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Foreword

The knowledge of marine biodiversity, which has become a global field of research, 
asks for an integrative view of social, ecological, and physical interactions. This 
perception holds especially true for the coastal regions worldwide, where most of 
the human populations are currently located. Current trends in climate and in land 
usage pose severe threats to coastal and estuarine ecosystems especially in develop-
ing countries. Among coastal areas, estuaries are unique in sustaining and providing 
essential goods and services to mankind. They include a variety of habitats with 
their own structure and dynamics, mostly already altered during the last few decades. 
Recent evidence suggests that estuaries may be more relevant in providing ecologi-
cal services than previously believed, but their social relevance remains essentially 
unknown to much of the population.

Estuaries are preeminent ecosystems along the 9200 km of the Brazilian coastal 
margin, widely differ in their geology, and are under variable meteorological and 
oceanographic conditions. These variable conditions are expected to influence the 
biology and ecology of estuarine ecosystems, resulting in spatial and temporal dif-
ferences in their assemblages. In order to understand the expected changes in estua-
rine dynamics and its influence on benthic assemblages, these ecosystems can be 
spatially divided into three major biogeographic provinces known as Marine 
Ecoregions (Spalding et al. 2007). The Marine Ecoregions’ approach was applied in 
a global scale in order to advance conservation of marine ecosystems, and therefore, 
it is expected that some regional subdivisions may not fully represent spatial differ-
ences in biological assemblages. The congruence of climatic and environmental 
differences along the Brazilian coast has yet to be empirically tested for most coastal 
ecosystems, including estuaries. However, at this initial stage, the spatial classifica-
tion and ordination of Marine Ecoregions can support spatial conservation planning 
along broad areas with a high climatic and geomorphic variability, which is the case 
for estuaries along the Brazilian coast. Although this is the case for the estuarine 
benthic assemblages in Brazil, we will here follow the regional subdivision pro-
posed by Spalding et al. (2007) and present general biodiversity, ecological pro-
cesses, and major threats to benthic assemblages in estuaries from the five Brazilian 
Marine Ecoregions.
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There are no extensive reviews about estuarine conservation status in Brazil or 
about their current changes that can be used by researchers and by the private and 
public sectors. The last comprehensive books on South-American estuaries were 
published by Springer almost two decades ago (Perillo et al. 1999; Seelinger and 
Kjerfve 2001). Brazilian estuaries, mainly from the Northern and Northeastern  
sectors, are poorly represented in both books. The Encyclopedia of Estuaries 
(Kennish 2016) did not focus on specific countries or regions.

This book presents the main drivers of structure and processes in the benthic 
assemblages from estuaries along the Brazilian coast, assesses the influence of natu-
ral and human disturbance, and discusses their relevance to management needs. 
Information is organized in an introduction and five chapters dedicated to each of 
the five ecoregions, from the tropical Amazonian to the warm temperate Rio Grande. 
Our compilation and synthesis will enable readers to compare broad biodiversity 
patterns of Brazil’s estuaries as well as will serve researchers, students, and policy 
makers on their own work in the fields of marine sciences and conservation.

Universidade Federal do Espirito Santo� Angelo Fraga Bernardino
Vitória, Brazil
Universidade Federal do Paraná	 Paulo da Cunha Lana
Pontal do Sul, Brazil
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Chapter 1
Brazilian Estuaries: A Geomorphologic 
and Oceanographic Perspective

Guilherme C. Lessa, Felipe M. Santos, Pedro W. Souza Filho, 
and Luiz César Corrêa-Gomes

Abstract  Estuaries are primarily sites where rivers meet the sea, where fresh water 
is mixed with sea water by the tidal flow and where salinity gradients are set up 
along a mixing zone. In this chapter, we consider that the estuary is an accommodation 
space landward of the coastline, where fluvial sediments are largely retained with 
no appreciable effect on the sedimentation processes of the open coast. Here we 
recognize 41 large estuaries along the Brazilian coast, ranging in size from 40 km2 
to more than 10,000 km2, encompassing areas with different topography, climate, 
geology, tidal ranges, and alongshore drift. The majority of these estuaries are 
located along fault lines or within grabens, and although scattered, structural and 
stratigraphic evidences suggest that land subsidence has caused sea level to locally 
rise, which has been an important factor in the preservation of these coastal features. 
A larger number of estuaries exist in the macrotidal and humid north coastal sector 
where large-scale coastal subsidence occurs. The estuary sizes along the coast bear 
no relation with tidal ranges, but have a positive linear correlation with river 
discharge in the east-southeast and northeast coastal sectors. Based on the existing 
hydrographic data, it could be stated that the large Brazilian estuaries are 

G. C. Lessa (*) 
Instituto de Geociências, Universidade Federal da Bahia, Campus Ondina,  
Salvador, Bahia, Brazil 

Grupo de Oceanografia Tropical, Universidade Federal da Bahia, Campus Ondina,  
Salvador, Bahia, Brazil
e-mail: gclessa@ufba.br 

F. M. Santos 
Grupo de Oceanografia Tropical, Universidade Federal da Bahia, Campus Ondina,  
Salvador, Bahia, Brazil 

P. W. Souza Filho 
Instituto de Geociências, Universidade Federal do Pará, Belém, Pará, Brazil 

Instituto Tecnológico Vale, Belém, Pará, Brazil
e-mail: walfir@ufpa.br 

L. C. Corrêa-Gomes 
Instituto de Geociências, Universidade Federal da Bahia, Campus Ondina,  
Salvador, Bahia, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77779-5_1&domain=pdf
mailto:gclessa@ufba.br
mailto:walfir@ufpa.br


2

hypersynchronous, ebb-dominated, and well mixed. In the deeper estuaries of the 
east-southeast sector, the longitudinal density gradient is an important driver for 
water circulation, causing vertically stratified residual flows that end up retaining 
suspended sediments within the estuary and promoting the accumulation of organic, 
muddy sediments.

Keywords  Neotectonic · Estuarine circulation · Coastal geomorphology

1.1  �Introduction

Various definitions of estuaries exist in the literature, reflecting the diversity of sci-
entific interests in coastal areas. For most (Pritchard 1952; Cameron and Pritchard 
1963; Fairbridge 1980; Lincoln et al. 1982; Perillo 1995; Allaby and Allaby 1999; 
Potter et al. 2010), estuaries are primarily sites where rivers meet the sea, where 
fresh water is mixed with sea water by the tidal flow and where salinity gradients are 
set up along a mixing zone. Also included is the existence of a partially enclosed 
body of water, or inlet of the sea. Thus, estuaries may encompass several coastal 
landforms such as coastal bays, lower river courses (permanently or seasonally 
opened to the ocean), lagoon entrances, and even distributary channels in a river 
delta. This interpretation is physically and biochemically biased and represents a 
problem for geologists more interested in the transport and fate of sediments. The 
geological incoherence resides on the fact that those premises can consider fluvial 
depositional systems as transitional environments. From a geological perspective 
(Dalrymple et al. 1992; Boyd et al. 1992), estuaries are associated with long-term 
coastal flooding and recession, and not with coastal emergence and progradation 
(coastline advancing upon the sea), such as the case of river deltas. The definition 
developed by Dalrymple et al. (1992) states that estuaries are “the seaward portion 
of a drowned valley system that receives sediment from both fluvial and marine 
sources, and contains facies influenced by tide, wave and fluvial processes. The 
estuary is considered to extend from the inner limit of tidal facies at its head to the 
outer limit of coastal facies at its mouth.” This implies the existence of gradients in 
sediment size and composition, and acknowledges the estuary as an accommodation 
space, or sediment trapping area, landward of the coastline. It does not exclude the 
existence of a mixing zone, and as a matter of fact this must exist if a river (perennial 
or seasonal) brings sediments to the estuary.

In this chapter, we adopt a physiographically biased definition, borrowing con-
cepts of both geological and physical–chemical perspectives in defining estuaries. 
We consider estuaries as a coastal indentation where fluvial sediments are largely 
retained, with no appreciable effect on the sedimentation processes of the open 
coast, and where biogeochemical gradients may exist. As such, our definition 
includes within the estuary realm the classical types of estuaries (coastal plain, bar-
built, tectonic, fjords—as in Perillo 1995), lagoons and salt marsh estuaries (as in 

G. C. Lessa et al.
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Kjerfve and Magill 1989). The estuary in this sense is a geologically ephemeral 
feature, and ceases to exist when completely filled-in with sediments. At this point 
the estuary is extinct and converted into a fluvial/tidal plain with a relatively small 
drainage channel where an equilibrium exists between sediment yield and transport 
capacity, as proposed by Roy (1984) in his model of estuarine evolution. Therefore, 
the preservation of an estuary is viable in submerging coasts such as in most of 
North America and NW Europe where sea level has been rising for millennia, 
counteracting the effect of sediment shoaling (Nichols 1989; Spencer et al. 1998; 
Jaeger et al. 2009). In coasts where relative sea level has fallen, such as along the 
Brazilian and Australia coasts (Angulo et al. 2006; Lewis et al. 2013), estuaries tend 
to disappear due to the additive effects of sedimentation (Lessa and Masselink 
2006). A large section of the Brazilian coast has undergone a relative fall of sea level 
of about 3.5 m in the last 6000 years (Angulo et al. 2006), and as a result large-scale 
coastal progradation and infilling of estuaries have occurred (Dominguez et  al. 
1987; Martin et al. 2003).

The largest estuaries in East North America and West and Northwest Europe, 
where sea level rising rate was about 1  mm/year during the Late Holocene 
(Woodworth et  al. 2009; Engelhart et  al. 2011), are classified as coastal-plain 
estuaries (Nienhuis and Smaal 1994; Aubry and Elliott 2006). These type of 
estuaries arise from marine flooding of the lower river course, commonly generating 
funnel-shaped morphologies as the drowned valley becomes more incised upstream. 
River deltas in those regions do not exist, in accordance with the World Delta 
Database (Hart and Coleman 2009). On the other hand, the large majority of 
important rivers along the Brazilian coast exit strait to the sea, affect sedimentary 
processes on the open coast and are generally associated with sizeable sandy coastal 
plains that were built under the effect of the fluvial discharge (Dominguez et al. 
1983, 1987). Figure 1.1 illustrates the contrasting coastal geomorphology of eastern 
United States and eastern Brazil. The images show the north-american coast fully 
indented by large coastal-plain estuaries, barrier-islands, lagoons, and salt marsh, 
whereas the Brazilian coast presents three wave-dominated deltas (Jequitinhonha, 
Doce, and Paraíba do Sul river deltas) projecting the coastline close to the river 
mouths. Out of the 97 Brazilian rivers with available discharge data (Oliveira et al. 
2018), only the equatorial rivers on the subsiding north coast (Souza Filho 2000; 
Souza Filho et  al. 2009; Rossetti et  al. 2008) can be classified as coastal-plain 
estuaries (Fig. 1.2). In the remainder of the country, to the east of Turiaçu River, 
only 6 sizeable rivers (Q > 100 m3/s) exit inside estuaries, namely Mearim River 
(São Marcos Bay—Maranhão state), Itapecuru and Munin rivers (São José Bay—
Maranhão state), Tubarão River (Laguna estuary—Santa Catarina state), and Jacuí, 
Camaquã and Piratini rivers (Lagoa dos Patos—Rio Grande do Sul state).

In spite of this regressive scenario and large-scale coastal progradation, large 
estuaries are still observed along the Brazilian coast, within which are located the 
most important harbors in the country. An investigation of the coast with satellite 
images (1:10,000) allowed for the identification of 41 estuaries larger than 40 km2 
(including intertidal areas, Fig. 1.2). Taking political boundaries into consideration, 
18 estuaries are located in the Brazilian North Region, 13 in the Northeast Region, 

1  Brazilian Estuaries: A Geomorphologic and Oceanographic Perspective
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5  in the Southeast Region, and 5  in the South Region. These regions present a 
diversity of climatic (from temperate to equatorial), geologic (from Precambrian 
high-relief, metamorphic rocks to Tertiary sedimentary tablelands), and 
oceanographic (microtides and high wave energy to macrotides and moderate wave 
energy) conditions (Dominguez 2009). Amongst these estuaries only 6 present 
drainage basins larger than 10,000 km2, a fact that is partly explained by the control 
exerted by the high-relief coastal massifs on the establishment of the continental 
drainage along the eastern border. Although most of the estuaries bear importance 
for the country’s economy, scientific information on their geological and physical 
characteristics is not abundant, and only a few of them can be treated in some detail. 
The geology and water circulation within estuaries are important constraints for 
biological and chemical processes that will end up determining ecological gradients. 
Therefore, this work aims to make a general assessment of the physical and 
geological characteristics of the large Brazilian estuaries, highlighting differences 
and similarities that are important for identifying primary geochemical and 
biological processes that are key to ecological studies, support important ecosystem 
services and may be highly influenced by climate changes.

Fig. 1.1  Contrasting coastal geomorphologies of two wave-dominated coastal settings: (1) eastern 
Brazil, with deltaic forms associated with Paraiba do Sul, Doce, and Jequitinhonha rivers, and (2) 
eastern United States, with large coastal-plain, drowned-river valley estuaries

G. C. Lessa et al.
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The Brazilian coast will be subdivided into three large sectors, North, Northeast, 
and East-Southeast, on the basis of climate, geomorphology, and mainly structural 
geology (Fig. 1.2). It is a simplified model of the coastal and shelf subdivisions 
proposed by Knoppers et al. (1999) and Dominguez (2009). The northern sector 
(with 17 estuaries), in the Amazonian coast, is about 580 km long and runs from 
Marajó Bay in the west to São José in the east. It has a humid climate and an overall 
subsiding trend that adds transgressive characteristics to the coastal geomorphology 
(Souza Filho et al. 2009) (Fig. 1.3a). The northeast coastal sector (with 11 estuaries) 
fringes a semi-arid region, extending for 1800 km from Tutóia in the north to Real-
Piauí in the south. Sedimentary plateaus (tablelands) are common all along the 
coast, forming continuous sections of both active and inactive cliffs. The north-
facing segment of this coastal sector (Fig.  1.2) is marked by intense east–west 
littoral drift (Hesp et  al. 2009) and abundant deposition of sand at the mouth of 
estuaries (Fig.  1.3b). The East-Southeast Sector (with 13 estuaries), is about 
3000 km long and located in a humid setting, has a higher coastal relief with granitic 
rocks at most of the estuary entrances (Fig. 1.3c), and because of relatively small 
fluvial discharge (smaller catchment areas) and alongshore oriented grabens, 
presents the least evidence of fluvial incision in the geomorphology of the estuaries. 
The 620 km long section of extensive sand barriers in South Brazil, that encompass 
Lagoa dos Patos, is also included in this sector.

Fig. 1.2  (Left) Elevation map and the location of the Brazilian rivers with mean discharge is 
higher than 100 m3/s. (Right) Distribution of the mean annual rainfall in the continent, location of 
the estuaries (>40 km2) and their respective catchment areas, and the identification of the coastal 
sectors described in the text. Estuaries number 2–13 (not identified because of their closeness) 
form a continuum from left to right between estuaries 1 and 14

1  Brazilian Estuaries: A Geomorphologic and Oceanographic Perspective
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Fig. 1.3  Characteristic geomorphology of coastal sectors with a few estuaries: North Sector (a), 
north-facing NE Sector (b), East-Southeast Sector (c). See Fig. 1.2 for location of coastal sectors

G. C. Lessa et al.
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1.2  �Geomorphology

1.2.1  �Structural Control of the Estuaries

The estuaries identified in Fig. 1.2 have a common strong structural control, i.e., 
geological faults either influence the overall shape of the estuary or define a limit to 
its longitudinal or lateral extension. Graben structures, related to the downward 
movement of a crustal block between two normal-fault lines, have been mapped in 
all coastal sectors where the estuaries are located. The tectonic bearing on the 
geomorphology obscures the evidence of fluvial erosion that has likely occurred 
during successive lowstand periods in the Late Quaternary, as claimed by Lessa 
et  al. (2000) in relation to Todos os Santos. We argue that Holocene subsidence 
within these grabens has locally offset the sea level fall of the last few thousand 
years, creating conditions for either the preservation or regeneration of 
accommodation spaces, thus allowing for the existence of the current estuaries.

In the North Sector, the continental margin is controlled by E–W transcurrent 
faults and several structural compartments (Souza Filho 2000; Souza Filho et al. 
2009). Most of the coastal plain east of the Amazon River runs along a paleo-cliff 
1  m to 3  m high and parallel to the coast, that apparently marks an active fault 
associated with the downward movement of a block that supports the coastal plain 
(Souza Filho et al. 2009). Neotectonic movements in this region have been indicated 
by ground-penetrating radar (GPR) images showing a myriad of small-scale normal 
faults with strike angles parallel to coastline and fault blocks intersecting the paleo-
cliff (Rossetti 2003). Also, Ferreira Jr et al. (1996) have shown sets of strike-slip 
faults with meter scale throws ascribed to four tectonic pulses that occurred between 
the Middle Pleistocene and Holocene. The orientation of these fault lines is similar 
to the faults measured at the mouth of the Amazon River by Costa et al. (2002) and 
Rossetti et al. (2008). Rossetti et al. (2008, 2012) described numerous structures 
related to seismogenic deformation during or shortly after deposition of Pleistocene 
and Holocene sediments. The downward movement of this large coastal sector has 
given rise to numerous coastal-plain estuaries (Souza Filho et al. 2009), harboring 
the largest mangrove area in the world (7600 km2) (Souza Filho 2005; Nascimento 
Jr et al. 2013). Souza Filho et al. (2009) have shown that the coastal evolution during 
the Mid- to Late Holocene has been modulated by small-scale subsidence events, 
with the onset of three phases of barrier development. There is no record of any 
higher sea level position in the last 6000 years, and transgression is apparently an 
ongoing process. Cohen et al. (2005), based on pollen analysis, also suggest that a 
recent sea level rise is pushing the mangrove forest to higher elevation zones.

In the Northeast Sector, the sedimentary plateaus are intersected by numerous 
faults reaching Holocene sequences, which generated a series of horst and graben 
structures along the coastal plain. Incised river valleys are organized along the 
graben structures oriented normal to the coastline (Bezerra et  al. 2001). The 
Mamanguape, Paraíba, and Itamaracá estuaries are located in these grabens (Lima 
et  al. 2016; Rossetti et  al. 2011), with sedimentological and chronostratigraphic 

1  Brazilian Estuaries: A Geomorphologic and Oceanographic Perspective
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evidence of Holocene subsidence existing for Mamanguape and Paraíba estuaries 
(Rossetti et al. 2011; Alvez 2015). The local relative sea level rise that promoted the 
inundation of these two estuaries appears to have occurred in the last 6000 years, 
and more abruptly within the last 1000 years, as indicated by radiocarbon dates of 
samples within mud deposits published by Alvez (2015).

The East-Southeast Sector shows larger graben structures that tend to be aligned 
with the coastline. The Todos os Santos, Tinharé-Boipeba, and Camamu estuaries are 
located within the continuous Recôncavo and Camamu sedimentary basins, large 
hemi-grabens that are limited in the west by the Maragojipe Fault. These grabens 
are highly fractured and subdivided in several sub-grabens (Magnavita et al. 2005; 
Born et  al. 2011) that apparently underwent distinct relative vertical movements 
(Martin et al. 1986). The Maragogipe fault forms a scarp several tens of meters high 
delimiting the western margin of the graben and, as pointed out by Martin et al. 
(1986) and Suguio and Martin (1996), some rivers have not yet had time to carve 
valleys down this scarp, and reach the coast as waterfalls. Carvalho (2000) observed 
frequent intercalations of colluvium and estuarine sediments in sediment cores 
obtained at the base of the fault, that were ascribed to debris-flow events triggered 
by small seismic episodes. Earthquakes around Todos os Santos have been recorded 
in nine occasions in the historic time (Brazilian Seismic Catalog 2009; Bezerra 
et  al. 2006). Carvalho (2000) also showed that no radiocarbon-dated samples 
indicate sea levels higher than today’s in the past 9200 years in the western extreme 
of Todos os Santos, nor there is geomorphologic evidence that a higher sea level 
existed in the past. In addition, soil fractures close to Camamu were radiocarbon-
dated at 27,000 cal years B.P. by Corrêa-Gomes et al. (2012). Martin et al. (1986) 
and Suguio and Martin (1996) suggested that Todos os Santos was formed by 
differential subsidence of a series of faulted blocks. Several geomorphological and 
geochronological evidences for tectonic control on the Quaternary sedimentation 
inside Todos os Santos exist, including the presence of Pleistocene marine terraces 
only at the southern side of the bay, suggesting that the bay is tilted to the north 
where submergence prevails. In the northern bay margin, paleo-sea level indicators 
are vertically offset in relation to a reference paleo-sea level curve established for 
the open coast (Martin et al. 1986), and indicate varying degrees of submergence in 
different sectors of the bay.

Further south, between the States of Rio de Janeiro and Santa Catarina, seven 
estuaries (Fig. 1.2) are located in grabens that bear their same name (Guanabara 
graben, for instance), and evidence of Quaternary tectonic movements exist in four 
of these grabens: Guanabara, Santos-Bertioga, Cananéia, and Paranaguá. In the 
Guanabara graben, Ferrari (2001) identified tectonic events in the Pleistocene and 
Holocene, which caused deformation of sediment fill and segmentation of 
sedimentary deposits. In the Santos-Bertioga estuary, Barbosa et  al. (2012) and 
Souza (2015) have pointed to several seismic and morphological evidences that 
indicate tectonic pulses at the end of the Pleistocene and during the Middle to Late 
Holocene, amongst them: drainage anomalies, sets of systemic fractures in marine 
terraces, awkward arrangement of Quaternary sedimentary units on the coastal 
plain, and the presence of guide layers in Pleistocene and Holocene deposits with 
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throws up to 7.5 m. Further south the Cananéia hemi-graben, studied by Souza et al. 
(1996), is tilted to the NW in association with Cenozoic reactivations of old fault 
lines (Riccomini 1992). The Cananéia estuary, located between Santos and 
Superagui (not mapped in this study for being smaller than 40 km2), has the longest 
tide gauge record in Brazil, which shows a mean RSL rise rate (average of 50 years) 
of 5.6 mm year−1 (Ducarme et al. 2006). Concurrent GPS measurements at the tide 
gauge site between 2002 and 2005 show that 67% of the RSL long-term rise would 
be due to a land subsidence of 3.8  mm year−1, therefore indicating the tectonic 
instability of the graben.

Fewer and less compelling evidence exist for neotectonic movements in 
Paranaguá and Babitonga-Guaratuba grabens. The geomorphology suggests non-
coaxial offsets within the tectonic blocks. Paleo-mangrove plains abound in the 
southern Guaratuba margin, whereas present mangrove vegetation thrives in the 
northern side, suggesting emergence of the southern and submergence of the 
northern side, a situation comparable to that identified in Todos os Santos. In the 
Paranaguá graben, Nascimento et  al. (2013) has pointed to considerable 
morphological evidence for Late Quaternary tectonism, such as alluvium deposits 
segmented by knickpoints, anomalous drainage lines, and uplifted catchments. In 
Lagoa dos Patos, the southernmost estuary, sedimentological studies have postulated 
that sea level has been rising in the last millennium (Tomazelli et  al. 1998; 
Lorscheitter and Dillenburg 1998). Saadi (1993, 2002) has mapped the Pelotas 
Fault, extending alongside Patos and Mirim lagoons and delimiting Mirim and 
Porto Alegre graben in the west, as an active fault in the Quaternary. Additionally, 
Fonseca (2005) has reported on the existence of deformational structures within 
Pleistocene marine terraces in the northern margin of Lagoa dos Patos.

1.2.2  �Dimensions

Orthorectified Landsat 7 ETM images (15 m resolution) were used as a base map to 
digitize the contour of the estuarine water body and vegetated intertidal and 
supratidal areas, at a 1:25,000 scale. Digital elevation models generated from 
Shuttle Radar Topography Mission (SRTM) with 90 m spatial resolution were used 
to map the catchment areas and extract the drainage lines. Nautical charts produced 
by the Brazilian Hydrographic Authority (CHM) are only available for 8 estuaries, 
namely Paraíba, Itamaracá, Todos os Santos, Camamu, Guanabara, Vitória, Sepetiba, 
and Paranaguá. The charts were digitized and a digital terrain model (DTM) 
produced. Hypsometric curves and volumes of these six estuaries were then 
calculated. Volumes for Araruama and Mundaú-Manguaba lagoons were obtained 
from Kjerfve et al. (1996) and Oliveira and Kjerfve (1993), respectively. Because 
the maximum extent of the intertidal area could not be determined systematically 
for all estuaries, we will define “intertidal” henceforth as the area encompassing the 
vegetated intertidal and the supratidal areas. The “water surface” area incorporates 
both subtidal (below the hydrographic zero line) and non-vegetated intertidal. For 
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consistency, this norm will also apply to those six charted estuaries, unless stated 
otherwise. Intertidal vegetation includes mangrove and salt marshes (only in Lagoa 
dos Patos where mangroves are non-existent) and does not incorporate the freshwater 
vegetation that occupies the intertidal area beyond the limit of salt intrusion or in 
supratidal zones in regions with higher rainfall rates. The outer and inner estuary 
limits were defined by the narrowest cross section close to the mouth and the 
disappearance of inundation zones, respectively. In the coastal-plain estuaries of the 
north region, this limit was rather difficult to pinpoint because both water level 
oscillations and reversing currents can be observed much farther upstream than the 
innermost mangrove forest or the estuary funnel zone. In estuaries with more than 
one inlet (Santos, Todos os Santos, Mundaú-Manguaba, Itamaracá, and Tutóia), the 
estuary length was measured taking the largest, or main, entrance as a reference 
starting point. The estuary length, as well as mangrove/salt marsh excursion into the 
estuary, was measured following the sinuous path of the drainage channels, since 
this is the distance that must be covered by the water flow.

Table 1.1 presents the spatial dimensions of all 41 estuaries. The largest Brazilian 
estuary is Lagoa dos Patos (31.77°S), with an area of 10,360 km2. It is followed by 
4 three-digits-area estuaries, which are São Marcos (2.39°S–2568 km2), São José 
(2.39°S–1309  km2), Todos os Santos (13°S–1233  km2), and Turiaçu (2.45°S–
1171 km2). Four estuaries have areas between 500 km2 and 1000 km2 (Cumã, Tutóia, 
Sepetiba, and Paranaguá), 23 estuaries (40% of the total) between 100  km2 and 
500 km2, while 9 estuaries (30% of the total) are smaller than 100 km2. Figure 1.4a 
shows the north-south distribution of estuarine areas, showing that most of the 
smaller estuaries are located in the Northeast Sector (blue-shaded region), where the 
average area is 102 km2 (±45 km2; n = 11). Larger estuaries are observed in the 
North Sector (pink-shaded region) with an average area of 529  km2 (±610  km2; 
n = 18) and where an eastward-trend of increasing estuary size is observed. The 
estuary sizes in the East-Southeast Sector are highly variable, with an average area 
of 371 km2 (±337 km2; n = 13) not including Lagoa dos Patos. The intertidal areas 
of the estuaries in the North and Northeast sectors take up most of the estuary 
expense (Fig.  1.4b), with the exception of Unindéua, São Marcos, São José and 
Mundaú-Manguaba. Larger water surface areas prevail in the East-Southeast Sector, 
except for Tinharé-Boipeba, Vitória, Araruama, and Guaratuba where intertidal 
areas are slightly larger. The largest relative water surface area occurs in Araruama 
(99.9%) and Lagoa dos Patos (99.2%).

With the exception of Lagoa dos Patos, São Marcos, and Turiaçu, which are, 
respectively, 300 km, 176 km, and 107 km long, all estuary channels (or the main 
estuary axis in lagoons) are shorter than 100 km (Fig. 1.4c). Twenty-five estuaries 
(61% of the total) are shorter than 50 km, and most of the shortest estuaries are in 
the northeast region, where the average length is 29  km (±10  km). Itamaracá, 
13.4 km long between the northern inlet and Itapissuma, is the shortest estuary. The 
average estuary lengths in the North and East-Southeast sectors are 59 km (±38 km) 
and 46 km (±16 km), respectively.

Intertidal, brackish vegetation is observed along the whole extent of the estuaries 
in all three geographic regions (Fig.  1.4c). It suggests a rather ample estuarine 
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Fig. 1.4  North-South distribution of estuarine areas (a), relative extent of intertidal vegetation 
(mangroves except for Lagoa dos Patos—41) and high-tide water surface area (b), estuary channel 
length (km) and distance of mangrove (salt marsh in 41) intrusion relative to channel length (%) 
(c), river discharge (d), and catchment area (e). Dashed vertical lines separate the north equatorial 
region (left section of the graphs), the northeast (mostly) semi-arid region (center section), and the 
southeastern and south humid regions (right section). Numbers 1–41  in x axis refer to estuary 
number presented in Fig. 1.2 and Table 1.1

mixing zone and also means that tidal range does not modulate the excursion of 
brackish vegetation amongst these estuaries, i.e., relatively longer saline intrusion is 
not restricted to the macrotidal North Sector. An exception exists for the lagoonal 
estuaries of Mundaú-Manguaba, Araruama, and Lagoa dos Patos, and also for the 
Gurupi estuary. Fresh water limits the intrusion of brackish vegetation in the mainly 
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oligohaline Lagoa dos Patos (salinity data from Möller and Castaing 1999) and 
Mundaú-Manguaba (salinity data from Oliveira and Kjerfve 1993), whereas hyper-
salinity in Araruama (de Souza et al. 2003) might impair mangrove expansion.

It is worth noting that salt intrusion may extend farther upstream than the man-
grove or salt marsh limits. Also, our results (based on remote sensing) may under-
estimate the length of the estuaries in the north sector. For instance, while we 
measured the Marapanim estuary as 62.7 km long with ~100% of mangrove pres-
ence along its length, Araújo et al. (2009) inform that tidal currents can be detected 
150 km upstream from the mouth. The salt intrusion, on the other hand, is reported 
to extend a similar distance to our mapped mangrove excursion, or 70 km up the 
estuary.

Amongst the charted estuaries, there is a positive correlation (R2 = 0.86) between 
mean estuarine depth and estuarine area (Fig. 1.5a). Mean estuarine depth varies 
from 1.3 m in Itamaracá to 9.6 m in Todos os Santos, whereas mean channel depth 
varies from 10 m to 30 m (in Todos os Santos) (Table 1.2). The few data points avail-
able indicate that in smaller estuaries the difference between mean estuarine depth 
and channel depth is larger.

1.2.3  �River Discharges

The river discharge data used was obtained from the National Water Agency website 
(farthest downstream gauging stations in the catchment), and technical and scien-
tific literature. The level of detail given to the calculation of annual averages is 

Fig. 1.5  Relationship between morphometric variables. (a) Variation of estuary-mean depth rela-
tive to estuary area. (b) Variation of the river discharge against estuarine areas. Positive correlation 
is observed in estuaries at the east and north coasts, whereas a negative correlation (dashed line) is 
observed in the northeast estuaries. (c) Variation of river discharge against the catchment area. (d) 
Variation of the catchment area against the estuary area

G. C. Lessa et al.
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asymmetrical amongst the estuaries, with some, such as Lagoa dos Patos, Paranaguá, 
Guanabara, Araruama, Camamu, Todos os Santos, and Itamaracá, being more thor-
oughly investigated than others. The average annual river discharges are overall 
positively correlated with both the catchment areas and the estuarine areas (Fig. 1.5b, 
c). A closer look at the data spread for the Northeast Sector, however, shows a nega-
tive correlation, with estuarine and catchment areas increasing with a decrease in 
river discharges areas (Fig. 1.5b).

The catchment areas vary five orders of magnitude amongst the estuaries, from 
26 km2 in Unindéua to 202 × 103 km2 in Lagoa dos Patos (Fig. 1.4e, Table 1.1). The 
smallest catchments are in the East-Southeast sector, where the average is 6.7 × 103 
km2 (± 16.5 × 103 km2—not including Lagoa dos Patos), followed by the Northeast 
and North sectors with averages of 7.3 × 103 km2 (± 6.5 × 103 km2) and 13.4 × 103 km2 
(± 27.7 × 103 km2), respectively. It is worth noting that the catchment areas in the 
North and in East-Southeast sectors are positively correlated with the estuary area 
(Fig. 1.5d), with coefficients of determination (R2) of 0.70 and 0.67. No relation-
ship, however, can be observed for these two attributes in the Northeast Sector 
(R2 = 0.05), which could be ascribed to a lesser scouring power of river discharges 
and/or stronger structural control of the estuary size.

Half of the estuaries with data availability have mean annual freshwater dis-
charges smaller than 50 m3/s (Table 1.1; Fig. 1.4d). The largest freshwater inputs 
occur in the North Sector (214 ± 161 m3/s; n = 18), and the smallest in the Northeast 
Sector (24 ± 18 m3/s; n = 11). Mean freshwater discharge in the East-Southeast 

Table 1.2  Tidal ranges, tidal prisms, and geometric characteristics of charted estuaries

Estuary
SR 
(m)

STP 
(× 109 m3)

MD/CD 
(m)

V 
(× 109 m3)

Q 
(m3/s)

FR 
(× 10−3)

δs/δx 
(psu/
km)

Ue 
(m/s)

Tf 
(h)

Coreaú 2.96 0.224 – – 29.8 5 – – –
Paraíba 2.18 0.184 1.6/− 0.13 27.4 7 – – 8.9
Itamaracá1 2.27 0.202 1.3/10 0.12 25.9 7 0.30 0.03 8.5
Mundau-
Manguaba2

0.14 0.014 1.8/− 0.13 64.0 205 – – 93.1

Sergipe 2.01 0.265 −/− – 13.7 2 – – –
BTS3 2.50 3.078 9.6/30 11.84 113.4 2 0.09 0.06 47.6
Camamu4 2.01 0.803 2.6/10 1.05 53.4 3 0.42 0.04 16.1
Vitória5 1.39 0.062 2.2/10 0.10 18.7 13 0.79 0.08 19.6
Araruama6 0.01 0.001 3.0/− 0.62 2.3 98 −1.83 0.01 6653
Guanabara 1.05 0.471 5.1/20 2.28 105.8 10 0.19 0.07 59.4
Sepetiba 1.15 0.632 7.0/18 3.84 32.2 2 0.30 0.15 75.2
Paranaguá 1.44 1.017 3.9/15 2.75 230.4 10 0.80 0.17 33.2
Guaratuba 2.27 0.269 −/− – 80.0 13 0.56 0.04 –

Morphology data from: 1—Medeiros and Kjerfve (1993); 2—Oliveira and Kjerfve (1993); 3—
Lessa et al. (2009); 4—Amorim (2005); 5—Rigo (2004); 6—Kjerfve et al. (1996)
SR spring tidal range, STP spring tidal prism, MD mean depth, CD channel depth, V volume, Q 
freshwater discharge, FR flow ratio (R/P), δs/δx longitudinal salinity gradient, Tf flushing time
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Sector is almost three times larger than in the Northeast Sector, or 70 m3/s, but with 
large spatial variability (± 64 m3/s; n = 13). These values do not include Lagoa dos 
Patos which, with an average annual discharge of 2400 m3/s, is the freshest of the 
estuaries and where salt marshes have one of the shortest excursions (14 km), sec-
ond only to Araruama Lagoon (6 km). The lowest mean annual discharge is found 
in Araruama Lagoon, with only 2.3 m3/s considering river flow and water pumped 
for human consumption (Kjerfve et al. 1996).

1.3  �Tides and Hydrography

1.3.1  �Tidal Ranges, Tidal Prisms, and Tidal Distortions

Tidal ranges were estimated on the basis of the main lunar and solar semi-diurnal 
tidal constituents, respectively, M2 and S2. The mean tidal range is given by 2.M2 and 
the mean spring tidal range by 2(M2 + S2). The large majority of the tidal harmonic 
analysis was performed by the Brazilian Hydrographic Authority (CHM) on time 
series of water elevation ranging between 15 days and 1 year (modal length = 30 days). 
We used tidal analysis from 163 stations, split between open coast and estuarine 
stations, encompassing data from CHM as well as results from several other publi-
cations on estuarine circulation and hydrology. Tide constituents from AVISO 
Global Tide Model (FES_2014, 1/16° resolution—http://www.aviso.altimetry.fr) 
were also utilized to allow for a more detailed and complete coverage of the tidal 
ranges along the open coast (using the grid cells closest to the shore).

Overall, the tidal range on the open coast increases toward the north (Fig. 1.6a, 
b). Spring tidal ranges vary from 0.15 m close to Lagoa dos Patos to about 8 m in 
the north extreme, whereas mean tidal ranges vary from 0.1 m in the south to 6.6 m 
in the north (Fig. 1.6b). Therefore, the coast can be classified, according to Hayes 
(1979), as microtidal (0 m–1 m tidal range) between 34°S and 19.5°S (about Doce 
River), as low-mesotidal (1 m–2 m tidal range) between 19.5°S and 3°S (close to 
Tinhonha estuary), then high-mesotidal (2 m–3.5 m tidal range) between 3°S and 
1.3°S, and finally as macrotidal (tidal range >3.5 m) in the North Sector between 
1.3°S and 3.4°N. The northbound tidal amplification is uneven, however, with 3 
coastal regions presenting localized amplification, namely: (i) Paraná-Rio de Janeiro 
Bight (26°S–23°S), where the continental shelf widens; (ii) the internal part of 
Abrolhos Bank (19°S), also within a wider shelf, and (iii) in the initial E–W section 
of the Northeastern coast. There is a close agreement between observed (CHM) and 
modeled (AVISO/FES-2014) tidal ranges (red line in Fig.  1.6b). For the North 
Sector with no tide gauge station, the model results show varying tidal ranges 
apparently caused by a complex bathymetry, very indented costal contour, and 
strong influence of the Amazon River discharge.

Larger tidal ranges in the Northeast and North sectors can potentially cause big-
ger tidal prisms (volume of ocean water flows into the estuary during the rising 
tide). However, while the average spring tidal range gets bigger by a factor of 2, the 
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average estuary size gets smaller by a factor of 3.5 between the south and northeast 
sector (Fig. 1.4a). Hence, tidal prisms also diminish producing a very weak positive 
correlation between tidal prism and tidal range (Fig. 1.6c and Table 1.2). Measured 
tidal prisms vary from a minimum of 1 × 106 m3 (Araruama Lagoon) to 3.08 × 109 m3 
(Todos os Santos), but is likely to be larger than 1.5 × 1010 m3 in São Marcos.

Tides commonly undergo amplification inside the estuaries. Out of the 41 
mapped estuaries, only 19 have had the tides monitored inside. Figure 1.7 (left pan-
els) shows how the dimensionless tidal range (estuary tidal range divided by the 
tidal range at the coast) varies along increments (x) of the total estuary length (L) in 
each coastal sector. Most of the estuaries show tidal ranges increasing landwards, 
meaning that upstream tidal convergence and shoaling prevail over friction. These 
are called hypersynchronous estuaries (Allen et al. 1980). Only 5 estuaries, namely 
Mutuóca, Itamaracá, Mundaú-Manguaba, Araruama, and Lagoa dos Patos, are char-
acterized by tidal damping. These are estuaries where tidal-energy dissipation 
through friction effects prevails and are called hyposynchronous estuaries. Relative 
tidal amplification is highest in São José, São Marcos (Fig. 1.7a) and in Todos os 
Santos (Fig. 1.7c), where measured estuarine tidal ranges are, respectively, 1.6 (at 
0.6 L), 1.55 (at 0.2 L), and 1.53 (at 0.7 L) times larger than in the neighboring shelf. 
It shall be noticed, however, that São Marcos has greater tidal amplification than 
São José at similar distances. Thus, it is possible that additional tidal amplification 
occurs further upstream in São Marcos, where tidal bores have been documented 
(Kjerfve and Ferreira 1993).

Tidal amplification is proportional to the estuary length, i.e., stronger tidal ampli-
fication is observed in longer estuaries (Fig. 1.7—inset) as well as at stations farther 
upstream. This positive correlation is apparently (due to small number of data 
points) stronger in the north sector (R2 = 0.85) possibly due to (i) lesser sediment 
deposition (formation of transverse sand bars) by wave action at the mouth of the 
tide-dominated estuaries (Hayes 1979) and (ii) less structural control of the inlet 
morphology in a predominantly prograding coastal plain (Souza Filho et al. 2009). 
Both factors contribute for an unrestricted control of tidal power on the estuarine 
morphology.

Estuaries at the northeast sector are affected by strong sediment drift, which in 
some cases completely block tidal inlets, whereas in the southeast sector rock head-
lands can partially (at Todos os Santos, Paranaguá, and Guaratuba) or entirely (at 
Vitória, Guanabara, and Santos) control the inlet morphology.

Amongst the five hyposynchronous estuaries, tidal damping is more intense in 
the three lagoonal-type estuaries of Mundaú-Manguaba, Araruama, and Patos. In 
these locations, tidal range falls to about 40% of the ocean range in less than 10% 
of the total estuarine length (<0.1 L), and tidal oscillations cease to exist in the first 
half of the estuaries. In Patos Lagoon, the tide influence dies out at about 0.1 L in 
accordance with Möller et al. (2001), and diurnal oscillations in water level beyond 
this point is ascribed to the wind only.

The few estuaries with tidal information in the Northeast Sector (Fig. 1.7b) show 
either a strong tidal damping or a small amplification, but given the small number of 
estuaries, this shall not be taken as a norm for the estuaries in this sector. In the 
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estuaries of the East-Southeast Sector (Fig. 1.7c), the weakest relative tidal amplifi-
cation occurs in Santos (0.7 at 0.7 L), which ranks amongst the shortest estuaries 
(23.6 km long).

Tidal distortion, or a loss of symmetry in the shape of the tidal wave, is a com-
mon phenomenon within estuaries. This distortion is translated either into a short-
lasting rising (and long-lasting falling) or a short-lasting falling (long-lasting rising) 
tide. Due to continuity issues, shorter rising tides quite commonly cause stronger 
flood-tidal flows, whereas shorter falling tides are associated with faster ebb flows 
(Dronkers 1986). Because sediment transport as bedload is proportional to tidal 
velocities to the cube (~u3), tidal distortion can be seen as a proxy for net-bedload 
sediment transport (Fry and Aubrey 1990). The intensity of the distortion is given, 
in semi-diurnal tides, by the ratio of M4/M2, where M4 is M2’s first sub-harmonic. 
This ratio is plotted against the dimensionless estuary length (x/L) in Fig. 1.7 (right 
panels). Tidal distortion grows stronger inside all estuaries here investigated, with 
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the exception of São Marcos and Mundaú-Manguaba where the degree of distortion 
is greater closer to the inlet. The highest degree of distortion, where the amplitude 
of M4 is about half of M2 amplitude, occurs in Mundaú-Manguaba, Sepetiba, 
Babitonga, and Paranaguá. Overall, the estuaries in the North Sector have less dis-
torted tides.

The tidal distortion in most of the estuaries causes shorter ebbing tides and favors 
bedload sediment transport toward the sea. Stronger ebb-tidal flows, especially dur-
ing spring tides, are well documented in Paranaguá (Mantovanelli et  al. 2004), 
Santos (Miranda et al. 2012; Fiedler 2015), Guanabara (Sampaio 2003; Bérgamo 
2006; Diretoria de Hidrografia e Navegação 2012), Vitória (Rigo 2004; Veronez Jr 
et al. 2009), Camamu (Amorim et al. 2016), Todos os Santos (Cirano and Lessa 
2007), Curimataú (Andutta 2006) and São Marcos (González-Gorbeña et al. 2015). 
Ebb-directed, net-bedload transport favors the development of sand shoals in the 
seaward side of tidal inlets, mainly as a result of the obstruction of the littoral drift. 
These features are called ebb-tidal deltas, common features fronting estuaries in the 
east-southeast and northeast sectors (Fig. 1.8), where wave energy is higher relative 
to tidal range and sand bars are easier to form outside the estuary mouths.

1.3.2  �Estuarine Mixing, Gradients, and Circulation

Estuarine mixing is a function of the stirring power of the tidal currents. Stronger 
tidal flow enhances turbulence and generates better-mixed water columns. In the 
absence of strong tidal flow, the less-dense fresh water entering the estuary would 
remain undisturbed and give rise to strong vertical gradients of several scalars such 
as salinity. A simple way to assess the stirring power of an estuary is to compare the 
tidal prism (P) with the volume of riverine water (R) that flows out during a tidal 
cycle. Following the convention proposed by Simmons (1955—cited by Dyer 
1997), if R/P ≥ 1.0 the estuary is highly stratified; for R/P about 0.25 the estuary is 
partially mixed and for R/P < 0.1 the estuary is well mixed. As shown in Table 1.2, 
flow ratios (FR) are smaller than 0.1 in all estuaries where tidal information exists, 
except for Mundaú-Manguaba Lagoon. Although spring tidal prisms were employed 
in these calculations, the use of mean tidal ranges does not alter the results. It is thus 
anticipated that the majority of the estuaries tend to be well- to possibly mildly 
partially-mixed (during stronger-than-average river flow), i.e., vertical salinity 
differences tend to be small.

Proper thermohaline characterization of the Brazilian estuaries is rare. Average 
vertical salinity differences measured in dry and wet seasons are smaller than 5 psu 
in all of the documented estuaries, namely Paranaguá (Mantovanelli 1999), 
Guaratuba (Mizerkowski et  al. 2012), Santos (Miranda et  al. 2012), Guanabara 
(Kjerfve et al. 1997; Ribeiro and Kjerfve 2002; Bérgamo 2006), Vitória (Nalesso 
et al. 2005), Camamu (Amorim 2005; Santos 2009; Amorim et al. 2016), Todos os 
Santos (Cirano and Lessa 2007), and Itamaracá (Medeiros and Kjerfve 1993). The 
only exception is Lagoa dos Patos. Because it has the largest drainage basin amongst 
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the estuaries and receives the biggest fluvial discharge, estuarine mixing conditions 
easily vary between hydrographic extremes, i.e., from well mixed to salt wedge, and 
may even become completely fresh (Hartmann and Schettini 1991; Möller and 
Castaing 1999).

Salinity differences along these estuaries have a similar magnitude (<101 psu). 
Average salinity gradients (δs/δx) can be as small as 9 × 10−2 psu/km in the largest 
sector of Todos os Santos, to as high as ~8.0 × 10−2 psu/km in Vitoria and Paranaguá, 
and up to 1.83 psu/km along the inlet at Araruama (Table 1.2). Inside Araruama, 
however, the gradient has an opposite direction due to the lagoon’s hypersalinity. 
The horizontal salinity gradient, by setting up longitudinal density differences, is 
the master variable controlling the residual estuarine circulation. Both the horizontal 
density gradient and the channel depth directly interfere with the structure and 

Fig. 1.8  Shallows, highlighted by breaking waves, associated with ebb-tidal deltas fronting some 
of the Brazilian estuaries: 1—Guaratuba; 2—Paranaguá and Superagui; 3—Todos os Santos 
(south channel); 4—Real-Piauí; 5—Vaza Barris; 6—Sergipe; 7—Timonha; 8—Coreaú; 9—Tutóia 
(Images from Google Earth)
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magnitude of the mean flow (Ue), or tidally averaged flow, by establishing a two 
layered, stratified flow called estuarine circulation. Hence, deeper estuaries with 
larger horizontal density gradients develop stronger estuarine circulation, whereas 
shallower estuaries with more homogeneous water quality present unidirectional 
tidally averaged flow. Current magnitudes associated with the estuarine circulation 
are one order of magnitude weaker than the tidal flow (10−2 m/s vs 10−1 m/s). The 
magnitude of the estuarine circulation (Ue) can be assessed by the equation (Geyer 
2010)
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¶
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where β is the coefficient of saline contraction (~7.8 × 10−4 kg m−3 psu−1), g is grav-
ity, Cd is the drag coefficient (~3 × 10−3), ao is a dimensionless constant (~0.3), and 
Ut is the tidal velocity magnitude (maximum current velocities reported for each 
estuary were used). The strength of the estuarine circulation may vary 5-fold 
amongst the estuaries, from 0.03  m/s in Itamaracá to 0.17  m/s in Paranaguá 
(Table 1.2). The estuarine circulation is by definition stratified, and in all of the 
documented estuaries (Itamaracá—Medeiros e Kjerfve 1993; Todos os Santos—
Cirano and Lessa 2007 and Pereira and Lessa 2009; Camamu—Amorim et al. 2016; 
Guanabara—Bérgamo 2006; Paranaguá—Mantovanelli 1999), a primarily vertical 
shear is identified, with the ocean denser water flowing in closer to the bottom and 
the less-dense estuarine water flowing out through more surface layers. Figure 1.9 
shows the circulation-stratification diagram of Hansen and Rattray (1966) with the 
varying dynamic condition of 7 estuaries. Zones 1a and 1b in the diagram are asso-
ciated with unidirectional, non-stratified, mean flow; estuarine circulation is estab-
lished in zones 2a,b and becomes stronger in zones 3a,b. Zone 4 is associated with 
salt-wedge estuaries, where no mixing between fresh and salt water exists. The data 
are limited to a few surveys in all seven estuaries, and in Santos and Todos os Santos 
they are restricted to one of their most internal sections. It is observed that the 
dynamic condition in each estuary transits between zones 1 and 2 as a result of 
changing tidal ranges (spring-neap) and freshwater flow (rainy and dry season, wet-
ter and dryer years), but most of the data points fall within zone 2.

Although the mean estuarine flow, or estuarine circulation, is much weaker than 
the tidal flow, it is crucial in establishing exchanges between the estuary and the 
neighboring shelf. Hence, its dynamic is inversely proportional to estuarine time 
scales such as residence and flushing times (Geyer 2010), i.e., stronger estuarine 
circulation causes shorter residence and flushing times. The flushing time (ideally 
the time needed to reduce the concentration of a given substance inside the estuary 
to zero) can be assessed by considering the tidal prism (P) and fresh water (R) 
volumes in relation to the estuary volume (V), or (T.V)/(P + R) (Monsen et al. 2002; 
Miranda et al. 2003), where T is the tidal period (12.4 h). Even though this method 
underestimates the flushing time by not considering the full complexity of the 
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estuarine circulation, it serves as an initial reference for comparisons and assess-
ment of the slowest and fastest flushed estuaries. The estimated flushing times (Tf) 
listed in Table 1.2 shows that estuaries with smaller volumes are easier to be flushed. 
Paraíba and Itamaracá estuaries, as well as Camamu and Vitória, would be flushed 
in less than a day. The more voluminous Todos os Santos, Guanabara, and Sepetiba 
would be flushed within 2–3 days, and Araruama Lagoon, given its very small fresh-
water discharge relative to its volume, would be flushed after 9 months.

