Eq. (4.8), in the case of the three reference setpoints depicted in Figs. 4.6,
4.7 and 4.8. The joints angles x1, x3 have been measured in rad, while the joints’
angular velocities have been measured in rad/sec. It can be noticed that the proposed
control and state estimation scheme assures good tracking performance.

Finally, to elaborate on the performance indexes for the proposed control scheme,
Table4.2 is given next. This provides the percentage of improvement of the tracking
accuracy due to the use of theKalman Filter-based disturbance observer in the control
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Fig. 4.7 Tracking of setpoint 3 a Convergence of the robot’s state variables to reference setpoints
b Variation of the tracking error
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Fig. 4.8 Tracking of setpoint 4 a Convergence of the robot’s state variables to reference setpoints
b Variation of the tracking error

Table 4.1 RMSE and % tracking error for the robot’s state variables

RMSE1 % error1 RMSE2 % error2 RMSE3 % error3 RMSE4 % error4

x1 0.0062 0.0313 0.0003 0.0142 0.0024 0.0125 0.0025 0.0128

x2 0.0004 0.0039 0.0002 0.0335 0.0028 0.0281 0.0035 0.0352

x3 0.0020 0.0102 0.0002 0.0115 0.0012 0.0064 0.0028 0.0141

x4 0.0004 0.0048 0.0003 0.0266 0.0025 0.0255 0.0026 0.0264
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Fig. 4.9 a Tracking of setpoint 1: estimation of disturbance input, b Tracking of setpoint 2: esti-
mation of disturbance input
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Fig. 4.10 a Tracking of setpoint 3: estimation of disturbance input, b Tracking of setpoint 4:
estimation of disturbance input

loop. It can be noticed that the Derivative-free nonlinear Kalman Filter enables to
reduce tracking error for all state variables of the robot xi, i = 1, . . . , 4.

The proposed control scheme is a stochastic one since the estimated state vec-
tor variables of the underactuated robotic manipulator are used in the computation
of the nonlinear feedback control law. Thus the nonlinear feedback controller and
the nonlinear Kalman Filter for the underactuated robot work in parallel and the
one uses the computation produced by the other within the same sampling interval.
It is remarkable, that despite lack of measurements from the complete state vec-
tor of the robot and despite the effects of external perturbations the proposed state
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Table 4.2 Percentage % of improvement of robot’s tracking accuracy

Setpoint1 Setpoint2 Setpoint3 Setpoint4
x1 97.93 100.00 93.10 100.00

x2 100.00 100.00 100.00 100.00

x3 98.92 93.33 100.00 40.00

x4 100.00 100.00 100.00 100.00

estimation-based control scheme remains stable and provides accurate tracking of
the reference setpoints for all robot joints.

Proportional integral derivative (PID) control is insufficient in treating nonlinear
control problems for systems of complex dynamics, such as underactuated robotic
manipulators, because the tuning of the PID controller parameters is based on heuris-
tics and remains valid only round local operating points. Usually PID control is not
followed by stability analysis and thus the functioning of the associated control loop
is based on heuristics. For this reason it has been considered that comparison of the
control method analyzed in the previous sections against PID control would be little
informative since PID control is known to have poor performance in such a type of
control problems [450].

It is noted that, control of underactuated robots is a nontrivial problem since the
control algorithm does not have to cope exclusively with nonlinearities and coupling
effects in the manipulator dynamics but has also to perform efficiently in under-
actuation which means that the number of control inputs is less than the number
of degrees of freedom of the manipulator. The proposed control method succeeds
global linearization after a change of coordinates (diffeomorphism) that is applied
to the robot’s model. The linearization of the underactuated manipulator is global
because it is effective in the complete state-space of the robot and unlike approximate
linearization methods does not introduce numerical errors. The linearized model of
the robot has multiple poles at the origin and this implies an infinite gain margin and
a sufficiently large phase margin. By applying feedback control on the linearized
equivalent model of the robot its poles are transferred to the left complex semiplane
thus assuring asymptotic stability. Moreover, the use of the Derivative-free nonlinear
Kalman Filter in the control loop enables to estimate dynamically and compensate
for the disturbances’ effects. About feedback control under the effect of disturbance
terms it is pointed out that the stability properties of the robot’s feedback control
loop are those of LQG control.

Moreover it is outlined that, solving the problem of state estimation for the under-
actuated robot is important because not all state variables are directly measurable
and because the estimation of disturbance terms enables their compensation thus
also making the feedback control loop be more robust. It is noted that the pro-
posed filtering method is more accurate than other nonlinear estimation methods
because it uses an exact linearization of the robot’s dynamics and thus it remains free
of the cumulative numerical errors which are caused in other filtering methods by
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approximate linearization.Moreover, it has been proven that the Derivative-free non-
linear Kalman Filter is computationally faster than other nonlinear filtering methods
due to working without the need to calculate repetitively an additional number of
covariance matrices. Finally, unlike to what happens in other nonlinear filtering
approaches, the proposed filtering method for the problem of state estimation of the
nonlinear robotic manipulator preserves the improved accuracy of the linear Kalman
Filtering.

As shown in the Euler–Lagrange analysis about the dynamic model of the con-
sidered robotic mechanism, both the modeling approach and the nonlinear control
method are generic and can be applied to robotic systems of more degrees of free-
dom. Actually, in the Euler–Lagrange analysis it is shown that the computation of
the kinematic and dynamic energy of the robot’s links and of the Lagrangian of the
robotic system enables to obtain the dynamic model of the robot in the general N -
degrees of freedom case. Moreover, through the proposed control method it is shown
that even in the case of underactuated robotic manipulators of more links and despite
underactuation it is possible to obtain an equivalent linearized model for which the
design of a state feedback controller becomes possible. By proving differential flat-
ness properties for the robotic system, either referring to its initial model or to its
extended model that is obtained after considering as additional state variables some
of its control inputs (dynamic extension), it can be assured that an equivalent descrip-
tion for the robotic manipulator can be obtained in the linear canonical (Brunovsky)
form. For the linearized equivalent model of the robot it is straightforward to apply
linear state-feedback control design methods.

4.3 Flatness-Based Adaptive Fuzzy Control of
Closed-Chain Kinematic Mechanisms

4.3.1 Outline

In the previous sections it has been shown that after transformation to the linear
canonical form, the resulting control input for the underactuated robotic mechanism
contains nonlinear elementswhich depend on the system’s parameters. If the parame-
ters of the system are unknown, then the nonlinear terms which appear in the control
signal can be approximated with the use of neuro-fuzzy networks. In the present
section it is shown that a suitable learning law can be defined for the aforementioned
neuro-fuzzy approximators so as to preserve the closed-loop system stability. Lya-
punov stability analysis proves also that the proposed flatness-based adaptive fuzzy
control scheme results in H∞ tracking performance, in accordance to the results of
[436, 438, 447, 457].

Adaptive fuzzy control has been proven to be an efficient nonlinear controlmethod
[94, 203, 620]. The adaptive fuzzy control system based on differential flatness
theory extends the class of systems to which indirect adaptive fuzzy control can
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be applied. This is particularly important for the design of controllers, capable of
efficiently compensating for modeling uncertainties and external disturbances in
nonlinear dynamical systems. Unlike other adaptive fuzzy control schemes which
are make use of several assumptions about the structure of the nonlinear system
as well as about the uncertainty characterizing the system’s model, the proposed
adaptive fuzzy control scheme based on differential flatness theory offers an exact
solution to the design of fuzzy controllers for unknown dynamical systems. The
only assumption needed for the design of the controller and for succeeding H∞
tracking performance for the control loop is that there exists a solution for a Riccati
equation associated to the linearized error dynamics of the differentially flat model.
This assumption is quite reasonable for several nonlinear systems, thus providing a
systematic approach to the design of reliable controllers for such systems [414, 438].

4.3.2 Flatness-Based Adaptive Fuzzy Control

4.3.2.1 Nonlinear System Transformation into the Brunovsky Form

A single-input differentially flat dynamical system is considered again:

ẋ = fs(x, t) + gs(x, t)(u + d̃), x∈Rn, u∈R, d̃∈R (4.90)

where fs(x, t), gs(x, t) are nonlinear vector fields defining the system’s dynamics, u
denotes the control input and d̃ denotes additive input disturbances. Knowing that
the system of Eq. (4.90) is differentially flat, the next step is to try to write it into
a Brunovsky form. For all differentially flat systems a transformation to an input-
output linearized form is possible. This also holds for differentially flat single-input
systems, such as the model of the underactuated closed-chain robot [322, 414].

The selected flat output is again denoted by y. Then, as analyzed in Section 1.3.2,
for the state variables xi of the system of Eq. (4.90) it holds

xi = φi(y, ẏ, . . . , y(r−1)), i = 1, . . . , n (4.91)

while for the control input it holds

u = ψ(y, ẏ, . . . , y(r−1), y(r)) (4.92)

Introducing the new state variables y1 = y and yi = y(i−1), i = 2, . . . , n, the initial
system of Eq. (4.90) can be written in the Brunovsky form [182, 183]:



248 4 Closed-Chain Robotic Systems and Mechanisms

⎛
⎜⎜⎜⎜⎜⎜⎝

ẏ1
ẏ2
· · ·
· · ·
ẏn−1

ẏn

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

y1
y2
· · ·
· · ·
yn−1

yn

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
· · ·
· · ·
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠
v (4.93)

where v = f (x, t) + g(x, t)(u + d̃) is the control input for the linearized model, and
d̃ denotes additive input disturbances. Thus one can use that

y(n) = f (x, t) + g(x, t)(u + d̃) (4.94)

where f (x, t), g(x, t) are unknown nonlinear functions, while as mentioned above d̃
is an unknown additive disturbance. It is possible to make the system’s state vector x
follow a given bounded reference trajectory xd . In the presence of model uncertain-
ties and external disturbances, denoted by wd , successful tracking of the reference
trajectory is provided by the H∞ criterion [436, 561]:

∫ T
0 eTQedt ≤ ρ2

∫ T
0 wd

Twddt (4.95)

where ρ is the attenuation level and corresponds to the maximum singular value
of the transfer function G(s) of the linearized model associated to Eqs. (4.93) and
(4.94).

4.3.2.2 Control Law

For the measurable state vector x of the system of Eqs. (4.93) and (4.94), and for
uncertain functions f (x, t) and g(x, t) an appropriate control law is

u = 1

ĝ(x, t)
[y(n)

d − f̂ (x, t) − KTe + uc] (4.96)

with e = [e, ė, ë, · · · , e(n−1)]T and e = y − yd , while the feedback gain
matrix KT = [kn, kn−1, . . . , k1], is chosen such that the polynomial e(n) + k1e(n−1) +
k2e(n−2) + · · · + kne is Hurwitz. The control law of Eq. (4.96) results into

e(n) = −KTe + uc + [f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + g(x, t)d̃ (4.97)

where the supervisory control term uc aims at the compensation of the approximation
error

w = [f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u (4.98)
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as well as of the additive disturbance term d1 = g(x, t)d̃ . The above relation can be
written in a state-equation form.The state vector is taken to be eT = [e, ė, . . . , e(n−1)],
which after some operations yields

ė = (A − BKT )e + Buc + B{[f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d1}
(4.99)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · 1
0 0 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
· · ·
· · ·
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.100)

and K = [kn, kn−1, . . . , k2, k1]T . As explained above, the control signal uc is an aux-
iliary control term, used for the compensation of d̃ and w, which can be selected
according to H∞ control theory:

uc = − 1
r B

TPe. (4.101)

4.3.2.3 Approximators of Unknown System Dynamics

The approximation of functions f (x, t) and g(x, t) of Eq. (4.94) can be carried out
with neuro-fuzzy networks (Fig. 4.11). The estimation of f (x, t) and g(x, t) can be
written as [581, 582]:

f̂ (x|θf ) = θT
f φ(x), ĝ(x|θg) = θT

g φ(x), (4.102)

where φ(x) are kernel functions with elements

φl(x) =
∏n

i=1μ
l
Ai

(xi)∑N
l=1

∏n
i=1μ

l
Ai

(xi)
l = 1, 2, . . . ,N (4.103)

It is assumed that the weights θf and θg vary in the bounded areasMθf andMθg which
are defined as

Mθf = {θf ∈ Rh : ||θf || ≤ mθf },
Mθg = {θg ∈ Rh : ||θg|| ≤ mθg } (4.104)

with mθf and mθg to be positive constants.

The values of θf and θg that give optimal approximation are:

θ∗
f = arg minθf ∈Mθf

[supx∈Ux |f (x) − f̂ (x|θf )|]
θ∗
g = arg minθg∈Mθg

[supx∈Ux |g(x) − ĝ(x|θg)|] (4.105)
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Fig. 4.11 Neuro-fuzzy
approximator of the
dynamics of the closed-chain
robotic manipulator: Gi
Gaussian basis function, Ni:
normalization unit

The approximation error of f (x, t) and g(x, t) is given by

w = [f̂ (x, |θ∗
f ) − f (x, t)] + [ĝ(x|θ∗

f ) − g(x, t)]u ⇒

w = {[f̂ (x|θ∗
f ) − f̂ (x|θf )] + [f̂ (x|θf ) − f (x, t)]}+

+{[ĝ(x|θ∗
g ) − ĝ(x|θg)] + [ĝ(x|θg) − g(x, t)]u}

(4.106)

where: i) f̂ (x|θ∗
f ) is the approximation of f for the best estimation θ∗

f of the weights’
vector θf , ii) ĝ(x|θ∗

g ) is the approximation of g for the best estimation θ∗
g of the

weights’ vector θg .

The approximation error w can be decomposed into wa and wb, where

wa = [f̂ (x|θf ) − f̂ (x|θ∗
f )] + [ĝ(x|θg) − ĝ(x|θ∗

g )]u
wb = [f̂ (x|θ∗

f ) − f (x, t)] + [ĝ(x|θ∗
g ) − g(x, t)]u (4.107)

Finally, the following two parameters are defined:

θ̃f = θf − θ∗
f

θ̃g = θg − θ∗
g .

(4.108)

4.3.3 Lyapunov Stability Analysis

The adaptation law of the weights θf and θg as well as of the supervisory control term
uc is derived by the requirement for negative first-order derivative of the quadratic
Lyapunov function
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V = 1

2
eTPe + 1

2γ1
θ̃T
f θ̃f + 1

2γ2
θ̃T
g θ̃g (4.109)

Substituting Eqs. (4.99) into (4.109) and differentiating gives

V̇ = 1
2 ė

TPe + 1
2e

TPė + 1
γ1

θ̃T
f

˙̃
θf + 1

γ2
θ̃T
g

˙̃
θg ⇒

V̇ = 1
2e

T {(A − BKT )TP + P(A − BKT )}e+
+BTPe(uc + w + d1) + 1

γ1
θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θ g.

(4.110)

Assumption 1: For given positive definite matrix Q and coefficients r and ρ there
exists a positive definite matrix P, which is the solution of the following matrix
equation

(A − BKT )
T
P + P(A − BKT ) − PB(

2

r
− 1

ρ2
)BTP + Q = 0 (4.111)

Substituting Eq. (4.111) into V̇ yields after some operations

V̇ = − 1
2e

TQe + 1
2e

TPB( 2r − 1
ρ2 )BTPe + BTPe(− 1

r e
TPB)+

+BTPe(w + d1) + 1
γ1

θ̃T
f

˙̃
θf + 1

γ2
θ̃T
g

˙̃
θg

(4.112)

It holds that ˙̃
θf = θ̇f − θ̇∗

f = θ̇f
˙̃
θg = θ̇g − θ̇∗

g = θ̇g
(4.113)

The following weight adaptation laws are considered [581]

θ̇f =
{

−γ1eTPBφ(x) if ||θf || < mθf

0 if ||θf || ≥ mθf

(4.114)

θ̇g =
{

−γ2eTPBφ(x)uc if ||θg|| < mθg

0 if ‖|θg|| ≥ mθg

(4.115)

θ̇f and θ̇g are set to 0, when

||θf || ≥ mθf , ||θg|| ≥ mθg . (4.116)

The update of θf stems from a gradient algorithm on the cost function 1
2 (f − f̂ )2.

The update of θg is also of the gradient type, while uc implicitly tunes the adaptation
gain γ2. Substituting Eqs. (4.114) and (4.115) in V̇ finally gives
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V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + eTPB(w + d1)−

−eTPB(θf − θ∗
f )Tφ(x) − eTPB(θg − θ∗

g )
Tφ(x)uc ⇒

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + eTPB(w + d1) + eTPBwα.

(4.117)

Denoting w1 = w + d1 + wα one gets

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + eTPBw1 or equivalently,

V̇ = − 1
2e

TQe − 1
2ρ2 eTPBBTPe + 1

2e
TPBw1 + 1

2w
T
1 B

TPe
(4.118)

Lemma: The following inequality holds:

1
2e

TPBw1 + 1
2w

T
1 B

TPe − 1
2ρ2 eTPBBTPe ≤ 1

2ρ
2wT

1 w1 (4.119)

Proof : The binomial (ρa − 1
ρ
b)2 ≥ 0 is considered. Expanding the left part of the

above inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(4.120)

The following substitutions are carried out: a = w1 and b = eTPB and the previous
relation becomes

1
2w

T
1 B

TPe + 1
2e

TPBw1 − 1
2ρ2 eTPBBTPe ≤ 1

2ρ
2wT

1 w1 (4.121)

The previous inequality is used in V̇ , and the right part of the associated inequality
is enforced

V̇≤ − 1

2
eTQe + 1

2
ρ2wT

1w1 (4.122)

Equation (4.122) can be used to show that the H∞ performance criterion is satisfied.
For ρ sufficiently small the right part of the previous inequality will remain upper
bounded by zero, and in this manner the asymptotic stability of the control loop is
demonstrated. Additionally, the integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||e||2dt + 1

2ρ
2
∫ T
0 ||w1||2dt ⇒

2V (T ) + ∫ T
0 ||e||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||w1||2dt

(4.123)

Moreover, if there exists a positive constant Mw > 0 such that

∫ ∞
0 ||w1||2dt ≤ Mw (4.124)
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Fig. 4.12 Convergence of the robot’s state variables (blue line): a setpoint 1 b setpoint 2 (red line)

then one gets ∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Mw (4.125)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (4.109) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eTPe≤2V (0) + ρ2Mw}. According to the
above and with the use of Barbalat’s Lemmaone obtains limt→∞e(t) = 0.

4.3.4 Simulation Tests

The efficiency of the proposed adaptive fuzzy control scheme for the underactuated
robotic manipulator was evaluated in the tracking of various setpoints for state vari-
able q1 i.e. the linear displacement of mass M1 of the mechanism and state variable
q3, i.e. the rotation angle of joint A. As it can be observed in Figs. 4.12, 4.13 and 4.14,
the proposed control scheme enabled accurate tracking of the reference setpoints by
the robot’s state variables. Indicative results about the estimation of unknown func-
tions fv(x, t) and gv(x, t) in the robot’s dynamics by the neurofuzzy approximators is
shown in Fig. 4.15. By including an additional term in the control loop that was based
on the disturbances estimation it became possible to compensate for the disturbances
effects.

Flatness-based adaptive fuzzy control approach is a completely model-free con-
trol method. It needs no prior knowledge about the system’s dynamics (apart from
the order of the system, and also needs no prior knowledge about the values of
the parameters of the system’s model). The proposed flatness-based adaptive fuzzy
control approach can be applied to both robotic systems that admit static feedback
linearization as well as to robotic models that admit dynamic feedback linearization.
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Fig. 4.13 Convergence of the robot’s state variables (blue line): a to setpoint 3 b to setpoint 4 (red
line)
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Fig. 4.14 Convergence of the robot’s state variables (blue line): a to setpoint 5 b to setpoint 6 (red
line)

The necessary and sufficient condition for the application of the proposed adaptive
fuzzy control method is the robot system to be differentially flat. This enables the
use of adaptive fuzzy control to a wide class of dynamical systems.

Flatness-based control can be applied to a wider class of dynamical systems than
Lie algebra-based control. This is because the necessary and sufficient condition for
the application of flatness-based adaptive fuzzy control is the system to differentially
flat. This covers the widest class of nonlinear dynamical systems. On the other side,
the necessary and sufficient condition for the application of Lie algebra-based con-
trol is the system to be input-to-state linearizable. This constrains the application of
the method to a more narrow class of dynamical system. Besides, by using differ-
ential flatness theory one can solve simultaneously the control and state estimation
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Fig. 4.15 Estimation of functions fv(x, t) and gv(x, t)of the robot dynamics byneurofuzzynetworks
when tracking: a setpoint 1 b setpoint 2

problem for the case of nonlinear underactuated robotic manipulators, without the
need appearing in the Lie algebra-based approach for computing Jacobian matrices
of the system’s transformed state vector.

Comparison of flatness-based adaptive control to other nonlinear control methods
(i) An alternative global linearization-based control method is Lie algebra-based
control. However, as mentioned above this is applicable to a more constrained class
of robotic systems. Moreover, to solve the associated state estimation and filtering
problems the method requires the computation of Jacobian matrices, (ii) Another
option is local linearization-based controlmethods. Thesemake use of approximately
linearized dynamical models of the robot which are obtained round local operating
points (equilibria). This linearization procedure requires Taylor series expansion of
the robotic model and the computation of Jacobian matrices. Besides, the use of an
approximately linearized method introduces to the control loop inherent modelling
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errors and perturbations which should be continuously suppressed by the robustness
of the feedback controller.

4.4 Nonlinear Optimal Control for Closed-Chain
Kinematic Mechanisms

4.4.1 Outline

In this section a nonlinear H-infinity control method is proposed for solving the
problem of stabilization and trajectory tracking by the joints of an underactuated
closed-chain multi-DOF robotic mechanism. The robot has the form of a closed
kinematic chain and the control inputs are the torques that are generated by actuators
mounted on its joints [286, 513–515]. The dynamic model of the robot undergoes
approximate linearization around a temporary equilibriumwhich is redefined at each
iteration of the control algorithm andwhich consists of the present value of the robot’s
state vector and of the last value of the control inputs vector that was exerted on the
system. The approximate linearization is based on Taylor series expansion and on the
computation of the associated Jacobian matrices [33, 431, 461, 463]. The modelling
error which is due to truncation of higher-order terms in the Taylor series expansion
is considered to be a disturbance that is compensated by the robustness of the control
algorithm [450, 452, 457, 460].

For the linearized equivalent model of the robotic mechanism an H-infinity feed-
back controller is designed, actually giving solution to the nonlinear optimal control
problem of the robot under model uncertainty and perturbations [132, 305, 564].
This controller implements the solution to a mini-max differential game, in which
the disturbance inputs to the robotic model try to maximize a quadratic cost function
while the control input tries to minimize it. The computation of the feedback con-
trol gain requires the solution of an algebraic Riccati equation at each iteration of
the control program. Through Lyapunov stability analysis it is shown that the feed-
back control scheme satisfies an H-infinity tracking performance criterion, which
signifies elevated robustness to modelling uncertainty and external perturbations.
Moreover, under moderate conditions the global asymptotic stability of the control-
loop is proven. To solve the state estimation problem for the closed-chain robotic
mechanism and to implement state estimation-based control the H-infinity Kalman
Filter is proposed [169, 511].

Despite its computational and conceptual simplicity the proposed control method
has an excellent performance. Comparing to the control of closed-chain robotic
systems that is based on global linearization methods, the following features can
be attributed to the presented nonlinear H-infinity control scheme (i) it is applied
directly on the nonlinear dynamical model of the closed-chain robotic mechanism
and does not require the computation of diffeomorphisms (change of variables) that
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will bring the system into an equivalent linearized form, (ii) the computation of the
feedback control signal follows an optimal control concept and requires the solution
of an algebraic Riccati equation at each iteration of the control algorithm, (iii) the
control input is applied directly on the nonlinear model of the robot and not on a
linearized equivalent description of it. In such a manner, inverse transformations that
may come against singularity problems are not used in the computation of the real
control input.

4.4.2 Approximate Linearization of the Closed-Chain
Closed-Chain Robotic Mechanism

The closed-chain robotic mechanism has been depicted in Fig. 4.2. The dynamic
model of the robotic mechanism has been shown to be

ẋ = f (x) + g1(x)u1 + g2(x)u2 (4.126)

where the state vector is x = [x1, x2, x3, x4]T = [q1, q3, q̇1, q̇3]T , and vector fields
f (x), g1(x) and g2(x) are given by Eqs. (4.9), (4.10) and (4.11) respectively.

The robotic mechanism undergoes approximate linearization round its present
operating point (x∗, u∗), where x∗ denotes the present value of the state vector and
u∗ denotes the last value of the control input that was exerted on the system. This
linearization procedure requires the computation of Jacobian matrices and gives

ẋ = Ax + Bu + d̃ (4.127)

where d̃ is the modelling error due to approximate linearization and cut-off of higher
order terms in the Taylor series expansion, while matrices A and B are obtained from
the computation of the Jacobian matrices

A = ∇x[f (x) + g1(x)u1 + g2(x)u2] (4.128)

or by denoting h(x, u) = [f (x) + g1(x)u1 + g2(x)u2] one has the following descrip-
tion for the Jacobian matrix of A

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂h1
∂x1

∂h1
∂x2

∂h1
∂x3

∂h1
∂x4

∂h2
∂x1

∂h2
∂x2

∂h2
∂x3

∂h2
∂x4

∂h3
∂x1

∂h3
∂x2

∂h3
∂x3

∂h3
∂x4

∂h4
∂x1

∂h4
∂x2

∂h4
∂x3

∂h4
∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.129)
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For the first row of the Jacobian matrix ∇x(f (x)) it holds that ∂f1
∂x1

= 0, ∂f1
∂x2

= 0,
∂f1
∂x3

= 1, ∂f1
∂x4

= 0.

For the second row of the Jacobian matrix ∇x(f (x)) it holds that
∂f2
∂x1

= 0, ∂f2
∂x2

= 0,
∂f2
∂x3

= 0, ∂f2
∂x4

= 1.

For the third row of the Jacobian matrix ∇x(f (x)) it holds that
∂f3
∂x1

= 0, ∂f3
∂x3

= 0 and
also

∂f3
∂x2

= 2l3M2(−k2sin(x2)+k2(π−x2)cos(x2)−(I3+I4)x24sin(x2))·[M2(I3+I4)+M1(I3+I4+4M2l23 sin
2(x2))]

[M2(I3+I4)+M1(I3+I4+4M2l23 sin
2(x2))]2 −

−[−k2ld I3+I4+2l3M2(k2(π−x2)sin(x2)+(I3+I4)x24cos(x2))]·[M14M2l23 2sin(x2)cos(x2)]]
[M2(I3+I4)+M1(I3+I4+4M2l23 sin

2(x2))]2

∂f3
∂x4

= 2l3M2(I3+I4)2x4cos(x2)
[M2(I3+I4)+M1(I3+I4+4M2l23 sin

2(x2))]

For the fourth row of the Jacobian matrix ∇x(f (x)) it holds that
∂f4
∂x1

= 0, ∂f4
∂x3

= 0 and
also

∂f4
∂x2

=
[−k4(M1+M2)+2l3M2cos(x2)(k2ld−2I3M2x24cos(x2))][M2(I3+I4)+M1(I3+I4+4M2l23 sin

2(x2))]
[M2(I3+I4)+M1(I3+I4+4M2l23 sin

2(x2))]2 +

+[2l3M2sin(x2)(2I3M2x24sin(x2))][M2(I3+I4)+M1(I3+I4+4M2l23 sin
2(x2))]

[M2(I3+I4)+M1(I3+I4+4M2l23 sin
2(x2))]2

−[k4(M1+M2)(π−x2)+2l3M1sin(x2)(k2ld−2I3M2x24cos(x2))][M1(4M2l23 )2sin(x2)cos(x2)]
[M2(I3+I4)+M1(I3+I4+4M2l23 sin

2(x2))]2

∂f4
∂x4

= 2l3M2sin(x2)(−2I3M22x4cos(x2))
[M2(I3+I4)+M1(I3+I4+4M2l23 sin

2(x2))]

In a similar manner for the first row of the Jacobian matrix ∇x(g1(x)) one computes:
∂g11(x)

∂x1
= 0, ∂g11(x)

∂x2
= 0, ∂g11(x)

∂x3
= 0, ∂g11(x)

∂x4
= 0.

For the second row of the Jacobian matrix ∇x(g1(x)) one computes: ∂g12(x)
∂x1

= 0,
∂g12(x)

∂x2
= 0, ∂g12(x)

∂x3
= 0, ∂g12(x)

∂x4
= 0.

For the third row of the Jacobian matrix ∇x(g1(x)) one computes: ∂g13(x)
∂x1

= 0,
∂g13(x)

∂x3
= 0, ∂g13(x)

∂x4
= 0 and also

∂g13(x)
∂x2

= [4M2I23 2sin(x2)cos(x2)][(I3+I4)M2+M1(I3+I4+4M2l23 sin
2(x2))]

[(I3+I4)M2+M1(I3+I4+4M2l23 sin
2(x2))]2 −

−[I3+I4+4M2l23 sin
2(x2)][M1(4M2l23 2sin(x2)cos(x2))]

[(I3+I4)M2+M1(I3+I4+4M2l23 sin
2(x2))]2
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For the fourth row of the Jacobian matrix ∇x(g1(x)) one computes: ∂g14(x)
∂x1

= 0,
∂g14(x)

∂x3
= 0, ∂g14(x)

∂x4
= 0 and also

∂g14(x)
∂x2

= [2M2l3cos(x2)][(I3+I4)M2+M1(I3+I4+4M2l23 sin
2(x2))]

[(I3+I4)M2+M1(I3+I4+4M2l23 sin
2(x2))]2 −

− [2M2l3sin(x2)][M14M2l23 2sin(x2)cos(x2)]
[(I3+I4)M2+M1(I3+I4+4M2l23 sin

2(x2))]2

In a similar manner for the first row of the Jacobian matrix ∇x(g2(x)) one computes:
∂g21(x)

∂x1
= 0, ∂g21(x)

∂x2
= 0, ∂g21(x)

∂x3
= 0, ∂g21(x)

∂x4
= 0.

For the second row of the Jacobian matrix ∇x(g2(x)) one computes: ∂g22(x)
∂x1

= 0,
∂g22(x)

∂x2
= 0, ∂g22(x)

∂x3
= 0, ∂g22(x)

∂x4
= 0.

For the third row of the Jacobian matrix ∇x(g2(x)) one computes: ∂g23(x)
∂x1

= 0,
∂g23(x)

∂x3
= 0, ∂g23(x)

∂x4
= 0 and also

∂g23(x)
∂x2

= [2M2l3cos(x2)][(I3+I4)M2+M1(I3+I4+M2l23 sin
2(x2))]

[(I3+I4)M2+M1(I3+I4+4M2l23 sin
2(x2))]2 −

− [2M2l3sin(x2)][M24M2l23 2sin(x2)cos(x2)]
[(I3+I4)M2+M1(I3+I4+4M2l23 sin

2(x2))]2

For the fourth row of the Jacobian matrix ∇x(g2(x)) one computes: ∂g24(x)
∂x1

= 0,
∂g24(x)

∂x3
= 0, ∂g24(x)

∂x4
= 0 and also

∂g24(x)
∂x2

= − [(M1+M2)M2(4M2l23 2sin(x2)cos(x2))]
[(I3+I4)M2+M1(I3+I4+4M2l23 sin

2(x2))]2

For the elements of the Jacobian matrix A = ∇x[f (x) + g1(x)u1 + g2(x)u2] |(x∗,u∗) t
holds that for i = 1, . . . , 4 and j = 1, . . . , 4

∂hi
∂xj

= [ ∂fi
∂xj

+ ∂g1i
∂xj

u1 + ∂g2i
∂xj

u2] |(x∗,u∗) (4.130)

while in the case of underactuation of the robotic mechanism one has u1 = 0, thus
the elements of this Jacobian matrix become

∂hi
∂xj

= [ ∂fi
∂xj

+ ∂g2i
∂xj

u2] |(x∗,u∗) (4.131)

Moreover, it holds that

B = ∇u = [f (x) + g1(x)u1 + g2(x)u2] |(x∗,u∗) ⇒B = [g1(x) g2(x)] (4.132)
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It is also noted that, for the case of underactuation, that is when u1 = 0, u2 �=0 one
has

B = g2. (4.133)

4.4.3 Design of an H-Infinity Nonlinear Feedback Controller

4.4.3.1 Equivalent Linearized Dynamics of the Closed-Chain Robotic
Mechanism

After linearization round its current operating point, the dynamicmodel of the closed-
chain robotic mechanism’s dynamic model is written as

ẋ = Ax + Bu + d1 (4.134)

Parameter d1 stands for the linearization error in the closed-chain robotic mech-
anism’s dynamic model appearing in Eq. (4.134). The reference setpoints for the
closed-chain robotic mechanism’s state vector are denoted by xd = [xd1 , . . . , xd4 ].
Tracking of this trajectory is achieved after applying the control input u∗. At every
time instant the control input u∗ is assumed to differ from the control input u appear-
ing in Eq. (4.134) by an amount equal to Δu, that is u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (4.135)

The dynamics of the controlled system described in Eq. (4.134) can be also written
as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (4.136)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (4.137)

By subtracting Eq. (4.135) from (4.137) one has

ẋ − ẋd = A(x − xd ) + Bu + d3 − d2 (4.138)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (4.139)

The above linearized form of the closed-chain robotic mechanism’s model can be
efficiently controlled after applying an H-infinity feedback control scheme.
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4.4.3.2 The Nonlinear H-Infinity Control

The initial nonlinear model of the closed-chain robotic mechanism is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (4.140)

Linearization of the system (multi-DOF closed-chain robotic mechanism) is per-
formed at each iteration of the control algorithm round its present operating point
(x∗, u∗) = (x(t), u(t − Ts)). The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (4.141)

where matrices A and B are obtained from the computation of the Jacobians of the
closed-chain robotic system and vector d̃ denotes disturbance terms due to lineariza-
tion errors. The problem of disturbance rejection for the linearized model that is
described by

ẋ = Ax + Bu + Ld̃
y = Cx

(4.142)

where x∈Rn, u∈Rm, d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory
tracking by the closed–chain robotic system’s state vector and simultaneous distur-
bance rejection, considering that the disturbance affects the system in the worst pos-
sible manner. The disturbances’ effects are incorporated in the following quadratic
cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃ T (t)d̃(t)]dt, r, ρ > 0 (4.143)

As explained in previous applications of the H-infinity control to robotic models, the
significance of the negative sign in the cost function’s term that is associated with the
perturbation variable d̃(t) is that the disturbance tries to maximize the cost function
J (t) while the control signal u(t) tries to minimize it. The physical meaning of the
relation given above is that the control signal and the disturbances compete to each
other within a min-max differential game. This problem of min-max optimization
can be written as

minumaxd̃ J (u, d̃) (4.144)

The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
closed-chain robotic system. However, the solution to the min-max optimization
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problem is directly related to the value of parameter ρ. This means that there is an
upper bound in the disturbances magnitude that can be annihilated by the control
signal.

4.4.3.3 Computation of the Feedback Control Gains

For the linearized system given by Eq. (4.142) the cost function of Eq. (4.143) is
defined, where the coefficient r determines the penalization of the control input and
the weight coefficient ρ determines the reward of the disturbances’ effects.

It is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃ T (t)d̃(t)dt < ∞, (ii) the matrices [A,B] and [A,L]

are stabilizable, (iii) the matrix [A,C] is detectable. As shown in previous cases of
application of H-infinity control, the optimal feedback control law is given by

u(t) = −Kx(t) (4.145)

with
K = 1

r B
TP (4.146)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

ATP + PA + Q − P
(
1
r BB

T − 1
2ρ2 LLT

)
P = 0 (4.147)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LTPx(t) (4.148)

The diagram of the considered control loop is depicted in Fig. 4.16.

4.4.4 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assuresH∞ tracking performance for the closed-chain robotic mech-
anism, and that in case of bounded disturbance terms asymptotic convergence to the
reference setpoints is achieved.

The tracking error dynamics for the closed-chain robotic mechanism is written in
the form

ė = Ae + Bu + Ld̃ (4.149)
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Fig. 4.16 Diagram of the control scheme for the closed-chain robotic mechanism

where in the closed-chain robotic mechanism’s case L = I∈R4 with I being the
identity matrix. Variable d̃ denotes model uncertainties and external disturbances of
the closed-chain robotic mechanism’s model. The following Lyapunov function is
considered

V = 1
2e

TPe (4.150)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

TPe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃ ]TPe + 1

2e
TP[Ae + Bu + Ld̃ ]⇒ (4.151)

V̇ = 1
2 [eTAT + uTBT + d̃ T LT ]Pe+

+ 1
2e

TP[Ae + Bu + Ld̃ ]⇒ (4.152)

V̇ = 1
2e

TATPe + 1
2u

TBTPe + 1
2 d̃

T LTPe+
1
2e

TPAe + 1
2e

TPBu + 1
2e

TPLd̃
(4.153)

The previous equation is rewritten as

V̇ = 1
2e

T (ATP + PA)e + ( 12u
TBTPe + 1

2e
TPBu)+

+( 12 d̃
T LTPe + 1

2e
TPLd̃)

(4.154)
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Assumption: For given positive definite matrixQ and coefficients r and ρ there exists
a positive definite matrix P, which is the solution of the following matrix equation

ATP + PA = −Q + P( 2r BB
T − 1

ρ2 LLT )P (4.155)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

TPe (4.156)

By substituting Eqs. (4.155) and (4.156) one obtains

V̇ = 1
2e

T [−Q + P( 2r BB
T − 1

ρ2 LLT )P]e+
+eTPB(− 1

r B
TPe) + eTPLd̃⇒ (4.157)

V̇ = − 1
2e

TQe + 1
r e

TPBBTPe − 1
2ρ2 eTPLLTPe

− 1
r e

TPBBTPe + eTPLd̃
(4.158)

which after intermediate operations gives

V̇ = − 1
2e

TQe − 1
2ρ2 eTPLLTPe + eTPLd̃ (4.159)

or, equivalently
V̇ = − 1

2e
TQe − 1

2ρ2 eTPLLTPe+
+ 1

2e
TPLd̃ + 1

2 d̃
T LTPe

(4.160)

Lemma: The following inequality holds

1
2e

TPLd̃ + 1
2 d̃L

TPe − 1
2ρ2 eTPLLTPe≤ 1

2ρ
2d̃ T d̃ (4.161)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(4.162)

The following substitutions are carried out: a = d̃ and b = eTPL and the previous
relation becomes

1
2 d̃

T LTPe + 1
2e

TPLd̃ − 1
2ρ2 eTPLLTPe≤ 1

2ρ
2d̃ T d̃ (4.163)
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Equation (4.163) is substituted in Eq. (4.160) and the inequality is enforced, thus
giving

V̇≤ − 1
2e

TQe + 1
2ρ

2d̃ T d̃ (4.164)

Equation (4.164) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃ ||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃ ||2dt (4.165)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃ ||2dt ≤ Md (4.166)

then one gets ∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (4.167)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (4.150) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eTPe≤2V (0) + ρ2Md }. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

The outline of the global stability proof is that at each iteration of the control
algorithm the state vector of the system converges towards the temporary equilibrium
and the temporary equilibrium in turn converges towards the reference trajectory.
Thus, the control scheme exhibits global asymptotic stability properties and not
local stability. Assume the ith iteration of the control algorithm and the ith time
interval about which a positive definite symmetric matrix P is obtained from the
solution of the Riccati equation appearing in Eq. (4.155). By following the stages of
the stability proof one arrives at Eq. (4.164) which shows that the H-infinity tracking
performance criterion holds. By selecting the attenuation coefficient to be sufficiently
small and in particular to satisfy ρ2 < ||e||2Q/||d̃ |2 one has that the first derivative
of the Lyapunov function is upper bounded by 0. Therefore for the ith time interval
it is proven that the Lyapunov function defined in Eq. (4.150) is a decreasing one.
This signifies that between the beginning and the end of the ith time interval there
will be a drop of the value of the Lyapunov function and since matrix P is a positive
definite one, the only way for this to happen is the Euclidean norm of the state vector
error e to be decreasing. This means that comparing to the beginning of each time
interval, the distance of the state vector error from 0 at the end of the time interval
has diminished. Consequently as the iterations of the control algorithm advance the
tracking error will approach zero, and this is a global asymptotic stability condition.
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4.4.5 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop can be implemented with the use of information provided by a
small number of sensors and by processing only a small number of state variables.
To reconstruct the missing information about the state vector of the closed-chain
robotic mechanism it is proposed to use a filtering scheme and based on it to apply
state estimation-based control [457]. The recursion of the H∞ Kalman Filter, for
the model of the robotic mechanism, can be formulated in terms of a measurement
update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K(k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K(k)[y(k) − Cx̂−(k)]
(4.168)

Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)

(4.169)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrixP−(k)−1 − θW (k) + CT (k)R(k)−1C(k)will be positive definite.When θ = 0
the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the closed-chain robotic mechanism, and
estimate throughfiltering the rest of the state vector elements.Moreover, the proposed
Kalman filtering method can be used for sensor fusion purposes.

4.4.6 Simulation Tests

The performance of the proposed nonlinear optimal (H-infinity) control scheme in the
problem of stabilization and trajectory tracking of closed-chain robotic mechanisms
has been tested through simulation experiments. The implementation of theH-infinity
feedback control required to solve at each iteration of the control algorithm the
algebraic Riccati equation given in Eq. (4.147). The outcome of this equation was
the positive definite symmetric matrix P and its value was dependent on the values
of the weight matrix Q, as well of the gains r and ρ. These parameters determined
the transient performance of the control scheme. The obtained results are depicted
in Figs. 4.17a, 4.18, 4.19, 4.20, 4.21 and 4.22a. It can be observed that the H-infinity
control method resulted in fast and accurate tracking of the reference setpoints.
Moreover, from Figs. 4.17b, 4.18, 4.19, 4.20, 4.21 and 4.22b it can be confirmed that
the associated control inputs varied smoothly.
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Fig. 4.17 Reference path 1: a Convergence of the state variables of the closed-chain robotic mech-
anism x1,= q1 and x2 = q3 (blue line) to the associated reference values (red line) b Control input
u1 = F and u2 = T3 exerted on the robot
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Fig. 4.18 Reference path 2: a Convergence of the state variables of the closed-chain robotic mech-
anism x1,= q1 and x2 = q3 (blue line) to the associated reference values (red line) b Control input
u1 = F and u2 = T3 exerted on the robot

The tracking performance of the nonlinearH-infinity controlmethod for themodel
of the closed-chain robotic mechanism and under parametric disturbances affecting
the input gain functions g1(x) and g2(x) of Eq. (4.8) is outlined in Table4.3. More-
over, the tracking performance of the H-infinity control algorithm under paramet-
ric disturbances (case No 5 of Table4.3) is depicted in Fig. 4.23. It can be noticed
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Fig. 4.19 Reference path 3: a Convergence of the state variables of the closed-chain robotic mech-
anism x1,= q1 and x2 = q3 (blue line) to the associated reference values (red line) b Control input
u1 = F and u2 = T3 exerted on the robot
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Fig. 4.20 Reference path 4: a Convergence of the state variables of the closed-chain robotic mech-
anism x1,= q1 and x2 = q3 (blue line) to the associated reference values (red line) b Control input
u1 = F and u2 = T3 exerted on the robot

that despite parametric perturbations the tracking accuracy of the control method
remained satisfactory.

It is worth mentioning that the H-infinity optimal control scheme has not been
previously applied to closed-chain kinematic mechanisms [418, 420, 425]. The pre-
sented control method stands for a new result in the area of nonlinear control of
robotic mechanisms. Moreover, it is noteworthy that there is no need to consider lin-
earization at multiple operating points (equilibria). It suffices to consider one single
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Fig. 4.21 Reference path 5: a Convergence of the state variables of the closed-chain robotic mech-
anism x1,= q1 and x2 = q3 (blue line) to the associated reference values (red line) b Control input
u1 = F and u2 = T3 exerted on the robot
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Fig. 4.22 Reference path 6: a Convergence of the state variables of the closed-chain robotic mech-
anism x1,= q1 and x2 = q3 (blue line) to the associated reference values (red line) b Control input
u1 = F and u2 = T3 exerted on the robot

equilibrium at each iteration of the control method consisting of the present value
of the system’s state vector and the last value of the control inputs vector exerted on
it. Unlike design of stabilizing feedback controllers based on the linearization of the
state-space model round multiple operating points and making use of multiple linear
local models, the proposed control method considers only one time-varying equilib-
rium which at each iteration of the control algorithm is made to converge towards
the reference trajectory. Moreover, there is no need to design multiple local feedback
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Table 4.3 RMSE of the robot’s state variables

No % change RMSEx1 RMSEx2 RMSEx3 RMSEx4

1 0 2.0·10−4 0.7·10−4 0.1·10−4 0.1·10−4

2 50 7.0·10−4 1.0·10−4 2.0·10−4 2.0·10−4

3 100 11.0·10−4 3.0·10−4 5.0·10−4 5.0·10−4

4 150 13.0·10−4 4.0·10−4 6.0·10−4 6.0·10−4

5 200 15.0·10−4 5.0·10−4 7.0·10−4 7.0·10−4

6 250 16.0·10−4 6.0·10−4 8.0·10−4 8.0·10−4

7 300 16.0·10−4 6.0·10−4 8.0·10−4 8.0·10−4

8 350 17.0·10−4 7.0·10−4 9.0·10−4 9.0·10−4
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Fig. 4.23 Reference path 2 under parametric disturbances: a Convergence of the state variables of
the closed-chain robotic mechanism x1,= q1 and x2 = q3 (blue line) to the associated reference
values (red line) b Control input u1 = F and u2 = T3 exerted on the robot

controllers through the solution of multiple algebraic Riccati equations, each one
related to a local linear model. Besides there is no need to find a common symmetric
positive definite matrix P standing for the common solution of the multiple algebraic
Riccati equations (approach followed in [457], Chap. 10). In the proposed H-infinity
nonlinear control method, at each iteration of the control algorithm there is solution
of one single algebraic Riccati equation and the positive definite symmetric matrix
P which is obtained out of it is used for the design of the stabilizing feedback con-
troller. The provided stability analysis relying on Eq. (4.164) proves finally global
asymptotic stability properties for the control loop.



Chapter 5
Flexible-Link Robots

Abstract Control for flexible-link robots is a non-trivial problem that has elevated
difficulty comparing to the control of rigid-link manipulators. This is because the
dynamic model of the flexible-link robot contains the nonlinear rigid link motion
coupled with the distributed effects of the links’ flexibility. This coupling depends
on the inertia matrix of the flexible manipulator while the vibration characteristics
are determined by structural properties of the links such as the damping and stiff-
ness parameters. Moreover, in contrast to the dynamic model of rigid-link robots the
dynamic model of flexible-link robots is an infinite dimensional one. As in the case
of the rigid-link manipulators there is a certain number of mechanical degrees of
freedom associated to the rotational motion of the robot’s joints and there is also an
infinite number of degrees of freedom associated to the vibration modes in which the
deformation of the flexible link is decomposed The controller of a flexible manipu-
lator must achieve the same motion objectives as in the case of a rigid manipulator,
i.e. tracking of specific joints position and velocity setpoints. Additionally, it must
also stabilize and asymptotically eliminate the vibrations of the flexible-links that
are naturally excited by the joints’ rotational motion. A first approach for the control
of flexible-link robots is to consider the vibration modes as additional state variables
and to develop stabilizing feedback controller for the extended state-space model of
the flexible manipulator. To this end, one can use again (i) control based on global
linearization methods, (ii) control based on approximate linearization methods, (iii)
control based on Lyapunov methods. Another approach to the solution of the con-
trol problem of flexible manipulators is to treat the robot as a distributed parameter
system and to apply control directly to the partial differential equations models that
describe the motion of the flexible links. Again global asymptotic stability for this
control approach can be demonstrated. On the other side, nonlinear filtering methods
can be used for implementing state estimation-based feedback control through the
measurement of a limited number of elements from the flexible robot’s state vector.
In particular, the topics which are developed by the present chapter are as follows:
(a) Inverse dynamics control of flexible-link robotic manipulators (b) sliding-mode
control of flexible-link robotic manipulators.
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5.1 Chapter Overview

The topics which are developed by the present chapter are as follows: (a) Inverse
dynamics control of flexible-link robotic manipulators (b) sliding-mode control of
flexible-link robotic manipulators.

With reference to (a) a comparative study on representative methods for model-
based andmodel-free control of flexible-link robots is given.Model-based techniques
for the control of flexible-link robots such as inverse dynamics control can come
up against limitations when an accurate model is unavailable, due to parameters
uncertainty or truncation of high order vibration modes. On the other hand, model-
free control methods, such as energy-based control can result in stabilization and
satisfactory trajectory tracking performance of flexible-link robots.

With reference to (b) a robust control approach for a 2-link flexible robotic manip-
ulator is developed that comprises sliding-mode control theory andKalman Filtering.
It is aimed to achieve: (i) simultaneous position control and suppression of the flexi-
ble structure vibrations. Assuming a known model of the robot dynamics, this can be
achieved with the use of robust model-based control schemes, such as sliding-mode
control, (ii) estimation of the complete state vector of the vibrating structure, so as
to implement state-feedback control. To solve the latter problem, in this chapter,
state estimation for the flexible-link robot is implemented with the use of Kalman
Filtering. The fast recursion of the Kalman Filter provides real-time estimates of the
robot’s state vector through the processing of measurements coming from a limited
number of sensors.

5.2 Inverse Dynamics Control of Flexible-Link Robots

5.2.1 Outline

Flexible-link robots comprise an important class of systems that include lightweight
arms for assembly, civil infrastructure, bridge/vehicle systems, military applications
and large-scale space structures. Modelling and vibration control of flexible sys-
tems have received a great deal of attention in recent years [224, 231, 442]. This
section presents a comparative study on representative methods for model-based and
model-free control of flexible-link robots. Conventional approaches to design a con-
trol system for a flexible-link robot often involve the development of a mathematical
model describing the robot dynamics, and the application of analytical techniques to
this model to derive an appropriate control law [22, 75, 119]. Usually, such a math-
ematical model consists of nonlinear partial differential equations, most of which
are obtained using some approximation or simplification [224, 442]. The inverse
dynamics model-based control for flexible link robots relies on modal analysis, i.e.
on the assumption that the deformation of the flexible link can be written as a finite
series expansion containing the elementary vibration modes [583]. However, this
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inverse-dynamics model-based control may result into unsatisfactory performance
when an accurate model is unavailable, due to parameters uncertainty or truncation
of high order vibration modes [268].

Another model-based approach for the control of flexible-link robots is flatness-
based control. Flatness-based control is a powerful tool for the control of distributed
parameter systems which does not follow modal analysis but the description of
the flexible robot using the concept of differential flatness [16, 39, 146]. It has
been shown that flexible-link robots and flexible beams are flat systems and thus
flatness-based control can be efficiently used for trajectory tracking of flexible-link
manipulators [145, 337, 349, 476]. The decomposition of the desirable trajectory
into a series of a reference flat output (Gevrey function) and its derivatives enables to
generate open-loop control that assures tracking of the desirable trajectory. To achieve
additional robustness a PID control loop can be designed to operate in parallel to
the flatness-based controller of the flexible-link manipulator. Different model-based
approaches for the control of flexible link manipulators have been also developed.
In [365] wave-based control of flexible-link robots has been proposed. First a new
wave-based model of uniform mass-spring systems was introduced and next this
model was used to derive a control method for flexible-link robotic systems. In [41],
a survey of model-based approaches for the control of flexible-link manipulators has
been given.

To overcome the inefficiencies of the aforementioned inverse-dynamics control,
model-free control methods have been studied [351, 529, 612]. A number of research
papers employ model-free approaches for the control of flexible-link robots based on
fuzzy logic and neural networks. In [557] control of a flexible manipulator with the
use of a neuro-fuzzy method is described, where the weighting factor of the fuzzy
logic controller is adjusted by the dynamic recurrent identification network. The
controller works without any prior knowledge about the manipulator’s dynamics.
Control of the end-effector’s position of a flexible-link manipulator with the use of
a neural and a fuzzy controller has been presented in [531, 543, 575]. In [575] an
intelligent optimal control for a nonlinear flexible robot arm driven by a permanent-
magnet synchronous servo motor has been designed using a fuzzy neural network
control approach. This consists of an optimal controller which minimizes a quadratic
performance index and a fuzzy neural-network controller that learns the uncertain
dynamics of the flexible manipulator. In [543] a fuzzy controller has been developed
for a three-link robot with two rigid links and one flexible fore-arm. This controller’s
design is based on fuzzy Lyapunov synthesis where a Lyapunov candidate function
has been chosen to derive the fuzzy rules. In [530] a neuro-fuzzy scheme has been
proposed for position control of the end effector of a single-link flexible robot manip-
ulator. The scale factors of the neuro-fuzzy controller are adapted on-line using a
neural network which is trained with an improved back-propagation algorithm. In
[73] two different neuro-fuzzy feed-forward controllers have been proposed to com-
pensate for the nonlinearities of a flexible manipulator. In [412] the dynamics of a
flexible link has been modeled using modal analysis and then an inverse dynam-
ics fuzzy controller has been employed to obtain tracking and deflection control.
In [503] a fuzzy logic controller has been applied to a flexible-link manipulator. In
this distributed fuzzy logic controller the two velocity variables which have higher
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importance have been grouped together as the inputs to a velocity fuzzy controller
while the two displacement variables which have lower importance degrees have
been used as inputs to a displacement fuzzy logic controller. In [204] adaptive con-
trol for a flexible-link manipulator has been achieved using a neuro-fuzzy time-delay
controller. In [362] a genetic algorithm has been used to improve the performance
of a fuzzy controller designed to compensate for the links’ flexibility and the joints’
flexibility of a robotic manipulator.

In this section the energy-based model-free control method of flexible-link robots
is examined and shown to be equally effective to the model-based control methods.
In the energy-based control method, instead of using the dynamical model of the
links, the main stability results are derived with the use of the total energy and the
energy-work relationship of the whole system [164, 491].

5.2.2 Model-Based Control of Flexible Link Robots

5.2.2.1 The Inverse Dynamics Control Method

A common approach in modelling of flexible-link robots is depends on the Euler-
Bernoullimodel [583]. Thismodel consists of nonlinear partial differential equations,
which are obtained using some approximation or simplification. In case of a single-
link flexible manipulator the basic variables of this model are w(x, t) which is the
deformation of the flexible link, and θ(t) which is the joint’s angle.

E ·I ·w′′′′
(x, t) + ρẅ(x, t) + ρx θ̈ (t) = 0 (5.1)

It θ̈ (t) + ρ

∫ L

0
xẅ(x, t)dx = T (t) (5.2)

In Eqs. (5.1) and (5.2),w
′′′′
(x, t) = ∂4w(x,t)

∂x4 ,ẅ(x, t) = ∂2w(x,t)
∂t2 , while It is the moment

of inertia of a rigid link of length L , ρ denotes the uniform mass density and E I is
the uniform flexural rigidity with units N ·m2. To calculatew(x, t), instead of solving
analytically the above partial differential equations,modal analysis can be usedwhich
assumes that w(x, t) can be approximated by a weighted sum of orthogonal basis
functions

w(x, t) =
ne∑
i=1

φi (x)vi (t) (5.3)

where index i = [1, 2, . . . , ne] denotes the normal modes of vibration of the flexible
link. Using modal analysis a dynamical model of finite-dimensions is derived for the
flexible link robot.Without loss of generality assume a 2-link flexible robot (Fig. 5.1)
and that only the first two vibration modes of each link are significant (ne = 2).�1 is
a point on the first link with reference to which the deformation vector is measured.
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Fig. 5.1 A 2-DOF
flexible-link robot

Similarly, �2 is a point on the second link with reference to which the associated
deformation vector is measured. In that case the dynamicmodel of the robot becomes
[268, 583]:

(
M11(z) M12(z)
M21(z) M22(z)

)
·
(

θ̈

v̈

)
+

(
F1(z, ż)
F2(z, ż)

)
+

(
02×2 02×4

04×2 D(z)

)
·
(

θ̇

v̇

)
+

+
(
02×2 02×4

04×2 K (z)

)
·
(

θ

v

)
=

(
T (t)
04×1

) (5.4)

where z = [θ, v]T , with θ = [θ1, θ2]T , v = [v11, v12, v21, v22]T (vector of the vibra-
tion modes for links 1 and 2), and [F1(z, ż), F2(z, ż)]T = [0, 0]T (centrifugal and
Coriolis forces). The elements of the inertia matrix are: M11 ∈ R2×2, M12 ∈ R2×4,
M21 ∈ R4×2, M22 ∈ R4×4. The damping and elasticity matrices of the aforemen-
tioned model are D ∈ R4×4 and K ∈ R4×4. Moreover the vector of the control
torques is T (t) = [T1(t), T2(t)]T .

The principle of inverse dynamics control is to transform the nonlinear system
of Eq. (5.4) into a linear one, so that linear control techniques can be applied. From
Eq. (5.4) it holds that:

M11θ̈ + M12v̈ + F1(z, ż) = T (t) (5.5)

M21θ̈ + M22v̈ + F2(z, ż) + Dv̇ + Kv = 0 (5.6)

Equation (5.6) is solved with respect to v̈

v̈ = −M−1
22 M21θ̈ − M−1

22 F2(z, ż) − M−1
22 Dv̇ − M−1

22 Kv (5.7)

Equation (5.7) is substituted in Eq. (5.5) which results into:

(M11 − M12M
−1
22 M21)θ̈ − M12M

−1
22 F2(z, ż) − M12M

−1
22 Dv̇ − M12M

−1
22 Kv + F1(z, ż) = T (t)

(5.8)
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The following control law is now introduced [583]:

T (t) = −M12M
−1
22 F2(z, ż) − M12M

−1
22 Dv̇−

−M12M
−1
22 Kv + F1(z, ż) + (M11 − M12M

−1
22 M21)u0

(5.9)

u0 = θ̈d − Kd(θ̇ − θ̇d) − Kp(θ − θd) (5.10)

By replacing Eqs. (5.9) in (5.8) one gets

(M11 − M12M
−1
22 M21)θ̈ − M12M

−1
22 F2(z, ż) − M12M

−1
22 Dv̇ − M12M

−1
22 Kv + F1(z, ż) =

= −M12M
−1
22 F2(z, ż) − M12M

−1
22 Dv̇ − M12M

−1
22 Kv + F1(z, ż) + (M11 − M12M

−1
22 M21)u0

which finally results into
θ̈ = u0 (5.11)

Equation (5.11) implies that linearisation and decoupling of the robotic model has
been achieved. Substituting Eqs. (5.10) into (5.11) gives:

θ̈ − θ̈d + Kd(θ̇ − θ̇d) + Kp(θ − θd) = 0 ⇒
ë(t) + Kdė(t) + Kpe(t) = 0

(5.12)

Gain matrices Kp and Kd are selected, so as to assure that the poles of Eq. (5.12) are
in the left semiplane. This results into

limt→∞e(t) = 0 ⇒ limt→∞θ(t) = θd(t) (5.13)

Consequently, for θd(t) =constant it holds limt→∞θ̈ (t) = 0. Then Eq. (5.7) gives

v̈ = −M−1
22 F2 − M−1

22 Dv̇ − M−1
22 Kv (5.14)

and for F2(z, ż) = 0 results into

v̈ + M−1
22 Dv̇ + M−1

22 Kv = 0 (5.15)

which is the differential equation of the free damped oscillator. Suitable selection of
the damping matrix D and the elasticity matrix K assures that

limt→∞v(t) = 0 (5.16)

5.2.2.2 Shortfalls of Inverse Dynamics Control for Flexible-Link Robots

The objective of the inverse-dynamics model-based control for flexible-link robots,
that was presented in Sect. 5.2.2.1, is to force the rigid-mode variable θ(t) to follow
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a desired trajectory or to converge to a certain set-point and at the same time to
suppress the flexible modes of the links v(t). However, this control approach appears
several weaknesses [268]:
1. In general there are nr flexible links, thus θ(t) ∈ Rnr . The control input available
is T (t) ∈ Rnr , since there is one actuator per link. Considering n f flexible modes
for each link means that nr×n f additional degrees of freedom are introduced. Thus
appropriate control is required to suppress the vibrations. However, the number of
control inputs is nr which is less than the number of the degrees of freedom. Conse-
quently, there is reduced control effectiveness.
2. The situation becomes more complicated, because by selecting the control input
T (t) to achieve practical tracking performance of the rigid variable θ(t), one actually
destabilizes the flexible modes v(t). This is due to the non-minimum phase nature
of the zeros dynamics of the flexible-link arms.
3. Another drawback of model-based control is that the model of Eq. (5.4), is derived
assuming a finite number of vibration modes. This simplification is not always appli-
cable since higher-order modes may be excited. The proposed model-based control
does not provide robustness to external disturbances.

5.2.3 Energy-Based Control of Flexible Link Robots

5.2.3.1 Energy-Based Control

To overcome the weaknesses of the inverse-dynamics model-based control for flex-
ible link robots, model-free control methods have been proposed. Of interest is the
energy-based control which requires only knowledge of the potential and kinetic
energy of the flexible manipulator. Energy-based control of flexible-link robots
assures closed-loop system stability in the case of constant set-points (point-to-point
control).

The kinetic energy Ekin of a n-link flexible robot is given by [164, 583]

Ekin =
n∑

i=1

1

2
ρ

∫ Li

0
[ ṗ2xi + ṗ2yi ]dx (5.17)

In Eq. (5.17), pxi is the position of elementary segment of the i th link along x-axis,
while pyi is the position of elementary segment of the i th link along y-axis. On the
other hand the potential energy Ep of a planar n-link flexible robot is due to the links
deformation and is given by

Ep =
n∑

i=1

1

2
E I

∫ Li

0
[ ∂2

∂x2
wi (x, t)]2dx (5.18)

Thus to estimate the robot’s potential energy, measurement of the flexible links
strain ∂2wi (x,t)

∂x2 is needed. The potential energy includes only the energy due to strain,
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while the gravitational effect as well as longitudinal and torsional deformations are
neglected.

Moreover, the energy provided to the flexible-link robot by the i th motor is given
by

Wi =
∫ t

0
Ti (τ )θ̇(τ )dτ (5.19)

Consequently, the power of the i th motor is

Pi (t) = Ti (t)θ̇i (t) (5.20)

where Ti (t) is the torque of the i th motor and θ̇i (t) is the motor’s angular velocity.
Thus, the aggregate motors energy is given by

W =
n∑

i=1

∫ t

0
Ti (τ )θ̇i (τ )dτ (5.21)

The energy that is provided to the flexible-link robot by its motors takes the form
of: (i) potential energy (due to the deformation of the flexible links) and (ii) kinetic
energy. This energy flow is described by

[Ekin(t) + Ep(t)] − [Ekin(0) + Ep(0)] = W (5.22)

Energy-based control of flexible-link robots considers that the torque of the i th motor
(control output) is based on a PD-type controller and is given by [164, 583]:

Ti (t) = −Kpi [θi (t) − θdi (t)] − Kdi θ̇i (t)−
−Kiw

′′
i (x, t)

∫ t
0 θ̇i (s)w

′′
i (x, s)ds, i = 1, 2, . . . , n

(5.23)

where Kpi is the i th P control gain, Kdi is the i th D control gain, θdi , is the desir-
able angle of the i th link, Ki is also a positive (constant) gain, and wi (x, t) is the
deformation of the i th link.

5.2.3.2 Stability Proof

The proposed control law of Eq. (5.23) assures the asymptotic stability of the closed-
loop system in case of constant set-points (point to point control). The following
Lyapunov (energy) function is considered [164, 583]:

V = Ekin + Ep + 1

2

N∑
i=1

Kpi [θi (t) − θdi (t)]2 + 1

2

n∑
i=1

Ki [
∫ t

0
θ̇i (s)w

′′
i (s, t)ds]2

(5.24)
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where Ekin is given by Eq. (5.17) and denotes the kinetic energy of the robot’s links,
while Ep is given by Eq. (5.18) and denotes the potential energy of the robot’s links
due to deformation.

It holds that V (t) > 0 since Ekin > 0, Ep > 0, 1
2

∑n
i=1Kpi [θi (t) − θdi (t)]2 > 0

and 1
2

∑n
i=1Ki [

∫ t
0 θ̇i (t)wi (s, t)]2 > 0. Moreover, it holds that

V̇ (t) = Ėkin + Ė p + ∑n
i=1Kpi [θi (t) − θdi (t)]θ̇i (t)+

1
2

∑n
i=12Ki [

∫ t
0 θ̇i (s, t)w

′′
i (s, t)ds][θ̇i (t)w′′

i (x, t)]
(5.25)

while using Eqs. (5.20) and (5.22) the derivative of the robot’s energy is found to be

Ėkin(t) + Ė p(t) =
n∑

i=1

Ti (t)θ̇i (t) (5.26)

where the torque generated by the i th motor is given by Eq. (5.23). By substituting
Eqs. (5.26) and (5.23) in (5.25) one gets

V̇ (t) = −∑n
i=1Kpi [θi (t) − θdi (t)]θ̇i (t)−

−∑n
i=1Kdi θ̇

2
i (t) − ∑n

i=1[Kiw
′′
i (x, t)

∫ t
0 θ̇i (s)w

′′
i (s, t)ds]θ̇i (t)

+∑n
i=1Kpi [θi (t) − θdi (t)]θ̇i (t) + ∑n

i=1[Kiw
′′
i (x, t)

∫ t
0 θ̇i (s)w

′′
i (s, t)ds]θ̇i (t)

(5.27)
which finally results into,

V̇ (t) = −
n∑

i=1

Kdi θ̇
2
i (5.28)

Obviously, fromEq. (5.28) it holds that V̇ (t)≤0,which implies stability of the closed-
loop system, but not asymptotic stability. Asymptotic stability can be proven as fol-
lows [583]: If the i th link did not converge to the desirable angle, i.e. limt→∞θi (t)
= ai �=θdi (t) then the torque of the i th motor would become equal to a small pos-
itive constant. This is easy to prove from Eq. (5.23) where the terms Kdi θ̇i (t) = 0,
Kiwi (x, t)

∫ t
0 θ̇i (s)w

′′
i (s, t)ds = 0,while the term Kpi [θi (t) − θdi (t)] = Kpi ai becomes

equal to a positive constant.
However, if Ti (t) = constant �=0 then the i th link should continue to rotate. This

means that θi (t) �=ai , which contradicts the initial assumption limt→∞θi (t)= ai .
Therefore, it must hold limt→∞Ti (t) = 0 and limt→∞θi (t) = θdi (t). Consequently,
limt→∞V (t) = 0.

The proposed energy-based controller is a decentralized controller since the con-
trol signals Ti (t) of the i th motor are calculated using only the angle θi (t) and the
deformation wi (x, t) of the i th link.
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5.2.4 Force Control in Flexible-Link Robots

Up to now the study of control methods for flexible-link robots followed the assump-
tion that the robot operated in the free space. However, when in contact with a surface,
forces are exerted to robot’s end-effector and a significant issue that has to be taken
into account in the design of the robotic controller is force control. To solve the force
control problem, a kinematic model of a flexible-link robot is first introduced.

5.2.4.1 Overview of the Kinematic Model of Flexible-Link Robots

Assume the i th linkof theflexible-link robot and the associated rotating frameOi XiYi
(Fig. 5.1). Then the vector of coordinates of the end-effector M is given by

piM = [xi ,wi (xi )]T (5.29)

The coordinates of the end-effector in the inertial frame O1X
′
1Y

′
1 is given by

pM = ri + Wi p
i
M (5.30)

with
Wi = Wi−1Ei−1Ri = Ŵi−1Ri

Ŵ0 = I
(5.31)

where Ri is the rigid rotation matrix that aligns the rotating frame of the i th link to
the inertial frame of the same link, and Ei−1 is the flexible rotation matrix that aligns
the inertial frame of link i to the rotational frame of link i − 1:

Ri =
(
cos(θi ) −sin(θi )

sin(θi ) cos(θi )

)
, Ei =

(
1 −w

′
ie

w
′
ie 1

)
=

(
1 − ∂wi

∂xi
∂wi
∂xi

1

)
(5.32)

ri = ri−1 + Wir
i−1
i (5.33)

where r i−1
i is the distance vector between the origin of the and i th and the i − 1th

frame, ri is the distance vector between the origin of the i th rotational frame and the
inertial frame, and Wi is the rotation matrix calculated with the use of Eq. (5.31).

Using Eqs. (5.33) and (5.43) in the 2-DOF flexible-link robot depicted in Fig. 5.1,
one obtains

r2 = r1 + W1r
1
2 =

(
L1cos(θ1) − w1(L1, t)sin(θ1)

L1sin(θ1) + w1(L1, t)cos(θ1)

)
(5.34)

pM = r2 + W2 p
2
M (5.35)

where
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p2M =
(

L2

w2(L2, t)

)
,W2 = R1E1R2 =(

cos(θ1) −sin(θ1)

sin(θ1) cos(θ1)

)
·
(

1 −w
′
1e

w
′
1e 1

)
·
(
cos(θ2) −sin(θ2)

sin(θ2) cos(θ2)

) (5.36)

The differential kinematic model of the flexible-link robot can now be calculated.
The coordinates of the end-effector in the inertial frame are given by Eq. (5.30).
According to modal analysis the deformation wi (xi , t) in normal modes of vibration
is given by Eq. (5.3). Using the previous 2 equations the kinematic model can be
written as a function of the joint angles θ and of the normal modes of vibration v.

p = k(θ, v) (5.37)

The velocity of the end-effector is calculated through the differentiation of Eq. (5.43).

ṗM = ṙi + Ẇi p
i
M + Wi ṗ

i
M (5.38)

Moreover, it holds that ṙ ii+1 = ṗiM(Li ) = [0, ẇi (xi = Li )]T since there is no longi-
tudinal deformation (ẋi = 0). It also holds that

Ẇi = ˙̂Wi−1Ri + Ŵi−1 Ṙi˙̂Wi = Ẇi Ei + Wi Ėi

(5.39)

It also holds that
Ṙi = SRi θ̇i
Ėi = Sẇ

′
ie

(5.40)

with S =
(
0 −1
1 0

)
. Substituting Eqs. (5.39) and (5.40) in (5.38) the differential kine-

matic model of the flexible-link robot is obtained:

ṗ = Jθ (θ, v)θ̇ + Jv(θ, v)v̇ (5.41)

where

Jθ = ∂k
∂θ
: is the Jacobian with respect to θ

Jv = ∂k
∂v : is the Jacobian with respect to v.

If the end-effector is in contact with the surface�(θ) and is subject to contact-forces
F = [Fx , Fy] then the torques which are developed to the joints are:
J T
θ F : torques that produce the work associated with the rotation angle θ .
J T
v F : torques that produce work associated with the deformation modes v.
The dynamic model of the flexible-link robot given in Eq. (5.4) is corrected into:
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(
M11(z) M12(z)
M21(z) M22(z)

) (
θ̈

v̈

)
+

(
F1(z, ż)
F2(z, ż)

)
+

+
(
02×2 02×4

04×2 D(z)

)(
θ̇

v̇

)
+

(
02×2 02×4

04×2 K (z)

) (
θ

v

)
=

(
T (t) − J T

θ (θ, v)F
−J T

v (θ, v)F

) (5.42)

For a two-link flexible robot of Fig. 5.1 one gets

pM =
(
L1cos(θ1) − w1(L1, t)sin(θ1)

L1sin(θ1) + w1(L1, t)cos(θ1)

)
+

+
(
cos(θ1 + θ2) − w

′
1esin(θ1 + θ2) −sin(θ1 + θ2) − w

′
1ecos(θ1 + θ2)

sin(θ1 + θ2) + w
′
1ecos(θ1 + θ2) cos(θ1 + θ2) − w

′
1esin(θ1 + θ2)

) (
L2

w2

)

(5.43)
with

w1(L1, t) = φ11(L1)v11(t) + φ12(L1)v12(t)
w2(L2, t) = φ21(L2)v21(t) + φ22(L2)v22(t)
w

′
1e = ∂w1(x,t)

∂x |x=L1 = φ
′
11(L1)v11(t) + φ

′
12(L1)v12(t)

(5.44)

The Jacobian Jθ is

Jθ =
⎛
⎝

∂ p(1)
M

∂θ1

∂ p(1)
M

∂θ2

∂ p(2)
M

∂θ1

∂ p(2)
M

∂θ2

⎞
⎠ (5.45)

∂ p(1)
M

∂θ1
= −L1sin(θ1) − w1(L1, t)cos(θ1) − L2sin(θ1 + θ2)−

−L2w
′
1ecos(θ1 + θ2) − w2(L2, t)cos(θ1 + θ2) + w2(L2, t)w

′
1esin(θ1 + θ2)

∂ p(2)
M

∂θ1
= L1cos(θ1) − w1(L1, t)sin(θ1) + L2cos(θ1 + θ2) − L2w

′
1esin(θ1 + θ2)−

−w2(L2, t)sin(θ1 + θ2) + w2(L2, t)w
′
1ecos(θ1 + θ2)

∂ p(1)
M

∂θ2
= −L2sin(θ1 + θ2) − L2w

′
1ecos(θ1 + θ2) − w2(L2, t)cos(θ1 + θ2)+

+w2(L2, t)w
′
1esin(θ1 + θ2)

∂ p(2)
M

∂θ2
= L2cos(θ1 + θ2) − L2w

′
1esin(θ1 + θ2) − w2(L2, t)sin(θ1 + θ2)−

−w2(L2, t)w
′
1ecos(θ1 + θ2)

Similarly, the Jacobian Jv is calculated:

Jv =
⎛
⎝

∂ p(1)
M

∂v11

∂ p(1)
M

∂v12

∂ p(1)
M

∂v21

∂ p(1)
M

∂v22
∂ p(2)

M
∂v11

∂ p(2)
M

∂v12

∂ p(2)
M

∂v21

∂ p(2)
M

∂v22

⎞
⎠ (5.46)

∂ p(1)
M

∂v11
= −φ11(L1)sin(θ1) − L2φ

′
11(L1)sin(θ1 + θ2) − w2(L2, t)φ

′
11(L1)cos(θ1 + θ2)
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∂ p(1)
M

∂v12
= −φ12(L1)sin(θ1) − L2φ

′
12(L1)sin(θ1 + θ2) − w2(L2, t)φ

′
12(L1)cos(θ1 + θ2)

∂ p(1)
M

∂v21
= −φ21(L2)sin(θ1 + θ2) − φ21(L2)w

′
1ecos(θ1 + θ2)

∂ p(1)
M

∂v22
= −φ22(L2)sin(θ1 + θ2) − φ22(L2)w

′
1ecos(θ1 + θ2)

∂ p(2)
M

∂v11
= φ11(L1)cos(θ1) + L2φ

′
11(L1)cos(θ1 + θ2) − w2(L2, t)φ

′
11(L1)sin(θ1 + θ2)

∂ p(2)
M

∂v12
= φ12(L1)cos(θ1) + L2φ

′
12(L1)cos(θ1 + θ2) − w2(L2, t)φ

′
12(L1)sin(θ1 + θ2)

∂ p(2)
M

∂v21
= φ21(L2)cos(θ1 + θ2) − φ21(L2)w

′
1esin(θ1 + θ2)

∂ p(2)
M

∂v22
= φ22(L2)cos(θ1 + θ2) − φ22(L2)w

′
1esin(θ1 + θ2)

5.2.4.2 Interaction with the Compliant Surface

A simple model of elastic force due to contact of the end-effector with a surface is
given by:

F = KeηηT (p − pe) (5.47)

where p = k(θ, v) are the coordinates of the end-effector which are calculated from
the kinematic model, and η is a vector normal to the surface pe. From the second
line of the dynamic model of Eq. (5.42) one obtains:

M21θ̈ + M22v̈ + Dv̇ + Kv = −J T
v (θ, v)F (5.48)

In the steady-state one obtains

v = −K−1 J T
v (θ, v)F − K−1 J T

v (θ, v)ηKe(pn − pen) ⇒
v = −K−1 JvnKe(pn − pen)

(5.49)

where pn = ηT p, pen = ηT pe, and Jvn = J T
v η. The derivative of Eq. (5.49) with

respect to t is calculated.

v̇ = ∂v
∂θ

∂θ
∂t = ∂

∂θ
{−K−1 Jvn Ke(pn − pen)}θ̇ ⇒

v̇ = −K−1 ∂ Jvn
∂θ

Ke(pn − pen) + K−1 Jvn Ke
∂ pen
∂θ

θ̇
(5.50)

which finally results into
v̇ = −K−1Ke J f (θ)θ̇ (5.51)

with J f (θ) = ∂ Jvn
∂θ

Ke(pn − pen) + K−1 Jvn Ke
∂ pen
∂θ

. SubstitutingEq. (5.51) into (5.41)
gives:
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ṗ = Jθ (θ, v)θ̇ + Jv(θ, v){−K−1Ke J f (θ)} ⇒
ṗ = {Jθ (θ, v) − K−1Ke Jv(θ, v)J f (θ)} (5.52)

The overall Jacobian matrix Jp is defined as:

Jp = Jθ (θ, v) − K−1Ke Jv(θ, v)J f (θ) (5.53)

which relates the velocity of the end-effector with the angular velocity of the joints

ṗ = Jp(θ, v)θ̇ (5.54)

5.2.4.3 Force Control

The desirable contact force along the normal vector of surface pe is denoted as Fd

and corresponds to the desirable position pd . The relation between Fd and pd is given
by

pdn = ηT pd = K−1
e Fd + pen (5.55)

or equivalently pdn − pen = K−1
e Fd ⇒ ηT pd − ηT pe = K−1

e Fd . Thus to succeed
contact force equal to Fd the end-effector should reach the depth ηT pd − ηT pe. The
design of the force controller comprises the following steps [509]:
1. For a certain force set-point Fd the corresponding position of the end-effector is
calculated using Eq. (5.55).
2. Knowing pd an inverse kinematics algorithm is used to calculate the associated
joint angles θd and the vibration modes vd .
3. The values of θd and vd are used as set-points of a simple proportional-derivative
joint controller, as the ones described in the previous sections.
The inverse kinematics problem can be solved with the use of an inverse kinematics
algorithm which enables the calculation of θd and vd through the following relation:

θ̇ = J T
P (θ, v)Kp(pd − p) (5.56)

where Jp is the Jacobian of Eq. (5.53), p is the current position of the end-effector, pd
is the desirable position of the end-effector, and Kp is the diagonal feedback matrix
of Eq. (5.56). The convergence conditions of the inverse kinenatics algorithm have
been studied [509]. The calculated values θd and vd which are associated with the
desirable position pd are introduced as set-points in the PD controller of each link.
This is given in:

T (t) = K1(θd − θ) + K2θ̇ + J T
θ (θd , vd)Fdn (5.57)

where Fdn = Ke[ηT pd − ηT pe]η and Jθ is the Jacobian of Eq. (5.45). The term
J T
θ Fdn is added to the control signal to compensate for the torques which are induced

to the joints due to the contact forces.
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Fig. 5.2 A flexible-link
robot which operates in the
presence of compliance
forces

The discrete-time solution of the inverse kinematics gives

θd(k + 1) = θd(k) + Ts J
T
P (θd(k), vd(k))Kp[pd(k) − p(k)] (5.58)

where the Jacobian Jp is given by Eq. (5.53), and Ts is the sampling period. From
Eq. (5.51), one obtains iteratively the setpoints for the normal vibration modes,

vd(k + 1) = −K−1Ke Jvn (θd(k))[pn(k) − pen (k)] (5.59)

with pn = ηT p, pen = ηT pe and Jvn = J T
v η (Fig. 5.2).

5.2.5 Simulation Results

The performance of the previously analyzed model-free control method (energy-
based control) is compared to the performance of model-based techniques (inverse-
dynamics control), in a simulation case study for planar 2-DOF manipulators
(Fig. 5.2).

5.2.5.1 Model-Based Control of Flexible-Link Robots

The 2-DOF flexible link robot of Fig. 5.1 is considered. The robot is planar and
consists of two flexible links of length L1 = 0.45m and L2 = 0.45m, respectively.
The dynamic model of the robot is given by Eq. (5.4). The elements of the inertia
matrix M are:
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M11 =
(
1 2
2 1

)
, M12 = MT

21 =
(

1 1 0.2 0.3
0.5 0.1 2 0.7

)
, M22 =

(
1 0
0 1

)

The damping matrix was taken to be D = diag{0.04, 0.08, 0.03, 0.06} while the
stiffness matrices was selected as K = diag{0.02, 0.04, 0.03, 0.06}. The inverse
dynamics control law given in Eqs. (5.9) and (5.10) is employed. The selection of
the gain matrices Kp and Kd determines the transient response of the closed loop
system. The following controller gains have been considered: Kp = diag{0.2, 0.2}
and Kd = diag{0.1, 0.1}. The desirable joints positions are θd1 = 1 rad and θd2 =
1.4 rad. The performance of the model-based controller is given in Fig. 5.3.

Moreover, it is considered that an additive disturbance torque appears on each
joint. The disturbance is given by di (t) = 0.3cos(t). The performance of the model-
based controller of the flexible-link robot in the presence of disturbance is depicted
in Fig. 5.4. It can be seen that vibrations around the desirable joint positions cannot
be eliminated.

5.2.5.2 Energy-Based Control

The same robotic model as in Sect. 5.3.4.1 is used to simulate the variation of
the manipulator’s joints with respect to time. Energy-based control of flexible-
link robots is based on Eq. (5.23). The following controller gains have been used:
Kp = diag{1.9, 5.6}, Kd = diag{7.2, 23.3} and Ki = diag{0.1, 0.1}. The desir-
able joint positions are again θd1 = 1.0 rad and θd2 = 1.4 rad. To derive the control
signal of Eq. (5.23) the strains at the base of each link were used, i.e. w

′′
i (0, t). The

performance of the energy-based controller in the case of the 2-DOF flexible link
robot is shown in Fig. 5.5.

Moreover, the performance of the energy-based controller in presence of the
external disturbances of Sect. 5.3.4.1 is given inFig. 5.6. Suppression of the vibrations
can be achieved if the elements of the gain matrix Kd are given higher values.

5.3 Sliding-Mode Control of Flexible-Link Manipulators

5.3.1 Outline

In the previous sections it has been pointed out that the control for flexible-link robots
is a non-trivial problem that has elevated difficulty comparing to the control of rigid-
link manipulators [450, 583]. This is because the dynamic model of the flexible-link
robot contains the nonlinear rigid link motion coupled with the distributed effects
of the links’ flexibility. This coupling depends on the inertia matrix of the flexible
manipulator while the vibration characteristics are determined by structural proper-
ties of the links such as the damping and stiffness parameters. Moreover, in contrast
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Fig. 5.3 Model-based control of a 2-link flexible robot a joints’ angles and joints’ angular velocity,
b the first two vibration modes for each link
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Fig. 5.4 Model-based control of a 2-link flexible robot in the presence of additive motor-torques
disturbances a joints’ angles and joints’ angular velocity, b the first two vibration modes for each
link
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Fig. 5.5 Energy-based control of a 2-link flexible robot a joints’ angles and joints’ angular velocity,
b the first two vibration modes for each link
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Fig. 5.6 Energy-based control of a 2-link flexible robot in the presence of additive motor-torques
disturbances a joints’ angles and joints’ angular velocity, b the first two vibration modes for each
link
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to the dynamic model of rigid-link robots the dynamic model of flexible-link robots
is an infinite dimensional one. As in the case of the rigid-link robot there is a certain
number of mechanical degrees of freedom associated to the rotational motion of the
robot’s joints and there is also an infinite number of degrees of freedom associated
to the vibration modes in which the deformation of the flexible link is decomposed
[441]. The controller of a flexible manipulator must achieve the same motion objec-
tives as in the case of a rigid manipulator, i.e. tracking of specific joints position and
velocity setpoints. Additionally, it must also stabilize and asymptotically eliminate
the vibrations of the flexible-links that are naturally excited by the joints rotational
motion.

It has already been shown that the inverse dynamics model-based control for
flexible-link robots relies on modal analysis, i.e. on the assumption that the defor-
mation of the flexible link can be written as a finite series expansion containing the
elementary vibration modes. However, this inverse-dynamics model-based control
may result into unsatisfactory performance when an accurate model is unavailable,
due to parameters uncertainty or truncation of high order vibration modes in the
model [441]. Moreover, based on the state space formulation, the sliding mode con-
trol, which belongs to the wider class of the variable structure control schemes, is
a nonlinear robust controller suitable for flexible-link manipulators. Sliding-mode
control (SMC) can achieve simultaneous convergence of the flexible robot’s joints
angles and angular velocities to the desirable setpoints and efficient suppression of
the flexible links vibrations. The inclusion of a switching control term in a sliding
mode controller can provide robustness against parametric uncertainties and input
disturbances [136, 229, 330].

As mentioned, sliding-mode control is a state-feedback based controller and its
implementation requires knowledge of the complete state vector of the controlled
system [204, 490]. However, there are certain elements in the state vector of the
flexible-link robotwhich are difficult tomeasure, e.g. the vibrationmodes. Therefore,
to apply sliding-mode control to the flexible manipulator it is necessary to use some
kind of state estimator which can reconstruct the robot’s state vector through the
processing of measurements from a limited number of sensors, e.g. angles of the
joints and the associated angular velocities [31, 361]. The Kalman Filter can provide
real-time estimates of the state vector of the flexible link robot while assuring the
optimality of estimation in the presence of measurement noises [222, 431].

Indicative results about filtering-based control for flexible-link robots can be
noted. In [174] state feedback control for a flexible-link robot is implementedwith the
use of a state vector that is estimated through Kalman Filtering. Using fuzzy rules,
an online adaptation of the covariance matrix of the Kalman Filter is performed
which aims at improving the vibration suppression capabilities of the filtering-based
control. In [290] a controller that follows the principles of singular perturbations
theory is developed and the flexible-link robot model is decomposed into a fast and
a slow dynamics subsystem. Then a two-time scale Kalman filter is designed for
estimating the components of the robot’s state vector associated both with the rigid
(slow) and the flexible (fast) dynamics of the robot. The estimated state vector is
used in the control loop. In [353] an observer-based control scheme for flexible-link
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robots is developed where a fixed-gain state estimator processes measurements of
the flexible-links’ deformation. Lyapunov-like stability analysis is used to demon-
strate the efficiency of the feedback control scheme. In [391] a method is proposed
for improving the performance of flexible manipulators through the employment of
robust state estimation techniques. The method is based on discrete-time Kalman
filtering and sliding mode principles and is applied to the model of a 1-DOF flexible-
link manipulator. Finally, in [25] the Extended Kalman Filter is redesigned in the
form of a disturbance observer to estimate the disturbance forces that are exerted on
the end-effector of a single-link flexible robotic manipulator. The forces’ estimates
provided by the filter are used in the robot’s feedback control loop.

In this section it will be shown how a suitable formulation of the dynamic model
of the flexible manipulator enables the application of the Kalman Filter recursion and
provides accurate estimates of the robot’s state vector which in turn can be used by a
sliding-mode control loop. The present section extends and elaborates on the results
of [437]. The performance of the proposed Kalman Filter-based sliding mode con-
troller is also compared against the previously analyzed inverse dynamics control for
flexible-link robots. As already discussed, in the latter method, by assuming a finite
number of vibration modes, acontrol input is developed which inverts the dynamics
of robotic system and eliminates the tracking error of its state variables [450, 583].
The evaluation of Kalman filter-based sliding-mode control against inverse dynamics
control derives useful results on the efficiency of this control approach.

5.3.2 Design of a Sliding-Mode Controller

Sliding-mode control for flexible-link robots has been studied in several papers
[136, 490]. In the sequel and for simplifying the presentation of the control scheme a
2-link flexible manipulator will be assumed, i.e. n = 2. The flexible-link robot model
of Eq. (5.4) can be written as

(
θ̈

v̈

)
= −

(
M11 M12

M21 M22

)−1

{
(
0 0
0 D

)(
θ̇

v̇

)
+

(
0 0
0 K

) (
θ

v

)
+

+
(
F1

F2

)
+

(
G1

G2

)
−

(
T
0

)
}

(5.60)

The model of the flexible-link robot dynamics is written in state-space form after
defining the following state vector:

x = [θ1, θ2, v11, v12, v21, v22, θ̇1, θ̇2, v̇11, v̇12, v̇21, v̇22]T (5.61)

The following notation is used for the inverse of the inertia matrix of the flexible-link
robot (

M11 M12

M21 M22

)−1

=
(
N11 N12

N21 N22

)
(5.62)
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where N11∈R2×2, N12∈R2×4, N21∈R4×2 and N22∈R4×4. It holds that

θ̈ = −N12Kv − N12Dv̇ − N11F1 − N11G1 + N11T (5.63)

The elements of the damping matrix D∈R4×4 are denoted as D(i, j), where
D(i, j) �=0 for i = j , while the elements of the stiffness matrix K∈R4×4 are
denoted as K (i, j), where K (i, j) �=0 for i = j . Additionally the terms of the
Coriolis and the gravitational vectors are F = (

F1 ∈ R2×1, F2 ∈ R4×1
)T

and G =(
G1 ∈ R2×1, G2 ∈ R4×1

)T
. To obtain a more compact mathematical description in

the design of the controller, and without loss of generality, in the rest of this section
it will be considered that F2 = 04×1 and G2 = 04×1.

