
Chapter 9
A Finite-Time Nonlinear PID Set-Point
Controller for a Parallel Manipulator

Francisco Salas, Israel Soto, Raymundo Juarez and Israel U. Ponce

Abstract In recent years, finite-time controllers have attracted attention from some
researchers in control, who have formulated applications to several processes and
systems, including serial robotic manipulators. In this work, we report the appli-
cation of a finite-time nonlinear PID controller to a Five-Bar Mechanism, which is a
parallel manipulator, for set-point controller. The stability analysis of the
closed-loop system shows global finite-time stability of the system. The dynamic
model of the Five-Bar Mechanism developed in this work is a so-called reduced
model, which has a structure similar to a serial robot. Moreover, the results of the
numerical simulations carried out confirm the usefulness of the proposed applica-
tion. The contribution of this work is to show the feasibility of the application of a
finite-time nonlinear controller to a Five-Bar Mechanism and the usefulness of the
proposed approach by numerical simulations.

Keywords Nonlinear controller � Finite-time PID � Parallel manipulator

9.1 Introduction

In recent years, finite-time controllers have attracted attention from some
researchers in control.

As a result, the fundamental theory has been developed (Dorato 1961; Michel
1970; Weiss and Infante 1967) and enriched by many contributions (Bhat and
Bernstein 1998, 2000, 2005; Polyakov and Poznyak 2009; Polyakov 2014).
According to Amato et al. (2013), the finite-time stability is a property related to the
quantitative behavior of the states of a system over a period of time.
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A system is finite-time stable if, given a bound on an initial condition, the
weighted norm of the state does not exceed a certain threshold over a specific time
period. Moreover, finite-time stability and Lyapunov asymptotic stability are
independent concepts, although not exclusively one from another. The existence of
one does not imply the existence of the other. Some advantages of the finite-time
stabilization of dynamic systems are that it can produce faster transient responses
and high-precision performance, as well as convergence to the equilibrium in finite
time. Some previous works in applications of finite-time controllers to robotic
manipulators are Feng et al. (2002), Gruyitch and Kokosy (1999), Hong et al.
(2002), Yu et al. (2005), Su and Zheng (2009, 2010), Zhao et al. (2010). In Su and
Zheng (2009), a finite-time nonlinear PID-like control for regulation of robotic
manipulators is presented. The authors propose a not model-based controller, to
take advantage of the robustness to parametric uncertainty of the model. This work
is improved in Su and Zheng (2010) by adding a nonlinear filter to estimate velocity
when measurements are not available.

On the other hand, parallel robots are closed-chain mechanisms that possess
some particular features such as high-speed capabilities and high stiffness that make
them useful for some tasks as machining (Barnfather et al. 2017; Kelaiaia 2017),
welding (Li et al. 2015; Wu et al. 2008), packaging (Pierrot et al. 1990; Xie and Liu
2016) as well as flight simulators (Huang and Cao 2005) and telescopes (Enferadi
and Shahi 2016; Nan et al. 2011). Some recent approaches of control of this kind of
robotic manipulators include not model-based controllers (Bourbonnais et al. 2015;
Ren et al. 2007) and model-based controllers (Diaz-Rodriguez et al. 2013; Ren et al.
2007; Salinas et al. 2016). In Ren et al. (2007), a comparison of several control
approaches for robot tracking of three degrees of freedom (DOF) parallel robot is
presented. They compare the performance of an adaptive controller, a PI-type
synchronized controller (model-based), a conventional PID controller, and an
adaptive synchronized controller (not model-based). In Bourbonnais et al. (2015), a
computed torque controller and a conventional PID controller are implemented for a
novel Five-Bar parallel robot. In Diaz-Rodriguez et al. (2013), a reduced
model-based controller of a three DOF parallel robot is proposed. The reduced
model is obtained by considering a simplified model with a set of relevant
parameters. In Salinas et al. (2016), a family of nonlinear PID-like controllers in
which an integral action of a nonlinear function of the position error is added to the
control signal.

In this work, inspired in the work of Su and Zheng (2017) on a finite-time
controller for set-point controller of a serial robot, we propose the application of this
controller to a parallel manipulator, in order to prove the finite-time stability of the
closed-loop system by developing the stability analysis and to prove the feasibility
and the usefulness of such an application. The dynamic model of the Five-Bar
Mechanism constitutes a set of differential algebraic equations (DAEs). Based on
Soto and Campa (2014) and Khan et al. (2005), a procedure is carried out in order
to transform the set of DAEs into a set of ordinary differential equations (ODEs).
By using such a model, the Lyapunov stability analysis and the finite-time stability
analysis of the closed-loop system can be developed. As a result, the global
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finite-time stability of the closed-loop system is proven. Moreover, such a model of
ODEs representing the dynamics of the Five-Bar Mechanism let us to carry out
numerical simulations of the system. The results of the simulations confirm the
validity and usefulness of the application.

9.1.1 Mathematical Preliminaries

In this work, vectors are denoted with italic–bold lowercase letters, e.g., x or x.
Matrices are denoted with italic capital letters, e.g., A. xk k ¼

ffiffiffiffiffiffiffiffi
xTx

p
represents the

Euclidean norm of vector x. kmax Af g and kmin Af g represent the largest and the
smallest eigenvalues of matrix A, respectively.

In the following, based on Su and Zheng (2017) we define some useful vectors
and vector functions, as well as a definition for the control design and analysis.