Only three, amongst the 41 estuaries, have had their flushing time assessed in the 
literature. Santana et al. (2018) calculated the dilution rate of a conservative sub-
stance in Todos os Santos by means of a 3D baroclinic numerical model forced with 
climatological means, and the Tf50%, or the time taken to achieve one half of the 
original concentration, was calculated at around 70 days. The Tf50% was also calcu-
lated for Guanabara (Kjerfve et  al. 1997) and Araruama Lagoon (Kjerfve et  al. 

Fig. 1.9  Hansen and Rattray’s (1966) circulation-stratification diagram based on current and 
water quality measurements at Curimataú (Andutta 2006), Camamu (Amorim et  al. 2015), 
Guanabara (Kjerfve et al. 1996; Bérgamo 2006), Santos (Miranda et al. 2012), Lagoa dos Patos 
(Möller and Castaing 1999), Paranaguá (Mantovanelli 1999; Noernberg et al. 2014). The Todos os 
Santos data from Genz (2006) is restricted to the fresher, most internal sector of the bay. ΔS mean 
vertical salinity difference, So mean vertical salinity, Us mean vertical velocity, Uf mean surface 
velocity
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1996) on the basis of the sum of all water inputs (river, rainfall, gravitational circu-
lation, transverse circulation) to the system divided by the bay volume. The calcu-
lated flushing times were 11.4 days and 83.5 days, respectively. These three values, 
as expected, differ considerably from those in Table 1.2, but are, however, ranked 
the same.

1.4  �Estuary Sedimentation

1.4.1  �Fluvial Sediment Supply

Fluvial sediment yields vary at least 3 orders of magnitude amongst the few estuar-
ies where measurements were made, from 103 to 106 t/year (Table 1.3), but because 
of the limited data set no spatial analysis can be made. Mean suspended sediment 
discharge from Guaíba River into Patos Lagoon was calculated as 1.1 × 106 t/year 
between 2003 and 2006 by Andrade Neto et al. (2012). Because the Guaíba River 
catchment area (84,760  km2) corresponds to 42% of the total catchment to the 
lagoon, the total sediment discharge to the estuary is certainly larger, but it is 
unlikely to be doubled given the existence of harder, metamorphic rocks in the 
southern catchments.

In Babitonga, a sediment discharge of 7.6 × 103 t/year was gauged by Oliveira 
(2006). This discharge comes from an area (684.7 km2) encompassing 60% of the 
catchment of the bay. Because little variation exists in rock hardness within the 
catchment, inserted into a granolithic complex, total sediment yield to the bay may 
amount to around 0.02 × 106 t/year.

Suspended sediment discharge to the southern sector of Paranaguá (1700 km2 
catchment) was measured by Mantovanelli (1999) as 355 t/day in the summer, and 
88 t/day in the winter, which gives an approximate year-average of 221 t/day or 
0.081 × 106 t/year. Assuming that the specific sediment discharge is the same for 
all other sub-catchments (1445 km2) with similar geology (highly metamorphic 
granite rocks), the sediment yield for the whole bay would be approximately 
0.17 × 106 t/year.

Sediment yield in Sepetiba was calculated by Molisani et  al. (2006) as 
0.85  ×  106  t/year after performing detailed analysis of the water and sediment 
discharge of Guandú River, the largest sub-catchment making up 93% of the bay’s 
drainage basin (2387  km2). This sediment discharge is overloaded due to water 
diversion from a larger neighboring catchment (Paraiba do Sul River) that began in 
the 1950s. Pre-diversion sediment discharge was 0.58 × 106 t/year (Molisani et al. 
2006), which, if extrapolated to the remaining catchment area with similar geology, 
gives a total discharge of 0.89 × 106 t/year.

Sediment mass accumulation, associated with recent mud deposits, was mea-
sured in Todos os Santos by Argollo (2001) by means of 210Pb activity profiles in 
sediment cores. The calculated accumulation varied between 3.8 and 7.6  kg/m2/
year. Considering that this mud facies occupies an area of 460 km2 (Lessa and Dias 
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2009), it is suggested that suspend sediment yield to the bay may vary from 
1.75 × 106 t/year to 3.5 × 106 t/year.

The calculated specific fluvial sediment discharges vary considerably amongst 
the estuaries (Table  1.3), from 5.4  t/km2/year in Paranaguá to 259  t/km2/year in 
Sepetiba (in pre-diversion conditions). Similar broad variations occur for the 
specific sediment yield to the estuaries, which cannot explain variations observed in 
measured sedimentation rates. For instance, it is difficult to explain these large 
differences in sediment discharge when there are similarities in the geology and 
rainfall amongst the catchment areas. Hence, measurement errors can be much 
higher than expected. Santos (2009) calculated the sediment discharge for 6 estuaries 
(Todos os Santos, Camamu, Vitoria, Guanabara, Sepetiba, and Paranaguá) by means 
of the BQART model (Syvitski and Milliman 2007), which takes into consideration, 
amongst other things, altimetry, pluviosity, and lithology of the catchment area. 
These results show specific sediment discharges varying within the same order of 
magnitude, from 102 t/km2/year in Todos os Santos to 626 t/km2/year in Paranaguá.

1.4.2  �Surface Sediment Cover and Sediment Deposition Rates

The existence of an estuarine circulation favors the retention of suspended particles 
inside the estuaries. Flocculation of suspended sediment particles within the mixing 
zone generates larger aggregates that are heavier and tend to be closer to the bottom, 
where they are swept by mean currents oriented upstream (the deeper layer in the 
estuarine circulation). Therefore, it is no surprise to observe that the majority of the 
estuaries, where the surface sediment cover was mapped, have an inner muddy-
sediment zone flanked by sandy sediments of both fluvial origin (in the estuary 
head) and marine origin (close to the mouth) (Fig. 1.10).

The formation of this muddy lithofacies is clearer in the deeper and wider estuar-
ies, namely Guaratuba, Paranaguá, Sepetiba, Guanabara, and Todos os Santos, 
where (i) estuarine circulation can be better developed given lesser depth constraints, 
(ii) larger accommodation space exists (underwater volume available for sediment 
retention) and (iii) less confined tidal flow favors deposition instead of erosion. 
Therefore, a less obvious mud-trapping zone exists at the shallower estuaries of 
Vitória (Veronez et al. 2009), Camamu (dos Santos 2016; Hatje et al. 2008), and 
Itamaracá (da Silva 2004) (Table  1.3), where the flow is more channelized and 
erosion of the estuary channel can locally expose relict mud sediments in places that 
would otherwise be covered with marine sand, as reported in Vitória (Veronez et al. 
2009). In Lagoa dos Patos, a muddy bottom occurs all over except for the shallow 
margins exposed to wave action. The amount of suspended sediment delivered to 
this estuary is large enough to cause intense sediment flux toward the sea, where it 
impacts the sediment texture of the coastal zone and occasionally form a field of 
fluid mud on the inner shelf (Marques et al. 2010).

The estuarine deposition of muddy sediments through the Holocene has appar-
ently caused shoaling of the bays and created sediment packages thicker than 10 m 
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in Paranaguá (Lessa et al. 1998), Sepetiba (Borges and Nittrouer 2015), and Todos 
os Santos (Lessa et al. 2000; Dominguez and Bittencourt 2009). Thinner sediment 
packages are reported for Guanabara (5–10 m thick—Marino 2011), Vitória (2–5 m 
thick—Bastos et al. 2010), and Lagoa dos Patos (6 m—Toldo Jr et al. 2000).

It is a premise that estuaries act as sediment traps, holding the entire coarse (sand 
sized) sediment load and great part of the suspended load. Export of suspended 
sediment has only been documented to date in Lagoa dos Patos, which discharges 
around 1.37 × 107 t/year (Marques et al. 2010). The retained fine sediments within 
the estuaries cause rates of bed accretion that vary between several millimeters to a 
few centimeters per year, with considerable spatial variation occurring within each 
estuary. Also, the existing data show that rates of sediment accumulation have 
increased in historical times in all estuaries, by up to 1 order of magnitude, when 
compared to bed accretion rates during the Holocene (two last columns in Table 1.3).

Fig. 1.10  Surface sediment cover of the Brazilian estuaries with available data. (a) Patos Lagoon 
(Demore 2001). (b) Guaratuba (Barbosa and Suguio 1999; Zem 2005). (c) Paranaguá (Lessa et al. 
1998; Lamour et al. 2004). (d) Sepetiba (Nogueira Jr 1992; FEEMA 1997—in Montezuma 2007; 
Villena et al. 2003). (e) Guanabara (Kjerfve et al. 1997; Catanzaro et al. 2004; Marino 2011). (f) 
Vitória (Veronez et al. 2009). (g) Todos os Santos (Lessa et al. 2000; Lessa and Dias 2009). (h) 
Itamaracá (Da Silva 2004)
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Holocene sedimentation rates, obtained from depth intervals between 14C dates 
along geological cores, are sub-millimetric. Toldo Jr et al. (2006) indicate that sedi-
mentation rate in the center of Lagoa dos Patos was 0.52 mm/year. In Guanabara, a 
comprehensive study by Figueiredo et  al. (2014) measured sedimentation rates 
between 5910 and 1500 cal years B.P., varying mostly between 0.2 and 0.8 mm/year 
(10 samples), with a few (3 samples) outliers reaching up to 8.7 mm/year. Sediment 
accumulation sped up between 1500 and 550 cal years B.P., with mean and maxi-
mum rates of 4 mm/year and 16 mm/year, respectively. Bastos et al. (2010) obtained 
a few radiocarbon dates from Vitoria spanning the last 7240 cal years B.P., suggest-
ing sedimentation rates of 0.5  mm/year at the margins of the main channel and 
0.2  mm/year in the thalweg. A last Holocene sedimentation rate is reported by 
Rodrigues (2014), with values between 3.3 and 10.0  mm/year for the mangrove 
plains in Coreaú.

Historical sedimentation rates estimated by means of 210Pb, and normally cor-
roborated by the depth of 137Cs concentration and other anthropogenic elements, 
vary between 3.5  mm/year and 76.0  mm/year amongst estuaries. Toldo Jr et  al. 
(2006) report on sedimentation rates of 3.5–8.3 mm/year in the last 150 years in 
Lagoa dos Patos. Similar rates, between 5.2 and 6.1 mm/year, were measured in 
Guaratuba by Patchineelam et al. (2011). In Sepetiba these rates present larger spa-
tial differences, varying between 3.0 mm/year and 12 mm/year in the subtidal area 
(Forte 1996; Gomes et  al. 2009; Patchineelam et  al. 2011; Borges and Nittrouer 
2016) to 22 mm/year in the mangrove plains (Borges and Nittrouer 2016).

Significantly higher rates of sediment deposition have been observed in 
Paranaguá, Santos, Guanabara, and Todos os Santos. In Santos, well upstream from 
port and dredged areas, Luiz-Silva et  al. (2012) measured rates of 76  mm/year 
between the 1950s and 1970s, and 66 mm/y between 1976 and 1984. Since then, 
the average sedimentation rate has been around 20 mm/year. Noteworthy changes in 
modern sedimentation rates were also identified by Godoy et  al. (1998), who 
calculated rates between 1.2 mm/year and 2.8 mm/year prior to 1950, and 6.1 mm/
year to 26.0 mm/year since then in Guanabara. In Todos os Santos, Argollo (2001) 
and Andrade et al. (2017) measured rates of deposition varying from 3.8 mm/year 
to 15.0 mm/year in nine sediment cores, with limited indication of changes in the 
historical record.

1.5  �Final Considerations

Forty-one large estuaries were identified along the Brazilian coast, where significant 
changes in coastal relief, pluviosity, geology, tidal ranges, and alongshore drift 
exist. The coast was subdivided in three sectors on the basis of pluviosity (wet and 
arid coast), costal geomorphology (tide and wave dominated), and structural 
geology (grabens running along or cross-shore). The North Sector has the highest 
number of large estuaries, with an average of 1 estuary every 34 km. It encompasses 
a long subsiding coastal zone, scantily studied, with tide-dominated, funnel-shaped, 
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coastal-plain estuaries. The Northeast Sector, with north and an east facing sub-
sectors, is an arid coast, characterized by small mesotidal estuaries within grabens 
that tend to be transversal to the coast and undergoing strong influence of littoral 
drift in the north-facing sub-sector. It has the second largest number of estuaries, but 
72% of those are located in the East sub-sector. The East-Southeast Sector is the 
longest coastal span but has the lowest number of large estuaries. This sector is 
again humid, where wider and deeper estuaries, with generally small catchment 
areas, are fit within grabens that run parallel to the coast.

The estuary sizes are not positively correlated with the tidal range. Linear posi-
tive correlations exist, however, with river discharge in the East-Southeast and 
North sectors, and may indicate that fluvial incision was an important factor for the 
development of the estuaries in these zones. This is quite possibly the case in the 
North Sector, where large-scale coastal subsidence is identified and classic coastal-
plain estuaries have evolved. Indeed, a positive linear trend is also observed between 
catchment area and estuarine area. Weaker positive correlation in the East-Southeast 
sector is apparently associated with varying tectonic control of the estuaries and 
their catchment area.

Data on fluvial sediment discharge is still sparse and apparently with large errors 
involved. Given the significant changes in the historical rates of sediment deposition, 
sediment yield must be changing considerably on decadal time scales. Sedimentation 
rates reflect the magnitude of the suspended sediment discharge as well as the area 
available for deposition. Larger (smaller) estuaries have lower (higher) sedimentation 
rates for a same sediment discharge. For instance, highest sedimentation rates in 
Santos are at least three times higher than in Todos os Santos or six times higher 
than Lagoa dos Patos. Despite having fluvial discharges 2–20 times higher than 
Santos, these latter estuaries are 10 and 60 times larger than the former. To date, 
there is no record of classical turbidity maximum zones in the investigated Brazilian 
estuaries cited herein, albeit zones of maximum turbidity have been reported in 
places of stronger tidal flows (Mantovanelli 1999).

Estuarine circulation apparently has a relevant role in trapping fine sediments 
inside the deeper and wider estuaries, where a muddy lithofacies has been mapped. 
In the German Wadden Sea, estuarine circulation has been found to finally offer a 
more generic explanation for its extensive mud accumulation, after years of debate 
on whether scour and settling lags, Stokes drift or asymmetrical tidal currents were 
key driving processes for the landward mud transport (Floser et  al. 2011). The 
presence of this mud facies in the mixing zone of the estuaries, always flanked by 
sandy lithofacies in the sea- and landward sides, creates some similarity amongst 
quite a few estuaries in respect to potential zonation of the benthic fauna, regardless 
of differences in the thermohaline fields.

The amount of existing information on the estuaries is extremely skewed, with 
estuaries in the East-Southeast Sector more thoroughly, albeit unevenly, investigated 
than in the Northeast and North sectors. An exception is the knowledge on their 
structural control, with Northeast estuaries better investigated in this respect. 
Although scattered, evidence of tectonic subsidence for several estuaries mapped in 
this study are compelling enough to encourage a series of chronostratigraphic 
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studies to test this hypothesis. The possibility that local subsidence is accentuating 
ongoing sea level rising rates (Church et al. 2013) deserves due consideration, as 
long-term planning for urban and industrial accommodation of the predicted eustatic 
sea level rise is generally based on open coast sea level data.
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Chapter 2
Benthic Estuarine Assemblages 
of the Brazilian North Coast  
(Amazonia Ecoregion)
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Abstract  Despite its ecological and economical importance, the Brazilian North 
Coast (BNC) or Amazonia Ecoregion sensu Spalding et  al. (Bioscience 57:573–
583, 2007), was poorly studied until the 1980s, when major interdisciplinary coastal 
research programs began. The Amazon and other major rivers strongly influence the 
BNC, causing seasonally reduced surface salinity and significant sediment deposi-
tion. From February to March, monthly accumulated rainfall is 400 mm or more and 
estuarine salinity varies between 0 and 10, but reaches over 40 in the dry season. 
Mangrove vegetation, with narrow seaward fringes of salt marsh, dominates the 
BNC. Macrotides between 4 and 7 m expose large areas of muddy to sandy sedi-
ments at low tide. Tidal amplitude is twice as large during spring tides, inundating 
large areas of mangrove. Tidal export, as well as riverine discharge, determines 
BNC dissolved nutrient profiles. Despite high turbidity, BNC estuaries have high 
phytoplankton biomasses and washout of benthic microalgae may also contribute to 
high chlorophyll-a concentrations. Though benthic diversity is low, secondary pro-
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ductivity in sediments is high, and important for nutrient cycling, especially in man-
grove forest. The uçá-crab (Ucides cordatus) is economically important in the 
region. Strong gradients in salinity, along both the coast and individual estuaries, 
determine the relative abundance of freshwater and marine benthic taxa but abun-
dance and diversity are lower in the wet season. Although relatively conserved, 
there is increasing pressure on the BNC through urban expansion, organic pollution, 
mangrove logging, and over-harvesting of coastal resources. With only 17 protected 
and especially managed areas along the BNC, the implementation of conservation 
policies is, so far, unsatisfactory.

Keywords  Northern Brazil Coast · Amazon · Benthos · Impacts

2.1  �Introduction

The northern coast of Brazil, the so-called Brazilian North Coast (BNC), corre-
sponding to the Amazonia Ecoregion of Spalding et al. (2007), extends from Cabo 
Orange in Amapá (AP, Amapá State) (05°N, 051°W) to Ponta do Tubarão in 
Maranhão (MA, Maranhão State) (04°S, 043°W) (Fig. 2.1) and encompasses doz-
ens of estuaries and thousands of km2 of mangrove forests (Souza Filho et al. 2009). 
This coastal region is strongly influenced by the Amazon river, which has an aver-
age discharge of approximately 1.73 × 105 m3 s−1, which represents about 30% of 
the freshwater entering the Atlantic Ocean and is responsible for reducing the sur-
face salinity of the water in this area and for an annual input of approximately 
754 × 106 tons of sediments (Martinez et al. 2009; Wisser et al. 2010).

The BNC is dominated by semidiurnal macrotides with tidal range of 4–11 m 
(DHN 2018). The climate is tropical humid with a mean annual temperature of 
27.7  ±  1.1  °C and a mean annual precipitation (30-year record) from 2300 to 
2800 mm (Moraes et al. 2005). Precipitation varies considerably over the year, with 
a well-marked rainy season from January to July, with mean total monthly rainfall 
of around 350 mm; and a dry season from August to December, with total rainfall 
of less than 50 mm (Moraes et al. 2005).
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The estuaries of the Brazilian North Coast are composed of mangrove and muddy 
tidal flats with numerous narrow inlets forming estuaries and bays subject to strong 
coastal dynamics on the eastern side of the mouth of the Amazon (Souza Filho et al. 
2009; Lara et al. 2010; Isaac and Ferrari 2017). Over 80% of Brazil’s mangroves are 
found in the BNC (Kjerfve and Lacerda 1993). Mangroves can extend more than 
40 km landward following the course of numerous small estuaries and bays (Souza 
Filho et al. 2009). Along the coast of the states of Pará (PA) and Maranhão, man-
groves form a continuous belt of about 7423.6 km2 (480 km long), representing the 
most extensive continuous belt of mangroves globally (Nascimento et al. 2013). The 
vegetation is dominated by mangrove, mainly Rhizophora, Avicennia, and 
Laguncularia (Menezes et al. 2008), with a seaward fringe of salt marsh (Braga et al. 
2011) and large areas of muddy to sandy sediments exposed at low tide (Souza Filho 
et al. 2009).

The Brazilian North Coast has been visited by explorers and researchers since 
1500, when Vicente Yañez-Pinzón explored the river Oiapoque and the mouth of the 
Amazon river, which he called “Mar dulce” (freshwater sea). Between 1541 and 
1542 the expedition led by Francisco Orellana discovered the lands between the 
actual Amazon and Pará states, describing the potential riches and the Amazons 
(tribe of women warriors) who lived there. Closing the cycle of expeditions and 
aiming to take possession of the newly discovered territories, the Pedro Teixeira 
expedition (1637–1638) crossed the Amazon river from Cametá in Pará to Quito in 
Peru, beginning the colonization of the Brazilian Amazon (Corrêa 1997).

In the seventeenth century, several expeditions with a geographic and scientific 
interest visited the coastal zone of the states of Maranhão, Pará, and Amapá aiming 
at the demarcation of the territories conquered there by the Portuguese Crown as 
well as the observation and cataloging of the fauna and flora. Among these, one 
deserves special mention, the “Comissões Demarcadoras de Limites” (1754, 1780) 
that crossed the Amazon region producing maps with a high level of accuracy and 
Alexandre Rodrigues Ferreira’s “Philosophical Journey” (1783–1792), which com-
plemented the latter and had a more scientific focus. In both expeditions, the repre-
sentation of landscapes reflects political and military objectives of Portugal. Some 
descriptions are predominantly naturalistic (zoological, botanical, or anthropologi-
cal) and others essentially geographic (Sanjad and Pataca 2007).

Several artistic and scientific expeditions visited the BNC making records on 
both the physical environment and biota. Between 1819 and 1820, the naturalists 
Johann Spix (a botanist) and Karl Martius (a zoologist), members of the Scientific 
Mission of Natural History, known as the Austrian Mission, crossed the Amazon 
River from Belém to the border with Peru and Colombia. This expedition resulted 
in the works “Reise in Brasilien,” published in 3 volumes (1823, 1828, and 1831), 
and “Flora brasiliensis,” composed of 15 volumes published between 1840 and 
1906. The German Eduard Poeppig crossed the Amazon River, from Peru to its 
mouth and published the botanical and zoological results of his trip in the books 
“Reise in Chile, Peru und auf dem Amazonenstrome: während der Jahre 1827–
1832” and “Nova genera ac species plantarum, quas in regno Chilensi Peruviano et 
in terra Amazonica: annis MDCCCXXVII ad MDCCCXXXII.” In the nineteenth 
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century, the French Francis de Castelnau traveled 4800  km in the Amazon river 
from Peru to its mouth in the Atlantic Ocean making botanical, zoological, geo-
graphic, and geological records. The results of Castelnau’s expedition were pub-
lished in 15 volumes under the title “Expédition dans les parties centrales de 
l’Amérique du Sud: de Rio de Janeiro à Lima, et de Lima au Pará” (Sanjad and 
Pataca 2007).

From the early twentieth century until the 1980s, research in the Amazon was 
mostly directed towards rainforests (Eastern Amazonia) and there were very few 
coastal zone studies. Although in 1966 there was information on the geology and 
formation of the northern coast of Brazil (Ackermann 1966), and in the 1970s the 
RADAMBRASIL Project (Amazonas Radar Project after 1975, Radambrasil Project) 
presented data on geology, geomorphology, soil, vegetation, and land use in the BNC 
(Brasil 1973, 1974a, b), Mendes (2005) points out that until 1980 the estuaries of the 
Brazilian North Coast remained almost unstudied from a geological and sedimento-
logical point of view. Similarly, Damazio et al. (1989) and Lana et al. (1996) pointed 
out that knowledge of biological communities from the Amazonian coastal zone was 
incipient (although increasing in number) and fragmented until the 1980s.

In general, systematic and multidisciplinary studies on Amazonian estuaries 
began (or grew substantially) from the 1980s onwards when national and interna-
tional research projects were started. These studies brought together researchers 
from several Amazonian as well as other Brazilian and foreign institutions. Probably 
the first research initiative focusing on the Amazonian estuaries (although only con-
sidering geology and geomorphology) was the PROMAR project (Research 
Program in Marine Sciences—1982/1990) of the Center of Geosciences of the 
Federal University of Pará. Subsequently, several research projects were carried out, 
as: Atlantic Coast (1983/1989); GLOBESAR 2—Application of RADARSAT in the 
NE of Pará (coastal plain of Bragança) and Golfão Maranhense (1998/2000); 
MADAM (Mangrove Dynamics and Management—1995/2005); RECOS 
Millennium Institutes (Use and Appropriation of Coastal Resources—2000/2004); 
PIATAM mar (Potential Environmental Impacts of Transport of Petroleum and 
By-products in the Amazon Coastal Zone—2004/2008).

Following the general trend, studies of benthic communities from the BNC were 
also intensified in the 1980s. Between the 1960s and 2000s, research programs 
focused on the estuaries of the island of São Luis (MA) and the Ajuruteua Peninsula 
(PA, Pará State) and aiming at producing lists of species of macroinvertebrates, par-
ticularly molluscs and crustaceans (Coelho 1967/69; Matthews et al. 1977; Coelho 
and Ramos-Porto 1980; Costa and Silva-Mello 1983; Ferreira 1989; Reis 1995). 
From the 2000s, the number of studies grew exponentially (in both number of study 
areas and approaches), including meiofauna, with research being carried out in sev-
eral estuaries, and covering subjects as diverse as spatial and temporal variability 
(Rosa Filho et  al. 2011; Silva et  al. 2011; Braga et  al. 2013; Ataíde et  al. 2014; 
Rodrigues et al. 2016), effects of anthropogenic activities (Paula et al. 2006; Aviz 
et al. 2012; Venekey and Melo 2016), genetics (Santos et al. 2005; Melo et al. 2010, 
2013); population dynamics (Koch et  al. 2005; Lucena-Frédou et  al. 2012; Rosa 
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Filho et al. 2013; Aviz et al. 2016), and trophic ecology of some coastal macroinver-
tebrates (Koch and Wolff 2002; Nordhaus et al. 2006; Koch and Nordhaus 2010).

2.2  �General Physical and Chemical Characteristics

The main hydrodynamic driver along the Brazilian North Coast is the semidiurnal 
macrotidal regime (Fig. 2.2). The distance between the African and South American 
continents results in a condition of near-resonance, which enhances the tidal ampli-
tude in the western Atlantic (Cartwright et al. 1991). Usually the tidal range is twice 
as large during spring tides. In addition, there is substantial tidal deformation as it 
propagates along the estuaries. A strong asymmetry is observed, progressively 
extending the ebb and shortening the flood phase upstream. A slight amplification 
usually occurs at the estuarine funnels, but substantial attenuation is observed by 
water levels between the lower- and upper-estuary and the major reduction in the 
tidal range is related primarily to the extensive outflow into the marginal mangroves 
and the friction produced by the partial dissipation of the tidal energy. Figure 2.3 
shows the tides propagating during spring tides in Taperaçu estuary (PA).

Despite the general concept of stable and high air temperature in equatorial 
regions, rainfall and, consequently, riverine discharge vary substantially along the 
year; the Intertropical Convergence Zone (ITCZ) is the primary factor determining 
the seasonal climatic pattern on the Amazonian coast (Marengo 1995). Based on 

Fig. 2.2  Tidal range (m) recorded during spring tides by Centro de Hidrografia e Navegação 
(Brazilian Navy): Barra Norte do Rio Amazonas (BNRA), Porto de Santana (PS), Atracadouro de 
Breves (AB), Porto Vila do Conde (PVC), Porto de Belém (PB), Ilha do Mosqueiro (IM), Ilhas dos 
Guarás (IG), Fundeadouro de Salinópolis (FS), Porto de Itaqui (PI), Terminal do Alumar (TA), 
Terminal da Ponta da Madeira (TPM), São Luís (SL), Porto de Tutóia (PT), and by field cam-
paigns: Paracauari (Par), Murubira (Mur), Colares (Col), Marudá (Mar), Princesa (Pri), Taperaçu 
(Tap), Ajuruteua (Aju), Caeté (Cae), and Gurupi (Gur). Micro: microtides, Meso: mesotides, 
Macro: macrotides, Hyper: Hypertides
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local historical records, there is a typically distinct rainy season between December 
and June when the ITCZ shifts to the southern hemisphere (near 10°S), causing an 
increase in rainfall along the Amazon coastal zone. Drier conditions predominate 
after July when the ITCZ shifts to the northern hemisphere. During these months, 
accumulated monthly rainfall (<50 mm) decreases and may often be close to zero, 
especially in September, October, and November along the eastern sector of the 
Amazonian coast. Even close to the Amazon river mouth and at the northwest sec-
tor, rainfall drops down to about one quarter of that observed during the rainy season 
(Fig. 2.4, INMET 2017).

The local tidal range also plays an important role in the determination of the dis-
solved nutrient profile in Amazonian estuaries, due to the flooding of extensive 
areas of mangrove during each tidal cycle. Nevertheless, a remarkable difference in 
conditions during spring and neap tides comes from the fact that mangroves are 
only effectively flooded during spring tides, which changes the entire hydrodynamic 
and biogeochemical scenario on a weekly basis (Dittmar and Lara 2001). In fact, in 
mangrove areas, the high tide may also reach certain nutrient-rich environments, 
such as those between the Caeté and Taperaçu rivers (Fig. 2.5), which are connected 
by tidal flooding of the Taici Creek (Asp et al. 2012; Araújo and Asp 2013), and the 
flooding of adjacent mangroves and wetland areas leads to an additional input of 
water richer in dissolved nutrients and chlorophyll-a, mainly in the upper-estuary.

Furthermore, seasonal riverine discharge pattern is other major force controlling 
oscillations in dissolved nutrient and chlorophyll-a concentrations (Santos et  al. 
2008; Pamplona et al. 2013). With the overall reduction in rainfall and consequently, 
riverine discharge during the dry season, the waters of the entire Amazon coastal 
zone are characterized by a tendency towards reduced concentrations of dissolved 
nutrients (DeMaster and Pope 1996; Geyer et al. 1996).

Fig. 2.3  Tides propagating during spring tides into Taperaçu (PA) estuary from lower- to upper-
estuary. Water level oscillations were recorded every 10 min using a tide data logger (TWR 2050)
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Fig. 2.4  Historical data (2000–2016) of mean rainfall per month (mm) in Macapá (AP, Amapá 
State), Belém (PA, Pará State), and São Luís (MA, Maranhão State) from the Brazilian Meteorology 
Institute (INMET)
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Annually, water temperature is high and stable (normally between 25 and 29 °C) 
around BNC.  During the dry season, riverine discharge is reduced, and a larger 
volume of seawater enters the estuaries, with salinity reaching values around 40 
(Pereira et al. 2013) in Atlantic coastal waters and decrease to 5–10 (Costa et al. 
2012) in Marajó bay (Fig. 2.5). During the rainy season, salinity values can fall to 
zero, depending on both precipitation and riverine discharge. High turbidity is 
recorded during the rainy season (high riverine discharge) but also in the dry season, 
when combined higher tidal cycles and strong tidal currents re-suspend the fine 
material from the bottom into the water column. During the rainy season the sus-
pended sediment concentrations (SSC) often reaches 1 g L−3 inside estuaries, with 
values up to 3 g L−3 at the maximum turbidity, whereas SSC around 0.25 g L−3 are 

Fig. 2.5  Hydrological data (mean values) of Total Nitrogen, Total Phosphate, Turbidity, and 
Chlorophyll-a along Caeté and Taperaçu estuaries (PA). US: Upper-estuary, MS: Middle-estuary, 
LS: Lower-estuary
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typical of the dry season (Asp et al. 2016). Despite their high turbidity, which is 
considered a major factor limiting primary productivity, estuarine Amazon waters 
typically present high phytoplankton biomass. Nevertheless, it is likely that the 
presence of microphytobenthos, washed out of adjacent mangroves and wetland 
areas, contributes to the increase of chlorophyll-a concentrations along the entire 
Amazonian coast (Pamplona et al. 2013; Pereira et al. 2013).

BNC estuarine waters are normally well-oxygenated as consequence of both high 
levels of photosynthetic activity and intense water-atmosphere interactions generated 
by strong hydrodynamics and winds, primarily during the dry season. As might be 
expected, these hydrodynamic interactions are most intense in the lower-estuaries, 
which is more exposed to the wind and breaking waves (common in some local estu-
aries). Conversely, dissolved oxygen (DO) concentrations mostly presented daily 
oscillations in the upper-estuary, with high values recorded during the daylight period, 
when the sunlight stimulates the production of phytoplankton, and low ones during 
the night, when phytoplankton production is minimal (Dittmar and Lara 2001).

In the Taperaçu estuary (PA), for example, the presence of orthophosphate and 
total phosphorous are clearly associated with the influence of marine waters and the 
re-suspension of sediments during the dry season, when salinity is higher, coinciding 
with the strongest winds and currents. Water turnover takes longer where energy is 
low, as in the upper-estuary, which benefits phosphorous cycling and raises its con-
centration in the water column. An opposite pattern is normally recorded for nitro-
gen compounds. In contrast with the nitrogen and phosphorus cycles, which involve 
biological remineralization, the production of silicates in aquatic environments is 
basically a physical-chemical process. The Amazon River discharges approximately 
10% of the total amount of silicates of fluvial origin deposited into the world’s 
oceans (DeMaster et al. 1986), being other local rivers on the Amazon coast are also 
important sources of this material (Pereira et  al. 2010; Pamplona et  al. 2013). In 
general, a clear relationship is also found between high silicate concentrations and 
the increase in chlorophyll-a (Pereira et  al. 2012). Thus, siliceous phytoplankton 
(diatoms) constitute one of the most abundant phytoplankton groups in estuarine and 
marine Amazon waters (Matos et al. 2011; Pereira et al. 2013).

2.3  �Benthic Fauna

2.3.1  �Assemblage Composition

The BNC benthos is one of the least known faunas in Brazil, both in terms of tax-
onomy and ecological processes (Lana et al. 1996; MMA 2002). Most studies car-
ried out in BNC estuaries are recent, starting in the 2000s, and concentrated in the 
state of Pará. The taxonomy of many faunal groups is still undetermined, with many 
organisms identified only at the generic or supra-generic levels, therefore requiring 
specialist review. Thus, the different levels of taxonomic resolution, as well as 
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sampling effort adopted in studies, must be considered when discussing patterns of 
benthic faunal biodiversity and distribution in the region. Mangroves are the best-
known BNC coastal environment and intertidal areas are better sampled than sub-
tidal zones. Most benthic studies generally comprise faunal inventories and present 
abundance and biomass data that are both spatially and temporally limited in scope, 
with little information about population dynamics, biomass, and secondary produc-
tion, except for species of economic interest. The macrofauna is the most studied 
group and is dominated by crustaceans, annelids, and mollusks.

The mangrove habitat mosaic is responsible for high benthic production both 
within the mangrove and along the coast (Wolff et al. 2000; Isaac and Ferrari 2017). 
This is caused by a tightly coupled nutrient cycling (Wolff et al. 2000), along with 
a macrotidal regime (Souza Filho et al. 2006) and strong seasonal variation in fresh-
water input (Araújo and Asp 2013) and consequently temporally variable coastal 
nutrient input via mangroves (Dittmar and Lara 2001). However, the species rich-
ness of the BNC benthic faunal assemblages is relatively poor (Bernardino et al. 
2015). General seasonal and spatial variation in benthic abundance and composition 
along the North Coast accompanies the environmental variability described above 
(Rosa Filho et al. 2009; Silva et al. 2011; Aviz et al. 2012; Melo et al. 2013; Andrade 
et al. 2014).

2.3.1.1  �Mudflats

Although apparently homogeneous, large areas of muddy and/or sandy sediment 
may have significant variation in topography, with temporary pools of tidal water 
(Silva Júnior and El-Robrini 2001; Souza Filho et al. 2009; Krause 2010). Muddy 
flats are crossed by tidal channels of varying width and depth, which may have large 
areas of sand and/or gravel just beneath the muddy surface. A large number of man-
made fishing structures, called “currais” (fixed tidal trap) (Barletta et al. 1998; 
Krause 2010), is set up along mudflats, thus creating a variety of habitats and micro-
habitats for the benthic fauna. The epibenthic fauna in mudflats is dominated by 
gastropods and crabs. Large gastropods such as Pugilina morio and Thais sp. are 
detritivores and appear to require structurally solid refuges, being common around 
“currais,” where they feed on the remains of fish (Beasley et al. 2005), and/or near 
fallen mangrove trees. Other smaller gastropods such as Nassarius vibex occur on 
the muddy surface and are especially common where tidal water is draining away or 
in the tidal creek itself. Various types of fiddler crabs (Koch et al. 2005) occur in 
open areas and exposed creeks, whereas swimming crabs such as Callinectes danae 
and C. bocourti are common in lower tidal areas and tidal creeks, where they are 
caught by artisanal fishermen (Bentes et al. 2013). In low-lying muddy flats, large 
areas may be covered with mats of the mussel Mytella charruana, which is heavily 
exploited in the region (Carranza et al. 2009; Santos et al. 2010).

The estuarine mudflat infauna is mainly composed of bivalves, crustaceans, and 
annelids. The clam Anomalocardia flexuosa is common in muddy areas with underly-
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ing gravel and is also harvested for food (Silva et al. 2014). Crustaceans such as the 
thalassinidean shrimps, which inhabit deeper parts of sandy/muddy sediment, are 
important bioturbators due to the deep and extensive burrows they create (Felder 2001). 
The muddy flats infauna is dominated by polychaetes with overall diversity lower than 
in the sediment of the adjacent mangrove vegetation (Rosa Filho et al. 2006).

2.3.1.2  �Salt Marshes

Along the BNC, salt marshes composed of Spartina alterniflora colonize bare sedi-
ment on the seaward edge of the mangrove, forming a narrow strip of patches of salt 
marsh, which vary in area between 22 and 3700 m2 (Braga et al. 2013). Spartina salt 
marshes harbor a wide variety of taxa, with dominance of polychaetes, such as 
Laeonereis sp., Isolda sp., Namalycastis sp., Capitella sp., Heteromastus sp., iso-
pods and the gastropod Neritina virginea (Braga et al. 2009). Although no vertical 
zonation in macrofaunal abundance and composition was found (Braga et al. 2011), 
the number of individuals is positively correlated along the Pará coast with Spartina 
density, sediment water and organic matter contents, salinity and Spartina height 
(Braga et al. 2011). Higher macrofaunal abundance and diversity occur in the dry 
season, when the marine fauna is typically composed of malacostracid crustaceans 
(mostly tanaids and ostracods) and polychaetes (mostly Capitellidae), and higher 
water salinity and temperature, and sediment organic matter content occur (Braga 
et  al. 2013). Along the Pará coast, abundance and numbers of macrofaunal taxa 
were associated with increasing pore water salinity in Spartina salt marshes, from 
west to east, coinciding with patterns of rainfall in the region (Braga et al. 2011).

2.3.1.3  �Mangroves

Rhizophora is the most widely distributed mangrove tree genus. R. mangle domi-
nates in estuaries more exposed to the ocean. The other two Rhizophora species, R. 
racemosa and R. harrisonii, occur in less saline estuaries. Avicennia germinans is 
more frequent in elevated and less inundated areas and A. schaueriana is recorded 
mainly near sandy beaches. Laguncularia racemosa occurs along the entire BNC in 
saline as well as in brackish water and mostly occupies forest edges, large gaps, 
riparian sites, and other open areas (Menezes et al. 2008).

The semi-terrestrial mangrove crab (Ucides cordatus), also called uçá-crab, is 
the most important component of the assemblage, with almost three times the bio-
mass of other aquatic components in the mangrove (Wolff et al. 2000). This species 
is exploited for sale in markets both in Pará and along northeastern Brazil (Furtado-
Junior et  al. 2016). The most conspicuous members of the epifauna, besides U. 
cordatus, include predatory crabs such as Callinectes spp., Eurytium limosum and 
Panopeus lacustris, and fiddler crabs, Uca spp. (Sousa et  al. 2015), which show 
distinct preferences for humidity, temperature, and organic matter contents among 
the mangrove forest, small creek, and large exposed creek habitats (Koch et  al. 
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2005). Ucides is also ecologically important since it processes most of the man-
grove detritus (Nordhaus et al. 2006) resulting in tightly coupled nutrient cycling 
among crabs, bacteria, and mangrove trees (Wolff et al. 2000). Other relevant com-
ponents of the fauna include the boring bivalves (shipworms and pholadids), which 
occur in logs, the large gastropod Thais sp., which occur in creeks and around logs, 
infaunal and log-dwelling annelid worms, mainly polychaetes and oligochaetes, and 
shrimps and juvenile crustaceans in the tidal creeks (Wolff et al. 2000). The most 
common species of shipworm in the mangrove in this region is Neoteredo reynei 
(Santos Filho et al. 2008) and is harvested along the BNC and sold in markets and 
restaurants, as well as consumed locally. The shipworms N. reynei and Bankia fim-
briatula occur in saltwater, whereas Psiloteredo healdi may be found in habitats 
with a strong freshwater influence (Santos et al. 2005). Mangrove oysters are found 
encrusting rocks in low intertidal areas and, although exploited extensively (Beasley 
et al. 2010), are increasingly cultivated for local and remote markets (Sampaio and 
Boulhosa 2007; Sampaio et al. 2017).

Mangrove trees are habitat for many small gastropods including Littoraria angu-
lifera and Melampus coffeus, among others (Beasley et al. 2005). Decaying man-
grove logs provide microhabitats for a diversity of macroinvertebrates. Aviz et al. 
(2009) recorded 31 taxa including Nemertea, Gastropods, Polychaetes, decapod 
crabs, amphipods, isopods, and a smaller number of insects. Andrade et al. (2014) 
found 85 macrofauna taxa in decaying mangrove logs in Pará, with a more marine 
fauna at an island location and a more terrestrial fauna at a peninsular site, as well 
as greater dominance and lower diversity in the wet season, like the pattern described 
for the sediment macroinfauna.

2.4  �Spatial and Temporal Patterns of Faunal Diversity, 
Abundance, and Biomass

The benthic fauna of Amazonian estuaries is relatively poor in species, particularly 
in intertidal areas. Spatial and temporal variation of the benthos are mainly deter-
mined by freshwater discharge from dozens of rivers that flow to the coast, associ-
ated with marked seasonal variation in rainfall, as well as the macrotidal regime. In 
estuaries near the mouth of the Amazon River, which have muddy bottoms and low 
salinity, the benthic fauna is composed of euryhaline species, as well as freshwater 
or terrestrial animals (Fig. 2.6). Far from the influence of the large rivers, other types 
of substrate become more frequent and the fauna is of typically marine origin 
(Almeida 2008; Gomes 2008; Aviz et al. 2012; Rosa Filho and Aviz 2013). Strong 
salinity gradients are observed along estuaries. Communities typical of freshwater 
(e.g., dominated by Nephtys fluviatilis and tubificid oligochaetes) occur in the upper 
estuarine regions, a brackish-water fauna in the middle-estuary, and a more diverse 
and abundant marine fauna in the lower-estuary (Silva et al. 2011; Aviz et al. 2012).

Temporally, in most estuaries, there is wide variation in macrofaunal abundance 
and composition between the peak wet (February–April) and dry (September–
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November) periods of the year (Silva et al. 2011; Melo et al. 2013; Pamplona et al. 
2013). In more saline estuaries, highest richness and abundance occur in the dry 
season (Amazonian summer—monthly accumulated rainfall <50 mm), since the sig-
nificant decrease in salinity in the rainy season causes physiological stress to marine 
organisms. Estuarine areas permanently meso- to oligohaline, where freshwater spe-
cies or those tolerant to low salinity are dominant, may present greater richness and 
abundance in the rainy season (Almeida 2008; Rosa Filho and Aviz 2013).

Fig. 2.6  Relative abundance and number of taxa of macrobenthic fauna in Amazonian estuaries 
by (a) habitat and (b) Phylum. Data source: Maracá Island (AP, Amapá state) (Fernandes 2003), 
REBIO Piratuba (AP) (Almeida 2008), Guajará (PA, Pará state) (Rosa Filho and  Aviz 2013), 
Curuçá (PA) (Vasconcelos 2006), Caeté (PA) (Silva et al. 2011), Taperuçu (PA) (Braga et al. 2011, 
2013), São Luis Island (MA, Maranhão state) (Rebelo-Mochel 1997; Oliveira and Mochel 1999)
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The most economically important benthic species are the uçá-crab (Ucides cor-
datus) and the mussels of the genus Mytella. Estimates of the density (based on 
number of burrows) and biomass of U. cordatus vary widely along the coast. In 
Amapá state, values vary from 1.08  ind m−2 (Macapá, Calçoene, and Oiapoque) 
(Amaral et al. 2014) to 4.95 ind m−2 (23.2 t ha−1; Maracá Island) and 6.51 ind m−2 
(22.3 t ha−1; Vila de Sucuriju) (Fernandes and Carvalho 2007). In Pará, values are 
in a lower range and vary between 1.02 ind m−2 (1.5 t ha−1; Vizeu; Cunha 2016), 
1.21–1.36  ind  m−2 (1.2  t  ha−1; Quatipú; Silva 2008), 1.48 ind  m−2 (10.5  t  ha−1; 
Curuçá; Perote 2010), and 1.65 ind m−2 (1.4 t ha−1; Furo Grandeç Bragança; Diele 
2000). In Maranhão, values vary between 2.9 ind m−2 (3.5 t ha−1; Rio dos Cachorros) 
and 3.0  ind m−2 (4.5–5.1  t ha−1; Reentrâncias Maranhenses) (Castro 1986; Paiva 
1997). Variation in densities has been associated with the topography and flooding 
frequency by tides, vegetation characteristics, and harvesting pressure. In general, 
the highest values of U. cordatus density and biomass occur in well-preserved man-
grove areas and where harvesting pressure is lower.

Abundance and production data for Mytella are very scarce. In the Urumajó estu-
ary (PA), density and biomass of Mytella guyanensis are highly variable throughout 
the year (Santos et al. 2010). Densities of M. guyanensis may peak to 2500 ind m−2 
at the end of the dry season, and decrease to just 175 ind m−2 when the rainy season 
begins. Likewise, biomass can range from 1 (rainy season) to 650 g m−2 (dry sea-
son). Densities of M. falcata at two sites of the Curuca estuary (MA) varied between 
300 and 9000 ind m−2 (Fernandes et al. 1983). Greater mussel density may be related 
to higher salinity in Maranhão state, due to lower rainfall and riverine discharges, in 
comparison with Pará state.

2.4.1  �Amapá Estuaries

The Amapá coast is considered the best conserved and least populated area of the 
Brazilian coast, and it is also the one with the least known benthic fauna. The mac-
rofauna is not very diverse, due to the physiological stress resulting from the perma-
nently low water salinity caused by the high freshwater discharge from the Amazon 
and several other rivers to the coast. In addition, the high relief of the coast prevents 
the inundation of the mangrove forests by the tides (resulting in a low flooding fre-
quency) and the action of waves and currents cause strong erosion of the coastline.

In the estuarine portion of Maracá Island, 15 macrofaunal taxa were identified 
which have distinct distributions in the mangrove forest, according to the flooding 
frequency and the dominant tree species (Fernandes 2003). The highest macrofau-
nal diversity is recorded in Avicennia germinans and Laguncularia forests that are 
only flooded during spring tides, the tanaid Halmyrapseudes spaansi being the 
dominant species (~96% of total individuals, 286 ind m−2). In Rhizophora harriso-
nii forests, under drier conditions, densities are very low and only insects (Carabidae, 
Diptera e Collembola) occur (Fernandes 2003).
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Strong salinity gradients occur along the coastal region of the Piratuba Lake 
Biological Reserve (REBIO Piratuba—AP), which encompasses floodplain lakes 
(in coastal floodplain areas) and mangroves. These water salinity gradients are 
accompanied by changes in the benthic fauna, which varies from freshwater to 
estuarine-marine species (Almeida 2008). A total of 54 taxa were identified at 
REBIO Piratuba. In the coastal lakes, 32 macrobenthic taxa were recorded (mean 
density of 668 ind m−2), with dominance of the gastropod Heleobia sp. (36.6% of 
total individuals), Chironominae (15.6%), and Polymitarcidae (11.4%). In man-
groves, the mean density was 1353 ind m−2, and Mediomastus californiensis (46.8% 
of total individuals), Ostracoda (20%), and Nephtys fluviatilis (11.9%) were numeri-
cally dominant. In both coastal lakes and mangroves, species richness and abun-
dance are higher in the dry season (Almeida 2008).

2.4.2  �Pará Estuaries

Although along the Pará coast there are dozens of estuaries, only a few estuarine 
areas have been studied. Most studies were carried out in the Bragança Coastal 
Plain. In the Guajara estuary, where oligohaline waters occur throughout the year, 
the benthic fauna is abundant (>1000 ind m−2) but not highly diverse (22–39 taxa), 
being composed mainly of annelids, which represent 99% of total abundance and 
include Namalycastis abiuma, Nephtys fluviatilis, Mediomastus sp., Dero 
(Aulophorus) sp., Limnodrilus hoffmeisteri, and Paranadrilus desenlei (Rosa Filho 
and Aviz 2013). Polychaetes are dominant in areas closer to the estuary mouth, 
whereas oligochaetes are more abundant in the middle- and upper-estuary, expand-
ing their distribution to the lower-estuary in the rainy season (Aviz et al. 2012; Rosa 
Filho and Aviz 2013). In the Curuçá River estuary, the macrofauna is composed of 
73 taxa, with annelids representing 95% of the fauna in the rainy season and 65% in 
the dry season. The tanaid Halmyrapseudes spaansi is the most abundant species 
accounting for 32% of the total individuals. Temporal variation in benthic macroin-
faunal communities is not significant, although in the dry season, higher species 
richness and abundance occur (Vasconcelos 2006).