Therefore, one can write the dynamics of the joints of the flexible-link robot in a
matrix form:

ẍ1 = f1(x) + g1(x)u
ẍ2 = f2(x) + g2(x)u

(5.64)

whereu = (
T1 T2

)T
, g1(x) = (

N11(1, 1) N11(1, 2)
)
, g2(x) = (

N11(2, 1) N11(2, 2)
)
,

while functions f1(x) and f2(x) are defined as

f1(x) = −N12(1, 1)K (1, 1)x3 − N12(1, 2)K (2, 2)x4
−N12(1, 3)K (3, 3)x5 − N12(1, 4)K (4, 4)x6
−N12(1, 1)D(1, 1)x9 − N12(1, 2)D(2, 2)x10
−N12(1, 3)D(3, 3)x11 − N12(1, 4)D(4, 4)x12

−N11(1, 1)F1(1, 1) − N11(1, 2)F1(2, 1)
−N11(1, 1)G1(1, 1) − N11(1, 2)G1(2, 1)

(5.65)

f2(x) = −N12(2, 1)K (1, 1)x3 − N12(2, 2)K (2, 2)x4
−N12(2, 3)K (3, 3)x5 − N12(2, 4)K (4, 4)x6
−N12(2, 1)D(1, 1)x9 − N12(2, 2)D(2, 2)x10
−N12(2, 3)D(3, 3)x11 − N12(2, 4)D(4, 4)x12

−N11(2, 1)F1(1, 1) − N11(2, 2)F1(2, 1)
−N11(2, 1)G1(1, 1) − N11(2, 2)G1(2, 1)

(5.66)

In the equations describing the joint dynamics the terms g1(x) and g2(x) depend
on the elements of the inertia matrix of the flexible-link robot and are considered to
be known. On the other hand, the terms f1(x) and f2(x) are considered to vary in
uncertainty ranges, given by

| f1 − f̂1|≤ΔF1, | f2 − f̂2|≤ΔF2 (5.67)

The following tracking error for the joints angles is defined:

e1 = x1 − xd1 , e2 = x2 − xd2 (5.68)
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The flexible-link robot’s description given in Eq. (5.64) is in the input-output linear
formand signifies also that the robotic systemcanbewritten in a canonical state-space
form. Moreover, the sliding surface vector s = [s1, s2]T is defined with elements

s1 = ė1 + λ1e1, s2 = ė2 + λ2e2 (5.69)

To achieve convergence of the tracking error to zero for the i th element of the state
vector the following conditions should hold:

1

2

d

dt
s2i ≤ − ηi |si |, ηi > 0, i = 1, 2 (5.70)

The sliding-mode control law is finally given by

u =
(
g1(x)
g2(x)

)−1

··
(
ẍ d1 − f̂1(x) − λ1(ẋ1 − ẋ d1 ) − k1sgn(s1)
ẍ d2 − f̂2(x) − λ2(ẋ2 − ẋ d2 ) − k2sgn(s2)

)
(5.71)

To define the permissible values for the switching gains ki i = 1, 2 the following
conditions are used

1
2

d
dt s

2
i ≤ − ηi |si |⇒si ṡi≤ − ηi |si |⇒[

fi (x) + gi (x)u − ẍ di + λi (ẋi − ẋ di )
]
si≤ − ηi |si | (5.72)

The conditions given in Eq. (5.72) can be written as follows

(
s1 0
0 s2

)
{
(
f1(x)
f2(x)

)
+

(
g1(x)
g2(x)

)
u −

(
ẍ d1
ẍ d2

)
+

+
(

λ1(ẋ1 − ẋ d1 )

λ2(ẋ2 − ẋ d2 )

)
}≤

(−η1|s1|
−η2|s2|

) (5.73)

Substituting in Eq. (5.73) the control law u that was calculated in Eq. (5.71), one
obtains (

s1 0
0 s2

)(
f1(x) − f̂1(x) − k1sgn(s1)
f2(x) − f̂2(x) − k2sgn(s2)

)
≤

(−η1|s1|
−η2|s2|

)
(5.74)

or equivalently
( f1(x) − f̂1(x) − k1sgn(s1))s1≤ − η1|s1|
( f2(x) − f̂2(x) − k2sgn(s2))s2≤ − η2|s2| (5.75)

and using Eq. (5.67) one has

ΔF1s1 − k1sgn(s1)s1≤ − η1|s1|
ΔF2s2 − k2sgn(s2)s2≤ − η2|s2| (5.76)

or equivalently
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ΔF1s1 − k1|s1|≤ − η1|s1|
ΔF2s2 − k2|s2|≤ − η2|s2| (5.77)

The switching control gains are chosen to satisfy

k1 = ΔF1 + η1, k2 = ΔF2 + η2 (5.78)

Substituting Eqs. (5.78) into (5.77) gives

ΔF1s1 − ΔF1|s1| − η1|s1|≤−η1|s1|
ΔF2s2 − ΔF2|s2| − η2|s2|≤−η2|s2| (5.79)

or equivalently
ΔF1s1≤ΔF1|s1|
ΔF2s2≤ΔF2|s2| (5.80)

This assures that limt→∞si = 0, i = 1, 2 and consequently the asymptotic elimina-
tion of the tracking error for the joints’ angle and rotation speed.

5.3.3 Estimation of the Non-measurable State Variables

Knowing that certain elements of the state vector of the flexible-link robot are not
directly measurable, e.g. vibration modes, it becomes necessary to estimate these
variables with the use of a state observer or filter. Indicative research results on state
estimation-based control for flexible-link robots have been given in [31, 204, 361].
To obtain a state estimation-based control scheme for the flexible manipulator, in this
section the state-space description of the flexible-link robot dynamics in the form of
Eq. (5.81) is used:

ẋ = Ax + Bua
y = Cx

(5.81)

where x∈R12×1 is the previously defined state vector, ua = [T1 − F1 − G1, T2 −
F1 − G1]T , while matrices A and B are defined as

A =
⎛
⎝ 06×6 I6×6

[02×2,−N12K ] [02×2,−N12D]
[04×2,−N22K ] [04×2,−N22D]

⎞
⎠ B =

⎛
⎝06×2

N12

N22

⎞
⎠ (5.82)

C =

⎛
⎜⎜⎝

1 0 01×10

0 1 01×10

01×6 1 01×5

01×7 1 01×4

⎞
⎟⎟⎠ (5.83)
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Thus, it is considered that the measurable elements of the robot’s state vector are the
joints’ angles and the joints’ angular velocities. After applying common discretiza-
tion methods the linear continuous-timemodel of the flexible-link robot of Eq. (5.81)
is turned into a discrete-time linear model, which makes use of the discrete-time
equivalents of matrices A, B and C defined in Eqs. (5.82) and (5.83).

For the latter discrete-time model the application of the recursion of the discrete-
time Kalman Filter is possible. The discrete-time Kalman filter can be decomposed
into two parts: (i) time update (prediction stage), and (ii) measurement update (cor-
rection stage) [222, 450, 457]. The first part employs an estimate of the state
vector x(k) made before the output measurement y(k) is available (a priori esti-
mate). The second part estimates x(k) after y(k) has become available (a posteriori
estimate). The covariance matrices associated with x̂−(k) and x̂(k) are defined as:
P−(k) = Cov[e−(k)] = E[e−(k)e−(k)T ] and P(k) = Cov[e(k)] = E[e(k)eT (k)].

Matrices A, B and C of the linear state-space model are defined in Eq. (5.82) and
Eq. (5.83). Next, by applying common discretization methods (e.g. Tustin transform)
the continuous-time linear model of the robot’s dynamics is transformed into a linear
discrete-time model where matrices A, B, and C are substituted by their discrete-
time equivalents Ad , Bd and Cd . For this latter model, the application of the standard
discrete-time Kalman Filter recursion is possible.

The recursion of the discrete-time Kalman Filter is formulated as:

measurement update:

K (k) = P−(k)Cd(k)T [Cd(k)·P−(k)Cd(k)T + R]−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cd(k)x̂−(k)]
P(k) = P−(k) − K (k)Cd(k)P−(k)

(5.84)

time update:

P−(k + 1) = Ad(k)P(k)AT
d (k) + Q(k)

x̂−(k + 1) = Ad(k)x̂(k) + B(dk)u(k)
(5.85)

5.3.4 Simulation Tests

5.3.4.1 Inverse Dynamics Control for a 2-Link FLR

The 2-link flexible robot of Fig. 5.1 is considered. The robot consists of two flexible
links of length L1 = 0.45m and L2 = 0.45m, respectively. The dynamic model of
the robot is given by Eq. (5.4). The elements of the inertia matrix M are:

M11 =
(
1 2
2 1

)
, M22 =

(
1 0
0 1

)

M12 = MT
21 =

(
1 1 0.2 0.3
0.5 0.1 2 0.7

) (5.86)
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Fig. 5.7 a Inverse dynamics control of a 2-link flexible robot under additive motor-torques distur-
bances: joints’ angles (rad) and joints’ angular velocity (rad/sec) b Inverse dynamics control of a
2-link flexible robot under additive motor-torques disturbances: the first two vibration modes for
each link
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Fig. 5.8 a Sliding-mode control of a 2-link flexible robot under additive motor-torques distur-
bances: joints’ angles (rad) and joints’ angular velocity (rad/sec) for each link, b Sliding-mode
control of a 2-link flexible robot under additive motor-torques disturbances: the first two vibration
modes for each link
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Fig. 5.9 a Estimates (continuous lines) of the non-measurable state vector elements of the flexible-
link robot (vibration modes), provided by the Kalman Filter. b Top row: Control inputs (torques)
Ti , i = 1, 2 applied to the joints of the flexible-link robot, Bottom row: estimation of function
fi , i = 1, 2 of the flexible-link dynamics
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The damping matrix is D = diag{0.04, 0.08, 0.03, 0.06} while the stiffness matrix
is K = diag{0.02, 0.04, 0.03, 0.06}. The inverse dynamics control law given in
Sect. 5.2.2 was employed. The selection of the gain matrices Kp and Kd determines
the transient response of the closed loop system. The following controller gains have
been considered: Kp = diag{10.5, 15.5} and Kd = diag{10.9, 15.0}. The desirable
joints’ positionswere θd1 = 1 rad and θd2 = 1.4 rad. It was considered that an additive
disturbance torque di (t) = 0.3cos(t) affected each joint.

In the simulation diagrams about angular position and velocity setpoint tracking,
the horizontal axis represents time in sec, and since the robot’s control takes place in
the configuration space the vertical axis represents angle in rad and angular velocity
in rad/sec. Moreover, as shown in Eq. (5.3), the vibration modes variables vi (t) are
functions of time and are associatedwith the deformation of the flexible linksw(x, t).
The performance of the model-based controller of the flexible-link robot in the pres-
ence of disturbance is depicted in Fig. 5.7. It can be seen that vibrations around the
desirable joint positions cannot be eliminated.

5.3.4.2 Sliding-Mode Control for a 2-Link Flexible-Link Robot

The sliding-mode control scheme proposed in Sect. 5.3.2 was tested on the 2-link
flexible robotic manipulator model. It was assumed that the complete state vector
of the robot was not directly measurable. Thus, it was considered that only the
joints’ angles θi , i = 1, 2 and the associated angular velocities θ̇i , i = 1, 2 could
be obtained through sensor measurements, whereas the vibration modes of the links
v11, v12, v21, v22 were not measurable and had to be reconstructed with the use of the
Kalman Filter.

The obtained results are depicted in Fig. 5.8a where convergence of the joints’
angles and velocities to the desirable setpoints is shown. In Fig. 5.8b the evolution in
time of the vibration modes of the flexible links is presented. Figure5.9a presents the
estimation of the flexible-links’ vibration modes, provided by the Kalman Filter. It
can be noticed that the Kalman Filter state estimates track with satisfactory accuracy
the real values of the non-measurable state vector elements. Finally, Fig. 5.9b depicts
the control inputs (torques) applied to the joints of the flexible-link robot.

From the simulation experiments it can be noticed that as the Kalman Filter-based
sliding-mode controller, the energy-based controller is also efficient in controlling the
position and in suppressing vibrations of the flexible links. However, an advantage
of the Kalman Filter-based sliding mode control is that it achieves accurate tracking
for any type of joint angle and velocity set-point whereas the convergence of the
energy-based control is assured only in the case of constant set-points.



Chapter 6
Micro-manipulators

Abstract Microrobots can be used in the manipulation and precise positioning of
micro-objects, as well as in several microelectronics applications. Microrobotics
is primarily concerned with control problems of micro electromechanical systems
(MEMS). Specific problems that one encounters when developing microrobotic sys-
tems and MEMS is the imprecision about the micro-robot’s dynamic model and the
inability to measure specific state vector elements in it. This in turn signifies that the
design of feedback controllers for such systems has to be sufficiently robust to com-
pensate for unmodelled dynamics or for parametric uncertainty. To this end one can
consider either model-free control methods of proven stability (such as adaptive neu-
rofuzzy control schemes), or model-based control methods capable of eliminating
the effects of modelling errors, parametric inconsistency and external perturbations
(such as H-infinity control). Moreover, one has to implement state estimation-based
feedback control methods, making use of robust state observers, that will allow for
estimation of the entire state vector of the microrobot or MEMS through the pro-
cessing of measurements from a small number of sensors. In particular, the chapter
treats the following topics: (a) Adaptive neurofuzzy control of micro-actuators, (b)
Nonlinear optimal control of underactuated MEMS.

6.1 Chapter Overview

This chapter treats the following topics: (a) Adaptive neurofuzzy control of micro-
actuators, (b) Nonlinear optimal control of underactuated MEMS.

With reference to (a) the chapter presents an adaptive fuzzy approach to the
problemof control of electrostatically actuatedMEMS,which is based on differential
flatness theory and which uses exclusively output feedback. It is shown that the
model of the electrostatically actuated MEMS is a differentially flat one and this
permits to transform it to the so-called linear canonical form. For the new description
of the system’s dynamics the transformed control inputs contain unknown terms
which depend on the system’s parameters. To identify these terms adaptive fuzzy
approximators are used in the control loop. Thus an adaptive fuzzy control scheme is

© Springer International Publishing AG, part of Springer Nature 2018
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implemented in which the unknown or unmodeled system dynamics is approximated
by neurofuzzy networks and next this information is used by a feedback controller
that makes the electrostatically activated MEMS converge to the desirable motion
setpoints. This adaptive control scheme is exclusively implemented with the use of
output feedback, while the state vector elements which are not directly measured
are estimated with the use of a state observer that operates in the control loop. The
learning rate of the adaptive fuzzy system is suitably computed from Lyapunov
analysis, so as to ensure that both the learning procedure for the unknown system’s
parameters, the dynamics of the observer and the dynamics of the control loop will
remain stable. The Lyapunov stability analysis depends on twoRiccati equations, one
associated with the feedback controller and one associated with the state observer.

With reference to (b) the chapter proposes a nonlinear optimal control method for
solving the problem of control of coupled underactuated micro-electromechanical
systems (MEMS). The MEMS model consists of a Van-der-Pol oscillator being
elastically coupledwith a forcedDuffingoscillator. Thedynamicmodel of theMEMS
is approximately linearized around a temporary operating point with the use of first-
order Taylor series expansion and after computing the Jacobian matrices of its state-
space model. For the approximately linearized model of the MEMS a nonlinear
optimal (H-infinity) feedback controller is designed. This controller stands for the
solution of theMEMS optimal control problem undermodel uncertainty and external
perturbations. The computation of the feedback control gain relies on the solution of
an algebraic Riccati equation taking place at each time step of the control method.
Finally, to achieve state estimation-based control through themeasurement of a small
number of the MEMS state vector elements, the H-infinity Kalman Filter is used as
a robust state estimator. In both cases (a) and (b) the global asymptotic stability
properties of the control scheme are proven through Lyapunov analysis.

6.2 Adaptive Neurofuzzy Control of Microactuators

6.2.1 Outline

As micro and nanotechnology develop fast, the use of MEMS and particularly of
microactuators is rapidly deploying. One can note several systems where the use of
microactuators has become indispensable and the solution of the associated control
problems has become a prerequisite. In [501, 507, 649, 651] electrostatic microactu-
ators are used in adaptive optics and optical communications. In [56, 327] microac-
tuators are used for micromanipulation and precise positioning of microobjects. Sev-
eral approaches to the control of microactuators have been proposed. In [263, 276,
550] adaptive control methods have been used. In [142, 607] solution of microac-
tuation control problems through robust control approaches has been attempted. In
[482] backstepping control has been used, while in [550] an output feedback control
scheme has been implemented. Additional results for the stabilization and control
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of microactuators have been presented in [192, 389]. In such control systems, con-
vergence of the state vector elements to the associated reference setpoints has to be
performed with accuracy, despite modeling uncertainties, parametric variations or
external perturbations.Moreover, the reliable functioning of the control loop has to be
assured despite difficulties in measuring the complete state vector of theMEMS. The
present section develops a new method for the control of micro-electromechanical
systems (MEMS) which is based on differential flatness theory. The considered con-
trol problem is a nontrivial one because of the of the unknown nonlinear dynamical
model of the actuator and because of the constraint to implement the control using
exclusively output feedback (it is little reliable and technically difficult to use sensor
measurements for the monitoring of all state variables of the micro-actuator). The
differential flatness theory control approach is based on an exact linearization of the
MEMS dynamics which avoids the numerical errors of the approximate linearization
that is performed by other nonlinear control methods [93, 235, 335, 454, 457].

First, the section shows that the dynamic model of the studied microactuator is
a differentially flat one. This means that all its state variables and the control input
can be written as functions of one single algebraic variable, which is the flat output,
and also as functions of the flat output’s derivatives [267, 450, 452, 476, 519]. This
change of variables (differential flatness theory-based diffeomorphism) enables to
transform the nonlinear model of the actuator into the linear canonical (Brunovsky)
form [145, 334, 546, 572]. In the latter description of the MEMS, the transformed
control input contains elements which are associated with the unknown nonlinear
dynamics of the system. These are identified on-line with the use of neurofuzzy
approximators and the estimated system dynamics is finally used for the computa-
tion of the control signal that will make the MEMS state vector track the desirable
setpoints. Thus an adaptive fuzzy control scheme is implemented [457, 462]. The
learning rate of the neurofuzzy approximators is determined by the requirement to
assure that the Lyapunov function of the control loop will always have a negative
first-order derivative.

Next, another problem that has to be dealt with was that only output feedback can
be used for the implementation of the MEMS control scheme. The nonmeasurable
state variables of the microactuator have to be reconstructed with the use of a state
estimator (observer), which functions again inside the control loop. Thus, finally,
the Lyapunov function for the proposed control scheme comprises three quadratic
terms: (i) a term that describes the tracking error of the MEMS state variables from
the reference setpoints, (ii) a term that describes the error in the estimation of the non-
measurable state vector elements of the microactuator with respect to the reference
setpoints, and (iii) a sumof quadratic terms associatedwith the distance of theweights
of the neurofuzzy approximators from the values that give the best approximation of
the unknown MEMS dynamics. It is proven that an adaptive (learning) control law
can be found assuring that the Lyapunov function will continuously have a negative
first order derivative, thus also confirming that the stability of the control loop will be
preserved and that accurate tracking of the setpoints by the system’s state variables
will be achieved (H-infinity tracking performance).
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Fig. 6.1 Diagram of the 1-DOF parallel-plate electrostatic actuator

6.2.2 Dynamic Model of the Electrostatic Actuator

The considered MEMS (electrostatic microactuator) is depicted in Fig. 6.1. The
dynamic model of the MEMS has been analyzed in [172, 199, 648, 650], where
model-based control approaches have been mostly developed. It is assumed that
Q(t) is the charge of the device, while ε is the permitivity in the gap. Then the
capacitance of the device is

C(t) = εA

G(t)
(6.1)

while the attractive electrostatic force on the moving plate is

F(t) = V 2
a

2

∂C

∂G
= − εAV 2

a

2G2(t)
= −Q2(t)

2εA
(6.2)

Thus, the equation of motion of the actuator is given by

mG̈(t) + bĠ(t) + k(G(t) − G0) = −Q2(t)

2εA
(6.3)

From Eqs. (6.2) and (6.3) it can be concluded that the electrostatic force F increases
with the inverse square of the gap, while the restoring mechanical force which is
associated with the term k(G(t) − G0) increases linearly with the plate deflection.
A critical value for the voltage across the device is called pull-in voltage and is given
by [651]

Vpi =
√
8kG2

0

27C0
(6.4)
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It is assumed that the MEMS starts operating from an initially uncharged state at
t = 0. Then the charge of the electrodes at time instant t is given by Q(t) =∫ t
0 Is(τ )dτ , or equivalently Q̇(t) = Is(t). By applying Kirchhoff’s voltage law one
has for the current that goes through the resistor

Q̇(t) = 1

R

(
Vs(t) − Q(t)G(t)

εA

)
(6.5)

Next, the equations of the system’s dynamics given in Eqs. (6.3)–(6.5) undergo a
transformation which consists of a change of the time scale τ = ωt and of the fol-
lowing normalization

x = 1 − G
G0

q = Q
Qpi

u = Vs
Vpi

i = Is
Vpiω0C0

r = ω0C0R
(6.6)

where C0 = εA
G0
, Qpi = 3

2C0Vpi is the pull-in charge corresponding to the pull-in

voltage, ω0 = √
k/m is the undamped natural frequency, and ζ = b

2mω0
is the damp-

ing ratio. The normalized voltage across the actuator can be expressed in terms of
normalized deflection x of the moveable electrode, that is uo = 3

2q(1 − x), while
the dynamics of the normalized charge is q̇ = 2

3 i .
After the aforementioned normalization and transformation, the dynamic model

of the microactuator is written as [651]

ẋ = v

v̇ = −2ζv − x + 1

3
q2 (6.7)

q̇ = 1

r
q(1 − x) + 2

3r
u

In the previous state-spacemodel: ẋ = v: is a variable denoting the speed of deflection
of themoving electrode,q is a variable denoting the ratio between the actual change of
the plates Q and the pull-in charge Qpi . It holds that q = Q

Qpi
, where Qpi = 3

2CoVpi

and Vpi is the pull-in voltage.

Remark 1 The previously analyzed MEMS dynamics is a highly nonlinear one and
nonlinear control methods have to be used for it. One can distinguish three main
approaches in the control of nonlinear dynamical systems: (i) control based on global
linearization methods, (ii) control based on approximate linearization methods, (iii)
Lyapunov methods.

The results of the present section are mostly based on approach (iii) that is
Lyapunov theory-based design of feedback controllers for dynamical systems of
unknown model and of non completely measurable state vector. Comparing to meth-
ods (i) and (ii), approach (iii) is a completely model-free one. Therefore, the major
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benefit from it is that there is no dependence on prior knowledge of the microac-
tuator’s dynamics. The main difficulty in the application of approach (iii) is that
it may require operations between matrices of high dimension. Thus it becomes
computationally more demanding than approaches (i) and (ii).

6.2.3 Linearization of the MEMS Model Using Lie Algebra

The MEMS nonlinear dynamics given in Eq. (6.7), with state vector defined as
x = [x, v, q], is also written in the form

ẋ = f (x) + g(x)u (6.8)

where the vector fields f (x) and g(x) are defined as

f (x) =
⎛
⎜⎝

v

−2ζv − x + 1
2q

2

− 1
r q(1 − x)

⎞
⎟⎠ g(x) =

⎛
⎝ 0

0
2
3r

⎞
⎠ (6.9)

Using the above formulation, one can arrive at a linearized description of the MEMS
dynamics using a differential geometric approach and the computation of Lie deriva-
tives. The following state variables are defined: z1 = h1(x) = x , z2 = L f h1(x) and
z3 = L2

f h1(x). It holds that

z2 = L f h1(x)⇒z2 = ∂h1
∂x1

f1 + ∂h1
∂x2

f2 + ∂h1
∂x3

f3⇒
z2 = 1 f1 + 0 f2 + 0 f3⇒z2 = f1⇒z2 = v⇒z2 = ẋ

(6.10)

In a similar manner one computes

z3 = L2
f h1(x)⇒z3 = ∂z2

∂x1
f1 + ∂z2

∂x2
f2 + ∂z2

∂x3
f3⇒

z3 = 0 f1 + 1 f2 + 0 f3⇒z3 = v̇⇒z3 = ẍ
(6.11)

Moreover, one has that

ż3 = x (3) = L3
f h1(x) + LgL

2
f h1x ·u (6.12)

where

L3f h1(x) = L f z2⇒L3f h1(x) = ∂z3
∂x1

f1 + ∂z3
∂x2

f2 + ∂z3
∂x3

f3⇒

L3f h1(x) = 1 f1 − 2ζ f2 + 2

3
q f3⇒L3f h1(x) = v − 2ζ v̇ + 2

3
q

(
−1

r
q(1 − x)

)
⇒
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L3f h1(x) = ẏ − 2ζ ÿ + 2

3
q

[
−1

r
q(1 − x)

]
⇒L3f h1(x) = −2ζ ÿ − ẏ − 1

r
(1 − y)

2

3
q2⇒

L3f h1(x) = −2ζ ÿ − ẏ − 2

r
(1 − y)[ÿ + 2ζ ẏ + y] (6.13)

Following a similar procedure one finds

LgL2
f h1(x) = Lgz3⇒LgL2

f h1(x) = ∂z3
∂x1

g1 + ∂z3
∂x2

g2 + ∂z3
∂x3

g3⇒
LgL2

f h1(x) = 1g1 − 2ζ g2 + 2
3qg3⇒LgL2

f h1(x) = 4
9r q⇒

LgL2
f h1(x) = 4

9r

√
3[ÿ + 2ζ ẏ + y]

(6.14)

For the linearized description of the MEMS dynamics given in Eq. (6.12), and using
that v = L3

f h1(x) + LgL2
f h1(x)u one obtains the state-space description⎛

⎜⎝
ż1
ż2
ż3

⎞
⎟⎠ =

⎛
⎜⎝
0 1 0

0 0 1

0 0 0

⎞
⎟⎠

⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ +

⎛
⎝0
0
1

⎞
⎠ v (6.15)

zmeas = (
1 0 0

)⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ (6.16)

For the linearized description of the system given in Eq. (6.25) the design of a state
feedback controller is carried out as follows:

v = y(3)
d − k1(ÿ − ÿd) − k2(ẏ − ẏd) − k3(y − yd) (6.17)

which results in tracking error dynamics of the form

e(3)(t) + k1ë(t) + k2ė(t) + k3e(t) = 0 (6.18)

By selecting the feedback gains ki , i = 1, 2, 3 such that the characteristic polynomial
of Eq. (6.31) to be a Hurwitz one, it is assured that limt→∞e(t) = 0.

6.2.4 Differential Flatness of the Electrostatic Actuator

6.2.4.1 Differential Flatness Properties of the Electrostatic
Microactuator

The dynamicmodel of the electrostaticmicroactuator given inEq. (6.7) is considered.
The flat output of the model is taken to be be y = x . Therefore, it also holds v = ẏ.
From the second row of the state space equations, given in Eq. (6.7) one has
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ÿ = −2ζ ẏ − y + 1
3q

2⇒q2 = 3[ÿ + 2ζ ẏ + y]
⇒q = √

3[ÿ + 2ζ ẏ + y]⇒q = fq(y, ẏ, ÿ)
(6.19)

From the third row of the state space equations, given in Eq. (6.7) one has

u = 3r

2

[
q̇ + 1

r
q(1 − x)

]
⇒u = fu(y, ẏ, ÿ, y

(3)) (6.20)

Since all state variables and the control input of the system are expressed as functions
of the flat output and its derivatives, it is concluded that the model of the electrostatic
actuator is a differentially flat one.

6.2.4.2 Linearization of the MEMS Model Using Differential Flatness
Theory

From the second row of the state-space model given in Eq. (6.7) it holds that

ÿ = −2ζ ẏ − y + 1

3
q2 (6.21)

By deriving once more with respect to time one gets

y(3) = −2ζ ÿ − ẏ + 2

3
qq̇ (6.22)

By substituting the third row of the state-space model given in Eq. (6.7) one obtains

y(3) = −2ζ ÿ − ẏ + 2
3q

[− 1
r q(1 − x) + 2

3r u
]⇒

y(3) = −2ζ ÿ − ẏ − 2
3r (1 − x)q2 + 4

9r qu
(6.23)

Next, using from Eq. (6.19) that q2 = ÿ + 2ζ ẏ + y or equivalently that q =√
ÿ + 2ζ ẏ + y the following relation is obtained

y(3) = −2ζ ÿ − ẏ − 2

e
(1 − y)[ÿ + 2ζ ẏ + y] + 4

9r

√
3[ÿ + 2ζ ẏ + y]u (6.24)

or equivalently

y(3) = f (y, ẏ, ÿ) + g(y, ẏ, ÿ)u (6.25)

where

f (y, ẏ, ÿ) = −2ζ ÿ − ẏ − 2

r
(1 − y)[ÿ + 2ζ ẏ + y] (6.26)



6.2 Adaptive Neurofuzzy Control of Microactuators 309

g(y, ẏ, ÿ) = 4

9r
[√3[ÿ + 2ζ ẏ + y] (6.27)

For the linearized description of the MEMS dynamics given in Eq. (6.25), and using
the notation z1 = y, z2 = ẏ and z3 = ÿ, and v = f (y, ẏ, ÿ) + g(y, ẏ, ÿ)u one arrives
also at the state-space description⎛

⎜⎝
ż1
ż2
ż3

⎞
⎟⎠ =

⎛
⎜⎝
0 1 0

0 0 1

0 0 0

⎞
⎟⎠

⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ +

⎛
⎜⎝
0

0

1

⎞
⎟⎠ v (6.28)

zmeas = (
1 0 0

)⎛
⎜⎝
z1
z2
z3

⎞
⎟⎠ (6.29)

For the linearized description of the system given in Eq. (6.25) the design of a state
feedback controller is carried out as follows:

v = y(3)
d − k1(ÿ − ÿd) − k2(ẏ − ẏd) − k3(y − yd) (6.30)

which results in tracking error dynamics of the form

e(3)(t) + k1ë(t) + k2ė(t) + k3e(t) = 0 (6.31)

By selecting the feedback gains ki , i = 1, 2, 3 such that the characteristic polynomial
of Eq. (6.31) to be a Hurwitz one, it assured that limt→∞e(t) = 0.

6.2.5 Adaptive Fuzzy Control of the MEMS Model Using
Output Feedback

6.2.5.1 Problem Statement

Adaptive fuzzy control aims at solving the microactuator’s control problem in case
that its dynamics is unknown and the state vector is not completely measurable. It has
been shown that after applying the differential flatness theory-based transformation,
the following non-linear SISO system is obtained:

x (n) = f (x, t) + g(x, t)u + d̃ (6.32)

where f (x, t), g(x, t) are unknown nonlinear functions and d̃ is an unknown addi-
tive disturbance. The objective is to force the system’s output y = x to follow a
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given bounded reference signal xd . In the presence of non-Gaussian disturbances w,
successful tracking of the reference signal is denoted by the H∞ criterion [450, 457].∫ T

0
eT Qedt ≤ ρ2

∫ T

0
wTwdt (6.33)

where ρ is the attenuation level and corresponds to the maximum singular value of
the transfer function G(s) of the linearized equivalent of Eq. (6.32).

6.2.5.2 Transformation of Tracking into a Regulation Problem

The flatness-based adaptive fuzzy control approach for nonlinear systems control
consists of the following steps : (i) linearization is applied; (ii) the unknown system
dynamics are approximated by neural or fuzzy estimators, (iii) an H∞ control term,
is employed to compensate for estimation errors and external disturbances. If the
state vector is not measurable, this can be reconstructed with the use of an observer.

For measurable state vector x , desirable state vector xm and uncertain functions
f (x, t) and g(x, t) an appropriate control law for (6.32) would be

u = 1

ĝ(x, t)
[x (n)

m − f̂ (x, t) + KT e + uc] (6.34)

where, f̂ and ĝ are the approximations of the unknown parts of the system dynam-
ics f and g respectively, and which can be given by the outputs of suitably trained
neuro-fuzzy networks. The term uc denotes a supervisory controller which compen-
sates for the approximation error w = [ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u,
as well as for the additive disturbance d̃. Moreover the feedback control gains
KT = [kn, kn−1, . . . , k1], and the vector of the state vector element’s tracking error
eT = [e, ė, ë, . . . , e(n−1)]T are chosen such that the polynomial e(n) + k1e(n−1) +
k2e(n−2) + · · · + kne is Hurwitz. The substitution of control law of Eq. (6.34) in
(6.32) results into

x(n) = f (x, t) + g(x, t) 1
ĝ(x,t) [x

(n)
m − f̂ (x, t) − KT e + uc] + d̃ ⇒

x(n) = f (x, t) + {ĝ(x, t) + [g(x, t) − ĝ(x, t)]} 1
ĝ(x,t) [x

(n)
m − f̂ (x, t) − KT e + uc] + d̃ ⇒

x(n) = f (x, t) +
{
ĝ(x,t)
ĝ(x,t) [x

(n)
m − f̂ (x, t) − KT e + uc] + [g(x, t) − ĝ(x, t)]u

}
+ d̃ ⇒

x(n) = f (x, t) + x(n)
m − f̂ (x, t) − KT e + uc + [g(x, t) − ĝ(x, t)]u + uc + d̃ ⇒

x(n) − x(n)
m = −KT e + [ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + uc + d̃ ⇒

x(n) = −KT e + uc + [ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d̃
(6.35)
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The above relation can be written in a state-equations form. The state vector is taken
to be eT = [e, ė, . . . , e(n−1)], which yields

ė = Ae − BKT e + Buc + B{[ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d̃}
(6.36)

or equivalently

ė = (A − BKT )e + Buc + B{[ f (x, t) − f̂ (x, t)] + [g(x, t) − ĝ(x, t)]u + d̃}
e1 = CT e

(6.37)
where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · · · · 0

0 0 1 · · · · · · 0

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · 1

0 0 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.38)

BT = (
0, 0, · · · , 0, 1

)
, CT = (

1, 0, · · · , 0, 0
)

KT = (
k0, k1, · · · , kn−2, kn−1

)
where e1 denotes the output error e1 = x − xm . Eq. (6.37) describes a regulation
problem.

6.2.5.3 Estimation of the State Vector

The control of the microactuator described by Eq. (6.32) becomes more complicated
when the state vector x is not directlymeasurable and has to be reconstructed through
a state observer. The following definitions are used

• error of the state vector e = x − xm
• error of the estimated state vector ê = x̂ − xm
• observation error ẽ = e − ê = (x − xm) − (x̂ − xm)

When an observer is used to reconstruct the state vector, the control law of Eq. (6.34)
is written as

u = 1

ĝ(x̂, t)
[x (n)

m − f̂ (x̂, t) + KT e + uc] (6.39)

Applying Eq. (6.39) to the nonlinear system described by Eq. (6.32), after some
operations results into
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x (n) = x (n)
m − KT ê + uc + [ f (x, t) − f̂ (x̂, t)]+

[g(x, t) − ĝ(x̂, t)]u + d̃

It holds e = x − xm ⇒ x (n) = e(n) + x (n)
m . Substituting x (n) in the above equation

gives

e(n) + x (n)
m = x (n)

m − KT ê + uc + [ f (x, t) − f̂ (x̂, t)]+
+[g(x, t) − ĝ(x̂, t)]u + d̃ ⇒

(6.40)

ė = Ae − BKT ê + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+[g(x, t) − ĝ(x̂, t)]u + d̃}

(6.41)

e1 = CT e (6.42)

where e = [e, ė, ë, . . . , e(n−1)]T , and ê = [ê, ˙̂e, ¨̂e, . . . , ê(n−1)]T .
The state observer is designed according to Eqs. (6.41) and (6.42) and is given by

[457]:

˙̂e = Aê − BKT ê + Ko[e1 − CT ê] (6.43)

ê1 = CT ê (6.44)

The observation gain Ko = [ko0 , ko1 , . . . , kon−2 , kon−1 ]T is selected so as to ensure the
convergence of the observer.

6.2.5.4 The Additional Control Term uc

The additional termuc which appeared inEq. (6.34) is also introduced in the observer-
based control to compensate for:

• The external disturbances d̃
• The state vector estimation error ẽ = e − ê = x − x̂
• The approximation error of the nonlinear functions f (x, t) and g(x, t), denoted
as w = [ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u

The control signal uc consists of 2 terms, namely:

• the H∞ control term, ua = − 1
r B

T Pẽ for the compensation of d and w
• the control term ub for the compensation of the observation error ẽ
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6.2.5.5 Dynamics of the Observation Error

The observation error is defined as ẽ = e − ê = x − x̂ . Subtracting Eq. (6.43) from
(6.41) as well as Eq. (6.44) from (6.42) one gets

ė − ˙̂e = A(e − ê) + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+ [g(x, t) − ĝ(x̂, t)]u + d̃} − KoC

T (e − ê)

e1 − ê1 = CT (e − ê)

that is

˙̃e = Aẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)]+
+ [g(x, t) − ĝ(x̂, t)]u + d̃} − KoC

T ẽ

ẽ1 = CT ẽ

which can be written as

˙̃e = (A − KoC
T )ẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u + d̃}

(6.45)

ẽ1 = Cẽ (6.46)

6.2.5.6 Approximation of the Unknown MEMS Dynamics

Neurofuzzy networks can been trained on-line to approximate parts of the unknown
dynamics of the microactuator,or to compensate for external disturbances. The
approximation of functions f (x, t) and g(x, t) of Eq.(6.32) can be carried out with
Takagi-Sugeno neuro-fuzzy networks of zero or first order (Fig. 6.2 ). These consist
of rules of the form:

Rl : IF x̂ is Al
1 AND

˙̂x is Al
2 AND · · · AND x̂ (n−1) is Al

n THEN ȳl = ∑n
i=1w

l
i x̂i +

bl , l = 1, 2, . . . , L
The output of the neuro-fuzzy model is calculated by taking the average of the

consequent part of the rules

ŷ =
∑L

l=1 ȳ
l
∏n

i=1μAl
i
(x̂i )∑L

l=1

∏n
i=1μAl

i
(x̂i )

(6.47)

where μAl
i
is the membership function of xi in the fuzzy set Al

i . The training of
the neuro-fuzzy networks is carried out with 1st order gradient algorithms, in pattern
mode, i.e. by processing only one data pair (xi , yi ) at every time step i . The estimation
of f (x, t) and g(x, t) can be written as
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Fig. 6.2 Neuro-fuzzy approximator for the unknown dynamics of the mioroactuator: Gi Gaussian
basis function, Ni : normalization unit

f̂ (x̂ |θ f ) = θT
f φ(x̂)

ĝ(x̂ |θg) = θT
g φ(x̂)

(6.48)

where φ(x̂) are kernel functions with elements φl(x̂) =
∏n

i=1μAli
(x̂i )∑L

l=1

∏n
i=1μAli

(x̂i )
l = 1, 2,

· · · , L . It is assumed that that the weights θ f and θg vary in the bounded areas Mθ f

and Mθg which are defined as

Mθ f = {θ f ∈ Rh : ||θ f || ≤ mθ f }
Mθg = {θg ∈ Rh : ||θg|| ≤ mθg }

(6.49)

with mθ f and mθg positive constants. The values of θ f and θg for which optimal
approximation is achieved are:

θ∗
f = arg minθ f ∈Mθ f

[supx∈Ux ,x̂∈Ux̂ | f (x) − f̂ (x̂ |θ f )|]
θ∗
g = arg minθg∈Mθg

[supx∈Ux ,x̂∈Ux̂ |g(x) − ĝ(x̂ |θg)|]

The variation ranges of x and x̂ are the compact sets

Ux = {x ∈ Rn : ||x || ≤ mx < ∞},
Ux̂ = {x̂ ∈ Rn : ||x̂ || ≤ mx̂ < ∞} (6.50)

The approximation error of f (x, t) and g(x, t) is given by

w = [ f̂ (x̂ |θ∗
f ) − f (x, t)] + [ĝ(x̂ |θ∗

g ) − g(x, t)]u ⇒
w = {[ f̂ (x̂ |θ∗

f ) − f (x |θ∗
f )] + [ f (x |θ∗

f ) − f (x, t)]}+
{[ĝ(x̂ |θ∗

g ) − g(x̂ |θ∗
g )] + [g(x̂ |θ∗

g )g(x, t)]}u
(6.51)
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where

• f̂ (x̂ |θ∗
f ) is the approximation of f for the best estimation θ∗

f of the weights’ vector
θ f .

• ĝ(x̂ |θ∗
g ) is the approximation of g for the best estimation θ∗

g of the weights’ vector
θg .

The approximation error w can be decomposed into wa and wb, where

wa = [ f̂ (x̂ |θ f ) − f̂ (x̂ |θ∗
f )] + [ĝ(x̂ |θg) − ĝ(x̂ |θ∗

g )]u
wb = [ f̂ (x̂ |θ∗

f ) − f (x, t)] + [ĝ(x̂ |θ∗
g ) − g(x, t)]u

Finally, the following two parameters are defined:

θ̃ f = θ f − θ∗
f , θ̃g = θg − θ∗

g (6.52)

6.2.6 Lyapunov Stability Analysis

6.2.6.1 Design of the Lyapunov Function

The adaptation law of the neurofuzzy approximators’ weights θ f and θg as well as
of the supervisory control term uc for the microactuator’s loop are derived from the
requirement for negative definiteness of the Lyapunov function

V = 1

2
êT P1ê + 1

2
ẽT P2ẽ + 1

2γ1
θ̃T
f θ̃ f + 1

2γ2
θ̃T
g θ̃g (6.53)

The selection of the Lyapunov function relies on the following principle of indirect
adaptive control ê : limt→∞ x̂(t) = xd(t) and ẽ : limt→∞ x̂(t) = x(t). This yields
limt→∞ x(t) = xd(t). Substituting Eqs. (6.41), (6.42) and Eqs. (6.45), (6.46) into Eq.
(6.53) and differentiating results into

V̇ = 1

2
˙̂eT P1ê + 1

2
êT P1 ˙̂e + 1

2
˙̃eT P2ẽ + 1

2
ẽT P2 ˙̃e + 1

γ1
θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg (6.54)

which in turn gives

V̇ = 1
2 {(A − BKT )ê + KoCT ẽ}T P1ê + 1

2 ê
T P1{(A − BKT )ê + KoCT ẽ}+

+ 1
2 {(A − KoCT )ẽ + Buc + Bd + Bw}T P2ẽ + 1

2 ẽ
T P2{(A − KoCT )ẽ + Buc + Bd + Bw}+

+ 1
γ1

θ̃Tf
˙̃
θ f + 1

γ2
θ̃Tg

˙̃
θg

(6.55)
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or, equivalently

V̇ = 1
2 {êT (A − BKT )T + ẽT CK T

o }P1ê + 1
2 ê

T P1{(A − BKT )ê + KoCT ẽ}+
+ 1

2 {ẽT (A − KoCT )T + BT uc + BTw + BT d}P2ẽ + 1
2 ẽ

T P2{(A − KoCT )ẽ + Buc + Bw + Bd}+
+ 1

γ1
θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.56)

V̇ = 1
2 ê

T (A − BKT )T P1ê + 1
2 ẽ

T CKT
o P1ê + + 1

2 ê
T P1(A − BKT )ê + 1

2 ê
T P1KoCT ẽ+

+ 1
2 ẽ

T (A − KoCT )T P2ẽ + 1
2 B

T P2ẽ(uc + w + d) + 1
2 ẽ

T P2(A − KoCT )ẽ+
+ 1

2 ẽ
T P2B(uc + w + d) + 1

γ1
θ̃Tf

˙̃
θ f + 1

γ2
θ̃Tg

˙̃
θg

(6.57)

Assumption 1: For given positive definite matrices Q1 and Q2 there exist positive
definite matrices P1 and P2, which are the solution of the following Riccati equations
[457]

(A − BKT )T P1 + P1(A − BKT ) + Q1 = 0 (6.58)

(A − KoCT )
T
P2 + P2(A − KoCT )−

−P2B( 2r − 1
ρ2 )BT P2 + Q2 = 0

(6.59)

The conditions given in Eqs. (6.58)–(6.59) are related to the requirement that the sys-
tems described by Eqs. (6.43), (6.44) and Eqs. (6.45), (6.46) become asymptotically
stable. Substituting Eqs. (6.58)–(6.59) into V̇ yields

V̇ = 1
2 ê

T {(A − BKT )T P1 + P1(A − BKT )}ê + ẽT CK T
o P1ê+

+ 1
2 ẽ

T {(A − KoCT )T P2 + P2(A − KoCT )}ẽ + BT P2ẽ(uc + w + d)+
+ 1

γ1
θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.60)

which is also written as

V̇ = − 1
2 ê

T Q1ê + ẽT CK T
o P1ê−

− 1
2 ẽ

T {Q2 − P2B( 2r − 1
ρ2 )BT P2}ẽ + BT P2ẽ(uc + w + d)+

+ 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.61)

Following the concept analyzed in Chapter 3, the supervisory control uc is decom-
posed in two terms, ua and ub

ua = −1

r
p1nẽ1 = −1

r
ẽT P2B + 1

r
(p2nẽ2 + · · · + pnnẽn) = −1

r
ẽT P2B + �ua

(6.62)
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where p1n stands for the last (n-th) element of the first row of matrix P2, and

ub = −[(P2B)T (P2B)]−1(P2B)TCK T
o P1ê (6.63)

• ua is an H∞ control used for the compensation of the approximation error w and
the additive disturbance d̃. Its first component − 1

r ẽ
T P2B has been chosen so as to

compensate for the term 1
r ẽ

T P2BBT P2ẽ, which appears in Eq. (6.61). By subtract-
ing the second component − 1

r (p2nẽ2 + · · · + pnnẽn) one has that ua = − 1
r p1nẽ1,

whichmeans that ua is computed based on the feedback of themeasurable variable
ẽ1. Eq. (6.62) is finally rewritten as ua = − 1

r ẽ
T P2B + �ua .

• ub is a control used for the compensation of the observation error (the control term
ub has been chosen so as to satisfy the condition ẽT P2Bub = −ẽT CK T

o P1ê.

The control scheme is depicted in Fig. 6.3. Substituting Eqs. (6.62) and (6.63) in V̇ ,
one gets

V̇ = − 1
2 ê

T Q1ê + ẽT CK T
o P1ê − 1

2 ẽ
T Q2ẽ + 1

r ẽ
T P2BBT P2ẽ−

− 1
2ρ2 ẽT P2BBT P2ẽ + ẽT P2Bub − 1

r ẽ
T P2BBT P2ẽ + BT P2ẽ(w + d + �ua)+

+ 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.64)

Fig. 6.3 The proposed adaptive-fuzzy control scheme
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or equivalently,

V̇ = − 1
2 ê

T Q1ê − 1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + BT P2ẽ(w + d + �ua)+

+ 1
γ1

θ̃T
f

˙̃
θ f + 1

γ2
θ̃T
g

˙̃
θg

(6.65)

It holds that ˙̃
θ f = θ̇ f − θ̇∗

f = θ̇ f and
˙̃
θg = θ̇g − θ̇∗

g = θ̇g . The following weight adap-
tation laws are considered:

θ̇ f = {−γ1ẽT P2Bφ(x̂) i f ||θ f || < mθ f

0 ||θ f || ≥ mθ f

(6.66)

θ̇g = {−γ2ẽT P2Bφ(x̂)uc i f ||θg|| < mθg

0 ||θg|| ≥ mθg

(6.67)

To set θ̇ f and θ̇g equal to 0, when ||θ f ≥ mθ f ||, and ||θg ≥ mθg || the projection
operator is employed [450]:

P{γ1ẽT P2Bφ(x̂)} = −γ1ẽT P2Bφ(x̂) +
+γ1ẽT P2B

θ f θ
T
f

||θ f ||2 φ(x̂)

P{γ1ẽT P2Bφ(x̂)uc} = −γ1ẽT P2Bφ(x̂)uc +
+γ1ẽT P2B

θ f θ
T
f

||θ f ||2 φ(x̂)uc

The update of θ f stems from a gradient algorithm on the cost function 1
2 ( f − f̂ )2

[33, 432]. The update of θg is also of the gradient type, while uc implicitly tunes the
adaptation gain γ2. Substituting Eqs. (6.66) and (6.67) in V̇ gives

V̇ = − 1
2 ê

T Q1ê − 1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + BT P2ẽ(w + d + �ua)+

+ 1
γ1

θ̃T
f (−γ1ẽT P2Bφ(x̂)) + 1

γ2
θ̃T
g (−γ2ẽT P2Bφ(x̂)u)

(6.68)
which is also written as

V̇ = − 1
2 ê

T Q1ê − 1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + ẽT P2B(w + d + �ua)−

−ẽT P2Bθ̃T
f φ(x̂) − ẽT P2Bθ̃T

g φ(x̂)u
(6.69)

and using Eqs. (6.48) and (6.52) results into

V̇ = − 1
2 ê

T Q1ê − 1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + ẽT P2B(w + d + �ua)−

−ẽT P2B{[ f̂ (x̂ |θ f ) + ĝ(x̂ |θ f )u] − [ f̂ (x̂ |θ∗
f ) + ĝ(x̂ |θ∗

g )u]}
(6.70)
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where [ f̂ (x̂ |θ f ) + ĝ(x̂ |θ f )u] − [ f̂ (x̂ |θ∗
f ) + ĝ(x̂ |θ∗

g )u] = wa . Thus setting w1 =
w + wa + d + �ua one gets

V̇ = − 1
2 ê

T Q1ê
1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + BT P2ẽw1 ⇒

V̇ = − 1
2 ê

T Q1ê
1
2 ẽ

T Q2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ + 1

2w
T
1 B

T P2ẽ + 1
2 ẽ

T P2Bw1
(6.71)

Lemma: The following inequality holds

1
2 ẽ

T P2Bw1 + 1
2w

T
1 B

T P2ẽ − 1
2ρ2 ẽT P2BBT P2ẽ ≤ 1

2ρ
2wT

1 w1 (6.72)

Proof : The binomial (ρa − 1
ρ
b)2 ≥ 0 is considered. Expanding the left part of the

above inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0

⇒ ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2 ⇒ 1

2ab + 1
2ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2
(6.73)

The following substitutions are carried out: a = w1 and b = ẽT P2B and the previous
relation becomes

1
2w

T
1 B

T P2ẽ + 1
2 ẽ

T P2Bw1 − 1
2ρ2 ẽT P2BBT P2ẽ

≤ 1
2ρ

2wT
1 w1

(6.74)

The above inequality is used in V̇ , and the right part of the associated inequality is
enforced

V̇≤ − 1

2
êT Q1ê − 1

2
ẽT Q2ẽ + 1

2
ρ2wT

1 w1 (6.75)

Thus, Eq. (6.75) can be written as

V̇ ≤ −1

2
ET QE + 1

2
ρ2wT

1 w1 (6.76)

where

E =
(
ê

ẽ

)
, Q =

(
Q1 0

0 Q2

)
= diag[Q1, Q2] (6.77)

Hence, the H∞ performance criterion is derived. For ρ sufficiently small Eq. (6.75)
will be true and the H∞ tracking criterionwill be satisfied. In that case, the integration
of V̇ from 0 to T gives
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∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||E ||2dt + 1

2ρ
2
∫ T
0 ||w1||2dt ⇒

2V (T ) − 2V (0) ≤ −∫ T
0 ||E ||2Qdt + ρ2

∫ T
0 ||w1||2dt ⇒

2V (T ) + ∫ T
0 ||E ||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||w1||2dt

It is assumed that there exists a positive constant Mw > 0 such that
∫ ∞
0 ||w1||2dt ≤

Mw. Therefore for the integral
∫ T
0 ||E ||2Qdt one gets∫ ∞

0
||E ||2Qdt ≤ 2V (0) + ρ2Mw (6.78)

Thus, the integral
∫ ∞
0 ||E ||2Qdt is bounded and according to Barbalat’s Lemma

lim
t→∞ E(t) = 0 ⇒ limt→∞ ê(t) = 0

limt→∞ ẽ(t) = 0

Therefore limt→∞ e(t) = 0.

6.2.6.2 Riccati Equation Coefficients in H∞ Control Robustness

Following the concept of the flatness-based adaptive fuzzy control which has been
developed in previous sections, the linear system of Eqs. (6.45) and (6.46) is consid-
ered again

˙̃e = (A − KoC
T )ẽ + Buc + B{[ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u + d̃}

e1 = CT ẽ

Once again the aim of H∞ control is to eliminate the impact of the modelling
errors w = [ f (x, t) − f̂ (x̂, t)] + [g(x, t) − ĝ(x̂, t)]u and the external disturbances
d̃ which are not white noise signals. This implies the minimization of the following
quadratic cost function for the microactuator’s state vector tracking problem [132,
243, 305]:

J (t) = 1

2

∫ T

0
[ẽT (t)ẽ(t) + ruT

c (t)uc(t) − ρ2(w + d̃)T (w + d̃)]dt, r, ρ > 0

(6.79)

The weight r determines how much the control signal should be penalized and the
weight ρ determines how much the disturbances influence should be rewarded in the
sense of a min-max differential game. The control input uc has been defined as the
sum of the terms described in Eqs. (6.62) and (6.63).

The parameter ρ in Eq. (6.79), is an indication of the closed-loop system robust-
ness. If the values of ρ > 0 are excessively decreased with respect to r , then the
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solution of the Riccati equation is no longer a positive definite matrix. Consequently
there is a lower bound ρmin of ρ for which the H∞ control problem has a solution.
The acceptable values of ρ lie in the interval [ρmin,∞). If ρmin is found and used
in the design of the H∞ controller, then the closed-loop system will have increased
robustness. Unlike this, if a value ρ > ρmin is used, then an admissible stabilizing
H∞ controller will be derived but it will be a suboptimal one. TheHamiltonianmatrix

H =
(
A − KoCT −( 2r − 1

ρ2 )BBT

−Q −(A − KoCT )T

)
(6.80)

provides a criterion for the existence of a solution of theRiccati equationEq. (6.59). A
necessary condition for the solution of the algebraic Riccati equation to be a positive
semi-definite symmetric matrix is that H has no imaginary eigenvalues [132, 457].

6.2.7 Simulation Tests

The performance of the proposed output feedback-based adaptive fuzzy control
approach for MEMS (microactuator) was tested in the case of tracking of several
reference setpoints. The only measurable variable, used in the control loop was
the microactuator’s deflection variable x . Indicative variation ranges for the MEMS
parameters are ζ∈[0.1, 3] and r∈[0.1, 3] without excluding that these parameters
may take values in wider intervals. In the simulation tests, the dynamic model of
the MEMS, as well as the numerical values of its parameters were considered to be
completely unknown.

The estimation of the unknowndynamics of the systemwith the use of neuro-fuzzy
approximators has been explained in Sect. 6.2.5.6. Knowing that there are i = 3 state
variables for the MEMS model and that each such variable comprises n = 3 fuzzy
sets, the total number of rules in the fuzzy rule base should be nm = 33 = 27. The
aggregate output of the neuro-fuzzy approximator (rule-base) for function f (x) is
given by Eq. (6.47). The centers c(l)

i , i = 1, . . . , 3 and the variances v(l) of each rule
are summarized in Table 6.1. Similar is the structure of the neuro-fuzzy approximator
for function g(x).

The control loop was based on simultaneous estimation of the unknown MEMS
dynamics (this was performed with the use of neuro-fuzzy approximators) and of the
nonmeasurable elements of the microactuator’s state vector, that is of the deflections
change rate ẋ and of the charge of the plates q (this was performed with the use of
the state observer). The obtained results are presented in Figs. 6.4, 6.5, 6.6, 6.7 and
6.8. The real values of the monitored parameters (state vector variables) are denoted
with blue line, the estimated variables are denoted with green line and the reference
setpoints are plotted as red lines. It can be noticed that differential flatness theory-
based adaptive fuzzy control of the MEMS, achieved fast and accurate tracking of
the reference setpoints.
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Table 6.1 Table I:
Parameters of the fuzzy rule
base

Rule c(l)
1 c(l)

2 c(l)
3 v(l)

R(1) −1.0 −1.0 −1.0 3

R(2) −1.0 −1.0 0.0 3

R(3) −1.0 −1.0 1.0 3

R(4) −1.0 0.0 −1.0 3

R(5) −1.0 0.0 0.0 3

R(6) −1.0 0.0 1.0 3

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
R(27) 1.0 1.0 1.0 3
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Fig. 6.4 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 1:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)

The implementation of the proposed control scheme requires that the two algebraic
Riccati equations which have been defined in Eqs. (6.58) and (6.59) are solved in
each iteration of the control algorithm. These provide the positive definite matrices
P1 and P2 which are used for the computation of the control signals ua and ub that
have been defined in Eqs. (6.62) and (6.63). The transients of the state vector elements
xi , i = 1, . . . , 3, are determined by the values given to the positive definite matrices
Qi , i = 1, . . . , 3, as well as by the value of the parameter r and of the H-infinity
coefficient (attenuation level) ρ. It has been confirmed that the variations of both
xi , i = 1, . . . , 3 and of the control input u were smooth.

One can compare the proposed adaptive fuzzy control method for the elec-
tromechanically actuated MEMS against model-based control methods based on the
approximate linearization of MEMS. The latter method consists of local
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Fig. 6.5 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 2:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)
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Fig. 6.6 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 3:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)

linearization of the MEMS model round operating points and on the solution of
LMIs and remains dependent on knowledge of the MEMS dynamics. In [456], it
has been shown that although the proposed adaptive control scheme uses no prior
knowledge about the system’s dynamics it performs equally well to the aforemen-
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Fig. 6.7 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 4:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)
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Fig. 6.8 Output feedback based adaptive fuzzy control of MEMS (microactuator) - Test 5:
a state variables xi , i = 1, . . . , 3 of the initial nonlinear system, b transformed state variables
yi , i = 1, . . . , 3 (blue line: real value, red line: setpoint)

tioned model-based control approach. The associated simulation results about the
comparison of the two methods can be found in [456].
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6.3 Nonlinear Optimal Control of Underactuated MEMS

6.3.1 Outline

Extending the analysis on the dynamics of microactuators that was given in the previ-
ous section, one can consider next micro-electromechanical systems (MEMS) which
exhibit often the dynamics of nonlinear oscillators such as the Van-der-Pol oscilla-
tor and the Duffing oscillator [214, 215, 407, 409]. In certain cases these oscillator
models are coupled and are described for instance by a Van-der-Pol oscillator driven
by a forced Duffing oscillator [138, 266, 376, 579]. Such micro-electromechanical
systems can exhibit complex and chaotic dynamics [29, 265, 339, 383]. In an aim
to improve the precision and reliability of MEMS, nonlinear control of MEMS has
been the subject of wide research during the last years [184, 336, 368, 384, 496].
However, taking into account the nonlinearities of their dynamic model and possible
underactuation, the problem of control of these micro-electromechanical systems is
considered as a non-trivial one [96, 120, 296, 338].

In this section a nonlinear optimal (H-infinity) control method is developed for
the model of a MEMS described in the form of a Van-der-Pol oscillator elastically
coupled with a forced Duffing oscillator. This MEMS receives control input only
at the side of the Duffing oscillator. The MEMS dynamic model undergoes first
approximate linearization around a temporary operating point (equilibrium) which
is redefined at each iteration of the control method. This temporary equilibrium
comprises the present value of the system’s state vector and the last value of the
control inputs vector that was applied on it. The linearization makes use of first-
order Taylor series expansion and requires the computation of the system’s Jacobian
matrices [33, 431, 463] . The modelling error which is due to the truncation of
higher order terms in the Taylor series expansion is considered to be a disturbance
term which is finally compensated by the robustness of the control algorithm.

For the approximately linearizedmodel of theMEMSanoptimal (H-infinity) feed-
back controller is designed [461, 466]. As explained in the previous sections, the
H-infinity controller represents the solution to the optimal control problem under
model uncertainty and external perturbations. Actually, the H-infinity controller
stands for the solution to a min-max differential game in which the control inputs try
to minimize a cost function comprising a quadratic term of the state vector’s tracking
error, whereas the model uncertainty and the disturbance inputs try to maximize it
[450, 457, 459]. For the computation of the feedback gain of the H-infinity controller
an algebraic Riccati equation is solved repetitively at each time-step of the control
method
[305, 564].

The stability of the proposed nonlinear optimal control method is proven through
Lyapunov analysis. First, it is demonstrated that the control loop satisfies the
H-infinity tracking performance criterion,which signifies elevated robustness against
model uncertainty and external perturbations. Moreover, under moderate conditions
it is shown that the control scheme has also global asymptotic stability properties.
Finally, to implement state estimation-based control of the MEMS through the mea-
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surement of a small number of its state vector elements, the H-infinity Kalman Filter
is proposed as a robust state estimator [169, 511].

6.3.2 Dynamic Model of MEMS

The dynamic model of the coupled MEMS comprises a Van der Pol oscillator driven
by a forced Duffing oscillator (Fig. 6.9). The variation in time of the Van der Pol
oscillator is given by state variable z1 while the variation in time of the Duffing
oscillator is given by state variable z2. Moreover, the control input to the MEMS is
the sinusoidal voltage V = ucos(ωd

ω1
τ) , and thus one has the following dynamics

[266, 376]

z̈1 + γ2(z21 − 1)ż1 +
(

ω2
ω1

)2
z1 = k(z2 − z1)

z̈2 + γ2 ż2 + δz32 = (z1 − z2) + ucos
(

ωd
ω1

τ
) (6.81)

The following state variables are defined x1 = z1, x2 = ż1, x2 = z2 and x4 = ż2.
Then, the state-space description of the system is given by

ẋ1 = x2

ẋ2 = −γ1(x21 − 1)x2 −
(

ω2
ω1

)2
x1 + k(x2 − x1)

ẋ3 = x4

ẋ4 = −γ2x4 − δx23 + k(x1 − x3) + ucos
(

ωd
ω1

τ
)

(6.82)

Fig. 6.9 Diagram of an electrostatically actuated MEMS, exhibiting the dynamics of a Duffing
oscillator
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Next, the system of the coupled Van der Pol and Duffing oscillators can be written
in the following matrix form

⎛
⎜⎜⎜⎝
ẋ1
ẋ2
ẋ3
ẋ4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x2
−γ1(x21 − 1)x2 − (ω2

ω1
)2x1 + k(x2 − x1)

x4
ẋ4 = −γ2x4 − δx23 + k(x1 − x3)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

0

0

0

cos(ωd
ω1

τ)

⎞
⎟⎟⎟⎠ u (6.83)

Thus by defining the vector fields f (x) x∈R4×1 and g(x) x∈R4×1 where

f (x) =

⎛
⎜⎜⎜⎝

x2
−γ1(x21 − 1)x2 − (ω2

ω1
)2x1 + k(x2 − x1)

x4
ẋ4 = −γ2x4 − δx23 + k(x1 − x3)

⎞
⎟⎟⎟⎠ g(x) =

⎛
⎜⎜⎜⎝

0

0

0

cos(ωd
ω1

τ)

⎞
⎟⎟⎟⎠ u

(6.84)

one arrives at the states-space description

ẋ = f (x) + g(x)u (6.85)

6.3.3 Approximate Linearization of the MEMS Dynamics

Approximate linearization of the MEMS dynamics given in Eq. (6.85) is performed
around the temporary operating point (equilibrium) (x∗, u∗) which is re-defined at
each iteration of the control algorithm by the present value of the system’s state
vector x∗ and the last value of the control inputs vector u∗ that was exerted on it.
This results in the following linear state-space form of the system:

ẋ = Ax + Bu + d̃ (6.86)

where matrices A and B are defined as follows:

A = ∇x [ f (x) + g(x)u] |(x∗,u∗) ⇒A = ∇x f (x) |(x∗) (6.87)

B = ∇u[ f (x) + g(x)u] |(x∗,u∗) ⇒B = g(x) (6.88)

About the Jacobian matrix ∇x f (x) |(x∗) one has
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∇x f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x3

∂ f4
∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.89)

where the elements of the first row of ∇x f (x) are:
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 1, ∂ f1
∂x3

= 0, and
∂ f1
∂x4

= 0.

the elements of the second row of ∇x f (x) are: ∂ f2
∂x1

= −γ12x1x2 − (ω2
ω1

)2 − k,
∂ f2
∂x2

= −γ1(x21 − 1), ∂ f2
∂x3

= 1, and ∂ f2
∂x4

= 0.

the elements of the third row of ∇x f (x) are: ∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0, ∂ f3
∂x3

= 0, and
∂ f3
∂x4

= 1.

and the elements of the fourth row of ∇x f (x) are: ∂ f4
∂x1

= k, ∂ f4
∂x2

= 0, ∂ f4
∂x3

=
−2δx3 − k, and ∂ f3

∂x4
= −γ1.

6.3.4 Design of an H-Infinity Nonlinear Feedback Controller

6.3.4.1 Equivalent Linearized Dynamics of the MEMS

After linearization round its current operating point, the dynamicmodel of theMEMS
is written as

ẋ = Ax + Bu + d1 (6.90)

Parameter d1 stands for the linearization error in the dynamic model of the MEMS
appearing in Eq. (6.90). The reference setpoints for theMEMSmodel state vector are
denoted by xd = [xd1 , . . . , xd6 ]. Tracking of this trajectory is achieved after applying
the control input u∗. At every time instant the control input u∗ is assumed to differ
from the control input u appearing in Eq. (6.90) by an amount equal to �u, that is
u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (6.91)

The dynamics of the controlled system described in Eq. (6.90) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (6.92)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (6.93)
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By subtracting Eq. (6.91) from (6.93) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (6.94)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (6.95)

The above linearized form of the MEMS model can be efficiently controlled after
applying an H-infinity feedback control scheme.

6.3.5 The Nonlinear H-Infinity Control

The initial nonlinear model of MEMS is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (6.96)

Linearization of theMEMSmodel that comprises coupled electromechanical oscilla-
tors is performed at each iteration of the control algorithm round its present operating
point (x∗, u∗) = (x(t), u(t − Ts)), where Ts is the sampling period. The linearized
equivalent model of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (6.97)

where matrices A and B are obtained from the computation of the Jacobians of the
MEMSmodel, and vector d̃ denotes disturbance terms due to linearization errors. The
problem of disturbance rejection for the MEMS linearized model that is described
by

ẋ = Ax + Bu + Ld̃

y = Cx (6.98)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

As explained in the application of the control method in previous sections, in the
H∞ control approach, a feedback control scheme is designed for trajectory tracking
by the MEMS state vector and simultaneous disturbance rejection, considering that
the disturbance affects the system in the worst possible manner. The disturbances’
effects are incorporated in the following quadratic cost function:
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J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (6.99)

As mentioned in previous chapters, the significance of the negative sign in the cost
function for the MEMS control loop is that this is associated with the perturbation
variable d̃(t) is that the disturbance tries to maximize the cost function J (t)while the
control signal u(t) tries to minimize it. The physical meaning of the relation given
above is that the control signal and the disturbances compete to each other within a
min-max differential game. This problem of min-max optimization can be written as

minumaxd̃ J (u, d̃) (6.100)

The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
MEMS. As explained in previous sections, the solution to the mini-max optimization
problem is directly related to the value of the parameter ρ. This means that there is
an upper bound in the disturbances magnitude that can be annihilated by the control
signal.

6.3.5.1 Computation of the Feedback Control Gains

For the linearized model of the MEMS given by Eq. (6.98) the cost function of
Eq. (6.99) is defined, where the coefficient r determines the penalization of the
control input and the weight coefficient ρ determines the reward of the disturbances’
effects.

In adherence to the analysis of the control method given in previous sections, it
is assumed again that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are

stabilizable, (iii) matrix [A,C] is detectable. Then, the optimal feedback control law
is given by

u(t) = −Kx(t) (6.101)

with

K = 1

r
BT P (6.102)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (6.103)
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Fig. 6.10 Diagram of the control scheme for MEMS comprising a Van-der-Pol oscillator coupled
with a forced Duffing oscillator

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1

ρ2
LT Px(t) (6.104)

The diagram of the MEMS control loop is depicted in Fig. 6.10.

6.3.6 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the MEMS model, and that in
case of bounded disturbance terms asymptotic convergence to the reference setpoints
is achieved. The tracking error dynamics for the MEMSmodel is written in the form

ė = Ae + Bu + Ld̃ (6.105)

where in the MEMS case L = I∈R4 with I being the identity matrix. Variable d̃
denotesmodel uncertainties and external disturbances of themicro-electromechanical
system’s model. The following Lyapunov equation is considered
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V = 1

2
eT Pe (6.106)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2e

T Pė⇒
V̇ = 1

2 [Ae + Bu + Ld̃]T Pe + 1
2e

T P[Ae + Bu + Ld̃]⇒ (6.107)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (6.108)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(6.109)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (6.110)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (6.111)

Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (6.112)

By substituting Eqs. (6.111) and (6.112) one obtains

V̇ = 1
2e

T
[
−Q + P

(
2
r BB

T − 1
ρ2 LLT

)
P

]
e+

+eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(6.113)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(6.114)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (6.115)
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or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(6.116)

Lemma: The following inequality holds

1

2
eT PLd̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe≤ 1

2
ρ2d̃T d̃ (6.117)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(6.118)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe≤ 1

2
ρ2d̃T d̃ (6.119)

Equations (6.119) is substituted in (6.116) and the inequality is enforced, thus giving

V̇≤ − 1

2
eT Qe + 1

2
ρ2d̃T d̃ (6.120)

Equation (6.120) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||d̃||2dt (6.121)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (6.122)

then one gets ∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (6.123)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (6.106) it becomes clear that e(t) will
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be also bounded since e(t) ∈ �e = {e|eT Pe≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the MEMS model is based on Eq. (6.120) and on
the application of Barbalat’s Lemma. It uses the condition of Eq. (6.122) about the
boundedness of the square of the aggregate disturbance and modelling error term d̃
that affects the model. However, as explained above the proof of global asymptotic
stability is not restricted by this condition. By selecting the attenuation coefficient
ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that
the first derivative of the Lyapunov function is upper bounded by 0. Therefore for
the i-th time interval it is proven that the Lyapunov function defined in Eq (6.106) is
a decreasing one. This also assures that the first derivative of the Lyapunov function
of the system defined in Eq. (6.106) will always be negative.

6.3.7 Robust State Estimation with the Use of the H-infinity
Kalman Filter

TheMEMS control loop can be implementedwith the use of information provided by
a small number of sensors and by processing only a small number of state variables.
To reconstruct the missing information about the state vector of the MEMS model it
is proposed to use a filtering scheme and based on it to apply state estimation-based
control [169, 457, 511]. The recursion of the H∞ Kalman Filter, for the MEMS
model, can be formulated in terms of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1 (6.124)

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]

Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)
(6.125)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the MEMS (e.g. state variables x1 and x3),
and can estimate through filtering the rest of the state vector elements.
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6.3.8 Simulation Tests

6.3.8.1 Computation of Setpoints for the Model of the Coupled MEMS

The setpoints for the model of the coupled MEMS, that is if the Van der Pol Oscil-
lator driven by the forced Duffing oscillator are computed by exploiting the model’s
differential flatness properties. The system is in triangular form and thus it is differ-
entially flat, with flat output equal to y = x1. From the first row of the state-space
model of Eq. (6.83) it holds that x2 = ẋ1. Moreover, from the second row of the
state-space model of Eq. (6.83) one obtains

x3 = 1

k

[
ẋ2 + γ1(x

2
1 − 1)x2 +

(
ω2

ω1

)2

x1 + kx1

]
(6.126)

From the third row of the state-space model it holds x4 = ẋ3. Additionally, from the
fourth raw of the state-space model one has

u = 1

cos
(

ωd
ω1

τ
) [ẋ4 + γ2x4 + δx23 − k(x1 − x3)] (6.127)

Therefore, all state variables and the control inputs of the model can be expressed
as differential functions of the flat output, and as a consequence the MEMS sys-
tem consisting of the Van der Pol oscillator, driven by the Duffing oscillator, is a
differentially flat one.

6.3.8.2 Simulation Diagrams

Simulation tests have been carried out to test the tracking accuracy of the proposed
nonlinear optimal (H-infinity) control method for theMEMS that comprised theVan-
del-Pol oscillator model, elastically coupled to the forced Duffing oscillator model.
The obtained simulation result have confirmed that despite the nonlinearities and the
underactuation in the MEMS state-space description the proposed control scheme
achieves fast and accurate tracking of all reference setpoints, while also keeping
moderate the variations of the control input. The simulation results are depicted in
Figs. 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18 and 6.19, where the real values
of the MEMS state variables are depicted in blue, the reference setpoints of the
experiments are plotted in red while the estimated values of the state vector elements
(provided by the H-infinity Kalman Filter) are printed in green.

The computation of the feedback gain of the H-infinity controller was based on
the solution of the algebraic Riccati equation of Eq. (6.111), taking place at each time
step of the control method. The selection of the attenuation coefficient ρ determines
the robustness of the control algorithm as well as the existence of a solution in the
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Fig. 6.11 Setpoint 1: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.12 Setpoint 2: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.13 Setpoint 3: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.14 Setpoint 4: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.15 Setpoint 5: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.16 Setpoint 6: a Convergence of state variables x1 and x2 of the MEMS (blue lines) to the
reference setpoints (red lines) and estimates of them provided by the Kalman Filter (green lines),
b Convergence of state variables x3 and x4 of the MEMS (blue lines) to the reference setpoints (red
lines) and estimates of them provided by the Kalman Filter (green lines)
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Fig. 6.17 Variation of the control input u applied to theMEMS awhen tracking Setpoint 1, bwhen
tracking Setpoint 2
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Fig. 6.18 Variation of the control input u applied to theMEMS awhen tracking Setpoint 3, bwhen
tracking Setpoint 4

aforementionedRiccati equation.As explained in the preceding sections, by selecting
ρ to be sufficiently small the global asymptotic stability of the control method is
assured. Moreover, the values of parameters ρ,r and of matrix Q appearing in Eq.
(6.111) determine the transients of the control method.

By using the H-infinity Kalman Filter as a robust state estimator it has become
possible to implement state estimation-based control through the measurement of
selected state vector elements (for instance the position variables of the Van-der-Pol
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Fig. 6.19 Variation of the control input u applied to theMEMS awhen tracking Setpoint 5, bwhen
tracking Setpoint 6

and the Duffing oscillators). The rest of the state vector elements were estimated
through the Kalman Filter’s recursion. The use of a state estimator, in place of
measurements of the entire state vector of the MEMS is important considering the
difficulty of obtaining sensor measurements at the MEMS scale.



Chapter 7
Unicycles and Two-Wheel Autonomous
Ground Vehicles

Abstract In complement to robotic manipulators, autonomous vehicles form the
second large class of robotic systems. In this context, the autonomous or semi-
autonomous navigation of unicycle-type and two-wheel vehicles, such as motorcy-
cles, can be significantly improved through electronic control of the their stability
properties. This will also allow for precise path following and for dexterous maneu-
vering. In this chapter, a nonlinear optimal controlmethod is developed for solving the
stabilization and path following problem of autonomous two-wheel vehicles. In the
presented application examples either the kinematic or the joint kinematic-dynamic
of the two-wheel vehicle undergoes approximate linearization around a temporary
operating point which is recomputed at each iteration of the control algorithm. The
linearization takes place using Taylor series expansion and the computation of the
Jacobian matrices of the system’s states-space model. For the approximately lin-
earizedmodel of the two-wheel vehicle anH-infinity feedback controller is designed.
The computation of the feedback gain of the controller requires the repetitive solution
of an algebraic Riccati equation, taking again place at each time-step of the control
method. The concept of the control method is that at each time instant the system’s
state vector is made to converge to the temporary equilibrium, while this equilibrium
is shifted towards the reference trajectory. Thus, asymptotically the state vector of the
two-wheel vehicle converges to the reference setpoints. Through Lyapunov stability
analysis the global asymptotic stability properties of the control method are proven
In particular, the chapter treats the following topics: (a) Nonlinear optimal control of
robotic unicycles, (b) Flatness-based control of robotic unicycles, and (c) Nonlinear
optimal control of autonomous two-wheeled vehicles such as motorcycles.

7.1 Chapter Overview

The present chapter treats the following topics: (a) Nonlinear optimal control of
robotic unicycles, (b) Flatness-based control of robotic unicycles, and (c) Nonlinear
optimal control of autonomous two-wheeled vehicles such as motorcycles.
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With reference to (a) the chapter introduces a new control method for feedback
control of autonomous robotic vehicles of the unicycle type. The control method
consists of a repetitive solution of an H-infinity control problem for the mobile
robot, that makes use of a locally linearizedmodel of the robot and takes place at each
iteration of the control algorithm. The vehicle’s model is locally linearized round its
current position through the computation of the associated Jacobian matrices. Using
the linearized model of the vehicle an H-infinity feedback control law is computed.
The known robustness features of H-infinity control enable to compensate for the
errors of the approximate linearization, as well as to eliminate the effects of external
perturbations.

With reference to (b) the chapter proposes a differential flatness theory-based
implementation of the Kalman Filter (known as Derivative-free nonlinear Kalman
Filter) and state estimation-based control for MIMO nonlinear dynamical systems,
such as autonomous vehicles. The considered nonlinear filtering scheme which is
based on differential flatness theory can be applied to the autonomous vehicle model
without the need for calculation of Jacobian matrices, and in general extends the
class of MIMO nonlinear systems for which derivative-free Kalman Filtering can be
performed. Nonlinear systems such as unicycle-type autonomous vehicles, satisfying
the differential flatness property, can be written in the Brunovsky (canonical) form
via a transformation of their state variables and control inputs. After transforming the
unicycle-type vehicle to the canonical form it is straightforward to apply the standard
Kalman Filter recursion.

With reference to (c) the chapter demonstrates that the autonomous or semi-
autonomous navigation of two-wheel vehicles, such as motorcycles, can be signifi-
cantly improved through electronic control of the their stability properties. This will
also allow for precise path following and for dexterous maneuvering. Actually, a
nonlinear optimal control method is developed once again, for solving the stabiliza-
tion and path following problemof autonomousmotorcycles. The joint kinematic and
dynamicmodel of themotorcycle undergoes approximate linearization around a tem-
porary operating point which is recomputed at each iteration of the control algorithm.
The linearization takes place using Taylor series expansion and the computation of
the Jacobian matrices of the system’s states-space model. For the approximately lin-
earized model of the motorcycle an H-infinity feedback controller is designed. The
computation of the feedback gain of the controller requires the repetitive solution
of an algebraic Riccati equation, taking again place at each time-step of the control
method. The concept of the controlmethod is that at each time instant the autonomous
motorcycle’s state vector is made to converge to the temporary equilibrium, while
this equilibrium is shifted towards the reference trajectory. Thus, asymptotically the
state vector of themotorcycle converges to the reference setpoints. In all cases (a)–(c)
the global asymptotic stability properties of the control method are proven through
Lyapunov analysis.
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7.2 Nonlinear Optimal Control of the Robotic Unicycle

7.2.1 Outline

Nonlinear and embedded control and autonomous navigation of robotic vehicles is of
primary importance for the automotive industry. By succeedingmotion control of the
vehicle, safety in driving canbe improvedwhile other several practical problems, such
as lane keeping and maneuvering or parallel parking can be solved [206, 207, 223,
278, 281, 425, 569, 574]. Up to now several research results have been developed to
enable the steering control and autonomous navigation of vehicles. The developed
methods are based on nonlinear control, such as differential geometry and differential
flatness theory approaches as well as on Lyapunov stability theory [38, 90, 100, 262,
343, 486, 604]. In this section a new solution to the problem of autonomous vehicle
navigation is given, using a linearization scheme together with H∞ robust control
theory [450].

The kinematic model of a unicycle robotic vehicle is considered as a case study,
however the proposed approach can be also applied to other types of vehicles (such
as four wheel vehicles, heavy duty vehicles, articulated vehicles etc.). Actually the
present section proposes the application of an approximate linearization scheme
for the kinematic model of the unicycle robotic vehicle. The linearization makes
use of Taylor series expansion around the vehicle’s current position. To perform
this linearization the computation of Jacobian matrices is needed while the induced
linearization error is treated as a disturbance. For the linearized equivalent of the
vehicle’s model an H∞ feedback control scheme is developed. The formulation of
the H∞ control problem is based on theminimization of a quadratic cost function that
comprises both the disturbance and the control input effects. The disturbance tries
to maximize the cost function while the control signal tries to minimize it, within a
min-max differential game.

Comparing to nonlinear feedback control approaches which rely on exact lin-
earization (as the ones based on differential flatness theory and analyzed in [450,
452, 457]) the proposed H∞ control scheme is assessed as follows: (i) it uses an
approximate linearization approach of the vehicle’s dynamic or kinematic model
which does not follow the elaborated transformations (diffeomorphisms) of the exact
linearization methods, (ii) it introduces additional disturbance error which is due to
the approximate linearization of the system dynamics coming from the application
of Taylor series expansion, (iii) it requires the computation of Jacobian matrices, (iv)
unlike exact feedback linearization, the H∞ control term has to compensate not only
for modelling uncertainties and external disturbances but needs also to annihilate the
effects of the cumulative linearization error, (v) the H∞ control approach follows
optimal control methods for the computation of the control signal, thus achieving
accurate tracking of reference setpoints under moderate variations of the control
input.
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7.2.2 Linearization of the Robotic Vehicle’s Kinematic Model

7.2.2.1 Approaches in Control of Nonlinear Robotic Vehicles

Motion control of unmanned vehicles is a nonlinear control problem. One can distin-
guish three main approaches in the design of nonlinear control systems: (i) control
and filtering based on global linearization methods, (ii) control and filtering based
on asymptotic linearization methods, (iii) Lyapunov methods.

As far as approach (i) is concerned, that is methods of global linearization, one
can classify there methods for the transformation of nonlinear vehicles dynamics
into equivalent linear state space form. For the linear equivalent forms of the vehi-
cles dynamics one can design feedback controllers and can solve the problem of
state estimation (filtering). In this area one can consider methods based on differ-
ential flatness theory and methods based on Lie algebra. These approaches avoid
approximation errors in modelling and arrive at controllers of elevated precision and
robustness, In this area, one can also distinguish a new nonlinear filtering method
(Derivative-free nonlinear Kalman Filter) which ismore precise and computationally
faster than other nonlinear estimation approaches [450].

As far as approach (ii) is concerned, that ismethods of asymptotic linearization, the
focus is on robust and adaptive control with the use of a decomposition of the vehicles
dynamics into a set of linear local models. One can pursue solutions to the problem
of nonlinear control, relying on local linear models (around linearization points). For
such systems one can select the parameters of the local controllers by following linear
feedback controller design methods. These controllers achieve asymptotically, that
is in the course of time, the compensation of the nonlinear system dynamics and the
stabilization of the feedback control loops. In this research direction several results
have been obtained about a new nonlinear H-infinity control method, which is based
on the local and approximate linearization of the vehicles dynamics andwhichmakes
use of the computation of Jacobian matrices.

As far as approach (iii) is concerned, that is Lyapunov theory-based nonlinear con-
trol methods one comes against problems of minimization of the Lyapunov functions
so as to compute control signals for nonlinear vehicle dynamics. For the develop-
ment of Lyapunov-type controllers one can either exploit a model of the vehicle’s
dynamics, or can avoid completely the use of such a model as in the case of adaptive
control. In the latter case, the vehicles dynamics is completely unknown and can be
approximated by adaptive algorithms which are suitably designed so as to assure the
stability and robustness of the control loop.

7.2.3 Linearization of the Unicycle Robot Through Taylor
Series Expansion

A unicycle autonomous robotic vehicle is considered, as shown in Fig. 7.1. Its kine-
matic model is given by
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Fig. 7.1 The model of the
autonomous robotic vehicle
(cart-like vehicle)
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ẋ
ẏ
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where x, y are the cartesian coordinates of the robot’s center of gravity and θ is its
orientation angle. Input v is the vehicle’s linear velocity andω is the vehicle’s angular
velocity for rotations round its transversal axis.

Considering linearization of the model round the current position of the robot and
round the velocity value v(t − Ts), where TS is the sampling period, the Jacobian
matrices of the robotic model are:

A =
⎛
⎝
0 0 −v(t − Ts)·sin(θ)

0 0 v(t − Ts)·cos(θ)

0 0 0

⎞
⎠ (7.2)

B =
⎛
⎝
cos(θ) 0
sin(θ) 0

0 1

⎞
⎠ (7.3)

The state vector of the robotic vehicle is denoted as x = [x, y, θ ]T while the input
vector is denoted as u = [v,w]T . After linearization around its current position, the
robot’s kinematic model is written as

ẋ = Ax + Bu + d1 (7.4)
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Parameter d1 stands for the linearization error in the robot’s kinematic model appear-
ing in Eq. (7.4). The desirable trajectory of the robot is denoted by xd = [xd, yd, θd].
Tracking of this trajectory is achieved after applying the control input u∗. At every
time instant the control input u∗ is assumed to differ from the control input u appear-
ing in Eq. (7.4) by an amount equal to �u, that is u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (7.5)

The dynamics of the controlled system described in Eq. (7.4) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (7.6)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (7.7)

By subtracting Eq. (7.5) from Eq. (7.7) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (7.8)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (7.9)

The above linearized form of the robotic model can be efficiently controlled after
applying an H-infinity feedback control scheme.

7.2.4 The Nonlinear H-Infinity Control

7.2.4.1 Mini-Max Control and Disturbance Rejection

The initial nonlinear system is assumed to be in the form

ẋ = f (x, u) x∈Rn, u∈Rm (7.10)

Linearization of the system (autonomous vehicle) is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)).
The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (7.11)

where matrices A and B are obtained from the computation of the Jacobians
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and vector d̃ denotes disturbance terms due to linearization errors. The problem of
disturbance rejection for the linearized model that is described by

ẋ = Ax + Bu + Ld
y = Cx

(7.14)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d. The disturbance term d apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

As analyzed in previous applications of the H∞ control approach, a feedback
control scheme is designed for trajectory tracking by the system’s state vector and
simultaneous disturbance rejection, considering that the disturbance affects the sys-
tem in the worst possible manner. The disturbances’ effects are incorporated in the
following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t)+

+ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0
(7.15)

As pointed out in previous sections, the significance of the negative sign in the
cost function’s term that is associated with the perturbation variable d̃(t) is that the
disturbance tries tomaximize the cost function J (t)while the control signal u(t) tries
to minimize it. The physical meaning of the relation given above is that the control
signal and the disturbances compete to each other within a min-max differential
game. This problem of min-max optimization can be written as

minumaxd̃ J (u, d̃) (7.16)

The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
unicycle vehicle. However, the solution to the min-max optimization problem is
directly related to the value of the parameter ρ. This means that there is an upper
bound in the disturbances magnitude that can be annihilated by the control signal.
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7.2.4.2 H-Infinity Feedback Control

For the linearized systemgiven byEq. (7.14) the cost function of Eq. (7.15) is defined,
where the coefficient r determines the penalization of the control input and theweight
coefficient ρ determines the reward of the disturbances’ effects. It is assumed that:

As in previous applications of the H-infinity control method, it is assumed that
(i) The energy that is transferred from the disturbances signal d(t) is bounded, that
is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [AB] and [AL] are stabilizable, (iii) matrix

[AC] is detectable. Then, the optimal feedback control law is given by

u(t) = −Kx(t) (7.17)

with

K = 1
r B

T P (7.18)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P( 1r BB
T − 1

2ρ2 LLT )P = 0 (7.19)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by d̃(t) = 1

ρ2 LT Px(t).

7.2.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme for the unicycle vehicle assures H∞ tracking performance, and that in
case of bounded disturbance terms asymptotic convergence to the reference setpoints
is achieved. The tracking error dynamics for the robotic vehicle is written in the form

ė = Ae + Bu + Ld̃ (7.20)

where in the unicycle robot’s application example L = I∈R3 with I being the identity
matrix. The following Lyapunov function is considered

V = 1
2e

T Pe (7.21)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains
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V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T P + 1

2e
T P[Ae + Bu + Ld̃]⇒ (7.22)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (7.23)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(7.24)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (7.25)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P
(
1
r BB

T − 1
2ρ2 LLT

)
P (7.26)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (7.27)

By substituting Eq. (7.26) and Eq. (7.27) one obtains

V̇ = 1
2e

T
[
−Q + P

(
1
r BB

T − 1
2ρ2 LLT

)
P

]
e+

+eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(7.28)

V̇ = − 1
2e

T Qe +
(
1
r PBBT Pe − 1

2ρ2 eT PLLT
)
Pe

− 1
r e

T PBBT Pe + eT PLd̃
(7.29)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (7.30)

or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(7.31)

Lemma: The following inequality holds
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1
2e

T Ld̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (7.32)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(7.33)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (7.34)

Equation (7.34) is substituted in Eq. (7.31) and the inequality is enforced, thus giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (7.35)

Equation (7.35) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt (7.36)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (7.37)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (7.38)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (7.21) it becomes clear that e(t) will
be also bounded since e(t) ∈ �e = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

7.2.6 Simulation Tests

The performance of the proposed nonlinear H∞ control scheme is tested is two exam-
ples: (i) when the mobile robot tracks a reference trajectory, (ii) when the unicycle
robot performs the automated parallel parking task. In both cases the performance
of the proposed controller was satisfactory, with minimum tracking error and fast



7.2 Nonlinear Optimal Control of the Robotic Unicycle 351

convergence to the reference setpoints. In the computation of the reference path, the
coordinates of the reference trajectory in the 2D-plane (xd , yd) have been used, while
the desirable steering angle has been computed by θd = tan−1(ẏd/ẋd). The obtained
results are depicted in Figs. 7.2, 7.3 and 7.4.

The tracking performance of the control method is shown in Table7.1. It can
be observed that the tracking error for all state variables of the unicycle robot was
extremely small. Besides, in the simulation diagrams one can note the excellent
transient performance of the control algorithm, which means that convergence to the
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Fig. 7.2 a Plot of the circular x − y trajectory followed by the mobile robot, b convergence of the
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Table 7.1 Tracking RMSE in the disturbance-free case

RMSEx RMSEy RMSEθ

Path1 36.00 · 10−4 39.00 · 10−4 10.00 · 10−4

Path2 7.90 · 10−4 12.00 · 10−4 2.40 · 10−4

reference path was succeeded in a smooth manner, while also avoiding overshoot
and oscillations.

It is pointed out that the errors and disturbances that affect the proposed control
method are as follows: (i) linearization errors due to the truncation of higher order
terms in the Taylor series expansion of the vehicle’s nonlinear model, (ii) external
perturbations that may affect the vehicle’s motion. H-infinity control aims at pro-
viding maximum robustness to this kind of modeling errors and disturbances, and
this is achieved through the appropriate selection of the attenuation coefficient ρ

which appears in the associated Riccati equation. Actually, the minimum value of ρ

for which there exists a solution for the algebraic Riccati equation (in the form of a
positive definite symmetric matrix P) is the one that provides the control loop with
maximum robustness. The above have been explained in Sect. 3.3 of manuscript.

Moreover, it is pointed out that the control method that is presented in this section
and which is based on nonlinear H-infinity control theory can be compared against
global linearization methods, e.g. those based on differential flatness theory and
against Lyapunov-based methods (used by adaptive control schemes) [450, 452,
457]. As a general remark it can be stated that the nonlinear H-infinity control, yet
conceptuallymore simple than the other two control approaches, is a reliable and effi-
cient solution for the problem of autonomous vehicles’ control. Besides,by avoiding
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the intuitive definition of linearizing outputs and the elaborated computations asso-
ciated with state variables’ transformations met in global linearization-based control
schemes, the nonlinear optimal control approach appears to be advantageous.

7.3 Flatness-Based Control of the Robotic Unicycle

7.3.1 Outline

In this section, using differential flatness theory, the nonlinear dynamics of the vehicle
(e.g. the UGVof Fig. 7.5) is first subject to a linearization transformation. Thismakes
possible (i) to design an efficient control law for trajectories tracking, and (ii) to apply
to the nonlinear system a filtering method that it is based on the standard Kalman
Filter recursion. Unlike the Extended Kalman Filter (EKF), the proposed filtering
method provides estimates of the state vector of the UGV without the need for
derivatives and Jacobians calculation. By avoiding linearization approximations, the
proposed derivative-free nonlinear Kalman filtering method improves the accuracy
of estimation of the system state variables, and results in smooth control signal
variations and in minimization of the tracking error of the associated control loop.

Filtering-based state estimation for unmanned ground vehicles (UGVs) is a signif-
icant topic because it enables their accurate localization and autonomous navigation
[45]. For nonlinear systems such as UGVs, and under the assumption of Gaussian
noise, the ExtendedKalman Filter (EKF) is frequently applied for estimating the non-
measurable state variables through the processing of input and output sequences or

Fig. 7.5 The model of the
4-wheel autonomous vehicle
(car-like vehicle) is
approximated by that of the
unicycle at moderate speeds
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for obtaining estimates of the state vector through the fusion ofmeasurements coming
from various sensors [33, 190, 222, 359]. The Extended Kalman Filter is based on
linearization of the system dynamics using a first order Taylor expansion [431, 432,
439, 445, 449, 601]. Although EKF is efficient in several estimation and fusion prob-
lems, it is characterized by cumulative errors due to the local linearization assumption
and this may affect the accuracy of the UGV’s motion estimation or even risk the
stability of the UGV state estimation-based control loop.

The present section extends the results of [415, 433] towards nonlinear dynamical
systems, such as UGVs, which are described by multi-input multi-output (MIMO)
models. Actually, the section’s results are applicable to differentially flat MIMO
nonlinear dynamical systems which after employing the differential flatness theory
can bewritten in theBrunovksy (canonical) form [254, 322]. Simulation experiments
on the problem of autonomous navigation of a unicycle robotic vehicle are provided
to test the performance of the proposed derivative-free Kalman Filter.