SigaðxÞ ¼ x1j jasignðx1Þ; . . .; xnj jasignðxnÞ½ �T2 <n ð9:1Þ

SechðxÞ ¼ diagðsechðx1Þ; . . .; sechðxnÞÞ 2 <n�n ð9:2Þ

where a0 and a are positive constants, and x 2 <n. Furthermore, 0\a\1, signð�Þ,
and sechð�Þ are the standard scalar functions signum and hyperbolic secant,
respectively, and diagð�Þ denotes a diagonal matrix. By defining the vector function

TanhðxÞ ¼ ½tanhðx1Þ; . . .; tanhðxnÞ�T 2 <n; ð9:3Þ

the validity of the following expressions

xTSigaðxÞ ¼
Xn
i¼1

xij jaþ 1 �TanhTðxÞSigaðxÞ� 0 ð9:4Þ

xij jaþ 1 � tanh2ðxiÞ ð9:5Þ

ðSech2ðxÞÞM ¼ 1 ð9:6Þ

can be proven for all x 6¼ 0 2 <n.

9.1.2 Fundamentals of Finite-Time Stability Analysis

Although finite-time stability concepts in control systems literature can be traced
back to decade of the 1960s, it was until the works reported in Bhat and Bernstein
(1998) and (2000) when the foundations of finite-time stability theory were
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rigorously established. In Bhat and Bernstein (2005) were further studied some
conditions for finite-time stability, in relation to the homogeneity of a system. In the
following, some definitions will be exposed in order to clarify the concepts of
finite-time stability.

Definition 1 A function V : <n ! < is homogeneous of degree d with respect to
the weights p ¼ p1; . . .; pnð Þ 2 <n if for any given d[ 0;Vðdp1x1; . . .; dpnxnÞ ¼
ddVðxÞ; 8x 2 <n. A vector field h is homogeneous of degree d with respect to the
weights p ¼ p1; . . .; pnð Þ 2 <n

þ , if for all 1� i� n, the ith component hi is a
homogeneous function of degree pi þ d.

Definition 2 Consider the system

_x ¼ hðxÞ; hð0Þ ¼ 0; x 2 <n ð9:7Þ

with h : U0 ! <n continuous on an open neighborhood U0 of the origin. Suppose
that system Eq. (9.1) possesses unique solutions in forward time for all initial
condition. The equilibrium x ¼ 0 of system Eq. (9.1) is (locally) finite-time stable if
it is Lyapunov stable and finite-time convergent in a neighborhood U � U0 of the
origin. The finite-time convergence means the existence of a function
Tðx0Þ : Un 0f g ! ð0;1Þ, such that, 8x0 2 U � <n, the solution of Eq. (9.1)
denoted by stðx0Þ with x0 as the initial condition is defined and stðx0Þ 2 Un 0f g for
t 2 ½0; Tðx0ÞÞ and limt!Tðx0Þ stðx0Þ ¼ 0. When U ¼ <n, the global finite-time sta-
bility is obtained.

Remark 1 The system (7) is homogeneous if hð�Þ is homogeneous.
The following results represent sufficient conditions for finite-time stability of

the closed-loop system.

Lemma 1 (Hong et al. 2002; Huang and Cao 2005)
Consider the system

_x ¼ hðxÞþ ĥðxÞ; hð0Þ ¼ 0; ĥð0Þ ¼ 0; x 2 <n ð9:8Þ

where hðxÞ is a continuous homogeneous vector field of degree d\0, with respect to
ðp1; . . .; pnÞ. Assume that x ¼ 0 is an asymptotically stable equilibrium of system
Eq. (9.7). Then, x ¼ 0 is a locally finite-time stable equilibrium of system Eq. (9.8) if

lim
d!0

f̂iðdp1x1; . . .; dpnxnÞ
ddþ pi

¼ 0; i ¼ 1; . . .; n; 8x 6¼ 0 ð9:9Þ

Lemma 2 (Hong et al. 2002; Su and Zheng (2017)
Global asymptotical stability and finite-time stability imply global finite-time

stability.
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9.2 Dynamic Model of a Parallel Robot Manipulator

A parallel robot manipulator is a closed-chain mechanism (CCM) that consists of
kinematic chains which are connected in loops. Consider a CCM with n actuated
joints. Due to its closed configuration, the CCM is subject to holonomic constraints.
In this work, the actuated joints are represented by the vector q 2 <n, while the
non-actuated joints are represented by the vector b 2 <m and the holonomic con-
straints are represented by the vector c 2 <r. Let us define the vector of generalized
coordinates q that fully explicitly represents the configuration of the CCM as

q ¼ qTbT
� �T2 <s

with s ¼ nþm. By applying the Euler–Lagrange formulation, the dynamic model
of a parallel robot with viscous friction is in general formulated as

M0ðqÞ€qþC0ðq; _qÞ _qþ g0ðqÞþF0 _q ¼ s0 þDTðqÞk
cðqÞ ¼ 0

ð9:10Þ

where M0ðqÞ 2 <s�s represents the inertia matrix, C0ðq; _qÞ 2 <s�s is the matrix of
terms arising from the centripetal and Coriolis forces, g0ðqÞ 2 <s represents the
vector of forces due to gravity, F0 2 <s�s represents the diagonal matrix of viscous
friction coefficients, s0 2 Rs is the vector of generalized forces associated with

scalar variables of q,DðqÞ ¼ @cðqÞ
@q 2 <r�s is the Jacobian matrix of the system

holonomic constraints cðqÞ 2 <r, or the constraint Jacobian, and k 2 <r is the
vector of Lagrange multipliers.

