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Introduction

In the context of aerodynamic design under uncertainty, surrogate modeling is
considered as one of the suitable approaches to efficiently calculate statistics of the
quantity of interest (QoI) under scattered data. The surrogate model-based
approaches to UQ here in this chapter are the method that the statistics ideally
computed by a large number of data information are obtained by complementary
data by an assistance of surrogate models in the uncertainty parameters space. The
scattered data as sample points is produced by using Design of Experiments
(DOE) and adaptive sampling if necessary in this chapter. The dependency of the
statistics of the QoI on the number and distribution of sample points used to build a
surrogate model and on the kind of surrogate model is discussed in [1]. In the case
of robust design, the statistical value of interest is the sum of the mean and standard
deviation of the QoI, or its maximum value. Each of them is considered as the
objective function in optimization processes. Note that QoI here is lift coefficient
Clð Þ or drag coefficient Cdð Þ evaluated by a CFD computation.
In this chapter as Best Practice Guide it is discussed which kind of methods are

the most efficient for computing the statistics of QoI as the objective function in
certain tolerances of accuracy compared to the reference, e.g., one drag count
(=10−4). The errors less than this order can be sometimes regarded as epistemic
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uncertainties due to imperfectness of CFD solvers. To accurately and efficiently
compute the statistical values of interest, we focus on the following three aspects:

• Type of surrogate model;
• Number of sample points (used to build the surrogate model); and
• Distribution of sample points (used to build the surrogate model).

The type of surrogate models and a sufficient number of sample points are firstly
shown in section “Selection of Surrogate Models and the Number of Samples”.
Then, efficient sampling techniques considering both the number and distribution of
sample points are introduced in section “Sampling Techniques for Different Mea-
sures of Robustness” for computing the above-mentioned two kinds of objective
functions in the robust design optimization. The CFD solver used to evaluate the
aerodynamic coefficients on the sample points is the DLR-TAU-code [2–4]. Fully
turbulent computations were performed with the negative Spalart–Allmaras tur-
bulence model [5]. A quasi-two-dimensional hybrid unstructured grid with prisms
and tetrahedral elements was used for the RANS simulations.

Selection of Surrogate Models and the Number of Samples

The points to discuss here are which surrogate model is used and how many sample
points are selected. The direct integration of quasi-Monte Carlo (QMC) sampling,
Kriging, and GEK are compared. The comparison is performed in terms of the
accuracy of the statistics for a given number of samples used to build the surrogate
model. The influence of different numbers of samples is also studied. The distri-
bution of the sample points is based on the Sobol sequence [6–8], maintaining a
high degree of “uniformity” (low-discrepancy) of samples even in high-dimensional
cases (≥ 10). Figure 1 shows the distributions of mean and standard deviation of
estimated lift coefficient Clð Þ [9]. Details of the test case are introduced in [9]. GEK
requires the gradients with respect to the input uncertainty parameters, which can be
efficiently computed by an adjoint solver. Therefore, Nc = 2 N in case of GEK
where N is the number of sample points. Note that the input uncertainty space is 26
dimensions in this test case.

As can be observed in Fig. 1, GEK has comprehensively less errors than the
others and converges faster than Kriging along with increase of the number of
samples. One can observe that the errors of them when the number of sample points
is more than around 15 (Nc ≈ 30 in Fig. 1) nearly converge to the reference. This is
one reason why GEK is recommended.

Another reason to use GEK is further efficiency in high-dimensional cases.
When GEK is used, the scattered data information to build a GEK surrogate model
is efficiently replenished since the computational cost of an adjoint solver is
independent of the dimensionality. This could compensate one of the bottlenecks
that the number of sample points should be increased with of the dimensionality
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(details can be referred in [10]). We judge that the required number of sample points
to satisfy the good accuracy does not change so much even if the dimensionality
increases.

Because of the above-mentioned reasons, our conclusion of selecting surrogate
models is GEK when the gradients of the QoI are able to be calculated efficiently by
an adjoint solver. The number of sample points can be more than around 15.
More details on the number of sample points and sampling techniques are intro-
duced in the next section.