7.3.2 Application of Derivative-Free Kalman Filtering to
UGVs

7.3.2.1 Kinematic Models for Autonomous Vehicles

The proposed method of derivative-free nonlinear Kalman Filtering (DKF) for
MIMO nonlinear systems will be analyzed through an application example. Once
again the kinematic model of a UGV (unicycle robotic vehicle) is considered. This
is given by

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = ω = v
L tan(φ)

(7.39)

where v(t) is the velocity of the vehicle, L is the distance between the front and
the rear wheel axis of the vehicle, θ is the angle between the transversal axis of the
vehicle and axis OX , and φ is the angle of the steering wheel with respect to the
transversal axis of the vehicle. As shown in previous sections, the position of such
a vehicle is described by the coordinates (x, y) of the center of its rear axis and its
orientation is given by the angle θ between the x-axis and the axis of the direction
of the vehicle. The steering angle φ and the speed v are considered to be the inputs
of the system.

The problem of control of autonomous ground vehicles (AGVs) of the unicycle-
type is considered once more. The position of such a vehicle is described by the
coordinates (x, y) of the center of its rear axis and its orientation is given by the
angle θ between the x-axis and the axis of the direction of the vehicle. The steering
angle φ and the speed u are considered to be the inputs of the system. The kinematic
model of autonomous vehicles can be expressed in the general form [415]



7.3 Flatness-Based Control of the Robotic Unicycle 355

⎛
⎝
ẋ
ẏ
θ̇

⎞
⎠ =

⎛
⎝
cos(θ) 0
sin(θ) 0

0 1

⎞
⎠ ·

(
v(t)

v(t)ρ(t)

)
(7.40)

where (x, y) are the coordinates of the center of the vehicle’s rear wheels axis,
v(t) is the velocity of the vehicle, and θ is the angle between the transversal axis
of the vehicle and axis OX , while ρ(t) = 1/r(t) is the curvature of the robot’s
path. The autonomous vehicle is a nonholonomic system. Nonholonomic systems
are characterized by nonintegrable differential expressions, such as

n∑
i=i

fi j (q1, q2, · · · , qn, t)q̇i = 0, j = 1, 2, · · · ,m (7.41)

where q̇i represents the nth generalized coordinate (state variable), m is the number
of equations defining the nonholonomic constraints, q̇i represents the generalized
speed and fi j are nonlinear functions of qi at time t . For the kinematic model of
Eq. (7.40) the following nonholonomic constraint exists:

ẋsin(θ) − ẏcos(θ) = 0 (7.42)

The curvature radius for any path can be written as

R(t) = 1

ρ(t)
= L

tan(φ)
(7.43)

where L is the distance between the front and the back wheels, and φ (namely the
steering angle) is the angle defined by the main axis of the vehicle and the velocity
vector of the front wheel (for cart like vehicles as shown in Fig. 7.1, and for car-like
vehicles as shown in Fig. 7.5). The value of R(t) is usually bounded by Rmin , the
minimum curvature radius.

7.3.2.2 Controller Design for UGVs

Flatness-based control canbeused for steering thevehicle along adesirable trajectory.
In the case of the autonomous vehicle of Eq. (7.39) the flat output is the cartesian
position of the center of the wheel axis, denoted as η = (x, y), while the other model
parameters can be written as:

v = ±||η̇||
(
cos(θ)

sin(θ)

)
= η̇

v tan(φ) = ldet (η̇η̈)/v3 (7.44)

where det stands for a matrix determinant. These formulas show simply that θ

is the tangent angle of the curve and tan(φ) is the associated curvature. With
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reference to a generic driftless nonlinear system q̇, q ∈ Rn,w ∈ Rm , dynamic feed-
back linearization consists in finding a feedback compensator of the form

ξ̇ = α(q, ξ) + b(q, ξ)u
w = c(q, ξ) + d(q, ξ)u

(7.45)

with state ξ ∈ Rv and input u ∈ Rm , such that the closed-loop system of Eq. (7.39)
and Eq. (7.45) is equivalent under a state transformation z = T (q, ξ) to a linear
system. The starting point is the selection of a m-dimensional output η = h(q) to
which a desired behavior can be assigned (this is the previously defined flat output).
One then proceeds by successively differentiating the output until the input appears
in a non-singular way. If the sum of the output differentiation orders equals the
dimension n + v of the extended state space, full input-state-output linearization is
obtained. The closed-loop system is then equivalent to a set of decoupled input-output
chains of integrators from ui to ηi . The exact linearization procedure is illustrated
for the vehicle’s model of Eq. (7.39). As flat output η = (x, y) the coordinates of
the center of the wheel axis is considered. Differentiation with respect to time then
yields [371, 439]

η̇ =
(
ẋ
ẏ

)
=

(
cos(θ) 0
sin(θ) 0

)
·
(
v
ω

)
(7.46)

showing that only v affects η̇, while the angular velocity ω cannot be recovered from
this first-order differential information. To proceed, one needs to add an integrator
(whose state is denoted by ξ ) on the linear velocity input

v = ξ, ξ̇ = α⇒η̇ = ξ

(
cos(θ)

sin(θ)

)
(7.47)

where α denotes the linear acceleration of the vehicle. Differentiating further one
obtains

η̈ = ξ̇

(
cos(θ)

sin(θ)

)
+ ξ θ̇

(
sin(θ)

cos(θ)

)
=

=
(
cos(θ) −ξsin(θ)

sin(θ) ξcos(θ)

)(
α

ω

) (7.48)

and the matrix multiplying the modified input (α, ω) is nonsingular if ξ 	= 0. Under
this assumption one defines

(
α

ω

)
=

(
cos(θ) −ξsin(θ)

sin(θ) ξcos(θ)

)
·
(
u1
u2

)
(7.49)

and η̈ is denoted as
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η̈ =
(

η̈1
η̈2

)
=

(
u1
u2

)
= u (7.50)

which means that the desirable linear acceleration and the desirable angular velocity
can be expressed using the transformed control inputs u1 and u2. Then, the resulting
dynamic compensator is (return to the initial control inputs v and ω)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ

ω = u2cos(θ) − u1sin(θ)

ξ

(7.51)

Being ξ∈R, it is n + v = 3 + 1 = 4, equal to the output differentiation order in
Eq. (7.50). In the new coordinates

z1 = x
z2 = y

z3 = ẋ = ξcos(θ)

z4 = ẏ = ξsin(θ)

(7.52)

The extended system is thus fully linearized and described by the chains of integra-
tors, in Eq. (7.50), and can be rewritten as

z̈1 = u1, z̈2 = u2 (7.53)

The dynamic compensator of Eq. (7.51) has a potential singularity at ξ = v = 0, i.e.
when the vehicle is not moving, which is a case not met while executing the trajectory
tracking. It is noted however, that the occurrence of such a singularity is structural
for non-holonomic systems. In general, this difficulty must be obviously taken into
account when designing control laws on the equivalent linear model. A nonlinear
controller for output trajectory tracking, based on dynamic feedback linearization, is
easily derived. Assume that the autonomous vehicle must follow a smooth trajectory
(xd(t), yd(t))which is persistent, i.e. forwhich the nominal velocity vd = (ẋ2d + ẏ2d )

1
2

along the trajectory never goes to zeros (and thus singularities are avoided). On the
equivalent and decoupled systemofEq. (7.53), one can easily design an exponentially
stabilizing feedback for the desired trajectory, which has the form

u1 = ẍd + kp1(xd − x) + kd1(ẋd − ẋ)
u2 = ÿd + kp1(yd − y) + kd1(ẏd − ẏ)

(7.54)

and which results in the following error dynamics for the closed-loop system

ëx + kd1 ėx + kp1ex = 0
ëy + kd2 ėy + kp2ey = 0,

(7.55)

where ex = x − xd and ey = y − yd . The proportional-derivative gains are chosen as
kp1 > 0 and kd1 > 0 for i = 1, 2.Knowing the control inputs u1, u2, for the linearized
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system one can calculate the control inputs v and ω applied to the vehicle, using Eq.
(7.45). The above result is valid, provided that the dynamic feedback compensator
does not meet the singularity. In the general case of design of flatness-based con-
trollers, the following theorem assures the avoidance of singularities in the proposed
control law [371]:
Theorem: Letλ11,λ12 andλ21,λ22, be respectively the eigenvalues of two equations of
the error dynamics, given in Eq. (7.45). Assume that, for i = 1, 2 it is λ11 < λ12 < 0
(negative real eigenvalues), and that λi2 is sufficiently small. If

mint≥0||
(
ẋd(t)
ẏd(t)

)
||≥

(
ε̇0x
ε̇0y

)
(7.56)

with ε̇0x = ε̇x (0) 	=0 and ε̇0y = ε̇y(0) 	=0, then the singularity ξ = 0 is never met.

7.3.2.3 Derivative-Free Kalman Filtering for UGVs

It is assumed now that the vehicle’s velocity has to be estimated through the process-
ing of the sequence of position measurements by a filtering algorithm. To this end
the derivative-free nonlinear Kalman Filter for MIMO nonlinear dynamical systems
can been used. From the previous application of the differential flatness theory, it is
possible to transform the initial nonlinear vehicle’s model into a linearized equivalent
model that is finally written in the Brunovsky form. Thus one arrives at Eq. (7.50)
which means ẍ = u1 and ÿ = u2. Next, the state variables x1 = x , x2 = ẋ , x3 = y
and x4 = ẏ are defined. Considering the state vector x∈R4×1, the following matrices
are also defined

A =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠ , C =

(
1 0 0 0
0 0 1 0

)
(7.57)

Using the matrices of Eq. (7.57) one obtains the Brunovsky form of the MIMO robot
model

ẋ = Ax + Bv
y = Cx

(7.58)

where the new input v is given by v = [u1(x, t), u2(x, t)]T . For the unicycle robotic
model of Eq. (7.58) state estimation can be performed using the standard Kalman
Filter recursion, as described in Eqs. (4.88) and (4.89).



7.3 Flatness-Based Control of the Robotic Unicycle 359

7.3.3 Simulation Tests

7.3.3.1 Extended Kalman Filter Based Navigation of the Autonomous
Vehicle

The vehicle’s kinematic model of Eq. (7.39) is considered. AGPS sensor or encoders
placed at the vehicle’s wheels can be used to provide measurements of the cartesian
coordinates of the vehicle x(t) and y(t) (displacement of the vehicle), over a sam-
pling period T . The values of the vehicle’s velocity components along the x and
y axes are not directly available and are estimated through the processing of the
sequence of position measurements with the use of a filtering algorithm. Computing
the vehicle’s speed through the differentiation of the position measurements would
introduce cumulative errors in the value of the vehicle’s velocity, which in turn can
affect the performance of the control loop. To avoid such errors an estimation of
the vehicle’s velocity is obtained through the processing of the sequence of position
measurements with the use of a filtering algorithm.

Assuming a constant sampling period �tk = T the measurement equation is
z(k + 1) = γ (x(k)) + v(k), where z(k) is the vector containing the sequence ofmea-
surements of the cartesian coordinates of the vehicle and v(k) is the measurement
noise vector.

z(k) = [x(k) + v1(k), y(k) + v2(k)], k = 1, 2, 3 · · · (7.59)

To obtain the Extended Kalman Filter (EKF), the kinematic model of the vehicle is
linearized about the estimates x̂(k) and x̂−(k), and the control inputU (k) is applied.
Using that the continuous-time state-space description of the system is

ẋ = φ(x, u) + wz = γ (x) + v (7.60)

and by defining matrices A = I + Ts Jxφ(x, u)(x), B = Ts Juφ(x, u) and
C = Jxγ (x) the linearized description of the system is obtained:

x(k + 1) = Ax + Bu(k) + w(k)
z(k) = Cx(k) + v(k)

(7.61)

The EKF recursion consists of the measurement update part and of the time update
part as described in Eqs. (4.88) and (4.89), respectively.

One has to use the input gain matrix B(k)

B(k) =
⎛
⎝
Tscos(θ(k)) 0
Tssin(θ(k)) 0

0 T

⎞
⎠ (7.62)

and to compute the drift matrix A(k) as follows
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A(k) =
⎛
⎝
1 0 −v(k)sin(θ)Ts
0 1 v(k)cos(θ)Ts
0 0 1

⎞
⎠ (7.63)

while for the elements of the process noise covariance matrix which is given by
Q(k) = diag[σ 2(k), σ 2(k), σ 2(k)] indicative values would be σ 2(k) = 10−3.

Using the estimated state vector, function φ(x) appearing in the state equations
part andγ (x) appearing in themeasurements equations part of the vehicle’s kinematic
model become φ(x̂(k)) = [x̂(k), ŷ(k)]T , and γ (x̂(k)) = [x̂(k), ŷ(k)], respectively.
The associated Jacobian matrix J T

γ (x̂−(k)) is given by

Jγ (x̂−(k)) =
(
1 0 0
0 1 0

)
(7.64)

The vehicle is steered by the flatness-based controller analyzed in Sect. 7.3.2

u1 = ẍd + Kp1(xd − x) + Kd1(ẋd − ẋ)
u2 = ÿd + Kp2(yd − y) + Kd2(ẏd − ẏ)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ, ω = u2cos(θ) − u1sin(θ)

ξ

(7.65)

The use of EKF for estimating the vehicle’s velocity along the x-axis (denoted as
ẋ) and the vehicle’s velocity along the y-axis (denoted as ẏ) enables the successful
application of nonlinear steering control of Eq. (7.65).

Indicative results about tracking of the circular reference trajectory with use of the
Extended Kalman Filter are shown in Figs. 7.6, 7.7, 7.8 and 7.9. In Fig. 7.6 one can
notice the accuracy of tracking of the reference trajectory, achieved by the proposed
state estimation-based control scheme. In Fig. 7.7 the accuracy of tracking of the
x and y axis position setpoints is depicted. In Fig. 7.8, the associated x and y axis
tracking errors are shown. Finally, in Fig. 7.9 the x and y axis velocity estimation
errors are given.

Indicative results about tracking of the eight-shaped reference trajectory with use
of the Extended Kalman Filter are shown in Figs. 7.10, 7.11 and 7.12 and 7.13. In
Fig. 7.10 one can notice the accuracy of tracking of the reference trajectory, achieve
by the proposed state estimation-based control scheme. In Fig. 7.11 the accuracy of
tracking of the x and y axis position setpoints is depicted. In Fig. 7.12, the associated
x and y axis tracking errors are shown. Finally, in Fig. 7.13 the x and y axis velocity
estimation errors are given.

Indicative results about tracking of the complex-curved reference trajectory with
use of the Extended Kalman Filter are shown in Figs. 7.14, 7.15, 7.16 and 7.17. In
Fig. 7.14 one can notice the accuracy of tracking of the reference trajectory, achieve
by the proposed state estimation-based control scheme. In Fig. 7.15 the accuracy of
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Fig. 7.6 a Tracking of a circular reference trajectory (green line) by the autonomous vehicle and
associated estimation of the vehicle’s position provided by the Extended Kalman Filter (continuous
yellow line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle
and real position of the vehicle (dashed red line)
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Fig. 7.7 Tracking of a circular reference trajectory with use of the EKF: a tracking of the x-axis
reference set-point b tracking of the y-axis reference set-point
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Fig. 7.8 Tracking of a circular reference trajectory with use of the EKF: a tracking error along the
x-axis b tracking error along the y-axis
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Fig. 7.9 Tracking of a circular reference trajectory by the autonomous vehicle with use of the EKF:
a convergence of the estimated x-axis velocity (green line) to the associated real velocity (blue line)
b convergence of the estimated y-axis velocity (green line) to the associated real velocity (green
line)

tracking of the x and y axis position setpoints is depicted. In Fig. 7.16, the associated
x and y axis tracking errors are shown. Finally, in Fig. 7.17 the x and y axis velocity
estimation errors are given.
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Fig. 7.10 a Tracking of an eight-shaped reference trajectory (green line) by the autonomous vehicle
and associated estimation of the vehicle’s position provided by the Extended Kalman Filter (yellow
line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle and real
position of the vehicle (dashed red line)
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Fig. 7.11 Tracking of an eight-shaped reference trajectory with use of the EKF: a tracking of the
x-axis reference set-point b tracking of the y-axis reference set-point
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Fig. 7.12 Tracking of an eight-shaped reference trajectory with use of the EKF: a tracking error
along the x-axis b tracking error along the y-axis
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Fig. 7.13 Tracking of an eight-shaped reference trajectory by the autonomous vehicle with use of
the EKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

7.3.3.2 Derivative-Free Kalman Filter Based Navigation of the
Autonomous Vehicle

A second set of tests focused on the performance of the proposed Derivative-free
nonlinear Kalman Filter (DKF) in the problem of state estimation-based control
of an autonomous vehicle (cart-like robot) (Fig. 7.1). The differentially flat model
of the autonomous vehicle and its transformation to the Brunovksy form has been
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Fig. 7.14 a Tracking of a complex-curved reference trajectory (green line) by the autonomous
vehicle and associated estimation of the vehicle’s position provided by the Extended Kalman Filter
(yellow line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle
(red dashed line) and real position of the vehicle (dashed red line)
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Fig. 7.15 Tracking of a complex-curved reference trajectory with use of the EKF: a tracking of
the x-axis reference set-point b tracking of the y-axis reference set-point
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Fig. 7.16 Tracking of a complex-curved reference trajectory with use of the EKF: a tracking error
along the x-axis b tracking error along the y-axis
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Fig. 7.17 Tracking of a complex-curved reference trajectory by the autonomous vehicle with use of
the EKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

analyzed in Eqs. (7.39) and (7.46). The state estimation algorithm of the Derivative-
free nonlinear Kalman Filter consisted of Eqs. (4.88) and (4.89). It was assumed
that only measurements of the cartesian coordinates of the vehicle (displacement
on the xy-plane) could be obtained through a GPS unit (localization of moderate
accuracy), RTK-GPS (localization of higher accuracy) or through laser, visual and
sonar sensors with reference to specific landmarks (the latter measuring approaches
require transformation from a local to a global coordinates system).
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Fig. 7.18 a Tracking of a circular reference trajectory (green line) by the autonomous vehicle and
associated estimation of the vehicle’s position provided by the derivative-free Kalman Filter (yellow
line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle and real
position of the vehicle (dashed red line)

Indicative results about tracking of the circular reference trajectory with use of
the Derivative-free nonlinear Kalman Filter are shown in Figs. 7.18, 7.19 and 7.20.
Comparing the estimation performed by the derivative-freeMIMOnonlinearKalman
Filter with the one performed by the Extended Kalman Filter it can be noticed that
the derivative-free filtering approach results in more accurate state estimates.

Indicative results about tracking of the circular reference trajectory with use of
the Derivative-free nonlinear Kalman Filter are shown in Figs. 7.18, 7.19 and 7.20. In
Fig. 7.18 one can notice the accuracy of tracking of the reference trajectory, achieved
by the proposed state estimation-based control scheme. In Fig. 7.19, the associated
x and y axis tracking errors are shown. Finally, in Fig. 7.20 the x and y axis velocity
estimation errors are given.

Indicative results about tracking of the eight-shaped reference trajectory with
use of the Extended Kalman Filter are shown in Figs. 7.21, 7.22, 7.23 and 7.24. In
Fig. 7.21 one can notice the accuracy of tracking of the reference trajectory, achieved
by the proposed state estimation-based control scheme. In Fig. 7.22 the accuracy of
tracking of the x and y axis position setpoints is depicted. In Fig. 7.23, the associated
x and y axis tracking errors are shown. Finally, in Fig. 7.24 the x and y axis velocity
estimation errors are given.

Indicative results about tracking of the complex-curved reference trajectory with
use of the Extended Kalman Filter are shown in Figs. 7.25, 7.26, 7.27 and 7.28. In
Fig. 7.25 one can notice the accuracy of tracking of the reference trajectory, achieved
by the proposed state estimation-based control scheme. In Fig. 7.26 the accuracy of
tracking of the x and y axis position setpoints is depicted. In Fig. 7.27, the associated
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Fig. 7.19 Tracking of a circular reference trajectory with use if the DKF: a tracking error along
the x-axis b tracking error along the y-axis
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Fig. 7.20 Tracking of a circular reference trajectory by the autonomous vehicle with use of the
DKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

x and y axis tracking errors are shown. Finally, in Fig. 7.28 the x and y axis velocity
estimation errors are given.

Comparing the estimation performed by the Derivative-free nonlinear Kalman
Filter with the one performed by the Extended Kalman Filter it can be noticed that
the derivative-free filtering approach results in more accurate state estimates. More-
over, comparing the associated state estimation-based control loop of the autonomous
vehicle that was based on the derivative-free MIMO nonlinear Kalman Filter to the
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Fig. 7.21 a Tracking of an eight-shaped reference trajectory (green line) by the autonomous vehicle
and associated estimation of the vehicle’s position provided by the derivative-free Kalman Filter
(yellow line) b Tracking of a circular reference trajectory (green line) by the autonomous vehicle
and real position of the vehicle (dashed red line)
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Fig. 7.22 Tracking of an eight-shaped reference trajectory with use of the DKF: a tracking of the
x-axis reference set-point b tracking of the y-axis reference set-point
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Fig. 7.23 Tracking of an eight-shaped reference trajectory with use of the DKF: a tracking error
along the x-axis b tracking error along the y-axis
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Fig. 7.24 Tracking of an eight-shaped reference trajectory by the autonomous vehicle with use of
the DKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)

control that relied on the Extended Kalman Filter it was observed that the first con-
trol scheme was significantly more robust and capable of tracking with better accu-
racy the desirable trajectories. These findings show the suitability of the considered
Derivative-free nonlinear Kalman Filter for localization, control and autonomous
navigation of autonomous vehicles. Finally, it is noted that the section’s approach
can be applied also to various types of 4-wheel robotic vehicles.



7.3 Flatness-Based Control of the Robotic Unicycle 371

−15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

X

Y

−15 −10 −5 0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

X
Y

(a) (b)

Fig. 7.25 a Tracking of a complex-curved reference trajectory (green line) by the autonomous
vehicle and associated estimation of the vehicle’s position provided by the derivative-free Kalman
Filter (yellow line) b Tracking of a circular reference trajectory (green line) by the autonomous
vehicle and real position of the vehicle (dashed red line)
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Fig. 7.26 Tracking of a complex-curved reference trajectory with use of the DKF: a tracking of
the x-axis reference set-point b tracking of the y-axis reference set-point
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Fig. 7.27 Tracking of a complex-curved reference trajectory with use of the DKF: a tracking error
along the x-axis b tracking error along the y-axis
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Fig. 7.28 Tracking of a complex-curved reference trajectory by the autonomous vehicle with use of
the DKF: a convergence of the estimated x-axis velocity (green line) to the associated real velocity
(blue line) b convergence of the estimated y-axis velocity (green line) to the associated real velocity
(green line)
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7.4 Nonlinear Optimal Control of Autonomous Two-Wheel
Vehicles

7.4.1 Outline

Autonomous or semi-autonomous navigation of two-wheel vehicles such asmotorcy-
cles, requires that several of their functionalities and driving tasks, are automatically
performed [74, 81, 154, 615, 626]. To achieve this objective, the need of developing
and using elaborated control and estimation methods for motorcycles has become
apparent [15, 324, 479, 481, 610]. To this end, several results have been developed
aiming at solving the stabilization and path tracking problems for autonomous or
semi-autonomous motorcycles [71, 104, 114, 173, 293, 410, 565]. Due to under-
actuation in the motorcycle’s model and the strong nonlinearities characterizing its
state-space description, the solution of the associated motion problem is a difficult
and challenging endeavour [102, 103, 113, 115]. To achieve a satisfactory solution of
the problem of autonomous motorcycles driving, in this section a nonlinear optimal
(H-infinity) controller is developed [419, 461].

First, the joint kinematic and dynamicmodel of themotorcycle undergoes approx-
imate linearization around a temporary operating point (equilibrium)which is recom-
puted at each iteration of the control method. This equilibrium is defined by the
present value of the system’s state vector and the last value of the control inputs
vector that was exerted on it. The linearization procedure requires first order Taylor
series expansion of the state-space description of the motorcycle and computation of
the associated Jacobian matrices [33, 431, 463]. The modelling error which is due
to the truncation of higher-order terms in the Taylor series expansion is considered
to be a disturbance which is eliminated by the robustness of the control loop. Next,
for the approximately linearized model of the motorcycle an optimal (H-infinity)
feedback controller is designed.

The H-infinity controller represents the solution of the optimal control problem
for the model of the autonomous motorcycle, under model uncertainty and external
perturbations. It actually stands for the solution of a min-max differential game,
in which the controller tries to minimize a cost function comprising a quadratic
term of the state vector’s tracking error, whereas the model uncertainty and external
perturbation terms try to maximize this cost function. For the computation of the
controller’s feedback gain it is necessary to solve an algebraic Riccati equation at
each time-step of the control method [450, 457, 459]. The stability properties of
the control method are proven through Lyapunov analysis. First, it is demonstrated
that the control loop of the motorcycle satisfies the H-infinity tracking performance
criterion. This signifies elevated robustness against model uncertainty and external
perturbations affecting themotorcycle’s motion [305, 564]. Next, it is proven that the
control loop is also globally asymptotically stable, which ascertains precise tracking
of reference paths. Moreover, to implement a state estimation-based control scheme
for the autonomous motorcycle, through the processing of measurements from a
small number of on-board sensors, the H-infinity Kalman Filter is proposed as a
robust state estimator [169, 511].
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7.4.2 Dynamic and Kinematic Model of the Riderless
Motorcycle

As noted above the control and stabilization problem of the autonomous motorcy-
cle is a nontrivial one. The use of nonlinear optimal (H-infinity) control for this
problem is in several aspects advantageous. Comparing for instance against global
linearization-based control schemes, the proposed nonlinear optimal control does not
require complicated transformations (diffeomorphisms) for bringing the state-space
model of the system into an equivalent linear form. Besides, it does not come against
singularity problems because for computing the control inputs that will be finally
exerted on the vehicle’s model there is no need to implement inverse transformations
which in-turn imply matrices inversions. Comparing against other optimal control
methods it can be noted that Model Predictive Control is unsuitable for the model
of the autonomous motorcycle because such a control method is addressed to lin-
ear dynamical systems and cannot compensate for strong nonlinearities. It can be
also noted that Nonlinear Model Predictive Control, being a popular optimal con-
trol approach for nonlinear dynamical systems is not of assured convergence while
its iterative search for an optimum is dependent on initial parametrization. On the
other side, backstepping control cannot be directly applied to the model of the of the
autonomous motorcycle because this is not inherently found in the triangular form.
Furthermore, the application of sliding-mode control is hindered by the fact that the
model of the autonomous motorcycle is not found inherently into a canonical form.
Finally, PID control which is widely used by practitioners in the area of robotics is
an unreliable methodology because the tuning of such a controller is performed in a
heuristic manner around local operating points where the unrealistic assumption is
made that the dynamics of the autonomous motorcycle remains linear. Such a control
method lacks a global stability proof.

The main parameters of the autonomous motorcycle are described in Fig. 7.29.
By defining as σ = tan(δ)

p the joint kinematic and dynamic model of the riderless
motorcycle is given by [154]

ẋ = vcos(ψ) (7.66)

ẏ = vsin(ψ) (7.67)

ψ̇ = v tan(δ)

p (7.68)

φ̈ = 1
h {gsin(φ) + cos(ψ)[(1 + hσ sin(φ))σv2 + hψ̈]} (7.69)
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Fig. 7.29 Diagram of the
two-wheel autonomous
vehicle (riderless
motorcycle)

By differentiating Eq. (7.68) one obtains [154]:

ψ̈ = v δ̇
pcos2(δ) + v̇ tan(δ)

p (7.70)

The following state variables are defined: x1 = x , x2 = y, x3 = ψ , x4 = φ, x5 = φ̇,
x6 = v, x7 = δ. Moreover, the following control inputs are defined u1 = v̇, u2 = δ̇,
that is the control inputs of the autonomous motorcycle are its acceleration and the
rate of turn of the angle of its steering wheel. The state-space description of the
system becomes:

ẋ1 = x6cos(x3)
ẋ2 = x6sin(x3)
ẋ3 = x6

tan(x7)
p

ẋ4 = x5
ẋ5 = 1

h

{
gsin(x4) + cos(x4)

[
(1 + hσ sin(x4))σ x26 + bcos(x4)

(
u2

x6
pcos2(x7)

+ u1
tan(x7)

p

)]}

ẋ6 = u1
ẋ7 = u2

(7.71)

In vector form, one obtains the state-space description

ẋ = f (x) + G(x)u (7.72)

where G(x) = [g1(x) g2(x)] is the control inputs gain, or analytically
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x6cos(x3)
x6sin(x3)
x6

tan(x7)
p

x5
1
h {gsin(x4 + cos(x4)[(1 + hσ sin(x4))σ x26 ])}

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0
0 0

bcos(x4)tan(x7)
p

bcos(x4)x6
pcos2(x7)

1 0
0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
u1
u2

)

(7.73)

7.4.3 Approximate Linearization of the Model of the
Riderless Motorcycle

Linearization is performed around the temporary operating point (x∗, u∗), where x∗
is the present value of the state-vector of the two-wheel unmanned vehicle and u∗ is
the last value of the control input vector that was exerted on it. One has the linearized
model ẋ = Ax + Bu + d̃ with:

A = ∇x [ f (x) + G(x)u] |(x∗,u∗) ⇒
A = [∇x f (x) + ∇x g1(x)u1 + ∇x g2(x)u2] |(x∗,u∗)

(7.74)

B = ∇u[ f (x) + G(x)u] |(x∗,u∗) ⇒
B = G(x) |(x∗,u∗)

(7.75)

About the Jacobian matrix ∇x f (x)|(x∗,u∗) one has

∇x f (x) |(x∗,u∗)=

⎛
⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x7

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x7· · · · · · · · · · · ·

∂ f7
∂x1

∂ f7
∂x2

· · · ∂ f7
∂x7

⎞
⎟⎟⎟⎠ |(x∗,u∗) (7.76)

For the first row of the Jacobian matrix ∇x f (x)|(x∗,u∗) it holds:
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 0,
∂ f1
∂x3

= −x6sin(x3),
∂ f1
∂x4

= 0, ∂ f1
∂x5

= 0, ∂ f1
∂x6

= cos(x3),
∂ f1
∂x7

= 0.

For the second row of the Jacobian matrix ∇x f (x)|(x∗,u∗) it holds:
∂ f2
∂x1

= 0, ∂ f2
∂x2

=
0, ∂ f2

∂x3
= x6cos(x3),

∂ f2
∂x4

= 0, ∂ f2
∂x5

= 0, ∂ f2
∂x6

= 0sin(x3),
∂ f1
∂x7

= 0.
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For the third row of the Jacobian matrix ∇x f (x)|(x∗,u∗) it holds:
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0, ∂ f3
∂x6

= tan(x7)
p , ∂ f3

∂x7
= x6

1
pcos2(x7)

.

For the fourth row of the Jacobianmatrix∇x f (x)|(x∗,u∗) it holds:
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= 0, ∂ f4
∂x4

= 0, ∂ f4
∂x5

= 1, ∂ f4
∂x6

= 0, ∂ f4
∂x7

= 0.

For the Jacobian’s ∇x f (x)|(x∗,u∗) fifth row it holds: ∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

=
0, ∂ f5

∂x4
= 1

h {gcos(x4) − sin(x4)[(1 + h tan(x7)
p sin(x4))

tan(x7)
p x26 ] + cos(x4)[h tan(x7)

p

cos(x4)
tan(x7)

p x26 ]}, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 1
h cos(x4)[1 + h tan(x7)

p sin(x4))
tan(x7)

p 2x6], and

continuing in a similar manner ∂ f5
∂x7

= 1
h cos(x4){[(h 1

pcos2(x7)
sin(x4))

tan(x7)
p x26 ] +

[(1 + h tan(x7)
p sin(x4))

1
pcos2(x7)

x26 ]}.
For the sixth row of the Jacobian matrix∇x f (x)|(x∗,u∗) it holds:

∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0,
∂ f6
∂x3

= 0, ∂ f6
∂x4

= 0, ∂ f6
∂x5

= 0, ∂ f6
∂x6

= 0, ∂ f6
∂x7

= 0.

For the seventh row of the Jacobian matrix∇x f (x)|(x∗,u∗) it holds:
∂ f7
∂x1

= 0, ∂ f7
∂x2

=
0, ∂ f7

∂x3
= 0, ∂ f7

∂x4
= 0, ∂ f7

∂x5
= 0, ∂ f7

∂x6
= 0, ∂ f7

∂x7
= 0.

About the Jacobian matrix ∇x g1(x)|(x∗,u∗) one has

∇x g1(x) |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 bsin(x4)

tan(x7)
p 0 0 bcos(x4)

1
pcos2(x7)

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) (7.77)

About the Jacobian matrix ∇x g2(x)|(x∗,u∗) one has

∇x g2(x) |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 − bsin(x4)x6

pcos2(x7)
0 bcos(x4)

pcos2(x7)
bcos(x4)x6sin(x7)

pcos3(x7)

0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) (7.78)

7.4.4 The Nonlinear H-Infinity Control

7.4.4.1 Tracking Error Dynamics for the Autonomous Motorcycle

The initial nonlinear model of the autonomous motorcycle is in the form
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ẋ = f (x, u) x∈Rn, u∈Rm (7.79)

Linearization of themodel of the riderlessmotorcycle is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)).
The linearized equivalent of the autonomous motorcycle is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (7.80)

Thus, after linearization round its current operating point, the motorcycle’s dynamic
model is written as

ẋ = Ax + Bu + d1 (7.81)

Parameter d1 stands for the linearization error in the two-wheel vehicle’s dynamic
model appearing in Eq. (7.81). The reference setpoints for the autonomous motorcy-
cle are denoted by xd = [xd1 , . . . , , xd6 ]. Tracking of this trajectory is achieved after
applying the control input u∗. At every time instant the control input u∗ is assumed
to differ from the control input u appearing in Eq. (7.81) by an amount equal to �u,
that is u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (7.82)

The joint kinematics and dynamics of the riderless motorcycle is described in Eq.
(7.81) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (7.83)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (7.84)

By subtracting Eq. (7.82) from Eq. (7.84) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (7.85)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (7.86)

The above linearized form of the motorcycle’s model can be efficiently controlled
after applying an H-infinity feedback control scheme.
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7.4.4.2 Min-Max Control and Disturbance Rejection

The initial nonlinear model of the riderless motorcycle is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (7.87)

Linearization of the joint kinematic and dynamic model of the autonomous two-
wheel vehicle is performed at each iteration of the control algorithm round its present
operating point (x∗, u∗) = (x(t), u(t − Ts)). The linearized equivalent model of the
system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (7.88)

where matrices A and B are obtained from the computation of the motorcycle’s
Jacobians, according to Eqs. (7.76), (7.77) and (7.78) and vector d̃ denotes distur-
bance terms due to linearization errors. The problem of disturbance rejection for the
linearized model that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(7.89)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

In the H∞ control approach, a feedback control scheme is designed for trajectory
tracking by the autonomous motorcycle’s state vector and simultaneous disturbance
rejection, considering that the disturbance affects the system in the worst possible
manner. The disturbances’ effect are incorporated in the following quadratic cost
function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (7.90)

As explained in the application of the H-infinity control presented in the previous
sections, the significance of the negative sign in the cost function’s term that is
associatedwith the perturbation variable d̃(t) is that the disturbance tries tomaximize
the cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (7.91)
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The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
system of the two-wheel autonomous vehicle. However, the solution to the min-max
optimization problem is directly related to the value of the parameter ρ. This means
that there is an upper bound in the disturbances magnitude that can be annihilated
by the control signal.

7.4.4.3 H-Infinity Feedback Control

For the linearized systemgiven byEq. (7.89) the cost function of Eq. (7.90) is defined,
where the coefficient r determines the penalization of the control input and theweight
coefficient ρ determines the reward of the disturbances’ effects. It is assumed that
(i) The energy that is transferred from the disturbances signal d̃(t) is bounded, that
is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are stabilizable, (iii) matrix

[A,C] is detectable. Then, the optimal feedback control law is given by

u(t) = −Kx(t) (7.92)

with

K = 1
r B

T P (7.93)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P
(
1
r BB

T − 1
2ρ2 LLT

)
P = 0 (7.94)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (7.95)

The diagram of the considered control loop is depicted in Fig. 7.30.

7.4.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the control loop of the riderless
motorcycle. Moreover, under moderate conditions asymptotic stability is proven and
convergence to the reference setpoints is achieved. The tracking error dynamics for
the autonomous motorcycle is written in the form
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Fig. 7.30 Diagram of the nonlinear optimal control scheme for the 2-wheel autonomous vehicle
(riderless motorcycle)

ė = Ae + Bu + Ld̃ (7.96)

where in themotorcycle’s case L = I∈R7×7 with I being the identitymatrix.Variable
d̃ denotes model uncertainties and external disturbances of the vehicle’s model. The
following Lyapunov function is considered

V = 1
2e

T Pe (7.97)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T P + 1

2e
T P[Ae + Bu + Ld̃]⇒ (7.98)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (7.99)
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V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(7.100)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + (
1
2u

T BT Pe + 1
2e

T PBu
) +

+
(
1
2 d̃

T LT Pe + 1
2e

T PLd̃
) (7.101)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P
(
2
r BB

T − 1
ρ2 LLT

)
P (7.102)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (7.103)

By substituting Eqs. (7.102) and (7.103) one obtains

V̇ = 1
2e

T
[
−Q + P

(
2
r BB

T − 1
2ρ2 LLT

)
P

]
e+

+eT PB
(− 1

r B
T Pe

) + eT PLd̃⇒
(7.104)

V̇ = − 1
2e

T Qe +
(
2
r PBBT Pe − 1

2ρ2 eT PLLT
)
Pe

− 1
r

(
eT PBBT Pe

) + eT PLd̃
(7.105)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (7.106)

or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(7.107)

Lemma: The following inequality holds

1
2e

T Ld̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (7.108)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(7.109)
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The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (7.110)

Equation (7.110) is substituted in Eq. (7.107) and the inequality is enforced, thus
giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (7.111)

Equation (7.111) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt

(7.112)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (7.113)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (7.114)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (7.97) it becomes clear that e(t) will
be also bounded since e(t) ∈ �e = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the autonomous motorcycle is based on Eq. (7.111)
and on the application of Barbalat’s Lemma. It uses the condition of Eq. (7.113) about
the boundedness of the square of the aggregate disturbance and modelling error term
d̃ that affects the model. However, as explained above the proof of global asymptotic
stability is not restricted by this condition. By selecting the attenuation coefficient
ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that
the first derivative of the Lyapunov function is upper bounded by 0. Therefore for
the i th time interval it is proven that the Lyapunov function defined in Eq. (7.97) is
a decreasing one. This also assures the Lyapunov function of the system defined in
Eq. (7.97) will always have a negative first-order derivative.
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7.4.6 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop for the autonomous motorcycle can be implemented with the feed-
back of a partially measurable state vector and by processing only a small number of
state variables. To reconstruct the missing information about the state vector of the
autonomous two-wheel vehicle it is proposed to use a filtering scheme which allows
to apply state estimation-based control [457]. The recursion of the H∞ Kalman Fil-
ter, for the model of the distributed finance agents, can be formulated in terms of a
measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(7.115)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)

(7.116)

where it is assumed that parameter θ is sufficiently small to assure that the covari-
ance matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k)will be positive definite.When
θ = 0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One
can measure only a part of the state vector of the system of the autonomous motor-
cycle, such as the cartesian coordinates of its rear wheels (x, y) and can estimate
through filtering the rest of the state vector elements.

7.4.7 Simulation Tests

The performance of the proposed nonlinear optimal (H-infinity) control method
for the model of the autonomous motorcycle has been tested through simulation
experiments. The simulation results depicted in Figs. 7.31, 7.32, 7.33, 7.34, 7.35,
7.36, 7.37 and 7.38 confirm the stability properties of the control loop that was
previously proven through Lyapunov analysis. Moreover, they demonstrate that the
state vector elements of the motorcycle could track precisely the reference setpoints
and that the two-wheel vehicle could follow accurately the designated paths in the
2D motion plane. This comes to point out that under electronic control, several
of the motorcycle’s driving tasks such as lane following, lane change or vehicle
overtaking can be safely performed. The implementation of the proposed control
scheme required the solution at each time step of the algebraic Riccati equation,
given in Eq. (7.102).
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Fig. 7.31 a Tracking of reference path 1 (red-line) by the autonomous motorcycle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u2 applied to the
autonomous motorcycle
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Fig. 7.32 Tracking of reference path 1: a convergence of state variables x1 to x2 of the autonomous
motorcycle to their reference setpoints (red-lines) and estimated state variables provided by the
Kalman Filter (green lines), b convergence of state variables x3 to x4 of the autonomous motorcycle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines)
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Fig. 7.33 a Tracking of reference path 2 (red-line) by the autonomous motorcycle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u2 applied to the
autonomous motorcycle

0 2 4 6 8 10 12 14 16
0

20

40

60

80

time (sec)

x 1

0 2 4 6 8 10 12 14 16
0

10

20

30

40

time (sec)

x 2

0 2 4 6 8 10 12 14 16
−1

0

1

2

time (sec)

x 3

0 2 4 6 8 10 12 14 16
−2

−1

0

1

time (sec)

x 4

(a) (b)

Fig. 7.34 Tracking of reference path 2: a convergence of state variables x1 to x2 of the autonomous
motorcycle to their reference setpoints (red-lines) and estimated state variables provided by the
Kalman Filter (green lines), b convergence of state variables x3 to x4 of the autonomous motorcycle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines)
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Fig. 7.35 a Tracking of reference path 3 (red-line) by the autonomous motorcycle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u2 applied to the
autonomous motorcycle
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Fig. 7.36 Tracking of reference path 3: a convergence of state variables x1 to x2 of the autonomous
motorcycle to their reference setpoints (red-lines) and estimated state variables provided by the
Kalman Filter (green lines), b convergence of state variables x3 to x4 of the autonomous motorcycle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines)
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Fig. 7.37 a Tracking of reference path 4 (red-line) by the autonomous motorcycle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u2 applied to the
autonomous motorcycle

0 2 4 6 8 10 12 14 16
0

10

20

30

time (sec)

x 1

0 2 4 6 8 10 12 14 16
0

20

40

60

80

100

time (sec)

x 2

0 2 4 6 8 10 12 14 16
0

1

2

3

time (sec)

x 3

0 2 4 6 8 10 12 14 16
−2

−1

0

1

time (sec)

x 4

(a) (b)

Fig. 7.38 Tracking of reference path 4: a convergence of state variables x1 to x2 of the autonomous
motorcycle to their reference setpoints (red-lines) and estimated state variables provided by the
Kalman Filter (green lines), b convergence of state variables x3 to x4 of the autonomous motorcycle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines)
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To implement state estimation-based control from the autonomous motorcycle
through the processing of a small number of on-board sensor measurements, the
H-infinity Kalman filter has been used as a robust state estimator. Actually, it was
necessary to receive measurements about the cartesian coordinates (x, y) of the
vehicle’s rear wheel, while the rest of the state vector elements of the motorcycle
could be estimated through the H-infinity Kalman Filter. In the simulation diagrams,
the real values of the state vector components of the two-wheel vehicle are depicted
in blue colour, the estimated values are plotted in greenwhile the associated reference
setpoints are printed in red colour. It can be noted that the proposed control method
achieved fast and accurate tracking of the reference setpoints, while the variations
of the control inputs remained smooth and moderate.

Despite its computational simplicity, the proposed H∞ control scheme has an
excellent performance. Comparing to the control of autonomous vehicles that rely
on global linearization methods the presented nonlinear H-infinity control scheme
is equally efficient in setpoint tracking while also retaining optimal control features
[457]. The tracking accuracy of the presented control method (H∞) has been moni-
tored in the case of several reference setpoints. By using the Kalman Filter as a robust
observer estimates of the state vector of the two-wheel vehicle were obtained thus
the implementation of state estimation-based control became possible. Themeasured
state variables were x1 = x , x2 = y. It can be noticed that despite model perturba-
tions the tracking accuracy of the control method remained satisfactory. The RMSE
of the tracking reference setpoints by the state variables of the motorcycle is given
in Table7.1. Moreover, the tracking performance of the nonlinear H-infinity con-
trol method for the model of the autonomous motorcycle was measured in the case
of model uncertainty, imposing an imprecision equal to �a% about the vehicle’s
mass m. The obtained results are outlined in Table7.2. It can be noticed that despite
model perturbations the tracking accuracy of the control method remained satisfac-
tory (Tables7.3 and 7.4).

Table 7.2 Tracking RMSE in motion under disturbances

RMSEx RMSEy RMSEθ

Path1 37.00 · 10−4 54.00 · 10−4 13.00 · 10−4

Path2 14.00 · 10−4 16.00 · 10−4 2.41 · 10−4

Table 7.3 RMSE of the autonomous motorcycle’s state variables

Path RMSE X (m) RMSE Y (m) RMSE ψ (rad) RMSE φ (rad)

1 2.5·10−3 11.3·10−3 0.1·10−3 0.3·10−3

2 4.8·10−3 19.7·10−3 3.0·10−3 3.2·10−3

3 1.4·10−3 6.6·10−3 0.7·10−3 1.1·10−3

4 1.9·10−3 26.3·10−3 0.1·10−3 1.2·10−3



390 7 Unicycles and Two-Wheel Autonomous Ground Vehicles

Table 7.4 RMSE of the motorcycle under disturbance

�a (%) RMSE X (m) RMSE Y (m) RMSE ψ (rad) RMSE φ (rad)

0 1.9·10−3 26.3·10−3 0.1·10−3 1.2·10−3

10 1.9·10−3 26.3·10−3 0.1·10−3 1.2·10−3

20 1.2·10−3 23.4·10−3 0.2·10−3 1.1·10−3

30 2.4·10−3 26.9·10−3 0.1·10−3 1.3·10−3

40 3.7·10−3 16.0·10−3 0.1·10−3 0.7·10−3

50 4.0·10−3 16.0·10−3 0.2·10−3 0.8·10−3

60 8.5·10−3 17.1·10−3 0.5·10−3 2.3·10−3



Chapter 8
Four-Wheel Autonomous Ground
Vehicles

Abstract In the recent years there has been significant effort in the design of intel-
ligent autonomous vehicles capable of operating in variable conditions. The precise
modeling of the vehicles dynamics improves the efficiency of vehicles controllers
in adverse cases, for example in high velocity, when performing abrupt maneuvers,
under mass and loads changes or when moving on rough terrain. Using model-based
control approaches it is possible to design a nonlinear controller that maintains the
vehicle’smotion characteristics according to given specifications.When the vehicle’s
dynamics is subject to modeling uncertainties or when there are unknown forces and
torques exerted on the vehicle it is important to be in position to estimate in real-time
disturbances and unknown dynamics so as to compensate for them. In this direction,
estimation for the unknown dynamics of the vehicle and state estimation-based con-
trol schemes have been developed. Feedback control of robotic ground vehicles can
be primarily based on (i) global linearization approaches, (ii) approximate lineariza-
tion approaches and (iii) Lyapunov methods. The control is applied to (i) 4-wheel
vehiclesmodels, and (ii) articulated vehicles. At a second stage, to implement control
under model uncertainty, estimation methods can be employed capable of identify-
ing in real-time the vehicles’ dynamics. The outcome of the estimation procedure
can be used by the aforementioned feedback controllers thus implementing indi-
rect adaptive control schemes. Finally to implement control of the ground vehicles
through the measurement of a small number of its state variables, elaborated non-
linear filtering approaches are developed. The topics treated by the chapter are: (a)
Nonlinear optimal control of four-wheel autonomous ground vehicles (b) Nonlinear
optimal control for an autonomous truck and trailer system (c) Nonlinear optimal
control of four-wheel steering autonomous vehicles and (d) Flatness-based control
of autonomous four-wheel ground vehicles.

8.1 Chapter Overview

The topics treated by the chapter are: (a) Nonlinear optimal control of four-wheel
autonomous ground vehicles (b) Nonlinear optimal control for an autonomous truck
and trailer system (c) Nonlinear optimal control of four-wheel steering autonomous
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vehicles and (d) Flatness-based control of autonomous four-wheel ground vehicles.
With reference to (a) the chapter proposes a new nonlinear optimal control method

for solving the problem of path following for four-wheel non-holonomic Automatic
Grounded Vehicles (AGVs). The dynamic model of the four-wheel AGVs undergoes
first approximate linearization around a temporary operating point that is updated at
each iteration of the control algorithm. The linearization takes place through first-
order Taylor series expansion and through the computation of the Jacobian matrices
of the state-space description of the vehicle. For the approximately linearized model
of the four-wheel vehicle an H-infinity feedback controller is computed. Actually,
the H-infinity controller stands for the solution of the optimal control problem for
the vehicle’s kinematics under model uncertainty and external perturbations. For the
computation of the feedback gain of the H-infinity controller an algebraic Riccati
equation is solved at each time-step of the control method.

With reference to (b) a nonlinear optimal control method is developed, this time
for an autonomous truck and trailer system. The dynamic model of the autonomous
vehicle undergoes linearization through Taylor series expansion. Adhering to the
previously analyzed procedure, the linearization is computed at a temporary equilib-
rium that is defined at each time instant by the present value of the state vector and
the last value of the control inputs vector. The linearization is based on the compu-
tation of Jacobian matrices. The modelling error due to approximate linearization is
considered to be a perturbation that is compensated by the robustness of the control
scheme. For the approximately linearized model of the truck and trailer autonomous
vehicle an H-infinity feedback controller is designed. This requires again the solution
of an algebraic Riccati equation at each iteration of the control algorithm.

With reference to (c) the chapter introduces a nonlinear optimal control method
for feedback control of autonomous four-wheel steering (4WS) robotic vehicles.
Comparing to two-wheel steering vehicles, four-wheel steering vehicles can exhibit
improved maneuverability. The joint kinematic and dynamic model of such vehicles
undergoes approximate linearization around a temporary operating point (equilib-
rium) which is updated at each iteration of the control method. This operating point
comprises the present value of the vehicle’s state vector and the last value of the
control inputs vector exerted on it. As in previous applications of nonlinear opti-
mal control, the linearization is performed using Taylor series expansion and the
computation of the Jacobian matrices of the system’s state-space description. For
the approximately linearized model of the 4WS vehicle an optimal (H-infinity) feed-
back controller is designed. The controller’s feedback gain requires the solution of an
algebraic Riccati equation again at each time step of the control method. The concept
of the control scheme is that at each time instant the state vector of the 4WS vehi-
cle is made to converge to the temporary equilibrium, while the equilibrium is also
shifted towards the reference setpoints. Thus asymptotically, the state vector of the
4WS vehicle reaches the targeted reference paths. For all cases (a) to (c) asymptotic
stability of the control methods is proven through Lyapunov analysis.

With reference to (d) controller design for autonomous 4-wheel ground vehicles
is performed with differential flatness theory. Using a 3-DOF nonlinear model of
the vehicle’s dynamics and through the application of differential flatness theory an
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equivalent model in linear canonical (Brunovksy) form is obtained. For the latter
model a state feedback controller is developed that enables accurate tracking of
velocity setpoints. Moreover, it is shown that with the use of Kalman Filtering it
is possible to dynamically estimate the disturbances due to unknown forces and
torques exerted on the vehicle. The processing of velocity measurements (provided
by a small number of on-board sensors) through a Kalman Filter which has been
redesigned in the form of a disturbance observer results in accurate identification
of external disturbances affecting the vehicle’s dynamic model. By including in the
vehicle’s controller an additional term that compensates for the estimated disturbance
forces, the desirable characteristics of the vehicle’s motion are achieved. The global
asymptotic stability for the AGV control scheme is assured.

8.2 Nonlinear Optimal Control of Four-Wheel Autonomous
Ground Vehicles

8.2.1 Outline

Intelligent four-wheel autonomous vehicles are characterized by the capability to
track precisely reference paths and to perform in a dexterous and accurate man-
ner all designated maneuvers [40, 68–70, 392, 523]. The present section proposes
a new nonlinear optimal (H-infinity) control method for the kinematic-dynamic
model of a four-wheel autonomous vehicle. The considered model describes pre-
cisely the motion of four-wheel autonomous vehicles which receive as control inputs
the engine’s torque and the heading angle provided by the steering wheel, while also
taking into account longitudinal and lateral forces exerted on the vehicle’s front and
rear wheels, as well as torques that result in a change of the vehicle’s orientation [26,
72, 228, 622]. To accomplish precision in path following by autonomous vehicles
several control approaches have been developed so far. One can primarily distinguish
global linearization-based control schemes, requiring a change of state variables for
the vehicle’s model [317, 319, 332, 333, 419, 571]. Moreover, optimization-based
control approaches have been a topic of significant research in autonomous four-
wheel vehicles technology [66, 123, 284, 616, 641].

The present section’s approach to the solution of the path tracking control problem
for autonomous four-wheel land vehicles is based on a nonlinear optimal control
concept and on the H-infinity control theory. To implement the considered control
method the joint kinematic and dynamic model of the four-wheel vehicle undergoes
first approximate linearization around a temporary operating point (equilibrium)
which is updated at each iteration of the control method. The temporary equilibrium
is defined by the present value of the vehicle’s state vector and by the last value
of the control inputs vector that was exerted on it [461, 466]. The linearization
relies on first-order Taylor series expansion and on the computation of the Jacobian
matrices of the vehicle’s state-space description [33, 431, 463]. The modelling error
which is due to the approximate linearization is considered to be a disturbance term
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which is finally compensated by the robustness of the control algorithm. For the
approximately linearized model of the four-wheel vehicle an H-infinity (optimal)
feedback controller is designed.

The H-infinity feedback controller is the solution to the optimal control prob-
lem for the four-wheel vehicle, under model uncertainty and external perturbations
[450, 457, 460]. It actually represents the solution to a min-max differential game in
which the controller tries to minimize a cost function comprising a quadratic term of
the state vector’s tracking error, while at the same time the disturbances and model
uncertainty terms try to maximize this cost function. The computation of the con-
troller’s feedback gain requires the solution of an algebraic Riccati equation taking
place at each time step of the control method. The stability properties of the control
scheme are analyzed with the use of the Lyapunov method. First, it is proven that the
control loop satisfies the H-infinity tracking performance criterion which signifies
elevated robustness against model uncertainty and external perturbations [305, 564].
Moreover, undermoderate conditions it is proven that the control loop is also globally
asymptotically stable. Finally, to implement state estimation-based control through
the feedback of a small number of sensor measurements the H-infinity Kalman Filter
is proposed as a robust state estimator [169, 511].

8.2.2 Dynamic and Kinematic Model of the Vehicle

8.2.2.1 Definition of Parameters in 4-Wheel Vehicle Dynamic Model

The dynamic model of the four-wheel vehicle has been analyzed in [332, 333,
457, 616]. With reference to Figs. 8.1 and 8.2 (where the lateral forces applied on
the wheels are considered to define the vehicle’s motion) one has the following
parameters: β is the angle between the velocity and the vehicle’s transversal angle,
V is the velocity vector of the vehicle, ψ is the yaw angle (rotation round the z axis),
fx : is the aggregate force along the x axis, fy is the aggregate force along the y axis,
Tz is the aggregate torque round the z axis and δ is the steering angle of the front
wheels.

The motion of the vehicle is described by the following set of equations:

1. Longitudinal motion

− mV (β̇ + ψ̇)sin(β) + mV̇ cos(β) = fx (8.1)

2. Lateral motion
mV (β̇ + ψ̇)cos(β) + mV̇ sin(β) = fy (8.2)

3. yaw turn
I ψ̈ = Tz (8.3)
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The above described dynamics of the four-wheel vehicle can be alsowritten inmatrix
form ⎛

⎝
−sin(β) cos(β) 0
cos(β) sin(β) 0

0 0 1

⎞
⎠

⎛
⎝
mV (β̇ + ψ̇)

mV̇
I ψ̈

⎞
⎠ =

⎛
⎝

fx
fy
Tz

⎞
⎠ (8.4)

Finally a matrix relation is provided about the transformation of forces on a tire into
forces and torques along the vehicle’s axes:

⎛
⎝

fx
fy
Tz

⎞
⎠ =

⎛
⎝

−sin(δ) 0
cos(δ) 1
L1cos(δ) −L2

⎞
⎠

(
Ff

Fr

)
(8.5)

8.2.2.2 Vehicle Dynamic Model with Longitudinal and Lateral Forces

The previous model of Fig. 8.1 is rexamined considering that β̇ = 0 and that ψ is
the yaw angle formed between the vehicle’s longitudinal axis and the horizontal axis
of an inertial reference frame. Moreover, it is assumed that apart from the lateral
forces there are traction torques transferred from the engine to the front wheels as
well as braking torques on the rear and front wheels. Due to the distance between
the wheels axes and the vehicle’s center of gravity, torques are also generated along
the vehicle’s z-axis. With reference to Fig. 8.1 the model of the vehicle’s dynamics
is formulated as follows [332, 333, 457]:

Fig. 8.1 Nonlinear 4-wheeled vehicle model
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Fig. 8.2 Vehicle model with
longitudinal and lateral
forces

mαx = m(V̇x − ψ̇ V̇y) = Fx1 + Fx2

mαy = m(V̇y + ψ̇ V̇x ) = Fy1 + Fy2

Izψ̈ = Tz1 + Tz2 (8.6)

where ax and ay are accelerations along the axes of the inertial reference frame and
V̇x , V̇y in a reference frame that rotates with the yaw rate ψ̇ . The forces Fxi , i = 1, 2
on the vehicle’s longitudinal axis and Fyi , i = 1, 2 on the vehicle’s transversal axis
are computed from the horizontal and vertical forces applied on the vehicle’s wheels
as follows:

Fx1 = Fx f cos(δ) − Fy f sin(δ)

Fx2 = Fxr

Fy1 = Fy f sin(δ) + Fy f cos(δ) (8.7)

Fy2 = Fyr

Tz1 = L f (Fy f cos(δ) + Fx f sin(δ))

Tz2 = −Lr Fyr

About the longitudinal and the lateral forces applied to the vehicle one has:

1. Longitudinal force on the front wheel

Fx f =
(
1

R

)
(Ir ω̇ f + Tm − Tb f ) (8.8)
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2. Longitudinal force on the rear wheel

Fxr = −
(
1

R

)
(Tbr + Ir ω̇r ) (8.9)

3. Lateral force on the front wheel (taking that the angle β between the vehicle’s

longitudinal axis and thewheel’s velocity vector is approximated byβ = Vy+ψ̇L f

Vx
)

Fy f = C f

(
δ − Vy + ψ̇L f )

Vx

)
(8.10)

4. Lateral force on the rear wheel (taking that for the rear wheel the steering angle is
δ = 0 and that the angle β between the vehicle’s longitudinal axis and the wheel’s

velocity vector is approximated by β = Vy−ψ̇Lr

Vx
).

Fyr = −Cr
Vy − ψ̇Lr

Vx
(8.11)

where C f and Cr are the cornering stiffness coefficients for the front and rear tires
respectively.Nominal values of these cornering stiffness coefficients can be estimated
through identification procedures. The substitution of Eqs. (8.8)–(8.11) into (8.6)
results into

mV̇x = mψ̇Vy − Ir
R

(ω̇r + ω̇ f ) + 1

R
(Tm − Tb f − Tbr ) + C f

(
Vy + ψ̇L f )

Vx

)
δ − C f δ

2

mV̇y = −mψ̇Vx − C f

(
Vy + ψ̇L f

Vx

)
− Cr

(
Vy − ψ̇L f

Vx

)
+

(
1

R

)
(Tm − Tb f )δ +

(
C f − Ir

R
ω̇ f

)
δ

Izψ̈ = −L f C f

(
Vy + ψ̇L f )

Vx

)
+ LrCr

(
Vy − ψ̇L f )

Vx

)
+ L f

R
(Tm − Tb f )δ + L f

(
Tm − Ir

R

)
δ

(8.12)

The motion of the vehicle along its longitudinal axis is controlled by the traction or
braking wheel torque Tω = Tm − Tb with Tb = Tb f + Tbr and the lateral movement
via the steering angle δ. The two control inputs of the four wheel vehicle model are

u1 = Tω

u2 = δ (8.13)

A first form of the vehicle’s dynamic model is

ẋ = f (x, t) + g(x, t)u + g1u1u2 + g2u
2
2 (8.14)
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where

f (x, t) =

⎛
⎜⎜⎜⎝

Ir
mR (ω̇r + ω̇ f )

ψ̇Vx + 1
m

(
−C f

(Vy+L f ψ̇)

Vx
− Cr

(Vy−L f ψ̇)

Vx

)

1
Iz

(
−L f C f

(Vy+L f ψ̇)

Vx
+ LrCr

(Vy−L f ψ̇)

Vx

)

⎞
⎟⎟⎟⎠ (8.15)

g(x, t) =

⎛
⎜⎜⎜⎜⎝

1
mR

C f

m

(
Vy+L f ψ̇

Vx

)

0
(
C f R−Ir ω̇ f

mR

)

0 (L f C f R−L f Ir ω̇ f )

Iz R

⎞
⎟⎟⎟⎟⎠

(8.16)

g1 =

⎛
⎜⎜⎝

0
1

mR
L f

Iz R

⎞
⎟⎟⎠ g2 =

⎛
⎜⎝

−C f

m

0
0

⎞
⎟⎠ x =

⎛
⎜⎝
Vx

Vy

ψ̇

⎞
⎟⎠ u =

(
u1

u2

)
(8.17)

The previously analyzed nonlinear model of the vehicle’s dynamics can be simplified
if the control inputs u1u2 and u22 are not taken into account. In the latter case the
dynamics of the vehicle takes the form

ẋ = f (x, t) + g(x, t)u (8.18)

8.2.2.3 Joint Dynamic and Kinematic Model of the Vehicle

Using that the velocity variables of the vehicle Vx and Vy are expressed in a body-
fixed orthogonal coordinates frame, and using that the heading angle of the vehicle
is ψ one can express next the motion of the vehicle in an inertial reference frame as
follows:

VX = cos(ψ)Vx − sin(ψ)Vy⇒Ẋ = cos(ψ)Vx − sin(ψ)Vy

VY = sin(ψ)Vx + cos(ψ)Vy⇒Ẏ = sin(ψ)Vx + cos(ψ)Vy (8.19)

Using the above, the state-space description of the four-wheel vehicle becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

Ẋ
Ẏ
V̇X

V̇Y

ψ̇

ψ̈

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(ψ)Vx − sin(ψ)Vy

sin(ψ)Vx + cos(ψ)Vy

Ir
mR (ω̇R + ω̇ f )

ψ̇Vx + 1
m

[
−C f

(Vy+L f ψ̇)

Vx
− Cr

(Vy−L f ψ̇)

Vx

]

ψ̇

1
Iz

[
−L f C f

(Vy+L f ψ̇)

Vx
+ LrCr

(Vy−L f ψ̇)

Vx

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
1

mR
C f

m
Vy+L f π̇

Vx

0 C f R−Ir ω̇ f

mR
0 0
0 L f C f R−L f Ir ω̇ f

Iz R

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
Tω

δ

)

(8.20)
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Next, by defining the following state variables x1 = X , x2 = Y , x3 = Vx , x4 = Vy ,
x5 = ψ and x6 = ψ̇ the state-space description of the system becomes:

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(x5)x3 − sin(x3)x4
sin(x5)x3 + cos(x5)x4

Ir
mR (ω̇R + ω̇ f )

x6x3 + 1
m

[
−C f

(x5+L f x6)
x3

− Cr
(x4−L f x6)

x3

]

x6
1
Iz

[
−L f C f

(x4+L f x6)
x3

+ LrCr
(x4−L f x6

x3

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
1

mR
C f

m
x4+L f x6

x3

0 C f R−Ir ω̇ f

mR
0 0
0 L f C f R−L f Ir ω̇ f

Iz R

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
u1
u2

)

(8.21)
In vector field form, one obtains the following state-space description about the
vehicle’s dynamics

ẋ = f (x) + G(x)u⇒
ẋ = f (x) + g1(x)u1 + g2(x)u2 (8.22)

where f (x)∈R6×1, G(x)∈R6×2 while its columns are defined as g1(x)∈R6×1 and
g2(x)∈R6×1 with

f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(x5)x3 − sin(x3)x4
sin(x5)x3 + cos(x5)x4

Ir
mR (ω̇R + ω̇ f )

x6x3 + 1
m

[
−C f

(x5+L f x6)
x3

− Cr
(x4−L f x6)

x3

]

x6
1
Iz

[
−L f C f

(x4+L f x6)
x3

+ LrCr
(x4−L f x6

x3

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

g1(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1

mR
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠
g2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0

C f

m
x4+L f x6

x3
C f R−Ir ω̇ f

mR
0

L f C f R−L f Ir ω̇ f

Iz R

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8.23)

8.2.3 Approximate Linearization of the Four-Wheel Vehicle
Dynamics

The dynamic model of the four-wheel vehicle undergoes approximate linearization
around the temporary operating point (x∗, u∗) which is recomputed at each iteration
of the control algorithm. The linearization point (equilibrium) consists of the present
value of the vehicle’s state vector x∗ and of the last value of the control inputs
vector u∗ that was exerted on it. The linearization is based on first order Taylor
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series expansion and on the computation of the Jacobian matrices of the state-space
description of the vehicle. This gives:

ẋ = Ax + Bu + d̃ (8.24)

A and B are the system’s Jacobian matrices to be defined in the following and d̃ is a
model uncertainty term denoting the modelling error due to the truncation of higher-
order terms in the Taylor series expansion and the effects of external perturbations.
About matrix A one has

A = ∇x [ f (x) + G(x)u]|(x∗,u∗)⇒
A = ∇x [ f (x)]|(x∗,u∗) + ∇x [g1(x)]|(x∗,u∗) + ∇x [g2(x)]|(x∗,u∗) (8.25)

About matrix B one has

B = ∇u[ f (x) + G(x)u]|(x∗,u∗)⇒
B = G(x)|(x∗,u∗) (8.26)

The Jacobian matrix ∇x f (x) of the state-space description of the system are com-
puted as follows:

∇x f (x) =

⎛
⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x6

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x6· · · · · · · · · · · ·

∂ f6
∂x1

∂ f6
∂x2

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎠ |(x∗,u∗) (8.27)

The elements of the first row of the Jacobian matrix ∇x f (x) are:
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 0,
∂ f1
∂x3

= cos(x5),
∂ f1
∂x4

= −sin(x5),
∂ f1
∂x5

= −x3sin(x5) − x4cos(x5),
∂ f1
∂x6

= 0.

The elements of the second row of the Jacobianmatrix∇x f (x) are:
∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0,
∂ f2
∂x3

= sin(x5),
∂ f2
∂x4

= cos(x5),
∂ f2
∂x5

= x3cos(x5) − x4sin(x5),
∂ f2
∂x6

= 0.

The elements of the third row of the Jacobian matrix ∇x f (x) are:
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0, ∂ f3
∂x6

= 0.

The elements of the fourth row of the Jacobian matrix∇x f (x) are:
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= x6 + 1
m [−C f

−(x4+L f x6)
x23

− Cr
−(x4+L f x6)

x23
], ∂ f4

∂x4
= 1

m [−C f
1
x3

− Cr
1
x3

], ∂ f4
∂x5

= 0,
∂ f4
∂x6

= x3 + 1
m [−C f

L f

x3
− Cr

−L f

x3
].

The elements of the fifth row of the Jacobian matrix ∇x f (x) are:
∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0,
∂ f5
∂x3

= 0, ∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 1.
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The elements of the sixth row of the Jacobian matrix ∇x f (x) are:
∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0,
∂ f6
∂x3

= 0, ∂ f6
∂x4

= 1
Iz
[−L f C f

1
x3

+ L f Cr
1
x3

], ∂ f6
∂x5

= 0, ∂ f6
∂x6

= 1
Iz
[−L f C f

L f

x3
+ L f Cr

L f

x3
].

The Jacobian matrix ∇x g1(x) of the state-space description of the system are
computed as follows:

∇x g1(x) =

⎛
⎜⎜⎜⎝

∂g11
∂x1

∂g11
∂x2

· · · ∂g11
∂x6

∂g12
∂x1

∂g12
∂x2

· · · ∂g12
∂x6· · · · · · · · · · · ·

∂g16
∂x1

∂g16
∂x2

· · · ∂g16
∂x6

⎞
⎟⎟⎟⎠ |(x∗,u∗) (8.28)

It holds that ∇x g1(x) = 06×6.
The Jacobian matrix ∇x g2(x) of the state-space description of the system are

computed as follows:

∇x g2(x) =

⎛
⎜⎜⎜⎝

∂g21
∂x1

∂g21
∂x2

· · · ∂g21
∂x6

∂g22
∂x1

∂g22
∂x2

· · · ∂g22
∂x6· · · · · · · · · · · ·

∂g26
∂x1

∂g26
∂x2

· · · ∂g26
∂x6

⎞
⎟⎟⎟⎠ |(x∗,u∗) (8.29)

The elements of 1st, 2nd, 4th, 5th and 6th row of the Jacobian matrix ∇x g2(x) are
0, while the elements of the third row of the Jacobian matrix ∇x g2(x) are:

∂g32
∂x1

= 0,
∂g32
∂x2

= 0, ∂g32
∂x3

= C f

m (− (x4+L f x6)
x23

), ∂g32
∂x4

= C f

m ( 1
x3

), ∂g32
∂x5

= 0, ∂g32
∂x6

= C f

m (
L f

x3
).

8.2.4 The Nonlinear H-Infinity Control

8.2.4.1 Tracking Error Dynamics of the Four-Wheel Vehicle

The initial nonlinear model of the automatic ground vehicle is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (8.30)

Linearization of the system (four-wheel ground vehicle) is performed at each iter-
ation of the control algorithm round its present operating point (x∗, u∗) = (x(t),
u(t − Ts)). The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.31)

Thus, after linearization round its current operating point, the autonomous ground
vehicle’s dynamic model is written as

ẋ = Ax + Bu + d1 (8.32)
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Parameter d1 stands for the linearization error in the vehicle’s dynamic model
appearing in Eq. (8.32). The reference setpoints for the ground vehicle are denoted
by xd = [xd1 , . . . , xd6 ]. Tracking of this trajectory is achieved after applying the con-
trol input u∗. At every time instant the control input u∗ is assumed to differ from the
control input u appearing inEq. (8.32) by an amount equal toΔu, that is u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (8.33)

The dynamics of the controlled system described in Eq. (8.32) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (8.34)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (8.35)

By subtracting Eq. (8.33) from (8.35) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (8.36)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (8.37)

The above linearized form of the four wheel vehicle’s model can be efficiently con-
trolled after applying an H-infinity feedback control scheme.

8.2.5 Min-Max Control and Disturbance Rejection

The initial nonlinear model of the four-wheel autonomous ground vehicle is in the
form

ẋ = f (x, u) x∈Rn, u∈Rm (8.38)

Linearization of the system (four-wheel vehicle) is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)).
The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.39)

wherematrices A and B are obtained from the computation of the vehicle’s Jacobians,
according to Eqs. (8.25) and (8.26), and vector d̃ denotes disturbance terms due to
linearization errors. The problem of disturbance rejection for the linearized model
that is described by
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ẋ = Ax + Bu + Ld̃

y = Cx (8.40)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbations can also represent noise terms of any distribution.

As already explained in the previous applications of the H∞ control approach, a
feedback control scheme is designed for trajectory tracking by the system’s state vec-
tor and simultaneous disturbance rejection, considering that the disturbance affects
the system in the worst possible manner. The disturbances’ effect are incorporated
in the following quadratic cost function:

J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (8.41)

Once again, the significance of the negative sign in the cost function’s term that is
associatedwith the perturbation variable d̃(t) is that the disturbance tries tomaximize
the cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (8.42)

The objective of the optimization procedure is to compute a control signal u(t)which
can compensate for the worst possible disturbance, that is externally imposed to the
system of the four-wheel autonomous vehicle. However, the solution to the min-max
optimization problem is directly related to the value of the parameter ρ. This means
that there is an upper bound in the disturbances magnitude that can be annihilated
by the control signal.

8.2.5.1 H-Infinity Feedback Control

For the linearized systemgiven byEq. (8.40) the cost function of Eq. (8.41) is defined,
where the coefficient r determines the penalization of the control input and the
weight coefficient ρ determines the reward of the disturbances’ effects. Once more,
it is assumed that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are

stabilizable, (iii) matrix [A,C] is detectable. Then, the optimal feedback control law
is given by

u(t) = −Kx(t) (8.43)
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with

K = 1

r
BT P (8.44)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (8.45)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1

ρ2
LT Px(t) (8.46)

The diagram of the considered control loop is depicted in Fig. 8.3.

8.2.6 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the control loop of the four-

Fig. 8.3 Diagram of the nonlinear optimal control scheme for the four-wheel autonomous ground
vehicle
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wheel autonomous ground vehicle.Moreover, undermoderate conditions asymptotic
stability is proven and convergence to the reference setpoints is achieved.The tracking
error dynamics for the automatic ground vehicle is written in the form

ė = Ae + Bu + Ld̃ (8.47)

where in this autonomous vehicle’s case L = I∈R6×6 with I being the identity
matrix. Variable d̃ denotes model uncertainties and external disturbances of the vehi-
cle’s model. The following Lyapunov function is considered

V = 1

2
eT Pe (8.48)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1

2
ėT Pe + 1

2
ePė⇒

V̇ = 1

2
[Ae + Bu + Ld̃]T P + 1

2
eT P[Ae + Bu + Ld̃]⇒ (8.49)

V̇ = 1

2
[eT AT + uT BT + d̃T LT ]Pe +

+1

2
eT P[Ae + Bu + Ld̃]⇒ (8.50)

V̇ = 1

2
eT AT Pe + 1

2
uT BT Pe + 1

2
d̃T LT Pe +

1

2
eT P Ae + 1

2
eT PBu + 1

2
eT PLd̃ (8.51)

The previous equation is rewritten as

V̇ = 1

2
eT (AT P + PA)e +

(
1

2
uT BT Pe + 1

2
eT PBu

)
+

+
(
1

2
d̃T LT Pe + 1

2
eT PLd̃

)
(8.52)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (8.53)
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Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (8.54)

By substituting Eqs. (8.53) and (8.54) one obtains

V̇ = 1

2
eT

[
−Q + P

(
2

r
BBT − 1

2ρ2
LLT

)
P

]
e +

+eT PB

(
−1

r
BT Pe

)
+ eT PLd̃⇒ (8.55)

V̇ = −1

2
eT Qe +

(
2

r
PBBT Pe − 1

2ρ2
eT PLLT

)
Pe

−1

r
(eT PBBT Pe) + eT PLd̃ (8.56)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (8.57)

or, equivalently

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe +

+1

2
eT PLd̃ + 1

2
d̃T LT Pe (8.58)

Lemma: The following inequality holds

1

2
eT Ld̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.59)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1

ρ2
b2 − 2ab ≥ 0 ⇒ 1

2
ρ2a2 + 1

2ρ2
b2 − ab ≥ 0 ⇒

ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 ⇒ 1

2
ab + 1

2
ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 (8.60)
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The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.61)

Equation (8.61) is substituted in Eq. (8.58) and the inequality is enforced, thus giving

V̇ ≤ −1

2
eT Qe + 1

2
ρ2d̃T d̃ (8.62)

Equation (8.62) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T

0
V̇ (t)dt ≤ −1

2

∫ T

0
||e||2Qdt + 1

2
ρ2

∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||d̃||2dt (8.63)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (8.64)

then one gets ∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (8.65)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (8.48) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe ≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

8.2.7 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop for the four-wheel autonomous vehicle can be implementedwith the
feedback of a partiallymeasurable state vector and by processing only a small number
of state variables. To reconstruct the missing information about the state vector of
the autonomous vehicle it is proposed to use a filtering scheme which allows to apply
state estimation-based control [457]. The recursion of the H∞ Kalman Filter, for the
model of the distributed finance agents, can be formulated in terms of ameasurement
update and a time update part
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Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)] (8.66)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k) (8.67)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One
can measure only a part of the state vector of the system of the autonomous ground
vehicle, such as the velocities Vx and Vy and the orientation angleψ , and can estimate
through filtering the rest of the state vector elements.

8.2.8 Simulation Tests

Theperformanceof theproposednonlinear optimal control scheme for the autonomous
four-wheel vehicle has been tested in the case of tracking of different reference set-
points (Figs. 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10, 8.11, 8.12 and 8.13). The control scheme
exhibited fast and accurate tracking of the reference paths. The computation of the
feedback control gain required the solution of the algebraic Riccati equation given in
Eq. (8.53), at each iteration of the control algorithm. The obtained results are depicted
in Figs. 8.22, 8.23, 8.24, 8.25, 8.26, 8.27, 8.28, 8.29, 8.30, 8.31, 8.32 and 8.33. The
measurement units for the state variables of the four-wheel vehicle’s model were
in the SI system (position coordinates measured in m and heading angle in rad). It
can be noticed that the H-infinity controller achieved fast and accurate convergence
to the reference setpoints for all elements of the four-wheel vehicle’s state-vector.
Moreover, the variations of the control inputs, that is of the autonomous vehicle’s
velocity and of its steering angle were smooth.

As noted, the proposed nonlinear optimal control method for the four-wheel
autonomous vehicle was based on an approximate linearization of its joint kinematic
and dynamic model. The advantages that the proposed control method exhibits are
outlined as follows: (i) it is applied directly on the nonlinear dynamical model of
the four-wheel vehicle and not on an equivalent linearized description of it, (ii) It
avoids the elaborated linearizing transformations (diffeomorphisms) which can be
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Fig. 8.4 a Tracking of reference path 1 (red-line) by the four-wheel autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied to the
vehicle
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Fig. 8.5 Tracking of reference path 1: a convergence of state variables x1 to x3 of the four-wheel
vehicle to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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Fig. 8.6 a Tracking of reference path 2 (red-line) by the four-wheel autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied to the
vehicle
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Fig. 8.7 Tracking of reference path 2: a convergence of state variables x1 to x3 of the four-wheel
vehicle-to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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Fig. 8.8 a Tracking of reference path 3 (red-line) by the four-wheel autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied to the
vehicle
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Fig. 8.9 Tracking of reference path 3: a convergence of state variables x1 to x3 of the four-wheel
vehicle to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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Fig. 8.10 a Tracking of reference path 1 (red-line) by the four-wheel autonomous vehicle (blue
line) and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied
to the vehicle
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Fig. 8.11 Tracking of reference path 4: a convergence of state variables x1 to x3 of the four-wheel
vehicle to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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Fig. 8.12 a Tracking of reference path51 (red-line) by the four-wheel autonomous vehicle (blue
line) and trajectory estimated by the Kalman Filter (green line), b control inputs u1 and u2 applied
to the vehicle
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Fig. 8.13 Tracking of reference path 5: a convergence of state variables x1 to x3 of the four-wheel
vehicle to their reference setpoints (red-lines) and estimated state variables provided by the Kalman
Filter (green lines), b convergence of state variables x4 to x6 of the four-wheel vehicle to their
reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter (green
lines)
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met in global linearization-based control methods for autonomous vehicles (iii) the
controller is designed according to optimal control principles which implies the best
trade-off between precise tracking of the reference setpoints on the one side and
moderate variations of the control inputs on the other side (iv) the control method
exhibits significant robustness to parametric uncertainty, modelling errors as well as
to external perturbations.

Yet computationally simple, the proposed H∞ control scheme has an excellent
performance. Comparing to the control of the automatic ground vehicles that can rely
on global linearization methods the presented nonlinear H-infinity control scheme
is equally efficient in setpoint tracking while also retaining optimal control features
[457]. The tracking accuracy of the presented control method (H∞) has been mon-
itored in the case of several reference setpoints. By using the Kalman Filter as a
robust observer estimates of the state vector of the vehicle were obtained and thus
the implementation of state estimation-based control became possible. Themeasured
state variables were x3 = Vx , x4 = Vy and x5 = ψ . The obtained results are given in
Table8.1.

The tracking performance of the nonlinearH-infinity controlmethod for themodel
of the four-wheel vehicle was measured in the case of model uncertainty, imposing
an imprecision equal to Δa% about the vehicle’s moment of inertia Iz . The obtained
results are outlined in Table8.2. It can be noticed that despite model perturbations
the tracking accuracy of the control method remained satisfactory.

Table 8.1 RMSE of the vehicle’s state variables

Path RMSE X (m) RMSE Y (m) RMSE ψ (rad)

1 4.5·10−3 4.5·10−3 0.1·10−3

2 15.1·10−3 5.7·10−3 17.3·10−3

3 13.3·10−3 13.7·10−3 18.6·10−3

4 15.3·10−3 9.3·10−3 17.0·10−3

5 8.7·10−3 15.5·10−3 17.8·10−3

Table 8.2 RMSE of state variables under disturbance

Δa (%) RMSE X (m) RMSE Y (m) RMSE ψ (rad)

0 8.7·10−3 15.5·10−3 17.8·10−3

10 9.0·10−3 16.2·10−3 16.3·10−3

20 9.5·10−3 17.2·10−3 14.8·10−3

30 10.1·10−3 18.3·10−3 13.4·10−3

40 10.8·10−3 19.3·10−3 12.0·10−3

50 11.6·10−3 20.3·10−3 10.7·10−3

60 12.7·10−3 20.9·10−3 9.5·10−3
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8.3 A Nonlinear H-Infinity Control Approach
for an Autonomous Truck and Trailer System

8.3.1 Outline

Comparing to the previously analyzed unicycle-type and four-wheel vehicles there
exist more complicated and difficult to control models, such as multi-body and artic-
ulated autonous vehicles [202, 249, 508]. Due to their complicated kinematic and
dynamic model the problems of path planning and path following for the aforemen-
tioned types of vehicles is of elevated difficulty [12, 109, 166, 218, 328, 394]. To
achieve accurate tracking of reference paths and to assure stability for the vehicles’
autonomous navigation system, nonlinear control approaches have been proposed
[59, 344, 355, 366, 469]. In [248, 471] one can find results on global linearization-
based control of multi-body and articulated vehicles, based on differential flatness
theory. In [217] the controller’s design for the above mentioned type of vehicles is
based on approximate linearization and the description of their kinematics or dynam-
ics with the use of local models. Moreover, in [24] Lyapunov theory-based control
methods are developed for such complicated vehicles.

In this section the problems of nonlinear optimal control and the problem of
autonomous navigation of a truck and trailer vehicle are considered. The kinematic
model of the vehicle is formulated and the controller’s design proceeds by carrying
out an approximate linearization on this model around a time-varying equilibrium.
The linearization procedure relies on Taylor series expansion for the articulated
vehicle’s kinematicmodel andon the computation of the associated Jacobianmatrices
[33, 431, 463]. The linearization point (equilibrium) is updated at each time instant
and is defined by the present value of the vehicle’s state vector and the last value of
the vehicle’s control inputs vector. The modelling error which is due to approximate
linearization and the cut-off of higher order terms in the Taylor series expansion is
considered as a perturbation that is compensated by the robustness of the H-infinity
control scheme [461, 466].

For the linearized equivalent model of the truck and trailer vehicle an H-infinity
feedback controller is designed. This is an optimal controller for the case of a system
subject to model uncertainty and external perturbations [450, 452, 457, 459, 460].
H-infinity control stands for the solution of a min-max differential game. Actually,
the control inputs try to minimize a quadratic cost function associated with the devi-
ation of the vehicle’s state vector from its reference values, while the perturbations
and model uncertainty terms try to maximize this cost function [132, 305, 564].
The feedback gain of the controller is based on the solution of an algebraic Riccati
equation that is performed at each iteration of the control algorithm. The stability of
the control loop for the truck and trailer system is confirmed through Lyapunov anal-
ysis. First, it is shown that the H-infinity tracking performance criterion is satisfied.
This signifies elevated robustness of the control loop against model uncertainty and
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exogenous disturbances. Moreover, under moderate conditions the global asymp-
totic stability of the control loop is proven. Finally, ro implement feedback control
for the autonomous truck and trailer system when its state vector is only partially
measurable, the H-infinity Kalman Filter is proposed [169, 511].

8.3.2 Kinematic Model of the Truck and Trailer

8.3.2.1 State-Space Description of the Truck and Trailer System

The kinematic model of the truck and trailer system is given by

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ t

ẏt

θ̇

ẋ i

ẏi

ψ̇

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

vcos(θ)

vsin(θ)

ω

vcos(θ − ψ)cos(ψ)

vcos(θ − ψ)sin(ψ)
v
Li sin(θ − ψ)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.68)

where (xt ,yt ) are the cartesian coordinates of the truck in an inertial reference frame,
θ is the heading angle of the truck formed by its transversal axis and the OX axis of
the reference frame, ω is the turn rate of the truck (turn rate of the steering wheel),
(xi ,yi ) are the cartesian coordinates of the trailer, ψ i is the heading angle of the
trailer, v is the longitudinal speed of the truck, and β is the hitch point angle between
the truck and the drawbar that connects the truck with the trailer. The parameters of
the truck and trailer system are shown in Fig. 8.14.

In the diagram of Fig. 8.14, the following distances are defined: Lt is the distance
between the front and the rear axis of the truck, Li us the distance between the hitch
point RJ and the rear axis of the trailer. The state vector of the truck and trailer system
is defined as x = [xt , yt , θ, xi , yi , ψ]T while the control inputs vector is defined as
u = [v, ω]T and thus consists of the velocity of the truck and the turn rate of the
steering wheel of the truck.

The kinematic model of the truck and trailer system is justified as follows: The
velocity v of point RJ is first projected on the longitudinal axis of the trailer, thus
giving vcos(θ − ψ) and next (a) it is projected on the OX axis thus giving vcos(θ −
ψ)cos(ψ). This variable is the velocity of the trailer along the OX axis (b) it is
projected on the OY axis thus giving vcos(θ − ψ)sin(ψ). Moreover, the trailer
performs a rotational motion round point RJ , with rotational speed denoted as ψ̇ .
The linear velocity of point RJ that is parallel to the transversal axis of the vehicle
is given by vsin(θ − ψ). Thus, it holds: ψ̇ = 1

Li
vsin(θ − ψ).
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The kinematic model of the truck and trailer system is also written in the vector
form:

ẋ = f (x, u) (8.69)

where x∈R6×1, f ∈R6×1 and u∈R2×1. It also holds thatβ = θ − ψ .With the previous
definition of state variables one arrives at the following state-space description

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

u1cos(x3)
u1sin(x3)

u2
u1cos(x3 − x6)cos(x6)
u1cos(x3 − x6)sin(x6)

u1
Li
sin(x3 − x6)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.70)

8.3.2.2 Approximate Linearization of the Truck and Trailer Model

Approximate linearization is performed to the kinematicmodel of the truck and trailer
system round a temporary equilibrium x∗ which is re-computed at each iteration of
the control algorithm. The method is based on Taylor series expansion and on the
calculation of the associated Jacobian matrices, while the equilibrium consists of
the present value of the system’s state vector x∗ and of the last value of the control
inputs vector u∗ that was exerted on it. Thus one has the linearization point (x∗, u∗).
Using that the kinematic model of the system is ẋ = f (x, u) the following linearized
description is obtained

Fig. 8.14 Kinematic model of the truck and trailer
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ẋ = Ax + Bu + d̃ (8.71)

where d̃ is the linearization error and the associated Jacobian matrices are:

A = ∇x f (x, u) |(x∗,u∗) B = ∇u f (x, u) |(x∗,u∗) (8.72)

The elements of the Jacobian matrices are

A =

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x6

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x6· · · · · · · · · · · ·

· · · · · · · · · · · ·
∂ f6
∂x1

∂ f6
∂x2

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂u1

∂ f1
∂u2

∂ f2
∂u1

∂ f2
∂u2· · · · · ·

· · · · · ·
∂ f6
∂u1

∂ f6
∂u2

⎞
⎟⎟⎟⎟⎟⎠

(8.73)

With the previous definition of the Jacobian matrices one finds
The first row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is ∂ f1

∂x1
= 0, ∂ f1

∂x2
= 0,

∂ f1
∂x3

= −u1sin(x3),
∂ f1
∂x4

= 0, ∂ f1
∂x5

= 0 and ∂ f1
∂x6

= 0.

The second row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0,
∂ f2
∂x3

= u1cos(x3),
∂ f2
∂x4

= 0, ∂ f2
∂x5

= 0 and ∂ f2
∂x6

= 0.

The third row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0 and ∂ f3
∂x6

= 0.

The fourth row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= −sin(x3 − x6)cos(x6)u1,
∂ f4
∂x4

= 0, ∂ f4
∂x5

= 0 and ∂ f4
∂x6

= [sin(x3 − x6)
cos(x6) − cos(x3 − x6)sin(x6)]u1.

Thefifth rowof the Jacobianmatrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

=
−sin(x3 − x6)sin(x6)u1,

∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0 and ∂ f5
∂x6

= [sin(x3 − x6)sin(x6) +
cos(x3 − x6)cos(x6)]u1.

The sixth row of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) is
∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0,
∂ f6
∂x3

= 1
Li
cos(x3 − x6)u1,

∂ f6
∂x4

= 0, ∂ f6
∂x5

= 0 and ∂ f6
∂x6

= − 1
Li
cos(x3 − x6)u1.

In a similar manner one finds
Thefirst rowof the Jacobianmatrix B = ∇u f (x, u) |(x∗,u∗) is

∂ f1
∂u1

= cos(x3),
∂ f1
∂u2

= 0,

The second row of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) is ∂ f2
∂u1

= sin(x3),
∂ f2
∂u2

= 0,
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The third row of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) is
∂ f3
∂u1

= 0, ∂ f3
∂u2

= 1,

The fourth row of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) is ∂ f4
∂u1

= cos(x3 −
x6)cos(x6),

∂ f4
∂u2

= 0,

The fifth row of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) is ∂ f5
∂u1

= cos(x3 −
x6)sin(x6),

∂ f6
∂u2

= 0,

The sixth rowof the Jacobianmatrix B = ∇u f (x, u) |(x∗,u∗) is
∂ f6
∂u1

= 1
Li sin(x3 − x6),

∂ f6
∂u2

= 0,

8.3.3 The Nonlinear H-Infinity Control

8.3.3.1 Mini-Max Control and Disturbance Rejection

The initial nonlinear model of the truck and trailer system is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (8.74)

Linearization of the system (truck and trailer) is performed at each iteration of the
control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)). The
linearized equivalent model of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.75)

where matrices A and B are obtained from the computation of the Jacobians matrices
of the truck and trailer’s state-space model and vector d̃ denotes disturbance terms
due to linearization errors. The problem of disturbance rejection for the linearized
model that is described by

ẋ = Ax + Bu + Ld̃

y = Cx (8.76)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

Adhering to the previous applications of the H∞ control approach, a feedback
control scheme is designed for trajectory tracking by the system’s state vector and
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simultaneous disturbance rejection, considering that the disturbance affects the sys-
tem in the worst possible manner. The disturbances’ effect are incorporated in the
following quadratic cost function:

J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (8.77)

According to the analysis of the previous sections, the significance of the negative
sign in the cost function’s term that is associated with the perturbation variable d̃(t)
is that the disturbance tries to maximize the cost function J (t) while the control
signal u(t) tries to minimize it. The physical meaning of the relation given above is
that the control signal and the disturbances compete to each other within a min-max
differential game. This problem of min-max optimization can be written as

minumaxd̃ J (u, d̃) (8.78)

As pointed out in previous cases, the objective of the optimization procedure is to
compute a control signal u(t) which can compensate for the worst possible dis-
turbance, that is externally imposed to the system of the truck and trailer system.
However, the solution to the min-max optimization problem is directly related to the
value of the parameter ρ. This means that there is an upper bound in the disturbances
magnitude that can be annihilated by the control signal.

