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Introduction

With Monte Carlo (MC) methods, we identify a broad class of approaches that rely
on the idea of approximating statistics of the response of a system by simulation
through sampling. Because of its simplicity, robustness, and dimension independent
convergence rate, MC methods can be used to characterize, in principle, any system
that has a probabilistic interpretation. MC methods are often the easiest way, and
sometimes the only feasible one, to solve a wide range high-dimensional problems.

Hereafter, we will denote random variables with capital letters and realizations of
those with lower case letters. Vectors and matrices are shown in bold.
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Suppose we are interested in computing the expected value E[Q] of a quantity of
interest (QoI) Q = Q(X) of a problem having some random elementsX. Assumewe
can generate N independent and identically distributed (i.i.d.) realizations X (i), i =
1, ..., N and for each of them evaluate the corresponding QOI Q(i) = Q(X (i)). Then
the MC estimator for the expectation E[Q] of Q is defined as:

EMC[Q] := 1

N

N∑

i=1

Q(X (i)). (1)

The simulation procedure that makes use of i.i.d. samples and the MC estimator
introduced in Eq. (1) to approximate E[Q] is generally called Crude Monte Carlo
(CMC).

Thanks to the Strong Law of Large Numbers, the approximation of EMC[Q] con-
verges with probability one (converges almost surely) to E[Q] as N → ∞ as long
as Q is integrable.

Moreover, EMC[Q] is an unbiased estimator:

E[EMC[Q]] = E[Q] (2)

meaning that the expected value of the MC estimator equals E[Q] for any N .
The rate of convergence of MC method can be described by the Central Limit

Theorem (CLT) using the concept of convergence in distribution (weak convergence,
size of the error with some probability). If the variance of Q, hereafter denoted with
Var [Q], is finite then the CLT asserts that

√
N

(
EMC[Q] − E[Q]) =⇒ √

Var [Q]N (0, 1) (3)

as N → ∞,whereN (0, 1) is a normal randomvariablewithmean zero andunit vari-
ance and =⇒ means convergence in distribution. From Eq.3, for N large enough,
we can derive confidence intervals for the estimator EMC[Q] of E[Q]:

∣∣EMC[Q] − E[Q]∣∣ ≤ Cα

√
Var [Q]√

N
(4)

with probability 1 − α, where Cα is a confidence parameter such that the cumulative
distribution function Φ of a standard normal random variable Φ(Cα) = 1 − α

2 .
From Eq. (4), we can draw three crucial conclusions:

• the rate of convergence of MC is O(N−1/2),
• for large N the error is normally distributed,
• the complexity of the computation depends solely on Var [Q].

If an exact representation of the QoI is not accessible and we rely on a numerical
approximation (e.g., a finite volume (FV) or finite element (FE) approximation in
fluid dynamics computations) with a discretization parameter M (number of spatial
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degrees of freedom), then Q is approximated by QM . The accuracy in estimating
E[Q] by EMC[QM ] can be quantified by considering the mean square error (MSE) of
the estimator:

e(EMC[QM ])2 := E[(EMC[QM ] − E[Q])2] = (E[QM − Q])2︸ ︷︷ ︸
(B-EMC)

+ Var[QM ]
N︸ ︷︷ ︸

(SE-EMC)

. (5)

On the right-hand side, we can isolate two distinct contributions. The first term, the
discretization error or bias (B-EMC), is the square error in mean between QM and
Q and depends solely on the space discretization parameter M . The second term,
the statistical error (SE-EMC), represents the variance of the estimator and decays
inversely with the number of samples N .

The Crude Monte Carlo (CMC) approach is summarized in the algorithm below.

Algorithm 1: Crude Monte Carlo Algorithm

CMC(N , M)
for i = 0 : N do

Generate random samples: QM (X (i))

compute EMC[QM ] := 1
N

∑N
i=1 QM (X (i))

CMC is a very elegant approach and has been proven to be robust and accurate
for non-smooth problems, nevertheless its very slow convergence rate O(N−1/2)

prevents to achieve reasonably estimations in acceptable time for large-scale aero-
dynamic applications that require the solution of computational expensive CFD
simulations.

Different strategies have been investigated in the last decades to accelerate MC
methods. They are all based on the idea of reducing the ratio on the right-hand side
of Eq. (4)

√
Var [Q]√

N
. The two most prominent categories of approaches are:

• Alternative Sampling techniques: increase the denominator term to converge more
rapidly by using deterministic (low-discrepancy) sequences, stratified sampling,
or Latin Hypercube Sampling rather than pseudorandom numbers.