Sampling Techniques for Different Measures of Robustness

Criteria to Assess the Accuracy of the Statistics of QoI

Here, we focus also on the accuracy of specific statistical values of the QoI by GEK
(also Kriging as comparison) with different distributions of the sample points. Two
fixed numbers of sample points (12 and 30) are used to be compared with each
other. The QoI considered here is the drag coefficient Cdð Þ. The measures of
robustness (objective functions) f considered here are:

f ≡ μCd
+ σCd ð1Þ

f ≡ max
u

Cd uð Þð Þ ð2Þ

where u denotes input uncertainty parameters whose dimensionality is 12 in the
applications to the UMRIDA BC-02 test case. The optimizations of these stochastic
quantities are called “expectation measure with mean-risk approach” and

nc=30 nc=30

Fig. 1 Convergence of estimate Cl statistics (mean and standard deviation) to the reference
statistics by various UQ methods (note that Nc = 2 N in case of GEK because only the gradient of
Cl was considered, while Nc = N for Kriging and QMC) [10]

Surrogate Model-Based Approaches to UQ and Their Range … 705



“worst-case risk measure,” respectively. These statistics expressed by Eqs. (1) and
(2) are ideally uniquely determined under fixed probability density functions (pdfs)
of the input uncertainty parameters u. Note that the pdfs of the input uncertainty
parameters are assumed to be normally distributed. Details of these equations on
how to calculate f by using surrogate models can be seen in [1].

The accuracy is assessed in terms of the following three criteria:

(1) The expected value (mean) μf of f obtained for different distributions of the
sample points;

(2) The dispersion (standard deviation) σf of f obtained for different distributions
of the sample points; and

(3) The influence of the above two values μf and σf on the result of robust design,
fopt, χopt.

The first and second criteria are to investigate the accuracy of f itself. The third
criterion is then for examining the accuracy of the optimal solutions in terms of
fopt, χopt in applications to robust design. The closer the mean μf is to the reference
fref and the closer the standard deviation σf is to 0, the better the accuracy of the
estimated f .

The different sets of the sample points are achieved by consecutive rows in the
Sobol sequence where “uniformity” (low-discrepancy) is maintained. Three dif-
ferent sets of 30 sample points in two dimensions are shown in Fig. 2i as an
example. Each set of sample points was constructed by extracting 30 consecutive
rows in the Sobol sequence. These different sets of sample points are transformed
by using the cumulative density function (cdf) of uncertain input parameters (e.g.,
see Fig. 2ii). The uniformity is conserved for each set of sample points. The reason
why different sets of sample points are used is as follows.

In robust design, the robustness measures expressed by Eqs. (1) and (2) have to
be evaluated at every iteration of the optimization, corresponding to different design
variables. In other words, a new surrogate model needs to be built at each iteration
and the statistics are evaluated on the surrogate model. Assuming a fixed number of
samples and a low-discrepancy distribution of the samples, ideally the statistics
should be insensitive to the sample set used to build the surrogate model. The
surrogate models we use here allow for different sample sets to be used. This
advantage is used below to study the effect of the sample set on the accuracy of the
statistics; see Fig. 3.

Note that in this section, Kriging and GEK with a Gaussian kernel (correlation
function) were adopted and the hyperparameters were optimized by a global
optimizer (a differential evolution algorithm was used) by maximum likelihood
estimation (MLE).

706 D. Maruyama et al.



0

0.5

1

y

x

0

0.5

1

y
x

0

0.5

1

y

x

-3

-2

-1

0

1

2

3

y

x

-3

-2

-1

0

1

2

3

y

x

-3

-2

-1

0

1

2

3

0 0.5 1 0 0.5 1 0 0.5 1

-3 -2 2-1 10 210 2103 -3 -2 -1 3 -3 -2 -1 3
y

x

(i) Uniform distribution (Original Sobol sequence)

(ii) Normal distribution (transformed from (i) by (    )1,0N

Set 1 Set 2 Set 3

Set 1 Set 2 Set 3
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sequence), (i) the number of which is 30 in two-dimensional, and (ii) their transformation into the
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190

200

210

220

230

240

250

260

0 20 40 60 80 100

Co
st

 F
un

ct
io

n 
f (

f
Cd

+μ
Cd

) [
ct

s.
]

Index of Set of Sample Points [-]

(a*) 12 Samples + Kriging

(b*) 30 samples + Kriging

(a) 12 Samples + GEK

(b) 30 Samples + GEK

Reference

1 ct. = 10-4

10 cts.

Fig. 3 Cost function f f ≡ μCd + σCdð Þ distributions evaluated by 100 different sets of sample
points for (a) 12 samples with GEK, (b) 30 samples with GEK, (a*) 12 samples with Kriging, (b*)
30 samples with Kriging

Surrogate Model-Based Approaches to UQ and Their Range … 707



Results

Here, two investigations in terms of the criteria (1)–(3) are demonstrated, leading
to the best approaches to quantify/optimize the robustness represented by Eqs. (1)
and (2).