8.3.3.2 H-Infinity Feedback Control

For the linearized systemgiven byEq. (8.76) the cost function of Eq. (8.77) is defined,
where the coefficient r determines the penalization of the control input and theweight
coefficient ρ determines the reward of the disturbances’ effects. As in previous appli-
cations of the H-infinity control it is assumed that (i) The energy that is transferred
from the disturbances signal d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matri-

ces [A, B] and [A, L] are stabilizable, (iii) matrix [A,C] is detectable. Then, the
optimal feedback control law is given by

u(t) = −Kx(t) (8.79)

with

K = 1

r
BT P (8.80)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (8.81)
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Fig. 8.15 Diagram of the nonlinear optimal control scheme for the truck and trailer system

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1

ρ2
LT Px(t) (8.82)

The diagram of the considered control loop is depicted in Fig. 8.15.

8.3.4 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the control loop of the truck and
trailer system. Moreover, under moderate conditions asymptotic stability is proven
and convergence to the reference setpoints is achieved. The tracking error dynamics
for the truck and trailer system is written in the form

ė = Ae + Bu + Ld̃ (8.83)

where in this autonomous vehicle’s case L = I∈R6×6 with I being the identity
matrix. Variable d̃ denotes model uncertainties and external disturbances of the truck
and trailer model. The following Lyapunov function is considered
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V = 1

2
eT Pe (8.84)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1

2
ėT Pe + 1

2
ePė⇒

V̇ = 1

2
[Ae + Bu + Ld̃]T P + 1

2
eT P[Ae + Bu + Ld̃]⇒ (8.85)

V̇ = 1

2
[eT AT + uT BT + d̃T LT ]Pe +

+1

2
eT P[Ae + Bu + Ld̃]⇒ (8.86)

V̇ = 1

2
eT AT Pe + 1

2
uT BT Pe + 1

2
d̃T LT Pe +

1

2
eT P Ae + 1

2
eT PBu + 1

2
eT PLd̃ (8.87)

The previous equation is rewritten as

V̇ = 1

2
eT (AT P + PA)e +

(
1

2
uT BT Pe + 1

2
eT PBu

)
+

+
(
1

2
d̃T LT Pe + 1

2
eT PLd̃

)
(8.88)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (8.89)

Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (8.90)

By substituting Eqs. (8.89) and (8.90) one obtains

V̇ = 1

2
eT

[
−Q + P

(
2

r
BBT − 1

2ρ2
LLT

)
P

]
e +

+eT PB

(
−1

r
BT Pe

)
+ eT PLd̃⇒ (8.91)
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V̇ = −1

2
eT Qe +

(
2

r
PBBT Pe − 1

2ρ2
eT PLLT

)
Pe

−1

r
(eT PBBT Pe) + eT PLd̃ (8.92)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (8.93)

or, equivalently

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe +

+1

2
eT PLd̃ + 1

2
d̃T LT Pe (8.94)

Lemma: The following inequality holds

1

2
eT Ld̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.95)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1

ρ2
b2 − 2ab ≥ 0 ⇒ 1

2
ρ2a2 + 1

2ρ2
b2 − ab ≥ 0 ⇒

ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 ⇒ 1

2
ab + 1

2
ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 (8.96)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.97)

Equation (8.97) is substituted in Eq. (8.94) and the inequality is enforced, thus giving

V̇ ≤ −1

2
eT Qe + 1

2
ρ2d̃T d̃ (8.98)
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Equation (8.98) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T

0
V̇ (t)dt ≤ −1

2

∫ T

0
||e||2Qdt + 1

2
ρ2

∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||d̃||2dt (8.99)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (8.100)

then one gets ∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (8.101)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (8.84) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe ≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

8.3.5 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop for the truck and trailer system can be implemented with the feed-
back of a partially measurable state vector and by processing only a small number of
state variables. To reconstruct the missing information about the state vector of the
autonomous vehicle it is proposed to use a filtering scheme which allows to apply
state estimation-based control [457]. The recursion of the H∞ Kalman Filter, can be
formulated in terms of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)] (8.102)
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Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k) (8.103)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the system of the truck and trailer system,
such as state variables xi i = 1, 2 (cartesian coordinates of the truck) and can estimate
through filtering the rest of the state vector elements.

8.3.6 Simulation Tests

The performance of the proposed nonlinear optimal control scheme for the
autonomous truck and trailer vehicle has been tested in the case of tracking of dif-
ferent reference setpoints. The control scheme exhibited fast and accurate tracking
of the reference paths. The computation of the feedback control gain required the
solution of the algebraic Riccati equation given in Eq. (8.89), at each iteration of the
control algorithm. The obtained results are depicted in Figs. 8.16, 8.17 and 8.18. It
can be noticed that the H-infinity controller achieved fast and accurate convergence
to the reference setpoints for all elements of the vehicle’s state-vector. Moreover,
the variations of the control inputs, that is of the truck’s velocity and of the truck’s
steering angle were smooth.

0 5 10 15 20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

θ

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

xi

yi

(a) (b)

Fig. 8.16 a tracking of reference setpoint 1 (red-line) by the heading angle θ of the truck (blue
line), b tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of
the trailer (blue line)
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Fig. 8.17 a tracking of reference setpoint 2 (red-line) by the heading angle θ of the truck (blue
line), b tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of
the trailer (blue line)
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Fig. 8.18 a tracking of reference setpoint 3 (red-line) by the heading angle θ of the truck (blue
line), b tracking of reference path (red line) on the xy-plane by the center of the rear wheel axis of
the trailer (blue line)

As noted, the proposed nonlinear optimal control method for the truck and trailer
model was based on an approximate linearization of the vehicle’s kinematics. Com-
paring to nonlinear feedback control approaches which are based on exact feed-
back linearization, the proposed H∞ control scheme for the autonomous vehicle has
the following features: (i) it uses an approximate linear description of the system’s
kinematics which does not follow the elaborated transformations (diffeomorphisms)
met in exact linearization methods, (ii) it is applied directly on the initial nonlinear
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model of the vehicle. Thus, the computation of the control inputs which are applied
to the vehicle does not require inverse transformations and avoids singularities, (iii)
it retains the advantages of typical optimal control, that is accurate tracking of the
reference trajectories through moderate variations of the control inputs.

8.4 Nonlinear Optimal Feedback Control of Four-Wheel
Steering Autonomous Vehicles

8.4.1 Outline

Four-wheel steering (4WS) autonomous vehicles can exhibit improved maneuver-
ability comparing to two-wheel steering vehicles. There are several examples of
applications of 4WS autonomous vehicles in transportation, in security and defense
tasks as well as in agriculture [7, 70, 213, 364]. In an aim to improve the steer-
ing capabilities of autonomous vehicles and mobile robots there have been several
efforts to solve the problem of control of 4WS systems. The description of the kine-
matics and dynamics of 4WS vehicles typically takes the form of nonlinear models.
However under specific assumptions such models can be locally simplified into a
linear form and linear control methods can be considered. [67, 195, 381, 478, 586].
One can note also results on nonlinear model-based control for 4WS vehicles [216,
257, 306, 390]. In several approaches it is attempted to decouple the vehicle’s multi-
variable dynamics into simpler loops which are controlled independently [269, 270,
282, 317]. The efficiency of the aforementioned control methods depends on the
proximity of the model considered for the controller’s design to the real nonlinear
dynamics of the vehicle [283, 578, 584].

In the present section, a nonlinear H-infinity (optimal) controller is introduced for
the motion control problem of 4WS vehicles [419, 461]. The design of the controller
remains consistent with the precise nonlinear dynamics of the four-wheel steering
vehicle. As in previous applications of nonlinear optimal control the 4WS vehicle’s
kinematic and dynamic model undergoes first approximate linearization around a
temporary operating point (equilibrium) which is recomputed at each iteration of the
control algorithm. The equilibrium is defined by the present value of the system’s
state vector and the last value of the control inputs vector that was exerted on it.
The linearization makes use of first order Taylor series expansion of the state-space
description of the vehicle and requires the computation of the associated Jacobian
matrices [33, 431, 463]. The modelling error due to truncation of higher order terms
in the Taylor series expansion is considered as a perturbation which is asymptotically
eliminated by the robustness of the control algorithm. Next, for the approximately
linearized model of the 4WS vehicle an H-infinity feedback controller is designed.
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The H-infinity controller stands for the solution to the optimal control problem for
the 4WS vehicle under model uncertainty and external perturbations. As previously
noted, it represents the solution to amin-max differential game inwhich the controller
tries to minimize a cost function that comprises a quadratic term of the state vector’s
tracking error, whereas the model uncertainty and the external perturbations try to
maximize this cost function. To compute the feedback gain of theH-infinity controller
an algebraic Riccati equation has to be solved at each time step of the control method
[450, 457, 460]. The stability properties of the control scheme are confirmed through
Lyapunov analysis. First, it is shown that the control loop satisfies the H-infinity
tracking performance criterion, which ascertains elevated robustness against model
inconsistencies and external disturbances [305, 564]. Moreover, under moderate
conditions the global asymptotic stability of the control scheme is proven. Finally,
to implement state estimation-based control for the 4WS vehicle without the need
to process measurements from a large number of on-board sensors the H-infinity
Kalman Filter is used as a robust state estimator [169, 511].

Comparing to other control methods for the problem of motion control of
autonomous vehicles and mobile robots the following can be noted [450, 457, 460]:
(i) PID control which is widely used by practitioners in the area of robotics is finally
an unreliable methodology because the tuning of such a controller is performed
in a heuristic manner around local operating points where the unrealistic assump-
tion is made that the dynamics of the 4WS vehicle remains linear. Such a control
method lacks a global stability proof. (ii) On the other side the application of global
linearization-based control methods to 4WS vehicles is hindered by the complexity
of the associated state-space transformations that finally allow for describing the
vehicle’s dynamics into a linear canonical form. Besides this method may come
against singularity problems because it requires inverse transformations for comput-
ing the control signal that will be finally applied to the initial nonlinear system of
the 4WS vehicle. (iii) As far as optimal control methods for autonomous vehicles is
concerned, the use of model predictive control is unsuccessful because this control
method is addressed to linear dynamics and cannot compensate for the nonlinearities
of the 4WS vehicle state-space model. On the other side the use of nonlinear model-
predictive control for 4WS vehicles can be of questionable performance because its
iterative search for an optimum is not of assured convergence and depends on initial
parametrization, (iv) Finally, sliding mode control cannot be applied directly to the
model of the 4WS vehicles because this is not inherently found into a canonical form.
Additionally, the application of backstepping control approaches is hindered by the
fact that the state-space description of 4WS vehicles is not found into a triangular
form. For the aforementioned reasons, nonlinear optimal (H-infinity) control is one
of the most efficient solutions one can have for the control problem of autonomous
navigation of 4WS vehicles.
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Fig. 8.19 Reference axes for themotion of the 4WS autonomous vehicle: the velocity of the vehicle
is decomposed in two components in a body-fixed reference frame xOy. The control inputs for
the 4WS vehicle are (i) the longitudinal force Fl f and Flr at the wheels of the front and rear axes,
provided by the vehicle’s engine or actuators, (ii) the turn angle of the front wheels δ f , (iii) the turn
angle of the rear wheels δr

8.4.2 Modelling of the Kinematics and Dynamics of the 4WS
Autonomous Vehicle

8.4.2.1 Outline of the Model of the 4WS Vehicle

Important parameters and variables in the 4WS vehicle model are: (i) the vehicle’s
velocity v, which is a vector forming an angle β with the transversal axis of the
vehicle. It can be decomposed in two components, a velocity Vx which is aligned
with the horizontal axis Ox in a body-fixed reference frame and a velocity Vy which
is aligned with the vertical axis Oy in such a body-fixed reference frame (Fig. 8.19),
(ii) the vehicle’s mass m and its moment of inertia I for rotation around the Oz axis,
(iii) the cornering stiffness coefficients c f and cr of the front and rear wheels of the
vehicle.

The control inputs to the model of the 4WS vehicle are defined as follows: (i) the
traction force that is exerted on the vehicle (ii) the turn angle of the front wheels (or
the first derivative of this turn angle) (iii) the turn angle of the rear wheels (or the
first derivative of this turn angle).

The difference between the turn angle of the vehicle’s wheels δ and the angle
formed between the vehicle’s velocity and the vehicle’s transversal axis β, is the
side-slip angle of the vehicle and is denoted by a = δ − β.

The forces exerted on the 4WS vehicle are defined as follows: (i) the longitudinal
force Fl which in turn is defined by the traction force of the vehicle’s engine or by the
force developed by the vehicle’s breaking system, (ii) the side or transversal force
FS which depends on the vehicle’s side-slip angle a and on the reaction force Fz

developed by the front and rear axle of the vehicle for compensating the vehicle’s
weight or additional load.



430 8 Four-Wheel Autonomous Ground Vehicles

About the X-axis forces, in the body-fixed reference frame for the vehicle one has
that [216]:

Fx f = Fl f cos(δ f ) − Fs f sin(δ f )

Fxr = Flr cos(δ f ) − Fsr sin(δr ) (8.104)

Under the assumption of a small turn angle of the vehicle’swheel, that is cos(δ f ) 
 1,
sin(δ f ) 
 δ f and cos(δr ) 
 1, sin(δr ) 
 δr one gets [216]:

Fx f = Fl f − Fs f δ f

Fxr = Flr − Fsrδr (8.105)

About the Y-axis forces, in the body-fixed reference frame for the vehicle one has
that (Fig. 8.20):

Fy f = Fs f cos(δ f ) + Fl f sin(δ f )

Fyr = Fsr cos(δ f ) + Flr sin(δr ) (8.106)

Again, under the assumption of a small turn angle of the vehicle’s wheel, that is
cos(δ f ) 
 1, sin(δ f ) 
 δ f and cos(δr ) 
 1, sin(δr ) 
 δ f one gets:

Fy f = Fs f + Fl f δ f

Fyr = Fsr + Flrδr (8.107)

Next, by considering that the vehicle’s motion is expressed in a body-fixed frame
and that Coriolis effects have to be taken into account, the equations of motion of
the 4WS vehicle become

m(v̇x − rvy) = Fl f + Flr − Fs f δ f − Fsrδr − cav
2
x (8.108)

m(v̇y + rvx ) = Fl f δ f + Flrδr + Fs f + Fsrδr (8.109)

I ṙ = l f (Fl f δ f + Fs f ) − lr (Flrδr + Fsr ) (8.110)

8.4.2.2 Kinematic and Dynamic Model of the 4WS Vehicle

The dynamic model of the 4WS vehicle was shown to be given by Eqs. (8.108),
(8.109) and (8.110). In this model Fl f and Flr are the traction forces generated by the
engine of the vehicle or by electric actuators and exerted on the wheels of the front
rear axles respectively. The control inputs of the vehicle are (i) the traction forces u1,
given by Fl f and FLr (ii) the angle of the wheels of the front axle, that is δ f = u2,
(iii) the angle of the wheels of the rear axle, that is δr = u3.
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Fig. 8.20 Diagram of the 4 WS vehicle

About the side forces exerted on the front wheels of the vehicle one has

Fs f = m

l
(glr − v̇x h)c f a f ⇒Fs f = mglr

l
c f a f − mv̇xh

l
c f a f (8.111)

and by considering that v̇x << g and h << l (h is the height of the center of gravity of
the vehicle) onehas that the term mv̇x h

l c f a f canbe considered asmoderate disturbance
which can be omitted. Thus, the model of the side force being exerted on the front
wheels is given by

Fs f = m

l
(glr − v̇x h)c f a f ⇒Fs f = mglr

l
c f a f (8.112)

or equivalently

Fs f = m

l
(glr )c f

(
u2 − vy + l f r

vx

)
(8.113)

where it has been used that a f = δ f − β f and β f = vy+l f r
vx

About the side forces exerted on the rear wheels of the vehicle one has

Fsr = m

l
(gl f − v̇x h)crar⇒Fsr = mgl f

l
crar − mv̇xh

l
crar (8.114)

and by considering that v̇x << g and h << l one has that the term mv̇x h
l crar can be

considered as moderate disturbance which can be omitted. Thus, the model of the
force being exerted on the front wheels is given by

Fsr = m

l
(gl f )crar⇒Fsr = mglr

l
crar , (8.115)
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or equivalently

Fsr = m

l
(gl f )cr

(
u3 − vy − lrr

vx

)
(8.116)

where it has been used that ar = δr − βr and βr = vy−lr r
vx

.
Consequently, the side forces exertedon thewheels of the vehicle are givenby [216]

Fs f = m

l
(glr )c f

(
u2 − vy + lr r

vx

)

Fsr = m

l
(gl f )cr

(
u3 − vy − lrr

vx

)
(8.117)

Using Eq. (8.117) in (8.108)–(8.110) one obtains the following equations for the
dynamic model of the 4WS autonomous vehicle:

mv̇x = mrvy + u1 + u1 − m

l
(glr )c f

(
u2 − vy + lr r

vx

)
u2 −

−m

l
(gl f )cr

(
u3 − vy − lrr

vx

)
u3 − cav

2
x (8.118)

mv̇y = −mrvx + u1u2 + u1u3 + m

l
(glr )c f

(
u2 − vy + lr r

vx

)
+

+m

l
(gl f )cr

(
u3 − vy − lrr

vx

)
(8.119)

I ṙ = l f

[
(u1u2) + m

l
(glr )c f

(
u2 − vy + lr r

vx

)]
−

− lr

[
(u1u3) + m

l
(gl f )cr

(
u3 − vy − lrr

vx

)]
(8.120)

Moreover, taking that (x, y) are the cartesian coordinates and θ is the orientation
angle of the vehicle, then the following equations about the 4WS vehicle kinematics
are considered:

ẋ = vxcos(θ) − vysin(θ) (8.121)

ẏ = vxsin(θ) + vycos(θ) (8.122)

θ̇ = r (8.123)

After a re-arrangement of Eqs. (8.121)–(8.123) and (8.118)–(8.120), the state-space
description of the 4WS is given as follows:

ẋ = vxcos(θ) − vysin(θ) (8.124)
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ẏ = vxsin(θ) + vycos(θ) (8.125)

v̇x = rvy + 2

m
u1 − 1

l
(glr )c f

(
u2 − vy + lrr

vx

)
u2 −

−1

l
(gl f )cr

(
u3 − vy − lrr

vx

)
u3 − ca

m
v2x (8.126)

v̇y = −rvx + 1

m
u1u2 + 1

m
u1u3 + 1

l
(glr )c f

(
u2 − vy + lr r

vx

)
+

+1

l
(gl f )cr

(
u3 − vy − lr r

vx

)
(8.127)

θ̇ = r (8.128)

ṙ = l f
I

[
(u1u2) + m

Il
(glr )c f

(
u2 − vy + lr r

vx

)]
−

− lr
I

[
(u1u3) + m

Il
(gl f )cr

(
u3 − vy − lr r

vx

)]
(8.129)

By defining the system’s state vector as X = [x, y, vx , vy, θ, r ]T one obtains the
following state-space description for the 4WS vehicle

ẋ1 = x3cos(x5) − x4sin(x5) (8.130)

ẋ2 = x3sin(x5) + x4cos(x5) (8.131)

ẋ3 = x4x6 + 2

m
u1 − 1

l
(glr )c f

(
u2 − x4 + lr x6

x3

)
u2 −

−1

l
(gl f )cr

(
u3 − x4 − lr x6

x3

)
u3 − ca

m
x23 (8.132)

ẋ4 = −x3x6 + 1

m
u1u2 + 1

m
u1u3 + 1

l
(glr )c f

(
u2 − x4 + lr x6

x3

)
+

+1

l
(gl f )cr

(
u3 − x4 − lr x6

x3

)
(8.133)

ẋ5 = x6 (8.134)
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ẋ6 = l f
I

[
(u1u2) + m

Il
(glr )c f

(
u2 − x4 + lr x6

x3

)]
−

− lr
I

[
(u1u3) + m

Il
(gl f )cr

(
u3 − x4 − lr x6

x3

)]
(8.135)

Thus, the joint kinematic-dynamic model of the 4WS vehicle is written in the form

ẋ = f (x, u) (8.136)

where x∈R6×1, u∈R3×1, and f ∈R6×1.

8.4.3 Approximate Linearization of the Model of the 4WS
Vehicle

8.4.3.1 1st Modelling and Linearization Approach

First, linearization of the complete kinematic-dynamic model of the 4WS vehicle is
considered. The completemodel has been given in Eqs. (8.130)–(8.135). The approx-
imately linearized model of the vehicle is computed around the temporary operating
point (equilibrium) (x∗, u∗), where x∗ is the present value of the system’s state vector
and u∗ is the last value of the control input vector exerted on the 4WS vehicle. The
linearized model is written as

ẋ = Ax + Bu + d̃ (8.137)

where

A =

⎛
⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · ∂ f1
∂x6

∂ f2
∂x1

∂ f2
∂x2

· · · ∂ f2
∂x6· · · · · · · · · · · ·

∂ f6
∂x1

∂ f6
∂x2

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎠ |(x∗,u∗) B =

⎛
⎜⎜⎜⎝

∂ f1
∂u1

∂ f1
∂u2

∂ f1
∂u3

∂ f2
∂u1

∂ f2
∂u2

∂ f2
∂u3· · · · · · · · ·

∂ f6
∂u1

∂ f6
∂u2

∂ f6
∂u3

⎞
⎟⎟⎟⎠ |(x∗,u∗) (8.138)

The computation of the Jacobian matrix A = ∇x f (x, u) |(x∗,u∗) proceeds as follows:
For the first row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f1

∂x1
= 0, ∂ f1

∂x2
= 0,

∂ f1
∂x3

= cos(x5),
∂ f1
∂x4

= −sin(x5),
∂ f1
∂x5

= −x3sin(x5) + x4cos(x5),
∂ f1
∂x6

= 0.

For the second row of the Jacobianmatrix A = ∇x f (x, u) one has: ∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0,
∂ f2
∂x3

= sin(x5),
∂ f2
∂x4

= cos(x5),
∂ f2
∂x5

= x3cos(x5) − x5sin(x5),
∂ f2
∂x6

= 0,

For the third row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= glr c f

l (− x4+l f x6
x23

)u2 − gl f cr
l (− x4−lr x6

x23
)u3 − ca

m 2x3,
∂ f3
∂x4

= x6 + glr c f

l
1
x3
u2,

∂ f3
∂x5

=
0, ∂ f3

∂x6
= x4 + glr c f

l
l f
x3
u2 − gl f cr

l
l f
x3
u3
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For the fourth row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= −x6 + glr c f

l
x4+l f x6

x23
+ gl f cr

l
x4−lr x6

x23
, ∂ f4

∂x4
= glr c f

l − 1
x3
u2 + gl f cr

l − 1
x3
u3,

∂ f4
∂x5

= 0,
∂ f4
∂x6

= −x3 + glr c f

l (− l f
x3

) + gl f cr
l ( lr

x3
).

For the fifth row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0,
∂ f5
∂x3

= 0, ∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 1.

For the sixth row of the Jacobian matrix A = ∇x f (x, u) one has: ∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0,
∂ f6
∂x3

= l f mglr
I l c f

x4+l f x6
x23

− lrmgl f
I l cr

x4−lr x6
x23

, ∂ f6
∂x4

= l f mglr
I l c f (− 1

x3
) − lrmgl f

I l cr (
1
x3

), ∂ f6
∂x5

=
0, ∂ f6

∂x6
= l f mglr

I l c f (− l f
x3

) − lrmgl f
I l cr (− lr

x3
).

The computation of the Jacobian matrix B = ∇u f (x, u) |(x∗,u∗) proceeds as fol-
lows:
For the first row of the Jacobian matrix B = ∇u f (x, u) one has: ∂ f1

∂u1
= 0, ∂ f1

∂u2
= 0,

∂ f1
∂u3

= 0

For the second row of the Jacobianmatrix B = ∇u f (x, u) one has: ∂ f2
∂u1

= 0, ∂ f2
∂u2

= 0,
∂ f2
∂u3

= 0

For the third row of the Jacobian matrix B = ∇u f (x, u) one has: ∂ f3
∂u1

= 2
m ,

∂ f3
∂u2

=
− glr c f

l (2u2 − x4+l f x6
x3

), ∂ f3
∂u3

= − gl f c f

l (2u3 − x4−lr x6
x3

).

For the fourth rowof the Jacobianmatrix B = ∇u f (x, u)one has: ∂ f4
∂u1

= 1
m u2 + 1

m u3,
∂ f4
∂u2

= 1
m u1 + glr c f

l , ∂ f4
∂u3

= 1
m u1 + gl f cr

l .

For the fifth row of the Jacobian matrix B = ∇u f (x, u) one has: ∂ f5
∂u1

= 0, ∂ f5
∂u2

= 0,
∂ f5
∂u3

= 0.

For the sixth row of the Jacobian matrix B = ∇u f (x, u) one has: ∂ f6
∂u1

= l f
I u2 − lr

I u3,
∂ f6
∂u2

= l f mglr
I l c f + l f

I u1,
∂ f6
∂u3

= − lrmgl f
I l cr − lr

I u1

8.4.3.2 2nd Modelling and Linearization Approach

Next, linearization of a simplified kinematic-dynamic model of the 4WS vehicle is
considered. This model is obtained from the complete model given in Eqs. (8.130)–
(8.135), after omitting terms comprising squares of the control inputs that is u2i ,
or products between the control inputs, such as uiu j . Under such an approach the
kinematic-dynamic model of the 4WS vehicle becomes:
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ẋ1 = x3cos(x5) − x4sin(x5) (8.139)

ẋ2 = x3sin(x5) + x4cos(x5) (8.140)

ẋ3 = x4x6 + 2

m
u1 + 1

l
(glr )c f

(
x4 + lr x6

x3

)
u2 −

+1

l
(gl f )cr

(
x4 − lr x6

x3

)
u3 − ca

m
x23 (8.141)

ẋ4 = −x3x6 + 1

l
(glr )c f

(
u2 − x4 + lr x6

x3

)
+

+1

l
(gl f )cr

(
u3 − x4 − lr x6

x3

)
(8.142)

ẋ5 = x6 (8.143)

ẋ6 = l f
I

[
m

Il
(glr )c f

(
u2 − x4 + lr x6

x3

)]
−

− lr
I

[
m

Il
(gl f )cr

(
u3 − x4 − lr x6

x3

)]
(8.144)

Then, the state-space model of the 4WS autonomous vehicle can be written as:

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x3cos(x5) − x4sin(x5)
x3sin(x5) + x4cos(x5)

x4x6 − ca
m x23

−x3x6 − 1
l (glr )c f

(
x4+lr x6

x3

)
− 1

l (gl f )cr
(
x4−lr x6

x3

)

x6
l f
I

[
m
Il (glr )c f

(
− x4+lr x6

x3

)]
− lr

I

[
m
Il (gl f )cr

(
− x4−lr x6

x3

)]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
2
m

1
l (glr )c f

(
x4+lr x6

x3

)
1
l (gl f )cr

(
x4−lr x6

x3

)

0 1
l (glr )c f

1
l (gl f )cr

0 0 0
0 l f

I
m
I l (glr )c f − lr

I
m
I l (gl f )cr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝
u1
u2
u3

⎞
⎠ (8.145)

Thus, the state-space model of the 4WS autonomous vehicle is written in the affine-
in-the-input form:

ẋ = f (x) + g(x)u (8.146)

with x∈R6×1, f (x)∈R6×1, g(x)∈R6×3 and u∈R6×3. For the state-space model of
Eq. (8.146) linearization is performed around the temporary operating point (equi-
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librium) (x∗, u∗). This operating pointwhich is updated at each iteration of the control
method, consists of the present value of the 4WS vehicle state vector x∗ and of the
last value of the control inputs vector u∗ that was exerted on it. By denoting the gain
matrix g(x) = [g1(x), g2(x), g3(x)] the approximate linearization procedure gives

ẋ = Ax + Bu + d̃ (8.147)

where matrices A, B are associated with the system’s Jacobians, as shown next:

A = ∇x f (x) |(x∗,u∗) +∇x g2(x)u2 |(x∗,u∗) +∇x g3(x)u3 |(x∗,u∗) (8.148)

B = ∇u[ f (x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗) (8.149)

The elements of the Jacobian matrix ∇x f (x) |(x∗,u∗) are computed as follows:
For the first row of the Jacobian matrix ∇x f (x, u) one has: ∂ f1

∂x1
= 0, ∂ f1

∂x2
= 0,

∂ f1
∂x3

= cos(x5),
∂ f1
∂x4

= −sin(x5),
∂ f1
∂x5

= −x3sin(x5) + x4cos(x5),
∂ f1
∂x6

= 0.

For the second row of the Jacobian matrix ∇x f (x, u) one has: ∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0,
∂ f2
∂x3

= sin(x5),
∂ f2
∂x4

= cos(x5),
∂ f2
∂x5

= x3cos(x5) − x5sin(x5),
∂ f2
∂x6

= 0,

For the third row of the Jacobian matrix ∇x f (x) one has: ∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0,
∂ f3
∂x3

= −2cax3,
∂ f3
∂x4

= x6,
∂ f3
∂x5

= 0, ∂ f3
∂x6

= x4

For the fourth row of the Jacobian matrix ∇x f (x) one has: ∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0,
∂ f4
∂x3

= −x4 + glr c f

l
x4+l f x6

x23
+ gl f cr

l
x4−lr x6

x23
, ∂ f4

∂x4
= − glr c f

l
1
x3

− gl f cr
l

1
x3
, ∂ f4

∂x5
= 0, ∂ f4

∂x6
=

− glr c f

l
l f
x3

+ gl f cr
l

lr
x3
.

For the fifth row of the Jacobian matrix ∇x f (x) one has:
∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

= 0,
∂ f5
∂x4

= 0, ∂ f5
∂x5

= 0, ∂ f5
∂x6

= 0.

For the sixth row of the Jacobian matrix ∇x f (x) one has:
∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0, ∂ f6
∂x3

=
l f mglr

I l c f
x4+l f x6

x23
− lrmgl f

I l cr
x4−lr x6

x23
, ∂ f6

∂x4
= l f mglr

I l c f
1
x3

+ lrmgl f
I l cr

1
x3
, ∂ f6

∂x5
= 0, ∂ f6

∂x6
=

− l f mglr
I l c f

l f
x3

− lrmgl f
I l cr

lr
x3
.

The elements of the Jacobian matrix ∇x g2(x) |(x∗,u∗) are computed as follows:

∇x g2(x) |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 − glr c f

l
x4+l f x6

x23

glr c f

l
1
x3

0 glr c f

l
l f
x3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.150)
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The elements of the Jacobian matrix ∇x g3(x) |(x∗,u∗) are computed as follows:

∇x g3(x) |(x∗,u∗)=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 − gl f cr

l
x4−lr x6

x23

gl f cr
l

1
x3

0 gl f cr
l − lr

x3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(8.151)

8.4.4 The Nonlinear H-Infinity Control

8.4.4.1 Tracking Error Dynamics for the 4WS Vehicle

The initial nonlinear model of the 4WS automatic ground vehicle is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (8.152)

Linearization of themodel of the 4WSgroundvehicle is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)).
The linearized equivalent model of the 4WS vehicle is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.153)

Thus, after linearization round its current operating point, the 4WS autonomous
ground vehicle’s kinematic-dynamic model is written as

ẋ = Ax + Bu + d1 (8.154)

Parameter d1 stands for the linearization error in the 4WS vehicle’s dynamic model
appearing in Eq. (8.154). The reference setpoints for the 4WS ground vehicle are
denoted by xd = [xd1 , · · · , , xd6 ]. Tracking of this trajectory is achieved after applying
the control input u∗. At every time instant the control input u∗ is assumed to differ
from the control input u appearing in Eq. (8.154) by an amount equal to Δu, that is
u∗ = u + Δu

ẋd = Axd + Bu∗ + d2 (8.155)

The joint kinematics and dynamics of the controlled 4WS vehicle described in
Eq. (8.154) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (8.156)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains
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ẋ = Ax + Bu + Bu∗ + d3 (8.157)

By subtracting Eq. (8.155) from (8.157) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (8.158)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (8.159)

The above linearized form of the 4WS vehicle’s model can be efficiently controlled
after applying an H-infinity feedback control scheme.

8.4.4.2 Min-Max Control and Disturbance Rejection

The initial nonlinear model of the 4WS autonomous ground vehicle is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (8.160)

Linearization of the joint kinematic and dynamicmodel of the 4WS ground vehicle is
performed at each iteration of the control algorithm round its present operating point
(x∗, u∗) = (x(t), u(t − Ts)). The linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (8.161)

where matrices A and B are obtained from the computation of the 4WS vehicle’s
Jacobians, according to Eq. (8.138), and vector d̃ denotes disturbance terms due to
linearization errors. The problem of disturbance rejection for the linearized model
that is described by

ẋ = Ax + Bu + Ld̃

y = Cx (8.162)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

As pointed out in previous applications of the H∞ control approach, a feedback
control scheme is designed for trajectory tracking by the 4WS vehicle’s state vector
and simultaneous disturbance rejection, considering that the disturbance affects the
system in the worst possible manner. The disturbances’ effect are incorporated in the
following quadratic cost function:
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J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (8.163)

The significance of the negative sign in the cost function’s term that is associated
with the perturbation variable d̃(t) is that the disturbance tries to maximize the
cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (8.164)

As in previously examined ground vehicles, the objective of the optimization proce-
dure for the 4WS vehicle is to compute a control signal u(t) which can compensate
for the worst possible disturbance, that is externally imposed to the system of the
4WS autonomous vehicle. However, the solution to the min-max optimization prob-
lem is directly related to the value of the parameter ρ. This means that there is an
upper bound in the disturbances magnitude that can be annihilated by the control
signal.

8.4.4.3 H-Infinity Feedback Control

Following previous applications of the H-infinity control, for the linearized system
given by Eq. (8.162) the cost function of Eq. (8.163) is defined, where the coef-
ficient r determines the penalization of the control input and the weight coeffi-
cient ρ determines the reward of the disturbances’ effects. It is assumed that (i)
The energy that is transferred from the disturbances signal d̃(t) is bounded, that is∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L] are stabilizable, (iii) the
matrix [A,C] is detectable. Then, the optimal feedback control law is given by

u(t) = −Kx(t) (8.165)

with

K = 1

r
BT P (8.166)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (8.167)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by
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Fig. 8.21 Diagram of the nonlinear optimal control scheme for the 4WS autonomous ground
vehicle

d̃(t) = 1

ρ2
LT Px(t) (8.168)

The diagram of the considered control loop is depicted in Fig. 8.21.

8.4.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the control loop of the 4WS
autonomous ground vehicle. Moreover, under moderate conditions asymptotic sta-
bility is proven and convergence to the reference setpoints is achieved. The tracking
error dynamics for the 4WS automatic ground vehicle is written in the form

ė = Ae + Bu + Ld̃ (8.169)

where in this 4WS autonomous vehicle’s case L = I∈R6×6 with I being the iden-
tity matrix. Variable d̃ denotes model uncertainties and external disturbances of the
vehicle’s model. The following Lyapunov function is considered
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V = 1

2
eT Pe (8.170)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1

2
ėT Pe + 1

2
ePė⇒

V̇ = 1

2
[Ae + Bu + Ld̃]T P + 1

2
eT P[Ae + Bu + Ld̃]⇒ (8.171)

V̇ = 1

2
[eT AT + uT BT + d̃T LT ]Pe +

+1

2
eT P[Ae + Bu + Ld̃]⇒ (8.172)

V̇ = 1

2
eT AT Pe + 1

2
uT BT Pe + 1

2
d̃T LT Pe +

1

2
eT P Ae + 1

2
eT PBu + 1

2
eT PLd̃ (8.173)

The previous equation is rewritten as

V̇ = 1

2
eT (AT P + PA)e +

(
1

2
uT BT Pe + 1

2
eT PBu

)
+

+
(
1

2
d̃T LT Pe + 1

2
eT PLd̃

)
(8.174)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (8.175)

Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (8.176)

By substituting Eqs. (2.89) and (2.90) one obtains

V̇ = 1

2
eT

[
−Q + P

(
2

r
BBT − 1

2ρ2
LLT

)
P

]
e +

+eT PB

(
−1

r
BT Pe

)
+ eT PLd̃⇒ (8.177)
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V̇ = −1

2
eT Qe +

(
2

r
PBBT Pe − 1

2ρ2
eT PLLT

)
Pe

−1

r
(eT PBBT Pe) + eT PLd̃ (8.178)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (8.179)

or, equivalently

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe +

+1

2
eT PLd̃ + 1

2
d̃T LT Pe (8.180)

Lemma: The following inequality holds

1

2
eT Ld̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.181)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1

ρ2
b2 − 2ab ≥ 0 ⇒ 1

2
ρ2a2 + 1

2ρ2
b2 − ab ≥ 0 ⇒

ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 ⇒ 1

2
ab + 1

2
ab − 1

2ρ2
b2 ≤ 1

2
ρ2a2 (8.182)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (8.183)

Equation (8.183) is substituted in Eq. (8.180) and the inequality is enforced, thus
giving

V̇ ≤ −1

2
eT Qe + 1

2
ρ2d̃T d̃ (8.184)

Equation (8.184) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives
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∫ T

0
V̇ (t)dt ≤ −1

2

∫ T

0
||e||2Qdt + 1

2
ρ2

∫ T

0
||d̃||2dt⇒

2V (T ) +
∫ T

0
||e||2Qdt ≤ 2V (0) + ρ2

∫ T

0
||d̃||2dt (8.185)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (8.186)

then one gets ∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (8.187)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (8.170) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe ≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the 4WS vehicle’s model is based on Eq. (8.184) and
on the application of Barbalat’s Lemma. It uses the condition of Eq. (8.186) about
the boundedness of the square of the aggregate disturbance and modelling error term
d̃ that affects the model. However, as explained above the proof of global asymptotic
stability is not restricted by this condition. By selecting the attenuation coefficient
ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that
the first derivative of the Lyapunov function is upper bounded by 0. Therefore for
the i th time interval it is proven that the Lyapunov function defined in Eq. (8.170) is
a decreasing one. This also assures the Lyapunov function of the system defined in
Eq. (8.170) will always have a negative first-order derivative.

8.4.6 Robust State Estimation Using the H-Infinity Kalman
Filter

The control loop for the 4WS autonomous vehicle can be implemented with the
feedback of a partiallymeasurable state vector and by processing only a small number
of state variables. To reconstruct the missing information about the state vector of
the 4WS autonomous vehicle it is proposed to use a filtering scheme and based on
it to apply state estimation-based control [457]. The recursion of the H∞ Kalman
Filter, can be formulated in terms of a measurement update and a time update part
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Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)] (8.188)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k) (8.189)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ =
0 the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the system of the 4WS autonomous vehicle,
such as the velocities Vx and Vy and the orientation angle θ , and can estimate through
filtering the rest of the state vector elements.

8.4.7 Simulation Tests

The performance of the proposed nonlinear optimal control scheme for the
autonomous 4WS vehicle has been tested in the case of tracking of different ref-
erence setpoints. The control scheme exhibited fast and accurate tracking of the
reference paths. The computation of the feedback control gain required the solution
of the algebraic Riccati equation given in Eq. (8.175), at each iteration of the control
algorithm. The obtained results are depicted in Figs. 8.22, 8.23, 8.24, 8.25, 8.26, 8.27,
8.28, 8.29, 8.30, 8.31, 8.32 and 8.33. The measurement units for the state variables
of the 4WS vehicle’s model were in the SI system (position coordinates measured in
m and heading angle in rad). It can be noticed that the H-infinity controller achieved
fast and accurate convergence to the reference setpoints for all elements of the 4WS
vehicle’s state-vector. Moreover, the variations of the control inputs, that is of the
4WS autonomous vehicle’s velocity and of its steering angle were smooth.

As noted, the proposed nonlinear optimal controlmethod for the 4WSautonomous
vehicle was based on an approximate linearization of its joint kinematic and dynamic
model. The advantages that the proposed control method exhibits are outlined as
follows: (i) it is applied directly on the nonlinear dynamical model of the 4WS
vehicle and not on an equivalent linearized description of it, (ii) It avoids the elab-
orated linearizing transformations (diffeomorphisms) which can be met in global
linearization-based control methods for autonomous vehicles (iii) the controller is
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Fig. 8.22 a Tracking of reference path 1 (red-line) by the 4WS autonomous vehicle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the 4WS
vehicle

0 5 10 15 20 25 30 35 40
0

10

20

time (sec)

x 1

0 5 10 15 20 25 30 35 40
0

10

20

time (sec)

x 2

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

x 3

0 5 10 15 20 25 30 35 40
−20

0

20

time (sec)

x 4

0 5 10 15 20 25 30 35 40
0

0.5

1

time (sec)

x 5

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

x 6

(a) (b)

Fig. 8.23 Tracking of reference path 1: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)

designed according to optimal control principles which implies the best trade-off
between precise tracking of the reference setpoints on the one side and moderate
variations of the control inputs on the other side (iv) the control method exhibits sig-
nificant robustness to parametric uncertainty, modelling errors as well as to external
perturbations.
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Fig. 8.24 a Tracking of reference path 2 (red-line) by the 4WS autonomous vehicle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the 4WS
vehicle
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Fig. 8.25 Tracking of reference path 2: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Fig. 8.26 a Tracking of reference path 3 (red-line) by the 4WS autonomous vehicle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the 4WS
vehicle
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Fig. 8.27 Tracking of reference path 3: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Fig. 8.28 a Tracking of reference path 4 (red-line) by the 4WS autonomous vehicle (blue line) and
trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the 4WS
vehicle

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

x 1

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

x 2

0 5 10 15 20 25 30 35 40
0

10

20

time (sec)

x 3

0 5 10 15 20 25 30 35 40
−20

0

20

time (sec)

x 4

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

x 5

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

x 6

(b)(a)

Fig. 8.29 Tracking of reference path 4: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Fig. 8.30 a Tracking of reference path 5: (red-line) by the 4WS autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the
4WS vehicle
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Fig. 8.31 Tracking of reference path 5: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Fig. 8.32 a Tracking of reference path 6: (red-line) by the 4WS autonomous vehicle (blue line)
and trajectory estimated by the Kalman Filter (green line), b control inputs u1 to u3 applied to the
4WS vehicle

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

x 1

0 5 10 15 20 25 30 35 40
−50

0

50

time (sec)

x 2

0 5 10 15 20 25 30 35 40
0

10

20

time (sec)

x 3

0 5 10 15 20 25 30 35 40
−20

0

20

time (sec)

x 4

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

x 5

0 5 10 15 20 25 30 35 40
−5

0

5

time (sec)

x 6

(a) (b)

Fig. 8.33 Tracking of reference path 6: a convergence of state variables x1 to x3 of the 4WS vehicle
to their reference setpoints (red-lines) and estimated state variables provided by the Kalman Filter
(green lines), b convergence of state variables x4 to x6 of the 4WS vehicle to their reference setpoints
(red-lines) and estimated state variables provided by the Kalman Filter (green lines)
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Table 8.3 RMSE of the 4WS vehicle’s state variables

Path RMSE X (m) RMSE Y (m) RMSE θ (rad)

1 3.3·10−3 3.3·10−3 0.1·10−3

2 6.0·10−3 13.0·10−3 0.7·10−3

3 8.2·10−3 6.0·10−3 1.1·10−3

4 13.3·10−3 11.6·10−3 2.4·10−3

5 5.0·10−3 4.2·10−3 1.0·10−3

6 12.2·10−3 12.6·10−3 1.2·10−3

Table 8.4 RMSE of the 4WS state variables under disturbance

Δa (%) RMSE X (m) RMSE Y (m) RMSE θ (rad)

0 8.2·10−3 6.0·10−3 1.1·10−3

10 8.2·10−3 6.2·10−3 0.6·10−3

20 8.2·10−3 6.3·10−3 0.8·10−3

30 8.0·10−3 6.4·10−3 1.3·10−3

40 7.9·10−3 6.5·10−3 1.8·10−3

50 7.9·10−3 6.6·10−3 2.3·10−3

60 7.8·10−3 6.6·10−3 2.8·10−3

Yet computationally simple, the proposed H∞ control scheme has an excellent
performance. Comparing to the control of 4WS automatic ground vehicles that rely
on global linearization methods the presented nonlinear H-infinity control scheme
is equally efficient in setpoint tracking while also retaining optimal control features
[457]. The tracking accuracy of the presented control method (H∞) has been eval-
uated in the case of several reference setpoints. By using the Kalman Filter as a
robust observer estimates of the state vector of the vehicle were obtained, and thus
the implementation of state estimation-based control became possible. Themeasured
state variables were x3 = Vx , x4 = Vy and x5 = θ . The obtained results are given in
Table8.3.

The tracking performance of the nonlinearH-infinity controlmethod for themodel
of the 4WS vehicle was measured in the case of model uncertainty, imposing an
imprecision equal to Δa% about the vehicle’s moment of inertia I . The obtained
results are outlined in Table8.4. It can be noticed that despite model perturbations
the tracking accuracy of the control method remained satisfactory.
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8.5 Flatness-Based Control for AGVs and Kalman
Filter-Based Compensation of Disturbance Forces
and Torques

8.5.1 Outline

The present section analyzes the use of a global linearization-based control approach
that is based on differential flatness theory to the problem of autonomous navigation
of four-wheel robotic vehicles. As previously noted, the precisemodeling of the vehi-
cles’ dynamics improves the efficiency of vehicles controllers in adverse cases, for
example in high velocity, when performing abrupt maneuvers, under mass and loads
changes or when moving on rough terrain. Using model-based control approaches it
is possible to design a nonlinear controller that maintains the vehicle’s motion char-
acteristics within desirable ranges [45, 319, 332, 333, 348, 616]. When the vehicle’s
dynamics is subject to modeling uncertainties or when there are unknown forces and
torques exerted on the vehicle it is important to be in position to estimate in real-time
disturbances and unknown dynamics so as to compensate them through the control
input and to maintain the satisfactory performance of the vehicle’s automated steer-
ing system. In this direction, estimation for the unknown dynamics of the vehicle and
state estimation-based control schemes have been developed [201, 312, 350, 580].

The objective of the present section is two-fold. On the one side it analyzes
the design of a controller for autonomous navigation of automatic ground vehicles
(AGVs). On the other side it proposes a solution to the problem of four-wheel vehicle
control under model uncertainties and external disturbances. Considering, that only
under ideal conditions the dynamicmodel of the vehicle is precisely known (e.g. there
may be variations in the transported mass, or in the cornering stiffness coefficients
characterizing the interaction of the tires with the ground, or in the position of the
vehicle’s center of gravity) and that in several cases there is uncertainty about the
forces and torques developed on the vehicle (e.g. traction and braking torques on the
wheels, forces due to traction of implements, or lateral forces which generate torques
affecting the yaw stability of the vehicle) the need for designing robust controllers
of the autonomous vehicles becomes obvious [49, 510, 521, 590]. By compensating
efficiently such disturbances forces and torques safety features of the vehicle are
improved and its autonomous functioning remains reliable even under adverse road
conditions.

Dynamic analysis for the 4-wheel vehicle provided, as in the case of Sect. 8.2.
A 3-DOF model is introduced having as elements the vehicle’s velocity along the
horizontal and vertical axis of an inertial reference frame as well as the rate of change
of its orientation angle (this is the angle defined by the vehicle’s longitudinal axis
and the horizontal axis of the frame). Lateral forces are shown to affect the vehicle’s
motion and to be dependent on the longitudinal and lateral velocity of the vehicle,
on the yaw rate and on the cornering stiffness coefficients for the front and rear
tires. The control inputs to the vehicles’ dynamic model are the traction/bracking
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wheel torque and the turn angle of the steering wheel. Since the parameters of the
dynamic model of the vehicle cannot always be known with precision or may be
time-varying (e.g. cornering stiffness coefficients, transported mass) and since there
may be unmodelled external forces and torques exerted on the vehicle (e.g. due to
road condition, disturbances in traction forces) it is important to design a control
loop with robustness to the aforementioned sources of uncertainty and disturbances,
as well as to be in position to estimate in real-time such disturbances through the
processing of measurements from a small number of on-board sensors.

Next, it is shown how a nonlinear controller for the aforementioned vehicle’s
model can be obtained through the application of differential flatness theory [145,
476, 546, 572]. The flat output for the vehicle’s model is a vector comprising the
x-axis velocity and a second variable based on a linear relation between the y-axis
velocity and the rate of change of the orientation angle [332, 333]. By expressing
all state variables and the control input of the four-wheel vehicle model as functions
of the flat output and its derivatives the system’s dynamic model is transformed into
the linear Brunovksy (canonical) form [303, 495]. For the latter model it is possible
to design a state feedback controller that enables accurate tracking of the vehicle’s
velocity set-points.

By exploiting the vehicle’s exactly linearized model and its transformation into a
canonical form it is possible to design a state estimator for approximating the system’s
state vector through the processing of measurements coming from a small number
of on-board sensors. To this end the concept of Derivative-free nonlinear Kalman
Filtering is used once again. Unlike the Extended Kalman Filter, the proposed fil-
tering method provides estimates of the state vector of the nonlinear system without
the need for derivatives and Jacobians calculation [439, 445, 450]. By avoiding lin-
earization approximations, the proposed filtering method improves the accuracy of
estimation of the system’s state variables. Moreover, it is shown that it is possible
to redesign the Kalman Filter in the form of a disturbance observer and using the
estimation of the disturbance to develop an auxiliary control input that compen-
sates for their effects. In this way the vehicle’s control and autonomous navigation
system can become robust with respect to uncertainties in the model’s parameters
or uncertainties about external forces and torques. It is also noted that in terms of
computation speed the proposed Kalman Filter-based disturbance estimator for the
vehicle is faster than disturbance estimators that may be based on other nonlinear
filtering approaches (e.g. Extended Kalman Filter, Unscented Kalman Filter or Par-
ticle Filter) thus becoming advantageous for the real-time estimation of the unknown
vehicle dynamics [438, 457]. The efficiency of the proposed nonlinear control and
Kalman Filter-based disturbances estimation scheme is evaluated through numerical
simulation tests. It has been shown that by accurately estimating disturbance forces
and torques the control loop achieves elimination of the tracking error for all state
variables of the vehicle.
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Fig. 8.34 Nonlinear
4-wheeled vehicle model

8.5.2 Dynamic Model of the Vehicle

8.5.2.1 Definition of Parameters in 4-Wheel Vehicle Dynamic Model

The dynamic model of the four-wheel vehicle that was analyzed in a previous section
is now re-examined. With reference to Fig. 8.34 (where the lateral forces applied on
the wheels are considered to define the vehicle’s motion) one has the following
parameters: β is the angle between the velocity and the vehicle’s transversal angle,
V is the velocity vector of the vehicle, ψ is the yaw angle (rotation round the z axis),
fx : is the aggregate force along the x axis, fy is the aggregate force along the y axis,
Tz is the aggregate torque round the z axis and δ is the steering angle of the front
wheels [332, 348, 572].

Themotion of the vehicle along its longitudinal axis is controlled by the traction or
braking wheel torque Tω = Tm − Tb with Tb = Tb f + Tbr and the lateral movement
via the steering angle δ. The two control inputs of the four wheel vehicle model are

u1 = Tω

u2 = δ (8.190)

As explained in Sect. 8.2, a first form of the vehicle’s dynamic model is

ẋ = f (x, t) + g(x, t)u + g1u1u2 + g2u
2
2 (8.191)

where
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f (x, t) =

⎛
⎜⎜⎝

Ir
mR (ω̇r + ω̇ f )

ψ̇Vx + 1
m

(
−C f

(Vy+L f ψ̇)

Vx
− Cr

(Vy−L f ψ̇)

Vx

)

1
Iz

(
−L f C f

(Vy+L f ψ̇)

Vx
+ LrCr

(Vy−L f ψ̇)

Vx

)

⎞
⎟⎟⎠ (8.192)

g(x, t) =

⎛
⎜⎜⎝

1
mR

C f

m

(
Vy+L f ψ̇

Vx

)

0
(
C f R−Ir ω̇ f

mR

)

0 (L f C f R−L f Ir ω̇ f )

Iz R

⎞
⎟⎟⎠ (8.193)

g1 =
⎛
⎝

0
1

mR
L f

Iz R

⎞
⎠ g2 =

⎛
⎝

−C f

m
0
0

⎞
⎠ x =

⎛
⎝
Vx

Vy

ψ̇

⎞
⎠ u =

(
u1
u2

)
(8.194)

The previously analyzed nonlinear model of the vehicle’s dynamics can be simplified
if the control inputs u1u2 and u22 are not taken into account. In the latter case the
dynamics of the vehicle takes the form

ẋ = f (x, t) + g(x, t)u (8.195)

8.5.3 Flatness-Based Controller for the 3-DOF Vehicle Model

8.5.3.1 Flatness-Based Controller for the 4-Wheel Vehicle

To show that the four-wheel vehicle is differentially flat the following flat outputs
are defined [332, 333]:

y1 = Vx

y2 = L f mVy − Izψ̇ (8.196)

Then it holds that all elements of the system’s state vector can be written as functions
of the flat outputs and their derivatives. Indeed, for x = [Vx , Vy, ψ̇]T it holds

Vx = y1 (8.197)

Vy = y2
L f m

−
(

Iz
L f m

) (
L f my1 ẏ2 + Cr (L f + Lr )y2

Cr (L f + Lr )(Iz − L f Lrm) + (L f my1)2

)
(8.198)

ψ̇ = L f my1 ẏ2 + Cr (L f + Lr )y2
Cr (L f + Lr )(Iz − L f Lrm) + (L f my1)2

(8.199)
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Expressing the system’s state variables as functions of the flat outputs one has the
following state-space description for the system

(
ẏ1
ÿ2

)
= Δ(y1, y2, ẏ2)

(
u1
u2

)
+ Φ(y1, y2, ẏ2) (8.200)

where

Δ(y1, y2, ẏ2) =
(

Δ11(y1, y2, ẏ2) Δ12(y1, y2, ẏ2)
Δ21(y1, y2, ẏ2) Δ22(y1, y2, ẏ2)

)
(8.201)

with

Δ11(y1, y2, ẏ2) = 1

mR
(8.202)

Δ12(y1, y2, ẏ2) = C f

m

(
Vy + L f ψ̇

y1

)
(8.203)

Δ21(y1, y2, ẏ2) = Cr (L f + Lr )(Vy − Lr ψ̇) − L f mψ̇ y21
mRy21

(8.204)

Δ22(y1, y2, ẏ2) =
(

−L f my1 + LrCr (L f + Lr )

y1

)
(L f C f R − L f Ir ω̇ f )

Iz R
+

+ ((Cr (L f + Lr ))(Vy − Lr ψ̇) − L f mψ̇ y21 )

y21
·C f (Vy + L f ψ̇)

my1
− Cr (L f + Lr )

y1

RC f − Ir ω̇ f

mR

(8.205)

Moreover about matrix Φ(y1, y2, ẏ2) it holds

Φ(y1, y2, ẏ2) =
(

Φ1(y1, y2, ẏ2)
Φ2(y1, y2, ẏ2)

)
(8.206)

with elements

Φ1(y1, y2, ẏ2) = ψ̇Vy − Ir
mR

(ω̇r + ω̇ f ) (8.207)

Φ2(y1, y2, ẏ2) = −L f my1 f3(x, t) − Cr (L f + Lr )

y1
f2(x, t) +

+C f (L f + Lr )(Vy − Lr ψ̇) − L f mψ̇ y21
y21

f1(x, t) + LrCr (L f + Lr )

y1
f3(x, t) (8.208)

According to the above the system’s control input can be also written as a function
of the flat output and its derivatives. Thus one has
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(
ẏ1
ÿ2

)
= Δ(y1, y2, ẏ2)

(
u1
u2

)
+ Φ(y1, y2, ẏ2) (8.209)

i.e. (
u1
u2

)
= Δ−1(y1, y2, ẏ2)

−1(

(
ẏ1
ẏ2

)
− Φ(y1, y2, ẏ2)) (8.210)

which means that provided that matrix Δ(y1, y2, ẏ2) is invertible, the control input
u = [u1, u2]T can be written as a function of the flat output and its derivatives. The
non-singularity of matrix Δ(y1, y2, ẏ2) depends on the determinant

det (Δ(y1, y2, ẏ2)) = (Ir ω̇ f − C f R)(L2
f y

2
1m

2 − Cr (L f + Lr )Lr L f m + Cr Iz Lr )

Iz R2y1m2

(8.211)
This determinant has non-zero values because it holds:

(i) (Ir ω̇ f − C f R) �=0 since for the wheels rotational acceleration one has ω̇ f <
C f R
Ir

, and also

(ii) (L2
f y

2
1m

2 − Cr (L f + Lr )Lr L f m + Cr Iz Lr ) �=0 when Iz > L f m.

The differentially flat model of the vehicle can be also written in a canonical form
after defining the new control input vector

(
v1
v2

)
= Δ(y1, y2, ẏ2)

(
u1
u2

)
+ Φ(y1, y2, ẏ2) (8.212)

thus one obtains a MIMO system description into canonical form, i.e.

⎛
⎝
ẏ1
ẏ2
ÿ2

⎞
⎠ =

⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝
y1
y2
ẏ2

⎞
⎠ +

⎛
⎝
1 0
0 0
0 1

⎞
⎠

(
v1
v2

)
(8.213)

Once the vehicle’s model is written in the differentially flat form the controller that
enables tracking of a desirable trajectory defined by yre f1 , yre f2 , ẏre f2 is given by

v1 = ẏre f1 − kp1(y1 − yre f1 )

v2 = ÿre f2 − kd2(ẏ2 − ẏre f2 ) − kp2(y2 − yre f2 ) (8.214)

and defining the error variables e1 = y1 − yre f1 and e2 = y2 − yre f2 one has the fol-
lowing tracking error dynamics for the closed-loop system

ė1 + kp1e1 = 0

ë2 + kd2 ė2 + kp2e2 = 0 (8.215)



8.5 Flatness-Based Control for AGVs and Kalman Filter-Based … 459

Therefore, the suitable selection of gains kp1>0 and kp2 > 0, kd2 > 0 assures
the asymptotic elimination of the tracking errors, i.e. limt→∞e1(t) = 0 and
limt→∞e2(t) = 0.

The control input that is finally applied for the vehicle’s steering is given by

(
u1
u2

)
= Δ(y1, y2, ẏ2)

−1

((
v1
v2

)
− Φ(y1, y2, ẏ2)

)
(8.216)

or equivalently

(
u1
u2

)
= Δ(y1, y2, ẏ2)

−1[
(

ẏre f1 − kp1 (y1 − yre f1 )

ÿre f2 − kd2 (ẏ2 − ẏre f2 ) − kp2 (y2 − yre f2 )

)
− Φ(y1, y2, ẏ2)]

(8.217)

The transformation of the vehicle’s model into a canonical form, through the appli-
cation of the differential flatness theory, facilitates not only the design of a feedback
controller for trajectory tracking but also the design of filters for the estimation of
the state vector of the vehicle out of a limited number of sensor measurements.

8.5.4 Estimation of Vehicle Disturbance Forces with the
Derivative-Free Nonlinear Kalman Filter

8.5.4.1 State Estimation with the Derivative-Free Nonlinear Kalman
Filter

It was shown that the initial nonlinear model of the vehicle can be written in the
MIMO canonical form

⎛
⎝
ẏ1
ẏ2
ÿ2

⎞
⎠ =

⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝
y1
y2
ẏ2

⎞
⎠ +

⎛
⎝
1 0
0 0
0 1

⎞
⎠

(
v1
v2

)
(8.218)

Thus one has a MIMO linear model of the form

ẏ f = A f y f + B f v

z f = C f y f (8.219)

where y f = [y1, y2, ẏ2]T and matrices A f ,B f ,C f are in the MIMO canonical form

A f =
⎛
⎝
0 0 0
0 0 1
0 0 0

⎞
⎠ B f =

⎛
⎝
1 0
0 0
0 1

⎞
⎠ CT

f =
⎛
⎝
1 0
0 1
0 0

⎞
⎠ (8.220)
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where the measurable variables y1 = Vx , y2 = L f mVy − Izψ̇ are associated with
the linear velocity of the vehicle Vx , Vy and with its angular velocity ψ̇ . For the
aforementioned model, and after carrying out discretization of matrices A f , B f and
C f with common discretization methods one can perform linear Kalman filtering
using Eqs. (8.229) and (8.230). This is Derivative-free nonlinear Kalman filtering
for the model of the vehicle which, unlike EKF, is performed without the need to
compute Jacobian matrices and does not introduce numerical errors.

8.5.4.2 Kalman Filter-Based Estimation of Disturbances

It is assumed that disturbance forces affect the nonlinear vehicle model along its
longitudinal and transversal axis and that disturbance torques affect the nonlinear
vehicle model on its z axis. For example disturbance forces can be due to a force
vector that coincides with the vehicle’s longitudinal axis (e.g. traction disturbance)
or disturbance torques can be due to unmodelled lateral forces. These disturbance
forces and torques change dynamically in time and their dynamics is given by

d̃x = fdx (Vx , Vy, ψ̇)

d̃y = fdy (Vx , Vy, ψ̇)

d̃ψ = Tdψ
(Vx , Vy, ψ̇) (8.221)

Since the state variables of the vehicle’s dynamic model can be written as functions
of the flat outputs y1 and y2 and of their derivatives it also holds

d̃(i)
x = f (i)

dx
(y1, y2, ẏ2)

d̃(i)
y = f (i)

dy
(y1, y2, ẏ2)

d̃(i)
ψ = T (i)

dψ
(y1, y2, ẏ2) (8.222)

where i = 1, 2, . . . stands for the i th order derivative of the disturbance variable.
Considering the effect of disturbance functions on the initial nonlinear state equa-

tion of the vehicle and the linear relation between the initial state variables [Vx , Vy]
and the state variables of the flat system description [y1, y2] one has the appearance
of the disturbance terms in the canonical form model of Eq. (8.213)

⎛
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⎛
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0 0 0

⎞
⎠

⎛
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⎞
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⎞
⎠

(
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)
+

⎛
⎜⎝

1
m d̃x
0

L f
˙̃dy − ˙̃dψ

⎞
⎟⎠ (8.223)

Next, the state vector of the model of Eq. (8.223) is extended to include as additional
state variables the disturbance forces d̃x , d̃y and d̃ψ . Then, in the new state-space
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description one has z1 = y1, z2 = y2, z3 = ẏ2, z4 = f̃a = 1
m d̃x , z5 = ˙̃fa , z6 = ˙̃fb =

L f
˙̃dy − ˙̃dψ , z7 = ¨̃fb, which takes the form of matrix equations

ż = Ã·z + B̃·ṽ (8.224)

where the control input is

ṽ =
(
v1 v2

1
m

¨̃dx L f d̃(3)
y − d̃(3)

ψ

)T
or

ṽ =
(
v1 v2

¨̃fa f̃ (3)
b

)T
(8.225)

with
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(8.226)

where the measurable state variables are z1 and z2. Since the dynamics of the dis-
turbance terms f̃a and f̃b are taken to be unknown in the design of the associated
disturbances’ estimator one has the following dynamics:

żo = Ão·z + B̃o·ṽ + K (Coz − Coẑ) (8.227)

where K∈R7×2 is the state estimator’s gain and

Ão =
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(8.228)
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Defining as Ãd , B̃d , and C̃d , the discrete-time equivalents of matrices Ão, B̃o and
C̃o respectively, a Derivative-free nonlinear Kalman Filter can be designed for the
aforementioned representation of the system dynamics [438, 459]. The associated
Kalman Filter-based disturbance estimator is given by

measurement update:

K (k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

x̂(k) = x̂−(k) + K (k)[z(k) − C̃d x̂
−(k)]

P(k) = P−(k) − K (k)C̃d P
−(k) (8.229)

time update:

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

x̂−(k + 1) = Ãd(k)x̂(k) + B̃d(k)ṽ(k) (8.230)

To compensate for the effects of the disturbance forces it suffices to use in the control
loop the modified control input vector

v =
⎛
⎝v1 − ˆ̃fa
v2 − ˆ̃̇

fb

⎞
⎠ or v =

(
v1 − ẑ4
v2 − ẑ6

)
(8.231)

8.5.5 Simulation Tests

To evaluate for the performance of the proposed nonlinear control scheme, as well as
about the performance of the Kalman Filter-based disturbances estimator simulation
experiments have been carried out.Different velocity setpoints had been assumed (for
velocity along the horizontal and vertical axis of the inertial reference frame, as well
as for angular velocity round the vehicle’s z axis). Moroever, different disturbances
forces and torques have been assumed to affect the vehicles’ dynamic model. Using
the representation of the vehicle’s dynamics given in Eq. (8.223) two generalized
disturbance forces/torques have been considered: the first denoted as f̃a was associ-
ated with state variable y1, while the second one denoted as f̃b was associated with
the state variable y2. It was also assumed that the change in time of the generalized
forces and torques was defined by the second derivative of the associated variable,

i.e. ¨̃fa and ¨̃fb. The disturbances dynamics was completely unknown to the controller
and their identification was performed in real time by the disturbance estimator. The
control loop used in the vehicle’s autonomous navigation is given in Fig. 8.35.
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Fig. 8.35 Control loop for the autonomous vehicle comprising a flatness-based nonlinear controller
and a Kalman Filter-based disturbances estimator
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Fig. 8.36 Vehicle control under disturbances profile 1: a Convergence of x-axis velocity Vx (blue
line) to the desirable setpoint (red line), b Convergence of the y-axis velocity Vy (blue line) to the
desirable setpoint (red line)
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Fig. 8.37 Vehicle control under disturbances profile 1: a Convergence of yaw rate ψ̇ (blue line) to
the desirable setpoint (red line), b Estimation of the disturbance terms and of their rate of change
(red line) and the associated real values (blue line)
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Fig. 8.38 Vehicle control under disturbances profile 2: a Convergence of x-axis velocity Vx (blue
line) to the desirable setpoint (red line), b Convergence of the y-axis velocity Vy (blue line) to the
desirable setpoint (red line)

Themeasurable variables used by the control and disturbances’ estimation scheme
were the vehicle’s velocity Vx along the longitudinal axis, the vehicle’s velocity Vy

along the lateral axis and the vehicle’s yaw rate ψ̇ . The first two variables can be
obtained with the use of onboard accelerometers while the third variable can be
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Fig. 8.39 Vehicle control under disturbances profile 2: a Convergence of yaw rate ψ̇ (blue line) to
the desirable setpoint (red line), b Estimation of the disturbance terms and of their rate of change
(red line) and the associated real values (blue line)
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Fig. 8.40 Vehicle control under disturbances profile 3: a Convergence of x-axis velocity Vx (blue
line) to the desirable setpoint (red line), b Convergence of the y-axis velocity Vy to the desirable
setpoint (blue line) and the associated real values (red line)

obtained with the use of a gyrocompass. The longitudinal axis of the vehicle is
denoted as x-axis, while the lateral axis of the vehicle is denoted as y-axis. As it can
be seen inFigs. 8.36, 8.37, 8.38, 8.39, 8.40, 8.41, 8.42 and8.43 the proposed nonlinear
controller achieved accurate tracking of velocity setpoints. Moreover, the efficient
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Fig. 8.41 Vehicle control under disturbances profile 3: a Convergence of yaw rate ψ̇ (blue line) to
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Fig. 8.42 Vehicle control under disturbances profile 4: a Convergence of x-axis velocity Vx (blue
line) to the desirable setpoint (red line), b Convergence of the y-axis velocity Vy (blue line) to the
desirable setpoint (red line)

estimation of disturbance forces and torques that was achieved by the Kalman Filter-
based disturbance estimator enabled their compensation through the inclusion of an
additional control term in the loop.
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Chapter 9
Unmanned Aerial Vehicles

Abstract The multi-DOF dynamic model of unmanned aerial vehicles (UAVs) is a
highly nonlinear one and its control can be performed again with (i) global lineariza-
tion control methods, (ii) local linearization control methods and (iii) Lyapunov
analysis-based methods. In approach (i) the dynamic model of the UAV is trans-
formed into an equivalent linear description through the application of a change of
variables (diffeomorphisms). In (ii) the nonlinear model of the UAV is decomposed
into local linear models for which linear feedback controllers are designed and next
the aim is to select the feedback control gains so as to assure the global asymptotic
stability of the control loop. In (iii) the objective is to define an energy function for
the UAV (Lyapunov function) and to demonstrate that through suitable selection of
the feedback control the first derivative of the energy function is always negative
and thus the global stability of the control loop is assured. The latter approach is
particularly suitable for model-free control of UAVs and takes the form of adaptive
control methods. This chapter analyzes the aforementioned control approaches for
UAVs and proves global asymptotic stability for all considered control approaches
(i) to (iii). The robustness of the aforementioned control methods to model uncer-
tainty and external perturbations is confirmed. Besides elaborated nonlinear filtering
approaches are developed that allow for accurate estimation of the state vector of
the UAVs through the processing of measurements coming from a limited number
of sensors. In particular this chapter treats the following topics: (a) Control of UAVs
based on global linearization methods, (b) Control of UAVs based on approximate
linearization methods.

9.1 Chapter Overview

The present chapter treats the following topics: (a) Control of UAVs based on global
linearizationmethods, (b) Control ofUAVs based on approximate linearizationmeth-
ods.

With reference to (a) the chapter uses a differential flatness theory-based imple-
mentation of the Kalman Filter (known as Derivative-free nonlinear Kalman Filter)
for developing a robust controller which can be applied to quadropters. The control
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problem for quadropters is non-trivial and becomes further complicated if this robot
is subject to model uncertainties and external disturbances. Using differential flat-
ness theory it is shown that the model of a quadropter can be transformed into
linear canonical form. For the linearized equivalent of the quadropter it is shown
that a state feedback controller can be designed. Since certain elements of the state
vector of the linearized system cannot be measured directly, it is proposed to esti-
mate them with the use of the previously analyzed Derivative-free nonlinear Kalman
Filter. Moreover, by redesigning the Kalman Filter as a disturbance observer, it
is is shown that one can estimate simultaneously external disturbances terms that
affect the quadropter or disturbance terms which are associated with parametric
uncertainty.

With reference to (b) the chapter applies nonlinear H-infinity (optimal) control the
dynamic model of 6-DOF UAVs. First, the dynamic model of the UAV undergoes
approximate linearization, through Taylor series expansion, round local operating
points which are defined at each time instant by the present value of the system’s
state vector and the last value of the control input that was exerted on it. The lineariza-
tion procedure requires the computation of Jacobian matrices at the aforementioned
operating points. Next, for the linearized equivalent model of the UAV, an H-infinity
feedback control loop is designed. The computation of the optimal control input
requires the solution of an algebraic Riccati equation at each iteration of the control
algorithm. The known robustness properties of H-infinity control enable compensa-
tion of model uncertainty and rejection of the perturbation terms that affect the UAV.
The stability of the control loop is proven through Lyapunov analysis.

9.2 Control of UAVs Based on Global Linearization

9.2.1 Outline

Quadrotors are four-rotor helicopters characterized by a nonlinear 6-DOF unstable
dynamical model. To achieve autonomous navigation of the quadrotors it is neces-
sary to design efficient control algorithms that will exhibit robustness to parametric
uncertainties and to external disturbances. One can cite several results on quadrotors’
control. An approach for quadrotors’ control that is based on the transformation of
their dynamicalmodel in the linear canonical form andwhich is consequently directly
associated with differential flatness theory has been given in [576]. Moreover, in [6]
a flatness-based control approach is applied to quadrotors’ motion control. A pre-
dictive controller complemented by an H∞ term for additional robustness has been
analyzed and tested in the quadrotor’s flight control problem in [401, 403]. In [55]
motion control of the quadrotor was implemented using controllers of the LQR-
type and of the PID-type, while Kalman Filtering has been used to provide position
estimates out of a visual measurements system. In [77] two control strategies are
employed as baseline controllers for the quadrotor’s model: a LQR controller which
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is based on a linearized model of the quadrotor and a Sliding Mode Controller which
is based on a nonlinear model of the quadrotor. Moreover, differential flatness the-
ory has been used for trajectory planning. In [261] and in [135] adaptive control
schemes have been proposed for the quadrotor’s model. The stability of the control
loop is confirmed through the Lyapunov approach. In [48] quadrotor’s control with
the use of a sliding-mode controller and a sliding-mode disturbance observer has been
proposed.

In this section a newcontrolmethod is developedfirst for quadrotors after applying
global linearization of the UAV’s dynamic model. The method comprises differen-
tial flatness theory together with the use of a disturbance observer. This state and
perturbations observer is also in accordance to differential flatness theory and is the
so-called Derivative-free nonlinear Kalman Filter. The differential flatness theory-
based design of the controller uses a change of coordinates (diffeomorphism) that
transforms the state-space equation of the quadrotor’s model into the linear canonical
(Brunovsky) form [57, 145, 322, 450, 476, 572]. For the linearized equivalent of
the quadrotor it is easier to design a state feedback controller using techniques for
linear feedback controllers’ synthesis. To provide the quadrotor’s control loop with
additional robustness a disturbance observer is used. The disturbance observermakes
use of the standard Kalman Filter recursion on the linearized model of the quadrotor.
It is capable of estimating simultaneously the quadrotor’s linear and rotational veloc-
ities, as well as the vector of disturbances that affect the quadrotor’s model without
the need to compute Jacobian matrices. The accurate estimation of the disturbance
inputs enables to introduce an additional control term that compensates for the dis-
turbances’ effects. The accurate tracking of reference trajectories that is achieved by
the quadrotor despite the existence of external disturbances is shown in simulation
experiments.

As already analyzed, differential flatness theory has specific advantages when
used in nonlinear control systems [57, 145, 322, 457, 476, 572]. Through an exact
linearization of the system’s state-space description, one can avoid the use of lin-
ear models with local validity in the controller’s design. The controller performs
efficiently despite the change of operating points. After the design of such a state
feedback controller, one can consider the inclusion in the control loop of supple-
mentary control terms that provide additional robustness. As mentioned above, it is
also possible to use a disturbance estimator-based auxiliary control input for com-
pensating for the effects of disturbances in the feedback control loop. Moreover, the
use of differential flatness theory in the design of state estimators and filters has also
several strong points. One can perform estimation of the complete state vector of
the system without the need to compute partial derivatives and Jacobian matrices.
Moreover, by avoiding numerical errors which are due to approximate linearization
of the system’s dynamic model linear estimation algorithms can be implemented. In
the case of Kalman Filter this means that one can perform state estimation with the
use of the standard Kalman Filter recursion, thus preserving the method’s optimal-
ity features and providing state estimates of improved precision (e.g. comparing to
Extended Kalman Filtering).
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Fig. 9.1 Reference axes for
the quadropter

9.2.2 Kinematic Model of the Quadropter

9.2.2.1 State-Space Model of the UAV

Two reference frames are defined [401, 403]. The first one B = [B1, B2, B3] is
attached to the quadropter’s body, whereas the second E = [Ex , Ey, Ez] is consid-
ered to be an inertial coordinates system. As shown in Fig. 9.1, the Euler angles
defining rotation round the axes of the body-fixed frame B1, B2 and B3 are defined
as θ , φ and ψ , respectively. The two reference frames are connected to each other
through a rotation matrix

R =
⎛
⎝
CψCθ CψSθ Sφ − SψCφ CψSθCφ + SψSφ

SψCθ SψSθ Sφ + CψCφ SψSθCφ − CψSφ

−Sθ Cθ Sφ CθCφ

⎞
⎠ (9.1)

where C = cos(·) and S = sin(·).

The connection between velocities in the two reference frames is as follows:

VE = R·VB (9.2)

where VE = [uE , vE ,wE ] and VB = [uB, vB,wB] are the linear velocity vectors
expressed in the two reference frames. About the angular velocities in the two refer-
ence frames the following relation holds

η̇ = W−1ω (9.3)
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that is
⎛
⎝

φ̇

θ̇

ψ̇

⎞
⎠ =

⎛
⎝
1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)sec(θ) cos(φ)sec(θ)

⎞
⎠

⎛
⎝
p
q
r

⎞
⎠ (9.4)

where η = [φ, θ, ψ]T is the angular velocities vector in the inertial reference frame
andω = [p, q, r ]T is the angular velocities vector in the body-fixed reference frame.

9.2.3 Euler–Lagrange Equations for the Quadropter

The Euler–Lagrange equation for the quadropter is formulated as follows
d
dt (

∂L
∂q̇i

) − ∂L
∂qi

=
(
fξ
τη

)
(9.5)

where the Lagrangian is defined as L(q, q̇) = ECtrans + ECrot − Ep, ECtrans is the
kinetic energy of the quadrotor due to translational motion, ECrot is the kinetic energy
of the quadrotor due to rotational motion and Ep is the total potential energy of the
quadrotor due to lift. The generalized state vector is q = [ξ T , ηT ]T∈R6, τη∈R3 is
the torques vector that causes rotation round the axes of the body-fixed reference
frame, and fξ = R f̂ + αT is the translational force applied to the quadropter due
to the main control input U1 along the z-axis direction, while αT = [Ax , Ay, Az]T
are the aerodynamic forces vector, defined along the axes of the inertial reference
frame. Since the Lagrangian does not contain cross-coupling between the ξ̇ and the η̇

terms, the Lagrange–Euler equations can be divided into translational and rotational
dynamics. The translational dynamics of the quadropter is given by

mξ̈ + mge3 = fξ (9.6)

where e3 = [0, 0, 1]T is the unit vector along the z axis of the inertial reference frame.
Eq. (9.6) can be written using the following three equations

ẍ = 1
m (cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ))U1 + Ax

m

ÿ = 1
m (sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ))U1 + Ay

m
z̈ = −g + 1

m (cos(θ)cos(φ))U1 + Az

m

(9.7)

where m is the quadropter’s mass and g is the gravitational acceleration. The rota-
tional dynamics of the quadropter is given by

M(η)η̈ + C(η, η̇)η̇ = τη (9.8)

where the inertia matrix M(η) is defined as

M(η) =
⎛
⎝

Ixx 0 −Ixx Sθ

0 IyyC2φ + Izz S2φ (Iyy − Izz)CφSφCθ

−Ixx Sθ (Iyy − Izz)CφSφCθ Ixx S2θ + Iyy S2φC2θ + IzzC2φC2θ

⎞
⎠

(9.9)
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and the Coriolis matrix is

C(η, η̇) =
⎛
⎝
c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞
⎠ (9.10)

where the elements of the matrix are

c11 = 0
c12 = (Iyy − Izz)(θ̇CφSφ + ψ̇S2φCθ) + (Izz − Iyy)ψ̇C2φCθ

c13 = (Izz − Iyy)ψ̇CφSφC2θ

c21 = (Izz − Iyy)(θ̇CφSφ + ψ̇S2φCθ) + (Iyy − Izz)ψ̇C2φCθ + Ixx ψ̇Cθ

c22 = (Izz − Iyy)φ̇CφSφ

c23 = −Ixx ψ̇SθCθ + Iyyψ̇S2φCθ Sθ + Izzψ̇C2φSθCθ

c31 = (Iyy − Izz)ψ̇C2θ SφCφ − Ixx θ̇Cθ

c32 = (Izz − Iyy)(θ̇CφSφSθ + φ̇S2φCθ) + (Iyy − Izz)φ̇C2φCθ + Ixx ψ̇SθCθ−
−Iyyψ̇S2φSθCθ − Izzψ̇C2φSθCθ

c33 = (Iyy − Izz)φ̇CφSφC2θ − Iyy θ̇ S2φCθ Sθ−
−Izz θ̇C2φCθ Sθ + Ixx θ̇Cθ Sθ

(9.11)
Thus, the mathematical model that describes the quadrotor’s rotational motion is
given by

η̈ = M(η)−1(τη − C(η, η̇)η̇) (9.12)

Denoting w = M(η)−1(τη − C(η, η̇)η̇), one has the following notation for the rota-
tional dynamics ⎛

⎝
φ̈

θ̈

ψ̈

⎞
⎠ =

⎛
⎝
wa

wb

wc

⎞
⎠ (9.13)

Considering small variations of the heading angle of the quadrotor round ψ = π
2 ,

denoting w1 = U1/m and taking also that the aerodynamic coefficients Ax , Ay,

Az << m, a simplified quadropter’s model is formulated as follows [576]

ẍ = w1sin(φ) ÿ = w1cos(φ)sin(θ) z̈ = w1cos(φ)cos(θ) − g
φ̈ = wa θ̈ = wb ψ̈ = wc

. (9.14)

9.2.4 Design of Flatness-Based Control for the Quadrotor’s
Model

It will be shown, that the quadrotor’s model given in Eq. (9.14) is a differentially flat
one, i.e. that all its state variables and the associated control inputs can be written as
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functions of a newvariable called flat output and of its derivatives. The following state
variables are introduced x1 = x , x2 = ẋ , x3 = y, x4 = ẏ, x5 = z, x6 = ż, x7 = φ,
x8 = φ̇, x9 = θ , x10 = θ̇ , x11 = ψ , x12 = ψ̇ . Thus, one has the following state-space
description for the quadrotor’s dynamic model

ẋ1 = x2 ẋ2 = w1sin(x7) ẋ3 = x4 ẋ4 = w1cos(x7)sin(x9)
ẋ5 = x6 ẋ6 = w1cos(x7)cos(x9) ẋ7 = x8 ẋ8 = wa

ẋ9 = x10 ẋ10 = wb ẋ11 = x12 ẋ12 = wc

(9.15)

The flat output of the system is taken to be the vector y f = [x1, x3, x5, x7, x9, x11]T .
It holds that

x1 = [1 0 0 0 0 0]y f x2 = [1 0 0 0 0 0]ẏ f x3 = [0 1 0 0 0 0]y f x4 = [0 1 0 0 0 0]ẏ f
x5 = [0 0 1 0 0 0]y f x6 = [0 0 1 0 0 0]ẏ f x7 = [0 0 0 1 0 0]y f x8 = [0 0 0 1 0 0]ẏ f
x9 = [0 0 0 0 1 0]y f x10 = [0 0 0 0 1 0]ẏ f x11 = [0 0 0 0 0 1]y f x12 = [0 0 0 0 0 1]ẏ f

(9.16)

According toEq. (9.16) all state variables of the quadropter canbewritten as functions
of the flat output and its derivatives. Using this and Eq. (9.15) one also has that the
control inputs of the quadropter’smodel,w1,wa ,wb andwc can bewritten as functions
of the flat output and its derivatives. Therefore, it is confirmed that the system is a
differentially flat one. Defining now the new control inputs

v1 = w1sin(x7) v2 = w1cos(x7)sin(x9) v3 = w1cos(x7)cos(x9)
v4 = wa v5 = wb v6 = wc

(9.17)

one has the following state-space description for the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẏ f1
ÿ f1
ẏ f2
ÿ f2
ẏ f3
ÿ f3
ẏ f4
ÿ f4
ẏ f5
ÿ f5
ẏ f6
ÿ f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y f1
ẏ f1
y f2
ẏ f2
y f3
ẏ f3
y f4
ẏ f4
y f5
ẏ f5
y f6
ẏ f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

v1
v2
v3
v4
v5
v6

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.18)

and the measurement equation for this system becomes
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⎛
⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y f1
ẏ f1
y f2
ẏ f2
y f3
ẏ f3
y f4
ẏ f4
y f5
ẏ f5
y f6
ẏ f6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.19)

Thus, using differential flatness theory the quadrotor’s model has been written in a
MIMOlinear canonical (Brunovsky) form,which is both controllable andobservable.
After being written in the linear canonical form the quadrotor’s state-space equation
comprises 6 subsystems of the form

ÿ fi = vi , i = 1, . . . , 6 (9.20)

For each one of these subsystems a controller can be defined as follows

vi = ÿdfi − kdi (ẏ fi − ẏdfi ) − kpi (y fi − ydfi ), i = 1, . . . , 6 (9.21)

The control scheme is implemented in the form of two cascading loops. The inner
control loop controls rotation angles, while the outer control loop sets the desired
values of the rotation angles so as to control position in the xyz-reference system.
The computation of the reference setpoints for the rotation angles φd(t), θd(t) and
ψd(t) and for the cartesian coordinates xd(t), yd(t) and zd(t) takes into account the
constraints imposed by the system dynamics.

9.2.5 Estimation of the Quadrotor’s Disturbance Forces and
Torques with Kalman Filtering

It was shown that the initial nonlinear model of the quadrotor can be written in
the MIMO canonical form of Eqs. (9.18) and (9.19). Next, it is assumed that the
quadrotor’s model is affected by additive input disturbances, thus one has

ẍ1 = (w1 + d1)sin(x7)
ẍ3 = (w1 + d1)cos(x7)sin(x9)
ẍ5 = (w1 + d1)cos(x7)cos(x9)

ẍ7 = wa + da
ẍ9 = wb + db
ẍ11 = wc + dc

(9.22)
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or using the new state variables y fi i = 1, . . . , 12 of the differential flatness theory-
based model and the transformed inputs vi , i = 1, . . . , 6 one has

ÿ f1 = v1 + d1sin(y f7)

ÿ f3 = v2 + d1cos(y f7)sin(y f9)

ÿ f5 = v3 + d1cos(y f7)cos(y f9)

ÿ f7 = v4 + da
ÿ f9 = v5 + db
ÿ f11 = v6 + dc

(9.23)

while by redefining the disturbance terms as d̃1 = d1sin(y f7), d̃2 = d1cos(y f7)sin
(y f9), d̃3 = d1cos(y f7)cos(y f9), d̃4 = da , d̃5 = db and d̃6 = dc, the dynamics of the
disturbed system can be written as

ÿ f1 = v1 + d̃1 ÿ f3 = v2 + d̃2
ÿ f5 = v3 + d̃3 ÿ f7 = v4 + d̃4
ÿ f9 = v5 + d̃5 ÿ f11 = v6 + d̃6

(9.24)

The system’s dynamics can be also written as ẏ f1 = y f2 , ẏ f2 = v1 + d̃1, ẏ f3 = y f4 ,
ẏ f4 = v2 + d̃2, ẏ f5 = y f6 , ẏ f6 = v3 + d̃3, ẏ f7 = y f8 , ẏ f8 = v4 + d̃4, ẏ f9 = y f10 , ẏ f10 =
v5 + d̃5, ẏ f11 = y f6 , ẏ f6 = v6 + d̃6.

Without loss of generality, it is assumed that the dynamics of the disturbances

terms are described by their second order derivative, i.e. ¨̃di = fdi , i = 1, . . . , 6.
Next, the extended state vector of the system is defined so as to include disturbance
terms as well. Thus one has the following state variables

z f1 = y f1 z f2 = y f2 z f3 = y f3 z f4 = y f4 z f5 = y f5 z f6 = y f6
z f7 = y f7 z f8 = y f8 z f9 = y f9 z f10 = y f10 z f11 = y f11 z f12 = y f12

z f13 = d̃1 z f14 = ˙̃d1 z f15 = ¨̃d1 z f16 = d̃2 z f17 = ˙̃d2 z f18 = ¨̃d2
z f19 = d̃3 z f20 = ˙̃d3 z f21 = ¨̃d3 z f22 = d̃4 z f23 = ˙̃d4 z f24 = ¨̃d4
z f25 = d̃5 z f26 = ˙̃d6 z f27 = ¨̃d5 z f28 = d̃6 z f29 = ˙̃d6 z f30 = ¨̃d6

(9.25)

Thus, the disturbed system can be described by a state-space equation of the form

ż f = A f z f + B f v
zmeas
f = C f z f

(9.26)

where A f ∈R30×30, B f ∈R30×6 and C f ∈R6×30, with
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A f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×1 1 01×28

01×12 1 01×17

01×3 1 01×26

01×15 1 01×14

01×5 1 01×24

01×18 1 01×11

01×7 1 01×22

01×21 1 01×8

01×9 1 01×20

01×24 1 01×5

01×11 1 01×18

01×27 1 01×2

01×13 1 01×16

01×14 1 01×15

01×30

01×16 1 01×13

01×17 1 01×12

01×30

01×19 1 01×10

01×20 1 01×9

01×30

01×22 1 01×7

01×23 1 01×6

01×30

01×25 1 01×4

01×26 1 01×3

01×30

01×28 1 01×1

01×29 1
01×30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×6

1 01×5

01×1 1 01×4

01×6

01×2 1 01×3

01×6

01×3 1 01×2

01×6

01×4 1 01×1

01×6

01×5 1
018×6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C f =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 01×29

01×2 1 01×27

01×4 1 01×25

01×6 1 01×23

01×8 1 01×21

01×10 1 01×19

⎞
⎟⎟⎟⎟⎟⎟⎠

(9.27)
For the aforementioned model, and after carrying out discretization of matrices A f ,
B f and C f with common discretization methods one can implement the standard
Kalman Filter algorithm using Eqs. (9.29) and (9.30). This is Derivative-free nonlin-
ear Kalman filtering for the model of the quadropter which, unlike EKF, is performed
without the need to compute Jacobian matrices and does not introduce numerical
errors due to approximate linearization with Taylor series expansion.

The dynamics of the disturbance terms d̃i , i = 1, . . . , 6 are taken to be unknown
in the design of the associated disturbances’ estimator. Defining as Ãd , B̃d , and C̃d ,
the discrete-time equivalents of matrices Ã f , B̃ f and C̃ f respectively, one has the
following dynamics:

˙̂z f = Ã f ·ẑ f + B̃ f ·ṽ + K (zmeas
f − C̃ f ẑ f ) (9.28)
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where K∈R30×6 is the state estimator’s gain. The associated Kalman Filter-based
disturbance estimator is given by [439, 445]

Measurement update:

K (k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

ẑ f (k) = ẑ−
f (k) + K (k)[zmeas

f (k) − C̃d ẑ
−
f (k)]

P(k) = P−(k) − K (k)C̃d P−(k)
(9.29)

Time update:

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

ẑ−
f (k + 1) = Ãd(k)ẑ f (k) + B̃d(k)ṽ(k)

(9.30)

To compensate for the effects of the disturbance forces it suffices to use in the control
loop the modified control input vector

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 − ˆ̃d1
v2 − ˆ̃d2
v3 − ˆ̃d3
v4 − ˆ̃d4
v5 − ˆ̃d5
v6 − ˆ̃d6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or v =

⎛
⎜⎜⎜⎜⎜⎜⎝

v1 − ẑ13
v2 − ẑ16
v3 − ẑ19
v4 − ẑ22
v5 − ẑ25
v6 − ẑ28

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9.31)

9.2.6 Simulation Tests

Initial simulation experiments were concernedwith flight control of the quadropter in
the disturbance-free case. The considered reference trajectories are shown in Fig. 9.2.
The implementation of the flatness-based control enabled accurate tracking of the
reference trajectories. Convergence has been achieved for the linear position and
velocity variables to the associated setpoints as it can be seen in Figs. 9.3a, b and
9.4a. Moreover, there has been convergence of the angular position and velocity
variables to the associated setpoints as it can be seen in Figs. 9.4a and 9.5a, b.