The benthic macroinfauna of intertidal mangroves, mudflats, and salt marshes of 
the Ajuruteua Peninsula is dominated by annelids, which account for more than 
90% of the total abundance (Acheampong 2001; Rosa Filho et al. 2006; Braga et al. 
2013). The epifauna is composed mainly of barnacles (Fistulobalanus citerosum), 
bivalves (Crassostrea gasar, Mytella charruana (syn. falcata)), and decapods 
(Koch and Wolff 2002; Beasley et al. 2010). Abundance and species richness vary 
enormously among areas. In unvegetated intertidal areas of the Caeté estuary, Rosa 
Filho et  al. (2006) recorded values ranging from 2625  ind  m−2 and 3 taxa, to 
96,625 ind m−2 and 16 taxa (Rosa Filho et al. 2006). In vegetated intertidal areas, 
17–27 taxa were found in salt marshes (Braga et al. 2011, 2013) and 23 taxa in 
mangroves (Braga et al. 2013). In the subtidal areas of the Caeté River, 83 macroin-
faunal taxa were distributed along a salinity gradient (Silva et al. 2011). In the upper 
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Caeté estuary (salinity 0–9) richness and density are low and euryhaline annelids 
(Namalycastis terrestris, Nephtys fluviatilis and Tubificidae) dominate. In the mid-
dle (salinity 10–20) and lower (salinity 17–28) Caeté estuary, richness and density 
increase and, although polychaetes are still dominant, there is a shift towards domi-
nance of species of marine origin (Mediomastus sp., Nephtys simoni, Sigambra gru-
bii and Armandia sp.). Seasonally, 15 taxa were restricted to the rainy season, 21 to 
the dry season, and 47 were common to both seasons. Densities are also higher in 
the dry season (1308 ± 288 SE ind m−2) than in the rainy season (679 ± 145 SE 
ind m−2) (Silva et al. 2011).

A total of 29 crab species (aquatic and semi-terrestrial) are known from the Caeté 
estuary, which have marked vertical zonation (Diele et al. 2010). Cardisoma guan-
humi is the only supratidal species and occurs in salt marsh vegetation. Aratus piso-
nii, Armases rubripes, Sesarma rectum, Uca rapax, U. vocator, and Ucides cordatus 
dominate the high intertidal zone of mangroves. For instance, Eurytium limosum, 
Panopeus lacustris, Pachygrapsus gracilis, S. curacaoense, U. thayeri, U. cumulanta, 
and U. maracoani are found mostly in the mid- and low-intertidal. In the subtidal 
zone, Arenaeus cribrarius, Callinectes bocourti, and C. danae are commonly found. 
A total of 30 species of bivalve and 19 species of gastropods were identified from the 
Ajuruteua Peninsula (Beasley et al. 2005). Of these, 14 occur only in mangroves, 
16 in estuarine sandy beaches, and 16 in other muddy-sandy substrates; only three 
species of Thaisella are common to the three environments (Beasley et al. 2005). 
Littoraria angulifera, Melampus coffeus, and Thais trinitatensis (Beasley et al. 2005) 
are frequently encountered on leaves, trunk, and branches of Rhizophora mangle. The 
highest densities of molluscs are generally recorded in the dry season (e.g., 
Anomalocardia brasiliana and Mytella guyanensis), although some have highest 
population densities in the rainy season (e.g., Tagelus plebeius) (Beasley et al. 2005).

The salt marsh macrofauna from nine estuaries along the Pará coast was com-
posed of 110 taxa, including 32 annelids, 29 molluscs, 24 crustaceans, and 19 
insects (Braga et al. 2009, 2013). This fauna presents a lower diversity, when com-
pared to other salt marshes in Brazil and around the world, although the taxonomic 
composition is similar (Braga et al. 2011). The fauna of salt marshes is more abun-
dant than in other unvegetated estuarine habitats, such as tidal channels and beaches, 
with richness and density being positively related to the density and height of the 
vegetation (Braga et al. 2013). Taxon richness and density varied from six to 36 spe-
cies and from 190 ind  m−2 to 105,443 ind  m−2 in Marapanim and Salinópolis, 
respectively. The higher densities in Salinópolis are due to the abundance of the 
tanaid Halmyrapseudes spaansi, which comprised 78% of the total abundance. A 
significant seasonal variation in salt marsh macrofaunal structure occurs, with a less 
diverse and abundant community in the rainy season.

Along the Pará coast, the macrofauna associated with galleries excavated by ship-
worms (Teredinidae) in mangrove trunks is generally well known. Dominated by 
crustaceans, this fauna is richer and more abundant than that found in mangroves and 
mudflats (Ferreira 1989; Aviz et  al. 2009; Andrade et  al. 2014). Ferreira (1989) 
recorded 40 taxa in galleries of teredinids (6 Mollusca, 7 Annelida, 27 Arthropoda) 
in nine estuaries, where the number of taxa tended to increase with salinity. There 
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was a clear pattern of species zonation inside the galleries with Brachyura generally 
found near the gallery exit, Amphipoda occupying the innermost areas, and 
Gastropoda in intermediate positions. In estuaries with a strong freshwater influence, 
species richness is higher in the dry season than in the wet season, whereas in the 
more saline estuaries the opposite occurs. Aviz et al. (2009) found 31 macrofaunal 
species inhabiting Teredinidae galleries in São Caetano de Odivelas. Crustaceans 
were dominant (53.4% of total; particularly Armases angustipes and Cirolana sp.), 
followed by molluscs (27.5% of total) and polychaetes (10.8% of total—especially 
Namalycastis abiuma). These authors also recorded an increase in the richness and 
density greater salinity. Andrade et al. (2014) identified 83 taxa at two mangrove sites 
with different salinities and, like Ferreira (1989), macrofaunal abundance in galleries 
was higher during the rainy season, especially at the site with higher salinity.

In northeastern Pará, relatively small areas with rocky outcrops interspersed with 
mud or sand are occasionally found in estuaries. These rocky outcrops are areas of 
high species density and diversity, being one of the few types of consolidated sub-
strates in the BNC. In rocky intertidal areas in Areuá Island, 85 macrofaunal taxa, 
both mobile and sedentary, were dominated by 32 polychaetes, 24 crustaceans, and 
21 molluscs (Morais and Lee 2014). The crustaceans Petrolisthes armatus, Parhyale 
sp. and Dynamenella tropica are the most frequent and abundant species. Mean 
macrofaunal density and biomass in this area are 2690  ±  334 ind  m−2 and 
55.870 ± 8.139 g m−2. Richness and biomass increase towards the subtidal zone; 
richness and density are higher during the rainy season, with no significant variation 
in biomass (Morais and Lee 2014).

Benthic communities in Sabellaria wilsoni (Polychaeta) reefs in Algodoal Island 
are probably the most diverse macrofauna along the Amazonian coast (Aviz 2015; 
Aviz et al. 2016). A total of 168 taxa were recorded, including 53 annelids, 46 mol-
luscs, and 47 crustaceans, as well as other benthic groups such as Porifera, Sipuncula, 
Bryozoa, Pycnogonida, and Ophiuroidea, which are relatively rare along the BNC 
(Aviz 2015). Macrofauna densities in the reefs varied between 11,013 and 
159,494  ind  m−2, whereas in the adjacent sediment, densities ranged from 127 to 
1519 ind m−2 (Aviz 2015). In the rainy season, the density of the sabellarids is highest, 
whereas the associated macrofauna presents a lower density and richness. On the other 
hand, in the dry season, when the reefs are eroded and almost completely destroyed 
due to the increase in wave and wind action, the density of sabellarids decreases, and 
there is an increase in the abundance of associated macrofauna (Aviz 2015).

2.4.3  �Maranhão Estuaries

In Maranhão state, almost all the information on benthic communities deals with 
faunal inventories carried out in the estuarine areas of the Island of São Luis. 
Mollusca is the best-known phylum, followed by Polychaeta. Matthews et al. (1977) 
present the largest list of mollusks from São Luis Island with 61 species identified 
(32 Bivalvia, 29 Gastropoda, and 1 Cephalopoda). In the infralittoral areas of the 
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São Marcos and São José bays, 38 species were registered (26 gastropods and 12 
bivalves) (Silva-Mello and Costa 1993). Costa and Silva-Mello (1983/1984) identi-
fied 11 gastropod and 8 bivalve species from the Mosquitos Strait and Côco and 
Cachorros rivers in the intertidal zone of São Luis Island.

In the estuarine regions of São Luis Island, Ribeiro and Almeida (2014) reported 
the occurrence of 38 species (with dominance of the Nereididae polychaetes), 
citing, however, that the richness should be much greater, since most of the studies 
did not identify Polychaeta to species level. In Maranhão estuaries, 21 species of 
Crustacea occur, with dominance of Ocypodidae and Penaeidae (Coelho-Costa 
2007; Sousa et al. 2015).

In Parnauaçú (São Luis Island) mangroves, 26 taxa of macrofauna were recorded 
(13 polychaetes, 5 molluscs, 5 insects, 1 polychaete, and unidentified species of 
nemertea and oligochaetes) (Oliveira and Mochel 1999; Mochel et al. 2001). The 
most abundant species were Nereis oligohalina (612 ind m−2), Isolda pulchella (232 
ind  m−2), Notomastus lobatus (120 ind  m−2), and Perinereis vancaurica (104 
ind m−2) (Mochel et al. 2001). Monteles et al. (2009) studied the molluscs and crus-
taceans exploited by artisanal fisheries in the Raposa river estuary and identified 
Anomalocardia brasiliana, Phacoides (= Iphigenia) brasiliensis, Mytella falcata 
[= charruana], Crassostrea rhizophorae, Callinectes sp., and Ucides cordatus as 
being those of greatest economic importance.

2.5  �Assemblage Succession

Along the Amazon coast, one of the main successions involving benthic organ-
isms occurs where bare sediment is colonized by salt marsh Spartina sp. followed 
by mangrove forest, similar to successions in other Brazilian mangrove areas 
(Fig. 2.7; Cunha-Lignon et al. 2009). Such changes may be relatively rapid. At the 
northern edge of Ajuruteua beach (Pará), this process occurred between 2009 and 
2013 (Beasley pers. obs.). However, in 2014, deposition of sand completely cov-
ered the developing mangrove. Thus, substantial associated changes in drainage, 
nutrient dynamics, as well as in sediment type, may also occur. Changes in the 
benthic macrofauna may be subtle and may require use of several indicator vari-
ables (for example, diversity and dominance indices or abundances of specific 
indicator taxa) to detect changes (Tang et al. 2014). This is particularly important 
in the Brazilian North Coast, where although benthic composition and abundance 
change along a gradient from the mangrove down through Spartina salt marsh to 
the muddy beach and tidal flats, many taxa are found in more than one of these 
habitats.

Marques-Silva et al. (2006) and Beasley et al. (2010) presented the only two 
studies on settlement and succession of benthic invertebrates on wooden panels in 
Amazon estuaries. The authors followed the settlement of three encrusting epi-
benthic macrofaunal species (Fistulobalanus citerosum, Crassostrea gasar, and 
Mytella falcata (= charruana)) in two creeks (Furo do Meio and Furo do Café) 
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Fig. 2.7  Succession from sand to salt marsh and young mangrove at a northern Brazilian estuary 
(Chavascal—0°48′29.4″S, 46°37′53.3″W). (a) Location of Chavascal and position and direction 
view of photos taken (arrows). (b) Bare sandy sediment in 2008 with Chavascal tidal channel imme-
diately before tree-line in background and left, and dune system on the right. (c) The same area in 
2013 with muddy sediment in the foreground, predominance of salt marsh vegetation and young 
mangrove saplings. (d) Areas of dense young mangrove and salt marsh at Chavascal inundated by 
the tide, as seen from the top of the dune system. (e) The succession was reset in 2014 with a heavy 
deposition of sand over the developing vegetation. Image and photo credits: (a) © Openstreetmap 
contributors, 2017, (b–d) Colin Robert Beasley, (e) Daniela de Nazaré Torres de Barros
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and one adjacent mangrove of the Ajuruteua Peninsula (PA). In both creeks, peak 
settlement of F. citerosum occurred during the wet season, whereas C. gasar set-
tled mainly during the dry season. By contrast, settlement of M. falcata was gen-
erally low during the entire year. Overall, settler density was usually greater on the 
underside of panels close to the creek bottom. When comparing settlement 
between creeks and mangrove, there were significant differences in number of 
settlers of the three species between habitats with very low levels of settlement, or 
none, in the mangrove forest, due to low inundation frequencies in the latter 
(Beasley et al. 2010).

2.6  �Processes Mediated by Benthic Organisms

Although the importance of benthic animals and plants as structuring forces in 
marine and estuarine environments has been known for a long time (Wild 1976; 
Mann 1982; Bouma et al. 2009), information on the role of benthic organisms in 
mediating biological, ecological, and geochemical processes in the estuaries of the 
Brazilian North Coast are still scarce. The few studies in Amazonian estuaries 
investigated the trophic ecology of epibenthic macrocrustaceans in Caeté man-
groves (PA) (Koch and Wolff 2002; Nordhaus et al. 2006; Koch and Nordhaus 2010) 
and the role of Sabellaria wilsoni reefs in associated macrofaunal communities in 
Algodoal Island (PA; Fig. 2.8) (Ataíde et al. 2014; Aviz 2015).

In the Caeté mangroves (Pará), a total of 29 species of aquatic and terrestrial 
crabs were recorded and Wolff et al. (2000) stated that much of the energy and nutri-
ent fluxes are either directly channeled through or dependent on these species. In 
this area, Ucides cordatus is the most important benthic leaf-consuming crab 
(Nordhaus et al. 2006), occurring at average densities of 1.7 individuals m−2 (Koch 
and Wolff 2002). U. cordatus has a small foraging radius (max. 1 m) and mainly 
collects mangrove litter near its burrow entrance, feeding on mangrove leaves 
(61.2  ±  17.5%), unidentified plant material and detritus (28.0  ±  17.0%), roots 
(4.9  ±  6.3%), sediment (3.3  ±  3.4%), bark (2.5  ±  4.1%), and animal remains 
(0.1 ± 0.4%) (Nordhaus et al. 2006). Most mangrove litter and propagules (81.15%) 
are eaten by U. cordatus (Nordhaus et al. 2006). A large part of the litter and propa-
gule production (43.51% in a R. mangle-dominated forest stand) is returned to the 
sediment as finely shredded detritus through feces (7.13 t dm ha−1 year−1) (Nordhaus 
and Wolff 2007). In turn, crabs’ feces have a low C/N ratio and provide an excellent 
growth medium for microorganisms (Koch and Nordhaus 2010).

Koch and Wolff (2002) hypothesized that interactions among mangrove trees, 
crabs, and bacteria form a positive feedback, where increased activity of any partici-
pant also benefits either directly or indirectly the activity of all others. They also 
postulated a positive feedback effect on primary production, since (1) nutrients and 
energy are retained, (2) nutrient remineralization is enhanced, and (3) the soil is aer-
ated by the burrowing activity of the crabs, decreasing anoxic conditions and pro-
duction of phytotoxins in the sediment. Although seemingly well established, the 
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feedback proposed by Koch and Wolf (2007) was not confirmed by Püllmans et al. 
(2016) who, in the same area, found that none of the measured abiotic sediment 
variables (salinity, organic matter content, reduction potential, CO2 efflux rates from 
the sediment) and biotic variables (leaf production estimated by the stipule fall rate) 
differed between treatments (crab removal, experimental control and control). It is 
important to point out that the experiment conducted by Püllmans et al. (2016) only 
lasted 1 year and used “crab removal” rather than “crab exclusion” since no fences 
or other artificial borders were placed around the experimental plots.

In Algodoal Island (PA), extensive reefs of Sabellaria wilsoni occur in the lower 
intertidal and in the shallow subtidal zones. These structures may have ball or 
platform-like shapes and can extend for more than 500 m with widths of more than 
50 m. In this area, the reefs cause a clear change in the bottom topography, provid-
ing a three-dimensional consolidated substrate above the surface that is colonized 
by invertebrates and vertebrates (Aviz 2015). The presence of reefs caused signifi-
cant changes in the structure of the meiofaunal and macrofaunal communities asso-
ciated with them.

Fig. 2.8  Sabellaria 
wilsoni reefs in Algodoal 
Island (Pará State). (a) 
Platform shape and (b) ball 
shape

J. S. Rosa Filho et al.



61

The reef meiofauna is richer and more diverse than in the sandy bottoms without 
reefs (Ataíde et al. 2014). Aviz (2015) identified eight times more macrofauna spe-
cies inside than outside reefs (reef, 76 taxa; sandy sediment, 10 taxa) and recorded 
that density varied from 11,013 to 159,494 ind m−2 in reefs in comparison to 127–
1519  ind m−2 outside the reef. These significant changes in benthic communities 
structure between reefs and adjacent sandy sediments are due to substratum struc-
tural complexity (which increases the availability of space for colonization and 
decreases competition and predation); food supply (represented by deposited 
organic matter, dead organisms and feces, the sabellariids themselves, and chloro-
phyll-a); hydrodynamic changes as the polychaete tubes act as barriers reducing the 
effects of waves and tidal currents (Aviz 2015); and desiccation reduction since 
large amount of water is retained inside the tubes (Ataíde et al. 2014).

2.7  �Impacts and Conservation Issues

The Brazilian North Coast is characterized by a large number of municipal territo-
ries with a dense coastal human population, which along with increasing pressure 
on coastal resources and the effect of global climate changes, must be taken into 
account in coastal management plans (Szlafsztein 2012). Some estuaries are sur-
rounded by the largest metropolitan urban centers of the BNC, such as Macapá-
Santana (Amapá), Belém (Pará), and São Luís (Maranhão), with a total population 
over three million inhabitants (IBGE 2016). There are also estuaries in areas that are 
moderately occupied or isolated with few or no inhabitants. The economic activities 
of the urban centers include a range of manufacturing and food processing indus-
tries, shipping, fisheries, tourism, commercial trading, real estate, and cattle ranch-
ing. In the smaller coastal communities, the local economy is based primarily on 
agriculture and/or fisheries (Pereira et al. 2009).

Between 2006 and 2016, the population of the Amazonian coastal zone has grown 
about 20% (IBGE 2010). However local infrastructure and services have not kept up 
with population growth, and public sanitation systems and water supplies are grossly 
inadequate in most cases. This generates additional anthropogenic stresses on natu-
ral environments, with negative impacts on local ecosystems including estuarine 
environments (Pereira et al. 2010; Gomes et al. 2011; Trindade et al. 2011).

Inadequate use and unplanned occupation are among the main anthropogenic 
problems of Amazon estuaries. Major problems are related to the discharge of 
untreated sewage, since only 4% of the homes in Amazon coastal states (Amapá, 
Pará, and Maranhão) have sewage treatment system (SNIS 2013). Although forbid-
den by resolution number 357/2005 (article 24) of the Brazilian National 
Environment Council (CONAMA), untreated sewage is commonly discharged into 
aquatic environments, with negative consequences for water quality (Pereira et al. 
2010; Silva et al. 2013; Monteiro et al. 2016).
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Increasing organic pollution from expanding urban areas along the BNC may 
have a similar effect since, in the absence of industrial pollution along most of the 
Amazon coast, intense hydrodynamics and high freshwater runoff volumes tend to 
dilute organic pollution (Aviz et al. 2012), resulting in a beneficial effect on benthic 
macrofaunal assemblages. This has already been reported for Guarajá Bay, in front of 
Belém (PA), where greater macrofaunal diversity and abundance has been associated 
with higher freshwater runoff and nutrient input in the wet season (Aviz et al. 2012).

Mangrove logging is common in the region, generally on a local, subsistence 
scale (Glaser et al. 2010), the timber being used for fuel, construction, and fishing 
artifacts (Menezes et al. 2008). The local disturbance caused by the removal of man-
grove trees results in immediate effects at logged sites, such as increased exposure 
to the sun, higher temperatures, and loss of humidity from the sediment, as well as 
nutrient loss due to decay of leaves, branches, and twigs that remain after logging. 
Logging is expected to cause an overall decrease in benthic diversity and function 
unless management practices are implemented to maintain mangrove ecosystem 
services (Ellison 2008; Ferreira and Lacerda 2016).

Harvesting of mangrove crabs may be one of the greatest potential impacts on 
the mangrove and coastal ecosystems of the Brazilian North Coast, supplying 97% 
of the production to regional markets and 3% to national markets (Diele et al. 2010). 
Although currently managed and classified as sustainable (Furtado-Junior et  al. 
2016), a rise in demand may cause an increase in the crab harvest, beyond the 
bounds of sustainability (Diele et al. 2010), disrupting the mangrove nutrient cycle 
described above with consequences for the benthic assemblage and primary and 
secondary productivity in the mangrove and coastal area.

Aquaculture in the BNC is still incipient, with records of small shrimp and oyster 
farms in the state of Maranhão and Pará (Sampaio and Boulhosa 2007). However, 
production of cultivated oysters is growing rapidly in Pará state (Sampaio et  al. 
2017). Although carried out on a small scale, aquaculture in the Amazonian estuaries 
can have local effects on the nutrient status of coastal habitats and can change ben-
thic communities as was shown by Paula et al. (2006) and Venekey and Melo (2016).

Sea-level rise, due to the effects of global warming, is predicted to increase the 
inundation frequency of the mangrove forest, increasing the export of organic matter 
to estuarine and coastal areas (Wolff et al. 2000), resulting in an increase in diversity, 
abundance, and production of the benthic infauna in lower estuarine areas. An observed 
long-term trend in rising temperatures may increase thermal stress, reducing benthic 
faunal diversity and production in the North Coast but predicted reduction in rainfall 
may increase salinity, resulting in greater diversity (Bernardino et al. 2015, 2016).

To protect and preserve the valuable natural resources of the Amazon, as well as 
optimizing the use and conservation of coastal environments, while also reducing 
anthropogenic impacts, a number of conservation initiatives have been implemented 
for the protection of coastal ecosystems and the traditional populations that inhabit 
them. One of the main results of this initiative has been the creation of protected 
areas involving either no-take or sustainable use. At present 17 protected areas have 
been established along the Amazon coast, including no-take Reserves and National 
Parks, Habitat/Species Management Areas, Protected Landscape/Seascapes, and 
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Protected Areas with sustainable use of natural resources (the most common type of 
protected area in the BNC). The Brazilian National Coastal Management Plan 
(GERCO) also represents an important practical tool for the conservation of the 
Amazon coastal zone. Unfortunately, recent research (Szlafsztein 2012; Gomes 
et al. 2014) has shown that the performance of the public sectors in the states of 
Amapá, Pará, and Maranhão responsible for the implementation of the policies and 
measures proposed by the plan has been unsatisfactory.

2.7.1  �The Case Study of the Hydrographic Basin of the Caeté 
River (Pará)

To better understand the Amazon impacts, the coastal hydrographic basin of the Rio 
Caeté (PA), located in the northeast of the Brazilian state of Pará, was used as case 
study. The hydrographic basin of the Caeté River has a total area of 2195 km2 of 
which 6% (190 km2) is covered by mangrove (Dittmar and Lara 2001), and the main 
river is 149 km long from its source (in the municipality of Bonito) to its mouth (in 
Bragança and Augusto Corrêa) (Fig. 2.9a). The Caeté basin drains seven munici-
palities (Bonito, Tracuateua, Ourém, Capanema, Santa Luzia do Pará, Bragança, 
and Augusto Corrêa) with a total population of about 300,000 inhabitants (IBGE 
2010). Around 40% of this population is found in 18 riverside communities (known 
as the Caeteuara communities) located on the margins of the Caeté (Gorayeb 2008).

Some of the economic activities and environmental impacts in the hydrographic 
basin of the Caeté River are shown in Fig. 2.9. The principal economic activities of 
the Caeteuara communities of the middle and upper course of the Caeté are small-
holder farming (subsistence agriculture, and orchards, Fig. 2.9d), quarrying, cattle 
ranching, extraction of plant resources, and artisanal fishing. On the lower Caeté, 
the principal activities are semi-industrial fisheries and the artisanal harvesting of 
fish, crustaceans, and mollusks (Guimarães et al. 2011; Krause and Glaser 2003; 
Glaser and Diele 2004).

The degradation of aquatic environments is one of the main anthropogenic 
impacts observed in the Caeté basin. Daily, tons of crabs (Ucides cordatus) are 
extracted from the mangrove area to supply both local and regional demand 
(Fig. 2.9b). The inadequate disposal of solid waste and the discharge of untreated 
wastewater directly into local water bodies are other common problems. Public 
sanitation is absent from the whole of the hydrographic basin, and solid waste can 
be observed in open spaces almost everywhere (Gorayeb et al. 2011; Guimarães 
et  al. 2011). An estimated 28.6  t of garbage is produced per day in the town of 
Bragança, of which, approximately 70% ends up on the municipal dump (Fig. 2.9c, 
Gorayeb 2008), which is located less than 3 km from the Chumucuí River, which 
discharges into the Caeté.

In addition, ornamental fish are illegally caught from the Caeté river at the mid-
dle and upper sectors (Fig. 2.9e). Deforestation in mangrove and secondary forest is 
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carried out to supply wood ovens in  local bakeries, pizzerias, potteries, etc. 
(Fig. 2.9f) and bathing areas (e.g., wood pools, Fig. 2.9g) used for recreation are 
present through the estuary. An asphalt factory is situated in a pristine forest in the 
upper sector of the basin (Fig.  2.9h) and strategies to avoid or mitigate future 
impacts are necessary. These issues have been registered, because environmental 
laws and codes of conduct are usually not enforced in these areas.

Nine Bragantinian communities (Fig. 2.10a) in the municipalities of Bragança 
and Augusto Corrêa (Maranhãozinho, Fazendinha, Camutá, Vila que Era, Sítio 
Grande, Bacurituea, Caratateua, Ponta do Urumajó, and Vila dos Pescadores) are 
found at the margins of the Caeté estuary, with an approximate total of 50,000 
inhabitants (Guimarães et  al. 2011). Of this total, around 85% are found in the 
upper, more urbanized sector, which includes the city of Bragança, the region’s 
most important urban and commercial center (Monteiro et al. 2016).

Fig. 2.9  Economic activities and environmental impacts in the hydrographic basin of the Caeté 
River. The seven municipalities draining the Caeté basin. (a) Crabs extracted from the mangrove, 
(b) Solid waste on the municipal dump, (c) Subsistence agriculture (manioc), (d) Capture of aquar-
ium fish, (e) Deforestation in secondary forest to supply wood to ovens, (f) Recreational area, and 
(g) Asphalt factory
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Fishing is considered the most important economic activity in the region 
(Fig. 2.10f, h, i). Currently, more than 6000 t of fish are landed annually in the Caeté 
estuary, which ranks as the third most important fishing center in Pará and the larg-
est artisanal fishery in Brazil (Isaac et al. 2008; IBAMA 2005). Although industrial 
development in the region is limited, installations such as ice factories, fish process-
ing plants, fish markets, and dry docks for boat repairs can be found in many parts 
of the estuary, mainly in the city of Bragança.

The middle and lower sectors of the estuary have a low population density total-
ing about 6000 inhabitants, which is dependent on the public services provided 
mainly by the city of Bragança in the upper sector of the estuary. In the middle sec-
tor, subsistence agriculture is the main activity. Cassava, rice, and beans are the 
main local produces (Fig. 2.10e, g). In the lower sector, fishing is the main subsis-
tence activity (Krause and Glaser 2003; Glaser and Diele 2004; Gorayeb 2008).

On May 20th 2005, the Caeté-Taperaçu Extractive Reserve was created to pro-
tect and preserve the region’s natural resources and human traditional activities. 

Fig. 2.10  Location of rural communities and Bragança downtown along Caeté estuary, Pará state. 
(a–d) Precarious infrastructure in Bragança downtown, and subsistence activities (e, g, h) fishing 
and (f) manioc flour production
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This reserve has a total area of 42,068 ha and about 3000 inhabitants, encompassing 
the whole of the Caeté estuary and the communities found along its margins, which 
exploit its natural resources through cooperative management.

Krause and Glaser (2003) and Glaser and Diele (2004) showed that approxi-
mately 75% of the households in the villages surrounding the Caeté estuary are 
economically dependent on the rich natural resources of the mangrove, mainly by 
harvesting fish, crabs, and mollusks. The most important mangrove resource is the 
uçá-crab Ucides cordatus. These crabs are captured for sale live in local or regional 
markets or to produce processed crab meat, for sale to regional and national con-
sumers (Krause et al. 2001; Magalhães et al. 2007). Other important resources are 
fish, shrimp, and other invertebrates, which are also harvested for consumption by 
the local population.

Despite the extraordinary environmental value of these natural resources and 
their enormous potential for economic development, the unplanned growth of urban 
settlements along the estuary and the lack of adequate infrastructure have led to 
increasing anthropogenic stress on the estuary (Monteiro et al. 2016). There is no 
public sewage treatment system in the city of Bragança, for example, or any of the 
surrounding settlements, leading to the wastewater from 26,221 residences (IBGE 
2010) being released directly into the local aquatic environments (including the 
Caeté estuary) or into the ground in public areas or private properties (Fig. 2.10b, c).

Domestic effluents, waste from fishing boats, fish processing plants, filling sta-
tions, and hospitals are discharged directly into the estuary or into open public 
spaces, leading to the degradation of the estuary’s waters, making them inappropri-
ate for most types of use. In addition to these sources of pollution, the Cereja River 
which flows through most of the urban area of Bragança discharges into the upper 
Caeté estuary. This tributary is 5 km long and has a depth of 1.40 m and a width of 
6 m, crossing the southern margin of Bragança to reach the eastern margin of the 
Caeté. These environmental impacts are exacerbated by the deforestation of the 
local mangroves and the over-exploitation of local natural resources (Guimarães 
et al. 2009). Several measures to improve the current situation are needed, such as: 
(i) regulation of land use, to reduce the environmental impact of the economic sec-
tor; (ii) implementation of management programs for the sustainable exploitation of 
natural resources (fish, crabs, clay, vegetation, etc.), (iii) installation of public 
services, particularly water supplies and sanitation; (iv) better monitoring and 
penalization of the illegal exploitation of local natural resources.

2.8  �Concluding Remarks

The northern coast of Brazil, the so-called Brazilian North Coast (BNC) extends from 
Cabo Orange in Amapá (05°N, 051°W) to Ponta do Tubarão in Maranhão (04°S, 
043°W), encompasses dozens of estuaries and thousands of km2 of mangrove forests, 
and harbors over 80% of Brazil’s mangroves. Since its discovery in 1500 the BNC has 
been visited by explorers and researchers, who recognize its great zoological, 
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botanical, and anthropological richness. Despite the recognition of the high ecologi-
cal and social importance of the Amazon coast, from the early twentieth century until 
the 1980s these estuaries remained almost unstudied, and the knowledge of biological 
communities in these areas was incipient and fragmented. At present, even after 
almost 40 years of the first studies on the benthic communities of Amazonian estuar-
ies, the benthic fauna of this region remains the least studied of the Brazilian coast.

In general, the benthic fauna of Amazonian estuaries is poor in species. Spatial 
and temporal variation of the benthos are mainly determined by freshwater dis-
charge from dozens of rivers that flow to the coast, associated with marked seasonal 
variation in rainfall, as well as the macrotidal regime. Strong salinity gradients are 
observed along most estuaries and communities typical of freshwater occur in the 
upper estuarine regions, a brackish-water fauna in the middle-estuary, and a more 
diverse and abundant marine fauna in the lower-estuary. Temporally, in more saline 
estuaries highest richness and abundance occur in the dry season (July to December) 
and estuarine areas permanently meso- to oligohaline may present greater richness 
and abundance in the rainy season (January to June).

Although the Amazonian estuaries are the best preserved on the Brazilian coast, 
the impacts of increasing pressure on coastal resources and the effect of global cli-
mate changes have been causing concern. The main threats to estuaries in the NBC 
are inadequate land use and unplanned occupation, mangrove logging, harvesting of 
mangrove crabs, and sea-level rise (still poorly studied in the area). Aquaculture is still 
incipient, although production of cultivated oysters is growing rapidly in Pará state. 
To protect and preserve the valuable natural resources of the Amazon, one of the main 
government initiatives has been the creation of protected areas. At present 17 pro-
tected areas have been established along the Amazon coast, including no-take 
Reserves and National Parks, Habitat/Species Management Areas, Protected 
Landscape/Seascapes, and Protected Areas with Sustainable Use of Natural Resources.

For the future, the main challenges for researchers in the benthic communities of 
the Amazonian estuaries are the expansion of the number of zoological groups con-
sidered, the increase of the scales (spatial and temporal) of the studies, and the 
ability to predict the effects of the increasing environmental impacts of natural and 
anthropic origin in the structure and functioning of communities.
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Chapter 3
Benthic Estuarine Assemblages 
of the Northeastern Brazil Marine 
Ecoregion
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Cristina de Almeida Rocha-Barreira, Helena Matthews-Cascon, 
Emanuel Soares dos Santos, Heleny Noronha David,  
and Alisson Sousa Matos

Abstract  The estuaries of the Northeastern Brazil Ecoregion are dominated by 
mangrove ecosystems and tend to present high salinity values due to elevated tem-
peratures and low rainfall. Nevertheless, they present a high photosynthetic produc-
tivity as a result of continental nutrient input and intense insolation. Those singular 
environmental conditions (shallow estuaries) are reflected in the composition and 
structure of marine invertebrate assemblages and consequently in the way in which 
these organisms interact with the environment. Although there is reasonable knowl-
edge about benthic biodiversity from estuaries of the Northeastern Marine ecore-
gion, ecological knowledge on benthic assemblages, including their spatial and 
temporal dynamics, is scarce and mostly restricted to a few estuaries. However, 
general estuarine gradients such as an increase in benthic species richness towards 
euhaline sectors are observed. Species richness and macrofaunal abundance are 
higher during dry seasons. Benthic assemblage zonation is observed in unconsoli-
dated bottoms along the intertidal zone, with mangrove trees being colonized by 
their own set of organisms. Estuarine areas in this ecoregion are being greatly 
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impacted by economic activities, with shrimp farming advancing fast in some areas. 
Thus, environmental education will be of great relevance towards a sustainable use 
of ecosystem goods in the Northeastern States in Brazil.

Keywords  Animal–sediment relationships · Benthic fauna · Mangroves · Impacts

3.1  �Introduction

The estuaries of the Northeastern Brazil Marine Ecoregion (NEME; Spalding et al. 
2007) are located between Piauí (PI) and Sergipe (SE) (Fig. 3.1). As in other tropi-
cal ecoregions, these estuaries support extense and well-developed mangrove for-
ests with a strong influence of hydrodynamic processes. The NEME has a typical 
semiarid dry tropical climate with low levels of precipitation (Alvares et al. 2014). 
Two well-defined seasons predominate during the year: a rainy season extending 
from January to June when high levels of rainfall and low occurrence of winds are 
observed; and a dry season extending from July to December, with less rain and 
winds. Many of these estuaries fit into the definition of a negative or inverse behav-
ior, with their salinity gradients increasing towards the upper estuary. Salt water 
enters the estuary through the surface water layers and despite mixing with fresh 
water, it becomes hypersaline due to evaporation. High density surface hypersaline 
water in turn sinks, and mixes with bottom fresh water. As a result, these estuaries 
tend to be predominantly euhaline (up to 47). Some estuaries may exhibit high pri-
mary productivity as the result of continental nutrient input, low turbidity, and high 
insolation (Santiago et al. 2005), although low in comparison to the North Brazil.

Estuarine benthic assemblages are well adapted to high variability in water salin-
ity, temperature, and tidal cycles. Estuarine benthic assemblages are highly produc-
tive; they mediate biogeophysical and biogeochemical interactions that serve as a 
support to ecosystem balance through organic degradation of carbon, and the tro-
phic transfer and remineralization of nutrients (McLusky and Elliott 2004). 
Estuarine benthic animals have a great ecological importance since they act as 
decomposers of organic matter and strongly influence nutrient recycling. In addition 
to their contribution to ecosystem dynamics, benthic organisms are a source of food 
for several other animals with commercial value (Vannucci 2001). The benthic estu-
arine fauna has also great economic importance because they guarantee the liveli-
hood of local populations providing important fishing resources and exerting a 
strong influence on the economy. Consequently, the strong anthropogenic pressure, 
including pollution and mangrove clearing, has led to serious environmental prob-
lems and threaten a sustainable exploitation of its natural resources. Currently, there 
is also a great concern about global climate change, which will likely affect benthic 
estuarine assemblages. The impacts of climate change can be worrisome when the 
physiological tolerance of estuaries is exceeded such as during extreme temperature 
events (Sunday et al. 2014; Bernardino et al. 2015).
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Estuaries from the NEME are largely understudied when compared to southern 
estuarine ecosystems (Bernardino et  al. 2016). Past and current research mostly 
includes descriptive approaches to local biodiversity efforts that were nonetheless 
essential to describe and discriminate varying estuarine patterns among sites. For 
example, studies reporting the occurrence of benthic megafauna including crabs 
Calappa nitida (Brachyura, Calappidae) (Góes and Fernandes-Góes 2007) and 
dominant vegetation within estuaries from Parnaíba River Delta are common (Silva 

Fig. 3.1  Map indicating estuaries from the Northeastern Ecoregion (NE) in the states of Maranhão 
(MA), Ceará (CE), Rio Grande do Norte (RN), Paraíba (PB), Pernambuco (PE), Alagoas (AL), and 
Sergipe (SE)
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et  al. 2016). In other regions of the NEME, the biodiversity and distribution of 
estuarine benthic macrofauna along salinity gradients have been assessed (Silva 
2006; Barroso and Matthews-Cascon 2009). Silva (2006) observed that polychaetes 
Laeonereis culveri, Capitella capitata, and Heteromastus similis, the crustaceans 
Apseudidae and Uca leptodactyla, and mollusks (Tagelus plebeius) typically domi-
nate in estuarine sediments. On the other hand, studies on the estuarine benthos of 
Alagoas and Sergipe have concentrated on population dynamics of Ucides cordatus 
(Lacerda 1999; Araújo and Calado 2008; Santa Fe and Araújo 2013) and on the 
occurrence of parasites found in commercially exploited bivalves, including Mytella 
guyanensis (Farias et al. 2010) and Crassostrea sp. (Silva et al. 2016).

Other studies on regional estuarine benthos covered ecological aspects of the dis-
tribution and community of the bivalves Anomalocardia brasiliana (Rodrigues et al. 
2010) and Donax striatus (Medeiros et al. 2015) in saline estuaries, and species of the 
fiddler crab Uca (Silva et al. 2016) in a semiarid estuary. The knowledge of estuarine 
benthic assemblages in the Paraíba State is mostly concentrated on ethnobiological 
aspects, especially on the species Ucides cordatus (Alves and Nishida 2004; Nishida 
et al. 2006; Nascimento et al. 2011). According to these authors, people involved with 
crab fishing activity can provide important information to support scientific studies. 
Studies assessing the quality of estuaries using benthic assemblages as ecosystem 
indicators are common in the literature (Valença and Santos 2012). The recovery 
processes of macrozoobenthic assemblages in tropical estuaries are relevant for the 
management and protection of tropical estuarine habitats threatened by excessive 
nutrient levels caused by pollution (Botter-Carvalho et al. 2011).

3.1.1  �Hydrographic Patterns

Climate, hydrographic, and geomorphological characteristics are the main drivers 
of the structure and functioning of a given estuary. Rainfall regimes in NE Brazil are 
determinant to regulate the characteristics of estuarine waters. Considering that the 
NEME covers an area of ​​658,722 km2, different rainfall regimes are observed, vary-
ing in precipitation rates and duration of rainy and dry periods. As a result, a pro-
nounced environmental variability among NEME estuaries is observed (Table 3.1).

The minimum salinity value was 0.03 in the São Francisco River estuary (AL/
SE) and the maximum was 47 in the Camurim River (PI). The lowest and highest 
temperature values occurred in the Botafogo River estuary in Pernambuco. The 
pH values presented in Table 3.1 are also greatly variable. The Paraíba River estu-
ary (PB) showed pH of 6.7 (the lowest reported among the evaluated studies) and 
the Mamanguape River (PB) showed pH of 9.5 (the highest reported). These 
results suggest the influence of the saline environment in the evaluated estuaries, 
where there is a predominance of the bicarbonate-borate buffer system, which 
tends to maintain an alkaline environment around pH 8.0 and 8.5. Differently, in 
freshwater environments the predominant buffer system is the carbonate-bicar-
bonate, which is weaker and allows greater variation of pH values ​​around the 
neutrality values (5.0–9.0).
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The values ​​of water transparency measured with a Secchi disk ranged from zero 
(0.0 m) in the Camurim River (PI) to 3.5 m in the Pisa Sal River (RN) (Table 3.1). 
The lowest reported dissolved oxygen (DO) concentration was 1.99 mg of O2 L−1 in 
the Botafogo River (PE) and the highest was 12.4 mg of O2 L−1 in the Pisa Sal River 
(RN) (Table 3.1). The concentration values of chlorophyll a were below the detec-
tion limits in the São Francisco River estuary (AL/SE) and the highest (106.6 mg m-3) 
in the Pisa Sal River (RN) (Table 3.1).

These three indicators show a close relationship with each other, i.e., low water 
transparency results from the presence of suspended particles or phytoplankton; (1) 
if it is suspended mineral material, the concentrations of chlorophyll a and conse-
quently of DO will be low because without penetration of light there is no photosyn-
thesis; (2) if it is excess of phytoplankton, the concentrations of chlorophyll a and, 
consequently, DO will be high. Conversely to these references, the Pisa Sal River 
estuary showed the greatest water transparency and the highest concentrations of 
DO and chlorophyll a. However, it is worth noting that this pattern possibly occurred 
due to the peculiar morphological characteristics of this estuary and the moment of 
measurement of these indicators in relation to the tidal prism (Santiago et al. 2005).

3.2  �Benthic Fauna

3.2.1  �Spatial and Temporal Patterns of Biodiversity 
and Faunal Abundance and Biomass

Most of the available information on benthic assemblages from the NEME is 
restricted to taxonomic lists from a few estuaries. Quantitative data at species level 
is mostly restricted to some estuaries in Pernambuco and Ceará, which have a stron-
ger tradition of faunal surveys and ecological studies. The estuaries from the west-
ern sector of the NEME are bounded by extensive mangrove forests extending to 
approximately 22,936 ha distributed among 12 large rivers (Miranda et al. 1990). 
Till the end of the last century, benthic data was only available for the Cocó River 
(Menezes and Menezes 1968; Matthews-Cascon and Martins 1999), Ceará River 
(Alcântara-Filho 1978; Miranda et al. 1988; Vilanova and Chaves 1988), and Pacoti 
River (Oliveira et al. 1988). More recently, Rocha-Barreira et al. (2005) surveyed 21 
estuarine regions in Ceará state and recorded diverse macrobenthic assemblages, 
numerically dominated mainly by polychaetes, mollusks, and crustaceans. Silva 
(2006) recorded 31 benthic macrofauna taxa, comprising 15 polychaete, 8 mollusk, 
and 8 crustacean species, along tidal flats of the Pacoti and Pirangi estuaries. The 
most abundant species were the polychaete Laeonereis culveri with 10,422 ind m−2 
in the Pacoti River and the bivalve Tagelus plebeius with 910 ind m−2 in the Pirangi 
River. Beyond the latter species, Tagelus plebeius, Lucina pectinata, Tellina versi-
color, Mytella charruana, Anomalocardia brasiliana, Macoma constricta, Corbula 
cubaniana, and Crassostrea mangle were the most common molluskan species. 
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Some of these species form extensive banks in soft bottoms with high densities and 
are artisanally exploited by local fisherfolk (Barreira and Araújo 2005; Farias 2008; 
Santana 2010). The gastropod Neritina virginea is found on tidal flats while 
Melampus coffeus colonizes roots of Rhizophora mangle in all estuaries of Ceará, 
reaching average densities of approximately 1123  ind  m−2 (Silva 2015) and 
80–600 ind m−2 (Maia et al. 2011), respectively. Bezerra et al. (2006) described the 
distribution of Uca crabs and found that U. leptodactyla and U. rapax inhabit sec-
tors of the fluvial-marine plains composed of medium sand while U. thayeri and U. 
maracoani are found predominantly in muddy areas. The benthic macrofauna dis-
tribution in Ceará estuaries is structured by salinity gradients; assemblages are more 
diversified in areas where salinity is high and more constant (Barroso and Matthews-
Cascon 2009). However, temporal variations associated to dry and wet seasons also 
influence the richness and abundance of benthic animals in local estuaries.

Studies have been carried out since the 1960s along the estuaries of Pernambuco, 
with most studies being carried on the Santa Cruz Channel until the 1990s. These 
studies were mostly faunistic surveys of crustaceans and mollusks. Since the 1990s, 
there was an increasing interest in assessing benthic assemblages as a whole. About 
170 species of crustaceans (100 Decapoda, 27 Brachyura, 23 Amphipoda, 10 
Cirripedia, and 10 species of other groups), 160 species of mollusks (90 Gastropoda, 
50 Bivalvia, and 20 species of other classes), 82 species of Annelida (67 Polychaeta, 
15 Oligochaeta, and 1 Hirudinea), and 33 species belonging to other phyla (Cnidaria, 
Platyhelminthes, Sipuncula, Nemertea, Phoronida, Echinodermata, Bryozoa, and 
Chordata) were identified among the most abundant and diverse benthic groups 
(Coêlho 1965/1966, 2000; Soares 1979, 1980; Silva-Mello and Tenório 2000; 
Farrapeira et al. 2009; Araújo et al. 2014).

Richness, diversity, and density were higher in the sublitoral, with 6 species of 
mollusks being sampled in the supralittoral, 58 species in the mid-littoral, and 79 
species in the sublitoral (Silva-Mello and Tenório 2000). Temporal variations in 
richness, diversity, and density were lower in the sublitoral (Carvalho 2004), reveal-
ing that assemblages are more stable in this zone. Species richness increases towards 
the river-sea gradient as observed by Araújo et  al. (2014) for Brachyura, and 
Farrapeira (2006, 2008) for Cirripedia. Richness and abundance increase in dry 
periods (between July and December). In unconsolidated (sandy and mostly muddy 
bottoms) and consolidated substrates (mainly trunks and mangrove roots), clear pat-
terns of vertical fauna zoning are observed. In unconsolidated substrates in the 
Santa Cruz Canal (PE), Silva-Mello and Tenório (2000) and Coêlho (2000) reported 
the typical species of each zone as: Supralittoral—Cardisoma guanhumi, Goniopsis 
cruentata, Armases angustipes, Sesarma crassipes, S. rectum, Pachygrapsus graci-
lis, and P. transversus; Mesolittoral—Lepidophthalmus syriboia, Uca spp., Ucides 
cordatus, G. cruentata, Neritina virginea, Tagelus plebeius, and Anomalocardia 
brasiliana; Sublittoral—Alpheus spp., Salmoneus ortmanni, Upogebia omissa, U. 
noronhensis, Cyrtoplax spinidentata, Callinectes spp., Clibanarius vittatus, 
Pugilina morio, Mytella guyanensis, M. charruana, Lucina pectinata, and Iphigenia 
brasiliensis. Rosa-Filho and Farrapeira-Assunção (1998) and Farrapeira et  al. 
(2000, 2009) identified four zones with distinct fauna on mangrove tree trunks: 1. 
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Supralittoral—Littoraria angulifera, L. flava, and Aratus pisonii; 2. Upper 
Mesolittoral—(Chthamaletum) dominated by Microeuraphia rhizophorae and 
Chthamalus proteus; 3. Medium Mesolittoral (Balanoid Zone) dominated by 
Amphibalanus amphitrite, A. improvisus, A. reticulatus, and Crassostrea rhizopho-
rae; and 4. Lower Mesolittoral—Bostrichietum (macroalgae Bostrichia, Catenella, 
and Calloglossa).

Many mollusk and crustacean species are of great importance for artisanal fisher-
ies in the estuarine areas of Pernambuco (Quinamo 2006). Among the species of 
commercial interest there are the crabs Goniopsis cruentata, Cardisoma guanhumi, 
Ucides cordatus, and Callinectes spp.; and the bivalves Anomalocardia brasiliana, 
Crassostrea mangle, Tagelus plebeius, Mytella falcata, Lucina pectinata, Leukoma 
pectorina, Iphigenia brasiliana, and Mytilopsis leucophaeta. Despite their socio-
economic relevance, very little is known about their stocks and levels of exploita-
tion to which they are submitted. The densities of some species are known in certain 
localities, such as U. cordatus (1.28 and 1.37 burrows m−2 in the Mambucaba and 
Ariquindá Rivers, respectively), Callinectes danae (64.6  ind  h−1 effort from one 
fisherman), Mytilopsis leucophaeta (176,800  ind m−2; in the area adjacent to the 
Port of Recife), Uca thayeri (685 ind m−2) (Araújo et al. 2014), and Anomalocardia 
brasiliana (3779 ind m−2; in Itamaracá) (El-Deir 2009).

Although there are six estuaries along the Paraíba coast, the benthic fauna of 
only the Mamanguape and Goiana Rivers was studied. Franklin-Júnior (2000) iden-
tified 35 macrofaunal species with a high dominance of annelids (>90% of the total 
number of organisms) in Mamanguape. A clear vertical zonation was observed 
within the sediment; 85% of all individuals and 90.3% of the faunal richness were 
recorded in the top 5-cm sediment layer. There were marked variations in the fauna 
from different substrates. The enchytraeids oligochaetes, the polychaete Aricidea 
fragilis, and the gastropod Caecum estuatum dominated sandy bottoms. The poly-
chaetes Lumbrinerides gesae, Aricidea ramosa, and Mediomastus californiensis 
and the edible bivalve Anomalocardia brasiliana were dominant on muddy bot-
toms. The distribution of shipworms was greatly affected by the salinity gradient; 
Neoteredo reynei occurring in low salinity areas, while Nausitora fusticula and 
Bankia fimbriatula being more abundant in areas with intermediate salinity, and 
Teredo bartschi and Martesia striata dominating near the sea (Leonel et al. 2002). 
Anomalocardia brasiliana occurs at densities of 5798 ind m−2 in the Mamanguape 
River estuary while the density of U. cordatus reached up to 1.7  ind m−2 in the 
Goiana River (Alves and Nishida 2004; Silva-Cavalcanti 2011).