Notice that Eq. (9.1) constitutes a set of DAEs. There are several methods to
transform the DAEs into ODEs (Khan et al. 2005; Soto and Campa 2014). The
purpose of such a transformation is to be able to apply standard numerical methods
for solving the ODEs rather than the DAEs. One of the most important methods is
the method of projection via the constraint Jacobian. According to Soto and Campa
(2014, 2015), this method consists of finding a matrix RðqÞ whose column space
belongs to the null space of DðqÞ, i.e., DðqÞRðqÞ ¼ 0. By considering _q ¼ dq=dt as
the vector of independent velocities and _q ¼ dq=dt as the vector of feasible
dependent velocities of a constrained body that belong to the space spanned by the
columns of RðqÞ, we obtain the expression

_q ¼ RðqÞ _q ð9:11Þ

with RðqÞ 2 <s�n. Notice that, given the differential kinematic model _b ¼ JbðqÞ _q,
the matrix RðqÞ can be constructed as

RðqÞ ¼ In
JbðqÞ

� �
ð9:12Þ

9 A Finite-Time Nonlinear PID Set-Point Controller for a … 245



where In is the identity matrix of dimensions n� n. It can be proven that, by
substituting the expression in Eq. (9.11) and its temporal derivative in model
Eq. (9.10), it can be written as

MðqÞqþCðq; _qÞ _qþ gðqÞþF _q ¼ s ð9:13Þ

where

MðqÞ ¼ RTðqÞM0ðqÞRðqÞ ð9:14Þ

Cðq; _qÞ ¼ RTðqÞM0ðqÞ _RðqÞþRTðqÞC0ðq; _qÞRðqÞ ð9:15Þ

gðqÞ ¼ RTðqÞg0ðqÞ ð9:16Þ

F ¼ RTðqÞF0RðqÞ ð9:17Þ

s ¼ RTðqÞs0 ð9:18Þ

Notice that the term of Eq. (9.10) containing the product of the constraint
Jacobian by the Lagrange multipliers vanishes because it belongs to the null space
of RðqÞ, as it was pointed above.

Ghorbel et al. (2000) proven that there exist a unique parametrization q ¼ gðqÞ
of q 2 Nq inside a neighborhood Nq, whenever the system is not in a singular
configuration. Moreover, Muller (2005) established that, for a parallel machine, a
subset q of n joint variables determines its configuration, in virtue of that exist a
smooth mapping u that assigns to each q the parallel machine configuration as
q ¼ uðqÞ, where the map u�1 is a local parametrization of the n dimensional
manifold V, such as V ¼ q 2 Vn; cðqÞ ¼ 0f g, where V represents the set of all
admissible configurations of the parallel machine, and cðqÞ ¼ 0 represents the
holonomic constraints.

In consequence, we can write down, without loss of generality, the matrices and
vectors of the dynamic model MðqÞ; Cðq; _qÞ and gðqÞ as MðqÞ; Cðq; _qÞ and gðqÞ,
respectively. Thus, the dynamic model Eq. (9.10) takes the form

MðqÞqþCðq; _qÞ _qþ gðqÞþF _q ¼ s ð9:19Þ

The model Eq. (9.19) exhibits the following properties.

Property 1 Cheng et al. 2003
The inertia matrix MðqÞ is symmetric and positive definite.

Property 2 The inertia matrix MðqÞ is bounded as

MðqÞk k�MM
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where MM is a positive finite constant, whenever the robot is not in singular
configuration.

Proof Since ATBk k� Ak k Bk k, from Eq. (9.14) we can write

RTM0R
�� ��� RT

�� �� M0k k Rk k

Norm M0k k is upper bounded whenever its entries are finite. For robots with
only revolute joints, this is assured because entries of matrix M0 are sinusoidal
functions of joint variables with constant coefficients. On the other hand, Rk k is
upper bounded whenever its entries are finite, that is to say, matrix Rk k is well
posed. From Eq. (9.12) it can be noticed that Rk k is well posed whenever there
exists a continuous mapping between _q and _q; i.e., the robot is not in singular
configuration.

Property 3 (Ghorbel et al. 2000; Cheng et al. 2003)
The matrix 1

2
_MðqÞ � Cðq; _qÞ is skew-symmetric.

Property 4 (Khalil and Dombre 2004)
There exists a constant kC [ 0 such that Crðq; _qÞk k� kC _qk k, for all q 2 <n.

Property 5 The friction matrix F can be bounded as

fmI�F� fMI

9.3 Finite-Time Nonlinear PID Controller

The solution of the problem of global finite-time regulation of a robot manipulator
implies finding input torques for the actuators of the manipulator in order to reach a
desired position qd , such that for any initial state ðqð0Þ; _qð0ÞÞ; ~q ¼ q� qd ! 0 and
_qðtÞ ! 0 in finite time.

