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Abstract In the last three decades, multi-frame and single-frame super-resolution
and reconstruction techniques have been receiving increasing attention because of
the large number of applications that many areas have found when increasing the
resolution of their images. For example, in high-definition television,
high-definition displays have reached a new level and resolution enhancement
cannot be ignored; in some remote sensing applications, the pixel size is a limita-
tion; and in medical imaging, the details are important for a more accurate diag-
nostic or acquiring high-resolution images while reducing the time of radiation to a
patient. Some of the problems faced in this area, that in the future require dealing
more effectively, are the inadequate representation of edges, inaccurate motion
estimation between images, sub-pixel registration, and computational complexity
among others. In this chapter, an overview of the most important methods classified
into two taxonomies, multiple- and single-image super-resolution, is given.
Moreover, two new techniques for single-image SR are proposed.

Keywords Super-resolution � Frequency domain � Spatial domain
Total variation

5.1 Introduction

Image super-resolution (SR) refers to the process of creating clear and
high-resolution (HR) images from a single low-resolution (LR) image or from a
sequence of low-resolution observations (Schultz and Stevenson 1994). In this
chapter, the most important SR techniques are explained.
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The methods for SR are addressed including the definition of each method. We
address big topics of work in super-resolution as: the pure interpolation with high
scales of amplification, the use of dictionaries, the variational procedures and the
exploiting of gradients sharpening. Each section in this chapter yields a guide for
the technical comprehension of each procedure. The technical procedures of the
cited articles are not fully reproduced but neither is a superficial description made
without ideas for a practical realization.

The first main separation between the SR methods is determined by the
resources to employ in the process. In the first case, a group of LR images are used.
These procedures refer to the first publications about the topic. In the second case,
due to practical situations, the SR is carried out by using only the input image of
low resolution. Figures 5.1 and 5.2 show the taxonomies of the more evident
classification of the methods, multiple-image SR or single-image SR.

In the second class of methods, we refer to the domain of application, spatial
domain or frequency domain. The following proposed differentiation between SR
methods is based on the mathematical models in order to reach the high resolution.
Transformations, probabilistic prediction, direct projection, learning dictionaries,
reduction of dimension and reconstruction models under minimization procedures
and residual priors are discussed. A common goal is the incorporation of the lost

Fig. 5.1 Taxonomy of multiple-image super-resolution
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high-frequency details. Finally, we propose two new methods for single-image SR.
The first one is based on gradient control, and the second one is a hybrid method
based on gradient control and total variation.

The rest of the chapter is organized as follows: In Sect. 5.2, the methods are
explained. In Sect. 5.3, the results of the proposed methods are presented. In
Sect. 5.4, the metrics used to characterize the methods are presented. Finally, the
chapter concludes in Sect. 5.5.

5.2 Methods

The accuracy in the estimation of the HR image is result of a right selection of
mathematical tools and signal processing procedures as transformations, learning
models, minimization techniques, and others for reaching the major content of high
spatial frequencies or details in the output image. In this section, current methods as
well as the proposed SR procedures are explained. SR models for single image and
multiple image are considered.

5.2.1 Image Model

Down-sampling and warping are two processes in consideration for a more realistic
representation of the image at low resolution. In the first process, the image is
averaged over equal areas of size q � q as can be seen from Eq. (2.1). In the
warping process, the image is shifted along x and y directions, and the distances
a and b are in pixels. Also, a rotation Ɵ is assumed on the image (Irani and Peleg
1990; Schultz and Stevenson 1994) as can be observed in Eq. (2.2).

Fig. 5.2 Taxonomy of single-image super-resolution
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In a SR algorithm, the model of degradation is fundamental for comparative
purposes and evaluation of the effectivity of the algorithm. Equation (5.1) considers
the blurring and down-sampling processes, and Eq. (5.2) represents the warping
operation. For a number k of LR images with noise added, the model becomes
(Irani and Peleg 1990),

gk m; nð Þ ¼ d hk wk f x; yð Þð Þð Þð Þþ gk m; nð Þ ð5:3Þ

Equation (5.3) incorporates the distortions that yield a LR image, d is the
down-sampling operator, hk is the blurring operator, wk is the warping operator, and
f(x, y) is the HR image. Furthermore, the blurring process can be composed by
distortions due to the displacement hd, the lens hl, and the sensors hs. The result is a
convolution operation. The transformations are shown in Fig. 5.3.

