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Introduction

Uncertainty in the design and operation of engineering problems may arise from

various sources. The uncertainties in physical properties of materials and inevitable

randomness in boundary conditions and geometries, as well as physical models

uncertainties, are a few examples of such uncertainties that can significantly restrict

the reliability of deterministic designs. Gas, steam, wind, and hydraulic turbines are

examples of engineering devices that their operational condition and geometry might

be uncertain. Design of these turbomachines using deterministic computations may

fail in the presence of uncertainties. For a reliable design based on computational

fluid dynamics (CFD) predictions, it is necessary to include all sources of uncer-

tainty in the analysis and design process. However, CFD simulation of flows in real-

world engineering problems requires a fine 3D computational mesh, small time-step,

and high-dimensional stochastic space in the case of a large number of random vari-

ables. These dramatically increase the computational cost which is not desirable for

design proposes, highlighting the need for employing robust numerical schemes for

stochastic analysis of complex industrial flows. While efficient numerical methods

for the spatial and temporal discretization of the Navier–Stokes equations are well
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developed, effective numerical schemes for stochastic discretization are still rare

(see, e.g., [1, 2]).

In the literature, various techniques have been proposed for uncertainty quantifi-

cation (UQ). The Monte Carlo (MC) approach [3] is widely used for UQ because of

its simplicity and its superior property that the convergence rate does not depend on

the number of stochastic dimensions. Unfortunately, the conventional MC methods

converge slowly and often require a large number of realizations to achieve reason-

able accuracy and thus are impractical for problems with a large number of uncer-

tainties. Over the recent years, a number of other UQ approaches have been devel-

oped to represent and propagate uncertainties in engineering problems with a large

number of uncertainties. Some examples of commonly developed UQ methods are:

the multi-level Monte Carlo [4], the method of moments or the perturbation method

[5], and polynomial chaos expansion (PCE) [6, 7]. All these techniques have pos-

itive and negative features, and no single technique is optimal for all applications.

Following our previous work on UQ [8, 9], we focused on the PCE approach to

model uncertainty propagation. PCE methods have been successfully applied to var-

ious structural and solid mechanics problems by several researchers [6, 10]. Poly-

nomial chaos (PC) schemes have also been employed to fluid flow and heat transfer

problems [7, 8, 11–13]. The polynomial chaos representation can be implemented

through either intrusive or non-intrusive methods. The intrusive approach involves

the substitution of all uncertain variables in the governing equations with the polyno-

mial expansions consisting of P + 1 = (p + ns)!∕p!ns! unknown coefficients, where

ns is the number of stochastic dimensions and p is the polynomial order. Taking the

inner product of the equations yields P + 1 times the number of original equations

that can be solved by the same numerical schemes applied to the original deter-

ministic system. This requires the modification of the CFD codes, and it may be

difficult, expensive, and time-consuming for many CFD problems. Moreover, the

sources of most commercial codes are not accessible, and thus, it is not feasible

to implement the intrusive PC approach in such deterministic codes. For these rea-

sons, here, we focused on non-intrusive polynomial chaos (NIPC) methodology for

UQ. The NIPC method performs repeated simulations using deterministic solver

on limited number of samples which are chosen properly. Then, the polynomial

chaos expansion of output is constructed using deterministic solver evaluations. The

two main NIPC approaches used for UQ in CFD are spectral projection (sampling-

based and quadrature-based) and regression-based methods. The application of these

NIPC schemes to model stochastic problems can be found in [14, 15]. In the present

study, the regression-based NIPC scheme, introduced in section “Regression-Based

Polynomial Chaos Expansion,” is used for the evaluation of PCE coefficients. The

main weakness of all NIPC methods is the curse of dimensionality. In recent years,

some alternative methodologies such as sparse polynomial chaos [16], sparse grid

techniques [17], compressive sampling [18], and reduced models [1, 2] have been

developed to break the curse of dimensionality. In the framework of the EU FP7

project UMRIDA, this study focuses on the development of an efficient reduced basis

model for UQ. In recent years, several model reduction techniques have been pro-

posed for uncertainty quantification. Two examples of such works are [1, 2]. In [2],
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a generalized spectral decomposition (GSD) was proposed that gives the reduced

basis independent of the stochastic discretization scheme. In this method, the solu-

tion of the stochastic problem is first approximated as the summation over the product

of deterministic functions and random variables. The reduced basis functions then

appear as the solutions of a pseudo-eigenvalue problem whose dominant eigenspace

is associated with the desired optimal basis. In the final form of GSD, the solution

of only a few uncoupled deterministic problems and a few stochastic algebraic equa-

tions is required for the computation of deterministic functions and random variables.