Investigation of the number of sample points

The first investigation is about influences due to the number of sample points when
different sets of sample points of the Sobol sequence are used. The criteria (1)–(3)
introduced in the previous sub-section are firstly investigated by using the statistical
value f of Eq. (1) as f ≡ μCd + σCd. The following two numbers of sample points
are discussed:

(a) 12 samples; and
(b) 30 samples.

Figure 3 shows the cost function f distributions evaluated by 100 different sets
of sample points for (a) and (b) extracted from arbitrary consecutive rows of the
Sobol sequences. Considering the cases that an adjoint solver is not available, the
results obtained by using Kriging are also described as (a*) and (b*) for compar-
ison. The reference value in the figure was evaluated by direct integration of 105

Sobol sequence samples. It can be observed that the cost function f evaluated by
using GEK has tendency of less dispersions and better agreement with the reference
than Kriging. The criteria (1) and (2) in the previous sub-section are discussed here
with Fig. 3. Now the mean μf and standard deviation σf of these distributions can
be calculated from the 100 cost functions f1 ∼ f100 in Fig. 3.

Figure 4 summarizes μf and σf , which represent the accuracy of (a) and (b) from
the above-mentioned criteria (1) and (2). μf is transformed into the absolute error as
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μf − fref
�� ��, where fref is the reference value. The computational cost as the hori-
zontal axis is simply counted by the number of CFD computations with an
assumption that the additional computational cost of the adjoint calculation for
GEK is identical to that of the state calculation of flow in CFD. Concerning the
error tolerances, the errors are discussed with the order of the drag count (where one
drag count is 10−4 and is denoted as 1 ct.) since the epistemic uncertainties caused
by CFD is considered to be not completely negligible in the order of less than 1 ct.

μf in (a) and (b) (12 and 30 samples with GEK) have few differences (see
Fig. 4i). This fact is in a good agreement with the conclusion in the previous section
(see also Fig. 1). On the contrary, σf decreases with increase of the number of
samples (see Fig. 4ii). The errors of both μf and σf in (b) are less than 1 ct. How σf
influences to the optimum solution is introduced next. Note that it can be observed
from Fig. 4 that “(a) 12 samples with GEK” is even better than “(b*) 30 samples
with Kriging” in terms of both accuracy for μf and σf , and efficiency.

Now the criterion (3) is discussed with results of applications to robust design
optimization. Details of the optimization procedure can be seen in [11]. Figures 5
and 6 show the optimization histories of the cost function f f ≡ μCd + σCdð Þ and
design variables χ . The cost function f of Figs. 5 and 6 at each iteration was
computed by (a) and (b), respectively. We can observe that the optimum results f is
quite different from each other. This can be confirmed in the areas where the design
variables are almost constant; i.e., the configuration is almost fixed. This fact is
caused by the difference of σf in Fig. 4ii while the mean value μf in Fig. 4i is
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almost constant. Table 1 summarizes the cost function f of the two designed air-
foils, which were re-evaluated by the common strategy (b) 30 samples. This table
clarifies that more accurate evaluation could lead to an optimal solution with better
performance.

Finally as comparison, a fixed set of sample points (see Fig. 2i), i.e. a fixed
consecutive row of the Sobol sequence is added as another type of sampling
technique for comparison:

(c) 30 samples (by using a fixed set of sample points).

The set of sample points which has the closest f to bf was picked up from f1 ∼ f100
in Fig. 3 and that set of sample points was fixed and used for each iterative process.
The histories of f , χ and the re-evaluated f of the optimum configuration are shown
in Fig. 7 and Table 1, respectively. There are few differences between the sampling
strategies (b) 30 samples and (c) 30 samples (by using a fixed set of sample points).
The conclusion here is that σf due to different sets of sample points is important
here as “another indicator” to determine the number of sample points.

Marker : Objective Function f (f=μCd+ Cd)
Lines     : Design Variables (10)

30 Sobol samples with GEK

Area of few changes of
design variables

Estimated mean values
in this fixed-configuration area

Optimum
10 drag counts

Fig. 6 Histories of objective function evaluated by (b) 30 samples with GEK and design variables
in robust design optimization (RDO)

Table 1 Values of objective function f f ≡ μCd + σCdð Þ of optimized airfoils obtained by different
strategies (a) 12 samples, (b) 30 samples, (c) 30 samples (by using a fixed set of sample points)

(a) (cts.) (b) (cts.) (c) (cts.)