Fig. 5.3 Steps to form three LR images g1, g2, and g3 from a HR image f. Each branch represents
a different acquisition process
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5.2.2 Image Registration

Translation and rotation relationship, between a LR and a HR image, is calculated
using Eq. (5.4) (Keren et al. 1998),

x ¼ xtk þ qxm cos hk � qyn sin hk
y ¼ ytk þ qxm sin hk þ qyn cos hk

; ð5:4Þ

where xtk and ytk are the displacements, qx and qy the sampling rates, and h the
rotation angle. Two acquisitions g1 and g2 with rotation and displacements can be
related using the following Eq. (5.5).

g2ðm; nÞ ¼ g1ðm cos h� n sin hþ a; n cos hþm sin hþ bÞ ð5:5Þ

5.2.3 Approximation Between Acquisitions

The approximation to this parameter has been solved using the Taylor series rep-
resentation. In the first step, sin h and cos h are expressed in series expansion using
the first two terms.
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Finally, the parameters a, b, and h of Eq. (5.7) are determined using partial
derivatives on the final expansion and solving the equation system.

5.2.4 Frequency Domain

The models in frequency domain consider the sampling theory. There, a 2D array of
Dirac deltas (DT) performs the sampler function. The array has the same form in
time and frequency domains (2D impulse train). The acquisition process multiplies
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the array of DT with the image in the spatial domain point by point. This operation
in frequency domain becomes a convolution operation. The advantage is that the
resolution of the convolution kernel (sampling array in the frequency domain in the
interval of [−p, p]) can be increased for optimal scales of amplification, checking
the high-frequency content at the output of the process. The Fourier transform of the
sampling is shown in Eq. (5.8),
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and the convolution with the image can be expressed as in Eq. (5.9),

Sampðj1; j2Þ ¼
XL=2

nx¼�L=2

XM=2

mx¼�M=2

SðnxDxx; nyDxyÞ�

DTðj1 � nxDxx þMcx; j2 � nyDxy þ Lcx; j1; j2Þ
ð5:9Þ

The high-frequency content in Samp must be maximized. This strategy has been
used in (Morera 2015). Figure 5.4 shows a 1D sampling array in space and fre-
quency domains.

5.2.5 Wavelet Transform

The wavelet transform introduces the analysis of the image generally in four fields
of information. The common decomposition brings directional information of
fluctuation of the image signal. The coefficients of the transformation are present in
four groups. The low-frequency coefficients which are a coarse representation of the

Fig. 5.4 Sampling array in
a space domain and
b frequency domain
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image, the horizontal, the vertical and the diagonal coefficients which represent
details of directional variations of the image. The most common strategy for SR
using wavelets applies a non-sub-sampled wavelet or static wavelet before a
wavelet reconstruction, and the first step produces a decomposition of four images
with the same dimension as the input. Then, the wavelet reconstruction produces an
amplified image with scale factor 2, this strategy is employed in (Morera 2014).

5.2.6 Multiple-Image SR

The main goal in this group of techniques is the simulation of the process of
formation of the image in order to reject the aliasing effects due to the
down-sampling effect. A group of acquisitions of the same scene in LR is required
for estimation of the HR image.

5.2.6.1 Iterative Back-Projection

Iterative back-projection (IBP) methods were the first methods developed for
spatial-based SR. IBP algorithm yields the desired image that satisfies that the
reconstruction error is close to zero. In other words, the IBP is convergent. Having
defined the imaging model like the one given in Eq. (5.3), the distance Af � gk k22 is
minimized, where matrix A includes the blur, down-sampling and warping opera-
tions, f is the original HR image, and g is the observed image. The HR estimated
image is generated and afterward refined. Such a guess can be obtained by regis-
tering the LR images over a HR grid and then averaged them (Irani and Peleg 1990,
1991, 1992, 1993). The iterative model given in Eq. (5.10) is used to refine the set
of the available LR observations. Then, the error between the LR images and the
observed ones is obtained and back-projected to the coordinates of the HR image to
improve the initial estimation (Irani and Peleg 1993). The Richardson iteration is
commonly used in these techniques.

f ðtþ 1Þðx; yÞ ¼ f ðtÞðx; yÞþ 1
K

XK
k¼1

w�1
k gk � gðtÞk

� 	
_d

� 	
� _h

� 	
; ð5:10Þ

where w�1
k is the inverse of the warping operator, _d is the up-sampling operator, _h is

a deblurring kernel, k = 1…K is the number of LR acquisitions, f ðtþ 1Þðx; yÞ is the
reconstructed SR image in the (t + 1)th iteration, and f ðtÞðx; yÞ is the reconstructed
SR image in the previous (t)th iteration. The shortcoming of this algorithm is that
produces artifacts along salient edges.

