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Polynomial Chaos Methodology

The polynomial chaos methodology (PCM) is a rather recent approach, which offers

a large potential for computational fluid dynamics (CFD) related non-deterministic

simulations, as it allows the treatment of a large variety of stochastic variables and

properties that can be described by probability density functions (PDFs). The method

is based on a spectral representation of the uncertainty where the basis polynomials

contain the randomness, described by random variables 𝜉𝜉𝜉 with values in a set 𝛤 ,

and the unknown expansion coefficients are deterministic, resulting in deterministic

equations. More specifically, if u is a random variable indexed by a spatial variable

𝐱 ∈ D ⊆ ℝd
(typically, d = 3 in physical space) and time t ≥ 0, the so-called poly-

nomial chaos expansion (PCE) reads:

u(𝐱, t, 𝜉𝜉𝜉) ≃ ℙP[u](𝐱, t, 𝜉𝜉𝜉) =
P∑

i=0
ui(𝐱, t)𝜓i(𝜉𝜉𝜉) . (1)

In the above, ui are the deterministic unknown expansion coefficients and represent

the random mode i of the random variable u. 𝜓i are N-variate polynomials which

are functions of 𝜉𝜉𝜉 = (𝜉1, 𝜉2,… , 𝜉N) where 𝜉j is a random variable with values in a

set 𝛤j. N is the number of input uncertainties which is also the number of random
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dimensions. It is assumed that these variables are independent and are real valued,

and hence 𝛤 = 𝛤1 × 𝛤2 ×⋯ × 𝛤N ⊆ ℝN
. Input uncertainties could, e.g., be associ-

ated with uncertain operational conditions or uncertainty in the geometry. For an

external flow around an airplane, the inlet Mach number, angle of attack, inlet pres-

sure, etc., are examples of operational conditions. Geometrical uncertainties are then

uncertainties on the shape of the shape of the plane due to manufacturing tolerances.

It is clear that because of the uncertain input, any flow variable, say u becomes also

uncertain, and can therefore be described as in Eq. (1). The total number of terms

P + 1 used in (1) depends on the highest order of the polynomial that is used (denoted

by p) and on the number of random dimensions. One has, see [1]:

P + 1 =
(N + p)!
N!p!

. (2)

The methodology was originally formulated by Wiener [2] and was much later redis-

covered and used for CFD applications by several groups, e.g., Xiu and Karniadakis

[3], Lucor et al. [4], Le Maître et al. [5], Mathelin et al. [6], and Walters and Huyse

[7] among others.

In the original method of Wiener [2], the projection basis 𝜓i is constituted by

Hermite polynomials. These are optimal for random variables with Gaussian dis-

tribution. Optimal means that, for increasing polynomial order, the expansion will

quickly converge in the mean-square sense. The condition for optimality is that the

polynomials are orthogonal with a weighting function 𝜉𝜉𝜉 ↦ WN(𝜉𝜉𝜉) which is exactly

the PDF of the set of random variables, i.e.:

∫
𝛤

𝜓i(𝜉𝜉𝜉)𝜓j(𝜉𝜉𝜉)WN(𝜉𝜉𝜉)d𝜉𝜉𝜉 ∶= ⟨𝜓i, 𝜓j⟩ = 𝛾j𝛿ij , (3)

where 𝛿ij is the Kronecker symbol, and 𝛾j is a normalization constant. With a

proper scaling though, one can always normalize the polynomial basis such that

𝛾j ∶= ⟨𝜓j, 𝜓j⟩ = 1 ∀j. In the case of a multivariate Gaussian distribution, the Her-

mite polynomials satisfy the condition above with WN given by:

WN(𝜉𝜉𝜉) ≡
1√
(2𝜋)N

exp(−1
2
𝜉𝜉𝜉 ⋅ 𝜉𝜉𝜉) , (4)

where 𝜉𝜉𝜉 ⋅ 𝜉𝜉𝜉 =
∑N

j=1 𝜉
2
j is the standard Euclidian scalar product in ℝN

. Note that

because of the independence of the uncertainties, the PDF is the product of the PDF

of each of the uncertainties, i.e., WN(𝜉𝜉𝜉) =
∏N

j=1 W1(𝜉j) as defined above for Gaussian

uncertainties.