As shown in [2], the implementation of GSD to a class of stochastic partial differen-

tial equations (SPDE) leads to drastic computational saving, although it does not cir-

cumvent the curse of dimensionality. In [1], an intrusive model reduction technique

was proposed for chaos representation of a SPDE to tackle the curse of dimensional-

ity. They applied it successfully to a 2D solid mechanics problem with randomness

in the elastic modulus where for a third-order PC (p = 3), they could reduce the num-

ber of basis functions to 5 as compared to P = 165 in the “standard PCE” using a

basis of the classical polynomials of the Askey scheme.

In this study, a regression-based non-intrusive reduced basis technique is devel-

oped. The model can be interpreted as a multi-level/multi-fidelity approach, where

many low-fidelity model evaluations are combined with few high-fidelity evalua-

tions to ensure accurate results at a lower CPU cost. In the framework of polynomial

chaos, such ideas are also explored by Palar et al. [19] and Ng and Eldred [20].

The remaining part of this paper is organized as follows: In section

“Regression-Based Polynomial Chaos Expansion,” the regression-based polynomial

chaos expansion is described. The model reduction methodology is presented in

section “Reduced Basis Methodology.” In section “Results and Discussion,” the

numerical results are presented and discussed. Finally, the main findings of the

present paper are summarized in section “Conclusions.”

Regression-Based Polynomial Chaos Expansion

Let assume u(xxx;𝜉𝜉𝜉) is the response of a stochastic system with ns random variables

𝜉𝜉𝜉 = {𝜉i}
ns
i=1. In PCE, the uncertain output u(xxx;𝜉𝜉𝜉) is decomposed into separable deter-

ministic and stochastic components as:

u(xxx;𝜉𝜉𝜉) =
P∑

i=0
ui(xxx)𝜓i(𝜉𝜉𝜉), (1)

where the total number of output modes, P + 1 = (p + ns)!∕p!ns!, is a function of

the order of polynomial chaos (p) and the number of random dimensions (ns).
The 𝜓i(𝜉𝜉𝜉)’s are orthogonal polynomials with respect to the probability density

function (PDF) of input random variables 𝜉𝜉𝜉:
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⟨𝜓i𝜓j⟩ = ⟨𝜓2
i ⟩𝛿ij. (2)

The quadrature-based NIPC scheme may be used for the evaluation of polynomial

chaos expansion. However, the application of tensor–product quadrature approach

for multi-dimensional problems suffers the curse of dimensionality since the required

number of model evaluations grows exponentially with the number of random

dimensions ns (i.e., (p + 1)ns ). Although sparse quadrature rules are more efficient,

still they are impractical for the stochastic problems with high dimensions. A more

affordable NIPC scheme to find the response surface of the output is the regression
method. The regression-based NIPC method starts with Eq. (1). To establish a closed

system, P + 1 sample points (𝜉𝜉𝜉s, s = 1, 2,… ,P + 1) are generated in the stochastic

space for a given PCE with P + 1 unknown coefficients and the stochastic function,

u(xxx;𝜉𝜉𝜉), is evaluated at these sampling points. This yields the following linear system

of equations:

⎛
⎜
⎜
⎜
⎜
⎜⎝

𝜓0(𝜉𝜉𝜉
1) ⋯ 𝜓i(𝜉𝜉𝜉

1) ⋯ 𝜓P(𝜉𝜉𝜉
1)

⋮ ⋮ ⋮ ⋮ ⋮
𝜓0(𝜉𝜉𝜉

s) ⋯ 𝜓i(𝜉𝜉𝜉
s) ⋯ 𝜓P(𝜉𝜉𝜉

s)
⋮ ⋮ ⋮ ⋮ ⋮

𝜓0(𝜉𝜉𝜉
P+1) ⋯ 𝜓i(𝜉𝜉𝜉

P+1) ⋯ 𝜓P(𝜉𝜉𝜉
P+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛹 (𝜉𝜉𝜉s)