5 Overview of Super-resolution Techniques 107



5.2.6.2 Maximum Likelihood

The noise term in the imaging model given in Eq. (5.3) is assumed to be additive
white Gaussian noise (AWGN) with zero mean and variance r2. Assuming the
measurements are independent and the error between images is uncorrelated, the
likelihood function of an observed LR image gk for an estimated HR image f̂
(Cheeseman et al. 1994; Capel and Zisserman 1998; Elad and Hel-Or 2001; Farsiu
et al. 2004; Pickup et al. 2006; Pickup 2007; Prendergast and Nguyen 2008; Jung
et al. 2011a) is,

p gkjf̂
� � ¼ Y

8m;n
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� 	2
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The log-likelihood transforms the product into a summation. Therefore,
Eq. (5.11) becomes the summation of a term C that does not depend on f and the
summation of the exponents of the exponential function as shown in Eq. (5.12),

L gkð Þ ¼ C � 1
2r2

X
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� 	

: ð5:12Þ

The maximum likelihood (ML) solution (Woods and Galatsanos 2005) seeks a
super-resolved image f̂ML which maximizes the log-likelihood for all observations.
Notice that after maximization the constant term vanishes. Therefore, the
super-resolved images can be obtained by maximizing Eq. (5.12) or, equivalently,
by minimizing the distance between g_k and gk as,

f̂ML ¼ argmax
f

X
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5.2.6.3 Maximum a Posteriori

Given the LR images gk, the maximum a posteriori (MAP) method (Cheeseman
et al. 1994) finds an estimate f̂MAP of the HR image by using the Bayes rule in
Eq. (5.14),

p f̂ jg1; g2; . . .; gk
� � ¼ p g1; g2; . . .; gkjfð Þp fð Þ

p g1; g2; . . .; gkð Þ / p g1; g2; . . .; gkjfð Þp fð Þ ð5:14Þ

The estimate can be found by maximizing log of Eq. (5.14). Notice that the
denominator is a constant term that normalizes the probability conditional. This
term is going to be zero after maximization then,
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f̂MAP ¼ argmax
f

log p g1; g2; . . .; gkjfð ÞÞþ log p fð Þð Þð Þ: ð5:15Þ

Applying statistical independence between the images gk, Eq. (2.15) can be
written as,

f̂MAP ¼ argmax
f

XK
k¼1

log p gkjfð Þð Þþ log pðf Þð Þ
 !

; ð5:16Þ
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The probability p gkjfð Þ is named the regularization term. This term has been
modeled in many different forms; some cases are:

1. Natural image prior (Tappen et al. 2003; Kim and Kwon 2008, 2010).
2. Stationary simultaneous autoregression (SAR) (Villena et al. 2004), which

applies uniform smoothness to all the locations in the image.
3. Non-stationary SAR (Woods and Galatsanos 2005) in which the variance of the

SAR prediction can be different from one location in the image to another.
4. Soft edge smoothness a priori, which estimates the average length of all level

lines in an intensity image (Dai et al. 2007, 2009).
5. Double-exponential Markov random field, which is simply the absolute value

of each pixel value (Debes et al. 2007).
6. Potts–Strauss MRF (Martins et al. 2007).
7. Non-local graph-based regularization (Peyre et al. 2008).
8. Corner and edge preservation regularization term (Shao and Wei 2008).
9. Multi-channel smoothness a priori which considers the smoothness between

frames (temporal residual) and within frames (spatial residual) of a video
sequence (Belekos et al. 2010).

10. Non-local self-similarity (Dong et al. 2011).
11. Total subset variation, which is a convex generalization of the total variation

(TV) regularization strategy (Kumar and Nguyen 2010).
12. Mumford–Shah regularization term (Jung et al. 2011b).
13. Morphological-based regularization (Purkait and Chanda 2012).
14. Wavelet-based (Li et al. 2008; Mallat and Yu 2010).
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5.2.7 Single-Image SR

Single-image SR problem is a very ill-posed problem. It is necessary an effective
knowledge about the HR image to obtain a well-posed HR estimation. The algo-
rithms are designed for one acquisition of low resolution of the image. Some of the
strategies proposed are summarized following,

1. Pure interpolation using estimation of the unknown pixels in the HR image,
modification of the kernel of interpolation, and checking the high-frequency
content in the estimated output HR image.

2. Learning the HR information from external databases. In this case, many
strategies of concentration of the information of the image and clustering are
used. Then, the image is divided into overlapping patches and this information is
mapped over a dictionary of LR–HR pairs of patches of external images.

3. Manage the information of gradients in the image.
4. Hybrid models used to reconstruct the image with a minimization procedure in

which some prior knowledge about the estimation error is included.

5.2.7.1 Geometric Duality

The concept of geometric duality is one of the most useful tools in the parametric
SR with least-square estimation for interpolation, and one of the most cited algo-
rithm in comparison with SR method is the new edge-directed interpolation (NEDI)
(Li and Orchad 2001).