In this work, we propose to apply the finite-time regulation controller, inspired in
Su and Zheng (2017)

s ¼ �Kp Siga1ð~qÞ � Kd Siga2ðgÞ � kp0 � KI

Z t

0

gðrÞ dr� kd0 _q ð9:20Þ

to a CCM, with

g ¼ _qþ a0 tanh ð~qÞ ð9:21Þ
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and

u ¼
Z t

0

gðrÞ dr ð9:22Þ

Kp; KI and Kd are positive definite constant diagonal control gain matrices,
respectively; kp0 and kd0 are positive constants and 0\a1\1, while
a2 ¼ 2a1=ða1 þ 1Þ. By substituting Eqs. (9.20) and (9.22) in Eq. (9.19), we obtain

MðqÞ€qþCðq; _qÞ _qþF _q

þKp Siga1ð~qÞþKd Siga2ðgÞþ kp0~qþ kd0 _qþKIu ¼ 0
ð9:23Þ

With Eqs. (9.22) and (9.23), and taking into account that _~q ¼ _q when qd ¼ 0,
the closed-loop equation can be written as

d
dt

~q
_q
u

2
4

3
5 ¼

_q
�M�1ðqÞ½Cðq; _qÞ _qþF _qþKp Siga1ð~qÞþKd Siga2ðgÞ
þKIuþ kp0~qþ kd0 _q�

_qþ a0 Tanhð~qÞ

2
664

3
775 ð9:24Þ

Notice that the origin of the system Eq. (9.24) is the only equilibrium of the
system.

9.3.1 Stability Analysis of the Closed-Loop System

By proceeding inspired in Su and Zheng (2017), we study the global asymptotical
stability of Eq. (9.24). First, we propose the Lyapunov function candidate

Vð~q; _q;uÞ ¼ 1
2
_qTMðqÞ _qþ a0 TanhTð~qÞMðqÞ _qþ 1

2
kp0~qT~q

þ 1
a1 þ 1

Xn
i¼1

kpi ~qij ja1 þ 1 þ a0
Xn
i¼1

ðfi þ kd0Þ ln ðcoshð~qiÞÞþ 1
2
uTKIu

ð9:25Þ

where fi is the ith entry of friction matrix F. In order to investigate positive defi-
niteness of Eq. (9.25), notice that in virtue of

1
4
_qTMðqÞ _qþ a0 TanhTð~qÞMðqÞ _qþ 1

2ða1 þ 1Þ
Xn
i¼1

kpi ~qij ja1 þ 1

� 1
2ða1 þ 1Þ

Xn
i¼1

kpi � 2ða1 þ 1Þa20MM
� �

tanh2ð~qiÞ
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where we have used Property 2 and Eq. (9.5), we can lower bound Eq. (9.25) as

V � 1
2ða1 þ 1Þ

Xn
i¼1

kpi � 2ða1 þ 1Þa20MM
� �

tanh2ð~qiÞþ 1
2
kp0~qT~q

þ 1
2
uTKIuþ 1

4
_qTMðqÞ _qþ a0

Xn
i¼1

ðfi þ kd0Þ ln ðcosh ð~qiÞÞ
ð9:26Þ

The three last terms of the right side of inequality Eq. (9.26) can be lower
bounded as

1
2
uTKIu� 1

2
kmin KIf g uk k2 [ 0; 8u 6¼ 0 2 <n

1
4
_qTMðqÞ _q� 1

4
kmin MðqÞf g _qk k2 [ 0; 8 _q 6¼ 0 2 <n

a0
Xn
i¼1

ðfi þ kd0Þ ln ðcosh ð~qiÞÞ� a0
Xn
i¼1

ðfi þ kd0Þe[ 0

The second term of the right side of inequality Eq. (9.26) is positive definite
since 1

2 kp0~q
T~q ¼ 1

2 kp0 ~qk k2. Notice that the first term or the right side of Eq. (9.26) is
positive as long as kpi � 2ða1 þ 1Þa20MM is positive, i.e.,

kpi [ 2ða1 þ 1Þa20MM ð9:27Þ

Therefore, since the fourth last terms of the right side of Eq. (9.26) are positive
definite for all ~q; _q;u 6¼ 0 2 <n, the Lyapunov candidate function Eq. (9.25) is
positive definite while Eq. (9.27) is satisfied.

The temporal derivative of the Lyapunov function candidate Eq. (9.25) is as
follows:

_Vð~q; _q;uÞ ¼ 1
2
_qT _MðqÞ _qþ _qTMðqÞ€qþ a0ðSech2ð~qÞ _~qÞTMðqÞ _q

þ a0TanhTð~qÞ _MðqÞ _qþ a0TanhTð~qÞMðqÞ€qþ kp0 _~qT~q

þ _~qTKp Siga1ð~qÞþ a0TanhTð~qÞðFþ kd0IÞ _~qþ _uTKIu

ð9:28Þ

Along the trajectories of the closed-loop system in Eq. (9.24), we obtain

_V ¼ � _qTF _q� kd0 _qT _q� a0Tanhð~qÞKp Siga1ð~qÞ � gTKd Siga2ðgÞ
þ a0½Tanhð~qÞCðq; _qÞ _qþðSech2ð~qÞ _qÞTMðqÞ _q� � a0kp0Tanhð~qÞ~q

ð9:29Þ

where we have used the Property 3 (skew symmetry). Here, we neglect the grav-
itational forces vector from Eq. (9.24) since the CCM is a horizontal Five-Bar
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Mechanism, in which motion of interest is not subject to gravitational forces. The
two parts of the fifth term of the right side of Eq. (9.29) can be upper bounded as