• Variance Reduction techniques: reduce the numerator term Var [Q] by suitably
modifying the quantity Q in a consistent way (i.e., without changing the expecta-
tion) as in the Multi-Level Monte Carlo approach.

These methodologies will be presented in the following sections and chapters.
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Choice of Sampling Sequences

The generation of the x (i) sampleswith predefined probability distribution is a pivotal
procedure in MC methods. In this section, we review different approaches used to
generate pseudorandom and quasi-random numbers and methodologies required to
prescribe appropriate correlations to random variables.

Pseudorandom Numbers

The simplest procedure is random sampling. However, true random numbers are the
result of physical phenomenon as, for example, radioactive decay processes. Practi-
cal applications utilize pseudorandom numbers. Those results from pseudorandom
number generators (PRNGs), also referred to as deterministic random number gen-
erators, are based on some reproducible mathematical formulation. Starting from a
certain seed, the goal is to produce a sequence of uniform pseudorandom numbers
in the interval (0, 1) with statistical properties that are in very good agreement with
those of a true sequence of i.i.d. random variables. The period length of the PRNG
describes the number of random numbers until the sequence repeats itself. In gen-
eral, a small period seems bad; however, a larger period is not necessarily better. A
good PRNG has good performance in different criteria. A variety of theoretical and
empirical tests, see, e.g., [1], can be conducted to decide whether a PRNG can be
considered a good one.

The most common PRNG is based on recursive arithmetic, as, for example, linear
congruential generators. Popular PRNG is theMersenne Twister [2] or the combined
multiple recursive generator according to [3].

Quasi-random Numbers

Quasi-random numbers are the result of low-discrepancy sequences. The resulting
realizations are uniformly distributed in the interval [0,1). They exhibit much more
uniformity compared to random or pseudorandom numbers. Therefore, they increase
the convergence rate if used within MC methods. In order to specify the application
of low-discrepancy sequences in MC methods, the term Quasi-Monte Carlo (QMC)
is used. The convergence rate of QMC is usually close to O(N−1), which is higher
compared to CMC, see Eq. (4).

Uniformity is measured by utilizing discrepancy which is defined as follows. Let
B be a rectangle in the d-dimensional unit hypercube J with sides parallel to the
coordinate axes andm(B) its volume. The discrepancy of a set of N points in [0, 1)d
is defined as
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DN = sup
B∈J

∣∣∣∣
Number of points in B

N
− m(B)

∣∣∣∣ . (6)

The most common low-discrepancy sequences are Halton and Sobol sequences.
Both are based on the van der Corput sequence which is constructed by reversing
the base-b representation of the sequence of natural numbers. For more details,
concerning the construction of low-discrepancy sequences the interested reader is
referred to [1, 4, 5].

Although low-discrepancy sequences possess high uniformity in low dimen-
sions d (and large N ), they can exhibit poor space-filling behavior for small N
and large d. The d-dimensional Halton sequence, e.g., is constructed by pairing d
one-dimensional sequences based on d different prime numbers (usually the first d
primes). In the case of high dimensions, the base bmust be large. The corresponding
van der Corput sequences with large bases produce long linearly growing segments.
If these are paired with each other, a strongly linear space filling of the unit square
is obtained. Different techniques designated leap [6] and scramble [7] were created
in order to overcome these problems.

Pseudorandom Variables with Non Uniform Distribution

In order to generate a random variable X from an arbitrary distribution the following
two steps are involved.

1. Generation of uniform random numbers U1, ...,UN with the PRNG.
2. Transformation of Ui according to its respective probability density function

f (X) or joint probability density function f (X).

In the previous sections, we briefly presented how uniform pseudorandom num-
bers or uniform quasi-random numbers can be created. Here, we will describe two
transformation methods in order to get a random variable X from such a uniform dis-
tributed random variable. The most notable transformation methods are the inverse
transform method and the acceptance–rejection method.

In the inverse transformmethod, the random variable is calculatedwith the inverse
of the CDF F(X), see Algorithm 2.

Algorithm 2: Inverse-Transform Method
Generate U from U(0, 1)
Return X = F−1(U )
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The acceptance–rejection method directly works with the PDF f (X) of the con-
sidered random variable X . Moreover a further PDF g(X) is needed, such that for
some c ≥ 1, c g(X) ≥ f (X) for all x . It is assumed that random numbers can be
easily generated from g(X). The resulting method is described in Algorithm 3.

Algorithm 3: Acceptance-Rejection Method
Generate X from g(X)

Generate U from U(0, 1)
If U ≤ f (X)/(c g(X)) use X , otherwise reject X and repeat the process.