Additional simulation experiments were concerned with control of the quadropter
in flight under disturbance forces and torques. The estimation of the disturbance
forces and torques is shown in Fig. 9.6. The implementation of the flatness-based
control enabled accurate tracking of the reference trajectories. There has been con-
vergence of the linear position and velocity variables to the associated setpoints as
it can be seen in Figs. 9.7a, b and 9.8a. Moreover, there has been convergence of the
angular position and velocity variables to the associated setpoints as it can be seen
in Figs. 9.8b and 9.9a, b.
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Fig. 9.2 Control of the quadrotor in the disturbance free-case: a trajectory of the quadrotor in the
cartesian space, b projection of the quadrotor’s trajectory in the xy plane
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Fig. 9.3 Control of the quadrotor in the disturbance free-case: a position and velocity along the x
axis, b position and velocity along the y axis

9.3 Control of UAVs Based on Approximate Linearization

9.3.1 Outline

The present section analyzes a nonlinear control method for unmanned aerial vehi-
cles (UAVs) which is based on local linearization of the UAVs dynamics and on
application of H-infinity control theory. As previously mentioned, the complete 6-
DOF dynamic model of the UAV is a highly nonlinear one and its control can be
performed with (i) global linearization control methods [6, 77, 152, 430, 438, 452,
457, 576], (ii) local linearization control methods [17, 55, 131, 212, 264, 401, 403,
450, 461, 480, 587] and (iii) Lyapunov analysis-based methods [13, 48, 60, 122,
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Fig. 9.4 Control of the quadrotor in the disturbance free-case: a position and velocity along the z
axis, b rotation angle φ and associated angular speed
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Fig. 9.5 Control of the quadrotor in the disturbance free-case: a rotation angle θ and associated
angular speed, b rotation angle ψ and associated angular speed

135, 193, 261, 653]. In approach (i) the dynamic model of the UAV is transformed
into an equivalent linear description through the application of a change of variables
(diffeomorphisms). In (ii) the nonlinear model of the UAV is decomposed into local
linear models for which linear feedback controllers are designed and next the aim
is to select the feedback control gains so as to assure the global asymptotic stability
of the control loop. In (iii) the objective is to define an energy function for the UAV
(Lyapunov function) and to demonstrate that through suitable selection of the feed-
back control the first derivative of the energy function is always negative and thus
the global stability of the control loop is assured. The latter approach is particularly
suitable for model-free control of UAVs as in the case of adaptive control methods.
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Fig. 9.6 Use of the Derivative-free nonlinear Kalman Filter in estimation of disturbances: a associ-
ated with linear motion, b associated with the rotational motion of the vehicle (blue line: real value,
green line estimated value)
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Fig. 9.7 Control of the quadrotor in the presence of external disturbances a position and velocity
along the x axis, b position and velocity along the y axis (blue line: real value, green line estimated
value, red line: setpoint)

In this section the control of the UAVmakes use of an approach of local lineariza-
tion. The linearization takes place round the UAV’s local operating point which is
defined at each time instant by the present value of the state vector and the last value
of the control inputs vector [461]. The linearization is based on Taylor series expan-
sion and on the computation of the associated Jacobian matrices. The modelling
error, due to truncation of higher order terms in the Taylor series, is considered as
perturbation which is compensated by the robustness of the control algorithm. For
the linearizedmodel of the UAV anH-infinity feedback controller is designed. A cost
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Fig. 9.8 Control of the quadrotor in the presence of external disturbances: a position and velocity
along the z axis, b rotation angle φ and associated angular speed (blue line: real value, green line
estimated value, red line: setpoint)
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Fig. 9.9 Control of the quadrotor in the presence of disturbances: a rotation angle θ and associated
angular speed, b rotation angle ψ and associated angular speed (blue line: real value, green line
estimated value, red line: setpoint)

function is introduced comprising the weighted square of the error of the system’s
state vector (distance of the state vector from the reference setpoints).

As explained in previous applications of H-infinity control, this control scheme
represents a differential game taking place between the control input which tries to
minimize the above cost function andbetween the disturbanceswhich try tomaximize
this objective function. The computation of the feedback control gain relies on the
solution of an algebraic Riccati equation, which is performed at each iteration of the
control algorithm. The solution of the Riccati equation provides a positive definite
symmetric matrix which is used as a weighting coefficient in the computation of
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the controller’s feedback gain. The known robustness features of H-infinity control
assure the elimination of perturbation effects, which implies compensation of model
uncertainty terms, external disturbance inputs as well as of measurement noises.
The stability properties of the control scheme are assured with the use of Lyapunov
analysis. First, it is shown that the proposed UAV feedback control law results in H-
infinity tracking performance which means robustness against modeling uncertainty
and external perturbations.Undermoderate conditions it is also shown that the control
loop is also globally asymptotically stable. The tracking accuracy and the smooth
transients in the proposedUAVcontrolmethod are also confirmed through simulation
experiments.

Comparing to nonlinear feedback control approaches which rely on exact feed-
back linearization of unmanned aerial vehicles (as the ones based on differential
flatness theory [452, 457]) the proposed H∞ control scheme is assessed as follows:
(i) it uses an approximate linearization of the system’s dynamicmodelwhich does not
follow the elaborated transformations (diffeomorphisms) of the exact linearization
methods, (ii) the method is applied directly on the initial nonlinear model of the UAV,
and does not inverse transformations. In this manner it is unlikely to come against
singularities in the computation of the UAV’s real control inputs, (iii) the method
retains the advantages of optimal control techniques, that is the best trade-off between
setpoint tracking and moderate variations of the control inputs.

9.3.2 Dynamic Model of the UAV

9.3.2.1 State-Space Description of the UAV

By following the previous analysis of the dynamic model of the UAV, given in
Sect. 9.2.3 and by considering that wa = 1

Jx
τφ , wb = 1

Jy
τθ , and wc = 1

Jz
τψ , the fol-

lowing dynamic model of the UAV is obtained:

ẍ = 1
m [cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ)]U1 + Ax

m

ÿ = 1
m [sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ)]U1 + Ay

m
z̈ = 1

m [cos(θ)cos(φ)]U1 + Az

m − g
φ̈ = 1

Jx
τφ

θ̈ = 1
Jy

τθ

ψ̈ = 1
Jz

τψ

(9.32)

where x , y, z are the coordinates of theUAV’s center of gravity in a cartesian reference
frame, φ, θ , ψ are the Euler rotation angles describing roll, pitch and yaw motion
respectively, m is the UAV’s mass, Jx , Jy , Jz are the UAV’s moments of inertia for
rotation round the cartesian coordinates axes Ax , Ay , Az are aerodynamic forces
exerted on the UAV for motion along the cartesian axes and g is the acceleration of
gravity.
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Next, the UAV’s dynamic model is written in state-space form by defining the
following state variables: x1 = x , x2 = ẋ , x3 = y, x4 = ẏ, x5 = z, x6 = ż, x7 = φ,
x8 = φ̇, x9 = θ , x10 = θ̇ , x11 = ψ , x12 = ψ̇ . Thus, one obtains:

ẋ1 = x2
ẋ2 = 1

m [cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ)]U1 + Ax
m

ẋ3 = x4
ẋ4 = 1

m [sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ)]U1 + Ay

m
ẋ5 = x6

ẋ6 = 1
m [cos(θ)cos(φ)]U1 + Az

m − g
ẋ7 = x8
ẋ8 = 1

Jx
τφ

ẋ9 = x10
ẋ10 = 1

Jy
τθ

ẋ11 = x12
ẋ12 = 1

Jz
τψ

(9.33)

or equivalently

ẋ = f (x, u) (9.34)

which is analytically written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6
ẋ7
ẋ8
ẋ9
ẋ10
ẋ11
ẋ12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
1
m [cos(ψ)sin(θ)cos(φ) + sin(ψ)sin(φ)]u1 + Ax

m
x4

1
m [sin(ψ)sin(θ)cos(φ) − cos(ψ)sin(φ)]u1 + Ay

m
x6

1
m [cos(θ)cos(φ)]u1 + Az

m − g
x8
1
Jx

τφ

x10
1
Jy

τθ

x11
1
Jz

τψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.35)

where the input vector u is defined as u = [u1, u2, u3, u4]T = [U1, τφ, τθ , τψ ]T .

9.3.3 Linearization of the UAV’s Dynamic Model

Linearization of the previous dynamic model of the UAV ẋ = f (x, u) can be per-
formed round local operating points (x∗, u∗), where x∗ is the present value of the
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UAV’s state vector and u∗ is the last value of the control input which has been exerted
on the system. By applying Taylor series expansion one obtains

ẋ = Jx f |(x∗,u∗) x + Ju f |(x∗,u∗) u + d̃ (9.36)

or equivalently

ẋ = Ax + Bu + d̃ (9.37)

where A = Jx f |(x∗,u∗), B = Ju f |(x∗,u∗) and d̃ is the modelling error due to the
truncation of higher order terms in the Taylor series expansion. Next, the Jacobian
matrices of the UAV’s dynamicmodel with respect to its state variables are computed

Jx f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

· · · · · · ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · · · · · ∂ f2
∂x12· · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·
∂ f11
∂x1

∂ f11
∂x2

· · · · · · ∂ f11
∂x12

∂ f12
∂x1

∂ f12
∂x2

· · · · · · ∂ f12
∂x12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.38)

It holds that the 1st row of the Jacobian matrix Jx f is

∂ f1
∂x1

= 0 ∂ f1
∂x2

= 1 ∂ f1
∂x3

= 0 ∂ f1
∂x4

= 0
∂ f1
∂x5

= 0 ∂ f1
∂x6

= 0 ∂ f1
∂x7

= 0 ∂ f1
∂x8

= 0
∂ f1
∂x9

= 0 ∂ f1
∂x10

= 0 ∂ f1
∂x11

= 0 ∂ f1
∂x12

= 0

(9.39)

2nd row of the Jacobian matrix Jx f

∂ f2
∂x1

= 0 ∂ f2
∂x2

= 0 ∂ f2
∂x3

= 0
∂ f2
∂x4

= 0 ∂ f2
∂x5

= 0 ∂ f2
∂x6

= 0
∂ f2
∂x7

= 1
m [−cos(x11)sin(x9)sin(x7) − sin(x11sin(x7))]u1 ∂ f2

∂x8
= 0

∂ f2
∂x9

= 1
m [cos(x11)cos(x9)cos(x7)]u1 ∂ f2

∂x10
= 0

∂ f2
∂x11

= 1
m [−sin(x11)sin(x9)cos(x7) + cos(x11)cos(x7)]u1 ∂ f2

∂x12
= 0

(9.40)

3rd row of the Jacobian matrix Jx f

∂ f1
∂x1

= 0 ∂ f1
∂x2

= 0 ∂ f1
∂x3

= 0 ∂ f1
∂x4

= 1
∂ f1
∂x5

= 0 ∂ f1
∂x6

= 0 ∂ f1
∂x7

= 0 ∂ f1
∂x8

= 0
∂ f1
∂x9

= 0 ∂ f1
∂x10

= 0
∂ f1
∂x11

= 0 ∂ f1
∂x12

= 0

(9.41)
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4th row of the Jacobian matrix Jx f

∂ f4
∂x1

= 0 ∂ f4
∂x2

= 0 ∂ f4
∂x3

= 0
∂ f4
∂x4

= 0 ∂ f4
∂x5

= 0 ∂ f4
∂x6

= 0
∂ f4
∂x7

= 1
m [sin(x11)sin(x9)cos(x7) − cos(x11cos(x7))]u1

∂ f4
∂x8

= 0 ∂ f4
∂x9

= 1
m [sin(x11)cos(x9)cos(x7)]u1

∂ f4
∂x10

= 0 ∂ f4
∂x11

= 1
m [cos(x11)sin(x9)sin(x7) + sin(x11)sin(x7)]u1 ∂ f4

∂x12
= 0
(9.42)

5th row of the Jacobian matrix Jx f

∂ f5
∂x1

= 0 ∂ f5
∂x2

= 0 ∂ f5
∂x3

= 0 ∂ f5
∂x4

= 0
∂ f5
∂x5

= 0 ∂ f5
∂x6

= 1 ∂ f5
∂x7

= 0 ∂ f5
∂x8

= 0
∂ f5
∂x9

= 0 ∂ f5
∂x10

= 0 ∂ f5
∂x11

= 0 ∂ f5
∂x12

= 0

(9.43)

6th row of the Jacobian matrix Jx f

∂ f6
∂x1

= 0 ∂ f6
∂x2

= 0 ∂ f6
∂x3

= 0
∂ f6
∂x4

= 0 ∂ f6
∂x5

= 0 ∂ f6
∂x6

= 0
∂ f6
∂x7

= 1
m [−cos(x9)sin(x7)]u1 ∂ f6

∂x8
= 0 ∂ f6

∂x9
= 1

m [−sin(x9)cos(x7)]u1
∂ f6
∂x10

= 0 ∂ f6
∂x11

= 0 ∂ f6
∂x12

= 0

(9.44)

7th row of the Jacobian matrix Jx f

∂ f7
∂x1

= 0 ∂ f7
∂x2

= 0 ∂ f7
∂x3

= 0 ∂ f7
∂x4

= 0
∂ f7
∂x5

= 0 ∂ f7
∂x6

= 0 ∂ f7
∂x7

= 0 ∂ f7
∂x8

= 1
∂ f7
∂x9

= 0 ∂ f7
∂x10

= 0 ∂ f7
∂x11

= 0 ∂ f7
∂x12

= 0

(9.45)

8th row of the Jacobian matrix Jx f

∂ f7
∂x1

= 0 ∂ f7
∂x2

= 0 ∂ f7
∂x3

= 0 ∂ f7
∂x4

= 0
∂ f7
∂x5

= 0 ∂ f7
∂x6

= 0 ∂ f7
∂x7

= 0 ∂ f7
∂x8

= 0
∂ f7
∂x9

= 0 ∂ f7
∂x10

= 0 ∂ f7
∂x11

= 0 ∂ f7
∂x12

= 0

(9.46)

9th row of the Jacobian matrix Jx f

∂ f9
∂x1

= 0 ∂ f9
∂x2

= 0 ∂ f9
∂x3

= 0 ∂ f9
∂x4

= 0
∂ f9
∂x5

= 0 ∂ f9
∂x6

= 0 ∂ f9
∂x7

= 0 ∂ f9
∂x8

= 0
∂ f9
∂x9

= 0 ∂ f9
∂x10

= 1 ∂ f9
∂x11

= 0 ∂ f9
∂x12

= 0

(9.47)

10th row of the Jacobian matrix Jx f
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∂ f10
∂x1

= 0 ∂ f10
∂x2

= 0 ∂ f10
∂x3

= 0 ∂ f10
∂x4

= 0
∂ f10
∂x5

= 0 ∂ f10
∂x6

= 0 ∂ f10
∂x7

= 0 ∂ f10
∂x8

= 0
∂ f10
∂x9

= 0 ∂ f10
∂x10

= 0 ∂ f10
∂x11

= 0 ∂ f10
∂x12

= 0

(9.48)

11th row of the Jacobian matrix Jx f

∂ f11
∂x1

= 0 ∂ f11
∂x2

= 0 ∂ f11
∂x3

= 0 ∂ f11
∂x4

= 0
∂ f11
∂x5

= 0 ∂ f11
∂x6

= 0 ∂ f11
∂x7

= 0 ∂ f11
∂x8

= 0
∂ f11
∂x9

= 0 ∂ f11
∂x10

= 0 ∂ f11
∂x11

= 1 ∂ f11
∂x12

= 0

(9.49)

12th row of the Jacobian matrix Jx f

∂ f12
∂x1

= 0 ∂ f12
∂x2

= 0 ∂ f12
∂x3

= 0 ∂ f12
∂x4

= 0
∂ f12
∂x5

= 0 ∂ f12
∂x6

= 0 ∂ f12
∂x7

= 0 ∂ f12
∂x8

= 0
∂ f12
∂x9

= 0 ∂ f12
∂x10

= 0 ∂ f12
∂x11

= 0 ∂ f12
∂x12

= 0

(9.50)

Next, the Jacobian matrix of the UAV is computed with respect to the elements of
the control input vector U = [u1, u2, u3, u4]T = [U1, τφ, τθ , τψ ]T . It holds that

Ju f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ f1
∂u1

∂ f1
∂u2

∂ f1
∂u3

∂ f1
∂u4

∂ f2
∂u1

∂ f2
∂u2

∂ f2
∂u3

∂ f2
∂u4· · · · · · · · · · · ·

· · · · · · · · · · · ·
∂ f11
∂u1

∂ f11
∂u2

∂ f11
∂u3

∂ f11
∂u4

∂ f12
∂u1

∂ f12
∂u2

∂ f12
∂u3

∂ f12
∂u4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9.51)

About the 1st row of the Jacobian matrix Ju f it holds

∂ f1
∂u1

= 0 ∂ f1
∂u2

= 0 ∂ f1
∂u3

= 0 ∂ f1
∂u4

= 0 (9.52)

About the 2nd row of the Jacobian matrix Ju f it holds

∂ f2
∂u1

= 1
m [cos(x11)sin((x9)cos(x7) + sin(x11)cos(x7)] ∂ f2

∂u2
= 0

∂ f2
∂u3

= 0 ∂ f2
∂u4

= 0
(9.53)

About the 3rd row of the Jacobian matrix Ju f it holds

∂ f1
∂u1

= 0 ∂ f1
∂u2

= 0 ∂ f1
∂u3

= 0 ∂ f1
∂u4

= 0 (9.54)

About the 4th row of the Jacobian matrix Ju f it holds
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∂ f4
∂u1

= 1
m [sin(x11)sin((x9)sin(x7) − cos(x11)sin(x7)] ∂ f4

∂u2
= 0

∂ f4
∂u3

= 0 ∂ f4
∂u4

= 0
(9.55)

About the 5th row of the Jacobian matrix Ju f it holds

∂ f5
∂u1

= 0 ∂ f5
∂u2

= 0 ∂ f5
∂u3

= 0 ∂ f5
∂u4

= 0 (9.56)

About the 6th row of the Jacobian matrix Ju f it holds

∂ f6
∂u1

= 1
m [cos((x9)cos(x7)] ∂ f6

∂u2
= 0

∂ f6
∂u3

= 0 ∂ f6
∂u4

= 0
(9.57)

About the 7th row of the Jacobian matrix Ju f it holds

∂ f7
∂u1

= 0 ∂ f7
∂u2

= 0 ∂ f7
∂u3

= 0 ∂ f7
∂u4

= 0 (9.58)

About the 8th row of the Jacobian matrix Ju f it holds

∂ f8
∂u1

= 0 ∂ f8
∂u2

= 1
Jx

∂ f8
∂u3

= 0 ∂ f8
∂u4

= 0 (9.59)

About the 9th row of the Jacobian matrix Ju f it holds

∂ f9
∂u1

= 0 ∂ f9
∂u2

= 0 ∂ f9
∂u3

= 0 ∂ f9
∂u4

= 0 (9.60)

About the 10th row of the Jacobian matrix Ju f it holds

∂ f10
∂u1

= 0 ∂ f10
∂u2

= 0 ∂ f10
∂u3

= 1
Jy

∂ f10
∂u4

= 0 (9.61)

About the 11th row of the Jacobian matrix Ju f it holds

∂ f11
∂u1

= 0 ∂ f11
∂u2

= 0 ∂ f11
∂u3

= 0 ∂ f11
∂u4

= 0 (9.62)

About the 12th row of the Jacobian matrix Ju f it holds

∂ f12
∂u1

= 0 ∂ f12
∂u2

= 0 ∂ f12
∂u3

= 0 ∂ f12
∂u4

= 1
Jz

(9.63)

9.3.4 Design of an H-Infinity Nonlinear Feedback Controller

9.3.4.1 Equivalent Linearized Dynamics of the Robot

After linearization around its current operating point, the UAV’s dynamic model is
written as
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ẋ = Ax + Bu + d1 (9.64)

Parameter d1 stands for the linearization error in theUAV’s dynamicmodel appearing
in Eq. (9.64). The reference setpoints for the UAV’s state vector are denoted by
xd = [xd1 , . . . , xd4 ]. Tracking of this trajectory is achieved after applying the control
input u∗. At every time instant the control input u∗ is assumed to differ from the
control input u appearing inEq. (9.64) by an amount equal to�u, that is u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (9.65)

The dynamics of the controlled system described in Eq. (9.64) can be also written as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (9.66)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (9.67)

By subtracting Eq. (9.65) from Eq. (9.67) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (9.68)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (9.69)

The above linearized form of the UAV’s model can be efficiently controlled after
applying an H-infinity feedback control scheme.

9.3.4.2 The Nonlinear H-Infinity Control

The initial nonlinear model of the unmanned aerial vehicle is in the form

ẋ = f (x, u) x∈Rn, u∈Rm (9.70)

Linearization of the system (multi-DOF UAV) is performed at each iteration of the
control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)). The
linearized equivalent of the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (9.71)

where matrices A and B are obtained from the computation of the Jacobians of
the UAV’s state-space description and vector d̃ denotes disturbance terms due to
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linearization errors. The problem of disturbance rejection for the linearized model
that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(9.72)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbations can also represent noise terms of any distribution.

As analyzed in previous applications of the H∞ control approach, a feedback
control scheme is designed for trajectory tracking by the system’s state vector and
simultaneous disturbance rejection, considering that the disturbance affects the sys-
tem in the worst possible manner. The disturbances’ effects are incorporated in the
following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (9.73)

The significance of the negative sign in the cost function’s term that is associated
with the perturbation variable d̃(t) is that the disturbance tries to maximize the
cost function J (t) while the control signal u(t) tries to minimize it. The physical
meaning of the relation given above is that the control signal and the disturbances
compete to each other within a min-max differential game. This problem of min-max
optimization can be written as

minumaxd̃ J (u, d̃) (9.74)

In the previous cases of applications of the H-infinity control it has been explained
that the objective of the optimization procedure is to compute a control signal u(t)
which can compensate for the worst possible disturbance, that is externally imposed
to the system. However, the solution to the min-max optimization problem is directly
related to the value of the parameter ρ. This means that there is an upper bound in
the disturbances magnitude that can be annihilated by the control signal.

9.3.4.3 Computation of the Feedback Control Gains

For the linearized systemgiven byEq. (9.72) the cost function of Eq. (9.73) is defined,
where the coefficient r determines the penalization of the control input and theweight
coefficient ρ determines the reward of the disturbances’ effects.

Once more it is assumed that (i) The energy that is transferred from the distur-
bances signal d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B]

and [A, L] are stabilizable, (iii) the matrix [A,C] is detectable. Then, the optimal
feedback control law is given by

u(t) = −Kx(t) (9.75)
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Fig. 9.10 Diagram of the control scheme for the multi-DOF UAV

with

K = 1
r B

T P (9.76)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P( 1r BB
T − 1

2ρ2 LLT )P = 0 (9.77)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (9.78)

The diagram of the considered control loop is depicted in Fig. 9.10.

9.3.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the UAV, and that in case
of bounded disturbance terms asymptotic convergence to the reference setpoints is
achieved. The tracking error dynamics for the multi-DOF unmanned aerial vehicle
is written in the form

ė = Ae + Bu + Ld̃ (9.79)
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where in the robot’s case L = I∈R12 with I being the identity matrix. Variable
d̃ denotes model uncertainties and external disturbances of the UAV’s model. The
following Lyapunov function is considered

V = 1
2e

T Pe (9.80)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T Pe + 1

2e
T P[Ae + Bu + Ld̃]⇒ (9.81)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (9.82)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(9.83)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + ( 12u
T BT Pe + 1

2e
T PBu)+

+( 12 d̃
T LT Pe + 1

2e
T PLd̃)

(9.84)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P( 2r BB
T − 1

ρ2 LLT )P (9.85)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (9.86)

By substituting Eqs. (9.85) and (9.86) one obtains

V̇ = 1
2e

T [−Q + P( 2r BB
T − 1

ρ2 LLT )P]e+
+eT PB(− 1

r B
T Pe) + eT PLd̃⇒ (9.87)

V̇ = − 1
2e

T Qe + 1
r PBBT Pe − 1

2ρ2 eT PLLT Pe

− 1
r (e

T PBBT Pe) + eT PLd̃
(9.88)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (9.89)
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or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(9.90)

Lemma: The following inequality holds

1
2e

T PLd̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (9.91)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(9.92)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (9.93)

Equation (9.93) is substituted in Eq. (9.90) and the inequality is enforced, thus giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (9.94)

Equation (9.94) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt (9.95)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (9.96)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (9.97)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (9.80) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.
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Fig. 9.11 Control of the quadrotorwhen tracking flight path 1: a Three-dimensional plot of tracking
of flight path 1 by the quadropter, b Cartesian coordinates of the UAV and convergence to the
reference setpoints

9.3.6 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

Another problem that has to be dealt with in the design of a state feedback con-
troller for the UAV (autonomous quadrotor) is that in several operating conditions
the complete state vector might not be measurable. Actually, attempting to measure
the complete state vector with the use of suitable sensors is not only costly but is also
error-prone because, particularly in the harsh operating environment of the UAVs.
Thus the control loop has to be implemented with the use of information provided by
a small number of sensors and by processing only a small number of state variables.
To reconstruct the missing information about the state vector of the quadrotor it is
proposed to use a filtering scheme and based on it to apply state estimation-based
control [33, 169, 431, 463, 511].

The recursion of the H∞ Kalman Filter, for the model of the six-DOF UAV, can
be formulated in terms of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(9.98)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)

(9.99)
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Fig. 9.12 Control of the quadrotor when tracking flight path 1: a Convergence of state variables x1
to x4 to the reference setpoints, b Convergence of state variables x5 to x8 to the reference setpoints
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Fig. 9.13 Control of the quadrotor when tracking flight path 1: a Convergence of state variables
x9 to x12 to the reference setpoints, b Control inputs u1 to u4 exerted on the UAV

where it is assumed that parameter θ is sufficiently small to assure that the term
P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) will be positive definite. When θ = 0 the
H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. It is noted that
apart from the process noise covariance matrix Q(k) and the measurement noise
covariance matrix R(k) the H∞ Kalman filter requires tuning of the weight matrices
L and S, as well as of parameter θ .

In the case of UAVs (e.g. autonomous quadropters), the H-infininty Kalman Filter
can be used within a state estimation-based control scheme. Actually, one can mea-
sure only a part of the state vector of the UAV, such as state variables x1 = x , x3 = y,
x5 = z, x7 = φ, x9 = θ , x11 = ψ and estimate through filtering the rest of the state
vector elements that is x2 = ẋ , x4 = ẏ, x5 = ż, x7 = φ̇, x9 = θ̇ , x11 = ψ̇ . Moreover,
the proposed Kalman filtering method can be used for sensor fusion purposes.
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Fig. 9.14 Control of the quadrotorwhen tracking flight path 2: a Three-dimensional plot of tracking
of flight path 1 by the quadropter, b Cartesian coordinates of the UAV and convergence to the
reference setpoints
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Fig. 9.15 Control of the quadrotor when tracking flight path 2: a Convergence of state variables x1
to x4 to the reference setpoints, b Convergence of state variables x5 to x8 to the reference setpoints

9.3.7 Simulation Tests

The tracking performance of the considered nonlinear H-infinity control scheme was
tested in the case of several reference flight paths. The first 3D reference trajectory
is shown in Fig. 9.11, while the convergence of the UAV’s setpoints to their setpoints
are shown in Figs. 9.12a, b and 9.13a. The control inputs exerted on the UAV by its
actuators are shown in Fig. 9.13b.

The second 3D reference trajectory is shown in Fig. 9.14, while the convergence
of the UAV’s setpoints to their setpoints are shown in Figs. 9.15a, b and 9.16a. The
control inputs exerted on the UAV by its actuators are shown in Fig. 9.16b.
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Fig. 9.16 Control of the quadrotor when tracking flight path 2: a Convergence of state variables
x9 to x12 to the reference setpoints, b Control inputs u1 to u4 exerted on the UAV
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Fig. 9.17 Control of the quadrotorwhen tracking flight path 3: a Three-dimensional plot of tracking
of flight path 1 by the quadropter, b Cartesian coordinates of the UAV and convergence to the
reference setpoints

Finally, the third considered 3D reference trajectory is shown in Fig. 9.17, while
the convergence of the UAV’s setpoints to their setpoints are shown in Figs. 9.18a, b
and 9.19a. The control inputs exerted on the UAV by its actuators are shown in
Fig. 9.19b.

It can be noticed that in all cases the nonlinear H-infinity control algorithm for
the UAV achieved accurate tracking of the reference path and fast convergence to
them. All state variables of the system converged fast and smoothly to the reference
setpoints while their tracking error was rapidly eliminated. Moreover, the variation
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Fig. 9.18 Control of the quadrotor when tracking flight path 3: a Convergence of state variables x1
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Fig. 9.19 Control of the quadrotor when tracking flight path 3: a Convergence of state variables
x9 to x12 to the reference setpoints, b Control inputs u1 to u4 exerted on the UAV

of the control inputs exerted on the UAV by its actuators was smooth and no abrupt
changes of the control signal were observed. The above are indicative of the excellent
tracking and stability properties of the nonlinear H-infinity control algorithm.



Chapter 10
Unmanned Surface Vessels

Abstract Autonomous navigation of unmanned surface vessels (USVs) (such as
ships, hovercrafts, etc), is a significant topic, since it can find use in both security
and defence tasks, as well as in maritime transportation. The problem of control and
trajectory tracking for unmanned surface vessels (of the ship or hovercraft type) is
non-trivial because the associated dynamic and kinematic models are complex non-
linear ones. A first problem that arises in controller design for unmanned surface
vessels is that trajectory tracking has to be achieved despite modelling uncertainty
and external perturbations and thus the control loop must exhibit sufficient robust-
ness. Another problem that has to be dealt with is that the vessels model is often
underactuated (the propulsion system consists of less actuators than the vessel’s
degrees of freedom). The present chapter treats the problem of control of unmanned
surface vessels. Solution to the associated control problem is provided through (i)
global linearization methods, (ii) approximate linearization methods and (iii) Lya-
punov methods. To solve the control problem for unmanned surface vessels without
prior knowledge of the associated dynamic model, elaborated real-time estimation
methods are developed. These allow for identifying the unknown dynamic model
of the vessel and for implementing an indirect adaptive control scheme. Moreover,
for the accurate localization of the vessel and for precise computation of its motion
characteristics advanced (and precisely validated) nonlinear filtering and distributed
filtering are applied. These enable to perform fusion of the measurements of het-
erogeneous sensors and of state estimates provided by individual distributed local
filters. In particular, the chapter treats the following issues: (a) Nonlinear control
and Kalman Filtering for a 3-DOF surface vessel, (b) Flatness-based control for the
autonomous hovercraft (c) Nonlinear optimal control for autonomous navigation of
unmanned surface vessels, and (d) validation of distributed Kalman Filtering for ship
tracking applications.
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10.1 Chapter Overview

The present chapter treats the following issues: (a) Nonlinear control and Kalman
Filtering for a 3-DOF surface vessel, (b) Flatness-based control for the autonomous
hovercraft (c) Nonlinear optimal control for autonomous navigation of unmanned
surface vessels, and (d) validation of distributed Kalman Filtering for ship tracking
applications.

With reference to (a) the chapter examines the problem of dynamic ship posi-
tioning with the use of Kalman Filter-based and Particle Filter-based sensor fusion
algorithms. The proposed approach enables to estimate accurately the ship’s state
vector by fusing the vessel’s position and heading measurements coming from on-
board sensors together with distance measurements coming from sensors located at
the coast (e.g. radar). The estimated state vector is used in turn in a control loop, to
regulate the horizontal position and heading of the vessel.

With reference to (b) the chapter proposes a nonlinear control approach for the
underactuated hovercraft model based on differential flatness theory and uses a
new nonlinear state vector and disturbances estimation method under the name of
Derivative-free nonlinear Kalman Filter. It is proven that the nonlinear model of the
hovercraft is a differentially flat one. It is shown that this model cannot be subject
to static feedback linearization, however it admits dynamic feedback linearization
whichmeans that the system’s state vector is extended by including as additional state
variables the control inputs and their derivatives. Next, using the differential flatness
properties it is also proven that this model can be subject to input-output lineariza-
tion and can be transformed to an equivalent canonical (Brunovsky) form. Based on
this latter description the design of a state feedback controller is carried out enabling
accurate maneuvering and trajectory tracking. Additional problems that are solved in
the design of this feedback control scheme are the estimation of the nonmeasurable
state variables in the hovercraft’s model and the compensation of modeling uncer-
tainties and external perturbations affecting the vessel. To this end, the application of
the Derivative-free nonlinear Kalman Filter is proposed. This nonlinear filter consists
of the Kalman Filter’s recursion on the linearized equivalent model of the vessel and
of an inverse nonlinear transformation based on the differential flatness features of
the system which enables to compute state estimates for the state variables of the
initial nonlinear model. The redesign of the filter as a disturbance observer makes
possible the estimation and compensation of additive perturbation terms affecting
the hovercraft’s model.

With reference to (c) the chapter proposes a new nonlinear optimal control
approach for autonomous navigation of unmanned surface vessels. The dynamic
model of the surface vessels undergoes approximate linearization round local oper-
ating points which are redefined at each iteration of the control algorithm. These
temporary equilibria consist of the last value of the vessel’s state vector and of the
last value of the control signal thatwas exerted on it. For the approximate linearization
of the system’s dynamics Taylor series expansion is performed through the compu-
tation of the associated Jacobian matrices. The modelling errors are compensated by
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the robustness of the control algorithm. Next, for the linearized equivalent model of
the vessel an H-infinity feedback controller is designed. This requires the solution
of an algebraic Riccati equation at each iteration of the computer control program.
It is shown that the control scheme achieves H-infinity tracking performance, which
implies maximum robustness to modelling errors and external perturbations. The
stability of the control loop is proven through Lyapunov analysis.

With reference to (d) the chapter considers that tracking of ships’ motion and
monitoring of maritime traffic can be performed with the use of distributed Kalman
Filtering. However, some of the local Kalman Filters which constitute distributed
estimation schemes may depend on inaccurate models of the vessel’s dynamics or
kinematics and in such a case the aggregate state estimate provided by the distributed
filter is unreliable. To treat this problem the chapter proposes a statistical method
of optimized performance for the validation of Fuzzy Kalman Filters used in ship
tracking. By showing the equivalence of the localKalman Filters toARMAXmodels,
the Fuzzy Kalman Filter is proven to be equivalent to fuzzy weighting of local
ARMAX models. Using this equivalent modeling of the Fuzzy Kalman Filter, the
local statistical approach to fault diagnosis is applied for validating the accuracy of
the distributed filter or in the opposite case for detecting the local Kalman Filter that
makes use of an imprecise shipmodel. By applying theGeneralized LikelihoodRatio
on the residuals of the Kalman Filtering procedure the proposed validation method
finally takes the form of a χ2 statistical change detection criterion. This statistical
validation test is capable of detecting the faulty local filter within the distributed
estimation method, even in the case of small errors in the local model’s parameters
which do not exceed 1% of the associated nominal values.

10.2 Nonlinear Control and Filtering for a 3-DOF Surface
Vessel

10.2.1 Outline

During the last years, research on marine navigation systems and on autonomous
vessels have grown rapidly. Modern marine vessels are equipped with sophisticated
motion-control systemswhich accomplish various control objectives such as position
and heading regulation, trajectory tracking, and wave-induced motion compensation
[148, 189, 462]. Motion control operates in the three planar degrees of freedom,
i.e. surge (forward motion), sway (transverse motion), and yaw (rotation about the
vertical axis, also called heading) and is implemented through the feedback of infor-
mation from position and heading measurements. To estimate accurately the vessel’s
position, measurements coming from GPS, radar or an IMU can be used, while to
estimate the orientation of the vessel, fusion of measurements coming from mag-
netic compasses and gyroscopes can be performed. The term “Dynamic positioning”
describes the use of the propulsion system, in a control loop, to regulate the horizon-
tal position and heading of the vessel. Early Dynamic Positioning Systems (DPS)
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were based on three term PID control with a notch filter in order to counteract high
frequency motion due to waves. There exist also results on nonlinear filtering for
autonomous navigation systems which have been presented in [110, 310, 567, 592].
The present section studies sensor fusion-based dynamic positioning for ships using
Kalman and Particle Filtering methods.

Sensor-fusion based motion estimation using probabilistic inference forms a core
component in most modern guidance and navigation systems [234]. The estimator
fuses observations frommultiple sensorswith predictions froma dynamic state-space
model of the system under control. Themost widely used algorithms formulti-sensor
fusion are variants of the Kalman Filter (KF), which in the case of nonlinear dynami-
cal models take the form of the Extended Kalman Filter. Currently, Kalman Filtering
is a main element in the design of Dynamic Positioning Systems [163, 477, 547]. A
basic assumptionmade byKalman Filtering is that ofGaussian process/measurement
noise. On the other hand, the Extended Kalman Filter is based on the linearization
of the system dynamics, and proceeds with the recursive estimation of the standard
Kalman Filter [431, 433, 457].

A different approach to filtering and sensor fusion-based state estimation is Par-
ticle Filtering. The Particle Filter is a non-parametric state estimator which unlike
the KF or the EKF does not make any assumption on the probability density func-
tion of the measurements [23, 555]. The concept of particle filtering comes from
Monte-Carlo methods. The Particle Filter (PF) can provide optimal estimation in
non-Gaussian state-space models. In the case of nonlinear dynamical models the
PF avoids also the calculations associated with the Jacobians which appear in the
EKF equations [271, 625]. The main stages of the PF are prediction (time update),
correction (measurement update) and resampling for substituting the unsuccessful
state vector estimates with those particles that have better approximated the real state
vector.

The main developments of the section are outlined in the following: (i) design of
a Kalman Filter-based disturbance estimator that enables simultaneous estimation of
the ship’s state vector and of the vector of external disturbances, through the process-
ing of measurements from various types of sensors, (ii) design of a Particle Filter
disturbance estimator that enables simultaneous estimation of the ship’s state vector
and of the vector of external disturbances, again through the fusion of measurements
from various sensors, (iii) implementation of state estimation-based control using
these nonlinear filtering methods.

10.2.2 Kinematic and Dynamic Models of Vessels
for the Problem of Dynamic Positioning

10.2.2.1 A Generic Kinematic and Dynamic Ship Model

The motion of a ship is described by two reference frames: (i) a local geographical
earth-fixed frame and, (ii) a body-fixed frame denoted as XbYbZb which is attached
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Fig. 10.1 Components of
the linear velocity vector of
the vessel (surge, sway and
heave) and components of
the angular velocity of the
vessel (roll, pitch and yaw
Euler angles)

to the vessel (see Fig. 10.1). The components of the position vector of the vessel
are [x, y, ψ]T where (x, y) are the coordinates of the ship’s center of symmetry in
a local geographical frame and ψ is the orientation angle with reference to the OX
axis of the local coordinates frame [148].

The components of the ship’s velocity vector, denoted as v = [u, vs, r ]T , are the
surge and sway velocities (u, vs) and the yaw rate r . A model for vessel kinematics,
relating the ship’s position vector η to the ship velocity vector v, is

η̇ = R(ψ)v (10.1)

The kinematic transformation of Eq. (10.1) relates the body-fixed velocities to the
position derivatives in the local geographical frame. The transformation is described
by matrix R(ψ)∈R3×3 which performs a rotation round the z-axis by an angle ψ .
The equation of the ship dynamics describes the relation between the ship’s velocity
and the generalized forces vector (forces and torques τcontrol , τwind and τwaves) which
is applied to the vessel [148, 167].

Mv̇ + CRB(v)v + d(Vrc, γc) = τcontrol + τwind + τwaves (10.2)

In the above equation, CRB(v)v denotes Coriolis-centripetal terms while d(Vrc, γc)

denotes disturbance terms (e.g. due to wind and currents). The inertia matrix M is
the sum of two matrices MA and MRB , i.e. M = MA + MRB where

MA =
⎛
⎜⎝

−Xu̇ 0 0

0 −Yv̇s −Yṙ

0 −Yṙ −Nṙ

⎞
⎟⎠ MRB =

⎛
⎜⎝
m 0 0

0 m mxg

0 mxg Iz

⎞
⎟⎠ (10.3)

In the positive-definite hydrodynamic matrix MA, the added-mass coefficients Xu̇ ,
Yv̇, and Nṙ depend on the hull shape and show the change in momentum in the
fluid due to the vessel accelerations. On the other hand in the equation of the positive
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definite rigid-body mass matrix MRB , parameter xg denotes the longitudinal position
of the center of gravity of the vessel relative to the body-fixed frame. The Coriolis-
centripetal terms matrix CRB is given by

CRB =
⎛
⎜⎝

0 0 −m(xgr + vs)

0 0 mu

m(xgr + vs) −mu 0

⎞
⎟⎠ (10.4)

When a vessel operates under positioning control the velocities are small and thus
the Coriolis-centripetal terms CRB(v)v in Eq. (10.2) can be omitted from the ship’s
dynamic model.

10.2.2.2 Ship Model for the Dynamic Positioning Problem

As noted before, the term d(Vrc, γc) on the left hand side of Eq. (10.2) represents
the current and damping forces. The speed of the current is denoted as Vrc while the
angle of the current is denoted as γrc and is defined relative to the bow of the vessel
[148]. It is common practice to write the current forces in surge, sway and yaw as
functions of non-dimensional current coefficientsCXc(γrc),CYc(γrc),CNc(γrc)which
is

d(Vrc, γrc) = 1

2
ρV 2

rc

⎛
⎜⎝

AFcCXc(γrc)

ALcCYc(γrc)

ALc L0αCNc(γrc)

⎞
⎟⎠ (10.5)

where ρ is the water density, AFc and ALc are frontal and lateral projected areas of the
submerged part of the vessel and L0α is the length of the ship. However, the current
coefficients CXc(γrc), CYc(γrc), CNc(γrc) are difficult to estimate with accuracy. In
such cases, one can simplify the model of Eq. (10.5), in terms of a linear damping
term and a bias term which finally takes the form

d(Vrc, γrc) � D(v)v − RT (ψ)d (10.6)

where D = DT =
⎛
⎜⎝
D11 0

0 D22 D23

0 D32 D33

⎞
⎟⎠ , d =

⎛
⎜⎝
d1

d2

d3

⎞
⎟⎠ (10.7)

The wind forces and moments can be represented in a similar way to the current
forces and moments, i.e.
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τwind = 1

2
ραV

2
rw

⎛
⎜⎜⎝

AFwCXw(γrw)

ALwCYw(γrw)

ALwL0αCNw(γrw)

⎞
⎟⎟⎠ (10.8)

where ρα is the air density, AFw and ALw are the frontal and lateral projected wind
areas and L0α is the vessel’s overall length. The wind speed is Vrw and its direction
is γrw in earth-fixed coordinates. The wind model coefficients can be obtained by
model tests while with reference to the control problem, obtaining measurements of
thewind’s speed and direction enables to compensate τwind using a feed-forward term
τ̂wind . The difference (modeling error) between τwind and τ̂wind can be described by a
bias term RT (ψ)d, as in the case of the current bias term that was given in Eq. (10.6).

Wave forces are usuallymodeled as the sumof a linear and a nonlinear component,
i.e.

τwaves = τ lin
waves + τ nlin

waves (10.9)

The low-frequency nonlinear wave forces can be modeled again by a bias term,
and considered to be input disturbances. On the other hand the linear wave forces
are considered to be output disturbances. Therefore, the observation (measurement)
equation of the ship is given by z = η + nw + v1, where n is the vessel’s position
calculated using the ship’s dynamic model of Eqs. (10.1) and (10.2), v1 is sensor
measurement noise and nw is the ship’s displacement due to the linear wave forces.

Using Eq. (10.6) and the above assumptions about the wind and waves forces, the
vessel’s kinematic and dynamic model described in Eqs. (10.1) and (10.2) respec-
tively, is given by

η̇ = R(ψ)v

v̇ + M−1Dv = M−1[RT (ψ)d + τcontrol] + w

ḋ = w

z = η + nw + v1 or z = n + v

(10.10)

The bias is an additive disturbance in the ship’s dynamic model which can be esti-
mated with the use of a state observer. Once the bias is accurately estimated it can
be compensated by a suitable control term in the right hand side of Eq. (10.10). This
additional control term provides the required robustness to compensate for the bias
effects.

10.2.3 Ship Actuator Model

Without loss of generality the model of a vessel with two propellers and one bow
thruster is considered (see Fig. 10.2). The vector of the ship’s control forces and
torques τ∈R3 is related to propeller pitch ratios vector u (or propeller revolutions
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Fig. 10.2 Model of a vessel
with two propellers and a
bow thruster

for fixed blade propellers) as follows [171]

τ = T ·K (U )·u (10.11)

where U is the magnitude of the ship’s velocity in the xy-plane i.e. U = √
u2 + v2

while u denotes the surge velocity and v denotes the sway velocity. Vector u is defined
as u = [ f1(p1), f2(p2), f3(p3), f4(δ1), f5(δ2)]T . For the (fully actuated) ship model
of Fig. 10.2 with two propellers p1 and p2, one thruster p3 and two rudders δ1 and
δ2, matrix T∈R3×6 depends on the position of the actuators p1, p2 and p3, while
matrix K (U )∈R6×6 depends on the ship’s velocity and the type of the actuators.
The coefficients of matrices T and K are defined as follows: pi , (i = 1, 2, 3) are
the propeller pitch ratios (or for fixed-blade propellers are the propeller revolutions),
δi , (i = 1, 2) are the rudder angles, ti , (i = 1, . . . , 5) are distances to of the actuators
from the ship’s symmetry axes, and ki , (i = 1, . . . , 5) are the force coefficients.

10.2.4 Feedback Linearization for Ship Dynamic Positioning

10.2.4.1 Nonlinear Positioning Control of the Ship Model

As mentioned above, the kinematic and dynamic model of the ship is given by

η̇ = R·v
Mv̇ + D(v)v − RT d = τ

(10.12)

From the previous equation one obtains v = R−1η̇, or since RT = R−1 it can be
written as v = RT η̇. Similarly one obtains v̇ = ṘT η̇+ RT η̈. Consequently, this gives
[140, 227, 462]

J (η)η̈ + C(η, η̇)η̇ + F(η)η̇ − d = τ ∗ (10.13)
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where the ship model’s parameters are defined as

J (η) = RMRT ∈ R3×3 C(η, η̇) = RM ṘT∈R3×3

F(η) = RDRT∈R3×3 τ ∗ = Rτ
(10.14)

and denoting sin(ψ) and cos(ψ) as Sψ and Cψ respectively, while usingmi j , i, j =
1, . . . , 3 to represent the elements of the inertia matrix and di j , i, j = 1, . . . , 3 to
represent the elements of the damping matrix, the terms of the ship’s dynamic model
are described by [140]

J (η) =
⎛
⎜⎝

m11C2
ψ + m22S2ψ (m11 − m22)SψCψ −m23Sψ

(m11 − m12)SψCψ m11S2ψ + m22C2
ψ m23Cψ

−m23Sψ m23Cψ m33

⎞
⎟⎠ (10.15)

C(η, η̇) =
⎛
⎜⎝

ψ̇(m22 − m11)SψCψ ψ̇(m11C2
ψ + m22S2ψ) 0

−ψ̇(m11S2ψ) + m22C2
ψ)) ψ̇(m22 − m11)SψCψ 0

−ψ̇(m23Cψ −ψ̇(m23Sψ 0

⎞
⎟⎠ (10.16)

F(η) =
⎛
⎜⎝

d11C2
ψ + d22S2ψ (d11 − d12)SψCψ −d23Sψ

(d11 − d12)SψCψ d11S2ψ + d22C2
ψ d23Cψ

−d32Sψ d32Cψ d23

⎞
⎟⎠ (10.17)

The control signal is chosen to be

τ ∗ = J (η)[η̈d + J (η)−1C(η, η̇)η̇+
+J (η)−1F(η)η̇ − J (η)−1d − KD

˙̃η − KP η̃] (10.18)

where η̃ = η − ηd is the tracking error, while

KD = diag[kd1 , kd2 , kd3 ]
KP = diag[kp1 , kp2 , kp3 ]

(10.19)

are feedback gain matrices. This finally results into the tracking error dynamics

η̈ − η̈d + KD
˙̃η + KP η̃ = 0

or ¨̃η + KD
˙̃η + KP η̃ = 0

(10.20)
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10.2.5 Joint Estimation of the Ship’s State Vector
and of Unknown Additive Disturbances

The sensor fusion-based estimation procedure for obtaining the ship’s state vector is
affected by uncertainties characterizing the ship’s dynamicmodel. Such uncertainties
can be due to parametric variations in the model of Eqs. (10.13) and (10.14) or due
to external disturbances, e.g. additive input disturbances as shown in Eqs. (10.2) and
(10.10). Simultaneous estimation of a dynamical system’s state vector and of the
disturbances vector can be achieved using disturbance observers [82, 87, 105, 106,
180, 256, 341, 428, 623].

In the case of a surface vessel, defining the generalized state vector x =
[η, d, η̇, ḋ]T and considering invariance of the disturbance d for specific time periods,
one obtains the generalized ship state-space model

η̈ + J (η)−1[C(η, η̇) + F(η)]η̇ − J−1(η)d = J−1(η)τ

d̈ = 0.
(10.21)

Setting x1 = η, x2 = d, x3 = η̇, x4 = ḋ and taking into account the existence of
process and measurement noise one obtains a ship’s model of the form

ẋ = Ax + Bu + w

z = γ (x) + v (10.22)

where matrices A and B are given by

A =

⎛
⎜⎜⎜⎜⎝

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

03×3 J−1(x) −J−1(x)[C(x, ẋ) + F(x)] 03×3

03×3 03×3 03×3 03×3

⎞
⎟⎟⎟⎟⎠

B = (
03×3 03×3 J−1(x) 03×3

)T

(10.23)

The extended state vector is x = [x1, x2, x3, x4]T with xi ∈ R3×1, i = 1, 2, 3, 4. The
control input is τ ∈ R3×1. The measurement vector of the ship’s model is given by
z = [x, y, ψ, d1]T , where x, y are measurements of the ship’s cartesian coordinates,
ψ is a measurement of the ship’s orientation and d1 is a measurement of the ship’s
distance from the coast, provided by a coastal sensor (e.g. radar). The vectors of
process and measurement noises are denoted as w and v, respectively. Using the
above state-space representation, state vector x can be estimated by processing a
sequence of output measurements y with the use of a state observer or Kalman
Filtering [46, 149, 631].

It is noted that disturbance terms affecting the ship’s model, as shown in
Eq. (10.10), can be identified with the use of disturbance observers were initially
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conceived with a static observer gain [82, 87, 180, 256, 341, 623]. However they
can be suitably modified so as to be based on dynamic adaptation of the observer
gain through the Kalman Filter recursion [105, 428]. Once the disturbances vector
is estimated, a supervisory control term can be introduced in the control law so as
to annihilate the disturbances effects. A common technique is the Unknown Input
Observer which estimates both the states of the system and the disturbance by aug-
menting a linear design model with a linear disturbance model. Another approach
is based on the Extended State Observer. This has the state and disturbance esti-
mation power of an Unknown Input Observer while being also simpler in tuning.
Another solution to the problem of simultaneous state and disturbance estimation
comes from the Perturbation Observer. The Perturbation observer is suitable not
only for estimation of additive disturbances but also for estimation of unmodeled
variations of the monitored system. In place of static observer gain for the aforemen-
tioned observers one can consider on-line adaptation of the observer’s gain through
the Kalman Filter recursion. Therefore it is possible to design Kalman Filter-based
disturbance observers exhibiting the advantages of Kalman Filter estimation such
as minimization of the estimation error and smoother convergence of the estimated
state variables towards the real state variables.

10.2.6 Sensor Fusion for the Surface Vessel Using Kalman
Filtering

The application of EKF to the fusion of data that come from different sensors of
the monitored surface vessel is examined first. The ship’s kinematic and dynamic
model is considered again. It is assumed that at each time instantmeasurements of the
ship’s cartesian coordinates (x, y) as well as of the ship’s heading ψ are available.
Moreover the distance of the ship from the coast is provided by a coastal sensor
(e.g. radar). Fusing the aforementioned measurements with the use of a stochastic
estimation algorithm, such as the Kalman Filter, can provide an accurate estimate of
the ship’s state vector.

The coordinates of the center of symmetry of the ship with respect to OXY
(inertial coordinates system) are (x, y), while the coordinates of a reference point
i of the ship (e.g. bridge), with respect to O ′X ′Y ′ (body-fixed coordinates system)
are x

′
i , y

′
i (Fig. 10.3). The orientation of the ship’s reference point with respect to

O ′X ′Y ′ is ψ
′
i .

Thus the coordinates of the reference point i with respect to OXY are (xi , yi ) and
its orientation is ψi , and are given by

xi (k) = x(k) + x
′
i sin(ψ(k)) + y

′
i cos(ψ(k))

yi (k) = y(k) − x
′
i cos(ψ(k)) + y

′
i sin(ψ(k))

ψi (k) = ψ(k) + ψi

(10.24)
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Fig. 10.3 Estimation of the ship’s state vector by fusing the measurements of its position and
orientation with the measurement of its distance from the coast provided by a coastal sensor (e.g.
radar)

Each reference plane P j on the coast can be represented by P j
r and P j

n (Fig.
10.3), where (i) P j

r is the normal distance of the plane from the origin O, (ii) P j
n is

the angle between the normal line to the plane and the x-direction. Using the above
notation, the distance of the ship’s reference point i (e.g. bridge), from the reference
plane P j on the coast depends on P j

r , P j
n (see Fig. 10.3) [433]:

d1(k) = P j
r − xi (k)cos(P

j
n ) − yi (k)sin(P j

n ). (10.25)

By definition of the measurement vector one has that the output function γ (x(k)) is
given by

γ (x(k)) = [x(k), y(k), ψ(k), d1(k)]T (10.26)

To obtain the Extended Kalman Filter (EKF), the model of the ship is linearized
about the estimates x̂(k) and x̂−(k) as described in the previous subsection. The
process noise covariance matrix Q(k)∈R12×12 and the measurement noise matrix
R∈R4×4 are taken to be diagonal. The Kalman Filter gain is K∈R12×4. For matrix
γ appearing in the ship’s output equation it holds

γ (x̂(k)) = [x̂(k), ŷ(k), ψ̂(k), P j
r − xi (k))cos(P

j
n ) − yi (k)sin(P j

n )]T (10.27)

The Jacobian of the ship model’s output γ with respect to the state vector x(k) is
thus,
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J T
γ (x̂−(k)) =

⎛
⎜⎜⎜⎜⎝

1 0 0 01×9

0 1 0 01×9

0 0 1 01×9

α41 α42 α43 01×9

⎞
⎟⎟⎟⎟⎠

(10.28)

where α41 = −cos(P j
n ), α42 = −sin(P j

n ) and α43 = {x ′
i cos(ψ − P j

n ) − y
′
i sin(ψ −

P j
n )}. As analyzed in Sect. 10.2.4, the ship can be steered along the reference trajec-

tory using the estimated state vector and control based on feedback linearization of
the ship’s dynamic model. Alternatively nonlinear backstepping control can be used
[462].

For the dynamicmodel of the vessel that is described byEqs. (10.161) and (10.162)
sensor fusion-based state estimation can be performed using Kalman Filtering. As
shown for instance in Eqs. (4.88) and (4.89) the implementation stages of the Kalman
Filter comprise a measurement-update part and a time-update part.

10.2.7 Particle Filter-Based Sensor Fusion for Estimating
the Ship’s Motion and Disturbances

As in the KF case, the Particles Filter consists also of the measurement update (cor-
rection stage) and the time update (prediction stage) [271, 555, 625]. The prediction
stage calculates

p(x(k)|Z−) where Z− = {z(1), z(2), . . . , z(k − 1)} (10.29)

are output measurements up to time instant k − 1. It holds that

p(x(k − 1)|Z−) =
N∑
i=1

wi
k−1δξ i

k−1
(x(k − 1)) (10.30)

while from Bayes formula it holds

p(x(k)|Z−) =
∫

p(x(k)|x(k − 1))p(x(k − 1)|Z−)dx (10.31)

From the above one finally obtains:

p(x(k)|Z−) = ∑N
i=1w

i
k−1δξ i

k−
(x(k))

with ξ i
k− ∼ p(x(k)|x(k − 1) = ξ i

k−1)
(10.32)
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The previous relation means that the state equation of the system is executed N
times, starting from the N previous values of the state vectors x(k − 1) = ξ i

k−1.
Consequently, the value of the state vector which is calculated in the prediction stage
is the result of the weighted averaging of the state vectors which were computed after
running the state equation, starting from the N previous values of the state vectors
ξ i
k−1.
The a-posteriori probability density is found as follows: a new position mea-

surement z(k) is obtained and the objective is to calculate the corrected probability
density

p(x(k)|Z) where Z = {z(1), z(2), . . . , z(k)} (10.33)

From Bayes law it holds that

p(x(k)|Z) = p(Z |x(k))p(x(k))
p(Z)

(10.34)

which can be also written as

p(x(k)|Z) = p(z(k)|x(k))p(x(k)|Z−)∫
p(z(k)|x(k), Z−)p(x(k)|Z−)dx

(10.35)

After intermediate calculations one finally obtains

p(x(k)|Z) =
N∑
i=1

wi
kδξ i

k−
(x(k))

where wi
k = wi

k− p(z(k)|x(k) = ξ i
k−)∑N

j=1w
j
k− p(z(k)|x(k) = ξ

j
k−)

(10.36)

The previous equation denotes the corrected value for the state vector. The recursion
of the PF proceeds in a way similar to the update of the Kalman Filter or the Extended
Kalman Filter [450, 555].

Measurement update: Acquire z(k) and compute the new value of the state vector

p(x(k)|Z) = ∑N
i=1w

i
kδξ i

k−
(x(k))

with corrected weights wi
k = wi

k− p(z(k)|x(k) = ξ i
k−)∑N

j=1w
i
k− p(z(k)|x(k) = ξk−)i

and ξ i
k = ξ i

k−

(10.37)

Resampling: Substitute the degenerated particles. The particles of lowweight factors
are removed and their place is occupied by duplicates of the particleswith highweight
factors.
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Time update: compute state vector x(k + 1) according to the pdf

p(x(k + 1)|Z) = ∑N
i=1w

i
kδξ i

k
(x(k))

where ξ i
k∼p(x(k + 1)|x(k) = ξ i

k)
(10.38)

Knowing the measured value of the ship’s position and orientation [x, y, ψ], one can
assign a weight to each particle (estimate of the state vector [x̂, ŷ, ψ̂]i ), according to
how closely the particle approaches the measured state vector. Similarly, knowing
the distance d1 from the coastal reference surface, and calculating an estimation of
this distance d̂1 for every particle [x̂, ŷ, ψ̂]i , one can assign a weight to the particle
according to the accuracy of estimation of the distance d1. Further averaging of these
two weight values associated with each particle provides the aggregate particle’s
weight which is used in the Particle Filter’s iteration.

10.2.8 Simulation Tests

10.2.8.1 Dynamic Ship Positioning with the Use of Kalman Filtering

The use of Kalman and Particle Filtering for fusing the data that come from the
ship’s navigation instruments with the measurements that come from coastal sensors
provides an estimation of the state vector [x(t), y(t), ψ(t)] and enables the successful
application of nonlinear steering control. In the implementation of the Kalman Filter
the process noise covariancematrixQ∈R12×12 and themeasurement noise covariance
matrix R∈R4×4 were taken to be diagonal with nonzero elements equal to 10e−3. The
number of particles used by the PF was N = 1000. From the simulation experiments
it can be observed that the KF and the PF provide accurate estimations of the external
disturbances. Thus, an auxiliary control term based on the disturbances estimation
can be included in the right hand side of Eq. (10.18), and can compensate for the
disturbances’ effects.

The following cases were examined: (i) Kalman Filtering-based ship’s Dynamic
Positioning (DP) through tracking of a circular trajectory. The associated results are
shown in Figs. 10.4, 10.5, 10.6, 10.7 and 10.8 (ii) Kalman Filtering-based ship’s
DP through tracking of an eight-shaped trajectory. The associated results are shown
in Figs. 10.9, 10.10, 10.11, 10.12 and 10.13 (iii) Kalman Filtering-based ship’s DP
through tracking of a complex curved trajectory. The associated results are shown
in Figs. 10.14, 10.15, 10.16, 10.17 and 10.18 (iv) Particle Filtering-based ship’s DP
through the tracking of a circular trajectory. The associated results are shown in
Figs. 10.19, 10.20, 10.21, 10.22 and 10.23 (v) Particle Filtering-based ship’s DP
through the tracking of an eight-shaped trajectory. The associated results are shown
in Figs. 10.24, 10.25, 10.26, 10.27 and 10.28 (vi) Particle Filtering-based ship’s DP
through the tracking of a complex curved trajectory. The associated results are shown
in Figs. 10.29, 10.30, 10.31, 10.32 and 10.33.
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Fig. 10.4 Tracking of a circular trajectory: a KF-based estimation of the ship’s position along the
x-axis (green line) and desirable x-axis position (red line), b KF-based estimation of the ship’s
velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.5 Tracking of a circular trajectory: a KF-based estimation of the ship’s position along the
y-axis (green line) and desirable y-axis position (red line), b KF-based estimation of the ship’s
velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.6 Tracking of a circular trajectory: a KF-based estimation of the ship’s angle round the
z-axis (green line) and desirable z-axis rotation angle (red line), bKF-based estimation of the ship’s
angular velocity round the z-axis (green line) and desirable angular velocity (red line)

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time

di
st

ur
ba

nc
e 

x

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time

di
st

ur
ba

nc
e 

y

(a) (b)

Fig. 10.7 a Tracking of a circular trajectory: KF-based estimation of the disturbance along the
x-axis (blue line) and real value of the x-axis disturbance (red line), b KF-based estimation of the
disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.8 Tracking of a circular trajectory: a KF-based estimation of the disturbance torque round
the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b Trajectory of the
ship on the xy-plane (green line) and desirable ship trajectory (red line) in the case of KF-based
state estimation
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Fig. 10.9 Tracking of an eight-shaped trajectory: a KF-based estimation of the ship’s position
along the x-axis (green line) and desirable x-axis position (red line), b KF-based estimation of the
ship’s velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.10 Tracking of an eight-shaped trajectory: a KF-based estimation of the ship’s position
along the y-axis (green line) and desirable y-axis position (red line), b KF-based estimation of the
ship’s velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.11 Tracking of an eight-shaped trajectory: aKF-based estimation of the ship’s angle round
the z-axis (green line) and desirable z-axis rotation angle (red line), b KF-based estimation of the
ship’s angular velocity round the z-axis (green line) and desirable angular velocity (red line)
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Fig. 10.12 Tracking of an eight-shaped trajectory: a KF-based estimation of the disturbance along
the x-axis (blue line) and real value of the x-axis disturbance (red line), b KF-based estimation of
the disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.13 Tracking of an eight-shaped trajectory: aKF-based estimation of the disturbance torque
round the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b Trajectory of
the ship on the xy-plane (green line) and desirable ship trajectory (red line) in the case of KF-based
state estimation
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Fig. 10.14 Tracking of a complex-curved trajectory: a KF-based estimation of the ship’s position
along the x-axis (green line) and desirable x-axis position (red line), b KF-based estimation of the
ship’s velocity along the x-axis (green line) and desirable x-axis velocity (red line)

0 10 20 30 40 50
−15

−10

−5

0

5

10

15

time

y

0 10 20 30 40 50
−5

0

5

10

time

dy
/d

t

(a) (b)

Fig. 10.15 Tracking of a complex-curved trajectory: a KF-based estimation of the ship’s position
along the y-axis (green line) and desirable y-axis position (red line), b KF-based estimation of the
ship’s velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.16 Tracking of a complex-curved trajectory: a KF-based estimation of the ship’s angle
round the z-axis (green line) and desirable z-axis rotation angle (red line), b KF-based estimation
of the ship’s angular velocity round the z-axis (green line) and desirable angular velocity (red line)
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Fig. 10.17 Trackingof a complex-curved trajectory:aKF-based estimationof the disturbance along
the x-axis (blue line) and real value of the x-axis disturbance (red line), b KF-based estimation of
the disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.18 Tracking of a complex-curved trajectory: a KF-based estimation of the disturbance
torque round the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b
Trajectory of the ship on the xy-plane (green line) and desirable ship trajectory (red line) in the
case of KF-based state estimation
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Fig. 10.19 Tracking of a circular trajectory: a PF-based estimation of the ship’s position along
the x-axis (green line) and desirable x-axis position (red line), b PF-based estimation of the ship’s
velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.20 Tracking of a circular trajectory: a PF-based estimation of the ship’s position along
the y-axis (green line) and desirable y-axis position (red line), b PF-based estimation of the ship’s
velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.21 Tracking of a circular trajectory: a PF-based estimation of the ship’s angle round the
z-axis (green line) and desirable z-axis rotation angle (red line), b PF-based estimation of the ship’s
angular velocity round the z-axis (green line) and desirable angular velocity (red line)
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Fig. 10.22 Tracking of a circular trajectory: a PF-based estimation of the disturbance along the
x-axis (blue line) and real value of the x-axis disturbance (red line), b PF-based estimation of the
disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.23 Tracking of a circular trajectory: a PF-based estimation of the disturbance torque round
the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b Trajectory of the
ship on the xy-plane (green line) and desirable ship trajectory (red line) in the case of PF-based
state estimation
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Fig. 10.24 Tracking of an eight-shaped trajectory: a PF-based estimation of the ship’s position
along the x-axis (green line) and desirable x-axis position (blue line), b PF-based estimation of the
ship’s velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.25 Tracking of an eight-shaped trajectory: a PF-based estimation of the ship’s position
along the y-axis (green line) and desirable y-axis position (red line), b PF-based estimation of the
ship’s velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.26 Tracking of an eight-shaped trajectory: a PF-based estimation of the ship’s angle round
the z-axis (blue line) and desirable z-axis rotation angle (red line), b PF-based estimation of the
ship’s angular velocity round the z-axis (blue line) and desirable angular velocity (red line)
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Fig. 10.27 Tracking of an eight-shaped trajectory: a PF-based estimation of the disturbance along
the x-axis (green line) and real value of the x-axis disturbance (red line), b PF-based estimation of
the disturbance along the y-axis (green line) and real value of the y-axis disturbance (red line)
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Fig. 10.28 Tracking of an eight-shaped trajectory: a PF-based estimation of the disturbance torque
round the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b Trajectory of
the ship on the xy-plane (green line) and desirable ship trajectory (red line) in the case of PF-based
state estimation
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Fig. 10.29 Tracking of a complex-curved trajectory: a PF-based estimation of the ship’s position
along the x-axis (green line) and desirable x-axis position (red line), b PF-based estimation of the
ship’s velocity along the x-axis (green line) and desirable x-axis velocity (red line)
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Fig. 10.30 Tracking of a complex-curved trajectory: a PF-based estimation of the ship’s position
along the y-axis (green line) and desirable y-axis position (red line), b PF-based estimation of the
ship’s velocity along the y-axis (green line) and desirable y-axis velocity (red line)
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Fig. 10.31 Tracking of a complex-curved trajectory: a PF-based estimation of the ship’s angle
round the z-axis (green line) and desirable z-axis rotation angle (red line), b PF-based estimation
of the ship’s angular velocity round the z-axis (green line) and desirable angular velocity (red line)

10.2.8.2 Evaluation of the Particle Filter-Based State Estimation
and Control

From the simulation experiments it canbe alsonoticed that theParticleFilter performs
equallywell to theKalmanFilter and that it provides accurate estimates of the vessel’s
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Fig. 10.32 Tracking of a complex-curved trajectory: a PF-based estimation of the disturbance along
the x-axis (blue line) and real value of the x-axis disturbance (red line), b PF-based estimation of
the disturbance along the y-axis (blue line) and real value of the y-axis disturbance (red line)
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Fig. 10.33 Tracking of a complex-curved trajectory: a PF-based estimation of the disturbance
torque round the z-axis (blue line) and real value of the z-axis disturbance torque (red line), b
Trajectory of the ship on the xy-plane (green line) and desirable ship trajectory (red line) in the
case of PF-based state estimation
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Table 10.1 Variance using KF and PF for N = 1000

State variable x y ψ

KF 5.24 · 10−2 8.52 · 10−2 1.94 · 10−1

PF 7.03 · 10−2 6.80 · 10−2 7.47 · 10−3

Table 10.2 Particle number, simulation time and variance of ψ̂

No particles 800 1000 1300 1600 1900 2200

PF cycle
time (s)

0.355 0.463 0.577 0.775 0.975 1.097

Variance 2.733 · 10−1 7.473 · 10−3 1.153 · 10−2 1.647 · 10−3 8.905 · 10−2 7.817 · 10−3

state vector. Besides, the Particle Filter is a nonparametric estimator, therefore its
application is not constrained by the assumption about Gaussianmeasurements noise
made in the case of the Kalman Filter. Table 10.1 presents results on the variance
of the state vector estimates, when considering equal noise levels for the EKF and
the PF simulation, and assuming that the number of particles used by the PF was
N = 1000.Themeasure used for evaluating the accuracy of the estimation performed
by the nonlinear filters, as well as the accuracy of tracking of the state estimation-
based control loops was the Root Mean Square Error (RMSE). Alternatively, the
Cramer–Rao Lower Bound (CRLB) could have been considered [129, 181, 639].

The cycle time (runtime) of the Particle Filter with respect to the number of
particles, using the Matlab platform on a PC with a 2GHz Intel Core Duo processor,
is depicted in Table 10.2. Optimization of code of the resampling procedure can
improve to some extent the speed of the algorithm. When it is necessary to use more
particles, improved hardware and parallel processing available to embedded systems
enable real-time implementation of the PF algorithm [53, 340, 611].

When sorting of particles is not performed in the resampling procedure the runtime
of Particle Filtering increases linearly with respect to the number of particles [493].

Finally, the accuracy of tracking of the previously described reference trajectories
was examinedunder progressively increasingdisturbancemagnitude. Itwas observed
that tracking of these trajectories was possible even when the magnitude of the
disturbance became several times larger than the initial disturbance of Figs. 10.7,
10.8, 10.9, 10.10, 10.11, 10.12, 10.13, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19,
10.20, 10.21, 10.22, 10.23, 10.24, 10.25, 10.26, 10.27, 10.28, 10.29, 10.30, 10.31,
10.32 and 10.33. Indicative results for disturbance di = 3, i = 1, . . . , 3 are presented
in Fig. 10.34.
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Fig. 10.34 Tracking of a circular trajectory under raised additive disturbances: a Trajectory of
the ship on the xy-plane (continuous line) and desirable ship trajectory (red line) in the case of
KF-based state estimation, b Trajectory of the ship on the xy-plane (red line) and desirable ship
trajectory (dashed line) in the case of PF-based state estimation

10.3 Flatness-Based Control for the Autonomous
Hovercraft

10.3.1 Outline

Autonomous navigation of unmanned surface vessels (USVs) (such as hovercrafts),
is a significant topic, since it can find use in both security purposes and passenger
transportation [345, 452, 517, 518, 545]. The problem of control and trajectory
tracking for unmanned surface vessels of the hovercraft type is non-trivial because
the associated kinematic model is a complex nonlinear one [20, 128, 179, 522, 566].
A first problem that arises in controller design for unmanned vessels is that trajectory
tracking has to be achieved despite modelling uncertainty and external perturbations
and thus the control loop must exhibit sufficient robustness [297, 498]. Another
problem that has to be dealt with is that the vessels’ model can be underactuated [36,
47, 99, 127, 167, 187, 375, 498, 505, 505, 526, 627]. Indicative results on control
of underactuated dynamical systems can be found in [416].

As previously noted, the problem of autonomous navigation of unmanned surface
vessels has received particular attention, since it can find use in both security purposes
and passenger transportation [2, 111, 452, 517, 518, 545]. In particular, the problem
of control and trajectory tracking for unmanned surface vessels of the hovercraft
type is non-trivial because the associated kinematic model is a complex nonlinear
one [20, 128, 179, 522, 566]. Another problem that has to be dealt with is that the
hovercraft’s model is underactuated [36, 47, 187, 375, 505, 526]. Indicative results
on control of underactuated dynamical systems can be found in [402, 404, 427].
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Moreover, the hovercraft’s model cannot be subjected to undergo static feedback
linearization, but admits only dynamic feedback linearization. This means that to
achieve linearization, the state-space description of the system has to be augmented
by considering as additional state variables the control inputs and their derivatives.
Thus, finally the control input that is applied to the vessel contains integral terms
of the tracking error. The present section proposes a solution to the control problem
of hovercrafts with the use of differential flatness theory and of a nonlinear filtering
method, the so-called Derivative-free nonlinear Kalman Filter.

First it is shown that the hovercraft’s model is differentially flat. This means that
all its state variables and the control inputs can be written as differential functions of
one single algebraic variable which is the flat output [57, 145, 254, 267, 322, 450,
472, 476, 519]. By exploiting the differential flatness properties it is shown that the
system can be transformed into the linear canonical form, through dynamic feedback
linearization. To achieve this, dynamic extension is performed which means that the
state-vector’s dimension is increased by considering as additional state variables
certain control inputs and their derivatives. For the linearized equivalent model of
the system the design of a state feedback controller is possible, through the use of
pole placement techniques. Next, to estimate the nonmeasurable state variables of the
surface vessel and to identify additive disturbance terms that affect the system, the
Derivative-free nonlinear Kalman Filter is redesigned as a disturbance observer [33,
421, 431, 438, 443, 457, 463]. This estimation algorithm consists of the standard
Kalman Filter recursion applied on the linearized equivalent model of the surface
vessel and of an inverse transformation that makes use of differential flatness theory,
which permits to compute estimates of the state variables of the initial nonlinear
system.

Comparing to approximate linearization methods [79, 99, 205, 564], nonlinear
feedback control approaches which are based on exact feedback linearization of the
vessel’s model, are assessed as follows: (i) they avoid cumulative numerical errors
which are due to the approximate linearization of the system dynamics coming from
the application of Taylor series expansion, (ii) the generated control input compen-
sates exclusively for the effects of external perturbations whereas in approximate
linearization methods the control input has to compensate both for internal mod-
elling errors and for exogenous disturbances, (iii) they require a smaller number of
real-time computations for generating the control inputs, because unlike the approx-
imate linearization methods a large part of the controller’s design (e.g. computation
of the linearized equivalent model of the system) is performed out of the loop.

10.3.2 State-Space Description of the Underactuated
Hovercraft

10.3.2.1 State-Space Equation of the Underactuated Hovercraft

The hovercraft’s dynamic and kinematic model stems from the generic ship’s model,
after setting specific values for the elements of the inertia and Coriolis matrix and
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after reducing the number of the available control inputs [452, 517, 518]. The state-
space equation of the nonlinear underactuated hovercraft model (Fig. 10.35) is given
by

ẋ = ucos(ψ) − vsin(ψ)

ẏ = usin(ψ) + vcos(ψ)

ψ̇ = r
u̇ = v·r + τu

v̇ = −u·r − βv
ṙ = τr

(10.39)

where x and y are the cartesian coordinates of the vessel, ψ is the orientation angle,
u is the surge velocity, v is the sway velocity and r is the yaw rate. Coefficient β

is a function of elements of the inertia matrix and hydrodynamic damping matrix
of the vessel. The control inputs are the surge force τu and the yaw torque τr . The
hovercraft’s model is also written in the matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ψ̇

u̇

v̇

ṙ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ucos(ψ) − vsin(ψ)

usin(ψ) + vcos(ψ)

r

vr

−ur − βv

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 0

1 0

0 0

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
τu

τr

)
(10.40)

or equivalently, one has the description

˙̃x = f̃ (x̃) + g̃(x̃)ṽ (10.41)

The system’s state vector is denoted as x̃ = [x, y, ψ, u, v, r ]T , f (x̃)∈R6×1, and
g̃(x̃) = [g̃a, g̃b]∈R6×2, while the control input is the vector ṽ = [τu, τr ]T .

The system’s state vector can be extended by including as additional state variables
the control input τu and its first derivative τ̇u . These are denoted as z1 = τu and
z2 = τ̇u . The extended state-space description of the hovercraft becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ψ̇

u̇

v̇

ṙ

ż1

ż2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ucos(ψ) − vsin(ψ)

usin(ψ) + vcos(ψ)

r

vr + z1

−ur − βv

0

z2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 0

0 0

0 0

0 1

0 0

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
τ̈u

τr

)
(10.42)
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or equivalently, one has the description

ż = f (z) + g(z)ṽ (10.43)

The extended system’s state vector is denoted as z = [x, y, ψ, u, v, r, z1, z2]T .More-
over, one has f (z)∈R8×1, and g(z) = [ga, gb]∈R8×2, while the control input is the
vector ṽ = [τ̈u, τr ]T .

From the previous state-space description it can be noticed that the hovercraft’s
model is an underactuated one. Underactuation in the considered hovercraft’s model
means that, to control the vehicle’s motion and orientation, one has fewer control
inputs that the degrees of freedom. Thus considering the capability of the vessel
to move on the xy plane and also to rotate round its z axis by a yaw angle that
is denoted by ψ one has three degrees of freedom. On the other hand the vessel is
supplied with only two control inputs which are the surge force τu and the yaw torque
τr . In practice, the hovercraft is supplied with a number of fans that inject air mass
backwards and which are installed at its rear part, while being also symmetrically
placed with respect to the vessel’s longitudinal axis (Fig. 10.35). Without loss of
generality one can consider the propulsion scheme of Fig. 10.35. The aggregate surge
force τu is the sum of the two propulsion forces FL and FR , which are generated by
the left and right fan respectively. The yaw torque τr is generated by altering the force
produced by the two fans according to the sign of the desirable turn angle. Thus, to
turn left FL is set to be smaller than FR . On the other hand, to turn right FR is set to
be smaller than FL . In this manner the steering of the vessel (turn by a specific yaw

Fig. 10.35 Diagram of the underactuated hovercraft’s kinematic model
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angle) is achieved without the use of a rudder. Succeeding control of the hovercraft’s
motion and orientation in case of underactuation is very important, for assuring the
efficient navigation of the vessel.

10.3.2.2 Lie Algebra-Based Control of the Underactuated Hovercraft

It will be shown that Lie algebra-based control through the computation of Lie
derivatives is an approach equivalent to differential flatness theory-based control for
the model of the underactuated hovercraft. The state-space model of the hovercraft
that was described in Sect. 10.3.2, and particularly Eq. (10.85), is considered again.
The following linearizing outputs of the system are defined

z1,1 = x z2,1 = y (10.44)

Moreover, the new state variables are defined

z1,2 = L f z1,1 z2,2 = L f z2,1

z1,3 = L2
f z1,1 z2,3 = L2

f z2,1

z1,4 = L3
f z1,1 z2,4 = L3

f z2,1

(10.45)

The system will be brought to a linearized input-output form using

ż1,4 = L4
f z1,1 + Lga L

3
f z1,1τ̈u + Lgb L

3
f z1,1τr

ż2,4 = L4
f z2,1 + Lga L

3
f z2,1τ̈u + Lgb L

3
f z2,1τr

(10.46)

It holds that z1,1 = x . Thus one has

z1,2 = L f z1,1⇒z1,2 = ∂z1,1
∂x f1 + ∂z1,1

∂y f2 + ∂z1,1
∂ψ

f3 + ∂z1,1
∂u f4 + ∂z1,1

∂v f5 + ∂z1,1
∂r f6 +

∂z1,1
∂z1

f7 + ∂z1,1
∂z2

f8⇒z1,2 = 1· f1⇒z1,2 = ucos(ψ) − vsin(ψ).

Similarly, one obtains

z1,3 = L2
f z1,1⇒z1,3 = ∂z1,2

∂x f1 + ∂z1,2
∂y f2 + ∂z1,2

∂ψ
f3 + ∂z1,2

∂u f4 + ∂z1,2
∂v f5 + ∂z1,2

∂r f6 +
∂z1,2
∂z1

f7+ ∂z1,2
∂z2

f8⇒z1,3 = (−usin(ψ)−vcos(ψ)) f3+cos(ψ) f4−sin(ψ) f5⇒z1,3 =
(−usin(ψ)−vcos(ψ))r+cos(ψ)(vr+z1)−sin(ψ)(−ur−βv)⇒z1,3 = τucos(ψ)+
βvsin(ψ).

Equivalently, it holds that

z1,4 = L3
f z1,1⇒z1,4 = L f z1,3⇒z1,4 = ∂z1,3

∂x f1+ ∂z1,3
∂y f2+ ∂z1,3

∂ψ
f3+ ∂z1,3

∂u f4+ ∂z1,3
∂v f5+

∂z1,3
∂r f6 + ∂z1,3

∂z1
f7 + ∂z1,3

∂z2
f8,
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while after intermediate operations one obtains

z1,4 = (−τusin(ψ)+βvcos(ψ)) f3+βsin(ψ) f5+cos(ψ) f7⇒z1,4 = (−τusin(ψ)+
βcos(ψ))r +βsin(ψ)(−ur +βv)+cos(ψ)z2⇒z1,4 = (τ̇usin(ψ)+βvcos(ψ))r +
βsin(ψ)(−ur − βv) + cos(ψ)z2

or, using the extended state vector variables notation one has

z1,4 = z2cos(ψ) − z1sin(ψ)r − βursin(ψ)−
−β2vsin(ψ) + βvcos(ψ)r

(10.47)

It also holds that

ż1,4 = L4
f z1,1 + Lga L

3
f z1,1τ̈u + Lgb L

3
f z1,1τr⇒

ż1,4 = L f z1,4 + Lga z1,4τ̈u + Lgb z1,4τr
(10.48)

where
L f z1,4 = ∂z1,4

∂x f1 + ∂z1,4
∂y f2 + ∂z1,4

∂ψ
f3 + ∂z1,4

∂u f4+
+ ∂z1,4

∂v f5 + ∂z1,4
∂r f6 + ∂z1,4

∂z1
f7 + ∂z1,4

∂z2
f8

(10.49)

which gives

L f z1,4 = (−z2sin(ψ) − z1cos(ψ)r − βurcos(ψ) − β2vcos(ψ) − βvsin(ψ)r)r +
(−βrsin(ψ))(vr + z1) + (−β2sin(ψ) + βcos(ψ)r)(−ur + βv) + (−z1sin(ψ) −
βvsin(ψ) + βvcos(ψ))0 + (−sin(ψ)r)z2

while after some intermediate computations one obtains

L f z1,4 = −2z2sin(ψ)r − z1cos(ψ)r2−
−βvr2sin(ψ) − βz1rsin(ψ)−
−βur2cos(ψ) + β2ursin(ψ)−

−β3vsin(ψ) − β2vrcos(ψ) − βur2cos2(ψ) + β2vrcos(ψ)

−βvr2sin(ψ)

(10.50)

In a similar manner one computes

Lga z1,4 = ∂z1,4
∂x ga1 + ∂z1,4

∂y ga2 + ∂z1,4
∂ψ

ga3 + ∂z1,4
∂u ga4 + ∂z1,4

∂v ga5 + ∂z1,4
∂r ga6 + ∂z1,4

∂z1
ga7 +

∂z1,4
∂z2

ga8Lga z1,4 = ∂z1,4
∂z2

⇒Lga z1,4 = cos(ψ)

and also

Lgb z1,4 = ∂z1,4
∂x gb1 + ∂z1,4

∂y gb2 + ∂z1,4
∂ψ

gb3 + ∂z1,4
∂u gb4 + ∂z1,4

∂v gb5 + ∂z1,4
∂r gb6 + ∂z1,4

∂z1
gb7 +

∂z1,4
∂z2

gb8Lgb z1,4 = ∂z1,4
∂r ⇒Lgb z1,4 = −z1sin(ψ) − βusin(ψ) + βvcos(ψ)
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In an equivalent way, and using that z2,1 = y2 = y one can compute

z2,2 = L f z2,1⇒z2,2 = ∂z2,1
∂x f1 + ∂z2,1

∂y f2 + ∂z2,1
∂ψ

f3 + ∂z2,1
∂u f4 + ∂z2,1

∂v f5 + ∂z2,1
∂r f6 +

∂z2,1
∂z1

f7 + ∂z2,1
∂z2

f8⇒z2,2 = 1· f2⇒z2,2 = usin(ψ) + vcos(ψ)

Equivalently, one has

z2,3 = L2
f z2,1⇒z2,3 = L f z2,2⇒z2,3 = ∂z2,2

∂x f1+ ∂z2,2
∂y f2+ ∂z2,2

∂ψ
f3+ ∂z2,2

∂u f4+ ∂z2,2
∂v f5+

∂z2,2
∂r f6 + ∂z2,2

∂z1
f7 + ∂z2,2

∂z8
f8⇒z2,3 = (ucos(ψ) − vsin(ψ))r + sin(ψ)(vr + z1) +

cos(ψ)(−ur − βv)⇒z2,3 = z1sin(ψ) + βvcos(ψ)

In an equivalent manner one obtains

z2,4 = L3
f z2,1⇒z3,3 = L f z2,3 ⇒ z2,4 = ∂z2,3

∂x f1 + ∂z2,3
∂y f2 + ∂z2,3

∂ψ
f3 + ∂z2,3

∂u f4 +
∂z2,3
∂v f5+ ∂z2,3

∂r f6+ ∂z2,3
∂z1

f7+ ∂z2,3
∂z2

f8⇒z2,4 = (cos(ψ)−βvsin(ψ)) f3+βcos(ψ) f5+
sin(ψ) f7⇒z2,4 = (z1cos(ψ) − βvsin(ψ))r + (βcos(ψ)(−ur − βv) + sin(ψ)z2⇒
z2,4 = z1cos(ψ)r − βvrsin(ψ) − βurcos(ψ) + β2vcos(ψ) + z2sin(ψ)

Moreover, it holds that

ż2,4 = L4
f z2,1 + Lga L

3
f z2,1τ̈u + Lgb L

3
f z2,1τr (10.51)

where

L4
f z2,1 = L f z2,4⇒L4

f z2,1 = ∂z2,4
∂x f1 + ∂z2,4

∂y f2 + ∂z2,4
∂ψ

f3+
+ ∂z2,4

∂u f4 + ∂z2,4
∂v f5 + ∂z2,4

∂r f6 + ∂z2,4
∂z1

f7 + ∂z2,4
∂z2

f8⇒
(10.52)

which gives

L4
f z2,1 = [−z1sin(ψ)r − βvrcos(ψ) + βursin(ψ) − β2vsin(ψ) + z2cos(ψ)]r +

[−βrcos(ψ)](vr + z1) + [−βrsin(ψ) + β2cos(ψ)](−ur − βv) + [z1cos(ψ) −
βvsin(ψ) − βucos(ψ)]0 + [cos(ψ)r ]z2 + [sin(ψ)]0
and after additional computations one arrives at the form

L4
f z2,1 = −z1r2sin(ψ)−βvr2cos(ψ)+βur2sin(ψ)−β2vrsin(ψ)+ z2rcos(ψ)−

−βvr2cos(ψ) − βr z1cos(ψ) + βur2sin(ψ) − β2rvsin(ψ) − β2urcos
(ψ) + β2vcos(ψ) + z2rcos(ψ)

Proceeding as before, one computes

Lga L
3
f z2,1 = Lga z2,4⇒Lga L

3
f z2,1 = ∂z2,4

∂x ga1+ ∂z2,4
∂y ga2+ ∂z2,4

∂ψ
ga3+ ∂z2,4

∂u ga4+ ∂z2,4
∂v ga5+

∂z2,4
∂v ga6 + ∂z2,4

∂z1
ga7 + ∂z2,4

∂z2
ga8⇒Lga L

3
f z2,1 = ∂z2,4

∂z2
⇒Lga L

3
f z2,1 = sin(ψ)

Equivalently, one computes

Lgb L
3
f z2,1 = Lgb z2,4⇒Lgb L

3
f z2,1 = ∂z2,4

∂x gb1 + ∂z2,4
∂y gb2 + ∂z2,4

∂ψ
gb3 + ∂z2,4

∂u gb4 +
∂z2,4
∂v gb5+ ∂z2,4

∂r gb6+ ∂z2,4
∂z1

gb7+ ∂z2,4
∂z2

gb8⇒Lgb L
3
f z2,1 = ∂z2,4

∂v ⇒Lgb L
3
f z2,1 = z1cos(ψ) =

βvsin(ψ) − βucos(ψ)
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The aggregate dynamics of the input-output linearized system is

x (4) = L4
f z1,1 + Lga L

3
f z1,1τ̈u + Lgb L

3
f z1,1τr

y(4) = L4
f z2,1 + Lga L

3
f z2,1τ̈u + Lgb L

3
f z2,1τr

(10.53)

By defining the new control inputs

v1 = L4
f z1,1 + Lga L

3
f z1,1τ̈u + Lgb L

3
f z1,1τr

v2 = L4
f z2,1 + Lga L

3
f z2,1τ̈u + Lgb L

3
f z2,1τr

(10.54)

one arrives at the following description for the input-output linearized system

x (4) = v1

y(4) = v2
(10.55)

which can be also written in the state-space form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1,1

ż1,2

ż1,3

ż1,4

ż2,1

ż2,2

ż2,3

ż2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1

z1,2

z1,3

z1,4

z2,1

z2,2

z2,3

z2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
v1

v2

)
(10.56)

while the associated measurement equation is

(
zm1
zm2

)
=

(
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1,1

z1,2

z1,3

z1,4
z2,1
z2,2
z2,3
z2,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.57)

A suitable feedback control law for the linearized system is

v1 = x (4)
d − k11(x

(3) − x (3)
d ) − k12(ẍ − ẍd) − k13(ẋ − ẋd) − k14(x − xd), and v2 =

y(4)
d − k21(y

(3) − y(3)
d ) − k22(ÿ − ÿd) − k23(ẏ − ẏd) − k24(y − yd).
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One can also compute the control input that is finally applied to the hovercraft model.
It holds that

v̄ = f̃ + M̃ṽ (10.58)

where matrices and vectors v̄, f̃ , M̃ and ṽ are defined as

v̄ =
(
v1

v2

)
f̃ =

(
L4

f z1,1

L4
f z2,1

)

M̃ =
(
Lg,a L3

f z1,1 Lgb L
3
f z1,1

Lg,a L3
f z2,1 Lg,bL3

f z2,1

)
ṽ =

(
τ̈u

τr

) (10.59)

The above equation can be solved with respect to ṽ, which finally gives

ṽ = M̃−1(v̄ − f̃ ) (10.60)

The vector ũ is the control input that is finally applied to the system, which finally
means that the control signal contains integrals of the tracking error.

10.3.3 Differential Flatness Properties of the Hovercraft’s
Model

It can be proven that the model of the underactuated vessel (hovercraft) given in
Eq. (10.39) is a differentially flat one. This means that all its state variables and
the control inputs can be written as functions of a single variable, which is the flat
output. In the hovercraft’s case the flat output is the vector of the vessel’s cartesian
coordinates, that is

ỹ = [y1, y2] = [x, y] (10.61)

It holds that

ẍ = u̇cos(ψ) − u·sin(ψ)·ψ̇ − v̇sin(ψ) − v·cos(ψ)ψ̇

ÿ = u̇sin(ψ) + u·cos(ψ)·ψ̇ + v̇cos(ψ) − v·cos(ψ)ψ̇
(10.62)

Moreover, it holds that

ẍ + β ẋ = cos(ψ)(u̇ − vψ̇ + βu) + sin(ψ)(−uψ̇ − v̇ − βv)

ÿ + β ẏ = cos(ψ)(v̇ + uψ̇ + βv) + sin(ψ)(−vψ̇ + u̇ + βu)
(10.63)
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Using Eqs. (10.63) and (10.39), and after computing that

uψ̇ + v̇ + βv = u·r − ur − βv + βv = 0

u̇ − vψ̇ + βu = vr + τu − vr + βu = τu + βu
(10.64)

one obtains

ÿ + β ẏ

ẍ + β ẋ
= cos(ψ)0 + sin(ψ)(τu + βu)

cos(ψ)(τu + βu) − sin(ψ)0
⇒

ÿ + β ẏ

ẍ + β ẋ
= tan(ψ)⇒ψ = atan−1(

ÿ + β ẏ

ẍ + β ẋ
)

(10.65)

Thus, through Eq. (10.65) it is proven that the state variable ψ (heading angle of the
vessel) is a function of the flat output and of its derivatives.