Tanhð~qÞCðq; _qÞ _q� Tanhð~qÞCðq; _qÞ _qk k
� Tanhð~qÞk k Cðq; _qÞk k _qk k
� ffiffiffi

n
p

kC _qk k2
ðSech2ð~qÞ _qÞTMðqÞ _q� ðSech2ð~qÞ _qÞTMðqÞ _q�� ��

� ðSech2ð~qÞ _qÞT�� �� MðqÞk k _qk k
�MM _qk k2

where we have used Eq. (9.2), Property 2, and Property 4. Thus, the fifth term of
the right side of Eq. (9.29) can be upper bounded as

a0½Tanhð~qÞCðq; _qÞ _qþðSech2ð~qÞ _qÞTMðqÞ _q�
� a0ð

ffiffiffi
n

p
kC þMMÞ _qk k2

ð9:30Þ

In addition, by using Property 5 the first term of the right side of Eq. (9.29) can
be upper bounded as

� _qTF _q� � fm _qk k2 ð9:31Þ

After substituting Eqs. (9.30) and (9.31) in Eq. (9.29) and rearranging terms, we
can upper bound Eq. (9.29) as

_V � � fm þ kd0 � a0
ffiffiffi
n

p
kC þMM

� 	� �
_qk k2�a0Tanh ð~qÞKp Siga1ð~qÞ

� gTKd Siga2ðgÞ � a0kp0Tanhð~qÞ~q

In virtue of that, tanhðxÞ and x have the same sign, and then
Tanhð~qÞ~q[ 0; 8~q 6¼ 0. Therefore, we can write

_V � � fm þ kd0 � a0
ffiffiffi
n

p
kC þMM

� 	� �
_qk k2�a0Tanhð~qÞKp Siga1ð~qÞ

� gTKd Siga2ðgÞ
ð9:32Þ

After using the expression in Eq. (9.4), Eq. (9.32) can be rewritten as

_V � � fm þ kd0 � a0
ffiffiffi
n

p
kC þMM

� 	� �
_qk k2�a0

Xn
i¼1

kpi tanhð~qiÞj j ~qij ja1

�
Xn
i¼1

kdi gij ja2 þ 1

ð9:33Þ
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where kpi and kdi represent the ith diagonal elements of matrices Kp and Kd ,
respectively. Therefore, we can conclude that _V � 0 as long as

kd0 [ a0ð
ffiffiffi
n

p
kC þMMÞ � fm ð9:34Þ

is satisfied. In order to conclude the global asymptotical stability of the closed-loop
system Eq. (9.24), by LaSalle’s theorem (Kelly et al. 2005), we have that ~qðtÞ !
0; _qðtÞ ! 0 and uðtÞ ! 0 when t ! 1 for any initial state. Thus, we conclude the
global asymptotical stability of origin of the closed-loop system Eq. (9.24).

9.3.2 Finite-Time Stability

In this section, we will apply the concepts of finite-time stability in order to
establish, in a similar way to Su and Zheng (2017), the stability of the closed-loop

system in finite time. We first define the state vector y ¼ yT1 yT2 yT3
� �T

where
y1 ¼ ~q, y2 ¼ g and y3 ¼ u. The closed-loop system of state vector y can be written
as

d
dt

y1
y2
y3

2
4

3
5 ¼

y2 � a0Tanhðy1Þ
�M�1ðy1 þ qdÞ½ðCðy1 þ qd; y2 � a0 Tanhðy1ÞÞ
þFþ kd0IÞðy2 � a0 Tanhðy1ÞÞþKp Siga1ðy1Þ
þKdSiga2ðy2Þþ kp0y1 þKIy3�
þ a0ðSech2ðy1Þðy2 � a0 Tanhðy1ÞÞÞ

y2

2
66666664

3
77777775

ð9:35Þ

Notice that the origin y ¼ 0 2 <3n is the equilibrium of Eq. (9.35).
Equation (9.35) can be rewritten as

d
dt

y1
y2
y3

2
4

3
5 ¼

y2 þ ĥ1ðyÞ
�M�1ðqdÞ Kp Siga1ðy1ÞþKdSiga2ðy2Þ

� �þ ĥ2ðyÞ
y2

2
4

3
5 ð9:36Þ

where

ĥ1 ¼ �a0Tanhðy1Þ ð9:37Þ

ĥ2 ¼ �M�1ðy1 þ qdÞ½ðCðy1 þ qd; y2 � a0Tanhðy1ÞÞ
þFþ kd0IÞðy2 � a0Tanhðy1ÞÞþ kp0y1 þKIðy3Þy3�
� eMðy1; qdÞ½Kp Siga1ðy1ÞþKd Siga2ðy2Þ�
þ a0ðSech2ðy1Þðy2 � a0 Tanh ðy1ÞÞÞ

ð9:38Þ
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eMðy1; qdÞ ¼ �M�1ðy1 þ qdÞ �M�1ðy1 þ qdÞ ð9:39Þ

Now consider the closed-loop system

d
dt

y1
y2
y3

2
4

3
5 ¼

y2
�M�1ðqdÞ Kp Siga1ðy1ÞþKd Siga2ðy2Þ

� �
y2

2
4

3
5 ð9:40Þ

which, according to Definition 1, is homogeneous if the following expressions are
satisfied:

p2 ¼ dþ p1
a1p1 ¼ a2p2 ¼ dþ p2
p2 ¼ dþ p3

ð9:41Þ

It can be verified that with the values p1 ¼ 2; p2 ¼ a1 þ 1,
p3 ¼ 2; a2 ¼ 2a1=ða1 þ 1Þ, and d ¼ a1 � 1, Eq. (9.41) is satisfied. Moreover,
selecting a1 such that 0\a1\1 results in d ¼ a1 � 1\0. Then, it can be concluded
that Eq. (9.40) is homogeneous of degree d ¼ a1 � 1\0. Notice that hð0Þ ¼ 0,
from Eq. (9.40), and ĥð0Þ ¼ 0 from Eqs. (9.37) to (9.38).