For uncertainties with other distributions, the orthogonality condition (3) gives

adapted polynomials, see e.g. [3], leading to the so-called Askey scheme; for exam-

ple, as already mentioned Hermite polynomials for Gaussian distributions, and

further Charlier polynomials for Poisson distributions, Laguerre polynomials for

Gamma distributions, Jacobi polynomials for Beta distributions, etc. In case of less
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common distributions, an optimal PCM can always be found by constructing the

polynomials via a Gram-Schmidt procedure; see Witteveen and Bijl [8], in order to

satisfy (3). It should be noted that, if the optimal polynomials are not used, the PCM

will also converge (with increasing order) in the mean-square sense but much slower

than the exponential convergence with optimal polynomials; see [1].

In cases where the response of the system shows a localized sharp variation or

a discontinuous change, local expansions may be more efficient than expansions

with global polynomials, whose convergence will deteriorate due to the Gibbs phe-

nomenon. This has led to developments using wavelet expansions [9] and to multi-

element polynomial chaos [10, 11]. In the latter case, the random space is subdi-

vided in smaller elements in which new random variables are defined with associated

orthogonal polynomials that are constructed numerically.

As already mentioned, the dimension of the problem N is determined by the num-

ber of independent random input variables. In case of a random process (as opposed

to a random variable), a Karhunen-Loève expansion (also known as Principal Com-

ponent Analysis or Proper Orthogonal Decomposition) [12, 13] can be applied to the

correlation function R(𝐱, 𝐲) of the random process u(𝐱) indexed by 𝐱 ∈ D , to decom-

pose the random input process in a set of uncorrelated random variables. Assuming

∫
D R(𝐱, 𝐱)d𝐱 < +∞ (which is untrue for a stationary process withD ≡ ℝd

) and solv-

ing the eigenvalue problem:

∫D

R(𝐱, 𝐲)𝜙i(𝐲)d𝐲 = 𝜆i𝜙i(𝐲) (5)

with 𝜙i(𝐱) the eigenfunctions and 𝜆i the eigenvalues, the Karhunen-Loève expansion

of the random field u(𝐱) becomes:

u(𝐱) − u(𝐱) =
∑

i

√
𝜆i𝜉i𝜙i(𝐱) , (6)

where the 𝜉is are uncorrelated random variables, and u(𝐱) is the mean value at the

indexation point 𝐱. Note that if the process u is Gaussian, the random variables 𝜉i are

Gaussian as well, and hence, they are mutually independent.

A geometrical uncertainty is typically a random process where the coordinates of

a geometry are uncertain with some specific correlation length. Depending on the

correlation length of the process, the eigenvalues 𝜆i become quickly very small, so

that only few terms in the summation above have to be kept. This is not the case

however for a very short correlation length (e.g., white noise) resulting in a high-

dimensional chaos expansion for such processes. Non-Gaussian random processes

are much more difficult to treat than Gaussian [14]. In the former case, mean and

covariance are far from sufficient to completely specify the process. This remains an

active area of research.

The PCM can be implemented either in an intrusive or in a non-intrusive way

as follows.
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Intrusive Polynomial Chaos

In an intrusive PCM, the polynomial expansion of the unknown variables, Eq. (1),

is introduced in the model, e.g., for CFD applications, the Navier–Stokes equations.

Each unknown u is therefore replaced with its expansion coefficients ui. The num-

ber of unknowns is therefore basically multiplied with a factor P + 1, which can be

quite high for high stochastic dimensions and/or high polynomial order. In addition,

the model, e.g., CFD code, has to be adapted. The required effort for extending a

deterministic CFD code with the intrusive PCM depends on the characteristics of

the code: computer language, structured/unstructured, handling of data storage, etc.