⎛
⎜
⎜
⎜
⎜⎝

u0(xxx)
⋮

ui(xxx)
⋮

uP(xxx)

⎞
⎟
⎟
⎟
⎟⎠

⏟⏟⏟
U

=

⎛
⎜
⎜
⎜
⎜
⎜⎝

u(xxx;𝜉𝜉𝜉1)
⋮

u(xxx;𝜉𝜉𝜉s)
⋮

u(xxx;𝜉𝜉𝜉P+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
b

, (3)

or

𝛹U = b. (4)

The least squares solution of the linear system (3) is U = (𝛹T𝛹 )−1𝛹Tb.

Consistent with the literature (e.g., Hosder et al. [21]), we found that oversampling

with 2(P + 1) model evaluations is necessary to obtain satisfactory results for the

PCE. In principle, the sample points can be chosen freely. However, while random

sampling is the simplest, its major disadvantage is that the sample points may not

be space filling. This will have a repercussion on the accuracy of the results. An

alternative to the random sampling technique is the Latin hypercube sampling (LHS)

which offers better space filling characteristics. The basic idea is to divide the range

of each random variable into n bins of equal probability and then to generate N
samples such that, for each random variable, no two values should lie in the same bin.

However, LHS suffers from a major difficulty. Indeed, the accuracy of the LHS-based

estimates cannot be increased incrementally, i.e., by adding new sample points to

the already existing LHS sample set, since the new set will not be a Latin hypercube

anymore. An efficient method to build adaptive space filling design is the quasi-

random sampling (e.g., Hammersley, Halton, Sobol). In quasi-random sequences, a

deterministic sequence of points is generated. The main idea of using a quasi-random

sequence is to reduce the discrepancy of the sets of points. In the present work, the

coefficients of the PCEs are estimated by the regression-based NIPC, using the Sobol

sampling scheme [22].
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Due to the orthogonality of the basis, it is straightforward to show that the mean

is ⟨u(xxx;𝜉𝜉𝜉)⟩ = u0, and the variance of the response reads as:

𝜎2 = Var

( P∑

i=0
ui(xxx)𝜓i(𝜉𝜉𝜉)

)
=

P∑

i=1
u2i ⟨𝜓i𝜓i⟩. (5)

Reduced Basis Methodology

The above classical PCE (i.e., Eq. (1)) does not represent an optimal PC representa-

tion of u(xxx;𝜉𝜉𝜉). The optimal chaos expansion is the Karhunen–Loève (KL) expansion

(also known as proper orthogonal decomposition (POD)). However, this requires

the knowledge of the covariance of the solution, which is unknown. Assuming that

the behavior in spatial and random space can be decoupled, the covariance can be

obtained via inexpensive calculations on a coarse grid. The size of coarse grid, nec-

essary for the estimation of the optimal basis, can be identified through mesh adap-

tation in the spatial domain of the problem. Next, the problem can be solved on a fine

mesh using the previously defined optimal basis {zi(𝜉𝜉𝜉)}mi=0 where m is the number

of dominant eigenvalues. This indicates that the dimensionality of the KL expansion

can be reduced.

The first step in the model reduction scheme is to find an optimal basis using

POD, a well-known procedure for extracting basis functions using an ensemble of

realizations. To this end, suppose, on a fine grid, expression (6) represents an optimal

chaos expansion of the stochastic field u(xxx;𝜉𝜉𝜉):

u(xxx;𝜉𝜉𝜉) − ⟨u(xxx;𝜉𝜉𝜉)⟩ =
m∑

i=1
ûi(xxx)zi(𝜉𝜉𝜉), (6)

where the mean function is the coefficient of the zeroth-order basis (i.e., ⟨u(xxx;𝜉𝜉𝜉)⟩ =
û0) and {zi(𝜉𝜉𝜉)}mi=0 are the m + 1 dominant modes, forming the optimal basis.

On the coarse grid, the covariance matrix C(xxxi,xxxj) of the stochastic field can be

obtained from:

C(xxxi,xxxj) =
P∑

k=1
uk(xxxi)uk(xxxj)⟨𝜓2

k ⟩, (7)

where uk’s are the classical PCE coefficients obtained using Eq. (3) on the coarse

grid.