In order to prove the asymptotical stability of the equilibrium y ¼ 0 of the
system Eq. (9.40), we propose the positive definite Lyapunov candidate function

V2 ¼ 1
a1 þ 1

Xn
i¼1

kpi y1ij ja1 þ 1 þ 1
2
yT2MðqdÞy2 þ 1

2
ðy1 � y3ÞTðy1 � y3Þ ð9:42Þ

where y1i denotes the ith component of vector y1. The temporal derivative of
Eq. (9.42) is

_V2 ¼ _yT1Kp Siga1ðy1Þþ yT2MðqdÞ _y2 þð _y1 � _y3ÞTðy1 � y3Þ ð9:43Þ

where it was taken into account the fact that _MðqdÞ ¼ 0 when qd is constant. After
substituting Eq. (9.40) in Eq. (9.43), we have

_V2 ¼ yT2Kd Siga2ðy2Þ ð9:44Þ

By using Eq. (9.4) in Eq. (9.44), it can be concluded that _V2 � 0, which implies
that the origin is a stable equilibrium. By using the LaSalle invariance theorem
(Kelly et al. 2005), the global asymptotical stability of the origin can be concluded.
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Now consider the hyperbolic tangent function:

Tanhðep1y1Þ ¼ oðep1y1Þ ð9:45Þ

where oðep1y1Þ means to be of order ep1y1 as ep1y1 ! 0. Therefore, for any fixed
y ¼ ðyT1 yT2 yT3 ÞT 2 <3n, we have

lim
e!0

ĥ1ðep1y1; ep2y2; ep3y3Þ
edþ p1

¼ �a0 lim
e!0

Tanhðep1y1Þ
edþ p1

¼ �a0 lim
e!0

oðe�dy1Þ ¼ 0
ð9:46Þ

Since M�1ðy1 þ qdÞ and Cðy1 þ qd; y2Þ are smooth [see Hong et al. (2002); Su
and Zheng (2009)], we obtain

lim
e!0

�M�1ðep1y1 þ qdÞ
edþ p2

½ðCðep1y1 þ qd ; e
p2y2 � a0 Tanh ðep1y1ÞÞ

þFþ kd0IÞðep2y2 � a0 Tanhðep1y1ÞÞ�
¼ �M�1ðqdÞ½ðCðqd ; 0ÞþFþ kd0IÞ
� ðy2 lim

e!0
e�d � a0 lim

e!0
oðep1�d�p2y1ÞÞ� ¼ 0

ð9:47Þ

and

lim
e!0

�M�1ðep1y1 þ qdÞ
edþ p2

½kp0ep1y1 þKIðep3y3Þ�

¼ �M�1ðqdÞ kp0y1 lim
e!0

ep1�d�p2 � KIy3 lim
e!0

ep3�d�p2

� �
¼ 0

After applying the mean value theorem to each entry of eMðy1; qdÞ yields

eMðep1y1; qdÞ ¼ M�1ðep1y1 þ qdÞ �M�1ðqdÞ ¼ oðep1Þ ð9:48Þ

which results in

lim
e!0

�
eMðep1y1; qdÞ Kp Siga1ðep1y1ÞþKd Siga2ðep2y2Þ


 �
edþ p2

¼ lim
e!0

oðep1�d�p2Þ ¼ 0
ð9:49Þ

Moreover, in virtue of a property of the ordinary hyperbolic secant function
applied to Eq. (9.2), Sech2ð0Þ ¼ I. Then,
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lim
e!0

� a0ðSech2ðep1y1Þðep2y2 � a0Tanhðy1ÞÞÞ
edþ p2

¼ a0y2 lim
e!0

e�d � a20 lime!0
oðep1�d�p2y1Þ ¼ 0

ð9:50Þ

where p3 � d � p2 ¼ p1 � d � p2 ¼ 2ð1� a1Þ[ 0 and �d ¼ 1� a1 [ 0 for
0\a1\1. Then, for any fixed y ¼ ðyT1 yT2 yT3 ÞT 2 <3n, we have

lim
e!0

ĥ2ðep1y1; ep2y2; ep3y3Þ
edþ p2

¼ 0 ð9:51Þ

Thus, according to Lemma 1, the finite-time stability of the system Eq. (9.35) is
proven. Moreover, by invoking Lemma 2, the global finite-time stability of the
system Eq. (9.35) is proven.

9.4 Simulations

In order to show the feasibility of the proposed application of the finite-time reg-
ulation controller for a parallel manipulator, we carried out numerical simulations.
Simulations of the finite-time nonlinear PID controller applied to the model of a real
horizontal Five-Bar Mechanism were carried out.