The idea behind is that each low-resolution pixel also exists in the HR image and
the neighbor pixels are unknown. Hence, with two orthogonal pairs of directions
around the low-resolution pixel in the HR image (horizontal, vertical, and diagonal
directions), a least-square estimation can be used in each pair. The equation system
is constructed in the LR image, and then, the coefficients are used to estimate pixels
in the HR initial image. The first estimation is made by using Eq. (5.17),

Ŷ2iþ 1;2jþ 1 ¼
X1
k¼0

X1
l¼0

a2kþ lY2ðiþ kÞ;2ðjþ lÞ ð5:17Þ

where the coefficients are obtained in the same configuration as in the LR image. In
this case, the unknown pixels between LR pixels that exist in the HR image (in
vertical and horizontal directions) are estimated. In the next step, the unknown
pixels between LR pixels that exist in the HR image (in diagonal directions) are
estimated. The pixels of each category are shown in Fig. 5.5.

In (Zhang and Wu 2008), take advantage of NEDI. There, a new restriction is
applied including the estimated pixels in the second step, and the minimum square
estimation is made using the 8-connected pixels around a central pixel in the
diamond configuration shown in Fig. 5.6. They define a 2D piecewise
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autoregressive (PAR) image model of parameters ak; k 2 ½1; . . .; 4� to characterize
the diagonal correlations in a local diamond window W and the extra parameters
bk; k 2 ½1; . . .; 4� to impose horizontal and vertical correlations in the LR image as
shown in Fig. 5.6b. The parameters are obtained using a linear least-square esti-
mator using four 4-connected neighbors for bk (horizontal and vertical), and four
8-connected diagonal neighbors, available in the LR image for ak.

To interpolate the missing HR pixel in the window, the least-square strategy of
Eq. (5.18) is carried out.

ŷ ¼ argmin
y

X
i2W

yi �
X

1� k� 4

akx
ð8Þ
i}k

�����
�����þ

X
i2W

xi �
X

1� k� 4

aky
ð8Þ
i}k

�����
�����

( )
; ð5:18Þ

where xi and yi are the LR and the HR pixels, respectively, xð8Þi}k are the four
8-connected LR neighbors available for a missing yi pixel and for a xi pixel, and

yð8Þi}k denotes its HR missing four 8-connected pixels.

Fig. 5.5 Array of pixels in the initial HR image for NEDI interpolation. Black pixels are the LR
pixels used to calculate the HR gray pixels. The white pixels are calculated using the white and the
black pixels

Fig. 5.6 a Spatial configuration for the known and missing pixels and b the parameters used to
characterize the diagonal, horizontal, and the vertical correlations (Zhang and Wu 2008)
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Other approach for NEDI algorithms (Ren et al. 2006; Hung and Siu 2012) uses
a weighting matrix W to assign different influence of the neighbor pixels on the
pixel under estimation. The correlation is affected by the distance between pixels.
The diagonal correlation model parameter is estimated by using a weighted
least-square strategy.

A ¼ LT
LAWLLA

� ��1
LT
LAWL; ð5:19Þ

where A 2 R4�1 is the diagonal correlation model parameter, L 2 R64�1 is a vector
of the LR pixels, LLA 2 R64�4 are the neighbors of L, and W 2 R64�64 is the
weighting matrix of Eq. (5.20).

Wi;i ¼ exp �2 Lc � LLAik kp=r1 þ Vc � VLAik kp=r2
� 	� 	

; ð5:20Þ

where r1 and r2 are global filter parameters, Lc 2 R4�1 is the HR geometric
structure, LLAi 2 R4�1 is the ith LR geometric structure, �k kp denotes the p-norm (1

or 2), and VLAi;Vc 2 R2�1 are the coordinates of Li and Lc. The all-rounded cor-
relation model parameter B 2 R8�1 is given by,

B ¼ LT
LBWLLB

� ��1
LT
LBWL; ð5:21Þ

where LLB 2 R64�8 are the neighbor’s positions in L.

5.2.7.2 Learning-Based SR Algorithms

In these algorithms, the relationship between some HR and LR examples (from a
specific class like face images, animals) is learned. The training database as
example shown in Fig. 5.8 needs to have proper characteristics (Kong et al. 2006).
The learned knowledge is a priori term for the reconstruction. The measure of these
two factors of sufficiency and predictability is explained in (Kong et al. 2006). In
general, a larger database yields better results, but a larger number of irrelevant
examples only increase the computational time of search and can disturb the results.
The content-based classification of image patches (like codebook) during the
training is suggested as alternative in (Li et al. 2009).