In the framework of the NODESIM-CFD EU project, an intrusive PCM was imple-

mented in the commercial code Fine/Turbo of NUMECA. This has led to one of

the first applications of intrusive PCM to three-dimensional turbulent Navier–Stokes

flows [15]. The number of additional lines of code is very limited, compared to the

length of the original, deterministic code. However, changes are not restricted to a

local part of the code. This increases the risk of introducing bugs and requires some-

one who is very familiar with all aspects of the code. This is a big disadvantage

compared to non-intrusive PC and the main reason why the application of intrusive

PCM in commercial codes is very limited.

Nonetheless intrusive methods are more flexible and in general more precise than

non-intrusive methods; see Aleksev et al. [16]. This is also confirmed by Xiu [14],

who mentions that the intrusive method offers the most accurate solutions involving

the least number of equations in multi-dimensional random spaces, even though the

resulting equations are coupled.

It is to be noted that the treatment of geometrical uncertainties needs a different

approach compared to operational uncertainties. A possibility is to use a transforma-

tion such that the deterministic problem in a stochastic domain becomes a stochas-

tic problem in a deterministic domain, e.g., Xiu and Tartakovsky [17]. An alterna-

tive is the use of a so-called fictitious domain method [18, 19], or by introducing

the uncertainty directly in the surface normals within a control volume approach

[20, 21].

Non-intrusive Polynomial Chaos

In the UMRIDA EU project, all PCM contributions relate to non-intrusive

approaches. Basically, two different classes of approaches have been formulated:

(i) the so-called projection method, which is based on a numerical evaluation of

the Galerkin integrals; see Le Maître et al. [5, 22, 23] and Nobile et al. [24]; (ii)

regression methods based on a selected set of sample points; see Berveiller et al.

[25], and Hosder et al. [26–28].
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In the projection methods, starting from Eq. (1), the projection on 𝜓j yields:

∫
𝛤

u(𝐱, t, 𝜉𝜉𝜉)𝜓j(𝜉𝜉𝜉)WN(𝜉𝜉𝜉)d𝜉𝜉𝜉 =
P∑

i=0
ui(𝐱, t)

∫
𝛤

𝜓i(𝜉𝜉𝜉)𝜓j(𝜉𝜉𝜉)WN(𝜉𝜉𝜉)d𝜉𝜉𝜉

= 𝛾juj(𝐱, t)
(7)

The last equation results from the orthogonality condition (3) and can be considered

as an equation for the unknown expansion coefficient uj. It requires the evaluation

of the integral in the left-hand side. A numerical quadrature formula is used. For a

single variable parameter, it reads:

∫
𝛤1

u(𝐱, t, 𝜉)𝜓j(𝜉)W1(𝜉)d𝜉 ≃
q∑

l=1
wlu(𝐱, t, 𝜉l)𝜓j(𝜉l) . (8)

The evaluation of the sum in the right-hand side requires an evaluation of the

unknown u in q sample points {𝜉l}1≤l≤q in 𝛤1 associated to q weights {wl}1≤l≤q.

Depending on the weighting function (PDF) W1, adapted Gaussian quadrature for-

mulations exist for an accurate evaluation: With q sample points, a polynomial

of order 2q − 1 is integrated exactly in one dimension. Examples are the Gauss-

Legendre quadrature (W1 = 1∕2 corresponding to a uniform distribution), the Gauss-

Hermite quadrature (W1 given by Eq. (4) in one dimension), etc. For a PCM of order

p, one takes q = p + 1. This guarantees exact quadrature if u(𝐱, t, 𝜉) can be described

by a polynomial of maximum order p + 1.