9.4.1 Model of the Five-Bar Mechanism

A Five-Bar Mechanism is a planar parallel manipulator of two degrees of freedom.
A scheme of the Five-Bar Mechanism is shown in Fig. 9.1. Notice that the structure
of the mechanism is shown as an open structure. However, the extreme ends of the
links 3 and 4 are joined. In the current section, the matrices M0ðqÞ; C0ðq; _qÞ of the
model Eq. (9.10) and the matrices MðqÞ Eq. (9.14), Cðq; _qÞ Eq. (9.15) and FðqÞ
Eq. (9.17) of the model Eq. (9.19) (Soto and Campa 2014), including the trans-
formation matrix RðqÞ Eq. (9.12) and its temporal derivative, are shown. Note that
since the Five-Bar Mechanism is horizontal, the gravitational forces vector is zero.
The matrices of the model Eq. (9.10) are

M0ðqÞ ¼
m0

11 0 m0
13 0

0 m0
22 0 m0

24
m0

31 0 m0
33 0

0 m0
42 0 m0

44

2
664

3
775;C0ðq; _qÞ ¼

c011 0 c013 0
0 c022 0 c024
c031 0 0 0
0 c042 0 0

2
664

3
775
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where

m0
11 ¼ m1l

2
c1 þm3ðL21 þ l2c3 þ 2L1lc3 cos ðb1ÞÞþ I1 þ I3

m0
13 ¼ m3ðl2c3 þ L1lc3 cos ðb1ÞÞþ I3

m0
31 ¼ m0

13

m0
22 ¼ m2l

2
c2 þm4ðL22 þ l2c4 þ 2L2lc4 cosðb2ÞÞþ I2 þ I4

m0
24 ¼ m4ðl2c4 þ L2lc4 cosðb2ÞÞþ I4

m0
42 ¼ m0

24

m0
33 ¼ m3l

2
c3 þ I3

m0
44 ¼ m4l

2
c4 þ I4

and

c011 ¼ �m3L1lc3 sinðb1Þ _b1
c013 ¼ �m3L1lc3 sinðb1Þð _q1 þ _b1Þ
c022 ¼ �m4L2lc4 sinðb2Þ _b2
c024 ¼ �m4L2lc4 sinðb2Þð _q2 þ _b2Þ
c031 ¼ m3L1lc3 sinðb1Þ _q1
c042 ¼ m4L2lc4 sinðb2Þ _b2

Fig. 9.1 Five-Bar
Mechanism

9 A Finite-Time Nonlinear PID Set-Point Controller for a … 255



The transformation matrix RðqÞ and its temporal derivative _RðqÞ are

RðqÞ ¼
1 0
0 1

r11 r12
r21 r22

2
664

3
775; _RðqÞ ¼

0 0
0 0

_r11 _r12
_r21 _r22

2
664

3
775

where

r11 ¼ � sinðq1 � q2 � b2Þ
sinðq1 � q2 þ b1 � b2Þ

� 1

r12 ¼ � sinðb2Þ
sinðq1 � q2 þ b1 � b2Þ

r21 ¼ sinðb1Þ
sinðq1 � q2 þ b1 � b2Þ

r22 ¼ � sinðq1 � q2 � b1Þ
sinðq1 � q2 þ b1 � b2Þ

� 1

The matrices of the model Eq. (9.19) are

MðqÞ ¼ m11 m12

m21 m22

� �
Cðq; _qÞ ¼ c11 c12

c21 c22

� �
;

where

m11 ¼ m0
44r

2
22 þm0

11 þm0
13r11 þ r11ðm0

13 þm0
33r11Þ

m12 ¼ m0
24r21 þ r12ðm0

13 þm0
33r11Þþm0

44r21r22
m21 ¼ m0

24r21 þ r12ðm0
13 þm33r11Þþm0

44r21r22

m22 ¼ m0
33r

2
12 þm0

22 þm0
24r22 þ r22ðm0

24 þm0
44r22Þ

and

c11 ¼ c011 þ c013r11 þ c031r11 þ _r11ðm0
13 þm0

33r11Þþm0
44r21 _r21

c12 ¼ c013r12 þ c042r21 þ _r12ðm0
13 þm0

33r11Þþm0
44r21 _r22

c21 ¼ c031r12 þ c024r21 þ _r21ðm0
24 þm0

44r22Þþm0
33r12 _r11

c22 ¼ c022 þ c024r22 þ c042r22 þ _r22ðm0
24 þm0

44r22Þþm0
33r12 _r12

The friction coefficients matrices of the model Eq. (9.10) and of the model
Eq. (9.19) are

F0 ¼
f 011 0 0 0
0 f 022 0 0
0 0 f 033 0
0 0 0 f 044

2
664

3
775;F ¼ f11 f12

f21 f22

� �
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where

f11 ¼ f 011 þ r211 f
0
33 þ r221 f

0
44

f12 ¼ r11r12 f
0
33 þ r21r22 f

0
44

f21 ¼ r11r12 f
0
33 þ r21r22 f

0
44

f22 ¼ f 022 þ r212 f
0
33 þ r222 f

0
44

The parameters of the dynamic model are shown in Table 9.1.
The elements of the matrix F of friction coefficients of the model Eq. (9.10) are

shown in Table 9.2.
The desired values of the joint variables were computed using the inverse

kinematic model [see Soto and Campa (2015)] based on the desired position of the
end effector to reach a point P1 ¼ ðxh � D; yh þDÞ from the initial or home position
Ph ¼ ðxh; yhÞ. Notice that D ¼ 0:02 (m). The coordinates of the initial position are
xh ¼ L1; yh ¼ L2, with respect to the origin located at the rotation axis of the joint
q1 (see Fig. 9.1). The values of the joint variables that correspond to the home
position are q1 ¼ 0 (rad) and q2 ¼ 1:5708 (rad), while the values that correspond to
the point P1 are q1 ¼ 0:1686 (rad) and q2 ¼ 1:7441 (rad). The gains and parameters
of the finite-time nonlinear PID controller used in the simulations are shown in
Table 9.3. These gains were selected by try and error procedure in order to achieve
the best performance in terms of small position errors and at the same time,
avoiding to exceed a maximum value of torque of 0.2 Nm. This maximum torque
value is similar to the maximum values of electric motors that usually drive a small
Five-Bar Mechanism for academic purposes.