The dictionaries to be used can be a self-learned or an external-based dictionary.
Typically, some techniques like the K-means are used for clustering of n observa-
tions into k clusters and the principal component analysis (PCA) algorithm is
employed to reduce the dimensionality. In dictionary learning, it is important to
reduce dimensionality of the data. Figure 5.7 shows a typical model of projection
for dictionary learning for SR. Figure 5.8 shows an example of a LR image input
and a pair of LR–HR dictionary images.
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The projection PCA is based on finding the eigenvectors and eigenvalues of an
autocorrelation. This can be expressed as,

X ¼ WKWT ; ð5:22Þ

where X is the autocorrelation matrix of the input data U, W is the matrix of
eigenvectors, and K is a diagonal matrix containing the eigenvalues. The eigen-
space is the projection of U into the eigenvectors. The data at high and low

Fig. 5.7 Projection of an input image using two external LR–HR dictionaries

Fig. 5.8 Low-resolution input image and a pair of LR–HR dictionary images
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resolution Uh and Ul are used to find the minimum distance in a projection over the
found eigenspace.

Dh ¼ Uk
hWh: ð5:23Þ

In dictionary search, the patches represent rows or columns of the data matrix Uh

or Ul. The strategy is to find the position of the patch at HR with a minimum
distance respect to the projection of a LR patch in the eigenspace of HR.

phðposÞ ¼ min
v;l;j

DT
h Û

h
k � DT

h v̂l;j
��� ���

2
; v̂l;j 2
�� Û

l
k: ð5:24Þ

5.2.7.3 Diffusive SR

Perona and Malik (1990) developed a method that employs a diffusion equation for
the reconstruction of the image. The local context of the image is processed using a
function to restore the edges.

div crIð Þ ¼ @

@x
cIxð Þ ð5:25Þ

where c is a function to control the diffusivity; for example if c ¼ 1, the process is
linear isotropic and homogeneous, and if c is a function that depends on Ix, i.e.,
c ¼ cðIxÞ, the process becomes a nonlinear diffusion; however, if c is a
matrix-valued diffusivity, the process is called anisotropic and it will lead to a
process where the diffusion is different for different directions. The image is dif-
ferentiated in cardinal directions, and a group of coefficients are obtained in each
point using the information of the gradient.

rNIi;j � Ii�1;j � Ii;j; rSIi;j � Iiþ 1;j � Ii;j; rEIi;j � Ii;jþ 1 � Ii;j; rWIi;j
� Ii;j�1 � Ii;j ð5:26Þ

ctN i;j ¼g rIð Þtiþð1=2Þ;j
��� ���� 	

; ctS i;j ¼ g rIð Þti�ð1=2Þ;j
��� ���� 	

; ctE i;j ¼ g rIð Þti;jþð1=2Þ
��� ���� 	

ctW i;j ¼ g rIð Þti;j�ð1=2Þ
��� ���� 	

:

ð5:27Þ

Finally, the image is reconstructed by adding the variations in the iterative
process of Eq. (5.28).

Iðtþ 1Þ
i;j ¼ IðtÞi;j þ k cNrNIþ cSrSIþ cErEIþ cWrW I½ �ðtÞi;j ð5:28Þ
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This principle has been a guide for local in time processing over the image used
in image processing algorithms for adaptation to a local context in the image.

5.2.7.4 TFOCS

The reconstruction methods require powerful mathematical tools for minimization
of the error in the estimation. A resource commonly used is the split-Bregman
model in which the norm L1 is employed. In (becker et al. 2011), the library
templates for first-order conic solvers (TFOCS) were designed to facilitate the
construction of first-order methods for a variety of convex optimization problems.
Its development was motivated by its authors’ interest in compressed sensing,
sparse recovery, and low-rank matrix completion. In a general form, this tool let us
solve x for the inverse problem:

min/ðxÞ¼D f ðAðxÞþ bÞþ hðxÞ; ð5:29Þ

where the function f is smooth and convex, h is convex, A is a lineal operator, and b
a bias vector. The function h also must be prox-capable; in other words, it must be
inexpensive to compute its proximity operator of Eq. (5.30)

minUhðx; tÞ ¼ argmin
z

hðzÞþ 1
2
t�1 z� x; z� xh i ð5:30Þ

The following is an example of solution with TFOCS; consider the following
problem,

min
1
2

Ax� bk k22; s:t: xk k1 � s ð5:31Þ

this problem can be written as:

min
1
2

Ax� bk k22 þ hðxÞ ð5:32Þ

where hðxÞ ¼ 0 if xk k1 � s and +∞ otherwise. Translated to a single line of code:

x ¼ tfocs smooth quad; A;�bf g; proj l1 tauð Þð Þ;

The library was employed in Ren et al. (2017) for the minimization of a function
of estimation in which two priors are employed: the first a differential respect to a
new estimation based on TV of a central patch respect to a window of search
adaptive high-dimensional non-local total variation (AHNLTV) and the second a
weighted adaptive geometric duality (AGD). Figure 5.9 shows the visual com-
parison between bicubic interpolation and AHNLTV-AGD method after HR image
estimation.
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5.2.7.5 Total Variation