Stratification

If it is possible to divide a heterogeneous population into subpopulations each of
which is homogeneous, a precise estimate of, e.g., the subpopulations mean can be
obtained from a small sample. A combination of such estimates can deliver a precise
estimate of the whole population with smaller number of realizations compared to
CMC. This line of thought leads to stratified sampling. The idea behind stratified
sampling is to divide the population of N units into m non-overlapping subpopu-
lations, called strata. Each strata has Ni units with i = 1, ...,m and

∑
i Ni = N . A

sample of size ni with i = 1, ...,m and
∑

i ni = n is selected by some design within
each stratum. In case of a random sample in each stratum, the term stratified random
sampling is used. How to chose the strata depends on the particular problem. The
population mean per unit ESt[Q] can be estimated with

ESt[Q] =
∑m

i=1 Ni Ei[Q]
N

=
m∑

i=1

Wi Ei[Q] , (7)

where Wi denotes the stratum weight. Only when the sampling fraction is the same
in all strata which means e.g.

ni
n

= Ni

N
, (8)

the population mean corresponds to the sample mean. Such a stratified sampling is
called proportional. If a predefined cost function is available, an optimal allocation
of sample size can be achieved, e.g., in order to minimize the variance for ESt[Q].
A simple cost function can be a linear one where the cost is proportional to the size
of the sample but varies from stratum to stratum.

The variance of an estimated mean of random sampling is denoted Vran , of strati-
fied samplingwith proportional sample allocationVprop andwith optimumallocation
for fixed n it is Vopt . It is shown in [8] that the following relation holds.
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Vopt ≤ Vprop ≤ Vran (9)

Therefore, it can be argued that stratified sampling is always better compared to
random sampling when enough information is available for its appropriate imple-
mentation. However, enough information is represented, e.g., by the frequency dis-
tribution of the result quantity, which is often only estimated prior to a probabilistic
investigation. Therefore, the necessity of defining the strata is a major problem in
stratified sampling. In case of one result quantity and if it is known a priori, for
example, due to a reasonable number of measurements, a procedure to calculate the
strata and number of strata is given in [8]. The determination of the strata becomes
further complicated when many result quantities should be considered. The strata
definition for one result quantity may be inappropriate for other quantities.

Correlation and Discrepancy Control

So far, only the marginal distributions of single variables were taken into account
when creating random vectors. An N × d sample vector can be obtained by repeating
d times the generation of one-dimensional randomvariableswith N realizations. This
naive approach can lead to undesired dependencies between the variables whichmust
be avoided. On the other hand, specific interrelationships between the input variables
might be explicitly desired for a variety of probabilistic simulations, for example,
when treating measurements of a real system or in the context of sensitivity analyses,
where correlation is of great importance and must be considered.

Relations between input variables can be represented by correlation, for exam-
ple, using Pearson correlation coefficients (generally denoted with ρ) or Spearman
rank correlation coefficient (denoted with r ). According to Pearson, the correlation
coefficient for two random variables Xi and X j is defined as:

ρi j =
∑N

k=1(xki − xi )(xk j − x j )√
∑N

k=1(xki − xi )2
√∑N

k=1(xk j − x j )2

. (10)

The rank correlation coefficient is calculated with the ranks of the data.
A correlation matrixC of size d × d is obtained from a sample of the size N × d.

In the case of the correlation coefficient according to PearsonCi j = ρi j . Furthermore,
it is assumed that the desired correlation structure is known and predefined by a target
correlation matrix T.

There are two main groups of methodologies used to generate correlated random
vectors with arbitrary given marginal distribution and correlations:
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1. Methods that transform a correlated standard normal random variable into a
target non-normal variable

2. Methods that optimize the rank correlation structure of a sample.

The popular Nataf model [9] belongs to the first group. A standard normal random
vectorZwith a correlation matrixT′ is transformed component-wise into the desired
vector X with a correlation matrix T. The marginal transformation is obtained by:

Xi = F−1
i (Φ(Zi )) , (11)

where Φ is the standard normal CDF and Fi (Xi ) the CDF of Xi . The Nataf model
approach assumes that Z is jointly normal and uses the Pearson correlation coefficient
(invariant under nonlinear strictly increasing transformations) as in Eq. (11). Thus,
the relation T′ 
= T holds. In order to get the unknown matrix T′, each element ρ ′

i j
must be computed by solving:

ρi j =
∞∫

−∞

∞∫

−∞

xi − μi

σi

x j − μ j

σ j
ϕ2(zi , z j , ρ

′
i j )dzidz j , (12)

whereϕ2(zi , z j , ρ ′
i j ) designates the PDFof the bivariate standard normal distribution.