Table 9.1 Parameters of the dynamic model of the Five-Bar Mechanism

Parameter Value (units) Parameter Value (units)

L1, L2, L3, L4 0.127 (m) m2 0.121 (kg)

lc1 0.047 (m) m3 0.085 (kg)

lc2 0.045 (m) m4 0.063 (kg)

lc3 0.069 (m) I1 0.0017 (kgm2)

lc4 0.062 (m) I2 0.0014 (kgm2)

m1 0.126 (kg) I4 8.74 × 10−5 (kgm2)

Table 9.2 Friction parameters of the Five-Bar mechanism

Parameter Value (units)

f 011 0.01 (Nm/rad s)

f 022 0.01 (Nm/rad s)

f 033 0.00001 (Nm/rad s)

f 044 0.00001 (Nm/rad s)
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For comparison purposed, simulations of a PID-like controller inspired in Kelly
(1998) applied to the Five-Bar Mechanism were also conducted. The control law of
this controller is

s ¼ �Kp~q� Ki

Z t

0

Tanhð~qðrÞÞ dr� Kd _q

The gains used for this controller are shown in Table 9.4. These gains were
selected by try and test, in order to obtain the best performance of the controller and
avoiding to exceed the maximum torque values.

9.4.2 Simulations Results

The results of the simulations are shown in Figs. 9.2, 9.3, 9.4, 9.5, 9.6 and 9.7. In
Fig. 9.2, the position errors at joint 1 from both controllers, the finite-time nonlinear
PID controller (FNPID) and the nonlinear PID from Kelly (1998), are shown. In
Fig. 9.3, the position errors at joint 2 from both controllers are shown. From these
figures, notice that the position errors of the FNPID in steady state are smaller than
the position errors of the NPID. In Figs. 9.4 and 9.5, the commanded torques from
the FNPID for joint 1 and joint 2, respectively, are shown. In Figs. 9.6 and 9.7, the
commanded torques from the NPID for joint 1 and joint 2, respectively, are shown.

Table 9.3 Gains and parameters of the finite-time nonlinear PID controller

Gain Joint 1 Joint 2 Units

kp0 0.2 0.22 Nm/rad

kd0 0.5 0.5 Nms/rad

Kp 0.37 0.36 Nm/rad

KI 0.1 0.06 Nms/rad

Kd 0.1 0.01 Nm/rad

a0 0.1 0.1 s−1

a1 0.5 0.5 (dimensionless)

a2 0.6666 0.6666 (dimensionless)

Table 9.4 Gains of the nonlinear PID controller

Gain Joint 1 Joint 2 Units

Kp 1.15 1.15 Nm/rad

Kd 0.5 0.5 Nms/rad

Ki 0.08 0.03 Nm/rads
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Notice that the torque signals from the NPID controller for both joints last longer
times than the torque signals from the FNPID controller. This may imply smaller
and shorter control efforts from the FNPID controller, which may result in
improved durability of the drives and motors of the parallel machine. Notice that, as
was pointed above, in the simulations we were careful in avoiding exceeding the
maximum torque value of 0.2 (Nm).

0 1 2 3 4
-0.2

-0.15

-0.1

-0.05

0

0.05
FNPID
NPID

Fig. 9.2 Position errors in joint 1 from both controllers, FNPID and NPID

0 1 2 3 4
-0.2

-0.15

-0.1

-0.05

0

0.05

FNPID
NPID

Fig. 9.3 Position errors in joint 2 from both controllers, FNPID and NPID
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0.1

0.15

0.2

Fig. 9.4 Commanded torque from the FNPID controller, for joint 1

0 1 2 3 4
0

0.05

0.1

0.15

0.2

Fig. 9.5 Commanded torque from the FNPID controller, for joint 2
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9.5 Conclusion

In this work, we have reported the application of a finite-time nonlinear PID reg-
ulation controller to a Five-Bar Mechanism. The stability analysis of the system has
been carried out, resulting in the global finite-time stability of the closed-loop
system.

A dynamic model of a parallel robot, which is subject to mechanical constraints,
has been obtained in structure similar to that of a serial robot. This let us analyze the
closed-loop system in a similar way to analyzing a system with a serial robot.

0 1 2 3 4
0

0.05

0.1

0.15

0.2

Fig. 9.6 Commanded torque from the NPID controller, for joint 1

0 1 2 3 4
0

0.05

0.1

0.15

0.2

Fig. 9.7 Commanded torque from the NPID controller, for joint 2
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Numerical simulations of the proposed controller applied to the model of a
Five-Bar Mechanism were conducted. The simulations’ results confirm the use-
fulness of the proposed approach.
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