This extends to multiple stochastic dimensions by using a full-tensor product

quadrature with Q = qN sample points. This approach quickly becomes very expen-

sive for high-order and high stochastic dimensions. This has led to the use of sparse
grid sampling techniques, avoiding the full-tensorial sampling, e.g., the Smolyak

scheme [29]. Sparse grid schemes can be combined with the non-nested Gaus-

sian quadratures invoked above, as well as with nested quadratures, e.g., Clenshaw-

Curtis, Gauss-Patterson [30–33]. More recently, adaptive algorithms have been

developed that further reduce the cost [34–36]. The choice of quadrature sets is

discussed further on in section “Choices of Interpolation Set” in relation with the

stochastic collocation method. Alternatively, the numerical quadrature can also be

achieved using Monte Carlo simulation [37, 38], or Latin Hypercube sampling [39].

All in all, the evaluation of the left-hand side of Eq. (7) using Q sampling points

{𝜉𝜉𝜉l}1≤l≤Q in 𝛤 associated to Q weights {wl}1≤l≤Q yields:

u(𝐱, t, 𝜉𝜉𝜉) ≃ ℙP
Q[u](𝐱, t, 𝜉𝜉𝜉) =

P∑

i=0

(
1
𝛾 i

Q∑

l=1
wlu(𝐱, t, 𝜉𝜉𝜉l)𝜓i(𝜉𝜉𝜉

l)

)
𝜓i(𝜉𝜉𝜉) . (9)

In linear regression methods, the stochastic problem is solved in S samples in

stochastic space. For each sample s, Eq. (1) can be written as:
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u(𝐱, t, 𝜉𝜉𝜉s) =
P∑

i=0
ui(𝐱, t)𝜓i(𝜉𝜉𝜉

s) . (10)

This leads to S equations for the P + 1 unknowns ui. Note that this forms a linear

system. In order to make the solution less dependent on the choice of the samples,

oversampling is used and the system is solved with regression (i.e., the least squares

method); see Berveiller et al. [25] and Hosder et al. [26–28]. As a rule of thumb,

S = 2(P + 1) is a good choice; see [27]. Different sampling techniques can be used

such as Random, Latin Hypercube, Hammersley [27], roots of Hermite polynomials

of order p + 1 (for PCM of order p with Gaussian uncertainties) [25], Sobol’ quasi-

random sampling [40], etc.

In case of geometrical uncertainties, each of the different samples–both in the pro-

jection and the regression method–will correspond to a different geometry. Geomet-

rical uncertainties therefore require no special treatment in contrast with the intrusive

method.

The Collocation Method

The stochastic collocation (SC) method based on Lagrange interpolation has been

introduced in [41] and developed further on in e.g. [24, 42–45]. Examples of appli-

cations can be found in [46–51] among others. Along the same lines as Eq. (1),

the SC expansion is formed as a sum of multi-dimensional Lagrange interpolation

polynomials with respect to the N–dimensional random input variable 𝜉𝜉𝜉. Lagrange

polynomials interpolate a set of points in one dimension {𝜉l1}1≤l≤q1 in a bounded

interval 𝛤1 by the following functional form:

Ll(𝜉) =
q1∏

k = 1
k ≠ l

𝜉 − 𝜉k1

𝜉l1 − 𝜉k1

, (11)

such that Ll(𝜉k1) = 𝛿kl, 1 ≤ k, l ≤ q1; in addition, all Ll’s have order q1 − 1. For inter-

polation in multiple dimensions, the tensor product of one-dimensional Lagrange

polynomials can be formed. Eventually at this stage, it is assumed that the interpola-

tion set is formed by tensorization of one-dimensional sets. In other words, structured

interpolation sets are considered, for multivariate Lagrange interpolation on unstruc-

tured, arbitrary sets of nodes still raises numerous theoretical and practical difficul-

ties. Letting 𝐥 = (l1, l2 … lN) be a multi-index in ℕN ⧵ {𝟎}, the multi-dimensional

Lagrange polynomial L𝐥 reads:

L𝐥(𝜉𝜉𝜉) = Ll1 (𝜉1)⊗ Ll2 (𝜉2)⊗⋯⊗ LlN (𝜉N) , (12)

where different interpolation sets {𝜉lj}1≤l≤qj in different intervals 𝛤j may possibly be

used for each different dimension j. If Q is now the total number of such multi-
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dimensional interpolation points counted by a single index l, {𝜉𝜉𝜉l}1≤l≤Q, the SC

expansion of the random field u reads:

u(𝐱, t, 𝜉𝜉𝜉) ≃ 𝕀Q[u](𝐱, t, 𝜉𝜉𝜉) =
Q∑

l=1
u(𝐱, t, 𝜉𝜉𝜉l)Ll(𝜉𝜉𝜉) , (13)

where the expansion coefficients are the random field evaluated at 𝜉𝜉𝜉
l
.