In order to avoid the elaborate solution of Eq. (12), empirical equations have been
developed such that ρ ′

i j = f(ρi j ) can be computed, see e.g. [10].
If the matrix T′ is available, uncorrelated standard normal distributed random

vectors canbe transformed into correlated ones bymeans ofCholesky transformation.
The Cholesky decomposition T′ = LLT provides the lower triangular matrix L. The
correlated random vectors are then obtained by applying XLT .

The idea of converting uncorrelated random variables into correlated ones by
orthogonal transformation is also the basis ofmethods belonging to the second group.
One of these was developed by Iman and Conover [11] and is known as Restricted
Pairing. The random vectors of individual random variables are generated according
to their respective probability distribution without taking into account correlations.
The restricted pairing technique uses the rank correlation coefficient. Compared to the
Pearson correlation coefficient, the latter has the advantage of being invariant under
monotonic transformations of the marginals. Algorithm 4 describes the procedure of
Restricted Pairing.

Algorithm 4: Restricted Pairing
Calculate C from X
Calculate lower triangular matrix Q from QQT = C
P from PPT = T
S = PQ−1

R = XST

Change the order in X in order to achieve the same ranks as in R



General Introduction to Monte Carlo … 273

Themethod proceeds from uncorrelated random variables. Practically, this is only
possible to a limited extent. Therefore, the correlation of the input sample is taken
into account by incorporating the rank correlation matrix C which results from the
available sample. In case of perfect correlation ri j = 1with i 
= j in the input sample,
the rows in each column of X can be randomly shuffled.

An iteratively improved implementation of the Restricted Pairing technique has
been presented in [12].

Besides the two aforementioned groups of methodologies, other approaches exist,
as, e.g., the usage of Copulas to construct a multivariate random vector of dependent
components.

A desired order within the sample can also be set up by solving a combinatorial
optimization problem. The optimization is based on a scalar quantity whichmeasures
the deviationE = T − A between target correlationmatrix and the actual correlation
matrixA. Vořechovský and Novák [13] described the deviation by root mean square
correlation rrms and minimized it by using Simulated Annealing and interchanging
a pair of two realizations xik and x jk .

rrms =
√
2

∑d−1
i=1

∑d
j=i+1(Ei j )2

d(d − 1)
(13)

A suitable matrix norm can also be used to measure the maximum absolute cor-
relation error:

rmax = max
1≤i≤ j≤d

|Ei j | (14)

If the correlation adjustment can be formulated as an optimization problem, a dis-
crepancy improvement can be obtained with the same approach only by exchanging
the objective. As an example, Liefvendahl and Stocki [14] used a genetic algorithm
to solve the optimization problem.

The description of the space-filling proprieties of samples by means of a scalar
quantity is possible with a multitude of criteria. An overview and an evaluation of
existing criteria can be found in [15]. Beside all, the centered L2 discrepancy [16]
shows good performances for projections in 2D subspaces.

C2 =
(
13

12

)d

− 2

N

N∑

i=1

d∏

k=1

(
1 + 1

2
|x (i)

k − 0.5| − 1

2
|x (i)

k − 0.5|2
)

+ 1

N 2

N∑

i, j=1

d∏

k=1

(
1 + 1

2
|x (i)

k − 0.5| − 1

2
|x ( j)

k − 0.5| − 1

2
|x (i)

k − x ( j)
k |

) (15)
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Latin Hypercube Sampling Method

Latin Hypercube Sampling (LHS) was first published by McKay et al. [17] and
further developed by Iman and Conover [18]. The method can reduce the variance
of an estimator compared to random sampling, which results in a reduction of the
sample size while maintaining the statistical significance.

A mathematical proof of the variance reduction compared to CMC was given by
McKay et al. [17] under the condition that the system behavior is monotonic in each
of its inputs. Iman and Conover [18] show for an additive model with uniform inputs
that the variance of an estimatedmean convergeswith a factor of N−2 faster compared
to CMC. Stein [19] demonstrated that the amount of variance reduction increases
with the degree of additivity in the model response. An experimental comparison of
LHS against CMC was carried out by Manteufel [20]. LHS estimates an unbiased
mean value as well as the distribution function. The bias in the estimation of the
variance is low and associated with a significantly lower sampling variability.

The idea behind LHS relates to stratified sampling. In LHS, only the marginal
distributions are stratified in such a way that each random variable X is divided into
N contiguous intervals of equal probability with respect to the corresponding CDF
F(X). For that purpose, the unit probability is divided into N intervals of identical
probability 1/N. These probability intervals are bounded by a lower φk−1 and upper
bound φk .