Total variation (TV) uses a regularization term as in MAP formulation. It applies
similar penalties for a smooth and a step edge, and it preserves edges and avoids
ringing effects; Eq. (5.33) is the term of TV,

qðf Þ ¼ rfk k1 ð5:33Þ

where ∇ is the gradient operator. The TV term can be weighted with an adaptive
spatial algorithm based on differences in the curvature. For example, the bilateral
total variation (BTV) (Farsiu et al. 2003) is used to approximate TV, and it is
defined in Eq. (5.34),

qðf Þ ¼
XP
k¼0

XP
l¼0

alþ 1 f � SkxS
l
yf

��� ���
1

ð5:34Þ

where Skx and Sly shift f by k and l pixels in the x and y directions to present several
scales of derivatives, 0\a\1 imposes a spatial decay on the results (Farsiu et al.
2003), and P is the scale at which the derivatives are calculated (so it calculates
derivatives at multiple scales of resolution (Farsiu et al. 2006). In (Wang et al.
2008), the authors discuss that an a priori term generates saturated data if it is
applied to unmanned aerial vehicle data. Therefore, it has been suggested to
combine it with the Hubert function, resulting in the BTV Hubert of Eq. (5.35),

q xj jð Þ ¼
rxj j2
2 ; if A\a

@A
@x othewise

(
; ð5:35Þ

Fig. 5.9 Visual comparison of the HR image using a bicubic interpolation and b AHNLTV-AGD
method
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where A is the BTV regularization term and a is obtained as a = median [|A −
median|A|�|]. This term keeps the smoothness of the continuous regions and pre-
serves edges in discontinuous regions (Wang et al. 2008). In (Li et al. 2010), a
locally adaptive version of BTV, called LABTV, has been introduced to provide a
balance between the suppression of noise and the preservation of image details (Li
et al. 2010). To do so, instead of the L1 norm an Lp norm is used. The value of p for
every pixel is defined based on the difference between the pixel and its surround-
ings. In smooth regions, where the noise reduction is important, p is set to a large
value, close to two, and in non-smooth regions, where edge preservation is
important, p is set to small values, close to one. The same idea of adaptive norms,
but using different methods for obtaining the weights, has been employed in (Omer
and Tanaka 2010; Song et al. 2010; Huang et al. 2011; Liu and Sun 2011;
Mochizuki et al. 2011).

5.2.7.6 Gradient Management

The gradients are a topic of interest in SR. The changes in the image are a funda-
mental evidence of the resolution, and a high-frequency content brings the maximal
changes of values between consecutive pixels in the image. The management of
gradient has been addressed in two forms: first, by using a dictionary of external
gradients of HR and second, by working directly on the LR image and recon-
structing the HR gradients with the context of the image and regularization terms.

In these methods (Sun et al. 2008; Wang et al. 2013), a relationship is estab-
lished in order to sharp the edges. In the first case, the gradients of an external
database of HR are analyzed, and with a dictionary technique, the gradients of the
LR input image are reconstructed. In the second case, the technique does not require
external dictionaries, the procedure is guided by the second derivative of the same
LR images amplified using pure interpolation, then a gradient scale factor is
incorporated extracted from the local characteristics of the image.

In this chapter, we propose a new algorithm of gradient management and the
application for a novel procedure of SR. For example, a bidirectional and orthog-
onal gradient field is employed. In our algorithm, two new procedures are proposed;
in the first, the gradient field employed is calculated as:

lru
Th ¼ Iuh

�1 �1 1
�1 0 1
�1 1 1

2
4

3
5 1
2

ð5:36Þ

Then, the procedure is integrated as shown in Fig. 5.10; for deeper under-
standing, refer to (Wang et al. 2013).

The second form of our procedure is the application of the gradient field with
independence. That is, the gradient fields are calculated by convolving the image
with discrete gradient operators of Eq. (5.37) to obtain the differences along
diagonal directions. The resulting model is shown in Fig. 5.11.
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ð5:37Þ

5.2.7.7 Hybrid BTV and Gradient Management

This section proposes the integration of two powerful tools for SR, the TV and
gradient control. In the proposed case, the gradient regularization is applied first
using the proposed model of Sect. 5.2.7.6. The technique produces some artifacts

Fig. 5.10 Overview of the proposed SR algorithm. First, two orthogonal and directional HR
gradients as well as a displacement field

Fig. 5.11 Bidirectional and orthogonal gradient management with independent branches
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when the amplification scale is high, and the regularization term takes high values.
The first problem is addressed by TV also exposed previously. This algorithm
brings an average of similar pixels around the image for estimation of the high
resolution. Here, two characteristics can collaborate for a better result.