μCd
144.4 135.9 136.2

σCd 14.1 9.9 10.8

f ≡ μCd
+ σCd

� �
158.5 145.8 147.0
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Investigation of distribution of sample points

In the second investigation, more details of influences of distribution of sample
points are demonstrated. That is, the distributions of the sample points are not only
by the original Sobol sequence but the one transformed into input pdf (normal
distributions here, see Fig. 2ii) and/or the one with dynamic infilled sample points.
The number of samples and the surrogate model are fixed at 30 and GEK,
respectively. The sampling techniques used are:

(a) input pdf (normal distributions);

(b) uniform distributions;

(c) uniform distributions and an adaptive sampling.

Suitable sample techniques for different measures of robustness (statistical val-
ues of QoI) are introduced in [1]. The results obtained here are straightforward as
follows:

• For evaluating mean and standard deviation of QoI (expectation measure with
mean-risk approach) represented by Eq. (1), the same distributions as the pdf of
the input uncertainty parameters (normal distributions are often used) can be
applicable.

• For evaluating maximum or minimum value of QoI (worst-case risk measure)
represented by Eq. (2), an adaptive sampling technique in the uniform distri-
butions leads to good accuracy.
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Qualitative substantiation of them is demonstrated here. Figures 8 and 9 show
cost function f f ≡ μCd + σCdð and f ≡ maxu Cd uð Þð Þ, respectively) distributions
evaluated by 100 different sets of Sobol sample points by (a) input pdf (normal
distributions), (b) uniform distributions, (c) uniform distributions with adaptive
sampling (only for Fig. 9), and μf and σf , as with Figs. 3 and 4 for the first
approach. The adaptive sampling technique here is an Expected-Improvement (EI)-
based approach to search for the maximum or minimum value of QoI on the
surrogate model. The initial sample points are the Sobol sequence with 24 points.
The surrogate model is updated in stages by an imposed sample point until the total
number of sample points reaches to 30. Details of the adaptive sampling technique
can be found in [1].

In Fig. 8, for the cost function f ≡ μCd + σCd by Eq. (1), μf and σf by the input pdf
(normal distributions) are lower than the uniform distributions and are lower than 1
ct, respectively. Note that μf and σf by the normal distributions correspond to (b) 30
samples in Figs. 2 and 3, and also its optimization result can be seen in Fig. 5.

On the other hand, for the cost function f ≡ maxu Cd uð Þð Þ by Eq. (2), the
expected value μf by the input pdf (normal distributions) is lower than 1 ct.,
whereas σf is quite large as can be also confirmed in Fig. 9(a) that f varies widely
with different sets of the Sobol sample points. On the contrary, σf by the uniform
distributions is low but μf is overestimated with around 3 cts. as also can be seen in
Fig. 9(a). The uniform distributions with an adaptive sampling technique bring the
same accuracy as the input pdf for f ≡ μCd + σCd in terms of both μf and σf , which
are less than 1 ct.

In this chapter, the types of surrogate models, the number and distribution of
sample points were discussed. In the worst-case risk measure, dynamic adaptive
sampling techniques are necessary to keep the same order of accuracy as the
expectation measure with mean-risk approach. Further improvement of the accu-
racy of evaluating the cost functions could be led by a variety of adaptive sampling
techniques to enhance the quality of the Kriging-based surrogate models [12, 13].
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Summary

The accuracy and efficiency of surrogate model-based approaches to UQ and their
application to robust design were demonstrated for the UMRIDA BC-02 test case.
Twelve uncertain parameters, yielding a 12-dimensional input parameter space for
surrogate model construction, were considered. Both Kriging and gradient-
enhanced Kriging (GEK) were investigated. GEK was shown to lead to a good
agreement of the statistical values such as the mean and standard deviation of the
aerodynamic coefficients with reference values when the number of samples is more
than around 12. GEK is the best choice when an adjoint solver is available. The
accuracy of the statistics was also investigated from the point of view of how the
sampling influences the surrogate model used in robust design. It was confirmed
that the error dispersions of the statistical cost function is a function of the number
of samples, the distribution of the samples. Sampling techniques in accordance with
statistics to be evaluated are required to reduce the error dispersion and to achieve
good robust design solutions. Different robustness measures can be evaluated
accurately to within one drag count by using 30 sample points.
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