Choices of Interpolation Set

The key issue of the SC method is the choice of appropriate interpolation sets. A

natural, straightforward choice is quadrature nodes and weights as in Eq. (8). Multi-

dimensional quadrature sets 𝛩𝛩𝛩(N,Q) = {𝜉𝜉𝜉l,wl}1≤l≤Q, where 𝜉𝜉𝜉
l

is the l-th node in

𝛤 =
∏N

j=1 𝛤j and wl
is the corresponding weight, may be constructed from one-

dimensional (univariate) quadrature sets by full tensorization or sparse tensorization,

using Smolyak’s algorithm [29] as already invoked above.

Univariate Gauss quadratures 𝛩(1, q1) based on q1 integration points are tailored

to integrate on 𝛤1 ≡ [a, b] a smooth function 𝜉 ↦ f (𝜉):

∫
𝛤1

f (𝜉)W1(𝜉)d𝜉 ≃
q1−r∑

l=1
wlf (𝜉l) +

r∑

m=1
wq1−r+mf (𝜉q1−r+m) , (14)

such that this rule turns to be exact for univariate polynomials up to the order

2q1 − 1 − r. Here, r is the number of fixed nodes of the rule, typically the bounds

a, b. Depending on the choice of r, different terminologies are used:

∙ r = 0 is the classical Gauss rule;

∙ r = 1 is the Gauss-Radau (GR) rule, choosing 𝜉q1 = a or 𝜉q1 = b for instance;

∙ r = 2 is the Gauss-Lobatto (GL) rule, choosing 𝜉q1−1 = a and 𝜉q1 = b for instance.

Multivariate quadratures may subsequently be obtained by full or sparse tensoriza-

tion of these one-dimensional rules. Firstly, a fully tensorized grid is obtained by the

straightforward product rule:

𝛩𝛩𝛩(N,Q) =
N⨂

j=1
𝛩(1, qj) , (15)

which contains Q =
∏N

j=1 qj grid points in 𝛤 . Secondly, a sparse quadrature rule

can be derived thank to the Smolyak algorithm [29]. The so-called k–th level, N-

dimensional Smolyak sparse grid 𝛩̂𝛩𝛩(N, k) is obtained by the following linear combi-

nation of product formulas [52]:
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Fig. 1 Two-dimensional (N = 2) nodes based on a non-nested, one-dimensional Gauss-Lobatto

quadrature rule with q = 9 nodes. Left: fully tensorized grid (Q = 81). Right: sparse tensorized

grid from Smolyak’s algorithm with k = 9 (Q = 193)

𝛩̂𝛩𝛩(N, k) =
k−1∑

l=k−N

∑

q1+⋯+qN=N+l
𝛩(1, q1)⊗⋯⊗𝛩(1, qN) . (16)

Clearly, the above sparse grid is a subset of the full-tensor product grids. It typically

contains Q ∼ (2N)k−1∕k − 1! nodes in 𝛤 whenever N ≫ 1 and k is fixed. By a direct

extension of the arguments divised in [31, 33], it can be shown that provided the

univariate quadrature rules 𝛩(1, q) are exact for all univariate polynomials of order

up to 2q − 1 (Gauss rules) or 2q − 3 (GL rules), the foregoing rule is exact for all

N–variate polynomials of total order up to 2k − 1 or 2k − 3, respectively. Figure 1

displays for example the two-dimensional full and sparse rules for an underlying

univariate GL quadrature (14) with q = 9 nodes andW1(𝜉) = (1 − 𝜉2)3,𝛤1 = [−1, 1].
For this example:

𝛩̂𝛩𝛩(2, 9) = 𝛩(1, 2)⊗𝛩(1, 7) + 𝛩(1, 3)⊗𝛩(1, 6) + 𝛩(1, 4)⊗𝛩(1, 5)
+ 𝛩(1, 2)⊗𝛩(1, 8) + 𝛩(1, 3)⊗𝛩(1, 7) + 𝛩(1, 4)⊗𝛩(1, 6)
+ 𝛩(1, 5)⊗𝛩(1, 5) + perm.