The corresponding eigenvalues 𝜈i and eigenfunctions 𝜙i(xxx) are the solution of the

following eigenvalue problem:

C𝜙i = 𝜈i𝜙i. (8)



174 M. Raisee et al.

For a coarse mesh with n grid nodes the n × n covariance matrix has the following

form:

C =

⎛
⎜
⎜
⎜
⎜
⎜⎝

∑P
k=1 u

2
k(xxx1)⟨𝜓

2
k ⟩ ⋯

∑P
k=1 uk(xxx1)uk(xxxn)⟨𝜓2

k ⟩
⋮ ⋮ ⋮∑P

k=1 uk(xxxi)uk(xxx1)⟨𝜓2
k ⟩ ⋯

∑P
k=1 uk(xxxi)uk(xxxn)⟨𝜓2

k ⟩
⋮ ⋮ ⋮∑P

k=1 uk(xxxn)uk(xxx1)⟨𝜓2
k ⟩ ⋯

∑P
k=1 u

2
k(xxxn)⟨𝜓

2
k ⟩

⎞
⎟
⎟
⎟
⎟
⎟⎠

. (9)

For a large value of n ≫ P, the solution of the above eigenvalue problem is time-

consuming and requires a large amount of memory for the data storage. To overcome

this problem, one can notice that the covariance matrix C is symmetric and thus can

be decomposed as:

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝

u1(xxx1)
√

⟨𝜓2
1 ⟩ ⋯ uP(xxx1)

√
⟨𝜓2

P⟩
⋮ ⋮ ⋮

u1(xxxi)
√

⟨𝜓2
1 ⟩ ⋯ uP(xxxi)

√
⟨𝜓2

P⟩
⋮ ⋮ ⋮

u1(xxxn)
√

⟨𝜓2
1 ⟩ ⋯ uP(xxxn)

√
⟨𝜓2

P⟩

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Y(n×P)

⊗

⎛
⎜
⎜
⎜⎝

u1(xxx1)
√

⟨𝜓2
1 ⟩ ⋯ u1(xxxi)

√
⟨𝜓2

1 ⟩ ⋯ u1(xxxn)
√

⟨𝜓2
1 ⟩

⋮ ⋮ ⋮ ⋮ ⋮

uP(xxx1)
√

⟨𝜓2
P⟩ ⋯ uP(xxxi)

√
⟨𝜓2

P⟩ ⋯ uP(xxxn)
√

⟨𝜓2
P⟩

⎞
⎟
⎟
⎟⎠

,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

YT (P×n)

(10)

where the P × n matrix YT
is the transpose of the n × P matrix Y .

Substitution of the above decomposition in Eq. (8) and multiplication by YT
yields:

YTY(YT𝜙i) = 𝜈i(YT𝜙i), (11)

This indicates that YTY has eigenfunctions YT𝜙i and the same eigenvalues as C.

However, YTY is only a P × P matrix, and thus, it is less expensive to find the eigen-

values and corresponding eigenfunctions than from the original covariance matrix

C. This makes the size of the eigenvalue problem independent of the coarse grid

size. By computing the eigenvalues from Eq. (11), the upper limit m in Eq. (6) can

be found by the size of the dominant eigenspace (11) such that
∑m

i=1𝜈i∕
∑

i 𝜈i is suf-

ficiently close to unity. In this work, the upper limit m is chosen to be the minimum

integer such that
∑m

i=1𝜈i∕
∑

i 𝜈i ≥ 𝜀 for a given 𝜀 (for instance 𝜀 = 0.99).