The first study on the estuarine benthos from Alagoas was done in the second 
half of the nineteenth century, when Smith (1869) recorded the occurrence of the 
shrimp Bithinus acanthurus (= Macrobrachium acanthurus) and the mangrove tree 
crab Aratus pisonii in the Mundaú Lagoon. About 150 years after Smith’s records, 
knowledge on the estuarine benthic fauna remains restricted to the Mundaú-
Manguaba estuarine-lagoon complex. The other local estuaries, including the 
Manguaba estuary and Jequiá estuarine-lagoon complex, have been only sporadically 
surveyed. A total of 70 species of crustaceans (55 Decapoda, 5 Cirripedia, 7 Isopoda, 
and 3 other groups), 21 species of mollusks (11 Bivalvia and 10 Gastropoda), and 
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16 species of polychaetes are known in the Mundaú-Manguaba estuary-lagoon 
complex (Smith 1869; Silva and Prereira-Barros 1987; Pereira-Barros 1987; 
Sovierzoski 1994; Calado and Sousa 2003). Throughout the complex, species rich-
ness and abundance are lower in muddy areas than in sandy bottoms.

There is a clear faunal zonation along salinity gradients. In general, high salinity 
areas are more diversified than low salinity areas. Silva (1994) identified four zones 
with distinct salinities and benthic assemblages throughout the complex: Pre-marine 
(average salinity of 19.1)—Tagelus plebeius, Anomalocardia brasiliana, Macoma 
constricta, Balanus sp., Callinectes danae, and Capitella sp.; Estuarine (average 
salinity of 9.3)—Mytella charruana, Neritina virginea, Palaemon pandaliformis (in 
the rainy season), and Laeonereis culveri; Preliminal (average salinity of 3)—Mytella 
charruana, Neritina virginea, Palaemon pandaliformis, Macrobrachium acanthurus, 
and Laeonereis culveri; and Limnetic (average salinity of 0.8)—Pomacea lineata, 
Palaemon pandaliformis, Callinectes bocourti, and Laeonereis culveri. The occur-
rence and density of some species may change depending upon prevailing hydro-
graphic condition. The appearance of Pomacea lineata in the Manguaba Lagoon and 
the disappearance of Balanus in all areas are observed during low salinity periods. 
Macrobrachium acanthurus migrates to river mouths and Callinectes bocourti is 
restricted to the core of the Manguaba Lagoon where salinity is lower in the drought.

The bivalves Mytella charruana, Tagelus plebeius, and Anomalocardia brasili-
ana, and the crabs Callinectes danae (Mundaú Lagoon) and C. bocourti (Manguaba 
Lagoon) are locally exploited. However, very little is known about their natural 
stocks, except for M. charruana, although the available data are mostly from studies 
in the 1980s and 1990s. Silva (1994) reported densities of exploited species in the 
order of 740.1  ind m−2 (M. charruana), 43.5  ind m−2 (T. plebeius), 21.7  ind m−2 
(Anomalocardia brasiliana), 17.4 ind m−2 (C. danae), and 13.1 ind m−2 (C. bocourti). 
The high economic importance of M. charruana for populations in the Mundaú-
Manguaba Complex area was highlighted by Pereira-Barros (1987) who reported 
extractions of around 3000 t year (which corresponds to approximately 10% of the 
stock). This bivalve is an important source of food and income for local populations 
in this estuary. According to this author, the species is present in about 15% of the 
total area of ​​the complex, which is approximately 54 km2, and reaches maximum 
densities of 1770 ind m−2 (Silva 1994).

Benthic composition and distribution patterns are still largely unknown along the 
states of Piauí, Rio Grande do Norte, and Sergipe. In the Camurupim River estuary 
in Piauí, 83 taxa were registered with the dominance of Polychaeta, Crustacea, and 
Mollusca represented in 37%, 38%, and 14% of all taxa and 47%, 33%, and 11% of 
all individuals, respectively (Rolemberg et  al. 2008). Costa (2016) evaluated the 
environmental heterogeneity in the seagrass meadow in a tidal plain of the Timonha-
Ubatuba Estuarine Complex and showed an environmental gradient in the macro-
fauna distribution with mollusks being the most frequent and accounting for 77% of 
all individuals distributed among 48 species; the 16 species of crustaceans 
represented 13% of total sampled individuals. Polychaetes accounted for 8.9% of 
the species recorded in the area, being represented by 25 species. The bivalves 
Anomalocardia brasiliana, Tagelus plebeius, Mytella guyanensis, and Crassostrea 
rhizophorae, and the crustaceans Callinectes spp. and Ucides cordatus are used by 
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the population as food and/or source of income (Nascimento and Sassi 2007). Costa 
(2016) briefly described the artisanal exploitation of Crassostrea mangle and 
Crassostrea brasiliana in the Parnaiba River delta (PI).

Ferreira and Sankarankutty (2002) recorded 70 species of decapods in the 
Potengi, Casqueira and Conceição (Macau) River estuaries from Rio Grande do 
Norte and noticed that the number of species is higher in the sublitoral with sandy 
substrata with fragments of shells and coral skeletons than in other types of sub-
strates. In Sergipe estuaries, polychaetes are the best-known group with 81 recog-
nized taxa belonging to 32 families. Polychaete diversities are maximal near the 
mouth of the estuary and minimal in the limnetic zone. In the São Francisco River 
estuary (Parapuca Channel), Souza et al. (2015) reported the occurrence of the poly-
chaete Streblospio benedicti at densities of approximately 14,000 ind m−2. Rosa and 
Almeida (2012) recorded the occurrence of the crustacean Axianassa australis in 
the Real and São Francisco Rivers estuaries.

3.2.2  �Processes Mediated by Benthic Organisms

Animal–sediment relationships in estuarine sedimentary environments are com-
plex. According to Newell et al. (2001), they are not necessarily linear and tend to 
be much more variable than is commonly recognized. Behavioral activities of most 
benthic invertebrates may alter the physicochemical properties of sediments and 
may also modify the composition of the surrounding community. Franklin-Júnior 
(2000) observed that the occurrence of benthic animals on tidal flats of the 
Mamanguape River Estuary in Paraíba is limited to a small vertical zone, not 
exceeding 10–20 cm in depth. Bioturbation studies on some estuaries have also tried 
to evaluate sedimentary effects by crustaceans (Araújo-Júnior et  al. 2012, 2016; 
Pülmanns et  al. 2014), bivalves (Farias 2008; Silva 2006), and polychaetes 
(Rasmussen et al. 1998; Eça et al. 2013).

Silva (2006) identified two sediment conditions severely constrained by the presence 
of benthic invertebrates burrowing in sandy-muddy banks in the Pacoti River estuary in 
Ceará. The high density of the tube-building polychaete Leoneries culveri 
(10,422 ind m−2) in areas with a high percentage of sand contributed to an increased 
movement of water through the sediment that resulted in high concentrations of oxygen 
in the sediment. Additionally, areas with more balanced percentages of silt and sand 
favored high densities of apseudid tanaidaceans (1641 ind m−2), which act on the disar-
ticulation of sediment grains by removing organic matter that aggregate sediment grains. 
Oliveira et al. (1988) also observed this close relationship between the occurrence of 
tanaidacean crustaceans and shellfish-eating mollusks in mixed or muddy sediments 
with high organic matter content in the estuarine plains of the Pacoti River in Ceará.

The bioturbation also plays an important role in the denitrification of marine 
sediments, recycling and transportation of nutrients from the sediment to the water 
column, and decomposition of organic matter, while also widening the distribution 
of contaminants (Cesário 2007). Such processes, therefore, change in the chemical 
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composition of the sediment and promote microbial activity (Rasmussen et  al. 
1998). The crabs Uca maracoani and Ucides cordatus are considered important 
bioturbators in Brazilian semiarid mangrove soils; these species are capable of 
enhancing organic matter decomposition and shifting the dominant pathway of 
organic matter degradation in the mangrove environment (Araújo-Júnior et al. 2012, 
2016; Bezerra 2005). The importance of the crab’s burrowing activity has been well 
recognized as affecting the oxygen input in the sediment by overlying water with 
mixed reduced and oxidized sediment layers (Ferreira et al. 2007).

The vertical mixing particles and pore water exchange conducted by respiratory 
pump filtrating organisms are important bioturbation processes. Farias (2008) stud-
ied a population of Tagelus plebeius in the Ceará River estuary and found that this 
filter-feeding bivalve builds deep tubular galleries, which allow its vertical move-
ment through the sediment. In addition, while buried at an intermediate depth, the 
species projects siphons forming inhalant and exhalant channels of water circula-
tion that promotes an oxygenated halo in the sediment (Fig. 3.2). The oxidized bur-
row walls create microenvironments with steep gradients between reduced and 
oxidized compounds. These transition zones support increased microbial activities 
by providing ideal conditions for reoxidation processes (Bertics and Ziebis 2009).

The presence of dense concentrations of empty shells in the water–sediment 
interface of estuarine plains is another biogenic factor that can change the physical 
and chemical characteristics of the sediment and protect it from erosion. The amount 
of shells on the surface of the sediment is related to both sedimentation and shell 

Fig. 3.2  Tagelus plebeius 
tube presenting the 
oxygenated halo (arrows) 
in the sediment around 
inhalant and exhalation 
channels in a sandy-muddy 
bank of the Ceará River 
estuary
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production rates. Pinheiro (2003) and Silva (2006) found high levels of calcium car-
bonate (CaCO3) and gravel in the sediment of sand-muddy banks in the Pirangi River 
estuary (Ceará) due to the presence of mollusk shell fragments. These accumulations 
of disarticulated valves can form dense packages that overlay the sediment interface 
and may contribute to the provision of CaCO3 in addition to the decomposition of 
biogenic organic matter and other components such as silicon dioxide (SiO2). These 
reactions influence the environment’s pH and redox potential (Eh) and cause deple-
tion or formation of solid or fluid compounds in estuarine sediments.

Studies with the gastropod Melampus coffeus, a common gastropod species in 
Atlantic mangroves that feeds on mangrove leaves, indicated that they accelerate 
litter decomposition processes and facilitate the consumption to plant debris by 
other organisms and consequently contribute to recycling organic matter in an 
increased rate (Tavares et al. 2011, 2015).

Carvalho et  al. (2010) demonstrated that the microbiota associated with the 
digestive tract of Neoteredo reynei shows cellulolytic activity, thus contributing to 
cellulose digestion of fragments of wood. Therefore, similarly to the gastropod 
Melampus coffeus, teredinids contribute to the degradation process of plant material 
accumulated in  local mangroves. Additionally, teredinids contribute to increase 
habitat heterogeneity because their galleries are colonized by different invertebrates, 
providing them with shelter and food, as observed by Santos (2008) and Carmo 
(2015) in the Pacoti and Acaraú Rivers mangroves, respectively.

Although the processes mediated by benthic organisms, which are determined by 
already well-established patterns, are well known in many parts of the world and in 
Brazil, more studies on the subject are needed in the NE Marine Ecoregion of Brazil 
to address their local relative importance. This region is mostly located in the semi-
arid zone and shows peculiar environmental conditions (shallow estuaries, low 
freshwater inflow, and high salinization), which are reflected in the composition and 
structure of marine invertebrate assemblages and, consequently, in the way in which 
these organisms interact with the environment.

3.3  �Impacts and Conservation Issues

Estuaries from the NEME host habitats of great economic potential, which explains 
why human interventions are the main threats to these ecosystems. Anthropogenic 
impacts such as urbanization, clearing of mangrove forests to shrimp farming, and 
pollution cause either direct or indirect ecosystem losses (Queiroz et  al. 2013; 
Suárez-Abelenda et al. 2014; Kauffman et al. 2018; Bernardino et al. 2018).

The 3300 km Northeastern coast in Brazil is responsible for 94% of all Country's 
shrimp production, and 70% of cultivation facilities use estuarine and mangrove 
habitats encompassing a total of 19,610 hectares (ABCC/MPA 2013). The edafocli-
matic conditions in the region are favorable and attractive for the cultivation of the 
exotic shrimp species Litopenaeus vannamei (ABCC/MPA 2013). Shrimp farming 
activities in the estuaries in northeastern Brazil can be implemented as long as the 
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requirements of the new Forest Code (Law 12.651/12) are observed. Nevertheless, 
this activity has caused numerous damages to local estuarine systems (Meireles 
et al. 2007; IBAMA 2005; Araújo et al. 2009; Tancredo et al. 2011), among them: 
I—sociocultural impacts that led to changes in the standards of living and livelihood 
activities of riverbank assemblages; II—plant cover removal and degradation of 
mangroves and restinga vegetation; III—biodiversity loss in birds, fish, and inverte-
brates associated to mangroves, due to their dependence for refuge, mating, breed-
ing, recruitment, nutrition, and fattening; IV—soil impoverishment as a consequence 
of salinization; V—eutrophication, increase of biological oxygen demand, total sol-
ids in suspension, and toxicity, and possibility of bioaccumulation or resistance to 
chemical substances; VI—changes in the hydrodynamic equilibrium of estuaries 
and contribution of terrigenous sediments and suspended and dissolved materials.

Benthic macroinvertebrates reflect these changes in the environment with an 
increase in the presence of infaunal species that are related to increased food avail-
ability and oxygen content as observed in the Jaguaribe estuary in Ceará (Rolemberg 
2009). Lima (2015) studied the Acaraú, Aracatimirim, and Aracatiaçu Rivers estuar-
ies in Ceará and found that areas impacted by shrimp farming presented higher 
richness of macrofauna species while conserved areas presented lower species rich-
ness and abundance due to the increase of nutrients from the effluents of shrimp 
farming, which in the long term may lead to the compromise of the local fauna. 
Nevertheless, some chemicals used in shrimp farming can cause negative effects in 
the early stages of the development of several species leading to tissue damage as 
observed in Anomalocardia brasiliana in the Potengi River estuaries (Rio Grande 
do Norte) (Emerenciano et al. 2008).

Another activity that causes a strong impact in Brazilian northeastern estuaries is 
the deforestation of mangroves. The extraction of wood by traditional communities 
to use as firewood and charcoal, residential constructions, building of fishing arti-
facts, and the use of the area for diversified developments are the main drivers. The 
building of ports and industrial infrastructure, as in the Suape estuary in Recife, 
Pernambuco, can also lead to deforestation resulting from landfills, dredging, and 
damming, which alter the local hydrology and drastically change the landscape. 
Studies carried out in Ceará indicate that a high density of dead individuals and 
dominance of Laguncularia racemosa (Paula 2015) are observed in deforested for-
ests under regeneration. Thus, deforestation affects the structure of mangrove for-
ests and results in loss of the inherent characteristics of these environments such as 
the muddy texture of their sediments. These changes promoted, for example, 
changes in the distribution and abundance of mollusk species that are typical of 
mangrove forests, such as Littoraria angulifera (Maia and Tanaka 2007) and 
Melampus coffeus (Maia and Coutinho 2013), as the result of changes in the avail-
ability and quality of resources, and thus compromising the mangrove structure and 
functioning in the Acaraú River estuary in Ceará.

The disposal of wastewater due to factors such as population increase and 
increasing urban development, tourism, and industrialization can expose the envi-
ronment with pollutants according to the tidal regime, flow and the frequency of 
discharge, and the estuary’s productivity. Berlamino et al. (2012) evaluated the con-
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tamination of solid waste in mangrove areas associated with the Potengi River estu-
ary in the city of Natal (Rio Grande do Norte) and established a relationship between 
this pollutant and the location, levels of land use and occupation, and type of use of 
these areas demonstrating the need for planning and infrastructure. Another study 
was carried out in the municipality of Acaraú, located on the western coast of Ceará 
State in Brazil, to evaluate impacts caused by solid waste on the mangrove ecosys-
tem by emphasizing losses in the vegetation structure (Souza 2016). The results 
indicated a great predominance of residues from vessels such as wood and styro-
foam, which reflected in a high mortality of plants due to the imprisonment of these 
residues in pneumatophores preventing respiration and leading to the death of spe-
cies in the most impacted areas. Lima (2015) observed that areas impacted by solid 
residues showed a dominance of polychaetes from the Nereididae and Capitellidae 
families when compared to conserved areas.

Therefore, the estuaries of the Northeastern Ecoregion are among the most 
affected by the human occupation process in Brazil and need actions that guide an 
integrated management to maintain an ecosystem sustainability. One of the strate-
gies used for environmental conservation and management of these environments is 
the creation of protected areas. For example, the Environmental Protection Area 
(APA) of the Parnaíba Delta (PI), APA of Barra do Mamanguape (PB), and the Cocó 
River State Park (CE). However, although environmental legislation has evolved 
significantly in these areas, it has been shown to be of low effectiveness and with 
gaps in many states. Thus, environmental education will be of great relevance to 
inform local communities towards the need to preserve mangroves and estuarine 
habitats towards a sustainable use of ecosystem goods in the Northeastern States in 
Brazil.

3.4  �Final Considerations

The amount and extent of biological and ecological knowledge, or even basic taxo-
nomic resolution, are heavily unbalanced in estuaries from the Brazilian northeast-
ern ecoregion. The available information is often restricted to taxonomic information 
(in some cases only species lists) for most estuaries. Few studies have generated 
consistent data on abundance, biomass or assemblage structure and function. 
Therefore, even the most basic current background information is still lacking for 
most regional estuaries. Future surveys need to include data on assemblage struc-
ture and function, both in protected and unprotected areas, to serve as a reference for 
effective management planning and a tool for decision-makers. Environmental edu-
cation will have to assume a greater regional relevance among researchers, govern-
ment, and society to counterbalance the loss of estuarine goods and services in areas 
increasingly impacted by human activities.
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Chapter 4
Benthic Estuarine Assemblages 
of the Eastern Marine Brazilian  
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Abstract  The Eastern Brazil Marine Ecoregion includes over 50 estuaries along 
roughly 1200 km of coastline with latitudinal changes in mean rainfall and average 
yearly atmospheric temperatures. Estuarine ecosystems within this ecoregion have 
been relatively well studied with respect to the impacts from human pollution and 
the benthic biodiversity in mangrove forests, estuarine channels, and tidal flats. 
Benthic estuarine assemblages exhibit typical spatial changes with salinity gradi-
ents, with higher diversity towards euhaline sectors. Macrofaunal abundance and 
biomass are typically higher within mud and organic-rich sediments along tidal 
flats, although spatial patterns often differ within sectors (euhaline to oligoha-
line) and between estuaries in the ecoregion. The largest coastal bays and estuaries 
of the Eastern Marine Ecoregion are impacted by variable levels of sewage and 
industrial discharge and mangrove forest removal. Although the effects of these 
impacts likely result in changes in the amount or quality of water supply, decrease 
of fish stocks, and transformations of food webs, there is limited understanding of 
the potential loss of  estuarine services. Climate change effects including higher 
mean atmospheric temperatures and lower rainfall are predicted to significantly 
impact estuarine benthic assemblages in the Eastern ecoregion and localized effects 
of higher salinity are already in place at some areas. Further studies need to under-
stand accurately what are the most important estuarine functions and services in 
order to evaluate how different local (biological invasion, habitat destruction, 
pollution) and global (climate change) impacts  will affect these systems. 
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Concomitantly, estuarine areas for conservation must be identified, implemented 
and managed in Eastern Brazil Marine Ecoregion.

Keywords  Eastern Brazil · Benthic ecology · Impacts · Mangroves · Estuaries

4.1  �Introduction

The Eastern Brazil Marine Ecoregion (EME) is located within the Tropical 
Southwestern Atlantic province, and includes over 50 estuaries from the states of 
Bahia and Espírito Santo along roughly 1200 km of coastline (11°28’S to 21°18’S; 
Fig. 4.1; Spalding et al. 2007). The EME has low seasonal oscillations in temperature 
(20–26 °C), but with higher mean annual values in the northern sector on the coast of 
Bahia state (24–26 °C), if compared to the southern sector along the coastal Espírito 
Santo state (20–24 °C; Alvares et al. 2014; Bernardino et al. 2015). Annual rainfall is 
also markedly variable within the EME, with higher volumes within the northern 
sector (1600–2200 mm/year) whereas southern Bahia and Espírito Santo are drier, 
with 1000–1600 mm/year (Alvares et al. 2014). Atmospheric historical data from the 
last 40 years evidences a mean temperature increase of 0.1 °C per decade along the 
EME, with frequent positive temperature anomalies (i.e., annual mean temperatures 
above historical means) in the last 10  years (Bernardino et  al. 2015). Therefore, 
although the EME encompasses estuaries along the eastern coast of Brazil with a 
typical tropical climate, regional (and latitudinal) differences in annual rainfall and 
mean temperatures are evident and may result in distinct long-term ecological 
changes in benthic assemblages related to temperature and estuarine salinity.

Although there is a large number of estuaries (N > 50) within the EME, most 
scientific work has been focused on those near large urban areas including the Todos 
os Santos and Vitória Bays, within the metropolitan areas of Salvador and Vitória, 
respectively (Fig. 4.1). On the northern region of the EME, the Todos os Santos Bay 
(TSB) encompasses several smaller estuaries. Water salinity gradients from freshwa-
ter to marine conditions are only observed on rivers that drain in the TSB, and there-
fore true estuarine regions are restricted to these smaller rivers. The main estuaries 
in TSB are the Paraguaçu, Jaguaripe, Subaé, and minor systems including the 
Mataripe and São Paulo estuaries. Many other estuaries are situated in the coast of 
Bahia State but, with a few exceptions (e.g., Hatje et al. 2008), with virtually no 
published studies. On the southern region of the EME, Vitória Bay (VB) is within a 
large metropolitan area and exhibits a marked salinity gradient from the main river 
(Santa Maria de Vitória) towards the ocean, with a significant presence of mangrove 
forests in the inner portions of the estuarine system (Rigo 2004). Several smaller 
estuaries within the southern region of the EME are located either near smaller towns 
or near marine protected areas on the coast. Two of these smaller estuaries have been 
relatively well sampled, the Benevente (BE) and the Piraquê-Açu-Mirim (PAM) 
estuaries. Tidal flats and mangrove areas occur along all of those estuaries and the 
available data on their benthic biodiversity will be reviewed in this chapter (Fig. 4.2).
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There is considerable work on the structure of estuarine benthic assemblages 
from a few estuaries along the EME. Most studies evaluated short-term patterns of 
benthic assemblages across salinity gradients and between vegetated and unvege-
tated habitats (Bernardino et  al. 2016). Some effort towards impact assessments 
from the heavily urbanized estuaries have been made and will be reviewed here 
(e.g., Hatje et al. 2006; Barros et al. 2008; Hatje and Barros 2012; Krull et al. 2014). 
Ecological and functional approaches with variable spatial and temporal scales have 
also been carried out in recent years, and significantly advanced the knowledge of 
fairly important tropical estuarine ecosystems within the EME.

As observed in other coastal regions, estuaries and their associated habitats within 
the EME may provide significant ecological services to human populations through 
water quality, biodiversity and food provision, coastal protection and climate regula-
tion (McLeod et al. 2011; Pendleton et al. 2012). Mangrove forests are an important 
habitat of estuaries along the EME, but their specific ecological services to the popu-
lation within this region is poorly quantified (but see Servino et al. 2018). For exam-
ple, even heavily urbanized estuaries near VB and TSB have extensive mangrove 
forests (Costa et al. 2015) that provide food for traditional communities and habitat 
for estuarine and marine organisms (Rondinelli and Barros 2010), and they likely 
have fundamental role on water quality. In a similar way, many traditional communi-
ties depend on services provided by smaller estuaries along the EME, and many 
conflicts on the management of those resources exist, including the lack of proper 

Fig. 4.1  Map (left) indicating river basins within the Eastern Brazil Marine Ecoregion (EME), 
with detail of the Todos os Santos Bay (1) and Vitoria Bay (2) near the metropolitan areas of 
Salvador and Vitória, respectively
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wastewater treatment. Habitat loss through mangrove removal or pollution is a major 
problem within most estuaries and even “visually preserved” ecosystems show some 
degree of contamination by sewage or industrial pollutants (Grilo et al. 2013; Ribeiro 
et al. 2016; Bernardino et al. 2018). These pressures impact the biodiversity associ-
ated with estuarine ecosystems (Barros et al. 2014) and likely put additional pres-
sures on the services they provide (Lotze et al. 2006), but those effects have not been 
quantified in most estuaries within the EME (Servino et al. 2018).

A variety of habitats within estuarine ecosystems, including mangrove and sea-
grass habitats, mudflats, and sublittoral unvegetated channels, provide support to a 
wide variety of benthic assemblages. These habitats have many species in com-
mon, but their assemblages are structured by a range of gradients such as salinity 

Fig. 4.2  Satellite image of six estuaries within the Eastern Brazil Marine Ecoregion (EME). 
A. Vitoria Bay (ES); B. Benevente estuary (ES); C. Piraquê-Açu-Mirim estuary (ES); D. Jaguaripe 
estuary (BA); E. Paraguaçu estuary (BA); F. Subaé estuary (BA). Images A, B, and C kindly pro-
vided by IEMA-ES. Images D, E and F from LandSat 7 and 8
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and sediment grain size, organic matter availability and processes of disturbance, 
species interactions and recolonization (Edgar et al. 1999; Ysebaert et al. 2003; 
Barros et  al. 2012; Whitfield et  al. 2012). This chapter will review local (i.e., 
within estuary) and regional (between estuaries) spatial patterns of benthic estua-
rine assemblages in the EME in an attempt to provide a broader understanding of 
their biodiversity and ecological patterns. Here we analyze published and unpub-
lished data from the most dominant habitats within each estuary in order to com-
pare their assemblages along the EME.  We also review available published 
information on the impacts affecting benthic assemblages in some estuaries, and 
make some theoretical predictions on their ecosystem health and vulnerability to 
future climatic change.

4.2  �Mangrove Habitats

As in many other estuaries of Brazil, mangroves are a dominant habitat along estu-
aries of the EME. The general pattern of mangrove species distribution is presented 
in Fig. 4.3, there is a substitution pattern along the salinity gradient (Costa et al. 
2015). Rhizophora mangle occurs mostly on the euhaline and polyhaline sector of 
TSB estuaries. Laguncularia racemosa has a wide distribution, dominating the cen-
tral part of Jaguaripe estuary (from euhaline until oligohaline regions) and the oli-
gohaline sector of Paraguaçu and Subaé estuaries.

Avicennia schaueriana occurs in all sectors of Jaguaripe and Subaé estuaries and 
from euhaline until mesohaline sectors of Paraguaçu occurring as co-dominant with 
Rhizophora mangle on the euhaline. Avicennia germinans was found only on the 
oligohaline sector of Jaguaripe and Subaé estuaries (Costa et  al. 2015) although 
species from this genus are recognized for supporting high salinities. TSB man-
grove species distribution pattern are different from those found by Chen and 
Twilley (Chen and Twilley 1999) in Florida, where L. racemosa dominates the 
euhaline region and R. mangle dominates the oligohaline.

The southern region of the EME along the Espírito Santo state has about 70 
Km2 of mangrove forests with highest mangrove coverage within Vitória Bay (18 
Km2) and on the Piraquê-Açu-Mirim and São Mateus estuaries (12–19 Km2; 
Schaeffer-Novelli et al. 1990; Servino et al. 2018). Mangroves along the inner VB 
estuary are well developed, with dominance of R. mangle, A. schaueriana, and L. 
racemosa. Phenotypic responses of A. schaueriana in response to latitudinal salin-
ity patterns and to local sewage contamination from estuaries within metropolitan 
areas have been detected (Arrivabene et al. 2014). The same species of mangroves 
are distributed along salinity sectors in estuaries on the southern region of the 
Espírito Santo state, but the structure of most forests has only been studied within 
a few estuaries.

4  Benthic Estuarine Assemblages of the Eastern Marine Brazilian Ecoregion (EME)
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4.3  �Estuarine Benthic Assemblages

4.3.1  �Patterns of Abundance and Biomass

The abundance and biomass of macrofaunal benthic assemblages are highly associ-
ated with spatial and temporal patterns of salinity variability, mud content, and 
estuarine production (Ysebaert and Herman 2002; Gilberto et al. 2004). Most estu-
aries within the EME can be classified as estuarine bays or floodplain estuaries, with 
intense input of continental particulate organic matter in short periods of high rain-
fall (Lessa et al. 2018). The seasonal changes in rainfall along the northern EME 
therefore can lead to latitudinal changes in community abundance and biomass in 
estuaries, whereas salinity regimes and sediment content may determine regional 
differences. However, multiple human impacts additionally alter the abundance and 
biomass of macrofaunal assemblages at variable spatial scales. For example, local 
impacts associated with organic inputs (sewage), disturbance (e.g., trampling, fish-
ing), or forest clearing (mangrove) will lead to changes in benthic assemblage abun-
dance and biomass (Bernardino et al. 2018).

Natural variability in salinity clearly changes macrofaunal benthic abundances in 
tropical estuaries within the EME (e.g., Barros et  al. 2008; Mariano and Barros 
2015). Higher densities have been observed in sites with higher mud content, pre-
sumably in response to higher organic content at mesohaline sectors. There is also 
spatial and seasonal evidence for changes in macrofaunal abundance along the 
continental-marine gradient in response to environmental change within estuaries in 
the EME but it seems that variability in space explains more than variability in time 
(Barros et al. 2012). Higher macrofaunal densities in areas with high organic avail-
ability within impacted estuaries also correspond to a local effect of organic enrich-
ment from pollution. In general, tropical estuaries from the EME exhibit changes in 
macrofaunal abundance and biomass between estuarine habitats, along salinity sec-
tors, and in response to changes in sediment particle size and other covariables, 
including sediment organic matter.

4.3.1.1  �Intertidal Habitats

Spatial patterns of macrofaunal abundance in intertidal habitats have been studied 
along several estuaries of the EME, with salinity gradient and habitat type being the 
most conspicuous factors in the changes observed. For example, mudflats and man-
grove habitats in the mesohaline sector of three estuaries of the EME have been 
compared in respect to macrofaunal abundance, biomass, and secondary produc-
tion. In the Benevente estuary (BE), mudflats had higher macrofaunal secondary 
production (138 ± 79 mg/m2/day), biomass (7677 ± 5051 mgAFDW/m2), and abun-
dance (33,023 ± 14,709 ind/m2), if compared to mangrove habitats in the same sec-
tor (42.5 ± 46.4 mg/m2/day, Bissoli and Bernardino 2018). The same study revealed 
that macrofaunal biomass and secondary production were significantly higher in 
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mangrove habitats at the other two estuaries sampled, Vitória Bay and Piraquê-Açu-
Mirim, suggesting that mangrove forests are an important source of organic mate-
rial to the benthic assemblages in some estuaries but not in all sites studied. When 
multiple estuaries are compared, there is no clear latitudinal difference in macrofau-
nal abundance, biomass, or secondary production within the southern sector of the 
EME. Differences in macrofaunal assemblages observed between mangroves and 
mudflats are evident, but regional heterogeneity between estuaries makes these dif-
ferences inconsistent across estuaries.

Changes in abundance of benthic intertidal assemblages along salinity gradients 
have also been investigated in the southern region of the EME. There are no signifi-
cant changes in macrofaunal abundance or biomass on mudflat habitats between 
euhaline and polyhaline sectors in the Piraquê-Açu-Mirim estuary (1560 ± 1170 
ind/m2 and 1221 ± 700 ind/m2, respectively). In general, macrofaunal abundance, 
biomass, and production of intertidal benthic assemblages seem to be less influ-
enced by salinity gradients if compared to subtidal habitats (Bissoli and Bernardino 
2018).

In the estuaries of Todos os Santos Bay, there is evidence that different macro-
faunal assemblages inhabit intertidal mudflats at different haline sectors (Krull et al. 
2014; Mariano and Barros 2015). The structure of the benthic assemblages was 
clearly related to salinity and peaks of abundance of different taxa were reported on 
different estuaries. For instance, in euhaline sectors there is high abundance of the 
mollusk Neritina virginea on Jaguaripe estuary and Pilargid polychaetes in the 
Subaé estuary. In the oligohaline sector, Nereididae, Spionidae, Capitellidae and 
Ampharetidae polychaetes were more abundant (Mariano and Barros 2015). Also, 
greater intertidal abundances were found on Jaguaripe estuary when compared to 
Subaé estuary and such pattern is likely to occur due to greater anthropogenic 
impacts on the latter (Krull et al. 2014).

In general, small-scale patchiness is greatly responsible for the spatial variability 
in the structure of benthic macrofaunal assemblages within estuarine intertidal habi-
tats. Habitat structure (i.e., heterogeneity and complexity) in estuarine tidal flats is 
created by a number of environmental factors including shear stress, organic matter 
availability, sediment grain size, and larval-adult interactions (Ysebaert and Herman 
2002; see Carvalho and Barros 2017, for habitat structure conceptual clarification). 
Nevertheless, consistent patterns of abundance in some taxa have been observed in 
mudflats along the salinity gradient of different estuaries in the EME, salinity is a 
major driver, but specific responses to different environmental variables surely 
needs to be further investigated.

4.3.1.2  �Subtidal Habitats

Subtidal habitats of VB and the PAM estuaries have higher macrofaunal abundances 
within the polyhaline sectors, which contrasts to the spatial patterns observed on 
intertidal habitats. Higher macrofaunal abundances along intermediate sectors of 
both estuaries may reflect the fine sediment grain size at those areas and a higher 
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sewage contamination in the case of VB. For example, macrofaunal abundance in 
areas contaminated by sewage discharge in VB may reach up to 7465 to 12,800 ind/
m2, which is 2–3 orders of magnitude higher than unpolluted sites. Oligohaline sec-
tors of VB and PAM estuaries have macrofaunal densities similar to those encoun-
tered in the euhaline sectors, with values varying from 170 to 5760 ind/m2. In 
general, there is high spatial variability on total abundances of benthic macrofauna 
within each sector of all estuaries studied, and as observed on intertidal habitats, 
multiple environmental factors including current velocities, sediment composition, 
salinity gradients, and human impacts likely act in concern to structure those assem-
blages (e.g., Cortelezzi et al. 2007).

4.3.2  �Assemblage Composition, Richness, and Diversity

4.3.2.1  �Intertidal Habitats

Intertidal mudflats in the euhaline sector of Piraquê-Açu-Mirim estuary have higher 
taxa richness (identified to family level) and diversity if compared to the mesohaline 
sector. A total of 55 taxa were identified in the euhaline sector, whereas a total of 37 
taxa were sampled in the mesohaline sector of Vitória Bay, Benevente, and Piraquê-
Açu-Mirim estuaries.

Intertidal mudflat habitats in the Subaé, Paraguaçu, and Jaguaripe estuaries in the 
Todos os Santos Bay had similar richness than others estuaries in the EME, with 
26–28 macrofaunal taxa (Mariano and Barros 2015). Overall, benthic richness of 
intertidal mudflat assemblages on the estuaries of the Todos os Santos Bay is lower 
towards the oligohaline sector (Krull et al. 2014; Mariano and Barros 2015). Species 
richness in intertidal habitats is lower than on subtidal habitats at the Todos os 
Santos Bay estuaries, but those differences may be associated with a higher hetero-
geneity in sediment grain size within estuarine channels. The lower richness on 
intertidal areas also may be partially associated with stress caused by air exposure 
time, i.e., high temperature and interstitial salinity during low tide.

Habitat comparisons between mangrove and mudflat habitats revealed higher 
macrofaunal richness within vegetated habitats on the southern sector of the 
EME. Overall, infaunal benthic richness was higher within mangrove habitats (18–
25 taxa in Vitória Bay, Benevente, and Piraquê-Açu-Mirim estuaries) when com-
pared to nearby mudflats in the same estuaries (14–17 taxa). Diversity patterns were 
variable between habitats, with higher diversity in mudflats at the Piraquê-Açu-
Mirim estuary but the opposite trend, with higher diversity in mangrove sediments, 
in Vitória Bay and Benevente estuaries.

The estuarine salinity sectors (euhaline, polyhaline, mesohaline, oligohaline, 
from greater to lesser salinities) are typically recognized in the estuaries of the 
EME. Some benthic species are accordingly distributed along these gradients with 
either a constrained (less tolerant species) or a broad distribution, as observed in 
temperate estuaries. For example, the crustacean isopod genus Excirolana and the 
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mollusk Neritina virginea seem to occur intertidally only on the euhaline sector of 
Paraguaçu and Jaguaripe estuaries, respectively (Mariano and Barros 2015). The 
polychaetes from the family Sternaspidae share both euhaline and polyhaline sec-
tors of TSB estuaries, whereas Paraonidae and Magelonidae families occur only on 
polyhaline sector and Ampharetidae is apparently adapted to the oligohaline sector 
(Krull et al. 2014). Other families show a wide distribution along the estuarine salin-
ity gradient. That is the case of the polychaetes from the families Goniadidae, 
Nereididae, Spionidae, and Capitellidae (Krull et  al. 2014; Mariano and Barros 
2015). Nevertheless, goniadid polychaetes have higher abundances in euhaline and 
polyhaline sectors, whereas Nereididae, Spionidae, and Capitellidae are more abun-
dant in the oligohaline sector of TSB estuaries (Krull et  al. 2014; Mariano and 
Barros 2015).

Benthic assemblage composition also changes markedly between vegetated 
(mangroves) and unvegetated (mudflats) habitats in estuaries within the 
EME. Macrofaunal composition at family level is more similar between vegetated 
habitats among the estuaries of Vitória Bay, Piraquê-Açu-Mirim, and Benevente, if 
compared to mudflats at the same estuaries, suggesting that mudflats have higher 
spatial variability and dissimilarity. Within mangrove forests, macrofaunal compo-
sition was related to higher sedimentary detritus biomass and total sedimentary 
organic matter, supporting that forests have an important role as ecosystems engi-
neers for the benthic fauna. The most abundant macrofauna in the mangrove forests, 
the annelids Oligochaeta and Capitellidae, are common in sediments with high 
organic content and are widely present at other tropical and subtropical mangroves 
(Netto and Galluci 2003; Mariano and Barros 2015). In general, Oligochaeta and 
Capitellidae dominated sediments in mangrove habitats (>60%) in all estuaries, 
whereas mudflat habitats exhibited different dominances among the estuaries, 
which were likely related to salinity changes as also observed in estuaries of the 
Todos os Santos Bay (Mariano and Barros 2015). In mudflats within mesohaline 
sectors, peracarid crustaceans (Kalliapseudidae) and annelids (Oligochaeta) were 
more abundant in the Benevente estuary, whereas annelids (Spionidae and 
Capitellidae) dominated (>80% relative abundance) macrofaunal assemblages in 
Vitória Bay. Annelida is also a dominant group along intertidal mudflats in the 
Piraquê-Açu-Mirim estuary, but cirolanid isopods occur in low abundances at the 
euhaline sector, whereas several annelids, including amphinomids and sabellarids, 
mostly occur at the polyhaline sector and the annelids Capitellidae and Oligochaeta 
are more abundant in mesohaline sector.

4.3.2.2  �Subtidal Habitats

Salinity tolerance is one great natural stressor that dictates most of species distribu-
tion patterns in estuaries (Elliott and Quintino 2007; Mariano and Barros 2015). 
These spatial patterns are observed in EME estuaries, with subtidal benthic richness 
on the TSB showing a reduction of species richness towards the oligohaline sector 
(Barros et al. 2012, 2014). This pattern is clearly different from Remane’s model as 
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pointed previously (e.g., Barros et al. 2012). In all estuaries studied, there is a strong 
pattern for high macrofaunal richness on euhaline sectors, a variable richness on 
polyhaline and mesohaline sectors, and a relatively low richness on oligohaline sec-
tor (Barros et al. 2012). Comparatively, species richness on oligohaline sector of 
Paraguaçu estuary might be higher than in other estuaries of Todos os Santos Bay. 
The presence of a dam on Paraguaçu estuary allows eventual entrance of water with 
greater salinity, which could explain these observations. Also, a higher species rich-
ness is found inside Iguape Bay, a particularly large and shallow section of Paraguaçu 
estuarine system (Barros et al. 2012).

Estuarine biological diversity is composed by alpha, gamma, and beta diversity 
(Barros et al. 2014). Alpha diversity is the small-scale diversity (e.g., stations, sites), 
gamma diversity refers to the region or ecosystems of interest (e.g., estuary), and 
beta diversity is the variation in species composition among sites (or places or sta-
tions) in the area of interest (Legendre et al. 2005). Alpha, gamma, and beta diver-
sity were estimated for several estuaries in Todos os Santos Bay (Barros et al. 2014). 
Alpha diversity, (i.e., diversity at each station or site), decreases along the estuarine 
salinity gradient from the euhaline towards the oligohaline sector (see Fig.  4.3). 
Estuaries like Paraguaçu and São Paulo presented high gamma diversity, but values 
are still lower than estuaries from temperate regions in France and in the USA 
(Barros et al. 2014). When considering gamma diversity as the simple sum of beta 
and alpha diversities (additive formula from Whittaker’s work; e.g., Whittaker 
1960), the beta diversity in Todos os Santos Bay estuaries contributes more to 
gamma diversity than to alpha diversity. The processes behind this pattern still need 
to be investigated, not only at EME estuaries but also in other regions of the world. 
Clearly, beta diversity shows greater values on lower estuarine sites (Barros et al. 
2014) and beta diversity on Todos os Santos Bay estuaries is mostly driven by turn-
over (i.e., species replacement) than by nestedness (i.e., subsets of a large group of 
species). High turnover is usually associated with low impacted estuaries, such as 
the Jaguaripe estuary. On the other hand, São Paulo estuary shows beta diversity 
mostly driven by nestedness, which is associated with highly impacted estuaries. In 
this case, small sets of a large group of species are present in different regions along 
the salinity gradient due to an increase in the disturbance, pollution for instance, and 
a decrease in the number of species that are able to persist. Nevertheless, other 
impacted estuaries like Subaé can show different beta diversity phenomena (nested-
ness or turnover) at different sampling times. Both Subaé and São Paulo estuaries 
are known by its high degree of anthropogenic impact (Barros et al. 2014).

Benthic assemblage composition from estuaries in the EME shows typical 
changes within salinity. In Vitória Bay, subtidal sediments are dominated by a num-
ber of annelids, including Oligochaeta, Cirratulidae, Capitellidae, Spionidae, and 
Magelonidae. Capitellidae (Capitella sp.), Cirratulidae (Mediomastus sp.), and 
Onuphidae (Mooreonuphis lineata) dominate oligohaline sectors of Vitória Bay 
estuary, whereas the polyhaline and euhaline sectors are dominated by a range of 
other species with higher overall diversity. On the Piraquê-Açu-Mirim estuary, a 
range of different species dominate subtidal sediments, including Lumbrineris sp., 
Magelona papilicornis, and Gimnonereis crosslandi, which may be associated with 
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a less impacted ecosystem if compared to Vitória Bay. In the Rio Doce estuary 
located in the central sector of the EME, there is a high diurnal variability in salinity 
due to tidal and freshwater mixing resulting in strong spatial heterogeneity in sedi-
ment composition within the estuary. In sites within the polyhaline sector with 
sandy sediments, macrofaunal assemblages were dominated by the annelids 
Laeonereis sp., Neanthes succinea (Nereididae), Isolda pulchella and Amphicteis 
sp. (Ampharetidae). Temporal variability in rainfall volumes within the Rio Doce 
basin can lead to strong changes in the structure of benthic assemblages, and events 
of high freshwater input to the estuarine region lead to a 2–3 times higher abun-
dance of Chironomid larvae.

Regarding estuaries on Todos os Santos Bay, several published studies (e.g., 
Hatje et  al. 2006; Barros et  al. 2008, 2012, 2014a; Magalhães and Barros 2011; 
Krull et al. 2014; Mariano and Barros 2015) showed that subtidal patterns of mac-
rofaunal assemblage composition are similar to those found on the intertidal habi-
tats. In spite of all variability, clearly polychaetes from the families Cirratulidae and 
Orbiniidae are frequently observed on the euhaline and polyhaline sectors of estuar-
ies. Nereididae polychaetes and Tellinidae gastropods have a wider distribution but 
Nereididae have a higher abundance on the oligohaline sector of the Todos os Santos 
Bay estuaries.

4.4  �Impacts and Conservation Issues

Human development leads to eutrophication, chemical pollution, chronic oil spill-
ing, and clearance of vegetated habitats of estuaries for construction of ports, mari-
nas, housing, and shrimp farms (Lotze et  al. 2006). These impacts threaten the 
biodiversity and ecosystem services provided by estuaries and specially by man-
grove ecosystems, which are experiencing fast declines worldwide (Pendleton et al. 
2012). On the EME of Brazil there are multiple sources of impact to estuarine eco-
systems and their associated habitats, most of them occurring at densely populated 
areas. In general, studies in the EME showed that benthic estuarine assemblages 
respond to acute and chronic impacts through changes in community abundance, 
composition, and diversity, which may lead to functional and important ecological 
changes that have been less studied in the region (but see Magalhães and Barros 
2011).

The climate variability along the wide latitudinal variation within the EME and 
local impacts on estuarine ecosystems may lead to unique, cumulative or synergistic 
process between preserved and impacted areas (Vinebrooke et  al. 2004; Hoegh-
Guldberg and Bruno 2010). Abiotic and biotic stressors may interact to produce 
combined impacts on estuarine biodiversity as observed in temperate estuaries 
(France; Pezy et al. 2017). Estuaries previously impacted are expected to be less 
resilient to climate variability, likely as a result of biodiversity and functional loss 
(Dolbeth et al. 2007), which is the case of several estuaries in the EME (Krull et al. 
2014).
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4.4.1  �Organic and Inorganic Pollution

The Vitória Bay estuary is situated within the largest metropolitan area on the south-
ern region of the EME and receives large inputs of untreated urban and industrial 
sewage (Jesus et al. 2004; Grilo et al. 2013). As a result, some areas of Vitória Bay 
are contaminated with high concentrations (> 1.0 μg/g) of fecal lipids (e.g., copros-
tanol). In general, over 30% of the studied subtidal areas of VB are under high or 
severe contamination from untreated sewage, with negative effects on benthic diver-
sity and assemblage composition. At the Piraquê-Açu-Mirim estuary, sewage con-
tamination was also detected but with concentrations 10 times lower than observed 
in Vitória Bay. Trace metals including Fe, Al, Zn, Cr, Co, Cu, and Pb were also 
detected in higher concentrations within the intermediate (mesohaline) and euhaline 
sectors of Vitória Bay. These areas receive most untreated sewage and are under 
direct impact of port activities (Jesus et  al. 2004). However, most trace metals 
exhibited concentrations below the Threshold Effect Levels (TEL) and therefore are 
not considered dangerous to the estuarine biota. In general, trace metals are carried 
with organic particles along the river basins and accumulate in areas with high 
organic deposition (Hatje et al. 2006). Impacts from sewage input on benthic assem-
blages in Vitória Bay and in the Piraquê-Açu-Mirim estuaries are typical altered 
patterns of faunal abundance, assemblage composition and diversity which are 
widely reported in other estuarine and marine ecosystems. However, Vitória Bay is 
under a much stronger degree of contamination along a larger spatial scale, if com-
pared to local alterations of the benthic assemblages observed in the Piraquê-Açu-
Mirim estuary. Contamination of several estuaries within the Todos os Santos Bay 
has been extensively investigated and exhibits variable levels of contamination and 
biological degradation (e.g., Hatje et al. 2006; Krull et al. 2014). The Subaé estuary 
is heavily contaminated by trace metals (Pb, Cd, Co, Mn, Zn, Cr, Cu) due to indus-
trial activities with adverse effects on benthic assemblages (Hatje et al. 2006; Krull 
et al. 2014). Other estuaries within the TSB typically exhibit lower contamination 
by heavy metals (Hatje and Barros 2012), but impact sources from agriculture and 
sewage may also impact benthic assemblages at smaller spatial scales.

4.4.2  �Mine Tailing Impacts

The collapse of a mine tailing dam in 2015 led to the contamination of the Rio Doce 
river and the estuary with tailings containing high concentrations of trace metals. A 
short-term (period of 15 days) assessment of contamination effects on the benthic 
estuarine assemblages in the Rio Doce estuary revealed changes in macrofaunal 
composition and trophic guild dominance (Gomes et al. 2017). Macrofaunal com-
position markedly changed after the mine tailing impacts on the Rio Doce estuary, 
with tolerant taxa persisting after the impact. Some annelids including Amphicteis 
sp., Isolda pulchella, Laeonereis sp., Alitta succinea and Heleobia australis 
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represented over 80% of macrofaunal taxa after the impact. Other species sampled 
before the impact including Glycera sp., Magelona sp., Heteromastus similis, 
Pholoe sp., Sigambra grubii, Polydora sp. and Sthenelais sp. were not detected after 
the impact, with an overall 30% reduction on taxa richness. Overall, surface deposit 
feeders dominated estuarine benthic assemblages after the impact, with a significant 
decrease in the relative abundances of detritivores and carnivore/omnivores (Gomes 
et al. 2017). The initial impact of mine tailings deposition (up to 3 days after the 
impact) revealed a burial impact on the benthic assemblages and the increase in 
sedimentary trace metal concentrations suggests future impacts due to chronic con-
tamination (Hatje et al. 2017; Queiroz et al. 2018).

4.4.3  �Mangrove Clearing and Shrimp Farms

Mangrove deforestation is widespread around the globe and occurs at fast rates on 
many coastal areas (Alongi 2002; Donato et al. 2011). Mangrove removal for urban 
development is also common in Brazil despite being their protected status. Mangrove 
forests are typically removed by cutting down of the above-sediment vegetation 
with the below-ground root structures left intact, although roots may be completely 
removed or buried in urban areas. A number of studies revealed that the removal of 
mangroves significantly change particle sedimentation, carbon stocks,  hydrody-
namics, and sediment organic matter profiles, which in turn may lead to changes in 
benthic biodiversity and sediment respiration (Sjoling et  al. 2005; Granek and 
Ruttemberg 2008; Sweetman et  al. 2010; Sabeel et  al. 2015; Kauffman et  al. 
2017; Kauffman et al. 2018; Bernardino et al. 2018). These changes occur mainly 
through modification of sedimentation and changes in mean particle size and on 
sources of organic matter to the benthic fauna after forest clearing (Granek and 
Ruttemberg 2008; Bernardino et al. 2018). Although complete removal of epifaunal 
organisms will follow mangrove clearance, infaunal invertebrates may quickly col-
onize sediments after initial disturbance (Faraco and Lana 2004). In areas where 
mangrove forests were introduced, benthic assemblages also show marked differ-
ences in macrofaunal composition, dominance, diversity, and food webs when com-
pared to non-vegetated areas or to native ecosystems (Demopoulos et  al. 2007; 
Demopoulos and Smith 2010; Sabeel et al. 2015).