Here,Q = 193, compared toQ = 81with the fully tensorized rule (15). In [53], it has

been observed that sparse quadratures outperform fully tensorized quadratures with

non-nested underlying one-dimensional rules whenever N ≥ 4, though. If 𝛩(1, qi) is

now Clenshaw-Curtis (CC) univariate quadrature of i-th level for i > 1, such that:

𝜉l = −cos (l − 1)𝜋
qi − 1

, 1 ≤ l ≤ qi = 2i−1 + 1 ,

then the associated third-level bivariate sparse rule as constructed in, e.g., [32] for,

say, q = 9 is:
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Fig. 2 Two-dimensional (N = 2) nodes based on a nested, one-dimensional Clenshaw-Curtis

quadrature rule with q = 9 nodes. Left: fully tensorized grid (Q = 81). Right: sparse tensorized

grid from Smolyak’s algorithm with k = 3 (Q = 29)

𝛩̂𝛩𝛩(2, 3) = 𝛩(1, 1)⊗𝛩(1, 5) + 𝛩(1, 3)⊗𝛩(1, 3)
+ 𝛩(1, 1)⊗𝛩(1, 9) + 𝛩(1, 3)⊗𝛩(1, 5) + perm.

(17)

The underlying univariate CC rules 𝛩(1, qi) are nested, that is, 𝛩(1, qi) ⊂ 𝛩(1, qi+1),
and consequently, the multivariate rules are nested as well, 𝛩̂𝛩𝛩(N, k) ⊂ 𝛩̂𝛩𝛩(N, k + 1).
They are in addition exact at least for all multivariate polynomials of total order

k [32]. Figure 2 displays the two-dimensional full rule (15) and third-level sparse

rule (17) corresponding to the univariate CC quadrature with q = 9 nodes. The total

number of nodes is significantly reduced with such a nested rule.

Link with Polynomial Chaos

The multi-dimensional Lagrange polynomials may be expanded on the

multi-dimensional polynomial chaos basis {𝜓i}0≤i≤P as in Eq. (1):

Ll(𝜉𝜉𝜉) =
P∑

i=0
⟨Ll, 𝜓i⟩𝜓i(𝜉𝜉𝜉) , 1 ≤ l ≤ Q ,

where P is given by Eq. (2) with polynomial total order p =
∑N

j=1 qj − N. The

expansion coefficients 𝓁li ∶= ⟨Ll, 𝜓i⟩ can be evaluated with the quadrature rule

{𝜉𝜉𝜉l,wl}1≤l≤Q also used as the interpolation set:

𝓁li ≃
1
𝛾
Q
i

Q∑

m=1
wmLl(𝜉𝜉𝜉

m)𝜓i(𝜉𝜉𝜉
m) = 1

𝛾
Q
i

wl𝜓i(𝜉𝜉𝜉
l) ,

where the second equality stems from the very definition of Lagrange polynomials.

Here, 𝛾
Q
i =

∑Q
l=1 w

l(𝜓i(𝜉𝜉𝜉
l))2 is the normalization constant for the polynomial chaos,
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which is simply 𝛾
Q
i = 𝛾i if the quadrature rule integrates exactly polynomials of total

order 2p. Consequently, the SC expansion (13) of the random field u reads:

𝕀Q[u](𝐱, t, 𝜉𝜉𝜉) ≃ 𝕀QP [u](𝐱, t, 𝜉𝜉𝜉) =
Q∑

l=1
u(𝐱, t, 𝜉𝜉𝜉l)

P∑

i=0

1
𝛾
Q
i

wl𝜓i(𝜉𝜉𝜉
l)𝜓i(𝜉𝜉𝜉)

=
P∑

i=0

(
1
𝛾
Q
i

Q∑

l=1
wlu(𝐱, t, 𝜉𝜉𝜉l)𝜓i(𝜉𝜉𝜉

l)

)
𝜓i(𝜉𝜉𝜉) .