Having obtained ui(xxx) from the regression-based NIPC (Eq. 3) on the coarse grid

and eigenfunctions 𝜙i(xxx) from the solution of the eigenvalue problem (11), the set
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of optimal basis functions {zi(𝜉𝜉𝜉)}mi=0 can now be recasted as a linear combination of

the set of classical polynomial chaos functions; {𝜓i(𝜉𝜉𝜉)}Pi=1 using the following scalar

product:

zi(𝜉𝜉𝜉) = [u(xxx;𝜉𝜉𝜉) − ⟨u(xxx)⟩, 𝜙i(xxx)] =
P∑

j=1
𝛼ij𝜓j(𝜉𝜉𝜉), (12)

where the coefficients 𝛼ij are obtained via the scalar product:

𝛼ij =
∫R

uj(xxx)𝜙i(xxx)d ⃖⃗xxx. (13)

The m + 1 unknowns ûi’s in the optimal expansion can be obtained by substitu-

tion of m + 1 random vectors (𝜉𝜉𝜉
s
, s = 1,… ,m + 1) and the corresponding stochastic

outputs u(xxx;𝜉𝜉𝜉s) in Eq. (6). This yields the following linear system of equations:

⎛
⎜
⎜
⎜
⎜
⎜⎝

z0(𝜉𝜉𝜉
1) ⋯ zi(𝜉𝜉𝜉

1) ⋯ zm(𝜉𝜉𝜉
1)

⋮ ⋮ ⋮ ⋮ ⋮
z0(𝜉𝜉𝜉

s) ⋯ zi(𝜉𝜉𝜉
s) ⋯ zm(𝜉𝜉𝜉

s)
⋮ ⋮ ⋮ ⋮ ⋮

z0(𝜉𝜉𝜉
m+1) ⋯ zi(𝜉𝜉𝜉

m+1) ⋯ zm(𝜉𝜉𝜉
m+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Z(𝜉𝜉𝜉s)

⎛
⎜
⎜
⎜
⎜⎝

û0(xxx)
⋮

ûi(xxx)
⋮

ûm(xxx)

⎞
⎟
⎟
⎟
⎟⎠

=

⎛
⎜
⎜
⎜
⎜
⎜⎝

u(xxx;𝜉𝜉𝜉1)
⋮

u(xxx;𝜉𝜉𝜉s)
⋮

u(xxx;𝜉𝜉𝜉m+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

. (14)

Using Eqs. (12), (14) can be re-expressed as:

⎛
⎜
⎜
⎜
⎜
⎜⎝

z0(𝜉𝜉𝜉
1) ⋯

∑P
j=1 𝛼ij𝜓j(𝜉𝜉𝜉

1) ⋯
∑P

j=1 𝛼mj𝜓j(𝜉𝜉𝜉
1)

⋮ ⋮ ⋮ ⋮ ⋮
z0(𝜉𝜉𝜉

s) ⋯
∑P

j=1 𝛼ij𝜓j(𝜉𝜉𝜉
s) ⋯

∑P
j=1 𝛼mj𝜓j(𝜉𝜉𝜉

s)
⋮ ⋮ ⋮ ⋮ ⋮

z0(𝜉𝜉𝜉
m+1) ⋯

∑P
j=1 𝛼ij𝜓j(𝜉𝜉𝜉

m+1) ⋯
∑P

j=1 𝛼mj𝜓j(𝜉𝜉𝜉
m+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Z(𝜉𝜉𝜉s)

⎛
⎜
⎜
⎜
⎜⎝

û0(xxx)
⋮

ûi(xxx)
⋮

ûm(xxx)

⎞
⎟
⎟
⎟
⎟⎠

=

⎛
⎜
⎜
⎜
⎜
⎜⎝

u(xxx;𝜉𝜉𝜉1)
⋮

u(xxx;𝜉𝜉𝜉s)
⋮

u(xxx;𝜉𝜉𝜉m+1)

⎞
⎟
⎟
⎟
⎟
⎟⎠

. (15)

The matrix Z, containing the optimal basis, is already known from Eqs. (3) and (13),

and the right-hand side of Eq. (15) can be found from m + 1 runs of the deterministic

solver at 𝜉𝜉𝜉
1
,… , 𝜉𝜉𝜉

s
,… , 𝜉𝜉𝜉

m+1
on the fine mesh. Thus, the expansion coefficients ûi(xxx)

are obtained by the solution of the above linear system. Here, again oversampling is

required. Following the approach used in the regression-based NIPC analysis, 2(m +
1) sample points were found adequate to give acceptable results. As pointed out, the

coefficient of the zeroth-order basis (z0(𝜉𝜉𝜉)) is the mean output (i.e., ⟨u(xxx;𝜉𝜉𝜉)⟩ = û0),

while the variance is expressed as:
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𝜎2 =
m∑

i=1
û2i ⟨zi, zi⟩, (16)

where ⟨zi, zi⟩ = 𝜈i.