From Eq. (10.63) one also has that

(ẍ + β ẋ)2 + (ÿ + β ẏ)2 = (τu + βu)2 (10.66)

Moreover, it holds that

ẋ(ẍ + β ẋ) = (ucos(ψ) − vsin(ψ))cos(ψ)(τu + βu)

ẏ(ÿ + β ẏ) = (usin(ψ) + vcos(ψ))sin(ψ)(τu + βu)
(10.67)

while using Eq. (10.66) and after intermediate computations one finally obtains

ẋ(ẍ + β ẋ) + ẏ(ÿ + β ẏ) = u(τu + βu) (10.68)

Dividing Eq. (10.68) with the square root of Eq. (10.66) one obtains

ẋ(ẍ + β ẋ) + ẏ(ÿ + β ẏ)√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

= u(τu + βu)

(τu + βu)
(10.69)

which finally give

u = ẋ(ẍ + β ẋ) + ẏ(ÿ + β ẏ)√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

(10.70)

It also holds that

ẏ ẍ − ẋ ÿ = (usin(ψ) + vcos(ψ))(u̇cos(ψ) − usin(ψ)ψ̇ − v̇sin(ψ) − vcos(ψ)ψ̇) −
−(ucos(ψ) − vsin(ψ))(u̇sin(ψ) + ucos(ψ)ψ̇ + v̇cos(ψ) − vsin(ψ)ψ̇)

which after intermediate computations and substitution of the derivative variables
from Eq. (10.39) give
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ẏ ẍ − ẋ ÿ = v(βu + τu) (10.71)

From Eqs. (10.71) and (10.66) one obtains

v = ẏ ẍ − ẋ ÿ√
(ẍ + β ẋ)2 + ÿ + β ẏ)2

(10.72)

From the state-space equations it holds that

r = ψ̇ (10.73)

where from Eq. (10.65) one has that

ψ = atan−1

(
ÿ + β ẏ

ẍ + β ẋ

)
(10.74)

which means that r is also a function of the flat output and of its derivatives. This
can be also confirmed analytically. Indeed from Eq. (10.74) it holds that

cos2(ψ)ψ̇ + sin2(ψ)ψ̇

cos2(ψ)
= (y(3) + βψ̈)(ẍ + β ẋ) − (ÿ + β ẏ)(x (3) + β ẍ)

(ẍ + β ẋ)2

(10.75)
which also gives

ψ̇

cos2(ψ)
= (y(3) + βψ̈)(ẍ + β ẋ) − (ÿ + β ẏ)(x (3) + β ẍ)

(ẍ + β ẋ)2
(10.76)

while using that
1

cos2 ψ
= tan2(ψ) + 1 (10.77)

one obtains that

cos2 ψ = (ẍ + β ẋ)2

(ẍ + β ẋ)2 + (ÿ + β ẏ)2
(10.78)

Thus, from Eqs. (10.76) and (10.73) one has that

r = ψ̇⇒r = cos2(ψ)
(y(3) + βψ̈)(ẍ + β ẋ) − (ÿ + β ẏ)(x (3) + β ẍ)

(ẍ + β ẋ)2
(10.79)

which after intermediate operations gives

r = y(3)(ẍ + β ẋ) − x (3)(ÿ + β ẏ) − β2(ẍ ẏ − ÿ ẋ)

(ẍ + β ẋ)2 + (ÿ + β ẏ)2
(10.80)
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Equivalently, from the state-space equations one has that

τu = u̇ − v·r⇒τu = d

dt

{
ẋ(ẍ + β ẋ) + ẏ(ÿ + β ẏ)√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

}
−

− ẏ ẍ − ẋ ÿ√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

· y
(3)(ẍ + β ẋ) − x (3)(ÿ + β ẏ) − β2(ẍ ẏ − ÿ ẋ)

(ẍ + β ẋ)2 + ÿ + β ẏ)2

(10.81)
which after intermediate operations gives

τu = ẍ(ẍ + β ẋ) + ÿ(ÿ + β ẏ)√
(ẍ + β ẋ)2 + (ÿ + β ẏ)2

(10.82)

Finally, for the control input τr it holds that τr = ṙ and using Eq. (10.80) this implies
that τr is also a function of the flat output and of its derivatives. This can be also
shown analytically according to the following:

τr = ṙ⇒τr =
y(4)(ẍ + βx) − x (4)(ÿ + β ẏ) + β(y(3) ẍ − x (3) ÿ) − β2(x (3) ẏ − y(3) ẋ)

[(ẍ + β ẋ)2 + (ÿ + β ẏ)2]·
−2

[y(3)(ẍ + β ẋ) − x3(ÿ + β ẏ) − β2(ẍ ẏ − ÿ ẋ)]
[(ẍ + β ẋ)2 + (ÿ + β ẏ)2]2 ·

·{(ẍ + β ẋ)(x (3) + β ẍ) + (ÿ + β ẏ)(y(3) + β ÿ)}

(10.83)

Through Eq. (10.83) it is confirmed that that all state variables and the control input
of the hovercraft’s model can be written as functions of the flat output and of its
derivatives. Consequently, the vessel’s model is a differential flat one.

10.3.4 Flatness-Based Control of the Hovercraft’s Model

Next, it will be shown that a flatness-based controller can be developed for the
hovercraft’s model. It has been shown that it holds

ẍ = u̇cos(ψ) − usin(ψ)ψ̇ − v̇sin(ψ) − vcos(ψ)ψ̇⇒ẍ = (vr + τu)cos(ψ) −
usin(ψ)r − (−ur − βv)sin(ψ) − vcos(ψ)r⇒ẍ = τucos(ψ) + βvsin(ψ)

By differentiating once more with respect to time and after intermediate operations
one finally obtains

x (3) = τ̇ucos(ψ) − τusin(ψ)r+
+β(−ur − βv)sin(ψ) + βvcos(ψ)r

(10.84)
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Similarly one has

ÿ = u̇sin(ψ) + ucos(ψ)ψ̇ + v̇cos(ψ) − vsin(ψ)ψ̇⇒ÿ = (vr + τu)sin(ψ) +
ucos(ψ)r + (−ur − βv)cos(ψ) − vsin(ψ)r⇒ÿ = τusin(ψ) − βvcos(ψ)

As in Sect. 10.3.2, the state vector of the system is extended so as to include as new
state variables the control input τu and its first derivative τ̇u . The new state variables
are denoted as z1 = τu and ż1 = τ̇u . The extended state-space description of the
system becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ẋ

ẏ

ψ̇

u̇

v̇

ṙ

ż1

ż2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ucos(ψ) − vsin(ψ)

usin(ψ) + vcos(ψ)

r

vr + z1

−ur − βv

0

z2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

0 0

0 0

0 0

0 0

0 1

0 0

1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
τ̈u

τr

)
(10.85)

or equivalently, one has the description

ż = f (z) + g(z)ṽ (10.86)

The system’s state vector is again denoted as z = [x, y, ψ, u, v, r, z1, z2]T , f (z)∈
R8×1, and g(z) = [ga, gb]∈R8×2, while the control input is the vector ṽ = [τ̈u, τr ]T .

The extended state-space description of the system given in Eq. (10.85) or in its
compact form described by Eq. (10.86), is used. By differentiating once more with
respect to time and after intermediate operations one finally obtains

y(3) = z2sin(ψ) + z1cos(ψ)r + βurcos(ψ)+
+β2vcos(ψ) + βvsin(ψ)r

(10.87)

It can be noticed that in the equations of the third order derivatives for both x and
y only the control input τu and its derivative τ̇u appear, while the control input
τr is missing. Therefore, differentiation of x (3) once more with respect to time is
performed. This gives

x (4) = τ̈ucos(ψ) − 2z2sin(ψ)r − z1cos(ψ)r2 − z1sin(ψ)τr − βvr2sin(ψ) −
βz1rsin(ψ) − βuτr sin(ψ) − βur2cos(ψ) + β2ursin(ψ) − β3vsin(ψ) − β2vrcos
(ψ) − βur2cos(ψ) + β2vrcos(ψ) − βvr2sin(ψ) + βvcos(ψ)τr

while after substituting the time derivative according to Eq. (10.39) and after regroup-
ing terms one obtains a description of the form
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x (4) = [−2z2sin(ψ)r − z1cos(ψ)r2 − βvr2sin(ψ) − βz1rsin(ψ)−
−βur2cos(ψ) + β2ursin(ψ) − β3vsin(ψ) − β2vrcos(ψ)−
−βur2cos(ψ) + β2vrcos(ψ) − βvr2sinψ] + [cos(ψ)]τ̈u+

+[−z1sin(ψ) − βusin(ψ) + βvcos(ψ)]τr
Consequently, the fourth derivative of x is finally written in the form

x (4) = L4
f y1 + Lga L

3
f y1τ̈u + Lgb L

3
f y1τr (10.88)

where

L4
f y1 = −2z2sin(ψ)r − z1cos(ψ)r − βvr2sin(ψ) − βz1rsin(ψ)−

−βur2cos(ψ) + β2ursin(ψ) − β3vsin(ψ) − β2vrcos(ψ) − βur2cos(ψ)+
β2vrcos(ψ) − βvr2sinψ

Lga L
3
f y1 = cos(ψ) (10.89)

Lgb L
3
f y1 = −z1sin(ψ) − βusin(ψ) + βvcos(ψ) (10.90)

In a similar manner, differentiating once more with respect to time the expression
about y(3) one gets

y(4) = ż1cos(ψ)r − z1sin(ψ)ψ̇r + z1cos(ψ)ṙ−
−β v̇rsin(ψ) − βvṙ sin(ψ) − βvrcos(ψ)ψ̇−
−βu̇rcos(ψ) − βuṙcos(ψ) + βursin(ψ)ψ̇+

+β2v̇cos(ψ) − β2vsinψψ̇+
+ż2sin(ψ) + z2cos(ψ)ψ̇

(10.91)

while after substituting the time derivative according to Eq. (10.39) and after regroup-
ing terms one obtains a description of the form

y(4) = [z2rcos(ψ) − z1r2sin(ψ) + βur2sin(ψ) − β2vrsin(ψ) − βvr2cos(ψ)]
−βvr2cos(ψ) − βz1rcos(ψ) + βur2sin(ψ)−

−βurcos(ψ) + β2vcos(ψ) − β2vrsin(ψ) + z2rcos(ψ)]+
+[sin(ψ)]τ̈u + [z1cos(ψ) − βvsin(ψ) − βucos(ψ)]τr

Thus y(4) can be also written in the form

y(4) = L4
f y2 + Lga L

3
f y2τ̈u + Lgb L

3
f y2τr (10.92)
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where L4
f y2 = [z2rcos(ψ) − z1r2sin(ψ) + βur2sin(ψ) − β2vrsin(ψ) − βvr2cos

(ψ)] − βvr2cos(ψ) − βz1rcos(ψ) + βur2sin(ψ) − βurcos(ψ) + β2vcos(ψ) −
β2vrsin(ψ) + z2rcos(ψ)], and

Lga L
3
f y2 = sin(ψ) (10.93)

Lgb L
3
f y2 = z1cos(ψ) − βvsin(ψ) − βucos(ψ) (10.94)

Consequently, the aggregate input-output linearized description of the system
becomes

x (4) = L4
f y1 + Lga L

3
f y1τ̈u + Lgb L

3
f y1τr

y(4) = L4
f y2 + Lga L

3
f y2τ̈u + Lgb L

3
f y2τr

(10.95)

while by defining the new control inputs

v1 = L4
f y1 + Lga L

3
f y1τ̈u + Lgb L

3
f y1τr

v2 = L4
f y2 + Lga L

3
f y2τ̈u + Lgb L

3
f y2τr

(10.96)

the following description for the input-output linearized hovercraft model is obtained

x (4) = v1

y(4) = v2
(10.97)

For the dynamics of the linearized equivalent model of the system the following new
state variables can be defined

z1,1 = x z1,2 = ẋ z1,3 = ẍ z1,4 = x (3)

z2,1 = y z2,2 = ẏ z2,3 = ÿ z2,4 = y(3)
(10.98)

and the state-space description of the system becomes

ż = Az + Bv

zm = Cz
(10.99)

or equivalently
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1,1

ż1,2

ż1,3

ż1,4

ż2,1
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while the associated measurement equation is
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)
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A suitable feedback control law for the linearized system is

v1 = x (4)
d − k11(x

(3) − x (3)
d ) − k12(ẍ − ẍd) − k13(ẋ − ẋd) − k14(x − xd), and v2 =

y(4)
d − k21(y

(3) − y(3)
d ) − k22(ÿ − ÿd) − k23(ẏ − ẏd) − k24(y − yd)

One can compute again the control input that is finally applied to the hovercraft
model. It holds that

v̄ = f̃ + M̃ṽ (10.102)

where matrices and vectors v̄, f̃ , M̃ and ṽ are defined as

v̄ =
(
v1

v2

)
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(
L4

f z1,1

L4
f z2,1
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M̃ =
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Lg,a L3

f z1,1 Lgb L
3
f z1,1

Lg,a L3
f z2,1 Lg,bL3

f z2,1

)
ṽ =

(
τ̈u

τr

) (10.103)

The above equation can be solved with respect to ũ, which finally gives

ṽ = M̃−1(v̄ − f̃ ) (10.104)
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The vector ṽ is the control input that is finally applied to the system, which finally
means that the control signal contains integrals of the tracking error.

For the linearized equivalent model of the system it is possible to perform state
estimation using the Derivative-free nonlinear Kalman Filter. Before computing the
Kalman Filter stages, the previously defined matrices A, B and C are substituted
by their discrete-time equivalents Ad , Bd and Cd . This is done through common
discretization methods. The recursion of the filter’s algorithm consists of two stages:

Measurement update:

K (k) = P−CT
d [P−CT

d P + R]−1

ẑ(k) = ẑ−(k) − K (k)[Cdz(k) − Cd ẑ−(k)]
P(k) = P−(k) − K (k)Cd P−(k)

(10.105)

Time update:
P−(k + 1) = AT

d P(k)Ad + Q(k)

ẑ−(k + 1) = Ad ẑ(k) + Bdu(k)
(10.106)

Moreover, by using the nonlinear transformations which are provided by differential
flatness theory according to Eqs. (10.70), (10.72), (10.74) and (10.79) one can obtain
estimates of the state variables of the initial nonlinear hovercraft model.

10.3.5 Disturbances’ Compensation with the Use
of the Derivative-Free Nonlinear Kalman Filter

Next, a Kalman Filtering method will be developed for estimating at the same time:
(i) the non-measurable state vector elements of the hovercraft and (ii) the external
perturbations that affect the vessel’s model. It is assumed that the input-output lin-
earized equivalent model of the system, is subject to disturbance terms which express
the effects of both modeling uncertainty and of external perturbations. Thus one has

x (4) = v1 + d̃1

y(4) = v2 + d̃2
(10.107)

It is considered that the disturbance signals are equivalently represented by their time
derivatives (up to order n) and by the associated initial conditions (however, since
disturbances are estimated with the use of the Kalman Filter, finally the dependence
on knowledge of initial conditions becomes obsolete). It holds that

d̃(n)
1 = fd1 d̃

(n)
2 = fd2 (10.108)

The system’s state vector is extended by including as additional state variables the
disturbances’ derivatives. Thus, taking that the derivative’s order is n = 2 one has
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zd,1 = d̃1 zd,2 = ˙̃d1 zd,3 = d̃2 zd,4 = ˙̃d2 (10.109)

and the extended state-space description of the hovercraft becomes
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żd,1
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while the associated measurement equation is

(
z1,1
z2,1

)
=

(
1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

)
ze (10.111)

where ze = [z1,1, z1,2, z1,3, z1,4, z2,1, z2,2, z2,3, z2,4, zd,1, zd,2, zd,3, zd,4]T is the
extended state vector. Thus, the extended state-space description of the hovercraft
model takes the form

że = Aeze + Beve

zmeas
e = Ceze

(10.112)

For the extended state-space description of the systemone can design a state estimator
of the form ˙̂ze = Aoze + Bove + K (zmeas

e − Coẑe)

ẑmeas
e = Coẑe

(10.113)

where for the matrices Ao and Co it holds Ao = Ae and Co = Ce, while for matrix
Bo one has

BT
o =

⎛
⎜⎜⎝
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎠ (10.114)
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Again the Kalman Filter recursion provides joint estimation of the non-measurable
state vector elements, of the disturbances’ inputs and of their derivatives. Prior to
computing the Kalman Filter stages, the previously defined matrices A, B and C are
substituted by their discrete-time equivalents Aed , Bed and Ced . This is done through
common discretization methods. The recursion of the filter’s algorithm consists of
two stages. Thus, one has

Measurement update:

K (k) = P−
e CT

ed [P−
e Ced

T Pe + Re]−1

ẑe(k) = ẑ−
e (k) − K (k)[Ced ze(k) − Ced ẑe

−(k)]
Pe(k) = P−

e (k) − K (k)Ced P
−
e (k)

(10.115)

Time update:
P−
e (k + 1) = Aed

T Pe(k)Aed + Qe(k)

ẑ−
e (k + 1) = Aed ẑe(k) + Bed ve(k)

(10.116)

For compensating the disturbances’ effects, the modified control input that is applied
to the system is

v1 = x (4)
d − k11(x

(3) − x (3)
d ) − k12(ẍ − ẍd) − k13(ẋ − ẋd) − k14(x − xd) − ẑd,1 and

v2 = y(4)
d − k21(y

(3) − y(3)
d ) − k22(ẍ − ÿd) − k23(ẏ − ẏd) − k24(y − yd) − ẑd,2.

10.3.6 Simulation Tests

The performance of the flatness-based control method for the underactuated hover-
craft was evaluated in the case of several reference setpoints. The associated results
are presented in Figs. 10.36, 10.37, 10.38, 10.39 and 10.40. It can be observed that in
all cases the nonlinear feedback controller achieved fast and accurate tracking of the
reference setpoints. The Derivative-free nonlinear Kalman Filter enabled estimation
of the nonmeasurable variables of the system’s state-vector which were needed for
the implementation of the feedback control scheme. Moreover, by using the inverse
transformation that was provided by differential flatness theory it was possible to
obtain estimates of the state variables of the initial nonlinear system.

The convergence of the state variables of the hovercraft (position x , y to the
desirable setpoints is shown in Figs. 10.36a, 10.37a, 10.38a, 10.39a and 10.40a. The
estimation of the disturbance terms that were applied to the hovercraft model are
depicted in Figs. 10.36b, 10.37b, 10.38b, 10.39b and 10.40b, respectively. It can be
noticed again that the proposed feedback nonlinear control scheme achieved fast and
accurate tracking to these setpoints.

For the underactuated hovercraft one can succeed exactly the same motion and
orientation control as in the case of the fully actuated vessel. Therefore, it is possible
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Fig. 10.36 Reference path 1 a Trajectory tracking for states x , y of the underactuated hovercraft,
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter
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Fig. 10.37 Reference path 2 a Trajectory tracking for states x , y of the underactuated hovercraft,
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter

for the hovercraft to track complicated reference paths with excellent accuracy while
keeping also the desirable velocity. This has been demonstrated through a series
of examples, in the simulation tests section of the manuscript (Figs. 10.36, 10.37,
10.38, 10.39 and 10.40). It is noteworthy that the dynamic feedback linearization
procedure which has been implemented on the hovercraft’s model, results in the
canonical form description of Eqs. (10.100) and (10.101) which is confirmed to



552 10 Unmanned Surface Vessels

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y 0 10 20 30 40
−0.5

0

0.5

1

1.5

time

d1

0 10 20 30 40
−0.1

0

0.1

0.2

0.3

time

d/
dt

 d
1

0 10 20 30 40
−1

0

1

2

time
d2

0 10 20 30 40
−0.2

0

0.2

0.4

0.6

time

d/
dt

 d
2

(a) (b)

Fig. 10.38 Reference path 3 a Trajectory tracking for states x , y of the underactuated hovercraft,
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter
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Fig. 10.39 Reference path 4 a Trajectory tracking for states x , y of the underactuated hovercraft,
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter

be controllable. Practically, this means that under the proposed control scheme the
vessel can reach any point in its motion plane and can track any reference path.

The possibility for the appearance of singularities in the computation of the control
signal is present in all static or dynamic feedback linearization algorithms which
arrive at a transformed control input of the form v = f (x, t) + g(x, t)u, that is
u = g(x, t)−1[v − f (x, t)]. There are two cases: (i) due to the inherent model of
g(x, t) its inverse never becomes 0. In such a case the singularity problem is avoided,
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Fig. 10.40 Reference path 5 a Trajectory tracking for states x , y of the underactuated hovercraft,
b Estimation of disturbance inputs affecting the hovercraft, with the use of the Derivative-free
nonlinear Kalman Filter

(ii) for certain areas of the state vector space x∈Rn the zeroing of g(x, t)−1 cannot
be excluded. For the latter case the avoidance of singularities can be succeeded by a
state variables transformation into a new state-space representation which does not
include any points of singularity.

The presented simulation experiments have been performed under the assumption
that the hovercraft was subject to external disturbances such as wind or current. The
proposed control scheme is robust to modeling uncertainties and external perturba-
tions. This is a prerequisite in the design of control systems for underactuated surface
vessels [127, 167, 297, 345, 498, 627]. First, it has been proven that the feedback
control applied on the input-output linearized model of the hovercraft achieved the
placement of all poles of the control loop in the left complex semiplane. Next, it can
be confirmed that the extended state-space model of the hovercraft, which contains
disturbances as additional state variables, has multiple poles at the origin (multiple
poles at zero). This means that by output feedback one can achieve infinite gain
margin and a sufficiently large phase margin. With the use of the Derivative-free
nonlinear Kalman Filter it became possible to identify the perturbation and model-
ing uncertainty terms in real-time and subsequently to compensate for them through
the inclusion of an additional term in the control signal. This amendment in the feed-
back control scheme provided the control loop with elevated robustness. Finally, it
is worth mentioning that the proposed control scheme had an excellent performance
although it was not possible to measure directly all elements of the state vector (only
the cartesian coordinates of the vessel could be measured) and several state variables
had to be estimated with the use of filtering.

The model of the disturbances considered in this section is quite realistic. The dis-
turbance inputs can be represented equally well if their analytical function is known
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or if their nth order derivative and the associated initial conditions are known. How-
ever, in the latter case and with the Kalman filtering approach followed in the present
section, the knowledge of initial conditions becomes obsolete since theKalman Filter
can reconstruct the disturbance inputs and their derivatives without dependance on
initial conditions. In conclusion, the numerical simulation performed in this section
estimates quite well the disturbances’ effects. The disturbance inputs have a clear
physical meaning since they represent the effects of wind forces or wave forces
exerted on the vessel.

The control method which has been implemented in the present section is a global
linearization one. Thismeans that the vessel’s dynamicmodel is transformed through
a change of variables into an equivalent linear description for which the design of
the feedback controller becomes easier. Moreover, this linearization is an exact one
because it does not introduce any numerical errors due to truncation of terms in the
linearization procedure. Prior to this transformation the so-called dynamic extension
is performed that is the vessel’s state-spacemodel is extended by considering as addi-
tional state variables the control inputs and their derivatives [382, 634]. A second
major class of solutions for the problem of autonomous navigation of underactuated
vessels uses methods that asymptotically linearize the vessel’s dynamics. This holds
for instance in the case of H-infinity control or local models fuzzy control. The ves-
sel’s model can be linearized round local operating points. Next, for the linearized
model of the vessel a feedback controller is designed, taking also into account that
robustness should be exhibited against both approximate linearization errors and
external perturbations [79, 99, 205, 564]. A third class of possible solutions com-
prisesLyapunovmethods inwhich the stabilizing control of the underactuated vessels
is obtained from the procedure of minimization of a suitably chosen Lyapunov func-
tion. Such solutions can be model-based which means that prior knowledge about
the vessel’s dynamic model is available and is used by the control algorithm. They
can also be model-free taking the form of adaptive control. In the latter case the
vessel’s dynamic model is considered to be completely unknown and is identified
online by an adaptation scheme during the execution of the control algorithm [126,
127, 251, 279, 398]. The comparison of the aforementioned approaches shows that
the differential flatness theory-based method for the underactuated vessel is concep-
tually simpler and straightforward to implement, while also avoiding linearization
approximations, numerical errors and constraining assumptions about the structure
of the controlled vessel’s model.

10.4 A Nonlinear H-Infinity Control Approach
for Underactuated Surface Vessels

10.4.1 Outline

In this section control of unmanned surface vessels (USVs) is based on a local
linearization approach. The linearization takes place round theUSV’s local operating
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point which is defined at each time instant by the present value of the state vector and
the last value of the control inputs vector [461]. The linearizationmakes use of Taylor
series expansion and of the computation of Jacobian matrices [33, 431, 463, 564].
The modelling error, due to truncation of higher order terms in the Taylor series, is
considered as perturbation which is compensated by the robustness of the control
algorithm. For the linearized model of the USV an H-infinity feedback controller is
designed. A cost function is introduced comprising the weighted square of the error
of the system’s state vector (distance of the state vector from the reference setpoints).

This control method represents a differential game taking place between the
control input which tries to minimize the above cost function and between the distur-
bances which try to maximize this objective function. The computation of the feed-
back control gain requires the solution of an algebraic Riccati equation, which takes
place at each iteration of the control algorithm. The solution of the Riccati equation
provides a positive definite symmetric matrix which is used as a weighting coeffi-
cient in the computation of the controller’s feedback gain. The known robustness
features of H-infinity control assure the elimination of perturbation effects, which in
turn implies compensation of model uncertainty terms, external disturbance inputs
as well as of measurement noises. The stability properties of the control scheme are
assured by Lyapunov analysis. It is shown that the proposed feedback control law
for USVs results in H-infinity tracking performance which means robustness against
modeling uncertainty and external perturbations. Under moderate conditions it is
also proven that the control loop is also globally asymptotically stable. The tracking
accuracy and the smooth transients in the proposed USV control method are also
confirmed through simulation experiments.

Yet computationally simple, the proposed H∞ control scheme has an excellent
performance. Comparing to the control of underactuated vessels that is based on
global linearization methods (see [416, 450, 452, 457, 460]), the following features
can be attributed to the presented nonlinear H-infinity control scheme (i) it is applied
directly on the nonlinear dynamical model of the underactuated vessel and does not
require the computation of diffeomorphisms (change of variables) that will bring
the system into an equivalent linearized form, (ii) the computation of the feedback
control signal follows an optimal control concept and requires the solution of an
algebraic Riccati equation at each iteration of the control algorithm, (iii) the method
retains the advantages of typical optimal control, that is fast and accurate tracking of
the reference trajectories under moderate variations of the control inputs.

10.4.2 Approximate Linearization of the Underactuated
Vessel

In the previous section it was shown that the joint kinematic and dynamic model of
the underactuated vessel is
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(10.117)

where (x, y) are the cartesian coordinates if the vessel in the inertial reference frame,
ψ is the heading angle of the vessel in the inertial reference frame, u is the surge
velocity, v is the sway velocity, r is the yaw rate, β is a function of the elements of
the inertia matrix of the vessel.

Linearization of the vessel’s kinematic and dynamic model will be performed
round a local operating point (equilibrium) (x∗, u∗). To this end, the joint kinematics
and dynamics model of Eq. (10.117) is written in the form:

ẋ = f (x) + g(x)u (10.118)

where the state vector is x = [x1, x2, x3, x4, x5, x6]T = [x, y, ψ, u, v, r ]T and
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(10.119)

The linearization of the vessel’s model round the temporary equilibrium gives

ẋ = Ax + Bu (10.120)

where

A = ∇x [ f (x) + g(x)u] |(x∗,u∗) ⇒A = ∇x f (x) |(x∗,u∗) (10.121)

B = ∇u[ f (x) + g(x)u] |(x∗,u∗) ⇒B = g(x) |(x∗,u∗) (10.122)

For the Jacobian matrix A = ∇x [ f (x) + g(x)u] |(x∗,u∗), it holds that

A = ∇x [ f (x) + g(x)u] |(x∗,u∗) ⇒
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A =

⎛
⎜⎜⎜⎜⎜⎝

∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

· · · ∂ f1
∂x6

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

· · · ∂ f2
∂x6

· · · · · · · · · · · ·
∂ f6
∂x1

∂ f6
∂x2

∂ f6
∂x3

· · · ∂ f6
∂x6

⎞
⎟⎟⎟⎟⎟⎠

(10.123)

For the first row of the aforementioned Jacobian matrix one has:
∂ f1
∂x1

= 0, ∂ f1
∂x2

= 0, ∂ f1
∂x3

= −x4sin(x3) − x5cos(x3),
∂ f1
∂x4

= cos(x3),
∂ f1
∂x5

= −sin(x3),
∂ f1
∂x6

= 0.

For the second row of the aforementioned Jacobian matrix one has:
∂ f2
∂x1

= 0, ∂ f2
∂x2

= 0, ∂ f2
∂x3

= x4cos(x3) − x5sin(x3),
∂ f2
∂x4

= sin(x3),
∂ f2
∂x5

= cos(x3),
∂ f2
∂x6

= 0.

For the third row of the aforementioned Jacobian matrix one has:
∂ f3
∂x1

= 0, ∂ f3
∂x2

= 0, ∂ f3
∂x3

= 0, ∂ f3
∂x4

= 0, ∂ f3
∂x5

= 0, ∂ f3
∂x6

= 1.

For the fourth row of the aforementioned Jacobian matrix one has:
∂ f4
∂x1

= 0, ∂ f4
∂x2

= 0, ∂ f4
∂x3

= 0, ∂ f4
∂x4

= 0, ∂ f4
∂x5

= x6,
∂ f4
∂x6

= x5.

For the fifth row of the aforementioned Jacobian matrix one has:
∂ f5
∂x1

= 0, ∂ f5
∂x2

= 0, ∂ f5
∂x3

= 0, ∂ f5
∂x4

= −x6,
∂ f5
∂x5

= −β, ∂ f5
∂x6

= −x4.

For the sixth row of the aforementioned Jacobian matrix one has:
∂ f6
∂x1

= 0, ∂ f6
∂x2

= 0, ∂ f6
∂x3

= 0, ∂ f6
∂x4

= 0, ∂ f6
∂x5

= 0, ∂ f6
∂x6

= 0.

10.4.3 Design of an H-Infinity Nonlinear Feedback
Controller

10.4.3.1 Equivalent Linearized Dynamics of the Vessel

After linearization round its current operating point, the USV’s dynamic model is
written as

ẋ = Ax + Bu + d1 (10.124)

Parameter d1 stands for the linearization error in theUSV’s dynamicmodel appearing
in Eq. (10.124). The reference setpoints for USV’s state vector are denoted by xd =
[xd1 , . . . , xd6 ]. Tracking of this trajectory is achieved after applying the control input
ũ∗. At every time instant the control input ũ∗ is assumed to differ from the control
input u appearing in Eq. (10.124) by an amount equal to Δu, that is ũ∗ = u + Δu
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ẋd = Axd + Bu∗ + d2 (10.125)

The dynamics of the controlled system described in Eq. (10.124) can be also written
as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (10.126)

and by denoting d3 = −Bũ∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bũ∗ + d3 (10.127)

By subtracting Eq. (10.125) from (10.127) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (10.128)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (10.129)

The above linearized form of the USV’s model can be efficiently controlled after
applying an H-infinity feedback control scheme.

10.4.3.2 The Nonlinear H-Infinity Control

The initial nonlinear model of the unmanned surface vessel is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (10.130)

Linearization of the model of the unmanned surface vessel is performed at each
iteration of the control algorithm round its present operating point (x∗, u∗) =
(x(t), u(t − Ts)), where Ts is the sampling period. The linearized equivalent of
the system is described by

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (10.131)

where matrices A and B are obtained from the computation of the Jacobians

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ f̃1
∂x1

∂ f̃1
∂x2

· · · ∂ f̃1
∂xn

∂ f̃2
∂x1

∂ f̃2
∂x2

· · · ∂ f̃2
∂xn

· · · · · · · · · · · ·
∂ f̃n
∂x1

∂ f̃n
∂x2

· · · ∂ f̃n
∂xn

⎞
⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) B =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ f̃1
∂u1

∂ f̃1
∂u2

· · · ∂ f̃1
∂um

∂ f̃2
∂u1

∂ f̃2
∂u2

· · · ∂ f̃2
∂um

· · · · · · · · · · · ·
∂ f̃n
∂u1

∂ f̃n
∂u2

· · · ∂ f̃n
∂um

⎞
⎟⎟⎟⎟⎟⎟⎠

|(x∗,u∗) (10.132)
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and vector d̃ denotes disturbance terms due to linearization errors. As already
analyzed, the problem of disturbance rejection for the linearized model that is
described by

ẋ = Ax + Bu + Ld̃

y = Cx (10.133)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbation terms can also represent noise terms of any distribution.

It has been already noted in the previous application examples of the H∞ control
approach, that a feedback control scheme is designed for trajectory tracking by the
system’s state vector and simultaneous disturbance rejection, considering that the
disturbance affects the system in the worst possible manner. The disturbances’ effect
are incorporated in the following quadratic cost function:

J (t) = 1

2

∫ T

0
[yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (10.134)

It has been pointed out that the meaning of the negative sign in the cost function’s
term that is associated with the perturbation variable d̃(t) is that the disturbance tries
to maximize the cost function J (t) while the control signal u(t) tries to minimize
it. The physical meaning of the relation given above is that the control signal and
the disturbances compete to each other within a min–max differential game. This
problem of min–max optimization can be written as

minumaxd̃ J (u, d̃) (10.135)

As previously explained, the objective of the optimization procedure is to compute a
control signal u(t) which can compensate for the worst possible disturbance, that is
externally imposed to the system.However, the solution to themin–max optimization
problem is directly related to the value of parameter ρ. This means that there is an
upper bound in the disturbances magnitude that can be annihilated by the control
signal.

10.4.3.3 Computation of the Feedback Control Gains

For the linearized system given by Eq. (10.133) the cost function of Eq. (10.134)
is defined, where the coefficient r determines the penalization of the control input
and the weight coefficient ρ determines the reward of the disturbances’ effects. It
is assumed that (i) The energy that is transferred from the disturbances signal d̃(t)
is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) the matrices [A, B] and [A, L] are

stabilizable, (iii) the matrix [A,C] is detectable. Then, the optimal feedback control
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Fig. 10.41 Diagram of the nonlinear H-infinity control scheme for the unmanned surface vessel

law is given by
u(t) = −Kx(t) (10.136)

with

K = 1

r
BT P (10.137)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P

(
1

r
BBT − 1

2ρ2
LLT

)
P = 0 (10.138)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by d̃(t) = 1

ρ2 LT Px(t). The diagram of the considered control loop is depicted
in Fig. 10.41.

10.4.4 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the USV, and that in case
of bounded disturbance terms asymptotic convergence to the reference setpoints is



10.4 A Nonlinear H-Infinity Control Approach for Underactuated Surface Vessels 561

achieved. The tracking error dynamics for the unmanned surface vessel is written in
the form

ė = Ae + Bu + Ld̃ (10.139)

where in the USV’s case L = I∈R6×6 with I being the identity matrix. Variable
d̃ denotes model uncertainties and external disturbances of the USV’s model. The
following Lyapunov function is considered

V = 1

2
eT Pe (10.140)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2e

T Pė⇒
V̇ = 1

2 [Ae + Bu + Ld̃]T Pe + 1
2e

T P[Ae + Bu + Ld̃]⇒ (10.141)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (10.142)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(10.143)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + ( 12u
T BT Pe + 1

2e
T PBu)+

+( 12 d̃
T LT Pe + 1

2e
T PLd̃)

(10.144)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P

(
2

r
BBT − 1

ρ2
LLT

)
P (10.145)

Moreover, the following feedback control law is applied to the system

u = −1

r
BT Pe (10.146)

By substituting Eqs. (10.145) and (10.146) one obtains

V̇ = 1
2e

T [−Q + P( 2r BB
T − 1

ρ2 LLT )P]e+
+eT PB(− 1

r B
T Pe) + eT PLd̃⇒ (10.147)
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V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(10.148)

which after intermediate operations gives

V̇ = −1

2
eT Qe − 1

2ρ2
eT PLLT Pe + eT PLd̃ (10.149)

or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(10.150)

Lemma: The following inequality holds

1

2
eT PLd̃ + 1

2
d̃ LT Pe − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (10.151)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(10.152)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1

2
d̃T LT Pe + 1

2
eT PLd̃ − 1

2ρ2
eT PLLT Pe ≤ 1

2
ρ2d̃T d̃ (10.153)

Equation (10.153) is substituted in Eq. (10.150) and the inequality is enforced, thus
giving

V̇ ≤ −1

2
eT Qe + 1

2
ρ2d̃T d̃ (10.154)

Equation (10.154) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||d̃||2dt

(10.155)
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Moreover, if there exists a positive constant Md > 0 such that

∫ ∞

0
||d̃||2dt ≤ Md (10.156)

then one gets
∫ ∞

0
||e||2Qdt ≤ 2V (0) + ρ2Md (10.157)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (10.140) it becomes clear that e(t) will
be also bounded since e(t) ∈ Ωe = {e|eT Pe ≤ 2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaborating on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the unmanned surface vessel relies on Eq. (10.154)
and on the application of Barbalat’s Lemma. It uses the condition of Eq. (10.156)
about the boundedness of the square of the aggregate disturbance and modelling
error term d̃ that affects the model. However, as explained above the proof of global
asymptotic stability is not restricted by this condition. By selecting the attenuation
coefficient ρ to be sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2
one has that the first derivative of the Lyapunov function is upper bounded by 0.
Therefore for the i th time interval it is proven that the Lyapunov function defined in
Eq. (10.140) is a decreasing one. This also assures that the Lyapunov function of the
system defined in Eq. (10.140) will always have a negative first-order derivative.

10.4.5 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop can be implemented with the use of information provided by a
small number of sensors and by processing only a small number of state variables.
To reconstruct the missing information about the state vector of the hovercraft it is
proposed to use a filtering scheme and based on it to apply state estimation-based
control [457]. As previously explained, the recursion of the H∞ Kalman Filter, for
the model of the USV, can be formulated in terms of a measurement update and a
time update part.

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(10.158)
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Time update:
x̂−(k + 1) = A(k)x(k) + B(k)u(k)

P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)
(10.159)

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1−θW (k)+CT (k)R(k)−1C(k)will be positive definite.When θ = 0
the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the USV, and estimate through filtering the
rest of the state vector elements. Moreover, the proposed Kalman filtering method
can be used for sensor fusion purposes.

10.4.6 Simulation Tests

The efficiency of the nonlinear H-infinity control method for the problem of
autonomous navigation of the underactuated unmanned surface vessels, was tested in
the case of tracking of several reference trajectories. The setpoints have been chosen
by taking into account the differential flatness properties of the vessel which have
been explained in previous sections. In the autonomous vessel’s case the flat outputs
of the model are the vessel’s cartesian coordinates (x, y).

In the presented simulation experiments state estimation-based control has been
implemented. Out of the 6 state variables of the USV only the cartesian coordinates
of the vessel (x, y)where considered to be measurable. The rest of the state variables
were indirectly estimated with the use of the H-infinity Kalman Filter. The real value
of each state variable has been plotted in blue, the estimated value has been plotted
in green, while the associated reference setpoint has been plotted in red.

The obtained results are presented in Figs. 10.42, 10.43, 10.44, 10.45, 10.46,
10.47, 10.48, 10.49, 10.50 and 10.51. The state variables of the model have been
measured in SI units. It has been confirmed that the proposed control method resulted
in fast and accurate tracking of the reference paths. The H-infinity controller assured
fast elimination of the tracking error for all state variables of the USV while the
variation of the control inputs was smooth and remained within moderate ranges.
The method exhibited significant robustness both to the modelling error that was due
to the approximate linearization of the USV’s dynamics and to parametric changes.

The tracking performance of the nonlinearH-infinity controlmethod for themodel
of the underactuated vessel (in its state estimation-based implementation) is outlined
in Table 10.3:

Apart from remarkable tracking accuracy, the proposed control method exhibits
also significant robustness. Even if it is considered that the controller is designed
under uncertainty about parameter β of Eq. (10.39) and deviation from the parame-
ter’s nominal value (β = 15), the state variables of the hovercraft converged accu-
rately to the reference setpoint and the tracking error was negligible. The robustness
of the control method is defined by the attenuation coefficient ρ. Actually, maximum
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Fig. 10.42 Reference path 1: a Tracking of the reference trajectory (red line) in the x − y plane by
the unmanned surface vessel (blue line), b Convergence of the state variables of the vessel x1 = x ,
x2 = y and x3 = ψ (blue line) to the associated reference values (red line)

0 5 10 15 20 25 30 35 40
−2
−1

0

1

2

time (sec)

x 4

0 5 10 15 20 25 30 35 40
−0.05

0

0.05

time (sec)

x 5

0 5 10 15 20 25 30 35 40
−2
−1

0

1

2

time (sec)

x 6

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

time (sec)

u 1

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

time (sec)

u 2

(a) (b)

Fig. 10.43 Reference path 1: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Fig. 10.44 Reference path 2: a Tracking of the reference trajectory (red line) in the x − y plane by
the unmanned surface vessel (blue line), b Convergence of the state variables of the vessel x1 = x ,
x2 = y and x3 = ψ (blue line) to the associated reference values (red line)
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Fig. 10.45 Reference path 2: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Fig. 10.46 Reference path 3: a Tracking of the reference trajectory (red line) in the x − y plane by
the unmanned surface vessel (blue line), b Convergence of the state variables of the vessel x1 = x ,
x2 = y and x3 = ψ (blue line) to the associated reference values (red line)
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Fig. 10.47 Reference path 3: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Fig. 10.48 Reference path 4: a Tracking of the reference trajectory (red line) in the x − y plane by
the unmanned surface vessel (blue line), b Convergence of the state variables of the vessel x1 = x ,
x2 = y and x3 = ψ (blue line) to the associated reference values (red line)
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Fig. 10.49 Reference path 4: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Fig. 10.51 Reference path 5: a Convergence of the state variables of the vessel x4 = u, x5 = v
and x6 = r (blue line) to the associated reference values (red line) b Control inputs u1 = τu and
u2 = τr exerted on vessel
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Table 10.3 RMSE of the USV’s state variables

Parameter x y ψ u v r

RMSE1 0.677 · 10−4 0.499 · 10−4 0.355 · 10−4 0.001 · 10−4 0.001 · 10−4 0.002 · 10−4

RMSE2 2.412 · 10−4 4.845 · 10−4 0.418 · 10−4 0.856 · 10−4 0.001 · 10−4 0.001 · 10−4

RMSE3 4.556 · 10−4 5.851 · 10−4 5.945 · 10−4 2.493 · 10−4 0.038 · 10−4 9.418 · 10−4

RMSE4 3.993 · 10−4 8.129 · 10−4 3.710 · 10−4 3.450 · 10−4 0.047 · 10−4 4.528 · 10−4

RMSE5 2.554 · 10−4 1.549 · 10−4 0.679 · 10−4 1.280 · 10−4 0.003 · 10−4 0.020 · 10−4

robustness is achieved for the smallest value of ρ for which the algebraic Riccati
equation given in Eq. (10.145) can be solved.

As previously noted, the joint kinematic-dynamic model of the surface vessel
comes primarily from [517, 518]. The considered model is related to a specific type
of surface vessels that is hovercrafts. The model of hovercrafts, is obtained from the
generic ship model under specific assumptions about the vessel’s parameters and this
issue has been analyzed in Ref. [416]. However, the section’s results can be applied
to more types of surface vessels.

Comparing the H-infinity control approach for the underactuated model of the
hovercraft against other controlmethods such asPIDcontrol the following conclusion
can be reached: PID control is of questionable performance and unsuitable for the
problem of autonomous navigation of unmanned surface vessels. PID controllers
are usually tuned round local operating points and assuming a linear dynamics for
the controlled system. In the case of the unmanned surface vessel the condition
about linearity of the vessel’s kinematic-dynamic model does not hold. Moreover, in
the problem of autonomous navigation the reference setpoints change continuously,
therefore one cannot assume that the operating points of the control loop remain
unchanged. Consequently, one cannot select gains of the PID controller that assure
the reliable functioning of the vessel’s control loop, in terms of global asymptotic
stability. Additionally, the PID control is vulnerable to external perturbations. In
conclusion PID control is not computationally simpler than the proposed control
nonlinear H-infinity control method. Besides it cannot assure the stability of the
control loop.

10.5 Validation of Distributed Kalman Filtering for Ship
Tracking Applications

10.5.1 Outline

As it has been already pointed out, filtering and controlmethods of improved accuracy
are necessary for developing safe autonomous surface or underwater vessels and
reliable maritime transportation systems [222, 271, 555, 625, 631]. By estimating
the motion characteristics of a ship through filtering procedures it becomes possible
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to implement feedback control for precise trajectory tracking and for avoidance of
collisionswith nearbyvessels [148, 227, 450, 457, 462].DistributedKalmanfiltering
is often used for the localization and motion characteristics estimation of ships [189,
234, 309, 329]. Therefore, it is important to develop statistical validation methods
for confirming the accuracy of such filtering schemes and for initiating parameters
update and corrections in the associated algorithms [30, 33, 58, 107, 170, 221, 430,
652]. To this end, in this section a statistical method is applied for validating the
precision of Fuzzy Kalman Filtering, and aiming at a more efficient tracking of the
motion of marine vessels.

Fuzzy Kalman Filtering (FKF) is a distributed filtering approach in which a global
state estimate is obtained after making use of fuzzy weighting of local estimates pro-
vided by distributed Kalman Filters [189, 234, 309, 329]. In the case of autonomous
vessels and maritime traffic monitoring, this means that the motion plane of the ves-
sels on the sea surface is covered by spatially distributed Kalman Filters, and that the
aggregate estimate of a ship’s motion characteristics is computed through a fuzzy
averaging procedure. The estimate provided by each local Kalman Filter is attributed
a weight which denotes the proximity of a vessel to the center of the area covered
by this specific Kalman Filter. To compute an estimate of the ship’s state vector
each local Kalman Filter makes use of a model of the ship’s dynamics. However, the
parameters of certain local models may differ from the nominal values of the param-
eters constituting the real ship dynamics. In such a case inaccurate state estimates are
produced, first at a local level, while at a second stage this erroneous state estimates
are reflected in the aggregate outcome of the distributed filtering procedure.

The purpose of statistical validation of the Fuzzy Kalman Filter is to detect if the
filter provides reliable and precise state estimates about the ship’s motion. Moreover,
the statistical validation test should detect the local filters which make use of the
inaccurate dynamic model of the vessel, thus enabling the update of these models
and the removal of errors from the filtering procedure. The Fuzzy Kalman Filter
validation method developed in this section is based on the local statistical approach
to fault diagnosis. To apply the method, it is first shown that local Kalman Filters are
equivalent to ARMAXmodels and next that the Fuzzy Kalman Filter is equivalent to
a set of fuzzy weighted ARMAX models [76, 190, 211, 632]. A key element of the
proposed validation approach is theGeneralizedLikelihoodRatio, computed through
the processing of the residuals of the estimation procedure (that is the differences
between the real and the estimated outputs of the ship’s dynamics) [34, 42, 463, 464,
633]. This finally results in the χ2 change detection test and enables to define an
optimal threshold beyond which the distributed filtering procedure and the indicated
local dynamical models of the vessels are considered to be unreliable [32, 35, 624].
The efficiency of the proposed validation scheme for the Fuzzy Kalman Filter is
confirmed through simulation experiments, making use of a 6th order model of a
surface vessel dynamics. It is shown that the statistical validation test is capable of
detecting the faulty local filter, even under small errors in the localmodel’s parameters
which do not exceed 1% of the associated nominal values.
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10.5.2 Dynamic Model of Surface Vessels

10.5.2.1 Estimation of the Ship’s State Vector

The sensor fusion-based estimation procedure for obtaining the ship’s state vector is
affected by uncertainties characterizing the ship’s dynamicmodel. Such uncertainties
can be due to parametric variations in the model of Eqs. (10.13) and (10.14) or due
to external disturbances, e.g. additive input disturbances as shown in Eqs. (10.2) and
(10.10).

In the case of a surface vessel, defining the generalized state vector x = [η, η̇]T
and considering invariance of the disturbance d for specific time periods, one obtains
the generalized ship state-space model

η̈ + J (η)−1[C(η, η̇) + F(η)]η̇ − J−1(η)d = J−1(η)τ (10.160)

Setting x1 = η, x2 = d, x3 = η̇, x4 = ḋ and taking into account the existence of
process and measurement noise one obtains a ship’s model of the form

ẋ = Ax + Bu + w
z = γ (x) + v

(10.161)

where matrices A and B are given by

A =
(
03×3 I3×3

03×3 −J−1(x)[C(x, ẋ) + F(x)]
)

B = (
03×3 J−1(x)

)T
(10.162)

The extended state vector is x = [x1, x2, x3, x4]T with xi ∈ R3×1, i = 1, 2, 3, 4.
The control input is τ ∈ R3×1. The measurement vector of the ship’s model is given
by z = [x, y, ψ]T , where x, y are measurements of the ship’s cartesian coordinates,
and ψ is a measurement of the ship’s orientation. The vectors of process and mea-
surement noises are denoted as w and v, respectively. Using the above state-space
representation, state vector x can be estimated by processing a sequence of output
measurements y with the use of a state observer or Kalman Filtering [222, 555].

10.5.3 Fuzzy Kalman Filtering for Ship Motion Estimation

Fuzzy Kalman Filtering is a distributed filtering approach is which the aggregate
state estimate is provided by fuzzy weighting of the estimates generated by local and
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Fig. 10.52 Fuzzy Kalman
Filtering for ship tracking
applications

V

spatially distributed Kalman Filters [189, 234, 309, 329]. Here, the sea surface is
partitioned into local areas, each one monitored by a different Kalman Filter. The
area that each Kalman Filter covers is described by fuzzy rules Rl of the form:

Rl IF x is Ai AND y is A j THEN K Fl estimates x̂ l (10.163)

where i = 1, 2, . . . , n, j = 1, 2, . . . , n and l = 1, 2, . . . n × m.
Next, it is assumed that the partitioning of the sea surface is as depicted in

Fig. 10.52. Then the associated Fuzzy Kalman Filter is described by the follow-
ing fuzzy rules:

IF x is A1 AND y is A1 THEN K F1

IF x is A1 AND y is A2 THEN K F2

IF x is A2 AND y is A1 THEN K F3

IF x is A2 AND y is A2 THEN K F4

· · · · · · · · · · · · · · · · · · · · · · · ·
IF x is An AND y is An − 1 THEN K Fn×n−1

IF x is An AND y is An THEN K Fn×n

(10.164)

Next, the number of the fuzzy rules is denoted as M = n×n. The aggregate estimate
that is provided by the fuzzy Kalman Filter is of the form

x̂ =
M∑
l=1

∏N
i=1A

l
i∑M

j=1

∏N
i=1A

j
i

x̂l⇒x̂ =
M∑
l=1

wl x̂l (10.165)
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According to the above the ship’s model was written in the linear state-space form

ẋ = Ax + Bu + w

y = Cx + v
(10.166)

while after discretization, the discrete-time description of the linearized ship dynam-
ics, in discrete-time, is obtained

x(k + 1) = Adx(k) + Bdu(k) + w(k)

y(k) = Cdx(x) + v(k)
(10.167)

The i th Kalman Filter, which is associated with the lth fuzzy rule is given by

x̂ l(k + 1) = Al
d x̂(k) + Bl

du(k) + Kl
f C

l
d(x

l(k)) − x̂ l(k) (10.168)

The difference ε(k) = Cl
d(x

l(k)) − x̂ l(k) between the real and the estimated output
of the vessel’s dynamic model, is the residual and follows a zero-mean Gaussian dis-
tribution. By applying the z transformation the equivalent description of the Kalman
Filter in the z-frequency domain can be obtained, which has a MIMO transfer func-
tion form

⎛
⎜⎝
Y1(z)

Y2(z)

Y3(z)

⎞
⎟⎠ =

⎛
⎜⎝
H A

11 H A
12 H A

13

H A
21 H A

22 H A
23

H A
31 H A

32 H A
33

⎞
⎟⎠

⎛
⎜⎝
U1(z)

U2(z)

U3(z)

⎞
⎟⎠ +

⎛
⎜⎝
HB

11 HB
12 HB

13

HB
21 HB

22 HB
23

HB
31 HB

32 HB
33

⎞
⎟⎠

⎛
⎜⎝
E1(z)

E2(z)

E3(z)

⎞
⎟⎠ (10.169)

Next, examining for instance the subsystem

Y1(z)H A
11U1(z) + H A

12U2(z) + H A
13U3(z)+

+HB
11E1(z) + HB

12E2(z) + HB
13E3(z)

(10.170)

where each one of the transfer functions H1 j j = 1, 2, 3 included in the above
description has in its denominator the system’s characteristic polynomial given by
the determinant |z I − Ad |. Taking into account that this characteristic polynomial is
of 6th order one gets the equivalent ARMAX description

y1(k) = ∑6
i=1ai y(k − i) + ∑5

j1=1b j1u1(k − j1)+
+∑5

j2=1c j2u2(k − j2) + ∑5
j3=1c j3u3(k − j3)+

+∑5
m1=1 pm1ε1(k − m1) + ∑5

m2=1qm2ε2(k − m2)+
+∑5

m3=1rm3ε3(k − m3)

(10.171)

where coefficients ai i = 1, 2, 3 are obtained from the system’s characteristic poly-
nomial det |z I − A| in descending order. Next, the aforementioned characteristic
polynomial is computed. It holds that
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A =
(
03×3 I3×3

03×3 −J−1x)[C(x, ẋ) + F(x)]

)
(10.172)

Furthermore, using the definition of matrices J , C and F given in Eqs. (10.15),
(10.16) and (10.17) respectively, and considering that the yaw angle of the ship is 0,
that is ψ = 0 and ψ̇ = 0 one obtains C = 03×3 while

J =
⎛
⎜⎝
m11 0 0

0 m22 0

0 m23 0

⎞
⎟⎠ F =

⎛
⎜⎝
d11 0 0

0 d22 d23

0 d32 d23

⎞
⎟⎠ (10.173)

To compute the system’s description in MIMO transfer function form, one has to
calculate first the inverse matrix (z I − Ad)

−1. It holds that

Q = (z I − Ad)
−1 = 1

|z I − Ad | ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q11 −Q21 Q31 Q41 −Q51 Q61

−Q12 Q22 −Q32 −Q42 Q52 −Q62

Q13 −Q23 Q33 Q43 −Q53 Q63

−Q14 Q24 −Q34 −Q44 Q54 −Q64

Q15 −Q25 Q35 Q45 −Q55 Q65

−Q16 Q26 −Q36 Q46 −Q56 Q66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.174)

where the elements of the adjoint matrix are

Q11 = (z−1)2(z−1− Ts
d11
m11

)[(z−1− Tsv55)(z−1− Tsv66)− (−1− Tsv65)(−1−
Tsv56)], Q12 = 0, Q13 = 0, Q14 = 0, Q15 = 0 and Q16 = 0.

Q21 = 0, Q22 = (z − 1)2(z − 1 − Ts
d11
m11

)[(z − 1 − Tsv65)(z − 1 − Tsv66) − (−1 −
Tsv65)(−1 − Tsv56)], Q23 = 0, Q24 = 0, Q25 = 0, and Q26 = 0.

Q31 = 0, Q32 = 0, Q33 = (z− 1)2(z− 1− Ts
d11
m11

)[(z− 1− Tsv55)(z− 1− Tsv66)−
(−1 − Tsv65)(−1 − Tsv56)], Q34 = 0, Q35 and Q36 = 0.

Q41 = (z − 1)2(−Ts)[(z − 1− Tsv65)(z − 1− Tsv66) − (−1− Tsv65)(−1− Tsv56)],
Q42 = 0, Q43 = 0, Q44 = (z − 1)2[(z − 1 − Tsv55)(z − 1 − Tsv66) − (−1 −
Tsv65)(−1 − Tsv56)], Q45 = 0, and Q46 = 0.

Q51 = 0, Q52 = −Ts(z − 1)2(z−1− Ts
d11
m11

)(z−1− Tsv66), Q53 = Ts(z − 1)2(z−
1 − Ts

d11
m11

)(−1 − Tsv65), Q54 = (z − 1)3(z − 1 − Ts
d11
m11

)(z − 1 − Tsv66), Q55 =
(z − 1)3(z−1−Ts

d11
m11

)(z−1−Tsv66), and Q56 = (z − 1)3(z−1−Ts
d11
m11

)(−1−Tsv65)

Q61 = 0, Q62 = (z − 12)(z − 1− Ts
d11
m11

)(−Ts)(−1− Tsv56), Q63 = −(z − 1)2(z −
1− Ts

d11
m11

)Ts(z − 1− Tsv55), Q64 − 0, Q65 = (z − 1)3(z − 1− Ts
d11
m11

)(−1− Tsv56),

Q66 = (z − 1)3(z − 1 − Ts
d11
m11

)(z − 1 − Tsv55).
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The computation of the associated characteristic polynomial gives:

det (z I − A) = z6 + [(−2 − Tsv66) − Tsv55 + (−4 + Ts
d11
m11

)]z5+

[(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+

+ (−4 + Ts
d11
m11

)(−2 − Tsv66 − Tsv55) + (6 + 3Ts
d11
m11

)]z4+

[(−4 + Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+

+ (6 + 3Ts
d11
m11

)(−2 − Tsv66 − Tsv55) + (−4 − 3Ts
d11
m11

)]z3+ (10.175)

[(6 + 3Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+

+ (−4 − 3Ts
d11
m11

)(−2 − Tsv66 − Tsv55) + (1 + Ts
d11
m11

)]z2+

[(−4 − 3Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+

+ (1 + Ts
d11
m11

)(−2 − Tsv66 − Tsv55)]z+

[(1 + Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)]

where Ts is the sampling period and

v55 = d22m11m33 − d33m11m23

m11(m22m33 − m2
23)

v56 = d23m11m33 + d33m11m23

m11(m22m33 − m2
23)

v65 = d22m11m23 + d33m11m22

m11(m22m33 − m2
23)

v66 = −d23m11m23 + d33m11m22

m11(m22m33 − m2
23)

(10.176)

Next, to avoid extended computations in the section’s example, the ARMAX model
of Eq. (10.171) is simplified into the form

yl(k + 1) = al1y
l(k) + al2y

l(k − 1) + al3y
l(k − 2)+

+bl1u
l
1(k) + bl2u

l
2(k) + bl3u

l
3(k)+

+cl1ε
l
1(k)

(10.177)
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where l = 1, 2, 3, 4 is the lth local model and

al1 = −[(−2 − Tsv66) − Tsv55 + (−4 + Ts
d11
m11

)]

al2 = −[(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+
+(−4 + Ts

d11
m11

)(−2 − Tsv66 − Tsv55) + (6 + 3Ts
d11
m11

)]

al3 = −[(−4 + Ts
d11
m11

)(Tsv66 + Tsv65 + T 2
s v55v66 − Tsv56 − Tsv65 − T 2

s v65v56)+
+(6 + 3Ts

d11
m11

)(−2 − Tsv66 − Tsv55) + (−4 − 3Ts
d11
m11

)]
(10.178)

Moreover, taking into account that the transfer functionmatrices given inEq. (10.169),
are H A(z) = Cd(z I − Ad)

−1B and HB(z) = Cd(z I − Ad)
−1K f (where K f is the

gain of the Kalman Filter), and that the measurement matrix for the ship’s model is
C = [I3×3 03×3], it holds

H A(z) = 1

det (z I − Ad)

⎛
⎜⎝

Q11 −Q21 Q31 −Q41 Q51 −Q61

−Q12 Q22 −Q32 Q42 −Q52 Q62

Q13 −Q23 Q33 −Q43 Q53 −Q63

⎞
⎟⎠ ·

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0

− Ts
m11

0 0

0 − Tsm33

m22m33 − m2
23

Tsm23

m22m33 − m2
23

0
Tsm23

m22m33 − m2
23

− Tsm22

m22m33 − m2
23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.179)

HB(z) = 1

det (z I − Ad )

⎛
⎜⎝

Q11 −Q21 Q31 −Q41 Q51 −Q61

−Q12 Q22 −Q32 Q42 −Q52 Q62

Q13 −Q23 Q33 −Q43 Q53 −Q63

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K f11 K f12 K f13

K f21 K f22 K f23

K f31 K f32 K f33

K f41 K f42 K f43

K f51 K f52 K f53

K f61 K f62 K f63

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10.180)

Then for the rest of the parameters of the local ARMAXmodel of the Kalman Filter
one has that:

b1 is the coefficient multiplying the highest order term of the polynomial [TsQ41]/
m11, b2 is the coefficient multiplying the highest order term of the polynomial
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[−Tsm33Q51 − Tsm23Q61]/(m22m33 − m2
23), b3 is the coefficient multiplying the

highest order term of the polynomial [Tsm23Q51 + Tsm22Q61]/(m22m33 − m2
23),

and c1 is the coefficient multiplying the highest order term of the polynomial
K f11Q11 − K f21Q21 + K f31Q31 − K f41Q41 + K f51Q51 − K f61Q61.

Using the above and Fig. 10.52 the fuzzy Kalman Filter for the ship tracking
problem is described by the following fuzzy rule base:

IF x is A1AND y is A1 THEN

ŷ1(k + 1) = a11 ŷ
1(k) + a12 ŷ

1(k − 1) + a13 ŷ
1(k − 2)+

+b11u
1
1(k) + b12u

1
2(k) + b13u

1
3(k) + c11ε

1
1(k)

IF x is A1AND y is A2 THEN

ŷ2(k + 1) = a11 ŷ
2(k) + a12 ŷ

2(k − 1) + a23 ŷ
2(k − 2)+

+b11u
2
1(k) + b22u

2
2(k) + b23u

2
3(k) + c21ε

2
1(k)

IF x is A2AND y is A1 THEN

ŷ3(k + 1) = a31 ŷ
1(k) + a32 ŷ

3(k − 1) + a33 ŷ
3(k − 2)+

+b31u
3
1(k) + b32u

3
2(k) + b33u

3
3(k) + c31ε

3
1(k)

IF x is A2AND y is A2 THEN

ŷ4(k + 1) = a41 ŷ
4(k) + a42 ŷ

4(k − 1) + a43 ŷ
4(k − 2)+

+b41u
4
1(k) + b42u

4
2(k) + b43u

4
3(k) + c41ε

4
1(k)

(10.181)

For a properly functioning fuzzy Kalman Filter it should hold a1j = a2j = a3j =
a4j j = 1, 2, 3 and similarly b1j = b2j = b3j = b4j j = 1, 2, 3, and finally c1j =
c2j = c3j = c4j j = 1. If the above condition does not hold then for at least one local
Kalman Filter the parameters of the ship model used in the estimation procedure are
incorrect. The statistical change detection test which is proposed in this section is
capable of detecting the inconsistent local Kalman Filter.

10.5.4 Consistency of the Kalman Filter

To obtain accurate estimates with the Kalman Filter, previously a tuning process is
required. A question that arises is about which state estimates can be considered as
reliable. There is need for systematic methods showing when the Kalman Filter is not
performing optimally and when its retuning, either in terms of the used dynamic or
kinematicmodel or in terms of the covariancematrices, should be performed. Several
methods can be applied to test the consistency of the Kalman Filter, from the desired
characteristics of the measurement residuals. These include the normalized error
square (NES) test, the autocorrelation test, and the normalized mean error (NME)
test and have been analyzed in [30, 107].
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(i) It is assumed that a discrete error process ek with dimension m × 1 is a zero-
mean Gaussian white-noise process with covariance given by Ek . This process can
be the Kalman Filter’s residual associated to the state estimation error or the residual
associated to themeasurement estimation error. Then, the following normalized error
square (NES) is defined

εk = eTk E
−1
k ek (10.182)

The normalized error square follows a χ2 distribution. An appropriate test for the
normalized error sum is to numerically show that the following condition is met
within a level of confidence (according to the properties of the χ2 distribution)

E{εk} = m (10.183)

This can be achieved using statistical hypothesis testing, which are associated with
confidence intervals. A 95% confidence interval is frequently applied, which is spec-
ified using 100(1 − a) with a = 0.05. Actually, a two-sided probability region
is considered cutting-off two end tails of 2.5% each. For M runs of Monte-Carlo
experiments the normalized error square that is obtained is given by

ε̄k = 1

M

M∑
i=1

εk(i) = 1

M

M∑
i=1

eTk (i)E−1
k (i)ek(i) (10.184)

where εi stands for the i th run at time tk . ThenM ε̄k will follow a χ2 density withMm
degrees of freedom. This condition can be checked using a χ2 test. The hypothesis
holds true if the following condition is satisfied

ε̄k∈[ζ1, ζ2] (10.185)

where ζ1 and ζ2 are derived from the tail probabilities of the χ2 density. For example,
form = 2 and M = 100 one has χ2

Mm(0.025) = 162 and χ2
Mm(0.975) = 241. Using

thatM = 100 one obtains ζ1 = χ2
Mm(0.025)/M = 1.62 and ζ2 = χ2

Mm(0.975)/M =
2.41.

(ii)Another consistency checkingmethod is the test forwhiteness. This is obtained
by using the following sample autocorrelation:

ρ̄k, j = 1√
M

M∑
i=1

eTk (i)

[
M∑
i=1

ek(i)e
T
k (i)

M∑
i=1

e j (i)e
T
j (i)

]−1/2

e j (i) (10.186)

For a sufficiently large value of M , variable ρ̄ j,k for k �= j is zero mean with variance
given by 1/M . Next the application of the central limit theorem provides a normal
approximation, and considering a 95% confidence interval one finally obtains
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ρ̄ j,k∈
[
−1.96

M
,+1.96

M

]
(10.187)

(iii) An additional consistency test is based on the normalized mean error (NME) for
the j th element of ek

[μ̄k] j = 1

M

M∑
j=1

[ek] j√[Ek] j j
, j = 1, 2, . . . , M (10.188)

Then, since the variance of [μ̄k] j is 1
M for a 95% acceptance interval one has

[μ̄k] j∈
[
−1.96√

M
,+1.96√

M

]
(10.189)

The hypothesis holds true, if Eq. (10.189) is satisfied. The NES, NME and autocor-
relation consistency tests can be all performed with a single run using N data points.
Using a time-averaging approach one obtains a low variability test statistic, which
can be executed in real-time. In the latter case the time-average NES is given by

ε̄ = 1

N

N∑
k=1

eTk E
−1
k ek (10.190)

Considering that ek is a zero mean, white-noise process, then N ε̄ follows a χ2

density distribution with Nm degrees of freedom. Through the computation of the
time-average auto-correlation the whiteness test for ek is

ρ̄ j = 1√
N

N∑
k=1

eTk ek+ j

[
N∑

k=1

eTk ek

N∑
k=1

eTk+ j ek+ j

] −1
2

(10.191)

For N sufficiently large, ρ̄ j has zero mean and variance given by 1/N . With a 95%
acceptance interval one has

ρ̄ j∈
[
−1.96√

N
,+1.96√

N

]
(10.192)

The hypothesis is accepted if Eq. (10.192) is satisfied. The aforementioned tests can
be applied to the residuals of the Kalman Filter or to the Kalman Filter state errors for
checking the consistency of the obtained estimation and for checking the necessary
consistency for filter optimality. If the tests are not satisfied then this means that the
Kalman Filter is not running optimally, and the filter has to be retuned, or the filter’s
design has to be reconsidered.
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In this section a systematic method, the local statistical approach to fault diag-
nosis, will be introduced for checking the consistency of Fuzzy Kalman Filtering. It
will be shown that the method is capable of identifying the elements responsible for
the filter’s failure, in the dynamic or kinematic model associated with the estimation
performed by the local Kalman filters.

10.5.5 Change Detection with the Local Statistical Approach

10.5.5.1 The Global χ2 Test for Change Detection

The local statistical approach to fault diagnosis is a statisticalmethod of fault diagno-
sis which can be used for consistency checking of the Fuzzy Kalman Filter. Based on
a small parametric disturbance assumption, the proposed FDI method aims at trans-
forming complex detection problems concerning a parameterized stochastic process
into the problem of monitoring the mean of a Gaussian vector. The local statistical
approach consists of two stages: (i) the global test which indicates the existence of
a change in some parameters of the fuzzy model, (ii) the diagnostics tests (sensitiv-
ity or min–max) which isolate the parameter affected by the change. The method’s
stages are analyzed first, following closely the method presented in [33, 633].

As shown in Fig. 10.53 the proposedmethod relies on the definition of the residual
ei described as the difference between the output from the nonlinear ARMAXmodel
of the Fuzzy Kalman Filter obtained with the use of the changed dynamics or kine-
matics of the system and the output of the nonlinear ARMAX model of the Fuzzy

(a) (b)

Fig. 10.53 a Residual between the Fuzzy Kalman Filter that uses consistent local models and the
Fuzzy Kalman Filter that uses inconsistent (distorted) local models, b Probability density function
of the χ2 distribution, for various degrees of freedom p
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Kalman Filter obtained with the use of the unchanged dynamics or kinematics. The
nonlinear ARMAX model is actually a neuro-fuzzy model of the Takagi–Sugeno
type that is based on the system’s dynamics or kinematics model in an undistorted
(fault-free) mode.

The concept of this FDI technique is as follows: there is a nonlinear ARMAX
model that represents the unchanged systemdynamics.At each time instant the output
of the aforementioned reference nonlinear ARMAXmodel is compared to the output
of the nonlinear ARMAX model that represents the changed system dynamics. The
difference between these two output measurements is called residual. The statistical
processing of a sufficiently large number of residuals through anFDImethodprovides
an index-variable that is compared against a fault threshold’ and which can give
early indication about deviation of the model used by the Kalman Filter from the real
system dynamics or kinematics. Under certain conditions (detectability of changes)
the proposed FDI method enables also fault isolation, i.e. to identify the source of
fault within the model used by the Fuzzy Kalman Filter. In practical terms this means
that the proposed change detection method can find out the i th local Kalman Filter
(out of the N local Kalman Filters that constitute the Fuzzy Kalman Filter) which
makes use of an inconsistentmodel of themonitored vessel’s dynamics or kinematics.

Considering the representation of the FuzzyKalman Filter as a neuro-fuzzymodel
of the Takagi–Sugeno type, the partial derivative of the residual square is:

H(θ, yi ) = 1

2

∂e2i
∂θ

= ei
∂ ŷi
∂θ

(10.193)

where θ is the vector of model’s parameters. The vector H having as elements
the above H(θ, yi ) is called primary residual. Since the nonlinear ARMAX model
is a neuro-fuzzy model, the gradient of the output with respect to the consequent
parameters clfi is given by

∂ ŷ

∂clfi
= xiμRl (x)∑L

l=1μRl (x)
(10.194)

The gradient with respect to the center cli has been given in Eq. (10.217) while the
gradient with respect to the spread vli has been given in Eq. (10.218).

Next, having calculated the partial derivatives of Eqs. (10.216)–(10.218), the rows
of the Jacobian matrix J are found by

J (θ0, yk) = ∂ ŷk(θ)

∂θ

∣∣∣∣
θ=θ0

(10.195)

where θ0 represents the nominal value of the parameters. The problem of change
detectionwith theχ2 test consists ofmonitoring a change in themean of theGaussian
variable which for the one-dimensional parameter vector θ is formulated as
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X = 1√
N

N∑
i=1

ek
∂ ŷk
∂θ

∼ N(μ, σ 2) (10.196)

where ŷk is the output of the neural model generated by the input pattern xk , ek is the
associated residual and θ is the vector of the model’s parameters. It is noted that X
is the monitored parameter for the FDI test, which means that when the mean value
of X is 0 the system is in the fault-free condition, while when the mean value of X
has moved away from 0 the system (Kalman Filter) is in a faulty condition. For a
multivariable parameter vector θ should hold X ∼ N(Mδθ, S), where S denotes the
covariance matrix of X . In order to decide if the system (Kalman Filter) is in fault-
free operating conditions, given a set of data of N measurements, let θ∗ be the value
of the parameters vector μ minimizing the RMSE. The notation is introduced only
for the convenience of problem formulation, and its actual value does not need to be
known. Then the model validation problem amounts to make a decision between the
two hypotheses [33, 633]:

H0 : θ∗ = θ0

H1 : θ∗ = θ0 + 1√
N

δθ
(10.197)

where δθ �= 0. It is known from the central limit theorem that for a large data sample,
the normalized residual given by Eq. (10.196) asymptotically follows a Gaussian
distribution when N→∞ [33, 34, 42]. More specifically, the hypothesis that has to
be tested is:

H0 : X ∼ N(0, S)

H1 : X ∼ N(Mδθ, S)

where M is the sensitivity matrix (see Eq. (10.198)), δθ is the change in the param-
eters’ vector and S is the covariance matrix (see Eq. (10.199)). The product Mδθ

denotes the new center of the monitored Gaussian variable X , after a change on
the system’s parameter θ . The sensitivity matrix M of 1√

N
X is defined as the mean

value of the partial derivative with respect to θ of the primary residual defined in
Eq. (10.215), i.e. E{ ∂

∂θ
H(θ, yk)} and is approximated by [33, 35, 624, 633]:

M(θ0) � ∂

∂θ

1

N

∑N

k=1
H(θ0, yk) � 1

N
JT J (10.198)

The covariance matrix S is defined as E{H(θ, yk)HT (θ, yk+m)},m = 0,±1, . . . and
is approximated by [32]:

S � ∑N
k=1[H(θ0, yk)HT (θ0, yk)]+

+∑I
m=1

1
N−m

∑N−m
k=1 [H(θ0, yk)HT (θ0, yk+m)+

+H(θ0, yk+m)HT (θ0, yk)]
(10.199)
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where an acceptable value for I is 3. The decision tool is the likelihood ratio s(X) =
ln

pθ1(x)

pθ0(x)
, where pθ1(X) = e[X−μ(X)]T S−1[X−μ(X)] and pθ0(X) = eX

T S−1X [633]. The
center of the Gaussian distribution of the changed system is denoted asμ(X) = Mδθ

where δθ is the change in the parameters vector. The Generalized Likelihood Ratio
(GLR) is calculated by maximizing the likelihood ratio with respect to δθ [32]. This
means that the most likely case of parameter change is taken into account. This gives
the global χ2 test t :

t = XT S−1M(MT S−1M)−1MT S−1X (10.200)

Since X asymptotically follows a Gaussian distribution, the statistics defined in
Eq. (10.200) follows a χ2 distribution with n degrees of freedom. Mapping the
change detection problem to this χ2 distribution enables the choice of the change
threshold. Assume that the desired probability of false alarm is α then the change
threshold λ should be chosen from the relation [33, 633]

∫ ∞

λ

χ2
n (s)ds = α, (10.201)

where χ2
n (s) is the probability density function (p.d.f.) of a variable that follows the

χ2 distribution with n degrees of freedom.

10.5.5.2 Statistical Fault Isolation with the Sensitivity Test

Fault isolation is needed to identify the source of faults in the dynamic or kinematic
model of the system used by the Fuzzy Kalman Filter. This means that the fault
diagnosis method should also be able to find out (among the N local Kalman Filters
that constitute the Fuzzy Kalman Filter) which is the local Kalman Filter that makes
use of an inconsistent model. A first approach to change isolation is to focus only on a
subset of the parameters while considering that the rest of the parameters unchanged
[32]. The parameters vector η can be written as η = [φ,ψ]T , where φ contains those
parameters to be subject to the isolation test, whileψ contains those parameters to be
excluded from the isolation test.Mφ contains the columns of the sensitivity matrixM
which are associated with the parameters subject to the isolation test. Similarly Mψ

contains the columns of M that are associated with the parameters to be excluded
from the sensitivity test.

Assume that among the parameters η, it is only the subset φ that is suspected
to have undergone a change. Thus η is restricted to η = [φ, 0]T . The associated
columns of the sensitivity matrix are given by Mφ and the mean of the Gaussian to
be monitored is μ = Mφφ, i.e.

μ = MAφ, A = [0, I ]T (10.202)
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Matrix A is used to select the parameters that will be subject to the fault isolation
test. The rows of A correspond to the total set of parameters while the columns of A
correspond only to the parameters selected for the test. Thus the fault diagnosis χ2

test (sensitivity test) of Eq. (10.200) can be restated as [33, 633]:

tφ = XT S−1Mφ(MT
φ S−1Mφ)−1MT

φ S−1X (10.203)

10.5.5.3 Statistical Fault Isolation with the Min–Max Test

In this approach the aim is to find a statistic that will be able to detect a change on
the part φ of the parameters vector η and which will be robust to a change in the
non observed part ψ [32]. Assume the vector partition η = [φ,ψ]T . The following
notation is used:

MT S−1M =
(
Iϕϕ Iϕψ

Iψϕ Iψψ

)
(10.204)

γ =
(

ϕ

ψ

)T

·
(
Iϕϕ Iϕψ

Iψϕ Iψψ

)
·
(

ϕ

ψ

)
(10.205)

where S is the previously defined covariance matrix. The min–max test aims to
minimize the non-centrality parameter γ with respect to the parameters that are not
suspected for change. The minimum of γ with respect to ψ is given for [33, 463,
633]:

ψ∗ = argmin
ψ

γ = ϕT (Iϕϕ − Iϕψ I
−1
ψψ Iψϕ)ϕ (10.206)

and is found to be

γ ∗ = min
ψ

γ = ϕT (Iϕϕ − Iϕψ I
−1
ψψ Iψϕ)ϕ =

=
(

ϕ

−I−1
ψψ Iψϕϕ

)T (
Iϕϕ Iϕψ

Iψϕ Iψψ

) (
ϕ

−I−1
ψψ Iψϕϕ

) (10.207)

which results in

γ ∗ = ϕT {[I,−Iϕψ I
−1
ψψ ]MTΣ−1} Σ−1{Σ−1M[I,−Iϕψ I

−1
ψψ ]}ϕ (10.208)

The following linear transformation of the observations is considered:

X∗
φ = [I,−Iϕψ I

−1
ψψ ]MTΣ−1X (10.209)

The transformed variable X∗
φ follows a Gaussian distribution N (μ∗

φ, I ∗
φ ) with

mean:
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Table 10.4 Stages of the local statistical approach for FDI

1. Generate the residuals partial derivative given by Eq. (10.215)

2. Calculate the Jacobian matrix J given by Eq. (10.195)

3. Calculate the sensitivity matrix M given by Eq. (10.198)

4. Calculate the covariance matrix S given by Eq. (10.199)

5. Apply the χ2 test for change detection of Eq. (10.200)

6. Apply the change isolation tests of Eq. (10.203) or (10.212)

μ∗
ϕ = I ∗

ϕ ϕ (10.210)

and with covariance:

I ∗
ϕ = Iϕϕ − Iϕψ I

−1
ψψ Iψϕ (10.211)

The min–max test decides between the hypotheses:

H∗
0 : μ∗ = 0

H∗
1 : μ∗ = I ∗

ϕϕ

and is described by:

τ ∗
ϕ = X∗

ϕ
T I ∗

ϕ
−1X∗

ϕ (10.212)

The stages of fault detection and isolation (FDI) with the use of the local statistical
approach are summarized in Table10.4.

10.5.5.4 Sensitivity of the Fuzzy Kalman Filter to Parametric Changes

It was shown that the Fuzzy Kalman Filter can be represented as a fuzzy weighting
of ARMAX models, which is actually the so-called Takagi–Sugeno fuzzy model.
These are written as:

Rl : IF x1 is Al
1AND x2 is Al

2 AND · · ·AND xn is Al
n

THEN ȳl = ∑n
i=1c

l
fi
xi l = 1, 2, . . . , L

(10.213)

where Rl is the lth rule, x = [x1, x2, . . . , xn]T is the input (antecedent) variable, ȳl

is the output (consequent) variable, and wl
i , b

l are the parameters of the local linear
models. The output of the Takagi–Sugeno model is given by the weighted average
of the rules consequents [211, 463]:
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ŷ =
∑L

l=1 ȳ
l
∏n

i=1μAl
i
(xi )∑L

l=1

∏n
i=1μAl

i
(xi )

(10.214)

where μAl
i
(xi ) : R→[0, 1] is the membership function of the fuzzy set Al

i in the
antecedent part of the rule Rl . The output of the lth local model is given by ȳl =∑n

i=1c
l
fi
xi [211, 463].

First, the residual ei is defined as the difference between the fuzzy model output
ŷi and the physical system output yi , i.e. ei = ŷi − yi . It is also acceptable to
define the residual as the difference between the fuzzy model output and the exact
model output, where the exact model replaces the physical system and has the same
number of parameters as the fuzzy model (see Fig. 10.53). The partial derivative of
the residual square is:

H(θ, yi ) = 1

2

∂e2i
∂θ

= ei
∂ yi
∂θ

(10.215)

The vector H having as elements the above H(θ, yi ) is called primary residual. Next,
the gradients of the outputwith respect to themodel’s parameters are computed [463].
In the case of fuzzy models the gradient of the output with respect to the consequent
parameters wl

i is given by

∂ ŷ

∂wl
i

= xiμRl (x)∑L
l=1μRl (x)

(10.216)

The gradient with respect to the center cli is

∂ ŷ

∂cli
=

L∑
l=1

yl 2(xi−cli )
vli

μRl (xi )[∑L
j=1 μR j (xi ) − μRl (xi )]

[∑L
l=1 μRl (xi )]2

(10.217)

The gradient with respect to the spread vli is

∂ ŷ

∂vli
=

L∑
l=1

yl 2(xi−cli )
2

vli
3 μRl (xi )[∑L

j=1 μR j (xi ) − μRl (xi )]
[∑L

l=1 μRl (xi )]2
(10.218)

It is noted that the equivalence between the fuzzy Kalman filter and a Takagi–Sugeno
neurofuzzy model enables to exploit previous results on fault detection and isolation
for non-parametric estimators, such as neurofuzzy networks, by making use the
local statistical approach to fault diagnosis. By describing the Fuzzy Kalman filter
in the form of a Takagi–Sugeno neurofuzzy model it becomes easy to complete the
intermediate stages for the application of the change detection method, which are
described in Table 10.4 [32, 463].
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10.5.6 Simulation Tests

The motion of the ship was considered to be monitored by the Fuzzy Kalman Filter
of Fig. 10.52. The fuzzy Kalman Filter through local linear models was taken to
consist of the following rules:

R(1) : I F x1 is (c(1)
1 , v) AND x2 is (c(1)

2 , v) AND · · ·
AND xn is (c(1)

n , v) · · · T HEN ŷ = c f
(1)xT

R(2) : I F x1 is (c(2)
1 , v) AND x2 is (c(2)

2 , v) AND · · ·
AND xn is (c(2)

n , v) · · · T HEN ŷ = c f
(2)xT

R(3) : I F x1 is (c(3)
1 , v) AND x2 is (c(3)

2 , v) AND · · ·
AND xn is (c(3)

n , v) · · · T HEN ŷ = c f
(3)xT

R(4) : I F x1 is (c(4)
1 , v) AND x2 is (c(4)

2 , v) AND · · ·
AND xn is (c(4)

n , v) · · · T HEN ŷ = c f
(4)xT

According to Sect. 10.5.3, the regressor’s vector appearing in the consequent part
of the previous fuzzy rules is xT = [ŷ(k), ŷ(k − 1), ŷ(k − 2), u1(k), u2(k), u3(k),
ε1(k)]T , while the parameters’ vector is c f = [a1, a2, a3, b1, b2, b3, c1]. The above
model implies fusion of local estimates from 4 sub-models. The spread of the mem-
bership functions is denoted by v. A 2D projection of the input space partition is
demonstrated in Fig. 10.54.

As mentioned before, to reduce the number of parameters in the statistical vali-
dation test, only the first three variables were maintained in the AR part of the local
ARMAX models, that is y(k − 1), y(k − 2) and y(k − 3). Thus, the parameters set
in the new TSK fuzzy model consisted of 4× 7+ 4× 3 = 40 parameters (28 linear
parameters which were the output layer weights and 12 nonlinear parameters which
were the centers of the fuzzy sets in the antecedent part of the rules). This means that
by applying the local statistical approach to FDI and the χ2 change detection test to
the considered model, the fault threshold should be equal to 40.

The numerical tests confirmed theory. In case that no fault was assumed for the
monitored system the mean value of the χ2 test over a number of trials was found
to be close to the threshold value 40. Such a value was anticipated according to the
theoretical analysis of the χ2 test. For slight deviations of the parameters of the fuzzy
Kalman Filter from their nominal (fault-free) values, the global χ2 test was capable
of giving a clear indication about the existence of a fault. Thus for changes which
varied between 0.1% and 1% of the nominal parameter’s value the score of the χ2

test deviated significantly from the fault threshold (which as mentioned before was
set equal to 40).
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Fig. 10.54 Fuzzy rule base generated with input space partition

Table 10.5 Comparison
between χ2 and MSE tests

% change χ2 MSE

0.20 44.45 1.01 · 10−6

0.24 60.54 1.01 · 10−6

0.30 101.21 1.01 · 10−6

0.35 106.99 1.01 · 10−6

0.40 172.49 1.01 · 10−6

0.45 165.97 1.02 · 10−6

0.50 187.87 1.02 · 10−6

0.55 230.14 1.02 · 10−6

0.60 295.33 1.02 · 10−6

0.65 282.00 1.03 · 10−6

0.70 330.59 1.03 · 10−6

0.75 365.88 1.03 · 10−6

A comparison between (i) the proposedχ2 change detection test based on the local
statistical approach and the Generalized Likelihood ratio and (ii) the mean square
error (MSE) test, for detectingmodel inconsistencies in the distributed/fuzzyKalman
Filter is given in Table 10.5 and in Fig. 10.55. It can be clearly noticed that for small
parametric changes in the ship’s local models used by the fuzzy Kalman Filter, the
MSE test gives the erroneous conclusion that the functioning of the Kalman Filter
remains accurate. Actually it is observed that there is no change in the MSE value
despite changes in the parameters of the model used by the Kalman Filter, and the
MSE value remains low as in the case of fault-free operation. Besides in theMSE test
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Fig. 10.55 Comparison between i the proposed χ2 test based on the local statistical approach and
the Generalized Likelihood ratio and ii of the mean square error (MSE) test, for detecting model
inconsistencies in the distributed/Fuzzy Kalman Filter

the fault threshold is defined in an ad-hoc manner and this is another reason for the
low credibility of this test. On the other hand the proposed χ2 test based on the local
statistical approach and the Generalized Likelihood ratio provides a clear indication
about inconsistencies between the models used by the fuzzy Kalman Filter and the
dynamics of the real system. Despite the small magnitude of parametric changes, the
output of the χ2 test based on the local statistical approach becomes several times
larger than the fault threshold (that is 40). Thus a clear indication is provided about
the need to correct the parameters of the local models used by the Fuzzy Kalman
Filter.

As far as fault isolation is concerned, the numerical results showed that the sen-
sitivity method for fault isolation was very efficient in distinguishing the parameter
subject to fault among all parameters in the fuzzy Kalman Filter’s model. The sensi-
tivity fault isolation test and the min–max fault isolation test was performed for the
parameters (weight wi ) of the local Kalman Filter. As it can be observed from the
test’s success rate depicted in Fig. 10.56 the proposed fault isolation methods can
detect the local Kalman Filter, that uses an inconsistent model with reference to the
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Fig. 10.56 a Success rate of the fault isolation test (sensitivity method) for changes in a parameter
of the first local Kalman Filter, ranging between 0.1 and 1.0% of the nominal value b Success rate
of the fault isolation test (max–min method) for changes in a parameter of the first local Kalman
Filter, ranging between 0.1 and 1.0% of the nominal value

real system’s model. Thus correction of the parameters of this particular filter can
be carried out instead of redesign of all local Kalman Filters constituting the Fuzzy
Kalman Filter.



Chapter 11
Autonomous Underwater Vessels

Abstract The control of multi-DOF autonomous underwater vessels (AUVs)
exhibits particular difficulties which are due to the complicated nonlinear model
of the submersible vessels, the coupling between the systems control inputs and out-
puts, and the uncertainty about the values of their model’s parameters. Moreover, the
AUVs’ dynamic model is subject to external perturbations which are caused by vari-
able sea conditions and sea currents. Consequently, an efficient control scheme for
AUVs should not only compensate for the nonlinearities of the associated dynamic
model, but should also exhibit robustness to model parameter variations and to exter-
nal disturbances. To this end, the present chapter provides results on robust control
of AUVs, as well as on adaptive control of such submersible vessels. Thus the con-
trol problem for autonomous underwater vessels is treated with (i) global lineariza-
tion methods (ii) approximate linearization methods and (iii) Lyapunov methods.
The solution of the control problem requires a more elaborated procedure when
the AUVs’ dynamic model is underactuated. which means that the number of actu-
ators included in its propulsion system is less than the number of its degrees of
freedom.The methods developed in this chapter treat also the case of underactuated
AUVs. Moreover, advanced estimation methods are used to identify in real time the
unknown dynamics of the underwater vessels or disturbance forces and torques that
affect them. This allows for the implementation of indirect adaptive control schemes
for the AUVs. Additionally,for the precise localization of the AUVs and their safe
navigation elaborated nonlinear filtering methods are developed. These permit to
solve problems of multi-sensor fusion as well as problems of decentralized state
estimation with the use of spatially distributed nonlinear filters that track the AUVs
motion. In particular the chapter treats the following topics: (a) Global linearization-
based control of autonomous underwater vessels, (b) Flatness-based adaptive fuzzy
control of autonomous submarines, and (c) Nonlinear optimal control of autonomous
submarines.
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11.1 Chapter Overview

The present chapter treats the following topics: (a) Global linearization-based con-
trol of autonomous underwater vessels, (b) Flatness-based adaptive fuzzy control
of autonomous submarines, and (c) Nonlinear optimal control of autonomous sub-
marines.

With reference to (a) the chapter solves the problem of control and navigation for
Autonomous Underwater Vessels (AUVs) using differential flatness theory and the
Derivative-free nonlinear Kalman Filter. First, differential flatness is proven for the
6-DOFdynamicmodel of theAUV. This allows for transforming theAUVmodel into
the linear canonical (Brunovsky) form and for designing a state feedback controller.
Uncertainty about the parameters of the AUV’s dynamic model, as well external
perturbations which affect its motion are issues that have to be taken into account in
the controller’s design. To compensate for model imprecision and disturbance terms,
it is proposed to use a disturbance observer which relies on the previously analyzed
the Derivative-free nonlinear Kalman Filter. The considered filtering method con-
sists of the standard Kalman Filter recursion applied on the linearized model of the
underwater vessel and of an inverse transformation based on differential flatness the-
ory, which enables to obtain estimates of the state variables of the initial nonlinear
model of the vessel. With the use of the Kalman Filter-based disturbance observer,
simultaneous estimation of the non-measurable state variables of the AUV and of the
perturbation terms that affect its dynamics is achieved. Moreover, after estimating
such disturbances, their compensation is also accomplished.

With reference to (b) the chapter proposes adaptive fuzzy control based on dif-
ferential flatness theory for autonomous submarines. It is proven that the dynamic
model of the submarine, having as state variables the vessel’s depth and its pitch
angle, is a differentially flat one. This means that all its state variables and its control
inputs can be written as differential functions of the flat output and its derivatives.
By exploiting differential flatness properties the system’s dynamic model is written
in the multivariable linear canonical (Brunovsky) form, for which the design of a
state feedback controller becomes possible. After this transformation, the new con-
trol inputs of the system contain unknown nonlinear parts, which are identified with
the use of neurofuzzy approximators. The learning procedure for these estimators
is determined by the requirement the first derivative of the closed-loop’s Lyapunov
function to be a negative one. Moreover, the Lyapunov stability analysis shows that
H-infinity tracking performance is ascertained for the feedback control loop and this
assures improved robustness to the aforementioned model uncertainty as well as to
external perturbations.