Most Brazilian mangroves and estuaries near urban centers have been impacted 
by forest clearing. In small estuaries not bordering large urban centers, deforested 
areas are typically cleared to support local fishermen (Faraco et al. 2010), or they 
are completely removed and buried for construction of local marinas. In the Piraquê-
Açu-Mirim estuary (EME), local effects (1–1000 m scale) of mangrove clearing 
have been quantified and revealed marked changes in benthic assemblage composi-
tion, with changes on benthic food webs in removal areas if compared to natural 
mangrove forests nearby (Bernardino et al. 2018). The changes observed on benthic 
assemblages at the deforested site were also related to alteration of the sedimentary 
habitats and distinct dominance of food sources. The alteration of sedimentary habi-
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tats led to a higher similarity between typical estuarine tidal flat assemblages with 
ones located at the former mangrove forests, evidencing the importance of forests to 
estuarine benthic diversity (Netto and Lana 1999; Netto and Galluci 2003). The 
presence of forests fringing tidal flat estuarine assemblages allows a higher ampli-
tude of food sources available to benthic organisms near natural sites, whereas areas 
cleared of forests exhibit lower trophic levels indicative of lower organic availability 
(Bernardino et al. 2018). Although there is only limited spatial and temporal assess-
ment of mangrove clearing effects on estuarine benthic assemblages, the functional 
links between these assemblages and important estuarine ecological processes 
(Kristensen et  al. 2014) indicate that these are important topics for study along 
Brazilian estuaries. The removal of mangroves over larger spatial scales, including 
for shrimp farming, potentially will have marked impacts on coastal food webs that 
have not yet been considered.

Shrimp farming impacts were assessed on Todos os Santos Bay estuaries through 
multiple lines of evidence. Macrobenthic assemblages in subtidal and intertidal 
areas were negatively affected by shrimp farm activities with markedly lower spe-
cies richness and abundance in impacted areas (Hatje et  al. 2016; Ribeiro et  al. 
2016). Also, benthic assemblages from farming impacted areas were consistently 
different from control areas. Results from those studies alert for the necessity of 
regulation and management measures to reduce present and future impacts on man-
grove forests in the EME, which can deliver important ecosystem services (Alongi 
2002; Kauffman et al. 2018; Servino et al. 2018).

4.4.4  �Invasive Species

The introduction of invasive species is a main concern on marine coastal areas, 
mainly due to port activities. In the Todos os Santos Bay estuaries, three benthic 
invasive species are well known and the invasive marine coral Tubastraea (T. tagu-
sensis and T. coccinea) was found on 12 sites of Paraguaçu estuary. The specimens 
were observed on intertidal areas, rocky reefs, and consolidated substrata, mostly 
artificial, such as piers and platforms (Miranda et al. 2016a). The sources of inva-
sion include oil platforms anchorages at nearby sites and the higher water salinities 
within that estuary. Paraguaçu estuary has a reduced freshwater flow caused by 
a dam, which is also facilitating the establishment of those species in the estuary. A 
marked reduction of native species abundances (e.g., native corals, oysters, and bar-
nacles) and changes in benthic assemblage structure were observed in consolidated 
substrates on areas invaded by Tubastraea (Miranda et al. 2016b). The Asian swim-
ming crab Charybdis hellerii is one of the most widespread invasive benthic species 
in Brazil and is also a very frequent species in Todos os Santos Bay (Silva and 
Barros 2011; Silva 2016). This crab does not have commercial value and is not 
under fishing pressure like native species (Lopes 2009). Additionally, this species 
may compete for habitat and food with commercially important species such as 
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crabs Callinectes causing a possible abundance reduction of the latter (Silva 2016). 
Some species such as the bryozoan Triphyllozoon arcuatum (Almeida et al. 2015) 
and the ascidians Ascidia tapuni and Cnemidocarpa irene (Rocha et al. 2012) were 
also recognized as exotic species in the Todos os Santos Bay and further studies are 
necessary to assess their role as invasive species. In general, invasive species within 
estuaries of the EME have similar deleterious effects on native biodiversity, but 
there is still a large gap understanding the degree of infestation by invasive species 
and their ecological impacts at other estuaries of the EME.

4.4.5  �Climate Change

Climate change is altering Brazil’s estuarine ecosystems at a regional scale due to 
increases in mean atmospheric temperatures (Bernardino et al. 2015). Most Marine 
Ecoregions in Brazil have been under increased high temperature anomalies (i.e., 
higher annual temperatures above historic means) in the last decades. In the EME, 
there is a decadal warming trend of 0.1 °C and positive annual temperature anoma-
lies above 1 °C were common during the last decade (2000–2010; Bernardino et al. 
2015). The warming atmospheric trends observed near estuaries of the EME are 
within the range expected from regional climate model forecasts (Marengo et al. 
2010) and agree with the observed national atmospheric dataset (Alvares et  al. 
2014). Although the warmer anomalies observed in the EME have smaller ranges if 
compared to other Marine Ecoregions of Brazil (Bernardino et al. 2015), estuarine 
communities within this region, under the typical tropical and dry climate, may 
show biological stress due to higher temperatures and lower rainfall. We expect that 
climate-associated impacts may lead to impacts on benthic estuarine organisms at 
some estuaries within the EME through physiological stress, changes in assemblage 
composition and productivity (Doney et al. 2012; Semeniuk 2013). Although these 
climate-driven impacts have been observed in temperate estuaries (Cardoso et al. 
2008; Dolbeth et al. 2011), there is already preliminary data from estuarine benthic 
assemblages in the EME indicating impacts of a warmer and drier climate.

In the EME, a 14-month assessment of benthic assemblages in the Piraquê-Açu-
Mirim estuary indicated changes in community structure across an exceptionally 
dry season associated with a strong El-Niño year (2015–2016 Golden Gate Weather 
Services Comparative Climatic Data 2016). The drought season recorded in the 
Piraquê-Açu-Mirim estuary between 2015 and 2016 was one of the strongest in the 
last 60  years, with rainfall volumes 3–8 times lower than average (Servino 
et al. 2018). During the drought period, significant decrease in rainfall volumes and 
increase in water salinity and temperature were observed in the Piraquê-Açu-Mirim 
estuary. Low dissolved oxygen concentrations were also observed during the 
drought period, suggesting that short periods of hypoxia (<2 mg/L) may also have 
impacted benthic assemblages in this estuary (Brown et  al. 2004; Bishop et  al. 
2006; Harris et al. 2006; Vaquer-Sunyer and Duarte 2008). During droughts peri-
ods, sediment silt fraction increased towards the lower estuary likely as a result of 
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aggregation processes and flocculation by salinization and pH increase (Eisma 
1986; MacKay et al. 2010; Mari et al. 2012). The higher mud content was correlated 
to decreased macrofaunal density, species richness and changes species composi-
tion, which resulted in altered ecological functions provided by benthic assemblages 
(Anderson 2008; Pratt et al. 2014).

4.5  �Final Considerations

The Brazilian EME includes over 50 estuaries with broad geomorphology and envi-
ronmental dynamics. Small estuaries are located within reserves and are relatively 
preserved if compared to large ecosystems located near heavily urbanized areas and 
with multiple impacts due to pollution and habitat loss. Benthic estuarine biodiver-
sity within the EME is structured by typical estuarine environmental dynamics such 
as salinity, sediment grain size, organic matter availability, and habitat types. 
Estuaries within the EME exhibit comparable spatial and temporal changes in abun-
dance and diversity, but local disturbance effects and specific environmental drivers 
of macrofaunal composition and diversity alter large scale patterns. Although ben-
thic assemblages have been successfully used as environmental indicators of impact, 
their taxonomy, function, and importance to estuarine services such as organic car-
bon sequestration, water quality, and food provision have been understudied within 
the EME. Common impacts associated with pollution and habitat loss exist within 
most estuaries and there is initial evidence for climate change effects that also need 
further study. The remaining ecosystems within urban estuaries will likely see major 
climatic impacts in the future with sea level rise resulting in loss of habitats and 
lower precipitation and decreases in water quality. Regional scale assessments of 
those impacts during long-term studies would clearly benefit understanding these 
climate impacts and favor conservation of their biodiversity and ecosystem services 
to local communities.
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Chapter 5
Benthic Estuarine Assemblages 
of the Southeastern Brazil Marine 
Ecoregion (SBME)
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Abstract  We assess the current knowledge of the benthic assemblages in the 
Southeastern Brazil Marine Ecoregion (SBME), which extends for approximately 
1200 km of coastline and includes seven major estuarine systems from Guanabara 
Bay in Rio de Janeiro to Babitonga Bay (or São Francisco do Sul) in Santa Catarina. 
The high ecosystem diversity of SBME putatively accounts for the high levels of 
endemism of the regional marine invertebrate fauna. However, until more taxonom-
ical and biogeographical evidence is available, the SBME should be treated as a 
working biogeographical hypothesis rather than a cohesive unit identified by 
endemic fauna. As a consequence of urban, agricultural, and industrial develop-
ment, the coastal areas from the SBME have been the most altered in the country 
over the last 500 years. Some of the largest cities and busiest harbors of the country 
are in or near the regional estuarine areas. The rapid environmental changes over  
the last several decades do not allow for the assessment if current similarities and 
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dissimilarities in the benthic assemblages express pristine conditions or if they are 
already the result of major human interventions, especially in the case of the 
Guanabara, Sepetiba, and Santos estuaries.

Keywords  Southeastern Brazil · Benthic assemblages · Estuarine gradients

5.1  �Introduction

This chapter assesses, mainly from a benthic perspective, the current knowledge of 
the estuaries from the Southeastern Brazil Marine Ecoregion (hereon SBME), as 
defined by Spalding et al. (2007). The name itself and the limits of the SBME, the 
most developed region in the country, do not coincide with the legal and geopolitical 
divisions in Brazil. In a legal context, Southeastern Brazil includes the coasts of 
Espírito Santo, Rio de Janeiro, and São Paulo states, whereas Southern Brazil 
includes Paraná, Santa Catarina, and Rio Grande do Sul states. For the purposes of 
this review, SBME will include estuaries that occur along the coastline for approxi-
mately 1200 km from Guanabara Bay in Rio de Janeiro to Babitonga Bay (or São 
Francisco do Sul) in Santa Catarina (Fig. 5.1). Although the main drainage systems 
of Southeastern and Southern Brazil are directed westwards to the La Plata Basin, 
the SBME still includes dozens of small rivers that drain directly to the coast and 
will not be evaluated here. We will focus on the seven major estuaries, as defined by 
Lessa et al. (2018, Chap. 1), namely, Guanabara and Sepetiba (in Rio de Janeiro 
State), Santos and Iguape-Cananéia (in São Paulo State), Paranaguá and Guaratuba 
(in Paraná State), and Babitonga (in Santa Catarina State).

The regional subdivisions of Spalding et al. (2007) may not truly express the lati-
tudinal gradients of the meteo-oceanographic drivers and associated biota along the 
southwestern Atlantic Ocean, especially in the case of the inner shelf and other 
shallow-water marine environments. The Southeastern Brazil Marine Ecoregion, 
although included in the Warm Temperate Southwestern Atlantic province of 
Spalding et al. (2007), is in fact subtropical, with a markedly wet summer season, 
high summer temperatures, and high humidity levels. In this context, the consis-
tency and validity of Spalding’s ecoregions need to be empirically tested in coastal 
and shallow-water systems. Differently from the Eastern Marine Brazilian 
Ecoregion, which encompasses a large latitudinal variation, the SBME is oriented 
southwestwards along only 3° of latitudinal coverage. The SBME is hydrologically 
and topographically complex, and its dominant estuarine and coastal ecosystems 
alternate among mangroves, mudflats, dunes, sand banks, oceanic and estuarine 
beaches, rocky shores, lagoons, estuaries, salt marshes, transitional freshwater plant 
formations, and seagrasses (Fig. 5.2). This ecosystem diversity putatively accounts 
for the high levels of endemism of the marine invertebrate fauna. However, until 
more taxonomical and biogeographical evidence is available, the SBME should be 
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treated as a working biogeographical hypothesis rather than a cohesive unit identi-
fied by endemic fauna (Floeter and Soares-Gomes 1999; Caires 2014).

The estuaries of the SBME generally display small (less than 4000 km2), steep 
catchment areas, with a dense river drainage. The estuaries share the ubiquitous 

Fig. 5.1  The seven major estuaries of the Southeastern Brazilian Marine Ecoregion (SBME) all at 
the same scale: (a) Guanabara Bay; (b) Sepetiba Bay; (c) Santos Bay; (d) Iguape-Cananéia Bay; 
(e) Paranaguá Bay; (f) Guaratuba Bay; (g) Babitonga Bay

5  Benthic Estuarine Assemblages of the Southeastern Brazil Marine Ecoregion (SBME)
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presence of the Atlantic Rain Forest (“Mata Atlântica”) along their watersheds and 
have typically developed mangrove forests along their estuarine margins. Salt 
marshes, which appear as marginal mangroves fringes in the estuaries of the north-
ern SBME, become increasingly dominant in the intertidal flats in the south, until 
they totally replace mangroves at Laguna, in Santa Catarina. Thus, with respect to 
the dominance of estuarine vegetated habitats, the SBME is clearly a biogeographic 
transitional zone that changes from tropical to warm temperate coastal conditions, 
as observed by Palacio (1982). Typically, tropical benthic assemblages become 
increasingly impoverished towards the colder and less humid climates of Southern 
Brazil. This trend in estuarine assemblages closely follows the parallel rarefaction 
of the Atlantic Rain Forest and mangrove vegetation.

Benthic diversity and dominance patterns along the SBME reflect the varying 
degrees of connection of the local estuaries with the adjacent shelfs, the rates of 
nutrient and freshwater influxes, the temperature regimes, the exposure degree of 
inlets, the influence of upwelling, the sediment sources, and the bathymetric or 
coastal complexity (Noernberg et al. 2006). Such differences in the annual rainfall, 
mean temperatures and freshwater input are among the main drivers of the benthic 
assemblages in the SBME, even at local scales.

Bernardino et al. (2015) used polychaetes as surrogates for benthic assemblages 
to show that the Southeastern and Rio Grande ecoregions (sensu Spalding et  al. 
2007) are more similar to each other than to the other Brazilian ecoregions. The 
numerically dominant species in the southeastern and southern estuaries are appar-
ently restricted to these ecoregions (Bernardino et al. 2015). The estuarine seascapes 

Fig. 5.2  Schematic representation of the diversity of estuarine habitats and plant formations in a 
subtropical estuary of the SBME
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are monopolized by mangroves and salt marshes in the Amazon and Rio Grande 
ecoregions (Chaps. 2 and 6). This condition gives rise to a type of unimodal distri-
bution of the diversity of estuarine habitats or compartments along the Brazilian 
coast, which reaches a maximum in the SBME and the Northeastern and Eastern 
ecoregions and decreases towards the Amazon and the Rio Grande ecoregions. 
Along the SBME, greater habitat complexity is related to, among other factors, the 
close proximity of the Serra do Mar and the Atlantic Rain Forest, the greater cli-
matic variability expected in subtropical transition zone, and the prevalence of 
upwelling and frontal systems. As a result, the large estuarine systems of the SBME 
display diverse habitats, bringing together tropical, subtropical and warm temperate 
systems, such as mangroves, mudflats, dunes, sand banks, oceanic and estuarine 
beaches, rocky shores, lagoons, estuaries, salt marshes, transitional freshwater plant 
formations, and seagrasses (Fig. 5.2). In general, these estuarine and coastal habitats 
tend to occur from Guanabara Bay to Babitonga Bay. However, the benthic assem-
blages associated with these habitats are only partially recurrent, as shown in the 
following sections. The rapid environmental changes over the last five to six decades 
do not allow for the assessment if current similarities and dissimilarities in the 
regional benthic assemblages express pristine conditions or if they are already the 
result of major human interventions, especially in the case of the Guanabara, 
Sepetiba, and Santos estuaries.

The taxonomic information on the benthic fauna of the SBME is the broadest 
available for the Brazilian coast, despite the inconsistencies and asymmetries in the 
knowledge of the minor phyla and meiofaunal groups, which are due to the lack or 
shortage of specialists. Unfortunately, only a few of the major oceanographic expe-
ditions from the second half of the nineteenth century collected biological samples 
along the Brazilian coast. Nonato (1964) listed the major contributions resulting 
from these expeditions, which sampled mainly the northern and northeastern coasts. 
Hansen (1882), who was an occasional polychaetologist that is much better known 
as the discoverer of the leprosy bacillus, was meritoriously the first researcher to 
recognize endemism in the fauna of southeastern Brazil. Although the descriptions 
of South American marine species peaked around 1850, 1900, and 1970 (Miloslavich 
et al. 2011), the rate of discovery of new species, even among the best-known taxo-
nomic groups, is still significant. Only cnidarians, echinoderms, and macroalgae 
seem to have reached a relatively stable number, with few recent additions 
(Miloslavich et al. 2011). The increasing application of molecular methods to less 
explored, cryptic groups or environments is also contributing to the current informa-
tion on regional marine biodiversity (Prantoni et al. 2017). However, attempts to 
understand the ecological processes underlying the distribution patterns and func-
tion of benthic assemblages are scarce. Quantitative data, mainly on biomass and 
production, are missing or unsatisfactory, making it difficult to assess energy flow 
and energy budgets.

Southeastern Brazil holds approximately 45% (around approximately 85 million 
people) of Brazil’s population, who live in 10% of the territory and are mainly 
concentrated in the coastal zone. The region accounts for a large percentage of the 
Brazilian GDP due to its resources (e.g., fishing, agriculture, mining, tourism), ship-
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ping and trade as well as tourism (Copertino et  al. 2016). As a consequence of 
urban, agricultural, and industrial development, the coastal areas from the SBME 
have been the most altered in the country over the last 500 years. Some of the largest 
cities and busiest harbors of the country are in or near the regional estuarine areas 
(Rio de Janeiro, Sepetiba, Santos, and Paranaguá). Since the 1940s, urban develop-
ment, iron and steel industries, exports from agrobusinesses (soy, sugar, cellulose, 
and bovine meat), and other industrial activities have greatly expanded in the ports 
of Santos (SP), Rio de Janeiro (RJ), and Paranaguá (PR). More recently, since the 
1970s, a tourism boom has heavily impacted the southeastern Brazilian coast (Costa 
et al. 2006; Mello 2008). The degree of urban growth and habitat loss has increased 
over the recent years (Galvão and Nolasco 2013; Sousa et al. 2013). As a result of 
these accelerated changes, land use has already led to heavy contamination condi-
tions in Guanabara, Sepetiba, Santos, and Babitonga bays (Molisani et  al. 2004; 
Martins et al. 2011; Bordon et al. 2011; Fistarol et al. 2015; Soares-Gomes et al. 
2016). The recent changes in pollutant concentrations suggest that the environmen-
tal conditions have worsened (Sousa et al. 2014; Fistarol et al. 2015). Some of the 
estuaries in the SBME have also suffered from environmental changes caused by 
the diversion of river waters from adjacent basins. The loss of environmental quality 
has compromised the estuarine biodiversity and affected the fisheries and tourism in 
most of the SBME estuaries. The concentrations of trace metals in algae, mollusks, 
crustaceans, and oysters are often well above the limits allowed by Brazilian legisla-
tion in Guanabara, Sepetiba, and Santos Bays (Sousa et al. 2014). Despite the per-
sistence of quasi-pristine conditions in some sectors of Iguape-Cananéia, Paranaguá, 
and Guaratuba bays, unplanned land-based activities have resulted in pessimistic 
scenarios for the other major estuarine systems of the SBME.

5.2  �Environmental Settings, Recent Decadal Oscillations 
and Future Scenarios

The coastline along the SBME stretches for approximately 1200 km from Guanabara 
Bay (~23 °S) to Babitonga Bay (~26 °S). The coastline is bordered by the “Serra do 
Mar” continuous mountain range (“sea mountain range”), which originated from 
Precambrian crystalline rocks. The Serra do Mar has a scarped coastal slope that 
creates embayments with wide strandplains (~50 km) and large estuarine systems of 
up to 600 km2 (Angulo et al. 2016). The coastline looks like a submerged landscape 
from Guanabara to Santos Bay, and displays a sequence of high headland, small 
coves and beaches interconnected by rocky shores (Dominguez 2006). From Santos 
Bay to northern Santa Catarina, including the coast of Paraná, the coastline is 
formed by long beaches and well developed coastal plains with wide estuaries, such 
as Santos and Cananéia in São Paulo, Paranaguá and Guaratuba in Paraná and 
Babitonga in Santa Catarina.

Lessa et al. (2018) (Chap. 1) indicated that the seven major estuaries between the 
States of Rio de Janeiro and Santa Catarina are in grabens that run parallel to the 
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coast and bear the same names (Fig. 5.1). There is evidence of Quaternary tectonic 
movements for at least the Guanabara, Santos-Bertioga, and Cananéia grabens 
(Lessa et al. 2018, Chap. 1). Local subsidence is likely accentuating the rates of 
ongoing sea level rise, which may impact the long term urban and industrial devel-
opment. It is controversial if there was Late Quaternary tectonism in Paranaguá Bay, 
as suggested by the alluvium deposits, anomalous drainage lines, and uplifted 
catchments (Nascimento et al. 2013). There is even less evidence for tectonic con-
trol in Guaratuba and Babitonga Bays. Paleo-mangrove plains are present in the 
southern margin of Guaratuba Bay, whereas the present mangrove vegetation thrives 
on the northern side (Lessa et al. 2018, Chap. 1).

The development of Holocene barriers and the paleogeographic evolution of the 
coastal plains are closely related to the morphodynamics of the estuarine systems of 
the SBME (Angulo et al. 2009). There were at least three major cycles of marine 
regression and transgression during the interglacial periods of the Quaternary in 
southeastern Brazil, but precise dating is still lacking (Angulo et al. 2006). The sea 
level was approximately 8 m higher than present during the last interglacial high-
stand (MIS 5e) and approximately 3 m higher than present during the last postgla-
cial maximum some 5100  year ago (Angulo et  al. 2006). These cyclic sea-level 
changes may have caused the correspondingly isolation and reconnection of the 
coastal hydrographic basins. There is indeed evidence of population expansion of 
coastal and estuarine species over the past 200,000 years. The resulting reconnec-
tions and subsequent fragmentation and isolation between the estuarine and fresh-
water bodies were putatively relevant to the historical demography of the estuarine 
species (Tschá et al. 2017a, b). However, an alternative hypothesis suggests that the 
origins of endemic marine taxa in the SBME, at least in the case of the mobile fish 
fauna, are older and resulted from the dispersal from the eastern South Pacific 
Ocean (Caires 2014).

The climate conditions along the coast display complex temporal variability and 
are controlled by local and remote land–ocean–atmosphere processes (Marengo 
2001; Liebmann and Marengo 2001). The climate is humid subtropical, with wet 
summers (Cfa according to the Köeppen classification, Alvares et al. 2014). The sea-
sonal cycle of precipitation shares general characteristics with typical monsoon cli-
mates in other parts of the world (Nieto-Ferreira et al. 2011). Strong western winds 
in the limits of the subtropical and subpolar regions of South America (mainly in the 
eastern sector of the Andes) promote the incursion of mid-latitude cold fronts well 
into the southeastern Brazilian coast (Lupo et al. 2001). Thus, the Subtropical High 
Pressure (SHP) center of the South Atlantic and its interactions with the Subpolar 
Pressure govern the atmospheric circulation along the coastal plains and estuaries 
(Harari et al. 2008). Complex topography also influences the wind regime along the 
SBME. The most frequent winds in all seasons blow from the east, with average 
velocities of 1.5 m/s. Cold fronts force eastern winds to rotate to the north and west 
in only a few hours, with wind velocities of up to 10 m/s. This rotation is followed 
by winds blowing from the south for 1–3 days, with velocities between 5 and 10 m/s. 
As the air temperature drops and the atmospheric pressure rises, the winds turn back 
from the east until the temperatures and pressures return to normal values (Harari 
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et al. 2008; Nieto-Ferreira et al. 2011). The wind regime seems to be a major driver 
of the intertidal flats dynamics in the outer estuarine sectors of the SBME, which act 
by generating short waves that produce turbulent bottom shear stress in shallow-
water environments. Cold fronts may also be frequent in the summer when the 
South Atlantic Convergence zone (SACZ) becomes more intense (Barreiro et  al. 
2002). Stronger southerly winds greater than 6 m/s may cause meteorological tides 
(Campos et  al. 2010), increasing the height of the sea surface and confining the 
water in the estuarine areas (Camargo and Harari 1994).

Interannual climate variability is strongly driven by the El Niño-Southern 
Oscillation (ENSO), which leads to below-normal rainfall and a decrease in extreme 
precipitation during El Niño years (Grimm and Tedeschi 2009). Both El-Niño (posi-
tive ENSO) and La-Niña (negative ENSO) affect the rainfall patterns and alter estu-
arine dynamics (García-Rodríguez et al. 2014). The ENSO is considered the main 
source of rainfall variability in South America (Grimm and Tedeschi 2009) increas-
ing rainfall in SE Brazil and Rio Grande and decreasing it in the Northeastern 
ecoregions.

The SBME displays a regressive sea level fall, tropical to subtropical (21.5 °C 
annual mean temperature and 1400–5300 mm/year of rainfall), humid (over 85%), 
microtidal (1.7 m spring tide range) coast that is exposed to wave heights and wave 
periods of approximately 1.0 m and 8 s, respectively (Angulo et al. 2006; Noernberg 
et al. 2006). The tidal amplitudes increase towards the inner estuarine sectors, and 
are amplified less than two times. The tidal phases and amplitudes indicate that the 
tidal wave propagates in a mixed form, with a progressive form at the outer region 
and a standing wave form in the inner sectors. During neap cycles, strong nonlinear 
interactions allow for the formation of up to six high and low tides per day (Lana 
et al. 2001). Following cold front forcing, storm surges elevate the water levels up 
to 80 cm above astronomical tides (Marone and Camargo 1994). As exemplified by 
Paranaguá Bay, the tidal current velocities increase upstream, with maxima of 0.8–
0.85 m/s at ebb and 1–1.4 m/s at flood (Marone and Camargo 1994). The mean 
precipitation during the rainy season in the austral summer, from December to 
March, can be up to three to six times higher than during the dry season in the win-
ter, from June to August (Kjerfve et al. 1997; Noernberg et al. 2014; Soares et al. 
2014). Riverine discharge reaching the ocean is generally low, as small drainage 
basins (<4000 km2) discharge at rates less than 200 m3/s into the estuaries (Angulo 
et al. 2009). The fluvial bedload yield to the nearshore areas is therefore small and 
large ebb-tidal deltas at the estuarine mouths are mostly fed by littoral drift (Angulo 
et al. 2016).

Stratification and mixing processes inside the estuaries of the SBME are primar-
ily regulated by tidal currents but are heavily influenced by freshwater discharge, 
which causes seasonal variations in the magnitude of the vertical salinity stratifica-
tion. The seven major bays of the SBME can exhibit highly stratified (summer neap 
tides), partially mixed (summer spring tides), and well-mixed (winter spring tides) 
conditions within a single season or fortnight (Mantovanelli et al. 2004; Soares et al. 
2014). The salinity variations are usually in phase with the water level, and the tidal 
propagation is well represented by a standing wave (Noernberg et al. 2014). The 
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optical environment has a mixed dominance of optically active substances, as indi-
cated by the absorption coefficients of dissolved and particulate matter. However, 
due to the influence of freshwater discharge and the resuspension of bottom sedi-
ments induced by physical processes, the concentrations of the optical components 
in the water column do not generally display simple relationships (Noernberg et al. 
2014). The phytoplanktonic contribution increases as a function of saline intrusion 
(Noernberg et al. 2014).

The seven major estuaries of the SBME differ widely in size and spatial com-
plexity (Table 5.1). At least three distinct spatial configurations can be recognized, 
depending on the inlet characteristics, degree of development, compartmentaliza-
tion, and interconnection of the inner water bodies. Increasing complexity in the 
estuarine geomorphological and hydrodynamic conditions leads to a corresponding 
heterogeneity of the benthic habitats and associated assemblages. In such cases, the 
linear estuarine gradients that are expected in less complex estuarine bodies are 
broken by the presence of inner sub-estuaries and the progressive compartmental-
ization and channelization of inner water bodies.

The linear estuarine pattern is exemplified by Guanabara, Sepetiba, and 
Guaratuba says (Fig. 5.1a, b, f), which have unique, usually narrow and shallow 
inlets, a main central natural channel, and only one large inner water body, that is 
either elliptical or semicircular. Well-marked gradients in environmental energy and 
salinity extends from their euhaline sectors near the inlets to the inner, mesohaline 
or oligohaline sectors, which display greater riverine influence (Molisani et  al. 
2004; Morais et al. 2016; Soares-Gomes et al. 2016). The surface sediment distribu-
tions and sedimentary facies are well known for both Guanabara (Kjerfve et  al. 
1997; Soares-Gomes et al. 2016) and Guaratuba bays (Barbosa and Suguio 1999). 
A tri-partite facies distribution that is typical of wave-dominated estuaries is well 
defined in these estuarine patterns. Riverine sandy sediments, that form bay-head 
deltas, accumulate near the river mouths. In the low energy, central estuarine sec-
tion, sandy-mud and muddy-sand deposits prevail (Angulo et  al. 2009). Marine 
sands predominate in the lower half of the estuary, which is subjected to marine 
influence from the inner shelf.

The multi-inlet and multi-compartment pattern is exemplified by the large 
Paranaguá Bay (Fig.  5.1e), which has three inlets and well-developed, intercon-
nected inner water bodies. Paranaguá Bay should be better referred to as an estua-
rine complex, made up by different water bodies, composed of Paranaguá, Antonina, 
Laranjeiras, and Pinheiros bays. Each of these water bodies has unique linear salin-
ity and energy gradients, although they are interconnected. All individual compart-
ments have main channels that extend from the entrance to the inner sectors. The 
salinity displays a spatial linear gradient from the outermost to the innermost sec-
tors of the individual bays, but this pattern is often broken by the presence of sub-
estuaries (Noernberg et al. 2006). The individual bays display a tripartite zonation 
similar to other barrier and coastal-plain estuaries, as demonstrated by Lessa et al. 
(1998). The bay-mouth zone is located in the lower part of the estuarine system, 
where the main channel is deeper and under the influence of inner-shelf dynamics. 
The bottom sediments are characterized by well-sorted fine to very fine sand, and 
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silt and clay contents vary from 0% (seaward end) to 40% (landward end). The estu-
ary funnels have the widest cross sections and their bottoms are characterized by 
muddy sediments, with less than 50% sand (Bigarella et al. 1978). The estuary fun-
nel zones of the individual bays gradually narrow upstream and form low-tide bars 
composed of shelly, dark mud. The meander zones are the narrowest stretches of the 
bays, with shallow channels and greater fluvial influence. The bottom sediments are 
mostly poorly sorted fine to medium sand, with less than 40% silt and clay and com-
mon granule and gravel due to the riverine inputs from the Serra do Mar. Riverine 
deltas develop in the meander zone.

The multi-entry channelized pattern is exemplified by Santos, Iguape-Cananéia, 
and Babitonga bays (Fig. 5.1c, d, g), which display at least two or more inlets at 
their southern and northern ends. Those estuaries present very narrow, confined, and 
shallow (6–12 m) inner bodies that are channels behind an extensive barrier island 
(Schaeffer-Novelli et al. 1990; Harari et al. 2008). Santos estuary is more complex 
than the other estuaries and composed of three main channels (São Vicente, Santos, 
and Bertioga channels), with dozens of fluvial inputs within the system. The Santos 
and São Vicente channels flow into Santos Bay which is open bay to the sea, while 
Bertioga channel flows straight to the platform. Coarser sediments can be found in 
areas under marine influence, where a considerable fraction of fine sediment (up to 
80% at the entrance of the port) is also found. Sediments of the inner sector are 
mainly silt (Speranzini 2017). The Iguape-Cananéia estuary has been controver-
sially treated as a lagoon system in the literature, probably due to its lower geomor-
phological complexity, with long channel that runs parallel to the coast.

Bernardino et al. (2015) showed that the decadal oscillations in temperature and 
rainfall regimes display a clear latitudinal trend along the Brazilian ecoregions that 
is consistent with global and regional climate forecasts (Marengo et al. 2010). At the 
Southeastern Brazil and Rio Grande ecoregions, the summer months (December 
and February) are characterized by higher temperature increment than in the winter, 
and this pattern has been consistent over the last four decades. All marine ecore-
gions have also displayed an increase in positive temperature anomalies in the last 
decade. Warmer years were more frequent and were marked in the Eastern Brazil, 
Southeastern Brazil, and Rio Grande regions, with yearly peaks of 1.5 °C above the 
mean decadal temperatures (Bernardino et al. 2015). The only significant increase 
in rainfall was detected in the SBME, where there was evidence of higher summer 
peaks over the last two decades. According to Bernardino et al. (2015), the estuaries 
from the SBME may experience higher than present salinity oscillations and sedi-
ment disturbances over short periods in the future decades if the extreme summer 
storm events observed during the last few decades continue. Extreme flooding 
events and changes in the benthic habitats within estuaries of the Rio Grande ecore-
gion are well documented (Costa et al. 2003; Colling et al. 2007), but consistent 
records of decadal changes in benthic assemblages are still missing for the 
SBME. Apparently, a larger influx of fluvial sediments is causing an expansion of 
the tidal sand bars or bay-head deltas, as already noted by Lessa et  al. (1998) 
approximately 30 years ago, probably due to an increase in sediment input associ-
ated to vegetation cover loss in the Atlantic Rain Forest, and accelerated urban and 
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industrial development. Soares et al. (2014) investigated the vulnerabilities of the 
Brazilian Large Marine Ecosystems (LMEs) to local and remote forcing, based on 
the total and partial correlations between climate indices and oceanic and atmo-
spheric variables including sea surface temperatures (SST), wind stress, Ekman 
transport, sea level pressure, and outgoing longwave radiation. They indicated that 
future ecosystem-based management actions aimed at the conservation of regional 
marine resources need to consider the high complexity of the basin-scale interac-
tions between local and remote climate forcing, including their effects on the ocean-
atmosphere system of the southwestern Atlantic Ocean.

In short, the decadal record indicates that the estuaries of the SBME are currently 
influenced by global warming effects, and these effects overlap with the accelerat-
ing anthropogenic changes. Shifts in species distribution and assemblage 
compositions associated with climate change and habitat loss are expected to 
increase in frequency over the next few decades (Miloslavich et al. 2011; Bernardino 
et al. 2016).

5.3  �Benthic Assemblages

5.3.1  �Overview

An exhaustive revision of the extensive literature concerning the benthic assem-
blages of the SBME is beyond the scope of this chapter. Knowledge of the Brazilian 
benthic marine fauna throughout time have been presented by Lana et al. (1996), 
Amaral et  al. (2003), Amaral and Jablonski (2005), Neves and Valentin (2011), 
Miloslavich et al. (2011), and Longo and Amado Filho (2014). Rather than present-
ing a chronological or geographical survey of the regional assemblages, we empha-
size the shared patterns and the faunistic differences among the seven major 
estuarine systems of the SBME, organized by benthic compartments and exempli-
fied by representative cases. The lagoonar systems of Rio de Janeiro were previ-
ously treated by Esteves (1998), Esteves et al. (2008) and Laut et al. (2016). We 
tried to update species names following the World Registry of Marine Species 
(WoRMS, online access in December 2017).

Pioneering work on the benthic assemblages of the SBME estuaries was mainly 
led at the Fundação Osvaldo Cruz and Universidade Federal do Rio de Janeiro, in Rio 
de Janeiro, and the Instituto Paulista de Oceanografia, later called the Instituto 
Oceanográfico of the Universidade de São Paulo, during the first half of the 1900s. 
However, until the 1960s, there were no benthic ecology schools or traditions in the 
country. From the 1970s on, there was a diversification and specialization of benthic 
surveys, which are still mainly concentrated in Guanabara, Santos and Paranaguá bays 
(Tommasi 1970; Lana 1986; Jorcin 1997; Soares-Gomes et al. 2016). Studies have 
only more recently addressed the spatiotemporal variations of benthic assemblages 
and have formally tested the role played by environmental drivers. Macroecological 
approaches are also very recent (Bernardino et al. 2015; Lana et al. 2017).

P. C. Lana et al.



129

Collections of the benthic invertebrate fauna of the SBME are currently depos-
ited at the Museu Nacional and Instituto de Biologia at the Universidade Federal do 
Rio de Janeiro; Museu de Zoologia, Departamento de Ecologia Geral (Instituto de 
Biociências); Instituto Oceanográfico at the Universidade de São Paulo; Museu de 
Zoologia at the Universidade Estadual de Campinas “Adão Jose Cardoso”; 
Departamento de Zoologia at Universidade Federal do Paraná, and Museu 
Oceanográfico at Universidade Federal de Rio Grande. Illustrated guides and 
reviews of the marine biodiversity of the SBME are also available (Lana et al. 1996; 
Amaral et al. 2003; Amaral and Jablonski 2005; Miloslavich et al. 2011).

Bernardino et al. (2016) suggested that the benthic assemblages are more diverse 
in the eastern and southeastern ecoregions of Brazil than in the Amazonian and Rio 
Grande ecoregions, probably as a result of the higher mean temperatures and 
increased habitat complexity, which is mostly associated with carbonate bottoms. 
This hypothesis still needs to be consistently tested, as it may result from a taxo-
nomic artifact, due to the limited taxonomic knowledge of the eastern, northeastern 
and northern Brazilian ecoregions. This taxonomic artifact was recently demon-
strated for polychaete species, which were treated as surrogates for the benthic 
fauna (Lana et al. 2017). The accumulation curves by marine ecoregion highlighted 
the regional differences in species diversity but also the large variance in sampling 
efforts along the Brazilian coast (Fig. 5.3). The published and publicly available 
data are mostly concentrated in the Southeastern and Rio Grande ecoregions (~60% 
of the records available for Brazil), due to the greater number of locally active ben-
thic taxonomists and ecologists during the last few decades. Species accumulation 
curves tend to stabilize in the SBME, but asymptotic curves indicate that more data 
are necessary for the Northern, Northeastern, and Eastern ecoregions. Species rich-
ness seems to follow a trend opposite to the expended effort when interpolated data 
are used (continuous lines in Fig. 5.3). Conversely, when searching for extrapolated 
data (dashed lines in Fig. 5.3), the Southeastern ecoregion has the largest species 
diversity. But the larger and more comprehensive dataset in this region clearly 
biases the analysis, and these results should be considered with caution for the 
moment.

5.3.2  �Benthic Assemblages of Mangroves and Salt Marshes

Mangroves in the SBME are close to their southern distribution limit at the Lagoa 
de Santo Antônio in Santa Catarina (28°28.5′S), where Laguncularia racemosa and 
Avicennia schaueriana dominate. The southernmost limit of mangroves in Brazil 
has not changed over the last 36 years and L. racemosa is most likely limited by the 
temperature at its southernmost extent (Soares et al. 2012). However, as the mean 
annual air temperatures are likely to increase by 3–5 °C by 2100 as a result of cli-
mate change, the latitudinal mangrove extents are expected to increase southwards.

The mangrove composition in this region is similar to that in the northern ecore-
gions (Chaps. 2, 3, and 4), where Rhizophora mangle, Avicennia shaueriana, and 
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Laguncularia racemosa are the main species. However, the mangroves in the SBME 
are less developed, less structured and less productive than those in the northern, 
tropical ecoregions. The tidal range in the SBME (approximately 1.7 m during the 
spring tides) and the presence of the Serra do Mar mountains near the coast, do not 
allow for wider mangrove expansions. The lower salinity areas contain transitional 
vegetation that integrates mangrove and Atlantic Rain Forest species. In these 
regions, some transitional species are frequently found, such as Acrostichum 
aureum, Hibiscus tiliaceus, Typha domingensis, Scirpus californicus, Crinum sal-
sum, Conocarpus erecta, and monospecific beds of Spartina alterniflora. In the 
intermediate and high-salinity regions, the dominance of mangrove forest depends 
on the distance to the Serra do Mar mountain range, salinity, soil composition and 
height. In these regions, the mangrove forest can be monospecific for any of the 
mangrove species or present a mixed composition. The zonation is not always clear, 
especially in the more geomorphological complex estuaries with multiple inlets. 
Therefore, in this transitional region of the SBME, a mosaic of mangrove forests 
may be found to be closely associated with the Atlantic Rain Forest, salt marshes, 
mudflats, estuarine beaches, and estuarine rocky shores.

The composition, abundance, distribution, and zonation patterns of benthic fauna 
along the SBME are closely related to the presence of plant cover in the intertidal 
estuarine habitats and to the tidal regime. Spier et al. (2016) showed that at large 
spatial scales (>10 s km), flood regime is the leading factor that determines spatial 
distribution of animals in mangrove and salt marsh habitats across gradients of tidal 
energy in Paranaguá Bay. Secondary factors might be related to salinity, sediment 
composition, and nutrient flow. These authors indicated that the distribution of crabs 
is centered around mean high tide. In addition, during a 2-year period, inundations 
rates were low. Bivalves were not continuously exposed for periods longer than 
10 days, providing an empirical estimate of the order of magnitude of their maxi-
mum desiccation tolerance.

As in other tropical and subtropical regions, the benthic epifauna and infauna in 
the SBME mangroves are composed of and dominated by a few animal groups, 
mainly polychaetes, crabs, bivalves, and gastropods. The benthic biodiversity of the 
fauna associated with sediments differs from that associated with prop roots, but 
both show low species richness. Polychaetes are the dominant group in unconsoli-
dated bottoms, whereas isopods and tanaidaceans are the dominant groups on the 
prop roots (Silva-Camacho et al. 2017). The benthic community associated with the 
mangroves exhibits spatiotemporal variability, with higher infauna species richness 
and diversity in the innermost channel areas and a higher abundance of epifaunal 
organisms during the summer (Silva-Camacho et  al. 2017). Differently from the 
vagile epifauna such as crabs, bivalves and mollusks, infaunal species are not 
exclusive to the mangroves and are frequently found in nearby habitats such as salt 
marshes and mudflats (Lana and Guiss 1991; Netto and Lana 1994, 1995; Lana 
et al. 1997a; Lorenzi 1998).

Crustaceans are the most studied benthic group in the mangroves of the 
SBME. Independent of the size of the estuaries, the mangroves seem to support crab 
and shrimp populations of commercial interest all along the SBME (Farfantepenaeus 
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brasiliensis and Farfantepenaeus paulensis) where juveniles develop in the estua-
rine system while adults grow in the open bays (Costa et al. 2008). In an overall 
view, 28 species of crabs are found in the intertidal zones of the estuaries in the 
SBME, with a dominance of Grapsoidea and Ocypodoidea (Colpo et  al. 2011), 
including common species such as Goniopsis cruentata, Callinectes spp., and 
Aratus pisonii.

The semiterrestrial crab Cardisoma guanhumi plays a relevant ecological role in 
the transitional zone from mangrove to terrestrial areas. The strong fishery pressure 
on this species has decreased the population size in the SBME and the species is 
probably threatened. Ucides cordatus is a semiterrestrial large-bodied crab of eco-
nomic and ecological importance. This crab is one of the main crustacean fishery 
resource in the mangroves in Brazil. In the SBME, traditional fishing communities 
explore U. cordatus, but in a less intense way than in the northern and northeastern 
Brazilian regions. Ucides cordatus is a burrowing crab and plays an important role 
in the ecosystem functioning by bioturbation, affecting the biogeochemistry of the 
sediment and carbon cycling. Galleries are essential for the recruitment of U. corda-
tus, and their conservation seems mandatory for recovery programs for Ucides pop-
ulations (Kassuga and Masunari 2015).

Fiddler crabs of the genus Uca represent other benthic components that are rel-
evant for ecosystem functioning in mangrove areas. Studies carried out in the estu-
aries in the central area of the São Paulo coast have stressed the relevant role of 
these crabs in ecosystem functioning, as they increase the meiofaunal diversity and 
microphytobenthic biomass (Citadin et al. 2016). The distribution of different spe-
cies of fiddler crabs across the intertidal zone is correlated with soil characteristics 
and plant cover. In monospecific patches, smaller crabs occupy the lower level of 
the intertidal zone, which contains more organic matter, whereas larger crabs are 
dominant in upper levels (Grande 2016). Grande (2016) suggested that organic food 
matter in the environment indicates the amount of food available for fiddler crabs. 
Sites with high organic content support higher-density populations (Grande 2016). 
However, it is still unclear how fiddler crabs influence organic matter contents by 
bioturbation, as this influence has been proven in controlled laboratory conditions 
but was overcome by other environmental drivers in field experiments (Natálio et al. 
2017).

The literature on salt marsh plant communities in South America was reviewed 
by Costa and Davy (1992) and Isacch et al. (2006). Research concerning the fauna 
of the SBME salt marshes peaked in the 1990s but has almost been discontinued 
since then. Salt marshes occur regionally as narrow belts of Spartina alterniflora 
that border mangrove stands, and they may rarely dominate in intertidal flats to the 
detriment of mangrove stands (Lana et al. 1991). Spartina alterniflora belongs, as a 
pioneer colonizer, to the successional series that leads to mangrove development 
(Cunha-Lignon et al. 2009). As a result, salt marshes have been considered by local 
marine ecologists and the Brazilian environmental legislation (Lana 2003) as struc-
tural and functional components of mangroves. One should expect structural and 
functional similarities in the benthic assemblages of mangroves and salt marshes, 
considering that they are adjacent to each other, both develop in similar environ-
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ments, are subject to similar ecological drivers, and face similar evolutionary pres-
sures. Indeed, the macrofauna of the upper euhaline zone in sandy marshes can be 
quite similar to that in the adjacent mangroves, with the numerical dominance of 
oligochaetes, the polychaete Capitella sp. and the fiddler crab Uca leptodactyla 
(Couto et al. 1995; Netto and Lana 1995). However, there is unequivocal evidence 
that the species richness and abundance of macrobenthic infauna are significantly 
lower in mangroves than in adjacent salt marshes or unvegetated flats (Couto et al. 
1995; Netto and Lana 1995). Between-habitat variation is more pronounced in high-
energy euhaline sectors where a more abundant and diversified group of species 
occurs in marsh sites, in opposition to the impoverished fauna in mangrove sites 
(Lana et al. 1997b). Faunal differences among vegetated habitats seem to be less 
significant in inner oligohaline sectors, where the annelids Laeonereis culveri (also 
referred to in the regional literature as L. acuta) and Nephthys fluviatilis may be 
dominant, irrespective of tidal elevation or plant cover type, although they are less 
common in mangrove sediments (Lana 1986; Lana et al. 1997a).

The species composition is similar in the salt marshes along the SBME (Tararam 
and Wakabara 1987; Lana and Guiss 1992; Flynn et al. 1996, 1998; Netto and Lana 
1997; Attolini et al. 1997). Macroinfauna are numerically dominated by the anne-
lids Isolda pulchella, Nereis oligohalina, Sigambra grubii, and deposit-feeding 
capitellids. The tanaid Monokalliapseudes schubarti may display high population 
densities in the winter–spring, but it is less frequent during the rest of the year (Lana 
and Guiss 1991). On the other hand, the epifaunal gastropods Heleobia australis 
and Littorina angulifera and the epifaunal isopods Tholozodium rhombofrontalis 
and Sphaeromopsis mourei peak during the late spring and summer when the 
aboveground biomass is higher (Flynn et  al. 1996). Species composition and 
abundance may vary with salt marsh elevation, even when grass stands are narrow 
(Netto and Lana 1997; Flynn et al. 1998). The abundance of the local macrobenthic 
species is also significantly correlated with rainfall and tends to decline after intense 
freshwater input in the summer, as shown by intense population shifts in 
Monokalliapseudes schubarti and the amphipod Monocorophium acherusicum 
(Pagliosa and Lana 2005).

The marked seasonal differences in the primary production cycles and litter 
dynamics (Domingos and Lana 2017) may explain the corresponding variation in 
the dominant benthic assemblages of coexisting mangroves and salt marshes. Winter 
and early spring starch stocking in subsurface rhizomes is very noticeable in the 
regional salt marshes (Lana et al. 1991), whereas there is no evidence of similar 
processes in mangroves. Since the plant biomass and litter produced in mangroves 
and salt marshes can serve as potential food or refuge for detritivores, pronounced 
seasonal differences should be expected in the abundance and diversity of the 
associated fauna. Although this hypothesis awaits experimental testing, the numeri-
cally dominant polychaetes Isolda pulchella and Nereis oligohalina are known to 
peak at the end of winter and the beginning of spring, when there is an up to fivefold 
increase in the belowground biomass of Spartina (Tararam and Wakabara 1987; 
Lana and Guiss 1991, 1992).
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Aerial plant cover clearly plays a key role in the distribution patterns of salt 
marsh macrofauna, as experimentally shown by Pagliosa and Lana (2005), who fol-
lowed the faunal responses after removing leaves and culms in Spartina alterniflora 
marshes. The responses of the infaunal or epifaunal species clearly depended on 
their abilities to discriminate between vegetated or unvegetated habitats. Epifaunal 
habitat specialists associated with leaves and culms, such as the gastropod Neritina 
virginea, the isopod Sphaeromopsis mourei and an unidentified gammarid amphi-
pod, were expectedly affected by plant removal, whereas the habitat generalist epi-
fauna Monokalliapseudes schubarti did not respond to it. The infaunal densities of 
the polychaetes Isolda pulchella, Nereis oligohalina, Laeonereis acuta, and 
Capitella sp. did not change significantly after plant removal.

Significant variation also occurs between the epifauna and infauna of salt marshes 
and adjacent unvegetated flats (Lana and Guiss 1992; Flynn et al. 1996). Salt marsh 
areas display significantly higher species richness and mean density; only a few 
species dominate faunistic composition. The presence of plant cover obviously 
affects epifaunal grazers, such as the gastropods Neritina virginea and Littorina 
flava and the isopod Sphaeromopsis mourei, in addition to a number of infaunal 
dominant species that are directly associated with the root-rhizome mat, such as the 
polychaetes Isolda pulchella and Nereis oligohalina. Benthic populations also seem 
to be more persistent in vegetated areas than in the adjacent flats, despite the marked 
short-term or seasonal variations (Pagliosa and Lana 2005).