Results and Discussion

In the following subsections, numerical results for three benchmark stochastic prob-

lems, namely (I) Ackley function, (II) 2D RAE2822 transonic airfoil, and (III) 3D

NASA rotor 37, are presented and discussed.

Highly Irregular Ackley Function

The 2D Ackley function is a challenging test function for the validation of the devel-

oped reduced basis methodology due to its complex structural distribution. The

stochastic Ackley function is defined as:

u(xxx;𝜉𝜉𝜉) = −20(1 + 0.1𝜉3)
(
exp

[
−0.2(1 + 0.1𝜉2)

√
0.5(x2 + y2)

])
(17)

−exp
(
0.5

[
cos(2𝜋(1 + 0.1𝜉1)x) + cos(2𝜋(1 + 0.1𝜉1)y)

])
+ 20 + e,

where function coefficients (shown in red in Eq. (17)) are uncertain and the asso-

ciated random variables 𝜉𝜉𝜉 = {𝜉i}3i=1 are uniformly distributed over [−1, 1]3 with a

CoV of 0.0577.

Figure 1 shows the deterministic Ackley function (i.e., 𝜉𝜉𝜉 = 0) on different grids.

As expected, the Ackley function is highly irregular in 2D spatial space and is char-

acterized by a nearly flat outer region and a large hole at the center. The mesh refine-

ment from 5 × 5 to 160 × 160 reveals more details of the function. It was found that a

finer mesh with 400 × 400 nodes is necessary to reproduce the fine-scale structures

of the Ackley function, and thus, such a fine mesh is employed for the fine-scale

analysis. Figure 2 shows the distribution of the normalized eigenvalues in the linear

and semi-log scales when different grids are used for the coarse-scale analysis. A

high polynomial order (p = 13) is used for the coarse grid analysis. This is because

a regression-based NIPC analysis indicated that such a high polynomial order is nec-

essary to reproduce the details of the mean, variance, and skewness fields. As shown

in Fig. 2, the eigenvalues decay rapidly. Thus, only a limited number of modes (or

eigenvalues) are needed in the KL expansion. The number of chosen eigenvalues

depends on the accuracy of the statistics. For higher accuracy, a larger number of

modes should be taken into account. In Fig. 2b, as expected, the normalized eigen-

values distributions decrease slower with the finer grids. Results show that for this
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Fig. 1 Representation of Ackley function in different grids

Fig. 2 Normalized eigenvalues using different coarse mesh sizes for the stochastic Ackley func-

tion: a linear scale; b semi-log scale

nonlinear test case, an accurate solution is obtained when a 40 × 40 mesh is used

for the coarse grid analysis. In Fig. 3, the distributions of mean, variance, and skew-

ness fields returned using the reduced basis method are compared with the distribu-

tions obtained using regression-based NIPC. It is observed that with a reduced basis

of dimension m + 1 = 15 (correspond to 𝜀 = 0.99999999), the fine-scale results

are very close to those of the full NIPC. With reduced basis size m + 1 = 15, the
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Fig. 3 Comparison of mean, variance, and skewness fields for the Ackley function. First row:

mean field; second row: variance field; third row: skewness field

average relative error (𝜀r) in mean, variance, and skewness is of the order of 10−5,

10−3, and 10−2, respectively. Note, however, that for this case, the full PC analy-

sis needs 2(P + 1) = 1120 expensive function evaluations. Further analysis (not pre-

sented here for the sake of brevity) shows the reduced basis methodology is more effi-

cient than the classical PCE by more than one order of magnitude. Further efficiency

improvement can be achieved by using a smaller 𝜀 (e.g., 𝜀 = 0.99) and increasing the

allowable relative error in the statistical quantities. More details can be found in [23].