(18)

The bracketed sum above is the evaluation of the PC expansion coefficients ui by

the quadrature rule at hand. Hence, both PC and SC expansions are mathematically

equivalent, 𝕀QP ≡ ℙP
Q, though they are numerically slightly different [54].

Application to Uncertainty Quantification (UQ)

Once the polynomial expansion (1) or (13) has been derived, the first moments and/or

cumulants of the random field u can be computed using a quadrature rule 𝛩𝛩𝛩(N,Q)
and associated evaluations u(𝐱, t, 𝜉𝜉𝜉l), 1 ≤ l ≤ Q. Indeed, for a regular function u ↦
f (u), one can estimate a mean output functional by:

𝔼{f (u)}(𝐱, t) =
∫
𝛤

f (u(𝐱, t, 𝜉𝜉𝜉))WN(𝜉𝜉𝜉)d𝜉𝜉𝜉 ≃
Q∑

l=1
wlf (u(𝐱, t, 𝜉𝜉𝜉l)) .

The mean 𝜇 is obtained for f (u) = u, the variance 𝜎2
is obtained for f (u) = (u − 𝜇)2,

the skewness 𝛽1 for f (u) = ( u−𝜇
𝜎
)3, the kurtosis 𝛽2 for f (u) = ( u−𝜇

𝜎
)4, etc. More gen-

erally, the j-th moment mj is obtained for f (u) = uj and may be used to compute the

characteristic function 𝛷U:

𝛷U(V) =
∫

eiU⋅VWU(dU) =
+∞∑

j=0

mj

j!
(iU)j ,

where by the causality principle (or transport of PDFs) for the random variable U ∼
u(⋅, 𝜉𝜉𝜉) one has:

WU(dU) =
||||
du−1
dU

||||
WN(u−1(dU)) .

Sobol’ sensitivity indices or global sensitivity indices may be computed alike; see

[14, 53, 55–57] and references therein. Denoting by Ij the set of indices corre-

sponding to the polynomials 𝜓k depending only on the j-th variable parameter 𝜉j, the

main-effect PCE-based Sobol’ indices are given by (see e.g. Sudret [57]):
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Sj(𝐱, t) =
1
𝜎2

∑

k∈I j

𝛾k(uk(𝐱, t))2 ,

owing to the normalization condition (3). More generally, if Ij1j2…js is the set of

indices corresponding to the polynomials 𝜓k depending only on the parameters

𝜉j1 , 𝜉j2 ,… 𝜉js , the s-fold joint PCE-based Sobol’ indices are:

Sj1j2…js (𝐱, t) =
1
𝜎2

∑

k∈I j1 j2…js

𝛾k(uk(𝐱, t))2 .

Conclusions

In this chapter, we have outlined the main ingredients of polynomial expansion meth-

ods for the pseudo-spectral analysis of random variables and fields, using either pro-

jections on orthonormal polynomials–the generalized polynomial chaos method, or

interpolations on Lagrange polynomials–the stochastic collocation method. We have

also shown how both approaches are actually intimately connected by a proper choice

of the integration/interpolation nodal sets used to compute the polynomial expansion

coefficients. However, alternative strategies have been recently considered in order to

evaluate them, which are detailed in the following chapters

“Generalized Polynomial Chaos for Non-intrusive Uncertainty Quantification in

Computational Fluid Dynamics” through “Screening Analysis and Adaptive Aparse

Collocation Methods”. Applications to uncertainty quantification and robust design

optimization for industrial challenges are given in parts III and IV.
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