5.3.3  �Benthic Assemblages from Tidal Flats

The tidal flats of the SBME, which are locally called “baixios” (not to be con-
founded with the estuarine beaches, which are addressed in the next section), are 
usually well-developed and may represent up to 20% of total estuarine areas (Lessa 
et al. 2018; Chap. 1). The upper zones of the tidal flats are almost always bordered 
by salt marshes and mangrove stands. The tidal flat dynamics is strongly influenced 
by tidal currents, which surpass the effect of fluvial fluxes (Bigarella et al. 1978). In 
the winter, strong southern winds may enhance the tidal flat erosion and sediment 
resuspension, mainly near the estuarine inlets (Marone and Camargo 1994; Fonseca 
et al. 2013).

A sediment distribution model for tidal flats, which may prove relevant to 
explain the zonation of macrobenthic assemblages, was proposed by Fonseca et al. 
(2013). The sediments at the lower zones are often characterized by high gravel and 
carbonate content, the latter consisting mainly of shell fragments. In contrast, silt, 
clay, and organic matter content tend to accumulate in the more sheltered middle 
and upper zones, closer to the vegetated habitats. During high tides, the waves 
broke and dissipate their energy in the salt marshes and mangroves, beyond the 
higher tidal flat zone. During the ebb tides, the lower zone is also subjected to 
breaking waves, which prevents the deposition of silt-clay. The lower hydrodynam-
ics at the middle and upper flat zones favor the deposition of fine suspended matter 
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and may lead to sediment stabilization, both of them essential for microphytoben-
thic and macrobenthic development. Microphytobenthic primary production is 
indeed higher at the middle and upper zones as a function of incident radiation 
(Fonseca et al. 2013).

The microphytobenthic biomass content also displays a conspicuous seasonal 
gradient. Seasonality is determined mainly by turbulence of the water column, 
which, in turn, is influenced by atmospheric events (Fonseca et al. 2013). As in other 
tropical and subtropical areas (Alongi 1990), the seasonality of the benthic assem-
blages from tidal flats is also strongly influenced by the rainfall regime and by its 
correspondingly effects on microphytobenthic production (Murolo et al. 2006). In 
the absence of the algal cover (Couto 1996), the microphytobenthic biomass seems 
essential to support the trophic webs of idal flats, because it is more palatable and 
accessible than organic debris produced by adjacent salt marsh and mangrove plants 
(Domingos and Lana 2017).

The tidal flat fauna is numerically dominated by deposit-feeding or filter-feeding 
species, favored by the deposition of fine and particulate organic matter. Even in the 
absence of macrophytes, the biogenic structures may confer spatial heterogeneity to 
tidal flats, thus generating correspondingly complex macrofaunal distribution 
patterns (Couto et  al. 1995; Sandrini-Neto and Lana 2014). The tanaid 
Monokalliapseudes schubarti (referred to in the literature prior to 2006 as 
Kalliapseudes schubarti), the bivalve Anomalocardia flexuosa (previously referred 
to as A. brasiliana), capitellid polychaetes, tubificids, and the polychaete Nephtys 
fluviatilis (mostly in oligohaline flats) are usually the dominant macroinfaunal spe-
cies in tidal flats all along the SBME.

Morais (2015) and Morais et al. (2016) assessed the variability of the intertidal 
macrofauna of Guaratuba Bay at nested spatiotemporal scales. The numerically 
dominant species present highly variable responses to large- and small-scale drivers 
in space and time. The variance associated with the large-scale salinity gradient was 
always greater than the variance associated with time or spatiotemporal interactions 
for the amphipod Monocorophium acherusicum, unidentified ostracods, the poly-
chaetes Nephtys fluviatilis and Aricidea sp., and the mollusks Heleobia australis 
and Mytella guayanensis. Conversely, unidentified oligochaetes, and the annelids 
Heteromastus similis and Streblospio benedicti occurred in highly variable and tem-
porary population patches, and were consistently responsive to small-scale drivers, 
such as sediment texture, organic matter content and the presence of biogenic struc-
tures. Although the total abundance and assemblage composition varied signifi-
cantly from hundreds of meters to kilometers, the variations in species numbers 
could not be explained by the large-scale estuarine gradient.

Boehs et al. (2004) showed that the recruits and juveniles of the mollusks Lucina 
pectinata, Tagelus divisus, and T. plebeius are more abundant in the upper levels of 
tidal flats, and suggested that these areas are preferential for settlement, followed by 
a later horizontal migration of adults along the intertidal region. A similar recruit-
ment pattern was suggested for the bivalve Anomalocardia flexuosa (Guiss 1993).
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5.3.4  �Benthic Assemblages of the Estuarine Beaches

The dynamics of the estuarine beaches from the southern sector of SBME was 
reviewed by Angulo et al. (2016). Their length may vary from less than 100 m to 
more than 5 km. The dominant process of sediment reworking is by locally gener-
ated wind waves in a fetch-limited, low-height environment, although refracted 
ocean waves may be more important near the estuarine inlets. The tide-modified 
beaches close to inlets have both a beach face and low-tide terrace composed of 
well-sorted fine sands, while the inner more tide-dominated beaches have beach 
faces composed of poorly sorted coarser sands while the low-tide terrace to tidal 
flats become muddy (Rosa and Borzone 2008). Variations in grain texture between 
beach face and low tide terrace denotes a lack of sedimentary exchange between 
them, as is typical of tide-dominated beaches (Short 2006).

There are similarities in the composition of the benthic assemblages of estuarine 
beaches along the SBME, but human impacts may have already altered pristine or 
quasi-pristine conditions. The structure of polychaete assemblages, as exemplified 
by Omena et al. (2012) for 20 estuarine beaches in Guanabara Bay, is clearly related 
to beach slope, beach exposition, and to water and sediment quality. Scolelepis 
chilensis dominated the bay entrance sectors, while Streblospio gynobranchiata and 
a species from the Capitella capitata complex dominated the inner estuarine 
beaches. The highest densities and lowest specific richness were found in contami-
nated sites, near Governador Island and Ilha do Fundão, in the inner sector, with 
codominance of Saccocirrus sp., Capitella capitata, and Polydora sp., indicators of 
organic enrichment.

Santos et al. (2014) assessed the effect of morphodynamics and season on the 
macroinfauna assemblages of two sandy beaches inside Guanabara Bay during win-
ter 2005 and summer 2006. They showed that macroinfaunal structure differed 
between the beaches and strata, with the more dissipative beach displaying higher 
richness but lower density than the reflective beach. Lower densities at the more 
dissipative beach was associated with high anthropogenic impact, while no major 
seasonal variation was detected.

The distribution of polychaete annelids was also assessed on 12 sandy beaches in 
Sepetiba Bay (Mattos et al. 2013). It was also shown that the more protected, inner 
beaches presented a greater diversity of trophic guilds than beaches close to the 
estuarine inlet. The diversity and composition of the trophic guilds of polychaetes 
are mainly driven by the average grain size and wave-exposure levels. These results 
agree with the reflective-dissipative morphodynamic gradient, with dissipative 
beaches supporting a more complex food web with more trophic links in response 
to a combination of abiotic and biotic variables (Mattos et al. 2013).

Corbisier (1991) analyzed species composition, abundance, species diversity and 
zonation patterns of the benthic macrofauna in three transitional beaches of the 
Santos estuary. Polychaetes were dominant in both number of species and number 
of individuals representing 92.2% and 98.5% of the total fauna, respectively. There 
was a lower faunal diversity in the upper level of all the beaches. Assemblages of the 

P. C. Lana et al.



137

more exposed beaches were characterized by high abundance, and low diversity and 
species richness, due to the numerical dominance of the spionid Scolelepis squa-
mata (probably Scolelepis goodbodyi). Inner, more protected beaches were numeri-
cally dominated by the polychaetes Laeonereis acuta and a species from the 
Capitella capitata complex. The main faunal differences among beaches were again 
attributed to sediment texture, and to the degree of wave protection. The reduced 
number of crustaceans and mollusks was attributed to high pollution levels all over 
the studied area. Such a dominance pattern was also indicated by Baroni et  al. 
(2015), who also showed a dominance of polychaetes (>90% of species number and 
number of individuals) and a lower abundance of crustaceans and mollusks in the 
polyhaline sectors.

Rosa (2009) surveyed the benthic fauna of 13 estuaries distributed along the two 
main axes of Paranaguá Bay, during summer and winter conditions. The beaches 
were characterized by a narrow and steep upper portion followed by a generally 
extensive plain with low slope in the lower portion, which was absent in some cases. 
Grain size increased towards the outer estuarine sectors, contrasting with the muddy 
facies in the inner estuarine beaches. Reduction in width and increase in face slope, 
as well as reduction in the wave regime and increase of tidal influence, were the 
main drivers of faunal change between oceanic and estuarine beaches. Only the 
beaches near the estuary inlet displayed benthic assemblages similar to those of 
adjacent oceanic, exposed beaches, whereas typically estuarine animals dominated 
the fauna of beaches from the inner sector. Crustaceans and polychaetes were the 
dominant taxonomic groups, although oligochaetes and mollusks could be numeri-
cally dominant in the inner beaches. Of the four species recorded of talitrid amphi-
pods in Brazil, three (Atlantorchestoidea brasiliensis, Talorchestia tucurauna, and 
Platorchestia monodi) occurred in 11 of the 13 estuarine beaches, although A. 
brasiliensis was represented by only one individual. Talorchestia tucurauna pre-
sented the highest densities, and its positive correlation with salinity values was 
attributed to its low osmotic tolerance. Platorchestia monodi was positively corre-
lated with the debris biomass, which probably serves as a shelter for the species 
against predation and desiccation and as an alternative food source. The densities of 
the ghost crab Ocypode quadrata crab burrows in regional estuarine beaches were 
similar to those recorded for oceanic beaches. However, the absence of burrows in 
the inner estuarine beaches suggested that salinity plays a major role in the distribu-
tion of O. quadrata. Low density of crab burrows in winter was probably related to 
a decrease in crab activity under low temperatures.

Aluizio (2007) presented a detailed analysis of macrobenthic assemblages of 
Brasilia and Coroazinha beaches, in the euhaline sector of Paranagua Bay, both 
chosen because of the great abundance of plant debris, a common feature of estua-
rine beaches. Faunal patters were markedly influenced by the debris type, composed 
of varying amounts of mangrove or macroalgae detritus, which varied significantly 
among strata, beaches, tidal periods, and seasons. As a result, diverse faunal assem-
blages were associated with varying debris drift-lines in summer and winter peri-
ods. The fauna was composed of the crustaceans Talorchestia tucurauna, 
Platorchestia monodi, Atlantorchestoidea brasiliensis, Bathyporeiapus ruffoi, 
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Metamysidopsis neritica, Excirolana armata, Tholozodium rhombofrontalis and by 
the insects Bledius bonariensis, Bledius fernandezi, and Bledius sp. Non-metric 
multidimensional scaling and redundancy analyzes showed that there was a fauna 
typically associated to the detritus lines in both beaches, consisting of the talitrid 
species Talorchestia tucurauna and Platorchestia monodi that probably use the 
detritus for food source and refuge. Both species presented higher densities in the 
beach of Brasilia, possibly due to the greater contribution of algae in the debris 
lines. The isopods Excirolana armata and Tholozodium rhombofrontalis, although 
quite abundant, showed a weak relationship with the debris lines and were strongly 
related to the moisture content of the sediment. In contrast, the three species of 
Bledius correlated negatively with sediment moisture, and were more abundant 
above the debris line.

Pagliosa (2006) assessed the spatial variation of benthic assemblages along the 
intertidal–subtidal gradient of an estuarine beach located at the inlet of Babitonga 
Bay. Sediments with high concentrations of silt-clay were densely colonized (mean 
of 22,400 inds.m2) by the polychaete Clymenella brasiliensis. Benthic assemblages 
subjected to wave action and erosion–accretion dynamics were impoverished at 
landward stations. Seaward macrofauna (10 and 20 m depths) inhabiting sediments 
with higher organic content and poorly sorted sands were more diverse and numeri-
cally dominated by ophiuroids and by cirratulid (Tharyx sp.) and maldanid poly-
chaetes (Clymenella brasiliensis). There was a marked breakdown in the zonation 
patterns due to the presence of a creek outlet, with high densities of the anthozoan 
Edwardsia sp. and the polychaete Lumbrineris atlantica.

5.3.5  �Benthic Assemblages of Seagrass Meadows

We summarize herein part of the extensive reviews presented by Marques and Creed 
(2008) and Copertino et al. (2016), focusing on seagrasses from the SBME. Whereas 
shallow rocky shores and reefs are dominated by macroalgal beds, the seagrass 
meadows are regionally restricted to shallow sandy bottoms of outer estuarine sec-
tors and coastal lagoons, and are less frequent in exposed sites. The sporadic patches 
of Halodule wrightii, H. decipiens, and Ruppia maritima, with reduced biomass, 
depend on suitable estuarine conditions, which include shallow unconsolidated sub-
strate, wave-protected conditions, and less turbid waters.

There is some evidence that regional seagrass meadows have declined along the 
last decades (Copertino et al. 2016). In 2013, as part of an ongoing National Seagrass 
Mapping Project, nine sites previously known from the well-studied northern coast 
of Rio de Janeiro, were revisited and yielded six recordings (Copertino et al. 2016). 
In São Paulo, seagrasses were recorded at 12 beaches of the inner shelf, mostly in 
protected coves, during the 1980s (Oliveira-Filho et al. 1983). The sites were revis-
ited in 2014 and meadows were found in only three of them (Copertino et al. 2016).

While many studies have been published on the seagrass biology and ecology of 
the Rio de Janeiro coast (Marques and Creed 2008 for a review), almost nothing is 
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known about seagrasses in São Paulo and Paraná States. Not considering the 
observed decreased biomass and densities (Copertino et al. 2016), there is just a few 
published systematic characterizations of benthic structure or population dynamics 
in the seagrass beds of this SBME sector.

The short-term temporal dynamics and morphology of regional seagrass beds 
were first assessed by Creed (1997, 1999). Macroalgae, mainly Jania adhaerens, 
Hypnea spp., and Acanthophora spicifera, may be abundant inside the meadows. 
The gastropod Cerithium atratum is numerically dominant reaching densities up to 
2000 ind/m2 (Creed 2000). Fish, shrimp and blue crab from the seagrass beds are 
commercially exploited.

Corbisier (1994) described the benthic macrofauna of H. wrightii meadows of 
Codó Beach, Ubatuba (São Paulo) in both summer and winter conditions. 
Assemblage structure depended on sediment type, plant presence, and shoot den-
sity. Deposit-feeding infaunal polychaetes numerically dominated vegetated areas, 
whereas carnivores, filter feeders, and omnivore polychaetes were more common in 
unvegetated areas. Benthic density was not affected by plant biomass, probably due 
to the small size and biomass of the plants, which do not favor a diversified epi-
fauna. However, species numbers and diversity were higher in vegetated than in 
unvegetated areas.

Omena and Creed (2004) investigated the polychaete assemblages of six beds of 
H. wrightii along the coast of the State of Rio de Janeiro and found 69 species of 
polychaetes belonging to 24 families. The dominant species, as well as the species 
composition, varied substantially between sites. Species number was positively cor-
related to the percentage of silt-clay and to the sediment classification coefficient, 
while the composition of the polychaete communities was influenced by plant mor-
phology. Plants with larger axes mainly harbored surface deposit-feeding species, 
such as the polychaete M. papillicornis, and plants with a higher ratio of root–axis 
length harbored mostly suspension feeders like the sabellid Fabricia filamentosa.

Oigman and Omena (1999) also assessed the effects of H. wrightii on the distri-
bution of the polychaete annelids from Ilha do Japonês, Rio de Janeiro, at the inlet 
of Araruama Lagoon. Of the 12 recorded species, only Magelona papillicornis 
Muller was numerically dominant, comprising more than 50% of the total number 
of polychaetes recorded in most cases. Low density of polychaetes (less than 239 
inds/m2) was attributed to strong tidal currents, intense predation, and/or low grass 
biomass. Using the same sampling effort, Ribeiro and Junqueira (1999) compared 
the abundance and diversity of mollusks in vegetated and non-vegetated habitats. 
Fifteen species of gastropods and ten of bivalves were recorded, mainly Cerithium 
atratum, Divaricella quadrisulcata, Tellina sp., Anomalcardia brasiliana, Codakia 
costata, and Bittium varium. There was a positive correlation between the abun-
dance of gastropods and vegetation, which may be related to the feeding habits of 
C. atratum, which is a herbivore gastropod. Variation in abundance and diversity of 
crustaceans was also assessed in Ilha do Japonês by Rumjaneck and Lavrado (1999). 
They observed a higher species number and greater abundance of the dominant 
amphipods Melita orgasms and Cymadusa filosa in vegetated areas. Crustacean 
abundance was also dependent on the morphology and biomass of marine grass, 
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which is related to herbivory and protection against predation. Grass biomass in this 
region (mean of 30.83 g/m2, dry weight) was low compared to that found in similar 
systems, which could explain the low density of crustaceans. This was not observed 
for the polychaetes (Oigman and Omena 1999) and for the bivalves (Ribeiro and 
Junqueira 1999), which were more related to the granulometric characteristics of 
the sediment, indicating that the presence of marine grass affects the main groups 
differently of macrofauna.

Halodule wrightii meadows occur in shallow subtidal sandy bottoms in the euha-
line high-energy sector of Paranaguá. Near their southernmost limit in the South 
Atlantic, the local plants display shorter and narrower leaves, shorter leaf sheaths, 
thinner rhizomes, a lower number of leaves per shoot, and higher internodal dis-
tances when compared with those from other Halodule meadows along the Atlantic 
coast (Sordo 2008). Because of its great adaptability as a pioneer and short-lived 
species, H. wrightii can grow and reproduce vegetatively under stressful conditions 
such as high turbidity and lower salinities and temperatures. As a result, the local 
seagrass populations are patchy, unstable, and infrequently sexually reproductive. 
Sordo (2008) and Sordo et al. (2011) assessed the seasonal morphological and bio-
mass variations of H. wrightii meadow on Rasa da Cotinga (from a healthy state to 
its subsequent decline and die-off), and Mel Island, near the inlet of Paranaguá Bay, 
from 2005 to 2008. The highest values for all plant variables were found in the sum-
mer. Thereon, there was an important decrease in shoot density and in belowground 
and aboveground biomass in Cotinga Island, with the clearance of the internal areas 
of the meadow, in colder months. The complete regression of the Rasa da Cotinga 
meadow by the beginning of 2008 was followed by an overgrowth of the epiphytic 
brown alga Hincksia mitchelliae. The differences between sites increased with the 
progressive degradation of the Rasa da Cotinga meadow. Such marked temporal 
variations in morphology and plant biomass, which lead to local meadow regression 
and disappearance, had a clear effect on local benthic assemblages. With an unex-
pected boost of epiphytic biomass, plant growth was suppressed and the numbers of 
burrowing and opportunistic macrobenthic species increased in the Cotinga meadow. 
Epifaunal and infaunal populations responded to such a variation in plant density 
and biomass with corresponding increase in the density of the amphipod Caprella 
scaura and a significant decrease in the numbers of the polychaete Magelona papil-
licornis. At the same time, the stable Mel Island meadow presented minor seasonal 
or internal variations, with the exception of a high-density patch of the polychaete 
Magelona papillicornis in May 2007. The biomass and number of leaves increased 
with time and macrobenthic abundance and species richness tended to decrease 
without any other major changes in the structure of the community. This study indi-
cated that the first signs of degradation or regression of local seagrasses were rather 
reflected on biological variables than on chemical ones. As a result, variations in 
plant biomass and numbers of animals were proposed as early indicators of water 
quality degradation in events of seagrass regression.

Short-term or interannual shifts in shoot density, average canopy, and below-
ground biomass of seagrasses along the SBME may thus prove usual for a better 
understanding of the regional effects of climate change (Marques et  al. 2015; 
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Copertino et al. 2016). Increases in spatial differences in plant cover and abundance 
within stable seagrass meadows may be an early indicator of future regressions and 
can be used in assessing and monitoring environmental impacts (Sordo et al. 2011).

5.3.6  �The Subtidal Benthic Assemblages

The subtidal benthic assemblages display similar distribution patterns in the SBME, 
despite marked differences in geomorphology, hydrodynamics, and contamination 
levels among estuaries. The species composition and the patterns of numerical dom-
inance may vary along the 1200 km coastline of the SBME, but the macrofaunal 
assemblages are always more diversified and stable at the outer, more saline sectors, 
and get impoverished or even disappear in the hypoxic bottoms of the inner sectors, 
as first shown by Tommasi (1970) and later confirmed by Lana (1986), Santi et al. 
(2006), Mendes et al. (2006), Santi and Tavares (2009), and Soares-Gomes et al. 
(2012). The outer estuarine bottoms are mostly composed of sandy, oxidized or 
moderately reduced sediments with normoxic conditions in the water column. 
Higher diversity and biomass of deposit- and suspension-feeding species are usu-
ally found in the mesohaline zones, with sand-muddy bottoms. Low diversified 
assemblages or even azoic conditions may develop in the low-energy inner zones, 
which are dominated by muddy bottoms, with reduced sediment surface conditions, 
high organic matter content, and the frequent development of hypoxic conditions in 
the water column near the bottom.

The expected linear benthic gradients may be disrupted by local changes in tidal 
circulation, by the presence of river and tidal creek mouths and by local changes in 
the intensity and direction of tidal flow. Lateral estuarine gradients may originate 
from the freshwater input of rivers and tidal creeks, which may create several 
“micro-estuaries” or sub-estuaries in the euhaline and polyhaline sectors (Knoppers 
et al. 1987; Noernberg et al. 2006). The changes in freshwater input, with daily, 
seasonal, and interannual components, may also overlap and confound the expected 
salinity gradient (Lana et al. 2001).

The benthic distribution model pioneered by Tommasi (1970) probably reflects 
the pristine or quasi-pristine configurations of the SBME estuaries, eventually 
altered by human changes over the last few decades. Tommasi (1970) recognized 
five faunal zones, which closely follow the salinity and sediment texture gradients 
across the estuarine system of Cananéia estuary: (a) outer sector of Trapandé Bay, 
near the estuarine inlet and deltaic bars, with direct influence of oceanic waters, 
sandy bottoms with low organic matter content and dominated by the octocorallians 
Renilla reniformis and Virgularia sp.; (b) the transitional zone of Mar de Cananéia, 
with mixed sediment bottoms, dominated by deposit-feeding bivalves, such as 
Macoma sp. and Tellina alternata; (c) Mar de Cubatão, already under the influence 
of riverine inputs, with higher values of particulate organic matter than the Cananéia 
Sea, and dominated by the tanaid Monokalliapseudes schubarti and the phoronid 
Phoronis sp.; (d) northern region of Cananéia Island, from Ilha de Graças to the 
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mouth of the Buguassu River, with high organic content, little particulate suspended 
matter and low dissolved oxygen, numerically dominated by the gastropod Heleobia 
australis, which is probably favored by the “pessimus” conditions for other macro-
faunal animals; (e) hard-bottom areas of the Ilha da Casca region, where the most 
abundant organisms were the hydrozoans Eudendrium carneum, the ophiuroid 
Ophiothrix angulata, and a diversified set of amphipods. The presence of a diverse 
epifauna was attributed to tidal currents strong enough to avoid intense sediment 
deposition.

Later studies carried out in Iguape-Cananéia estuary also indicated a marked 
gradient in macrofaunal distribution (Carcamo 1980; Varoli 1990; Souza 2009). The 
local macrofaunal assemblages are composed by approximately 170 species, with 
polychaetes as the dominant group both in species numbers and abundance, fol-
lowed by mollusks (reaching almost 50% of fauna), mainly represented by Heleobia 
australis sp. and Turbonilla sp. (Tommasi 1970; Carcamo 1980; Varoli 1990; Souza 
2009). Echinoids and ophiuroids are found mainly at the polyhaline region (Tommasi 
1971). Ostracods are a low abundant but diverse group in the region, with distribu-
tion patterns also influenced by the salinity gradient (Coimbra et al. 2007). Almost 
40 years after the pioneer work of Tommasi (1970), Souza et al. (2013) assessed the 
spatial and temporal patterns of the subtidal benthic macrofauna and its relationship 
with environmental factors in Trapandé Bay. The greatest number of species and the 
highest densities were again found near the estuary inlet, decreasing towards inner 
sectors. However, the temporal and spatial changes observed at the estuary inlet 
strongly reflected seasonal variations in nutrient and freshwater input, attributed to 
increased rainfall. The increased flow in the Cananéia Sea, coming from the drain-
age basin, produces major changes in sediment and faunal composition. In late 
spring, the polychaete Aricidea sp. was predominantly found at the shallow waters 
near the Cananéia Sea, associated with higher values of total phosphorus contents 
organic matter concentrations. However, the densities of Aricidea sp. decreased at 
the end of summer, most likely due to the increased rainfall and hydrodynamic 
flows at estuarine bottoms, which lead to a corresponding decrease in total phospho-
rus contents organic matter concentrations. Higher densities of magelonid poly-
chaetes were usually found in sediments with approximately 5–10% of organic 
matter. The distribution pattern of the omnivorous lumbrinerid Scoletoma tetraura 
was intrinsically linked to the total density and number of species. Ophiuroids were 
restricted to the outer estuarine area in the dry season (October). At the end of the 
southern hemisphere summer, in March, most likely due to the freshwater inflow 
that originates from the North through the Cananéia Sea, their occurrence was 
restricted to the southern bank of the outer sector.

Similar macrofaunal patterns in subtidal bottoms of the SBME were also shown 
by Santi and Tavares (2009) and Cardoso (2010) for Guanabara Bay: (1) euhaline 
and polyhaline zones, with salinity from 33 to 30, dominated by the polychaetes 
Magelona posterelongata, M. papillicornis, and Mediomastus sp., with high species 
numbers; (2) a transitional mesohaline zone, with salinity from 33 to 22, with 
decreased macrofaunal diversity; (3) inner oligohaline zones, with salinities from 
19 to 8, dominated by the gastropod Heleobia australis, the polychaete Nephtys 
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fluviatilis and the tainadacean Monokalliapseudes schubartti. There is also a change 
in functional groups with a dominance of polychaete surface deposit feeders in the 
polyhaline and transition zones to carnivore and subsurface deposit feeders in the 
inner zones (Cardoso 2010). Similar diversity gradients are also evident for mol-
lusks (Mendes et al. 2006; Neves et al. 2013) and decapod crabs (Lavrado et al. 
2000; Calil et  al. 2006), The commercially explored portunid crabs Callinectes 
ornatus, Callinectes danae, and the penaeid shrimps Farfantepenaeus brasiliensis 
and Farfantepenaeus paulensis are common in subtidal bottoms all along the SBME 
estuaries. They tend to be more abundant in the outer estuarine sectors, but may be 
also dominant in inner sectors during the dry winter season (Lavrado et al. 2000).

Pieper (2007) carried out the first systematic survey of the benthic sublittoral 
associations of the Laranjeiras Bay in the Paranaguá estuarine system, whose ben-
thic assemblages were previously assessed by Lana (1986). The survey was based 
on two seasonal sampling campaigns in winter 2006 and summer 2007 looking for 
possible differences between the eastern margins (greater marine contribution) and 
western margin (largest continental contribution). 197 taxa were identified up to the 
species or morphotype level, being granulometry and the concentration of organic 
matter the main drivers of the distribution of organisms. There was a clear differen-
tiation in benthic assemblages between the margins, but not between seasons.

Blankensteyn and Moura (2002) presented a preliminary list of macrofauna of 
non-consolidated subtidal bottoms of Guaratuba Bay, certainly the least studied of 
the great estuarine systems along the southeastern coast of Brazil. A total of 69 taxa 
were identified, of which only 22 (31.9%) had been previously recorded, with domi-
nance of polychaetes and bivalve mollusks. Silva (2008) investigated Guaratuba 
Bay subtidal in winter of 2006 and summer 2007 campaigns, trying to correlate 
benthic distribution patterns with the salinity and hydrodynamics gradients. 152 
taxa were found, with mollusks representing 93% of the total macrofauna, followed 
by annelids (3.26%) and crustaceans (2.82%). Three large sectors were defined by 
different faunistic structures, hydrographic and granulometric properties, where 
sediment texture and organic matter content were the main drivers of macrobenthic 
composition and distribution. There was a spatial difference between sectors, but 
not between seasons.

Haponiuk (2007) investigated the spatial distribution patterns of the benthic 
community and their relationships with environmental variables in Babitonga Bay. 
He identified three major sectors defined by the faunistic structure and by different 
hydrographic and granulometric properties. The general distribution of the organ-
isms is closely related to sediment texture as in the other estuaries of the SBME. The 
first sector comprised the outermost sampling stations, with high hydrodynamics 
and the presence of the lancelet Branchiostoma caribaeum. The second sector, 
located in the intermediate zone of the estuary, displays lower environmental energy 
and is dominated mainly by the polychaete Laonice branchiata. The third sector, 
composed of the very low-energy inner bottoms, is dominated by the polychaete 
Magelona papillicornis. Some taxa were frequent and persistent along the estuary 
gradient, such as sipunculids and the polychaete Capitella sp. The abundance and 
number of species also followed the patterns already described for the other SBME 
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estuaries, decreasing from the mouth to the inner sectors of the bay. Vieira (2007) 
also described the spatial variation of the macrobenthic assemblages in subtidal 
sites of Babitonga Bay. A total of 104 taxa were listed, and polychaetes were the 
dominant group, with Magelona papillicornis and Polydora websteri being the most 
abundant species. In general, species numbers followed a salinity gradient, increas-
ing in the outer, intermediate and near the Canal do Linguado, which presented 
higher salinity and falling towards the inner sectors near the Palmital Canal where 
the salinity decreased. The number of taxa was higher in the outer sector, decreasing 
towards the inner ones. The composition and dominance patterns of benthic macro-
fauna were related to variations in the sand, silt, organic matter and calcium carbon-
ate contents. Particulate organic matter and carbonate contents were low in the outer 
and inner areas, but increased in the intermediate sectors with fine sediments. 
Contrary to what happens in other estuarine systems of the SBME, the local hydro-
dynamics seems to be the conditioning factor for the dominance of fine sediments 
in the intermediate sector, a reflection of the low hydrodynamics and the deposition 
of material of continental origin. On the other hand, in the outer and inner sectors, 
the sediments were characteristic of high-energy dynamics, due to the mouths of the 
Cubatão, Palmital, and Garuva rivers.

5.3.7  �Benthic Assemblages of Tidal Creeks

Tidal creeks, locally called gamboas, are common features of coastal plains domi-
nated by tidal flow all along the SBME. They are routes for the exchange of water 
and dissolved particulate matter between mangroves, salt marshes and adjacent 
coastal systems (Lana et al. 1989). The alternation of depositional environments in 
such meandering water courses creates conditions for the formation of salt marshes 
and mangroves which typically develop along the meander bars (Lana et al. 1989). 
Tidal creeks also drain areas of continental vegetation, such as the sand-dune veg-
etation or restingas (Ovalle et al. 1990). Their capacity to carry sediment, condi-
tioned by rainfall and tidal regimes, is low, due to correspondingly low slope, 
meandering contours and reduced flow rates (Lana et al. 1989). The marked decrease 
of pH in tidal creeks is associated to surface and porewater migration from the man-
groves and adjacent restingas, mainly during low tides (Ovalle et  al. 1990). The 
daily variations of temperature and dissolved oxygen tend to be more pronounced 
near their catchment areas than in their mouths, subjected to greater marine 
influence.

Despite their relevance to estuarine metabolism, there are just a few studies deal-
ing with the composition and distribution patterns of the benthic macrofauna of tidal 
creeks along the southeastern coast of Brazil. Por et  al. (1984) were the first to 
assess the biota of the so-called gamboas or blackwater rivers of the SBME. Later, 
Lana et al. (1989) described the macrofaunal distribution patterns along the Gamboa 
Perequê in the euhaline sector of Paranaguá Bay. Benthic macrofauna of gamboas 

P. C. Lana et al.



145

is clearly conditioned by the marked physical, chemical gradients and by the alter-
nance of erosion and accretion environments.

The most detailed survey on tidal creek macrofauna of the SBME is still unpub-
lished. To assess macrobenthic distribution patterns, Lorenzi (1998) sampled five 
tidal creeks along a gradient of salinity and hydrodynamics of Paranaguá Bay: (a) 
Gamboa Papagaios (euhaline sector); (b) Gamboa das Ostras (polyhaline sector); 
(c) Gamboa Pinheirinho (mesohaline sector), and (d) Gamboa Xaxim (oligohaline 
sector). Sediment texture patterns of the gamboas followed, in general lines, the 
same pattern previously described by Netto and Lana (1997) for intertidal flats. The 
macrofauna was dominated by a few numerically dominant species, mainly of poly-
chaetes, as previously shown by Por et al. (1984) for the Juréia region, in the central 
coast of São Paulo state. Recurrent sets of species were recognized in distinct salin-
ity sectors. The association made up by Monokalliapseudes schubarti, Nephtys flu-
viatilis, Erodona mactroides, dipteran larvae, and enchytraeids was typical of the 
oligohaline and mesohaline tidal creeks. The association of Heteromastus similis, 
Laeonereis acuta, and Nereis oligohalina was common in creeks from the euhaline 
and polyhaline sectors. The bivalve Mytella guyanensis and the barnacle 
Fistulobalanus citerosum were typical of hard substrates in the euhaline sector. The 
polychaete Aricidea albatrossae, also common in euhaline subtidal bottoms of 
other estuaries from the SBME, was recorded only in the euhaline sector. Total 
macrofaunal density, species richness and density of dominant species did not seem 
to differ significantly from the catchment areas to the mouth of the creeks, regard-
less of the considered salinity sectors. However, the polychaetes Aricidea albatros-
sae, Glycera americana, and Polydora websteri, and the commercially exploited 
bivalve Mytella guyanensis may be dominant at the mouths of tidal creeks in poly-
haline and mesohaline sectors. Likewise, Monokalliapseudes schubarti, a species 
common to all gamboas, had significantly higher densities in the innermost sectors 
of the bay, near the catchment area of the gamboas, where fine sediments predomi-
nate. A similar distribution pattern was detected by Lana et al. (1989) in the Gamboa 
Perequê in the euhaline sector of Paranagua Bay, where higher densities of this 
tanaid were recorded in the vicinity of the catchment area.

The species diversity of tidal creeks is rather low in comparison to that of other 
adjacent environments, such as unvegetated tidal flats, salt marshes, and mangroves 
(Lana et al. 1997a, b; Lorenzi 1998), probably as a result of fast salinity changes and 
low pH values, which may exclude estenohaline freshwater and marine species. In 
contrast to mangrove and subtidal bottoms from the inner estuarine sectors, the 
availability of dissolved oxygen does not appear to be a limiting factor for the mac-
rofauna, as saturation is always relatively high due to tidal circulation (Lorenzi 
1998). Nutrient availability also does not appear to be a limiting factor of primary 
production, since the recorded values recorded are similar to those of the adjacent 
estuarine water masses (Brandini and Thamm 1994; Machado et al. 1997). Por et al. 
(1984) and Lorenzi (1998) have hypothesized that the low diversity and low abun-
dance of tidal creek macrofauna reflects the dominance of acid waters with a high 
concentration of humic substances.
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In summary, the benthic associations found in tidal creeks are also recurrent in 
other estuarine environments, as adjacent unvegetated intertidal flats and shallow 
subtidal bottoms. Although they drain areas of mangroves and salt marshes, tidal 
creeks should not be seen as ecotones or transitional environments between these 
ecosystems and the adjacent estuary. Its fauna should be considered as a less diver-
sified and less abundant continuum of the benthic assemblages from adjacent estua-
rine compartments.

5.3.8  �Benthic Assemblages of Estuarine Rocky Shores

Estuarine rocky shores are present in the SBME due to the intrusion of the Serra do 
Mar (“sea mountain range”) in the coastal areas. There are a few studies on the 
biodiversity and dynamics of the estuarine rocky shores, and most of the studies 
have focused on specific taxonomic groups rather the benthic assemblages as a 
whole. Previous studies were mainly conducted in the polyhaline estuarine regions, 
with a gap of knowledge on the biodiversity patterns and processes in the mesoha-
line and oligohaline regions. In general, the lower the salinity along the salinity 
gradient, the lower the species richness and the percent cover of the substrate.

Studies from the Guanabará, Santos and Paranaguá estuaries have indicated the 
presence of macroalgae, barnacles, decapod crustaceans, mollusks, polychaetes, 
ascidians, hydroids, and ophiuroids (Lotufo 1997; Junqueira et al. 2000; Lavrado 
et al. 2000; Santos 2004; Breves-Ramos et al. 2005; Van der Ven 2005; Grohmann 
2009; Santi and Tavares 2009; Rocha 2010; Omena et al. 2012; Soares-Gomes et al. 
2012; Yoneshigue-Valentin et al. 2012; Mattos et al. 2014). Macroalgae is the most 
diverse group, with 173 taxa in Guanabara Bay, and the taxon is dominated by red 
and brown macroalgae (Yoneshigue-Valentin et al. 2012). The species richness in the 
consolidated estuarine substrata increases when the fauna associated with the sec-
ondary mussel bed (Perna perna) substrate, that is found in the polyhaline regions, 
is considered, with dominance by polychaetes and amphipods (Jacobi 1987).

5.3.9  �Meiofaunal Patterns of Diversity

The ecological and functional role played by meiofauna in the subtropical estuaries 
of the SBME has been little studied. The first taxonomical and ecological studies on 
Brazilian meiofauna were carried out in the Cananéia-Iguape system (see Gerlach 
1958 for a synthesis). However, only during the last two decades there has been an 
increase in the number of meiofaunal researchers in southeastern Brazil. Meiofauna 
of the Rio Grande ecoregion is better known than that of SBME (see Netto et al. 
2018; Chap. 6, for a review on composition and anthropogenic disturbances). 
Studies along the SBME are still sporadic and ecological studies with taxonomic 
resolution higher than phylum or class are still scarce. The scarcity of data about the 
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meiofauna of estuarine beaches of the SBME and other intertidal compartments 
were recently evidenced by an extensive review on the meiofauna of sandy beaches 
along the Brazilian coast (Maria et al. 2016). Corgosinho et al. (2003) compared 
meiofaunal patterns in two sandy beaches under varying hydrodynamical condi-
tions in Ilha do Mel, Paraná state (25°29' S and 48°17' W), Brazil. Total meiofaunal 
diversity and nematode densities were higher at the exposed site, a pattern attributed 
to the high vertical migratory capacity of nematodes in comparison with other meio-
faunal taxa, and the almost complete absence of other interstitial meiofaunal groups. 
The low Nematoda–Copepoda ratio at the sheltered estuarine beach could indicate 
moderate hydrodynamic stress, since copepods are more sensitive to environmental 
disturbances than nematodes. Copepod densities, Shannon diversity, and evenness 
were also higher at the more eutrophic sheltered site.

Corgosinho et al. (2003) and Vicente (2008) carried out the only two studies on 
subtidal meiofaunal assemblages in the estuarine system of Paranaguá Bay. They 
indicated that salinity and sediment characteristics, conditioned by hydrodynamic 
conditions, are the main drivers of species composition and meiofaunal abundance. 
Vicente (2008) suggested that meiofaunal assemblages along the eastern–western 
more-contaminated axis of Paranaguá Bay differed from those of the southern–
northern less-impacted axis, Laranjeiras Bay, mainly as a function of variation in 
nematode densities. Spatial gradients in meiofaunal distribution were detected in 
both bays, but without evidence of marked seasonal variation.

Thomas and Lana (2011) evaluated the efficacy of vital Neutral Red for the 
experimental analysis of nematode dispersion rates in intertidal flats from the poly-
haline sector of Paranagua Bay. Dispersion rates were expressed as the number of 
stained captured nematodes by comparison to average densities of nematodes at 
stained sediment in source sites. The local association was numerically dominated 
by the nematode genera Comesa, Terschellingia, Microlaimus, Metachromadora, 
Sabatieria, and Viscosia. Stained individuals of only 4 (Terschellingia, 
Metachromadora, Sabatieria, and Viscosia) of the 23 identified genera were recap-
tured in the sediment. Tidal currents with average velocities of 9 cm/s were able to 
ressuspend the numerically dominant nematode taxa, dispersing them to distances 
up to 180 cm from the stained corers during a single tidal event. Thomas (2011) 
suggested that the morphology and lifestyles of nematodes themselves, besides 
local hydrodynamics, were determinant of their dispersal processes, by defining 
which genera are more prone to be ressuspended and which tend to stay in the sedi-
ment during ebb tides or flood tides.

In an unpublished thesis, Thomas (2011) categorized free-living marine nema-
todes of an intertidal flat of Paranaguá Bay into functional dispersal groups by com-
bining biological data (mobility strategies, locomotion patterns, morphology, and 
life strategies), later used to assess genetic flow. The validity of functional dispersal 
groups was tested through a field experiment, carried out during single tidal events 
replicated in winter and summer conditions. A vagile-swimmer functional dispersal 
group displayed active behavior, swimming capacity and senoidal omega locomo-
tion patterns, facilitated by a slender body and conical/cylindrical tail. Dispersal of 
vagile-swimmer species was mainly related to algal rafting events, suggested as 
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relevant transport vectors during ebb tides and flood tides. Unlike vagile-swimmer 
species, vagile-crawlers showed circular senoidal locomotion pattern and could be 
grouped into a selective deposit-feeding trophic group. They avoided being resus-
pended by actively moving to deeper subsurface sediment layers. A sedentary dis-
persal group was made up by relatively small and robust species, with restricted 
mobility or completely stationary. The presence of such sedentary species in the 
water column was a function of resuspension by tidal currents and their subsequent 
passive transport. Populations of Metachromadora chandleri showed high gene 
flow, and no evidence of genetically structured populations. On the other hand, the 
vagile-swimmer Viscosia cobbi was able to avoid being carried in the water column 
and adapted to the classical metapopulation concept, with regional populations with 
restricted gene flow.

Leite et al. (2014) assessed if the changes in the structure of nematode assem-
blages could be used as indicators of moderate petroleum contamination in salt 
marshes of the euhaline sector of Paranaguá Bay. They did not observe significant 
differences in nematode total density, number of taxa and the overall assemblage 
structure between control and impact treatments from before to after experimental 
diesel oil spills. They claimed that, despite being good indicators of environmental 
stress, free-living marine nematodes are able to tolerate low concentrations of 
hydrocarbons and to survive in moderately contaminated areas.

5.4  �Variation of Benthic Assemblages of the SBME in Time 
and Space

The understanding of community dynamics depends on the comprehension of their 
variations at different spatial and temporal scales. The latitudinal gradient might be 
the main driver of the spatial variability in estuaries, and this gradient is addressed 
as different ecoregions in this book. Salinity gradients across individual estuaries, 
often in the scale of dozens of kilometers, are also major drivers of benthic changes, 
whereas sediment texture, organic matter content, local hydrodynamics, geomor-
phological complexity, and biological interactions may influence the fauna at 
smaller spatial scales. At the temporal scale, estuarine dynamics vary from hours, 
due to the tidal influence, to seasons due to the rainy/dry periods and frontal sys-
tems. Recently, the impacts at larger temporal scales associated to climate changes, 
have been one of the main concerns for the management and conservation of estuar-
ies, whose impacts require a clear understanding of the integration of the different 
spatiotemporal scales (Bernardino et al. 2016).

Disturbance is the main driver of variations at small spatial and temporal scales 
in estuaries, and its impacts depend on the intensity and origin of the disturbance 
(Xavier et  al. 2008; Barboza 2010). Short-term disturbances are associated with 
several environmental changes, such as thermal stress during low tides, desaliniza-
tion, erosion, and sediment resuspension. Pereira et al. (2013) showed that artificial 
disturbance was one of the main causes for the high diversity in Guanabara Bay. By 
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evaluating the recovery process in soft-bottom macrobenthic communities after 
sterilization of the sediment, these authors indicated that disturbance could be 
responsible for the diversity found in polluted bays, probably due to the increase in 
the amount of organic matter in the sediment due to high mortality rates of the 
fauna. In addition, the authors found that the recolonization of defaunated sedi-
ments was rapid and was essentially complete after 27 days, with similar composi-
tion and abundance between control and impacted treatments.

Seasonal variation is an important natural driver in this dynamic environment. In 
the SBME, higher rainfall occurs in the summer (Bernardino et al. 2015) and, as a 
consequence, the freshwater input is also higher, decreasing the salinity in the estu-
ary. On the other hand, during the winter, frequent meteorological-oceanographic 
events (frontal systems) increase seawater height and pull water from the coast 
(Mazzuco et al. 2015), which further increases the salinity in the estuaries. A sea-
sonal pattern in the macrobenthic communities was described in the pristine estuar-
ies in the Juréia-Itatins region (São Paulo State), in both salt marshes and mudflats, 
where the abundance and species richness was normally lower during the rainy and 
warm season than during the cold and dry season (Laurino 2016). In this region, the 
months with the highest degree of climate variability demonstrated negative effects 
on species richness and abundance, and sediment properties were the main factors 
responsible for the variations in richness. The macrofauna community was domi-
nated by the tainad Monokalliapseudes schubarti, oligochaetes, and the polychaete 
Capitella sp., with greater macrobenthic richness and diversity in the higher salinity 
zones than in the lower salinity zones (Laurino 2016).

Seasonal cycles also have pronounced effects on species dynamics all along the 
subtropical SBME. Several species have a markedly seasonal reproductive cycle, as 
the commercially exploited crab Ucides cordatus (Hattori and Pinheiro 2003; 
Wunderlich et  al. 2008), polychaetes (Lana and Guiss 1992; Pagliosa and Lana 
2000), and bivalves (Christo et al. 2016). Marked seasonal variation in abundance 
and diversity of associated fauna has been attributed to correspondingly seasonal 
differences in primary production cycles and litter dynamics in local salt marshes 
and mangroves (Lana and Guiss 1992; Domingos and Lana 2017). Winter and early 
spring starch stocking in subsurface rhizomes is very noticeable in regional salt 
marshes (Lana et al. 1991), whereas litter production in mangroves is significantly 
higher in summer months (Bernini and Rezende 2010).

Short-scale meteorological-oceanographic events in the Paranaguá region did 
not cause significant and recurrent reductions in the number of species and individu-
als in the estuarine macrofauna in shallow subtidal estuarine flats (Negrello-Filho 
and Lana 2013). However, frontal systems significantly impacted exposed and estu-
arine beaches from the outer estuarine sectors (Brauko 2008). Although frontal 
systems may not be a major or regular driver of the composition and abundance of 
shallow-water estuarine macrofauna, extreme meteorological events, such as sub-
tropical storms and cyclones over the Western South Atlantic Ocean, have relevant 
impacts on the benthic assemblages (see details in Sect. 5.6.4). The increase in the 
frequency and intensity of frontal events in different climate change scenarios may 
accelerate interannual and decadal changes that have been seen in the estuaries of 
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this transitional ecoregion (Bernardino et al. 2015). However, the assessment and 
prediction of decadal changes is still fragmentary due to the lack of continuous 
monitoring and long-term studies, coupled with the increasing influence of human 
activities all around the SBME estuaries (Bernardino et al. 2016).

5.5  �Processes Mediated by Benthic Organisms

Only more recently, from the 2000s on, the traditional descriptive focus on the tax-
onomy and structure of benthic assemblages of the SBME estuaries and coastal 
lagoons has been complemented by functional approaches which emphasize the 
role played by plants and animals in shaping and conditioning their own habitats 
(Caliman et al. 2013; Gusmão Jr 2017). Benthic systems are largely controlled by 
hydrodynamic forces that shape habitats and directly affect the biota. Habitat com-
plexity may be also introduced in sedimentary systems at shorter spatial scales by 
the presence of bioturbators and habitat-forming engineer species. These organisms 
can alter the environmental conditions and directly or indirectly regulate the avail-
ability of food and habitat for other species (Gusmão Jr 2017).

The so-called habitat-forming organisms are autogenic ecosystem engineers that 
via their physical structure and behavior create new habitats for other species, 
increasing structural complexity in otherwise more simple and monotonous uncon-
solidated substrata (Gusmão Jr 2017). Although most of the ecosystem engineers 
are epifaunal, the relevance of infaunal species should not be underestimated, as 
they can alter sediment geochemistry, through their feeding, mating, and locomo-
tion strategies at subsurface layers (Fig. 5.4). With the exception of large burrowing 
crabs, as Ucides cordatus (Santos et  al. 2009), Ocypode quadrata (Rosa and 
Borzone 2008), and species of Uca (Machado et al. 2013), most epifaunal species 
have a limited capacity to disturb the subsurface sediment matrix. However, they 

Fig. 5.4  Estuarine macrobenthic species can process and modify soft sediments in contrasting 
ways. From the left to the right: an epifaunal shrimp with limited bioturbation capacity at the sedi-
ment surface; a goniadid polychaete disturbing sediment in all directions (biodiffusing); a tube-
dwelling onuphid worm; a lugworm bioirrigating the substrate and depositing fecal material in the 
surface (upward conveyor); a gallery-dweller shrimp; and a spionid polychaete depositing fecal 
material under the surface (downward conveyor)
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can still affect sediment surface by selective deposit feeding (Colpo and Negreiros-
Fransozo 2011). The pure size of burrowing crab species clearly increases their 
capacity to alter the vertical profile and geochemical properties of unconsolidated 
bottoms (Sayão-Aguiar et al. 2012).

Tube and gallery dwellers not only promote deeper oxygenation of the sediment 
but also can change sediment microtopography. Conversely, sediment biodiffusers 
can disturb sediment matrix in all directions, destabilizing the substrate and 
increasing nutrient release (Caliman et al. 2013). Bioirrigators promote water flow 
through the sediment matrix, resulting in increased nutrient release. Upward and 
downward conveyors transport material out or down into the sediment and may 
directly regulate the release and burial of organic matter in the sediment matrix 
(Gusmão Jr 2017).