2D Transonic RAE2822 Airfoil

The 2D transonic flow around the RAE2822 airfoil represents a challenging config-

uration to investigate the performance of the developed reduced-order model due

to the shock formation. The nominal flow conditions; free stream Mach number

M = 0.734, angle of attack 𝛼 = 2.79◦, and Reynolds number Re = 6.5 × 106 are

considered for this test case. For the deterministic solution of the RAE2822 using

Ansys/Fluent, the second-order upwind scheme is employed for the approximation

of nonlinear convective terms in all transport equations. The Spalart–Allmaras tur-
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Fig. 4 The coarse and fine C-type meshes with: 3.0 × 103 and 4.4 × 104 grid nodes

bulence model is used for the predictions. To assess the accuracy of the results, a grid

study was performed with four different C-type meshes with, respectively, 7.5 × 102,

3.0 × 103, 1.1 × 104, and 4.4 × 104 grid nodes. A coarse mesh with 3.0 × 103 and the

finest mesh with 4.4 × 104 grids are shown in Fig. 4. It was found that the predictions

on the finest mesh are grid independent and thus are used for the fine-scale analysis.

The geometry of the airfoil is assumed to be subject to random deformations, and

variations of the airfoil boundary are modeled using the following Gaussian shaped

covariance:

Cov(si, sj) = 𝜎(si)𝜎(sj) exp

[
−
(si − sj)2

2b2

]
, (18)

where si and sj are positions along the airfoil, b is the correlation length, and 𝜎 is

the variance. For the RAE2822 airfoil, 0 ≤ s ≤ 2.032. Position s = 0 corresponds

to the leading edge and increases along the upper surface. A constrained standard

deviation, 𝜎(s) = 𝜎′S(s), is considered to freeze the leading and trailing edges of

the airfoil. The constraint functions on the upper and lower walls of the airfoil are,

respectively, expressed as:

S(s) =
⎧
⎪
⎨
⎪⎩

sin
(

𝜋s
su

)
0 ≤ s < su

sin
[
𝜋(s−su)

sl

]
su ≤ s < su + sl

(19)

where su = ∫upper ds and sl = ∫lower ds.
Using KL expansion, a stochastic process of a given covariance function can

always be approximated by a finite sum of products of deterministic spatial func-

tions and uncorrelated random variables. The geometrical uncertainty at the airfoil

surface can then be expressed as:

X⃗(s, 𝜉𝜉𝜉) ≈ X̄(s) +
ns∑

k=1

√
𝜆k𝜙k(s)𝜉k.n̂ (20)
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where X(s, 𝜉𝜉𝜉) is the airfoil coordinate at sample sample 𝜉𝜉𝜉, X̄(s) is the airfoil mean

coordinate, n̂ is a normal vector, and 𝜙k(s) and 𝜆k are eigenvalues and eigenfunctions

of the covariance kernel, respectively.

A case with the correlation length b = 0.05 and the standard deviation 𝜎′ = 0.001
is considered for the present analysis. The random variables are set to be uniformly

distributed over the stochastic space [−1, 1]ns where ns is the number of indepen-

dent random variables. The first ten highest modes of KL expansion are consid-

ered as uncertain for the UQ of the RAE2822 test case. The coarse-scale analysis

is performed on a mesh with 3.0 × 103 nodes (shown in Fig. 4), a grid size four-

teenth times smaller than the finest grid size. A classical PC analysis of third order

using regression-based NIPC is performed on the coarse grid to get the covariance in

stochastic space of the solution. In this analysis, the covariance matrix is built using

all primitive variables (𝜌; 𝜌U; 𝜌V; 𝜌E). The criteria of the selection of the coarse grid

are based on the analysis presented for the Ackley function. Starting from the POD

analysis on a very coarse mesh, the mesh size is gradually increased until sufficient

convergence of the POD eigenvalues. This is illustrated in Fig. 5 where the normal-

ized eigenvalues are shown for four different mesh sizes with 7.5 × 102, 3.0 × 103,

1.1 × 104, and 4.4 × 104 grid nodes. It is observed that already on the 3.0 × 103 grid,

the eigenvalues have converged. A classical PC analysis of third order using regres-

sion is performed on the coarse grid to get the covariance in stochastic space of the

solution. In the regression approach, a total of 572 samples are needed as the classical

PCE contains 286 polynomials. The Sobol quasi-random sequence is used to gener-

ate these sample points. For 𝜀 = 0.99, the size of the reduced basis is 22, requiring