The general procedure of the proposed method is shown in Fig. 5.12, and the
visual comparison between the LR image and the HR image is exposed in
Fig. 5.16. The proposed new algorithm is named orthogonal and directional gra-
dient management and bilateral total variation (ODGM-BTV). It is only an illus-
tration of the multiple possibilities for the creation of SR algorithms.

5.3 Results of the Proposed Methods

In this section, the results of the proposed methods are illustrated. Experiments on
test and real images are presented with scaling factors of 2, 3, and 4. The objective
metrics used were peak signal-to-noise ratio (PSNR) and the structural similarity
(SSIM), and results are given in Tables 5.1, 5.2, and 5.3. Subjective performance of
our SR schemes is evaluated in Figs. 5.13, 5.14, 5.15, and 5.16.

Fig. 5.12 Hybrid model for collaborative SR. The model combines the gradient control and BTV
strategies

Table 5.1 PSNR/SSIM comparison for multi-directional, diagonal, horizontal, and vertical
gradient management with a scale of 2

Method Decoupled total
gradient

Diagonal gradient Horiz–vert gradient Total gradient

Bike 0.6509/22.399 0.6547/22.321 0.6346/21.988 0.6507/22.026

Butterfly 0.7714/22.360 0.7714/22.580 0.7564/22.177 0.7634/22.237

Comic 0.5515/20.694 0.5540/20.628 0.5366/20.348 0.5633/20.697

Flower 0.7603/23.964 0.7553/26.221 0.7467/25.225 0.7691/24.710

Hat 0.8165/26.025 0.8163/25.888 0.8126/25.964 0.8168/26.284

Parrot 0.8648/27.378 0.8604/26.70 0.8602/26.594 0.8641/25.876

Parthenon 0.6585/20.632 0.6593/20.593 0.6451/20.371 0.6616/21.540

Plants 0.8480/23.298 0.8467/23.521 0.8418/28.645 0.8546/26.458
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5.3.1 Gradient Management

In these experiments, the group of images shown in Fig. 5.15, included in the
BSDS500 database, was used. The amplification factors were 2, 3, and 4.
Tables 5.1, 5.2, and 5.3 show the increment in PSNR and SSIM of the second

Table 5.2 PSNR/SSIM comparison for multi-directional, diagonal, horizontal, and vertical
gradient management with a scale of 3

Method Decoupled total
gradient

Diagonal gradient Horiz–vert gradient Total gradient

Bike 0.6103/21.83 0.5950/21.229 0.5956/21.405 0.5854/21.068

Butterfly 0.7345/22.23 0.7174/21.121 0.7199/21.124 0.7065/20.714

Comic 0.5074/20.12 0.4812/18.789 0.4985/19.859 0.4999/19.925

Flower 0.7275/24.37 0.7079/25.200 0.7185/25.007 0.7242/24.678

Hat 0.7996/26.43 0.7939/26.757 0.7965/25.967 0.7904/26.129

Parrot 0.8491/26.73 0.8363/25.901 0.8486/26.307 0.8371/24.253

Parthenon 0.6243/21.70 0.6091/21.777 0.6151/20.868 0.6137/22.001

Plants 0.8256/23.19 0.8103/23.372 0.8252/28.664 0.8248/26.432

Table 5.3 PSNR/SSIM comparison for multi-directional, diagonal, horizontal, and vertical
gradient management with scale of 4

Method Decoupled total
gradient

Diagonal gradient Horiz–vert gradient Total gradient

Bike 0.5498/20.9911 0.5197/19.3258 0.5368/20.6564 0.5325/20.7127

Butterfly 0.6806/20.7812 0.6532/19.0710 0.6552/18.0756 0.6613/19.9920

Comic 0.4451/19.4540 0.4156/18.0424 0.4363/19.0990 0.4417/19.3933

Flower 0.6713/24.5320 0.6440/24.0778 0.6644/24.5192 0.6697/24.0886

Hat 0.7723/26.4887 0.7633/26.2439 0.7684/26.2650 0.7673/26.1693

Parrot 0.8214/25.5286 0.8026/24.5686 0.8209/24.8905 0.8115/23.5459

Parthenon 0.5844/22.4052 0.5626/21.9254 0.5745/21.5580 0.5762/21.7595

Plants 0.7837/22.3791 0.7599/22.5480 0.7905/27.7839 0.7901/26.5721

Fig. 5.13 4� amplification factor using a test image with a diagonal, b horiz–vert, c coupled, and
d decoupled gradients
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alternative proposed with independence of the two gradient fields. Also, the test
image was used to observe the sharpening effect around contours, and the results
are shown in Fig. 5.13. Figure 5.14 shows the plot of the row 60, taken from the
test image of Fig. 5.13, to illustrate the edge transitions for the HR recovered
image.