With reference to (c) the chapter presents a nonlinear H-infinity (optimal) con-
trol approach for the problem of the control of the depth and heading angle of an
autonomous submarine. This is a multi-variable nonlinear control problem and its
solution allows for precise underwater navigation of the submarine. The submarine’s
dynamicmodel undergoes approximate linearization around a temporary equilibrium
that is recomputed at each iteration of the control algorithm. The linearization proce-
dure is based on Taylor series expansion and on the computation of the submarine’s
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model Jacobian matrices. For the approximately linearized model, the optimal con-
trol problem is solved through the design of an H-infinity feedback controller. The
computation of the controller’s gain requires the solution of an algebraic Riccati
equation, which is repetitively performed at each step of the control method. The
stability of the control scheme is proven through Lyapunov analysis.

11.2 Global Linearization-Based Control of Autonomous
Underwater Vessels

11.2.1 Outline

The control of 6-DOF autonomous underwater vessels (AUVs) exhibits particular
difficulties which are due to the complicated nonlinear model of the vessel, the
coupling between the system’s control inputs and outputs, and the uncertainty about
the values of themodel’s parameters.Moreover, theAUVs’ dynamicmodel is subject
to external perturbations which are due to variable sea conditions and sea currents
[143, 144, 191, 411]. Consequently, an efficient control scheme for AUVs should not
only compensate for the nonlinearities of the associated dynamic model, but should
also exhibit robustness to model parameter variations and to external disturbances.
To this end, during the last years, there have been several results on robust control of
AUVs [251, 258, 288, 386, 453, 536, 635], as well as on adaptive control of such
submersible vessels [253, 346, 462, 618].

In this section a new control method is proposed for the 6-DOF dynamic model
of AUVs, based on differential flatness theory [450, 452, 457]. First it is proven, that
the 6-DOF dynamic model of the AUV is a differentially flat one. This means that
all its state variables and its control inputs can be expressed as differential functions
of one single algebraic variable which is the so-called flat output [57, 145, 254,
267, 322, 472, 476, 519, 572]. By exploiting differential flatness properties, the
AUVs’ model is transformed into the linear canonical (Brunovsky) form. For the
latter description of the AUVs the design of a state feedback controller is possible.
Unlike approximate linearizationmethods the aforementioned transformation avoids
numerical errors and truncation of nonlinear terms from the AUVs’ dynamic model.

Another problem that has to be dealt with is that the control loop should compen-
sate for modelling uncertainties and external perturbation terms affecting the AUVs.
To this end, it is proposed to use the Derivative-free nonlinear Kalman Filter as a
disturbance observer. This nonlinear filter consists of the Kalman Filter recursion
applied on the equivalent linearized model of the AUVs together with an inverse
transformation, based again on differential flatness theory, which enables to obtain
estimates of the initial nonlinear AUVs’ model. The aforementioned disturbance
observer provides simultaneously estimates of non-measurable state variables of the
AUV and of the external perturbation terms. By identifying external disturbance
inputs their compensation becomes also possible.
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Fig. 11.1 Reference frames
for the localization and
navigation of the AUV

11.2.2 The 6-DOF Dynamic Model of the AUV

11.2.2.1 Kinematic Model of the AUV

Kinematic and dynamic modelling of AUVs and in general of marine vessels is
needed for the development of efficient control for propulsion purposes [373, 388,
416]. In the modelling of AUVs an inertial and a body-fixed reference frame are
usually defined. The inertial reference frame of the AUV denoted as OXY Z and the
body-fixed reference frame denoted as Oxyz, used for the localization and navigation
of the underwater vessel are depicted in Fig. 11.1.

The state vector of the AUV in the inertial reference frame is defined as
x = [x1, x2]T = [x, y, z, φ, θ, ψ]T , where x1 = [x, y, z]T denotes linear dis-
placement and x2 = [ψ, θ,ψ]T is the vector of Euler angles which denotes rota-
tional displacement. The associated velocities vector is given by ẋ = [ẋ1, ẋ2]T =
[ẋ, ẏ, ż, φ̇, θ̇ , ψ̇]T .

In the body-fixed reference frame the velocity vector of the AUV is denoted as
u = [u1, u2]T = [u, v,w, p, q, r ]T , where u1 = [u, v,w]T is the vector of linear
velocities and u2 = [p, q, r ]T is the vector of angular velocities.

The vector of external forces and torques which can be applied to the 6-DOFAUV
is given by τ = [Fx , Fy, Fz, Tx , Ty, Tz]T . In this representation τ1 = [Fx , Fy, Fz]T
is the vector of forces along the X , Y and Z axes respectively and τ2 = [Tx , Ty, Tz]T
is the vector of torques causing rotation round the X , Y and Z axes.

The following transformation connects velocities expressed in the inertial ref-
erence frame η̇1 = [ẋ, ẏ, ż]T and velocities expressed in the body-fixed frame
v1 = [u, v,w]T :
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η̇1 = J1v1 where

J1 =⎛
⎜⎝
cos(ψ)cos(θ) −sin(ψ)cos(φ) + cos(ψ)sin(θ)sin(φ) sin(ψ)sin(φ) + cos(ψ)cos(φ)sin(θ)

sin(ψ)cos(θ) cos(ψ)cos(φ) + sin(φ)sin(θ)sin(ψ) −cos(ψ)sin(φ) + sin(θ)sin(ψ)cos(φ)

−sin(θ) cos(θ)sin(φ) cos(θ)cos(φ)

⎞
⎟⎠

(11.1)

Moreover, the following transformation holds between angular velocities expre-
ssed in the inertial and in the body-fixed frame

η̇2 = J2v2 where

J2 =
⎛
⎝
1 sin(φ)tan(θ) cos(φ)tan(θ)

0 cos(φ) −sin(φ)

0 sin(φ)/cos(θ) cos(φ)/cos(θ)

⎞
⎠

(11.2)

Therefore, it holds
(

η̇1
η̇2

)
=

(
J1 0
0 J2

)(
v1
v2

)
or η̇ = J ·v (11.3)

11.2.2.2 Dynamic Model of the AUV

Dynamic models for AUVs have been extensively analyzed [373, 388]. The dynamic
model of the AUV representing an equilibrium in forces and torques is

MRBv̇ + CRB(v)·v = τRB (11.4)

where MRB is the inertia matrix of the AUV, CRB(v) is the Coriolis and centrifugal
forces matrix, v = [u, v,w, p, q, r ]T is the velocities vector in the body-fixed refer-
ence frame and τRB = [Fx , Fy, Fz, Tx , Ty, Tz]T = 0∈R6×1 is the vector of external
forces and torques exerted on the AUV when the latter is found at an equilibrium.
All variables of Eq. (11.4) are expressed in the body-fixed frame.

The inertia matrix MRB is given by

MRB =

⎛
⎜⎜⎜⎜⎜⎜⎝

m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG Ix −Ixy −Ixz

mzG 0 −mxG −Ixy Iy −Iyz
−myG mxG 0 −Ixz −Iyz Iz

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.5)
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where Ix , Iy , Iz are inertia matrices, Ixy , Ixz , Iyz are inertia products and rG =
[xG, yG, zG] are the coordinates of the AUV’s center of mass (in the body-fixed
frame). The Coriolis matrix of the AUV is given by

CRB =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 m(yGq + zGr) −m(xGq − w) −m(xGr + v)

0 0 0 −m(yG p + w) m(zGr + xG p) −m(yGr − u)

0 0 0 −m(zG p − v) −m(zGq + u) −m(xG p + yGq)

−m(yGq + zGr) m(yG p + w) m(zG p − v) 0 −Iyzq − Ixz p + Izr Iyzr + Ixy p − Iyq

m(xGq − w) −m(zGr + xG p) m(zGq + u) Iyx q + Ixz p − Izr 0 Ixzr + Ixyq + Ix p

m(xGr + v) m(yGr − u) −m(xG p + yGq) −Iyzr − Ixy p − Iyq Ixzr + Ixyq − Ix p 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.6)

The motion of the AUV is also affected by the inertia of the fluid that surrounds it.
This is modeled as follows:

τA = −MAv̇ − CA(v)v (11.7)

This means that a force / torque is developed against the motion of the vessel and it
varies proportionally to the vessel’s acceleration. The new inertia matrix MA is given
by

MA =

⎛
⎜⎜⎜⎜⎜⎜⎝

A11 0 0 0 0 0
0 A22 0 0 0 0
0 0 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.8)

and the new Coriolis matrix is given by

CA =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 A33w −A22v
0 0 0 −A33w 0 A11u
0 0 0 A22v −A11u 0
0 A33w −A22v 0 A66r −A55q

−A33w 0 A11u −A66r 0 A44 p
A22v −A11u 0 A55q −A44 p 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.9)

The model is completed by the vector of a force / torque which resists to the motion
of the underwater vessel and which is proportional to its velocity

τDL = −D(v)v where

D(v) =

⎛
⎜⎜⎜⎜⎜⎜⎝

X |u|u |u| 0 0 0 0 0
0 Y|v|v|v| 0 0 0 0
0 0 Z |w|w|w| 0 0 0
0 0 0 K|p|p|p| 0 0
0 0 0 0 M|q|q |q| 0
0 0 0 0 0 N|r |r |r |

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.10)
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while the diagonal elements of matrix D(v) are defined as follows:

X |u|u = ρ

2 V
2
3Cx (0o, 0o) K|p|p = ρ

2 V
5
3Cp

Y|v|v = ρ

2 V
2
3Cy(90o, 0o) M|q|q = ρ

2 V
5
3Cq

Z |w|w = ρ

2 V
2
3Cz(90o, 90o) N|r |r = ρ

2 V
5
3Cr

(11.11)

where ρ is the specific mass of the water, V is the volume of the submerged vessel
and Cx , Cy , Cz , Cp, Cq , Cr are constants.

The weight of the AUV is W = m·g, while the lift force exerted on the AUV
is B = ρgV , where ρ is the water’s specific weight (both expressed in the inertial
reference frame). These forces can be expressed in the body-fixed reference frame
as follows: fW = J−1

1 [0, 0,W ]T and fB = −J−1
1 [0, 0, B]T . Moreover, there are

torques which are generated due to these forces and these are given by τW = rG× fW
and τB = rB× fB , where rG = [xG, yG, zG]T and rB = [xB, yB, zB]T . Thus, there is
an additional vector of forces and torques applied on the AUV which is given by

τWB =
(
fw + fB
τw + τB

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

(W − B)sin(θ)

−(W − B)cos(θ)sin(φ)

−(W − B)cos(θ)cos(φ)

−(YGW − YB B)cos(θ)cos(φ) + (zGW − zB B)cos(θ)sin(ψ)

(zGW − zB B)sin(θ) + (xGW − xB B)cos(θ)cos(φ)

−(xGW − xB B)cos(θ)sin(φ) − (yGW − yB B)sin(θ)

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.12)

By applying one more transformation on the aforementioned vector, the forces and
torques due to the effects of weight and lift are finally expressed in the inertial
reference frame. Thus, due to the effects of the resistive forces and torques which
are generated by the surrounding fluid one has the dynamics

MRBv̇ + CRB(v)v = τA + τDL + τWB + τ (11.13)

where τA = −MAv̇−CA(v)v, τDL = −D(v)v stands for forces and torques resisting
the vessel’s motion), τWB = −g f represents forces and torques due to weight and
lift effects, and τ is the vector of external torques and forces defining the vessel’s
propulsion. By combining Eqs. (11.4) and (11.7) one obtains the aggregate dynamics

(MRB + MA)v̇ + (CRB(v) + CA(v))v + D(v)v + g f = τ (11.14)

The aggregate inertia matrix is M = MRB + MA, the aggregate Coriolis matrix is
C(v) = CRB(v) + CA(v). Thus, the dynamic and the kinematic model of the AUV
are finally written as

Mv̇ + Cv + D(v)v + g f = τ (11.15)

η̇ = J (η)v (11.16)
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11.2.3 Differential Flatness of the AUV’s Model

It will be proven that the dynamicmodel of the AUV is a differentially flat one, which
means that all its state variables and its control inputs can be written as differential
functions of the an algebraic variable (vector) which is the so-called flat output
[57, 145, 254, 267, 322, 472, 476, 519, 572]. Using that v = J−1η̇ or v = Rη̇ Eq.
(11.15) can be written equivalently as

M̃ η̈ + C̃ η̇ + D̃(η̇)η̇ + g f (η) = τ (11.17)

where η has been defined in the inertial reference frame as η = [x, y, z, φ, θ, ψ]T ,
M̃ = MR, C̃ = MṘ + CR and D̃ = DR. By denoting the inverse of the inertia
matrix as M̃−1 = N one obtains

η̈ + N ·C̃ η̇ + N ·D̃(η̇)η̇ + N ·g f (η) = N ·τ (11.18)

Moreover, using the state vector elements notation z1 = x , z2 = ẋ , z3 = y, z4 = ẏ,
z5 = z, z6 = ż, z7 = φ, z8 = φ̇, z9 = θ , z10 = θ̇ , z11 = ψ , z12 = ψ̇ and
by defining the state vector Z = [z1, z2, z3, z4, z5, z6, z7, z8, z9, z10, z11, z12]T , the
dynamic model of Eq. (11.18) becomes

ż1 = z2 ż2 + f1(Z) = N1(Z)τ

ż3 = z4 ż4 + f2(Z) = N2(Z)τ

ż5 = z6 ż6 + f3(Z) = N3(Z)τ

ż7 = z8 ż8 + f4(Z) = N4(Z)τ

ż9 = z10 ż10 + f5(Z) = N5(Z)τ

ż11 = z12 ż12 + f6(Z) = N6(Z)τ

(11.19)

where τ∈R6×1 is the vector of external forces and torques, fi (Z) i = 1, · · · , 6 are
the row elements of the vector f = N ·C̃ η̇+N ·D̃(η̇)η̇+N ·g f (η), while Ni (Z), i =
1, · · · , 6 are the rows of matrix N = M−1. The flat output of the system is taken
to be the vector Y = [z1, z3, z5, z7, z9, z11]. From Eq. (11.19) it holds that z2 = ż1,
z4 = ż3, z6 = ż5, z8 = ż7, z10 = ż9 and z12 = ż11. Therefore, it holds

z2 = [1 0 0 0 0 0]Ẏ z4 = [0 1 0 0 0 0]Ẏ
z6 = [0 0 1 0 0 0]Ẏ z8 = [0 0 0 1 0 0]Ẏ
z10 = [0 0 0 0 1 0]Ẏ z2 = [0 0 0 0 0 1]Ẏ

(11.20)

Consequently the state vector elements given above can be written as functions of
the flat output Y . Moreover, from Eq. (11.19) one has that

z̈1 = v1 = − f1 + N1τ z̈3 = v2 = − f2 + N2τ

z̈5 = v3 = − f3 + N3τ z̈7 = v4 = − f4 + N4τ

z̈9 = v5 = − f5 + N5τ z̈11 = v6 = − f6 + N6τ

(11.21)

Therefore, one has
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⎛
⎜⎜⎜⎜⎜⎜⎝

z̈1
z̈3
z̈5
z̈7
z̈9
z̈11

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

− f1
− f2
− f3
− f4
− f5
− f6

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

N1τ

N2τ

N3τ

N4τ

N5τ

N6τ

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.22)

which is equivalently written as

z̈a = − fa(Z) + Nτ⇒τ = N−1(z̈a + fa(Z))

⇒τ = M(z̈a + fa(Z))
(11.23)

Consequently, the control inputs of the 6-DOF AUV model can be also written
as functions of the flat output and its derivatives. Therefore, the AUV model is a
differentially flat one.

11.2.4 Flatness-Based Control of the AUV

By exploiting the previously proven differential flatness properties of the AUV it will
be shown that a stabilizing feedback controller can be designed for the AUV model.
Using Eq. (11.19) the following control inputs are defined.

v1 = − f1 + N1τ v2 = − f2 + N2τ

v3 = − f3 + N3τ v4 = − f4 + N4τ

v5 = − f1 + N1τ v6 = − f1 + N1τ

(11.24)

or equivalently

v = − fa + Nτ⇒τ = N−1(v + fa)⇒τ = M(v + fa) (11.25)

This means that if the transformed control inputs v are computed so as to assure
asymptotic tracking of the AUV’s reference setpoints, one can also find the real
control inputs τ which should be exerted on the AUV for succeeding this objective.
According to the above, the dynamic model of Eq. (11.19) can be written into the
canonical (Brunovsky) form

ż1 = z2 ż2 = v1 ż3 = z4 ż4 = v2
ż5 = z6 ż6 = v3 ż7 = z8 ż8 = v4
ż9 = z10 ż10 = v5 ż11 = z12 ż12 = v6

(11.26)

which also takes the matrix form

Ż = AZ + BV (11.27)
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or equivalently one has the following state-space description for the system

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż1
ż2
ż3
ż4
ż5
ż6
ż7
ż8
ż9
ż10
ż11
ż12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6
z7
z8
z9
z10
z11
z12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

v1
v2
v3
v4
v5
v6

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.28)

and the measurement equation for this system becomes

⎛
⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
z2
z3
z4
z5
z6
z7
z8
z9
z10
z11
z12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.29)

Thus, using differential flatness theory the AUV’smodel has beenwritten in aMIMO
linear canonical (Brunovsky) form, which is both controllable and observable. After
being written in the linear canonical form the AUV’s state-space equation comprises
6 subsystems of the form

ÿ fi = vi , i = 1, · · · , 6 (11.30)

For each one of these subsystems a controller can be defined as follows

vi = ÿdfi − kdi (ẏ fi − ẏdfi ) − kpi (y fi − ydfi ), i = 1, · · · , 6 (11.31)
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Once the transformed control inputs vector v∈R6×1 has been computed, one can use
Eq. (11.25) to find also the torques and forces vector τ = M(v + fa) that should be
exerted on the AUV so as to achieve convergence to its reference setpoints.

11.2.5 Disturbances Compensation with the Derivative-Free
Nonlinear Kalman Filter

It was shown that the initial nonlinear model of the AUV can be written in theMIMO
canonical form of Eqs. (11.28) and (11.29). Next, it is assumed that the AUV’s model
is affected by additive input disturbances, thus one has

z̈1 = v1 + d̃1 z̈2 = v2 + d̃2
z̈3 = v3 + d̃3 z̈4 = v4 + d̃4
z̈5 = v5 + d̃5 z̈6 = v6 + d̃6

(11.32)

The system’s dynamics can be also written as ż1 = z2, ż2 = v1 + d̃1, ż3 = z4,
ż4 = v2 + d̃2, ż5 = z6, ż6 = v3 + d̃3, ż7 = z8, ż8 = v4 + d̃4, ż9 = z10, ż10 = v5 + d̃5,
ż11 = z12, ż12 = v6 + d̃6.

Without loss of generality, it is assumed that the dynamics of the disturbances

terms are described by their second order derivative, i.e. ¨̃di = fdi , i = 1, · · · , 6.
Next, the extended state vector of the system is defined so as to include disturbance
terms as well. Thus one has the additional state variables

z13 = d̃1 z14 = ˙̃d1 z15 = ¨̃d1 z16 = d̃2 z17 = ˙̃d2 z18 = ¨̃d2
z19 = d̃3 z20 = ˙̃d3 z21 = ¨̃d3 z22 = d̃4 z23 = ˙̃d4 z24 = ¨̃d4
z25 = d̃5 z26 = ˙̃d6 z27 = ¨̃d5 z28 = d̃6 z29 = ˙̃d6 z30 = ¨̃d6

(11.33)

Thus, the disturbed system can be described by a state-space equation of the form

ż f = A f z f + B f v
zmeas
f = C f z f

(11.34)

where A f ∈R30×30, B f ∈R30×6 and C f ∈R6×30, with
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A f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×1 1 01×28

01×12 1 01×17

01×3 1 01×26

01×15 1 01×14

01×5 1 01×24

01×18 1 01×11

01×7 1 01×22

01×21 1 01×8

01×9 1 01×20

01×24 1 01×5

01×11 1 01×18

01×27 1 01×2

01×13 1 01×16

01×14 1 01×15

01×30

01×16 1 01×13

01×17 1 01×12

01×30

01×19 1 01×10

01×20 1 01×9

01×30

01×22 1 01×7

01×23 1 01×6

01×30

01×25 1 01×4

01×26 1 01×3

01×30

01×28 1 01×1

01×29 1
01×30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

B f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

01×6

1 01×5

01×1 1 01×4

01×6

01×2 1 01×3

01×6

01×3 1 01×2

01×6

01×4 1 01×1

01×6

01×5 1
018×6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C f =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 01×29

01×2 1 01×27

01×4 1 01×25

01×6 1 01×23

01×8 1 01×21

01×10 1 01×19

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.35)
For the aforementioned model, and after carrying out discretization of matrices A f ,
B f and C f with common discretization methods one can implement the standard
KalmanFilter algorithm, consisting of a time-update and ameasurement update stage
[33, 431, 463]. As previously explained,this is Derivative-free nonlinear Kalman
filtering for the model of the AUVwhich, unlike EKF, is performed without the need
to compute Jacobian matrices and does not introduce numerical errors.

The dynamics of the disturbance terms d̃i , i = 1, · · · , 6 are taken to be unknown
in the design of the associated disturbances’ estimator. Defining as Ãd , B̃d , and C̃d ,
the discrete-time equivalents of matrices Ã f , B̃ f and C̃ f respectively, one has the
following dynamics:

˙̂z f = Ã f ·ẑ f + B̃ f ·ṽ + K (zmeas
f − C̃ f ẑ f ) (11.36)
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where K∈R30×6 is the state estimator’s gain. The associated Kalman Filter-based
disturbance estimator is given by [450, 452, 457]

measurement update:

K (k) = P−(k)C̃T
d [C̃d ·P−(k)C̃T

d + R]−1

ẑ f (k) = ẑ−
f (k) + K (k)[zmeas

f (k) − C̃d ẑ
−
f (k)]

P(k) = P−(k) − K (k)C̃d P−(k)
(11.37)

time update:

P−(k + 1) = Ãd(k)P(k) ÃT
d (k) + Q(k)

ẑ−
f (k + 1) = Ãd(k)ẑ f (k) + B̃d(k)ṽ(k)

(11.38)

To compensate for the effects of the disturbance forces it suffices to use in the
control loop the modified control input vector

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 − ˆ̃d1
v2 − ˆ̃d2
v3 − ˆ̃d3
v4 − ˆ̃d4
v5 − ˆ̃d5
v6 − ˆ̃d6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

or v =

⎛
⎜⎜⎜⎜⎜⎜⎝

v1 − ẑ13
v2 − ẑ16
v3 − ẑ19
v4 − ẑ22
v5 − ẑ25
v6 − ẑ28

⎞
⎟⎟⎟⎟⎟⎟⎠

(11.39)

11.2.6 Simulation Tests

The efficiency of the proposed control scheme was tested through simulation exper-
iments. First, results are given about tracking a 3D trajectory, having as projection in
the xy-plane a circular path (Fig. 11.2). Additional simulation experiments for this
first trajectory tracking problem are concerned with control of the AUV under dis-
turbance forces and torques. The estimation of the disturbance forces and torques is
shown in Fig. 11.3. Moreover, as shown in Figs. 11.4, 11.5 and 11.6, flatness-based
control enabled accurate tracking of the reference trajectories for both the linear
position and velocity variables and for the angular position and velocity variables
(blue line: real value, green line estimated value, red line: setpoint).

Next, results are given about tracking a 3D trajectory, having as projection in
the xy-plane an eight-shaped path (Fig. 11.7). Additional simulation experiments for
this second trajectory tracking problem are concerned again with control of the AUV
under disturbance forces and torques. The estimation of the disturbance forces and



606 11 Autonomous Underwater Vessels

(a) (b)

Fig. 11.2 Control of the 6-DOF AUV: a trajectory of the AUV in the cartesian space, b projection
of the AUV’s trajectory on the xy plane
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Fig. 11.3 Use of the Derivative-free nonlinear Kalman Filter in estimation of disturbances: a
associated with linear motion, b associated with the rotational motion of the vehicle

torques is shown in Fig. 11.8. Moreover, as demonstrated in Figs. 11.9, 11.10 and
11.11, flatness-based control enabled accurate tracking of the reference trajectories
for both the linear position and velocity variables and for the angular position and
velocity variables (blue line: real value, green line estimated value, red line: setpoint).
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Fig. 11.4 Control of the AUV in the presence of external disturbances a position and velocity along
the x axis, b position and velocity along the y axis
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Fig. 11.5 Control of the AUV in the presence of external disturbances: a position and velocity
along the z axis, b rotation angle φ and associated angular speed

11.3 Adaptive Fuzzy Control of Autonomous Submarines

11.3.1 Outline

Next, an adaptive control approach to the problem of control of Autonomous Under-
water Vessels is presented, comprising both global linearization methods and Lya-
punov stability analysis methods. The design of control systems for autonomous
underwater vessels (AUVs) and submarines is a non-trivial problem because such
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Fig. 11.6 Control of the AUV in the presence of disturbances: a rotation angle θ and associated
angular speed, b rotation angle ψ and associated angular speed

(a) (b)

Fig. 11.7 Control of the 6-DOF AUV: a trajectory of the AUV in the cartesian space, b projection
of the AUV’s trajectory on the xy plane

systems exhibit a highly nonlinear multivariable dynamics with strong couplings
between their inputs and outputs [128, 411, 516]. Besides, such systems function
under variable conditions and thus their dynamic model is subject to parametric
changes. Moreover, submersible autonomous robots and submarines are exposed to
strong perturbations due to variable sea conditions and sea currents. Therefore, it is
important to develop feedback control schemes for AUVs and submarines that will
be little dependent on prior and exact knowledge of the associated dynamic model
and will exhibit sufficient robustness to perturbation inputs [21, 143, 144, 191, 251,
386, 457, 522]. To this end, in the recent years several research results have been
presented, in particular on robust control [253, 346, 518] and on adaptive control of
AUVs [258, 375, 462, 635].
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Fig. 11.8 Use of the Derivative-free nonlinear Kalman Filter in estimation of disturbances: a
associated with linear motion, b associated with the rotational motion of the vehicle
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Fig. 11.9 Control of the AUV in the presence of external disturbances a position and velocity along
the x axis, b position and velocity along the y axis

Adaptive fuzzy controlmethods can provide a solution to the problemof trajectory
tracking and stabilization for autonomous submarines. As previously noted, adaptive
fuzzy control schemes have been developed for unknown single-input single-output
(SISO) and unknown multi-input multi-output (MIMO) dynamical systems. The
capability of neurofuzzy controllers to compensate for model parametric uncertain-
ties, external disturbances, as well as for incomplete measurement of the systems
state vector has been analyzed in several studies [84, 89, 277, 524, 562]. Adaptive
fuzzy control methods usually try to invert the systems dynamics, and thus to achieve
convergence of its output to the desirable setpoints, starting from a description of the
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Fig. 11.10 Control of the AUV in the presence of external disturbances: a position and velocity
along the z axis, b rotation angle φ and associated angular speed
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Fig. 11.11 Control of the AUV in the presence of disturbances: a rotation angle θ and associated
angular speed, b rotation angle ψ and associated angular speed

system in the canonical form. On the other hand, differential flatness theory enables
to transform the system’s generic description ẋ = f (x, u) into the canonical form
and from that point on to develop adaptive control schemes. Consequently, differen-
tial flatness theory extends the class of nonlinear control systems to which adaptive
neural / fuzzy control can be applied and this is a significant benefit for adaptive
control theory [399, 457, 609, 617].

In this section, an adaptive control scheme is developed for autonomous sub-
marines relying on differential flatness theory and on real-time identification of
the unknown dynamics of the system with the use of neurofuzzy approximators
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Fig. 11.12 Reference
frames for the autonomous
submarine

[450, 452]. First, it is proven that the dynamic model of the submersible vessel,
comprising as state variables the submarine’s depth and its pitch angle, is a differ-
entially flat one. This means that all its state variables and its control inputs can be
expressed as differential functions of a specific algebraic variable which is the so-
called flat output. By exploiting the differential flatness properties of the submarine’s
model its transformation into the linear canonical (Brunovsky) form is accomplished.
For the latter description of the system’s dynamics the design of a MIMO state feed-
back controller becomes possible [57, 145, 254, 267, 322, 472, 476, 519]. In the
transformed state-space model, the new control inputs of the submarine contain
unknown nonlinear terms which are identified in real-time with the use of neuro-
fuzzy approximators. The learning procedure for these estimators is determined by
the requirement the first derivative of the closed-loop’s Lyapunov function to be a
negative one. Moreover, through Lyapunov stability analysis it is proven that the
control system satisfies the H-infinity tracking conditions. This assures the control
loop’s robustness against model uncertainties and external perturbations. Finally,
the efficiency of the submarine’s control scheme is confirmed through simulation
experiments.

11.3.2 The Dynamic Model of the Autonomous Submarine

Thedive-plane nonlinear time-varying dynamicmodel of the submarine is considered
(see. Fig. 11.12). The primary variables of this model are: (i) the diving speed along
the vessel’s z-axis (in a body-fixed frame), (ii) the pitch angle θ formed between the
horizontal reference axis (in an inertial reference frame) and the x-axis of the vessel
(in the body-fixed frame) [258].

The equations of motion of the vessel are:
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Table 11.1 Parameters of the submarine’s dynamic model

Parameter value Parameter value Parameter value

Z
′
w = −0.0110 Z

′
ẇ = −0.0075 Z

′
θ = −0.0045

Z
′
θ = −0.0002 Z

′
δB = −0.0025 Z

′
δS = −0.0050

M
′
w = 0.0030 M

′
ẇ = −0.0002 M

′
θ = −0.0025

M
′
θ̇

= −0.0004 M
′
δB = 0.0005 M

′
δS = −0.0025

I
′
y = 5.6867·10e−4 L = 286ft m = 1.52·105slug
Zg − ZB = −1.5ft U = 8.43ft/s ρ = 2.0 slug/ft3

I
′
2 = I

′
y − M

′
B m = 2m/(ρL3)) m

′
3 = m

′ − Z
′
w

ẇ(t) = Z
′
wU

Lm
′
3
w(t) + 1

m
′
3
Ż

′
θ̇
+ m

′
)U θ̇ (t) + Z

′
Q̇
L

m ′
s
Q̇(t)+

+ Z
′
δBU

2

m
′
3L

δB(t) + Z
′
δSU

2

m
′
3L

δS(t) + Zd (t)
0.5ρL3m

′
3
+ Zη(w, q)

(11.40)

Q̇(t) = M
′
ẇ

L I
′
2
ẇ(t) + M

′
vU

L2 I
′
2
w(t) + M

′
θ̇
U

L I
′
2
θ̇ (t)+

+M
′
δBU

2

L2 I
′
2

δB(t) + M
′
δSU

2

L2 I
′
2

δS(t) + 2mg(zG−zB )

ρL5 I
′
2

θ(t) + Md (t)
0.5ρL5 I

′
2
+ Mη(w, q)

(11.41)

In the above dynamic model of the submarine w is the velocity along the z-axis,
h is the depth of the vessel measured in the inertial coordinates system, θ is the
pitch angle, Q = θ̇ is the rate of change of the pitch angle, δB is the hydroplane
deflection in the bow plane, δS is the hydroplane deflection in the stern plane, and
Zd , Md are bounded disturbance inputs due to sea currents. Moreover, Zη(w, q),
Mη(w, q) are disturbance inputs representing the vessel’s cross-flow drag (the latter
is a function that contains the termsw|w| and Q|Q|, aswell as higher-order terms ofw
and Q).

Actually, for the computation of the mathematical model of the vessel the precise
knowledge of the terms Zη(w, Q) and Mη(w, Q) is not necessary since they can be
treated by the adaptive control scheme as disturbances. The term U = U0 denotes
the x-axis (forward) velocity of the vessel (Table11.1).

The dynamic model of the submarine is completed by the following coefficients,
given in Table I [258]:

The control input of the submarine’s model is described by the vector

u = [δB(t) δS(t)]T (11.42)

that is the control input consists of the hydroplane deflections in the bow and stern
planes. A first description of the vessel’s dynamics in matrix form is given by

(
ẇ
Q̇

)
=

(
fW (w, θ, Q, t)
fθ (w, θ, Q, t)

)
+ Bou (11.43)



11.3 Adaptive Fuzzy Control of Autonomous Submarines 613

where

(
fw(w, θ, Q, t)

fθ ( fW (w, θ, Q, t)

)
= M−1·

⎛
⎜⎝

Z
′
wU

Lm
′
3
w(t) + 1

m
′
3
Ż

′
θ̇
+ m

′
)U θ̇ (t) + Z

′
Q̇
L

m ′
s
Q̇(t) + Zd (t)

0.5ρL3m
′
3
+ Zη(w, q)

M
′
ẇ

L I
′
2
ẇ(t) + M

′
vU

L2 I
′
2
w(t) + M

′
θ̇
U

L I
′
2
θ̇ (t) + 2mg(zG−zB )

ρL5 I
′
2

θ(t) + Md (t)
0.5ρL5 I

′
2
+ Mη(w, q)

⎞
⎟⎠

(11.44)
while for matrices M and Bo it holds

M =
(

1 −ZQ̇ L/m
′
3

−Mẅ(L I
′
2
−1

) 1

)
Bo =

⎛
⎝

Z
′
δBU

2

m
′
3L

Z
′
δSU

2

m
′
3L

M
′
δBU 2

L2 I
′
2

M
′
δSU 2

L2 I
′
2

⎞
⎠ (11.45)

It holds that the depth of the vessel measured in the inertial reference frame and the
velocity of the submarine along the z-axis of the body-fixed frame are related as
follows:

ḣ = wcos(θ) −Uosin(θ)⇒
ḧ = ẇcos(θ) − wsin(θ)θ̇ −Uocos(θ)θ̇⇒
ḧ = ẇcos(θ) − wQsin(θ) −UoQcos(θ)

(11.46)

Moreover, solving with respect to w. from the first row of Eq. (11.46) one obtains

w = (cos(θ)−1)(ḣ +Uosin(θ)) (11.47)

Additionally, from Eq. (11.43) one gets

ẇ = fw(w, θ, Q, t) + Bo11u1 + Bo12u2
Q̇ = fθ (w, θ, Q, t) + Bo21u1 + Bo22u2

(11.48)

Substituting Eq. (11.47) and the first row of Eq. (11.48) into the third row of Eq.
(11.46) gives

ḧ = [ fw(w, θ, Q, t) + Bo11u1 + Bo12u2]cos(θ) − (ḣ+U0sin(θ))
cos(θ)

Qsin(θ) −U0Qcos(θ) (11.49)

Next by denoting

fw(w, θ, Q, t) = gh(h, ḣ, θ, θ̇ , t)
fθ (w, θ, Q, t) = gθ (h, ḣ, θ, θ̇ , t)

(11.50)

from Eq. (11.49) and the second row of Eq. (11.48) one obtains
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ḧ = gh(h, ḣ, θ, θ̇ , t)cos(θ) − (ḣ+U0sin(θ))

cos(θ)
θ̇sin(θ) −U0θ̇cos(θ)+

+B011cos(θ)u1 + B012cos(θ)u2
(11.51)

θ̈ = gθ (h, ḣ, θ, θ̇ , t) + B021u1 + B022u2 (11.52)

Thus, from Eqs. (11.51) and (11.52) and by defining the state vector

x = [h, ḣ, θ, θ̇ ]T (11.53)

the dynamic model of the submarine is written as

(
ẍ1
ẍ3

)
=

(
gb(x, t)cos(x3) − x4+U0sin(x3)

cos(x3)
x4sin(x3) −U0x4cos(x3)

gθ (x, t)

)
+

+
(
B011 B012
B021 B022

)(
u1
u2

) (11.54)

or equivalently in the MIMO form
(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

(
g11(x, t) g12(x, t)
g21(x, t) g22(x, t)

) (
u1
u2

)
(11.55)

11.3.3 Estimation of the Submarine’s Unknown Dynamics

11.3.3.1 Differential Flatness of the Submarine’s Model

It can be proven that the submarine’s MIMO nonlinear model given in Eq. (11.55)
is a differentially flat one, having as flat output the vector

y = [x1, x3]T = [h, θ ]T (11.56)

As explained above it holds that x2 = ẋ1 and x4 = ẋ3, which also means

x2 = [1 0]ẏ
x4 = [0 1]ẏ (11.57)

Moreover, by solving Eq. (11.55) with respect to the control input u one obtains

(
u1
u2

)
=

(
g11(x) g12(x)
g21(x) g22(x)

)−1

(

(
ẍ1
ẍ2

)
−

(
f1(x)
f2(x)

)
) (11.58)
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and since the elements of the state vector x are functions of the flat output, one has
u1 = fa(y, ẏ, ÿ) and u2 = fb(y, ẏ, ÿ). Therefore, one finally has that all elements of
the submarine’s state vector and the control inputs can be written as functions of the
flat output and its derivatives [57, 145, 254, 267, 322, 472, 476, 519]. Consequently,
the system is a differentially flat one.

By exploiting the differentially flat description of the system. the submarine’s
model can be written in the linear canonical (Brunovsky) form. To this end the
following transformed control inputs are defined

v1 = f1(x, t) + g11u1 + g12u2
v2 = f2(x, t) + g21u1 + g22u2

(11.59)

Therefore, one gets
⎛
⎜⎜⎝
ẏ1
ẏ2
ẏ3
ẏ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
y1
y2
y3
y4

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

(
v1
v2

)
(11.60)

while it is considered that the complete state vector of the submarine y = [h, ḣ, θ, θ̇ ]
is available through measurements.

11.3.3.2 Approximation of the Submarine’s Unknown Dynamics

The control signal of the MIMO nonlinear system which has been transformed into
the Brunovsky form as described by Eq. (11.60) contains the unknown nonlinear
functions f (x) and g(x) which can be approximated by

f̂ (x |θ f ) = Φ f (x)θ f

ĝ(x |θg) = Φg(x)θg
(11.61)

where

Φ f (x) = (ξ 1
f (x), ξ

2
f (x), · · · ξ n

f (x))
T (11.62)

with ξ i
f (x), ı = 1, · · · , n being the vector of kernel functions (e.g. normalized fuzzy

Gaussian membership functions), where

ξ i
f (x) = (φ

i,1
f (x), φi,2

f (x), · · · , φ
i,N
f (x)) (11.63)

thus giving
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Φ f (x) =

⎛
⎜⎜⎜⎝

φ
1,1
f (x) φ

1,2
f (x) · · · φ

1,N
f (x)

φ
2,1
f (x) φ

2,2
f (x) · · · φ

2,N
f (x)

· · · · · · · · · · · ·
φ
n,1
f (x) φ

n,2
f (x) · · · φ

n,N
f (x)

⎞
⎟⎟⎟⎠ (11.64)

while the weights vector is defined as

θ f
T = (

θ1
f , θ

2
f , · · · θ N

f

)
(11.65)

j = 1, · · · , N is the number of basis functions that is used to approximate the com-
ponents of function f which are denoted as i = 1, · · · , n. Thus, one obtains the
relation of Eq. (11.61), i.e. f̂ (x |θ f ) = Φ f (x)θ f .

In a similar manner, for the approximation of function g one has

Φg(x) = (
ξ 1
g (x), ξ

2
g (x), · · · ξ N

g (x)
)T (11.66)

with ξ i
g(x), ı = 1, · · · , N being the vector of kernel functions (e.g. normalized fuzzy

Gaussian membership functions), where

ξ i
g(x) = (

φi,1
g (x), φi,2

g (x), · · · , φi,N
g (x)

)
(11.67)

thus giving

Φg(x) =

⎛
⎜⎜⎝

φ1,1
g (x) φ1,2

g (x) · · · φ1,N
g (x)

φ2,1
g (x) φ2,2

g (x) · · · φ2,N
g (x)

· · · · · · · · · · · ·
φn,1
g (x) φn,2

g (x) · · · φn,N
g (x)

⎞
⎟⎟⎠ (11.68)

while the weights vector is defined as

θg = (
θ1
g , θ

2
g , · · · , θ

p
g
)T (11.69)

where the components of matrix θg are defined as

θ
j
g =

(
θ
j
g1, θ

j
g2 , · · · θ j

gN

)
(11.70)

j = 1, · · · , N is the number of basis functions that is used to approximate the
components of function g which are denoted as i = 1, · · · , n. Thus one obtains
about matrix θg∈RN×p
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θg =

⎛
⎜⎜⎜⎝

θ1
g1 θ2

g1 · · · θ
p
g1

θ1
g2 θ2

g2 · · · θ
p
g2

· · · · · · · · · · · ·
θ1
gN θ2

gN · · · θ
p
gN

⎞
⎟⎟⎟⎠ (11.71)

It holds that

g =

⎛
⎜⎜⎝
g1
g2
· · ·
gn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
g11 g21 · · · gp

1
g12 g22 · · · gp

2· · · · · · · · · · · ·
g1n g2n · · · gp

n

⎞
⎟⎟⎠ (11.72)

Using the above, one finally has the relation of Eq. (11.61), i.e. ĝ(x |θg) = Φg(x)θg . If
the state variables of the system are available for measurement then a state-feedback
control law can be formulated as

u = ĝ−1(x |θg)[− f̂ (x |θ f ) + y(r)
m − KT e + uc] (11.73)

where f̂ (x |θ f ) and ĝ(x |θg) are fuzzy models to approximate f (x) and g(x), respec-
tively. uc is a supervisory control term, e.g. H∞ control term that is used to compen-
sate for the effects of modelling inaccuracies and external disturbances. Using the
submarine’s state-space description of Eq. (11.60) the control term uc is defined as

uc = − 1
r B

T Pe (11.74)

Moreover, KT is the feedback gain matrix that assures that the characteristic poly-
nomial of the resulting closed-loop dynamics will be a Hurwitz one.

11.3.4 Flatness-Based Adaptive Fuzzy Control
of the Submarine Dynamics

Next, taking into account also the effects of additive disturbances to the submarine
the dynamic model of Eq. (11.55) becomes

ẍ1 = f1(x, t) + g1(x, t)u + d̃1
ẍ3 = f2(x, t) + g2(x, t)u + d̃2

(11.75)

or, in matrix form

(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

(
g1(x, t)
g2(x, t)

)
u +

(
d̃1
d̃2

)
(11.76)
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The following control input is defined

u =
(
ĝ1(x, t)
ĝ2(x, t)

)−1

·{
(
ẍ d1
ẍ d3

)
−

(
f̂1(x, t)
f̂2(x, t)

)
−

(
KT

1
KT

2

)
e +

(
uc1
uc2

)
} (11.77)

where [uc1 uc2 ]T is a robust control term that is used for the compensation of the
model’s uncertainties as well as of the external disturbances and the vector of the
feedback gain is KT

i = [ki1, ki2, · · · , kin−1, k
i
n].

Substituting Eqs. (11.77) into (11.76) the closed-loop tracking error dynamics of
the submarine is obtained

(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

(
g1(x, t)
g2(x, t)

) (
ĝ1(x, t)
ĝ2(x, t)

)−1

·

{
(
ẍ d1
ẍ d3

)
−

(
f̂1(x, t)
f̂2(x, t)

)
−

(
KT

1
KT

2

)
e +

(
uc1
uc2

)
} +

(
d̃1
d̃2

) (11.78)

Equation (11.78) can now be written as
(
ẍ1
ẍ3

)
=

(
f1(x, t)
f2(x, t)

)
+

+{
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
+

(
ĝ1(x, t)
ĝ2(x, t)

)
}
(
ĝ1(x, t)
ĝ2(x, t)

)−1

·

·{
(
ẍ d1
ẍ d3

)
−

(
f̂1(x, t)
f̂2(x, t)

)
−

(
KT

1
KT

2

)
e +

(
uc1
uc2

)
} +

(
d̃1
d̃2

)

(11.79)

and using Eq. (11.77) this results into

(
ë1
ë3

)
=

(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u−

−
(
KT

1
KT

2

)
e +

(
uc1
uc2

)
+

(
d̃1
d̃2

) (11.80)

The following description for the approximation error is defined

w =
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u (11.81)

Moreover, the following matrices are defined
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A =

⎛
⎜⎜⎝
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
0 0
1 0
0 0
0 1

⎞
⎟⎟⎠

KT =
(
K 1

1 K 1
2 K 1

3 K 1
4

K 2
1 K 2

2 K 2
3 K 2

4

)
(11.82)

Using matrices A, B, KT , Eq. (11.80) is written in the following form

ė = (A − BKT )e + Buc + B{
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u + d̃}

(11.83)

Next, the following approximators of the unknown system dynamics are defined

f̂ (x) =
(
f̂1(x |θ f ) x∈R4×1 f̂1(x |θ f ) ∈ R1×1

f̂2(x |θ f ) x∈R4×1 f̂2(x |θ f ) ∈ R1×1

)
(11.84)

with kernel functions

φ
i, j
f (x) =

∏n
j=1μ

i
A j

(x j )∑N
i=1

∏n
j=1μ

i
A j

(x j )
(11.85)

where l = 1, 2 and μAi
j
(x) is the i-th membership function of the antecedent (IF)

part of the l-th fuzzy rule. Similarly, the following approximators of the unknown
system dynamics are defined

ĝ(x) =
(
ĝ1(x |θg) x∈R4×1 ĝ1(x |θg) ∈ R1×2

ĝ2(x |θg) x∈R4×1 ĝ2(x |θg) ∈ R1×2

)
(11.86)

The values of the weights that result in optimal approximation are

θ∗
f = arg minθ f ∈Mθ f

[supx∈Ux
( f (x) − f̂ (x |θ f ))]

θ∗
g = arg minθg∈Mθg

[supx∈Ux
(g(x) − ĝ(x |θg))] (11.87)

where the variation ranges for the weights are defined as

Mθ f = {θ f ∈Rh : ||θ f ||≤mθ f }
Mθg = {θg∈Rh : ||θg||≤mθg } (11.88)

For the value of the approximation error defined in Eq. (11.81) that corresponds to
the optimal values of the weights vectors θ∗

f and θ∗
g one has
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w =
(
f (x, t) − f̂ (x |θ∗

f )

)
+ (

g(x, t) − ĝ(x |θ∗
g )

)
u (11.89)

which is next written as

w =
(
f (x, t) − f̂ (x |θ f ) + f̂ (x |θ f ) − f̂ (x |θ∗

f )

)
+

+ (
g(x, t) − ĝ(x |θg) + ĝ(x |θg) − ĝ(x |θ∗

g )
)
u

(11.90)

which can be also written in the following form

w = (
wa + wb

)
(11.91)

where

wa = {[ f̂ (x, θ f ) − f̂ (x |θ∗
f )] + [ĝ(x, θg) − ĝ(x |θ∗

g )]}·u (11.92)

wb = {[ f (x, t) − f̂ (x |θ f )] + [g(x, t) − ĝ(x |θg)]}u (11.93)

Moreover, the following weights error vectors are defined

θ̃ f = θ f − θ∗
f

θ̃g = θg − θ∗
g

(11.94)

Following the previous analysis it is pointed out that the use of differential flatness
theory enables to solve the problem of control of the nonlinear dynamics of the
autonomous submarine in a conclusive manner: (i) by showing that a dynamical
system is differentially flat it is possible to express its dynamics through specific
primary variables which are the so-called flat outputs. All state variables of the
system can be written as differential functions of the flat outputs, (ii) by showing that
a dynamical system is differentially flat it can be assured that its transformation to the
linear canonical (Brunovsky) form can be achieved, (iii) by expressing a differentially
flat system into its equivalent linearized form the design of a state feedback controller
for it can be completed in a few stages.

11.3.5 Lyapunov Stability Analysis

The following quadratic Lyapunov function is defined for the control loop of the
autonomous submarine

V = 1

2
eT Pe + 1

2γ1
θ̃T
f θ̃ f + 1

2γ2
tr [θ̃T

g θ̃g] (11.95)
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Parameter γ1 is the learning rate used in the adaptation of the weights of the neu-
rofuzzy approximator for f (x), while parameter γ2 is the learning rate used in the
adaptation of the weights of the neurofuzzy approximation for g(x). It holds that

V̇ = 1
2 ė

T Pe + 1
2e

T Pė + 1
γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g] (11.96)

The tracking error dynamics is described by

ė = (A − BKT )e + Buc + B{
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
}+

+
(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u + d̃}

(11.97)

and defining the approximation error

w =
(
f1(x, t) − f̂1(x, t)
f2(x, t) − f̂2(x, t)

)
+

(
g1(x, t) − ĝ1(x, t)
g2(x, t) − ĝ2(x, t)

)
u (11.98)

the previous relation can be also written as

ė = (A − BKT )e + Buc + B(w + d̃) (11.99)

From Eq. (11.96) one obtains

V̇ = 1
2 {eT (A − BKT )T + uT

c B
T+

+(w + d̃)T BT }Pe + 1
2e

T P{(A − BKT )e+
+Buc + B(w + d̃)} + 1

γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g]
(11.100)

which in turn gives

V̇ = 1
2e

T {(A − BKT )T P + P(A − BKT )}e+
1
22e

T PBuc + 1
22B

T Pe(w + d̃)+
+ 1

γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g]
(11.101)

Assumption 1: For given positive definite matrix Q there exists a positive definite
matrix P , which is the solution of the following matrix equation

(A − BKT )
T
P + P(A − BKT )−

−PB( 2r − 1
ρ2 )BT P + Q = 0

(11.102)

Substituting Eqs. (11.102) and (11.74) into V̇ yields after some operations
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V̇ = 1
2e

T {−Q + PB( 2r − 1
ρ2 )BT P}e+

eT PB{− 1
r B

T Pe} + BT P(w + d̃) + 1
γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g] (11.103)

Therefore it holds

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

1
γ1

˙̃
θT
f θ̃ f + 1

γ2
tr [ ˙̃θT

g θ̃g] (11.104)

It also holds that

˙̃
θ f = θ̇ f − θ̇∗

f = θ̇ f
˙̃
θg = θ̇g − θ̇∗

g = θ̇g
(11.105)

The following weights adaptation law is used (Fig. 11.13)

θ̇ f = −γ1Φ(x)T BT Pe
θ̇g = −γ2Φ(x)T BT PeuT (11.106)

This is a gradient-type learning method for the weights of the neurofuzzy approxi-
mators [33, 431, 463]. Assuming N fuzzy rules and associated kernel functions the
matrices dimensions are θ f ∈RN×1, θg∈RN×2, Φ(x)∈R2×N , B∈R4×2, P∈R4×4 and
e∈R4×1. Therefore it holds

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

+ 1
γ1

(−γ1)eT PBΦ(x)(θ f − θ∗
f )+

+ 1
γ2

(−γ2)tr [ueT PBΦ(x)(θg − θ∗
g )]

(11.107)

or

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

+ 1
γ1

(−γ1)eT PBΦ(x)(θ f − θ∗
f )+

+ 1
γ2

(−γ2)tr [ueT PB(ĝ(x |θg) − ĝ(x |θ∗
g )]

(11.108)

Taking into account that u ∈ R2×1 and eT PB(ĝ(x |θg) − ĝ(x |θ∗
g )) ∈ R1×2 it holds

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

+ 1
γ1

(−γ1)eT PBΦ(x)(θ f − θ∗
f )+

+ 1
γ2

(−γ2)tr [eT PB(ĝ(x |θg) − ĝ(x |θ∗
g ))u]

(11.109)

Since eT PB(ĝ(x |θg) − ĝ(x |θ∗
g ))u∈R1×1 it holds

tr(eT PB(ĝ(x |θg) − ĝ(x |θ∗
g )u) =

= eT PB(ĝ(x |θg) − ĝ(x |θ∗
g ))u

(11.110)
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Fig. 11.13 Diagram of the flatness-based adaptive fuzzy controller for the autonomous submarine

Therefore, one finally obtains

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PB(w + d̃)+

+ 1
γ1

(−γ1)eT PBΦ(x)(θ f − θ∗
f )+

+ 1
γ2

(−γ2)eT PB(ĝ(x |θg) − ĝ(x |θ∗
g ))u

(11.111)

Next the following approximation error is defined

wα = [ f̂ (x |θ f ) − f̂ (x |θ∗
f )] + [ĝ(x |θg) − ĝ(x |θ∗

g )]u (11.112)

Thus, one obtains

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe+

+eT PB(w + d̃) + eT PBwα

(11.113)

Denoting the aggregate approximation error and disturbances vector as

w1 = w + d̃ + wα (11.114)

the derivative of the Lyapunov function becomes
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V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe + eT PBw1 (11.115)

which in turn is written as

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PBBT Pe+

+ 1
2e

T PBw1 + 1
2w

T
1 B

T Pe
(11.116)

Next, the following Lemma is introduced:

Lemma: The inequality given below holds:

1
2e

T PBw1 + 1
2w

T
1 B

T Pe − 1
2ρ2 eT PBBT Pe ≤ 1

2ρ
2wT

1 w1 (11.117)

Proof : The binomial (ρa − 1
ρ
b)2 ≥ 0 is considered. Expanding the left part of the

above inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(11.118)

The following substitutions are carried out: a = w1 and b = eT PB and the previous
relation becomes

1
2w

T
1 B

T Pe + 1
2e

T PBw1 − 1
2ρ2 eT PBBT Pe ≤ 1

2ρ
2wT

1 w1 (11.119)

The previous inequality is used in V̇ , and the right part of the associated inequality
is enforced

V̇≤ − 1

2
eT Qe + 1

2
ρ2wT

1 w1 (11.120)

The attenuation coefficient ρ can be chosen such that the right part of Eq. (11.120) is
always upper bounded by 0. For instance, it suffices at every iteration of the control
algorithm to have

− 1
2e

T Qe + 1
2ρ

2||w1||2≤0⇒ − 1
2 ||e||2Q + 1

2ρ
2||w1||2≤0⇒

1
2ρ

2||w1||2≤ 1
2 ||e||2Q + ⇒ρ2≤ ||e||2Q

||w1||2
(11.121)

Again without knowledge of the uncertainties and disturbance term ||w1|| a suffi-
ciently small value of ρ can assure that the above inequality holds and thus that
the loop’s stability is ascertained. Actually, ρ should be given the least value which
permits to obtain a solution of the Riccati equation, given in Eq. (11.102).

Equation (11.120) can be used to show that the H∞ performance criterion is satisfied.
The integration of V̇ from 0 to T gives
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∫ T
0 V̇ (t)dt ≤ − 1

2

∫ T
0 ||e||2dt + 1

2ρ
2
∫ T
0 ||w1||2dt ⇒

2V (T ) + ∫ T
0 ||e||2Qdt ≤ 2V (0) + ρ2

∫ T
0 ||w1||2dt

(11.122)

Moreover, if there exists a positive constant Mw > 0 such that

∫ ∞
0 ||w1||2dt ≤ Mw (11.123)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Mw (11.124)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded and according to Barbalat’s Lemma one

obtains limt→∞e(t) = 0.

It is ofworthmentioning that in case that the complete state vector of the submarine
is not completely measurable one can implement an observer-based adaptive fuzzy
control scheme based on differential flatness theory. The observer-based adaptive
fuzzy control, making use of differential flatness theory, extends the class of systems
to which indirect adaptive fuzzy control can be applied. This control method enables
control of MIMO nonlinear systems without the need to measure all state vector
elements [454]. The only assumption needed for the design of the observer-based
controller and for succeeding H-infinity tracking performance for the control loop is
that there exists a solution for two Riccati equations associated with the linearized
error dynamics of the differentially flat model. This assumption holds for several
nonlinear systems, thus providing a systematic approach to the design of observer-
based controllers.

11.3.6 Simulation Tests

The results about the stability and robustness features of the submarine’s control
loop were also confirmed through simulation experiments. In the simulation tests,
the dynamic model of the submarine was considered to be completely unknown and
was identified in real-time by the previously analyzed neurofuzzy approximators.
The estimated unknown dynamics of the system was used in the computation of the
control inputs which were finally exerted on the submarine’s model. The sampling
period was set to Ts = 0.01sec. Apart from modelling uncertainty it was considered
that the submarine’smodelwas also affected by external perturbations. The numerical
values of the gains which have been used in the solution of the Riccati equation have
been defined as r = 0.1 and ρ = 1.0.

The state feedback gain was K∈R2×4. The basis functions used in the estimation

of fi (x, t), i = 1, 2 and gi j (x, t), i = 1, 2, j = 1, 2 were μA j (x̂) = e(
x̂−c j

σ
)2 , j =

1, · · · , 3. Since there are four inputs x1, x2 and x4, x4 and the associated definition set
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Table 11.2 Parameters of the fuzzy rule base

Rule c(l)
1 c(l)

2 c(l)
3 c(l)

4 v(l)

R(1) −1.0 −1.0 −1.0 −1.0 3

R(2) −1.0 −1.0 −1.0 0.0 3

R(3) −1.0 −1.0 −1.0 1.0 3

R(4) −1.0 −1.0 0.0 −1.0 3

R(5) −1.0 −1.0 0.0 0.0 3

R(6) −1.0 −1.0 0.0 1.0 3

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
R(81) 1.0 1.0 1.0 0.5 3

(universe of discourse) consists of 3 fuzzy sets, for the approximation of functions
fi (x, t) i = 1, 2, there will be 81 fuzzy rules of the form:

Rl : IF x1 is Al
1 AND x2 is Al

2

AND x3 is Al
3 AND x4 is Al

4 THEN f̂ li is bl
(11.125)

and f̂i (x, t) =
∑81

l=1 f̂
l
i

∏4
i=1μ

l
Ai

(xi )∑81
l=1

∏4
i=1μ

l
Ai

(xi )
. Indicative (dimensionless) values for the placement

on a spatial grid of the centers c(l)
i , i = 1, · · · , 4 and the variances v(l) of each rule

are as follows (Table11.2).
As noted, in the considered fuzzy rule-base there are four input parameters in the

antecedent parts of the fuzzy rules, i.e. x1 = h, x2 = ḣ, x3 = θ and x4 = θ̇ . Each
parameter is partitioned into 3 fuzzy sets. Therefore, by taking all possible combi-
nations between the fuzzy sets one has 34 = 81 fuzzy rules. The finer the partition
of the input variables into fuzzy sets is, the more accurate the approximation of the
nonlinear system dynamics by the neuro-fuzzy model is expected to be (although
some of the rules of the fuzzy rule base may not be sufficiently activated due to
little coverage of the associated region of the state-space by input data). However,
considering a large number of fuzzy sets for each input variable induces the curse
of dimensionality which means that there is an excessive and rather unnecessary
increase in the number of the adaptable parameters that constitute the neuro-fuzzy
model.

The associated results are presented in Figs. 11.14, 11.15 and 11.16. It can be
observed that the adaptive fuzzy control scheme achieved fast and accurate tracking
of the reference setpoints. After finding the solution of the algebraic Riccati equation
given in Eq. (11.102) the computation of an H-infinity feedback control term was
possible and this provided the submarine’s control loop with additional robustness.
Taking into account that in real operating conditions the control of a submarine cannot
rely on the assumption about a precise mathematical model and about complete
knowledge of external perturbations, the significance of the proposed adaptive fuzzy
control scheme becomes obvious.
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Fig. 11.14 Setpoint 1: a Convergence of the state variables xi , i = 1, · · · , 4 of the submarine to
the desirable setpoints, b Variations of the control inputs (bow and stern hydroplane reflections)
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Fig. 11.15 Setpoint 2: a Convergence of the state variables xi , i = 1, · · · , 4 of the submarine to
the desirable setpoints, b Variations of the control inputs (bow and stern hydroplane reflections)

There have been numerous examples of the use of model-based flatness-based
control, given in [450, 457]. If the model of the control system is a precise one
flatness-based control is anticipated to have an excellent performance. The control
problem becomes more complicated in the case of absence of a precise mathematical
model for the controlled system. It is even more difficult when there is no prior
knowledge about the system’s dynamics that can be used in the design of the flatness-
based controller. The solution to the latter control problem is obtained with the use of
the proposed flatness-based adaptive fuzzy control method. Although the dynamic
model of the system is completely unknown, it is assured through Lyapunov stability
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Fig. 11.16 Setpoint 3: a Convergence of the state variables xi , i = 1, · · · , 4 of the submarine to
the desirable setpoints, b Variations of the control inputs (bow and stern hydroplane reflections)

analysis that this unknown system dynamics will be online identified by neurofuzzy
approximators and that the state variables of the systemwill converge to the desirable
setpoints. The robustness of the proposed adaptive fuzzy control method depends on
the selection of parameters, such as the attenuation coefficient ρ which is used in the
solution of the associated Riccati equation.

The reference trajectories can be generated using the differential flatness proper-
ties of the system. This means that all state variables of the system are expressed as
differential functions of the flat outputs. Next, reference trajectories are defined for
the flat outputs and these are also used for computing the reference setpoints for the
rest of the state variables of the submarine’s model.

11.4 Nonlinear Optimal Control of Autonomous
Submarines

11.4.1 Outline

As previously noted, research on nonlinear control of autonomous underwater ves-
sels has grown rapidly during the last years since there is need to develop robotic
systems capable of functioning autonomously in an underwater environment [37,
251, 258, 602]. In this section, a nonlinear optimal (H-infinity) control method
is developed aiming at solving the problem of depth and heading control of an
autonomous submarine. It has been pointed out that navigation of autonomous under-
water vessels (AUVs) and particularly of submarines exhibits several difficulties due
to strong nonlinearities and the multivariable coupling characterizing the associated
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dynamic model [143, 386, 411, 416, 457, 462]. Moreover, submersible robotized
vessels are subject to model uncertainty and parametric variations while they are
also affected by external perturbations [253, 275, 420, 500, 635]. For these rea-
sons the control problem of a submarine’s depth and heading angle is a nontrivial
one. Apart from the developments of the previous sections, other results for the
solution of this problem with the use of optimal control theory can be found in
[44, 50, 98, 287, 346, 423, 608]. The approach to be developed in this section is
relies on approximate linearization of the submarine’s dynamics and on application
of optimal (H-infinity) control to the model that is obtained from the linearization
procedure.

The dynamic model of the submarine, describing coupling between its depth and
its heading angle, undergoes approximate linearization, around a temporary operating
point (equilibrium) which is recomputed at each iteration of the control algorithm
[461, 466]. The equilibrium is defined by the present value of the submarine’s state
vector and the last value of the control inputs vector that was exerted on it. The
linearization takes place through Taylor series expansion and the computation of
the associated Jacobian matrices [33, 463, 564]. The modelling error which is due
to truncation of higher order terms from the Taylor series is considered to be a
perturbation that is compensated by the robustness of the control algorithm.

For the approximately linearized model of the submarine, the optimal (H-infinity)
control problem is solved [132, 305, 450, 457, 459]. Actually the designedH-infinity
controller stands for a solution to a min-max differential game. In such a game the
controller tries to minimize a quadratic cost functional based on the submarine’s
state vector error, while the model uncertainty and external perturbation terms try
to maximize it. The computation of the feedback gain of the H-infinity controller
requires the solution of an algebraic Riccati equation which also takes place at each
step of the control method.

The stability of the control method is proven through Lyapunov analysis. First,
it is demonstrated that the control loop satisfies the H-infinity tracking performance
criterion. This provides the control scheme with elevated robustness against model
uncertainty and external perturbations. Moreover, under moderate conditions it is
shown that the control loop exhibits global asymptotic stability properties. Finally to
implement state estimation-based control of the submarine without the need to mea-
sure its entire state vector, theH-infinityKalman Filter is used [169, 511]. This stands
for an optimal state estimator, when the monitored system’s model is characterized
by parametric uncertainty or is subject to external perturbations.

11.4.2 Approximate Linearization of the AUV’s Model

Using the description of the state-space model of the submarine given in Eq. (11.54)
one has about functions gh(x, t) and gθ (x, t)
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(
gh(x, t)
gθ (x, t)

)
=

(
1 −Z

′
QL/m

′
3

−Mẅ(L I
′
2
−1

) 1

)−1

·

⎛
⎝

Z
′
wU

Lm
′
3
w(t) + 1

m
′
3
(Ż

′
θ̇
+ m

′
)U θ̇ (t) + Zd (t)

0.5ρL3m
′
3
+ Zη(w, Q)

M
′
vU

L2 I
′
2
w(t) + M

′
θ̇
U

L I
′
2
θ̇ (t) + 2mg(zG−zB )

ρL5 I
′
2

θ(t) + Md (t)
0.5ρL5 I

′
2
+ Mη(w, Q)

⎞
⎠

(11.126)

The effects of thewave and currents forces and the effects of hydrodynamic forces are
considered as disturbances and thus are omitted from the model of the submarine’s
dynamics. By grouping coefficients the previous equation given in Eq. (11.126) can
be written as

(
gh(x, t)
gθ (x, t)

)
=

(
m11 m12

m21 m22

)(
a1

1
cos(x3)

[x2 +U0sin(x3)] + a2x4
b1

1
cos(x3)

[x2 +U0sin(x3)] + b2x4

)
(11.127)

or equivalently

(
gh(x, t)
gθ (x, t)

)
=

(
m11 m12

m21 m22

)(
a1 a2
b1 b2

) ( 1
cos(x3)

[x2 +U0sin(x3)]
x4

)
(11.128)

and by performing additional operations between coefficients one has

(
gh(x, t)
gθ (x, t)

)
=

(
p11 p12
p21 p22

)( 1
cos(x3)

[x2 +U0sin(x3)]
x4

)
(11.129)

According to the above, the AUV’s model is written in the generic form:
(
ẍ1
ẍ3

)
=

(
F1(x)
F2(x)

)
+

(
G11(x)
G21(x)

)
u1 +

(
G12(x)
G22(x)

)
u2 (11.130)

where one has that

F1(x) = p11
1

cos(x3)
(x2 +U0sin(x3)) + p12x4 − x2+U0sin(x3)

cos(x3)
x4sin(x3) −U0x4sin(x3)

(11.131)

F2(x) = p21
1

cos(x3)
(x2 +U0sin(x3)) + p22x4 (11.132)

while it also holds that

G11(x) = B011cos(x3) G12(x) = B012cos(x3)
G21(x) = B021 G22(x) = B022

(11.133)
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Next, the Jacobian matrices of the submarine’s dynamic model are computed. For
the Jacobian matrix ∇x F one has:

∇x F =

⎛
⎜⎜⎜⎜⎜⎝

∂F1
∂x1

∂F1
∂x2

∂F1
∂x3

∂F1
∂x4

∂F2
∂x1

∂F2
∂x2

∂F2
∂x3

∂F2
∂x4

∂F3
∂x1

∂F3
∂x2

∂F3
∂x3

∂F3
∂x4

∂F4
∂x1

∂F4
∂x2

∂F4
∂x3

∂F4
∂x4

⎞
⎟⎟⎟⎟⎟⎠

(11.134)

About the first row of the Jacobian matrix ∇x F one has: ∂F1
∂x1

= 0, ∂F1
∂x2

= 1, ∂F1
∂x3

= 0,
∂F1
∂x4

= 0

About the second row of the Jacobianmatrix∇x F one has:∇x F one has: ∂F2
∂x1

= 0,
∂F2
∂x2

= p11
1

cos(x3)
− x4sin(x3)

cos(x3)
, ∂F2

∂x3
= p11U0

cos(x3)2
− U02sin(x3)cos(x3)2+U0sin(x3)2

cos(x3)2
−U0x4cos(x3),

∂F2
∂x4

= p12 − x2+U0sin(x3)
cos(x3)

sin(x3) −U0sin(x3)

About the third row of the Jacobian matrix ∇x F one has: ∂F3
∂x1

= 0, ∂F3
∂x2

= 0,
∂F3
∂x3

= 0, ∂F3
∂x4

= 1

About the fourth row of the Jacobian matrix∇x F one has:∇x F one has: ∂F4
∂x1

= 0,
∂F4
∂x2

= p21
1

cos(x3)
, ∂F4

∂x3
= p21

U0
cos(x3)2

, ∂F4
∂x4

= p22

For the Jacobian matrix ∇xG1 one has:

∇xG1 =

⎛
⎜⎜⎜⎜⎜⎝

∂G11
∂x1

∂G11
∂x2

∂G11
∂x3

∂G11
∂x4

∂G21
∂x1

∂G21
∂x2

∂G21
∂x3

∂G21
∂x4

∂G31
∂x1

∂G31
∂x2

∂G31
∂x3

∂G31
∂x4

∂G41
∂x1

∂G41
∂x2

∂G41
∂x3

∂G41
∂x4

⎞
⎟⎟⎟⎟⎟⎠

(11.135)

About the first row of the Jacobian matrix ∇xG1 one has: ∂G11
∂x1

= 0, ∂G11
∂x2

= 0,
∂G11
∂x3

= 0, ∂G11
∂x4

= 0

About the second row of the Jacobian matrix ∇xG1 one has:
∂G21
∂x1

= 0, ∂G21
∂x2

= 0,
∂G21
∂x3

= −B011sin(x3),
∂G21
∂x4

= 0

About the third row of the Jacobian matrix ∇xG1 one has:
∂G31
∂x1

= 0, ∂G31
∂x2

= 0,
∂G31
∂x3

= 0, ∂G31
∂x4

= 0

About the fourth row of the Jacobian matrix ∇xG1 one has:
∂G41
∂x1

= 0, ∂G41
∂x2

= 0,
∂G41
∂x3

= 0, ∂G41
∂x4

= 0

For the Jacobian matrix ∇xG2 one has:
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∇xG1 =

⎛
⎜⎜⎜⎜⎜⎝

∂G12
∂x1

∂G12
∂x2

∂G12
∂x3

∂G12
∂x4

∂G22
∂x1

∂G22
∂x2

∂G22
∂x3

∂G22
∂x4

∂G32
∂x1

∂G32
∂x2

∂G32
∂x3

∂G32
∂x4

∂G42
∂x1

∂G42
∂x2

∂G42
∂x3

∂G42
∂x4

⎞
⎟⎟⎟⎟⎟⎠

(11.136)

About the first row of the Jacobian matrix ∇xG2 one has: ∂G12
∂x1

= 0, ∂G12
∂x2

= 0,
∂G12
∂x3

= 0, ∂G12
∂x4

= 0

About the second row of the Jacobian matrix ∇xG2 one has:
∂G22
∂x1

= 0, ∂G22
∂x2

= 0,
∂G22
∂x3

= −B011sin(x3),
∂G22
∂x4

= 0

About the third row of the Jacobian matrix ∇xG2 one has:
∂G32
∂x1

= 0, ∂G32
∂x2

= 0,
∂G32
∂x3

= 0, ∂G32
∂x4

= 0

About the fourth row of the Jacobian matrix ∇xG2 one has:
∂G42
∂x1

= 0, ∂G42
∂x2

= 0,
∂G42
∂x3

= 0, ∂G42
∂x4

= 0

By considering the time varying equilibrium (linearization point) (x∗, u∗), where
x∗ is the present value of the submarine’s state vector and u∗ is the last value of the
control inputs vector that was exerted on it, the linearized description of the AUV’s
model becomes

ẋ = Ax + Bu + d̃ (11.137)

where matrices A and B are given by

A = [∇x F + ∇xG1u1 + ∇xG2u2] |(x∗,u∗) (11.138)

B = [∇u F + ∇uG1u1 + ∇uG2u2] |(x∗,u∗)= [G1,G2] (11.139)

and d̃ is a term denoting modelling error and external perturbation effects.

11.4.3 Design of an H-Infinity Nonlinear Feedback
Controller

11.4.3.1 Equivalent Linearized Dynamics of the Submarine

After linearization round its current operating point, the submarine’s dynamic model
is written as
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ẋ = Ax + Bu + d1 (11.140)

Parameter d1 stands for the linearization error in the submarine’s dynamic model
appearing in Eq. (11.140). The reference setpoints for the submarine’s state vector
are denoted by xd = [xd1 , · · · , xd4 ]. Tracking of this trajectory is succeeded after
applying the control input u∗. At every time instant the control input u∗ is assumed
to differ from the control input u appearing in Eq. (11.140) by an amount equal to
�u, that is u∗ = u + �u

ẋd = Axd + Bu∗ + d2 (11.141)

The dynamics of the controlled system described in Eq. (11.140) can be also written
as

ẋ = Ax + Bu + Bu∗ − Bu∗ + d1 (11.142)

and by denoting d3 = −Bu∗ + d1 as an aggregate disturbance term one obtains

ẋ = Ax + Bu + Bu∗ + d3 (11.143)

By subtracting Eq. (11.141) from (11.143) one has

ẋ − ẋd = A(x − xd) + Bu + d3 − d2 (11.144)

By denoting the tracking error as e = x − xd and the aggregate disturbance term as
d̃ = d3 − d2, the tracking error dynamics becomes

ė = Ae + Bu + d̃ (11.145)

The above linearized form of the submarine’s model can be efficiently controlled
after applying an H-infinity feedback control scheme.

11.4.4 The Nonlinear H-Infinity Control for the Autonomous
Submarine

The initial nonlinear model of the autonomous submarine is in the form

ẋ = f̃ (x, u) x∈Rn, u∈Rm (11.146)

Linearization of the system (autonomous submarine) is performed at each iteration of
the control algorithm round its present operating point (x∗, u∗) = (x(t), u(t − Ts)),
where Ts is the sampling period. The linearized equivalent model of the system is
described by



634 11 Autonomous Underwater Vessels

ẋ = Ax + Bu + Ld̃ x∈Rn, u∈Rm, d̃∈Rq (11.147)

where matrices A and B are obtained from the computation of the Jacobians of
the submarine’s state-space model and vector d̃ denotes disturbance terms due to
linearization errors. The problem of disturbance rejection for the linearized model
that is described by

ẋ = Ax + Bu + Ld̃
y = Cx

(11.148)

where x∈Rn , u∈Rm , d̃∈Rq and y∈Rp, cannot be handled efficiently if the classical
LQR control scheme is applied. This is because of the existence of the perturbation
term d̃ . The disturbance term d̃ apart from modeling (parametric) uncertainty and
external perturbations can also represent noise terms of any distribution.

As already explained in previous examples on the H∞ control approach, a feed-
back control scheme is designed for trajectory trackingby the submarine’s state vector
and simultaneous disturbance rejection, considering that the disturbance affects the
system in the worst possible manner. The disturbances’ effects are incorporated in
the following quadratic cost function:

J (t) = 1
2

∫ T
0 [yT (t)y(t) + ruT (t)u(t) − ρ2d̃T (t)d̃(t)]dt, r, ρ > 0 (11.149)

It has already been proven that the significance of the negative sign in the cost func-
tion’s term that is associatedwith the perturbation variable d̃(t) is that the disturbance
tries to maximize the cost function J (t) while the control signal u(t) tries to mini-
mize it. The physical meaning of the relation given above is that the control signal
and the disturbances compete to each other within a min-max differential game. This
problem of min-max optimization can be written as

minumaxd̃ J (u, d̃) (11.150)

As already analyzed, the objective of the optimization procedure is to compute a
control signal u(t) which can compensate for the worst possible disturbance, that is
externally imposed to the system. However, the solution to themin-max optimization
problem is directly related to the value of the parameter ρ. This means that there is
an upper bound in the disturbances magnitude that can be annihilated by the control
signal.

11.4.4.1 Computation of the Feedback Control Gains

For the linearized system given by Eq. (11.148) the cost function of Eq. (11.149) is
defined, where the coefficient r determines the penalization of the control input and
the weight coefficient ρ determines the reward of the disturbances’ effects.
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Fig. 11.17 Diagram of the control scheme for the autonomous submarine

Remaining at the assumptions made in previous applications of H-infinity control
it is considered that (i) The energy that is transferred from the disturbances signal
d̃(t) is bounded, that is

∫ ∞
0 d̃T (t)d̃(t)dt < ∞, (ii) matrices [A, B] and [A, L] are

stabilizable, (iii) matrix [A,C] is detectable. Then, the optimal feedback control law
is given by

u(t) = −Kx(t) (11.151)

with

K = 1
r B

T P (11.152)

where P is a positive semi-definite symmetric matrix which is obtained from the
solution of the Riccati equation

AT P + PA + Q − P( 1r BB
T − 1

2ρ2 LLT )P = 0 (11.153)

where Q is also a positive definite symmetric matrix. The worst case disturbance is
given by

d̃(t) = 1
ρ2 LT Px(t) (11.154)

The diagram of the considered control loop is depicted in Fig. 11.17.
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11.4.5 Lyapunov Stability Analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear
control scheme assures H∞ tracking performance for the submarine, and that in case
of bounded disturbance terms asymptotic convergence to the reference setpoints is
achieved. The tracking error dynamics for the autonomous submarine is written in
the form

ė = Ae + Bu + Ld̃ (11.155)

where in the submarine’s case L = I∈R4 with I being the identity matrix. Variable
d̃ denotes model uncertainties and external disturbances of the submarine’s model.
The following Lyapunov function is considered

V = 1
2e

T Pe (11.156)

where e = x − xd is the tracking error. By differentiating with respect to time one
obtains

V̇ = 1
2 ė

T Pe + 1
2ePė⇒

V̇ = 1
2 [Ae + Bu + Ld̃]T Pe + 1

2e
T P[Ae + Bu + Ld̃]⇒ (11.157)

V̇ = 1
2 [eT AT + uT BT + d̃T LT ]Pe+
+ 1

2e
T P[Ae + Bu + Ld̃]⇒ (11.158)

V̇ = 1
2e

T AT Pe + 1
2u

T BT Pe + 1
2 d̃

T LT Pe+
1
2e

T P Ae + 1
2e

T PBu + 1
2e

T PLd̃
(11.159)

The previous equation is rewritten as

V̇ = 1
2e

T (AT P + PA)e + ( 12u
T BT Pe + 1

2e
T PBu)+

+( 12 d̃
T LT Pe + 1

2e
T PLd̃)

(11.160)

Assumption: For given positive definite matrix Q and coefficients r and ρ there exists
a positive definite matrix P , which is the solution of the following matrix equation

AT P + PA = −Q + P( 2r BB
T − 1

ρ2 LLT )P (11.161)

Moreover, the following feedback control law is applied to the system

u = − 1
r B

T Pe (11.162)

By substituting Eqs. (11.161) and (11.162) one obtains
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V̇ = 1
2e

T [−Q + P( 2r BB
T − 1

ρ2 LLT )P]e+
+eT PB(− 1

r B
T Pe) + eT PLd̃⇒ (11.163)

V̇ = − 1
2e

T Qe + 1
r e

T PBBT Pe − 1
2ρ2 eT PLLT Pe

− 1
r e

T PBBT Pe + eT PLd̃
(11.164)

which after intermediate operations gives

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe + eT PLd̃ (11.165)

or, equivalently

V̇ = − 1
2e

T Qe − 1
2ρ2 eT PLLT Pe+

+ 1
2e

T PLd̃ + 1
2 d̃

T LT Pe
(11.166)

Lemma: The following inequality holds

1
2e

T PLd̃ + 1
2 d̃ L

T Pe − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (11.167)

Proof : The binomial (ρα − 1
ρ
b)2 is considered. Expanding the left part of the above

inequality one gets

ρ2a2 + 1
ρ2 b2 − 2ab ≥ 0 ⇒ 1

2ρ
2a2 + 1

2ρ2 b2 − ab ≥ 0 ⇒
ab − 1

2ρ2 b2 ≤ 1
2ρ

2a2 ⇒ 1
2ab + 1

2ab − 1
2ρ2 b2 ≤ 1

2ρ
2a2

(11.168)

The following substitutions are carried out: a = d̃ and b = eT PL and the previous
relation becomes

1
2 d̃

T LT Pe + 1
2e

T PLd̃ − 1
2ρ2 eT PLLT Pe≤ 1

2ρ
2d̃T d̃ (11.169)

Equation (11.169) is substituted in Eq. (11.166) and the inequality is enforced, thus
giving

V̇≤ − 1
2e

T Qe + 1
2ρ

2d̃T d̃ (11.170)

Equation (11.170) shows that the H∞ tracking performance criterion is satisfied. The
integration of V̇ from 0 to T gives

∫ T
0 V̇ (t)dt≤ − 1

2

∫ T
0 ||e||2Qdt + 1

2ρ
2
∫ T
0 ||d̃||2dt⇒

2V (T ) + ∫ T
0 ||e||2Qdt≤2V (0) + ρ2

∫ T
0 ||d̃||2dt (11.171)

Moreover, if there exists a positive constant Md > 0 such that

∫ ∞
0 ||d̃||2dt ≤ Md (11.172)
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then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0) + ρ2Md (11.173)

Thus, the integral
∫ ∞
0 ||e||2Qdt is bounded. Moreover, V (T ) is bounded and from the

definition of the Lyapunov function V in Eq. (11.156) it becomes clear that e(t) will
be also bounded since e(t) ∈ �e = {e|eT Pe≤2V (0) + ρ2Md}. According to the
above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

Elaboratiing on the above, it can be noted that the proof of global asymptotic
stability for the control loop of the autonomous submarine relies on Eq. (11.170)
and on the application of Barbalat’s Lemma. It uses the condition of Eq. (11.172)
about the boundedness of the square of the aggregate disturbance and modelling
error term d̃ that affects the model. However, the proof of global asymptotic stability
is not restricted by this condition. By selecting the attenuation coefficient ρ to be
sufficiently small and in particular to satisfy ρ2 < ||e||2Q/||d̃||2 one has that the first
derivative of the Lyapunov function is upper bounded by 0. Therefore for the i-th
time interval it is proven that the Lyapunov function defined in Eq. (11.156) is a
decreasing one. This also ensures that the Lyapunov function of the system defined
in Eq. (11.156) will always have a negative first-order derivative.

11.4.6 Robust State Estimation with the Use of the H-Infinity
Kalman Filter

The control loop for the autonomous submarine can be implemented with the use of
information provided by a small number of sensors and by processing only a small
number of state variables. To reconstruct the missing information about the state
vector of the autonomous submarine it is proposed to use a filtering scheme and
based on it to apply state estimation-based control [169, 457, 511]. The recursion of
the H∞ Kalman Filter, for the model of the submarine, can be formulated in terms
of a measurement update and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k) + CT (k)R(k)−1C(k)P−(k)]−1

K (k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) + K (k)[y(k) − Cx̂−(k)]
(11.174)

Time update:

x̂−(k + 1) = A(k)x(k) + B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) + Q(k)

(11.175)
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Fig. 11.18 Tracking of setpoint 1: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2
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Fig. 11.19 Tracking of setpoint 2: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2

where it is assumed that parameter θ is sufficiently small to assure that the covariance
matrix P−(k)−1−θW (k)+CT (k)R(k)−1C(k)will be positive definite.When θ = 0
the H∞ Kalman Filter becomes equivalent to the standard Kalman Filter. One can
measure only a part of the state vector of the submarine, and can estimate through
filtering the rest of the state vector elements.Moreover, the proposedKalman filtering
method can be used for sensor fusion purposes.
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Fig. 11.20 Tracking of setpoint 3: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2
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Fig. 11.21 Tracking of setpoint 4: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2

11.4.7 Simulation Tests

The performance of nonlinear H-infinity control for the autonomous submarine
was tested through simulation experiments.After applying H-infinity control to the
dynamic model of the submarine which has been obtained through Taylor series
expansion it has become possible to make its state variables converge to the asso-
ciated reference setpoints. The obtained results are depicted in Figs. 11.18, 11.19,
11.20, 11.21, 11.22 and 11.23. It can be noticed that fast and accurate tracking of
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Fig. 11.22 Tracking of setpoint 5: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2
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Fig. 11.23 Tracking of setpoint 6: a Convergence of the state variables of the submarine xi i =
1, · · · , 4 (blue lines) to the reference setpoints (red lines) and associated state estimates (green
lines) b variation of the submarine’s control inputs ui ,i = 1, 2

the reference setpoints was achieved while the variation of the submarine’s control
inputs remained smooth and within moderate ranges. For the computation of the
feedback control gain the algebraic Riccati equation appearing in Eq. (11.161) had
to be repetitively solved at each step of the control method.

In the presented simulation experiments state estimation-based control has been
implemented. Out of the 4 state variables of the autonomous submarine only 2 where
considered to be measurable. These were the submarine’s depth h and its heading
angle θ . The rest of the state variables, describing rate of change of the vessel’s depth
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and rate of change of its heading angle were indirectly estimated with the use of the
H-infinity Kalman Filter. The real value of each state variable has been plotted in
blue, the estimated value has been plotted in green, while the associated reference
setpoint has been plotted in red. It can be noticed that despite model uncertainty
the H-infinity Kalman Filter achieved accurate estimation of the real values of the
state vector elements. In this manner the robustness of the state estimation-based
H-infinity control scheme was also improved.

Comparing to control methods for autonomous underwater vessels which are
based on global linearization techniques, the main properties of the nonlinear
H-infinity control scheme are outlined as follows: (i) it is applied directly on the
nonlinear dynamical model of the submarine and does not require the computation
of diffeomorphisms (change of variables) that will bring the system into an equiva-
lent linearized form, (ii) the computation of the feedback control signal follows an
optimal control concept and requires the solution of an algebraic Riccati equation
at each iteration of the control algorithm, (iii) the control method retains the advan-
tages of optimal control, that is fast and accurate tracking of reference setpoints under
moderate variations of the control inputs.



Chapter 12
Cooperating Autonomous Vehicles

Abstract Cooperating autonomous vehicles are analyzed. Distributed and
coordinated control of autonomous vehicles (automatic ground vehicles, unmanned
aerial vehicles, unmanned surface and underwater vessels) has received significant
attention during the last years. In this chapter a solution is developed for the prob-
lem of distributed control of cooperating autonomous robots which chase a tar-
get. The distributed control aims at achieving the synchronized convergence of the
autonomous vehicles towards the target and at maintaining the cohesion of the vehi-
cle’s team, while also avoiding collisions between the individuals vehicles and col-
lisions between them and obstacles in their motion plane. To estimate the motion
characteristics of the target, distributed filtering is performed. It is shown that to treat
the distributed control problem for the cooperating autonomous vehicles a Lyapunov
theory-based method is introduced. Moreover, to treat the distributed filtering and
state estimation in the multi-vehicle system, decentralized state estimation methods
can be applied. The proposed distributed control and filtering method can be used
for surveillance and security tasks executed by multi-robot systems. The method for
coordinated control of autonomous vehicles is a generic one and thus applicable to
various types of autonomous robots, such as automatic ground vehicles, unmanned
aerial vehicles, unmanned surface vessels or autonomous underwater vessels. In par-
ticular, the chapter treats the following topics: (a) cooperating unmanned surface
vessels and (b) Cooperating unmanned ground vehicles

12.1 Chapter Overview

The present chapter treats the following topics: (a) cooperating unmanned surface
vessels and (b) Cooperating unmanned ground vehicles.

With reference to (a) the chapter formulates a distributed control problem for
unmanned surface vessels (USVs) as follows: there is a number of N USVs which
pursue another vessel (moving target). Each USV can be equipped with various
sensors, such as IMU, cameras and non-imaging sensors such as sonar, radar and
thermal signature sensors. At each time instant each USV can obtain measurements
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of the target’s cartesian coordinates. Additionally, each USV is aware of the target’s
distance from a reference monitoring station (coastal or satellite monitoring units).
The objective is to make the USVs converge in a synchronized manner towards the
target, while avoiding collisions between them and avoiding collisions with obstacles
in their motion plane. A distributed control law is developed for the USVs which
enables not only convergence of the USVs to the goal position, but also makes
possible to maintain the cohesion of the USVs ensemble. Moreover, distributed
filtering is performed, so as to obtain an estimate of the target vessel’s state vector.
This provides the desirable state vector to be tracked by each one of the USVs.
To this end, a new distributed nonlinear filtering method of improved accuracy and
computation speed is introduced. This filtering approach, under the nameDerivative-
free distributed nonlinear Kalman Filter relies on differential flatness theory and on
an exact linearization of the target vessel’s dynamic/kinematic model. The stability
properties of the distributed oontrol scheme are assured.

With reference to (b) the chapter proposes state estimation-based control for
unmanned ground vehicles, such as cooperating robot harvesters. The method is also
applicable to a wider class of nonlinear multi-input multi-output vehicle systems. To
estimate with accuracy the position of the robotic vehicles as well as their motion
characteristics fusion of measurements from multiple sensors is performed with the
use of the Derivative-free distributed Kalman Filter., The proposed derivative-free
nonlinear filtering method, enables to perform distributed state estimation, by sub-
stituting the Extended Information Filter with the standard Information Filter recur-
sion. This filtering approach has significant advantages because unlike the Extended
Information Filter it avoids cumulative numerical and modelling errors which are
due to approximate linearization of the vehicle’s kinematic and dynamic model. The
proposed nonlinear control is based on differential flatness theory.

12.2 Cooperating Unmanned Surface Vessels

12.2.1 Outline

Distributed control of unmanned surface and underwater vessels has received signif-
icant attention during the last years [11, 54, 316, 554, 598, 621]. In this section a
solution is developed for the problem of distributed control of cooperating unmanned
surface vessels (USVs) which pursue a target vessel. The distributed control aims
at achieving the synchronized convergence of the USVs towards the target and at
maintaining the cohesion of the USVs team, while also avoiding collisions between
the individuals USVs and collisions between the USVs and obstacles in their motion
plane. To estimate the motion characteristics of the target vessel distributed filtering
is performed. Actually, each vessel is supplied with equipment which permits to
measure the coordinates of the target vessel, such as IMU and cameras, as well as
with sonar, radar and thermal signature sensors. Besides each USV receives informa-
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tion about the distance of the target vessel from a reference surface, the latter being
provided by a coastal or a satellite-based measurement unit. By fusing the aforemen-
tioned measurements through a filtering procedure an estimate of the state vector of
the target vessel is obtained. Next, to obtain an estimate of improved precision about
the motion characteristics of the target vessel distributed filtering is performed which
provides fusion of the distributed state vector estimates into one single estimate.

To treat the distributed control problem for the cooperating USVs a Lyapunov
theory-based method is introduced. Motion planning for the individual USVs is
determined by theminimization of a Lyapunov function which comprises a quadratic
term associated with the distance of each USV from the target vessel, as well as
quadratic terms which are associated with the distance of the USVs between each
other. By applying LaSalle’s theorem it is proven that the USVs will follow the
target’s motion while remaining within a small area that encircles the target.

To treat the distributed filtering and state estimation problems in the multi-USV
system one can apply established methods for decentralized state estimation, such as
the Extended Information Filter (EIF) and the Unscented Information Filter (UIF).
EIF stands for the distributed implementation of the Extended Kalman Filter while
UIF stands for the distributed variant of the Unscented Kalman Filter. Moreover,
to obtain a distributed filtering scheme in this section the Derivative-free Extended
Information Filter (DEIF) is implemented. This stands for the distributed imple-
mentation of a differential flatness theory-based filtering method under the name
Distributed Derivative-free nonlinear Kalman Filter [57, 450]. The improved perfor-
mance of DEIF comparing to the EIF andUIF is confirmed both in terms of improved
estimation accuracy and in terms of improved speed of computation.