φk = k

N
with k = 1, ..., N (16)

The calculation of the corresponding interval bounds ξk over the values of the
random variable X can be performed by utilizing the inverse of the CDF F(X)

ξk = F−1(φk) . (17)

In each probability interval one realization xk must be selected. Therefore,
xk ∈ (ξk−1, ξk) holds. Besides random LHS where each realization xk is uniformly
distributed in its respective interval, mean and median LHS exist. For those meth-
ods different ways of selecting the sample values from the probability intervals are
applied. In case of median LHS each probability interval is selected by taking the
following set of sampling probabilities.

p = (p1, p2, ..., pk, ..., pN ) with pk = k − 0.5

N
(18)

The samples are selected using the inverse transformation of the probabilities in
p.

xk = F−1(pk) (19)

The mean in each interval is selected for mean LHS. It makes a numerical inte-
gration of the PDF f (X) necessary. The samples are selected using
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Fig. 2 Visual comparison of correlation optimized and discrepancy optimized median LHS; N =
100

xk =
∫ ξk
ξk−1

x f (X)dx
∫ ξk
ξk−1

f (X)dx
. (20)

Figure1 shows a visual comparison of different sampling techniques for N =
250 realizations. Figure2 extends the visual comparison and shows correlation and
discrepancy control for a median LHS with N = 100.

Multi-level Monte Carlo

As previously stated, CrudeMonte Carlo (CMC) sampling has a dimension indepen-
dent convergence ratewhich is not affected by the presence of possible discontinuities
in the parameter space. However, the CMC approach converges very slowly and is
impractical in complex applications that require accurate solutions. The Multi-Level
Monte Carlo (MLMC) method has been introduced by Heinrich [21, 22] in the con-
text of parametric integration and extended by Giles [23] to approximate stochastic
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differential equations (SDEs) in financial mathematics as a way to improve the effi-
ciency of MC simulations. Applications to PDEmodels with random parameters can
be found in [24–28].

Algorithm 5: Multi-Level Monte Carlo Algorithm

MLMC(L, {Nl }Ll=0)
for l = 0 : L do

for i = 0 : Nl do
Generate random input: ω(i,l)

Q(i)
Ml

← PROBLEMl (ω(i,l))

Q(i)
Ml−1

← PROBLEMl−1 (ω(i,l))

Y (i)
l = QMl − QMl−1

compute EMC[Yl ]
return EMLMC[QM ] = ∑L

l=0 E
MC[Yl ]

The key idea ofMLMC is to simultaneously drawMCsamples on several approxi-
mations QMl of Q built on a hierarchy of nested computational grids (with discretiza-
tion parameters M0 < M1 < · · · < ML = M) thanks to the linearity propriety of the
expectation operator. Indeed the expectation of a QoI computed on the finest level
can be written as a telescopic sum of the expectation of the QoI on the coarsest
level plus a sum of correction terms adding the difference in expectation between
evaluations on consecutive levels:

E[QML ] = E[QM0 ] +
L∑

l=1

E[QMl − QMl−1] =
L∑

l=0

E[Yl] (21)

with Yl = QMl − QMl−1 and Y0 = QM0 .

The MLMC estimator for E[Q] can be written as:

EMLMC[QM ] :=
L∑

l=0

1

Nl

Nl∑

i=1

Yl(ω
(i,l)) =

L∑

l=0

EMC[QMl − QMl−1], (22)

where the same realization ω(i,l) is used to compute the correction Yl(ω(i,l)) =
QMl (ω

(i,l)) − QMl−1(ω
(i,l)) on both levels whereas corrections on different levels

should be sampled independently.
The accuracy in estimating E[Q] by EMLMC[QM ] can be quantified by considering

the mean square error (MSE) of the estimator:



General Introduction to Monte Carlo … 277

e(EMLMC[QM ])2 := E[(EMLMC[QM ] − E[Q])2] = (E[QM − Q])2︸ ︷︷ ︸
(B-EMLMC)

+
L∑

l=0

Var[Yl]
Nl

︸ ︷︷ ︸
(SE-EMLMC)

.

(23)
The standard MLMC algorithm is summarized in Algorithm 5. The notation

PROBLEMl denotes a general ‘black-box’ CFD solver that computes the QoI of
the problem under investigation given a set of input values at the grid discretization
level l. The description of the treatment of specific geometric or operating input
random parameters will be provided in the following chapters.
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