44 deterministic CFD calculations on the fine grid. In Fig. 6, the results (pressure

coefficient) obtained with the reduced-order model and with the full PC are com-

pared. It is observed that the results of the reduced-order model are in acceptable

agreement with the results of the full model. On average, the errors in the mean Cp
and its variance are less than 0.2% and 5.0%, respectively. As shown in [24], for

Fig. 5 Normalized eigenvalues from the solution of four different grid sizes analysis
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Fig. 6 Comparison of pressure coefficient (𝜀 = 0.99): mean and std deviation using classical PC

and model reduction method

the present test case, the reduced basis method (using 𝜀 = 0.99) is almost 6–7 times

more efficient than the classical PC method. A detailed discussion on the effect of

criterion (𝜀) on the accuracy of the reduced basis method is presented in [24]. A case

where the covariance matrix in the reduced basis approach is build using only one

primitive variable (e.g., 𝜌U) is also analyzed, and similar results were obtained.

3D Transonic Rotor 37

For the validation of the developed reduced basis approach, uncertainty quantifica-

tion of the rotor 37, shown in Fig. 7, is further considered. The rotational speed of

the rotor is 17188 rpm, and the outlet static pressure is fixed at 110000 Pa. Combina-

tion of geometrical and operational uncertainties is considered for this test case. The

geometry of the rotor blade is parameterized into sections of 2D airfoils using Auto-

Blade of NUMECA. The rotor 37 blade is parameterized into three sections of 2D

airfoils (at 25, 50 and 75% of the blade height). For each airfoil section, leading and

Fig. 7 Meridional view of

the rotor 37 blade with tip

gap
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Fig. 8 Mean and std deviation of the pressure distribution around the rotor blade using reduced

model for PC order 2

trailing edge angles are considered as uncertain. To model geometrical uncertainty

around the blade, the uncertainty is also imposed on four half-thickness parame-

ters (coefficients of half-thickness Bezier curve) of each airfoil section. In addition

to these geometrical uncertainties, the tip clearance, the inlet total pressure profile,

and the static outlet pressure are also considered uncertain. As a result, a total of 21

uncertain parameters are used for the uncertainty quantification of the NASA rotor

37. Symmetric beta distributions (𝛼 = 𝛽 = 4) are chosen for all uncertain variables.

The details of this test case are given in [24]. Based on experience with previous test

cases, a coarse grid with 1.04 × 105 cells is chosen. With a fine grid of 7.66 × 105
cells, the fine-to-coarse grid ratio is almost 7.5. Using a PC order of 2,506 samples on

the coarse grid allows to get the covariance matrix. Based on the results from the pre-

vious test case, only the static pressure was used to construct the covariance matrix.

Similar to the previous test case, a very fast decay was observed in eigenvalues.

The 𝜀 is set to 0.9999 to capture most of the stochastic information from the coarse

grid. The size of the reduced basis is then 21, requiring only 42 deterministic CFD

simulations on the fine grid. Figure 8 compares the pressure distribution around the

blade at mid-span height with the classical polynomial chaos method for the second-

order PC. The mean (left) and the standard deviation (right) of the static pressure are

shown. It can be observed that both methods produce similar results. Further analy-

sis of the present test case in [24] indicates that the reduced basis method almost is

5 times more efficient than the regression-based NIPC.
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Conclusions

In this paper, an efficient non-intrusive model reduction technique for PCE is pre-

sented and discussed. The proposed algorithm relies on the fact that the ideal basis

for a stochastic field follows from its POD decomposition. This, however, requires

the covariance structure, which in the present approach is obtained from the PCE

on a coarse grid, assuming hereby that the stochastic behavior is largely independent

from the spatial scales. The size of the ideal basis that results depends on the number

of POD modes that are accounted for but is always significantly smaller than the full

PCE basis, especially for high stochastic dimensions. The reduced basis approach

was successfully applied to: (1) a highly irregular analytical function, (2) the 2D tran-

sonic RAE2822 airfoil with ten geometrical uncertainties, and (3) the 3D transonic

NASA rotor 37 with 21 geometrical and operational uncertainties. The numerical

results show that the reduced basis method is able to produce acceptable results for

the statistical quantities. The computation time of the reduced-order model is found

to be much lower than that of the classical PCE.
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