Considering the differences in bioturbation capacities among macrobenthic spe-
cies, changes in assemblage structure from subtidal to intertidal compartments have 
clear implications for sediment-related processes. The main introducers of sediment 
heterogeneity in shallow and intertidal estuarine habitats along the SBME estuaries 
are halophyte plants. Checon et al. (2017) tested the prediction that mangrove veg-
etation would not exert the same positive effects on infaunal organisms that they 
obviously exert on epifauna. For that, they investigated polychaete assemblages in 
mangrove stands of northern coast of São Paulo state. Mangrove areas were shown 
to display lower polychaete density than that of adjacent sandflats, and polychaete 
density was negatively related to root biomass. Species richness was not affected by 
the presence of vegetation, but the number of exclusive species was higher inside 
the mangrove. Changes in composition of polychaete assemblages were mainly 
attributable to reductions in species density rather than species replacement. Trophic 
structure was not influenced by mangrove vegetation, as subsurface feeders domi-
nated inside and outside mangrove zones. Marine macrophytes such as Spartina 
alterniflora (Flynn et al. 1998; Netto and Lana 1997), macroalgae such as Hypnaea 
musciformis (Couto et  al. 1995), and seagrasses (Marques and Creed 2008; 
Copertino et al. 2016) may promote flow attenuation and decrease bedload trans-
port, reducing sediment resuspension, increasing sedimentation rates, providing 
refuge or food, and thus creating a new habitat for diverse faunal assemblages.

Extensive bivalve beds of the native Mytella guyanensis and Crassostraea 
brasiliana, also known as C. gasar (Westphal and Ostrensky 2016) may also intro-
duce hard substrate into intertidal flats and shallow subtidal bottoms, allowing for 
the establishment of fouling organisms and other associated biota. Dead shells may 
also introduce complexity and heterogeneity into soft-sediment habitats of the 
SBME and may regulate the structure and functioning of benthic assemblages. The 
effects of high densities of empty shells of the bivalve Anomalocardia flexuosa on 
macrofaunal recolonization were experimentally assessed during a 3-month period 
by reciprocal transplantation of defaunated sediment between shelled and bare habi-
tats (Sandrini-Neto and Lana 2014). Despite the well-recognized impact of mollusk 
shell production on soft-sediment habitats, effects were mostly scale-dependent, 
both spatially and temporally, and might be regulated by the structure of local 
assemblages and species-specific responses related to dispersal mechanisms.

5  Benthic Estuarine Assemblages of the Southeastern Brazil Marine Ecoregion (SBME)



152

Fiddler crabs are key species all along the intertidal flats, salt marshes, and man-
groves of the SBME. Their varying engineering effects are an important source of 
habitat heterogeneity and a structuring agent of microfaunal and meiofaunal assem-
blages, as they manipulate large amounts of sediment, altering the physical and 
geochemical properties of the substrata. Citadin et al. (2016) investigated whether 
different types of sediment bioturbation produced by fiddler crabs modulate meio-
faunal assemblages and microphytobenthic content. They hypothesized that sedi-
mentary structures produced by burrowing (the burrow itself and the excavation 
pellets) and feeding (feeding pellets) generate different microenvironments com-
pared with areas without apparent signs of fiddler crab disturbance, affecting both 
meiofauna and microphytobenthos, independent of the sampling period. Engineering 
effects of burrow construction and maintenance and the engineering effects of fid-
dler crab foraging clearly modulated meiofaunal assemblages in different ways. 
Overall, meiofauna from burrows and excavation pellets was more abundant and 
diverse than at control sites, whereas feeding pellets contained poor meiofaunal 
assemblages. By contrast, only foraging effects were detected on microphytoben-
thos; independent of the sampling period, chlorophyll-a and phaeopigment content 
were higher in the feeding pellets, but similar among burrows, excavation pellets, 
and control sites. However, it is still unclear the role played by fiddler crabs on 
organic matter contents by bioturbation as it is proved in controlled laboratory 
conditions but overcame by environmental variables in field experiments (Natálio 
et al. 2017).

Brustolin et al. (2014) assessed the effects of the sand-dollar Encope emarginata 
on subtidal meiofauna and microphytobenthos in shallow subtidal bottoms of 
Paranaguá Bay. They provided strong evidence that top-down effects related to the 
occurrence of E. emarginata act in synergy with bottom-up structuring related to 
hydrodynamic processes in determining overall benthic spatial variability. Species 
richness was mainly influenced by environmental heterogeneity at small spatial 
scales (centimeters to meters), which creates a mosaic of microhabitats. They evalu-
ated variation patterns at five different spatial scales, from kilometers to centime-
ters, in sites with patches of living and dead echinoids and in sites without them. 
The overall structure of microphytobenthos and meiofauna was always less variable 
at sites without Encope and much of variation at the scale of hundreds of meters was 
related to variability in sites with living or dead Encope, due to foraging activities 
or to the presence of shells. Likewise, increased variability in chlorophyll-a and 
phaeopigment contents was observed among sites with living Encope, although tex-
tural parameters of sediment varied mainly at smaller scales.

Bioturbation also produces biogeochemical changes in the sediments as it pro-
motes sediment aeration and stimulates aerobic microbial activity. Bioturbation 
ultimately leads to changes in sediment redox conditions with major implications 
for the cycling of nutrients, organic matter and contaminants in the unconsolidated 
substrata. Caliman et al. (2013) experimentally assessed bioturbation effects on the 
bottoms of a coastal lagoon in Rio de Janeiro state. They showed that bioturbator 
species richness had no overall significant effect on sediment methane when com-
parisons were made among different species richness levels. However, bioturbator 
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species richness significantly reduced sediment methane when species richness lev-
els were compared to control defaunated treatments, effect that was significant only 
at the deepest sediment layer. Furthermore, bioturbator species composition had 
significant, but distinct effects on the patterns of reduction in sediment methane 
depending on the sediment depth and the bioturbator species. They concluded that 
both the number and composition of bioturbator species are important to determine 
the effects of benthic bioturbators on spatial patterns of sediment methane, but the 
strength of these effects depend on species traits that determine interspecific inter-
actions strength across the sediment vertical profile.

Suzuki et al. (2012) estimated that benthic activity on metal diffusion into man-
grove sediments was responsible for 32% (Cr), 39% (Co), and 44% (Zn) of total 
inventories of diffused metals. Benthic activity was quantitatively evidenced as a 
control on trace metal diffusion into the sediments, contributing to determine the 
sediment role as a metal sink. Bioturbation was also shown to affect metal potential 
bioavailability, considering that recently diffused metals can be more readily avail-
able to biological uptake. Correia and Guimarães (2016) assessed the effects of Uca 
on mercury (Hg) and methylmercury (MeHg) which are poorly studied in regional 
mangroves. They found that crab bioturbation favored Hg retention in the sediment 
but also promoted MeHg formation near the surface. Hg volatilization and water Hg 
concentrations were higher in treatments without crabs.

Functional diversity, which is high among benthic invertebrate bioturbators, is 
conditioned by biological traits such as body size, feeding mode, and burrowing 
capacity (Gusmão Jr 2017). In addition, invertebrate bioturbators themselves can 
alter their functional attributes in response to environmental change or species inter-
actions (Caliman et al. 2013). The discrepancy in functional traits among benthic 
invertebrate species is considered a criterion to preserve bioturbator diversity in 
aquatic ecosystems, given the disparate effects of species belonging to different 
functional groups may have on benthic–pelagic processes (Caliman et al. 2013).

5.6  �Human Impacts and Conservation Issues

Disturbances are among the most important controlling drivers of ecosystem struc-
ture and function in marine sedimentary environments. As exposed above, small-
scale disturbances that are driven by bioturbators play an important role in 
maintaining a mosaic of patches in different successional stages, which promotes 
local heterogeneity (Gusmão Jr 2017). However, natural or human-driven large-
scale disturbances can have major effects on regional benthic biota and conse-
quently affect process dynamics in sedimentary systems. The increasing pressures 
of human-driven large-scale disturbances on coastal seascapes, such as climate 
change and overfishing, have generated concern among researchers and marine 
managers about the functional consequences of benthic biodiversity loss. Analytical 
tools that integrate information about the macrobenthic species to estimate the rela-
tionship between species composition and community function are thus valuable 
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and can predict the potential services losses of services in the case of local or 
broader scale disturbances.

Most of the human population and economy of Brazil are concentrated in the 
SBME and, as a consequence, several environmental stressors influence the estuar-
ies in this region. In this section, we will cover the main drivers of the impacts to the 
estuaries of the SBME, including climate change and the goals for conservation. It 
is important to highlight that the patterns and processes of biological communities 
are exposed to multiple stressors that may act simultaneously with additive and non-
additive (i.e., synergetic or antagonistic) outcomes. Therefore, it is essential to con-
sider the potential interaction of multiple stressors when designing impact studies, 
as it is difficult to understand the environmental impact by analyzing single stress-
ors on benthic communities, as the real impacts are more than the sum of single 
stressors. In this context, we provide information based on field studies since, even 
when addressing single stressors, these studies evaluated the natural complexity of 
the estuarine system and under other stressors. Therefore, the results from these 
studies will reflect the responses of the biota under the putative interactions of all 
local stressors. Laboratory studies usually address single stressors in a controlled 
system; thus, the applications of the results of laboratory studies to natural ecosys-
tems, although valid, are limited.

5.6.1  �The SBME History and the Multiple Stressors 
of the SBME

The coast of the SBME is strongly influenced by urban sprawl, which has increased 
both habitat losses and the discharge of pollutants and sewage. The current trends of 
urbanization and industrialization are schematically represented in Fig.  5.5. The 
land use types in this area have been impacted for several centuries (see Fistarol 
et al. 2015 for the case study of Guanabara Bay), and there is no previous knowl-
edge of the fully natural patterns of this region. Thus, it is important to bear in mind 
that the actual biological patterns that we describe in this chapter are a result of the 
long-term influence of human activities. The impact of habitat loss in the SBME is 
clearly represented by the loss of the Atlantic Rain Forest, which covers less than 
16% of its original area (Ribeiro et al. 2009).. This huge deforestation gave way to 
the development of cities, industrial complexes and agricultural activities, and the 
residuals of these activities are discharged mainly in coastal estuaries. The urbaniza-
tion of the region began with the first urban settlements on the coast in the sixteenth 
century. From that moment, the impacts on the SBME estuaries occurred at differ-
ent times and intensities. In the Guanabara estuary, cities such as Rio de Janeiro and 
Niteroi developed, and these developments included significant land reclamation 
and decreases in environmental quality over the last 200 years (Fistarol et al. 2015). 
More recently (100–150 years), other estuaries in the SBME showed changes of 
different intensities. More intense pressures occurred in the Santos, Sepetiba, and 
Babitonga estuaries, where ports and industries rapidly developed. On the other 
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hand, other estuaries (Juréia, Iguape-Cananéia, and Guaratuba) presented less-
intense urban development. There are only small cities and local traditional com-
munities in these estuaries where pristine and less-impacted regions are still found, 
including the longest sector of native Atlantic Rain Forest in the Lagamar region, 
which harbors different protected areas and the Juréia, Iguape-Cananéia, and 

Fig. 5.5  Dynamic behavior of an idealized subtropical estuary under the dry summer and the wet 
winter seasons
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Paranaguá estuaries. Paranaguá Bay is considered to have faced an intermediate 
level of impact, as the southern side is influenced by a port, contaminants, and habi-
tat loss, while the northern side is occupied by small cities, traditional communities, 
and the native Atlantic Rain Forest.

The SBME is the most urbanized and economically developed ecoregion in 
Brazil. The most common stressors in the estuaries are tourism, litter, sewage, fertil-
izers, agricultural pesticides, and industrial pollutants, and these stressors are con-
sequences of the development of cities. The intensities of their impacts vary 
according to the closest demography, and the influence of the rivers that carry pol-
lutants from other regions. Among the seven estuaries of the SBME, the Guanabara, 
Sepetiba, Santos, Paranaguá, and Babitonga estuaries have also been impacted by 
port activities, including bioinvasion and dredging. The impacts of industrial waste 
are greater in the estuaries of Santos Bay, due to the presence of the Cubatão and 
Sepetiba industrial complexes, where high concentrations of contaminants have 
been discharged over the past several decades (Marques et al. 2006; Gomes et al. 
2009; Bordon et al. 2016).

The economic development and urbanization in the SBME has also increased the 
social inequality, and the vulnerable population is large. Vulnerable populations are 
from both traditional communities and urbanized low-income employees. In this 
context, urbanized regions have a mosaic of different social-economic-cultural real-
ities. In this mosaic, there are different vulnerabilities of the impacts of multiple 
stressors depending on the socioeconomic reality as, for example, slams with lower 
infrastructure are present along the estuarine border. Additionally, there are differ-
ent connections between man and nature that are related to the sustainable use of 
resources by traditional communities and the lower connections to nature in some 
higher social classes. These differences bring conflicts between urbanization and 
nature conservation with significant management challenges.

5.6.2  �Fishery Resources

Most traditional populations rely on fishing as an economic and cultural activity. In 
regions with larger human populations, artisanal and industrial fishing are also 
stressors on the estuaries that combine with other stressors (e.g., pollutants and 
contaminants) to increase the conflict related to ecosystem services and health 
implications. The fishing of benthic estuarine organisms is mainly focused on crus-
taceans and mollusks from mudflats and mangroves (Westphal and Ostrensky 2016; 
Castilho-Westphal et al. 2014; Duarte et al. 2014). In urban areas, overfishing can 
be a problem because of population decreases and the potential changes in ecosys-
tem functions. In addition, fishery resources can accumulate contaminants that will 
be ingested by the human population and will bring about health implications for 
humans, especially in low-income communities that utilize fisheries as the main 
sources of protein.
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Swimming crabs are an important resource for local communities according to 
Severino-Rodrigues et al. (2001), who described the artisanal swimming crab fish-
ery in Santos Estuary from 1987 and 1994. Callinectes danae was the main resource 
(84% of the total) consistently over that period; however, the abundance decreased 
over that period. This decrease was probably a result of the overfishing of juveniles 
and ovigerous females. Shrimp fisheries are also common in larger estuaries 
(Natividade et  al. 2006; Andriguetto-Filho et  al. 2009), and these fisheries have 
impacts on the benthic community due to the by-catch of fauna with low economic 
interest (López-Barrera et al. 2012; Stanski et al. 2016).

In mangroves, Cardisoma guanhumi is the species that is most impacted by fish-
eries, and Ucides cordatus is the main fishery resource. The density of exploited 
species seems greater near mangrove trees because roots affect fishing gear (Kassuga 
and Masunari 2015). Mangrove crabs of commercial interest have also been 
impacted by contaminants in the estuaries in the SBME (Pinheiro et  al. 2013; 
Oliveira-Neto et al. 2014). Another important fishery resource is the mangrove oys-
ter Crassostrea spp., and the sustainability of the extraction in the Iguape-Cananéia 
estuary is more related to the social, technological, and ethical dimensions than the 
ecological and economic dimensions (Mendonça and Machado 2010; Machado 
et al. 2015). This species has been cultured at a commercial scale (Henriques et al. 
2010). Although the culture seems to have a low impact on the environment, it 
causes a positive effect on the biodiversity due to the increase in associated fauna 
(Monteiro 2007).

5.6.3  �Benthic Fauna and Anthropogenic Stressors

When considering the actual impacts on estuaries, benthic macrofauna can be used 
as bioindicators and can support management and decision-making for estuary con-
servation. Studies on estuarine benthic macrofauna have shown that both species 
and assemblages can be used as bioindicators for several natural and anthropogenic 
drivers (e.g., C, N, P, steroids, sewage indicators, CaCO3, and metals). However, it 
is still controversial how benthic fauna respond to multiple stressors. This issue 
needs to be addressed carefully and with more elaborate studies and experimental 
designs, as the interpretation of benthic macrofauna as bioindicators needs to be 
specifically addressed together with the covariation among several factors, such as 
sedimentology, organic matter, salinity gradients, the presence of contaminants and 
pollutants, and the understanding of the life strategies and resilience of organisms.

Pollutants and contaminants have been shown to be the main drivers that have an 
influence at the intermediate (km) and short scale (m) in estuaries. Changes in the 
benthic macrofauna structure in polluted areas have been observed (Barboza et al. 
2015; Souza et al. 2013, 2016), while variation patterns have also reflected significant 
small-scale (centimeters and meters) changes that are not directly related to contami-
nation (Souza et al. 2013, 2016). The influence of sewage at the temporal scale is still 
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unclear. In Guanabara Bay, communities in polluted areas recover faster than those in 
unpolluted regions, which is probably due to the presence of more resilient species in 
the polluted environments (Breves-Ramos et al. 2005). For a better understanding of 
such differences, it is also important to have an understanding of the future spatiotem-
poral variability integrated in the SBME.  For example, Hadlich (2010) integrated 
spatiotemporal variation by studying polychaetes in a hierarchical design from centi-
meters and dozens of meters to hundreds of meters and to kilometers in sewage-con-
taminated gradient during the dry and wet subtropical seasons. She found a seasonal 
variation in the polychaete community; however, the spatial variation changed over 
time. In the dry season (winter) the variability was expressed at the smaller spatial 
scale, while during the wet season (summer), when the pollutant gradients were stron-
ger, the benthic variation appeared from hundreds of meters to kilometers.

Pristine or quasi-pristine benthic gradients may thus be confounded by anthropo-
genic influence associated with urban development, harbor activities, industrial 
activities and waste disposal along the major SMBE estuaries (Fistarol et al. 2015; 
Soares-Gomes et  al. 2016; Rodrigues et  al. 2017). Due to land-usage dynamics, 
human environmental impacts are indeed more impacting in the inner estuarine sec-
tors, as in Guanabara (Soares-Gomes et al. 2016), Sepetiba (Rodrigues et al. 2017), 
and Santos estuaries (Ferreira 2008). Although there is some evidence that contami-
nation levels by trace metals may not be critical for the fauna as yet (Abuchacra 
et al. 2015; Aguiar et al. 2016 but also Rodrigues et al. 2017), sewage disposal is 
unequivocally a major driver of benthic assemblage structure in regional estuaries 
(Souza et al. 2013; Brauko et al. 2016). Short-lived opportunistic species or assem-
blages seem to be recurrent in contaminated areas including nematodes, the tanaid 
Monokalliapseudes schubarti, the polychaetes Streblospio cf. benedicti, Sternaspis 
sp., and Scolelepis sp., and the gastropods Bulla striata and Heleobia australis 
(Rodrigues et al. 2017). In Paranaguá bay, shallow bottoms contaminated by sewage 
are numerically dominated by tubificids, and by the polychaetes Laeonereis culveri 
and Heteromastus sp. (Souza et al. 2013). Ferreira (2008) described the spatial and 
vertical structure of the population of the polychaete annelids of the contaminated 
Santos bay and adjacent continental shelf. The lowest values of density, richness, 
diversity, and equitability were observed in the central portion of Santos bay, with 
numerical dominance of the polychaetes Mediomastus capensis, Prionospio sp., 
and Aricidea cf. catharinae, mostly concentrated in the 5-cm surface layer of fine 
bottoms. This pattern was attributed to the greater retention of Pb, Zn, Cr, n-alkane 
hydrocarbons, HPAs, LABs, PCBs, and fecal sterols arising from urban effluents, 
regular port dredging, and atmospheric contribution. Ferreira (2008) indicated that 
these species could be used as indicators of high contamination levels in the region.

Macrobenthic communities with high abundances of polychaetes (e.g., Edwardsia 
fusca, Magelona papillicornis, Aricidea taylori, Laeonereis culveri, and Owenia 
sp.) (Rocha 2006; Hadlich 2010; Soares-Gomes et  al. 2012; Souza et  al. 2013), 
ophiuroids (Barboza 2010), and mollusks (the bivalve Ervilia concentrica and the 
gastropod Heleobia australis) (Neves et  al. 2011) are good indicators of sewage 
pollution in different estuaries of the SBME. Considering the polychaete communi-
ties, Soares-Gomes et al. (2012) showed that an analysis carried out solely at the 
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family level is perfectly adequate to describe the pollution gradient. Therefore, the 
use of polychaetes at the family level may be a useful tool for a rapid environmental 
assessment.

The understanding of how estuarine benthic communities respond to sewage has 
not come to a consensus yet. Some studies have shown that communities under 
disturbances in polluted areas recover faster than those in less polluted areas, prob-
ably due to the existence of more resilient communities in the impacted areas 
(Breves-Ramos et  al. 2005). The intermediate disturbance theory is applied for 
estuarine benthic macrofauna, as species richness is higher in moderately polluted 
areas (Breves-Ramos et al. 2005). However, the spatiotemporal variability needs to 
be integrated in such analyses of the community since experimental outcomes can 
be related to stochastic processes rather than anthropogenic impacts. Souza et al. 
(2016) assessed the effects of sewage on the spatial and temporal variation of ben-
thic macrofauna in Paranaguá Bay. Despite the expected influence of sewage input 
on the macrofaunal structure, the variation in species distribution also reflected sig-
nificant other small-scale temporal changes not directly related to contamination. In 
this study, temporal variability patterns were similar between polluted and unpol-
luted sites and are possibly regulated by simultaneous processes operating under 
different conditions at scales greater than thousands of meters.

Considering the effects of organic enrichment on community recolonization, 
Gern and Lana (2013) showed that the macrofauna was resilient to contamination 
by domestic sewage and rapidly recovered to the background or control conditions 
after the contaminated sediment was transplanted to non-contaminated areas. The 
recolonization process was strongly dependent on the migration of adults present in 
the sediments adjacent to the experimental units. The differences in sediment qual-
ity (organic enrichment gradient) did not determine macrofaunal recolonization, at 
least in the spatial and temporal scales of meters and weeks that were considered. 
The density of the polychaete Capitella sp. was extremely high in the contaminated 
area, as was the density of the gastropod Cylichna sp. in the non-contaminated area. 
A similar result was observed for the effects of an experimental in situ diesel oil 
spill on the benthic community. Egres et al. (2012) found an acute effect immedi-
ately after the impact, but the recovery to the pre-disturbance population levels was 
extremely fast. The increase in the total density of the benthic community after the 
disturbance was caused by increases in the densities of Heleobia australis, oligo-
chaetes, and ostracods in both impacted and control treatments, and these increases 
were a result of background variability and not the presence of the contaminant. The 
experimental spill had little influence on the biological descriptors of the benthic 
community, which were resilient or tolerant to oil disturbance at the temporal 
(147 days) and small spatial (cm2) scales used in the experiment.

Apart from benthic communities, some species have also been used as bioindica-
tors for detecting the impacts in the SBME estuaries. Due to its opportunistic life 
strategy, the gastropod Heleobia australis is a good indicator of anthropogenic 
activities such as dredging and sediment discharge, which increase the environmen-
tal variability and turbidity (Hostin et al. 2007). The polychaete Scolelepis chilensis 
is sensitive to environments with contaminated sediments and low oxygen supplies 
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(Rocha et  al. 2013). Sandrini-Neto et  al. (2016) suggest that the bivalve 
Anomalocardia brasiliana and the polychaete Laeonereis culveri are more suitable 
sentinels due to their greater responses to oil spills and their wider geographical 
distributions. The studies of Teixeira et al. (1984a, b), Carneiro et al. (1987) and 
Teixeira et al. (1987) showed that certain taxa from more polluted areas might pres-
ent changes in population density and body size. For example, the vegetation cover 
by Ulva fasciata was greater in a polluted area than a control area, and Cladophora 
vagabunda dominates certain coasts and prevents the occurrence of other taxa, 
reducing the diversity in impacted areas. On the Island of Boa Viagem, which is 
located in the external sector of Guanabara Bay, the disappearance of 30 taxa over 
an interval of 30 years was verified. Paradoxically, on the Island of Paquetá, which 
is in the internal sector of the bay, the disappearance of seven taxa was verified; 
however, 22 other taxa appeared.

Kolm et al. (1999), in an unpublished technical report, suggested the alternative 
view that Heleobia australis is rather an indicator of areas subjected to high envi-
ronmental variability and maximum turbidity zones than of highly contaminated 
sites. Populations may reach densities of up to 80,000 inds/m2 (unpublished obser-
vations) in areas subjected to rapid and wide variations in salinity and in the input 
of organic particulate at the mouths of rivers and tidal creeks. This hypothesis is 
partially supported by experimental evidence (Echeverría et al. 2010; Neves et al. 
2011). Three distinct dispersal strategies were described for H. australis in lab 
assays): (a) mobility on soft sediments; (b) mobility on hard substrata; and (c) the 
ability to lift from the bottom to the surface, to again sink down. Such abilities may 
facilitate dispersal by surface currents or floating debris. A hypothesis of source–
sink metapopulation dynamics was also tested by Echeverría et  al. (2010), who 
showed that opportunistic life strategies might indeed allow for Heleobia to quickly 
recolonize areas disturbed by natural or anthropic disturbance in various estuarine 
compartments, from mangroves to subtidal bottoms.

Understanding multiple stressors becomes more important in more impacted 
estuaries when the contamination of the estuarine benthic fauna and the possible 
impacts to the ecosystem and human populations are considered. Studies have 
shown that some contaminants present in the estuarine substrate are not bioavailable 
for the benthic fauna (Abreu et al. 2016). On the other hand, several studies have 
shown decreases in the abundance of benthic fauna, species richness or alterations 
in the functions of assemblages (Donnici et al. 2012; Pereira et al. 2014; Barboza 
et al. 2015; Capparelli et al. 2016). Benthic estuarine organisms from different estu-
arine habitats, many of which are of commercial interest such as the mussel Perna 
perna, the swimming crab Callinectes spp., and the oyster Crassostrea, have been 
used as biomarkers and are bioaccumulators (Magalhães et al. 2012; Pinheiro et al. 
2013; Bordon et al. 2012a, b, 2016; Sousa et al. 2014; Lino et al. 2016). In this case, 
contaminants can affect organisms at different levels: from genetic to morphologi-
cal and functional levels and, as a consequence, these impacts can potentially influ-
ence ecosystem functions. Additionally, species of commercial interest to the 
artisanal and industrial fisheries can transfer such contaminants to consumers in the 
trophic chain, impacting other ecosystems and human populations.
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Bioinvasion is an important biological stressor in native benthic estuarine com-
munities. Bumbeer and Rocha (2016) have recently determined the extent to which 
non-indigenous species (NIS) have spread to natural substrates both inside estuarine 
areas and in the adjacent open sea. Harbours, always located within estuaries along 
the SBME, are the main vectors NIS. Several benthic invader species have been 
reported in the SBME estuaries, such as bivalves, barnacles, swimming crabs, 
polychaetes, bryozoans, ascidians, sponges, and hydrozoans (e.g., Tavares and 
Mendonça 1996; Mayer-Pinto and Junqueira 2003; Jara et  al. 2006; Julio 2007; 
Neves et al. 2007).

5.6.4  �Estuaries, Climate Change, and Conservation

In addition to all the previously mentioned stressors (loss of habitat, pollutants, 
contaminants, fisheries, and bioinvasion), it is important to highlight the impacts of 
climate change on the estuaries of the SBME. Climate change at larger temporal 
scales could interact synergistically with other stressors, which are forecasted to 
increase the seasonal stress for the benthic estuarine fauna. As addressed in Sect. 
5.2, it is expected that the SBME will suffer from different intensities and frequen-
cies of extreme events that will bring about greater effects on the estuaries. During 
the summer, intensifications of rainfall and extreme summer storm events are 
expected, which will increase salinity oscillations and sediment disturbances over 
short periods. In this scenario, the benthic fauna is expected to experience more 
stress because of the lower salinities and increased sediment disturbances during the 
summer. On the other hand, an increase in frontal system events during the winter is 
expected. During these events, strong southwestern winds blow, developing insta-
bilities with durations of several days that extend for thousands of kilometers (Harari 
et al. 2008). Such events cause a substantial rise in the sea level (e.g., from −0.4 to 
+0.5 m on 13–14th March, 2006, Harari et al. 2008), with records of approximately 
0.3 m above the annual mean sea level in the SBME (Harari et al. 2008; Mazzuco 
et al. 2015). Therefore, it is expected that there will be increased stress to the estua-
rine benthic fauna related to higher salinities during the winter. Such seasonal pat-
terns might affect the distribution of the benthic macrofauna within the salinity 
gradient, causing an upstream expansion of the intermediate region of disturbance 
during the winter and a downstream expansion during the summer.

When considering the impacts of climate change under the view of multiple 
stressors, the importance of integrative studies rather than laboratory controlled 
single stressor experiments becomes evident. Changes in hydrodynamics and salin-
ity gradients due to an increase in rainfall during the summer or a cold front during 
the winter will alter not only the distribution of benthic macrofauna but also the 
resuspension and transport of sediment. Therefore, pollutants and contaminants 
may be more diluted in estuaries and spread to other coastal areas during the sum-
mer, whereas higher concentrations of these pollutants may remain within the estu-
aries during the winter. The vegetation cover in mangrove and salt marsh habitats 
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might be impacted by such temporal variability. In this case, the boundaries of ben-
thic communities will also be affected. A recent study addressed the possible 
impacts of the loss of vegetated habitat on the microhabitat selection, behavior and 
physiological limitations of fiddler crabs. Shading influenced the spatial distribution 
over time and behavior, with fiddler crabs spending less time outside their burrows 
as the temperature increased (Sanches 2017).

5.7  �Final Considerations

Subtropical estuaries are complex transitional ecosystems under the influence of 
diverse oceano-meteorological, freshwater, terrestrial, and anthropogenic drivers 
that promote high dynamic variability along time and space. Such estuarine com-
plexity provides a wide range of goods and services to human populations, includ-
ing fishery resources and ecosystem processes, such as the transport of organic 
matter, use of habitats, protection of the coastline, and economic resources and 
activities. The SBME presents the most continuous area of the remaining Atlantic 
Rain Forest, which should be supported as a good for humanity. The conservation 
of such natural areas and their biodiversity could also provide other still underex-
plored services, including ecotourism.

Understanding the variability of climate events and their impacts on the benthic 
fauna will be essential to promote better decision-making concerning the manage-
ment and conservation of estuaries along the SBME. The SBME is most relevant for 
coastal land use and tourism in Brazil, and this trend will keep growing over the 
following decades. Besides holding almost half of the Brazilian population in mod-
ern cities and industrial centers, the SBME is still home to a number of traditional 
communities that directly use ecosystem resources for their livelihoods. The area 
also has a major environmental relevance because it is a transitional zone between 
tropical and temperate climates and is the distributional limit for many species, 
many of them endemic. Despite its social and ecological relevance, the whole area 
is under high pressure from natural (e.g., seasonal cycles and changes in habitat 
complexity) and anthropogenic disturbances (e.g., climate change, bioinvasion, and 
habitat loss).

The SBME is the most economically developed and urbanized ecoregion in 
Brazil and display the most impacted estuaries, but it also holds the greatest number 
of protected marine and coastal areas in Brazil. Therefore, the SBME may turn out 
over the next few years as a model region for innovative public policies concerning 
estuarine conservation even under high disturbance levels by human activities. The 
conservation of the SBME estuaries will be essential to maintain the coastal biodi-
versity and ecosystem functions in an area with a variety of human impacts. By 
strengthening the conservation strategies of the estuaries in the SBME, we may 
enhance the sustainable development of the region, in accordance with many, if not 
all, Sustainable Developmental Goals of the United Nations 2030 Agenda. To 
achieve this goal, more effective strategies are needed to promote the engagement 
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of people towards nature conservation and resource sustainability. The society and 
decision-makers need to develop novel approaches to promote the management, 
conservation, and sustainable use of estuaries and thus enhance human well-being 
for posterity.
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Chapter 6
Benthic Estuarine Assemblages 
from the Southern Brazilian Marine 
Ecoregion

Sérgio A. Netto, Paulo R. Pagliosa, André Colling, Alessandra L. Fonseca, 
and Kalina M. Brauko

Abstract  This chapter examines the estuaries within the Southern Brazilian Marine 
Ecoregion (SBE), a coastline of some 850 km in the tropical-temperate transition 
zone of the extreme southern portion of Brazil. A particular attention is given to the 
ecology of benthic communities, considering their structure, functioning, impacts, 
and conservation issues. In a microtidal and wave dominated environment, there are 
tens of small coastal plain estuaries and lagoons along the SBE. Although there is 
much overlapping of characteristics between small estuaries and lagoons, differ-
ences in the freshwater influence, spatial organization, and variability of gradients 
constitute important drivers since they directly affect species composition, abun-
dance, and dominance of ecological guilds. This is particularly true for estuaries 
with intermittently open inlets, which are dominant in SBE.  El Nino Southern 
Oscillation (ENSO) has a strong influence on the regional climate, affecting interan-
nual estuarine hydrodynamics, benthic fauna distribution and recruitment. The envi-
ronmental quality status of 27 SBE estuarine systems according to the AZTI Marine 
Biotic Index (AMBI index) was largely classified as moderately disturbed (80%), 
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whereas 20% of the sites were of slightly or undisturbed classifications. Different 
categories of marine protected areas (MPAs) are implemented in the estuaries in the 
SBE.  Although MPAs, the Brazilian Coastal Management Plan as well as other 
policies could foster the sustainable use of coastal resources and ecosystem ser-
vices, difficulties in coastal planning and in policy implementation still allow unsus-
tainable practices, impacts, and habitat loss over all SBE estuaries.

Keywords  Coastal lagoons · Small coastal plain estuaries · Benthic fauna · Santa 
Catarina · Rio Grande do Sul

6.1  �Introduction

The Southern Brazilian Marine Ecoregion (SBE) or Rio Grande Ecoregion (Spalding 
et  al. 2007) encompasses about 850  km from the North of the Island of Santa 
Catarina (26°50′S), State of Santa Catarina, to the Chuí (33°44′S), on the extreme 
southern portion of Brazil, at the State of Rio Grande do Sul. The SBE has a typical 
microtidal environment along a highly embayed coast with predominance of rocky 
headlands in the north and extensive sand barriers in the south.

Estuaries of SBE typically have small catchments (except Patos Lagoon on the 
southern region) and are particularly well-endowed with small coastal plain estuar-
ies and coastal lagoons. The small coastal plain estuaries typically have a funnel-
shaped morphology and arise from marine flooding of the lower course of a myriad 
of small catchment rivers. Different from the sizeable estuaries of the East-Southeast 
Sector of Brazilian Coast, the small coastal plain estuaries have no granitic rocks at 
the entrance, but are fluvial valleys usually flourished by mangrove forests north-
ward, and by saltmarshes southward of the SBE.

On the other hand, the southern Brazilian coastal lagoons are an evolving coastal 
landform that may go through a cycle from an open embayment to a partially back-
barrier lagoon with progressive infilling, to a segmentation into small lagoons with 
unstable inlets, and then coastal lakes (Cooper 1994). Natural and gradual shifts 
from lagoons to temporarily open/closed lagoons and lakes (and vice versa) are 
long-term processes that result from large-scale (e.g., sea-level and climate changes) 
and local processes (e.g., sediment supply, alongshore drift, and coastal morphol-
ogy). However, the environmental shift may also be hastened by anthropogenic 
activities at the ecological scale, such as hydrological management (Schock et al. 
2014), artificially opening of lagoons (Netto et al. 2012), or modifications as a result 
of climate change (Chapman 2012). The combination of sediment accretion rates 
and sea level rise will determine the temporal volumetric capacity of the lagoon, its 
import/export status, and the resultant evolution. The relative importance of a par-
ticular process in a lagoon depends upon the local environmental setting in which 
the lagoon is located, and the evolutionary path followed by a lagoon depends upon 
the magnitude and relative importance of each of the operative processes. The 

S. A. Netto et al.



179

dynamism of these forces promotes both long-term and short-term changes. In the 
long-term (seasons and years), it influences the connectivity with the sea, while in 
the short-term (tidal cycles), it affects the amount of seawater inflow.

Along the SBE there are 32 small coastal plain estuaries, 16 with mangrove for-
ests occupying the quaternary fluvial facies, and 16 with no transitional land-sea 
vegetation or just sparse mangrove trees and patches of small beds of Spartina alter-
niflora saltmarsh limited to the mouth of the system (Fig. 6.1, Table 6.1). According 
to the present connectivity with the sea, the local coastal lagoons water bodies can 
roughly be divided into three major types: open (permanently connected to the sea), 
the intermittently open/closed (which includes seasonally or non-seasonally closed 
or those normally closed), and the closed (presently without connection with the 
sea, i.e., the coastal lakes). Today, along the SBE there are six lagoons permanently 
open to the sea (Barra Velha, Conceição, Laguna, Camacho, Tramandai-Armazém, 
and Patos), and seven with temporarily open/closed bars (Acaraí, Lagoinha do 
Leste, Ibiraquera, Urussanga-Velha, Garopaba, Sombrio, Peixe) (Fig. 6.1, Table 6.2), 
and tens of closed lagoons.

Lagoons and small coastal plain estuaries share many common features includ-
ing vegetation and fauna. However, differences in the freshwater influence and spa-
tial organization of estuarine gradients may introduce major local variability and 
directly affect species composition, abundance, and dominance of ecological guilds 
(Pérez-Ruzafa et al. 2011). While coastal plain estuaries are drowned river valleys 
with hydrodynamics mainly conducted by river flux, with low residence time and 
clear gradients from freshwater to marine conditions, coastal lagoons are inland 
shallow and shore-parallel water bodies relatively more isolated from the open sea 
by low-lying sand barriers. This is particularly true for temporarily open/closed 
lagoons. Coastal lagoons present more mixed waters and their hydrodynamics is 
mainly controlled by the wind, higher residence time, and intra-lagoon gradients 
hidden by complex patterns in substrate properties and freshwater/marine inputs.

Contrary to the small coastal plain estuaries, the southern Brazilian coastal 
lagoons vary widely in their shape, size, ecological processes, and in the quantity 
and detail of research as well. In common they share social values and problems. 
Research on SBE lagoons largely focused at permanently open lagoons (e.g., Sierra 
de Ledo and Soriano-Sierra 1999; Seeliger et al. 1997; Odebrecht et al. 2017) as 
they are under more pressure due to larger urban developments. However, more than 
a half of the existing lagoons along southern Brazil are temporary open/closed estu-
aries which recently come under growing pressures, particularly artificial inlet man-
aging (e.g., Netto et al. 2012; Crippa et al. 2013; Netto and Fonseca 2017). The 
value of the natural goods and services provided by coastal lagoons are among the 
highest of natural ecosystems, and can be categorized as suggested by Anthony 
et  al. (2009) as pragmatic, scholarly, inspirational, and tacit. These provisions 
include: (a) ecosystem services that indirectly support human uses, such as nursery 
grounds for species that support commercial fisheries and protection from storms; 
(b) scientific inquiry and historical study seeking to extend knowledge, as to improve 
management, sustainable use, and tourism revenues; (c) inspiration to different sorts 
of artistic expressions; (d) recreation, visual and sonorous enjoyment of scenery, 
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and sense of place. Despite their ecological and social relevance, SBE coastal 
lagoons are seriously threatened by pollution, eutrophication, inlet hydrological 
modifications, urbanization, aquaculture, and a variety of modification in their mar-
gins and watersheds, caused by fast and unplanned occupation practices within the 
lagoons’ floodplains.

Fig. 6.1  Estuaries of the Southern Brazilian Ecoregion (SBE). Capital letters are coastal lagoons 
and numbers are coastal plain estuaries. Coastal lagoons = A Acaraí, B Barra Velha, C Conceição, 
D Lagoinha do Leste, E Garopaba, F Ibiraquera, G Laguna, H Camacho, I Urussanga-Velha, J 
Sombrio, K Tramandaí-Armazém, L Peixe, M Patos. Coastal plain estuaries = 1 Itajubá, 2 Piçarras, 
3 Gravatá, 4 Itajaí, 5 Camboriú, 6 Perequê, 7 Tijucas, 8 Inferninho, 9 Cachoeira-Camarão, 10 
Biguaçu, 11 Serraria, 12 Três Henriques, 13 Büchele, 14 Maruím, 15 Curtume, 16 Aririu, 17 
Cubatão Sul, 18 Praia do Pontal, 19 Praia de Fora, 20 Massiambu, 21 Ratones-Papaquara, 22 
Veríssimo, 23 Saco Grande, 24 Itacorubi, 25 Tavares, 26 Tapera, 27 Ribeirão, 28 Tapera da 
Caicanga-Açu, 29 Madre-Paulo Lopes, 30 Araranguá, 31 Mampituba, 32 Barra do Chuí. See 
Tables 6.1 and 6.2 for details
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6.2  �Environmental Settings

The SBE is a transitional climatic zone between the South subtropical to humid 
temperate, or according to updated Brazilian climate map of Kӧppen (Alvares et al. 
2014), it has Cfa type climate (temperate, without dry season, with hot summer). 
During the spring and summer months, the South Atlantic Tropical Anticyclone, a 

Table 6.1  Coastal plain estuaries of the Brazilian Southern Ecoregion (SBE) and marginal 
vegetation cover

Id. Coastal plain estuary Brazilian state Vegetation cover

1 Itajubá SC Sparse mangrove trees and saltmarshes
2 Piçarras SC Sparse mangrove trees and saltmarshes
3 Gravatá SC Sparse mangrove trees and saltmarshes
4 Itajaí SC Sparse mangrove trees and saltmarshes
5 Camboriú SC Mangrove forest and saltmarshes
6 Perequê SC Mangrove forest and saltmarshes
7 Tijucas SC Currently with no vegetation
8 Inferninho SC Currently with no vegetation
9 Cachoeira-Camarão SC Sparse mangrove trees and saltmarshes
10 Biguaçu SC Sparse mangrove trees and saltmarshes
11 Serraria SC Currently with no vegetation
12 Três Henriques SC Currently with no vegetation
13 Büchele SC Currently with no vegetation
14 Maruím SC Currently with no vegetation
15 Curtume SC Mangrove forest and saltmarshes
16 Aririu SC Mangrove forest and saltmarshes
17 Cubatão Sul SC Mangrove forest and saltmarshes
18 Praia do Pontal SC Mangrove forest and saltmarshes
19 Praia de Fora SC Mangrove forest and saltmarshes
20 Massiambu SC Mangrove forest and saltmarshes
21 Ratones-Papaquara SC Mangrove forest and saltmarshes
22 Veríssimo SC Mangrove forest and saltmarshes
23 Saco Grande SC Mangrove forest and saltmarshes
24 Itacorubi SC Mangrove forest and saltmarshes
25 Tavares SC Mangrove forest and saltmarshes
26 Tapera SC Mangrove forest and saltmarshes
27 Ribeirão SC Mangrove forest and saltmarshes
28 Tapera da Caicanga-Açu SC Mangrove forest and saltmarshes
29 Madre-Paulo Lopes SC Sparse mangrove trees and saltmarshes
30 Araranguá SC Sand bar with no vegetation
31 Mampituba SC-RS Sparse saltmarshes
32 Barra do Chuí RS Sparse saltmarshes

Refer to Fig. 6.1 for location of the lagoons along SBE
SC Santa Catarina, RS Rio Grande do Sul

6  Benthic Estuarine Assemblages from the Southern Brazilian Marine Ecoregion



182

high-pressure center that produces a wet and warm air mass, predominates at the 
region, generating NE winds. During autumn and winter, the passage of cold fronts 
associated with the displacement of the Polar Migratory Anticyclone generates S/
SE winds. The total annual precipitation in the ecoregion ranges from 1000 to 
1500 mm and it is, in general, evenly distributed throughout the year. The mean air 
temperatures are lower than 18 °C in the winter, and in the summer lower than 27 °C 
(Bernardino et al. 2015). El Nino Southern Oscillation (ENSO) has a strong influ-
ence on the regional climate, with significant differences in precipitation rates, and 
on the intensity and direction of prevailing winds between years with positive and 
negative southern oscillation indices (Grimm et al. 2003). During El Nino events 
(positive ENSO phase), rainfall is often above normal and the water flow from the 
estuary towards the coast increases. On contrary, during La Nina (negative ENSO 
phase) rainfall is often below normal, favoring the input of salt water into the 
lagoons (Odebrecht et al. 2010). Thus, ENSO strongly affects interannual estuarine 
hydrodynamics (Fernandes et al. 2002), variability of planktonic and benthic pri-
mary producers (Odebrecht et al. 2010), benthic fauna distribution and recruitment 
(Colling et al. 2007), and many ecologically and commercially important estuarine 
species (Seeliger 2001; Garcia et al. 2003; Vieira et al. 2008).

Diverse barrier types and associated surficial landforms occur along the SBE 
(Hesp et al. 2009; Dillenburg et al. 2009). At the northern portion, from north of the 
Island of Santa Catarina to Santa Marta Cape, the coastline is characterized by a 

Table 6.2  Coastal lagoons of the Brazilian Southern Ecoregion (SBE), indicating the type (open 
or intermittent), vegetation cover, and area (km2)

Id. Lagoon
Brazilian 
state Type Vegetation cover

Area 
(km2)

A Acaraí SC Intermittent Mangrove forest and 
saltmarshes

4.3

B Barra Velha SC Open Mangrove forest and 
saltmarshes

2.15

C Conceição SC Open Sparse mangrove trees and 
saltmarshes

20.6

D Lagoinha do Leste SC Intermittent Sparse saltmarshes 0.1
E Garopaba SC Intermittent Sparse saltmarshes 4.36
F Ibiraquera SC Intermittent Sparse saltmarshes 7.92
G Laguna SC Open Sparse mangrove trees and 

saltmarshes
182

H Camacho SC Open Saltmarshes 25.4
I Urussanga-Velha SC Intermittent Saltmarshes 1.84
J Sombrio SC Intermittent Saltmarshes 44
K Tramandaí-

Armazém
RS Open Sparse saltmarshes 12.8

L Peixe RS Intermittent Sparse saltmarshes 50
M Patos RS Open Saltmarshes 10,144

Refer to Fig. 6.1 for location of the lagoons along SBE
SC Santa Catarina, RS Rio Grande do Sul
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diversity of formations, such as small coastal bays and coves, lagoon inlets, large 
promontories, long and arched beaches, rocky shores and barriers dominated by 
transgressive dune fields. Southwards, the coastline changes direction and it is 
mostly a straight-line SW-NE orientated, characterized by long sand beaches and 
barriers dominated, in large scale, by active transgressive dune fields (see Hesp 
et al. 2009 and Short and Klein 2016 for details).

Shallowness and microtidal regime determine that the wind and precipitation 
exert key roles in the circulation and sediment movement of coastal plain estuaries 
and coastal lagoons. Sediment infill of some elongated and shore-parallel lagoons, 
such as Conceição, Laguna, and Patos, involves the development of a series of cus-
pate divisions (septation) due to wind waves that build spits isolating the lagoon into 
separate basin (Woodroffe 2002). At Patos lagoon, in the southern part of SBE, large 
catchments and seasonal precipitation regulate variations of freshwater discharge, 
with higher values during the austral winter/spring (July to October) and lower dur-
ing the summer/autumn (November to June) (Garcia 1997). Wind effects on circula-
tion is particularly important for the small and medium sized lagoons located at the 
north of the SBE, characterized by small catchments, and where there is a lack in 
rainfall differences over the year. Predominant NE winds during summer and spring 
force lagoon water masses towards the southern margins (seaward), resulting in a 
decreased salinity and increase of suspended materials from continental origin. In 
contrast, during winter and autumn, periods of strong S-SE winds favor marine 
water intrusion into the lagoons resulting in lower turbidity and higher salinity val-
ues (Fig. 6.2; Eichler et al. 2006; Meurer and Netto 2007).

Fig. 6.2  Schematic representation of wind influence on lagoon circulation, and influence on tem-
perature and salinity values (modified from Castelão and Moller 2003)
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The connectivity dynamics between the lagoons and the sea play a key role in 
their overall functioning, as intermittent closing (Fig.  6.3). The openness of the 
lagoon mouth is determined by the balance between scouring forces (primarily 
catchment runoff and tidal prism) and blocking forces (primarily onshore and long-
shore deposition of sediments; Whitfield and Bate 2007; McSweeney et al. 2017). 

Fig. 6.3  Ibiraquera lagoon, a typical temporarily open/closed coastal lagoon of Brazilian Southern 
Ecoregion (SBE): (a) during isolation from the sea, lagoon water level increases and disturbance 
from wind and water generated turbulence are minimal, offering a fairly homogeneous and stable 
environment; (b) connectivity during open phase permits the exchange of matter and energy 
between the lagoons and the sea, exposes sand banks and generates strong physical-chemical gra-
dients that directly affect the biota

S. A. Netto et al.
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Permanently open lagoons, such as Patos, Laguna, and Conceição, are primarily 
characterized by a wide spatiotemporal range in environmental conditions (e.g., 
salinity, temperature, oxygen), biological productivity, and movement of resources 
and consumers with other adjacent marine areas (Pérez-Ruzafa et al. 2011; Abreu 
et al. 2017). Temporarily closed lagoons (Fig. 6.3) are intermittently isolated from 
the sea by the formation of a sand berm across the estuary mouth, and typically 
present a small river catchment and high rates of longshore and onshore sediment 
transport (Cooper et al. 1999; Schallenberg et al. 2010). Once closed, depending on 
the freshwater inputs and the time of closure, the system may become gradually 
fresher or even more saline due to evaporation rates. An intermittent open lagoon 
may lead to remarkable changes in its physical-chemical environment over short 
time periods, which in turn triggers major biological responses in both pelagic and 
benthic compartments (Niekerk et al. 2005; Netto et al. 2012).

The mineralization of organic matter usually is higher in the inner sector (oligo-
haline) of the estuaries, where most of the materials are retained. In permanently 
stratified coastal lagoons, as the Conceição lagoon, or stratified systems, as the 
Madre-Paulo Lopes estuary, haloclines coincide with oxyclines due to the elevated 
rates of allochthonous and autochthonous organic matter mineralization in bottom 
waters (Fonseca and Braga 2006; Fontes and Abreu 2009). Heterotrophic condi-
tions (e.g., hypoxic and anoxic waters) associated to high macrophyte biomass and 
high turbidity have been described to coastal plain with stratified (Madre-Paulo 
Lopes) and homogeneous (Ratones-Papaquara) water column. Anoxic and hypoxic 
events were observed in low hydrodynamics and deep regions due to the geomor-
phology isolation. Those events were enhanced during periods of low rainfall and 
high water residence time. High precipitation events boosted the exportation of 
eutrophic estuarine waters to the ocean, which improves the water quality of the 
SBE systems. The estuaries became dominated by continental freshwaters and it is 
expected an increase of nutrients in shallow continental shelf, that might relate with 
toxic algal blooms (e.g., red tide) (Fernandes and Brandini 2010; Proença 2004; 
Omachi et al. 2007). On the other hand, meteorological tides caused by the south-
erly winds can increase water residence time of coastal systems, enhancing physical 
and chemical stratification of the water column and the eutrophication process 
(Abreu et al. 2010).