12.2.2 Target Tracking by Multi-robot Systems

12.2.2.1 The Problem of Distributed Target Tracking

It is assumed that there are N USVs (unmanned surface vessels) with positions
p1, p2, ..., pN ∈ R2 respectively, and a target with position x∗ ∈ R2 moving on
the sea surface (see Fig. 12.1). Each USV can be equipped with various sensors,
such as IMU, cameras, sonar, radar and thermal signature sensors. The USVs can
be considered as mobile sensors while the ensemble of the autonomous vehicles
constitutes a mobile sensors network. The discrete-time target’s kinematic model is
given by

xt (k + 1) = φ(xt (k)) + L(k)u(k) + w(k)

zt (k) = γ (xt (k)) + v(k) (12.1)
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Fig. 12.1 Distributed control for tracking of the target vessel by synchronized USVs

where x∈Rm×1 is the target’s state vector and z∈Rp×1 is the measured output, while
w(k) and v(k) are uncorrelated, zero-mean, Gaussian zero-mean noise processes
with covariance matrices Q(k) and R(k) respectively. The operators φ(x) and γ (x)
are defined as φ(x) = [φ1(x), φ2(x), . . .,φm(x)]T , and γ (x) = [γ1(x), γ2(x), . . . ,
γp(x)]T , respectively.

At each time instant each USV can obtain a measurement of the target’s position.
Additionally, each USV is aware of the target’s distance from a reference surface
measured in an inertial coordinates system (this can be a measurement provided by
a coastal observation unit or equivalently by a satellite station). Finally, each USV is
aware of the positions of the rest N − 1 USVs. The objective is to make the USVs
converge in a synchronized manner towards the target, while avoiding collisions
between them and avoiding collisionswith obstacles in themotion plane. To solve the
overall problem, the following steps are necessary: (i) to perform distributed filtering,
so as to obtain an estimate of the target’s state vector. This estimate provides the
desirable state vector to be tracked by each one of the USVs, (ii) to design a suitable
control law that will enable individual USVs not only convergence to the target’s
position but will also preserve the cohesion of the USVs ensemble (see Fig. 12.2).

The exact position and orientation of the target can be obtained through distributed
filtering. Actually, distributed filtering provides a two-level fusion of the distributed
sensor measurements. At the first level, local filters running at each USV provide an
estimate of the target’s state vector by fusing the cartesian coordinates of the target
with the target’s distance from a reference surface which is measured in an inertial
coordinates system [573]. At a second level, fusion of the local estimates is performed



12.2 Cooperating Unmanned Surface Vessels 647

Fig. 12.2 Distributed tracking of the target vessel (blue color) by N unmanned surface vessels
(green color) through the fusion of distributed estimates about the target’s motion

with the use of the Extended Information Filter and the Unscented Information Filter.
It is also assumed that the time taken in the processing of data and in communicating
between USVs is small, and that time delays, packet losses and out-of-sequence
measurement problems in communication do not distort significantly the flow of the
exchanged data.

Comparing to the traditional centralized or hierarchical fusion architecture, the
network-centric architectures for the consideredmulti-USV system has the following
advantages: (i) Scalability: since there are no limits imposed by centralized compu-
tation bottlenecks or lack of communication bandwidth, and every USV can easily
join or quit the multi-USV system, (ii) Robustness: in a decentralized fusion archi-
tecture no element of the system is mission-critical, so that the system is survivable
in the event of loss of individual USVs, (iii) Modularity: each individual USV is
self-coordinated and does not need to possess a global knowledge of the network
topology. However, these benefits are possible only if the sensor data can be fused
and distributed within the constraints of the available bandwidth.

12.2.2.2 Tracking of the Reference Path by the Target

The complete kinematic and dynamic model of the target vessel, for both the case of
fully actuated and underactuated ships, has been analyzed in [416, 450]. In particular,
models of the vessel’s motion described only by kinematics equations can be found
in [62, 252]. Here a simplified kinematic model of the target vessel is considered,
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including only surge velocity (forward motion) and without sway velocity. This is
given by:

ẋ = v(t)cos(θ)

ẏ = v(t)sin(θ)

θ̇ = ω (12.2)

The target is steered by the dynamic feedback linearization control algorithm
which is based on flatness-based control and has been analyzed in Sect. 7.1
[145, 255, 450, 572]:

u1 = ẍd + Kp1(xd − x) + Kd1(ẋd − ẋ)

u2 = ÿd + Kp2(yd − y) + Kd2(ẏd − ẏ)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ, ω = u2cos(θ) − u1sin(θ)

ξ

(12.3)

The linearized equivalent model of the target’s kinematics becomes

ẍ = u1
ÿ = u2 (12.4)

A linearized model of similar structure is obtained in the case of the more elabo-
rated vessel models as for example those described in [416, 457]. For the complete
model of the vessel’s kinematics dynamics one arrives at a linearized description of
the form x (4) = u1 and y(4) = u2. Therefore, the control and filtering methods to be
developed in this manuscript are also applicable to more complicated vessel models.

In case of Eq. (12.4), the dynamics of the tracking error is given by

ëx + Kd1 ėx + Kp1ex = 0

ëy + Kd2 ėx + Kp2ey = 0 (12.5)

where ex = x − xd and ey = y − yd . The proportional-derivative (PD) gains are cho-
sen as Kp1 and Kd1 , for i = 1, 2. The dynamic compensator of Eq. (12.3) has a poten-
tial singularity at ξ = v = 0, i.e. when the target is not moving. As it has been previ-
ously analyzed, the occurrence of such a singularity is structural for non-holonomic
systems. It is assumed that the target follows a smooth trajectory (xd(t), yd(t))which
is persistent, i.e. for which the nominal velocity vd = (ẋ2d + ẏ2d )

1/2 along the trajec-
tory never goes to zero (and thus singularities are avoided).
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12.2.3 Distributed Motion Planning for the Multi-USV
System

12.2.3.1 Kinematic Model of the Multi-USV System

The objective is to lead the team of N USVs, with different initial positions on the 2-
D plane, to converge to the target’s position, and at the same time to avoid collisions
between the USVs, as well as collisions with obstacles in the motion plane. An
approach for doing this is the potential fields theory, in which the individual USVs
are steered towards an equilibrium by the gradient of an harmonic potential [51, 176,
198, 450]. Variants of thismethod use nonlinear anisotropic harmonic potential fields
which introduce to the USVs’ motion directional and regional avoidance constraints
[323, 374, 446, 448, 497, 512]. In the examined coordinated target-tracking problem
the equilibrium is the target’s position, which is not a-priori known and has to be
estimated with the use of distributed filtering.

The position of each USV in the 2-D space is described by the vector xi ∈ R2.
The motion of the USVs is synchronous, without time delays, and it is assumed that
at every time instant each USV i is aware about the position and the velocity of
the other N − 1 USVs. The cost function that describes the motion of the i th USV
towards the target’s position is denoted as V (xi ) : Rn → R. The value of V (xi ) at
the target’s position in ∇xi V (xi ) = 0. The following conditions must hold:

(i) The cohesion of the USVs team should be maintained, i.e. the norm ||xi − x j ||
should remain upper bounded ||xi − x j || < εh ,
(ii) Collisions between the USVs should be avoided, i.e. ||xi − x j || > εl ,
(iii) Convergence to the target’s position should be achieved for eachUSV through the
negative definiteness of the associated Lyapunov function V̇ i (xi ) = ėi (t)

T
ei (t) < 0,

where e = x − x∗ is the distance of the i th USV from the target’s position.

The interaction between the i th and the j th USV is

g(xi − x j ) = −(xi − x j )[ga(||xi − x j ||) − gr (||xi − x j ||)] (12.6)

where ga() denotes the attraction term and is dominant for large values of ||xi − x j ||,
while gr () denotes the repulsion term and is dominant for small values of ||xi −
x j ||. Function ga() can be associated with an attraction potential, i.e. ∇xi Va(||xi −
x j ||) = (xi − x j )ga(||xi − x j ||). Function gr () can be associated with a repulsion
potential, i.e. ∇xi Vr (||xi − x j ||) = (xi − x j )gr (||xi − x j ||). A suitable function g()
that describes the interaction between the USVs is given by [162, 448]

g(xi − x j ) = −(xi − x j )(a − be
||xi−x j ||2

σ2 ) (12.7)

where the parameters a, b and c are suitably tuned. It holds that ga(xi − x j ) = −a,
i.e. attraction has a linear behavior (spring-mass system) ||xi − x j ||ga(xi − x j ).
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Moreover, gr (xi − x j ) = be
−||xi−x j ||2

σ2 which means that gr (xi − x j )||xi − x j || ≤ b
is bounded. Applying Newton’s laws to the i th USV yields

ẋ i = vi , mi v̇i = Ui (12.8)

where the aggregate force isUi = f i + Fi . The term f i = −Kvvi denotes a friction-
equivalent term, while the term Fi is the propulsion. Assuming zero acceleration
v̇i = 0 one gets Fi = Kvvi , which for Kv = 1 and mi = 1 gives Fi = vi . Thus an
approximate kinematic model for each USV is

ẋ i = Fi (12.9)

According to the Euler-Langrange principle, the propulsion Fi is equal to the
derivative of the total potential of each USV, i.e.

Fi = −∇xi {V i (xi ) + 1

2

∑N

i=1

∑N

j=1, j �=i
[Va(||xi − x j || + Vr (||xi − x j ||)]} ⇒

Fi = −∇xi {V i (xi )} +
∑N

j=1, j �=i
[−∇xi Va(||xi − x j ||) − ∇xi Vr (||xi − x j ||)] ⇒

Fi = −∇xi {V i (xi )} +
∑N

j=1, j �=i
[−(xi − x j )ga(||xi − x j ||) − (xi − x j )gr (||xi − x j ||)] ⇒

Fi = −∇xi {V i (xi )} −
∑N

j=1, j �=i
g(xi − x j )

Substituting in Eq. (12.9) one gets in discrete-time form

xi (k + 1)= xi (k) + γ i (k)[h(xi (k)) + ei (k)] +
N∑

j=1, j �=i

g(xi − x j ), i = 1, 2, . . . , M

(12.10)
The term h(x(k)i ) = −∇xi V i (xi ) indicates a local gradient algorithm, i.e. motion

in the direction of decrease of the cost function V i (xi ) = 1
2e

i (t)
T
ei (t). The term

γ i (k) is the algorithms step while the stochastic disturbance ei (k) enables the
algorithm to escape from local minima. The term

∑N
j=1, j �=i g(x

i − x j ) describes
the interaction between the i th and the rest N − 1 stochastic gradient algorithms
[43, 101, 134].

12.2.3.2 Stability of the Multi-USV System

The behavior of the multi-USV system is determined by the behavior of its center
(mean of the vectors xi ) and of the position of each USV with respect to this center.
The center of the multi-USV system is given by
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x̄ = E(xi ) = 1

N

∑N

i=1
xi ⇒ ˙̄x = 1

N

∑N

i=1
ẋ i ⇒

˙̄x = 1

N

∑N

i=1
[−∇xi V

i (xi ) −
∑N

j=1, j �=i
(g(xi − x j ))] (12.11)

From Eq. (12.7) it can be seen that g(xi − x j ) = −g(x j − xi ), i.e. g() is an odd
function. Therefore, it holds that 1

N (
∑N

j=1, j �=i g(x
i − x j )) = 0, and

˙̄x = 1

N

N∑

i=1

[−∇xi V
i (xi )] (12.12)

Denoting the target’s position by x∗, and the distance between the i th USV and
the mean position of the multi-USV system by ei (t) = xi (t) − x̄ the objective of
distributed gradient for USV motion planning can be summarized as follows:

(i) limt→∞ x̄ = x∗, i.e. the center of the multi-USV system converges to the target’s
position,
(ii) limt→∞xi = x̄ , i.e. the i th USV converges to the center of themulti-USV system,
(iii) limt→∞ ˙̄x = ẋ∗, i.e. the velocity of the multi-USV systems stabilizes at the tar-
get’s velocity.

If conditions (i) and (ii) hold then limt→∞xi = x∗. Furthermore, if condition (iii)
also holds then all USVs will stabilize close to the target’s position.

It is known that the stability of local gradient algorithms can be proven with the
use of Lyapunov theory [43]. A similar approach can be followed in the case of the
distributed gradient algorithms given by Eq. (12.10). The following simple Lyapunov
function is considered for each gradient algorithm [162]:

Vi = 1

2
ei

T
ei ⇒ Vi = 1

2
||ei ||2 (12.13)

Thus, one gets

V̇ i = ei
T
ėi ⇒ V̇ i = (ẋ i − ˙̄x)ei ⇒

V̇ i = [−∇xi V
i (xi ) −

∑N

j=1, j �=i
g(xi − x j ) + 1

M

∑N

j=1
∇x j V j (x j )]ei .

Substituting g(xi − x j ) from Eq. (12.7) yields

V̇i = [−∇xi V
i (xi ) −

∑N

j=1, j �=i
(xi − x j )a+

+
∑N

j=1, j �=i
(xi − x j )gr (||xi − x j ||) + 1

N

∑N

j=1
∇x j V j (x j )]ei
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which gives,

V̇i = − a[
∑N

j=1, j �=i
(xi − x j )]ei+

+
∑N

j=1, j �=i
gr (||xi − x j ||)(xi − x j )T ei − [∇xi V

i (xi ) − 1

N

∑M

j=1
∇x j V j (x j )]T ei

It holds that
∑N

j=1(x
i − x j ) = Nxi − N 1

N

∑N
j=1x

j = Nxi − N x̄ = N (xi − x̄) =
Nei , therefore

V̇i = −aN ||ei ||2 +
∑N

j=1, j �=i
gr (||xi − x j ||)(xi − x j )T ei − [∇xi V

i (xi ) − 1

N

∑N

j=1
∇x j V j (x j )]T ei

(12.14)

It assumed that for all xi there is a constant σ̄ such that

||∇xi V
i (xi )|| ≤ σ̄ (12.15)

Equation (12.15) is reasonable since for aUSVmovingon a2-Dplane, the gradient
of the cost function ∇xi V i (xi ) is expected to be bounded. Moreover it is known that
the following inequality holds:

∑N

j=1, j �=i
gr (x

i − x j )T ei≤
∑N

j=1, j �=i
bei≤

∑N

j=1, j �=i
b||ei ||.

Thus the application of Eq. (12.14) gives:

V̇ i≤ − aN ||ei ||2 +
∑N

j=1, j �=i
gr (||xi − x j ||)||xi − x j || · ||ei || + ||∇xi V

i (xi )−

− 1

N

∑M

j=1
∇x j V j (x j )||||ei ||

⇒ V̇ i≤aN ||ei ||2 + b(N − 1)||ei || + 2σ̄ ||ei ||

where it has been taken into account that

∑N

j=1, j �=i
gr (||xi − x j ||)T ||ei ||≤

∑N

j=1, j �=i
b||ei || = b(N − 1)||ei ||,

and from Eq. (12.15),

||∇xi V
i (xi ) − 1

N

∑N

j=1
∇xi V

j (x j )||≤||∇xi V
i (xi )||+

+ 1

N
||
∑N

j=1
∇xi V

j (x j )||≤σ̄ + 1

N
N σ̄ ≤ 2σ̄ .

Thus, one gets
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V̇ i≤ − aN ||ei ||·[||ei || − b(N − 1)

aN
− 2

σ̄

aN
] (12.16)

The following bound ε is defined:

ε = b(N − 1)

aN
+ 2σ̄

aN
= 1

aN
(b(N − 1) + 2σ̄ ) (12.17)

Thus, when ||ei || > ε, V̇i will become negative and consequently the error ei =
xi − x̄ will decrease. Therefore the tracking error ei will remain in an area of radius
ε i.e. the position xi of the i th USV will stay in the cycle with center x̄ and radius ε.

12.2.3.3 Stability in the Case of a Quadratic Cost Function

The case of a convex quadratic cost function is examined, for instance

V i (xi ) = A

2
||xi − x∗||2 = A

2
(xi − x∗)T (xi − x∗) (12.18)

where x∗ ∈ R2 denotes the target’s position, while the associated Lyapunov function
has a minimum at x∗, i.e. V i (xi = x∗) = 0. The distributed gradient algorithm is
expected to converge to x∗. The individual USVs will follow different trajectories
on the 2-D plane and will end at the target’s position.

Using Eq. (12.18) yields ∇xi V i (xi ) = A(xi − x∗). Moreover, the assumption
∇xi V i (xi ) ≤ σ̄ can be used, since the gradient of the cost function remains bounded.
The USVs will concentrate round x̄ and will stay in a radius ε given by Eq. (12.17).
The motion of the mean position x̄ of the USVs is

˙̄x = − 1

N

∑N

i=1
∇xi V

i (xi ) ⇒ ˙̄x = − A

N

∑N

i=1
(xi − x∗) ⇒

˙̄x = − A

N

∑N

i=1
xi + A

N
Nx∗ ⇒ ˙̄x − ẋ∗ = −A(x̄ − x∗) − ẋ∗ (12.19)

The variable eσ = x̄ − x∗ is defined, and consequently

ėσ = −Aeσ − ẋ∗ (12.20)

The following cases can be distinguished:

(i) The target is not moving, i.e. ẋ∗ = 0. In that case Eq. (12.20) results in an homo-
geneous differential equation, the solution of which is given by

εσ (t) = εσ (0)e−At (12.21)
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Knowing that A > 0 results into limt→∞eσ (t) = 0, thus limt→∞ x̄(t) = x∗.
(ii) the target is moving at constant velocity, i.e. ẋ∗ = a, where a > 0 is a constant
parameter. Then the error between the mean position of the multi-USV formation
and the target becomes

εσ (t) =
[
εσ (0) + a

A

]
e−At − a

A
(12.22)

where the exponential term vanishes as t→∞.
(iii) the target’s velocity is described by a sinusoidal signal or a superposition of
sinusoidal signals, as in the case of function approximation by Fourier series expan-
sion. For instance consider the case that ẋ∗ = b·sin(at), where a, b > 0 are constant
parameters. Then the nonhomogeneous differential equation (12.20) admits a sinu-
soidal solution. Therefore the distance εσ (t) between the center of the multi-USV
formation x̄(t) and the target’s position x∗(t)will be also a bounded sinusoidal signal.

12.2.3.4 Convergence Analysis Using La Salle’s Theorem

From Eq. (12.16) it has been shown that each USV will stay in a cycle C of center x̄
and radius ε given byEq. (12.17). The Lyapunov function given byEq. (12.13) is neg-
ative semi-definite, therefore asymptotic stability cannot be guaranteed. It remains
to make precise the area of convergence of each USV in the cycle C of center x̄ and
radius ε. To this end, La Salle’s theorem can be employed [162, 230].

La Salle’s Theorem: Assume the autonomous system ẋ = f (x) where f : D →
Rn . Assume C ⊂ D a compact set which is positively invariant with respect to ẋ =
f (x), i.e. if x(0) ∈ C ⇒ x(t) ∈ C ∀ t . Assume that V (x) : D → R is a continuous
and differentiable Lyapunov function such that V̇ (x) ≤ 0 for x ∈ C , i.e. V (x) is
negative semi-definite in C . Denote by E the set of all points in C such that V̇ (x) =
0. Denote by M the largest invariant set in E and its boundary by L+, i.e. for
x(t) ∈ E : limt→∞x(t) = L+, or in other words L+ is the positive limit set of E.
Then every solution x(t) ∈ C will converge to M as t → ∞ (Fig. 12.3).

La Salle’s theorem is applicable in the case of the multi-USV system and helps
to describe more precisely the area round x̄ to which the USV trajectories xi will
converge. A generalized Lyapunov function is introduced which is expected to verify
the stability analysis based on Eq. (12.16). It holds that

V (x) =
∑N

i=1
V i (xi ) + 1

2

∑N

i=1

∑N

j=1, j �=i
{Va(||xi − x j || − Vr (||xi − x j ||)} ⇒

V (x) =
∑N

i=1
V i (xi ) + 1

2

∑N

i=1

∑N

j=1, j �=i
{a||xi − x j || − Vr (||xi − x j ||)
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Fig. 12.3 LaSalle’s
Theorem: C : invariant set,
E ⊂ C : invariant set which
satisfies V̇ (x) = 0, M ⊂ E :
invariant set, which satisfies
V̇ (x) = 0, and which
contains the limit points of
x(t) ∈ E , L+ the set of limit
points of x(t) ∈ E

and

∇xi V (x) =
[∑N

i=1
∇xi V

i (xi )

]
+ 1

2

∑N

i=1

∑N

j=1, j �=i
∇xi {a||xi − x j || − Vr (||xi − x j ||)} ⇒

∇xi V (x) =
[∑N

i=1
∇xi V

i (xi )

]
+

∑N

j=1, j �=i
(xi − x j ){ga(||xi − x j ||) − gr (||xi − x j ||)} ⇒

∇xi V (x) =
[∑N

i=1
∇xi V

i (xi )

]
+

∑N

j=1, j �=i
(xi − x j ){a − gr (||xi − x j ||)}

and using Eq. (12.10) with γ i (t) = 1 yields ∇xi V (x) = −ẋ i , and

V̇ (x) = ∇x V (x)T ẋ =
N∑

i=1

∇xi V (x)T ẋ i ⇒ V̇ (x) = −
N∑

i=1

||ẋ i ||2 ≤ 0 (12.23)

Therefore it holds V (x) > 0 and V̇ (x)≤0 and the set C = {x : V (x(t)) ≤
V (x(0))} is compact and positively invariant. Thus, by applying La Salle’s theo-
rem one can show the convergence of x(t) to the set M ⊂ C, M = {x : V̇ (x) =
0} ⇒ M = {x : ẋ = 0}.

12.2.4 Distributed State Estimation Using the Extended
Information Filter

12.2.4.1 Extended Kalman Filtering at Local Processing Units

To implement the previously analyzed distributed control scheme it is necessary
to obtain accurate localization of the target and precise estimation of its motion
characteristics. To this end, distributed filtering can be used, which actually performs
fusion of estimates of the target’s state vector provided byfiltering algorithms running
locally at each USV [369, 370]. As mentioned, to obtain an accurate estimate of the
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target’s coordinates, fusion of the distributed sensor measurements can be performed
eitherwith the use of the Extended Information Filter orwith the use of theUnscented
Information Filter. The distributed Extended Kalman Filter, also known as Extended
Information Filter, performs fusion of the state estimates which are provided by local
ExtendedKalman Filters. Thus, the functioning of the local ExtendedKalman Filters
should be analyzed first. The following nonlinear state-space model is considered
again [431, 444]:

x(k + 1) = φ(x(k)) + L(k)u(k) + w(k)

z(k) = γ (x(k)) + v(k) (12.24)

where x∈Rm×1 is the system’s state vector and z∈Rp×1 is the system’s output, while
w(k) and v(k) are uncorrelated, Gaussian zero-mean noise processes with covariance
matrices Q(k) and R(k) respectively. The operators φ(x) and γ (x) are φ(x) =
[φ1(x), φ2(x), . . .,φm(x)]T , and γ (x) = [γ1(x), γ2(x), . . . , γp(x)]T , respectively. It
is assumed that φ and γ are sufficiently smooth in x so that each one has a valid
series Taylor expansion. Following a linearization procedure, φ is expanded into
Taylor series about x̂ :

φ(x(k)) = φ(x̂(k)) + Jφ(x̂(k))[x(k) − x̂(k)] + · · · (12.25)

where Jφ(x) is the Jacobian of φ calculated at x̂(k):

Jφ(x) = ∂φ

∂x
|x=x̂(k) =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂φ1

∂x1
∂φ1

∂x2
. . .

∂φ1

∂xm
∂φ2

∂x1
∂φ2

∂x2
. . .

∂φ2

∂xm

...
...

...
...

∂φm

∂x1
∂φm

∂x2
. . .

∂φm

∂xm

⎞

⎟⎟⎟⎟⎟⎟⎠
(12.26)

Likewise, γ is expanded about x̂−(k)

γ (x(k)) = γ (x̂−(k)) + Jγ [x(k) − x̂−(k)] + · · · (12.27)

where x̂−(k) is the estimation of the state vector x(k) before measurement at the
kth instant to be received and x̂(k) is the updated estimation of the state vector after
measurement at the kth instant has been received. The Jacobian Jγ (x) is

Jγ (x) = ∂γ

∂x
|x=x̂−(k) =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂γ1
∂x1

∂γ1
∂x2

. . .
∂γ1
∂xm

∂γ2
∂x1

∂γ2
∂x2

. . .
∂γ2
∂xm

...
...

...
...

∂γp

∂x1

∂γp

∂x2
. . .

∂γp

∂xm

⎞

⎟⎟⎟⎟⎟⎟⎠
(12.28)
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The resulting expressions create first order approximations of φ and γ . Thus the
linearized version of the system is obtained:

x(k + 1) = φ(x̂(k)) + Jφ(x̂(k))[x(k) − x̂(k)] + w(k)

z(k) = γ (x̂−(k)) + Jγ (x̂−(k))[x(k) − x̂−(k)] + v(k) (12.29)

Now, the EKF recursion is as follows: First the time update is considered: by
x̂(k) the estimation of the state vector at instant k is denoted. Given initial conditions
x̂−(0) and P−(0) the recursion proceeds as:

• Measurement update. Acquire z(k) and compute:

K (k) = P−(k)J T
γ (x̂−(k))·[Jγ (x̂−(k))P−(k)J T

γ (x̂−(k)) + R(k)]−1

x̂(k) = x̂−(k) + K (k)[z(k) − γ (x̂−(k))]
P(k) = P−(k) − K (k)Jγ (x̂−(k))P−(k) (12.30)

• Time update. Compute:

P−(k + 1) = Jφ(x̂(k))P(k)J T
φ (x̂(k)) + Q(k)

x̂−(k + 1) = φ(x̂(k)) + L(k)u(k) (12.31)

12.2.4.2 Calculation of Local Estimations in Terms of EIF Information
Contributions

Again the discrete-time nonlinear system of Eq. (12.24) is considered. The Extended
Information Filter (EIF) performs fusion of the local state vector estimates which
are provided by the local Extended Kalman Filters, using the Information matrix
and the Information state vector [259, 260, 315, 570]. The InformationMatrix is the
inverse of the state vector covariance matrix, and can be also associated to the Fisher
Information matrix [463]. The Information state vector is the product between the
Information matrix and the local state vector estimate

Y(k) = P−1(k) = I (k)

ŷ(k) = P−(k)
−1
x̂(k) = Y(k)x̂(k) (12.32)

The update equations for the Information Matrix and the Information state vector
are given by
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Y (k) =P−(k)−1 + J T
γ (k)R−1(k)Jγ (k)

= Y−(k) + I (k) (12.33)

ŷ(k) =ŷ−
(k) + J T

γ R(k)−1[z(k) − γ (x(k)) + Jγ x̂
−(k)]

= ŷ−
(k) + i(k) (12.34)

where

I (k) = J Tγ (k)R(k)−1 Jγ (k) is the associated information matrix and

i(k) =J Tγ R(k)−1[(z(k) − γ (x(k))) + Jγ x̂
−(k)] is the information state contribution

(12.35)

The predicted information state vector and Information matrix are obtained from

ŷ−
(k)= P−(k)

−1
x̂−(k)

Y−(k) =P−(k)
−1 = [Jφ(k)P−(k)Jφ(k)T + Q(k)]−1 (12.36)

The Extended Information Filter is next formulated for the case that multiple
local sensor measurements and local estimates are used to increase the accuracy and
reliability of the estimation of the target’s cartesian coordinates and bearing. It is
assumed that an observation vector zi (k) is available for N different sensor sites
(USVs) i = 1, 2, . . . , N and each sensor observes a common state according to the
local observation model, expressed by

zi (k) = γ (x(k)) + vi (k), i = 1, 2, . . . , N (12.37)

where the local noise vector vi (k)∼N (0, Ri ) is assumed to be white Gaussian and
uncorrelated between sensors. The variance of a composite observation noise vector
vk is expressed in terms of the block diagonal matrix

R(k) = diag[R(k)1, . . . , RN (k)]T (12.38)

The information contribution can be expressed by a linear combination of each
local information state contribution i i and the associated information matrix I i at
the i th sensor site

i(k) =
∑N

i=1
J iγ

T
(k)Ri (k)−1[zi (k) − γ i (x(k)) + J iγ (k)x̂−(k)]

I (k) =
∑N

i=1
J iγ

T
(k)Ri (k)−1 J iγ (k) (12.39)

Using Eq. (12.39) the update equations for fusing the local state estimates become
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Fig. 12.4 Fusion of the distributed state estimates of the target (obtained by the USVs) with the
use of the extended information filter

ŷ(k) = ŷ−
(k) +

∑N

i=1
J iγ

T
(k)Ri (k)−1[zi (k) − γ i (x(k)) + J iγ (k)x̂−(k)]

Y(k) = Y−(k) +
∑N

i=1
J iγ

T
(k)Ri (k)−1 J iγ (k) (12.40)

It is noted that in the Extended Information Filter an aggregation (master) fusion
filter produces a global estimate by using the local sensor information provided by
each local filter.

As in the case of the Extended Kalman Filter the local filters which constitute the
Extended information Filter can be written in terms of time update and a measure-
ment update equation (Fig. 12.5).

Measurement update: Acquire z(k) and compute

Y (k) = P−(k)−1 + J T
γ (k)R(k)−1 Jγ (k)

or Y (k) = Y−(k) + I (k) where I (k) = J T
γ (k)R−1(k)Jγ (k) (12.41)

ŷ(k) = ŷ−(k)+J T
γ (k)R(k)−1[z(k) − γ (x̂(k)) + Jγ x̂

−(k)]
or ŷ(k) = ŷ−(k) + i(k) (12.42)
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Fig. 12.5 Schematic diagram of the Extended Information Filter loop

Time update: Compute

Y−(k + 1) = P−(k + 1)−1 = [Jφ(k)P(k)Jφ(k)T + Q(k)]−1 (12.43)

y−(k + 1) = P−(k + 1)−1
x̂−(k + 1) (12.44)

12.2.4.3 Extended Information Filtering for State Estimates Fusion

In theExtended InformationFilter each one of the local filters operates independently,
processing its own local measurements. It is assumed that there is no sharing of
measurements between the local filters and that the aggregation filter (Fig. 12.4) does
not have direct access to the raw measurements feeding each local filter. The outputs
of the local filters are treated as measurements which are fed into the aggregation
fusion filter [259, 260, 570]. Then each local filter is expressed by its respective error
covariance and estimate in terms of information contributions given in Eq. (12.36)

Pi−1(k) = P−
i (k)

−1 + J T
γ R(k)−1 Jγ (k)

x̂i (k) = Pi (k)(P
−
i (k)−1 x̂−

i (k)) + J T
γ R(k)−1[zi (k) − γ i (x(k)) + J iγ (k)x̂−

i (k)]
(12.45)

It is noted that the local estimates are suboptimal and also conditionally indepen-
dent given their own measurements. The global estimate and the associated error
covariance for the aggregate fusion filter can be rewritten in terms of the computed
estimates and covariances from the local filters using the relations
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J T
γ (k)R(k)−1 Jγ (k) = Pi (k)−1 − P−

i (k)−1

J T
γ (k)R(k)−1[zi (k) − γ i (x(k)) + J iγ (k)x̂−(k)] = Pi (k)−1 x̂i (k) − Pi (k)−1 x̂i (k − 1)

(12.46)

For the general case of N local filters i = 1, . . . , N , the distributed filtering archi-
tecture is described by the following equations

P(k)−1 = P−(k)−1 + ∑N
i=1[Pi (k)−1 − P−

i (k)−1]
x̂(k) = P(k)[P−(k)−1 x̂−(k) + ∑N

i=1(Pi (k)
−1 x̂i (k) − P−

i (k)−1 x̂−
i (k))] (12.47)

It is noted that the global state update equation in the above distributed filter can
be written in terms of the information state vector and of the information matrix

ŷ(k) = ŷ−(k) +
∑N

i=1
(ŷi (k) − ŷ−

i (k))

Ŷ (k) = Ŷ−(k) +
∑N

i=1
(Ŷi (k) − Ŷ−

i (k)) (12.48)

The local filters provide their own local estimates and repeat the cycle at step
k + 1. In turn the global filter can predict its global estimate and repeat the cycle at
the next time step k + 1 when the new state x̂(k + 1) and the new global covariance
matrix P(k + 1) are calculated. From Eq. (12.47) it can be seen that if a local filter
(processing station) fails, then the local covariance matrices and the local state esti-
mates provided by the rest of the filters will enable an accurate computation of the
system’s state vector.

12.2.5 Distributed State Estimation Using the Unscented
Information Filter

12.2.5.1 Unscented Kalman Filtering at Local Processing Units

It is also possible to estimate the cartesian coordinates and bearing of the target
through the fusion of the estimates provided by local Sigma-Point Kalman Filters.
This can be accomplished using the Distributed Sigma-Point Kalman Filter, also
known as Unscented Information Filter (UIF) [259, 260]. First, the functioning of
the local Sigma-Point Kalman Filters will be explained. Each local Sigma-Point
Kalman Filter generates an estimation of the target’s state vector by fusing the esti-
mate of the target’s coordinates and bearing obtained by each USV with the distance
of the target from a reference surface, measured in an inertial coordinates system.
Unlike EKF, in Sigma-Point Kalman Filtering no analytical Jacobians of the system
equations need to be calculated [219, 220, 492]. This is achieved through a different
approach for calculating the posterior 1st and 2nd order statistics of a random vari-
able that undergoes a nonlinear transformation. The state distribution is represented
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again by a Gaussian random variable but is now specified using a minimal set of
deterministically chosen weighted sample points. The basic sigma-point approach
can be described as follows:

1. A set of weighted samples (sigma-points) are deterministically calculated using
the mean and square-root decomposition of the covariance matrix of the system’s
state vector. As a minimal requirement the sigma-point set must completely cap-
ture the first and second order moments of the prior random variable. Higher order
moments can be captured at the cost of using more sigma-points.
2. The sigma-points are propagated through the true nonlinear function using func-
tional evaluations alone, i.e. no analytical derivatives are used, in order to generate
a posterior sigma-point set.
3. The posterior statistics are calculated (approximated) using tractable functions
of the propagated sigma-points and weights. Typically, these take on the form of a
simple weighted sample mean and covariance calculations of the posterior sigma
points.

It is noted that the sigma-point approach differs substantially fromgeneral stochas-
tic sampling techniques such asMonte-Carlo integration (e.g Particle Filtering meth-
ods) which require significantly more sample points in an attempt to propagate an
accurate (possibly non-Gaussian) distribution of the state. The deceptively simple
sigma-point approach results in posterior approximations that are accurate to the third
order for Gaussian inputs for all nonlinearities. For non-Gaussian inputs, approxi-
mations are accurate to at least the second-order, with the accuracy of third and
higher-order moments determined by the specific choice of weights and scaling fac-
tors.

The Unscented Kalman Filter (UKF) is a special case of Sigma-Point Kalman
Filters. The UKF is a discrete time filtering algorithm which uses the unscented
transform for computing approximate solutions to the filtering problem for systems
in the form

x(k + 1) = φ(x(k)) + L(k)U (k) + w(k)
y(k) = γ (x(k)) + v(k)

(12.49)

where x(k)∈Rn is the system’s state vector, y(k)∈Rm is the measurement, w(k)∈Rn

is a Gaussian process noise w(k)∼N (0, Q(k)), and v(k)∈Rm is a Gaussian mea-
surement noise denoted as v(k)∼N (0, R(k)). The mean and covariance of the initial
state x(0) are m(0) and P(0), respectively.

Some basic operations performed in the UKF algorithm (Unscented Transform)
are summarized as follows:
(1) Denoting the current state mean as x̂ , a set of 2n + 1 sigma points is taken from
the columns of the n × n matrix

√
(n + λ)Pxx as follows:

x0 = x̂
x i = x̂ + [√(n + λ)Pxx ]i , i = 1, . . . , n

xi = x̂ − [√(n + λ)Pxx ]i , i = n + 1, . . . , 2n
(12.50)
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and the associate weights are computed:

W (m)
0 = λ

(n+λ)
W (c)

0 = λ
(n+λ)+(1−α2+b)

W (m)
i = 1

2(n+λ)
, i = 1, . . . , 2n W (c)

i = 1
2(n+λ)

(12.51)

where i = 1, 2, . . . , 2n and λ = α2(n + κ) − n is a scaling parameter, while α, β

and κ are constant parameters. Matrix Pxx is the covariance matrix of the state x .
(2) Transform each of the sigma points as

zi = h(xi ) i = 0, . . . , 2n (12.52)

(3) Mean and covariance estimates for z can be computed as

ẑ�∑2n
i=0W

(m)
i zi

Pzz = ∑2n
i=0W

(c)
i (zi − ẑ)(zi − ẑ)T

(12.53)

(4) The cross-covariance of x and z is estimated as

Pxz =
∑2n

i=0
W (c)

i (xi − x̂)(zi − ẑ)T (12.54)

The matrix square root of positive definite matrix Pxx means a matrix A = √
Pxx

such that Pxx = AAT and a possible way for calculation is SVD.

Next the basic stages of the Unscented Kalman Filter are given:

As in the case of the Extended Kalman Filter and the Particle Filter, the Unscented
Kalman Filter also consists of prediction stage (time update) and correction stage
(measurement update) [219, 492].
Time update: Compute the predicted state mean x̂−(k) and the predicted covariance
Pxx−(k) as

[x̂−(k), P−
xx (k)] = UT ( fd , x̂(k − 1), Pxx (k − 1))

P−
xx (k) = Pxx (k − 1) + Q(k − 1)

(12.55)

Measurement update: Obtain the new output measurement zk and compute the pre-
dictedmean ẑ(k) and covariance of themeasurement Pzz(k), and the cross covariance
of the state and measurement Pxz(k)

[ẑ(k), Pzz(k), Pxz(k)] = UT (hd , x̂−(k), P−
xx (k))

Pzz(k) = Pzz(k) + R(k)
(12.56)

Then compute the filter gain K (k), the state mean x̂(k) and the covariance Pxx (k),
conditional to the measurement y(k)

K (k) = Pxz(k)P−1
zz (k)

x̂(k) = x̂−(k) + K (k)[z(k) − ẑ(k)]
Pxx (k) = P−

xx (k) − K (k)Pzz(k)K (k)T
(12.57)
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Fig. 12.6 Schematic diagram of the unscented Kalman filter loop

The filter starts from the initial mean m(0) and covariance Pxx (0). The stages of
state vector estimation with the use of the Unscented Kalman Filter algorithm are
depicted in Fig. 12.6.

12.2.5.2 Unscented Information Filtering

The Unscented Information Filter (UIF) performs fusion of the state vector estimates
which are provided by local Unscented Kalman Filters, by weighting these estimates
with local Information matrices (inverse of the local state vector covariance matrices
which are again recursively computed) [259, 260, 570]. The Unscented Information
Filter is derived by introducing a linear error propagation based on the unscented
transformation into the Extended Information Filter structure. First, an augmented
state vector xα

−(k) is considered, along with the process noise vector, and the asso-
ciated covariance matrix is introduced

x̂−
α (k) =

(
x̂−(k)
ŵ−(k)

)
, Pα−

(k) =
(
P−(k) 0
0 Q−(k)

)
(12.58)

As in the case of local (lumped) Unscented Kalman Filters, a set of weighted
sigma points Xi

α

−
(k) is generated as
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X−
α,0(k) = x̂−

α (k)

X−
α,i (k) = x̂−

α (k) + [√(nα + λ)P−
α (k − 1)]i , i = 1, . . . , n

X−
α,i (k) = x̂−

α (k) + [√(nα + λ)P−
α (k − 1)]i , i = n + 1, . . . , 2n

(12.59)

where λ = α2(nα + κ) − nα is a scaling, while 0≤α≤1 and κ are constant param-
eters. The corresponding weights for the mean and covariance are defined as in the
case of the lumped Unscented Kalman Filter

W (m)
0 = λ

nα+λ
W (c)

0 = λ
(nα+λ)+(1−α2+β)

W (m)
i = 1

2(nα+λ)
, i = 1, . . . , 2nα W (C)

i = 1
2(nα+λ)

, i = 1, . . . , 2nα

(12.60)

where β is again a constant parameter. The equations of the prediction stage (mea-
surement update) of the information filter, i.e. the calculation of the information
matrix and the information state vector of Eq. (12.36) now become

ŷ−(k) = Y−(k)
∑2nα

i=0W
m
i Xx

i (k)

Y−(k) = P−(k)−1
(12.61)

where Xx
i are the predicted state vectors when using the sigma point vectors Xw

i in the
state equation Xx

i (k + 1) = φ(Xw
i

−(k)) + L(k)U (k). The predicted state covariance
matrix is computed as

P−(k) =
2nα∑

i=0

W (c)
i [Xx

i (k) − x̂−(k)][Xx
i (k) − x̂−(k)]T (12.62)

As noted, the equations of the Extended Information Filter (EIF) rely on the lin-
earized dynamic model of the system and on the inverse of the covariance matrix of
the state vector. However, in the equations of the Unscented Kalman Filter (UKF)
there is no linearization of the system dynamics, thus the UKF cannot be included
directly into the EIF equations. Instead, it is assumed that the nonlinear measurement
equation of the system given in Eq. (12.24) can bemapped into a linear function of its
statistical mean and covariance, which makes possible to use the information update
equations of the EIF. Denoting Yi (k) = γ (Xx

i (k)) (i.e. the output of the system calcu-
lated through the propagation of the i th sigmapoint Xi through the system’s nonlinear
equation) the observation covariance and its cross-covariance are approximated by

P−
YY (k) = E[(z(k) − ẑ−(k))(z(k) − ẑ−(k))T ]

�Jγ (k)P−(k)Jγ (k)T
(12.63)

P−
XY (k) = E[(x(k) − x̂(k)−)(z(k) − ẑ(k)−)T ]

�P−(k)Jγ (k)T
(12.64)
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where z(k) = γ (x(k)) and Jγ (k) is the Jacobian of the output equation γ (x(k)).
Next, multiplying the predicted covariance and its inverse term on the right side of
the information matrix Eq. (12.35) and replacing P(k)Jγ (k)T with P−

XY (k) gives the
following representation of the information matrix [259, 260, 570]

I (k) = Jγ (k)T R(k)−1 Jγ (k)
= P−(k)−1P−(k)Jγ (k)T R(k)−1 J−

γ (k)P−(k)T (P−(k)−1
)T

= P−(k)−1PXY (k)R(k)−1PXY (k)T (P−(k)−1
)T

(12.65)

where P−(k)−1 is calculated according toEq. (12.62) and the cross-correlationmatrix
PXY (k) is calculated from

P−
XY (k) =

2nα∑

i=0

W (c)
i [Xx

i (k) − x̂−(k)][Yi (k) − ẑ−(k)]T (12.66)

where Yi (k) = γ (Xx
i (k)) and the predicted measurement vector ẑ−(k) is obtained by

ẑ−(k) = ∑2nα

i=0W
(m)
i Yi (k). Similarly, the information state vector ik can be rewritten

as

i(k) = Jγ (k)T R(k)−1[z(k) − γ (x(k)) + Jγ (k)T x̂−(k)]
= P−(k)−1P−(k)Jγ (k)T R(k)−1[z(k) − γ (x(k)) + Jγ (k)T (P−(k))T (P−(k)−1)T x̂−(k)]

= P−(k)−1P−
XY (k)R(k)−1[z(k) − γ (x(k)) + P−

XY (k)(P−(k)−1
)T x̂−(k)]

(12.67)

To complete the analogy to the information contribution equations of the EIF a
“measurement” matrix HT (k) is defined as

H(k)T = P−(k)
−1

P−
XY (k) (12.68)

In terms of the “measurement” matrix H(k) the information contributions equa-
tions are written as

i(k) = HT (k)R(k)−1[z(k) − γ (x(k)) + H(k)x̂−(k)]
I (k) = HT (k)R(k)−1H(k)

(12.69)

The above procedure leads to an implicit linearization in which the nonlinear
measurement equation of the system given in Eq. (12.24) is approximated by the
statistical error variance and its mean

z(k) = γ (x(k))�H(k)x(k) + ū(k) (12.70)

where ū(k) = γ (x̂−(k)) − H(k)x̂−(k) is a measurement residual term.
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12.2.5.3 Calculation of Local Estimations in Terms of UIF Information
Contributions

Next, the local estimations provided by distributed (local) Unscented Kalmans filters
will be expressed in terms of the information contributions (informationmatrix I and
information state vector i) of the Unscented Information Filter, which were defined
in Eq. (12.69) [259, 260, 570]. It is assumed that the observation vector z̄i (k + 1)
is available from N different sensors, and that each sensor observes a common state
according to the local observation model, expressed by

z̄i (k) = Hi (k)x(k) + ūi (k) + vi (k) (12.71)

where the noise vector vi (k) is taken to be white Gaussian and uncorrelated between
sensors. The variance of the composite observation noise vector vk of all sensors is
written in terms of the block diagonal matrix R(k) = diag[R1(k)T , . . . , RN (k)T ]T .
Then one can define the local information matrix Ii (k) and the local information
state vector ii (k) at the i th sensor, as follows

ii (k) = HT
i (k)Ri (k)

−1[zi (k) − γ i (x(k)) + Hi (k)x̂−(k)]
Ii (k) = HT

i (k)Ri (k)
−1Hi (k)

(12.72)

Since the information contribution terms have group diagonal structure regard-
ing their innovation and measurement matrix, the update equations for the multiple
state estimations and data fusion are written as a linear combination of the local
information contribution terms

ŷ(k) = ŷ−(k) + ∑N
i=1ii (k)

Y (k) = Y−(k) + ∑N
i=1 Ii (k)

(12.73)

Then using Eq. (12.61) one can find the mean state vector for the multiple sensor
estimation problem.

As in the case of the Unscented Kalman Filter, the Unscented Information Filter
running at the i th measurement processing unit can be written in terms of measure-
ment update and time update equations (Fig. 12.7):

Measurement update: Acquire measurement z(k) and compute

Y (k) = P−(k)−1 + HT (k)R−1(k)H(k)
or Y (k) = Y−(k) + I (k) where I (k) = HT (k)R−1(k)H(k)

(12.74)

ŷ(k) = ŷ−(k) + HT (k)R−1(k)[z(k) − γ (x̂(k)) + H(k)x̂−(k)]
or ŷ(k) = ŷ−(k) + i(k)

(12.75)
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Fig. 12.7 Schematic diagram of the unscented information filter loop

Time update: Compute

Y−(k + 1) = (P−(k + 1))−1

where P−(k + 1)=∑2nα

i=0W
(c)
i [Xx

i (k + 1) − x̂−(k + 1)][Xx
i (k + 1) − x̂−(k + 1)]T

(12.76)

ŷ(k + 1) = Y (k + 1)
∑2nα

i=0W
(m)
i X x

i (k + 1)

where Xx
i (k + 1) = φ(Xw

i (k)) + L(k)U (k)
(12.77)

12.2.5.4 Distributed Unscented Information Filtering for State
Estimates Fusion

It has been shown that the update of the aggregate state vector of the Unscented Infor-
mation Filter approach can be expressed in terms of the local information matrices
Ii and of the local information state vectors ii , which in turn depend on the local
covariance matrices P and cross-covariance matrices PXY . Next, it will be shown
that the update of the aggregate state vector can be also expressed in terms of the
local state vectors xi (k) and in terms of the local covariancematrices Pi (k) and cross-
covariance matrices Pi

XY (k). It is assumed that the local filters do not have access to
each other’s row measurements and that they are allowed to communicate only their
information matrices and their local information state vectors. Thus each local filter
is expressed by its error covariance and estimate in terms of the local information
state contribution ii and its associated information matrix Ii at the i th filter site. Then
using Eq. (12.61) one obtains
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Pi (k)
−1 = P−

i (k)
−1 + HT

i (k)Ri (k)
−1Hi (k)

x̂i = Pi (k)(P
−
i (k)x̂−

i (k) + HT
i (k)Ri (k)

−1[zi (k) − γ i (x(k)) + Hi (k)x̂−(k)])
(12.78)

Using Eq. (12.78), each local information state contribution ii and its associated
information matrix Ii at the i th filter are rewritten in terms of the computed estimates
and covariances of the local filters

HT
i (k)Ri (k)−1Hi (k) = Pi−1(k) − P−

i (k)−1

HT
i (k)Ri (k)

−1[zi (k) − γ i (x(k))+Hi (k)x̂−(k)]) = Pi (k)−1 x̂i (k) − P−
i (k)−1 x̂−

i (k)
(12.79)

where according to Eq. (12.68) it holds Hi (k) = P−
i (k)−1P−

XY,i (k). Next, the aggre-
gate estimates of the distributed Unscented Information Filtering are derived for a
number of N local filters i = 1, . . . , N and sensor measurements, first in terms of
covariances [259, 260, 570].

P(k)−1 = P−(k)−1 + ∑N
i=1[Pi (k)−1 − P−

i (k)
−1]

x̂(k) = P(k)[P−(k)−1 x̂−(k) + ∑N
i=1(Pi (k)

−1 x̂i (k) − P−
i (k)

−1
x̂−
i (k))] (12.80)

and also in terms of the information state vector and of the information state covari-
ance matrix

ŷ(k) = ŷ−(k) + ∑N
i=1(ŷi (k) − ŷ−

i (k))
Y (k) = Y−(k) + ∑N

i=1[Yi (k) − Y−
i (k)] (12.81)

State estimation fusion based on the Unscented Information Filter (UIF) is fault
tolerant. From Eq. (12.80) it can be seen that if a local filter (processing unit) fails,
then the local covariance matrices and local estimates provided by the rest of the
filters will enable a reliable calculation of the system’s state vector. Moreover, the
UIF is computationally more efficient comparing to centralized filters and results in
enhanced estimation accuracy.

12.2.6 Filtering Using Differential Flatness Theory
and Canonical Forms

12.2.6.1 Transformation of MIMO Systems into Canonical Forms

The conditions for applying differential flatness theory towards transforming a non-
linear MIMO model into the canonical form have been given in Sect. 1.3.3. It is
assumed now that after defining the flat outputs of the initial MIMO nonlinear sys-
tem (this approach will be also shown to hold for the kinematics of the target), and
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after expressing the system state variables and control inputs as functions of the flat
output and of the associated derivatives, the system can be rewritten in the Brunovsky
canonical form:

ẋ1 = x2
· · ·
ẋr1−1 = xr1
ẋr1 = f1(x) + ∑p

j=1g1 j (x)u j + d1
ẋr1+1 = xr1+2

· · ·
ẋ p−1 = xp
ẋ p = f p(x) + ∑p

j=1gpj (x)u j + dp

y1 = x1
· · ·
y2 = xri+1

· · ·
yp = xn−rp+1

(12.82)

where x = [x1, . . . , xn]T is the state vector of the transformed system (according to
the differential flatness formulation), u = [u1, . . . , u p]T is the set of control inputs,
y = [y1, . . . , yp]T is the output vector, fi are the drift functions and gi, j , i, j =
1, 2, . . . , p are smooth functions corresponding to the control input gains, while d j

is a variable associated to external disturbances. It holds that r1 + r2 + · · · + rp = n.
Having written the initial nonlinear system into the canonical (Brunovsky) form it
holds

y(ri )
i = fi (x) + ∑p

j=1gi j (x)u j + d j (12.83)

Next the following vectors and matrices can be defined: f (x) = [ f1(x), . . . ,
fn(x)]T , g(x) = [g1(x), . . . , gn(x)]T , with gi (x) = [g1i (x), . . . , gpi (x)]T , A =
diag[A1, . . . , Ap], B = diag[B1, . . . , Bp], CT = diag[C1, . . . ,Cp], d =
[d1, . . . , dp]T , where matrix A has the MIMO canonical form, i.e. with block-
diagonal elements

Ai =

⎛

⎜⎜⎜⎜⎜⎝

0 1 · · · 0
0 0 · · · 0
...

... · · · ...

0 0 · · · 1
0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎠

ri×ri

BT
i = (

0 0 · · · 0 1
)
1×ri

Ci = (
1 0 · · · 0 0

)
1×ri

(12.84)

As shown in previous chapters, Eq. (12.83) can be written in state-space form

ẋ = Ax + Bv + Bd̃
y = Cx

(12.85)

where the control input is written as v = f (x) + g(x)u. The system of Eq. (12.84)
and Eq. (12.85) is in controller and observer canonical form.
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12.2.6.2 Canonical Forms for the USV Model

It is assumed now that the target’s velocity has to be estimated through the processing
of the sequence of position measurements by a filtering algorithm. To this end the
Derivative-free nonlinear Kalman Filter forMIMO nonlinear dynamical systems can
be used. From the application of the differential flatness theory for transforming the
initial nonlinear model of the target vessel into a linearized equivalent that is finally
written in the Brunovsky form, one has Eq. (12.4) which means ẍ = u1 and ÿ = u2.
Next, the state variables x1 = x , x2 = ẋ , x3 = y and x4 = ẏ are defined. Considering
the state vector x∈R4×1, the following matrices are also defined

A =

⎛

⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

0 0
1 0
0 0
0 1

⎞

⎟⎟⎠

C =
(
1 0 0 0
0 0 1 0

)
(12.86)

Using the matrices of Eq. (12.86) one obtains the Brunovsky form of the MIMO
model of the target ẋ = Ax + Bv and y = Cx , where the new input v is given by
v = [u1(x, t), u2(x, t)]T . This is a state-space model in the form of Eq. (12.85), for
which state estimation can be performed using the standard Kalman Filter recursion.

12.2.6.3 Derivative-Free Extended Information Filtering

As mentioned above, for the system of Eq. (12.86), state estimation is possible by
applying the standard Kalman Filter. The system is first turned into discrete-time
form using common discretization methods, and the discrete-time equivalents of
matrices A, B, C are denoted as Ad , Bd and Cd respectively. Then the recursion of
the linear Kalman Filter described in Eqs. (12.87) and (12.88) is applied.

Measurement Update:

K (k) = P−(k)CT
d [Cd ·P−(k)CT

d + R]−1

x̂(k) = x̂−(k) + K (k)[z(k) − Cd x̂−(k)]
P(k) = P−(k) − K (k)Cd P−(k)

(12.87)

Time Update:
P−(k + 1) = Ad(k)P(k)AT

d (k) + Q(k)
x̂−(k + 1) = Ad(k)x̂(k) + Bd(k)u(k)

(12.88)

If the Derivative-free nonlinear Kalman Filter is used in place of the Extended
Kalman Filter which has been previously described in Sect. 12.2.4, then in the
Extended Information Filter (EIF) equations the following matrix substitutions
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should be performed: Jφ(k)→Ad , Jγ (k)→Cd , where matrices Ad and Cd are the
discrete-time equivalents of matrices A and C which have been defined Eq. (12.86)
and which appear also in the measurement and time update of the standard Kalman
Filter recursion, given above. Matrices Ad and Cd can be computed using known
discretization methods. Moreover, the covariance matrices P(k) and P−(k) are the
ones obtained from the linear Kalman Filter update equations given in the previous
Eqs. (12.87) and (12.88).

12.2.7 Simulation Tests

12.2.7.1 Estimation of Target’s Position With the Use of the Extended
Information Filter

The number of USVs used for target tracking in the simulation experiments was
N = 10. However, since the USVs team is modular a larger number of USVs could
have been also considered. It is assumed that each USV can obtain an estimation
of the target’s cartesian coordinates and bearing, i.e. the target’s cartesian coordi-
nates [x, y] as well as the target’s orientation θ . To improve the accuracy of the
target’s localization, the target’s coordinates and bearing are fused with the distance
of the target from a reference surface measured in an inertial coordinates system (see
Figs. 12.2 and 12.8).

The inertial coordinates system OXY is defined. Furthermore the coordinates
system O ′X ′Y ′ is considered (Fig. 12.8). O ′X ′Y ′ results from OXY if it is rotated
by an angle θ (Fig. 12.8). The coordinates of the center of the target vessel with
respect to OXY are (x, y), while the coordinates of the reference point i that is on
the target vessel (e.g. bridge), with respect to O ′X ′Y ′ are x

′
i , y

′
i . The orientation of

the reference point with respect to OX ′Y ′ is θ
′
i . Thus the coordinates of the reference

point with respect to OXY are (xi , yi ) and its orientation is θi , and are given by:

xi (k) = x(k) + x
′
i sin(θ(k)) + y

′
i cos(θ(k))

yi (k) = y(k) − x
′
i cos(θ(k)) + y

′
i sin(θ(k))

θi (k) = θ(k) + θi

(12.89)

Each plane P j in the USV’s environment can be represented by P j
r and P j

n

(Fig. 12.8), where (i) P j
r is the normal distance of the plane from the origin O, (ii)

P j
n is the angle between the normal line to the plane and the x-direction.
The target’s reference point i is at position xi (k), yi (k) with respect to the inertial

coordinates system OXY and its orientation is θi (k). Using the above notation, the
distance of the reference point i , from the plane P j is represented by P j

r , P j
n (see

Fig. 12.8):
d j
i (k) = P j

r − xi (k)cos(P
j
n ) − yi (k)sin(P j

n ) (12.90)
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Fig. 12.8 Distance of the target’s reference point i from the reference plane P j , measured in the
inertial coordinates system OXY

Assuming a constant sampling period Δtk = T the measurement equation is
z(k + 1) = γ (x(k)) + v(k), where z(k) is the vector containing target’s coordi-
nates and bearing estimates obtained from a mobile sensor and the measurement
of the target’s distance to the reference surface, while v(k) is a white noise sequence
∼ N (0, R(kT )). The measure vector z(k) can thus be written as

z(k) = [x(k) + v1(k), y(k) + v2(k), θ(k) + v3(k), d
j
1 (k) + v4(k)] (12.91)

with i = 1, 2, . . . , ns , d
j
i (k) to be the distance measure with respect to the plane

P j and j = 1, . . . , np to be the number of reference surfaces. By definition of the
measurement vector one has that the output function γ (x(k)) is given by γ (x(k)) =
[x(k), y(k), θ(k), d1

1 (k)].
To obtain the Extended Kalman Filter (EKF), the kinematic model of the target

described in Eq. (12.2) is discretized andwritten in the discrete-time state-space form
of Eq. (12.24) [450, 457].

The measurement update of the EKF is

K (k) = P−(k)J T
γ (x̂−(k))[Jγ (x̂−(k))P−(k)J T

γ (x̂−(k)) + R(k)]−1

x̂(k) = x̂−(k) + K (k)[z(k) − γ (x̂−(k))]
P(k) = P−(k) − K (k)J T

γ P−(k)
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The time update of the EKF is

P−(k + 1) = Jφ(x̂(k))P(k)J T
φ (x̂(k)) + Q(k)

x̂−(k + 1) = φ(x̂(k)) + L(k)U (k)

where

L(k) =
⎛

⎝
T cos(θ(k)) 0
T sin(θ(k)) 0

0 T

⎞

⎠

and

Jφ(x̂(k)) =
⎛

⎝
1 0 −v(k)sin(θ)T
0 1 −v(k)cos(θ)T
0 0 1

⎞

⎠

while Q(k) = diag[σ 2(k), σ 2(k), σ 2(k)], with σ 2(k) chosen to be 10−3 and φ(x̂(k)) =
[x̂(k), ŷ(k), θ̂ (k)]T , γ (x̂(k)) = [x̂(k), ŷ(k), θ̂ (k), d(k)]T , i.e.

γ (x̂(k)) =

⎛

⎜⎜⎝

x̂(k)
ŷ(k)
θ̂(k)

P j
r − xi (k))cos(P

j
n ) − yi (k)sin(P j

n )

⎞

⎟⎟⎠ (12.92)

The vector of the control input is given by U (k) = [v(k), ω(k)]T . Assuming one
reference surface in the target’s neighborhood one gets

J T
γ (x̂−(k)) = [Jγ 1(x̂

−(k)), Jγ 2(x̂
−(k)), Jγ 3(x̂

−(k)), Jγ 4(x̂
−(k))]T , i.e.

J T
γ (x̂−(k)) =

⎛

⎜⎜⎝

1 0 0
0 1 0
0 0 1

−cos(P j
n ) −sin(P j

n ) {x ′
i cos(θ − P j

n ) − y
′
i sin(θ − P j

n )}

⎞

⎟⎟⎠

(12.93)
The use of EKF for fusing the target’s coordinates and bearing measured by each

USV with the target’s distance from a reference surface measured in an inertial
coordinates system provides an estimation of the state vector [x(t), y(t), θ(t)] and
enables the successful tracking of the target’s motion by the individual USVs (mobile
sensors).

The tracking of the target by the team of the USVs was tested in the case of sev-
eral reference trajectories, both for motion in an environment without obstacles as
well as for motion in a plane containing obstacles. The proposed distributed filtering
scheme enabled accurate estimation of the target’s state vector [x, y, θ ]T through the
fusion of the measurements of the target’s coordinates and orientation obtained by
each USV with the measurement of the distance from a reference surface in an iner-
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Fig. 12.9 a Distributed target tracking by a team of USVs when the target follows a circular
trajectory in an obstacles-free motion space, b Aggregate estimation of the target’s position with
the use of Extended Information Filtering (continuous line) and target’s reference path (dashed line)

tial coordinates frame. The state estimates provided by the Extended Kalman Filters
running at each USV were fused into one single state estimate using Extended Infor-
mation Filtering. The aggregate estimated coordinates of the target (x̂∗, ŷ∗) provided
the reference setpoint for the distributed motion planning algorithm. Each USV was
made to move along the path defined by (x̂∗, ŷ∗). The convergence properties of
the distributed motion planning algorithm were described in Sect. 12.2.3. The track-
ing of the target’s trajectory by the USVs as well as the accuracy of the two-level
sensor fusion-based estimation of the target’s coordinates is depicted in Figs. 12.9,
12.10, 12.11, 12.12 and 12.13. The target is marked as a thick-line rectangle and the
associated reference trajectory is plotted as a thick line.

It is noted that using distributed EKFs and fusion through the Extended Infor-
mation Filter is more robust comparing to the centralized EKF since (i) if a local
processing unit is subject to a fault then state estimation is still possible and can
be used for accurate localization of the target, as well as for tracking of the target’s
trajectory by the individual mobile robots (unmanned surface vessels), (ii) communi-
cation overhead remains low even in the case of a large number of distributed mobile
sensors, because the greatest part of state estimation procedure is performed locally
and only information matrices and state vectors are communicated between the local
processing units, (iii) the aggregation performed on the local EKF also compensates
for deviations in state estimates of local filters (which can be due to linearization
errors).
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Fig. 12.10 aDistributed target tracking by a team of USVs when the target follows an eight-shaped
trajectory in an obstacles-free motion space, bAggregate estimation of the target’s position with the
use of Extended Information Filtering (continuous line) and target’s reference path (dashed line)
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Fig. 12.11 a Distributed target tracking by a team of USVs when the target follows a curve-shaped
trajectory in an obstacles-free motion space, bAggregate estimation of the target’s position with the
use of Extended Information Filtering (continuous line) and target’s reference path (dashed line)
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Fig. 12.12 a Distributed target tracking by a team of USVs when the target follows a line path
in a motion space with obstacles, b Aggregate estimation of the target’s position with the use of
Extended Information Filtering (continuous line) and target’s reference path (dashed line)
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Fig. 12.13 a Distributed target tracking by a team of USVs when the target follows a circular path
in a motion space with obstacles, b Aggregate estimation of the target’s position with the use of
Extended Information Filtering (continuous line) and target’s reference path (dashed line)

12.2.7.2 Estimation of Target’s Position With the Use of Unscented
Information Filtering

Next, the estimation of the target’s state vector was performed using the Unscented
Information Filter. Again, the proposed distributed filtering enabled precise estima-
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Fig. 12.14 a Distributed target tracking by a team of USVs when the target follows a circular
trajectory in an obstacles-free motion space, b Aggregate estimation of the target’s position with
the use of Unscented Information Filtering (continuous line) and target’s reference path (dashed
line)

tion of the target’s state vector [x, y, θ ]T through the fusion of measurements of the
target’s coordinates and bearing obtained by each mobile sensor with the distance
of the target from a reference surface measured in an inertial coordinates system.
The state estimates of the local Unscented Kalman Filters running at each USVwere
aggregated into a single estimation by the Unscented Information Filter. The esti-
mated coordinates [x̂∗, ŷ∗] of the target were used to generate the reference path
which was followed by the individual mobile robots. The tracking of the target’s
trajectory by the USVs team as well as the accuracy of the two-level sensor fusion-
based estimation of the target’s position is shown in Figs. 12.14, 12.15, 12.16, 12.17
and 12.18.

As previously analyzed, the Unscented Information Filter is a derivative-free
distributed filtering approach in which the local Unscented Kalman Filters provide
estimations of the target’s coordinates using the update in-timeof a number of suitably
chosen sigma-points. Therefore, unlike the Extended Information Filter and the local
Extended Kalman Filters contained in it, in the Unscented Information Filter there
is no need to calculate Jacobians through the computation of partial derivatives.
Additionally, unlike the case of local Extended Kalman Filters there is no truncation
of higher order Taylor expansion terms and no linearization errors are introduced at
the local estimators. In that sense the Unscented Information Filter provides a robust
distributed state estimation and enables accurate tracking of the target by the mobile
sensors (USVs).
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Fig. 12.15 aDistributed target tracking by a team of USVs when the target follows an eight-shaped
trajectory in an obstacles-free motion space,bAggregate estimation of the target’s position with the
use of Unscented Information Filtering (continuous line) and target’s reference path (dashed line)

−15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

20

X

Y

0 5 10 15 20 25 30 35 40 45 50
−10

−5

0

5

10

t (sec)

x

UIF aggregate state estimation

0 5 10 15 20 25 30 35 40 45 50
−10

−5

0

5

10

t (sec)

y

UIF aggregate state estimation

(a) (b)

Fig. 12.16 a Distributed target tracking by a team of USVs when the target follows a curve-shaped
trajectory in an obstacles-free motion space, b Aggregate estimation of the target’s position with
the use of Unscented Information Filtering (continuous line) and target’s reference path (dashed
line)
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Fig. 12.17 a Distributed target tracking by a team of USVs when the target follows a line path
in a motion space with obstacles, (b) Aggregate estimation of the target’s position with the use of
Unscented Information Filtering (continuous line)
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Fig. 12.18 a Distributed target tracking by a team of USVs when the target follows a circular path
in a motion space with obstacles, b Aggregate estimation of the target’s position with the use of
Unscented Information Filtering (continuous line) and target’s reference path (dashed line)

12.2.7.3 Estimation of the Target’s Position With the Derivative-Free
Distributed Nonlinear Kalman Filter

The Derivative-free Extended Information Filter (DEIF) is also used to solve the
problem of the synchronized USVs navigation based on distributed state estimation.
In the latter case, local Derivative-free Kalman Filters perform fusion of the target’s
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coordinates measurements (xi , yi ) with the distance di of the target from a reference
surface, as follows:

The target’s state vector that was written in the observer canonical form described
by Eq. (12.114) is extended through the inclusion of additional state variables that
describe the dynamics of the distance measurement d with respect to the refer-
ence surface P j . Thus the extended state vector of the system now becomes xe =
[x1, x2, x3, x4, x5, x6]T with x1 = x , x2 = ẋ , x3 = y, x4 = ẏ, x5 = d and x6 = ḋ.
The extended output vector is written as ye = [y1, y2, y3]T , with y1 = x , y2 = y and
y3 = d which means that measurements of the target’s cartesian coordinates (x, y)
and of the target’s distance d from the reference surface can be obtained. The dis-
tance measuring sensor is taken to coincide with the point defining the cartesian
coordinates of the target (e.g. center of gravity). In that case, from Eq. (12.89) one
has xi = x and yi = y. The target’s kinematics is written in the new state-space form
which is also an observer canonical form:

ẋe = Aexe + Beve
ye = Cexe

(12.94)

while the associated state-space matrices are

Ae =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
Be =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
(12.95)

Ce =
⎛

⎝
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞

⎠ (12.96)

while the extended inputs vector is defined as ue = [u1, u2, u3]T where u1 and u2
were defined in Eq. (12.4). Assuming that the incidence angle Pn does not vary in
time (as shown in Fig. 12.8), one has

u3 = −ẍ1cos(Pn) − ẍ3sin(Pn) (12.97)

It is noted that knowing the orientation of the reference surface in a cartesian
coordinates system, the coordinates of the target at time instant t = kTs and the
coordinates of a reference point on the reference surface, it is always possible to
compute the incidence angle Pn . Results about the performance of the Derivative-
free Extended Information Filter in estimating the state vector of the target and about
using the target’s localization procedure for implementing distributed control of the
pursuer USVs is given in Figs. 12.19, 12.20, 12.21, 12.22 and 12.23. It can be noticed
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Fig. 12.19 Target following reference path 1 a tracking of the target by the USVs b estimation
of the target’s coordinates through sensor fusion and Derivative-free distributed nonlinear Kalman
Filtering
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Fig. 12.20 Target following reference path 2 a tracking of the target by the USVs b estimation
of the target’s coordinates through sensor fusion and Derivative-free distributed nonlinear Kalman
Filtering

that, whilst computationally simpler, the Derivative-free Extended Information Filter
provides very accurate estimates of the target’s state vector.

Indicative results about the accuracy of estimation provided by the considered
nonlinear filtering algorithms (i.e. EIF, UIF and DEIF), as well as about the accuracy
of tracking achieved by the associated state estimation-based control loop are given in
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Fig. 12.21 Target following reference path 3 a tracking of the target by the USVs b estimation
of the target’s coordinates through sensor fusion and Derivative-free distributed nonlinear Kalman
Filtering
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Fig. 12.22 Target following reference path 4, amidst obstacles a tracking of the target by the
USVs b estimation of the target’s coordinates through sensor fusion and Derivative-free distributed
nonlinear Kalman Filtering

Tables12.1 and 12.2. It can be noticed that the Derivative-free Extended Information
Filter is significantly more accurate and robust than the Extended Information Filter.
Its accuracy is comparable to the one of the Unscented Information Filter. Results
on the total runtime and the cycle time of the aforementioned distributed filtering
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Fig. 12.23 Target following reference path 5, amidst obstacles a tracking of the target by the
USVs b estimation of the target’s coordinates through sensor fusion and Derivative-free distributed
nonlinear Kalman Filtering

Table 12.1 RMSE of tracking with nonlinear filtering (Gaussian noise)

RMSEx RMSEy RMSEθ

UIF 0.0088 0.0104 0.0013

EIF 0.0123 0.0167 0.0019

DEIF 0.0087 0.0093 0.0013

algorithms are given in Table12.3 (using the Matlab platform on a PC with an Intel
i7 processor at 1.6GHz).

12.3 Cooperating Unmanned Ground Vehicles

12.3.1 Outline

A second case-study on cooperating autonomous vehicles is concerned with coop-
erating tractors. There are many types of in-field operations, e.g. agricultural tasks,
that can be performed by cooperating tractors. The need for collaborating farming
robots that will be able to carry out complicated tasks under synchronization and
within desirable precision levels is anticipated to grow in the following years [52].
In several applications a master-slave scheme is required for the robots coordina-
tion, which means that a master tractor generates a reference path and the motion
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Table 12.2 RMSE of tracking with nonlinear filtering (Rayleigh noise)

RMSEx RMSEy RMSEθ

UIF 0.0089 0.0105 0.0014

EIF 0.0119 0.0163 0.0019

DEIF 0.0089 0.0093 0.0013

Fig. 12.24 Tracking of the cooperating autonomous ground vehicles: Distributed filtering through
the fusion of local state estimates

characteristics (velocity, acceleration, orientation) that the slave tractor has to follow.
When harvesting hay on grassland, it is customary for one dump truck and one tractor
with a hayfork to be used. When harvesting corn, a combination of one harvester
and one tractor with trailer is generally adopted. Therefore, a master-slave system,
which uses two vehicles, can be very useful in actual field operations.

In this section, a method for autonomous navigation of agricultural robots under a
master-slave scheme is developed. Themethod comprises the following elements: (i)
a path planner for generating automatically the trajectory that has to be followed by
the cooperating agricultural robots, (ii) a nonlinear controller that makes the robots
track with precision the desirable trajectories, (iii) a distributed filtering scheme for
estimating the motion characteristics of the vehicles through the fusion of measure-
ments coming from on-board sensors, as well as measurements about the vehicles’
coordinates coming from multiple position sensors (e.g. multiple GPS devices). The
autonomous navigation of the cooperating agricultural robots is finally implemented
through state estimation-based control where the nonlinear controller uses the esti-
mated state vector of the robots, as provided by distributed filtering, so as to generate
the control signal that defines the robots speed and heading angle (see Fig. 12.24).
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Table 12.3 Run time of nonlinear estimation algorithms

UIF EIF DEIF

Total runtime (s) 203.97 181.04 162.65

Cycle time (s) 0.0410 0.0366 0.0325

The proposed robotic system performs distributed information processing for
estimating the position and motion characteristics of the vehicles. Measurements
from on board sensors are combined with measurements from multiple position
sensors (e.g. GPS devices) and are initially processed by local filters to provide local
state vector estimates. At a second stage the local state estimates for the robotic
vehicles are fused using a distributed filtering algorithm. Thus an aggregate state
vector of the robotic harvesters is obtained (see Fig. 12.24). Such a filtering approach
has several advantages: (i) it is fault tolerant: if a local information processing unit is
subject to a fault then state estimation is still possible, (ii) the information processing
scheme is scalable and can be expanded with the inclusion of more local information
processing units (local filters), (iii) the bandwidth for the exchange of information
between the local units and the aggregate filter remains limited since there is no
transmission of raw measurements but only transmission of local state estimates and
of the associated covariance matrices.

A solution to decentralized information fusion over sensor networks, as the net-
work collecting measurements for the system of the robotic harvesters, can be
obtained with the use of distributed Kalman Filtering [157, 358, 369, 370, 553,
589]. Distributed state estimation in the case of non-Gaussian models has been also
studied in several other research works [309, 311, 470]. In this section, a solution
for the problem of distributed state estimation will be attempted with the use of the
Extended Information Filter, which is actually an approach for fusing state estimates
provided by local Extended Kalman Filters [260, 450].

Aiming also at finding more efficient implementations of nonlinear distributed
Kalman Filtering, in this section a derivative-free approach to Extended Information
filtering is introduced. In the proposed derivative-free Kalman Filtering method the
system is first subject to a linearization transformation (diffeomorphism) and next
state estimation is performed by applying the Kalman Filter to the linearized model.
Unlike EKF, the proposed method provides estimates of the state vector of the non-
linear systemwithout the need for derivatives and Jacobians calculation. By avoiding
linearization approximations, the proposed filtering method improves the accuracy
of estimation of the system state variables, and results in smooth control signal vari-
ations and in minimization of the tracking error of the associated control loop. At a
second stage, the state estimates which are produced with the use of derivative-free
nonlinear Kalman Filters are fused into an aggregate state estimate with the use of the
standard Information Filter recursion. Thus, it becomes possible to avoid the inaccu-
racies introduced by the linearization procedure of the local Extended Kalman filters
and to obtain a more robust aggregate state estimate. The Derivative-free distributed
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nonlinear Kalman Filtering approach is also useful for compensating delays in the
transmission of measurements from the distributed sensors to the local information
processing units (local filters) as well as delays in the transmission of the local state
estimates to the aggregate filter. By linearization of the system’s dynamics through
the proposed diffeomorphism one can exploit existing results on the compensation of
communication delays and measurements packet drops with the use of the classical
linear Kalman Filter recursion [457].

Another issue that has to be taken into account for the autonomous functioning
of the robotic harvesters is nonlinear control for precise tracking of desirable tra-
jectories. The present section proposes flatness-based control for steering the robot
harvesters along the reference paths. Expressing all system variables as functions of
the flat output and its derivatives enables transformation of the robotic vehicle model
to a linearized form for which the design of the controller becomes easier.

12.3.2 Localization and Path Planning for Cooperating
Agricultural Robots

12.3.2.1 Sensors for Vehicle Localization and Motion Control

Global localization of the tractors can be obtained from the GPS signal. The GPS
signal received from the satellites can be corrected by using the signal that is emitted
by a GPS reference receiver of well-known location, known as Differential GPS
(DGPS). Differential corrections improve data localization considerably, but not all
sources of errors can be suppressed. Multi-path and receiver errors are still possible.
There are several ways to achieve differential corrections by establishing a network of
spatially distributed reference stations (local-area DPGS). The top level of accuracy
reachable with GPS is a couple of centimeters and can be accomplished with the
Real-TimeKinematic GPS (RTK-GPS). RTK sets contain two receivers, a radio link,
and computer software with the purpose of enhancing GPS positioning accuracy by
calculating differential corrections from a base station placed in the field, or nearby
where the vehicle is operating. The most important disadvantage of the RTK systems
is a coverage limitation of about 10km from the vehicle.

The turn angle of the front wheels of the tractor (front-axle steering) or the rear
wheels (rear-axle steering) can be measured with three sensors: (i) linear poten-
tiometers which give an indirect measurement of the wheel angle by tracking the
displacement of the cylinder rod actuating the steering mechanism, (ii) oil flow
meters which provide an indirect measurement of the wheel angle by quantifying the
oil flow moving in and out of the cylinders chamber to achieve a turn, (iii) an optical
encoder which comprises a free axle attached to a strapped disc that is easily tracked
by a light beam.
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Tracking of the vehicle’s motion requires also estimation of the parameters of the
vehicle’s state vector, such as position, velocity and acceleration, or evenEuler angles
such as roll, pitch and yaw. These parameters can be estimated from measurements
coming from a limited number of sensors, through the use of filtering techniques
such as Kalman Filtering. The position measurements of the vehicle coming from
the GPS can be enhanced through information fusion approaches, that process also
measurements coming from inertial sensors. The inertialmeasurement unit combines
accelerometers and gyroscopes, typicallywhich are placed along the three orthogonal
axes of a Cartesian frame. The accelerometers detect velocity changes over time,
i.e. the acceleration, and allow the computation of velocity and position through
successive integrations. The gyroscopes, record changes of the angular rates of the
vehicle round the Cartesian coordinates axes. The integration over time of the three
angular rates provides the yaw, pitch and roll angles of the vehicle. A disadvantage
of IMUs is the accumulation of errors after use for an extended time period, which is
known as sensor drift. When the agricultural vehicles, operate in flat fields then pitch
and roll angles are negligible. Two important parameters for the vehicle’s kinematic
model are the control inputs which are the rate of change of the heading angle and
the forward velocity.

A simplisticmethod formeasuring the vehicle’s forward speed is bymeasuring the
number of turns spun by thewheelswith the use of amagnetic countermounted on the
chassis. This computation approach is insufficient due to slippage, often taking place
in off-road terrains. Therefore, one can estimate the velocity through the processing
of GPS measurements by a Kalman Filter, or in complement, can use other types of
sensors such as radars. As mentioned above, the heading angle is a crucial parameter
in the kinematic model of the vehicle. It provides the orientation of the vehicle with
respect to the north. It can be estimated with the use of an inertial measurement unit
as the yaw angle is determined by integrating the yaw rate around axes perpendicular
to the local tangent plane. An optional sensor to estimate headings is the fluxgate
compass.

12.3.2.2 Path Planning

In general, a set of cooperating agricultural robots contains N vehicles of equivalent
kinematics which is given by

˙̄xi = f (x̄i , ui ), i = 1, . . . , N (12.98)

where x̄i∈Rn denotes the states, ui∈Rm is the control inputs vector and f () is a
smooth function. Path planning for such a group consists of finding trajectories
that over a time horizon [t0, t f ] satisfy the kinematic equation given in Eq. (12.98),
and the inequality constraints appearing in Eq. (12.99) and Eq. (12.100), as well as
minimizing a cost criterion given in Eq. 12.101

ḡ(x1, . . . , xN , t)≤ ḡ∈Rng (12.99)
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Fig. 12.25 Coordinates systems defining the motion of the master and slave tractor

c̄(x̄1, . . . , x̄N , ū1, . . . , ūN , y)≤0, c̄∈Rnc (12.100)

min J̄ = Φ̄[x̄1(t f ), . . . , x̄N (t f ), t f ] +
∫ t f

t0

L̄(x̄1, . . . , x̄N , ū1, . . . , ūN )dt (12.101)

where x̄i and ui , i = 1, . . . , N are the state vector and control vector associated with
the trajectory of the i th robotic vehicle, participating in themulti-robot formation.The
constraints appearing in Eq. (12.99) are associated to the formation of themulti-robot
system. For example, while harvesting, the combine and trailer need to stay within
a minimum distance for collision avoidance and maximum distance for avoiding
failure of harvest transfer. The constraints appearing in Eq. (12.100) are associated
to the state variables of the robotic vehicle, as well as with constraints on the inputs
of the kinematic model.

From the above, it can be seen that the trajectory optimization problem for the
multi-robot system involves finding N (n + m) state and input trajectories in the
presence of ng + nc inequality constraints, while satisfying Nn state equations and
given terminal constraints. To reduce the complexity of this optimization problem
and to make it computationally more tractable one can alleviate some of the con-
straints going into sub-optimal solutions. For instance, in the case of a master-slave
cooperation scheme between two tractors (e.g. combine being the master vehicle and
tractor with trailer being the slave vehicle) one has the following formulation of the
path planning problem (Fig. 12.25):

Denoting as xc and yc the coordinates of the combine in the cartesianmotion plane
attached to the slave tractor and the heading angle of the combine with respect to the
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(a) (b)

Fig. 12.26 The slave robot’s reference trajectory is defined from the master robot’s path under a
known position offset a example reference trajectory 1 b example reference trajectory 2

slave tractor as θc, the slave tractor’s nominal trajectory (xs, ys) can be obtained as
a function of the reference trajectory of the master tractor (xm, ym)

xs = xm + dx ·cos(θc) − dy·sin(θc)

ys = xm + dx ·sin(θc) − dy·cos(θc) (12.102)

where dx and dy denote the relative position of the master tractor with respect to the
slave tractor. The slave tractor’s heading angle is then given by

θs = tan−1(
ẏs
ẋs

) (12.103)

The cost function of Eq. (12.101) aims at minimizing the tractors deviation from
the reference trajectory, while ensuring that the non-collision requirement is met
(Fig. 12.26).

12.3.3 Derivative-Free Kalman Filtering for Unmanned
Ground Vehicles

12.3.3.1 Controller Design for Agricultural Robots

The kinematic model of the agricultural robot is considered. This is given by



12.3 Cooperating Unmanned Ground Vehicles 691

Fig. 12.27 The model of the
unicycle autonomous vehicle
(cart-like vehicle)

ẋ = vcos(θ)

ẏ = vsin(θ)

θ̇ = ω = v
L tan(φ)

(12.104)

where v(t) is the velocity of the vehicle, L is the distance between the front and
the rear wheel axis of the vehicle, θ is the angle between the transversal axis of
the vehicle and axis OX , and φ is the angle of the steering wheel with respect to
the transversal axis of the vehicle (Fig. 12.27). The position of such a vehicle is
described by the coordinates (x, y) of the center of its rear axis and its orientation is
given by the angle θ between the x-axis and the axis of the direction of the vehicle.
The steering angle φ and the speed u are considered to be the inputs of the system.

Flatness-based control can be used for steering the vehicle along a desirable
trajectory. As previously explained in Sect. 7.3, in the case of the autonomous vehicle
of Eq. (12.104) the flat output is the cartesian position of the center of the wheel axis,
denoted as η = (x, y), while the other model parameters can be written as:

v = ±||η̇||
(
cos(θ)

sin(θ)

)
= η̇

v tan(φ) = ldet (η̇η̈)/v3 (12.105)

One thenproceeds by successively differentiating theoutput until the input appears
in a non-singular way. The closed-loop system is then equivalent to a set of decoupled
input-output chains of integrators from ui to ηi . The exact linearization procedure
is illustrated for the vehicle’s model of Eq. (12.104). As flat output η = (x, y) the
coordinates of the center of the wheel axis is considered. Following the procedure
that was presented in Chap.7 and differentiating with respect to time yields [371]

η̇ =
(
ẋ
ẏ

)
=

(
cos(θ) 0
sin(θ) 0

)
·
(
v
ω

)
(12.106)
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showing that only v affects η̇, while the angular velocity ω cannot be recov-
ered from this first-order differential information. To proceed, one needs to add
an integrator (whose state is denoted by ξ ) on the linear velocity input v = ξ ,
ξ̇ = α⇒η̇ = ξ [cos(θ), sin(θ)]T , whereα denotes the linear acceleration of the vehi-
cle. Differentiating further one obtains

η̈ =
(
cos(θ) −ξsin(θ)

sin(θ) ξcos(θ)

) (
α

ω

)
(12.107)

and the matrix multiplying the modified input (α, ω) is nonsingular if ξ �=0. Under
this assumption one defines

(
α

ω

)
=

(
cos(θ) −ξsin(θ)

sin(θ) ξcos(θ)

)−1

·
(
u1
u2

)
(12.108)

and η̈ is denoted as

η̈ =
(

η̈1
η̈2

)
=

(
u1
u2

)
= u (12.109)

which means that the desirable linear acceleration and the desirable angular velocity
can be expressed using the transformed control inputs u1 and u2. Then, the resulting
dynamic compensator is (return to the initial control inputs v and ω)

ξ̇ = u1cos(θ) + u2sin(θ)

v = ξ

ω = u2cos(θ)−u1sin(θ)

ξ

(12.110)

In the new coordinates it holds

z1 = x
z2 = y
z3 = ẋ = ξcos(θ)

z4 = ẏ = ξsin(θ)

(12.111)

The extended system is thus fully linearized and described by the chains of inte-
grators, in Eq. (12.109), and can be rewritten as

z̈1 = u1, z̈2 = u2 (12.112)

On the equivalent and decoupled system of Eq. (12.112), one can easily design
an exponentially stabilizing feedback for the desired trajectory, which has the form

u1 = ẍd + kp1(xd − x) + kd1(ẋd − ẋ)
u2 = ÿd + kp1(yd − y) + kd1(ẏd − ẏ)

(12.113)

and which results in the following error dynamics for the closed-loop system ëx +
kd1 ėx + kp1ex = 0 and ëy + kd2 ėy + kp2ey = 0,where ex = x − xd and ey = y − yd .
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The proportional-derivative gains are chosen as kp1 > 0 and kd1 > 0 for i = 1, 2.
Knowing the control inputs u1, u2, for the linearized system one can calculate the
control inputs v and ω applied to the vehicle, using Eq. (12.110) [371].

12.3.3.2 Derivative-Free Kalman Filtering for the Field Robots

As explained in the previous section, if the Derivative-free Kalman Filter is used in
place of the Extended Kalman Filter then in the equations of the Extended Informa-
tion Filter (EIF), the followingmatrix substitutions should be performed: Jφ(k)→Ad ,
Jγ (k)→Cd , where matrices Ad and Cd are the discrete-time equivalents of matrices
Ac and Cc which have been defined in the measurement and time update of the stan-
dardKalman Filter recursion.Matrices Ad andCd can be computed using established
discretization methods. Moreover, the covariance matrices P(k) and P−(k) are the
ones obtained from the linear Kalman Filter update equations.

It is assumed now that the vehicle’s velocity has to be estimated through the
processing of the sequence of position measurements by a filtering algorithm. To
this end the Derivative-free Kalman Filter for MIMO nonlinear dynamical systems
can been used. From the application of the differential flatness theory presented in
Sect. 12.3.3.1 for transforming the initial nonlinear vehicle’s model into a linearized
equivalent that is finally written in the Brunovsky form, one has Eq. (12.109) which
means ẍ = u1 and ÿ = u2. Next, the state variables x1 = x , x2 = ẋ , x3 = y and
x4 = ẏ are defined. Considering the state vector x∈R4×1, the following matrices are
also defined

A =

⎛

⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ , B =

⎛

⎜⎜⎝

0 0
1 0
0 0
0 1

⎞

⎟⎟⎠ , C =

⎛

⎜⎜⎝

1 0
0 0
0 1
0 0

⎞

⎟⎟⎠ (12.114)

Using the matrices of Eq. (12.114) one obtains the Brunovsky form of the MIMO
robot model ẋ = Ax + Bv and y = Cx , where the new input v is given by v =
[u1(x, t), u2(x, t)]T . This is a robotic model in the form of Eq. (12.85), for which
state estimation can be performed using the standard Kalman Filter recursion.

12.3.4 Simulation Tests

12.3.4.1 Autonomous UGV Navigation Using the Extended
Indormation Filter

Indicative results about tracking of various reference trajectories, when using the
Extended Information Filter for the vehicle’s localization, are shown in Figs. 12.28
and 12.29. In these diagrams the green line denotes the reference trajectory, while
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Fig. 12.28 Extended Information Filter and flatness-based control for cooperating robot harvesters:
a synchronized tracking of reference path 1 b synchronized tracking of reference path 2
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Fig. 12.29 Extended Information Filter and flatness-based control for cooperating robot harvesters:
a synchronized tracking of reference path 3 b synchronized tracking of reference path 4

the red dashed line denotes the real path of the vehicle in the xy plane. The position
of the vehicles in plotted every 100 sampling periods.

The performance of the proposed Distributed derivative-free nonlinear Kalman
Filter was tested in the problem of state estimation-based control for master-slave
cooperation of two agricultural robots (see Fig. 12.26). The master tractor generates
a reference path and the motion characteristics (velocity, acceleration, orientation)
that the slave tractor has to follow. It was assumed that only measurements of the
xy coordinates of the vehicles could be obtained through multiple GPS units (local-
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ization of moderate accuracy), or multiple local RTK-GPS stations (localization of
elevated accuracy).

12.3.4.2 Autonomous UGV Navigation Using the Distributed
Deririvative-Free Nonlinear Kalman Filter

Indicative results about tracking of various reference trajectories, when use the Dis-
tributed Derivative-free Nonlinear Kalman Filter for the vehicle’s localization, are
shown in Figs. 12.30 and 12.31. In these diagrams the green line denotes the refer-
ence trajectory, while the red dashed line denotes the real path of the vehicle in the
xy plane. The position of the vehicles in plotted every 100 sampling periods.

Comparing the estimation performed by the derivative-free MIMO nonlinear
Kalman Filter with the one performed by the Extended Information Filter it can
be noticed that the derivative-free filtering approach is significantly more robust and
results in more accurate state estimates. This has been confirmed in the results pre-
sented in [437]. The following accuracy metrics were obtained in tracking of the
reference path of Fig. 12.30: (a) with the use of the derivative-free MIMO nonlinear
Kalman Filter: RMSEx = 0.0088, RMSEy = 0.0094, RMSEθ = 0.0013, (b) with
the use of the Extended Information Filter: RMSEx = 0.0134, RMSEy = 0.0167,
RMSEθ = 0.0021.It can be noted that the present section’s approach can be applied
also to various types of 4-wheel agricultural robots.

Finally, the path tracking error for the autonomous ground vehicles, in the case of
tracking of reference path 1, and after using the Distributed Derivative-free nonlinear
Kalman Filter for their localization is depicted in Fig. 12.32.

−15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

20

X

Y

−10 0 10 20 30 40 50 60 70−20

−15

−10

−5

0

5

10

15

20

25

30

X (m)

Y
 (m

)

(a) (b)

Fig. 12.30 Derivative-free distributed Kalman Filter and flatness-based control for cooperating
robot harvesters: a synchronized tracking of reference path 1 b synchronized tracking of reference
path 2
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Fig. 12.31 Derivative-free distributed Kalman Filter and flatness-based control for cooperating
robot harvesters: a synchronized tracking of reference path 3 b synchronized tracking of reference
path 4
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Fig. 12.32 Derivative-free distributed Kalman Filter and flatness-based control for cooperating
robot harvesters: a path tracking error along the x-axis b path tracking error along the y-axis

As a concluding remark it can be stated that the examples on control and filtering
of cooperating robots come to complete the analysis of the topics of nonlinear control
and estimation for robotic manipulators and autonomous vehicles. This research area
remains open and is anticipated to further grow in the forthcoming years.
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