Fig. 5.14 Slopes of the estimated HR image (row 60 of the test image in Fig. 5.13). The image
was processed using the two proposed algorithms with two orthogonal directions of the slopes
independently

Fig. 5.15 Processed images with the decoupled gradient algorithm. The scale factors are: 4� for
the top row of images, 3� for the second row of images, and 2� for the row of images at the
bottom
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5.3.2 Hybrid BTV and Gradient Management

Figure 5.16 shows the result of the proposed method ODGM-BTV using a scale of
amplification of 4.

Algorithm:

Input: LR image, iteration number
For i = 1: iteration number

1. Apply the BTV algorithm to the LR input image.
2. Apply the bidirectional orthogonal gradient management.
3. Update the LR input image with the HR output image.

end
Output HR image

5.4 Metrics

The PSNR in dBs of Eq. (5.38) and SSIM of Eq. (5.39) are the metrics most used
to evaluate SR algorithms.

PSNR ¼ 10 log10
v2max

MSEðx; yÞ
� �

; ð5:38Þ

where x and y are the two signals to compare, MSEðx; yÞ is the mean square error,
and vmax is the maximum possible value in the range of the signals. The SSIM
factor (Wang et al. 2004) is calculated as,

Fig. 5.16 Application of SR using the hybrid BTV and gradient management strategy with a scale
of amplification of q = 4, a low-resolution image and b application of ODGM-BTV
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SSIMðx; yÞ ¼ 2 lx ly þ c1
� �

2rxy þ c2
� �

l2x þ l2y þ c1
� 	

r2x þ r2y þ c2
� 	 ; ð5:39Þ

where lx and ly are the mean value of x and y, r2x , r
2
y , and rxy are the variance and

covariance of x and y; c1 and c2 are constants terms. Another metric derived from
the SSIM is the mean SSIM (MSSIM) of Eq. (5.40)

MSSIM ¼ 1
M

XM
j¼1

SSIMðxj; yjÞ; ð5:40Þ

where M is the number of the areas being compared.

5.4.1 Discussion of the Results

Tables 5.1, 5.2, and 5.3 show an enhancement of the quality parameters SSIM and
PSNR of our proposed method over the management of a single gradient. Also, the
scales of amplification are greater than 3 with major increments of the quality
factors for high scale factors. Our procedure employs a natural following of the
gradients, and let to give a more precise dimension of the slopes, it is an important
contribution to the state of the art of the algorithms of gradient management.
Although the goal of our chapter is an overview of complements for
super-resolution and not contributions of a novel algorithms or improvement of the
results in the state of the art. The overview shows that SR is a very rich field of
investigation. In each step, we can find a possibility of application of some method
using the strongest principle of functioning. An example is the combination of the
BTV and ODGM, the visual effect is very interesting in Fig. 5.16, and the major
resolution by area can be observed. The contribution in this case avoids artifacts
from gradient management, and at the same time, a less blurred image is obtained in
comparison with BTV method due to the sharping procedure over the edges.

The review of the literature brings some conclusions. The investigation in this
topic is extended, and the contributions for the state of the art are in the most of the
cases little changes over well-known procedures. Unfortunately, the goal is based
on a quality measurement and the benchmark for guide of the results is based on
different configurations of the Eqs. (5.38), (5.39), and (5.40). The consequence is
that the comparison between many reported algorithms and models is difficult and
not always possible. In this point, the borders between classifications of the
methods are diffused by this reason the comparison between methods in an over-
view more than attempts of classification and the explanation of the classification is
not useful. Nevertheless, the great creativity exhibited in the different methods and
the totally different mathematical solutions make it difficult to establish mathe-
matical comparisons and objective conclusions without considering only empirical
results based on measurement metrics.
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5.5 Conclusions

SR is an exciting and diverse subject in the digital processing area and can take all
possible forms. Each algorithm has a place in this area of research and is extremely
complex and comprehensive. The study of these techniques should be oriented from
the beginning because the development of each of them is broad and difficult to
reproduce. Sometimes, a small advance can be made in one of them. Also, the
initial condition is different in each case and some bases of comparison are required.
In the literature, some standard measurements are proposed but the application
conditions are diverse. A useful strategy to approach SR research is the knowledge
of the cause of preexisting algorithms. Advantages and disadvantages are important
factors to consider in order to combine characteristics that produce more convincing
effects and better qualities of the output image in a system. The proposed example
makes edge sharpening and average for estimation; the first method produces
artifacts, but the second fails to produce clear edges. A case was proposed in which
these two characteristics can be positively complemented. For future work, we
continue the study of multiple possibilities in the field of SR estimation using the
transformation of the image and learning from different characterizations as
wavelets fluctuations with dictionary learning. Other interesting field is the mini-
mization procedures for multiple residuals priors in the estimations as was made in
works as (Ren et al. 2017).
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