The changes in nutrient concentrations are related to the uptake by primary pro-
ducers, retention in sediment, recycling times and sources (river discharge, domes-
tic and industrial effluents), as observed in Patos and Conceição lagoons (Fonseca 
2004; Haraguchi et  al. 2015; Silva et  al. 2017). Denitrification and phosphorus 
adsorption by the benthic compartment are important biogeochemical processes, 
both removing dissolved nutrients from water column and regulating eutrophication 
in these coastal lagoons (Fonseca 2004). In a temporal perspective, some lagoons, 
such as Patos and Conceição, show an increase in the concentrations of nitrogen and 
phosphorous (Niencheski et al. 2006; Haraguchi et al. 2015; Lanari and Copertino 
2017), which suggests an eutrophication trend. A significant N:P ratio increase was 
also shown, suggesting that changes in land use and increased urbanization in the 
watershed are altering the nutrient delivery, which may impact phytoplankton com-
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position (Haraguchi et al. 2015; Silva et al. 2017). Although the phytoplankton bio-
mass (chlorophyll a) do not present clear temporal changes (Abreu et al. 2010; Silva 
et al. 2017), significant trends of increasing biomass of cyanobacteria and dinofla-
gellates are observed at interannual scale (Haraguchi et al. 2015; Fontes et al. 2011; 
Fonseca and Braga 2006). At Patos lagoon, diatoms are the main phytoplankton 
group and in the seasonal scale, the chlorophyll a variation is closely related to these 
microalgae, influenced by the short water retention time and low light availability 
during winter (Haraguchi et al. 2015). The combined effects of climate (ENSO and 
rainfall) and hydrology (freshwater discharge and water physical-chemical param-
eters) drive the onset and magnitude of drift macroalgal blooms in the Patos Lagoon 
estuary, where the wind action further controls the persistence and possible occur-
rence of large green tides (Lanari and Copertino 2017).

Shoreline vegetation is dominated by plants of the genera Spartina, Scirpus, and 
Juncus in all SBE lagoons (Soriano-Sierra 1999; Costa and Davy 1992, Valgas 
2009). Well-structured mangrove forests are found only in the coastal plain estuar-
ies. The typical species from mangroves are Avicennia schaueriana, Laguncularia 
racemosa, and Rhizophora mangle. Isolated species typical from mangroves (A. 
schaueriana and L. racemosa) can be found at the inlet of Conceição Lagoon 
(Soriano-Sierra 1999) and at Laguna, the southernmost distribution of mangroves 
vegetation in America. A. schaueriana is the dominant mangrove species in SBE, 
with up to 4333 stems/ha, basal area ranging from 3.8 to 6.3 m2/ha, and height from 
6 to 9 m in old-growth stands (Rovai et al. 2012). In the Itacorubi coastal plain estu-
ary, the mangrove forests and saltmarsh productivity are 415 gC/m2/year and 711 
gC/m2/year, respectively (Panitz 1986). In the southernmost lagoon, the mean net 
above- and belowground productivity of Spartina alterniflora ranges from 669 to 
1928 gC/m2/year, respectively, while the aboveground Spartina densiflora values 
reach about 2260 gC/m2/year (Peixoto and Costa 2004; Cunha et al. 2005).

The euphotic zone of most SBE coastal lagoons reach the sediment as they are 
usually shallow (<2 m) with low particulate suspended material in water column, 
favoring the primary and secondary benthic production. Blooms of macroalgae 
Ulva sp. and Enteromorpha sp. are common along SBE lagoons. In Conceição 
lagoon, the productivity of those species may reach values up to 7000 gC/m2/year, 
followed by the macrophyte Ruppia sp. (3042 gC/m2/year) and the microphytoben-
thos (50 gC/m2/year) (dos Santos et al. 2017; Fonseca 2004). In the central region 
of Conceição lagoon, where the halocline is permanent, it was described high rates 
of phytoplankton production (1080 gC/m2/year) in deeper water. In this system, 
significative primary productions were measured under low solar radiance (438 gC/
m2/year) and oxygen concentrations (360 gC/m2/year) which demonstrates the 
importance of carbon fixation by Cyanophyceae and anaerobic anoxygenic bacteria, 
respectively (Fontes et al. 2011; 2015). The phytoplankton production in the Patos 
Lagoon varies from 0.004 and 0.320 gC/m2/h (or 18 gC/m2/year and 1401 gC/m2/
year; Abreu et al. 1994) and are largely determined by seasonality and the contribu-
tion of flagellates (Seeliger et al. 1997). In this lagoon, estimates on Ruppia maritima 
productivity indicate net annual values ranging from 39.6 to 43.2 gC/m2/year, and 
its variability is determined by species-specific seasonal growth cycles.
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6.3  �Benthic Fauna

Protected from the physical harshness of the open ocean, within calm, diverse, and 
plenty of food habitats, the benthic fauna thrives in estuaries. Large and productive 
populations of producers and primary consumers, maintained by the ability of estu-
aries to trap nutrients and food particles, support high biomass of benthic inverte-
brates. In contrast, changes in chemical conditions caused by local, marine, and 
riverine inputs have a relevant role in the structure of the estuarine benthic fauna. As 
natural stress levels increase with confinement, but also with the frequent oscillation 
between closeness and openness, estuarine benthic invertebrates are typically spe-
cies poor when compared to adjacent seas.

Benthic invertebrates are an important component of any aquatic ecosystem, but 
shallowness amplifies their pivotal role in estuaries. They significantly contribute to 
energy flow and as diet of many other estuarine animals. The activity of some ben-
thic organisms also increases the removal of fixed nitrogen from aquatic ecosystems 
by fostering nitrification and denitrification in the oxic–anoxic transition zone of the 
marine sediment (Bonaglia et al. 2014). Benthic organisms are largely used as bio-
logical indicators because they can provide information on environmental condi-
tions either due to the sensitivity of assemblages or single species, or because of 
some general feature that makes them integrate environmental signals over a long 
period of time (Teixeira et al. 2010; Schratzberger and Ingels 2017).

6.3.1  �Meiofauna

The meiobenthos or meiofauna comprises a particular group of microscopic inver-
tebrates ranging from 0.03 mm to 0.5 mm in size. They represent the most abundant 
group of benthic metazoans. Along SBE estuaries, on average, their abundance 
ranges from 105 to 106 individuals per square meter, corresponding to a biomass of 
1 to 2 g dry weight per square meter. The meiofauna is also more diverse than any 
other component of the marine biota with 24 phyla (out of a total of 35 known inver-
tebrate phyla) with meiobenthic representatives. Despite of its importance, the cur-
rent knowledge of the estuarine meiofauna along SBE is, so far, scarce and 
heterogeneous. Data on meiofauna with taxonomic resolution higher than phylum 
or class are only available for Santa Catarina state, northern portion of SBE.

Netto and Fonseca (2017) made the only attempt to comparatively examine the 
meiofauna of several coastal lagoons along the Brazilian coast. A large-scale sam-
pling program was carried out from Florianopolis (Santa Catarina State) to Torres 
(Rio Grande do Sul State). The study investigated to what extent the differences in 
openness of coastal lagoons structure meiofauna communities. Using particular 
lagoon status (open or closed) as replicates of their evolution over time, they showed, 
using free-living nematodes as surrogate, that open and closed lagoons are mutually 
exclusive alternative states of equilibrium, and that temporarily open/closed lagoons 
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are an intermediate or transition phase between them. The gradient in the structural 
connectivity between lagoons and the sea, due to their regime shifts, changes the 
movement of resources and consumers, and the internal physical-chemical gradi-
ents that directly affect the meiofaunal species diversity, abundance, and trophic 
status.

The number of nematode genera and taxa diversity are generally higher in the 
open lagoons and coastal plain estuaries, intermediate in temporarily closed lagoons, 
and lower at permanently closed ones (Table 6.3 and Fig. 6.4). Density is normally 
higher in lagoons (open or temporally closed), decreasing in coastal plain estuaries 
and lower in closed lagoons. Differences within each estuarine typology increase 
with openness. These patterns are a result of combined effects of the input of marine 
species, the presence of environmental gradients, and higher environmental hetero-
geneity (Netto and Fonseca 2017). Overall, freshwater nematode assemblages are 
impoverished when compared to marine and brackish systems. In turn, the transi-
tional structure of the nematode assemblages of temporarily open/closed lagoons 
reflects the intermediate pattern of isolation compared to lagoons and coastal lakes.

Most of the nematode genera recorded in open lagoons are those typically found 
in coastal plain estuaries. The meiofauna of and the small coastal plain river estuar-
ies (e.g., Ratones estuary; Netto and Gallucci 2003) shows relative similarity with 
SBE open lagoons, though the percentage of marine species is higher (Table 6.3). 
The proportion of brackish or marine species is reduced in open/closed lagoons 
with an increasing number of brackish/freshwater or freshwater genera. In closed 
lagoons, freshwater or brackish/freshwater genera largely dominate. Along the 
coastal lagoons of Santa Catarina, only five genera occurred in all the three types of 
lagoons, namely Anonchus (Aphanolaimidae), Anoplostoma (Anoplostomatidae), 
Desmodora (Desmodoridae), Dichromadora, and Hypodontolaimus 
(Chromadoridae) (Netto and Fonseca 2017). Besides, the percentage of exclusive 
genera (those found exclusively in only one type of lagoon) decreased with increas-
ing connectivity (Table 6.3).

Changes in the structural connectivity between coastal lagoons and the sea affect 
their trophic status (Fig. 6.5). The impoverishment of the nematode assemblages 
and the substitution of brackish water species by freshwater species due to the 
decrease in the connectivity promotes a decrease of trophic diversity (an index 
based on the proportion of each feeding type; Heip et  al. 1985). While closed 
lagoons were largely dominated by predator/omnivores, more opened lagoons were 
numerically dominated by nonselective deposit-feeders and epigrowth feeders 
(Fonseca and Netto 2006).

Similarities of the nematode assemblages within and between lagoons of SBE 
also change according to the stable state (Netto and Fonseca 2017). While habitat 
connection and faunal exchange by open inlets increased similarity between more 
connected lagoons, with variations in the composition controlled by gradients, iso-
lation increased variability of nematode assemblages among lagoons (β-diversity) 
with an increasing dominance of species replacement over richness (Fig. 6.5). At 
the same time, internal faunal variability (e.g., differences between outer and inner 
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portions of lagoons) is higher within open lagoons than in closed lagoons, with 
temporarily open/closed lagoons assuming an intermediate position. This pattern 
may emerge because of the connectivity that modulates the degree to which the inlet 
state facilitates or impedes the exchange of matter, energy, and specimens among 
landscape elements. Besides, differences in structural connectivity can lead to inter-
nal homogeneity or strong physical-chemical gradients that directly affect species 

Table 6.3  Summary characteristics of nematode assemblages in closed lagoons, intermittently 
open/closed lagoons, open lagoons, and coastal plain estuaries along the Brazilian Southern 
Ecoregion (SBE)

Closed lagoon
Temporarily open/
closed lagoon Open lagoon

Coastal plain 
estuary

Number of genera 20 73 69 86
Freshwater genera 
(%)

65 22 1 1

Freshwater/brackish 
genera (%)

30 30 28 12

Brackish/marine 
genera (%)

5 48 71 87

Exclusive genera 
(%)

65 35 30 30

Most frequent 
genera (%)

Semitobrilus (60)
Trischistoma (48)

Desmodora (81)
Theristus (80)

Desmodora (78)
Theristus (77)

Haiplectus (95)
Anoplostoma 
(95)

Total density 
(inds.10/cm2)

3–407 (57) 9–5474 (678) 6–5283 (674) 2–2563 (115)

Trischistoma 
(inds.10/cm2)

29 - - -

Semitobrilus 
(inds.10/cm2)

21 - - -

Ironus (inds.10/
cm2)

5.2 0.07 - -

Microlaimus 
(inds.10/cm2)

- 143 80 2

Spirinia (inds.10/
cm2)

- 108 185 2

Desmodora 
(inds.10/cm2)

0.04 73 37 12

Terchellingia 
(inds.10/cm2)

- 8 8 61

Haliplectus 
(inds.10/cm2)

- - 1 149

Anoplostoma 
(inds.10/cm2)

0.07 51 44 124

Exclusive genera percentages genera found exclusively in lagoon types or estuary; frequent genera 
minimum–maximum densities of nematodes (and average inds.10/cm2); the most abundant genera 
(mean inds.10/cm2); “-” no occurrence. Data from Netto and Fonseca (2017) and Netto and 
Gallucci (2003)
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Fig. 6.4  Mean (±SE) of nematode number of genera, diversity (H′), and density (inds.10/cm2) in 
inner and outer portions (columns) within closed lagoons, intermittently open/closed lagoons 
(ICOLL), open lagoons, and coastal plain estuary (CPE) in the Brazilian Southern Ecoregion 
(SBE). Black dots represent the total mean value (±SE) of the community descriptors in each type 
of estuary

Fig. 6.5  Mean value (±SE) of the index of trophic diversity and nematode variation in genera 
composition (total mean β-diversity, contribution of replacement and richness differences) in 
closed lagoons, intermittently open/closed lagoons, open lagoons, and coastal plain estuaries in the 
Brazilian Southern Ecoregion (SBE) (reproduced from Netto and Fonseca 2017)
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composition. While the low variability of nematode assemblages among lagoons is 
likely to be a result of faunal transport due to their physical link, the high dissimi-
larities of the assemblages between coastal lakes might be consequence of their 
spatially disconnection and exposure to discrete and variable surroundings. Thus, as 
the lagoons loose connectivity, gradually shifting the state, local processes become 
increasingly more important in structuring these communities than large-scale 
drivers.

Punctual studies focused on spatial variability of meiofaunal assemblages 
showed that the most important structuring variables on an individual lagoon scale 
are salinity and sediment characteristics, which are in turn largely modulated by the 
hydrodynamic conditions (Kapusta et  al. 2002, 2004, 2005; Fonseca and Netto 
2006). Besides, the amount of mangrove-derived detritus positively affects the 
diversity and density of the meiofauna in small coastal plain estuaries bordered by 
mangroves, indicating that nematodes may show a high degree of specificity in the 
microhabitat choice and high efficiency in exploiting these microhabitats originated 
by mangrove litter decomposition (Netto and Gallucci 2003).

6.3.2  �Macrofauna

Connectivity of benthic macrofaunal communities (invertebrates retained by 
≥0.5 mm mesh size) within and between lagoons and small coastal plain estuaries 
in SBE suggests that these organisms are exposed to similar structuring drivers. The 
dispersion and colonization of the macrofauna occurs primarily on the water col-
umn with a major passive component throughout large distances. The connections 
among the many small systems via adjacent ocean facilitate the exchange of indi-
viduals among them. As a result, benthic macrofaunal communities of local estua-
rine systems show similar species composition and richness, differing somewhat in 
both the spatiotemporal distribution of abundances and from the present closed 
lagoons.

The macrobenthic community at the inner portion of coastal plain estuaries is 
generally more abundant than at outer portions of estuaries (Rosa Filho and 
Bemvenuti 1998; Netto and Gallucci 2003; Pagliosa and Barbosa 2006). Species 
composition is therefore typically transitional, meaning that these regions have a 
key role in exchanges between the watershed and the marine system. In fact, the 
muddy sediments at inner estuarine portions represent a shifting gradient from the 
gross particles in freshwater habitats to finer sandy sediments in outward estuaries. 
Notwithstanding, the outer estuaries present the higher species richness, a pattern 
more related with the greater water renovation at the entrance of the system. 
Contrary to coastal plain estuaries, differences in species numbers and abundances 
along the main axis of coastal lagoons may present a more complex pattern, with 
intra-lagoon gradients (Bemvenuti and Netto 1998; Bemvenuti and Rosa Filho 
2000; Fonseca and Netto 2006; Netto et  al. 2012). Still, although such general 
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patterns are variable among lagoons, many open and intermittently open/closed 
lagoons show higher species richness and/or densities at the outermost portions 
(i.e., Patos, Ibiraquera, Conceição, Laguna, and Lagoinha do Leste). Those spatial 
patterns are probably related to the site-specific inputs of salt water, presence of 
aquatic vegetation, and the heterogeneity of sedimentary habitats found within 
lagoons.

Polychaete annelids and oligochaetes are the richest taxonomical groups in SBE 
estuarine systems, followed by bivalves, gastropods, crustaceans, and insects. 
Altogether, 52 species of polychaetes, 19 of crustaceans, 14 of bivalves, 11 of oli-
gochaetes, and 7 of gastropods, as well as 50 species of insects, have been reported 
for local lagoons and coastal plain estuaries. These numbers should yet be seen with 
caution because they represent a consensus among local experts in which just some 
of the previous taxa were well studied in terms of taxonomy, biology, and ecology. 
Species richness ranged from 41 to 74, but the mean richness by sample is very 
similar. The highest densities occur in the open lagoons while the lowest in the 
coastal plain estuaries, where the species diversity is high (Table 6.4, Fig. 6.6). The 
numerically dominant and most frequent macrofaunal species show similar patterns 
among open/closed lagoons, open lagoons, and coastal plain estuaries.

Table 6.4  Summary characteristics of macrobenthic communities in closed lagoons, intermittently 
open/closed lagoons, open lagoons, and coastal plain estuaries along the Brazilian Southern 
Ecoregion (SBE)

Closed 
lagoon

Temporarily 
open/closed 
lagoon Open lagoon

Coastal plain 
estuary

Number of species 67 41 74 53
Exclusive species 
(%)

51 02 34 14

Most frequent 
species

Caladomya 
ortoni
Fissimentum 
sp.
Polypedilum 
sp.

Heteromastus 
similis
Laeonereis 
acuta
Nephtys 
fluviatilis

Heleobia 
australis
Heteromastus 
similis
Monocorophium 
acherusicum

Heteromastus 
similis
Monokalliapseudes 
schubarti
Tubificidae

Mean total density 
(ind/m2)

5813 8326 20,770 1960

Annelida
 �   Oligochaeta
Bothrioneurum sp. 
(ind/m2)

522 - - -

 �   Polychaeta
Nephtys fluviatilis 
(ind/m2)

- 730 998 178

Laeonereis acuta 
(ind/m2)

- 599 865 25

(continued)
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The gastropod Heleobia australis, a small opportunistic species (around 5 mm), 
occurs in all estuaries of SBE, including the freshwater closed lagoons. H. australis 
may be particularly abundant in vegetated sites, including drifting algae. This spe-
cies displays efficient morphophysiological strategies of dispersion and occupation 
of non-colonized areas (i.e., fluctuation by retaining air inside their light shells) that 
allow them to numerically dominate most of the SBE lagoons. This species can be 
considered tolerant to pollution, reaching up to 300,000 ind/m2 near urban centers 
(Danulat et al. 2002).

In the three typical estuarine systems of SBE (coastal plain estuaries, open/closed 
lagoons, and permanently open lagoons), the polychaetes Heteromastus similis, 
Laeonereis acuta, and Nephtys fluviatilis are often recorded in high numbers. They 
inhabit the subtidal and intertidal zones in mangroves, salt marshes, and tidal flats. 
At the mangrove, the tentacle-crowned suspension-feeder polychaete Manayunkia 
brasiliensis is an endemic species in southern and southeastern Brazil with a highly 
patched distribution (Pagliosa et al. 2016). The polychaete Nephtys fluviatilis, usu-
ally found in less saline waters, is an active carnivorous and deposit feeder, predating 

Closed 
lagoon

Temporarily 
open/closed 
lagoon Open lagoon

Coastal plain 
estuary

Capitella spp. (ind/
m2)

- 555 294 11

Heteromastus similis 
(ind/m2)

- 553 707 512

Arthropoda
 �   Crustacea
Sinelobus stanfordi 
(ind/m2)

1553 - - -

Monokalliapseudes 
schubarti (ind/m2)

- 658 777 778

Monocorophium 
acherusicum (ind/m2)

- 585 371 01

 �   Insecta
Aedokritus sp. (ind/
m2)

1653 - - -

Goeldichironomus 
sp. (ind/m2)

744 - - -

Mollusca
 �   Bivalvia
Erodona mactroides 
(ind/m2)

- 493 1083 -

 �   Gastropoda
Heleobia australis 
(ind/m2)

57 2922 13,484 01

“-” no occurrence

Table 6.4  (continued)
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on L. acuta and H. similis (Bemvenuti 1987a), meiofaunal ostracods and nematodes. 
The infaunal L. acuta and H. similis escape predation in deeper (approximately 
20 cm) sediment strata. In superficial sediments, the juveniles of L. acuta are under 
stronger predation pressure, which controls species abundance (Bemvenuti 1992). 
The major predators of infaunal species in shallow mudflats are the small crab, 
Rhithropanopeus harrisii and juvenile crabs Cyrtograpsus angulatus and Callinectes 
sapidus and the shrimp Farfantepenaeus paulensis, that use shallow areas during 
warm months as nursery grounds (Bemvenuti 1987b; Bemvenuti 1997a).

The amphipod Monocorophium acherusicum and the tanaid Monokalliapseudes 
schubarti are very abundant in open lagoons and coastal plain estuaries. The tanaid 
shows at least six annual cohorts (Fonseca and D’Incao 2003), forming U-shaped 
tubes up to 15 cm deep in intertidal and shallow water muddy sands. It is a deposit 
and filter-feeder (Montagnolli et al. 2004; Freitas-Júnior et al. 2013), being the main 
prey for fishes (Micropogonias furnieri and Odontesthes bonarienses) and other 
crustaceans (F. paulensis, C. sapidus, and Neohelice granulata). The species also 
plays an essential role in estuarine trophic webs by transferring energy from the 
detritus compartment to higher trophic levels.

The bivalve Erodona mactroides occurs in coastal lagoons, from Laguna to 
southernmost of the SBE (Bemvenuti 1997b; Netto and Pereira 2008). They occur 
in subsurface sediments and can reach densities of more than 20,000 ind/m2 in shal-
low sublittoral areas. Their adult stocks are usually located at inner lagoon (or near 

Fig. 6.6  Mean (± SE) macrofaunal species richness, Shannon diversity (H′), and density (ind/m2) 
in inner and outer portions (columns) within closed lagoons, Intermittently Closed/Open Lagoons 
(ICOLL), open lagoons, and Coastal Plain Estuaries (CPE) in the Brazilian Southern Ecoregion 
(SBE). Black dots represent the total mean value (±SE) of the descriptors in each type of estuary
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sites with freshwater input) but the larvae can be carried following freshwater dis-
charges, reaching the sheltered mudflats where they successfully recruit. In the 
upper estuary, all size classes are present (larger individuals reaching up to 30 mm) 
but at lower densities (461 ind/m2), reaching an average biomass of 281 g/m2, while 
in the lower estuary, despite the higher densities, the average biomass rarely exceeds 
105 g/m2 (Bemvenuti et al. 1978). The key ecological role of this species is linked 
to its importance as one of the main prey for decapods such as Callinectes sapidus. 
Moreover, E. mactroides also influence the occurrence of the estuarine cirriped 
Amphibalanus improvisus, which in the absence of any other hard substrate, attaches 
to their shells (Bemvenuti 1997b).

The chironomids Caladomya ortoni, Fissimentum sp., and Polypedilum are the 
most frequent species, and along with Aedokritus, Goeldichironomus, the crusta-
cean Sinelobus stanfordi and the oligochaete Bothrioneurum numerically dominate 
the bottoms of closed lagoons. In general, chironomid species in coastal lakes pres-
ents a patchy distribution related with the food availability (Lemes-Silva et al. 2014, 
2016). Macrofaunal predators are highly dependent on variations of prey abundance 
(like the ostracod species Stenocypris major and Cytheridella ilosvayi, other chi-
ronomids and copepods), while macrofaunal herbivores usually forage on the abun-
dant resources found in soft-bottoms throughout the year (wood detritus, coarse and 
fine particulate organic matter, and microphytobenthos).

The macrofauna from SBE estuaries is predominantly composed of microphages 
(subsurface deposit-feeders, surface deposit-feeders, and suspension-feeders). 
Microphages handle food particles in the bulk using only part of the feeding appa-
ratus, while macrophages are nimble organisms that move through sediments in 
search of their prey. Among the microphages, surface deposit-feeders and 
suspension-feeders are relatively more abundant in open lagoons, whereas subsur-
face deposit-feeders dominate in closed lagoons (Fig. 6.7). The occurrence patterns 

Fig. 6.7  Mean value (±SE) of the trophic diversity and composition of macrofaunal assemblages 
in closed lagoons, intermittently open/closed lagoons, open lagoons, and coastal plain estuaries in 
the Brazilian Southern Ecoregion (SBE)
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of feeding groups among estuarine types in SBE seem to be related with a fine scale 
composition and distribution of the resources in sediments, and with the organisms’ 
ability to handle food (Pagliosa et al. 2005). Surface deposit-feeders and suspension-
feeders conduct food towards the mouth using their grooved palps or tentacular 
crowns with branched and ciliated lobes. In contrast, subsurface deposit-feeders 
swallow bulk particles with less handling of food. Microphages that extensively 
handle food tend to inhabit fine sands, feeding sites with high phytoplankton and 
microphytobenthos productivity. However, these patches of high food quality may 
be ephemeral, that is, environments where the nutritional status changes quickly due 
to continuous material flux at the sediment surface. On the other hand, microphages 
would occur in more protected sites. They consist of species that ingest sediments 
without much effort in sorting and only digest organic matter along with microor-
ganisms associated to the sediment matrix.

6.4  �Temporal Trends

Knowledge of seasonal fluctuation of benthic fauna is scanty along the SBE.  In 
open lagoons, simultaneous comparison of seasonal variability between estuarine 
meiofauna and macrofauna indicates a clear temporal asynchrony in their variation. 
High abundance and richness of the meiofauna is evident during autumn and winter, 
whereas the macrofauna is more diversified and abundant during summer and spring 
periods (Fonseca and Netto 2006; Meurer and Netto 2007). Such divergent temporal 
trend exhibited by the meiofauna and macrofauna, also observed in some North 
American estuaries (e.g., Montagna and Kalke 1992), might result from a complex 
array of variables and processes, such as competition for food sources, predatory 
pressures, and differential response to disturbances, all ultimately linked to the con-
trasting mechanisms for diversity maintenance.

The reproduction and recruitment of macrobenthic species in SBE open lagoons 
are related to increases in temperature, benthic production, and sediment organic 
content during summer periods, which results in increased macrobenthic abundance 
and species number (Bemvenuti 1987a; Rosa and Bemvenuti 2006; Fonseca and 
Netto 2006; Meurer and Netto 2007). In the permanently open Patos and Laguna 
lagoons, for example, extreme values in total macrofauna density between winter 
and summer are 9000 and 17,000 ind/m2 in Patos and 10,600 and 18,900 ind/m2 in 
Laguna, respectively (Bemvenuti 1987a; Fonseca and Netto 2006). In contrast to 
permanently open lagoons, temporal oscillations of benthic communities in tempo-
rarily open/closed lagoons are primarily modulated by the inlet dynamics. 
Intermittent breaching of lagoon mouth leads to remarkable changes in its physical-
chemical environment over short time periods (hours/days), which in turn triggers 
major biological responses in the benthic compartment. The barrier breaching 
results in strong advection and flushing into the sea. Together with sediment scour-
ing from the lagoon, microphytobenthic biomass, sediment organic content, and 
benthic fauna numbers decrease. Following the shock produced by breaching, a new 
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benthic fauna association slowly emerges (Netto et  al. 2012). Many lagoons in 
South Africa and Australia experience seasonal opening and closure of inlets, with 
clear seasonal variations of streamflow and onshore sediment transport (Allanson 
and Baird 2008; Ranasinghe and Pattiaratchi 2003). This is not the case of SBE 
lagoons, even in the southern portion where rainy periods are more pronounced 
(Sbruzzi 2015). Despite species similarities among lagoons and coastal plain estuar-
ies, the temporal dynamics of numerically dominant species seems to be quite dif-
ferent. At coastal plain systems, the population peaks in abundance (and greatest 
spatial variation of data within each estuary) of major species occurs in 
autumn-winter, while at lagoon systems they occur in summer-spring (Rosa Filho 
and Bemvenuti 1998).

Macrofaunal communities respond to environmental fluctuations at different 
time scales by changing their composition and structure (Morrisey et  al. 1992). 
Seasonal cycles of benthic macrofauna (Alden et al. 1997; Ysebaert et al. 2005) and 
their interannual fluctuations are broadly associated with temperature, rainfall, and 
substrate alterations (Herman et  al. 2001; Teske and Wooldridge 2003). El Niño 
Southern Oscillation (ENSO) has been extensively studied on the southern portion 
of SBE (e.g., Odebrecht et al. 2017 and references herein), where it has a major role 
in controlling the long-term variability of the composition and abundance of benthic 
invertebrates. In the last 20 years, large interannual variations of freshwater dis-
charge (198 m3/s to 4021 m3/s) and four El Niño events (1997–1998; 2002–2003; 
2009–2010; 2014–2015) affected the species composition by sustaining oligohaline 
and decreasing estuarine species numbers. During this same period, species num-
bers presented large interannual variability, with higher values (>28,000 ind/m2) 
observed during the polyhaline summer seasons of 1997, 1999, 2000, 2008, and 
2013, and lower (<6000 ind/m2) related to the oligohaline periods influenced by El 
Niño events. However, low density values might also be related to extremely dry 
conditions (high salinity and low freshwater discharge) as observed in summer of 
2005 (Fig. 6.8; Colling et al. 2010). In the main channel of the Patos Lagoon (>10 m 
deep), variations of abundance and species composition can also be attributed to a 
natural macrobenthic response related to environmental variations. Along the year 
2000, for example, high salinity values decreased through seasons to almost a lim-
netic scenario in spring, reducing diversity and abundance of marine species. A 
contrasting situation was observed in 2006 when the maintenance of brackish waters 
throughout the year favored the input and survival of marine species from coastal 
adjacent areas inside the estuary, increasing macrobenthic diversity mainly by 
marine mollusks and polychaete worms (Pinotti et al. 2011).

The response of individual macrobenthic species to ENSO may differ. The El 
Niño events affected negatively the numerically dominant Monokalliapseudes schu-
barti, whose density values drop from a mean of higher than 5000 ind/m2 to less 
than 400 ind/m2 (Rosa and Bemvenuti 2006; Bemvenuti and Colling 2010) 
(Fig. 6.8). In contrast, intense recruitment of the bivalve Erodona mactroides recur-
rently occurs associated to El Niño events and pos-El Niño periods. Depending on 
synchronicity of reproduction and estuarine discharge, the larvae of E. mactroides 
generated by the adult reproductive stocks in the upper Patos Lagoon are carried by 
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ebb tides during spring and summer, successfully recruiting in sheltered embay-
ments within low estuarine regions (Bemvenuti 1997b; Colling et al. 2010).

6.5  �Conservation, Impacts, and Management Issues

Four different categories of marine protected areas (MPAs) are present in estuaries 
from SBE: the Marine Extractive Reserve (Resex) of Pirajubaé and the Carijós 
Ecological Station, in the north, with small coastal plain estuaries bordered by man-
groves; the Southern Right Whale Environmental Protection Area, in the center, that 
includes the inlet region of Garopaba and Ibiraquera temporarily open/closed 
lagoons, fragments of saltmarshes of Laguna, and the Camacho and Urussanga 
lagoons; and the Lagoa do Peixe National Park, in the south, that encompass total 
area of this temporarily open/closed lagoon. MPAs together with the Brazilian 
National Plan of Coastal Management (PNGC) and supported state and municipal 
plans, as well as several other legal, planning, and conservation measures could lead 
to a more sustainable management of coastal ecosystems and resources. However, 
despite almost three decades of establishing the PNGC, the overlap between laws, 
policies, plans, and provisions relevant to coastal planning and decision-making has 
not avoided unsustainable practices, impacts, and habitat loss all over the SBE 

Fig. 6.8  Average densities (ind/m2) of total macrobenthic fauna for the winter (gray bars) and 
summer (black bars) seasons between 1996 and 2015. Seasonal average values (line) of salinity 
between winter 1996 and summer 2015. Periods influenced by ENSO-El Niño are indicated with 
light gray bars
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estuaries. Even within the MPAs, SBE estuaries are under constant environmental 
pressure (e.g., artificial opening of Peixe and Ibiraquera lagoons, construction of 
roads in Resex Pirajubaé) that lead to losses of habitat and taxonomic and functional 
biodiversity. Although coastal management efforts in SBE have stimulated sound 
technical analysis, information gaps and inadequate exchange and coordination of 
information within and between government, civil society, private sector, and aca-
demia are commonplace.

Interactions between humans and SBE estuaries occur at least since the middle 
Holocene. Signs of pre-ceramic coastal populations can still be seen by some of the 
world’s largest shell mounds or “sambaquis” (in some cases reaching 30 m high and 
several hundred meters in diameter) predominantly composed by the estuarine carib 
pointed-venus or berbigão Anomalocardia flexuosa (DeBlasis et al. 2007; Colonese 
et al. 2017). Over the time, the lagoons mouths, particularly Patos Lagoon, became 
important sites of commerce, which magnified environmental changes (e.g., Seeliger 
and Odebrecht 2010). Human interactions with SBE estuaries have continued and 
accelerated over the past decades, so that at present no estuarine system is in its 
natural state.

A survey in the current literature of SBE accounted for the main causes of 
changes on sediment characteristics, the associated environmental impacts, and 
their consequences for the benthic fauna (Table 6.5):

	1.	 The growing urbanization in estuaries is primarily expressed by filling activities 
over the margins for the construction of roads, ports, commerce and households, 
promoting physical suffocation on the sediment surface, causing anoxia and 
habitat suppression. These practices usually result in the death of benthic organ-
isms, losses of species, and assemblage functional diversity. A recent long-term 
local study showed that despite the potential for faunal colonization provided by 
the relative improvement of the conditions surrounding impacted areas by land-
filling, the effective restoration did not occur once the stressors were not removed 
(i.e., pollutants in sediments and changes due to sediment refilling) (Pagliosa 
et al. 2016).

	2.	 The construction of infrastructure and the removal of coastal vegetation (Caruso 
1990; Rovai et al. 2012) are among the causes of changes on the average grain 
size of sediments, which affect sorting, rates of sediment transport, and the local 
biogeochemistry cycles (Pagliosa et al. 2005, 2006b). The changes directly affect 
estuarine functions through alterations in the trophic guilds of benthic meiofauna 
and macrofauna (Pagliosa et al. 2012; Felix et al. 2015), mainly affecting filter-
feeder, surface deposit-feeder, and burrower organisms. Those activities have 
caused the reduction of stocks of the bivalve Anomalocardia flexuosa, the white 
shrimp Litopenaeus schmitti, and the pink shrimp Farfantepenaeus brasiliensis, 
resources used by local fishing communities (Pezzuto and Echternacht 1999; 
Spínola et  al. 2014; Pezzuto and Souza 2015). The coastal construction has 
attracted hard-bottom organism (Pagliosa et al. 2012a).

	3.	 The dredging and sediment deposition activities with overloading suspended 
material result in change of depth, coarser sediment deposits, increased turbidity 
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due to resuspension of silt and clay (Schettini et al. 2000; Bemvenuti et al. 2005), 
and remobilization of metals. The increasing turbidity has implications for sur-
face deposit-feeder and filter-feeder organisms, as well as for primary productiv-
ity. Changes in water compounds and in sediments have altered both nutrient 
dynamics (Pagliosa et  al. 2005) and the relationships among several types of 
chemicals (Pagliosa et  al. 2006a,b). Dredged areas can experience drastic 

Table 6.5  Causes, main environmental impacts and the consequences for benthic fauna recorded 
in estuaries of the Southern Brazil Ecoregion (SBE)

Cause Environmental impact Consequence for benthic fauna

�1.  Filling of coastal areas Anoxia
Habitat suppression

Death of individuals
Losses of taxonomic and 
functional biodiversity

�2.  Coastal construction with 
removal of vegetation

Changes in sorting of 
particles
Changes in rates of particles 
transport
Changes in biogeochemistry

Changes in filter-feeders, surface 
deposit-feeders, and burrowing 
organisms
Attraction of hard-bottom 
organisms

�3.  Dredging and deposition 
of sediments

Reduction of primary 
productivity
Change of depth
Change in sediment size
Remobilization of metals

Removal and reduction of surface 
deposit-feeders and filter-feeding 
organisms
Changes in diversity and 
abundance

�4.  Marine spill incidents and 
harbor/marina activities

Changes in water and 
sediment biogeochemistry
Death of coastal vegetation
Habitat suppression
Sink of pollutants

Increase in invasive species
Losses of taxonomic and 
functional biodiversity
Changes in abundance, size, 
biomass, and secondary 
productivity
Endocrine disruption
DNA damage

�5.  Artificial breaching of 
temporarily open/closed 
lagoons

Reduction of primary 
productivity
Increase of sediment infill
Death of coastal vegetation

Losses of taxonomic and 
functional biodiversity

�6.  Aquaculture Anoxia
Eutrophication
Change in sediment size 
and organic content

Increase in invasive species
Losses of taxonomic and 
functional biodiversity
Alterations in species evenness

�7.  Fishing Decrease of benthic primary 
production
Change sediment cohesion 
and erosion and deposition 
rates

Overexploitation and collapse of 
target populations
Changes in diversity and 
abundance
Loss of low mobility and 
long-lived species

�8.  Lack of adequate 
sanitation

Anoxia
Changes in quality of food 
for benthic fauna
Increase of fine sediments
Release of emerging 
contaminants

Losses of taxonomic and 
functional biodiversity
Changes in size, biomass, and 
secondary productivity
Endocrine disruption
DNA damage
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decrease of both species richness and density, which requires efficient strategies 
of resilience of the dominant species to minimize the effects of these impact 
sources (Bemvenuti et  al. 2005). In disposal sites at coastal marine zone, the 
absence of detrimental effects on benthic assemblages suggests that the resident 
biota can be adapted to dynamic sedimentary conditions, and that the dispersion 
of dredge material through the water column might minimize sediment deposi-
tion and damage to the benthic fauna (Angonesi et al. 2006).

	4.	 A recent study indicated that mangrove and saltmarshes are the most sensible 
areas to marine spills (Silva et  al. 2008). Marine spill incidents and harbor/
marina activities cause sink of pollutants, changes in coastal vegetation, habitat 
suppression, and changes in water and sediment biogeochemistry. A sulfuric 
acid spill within Patos Lagoon altered the water quality, causing physical dam-
ages in zooplankton (Montú and Gloeden 1998) and the decline of macrofaunal 
richness and abundance (Bemvenuti et al. 2003). Another impact related to har-
bor activities is the larvae transport by ship’s ballast water, which plays an 
important role in the dispersion of nonindigenous species. The occurrence of the 
decapod Rhithropanopeus harrisii (D’incao and Martins 1998) and the bivalve 
Limnoperna fortunei in SBE are attributed to this source of larval dispersion, 
being L. fortunei highly dependent of limnetic scenarios to their dispersion 
through estuaries (Capítoli et al. 2008).

	5.	 Along SBE, more than half of the coastal lagoons’ entrance channels become 
temporarily blocked by the buildup of marine sandbars. Artificial breaching of 
open/closed lagoons involves dredging and/or bulldozing the lagoon inlet at a 
level lower than natural breakout and has occurred for various reasons. While 
alleviating actual or perceived water quality is often cited as a trigger for artifi-
cial openings, the opening alone is not likely to significantly improve water qual-
ity. The limited tidal flushing and exchange efficiencies means that pollutants 
(particularly those entering from tributaries furthest from the entrance) may be 
moved around within the lagoon but may not be removed (e.g., Spurway et al. 
2000). Artificial opening aiming to enhance fish and prawn recruitment and sub-
sequent production is another reason always cited for dredging/bulldozing the 
lagoon, but its efficiency is largely unclear and virtually impossible to address 
without a detailed sampling and analysis of offshore and coastal larval popula-
tions. Finally, unplanned and irregular occupation within lagoon floodplains can 
further result in pressure for intervention to artificially breach lagoon inlet to 
avoid damage or inconvenience to low-lying properties. As inlet dynamics play 
a key role in the overall functioning coastal lagoons, intervention in the behavior 
of lagoon entrances is generally accompanied by negative environmental impacts 
(e.g., crash of the population of macrobenthic invertebrates, fish and vegetation 
and increase of sediment infill), potentially reducing lagoon resilience (Whitfield 
and Bate 2007; Crippa et al. 2013; Netto et al. 2012; Netto and Fonseca 2017). 
Monitoring, establishment of local estuarine management plan with short- and 
long-term goals, and permanent policy review would ensure that the most eco-
logically appropriate and cost-effective options are being implemented at any 
given location.

6  Benthic Estuarine Assemblages from the Southern Brazilian Marine Ecoregion



202

	6.	 The Center-North of SBE ecoregion is the main Brazilian area for aquaculture, 
being responsible for ~21,000 tons/year of molluscs and shrimps. The seabed 
enrichment as a by-product of aquaculture has large impacts on the availability 
of food for benthic fauna. Aquaculture activities reduce benthic diversity, 
increase anaerobic metabolism in the sediment, and increase both the rate of 
sedimentation and organic matter content in the sediment (Bonetti et al. 2007; 
Netto and Meurer 2007; Netto and Valgas 2007, 2010). Aquaculture in general is 
one of the ways by which cultured and associated species can be dispersed out-
ward from their native regions. Particularly, the commercial oyster industry is 
responsible for accidental transport of many harmful shell-borer polychaetes as 
Polydora haswelli, P. ecuadoriana, P. carinhosa (Radashevsky et al. 2006), and 
Boccardiella bihamata (Junqueira et al. 2009). These worms bore into shells of 
live oysters Crassostrea brasiliana, C. gigas, C. rhizophorae, the barnacle 
Megabalanus and empty shells of the gastropods Pugilina morio, Stramonita 
haemastoma, Strombus pugilis, and Tegula viridula inhabited by hermit crabs 
Clibanarius vittatus, Paguristes tortugae and Pagurus brevidactylus.

	7.	 Fishery along SBE estuaries is a small-scale or artisanal activity. The most 
important estuarine fishery, the shrimp Penaeus paulensis, is overexploited or 
collapsed in the main fishery grounds, Patos and Laguna Lagoons (Sunye et al. 
2014; Haimovici and Cardoso 2017). Local shrimp bottom tending gears may be 
either active (1—a hand light mini trawl, known as “berimbau”; 2—bag nets, 
known as coca; 3—motorized otter trawl, only in Patos Lagoon) or passive (fyke 
nets, normally used in groups, known as “aviãozinho”) (Netto and Perereira 2008; 
Haimovici and Cardoso 2017). Experimental evaluations of trawling on macro-
fauna of mud-bottoms (Angonesi and Bemvenuti 2004) and on meiofauna and 
macrofauna of sandy vegetated and unvegetated bottoms (Costa and Netto 2014) 
showed negative impacts on superficial benthic forms, such as the gastropod H. 
australis and the ostracod Cyprideis multidentate. The passive shrimp fishing 
gear “aviãozinho,” a very unselective gear (Vieira et  al. 1996), is largely the 
actual dominant gear for shrimp in SBE lagoons. It is composed by a group of 
five to seven fyke nets (25 mm mesh size) set in contact to the bottom, fixed with 
stakes forming a cage-like structure (around 30 m2). The nets, kept in the same 
place during months, change sediment composition, decrease microphytoben-
thic biomass, and affect the trophic structure of the meiofauna (Netto and Pereira 
2008).

	8.	 The rapid and unplanned urbanization without the appropriate treatment of 
residuals have changed the water and sediment estuarine properties (Pagliosa 
et al. 2005, Pagliosa et al. 2006a, 2006b), even promoting the release of emerg-
ing contaminants such as synthetic hormones and the herbicide glyphosate. 
Estuarine macrobenthic communities and populations, in turn, have shown 
altered responses in abundance, richness, size of individuals, biomass and sec-
ondary productivity, followed by DNA damage in the polychaete Laeonereis 
culveri (Pagliosa and Barbosa 2006; Weis et al. 2017).

S. A. Netto et al.



203

The measurements of what might threaten estuarine outputs—namely impacts to 
the ecosystem itself as well as the social and economic systems to which they are 
linked—can be greatly facilitated by the use of efficient chemical markers of eutro-
phication and bioindicator tools. In this sense, the delivery of more integrated policy 
and management strategies is intrinsically linked to the conservation of estuarine 
functions, towards the preservation of complex mechanisms and processes that gen-
erate goods and services, even if not directly benefiting people at a first moment 
(Mahoney and Bishop 2017). Thus, assessments of estuarine quality might be 
highly improved when populations, species, or species guilds, with distinguishing 
properties and capabilities to support particular functions within an ecosystem, are 
used as real-world indicators. Productivity is also an important ecosystem function 
to consider because while it may not often be a direct service, it underpins many 
other kinds of output.

The environmental quality status along 27 SBE estuarine systems was analyzed 
based on the AZTI Marine Biotic Index (AMBI; Borja et  al. 2000) and Trophic 
Index (TRIX; Vollenweider et al. 1998). According to the AMBI index, the environ-
mental quality was largely classified as moderately disturbed (80%), whereas 20% 
of the sites were of slightly or undisturbed classifications (Fig. 6.9a). As estuaries 
are constantly subjected to natural sources of stress, they tend to be dominated by 
more tolerant taxa, and the indices based on macrofaunal indicator species in gen-
eral tend to underestimate habitat quality assessments (Tweedley et  al. 2016). 
However, regardless of natural background variability, consistent AMBI responses 
to contamination gradients have been found in Brazilian estuaries (Brauko et  al. 
2015, 2016), meaning that the AMBI levels of disturbance in the SBE estuaries 
might be even informative to some extent. Despite maintaining similar moderate 
ecological qualities, the proportion of ecological groups of fauna composing the 
AMBI values suggests community responses linked to salinity and hydrodynamic 
changes along the estuaries (see bar colors in Fig. 6.9). Freshwater communities of 
closed lagoons were dominated by ecological group III or tolerant species, followed 
by the absence of group I, composed of species more sensitive to disturbance. As the 
estuaries change with increasing salinity inputs from temporarily open/closed 
lagoons to open and coastal plain estuaries, the proportion of ecological groups I (of 
sensitive species) and IV (of opportunist species), in general, increases, while the 
relative contribution of group III decreases.

Such natural subsequent changes in the physical-chemical settings and transi-
tional communities along the estuarine systems have not yet led to inconsistencies 
in the habitat quality diagnosis shown by both AMBI and TRIX. These indices are 
based on distinct biological compartments, but agreed on their diagnosis of environ-
mental stress despite the additional influence of natural background variability. 
Similarly, average values of TRIX indicated that the SBE estuarine waters are meso-
trophic in general (Fig. 6.9b). However, TRIX values indicated that nearly 40% of 
open and closed estuarine waters were eutrophic, mostly driven by high nitrate and 
low oxygen concentrations within those systems. The proximity to urbanized areas 
and the lower resident water time (hours to weeks) also favor loads of served water.
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Despite relatively optimistic macrofaunal health scenarios of slight and moder-
ate disturbance, previous evidence of diffuse pollution impacts highlight important 
local constrains for estuarine conservation. In particular, sediment and water chemi-
cal markers as well as benthic community parameters have responded to the increas-
ing urbanization in estuaries of the SBE within the last decade (Pagliosa et al. 2005, 
Pagliosa and Barbosa 2006; Felix et al. 2015). In addition, more recent findings in 
Weis et al. (2017) showed that some of the more urbanized estuaries are experienc-
ing loss of environmental quality linked to changes in a bioindicator estuarine spe-
cies, the polychaete Laeonereis acuta (see details of comparisons between Urban 
and Non-urban estuaries in Fig. 6.10). There is very convincing evidence of molecu-
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lar damage with increased micronuclei frequency, higher individual biomass and 
size, as well as losses in population production (P/B ratios) associated to a set of 
contaminants including total nitrogen, aluminum, copper, and lead contents 
(Fig. 6.10). The rapid sub-cellular or molecular changes provide the detection of 
early stages of pollution (from hours to days), and as responses progress to the 
higher biological levels of populations (e.g., biomass or body size) and communi-
ties (e.g., indicator species indexes) the responses take longer periods to emerge 
(from weeks to years). Eventual biomonitoring protocols of anthropic impacts could 
therefore benefit from the combination of rapid sub-cellular indicators along with 
biotic indices based on community responses of higher ecological and functional 
relevance.

6.6  �Final Considerations

Despite sensitive to anthropic impacts, the estuarine systems included in the 
Southern Brazilian Marine Ecoregion still present satisfactory conditions that sus-
tain benthic biodiversity and ecosystem goods and services. Notwithstanding, the 
growing coastal urbanization intensified by agricultural and industrial activities 
may change the relatively optimistic scenario observed in the last decades.

As other impacts, climate change is expected to intensify environmental risks 
and amplify extreme weather events and coastal hazards. Although the slow-onset 
nature of climate changes, there is an urgent need to build institutional capacity to 
better understand and address climate change impacts in estuaries and chart adap-
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tive pathways. Thus, the systematic application of long-term monitoring protocols 
(such as the Brazilian Monitoring Network for Coastal Benthic Habitats, ReBentos) 
within estuaries is essential to understand and predict changes. Besides, recommen-
dations (see Polette et al. 2015) for building adaptive capacity, resilience, and sus-
tainability in coastal communities should include: (1) raise public awareness about 
the coast and climate change through active social learning processes; (2) create 
opportunities for meaningful public participation in coastal management efforts; (3) 
integrate and mainstream coastal management, from pollution to disaster risk reduc-
tion, and climate change adaptation efforts.
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